Purdue University

Purdue e-Pubs

Department of Electrical and Computer	Department of Electrical and Computer
Engineering Technical Reports	Engineering

2-1-1990

Adaptive Networks as a Model for Human Speech Development-Cluster Plots

M. F. Tenorio
Purdue University
M.D. Tom
Purdue University
R. G. Schwartz
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

[^0]
Adaptive Networks as a Model for Human Speech Development-Cluster Plots

M. F. Tenorio M. D. Tom
R. G. Schwartz

TR-EE 90-12
February, 1990

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Adaptive Networks as a Model for Human Speech DevelopmentCluster Plots

M. Fernando Tenorio
M. Daniel Tom
Parallel Distributed Structures Laboratory School of Electrical Engineering

and
Richard G. Schwartz
Department of Audiology and Speech Sciences
TR-EE 90-12
February 1990

Purdue University West Lafayette, IN 47907

This Technical Report contains all the cluster plots generated for the cluster analyses described in 89.7 of [1]. The Lance and William General Algorithm with complete linkages for hierarchical clustering analysis [2] is used. A brief description of the algorithm may be found in $\$ 9.7 .1$ of [1].

In the cluster plots the symbol \rightarrow designates a letter-to-phoneme mapping. For example, $c \rightarrow k$ means the letter in the center of the window is " c " and is being mapped by the network into the phoneme $/ \mathrm{k} /$. Definitions of the phoneme symbols may be found on pp. 22-23 of [1].

A horizontal line designates a cluster. The length of a horizontal line has no significance. A vertical line designates the distance between the two clusters joining the top and bottom ends of the vertical line. The distance scale may be found at the beginning and the end of each plot. All plots have the same relative distance scale.

Cluster analyses are performed after the 5 th, 10 th, 15 th, 20 th, and 25 th passes through the English training database, and after the $2 \mathrm{nd}, 4 \mathrm{th}, 6 \mathrm{th}, 8 \mathrm{th}$, and 10 th passes through the Spanish training database. Cluster analyses for the second language trainings are performed similarly. Observations may be found in $\S 9.7 .2-\$ 9.7 .7$ of [1].
[1]Tenorio, M. F., M. D. Tom, and R. G. Schwartz, "Adaptive Networks as a Model for Human Speech Development," Purdue University TR-EE 89-54, A ugust 1989.
[2] Diday, E. and J. C. Simon, "Clustering Analysis," in Digital Pattern Recognition, ed. K. S. Fu, Springer-Verlag, Berlin, 1980.

$\begin{array}{ll}8 \rightarrow-2 & 2 \\ 3-7 & 3\end{array}$

$y-x--+1$
$y->\quad *--+$

$$
\begin{array}{llll}
\mathrm{p} & -> & \mathrm{p} & -\cdots+ \\
\mathrm{b} & -> & \mathrm{b} & -{ }^{+}+1
\end{array}
$$

o. -> W

Engisn-spanish Traning sex pase
DISTANCE SCALE

$\begin{array}{lll}c & \rightarrow & t--+ \\ c & -> & k\end{array}+-+$

Spanish Training set Pass 6

DISTANCE SCALE

$\begin{array}{llll}Y & -> & y & -\cdots+ \\ I & -> & y & -\cdots+1\end{array}$

DISTANCE SCALE

$\begin{array}{llll}\text { 日 } & -> & 2 & --++ \\ \text { 日 } & -> & \text { a } & -\cdots+\end{array}$

$$
\begin{array}{llll}
j & -> & d & ---i \\
j & -> & b & ---4
\end{array}
$$

$$
y
$$

\dagger Spanish-Engiish Training set pass 25

[^0]: Tenorio, M. F.; Tom, M. D.; and Schwartz, R. G., "Adaptive Networks as a Model for Human Speech Development-Cluster Plots" (1990). Department of Electrical and Computer Engineering Technical Reports. Paper 704.
 https://docs.lib.purdue.edu/ecetr/704

 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

