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ABSTRACT

In this paper, we give the design, and performance analysis, o f a new, highly 
efficient, synchronization mechanism called “ Static Barrier M IM D” or “ SBM .”  
Unlike traditional barrier synchronization, the proposed barriers are designed to facili
tate the use of static (compile-time) code scheduling for eliminating some synchroniza
tions. For this reason, our barrier hardware is more general than most hardware barrier 
mechanisms, allowing any subset of the processors to participate in each barrier. Since 
code scheduling typically operates on fine-grain parallelism, it is also vital that barriers 
be able to execute in a small number of clock ticks.

The SBM is actually only one of two new classes of barrier machines proposed to 
facilitate static code scheduling; the other architecture is the “ Dynamic Barrier 
MIMD,”  or “ DBM ,”  which is described in a companion paper1. The DBM differs 
from the SBM in that the DBM employs more complex hardware to make the system 
less dependent on the precision of the static analysis and code scheduling; for example, 
an SBM cannot efficiently manage simultaneous execution of independent parallel pro
grams, whereas a DBM can.

Keywords: Synchronization hardware, barrier synchronization, static barrier MIMD 
(SBM), VLIW, performance analysis.

The companion paper is tcHardware Barrier Synchronization: Dynamic Barrier MTMD (DBM)/* also submitted to 
ICPP *90. So that these two papers can be reviewed independently, some overview material appears in both papers; 
this redundancy will be removed if both papers are accepted.



Hardware Barriers (SBM)

I .  In troduction

Barrier synchronization is an important mechanism for coordinating parallel processes. For this rea
son, many research efforts have focused efficient implementations in both hardware [Lund80], [Poly88], 
[Gupt89a] and software [ArJo87], [Luba89], [Broo86], [HeFM88], Other research efforts [Call87] con
sidered minimizing the number of barrier synchronizations required in scheduling nested loop structures 
on parallel machines. In this paper, several new designs for fast barrier synchronization, exhibiting a 
range of cost/performance tradeoffs, are described. The new hardware implements a generalized barrier 
synchronization mechanism, whereby a barrier can be placed across any subset of the processors.

The new barriers execute in a very small number of clock cycles, and the resulting fine-grain 
mechanism may potentially replace the more common directed (e.g., producer/consumer) synchronization 
primitives found in most parallel architectures today. Machines that implement these barriers are referred 
to as barrier MIMD (Multiple Instruction Stream, Multiple Data Stream) architectures. Results from ana
lytic and simulation models [OKDi89], as well as from scheduling synthetic benchmarks [ZaDO90], have 
shown the effectiveness of the new barrier synchronization designs.

A barrier is a synchronization point In the old definition of barriers, all typically meant every phy
sical processor in the machine. In a barrier MIMD, this condition is relaxed to include only those proces
sors participating in the current barrier. A processor typically performs the following three steps at a bar
rier synchronization point:

[1] Marks itself as present at the barrier.

[2] Waits for all other participating processors to arrive at the barrier.

[3] Proceeds past the barrier with the other participating processors.

An additional constraint is added in barrier MIMD architectures:

[4] When the last processor has reached the barrier, and after some small delay to detect this condition,
all processors simultaneously resume execution past the barrier.

Although not discussed in detail in this paper, recent work has shown that adding constraint [4] to 
the definition of barrier synchronization allows the static instruction scheduling properties of VLIW and 
SIMD machines to be extended into the MEMD domain [DSOZ89], [DiSc88], [ZaDO90]. This means that 
many conceptual synchronizations can be resolved at compile-time, without the use o f a run-time syn
chronization mechanism.

The paper is organized as follows. Section 2 reviews previous hardware barrier synchronization 
mechanisms and points out both their strong and weak points. Section 3 provides models and definitions 
that are essential in understanding the new barrier mechanism, while section 4 gives an outline o f the 
basic hardware design for barrier MIMDs. Detailed analytic and simulation results on the performance of 
Static Barrier MIMD (SBM) are given in section 5, followed by conclusions and a description of ongoing 
work in section 6.
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2. Survey of Current Hardware Barrier Schemes

Hardware banier synchronization has become more important recently for several reasons, includ
ing the unpleasant fact that software implementations of barriers using traditional synchronization primi
tives result in O(log2A0 growth in the synchronization delay <E>(jV) [ArJo87], [Luba89], [Broo86], 
[HeFM88] on N  processors. Fine-grain parallelism cannot be exploited with such large delays.

In addition, the directed Synchronization primitives employed in these software barriers contend for 
shared resources such as network paths and memory ports, and this contention introduces stochastic 
delays that make it impossible to bound the synchronization delays between processors. As shown in a 
recent paper, the ability to bound these delays is vital to removing synchronizations through static 
scheduling [DSOZ89J.

Barrier synchronization has become more popular as a synchronization construct, and can be found 
in parallel programming languages (such as the Force and XPC [Phil89]) and as a subroutine call in many 
parallel programming libraries. This makes hardware support for barrier synchronization more important 
for fast, efficient execution o f parallel programs.

In this section we review several previous proposals for hardware barrier synchronization.

2.1. FiniteElementMachine

The term “ barrier synchronization”  first appeared in a paper by Jordan [Jord78]. This paper 
described a MIMD multiprocessor designed to solve finite element analysis problems. This application is 
typically reduced to forming a stiffness matrix and solving a sparse matrix problem using iterative tech

niques (which preserve sparsity.) Quoting Jordan [Jord78]:

Several aspects of the (finite element) algorithm require synchronization o f (all) the nodal pro
cessors. Consider, for example, the transition from the formation o f the stiffness matrix to
solution o f the linear equations. No processor should start the latter until all complete the
former. Let us call such a synchronization a barrier synchronization.

