
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

1-1-1990

Automatic Parallelization of Database Queries
Myong H. Kang
Purdue University

Henry G. Dietz
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kang, Myong H. and Dietz, Henry G., "Automatic Parallelization of Database Queries" (1990). Department of Electrical and Computer
Engineering Technical Reports. Paper 699.
https://docs.lib.purdue.edu/ecetr/699

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages

Automatic Parallelization
of Database Queries

Myong H. Kang
Henry G. Dietz

TR-EE 90-7
January, 1990

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Automatic Parallelization
of Database Queries

Myong H. Kang and Henry G. Dietz

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907

ABSTRACT

Although automatic parallelization of conventional language programs is

now widely accepted, relatively little emphasis has been placed on automatic

parallelization of database query programs (sometimes referred to as “ multiple

queries”). In this paper, we discuss the unique problems associated with

automatic parallelization Of database programs. From this discussion, we derive

a complete approach to automatic parallelization of database programs. Beside

integrating a number of existing techniques, our approach relies heavily on

several new concepts, including the concepts of “ algorithm-level” analysis and

hybrid static/dynamic scheduling.

- 2 -

1. Introduction

High level relational database query languages such as SQL and QUEL allow users to

express what information is desired, not how to obtain it. This enables applications to be indepen­

dent from details of not only secondary storage management but also the target machine. The

query optimizer is responsible for determining the strategy for efficiently evaluating the queries

presented by the user.

Another way to increase performance is through the use of parallelism. Recent technologi­

cal advances have made it cost-effective to build database machines which have multiple proces­

sors and multiple disk drives. However, parallel processing does not guarantee better perfor­

mance; performance will only be improved if the parallelism of the programs can be made to

match the parallelism of the hardware.

Parallel execution can be either explicitly stated in the program or mechanically derived

from the implicit constraints on parallelism imposed by the algorithm’s structure. For example,

the XPRS database system [Sto88] allows the programmer to use the keyword parallel to specify

that two POSTGRES commands are to be executed in parallel.

However, we believe automatic detection of parallelism is feasible and that the advantages

far outweigh the difficulties in implementation. An obvious advantage of automatic paralleliza­

tion is that it eases the burden on the programmer. Less apparent, but perhaps more important, is

the fact that only command-level parallelism can be expressed directly in a command language,

whereas automatic parallelism detection can detect parallelism at any other level (e.g., at “ algo­

rithm level”). Further, in automatic parallelization the parallel structure can be selected based on

intimate knowledge of the target machine. For these reasons, automatic parallelization can be

expected to find more useful parallelism than a typical user would specify.

In this paper, a framework for automatic parallelization of database queries which can be

applied to not only individual query but also a sequence of queries is described. Throughout this

paper, individual query is treated as a special case of multiple queries.

In section 2, a summary of relevant work is presented, discussing both conventional pro­

gram parallelization and previous work on query parallelization. Terminology and symbols to be

used for the rest of the paper are defined in section 3. Section 4 discusses issues relating to the

level at which parallelism detection is performed. A brief overview of the automatic parallelizer,

- 3 -

and our target machine model, is given in section 5. Section 6 gives a more detailed discussion

of the proposed process packaging and scheduling methods. Finally, section 7 summarizes the

paper and indicates the direction of future research.

2. Related Work

Automatic parallelization of database queries which is introduced in this paper appears to

be entirely new work, however, automatic parallelization of conventional programs has been

well-studied and some work has been done in manual parallelization of queries. These are dis­

cussed in sections 2.1 and 2.2, respectively.

2.1. Conventional Program Parallelization

For automatic parallelism detection, data-dependence tests are used to find concurrency and

dependency. If a datum flows from one operation S1 to another operation S2, we say that S2

depends on S1 and S1 must be executed before S2. Any operations which do not have such

dependencies can be executed concurrently (in parallel).

However, not all detected parallelism is useful for a given target machine. This is due to

the overhead of some parallelism (e.g., communication and synchronization cost) being greater

than the reduction in execution time achieved by parallel execution of that construct. By repack­

aging the fine-grained parallelism into larger serial “ chunks,” file overhead can often be reduced

so that some speedup can be gained through parallel execution of the chunks .

Many conventional-language parallelization techniques are known [PaW86] and can be

applied. However, for the purpose of this discussion, it is useful to center on just “ loop con-

currentization,” since this technique applies to nearly all database operation algorithms. Loop

concurrentization takes a parallelizable loop and partitions the iteration space to create a set of

parallel-executable loops, each of which performs a subset of the original loop’s iterations.

Aside from detecting that the loop is parallelizable, the key concerns in loop concurrentiza­

tion are achieving good load balancing and minimizing synchronization overhead (synchroniza­

tion introduced for load balancing).

For example, if there are N independent iterations to be executed on a parallel machine

which has p processors, the compiler can preschedule the iterations of the loop onto the p

- 4 -

processors either in contiguous blocks of size Nlp or by assigning every pth iteration to the same

processor.

Alternatively, the processors can be self-scheduled [TaY86], meaning that each processor is

given an initial set of iterations to perform and that as each processor completes its set it requests

more iterations to process. In the simplest form, one can imagine assigning individual iterations

and achieving excellent load balancing; however, the overhead in synchronizing to insure that the

same iteration isn’t given to two processors would probably negate the benefits Of the load

balancing. This simple self-scheduling works well only if the work for each iteration is relatively

large, but may vary between different iterations, perhaps due to conditional statements within the

loop body.

To reduce this synchronization overhead, guided self-scheduling (GSS) is proposed

[PoK87]. Guided self-scheduling dynamically varies the size of the iteration set given when a

processor request more work; larger sets are given first to minimize overhead and smaller sets are

given later to achieve good load balancing. Another nice property of GSS is that all processors

which will be used to execute a task T need not begin executing T at the same time, yet good load

balance will be achieved.