A hardware scheme for implementing barrier synchronization was proposed for the architecture. 
This scheme employed global bit-serial busses; each bus had an enable bit and flag associated with each 
processor. The flag could be set or cleared, and conditions “ Any” , “ A ll” , and “ First”  for all other pro
cessor flags tested. The bus implemented a priority chain, wired-OR, and wired-AND function. To imple
ment a barrier, two flags, a barrier flag and report flag were required. One processor (the controller) tested 
the “ All”  condition for the report flag, while all other processors set the report flag once they completed 
their work. The processors then performed the “ Any”  test on the barrier flag as long this flag was true. 
The controller cleared the banier flag once the report flag satisfied the “ All”  condition. This simple 
scheme will woik for*small numbers of processors, but the global busses preclude scalability. Experi
ments run on an eight-processor prototype o f this machine were discussed in [AdCr84].
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22. B urrough’s Flow M odel Processor (FMP)

The Burroughs Corp. proposal [Bun79], [Burr81] for the Flow Model Processor (FMP) [Lund80], 
[BaLu81], [Lund85], [Lund87] included the first detailed description of a hardware implementation for 
barrier synchronization. This machine was originally designed to support applications in computational 
aerodynamics, but implements a general MIMD model, and can efficiently solve a variety o f modeling 
and simulation problems. The designers of the FMP began with a definite performance goal: sustained 
computation rates in excess o f one billion floating-point operations per second using early 1980s circuit 
and packaging technology. The FMP was to be built for NASA and was to perform computational wind 
tunnel studies that require this high level of sustained performance. Although the machine was never 
built, design specifications were completed down to the chip and board level [Burr81].

The Flow Model Processor architecture design was driven by application considerations [Lund87]. 
This is partly reflected in the extensions made to standard FORTRAN to support FMP execution. These 
extensions included a DOALL loop construct that is closely related to the standard FORTRAN DO, 
except that the iterations (instances) o f the DOALL are completely independent and may execute in paral
lel. This represents a MIMD execution model, and the construct is useful in expressing parallelism in 
aerodynamic programs. These programs represent a three-dimensional fluid space with data arrays, and 
the computations consist o f  repetitive updates of each grid point in the space using data from adjacent 
grid points. The updates are similar for most instances o f the DOALL except boundary grid points; these 
differences are reflected in different control flow paths in each instance. Another extension to standard 
FORTRAN was the DOMAIN statement, which provides a technique for specifying rectangular subsets 
of iteration space.

The hardware barrier mechanism in the FMP arose from a need for an efficient and fast way to syn
chronize all processors after they complete execution o f a DOALL [Bun79], [Lund80]. After a processor 
has executed all its assigned DOALL instances, it executes a WAIT instruction. A processor continues to 
execute WAIT until a “ GO”  signal is received. The “ G O ”  signal is generated by a synchronization net
work, known as the Processor Control and Maintenance Network (PCMN), which acts as a massive 
“ AND” gate. When the last processor to finish executes a WAIT, this signal propagates up the “ AND” 
tree in a few gate delays, and then “ GO”  is reflected back down the tree enabling all processors to con
tinue execution past the DOALL. The Flow Model Processor can be partitioned into subsets executing 
different programs by configuring “ AND” gates at lower levels of the synchronization tree as root nodes 
for each subset [Lund85] . The partitioning was conceived to allow the FMP to run smaller jobs during the 
day when users would be compiling and debugging prototype programs, and then work as a single unit 
late at night on very long jobs.

Scheduling is performed without a global control unit; each processor is identified by a processor 
number and is given the number of instances in the DOALL just before execution of the DOALL begins. 
At that point, each processor has enough information to independently determine the remaining instances 

it will execute, and no global control is necessary. Simulation studies showed that such static scheduling 
worked well on the FMP [Burr79].



Thus, the FMP barrier scheme is fast, executing a barrier synchronization in a few clock ticks, scal
able, and within limits, partitionable. Partitions are constrained to certain subgroups related to the 
“ AND” tree structure, and only certain processors may be grouped together. This constraint is not 
surprising given the nature of the parallel code executed on the FMP, and does not affect its performance; 
but it does unnecessarily constrict the generality of the machine. A masking capability is provided so that 
only a subset of the processors in a partition participate in a barrier.

2.3. BarrierModules

Another hardware barrier scheme was developed by Polychronopolous [Poly88] and studied by 
Beckmaim [BePo89] in the context o f  bus-based multiprocessors. In this scheme, barriers are imple
mented through a hardware module consisting of bit-addressable registers R(i)» (i = I, 2 ,...,p), one asso
ciated with each of p  processors, an enable switch, logic to test for the all zeroes2 (all processors have 
reached the barrier), and a barrier register BR. To better understand this scheme, consider executing a 
DOALL loop nested inside a serial outer loop. A barrier is required after the DOALL to synchronize all 
PEs before beginning the next iteration of the serial outer loop. The BR register is set at the beginning of 
each iteration of the outer loop. Each processor would execute several iterations from the inner DOALL 
loop, setting its associated register R(Ualici) when it begins an iteration and clearing the register when it 
completes. This continues until the processor executing the last iteration of the DOALL turns on the 
enable switch, allowing the “ all zeroes”  logic to determine when all processors have finished, at which 
point the BR register is cleared. This basic scheme was duplicated to handle multiple barriers [Beck89].

There are several problems with the the hardware barrier module scheme. First, all processors must 
participate in the barrier because there is no masking capability, i.e., the BR register can only be cleared 
once ALL p  processors have set their associated bit-register R(i) for the last time. This restriction could 
easily be removed by incorporating a masking register into the enable switch so that certain processors 
could be disabled from participating in the barrier. The process that set the BR register, and hence con

trols the dispatching o f iterations for the barrier, must then insure that iterations are sent only to proces
sors participating in the barrier. It must also set the mask to include only participating processors in the 
barrier. If a self-scheduling algorithm is employed, processors not involved in a barrier must be prevented 
from taking iterations participating in the barrier. This could be implemented straightforwardly using a 
tag for each iteration to identify its barrier.

Second, a separate hardware unit is needed for each barrier executing concurrently with other bar
riers. This means the global connections from each barrier module to all PEs as well as the “ all zeroes” 
logic must be repeated. An alternative to repeated global modules was suggested in [Poly86] in the con
text of the Cedar multiprocessor system. Cedar consists of clusters of tightly-coupled processors con

nected to a global shared memory through a multistage network. Barrier hardware modules would be 

placed in each cluster, and modules could communicate across clusters through some dedicated hardware,

2. This logic would be the similar to the * ‘AND’ ’-tree network in the FMP.

Hardware Barriers (SBM)

Page 5



Hardware Barriers (SBM)

possibly a bus.

Third, no hardware is provided to signal the processors that they may proceed past the barrier. That 
is, once the BR register is cleared, one or more processors must contend to set it, and then dispatch the 
next set o f iterations. Alternately, one processor could be assigned to set the BR register, and the barrier 
module could send an interrupt to this processor to inform it that all PEs have finished iterations associ
ated with the barrier. If scheduling was not distributed and dynamic, the barrier register could be 
hardwired to a global control unit (GCU) [Poly86], and this unit could then dispatch the iterations associ
ated with the next barrier.

Finally, unless the process (iteration) dispatching and switching times are very small, the time saved 
by the barrier module scheme in detecting barrier completion may be swamped by the time necessary to 
dispatch the next set o f iterations. Hence, the run-time overheads of a dynamic, self-scheduled machine 
could kill the fine-grain advantages of hardware barrier synchronization.

2.4. FuzzyBarrier

Gupta [Gupt89a], [Gupt89b] also considered hardware support for barrier synchronization. The 
scheme was described as the "fuzzy" barrier. The "fuzzy" part o f the fuzzy barrier is basically a delayed 
barrier firing mechanism where the actual wait may occur several instructions after a processor indicates 
it has encountered a barrier. The instructions that the processor may execute while a barrier is pending are 
known as the barrier region. The concept is similar to delayed branches in pipelined machines: the 
branch does not take place until several clock ticks after the the branch instruction, masking the memory 
delay for fetching the instructions at the branch target. The barrier remains pending across several instruc
tions; a wait delay occurs at the banier only if  the processor reaches the end of its barrier region before all 
o f the other processors participating in the barrier reach the beginning o f their respective barrier regions. 
The goal is then to make the banier regions as large as possible, so that even with small variations in exe
cution time among the participating processors, no waits occur. It should be noted that just such a delayed 
barrier mechanism was described in the Burroughs proposal for the FMP ([Bun79], sec. 5, pg. 31).

In [Gupt89a], several examples of reordering loop code to enlarge barrier regions are given. 
Although enlarging barrier regions tends to reduce the occurrence o f barrier waits in the fuzzy barrier 
scheme, it is not necessarily a good idea. Some of the code motions proposed to take advantage o f the 
fuzzy banier [Gupt89a] are the exact opposite of the traditional code motions for loops. That is, loop 
optimizations typically attempt to remove invariant code from loops to reduce execution time. This is the 
precisely the purpose o f induction variable simplification, constant folding with value propagation, com
mon subexpression elimination, and dead code removal [AhSU86]. In several o f the code motion exam
ples given in [Gupt89a] to enlarge barrier regions, much o f the code that is placed inside loops to enlarge 
them would have been removed by these optimizations.

The basic premise behind the fuzzy barrier—  the necessity of avoiding barrier waits at all costs —  
may be the result o f current implementations of banier synchronization, in which a processor waiting at a 
barrier does an expensive context switch rather than a simple busy-wait. These expensive context
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switches are cited as the primary reason for improvements in simulation results using the fuzzy barrier on 
an Encore Multimax [Gupt89a]. The synchronization time relative to execution time is reduced as the 
barrier region size increases. However, another solution would be to simply turn off the context switch 
and pay the price for the barrier waits. If the processor load is reasonably well-balanced, this should be an 
acceptable solution for these bus-based multiprocessors. The results of several studies have supported the 
idea of static (orpre-) scheduling of loop iterations [KrWe84], [BePo89]. This suggests that it is better to 
put the code re-ordering efforts into balancing region execution times rather than preventing waits with 
larger barrier regions.

Several problems exist with the fuzzy barrier hardware implementation [Gupt89b], the most 
significant being die hardware expense. Each processor has its own separate barrier processor, and all pro
cessors must send a barrier signal (“ I am at the barrier” ) to all other processors, along with a tag to dis
tinguish itself from other barriers. Expensive matching hardware is duplicated in each processor to deter
mine if the tags match for processors participating in a barrier. There are N  barrier processors in an N  pro
cessor machine and N 2 connections among these processors. Each connection contains at least m lines 
(given an m-bit tag to identify 2m—I different barriers.) The large number of connections and hardware 
required per processor limits the fuzzy barrier to a small number o f processors. Another severe limitation 
of the fuzzy barrier is that procedure calls, interrupts and traps cannot be executed in barrier regions.

2.5. Other HardwareTechniquesImplementingBarriers

Various other hardware mechanisms have been used to implement barrier synchronization, includ
ing combining networks [Gott83], cache-coherence hardware [GoVW89], and synchronization busses. 
These mechanisms are typically more general than the previous, specialized hardware barrier schemes, 
but have lower performance for barrier synchronization. During barrier synchronization, all processors 
access a single shared synchronization variable. Recent studies have shown that such concentrated access 
in multistage networks results in a “ hot spot”  that significantly increases memory access times, even for 
accesses to locations other than the “ hot spot.”  Combining networks have been proposed as a solution, 
but the switches required are very complex and the additional hardware in each switch increases the 
access time for all references. In addition, a recent study [Lee89] found that the size of switches necessary 
to support effective combining must increase as the machine size increases, calling into question the sca
lability o f combining networks.

An implementation of barrier synchronization using a software combining tree scheme along with 
cache-coherent hardware is described in [GoVW89]. Once all processors have reached the barrier, a 
Notify operation is used to update all shared copies o f the barrier synchronization variable, rather than 
merely invalidating i t  This prevents the processors from spinning on the global copy of this variable after 
it is invalidated, as would happen in most hardware cache-coherence schemes.

Another approach to supporting barriers in hardware is the synchronization bus and concurrency 
control units on the Alliant FX/8. This bus is shared by up to eight processing elements, each containing a 

vector u n it Synchronization primitives executed on the bus support barrier synchronization. This scheme
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is effective for a small number of processors.

2.6. Summary

The FMP and barrier module schemes are not quite general enough to meet the need for a general
ized barrier synchronization mechanism, and the fuzzy barrier and other hardware techniques for barriers 
do not scale well. Also, the concept of simultaneous resumption of execution after the barrier is not 
inherent in any of the previous schemes. The barrier designs proposed in this paper are both scalable and 
general enough to barrier synchronize any subset of the processors, and simultaneous resumption of exe
cution past the barrier is implicit in the hardware design.

3. ModelsforBarrierSynchronization

We now introduce representations for barrier synchronization in concurrent processes. These 
representations will help in understanding barrier MIMD execution and design alternatives. In this work, 
the barrier embedding for a set o f concurrent processes will be represented as in figure I. The vertical 
lines represent concurrently executing processes while the horizontal lines represent barriers across die 
processes they intersect. The semantics of these barriers are that the participating processes cannot 
proceed until all have arrived at the barrier, e.g., in figure I, processes PO, P I , .... P4 cannot proceed past 
barrier O until all have arrived there. At that point, they all start execution o f the instruction following the 
barrier simultaneously. Process execution proceeds in the downward direction.

Several concepts and results from the theory of partially ordered sets are useful in understanding 
barrier embeddings within concurrent processes. Recall that a binary relation R on a set P is a subset of 
the Cartesian product X 2, that is R £  X x X. Let xRy correspond to (x, y)e R, and not(xfty) represent (x, y) 
4 R. The binary relation <b on a set o f barriers B is a partial ordering because <b is both irreflexive and 
transitive3 [Fish85]. The partially ordered set (B,<b) may be illustrated by a directed acyclic graph (dag), 
with the graph nodes representing barriers and edges representing the ordering relations <b among the 
barriers. A barrier dag for the barrier embedding in figure I is shown in figure 2. Here we see that b2 (bar
rier 2) must execute before t >3 (barrier 3), hence t>2 <b fy , and similarly b3 <b b4. Transitivity implies 
b2 <b b4 . These properties are derived from the barrier semantics: barrier t>3 must be executed after the 
process P3 has encountered barrier Similarly, b4 must be executed after the process P2 has encoun
tered 1)3.

A synchronization stream is defined to be an ordered sequence o f barriers S. As mentioned previ
ously, the ordering is implied by the embedding of the barrier synchronization instructions in the separate 
instruction streams. More formally, a synchronization stream corresponds to a chain in the partially 

ordered set (B, <b). A chain in a poset (B, <b) is a set S c X  such that (S, B D  (Sx S )) is a linear ordered 
se^. Conversely, A  is an antichain if  x~y for all x, y  e  A, where 3 4

3. A binary relation R on X  is irreflexive if not xRx for every x in X. It is transitive if (xRy, yRz) = >  xRz for 
allx.y, zinX .

4. A binary relation R on X  is a linear order if R is asymmetric and complete. R is asymmetric if xRy = >
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PO P l P2 P3 P4

O

2

5

Figure I Figure 2

x - y  if not(xfty) and not(yftx) .

Barriers x  and y that satisfy x ~ y  are said to be unordered. The width W(X, R) o f a poset is swp{|A|.- A is 
an antichain in (X, /?)}^. Qearly, the barriers contained in an antichain may be executed in any order, 

indeed, they may even be executed in parallel. The maximum number of synchronization streams for a 
particular barrier embedding corresponds to the width W o f the poset (B, </,).

Examples of partial, w e a k and linear orders are given in figure 3. Antichains are specified in the 
weak order example. The largest antichain in the weak order shown in figure 3 contains three barriers: 
hence, the width o f the weak order is three. The partial order shown in the figure also has width three. 
Qearly, the linear order in the figure contains a single synchronization stream, whereas multiple syn
chronization streams (chains) are evident in the weak order. 5 6

notfy/fo) for all x  and y in AT. Relation R is complete if x  & y = >  (xRy otyRx) for all x  and y in X
5. The function sup is the suprenum, or least upper bound. |A| represents the cardinality of the set A.
6. A weak order is a partial ordering in which the symmetric complement — is transitive.
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Partial Order

8 8 8
antichains

W eakOrder L inearO rder

Figure 3
Intuitively, the number of synchronization streams that a given architecture supports corresponds to 

the number of different synchronization operations that are candidates for the next synchronization opera
tion to occur. If  this number is not zero (no synchronization), then larger values imply fewer delays when 

performing multiple synchronizations. For example, suppose a four processor machine requires proces
sors O and I (barrier a) to synchronize as well as processors 2 and 3 (barrier b), as shown in figure 4. This 
yields two synchronization streams, traced out by dotted lines in figure 4.

If the order in which the synchronization operations occurs cannot be predicted at compile time, a 
machine which permits multiple synchronization streams will insure that the synchronizations execute in 
the correct order or even in parallel. A machine which permits only one stream will sometimes suffer a 
delay due to, for example, processors G and I waiting for 2 and 3 because the compiler incorrectly 
guessed that the synchronization o f 2 and 3 would occur first. Another approach is to combine both syn
chronizations into a single barrier across processors 0, I, 2, and 3 (as shown in figure 4) if  the machine 
supports only a single synchronization stream. This yields a slightly longer average delay to execute the 
barriers.

In general, a barrier dag, (B, <b) corresponding to a barrier embedding in P concurrent processes 

has a maximum width o f PU. This follows from the fact that the smallest number of processes participat
ing in a single barrier is two, yielding a maximum of PU barriers in a single antichain. Note that there are 

I p- P - I  possible subsets of the P processes with cardinality greater than or equal to two and therefore 
this same number o f possible barrier patterns.
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PEO PEl PE2 PE3
:
A

Two Sync Streams '•••••■

PEO PEl PE2 PE3

O

S

One Sync Stream after 
barriers a, b  merged

Figure 4: Merging Barriers Reduced Number of Sync Streams 
The two basic forms o f barrier MIMD, static and dynamic, differ in that static barrier MIMD (SBM) 

supports only a single synchronization stream whereas dynamic barrier MIMD (DBM) supports multiple 
synchronization streams. In essence, the SBM imposes a linear order on the partial ordering inherent in 
the barrier dag; the DBM imposes no constraints on the partial order. A hybrid barrier MIMD (HBM) 
architecture that imposes a weak order on the barrier dag is introduced in the next section. The imple
mentation and performance of the static and hybrid barrier MIMD architectures are discussed in more 
detail in the following sections.

4. Barrier Synchronization Hardware Design

The original catalyst for the hardware barrier synchronization designs proposed in this work was 
PASM, the Partitionable SIMD/MIMD machine designed by H. J. Siegel at Purdue University [SiSi81]. 
PASM is a  reconfigurable parallel computer that can be dynamically partitioned to form independent vir
tual SIMD and/or MIMD machines of various sizes. A 16 processing element PASM  prototype has been 
constructed at Purdue University [ScNa87].

The barrier MBMD idea arose in an attempt to implement a VLlW  execution model [Elli85] on the 
PASM prototype. During this attempt, it quickly became clear that PASM could not easily support 
VLIW execution. However, a new mode o f execution was discovered that was not SIMD, MIMD, nor 

alternately or simultaneously SIMD and MIMD. Instead, processors would run and communicate in 
MIMD mode, but would also employ the logic that normally enables and disables processors in SIMD 
mode to implement a barrier synchronization mechanism. In addition, it was realized that code genera

tion and scheduling for PASM in this new barrier execution mode could be accomplished using tech

niques similar to Trace Scheduling1 for VLIW machines. Several benchmarks have been run on the 7

7. Trace Scheduling^  is a trademark of Multiflow Computer, Inc.
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PASM prototype in this mode [FCSS88], [BrCJ89] and preliminary results have been very promising. In 
[BrCJ89], several versions o f the fast fourier transform algorithm were executed on PASM 1 and the bar
rier execution mode outperformed both SIMD and MIMD execution mode in all cases.

The barrier synchronization mechanism in PASM can be applied across all processors or selected 
subsets. The “ barrier instruction”  is actually a read from the SIMD data address space: PASM processors 
switch between SIMD and MIMD modes by reading instructions and data and writing data in the separate 
MIMD and SIMD address spaces. A barrier mask of participating processors corresponds to the SIMD 
mask word: these masks are enqueued in a FIFO along with a SIMD instruction (which is ignored in bar
rier mode.) An “ AND”  tree detects when all processors in the mask pattern have executed the SIMD 
data read, and the participating processors are then released from the barrier and continue execution. 
Thus, the PASM SIMD enable logic provides a fast, flexible barrier synchronization mechanism.

The design o f the PASM prototype made it clear that the problem of generating a barrier synchroni
zation across any subset of the processors is identical in nature to the problem o f generating 
enable/disable masks for a SIMD processor. Hence, just as a SIMD processor has a control unit to gen
erate enable/disable masks, a barrier MIMD has a barrier processor that generates barrier masks to iden
tify the processor subsets participating in a particular barrier synchronization. The barrier processor gen
erates barrier masks into the barrier synchronization buffer where each mask is held until it has been exe-

%

cuted. A single WAIT line from each processor to the barrier synchronization buffer is used to indicate 
that a particular processor is participating in a barrier synchronization.

Each mask consists of a vector of bits, referred to as MASK, one bit for each processor. The value 
of bit MASK(i) indicates whether the corresponding processor i will participate in that particular barrier 
synchronization*. In the SBM execution model, the barrier synchronization buffer corresponds to a sim
ple queue. This queue imposes a linear order on the execution of the barrier masks that will not, in gen
eral, correspond to the execution ordering that occurs at runtime. In figure 5, a set o f five barriers across 
four processors must be executed; the first two barriers, across processors 0 and I and processors 2 and 3 
can be executed in any order. The barriers masks are ordered as shown on the right side o f the figure, 
where a one in the mask corresponds to a participating processor. Here the first barrier across processors 0 
and I is assumed to execute first: the other four barriers are then placed in the SBM queue in the order 
that they must execute at run-time.

In the DBM model, barriers are executed and removed from the barrier synchronization buffer in the 
order that they occur at runtime. This implies the need for an associative match capability in the DBM 
synchronization buffer, and it is this buffer which supports up to PI2 synchronization streams. 8

8. Note that unlike the fuzzy barrier and barrier module schemes, no tags are necessary to identify 
particular barriers, as this is implicit in the manner in which they are stored. This reduces the number of 
connections between the barrier processor and the computational processors and the complexity of the 
matching hardware significantly.

Page 12



Hardware Barriers (SBM)

Proc. O_____Proc. I_____ Proc. 2_____ Proc. 3 t=0
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I I 0 0 <—NEXT 

0 0 1 1  

0 1 1 0  

1 1 0 0  

0 1 1 1

Figures
In both the SBM and DBM model, processors execute a w a i t  instruction (or an instruction tagged 

with a w a i t  bit) but do not continue past the w a i t  until the current processor w a i t  pattern WAIT 
causes the next barrier to complete. Processors participating in this barrier (processor i participates if 
MASK(z) is one) then continue execution past the w a i t  instruction. A processor that is not involved in 
the current SBM barrier need not execute a w a i t  for that barrier —  if  a w a i t  is issued by a processor 
not involved in the current barrier, the SBM simply ignores that signal until a barrier including that pro
cessor becomes the current barrier. Since barrier patterns can be created asynchronously by the barrier 
processor and buffered awaiting their execution, the computational processors see no overhead in the 
specification of barrier patterns. Hence, both SBM and DBM machines can achieve essentially perfect 
synchronization o f any subset of the processors with only a very small, roughly constant overhead.

The logic equation representing the condition that all processors participating (MASK(z) =  I) in the 
current barrier have arrived at the barrier and executed a w a i t  instruction is

GO = PJMASK(Z) +  WAIT(Z) .

Of course, in addition to generating code for the computational processors, for either the SBM or 
DBM machines the compiler must precompute the order and patterns of all barriers required for the com
putation and must generate code that the barrier processor will execute to produce these barriers. The 
code for the main processors also must contain the appropriate w a i t  instructions or instruction tags. 
Separate w a i t  instructions are probably easier to implement than tags, but tags would permit more fre
quent use of barriers. 5

5. StaticBarrierMIMD(SBM)

Figure 6 shows the basic SBM architecture for a four-processor machine. The barrier masks and 
ordering are the same as those used in figure 5. The NEXT barrier mask that is being matched is 

“ OR” ed with the WAIT bits from the processors. The “ OR” output bits then propagate through the 

“ AND”  tree to produce the GO signal. This signal indicates that the all processors participating in the

Page 13



NEXT barrier have encountered the barrier and generated a WAIT signal. The active GO signal causes 
the NEXT barrier mask to be sent out on the processor GO lines, indicating to participating processors 
that they may proceed past the barrier. The barrier masks remaining in the queue then advance to the next 
available position, and the first barrier in the queue becomes the NEXT barrier. The barrier and computa
tion processors are not shown in the figure, nor is the barrier queue load logic.

Hardware Barriers (SBM)

PE 1 Wait

PEo Wait

—̂  PEo Go
-t> PE 1 Go

—{> PEo Go
Barrier Queue

Figure 6

As stated previously, the SBM execution model imposes a linear order oh the execution o f barriers; 
that is, unordered barriers have an ordering relation imposed on them when the are loaded into the SBM 
barrier queue. The SBM barrier ordering will correspond to the expected runtime ordering o f the barriers, 
and may not, in general, correspond to the actual runtime ordering. In order to measure the performance 
o f the static barrier MIMD architecture, it is important to understand the impact o f  delays resulting from 
the difference between the expected and actual runtime barrier ordering. In the following section, a model 
is proposed for the problem and the percentage of barriers that experience blocking due to the SBM bar
rier ordering is derived. Results from a simulation study o f the SBM are also described.

5.1. A nalyticM odeling

To understand the potential impact of delays imposed by the linear order in the SBM queue we will 
consider a barrier embedding containing an n barrier antichain. Note that there are n\ possible runtime 
orderings of these barriers. If  the n barriers have the same expected execution times, or if  no information

Page 14



is available about the expected execution times, then no assumptions concerning the runtime ordering of 
the barriers can be made, and the placement of the barriers in the antichain in the SBM queue is essen
tially a random selection.

The percentage o f  the barriers in an antichain that are blocked by a particular SBM queue ordering 
will be characterized, and it will be shown that blocking is equivalent to "combining" the barriers into 
several larger barriers or even a single barrier. After characterizing the percentage of barriers blocked for 
a given schedule, it is possible to estimate the delay caused by this blocking phenomena.

Consider a barrier embedding with a three barrier antichain. There are 3! =  6 possible execution 
time orderings of the three barriers (labeled 1,2, and 3) in the antichain9. Consider the execution ordering 
of barrier 3, followed by barrier 2, then barrier I : barriers 3 and 2 are blocked by barrier I , and the effect 
is equivalent to the three barriers being combined into a single barrier. A barrier embedding with a three 
barrier antichain ( barriers 1,2, and 3) and this execution time ordering is shown in figure 7.

Hardware Barriers (SBM)

2

y;
...

...
...

...
...

...
...

...

I........................W

Figure 7: Effect of ‘ ‘Bad’ ’ Static Barrier Order

If the execution ordering is barrier 2 first, followed by I and then 3, barrier 2 is blocked by barrier I, 
and these two barriers are, in effect, combined. The different execution time orderings for n = 3 can be 
represented as a tree, shown in figure 8.

Each level o f the tree corresponds to the firing o f a particular barrier. The leaves of the tree have been 
annotated with the number o f barriers that are blocked given the particular execution ordering. Let the 

blocking quotient, fK/r), be the expected value for the percentage of n barriers in an antichain that are

9. Note that in this discussion, the numbering scheme for the barriers corresponds directly to their ordering 
in the SBM queue. Hence, barrier I is first in the queue, barrier 2 is second, etc.
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O I I 2 1 2  #  of barriers blocked

Figure 8: Tree Representing AU Possible Execution Orders 
blocked. It can be determined by weighting the number of barriers blocked by the appropriate probabUity, 
and summing these weighted values over aU possible blockings.

Under our assumptions, aU execution orderings are equiprobable. Hence, the probabUity that p  bar-
Ki1(P)

tiers are blocked is given by — -—, where KnQ)) corresponds to the number of execution orderings with
fl I

p  blocked barriers given n barriers in the queue. This yields

It can be shown that

P(«)
n-1

Z p
P=0

Kn(P)
n\

Kn(P)
0 if  p < 0 or p  > n
1 i fp  = 7
Kn- I ( P ) +  ItKn- J ( P - I )  i f p  > 7

Figure 9 shows that as n increases, the blocking quotient, p(n), increases asymptoticaUy as 
expected. It can be seen from figure 9 that over 80% of the barriers are blocked when there are more than 
11 barriers in an antichain. The percentage is less for smaUer numbers o f barriers. W hen n is from two to 
five, less than 70% of the barriers are blocked.

This result, though interesting, merely confirms what our intuition would expect: that most barriers 
in an antichain wiU experience some blocking effects due to the linear order imposed by the queue in the 
SBM synchronization buffer.

One way to reduce the blocking quotient would be to add a small associative memory at the front of 
the SBM queue, as shown in figure 10. In essence, a window of barriers at the front o f the queue would 
be candidates for the next barrier to execute instead of a single barrier. This idea was originally proposed 

in [OKDi89] where it was described as a “ hybrid”  scheme between static and dynamic barrier MIMD
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Figure 9:Blocking Quotient Vs. n
models. It will be referred to as hybrid barrier MIMD (HBM) in this work. Note that a linear order is still 
imposed on the barriers as they are loaded into the queue. Any barriers x  and y occupying the associative 
memory simultaneously must satisfy x ~y, since the associative memory cannot distinguish between such 
barriers. Hence, in the HBM the proper ordering remains implicit in the run-time queue ordering.

The previous equation for k„(p), the number of execution orderings with p  blockings in a SBM, can 
be generalized to k*(p), where b represents the size of the associative buffer in a hybrid barrier MIMD. 
Thecorrectexpressionis
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Figure 10: Hybrid BarrierM IM D

Kn<P) =

0 if p  < 0 or p  > n
0 i f p > l , n < b
n\ ifp  = 0 , n <b
bK*-i(p) + (n-b)Kb„ .j(p -l)  ifP>1,  n > b  .

The proof of the validity o f this equation can be found in [OKee90]. When b = l this equation reduces to 
the equation given for K„(p). Using the equation for K * ( p ) ,  curves for the blocking quotient of a hybrid 
barrier MIMD with various associative buffer sizes b were computed. The results are displayed in figure 
11. It can be seen that each increase in the size of the associative buffer yielded roughly a 10% decrease 
in the blocking quotient.

These analytic models suggest that a large percentage o f unordered barriers experience some sort of 
blocking due to the linear ordering imposed at run-time in an SBM. In the next section, simulation is used 
to measure the delays resulting from blocking effects and scheduling techniques are proposed to reduce 
these delays.
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5 2 .  SimulationStudy

The analysis given in the previous section made the worst case assumption that the unordered bar
riers where scheduled such that they all had the same expected execution time. In this situation, the com
piler has no useful information concerning the ordering of the barriers in the SBM queue. Any random 
ordering of the barriers would be expected to perform just as well as any other ordering. We now intro
duce the concept o f staggered barrier scheduling. This refers to scheduling barriers so that the expected 
execution time of a set of unordered barriers {b^b^ • • • ,bi5 • • • ,bn} is a monotone nondecreasing func
tion. Let E(bi) be the expected execution time of barrier b,. Then the following equation

E ( b ^ ) - E ( b i )  = SE(Iji)

defines the stagger coefficient 8 and the integral stagger distance <|>. We say that two barriers bj and b^ are 
adjacent if  |j—k | =  <j>. The stagger coefficient 5 refers to the percentage difference between the expected 
execution times o f adjacent barriers. Figure 12 shows a schedule o f four barriers with a stagger 
coefficient 5 =  0.10 and stagger distance 4> =  I.

Figure 13 shows a similar schedule o f four barriers, except the stagger distance <j> =  2.

The advantage of staggered scheduling is that the barriers can now be expected to execute in a par
ticular order with a higher probability than without staggering. This “ expected”  execution ordering can 
then be used as the ordering of the barriers in the SBM queue. Let us consider an example. Let Xi 

represent the random variable for the execution time of barrier bi. We wish determine P[ Xi+m<i) > Xi ], the 
probability that barrier bi+m<i, executes after bj. The former barrer is staggered mb percent from the latter. 
We have
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5 = 0.10

Figure 12: Staggered Barrier Schedule (<j>=l, 5=0.10)

5  = 0.10

Figure 13: Staggered BarrierSchedule (<(>=2,5=0.10)

P[ Xitm4, > Xi ] = P [ Xitm* - Xi > 0 ] =  I - P[ Xitm* — Xi < 0 ] =  I - F w x i (O)

and if exponential distributions are assumed

P t Xitm* > Xi ]
(1.0+m5)A.

X, +  (1.0+aw5)X,

Simulations results show that staggered scheduling reduces the delay caused by queue waits, i.e. 
waits caused solely by the SBM queue ordering. Figure 14 shows the simulation results assuming that 
region execution times have a normal distribution with p?=100 and 5=20, <(>=1 and 5 set to 0.0, 0.05, and 
0.10.
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queue wait 
(normalized)

; c 5=0.00

•:< 5=0.05

___ -ic 5=0.10

unordered barriers

Figure 14

It is evident from figure 14 that staggering the barriers can significantly reduce the accumulated 
delays caused by queue waits.

The effects of the hybrid barrier MIMD mechanism have also been simulated. Preliminary simula
tion results have shown that the associative memory in the hybrid barrier architecture need be no larger 
than four to five cells to effectively remove delays caused by the blocking between unordered barriers.

Preliminary simulation results are displayed in Rgures 15 and 16. The horizontal axis indicates the 
number of unordered barriers that are to be executed, while the vertical axis represents the total barrier 
delay, normalized to |i. The region execution times are taken from a normal distribution with p  =  100 
and s = 20 before staggering is applied.

queue wait 
(normalized)

-c hybrid (AM=2)
5=0.00

- c pure SBM

hybrid (AM=3) 

: hybrid (AM=4)

unordered barriers

Figure 15
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From Figure 15, it is evident that the hybrid barrier scheme reduces barrier delays almost to zero for 
small associative buffer sizes. There is an anomaly here for an associative buffer size o f two: in this case, 
the barrier delays are greater that those of the pure static barrier scheme when the number of barriers is 
greater than about eight. The reasons for this anomaly are currently under investigation, but no clear 
answer is currently available. This anomaly is of more theoretical than practical significance.

queue wait 
(normalized)

5=0.10

____ Cpure SBM

Chybrid (AM=S)

hybrid (AM=3,4)

unordered barriers

Figure 16

Figure 16 shows the results when staggered scheduling is employed with 5 =  0.10 and <|>= I. The 
effects of staggering alone reduce the delays significantly.

These results suggest that it is possible to significantly reduce the effects of barrier blocking in the 
SBM and HBM by proper scheduling. However, it should be noted that the results apply only to sets of 
unordered barriers (antichains). Barrier embeddings with long, independent synchronization streams pose 
serious problems to both the SBM and HBM architectures. In essence, these independent streams are 
“ serialized”  in the barrier queue. This can potentially introduce large delays due to blocking effects. The 
dynamic barrier MIMD architecture proposed in a companion paper (part II) supports multiple, indepen
dent synchronization streams, avoiding these problems and efficiently supporting a broad class of partial 
orderings.

6, Conclusions

This paper presented designs for two different flavors o f barrier MIMD architecture: the SBM and a 
SlightlyenhancedversioncalledtheH BM (H ybridBanierM IM D ).

The primary motivation for these barrier MIMD architectures is the use o f static (compile-time) 
code scheduling for eliminating some synchronizations, and the proposed designs are built around the 
features needed to support this scheduling. As discussed in [ZaDO90], a significant fraction (>77%) o f 
the synchronizations in synthetic benchmark programs were removed through static scheduling for an
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SBM. However, this was not the only benefit found.

Because the proposed SBM and HBM architectures are so simple and can operate within a few 
clock ticks, these architectures also show great promise as a mechanism for synchronization in general —  
even where sophisticated static scheduling techniques are not applied. As discussed in this paper, the 
SBM and HBM designs given are at least as capable as previous hardware barrier mechanisms, yet permit 
more efficient implementation.

As mentioned in the abstract, the SBM (and HBM) architectures are more restrictive than the DBM 
which we have also proposed, but SBM hardware is far simpler. The performance analysis presented in 
this paper suggests that, provided that static scheduling can be applied across the entire SBM, the extra 
complexity o f the DBM is not needed. This further suggests that a highly scalable parallel computer sys
tem might consist o f SBM processor clusters which synchronize across clusters using a DBM mechanism, 
and such an architecture is under consideration within CARP (the Compiler-oriented Architecture 
Research group at Purdue).

Other ongoing research includes techniques for parallelizing and scheduling complete programs, 
more performance analysis, and also the actual implementation of a VLSI SBM.
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