2.2. Query Parallelization

Most of the research in parallel execution of database queries has focused on parallel execu­

tion within a single query or relational algebra operation. One popular scheme for parallelizing

individual queries involves constructing a “ query tree” representing how data must flow between

relational algebra operations. Each node in the tree is allocated a set of processors.

Much work has been done to parallelize individual relational algebra operations. Since the

j o i n operation is the most costly commonly-used database operation, it has received the most

attention. Nested-loop, sort-merge, and hash-based multiprocessor j o i n algorithms are con­

sidered [DeG85,QaI88,ScD89]. Among these algorithms, hash-based j o i n algorithms perform

best over a wide range of parallel computers, mostly because very little (if any) synchronization

is required.

Parallel execution of a sequence of queries has not been considered in depth. The closest

work appears to be the XPRS database system [Sto88], which assumes a multi-user environment.

- 5 -

There are two kinds of parallelism that can be explored: inter-query parallelism and intra-query

parallelism. They choose the following approach:

[1] Inter-query parallelism is user-specified by the p a r a l l e l construct, which indicates
parallel execution of sets of queries.

[2] A collection of good sequential plans is automatically constructed taking into account the
limited size of main memory.

[3] Each plan is parallelized.

[4] At execution time, choose the plan which best matches the memory space available.

It appears that no previous work has attempted to automatically detect concurrency in a series of

queries.

3. TerminoIogyand Symbols

Throughout the examples in this document, queries are expressed in the relational-calculus

language QUEL [Sto76]. Table I gives the definitions of symbols and notations used to represent

costs or other significant properties of query execution.

I/O time to read a block from disk into main

memory (assumed to be equivalent to the time to

write a block from main memory to disk)

n | R = (R1, R2,..., Rn} number of hash partition elements (Ri) for

relation R

Ir I number of pages (blocks) in relation R

|M| number of pages (blocks) that can be stored in

main memory

Table I: Definition of Symbols and Notations

- 6 -

4. Parallelism at Different Levels

In this section, three levels at which concurrency of database queries can be detected (i.e.,

command-level, algorithm-level, and low-level), are introduced. Also it will be shown that what

kind of parallelization can be achieved at different levels.

4.1. Command-Level

Not only explicit parallelism can be expressed at this level, but also some inter- and intra-

query parallelism can be found automatically. Consider 2 relations:

EMP(name, salary, department)
SALES(department, item)

and two queries Ql and Q2:

Ql: retrieve EMP
where SALES.item = 'radio'

and EMP.salary >20000
and EMP.department = SALES.department

Q2: retrieve EMP
where SALES.item = 'toy'

and EMP.salary < 15000
and EMP.department = SALES.department

Since neither Ql nor Q2 modify database, two queries can be executed in parallel. However, if

the “ selection before join” heuristic is employed, no intra-query parallelism can be found at this

level.

4.2. Algorithm-Level

Once an algorithm for each database operation has been chosen (e.g., hasih-based join algo­

rithm is chosen for command-level join operation), queries can be represented in algorithm-level

intermediate form. Throughout this paper, functional notation is used as algorithm-level inter­

mediate form — o p e r a t io n (r e l a t i o n s , c o n d i t i o n) , where r e l a t i o n s are either

created or modified relation names if the c o n d i t io n is satisfied.

- 7 -

The first query Ql can be represented as following (using the “ selection before join”

heuristic):

S I : s e le c t (T e m p i ,
S 2 : s e le c t(T e m p 2 ,
S3: h a s h ([T l1, . . .
S4: h a s h ([T 2 1, . . .
S 5 [I . . n] : DOALL i

SALES.item = ' r a d i o ')
EMP. s a l a r y > 20000)

, T lnI r h 1 (T e m p i.d e p a r tm e n t))
, T2r] , Ii1 (Temp^ Z departm en t))

= 1 t o n
j o i n (Res u i t I , T l i .d e p a r tm e n t = T2A. d e p a r tm e n t)

Substantial parallelism is revealed at this level. The two select operations S I and S 2 can

be executed in parallel, two hash functions can be applied in parallel and then the j o i n 1 opera­

tions can be executed in parallel2. However, S I , ' S3, and S5 [I . . n] should be executed in

sequence because S 5 [l . . n] uses T l i j Whichisdefinedin S3, and S3 uses Templwhich

is defined in SI. For the same reason, S2, S4, and S5 [I . . n] should be executed in serial.

Well known dependency analysis [PaW86] will reveal these relationships; the resulting task

graph is shown in figure I.

1. Further level can be defined depends on the algorithm of j o i n operation at
algorithm-level. But this is sufficient to demonstrate our idea. Furthermore we
assume that the j o i n operation at this level employs non-split hash-based join
algorithm [Nak88] or nested-loop join algorithm.

2. Output dependencies among j o i n operations can be ignored because the order of
adding tuples to R e s u l t l is not important — does not cause any anomalies or
inefficiencies.

- 8 -

FigurelrTaskGraphofQueryQl

Even though the algorithm-level representation reveals much more parallelism than the

command-level representation, not all of this parallelism can be used to reduce the total execution

time. For example, consider two joins: join (ResultI, Tl1-Clepartment =

12^ .department) and join(Resultl, Tl2.department = T22.department).
Since these two joins operate on different data, they can be run in parallel. Further, they neither

synchronize nor communicate, hence parallel execution seems entirely beneficial. However, this

is not necessarily so.

Assume that |M| = 10, ITl1I = |T12| = 8, |T2.1| = |T22| = 15, and that the data are roughly

uniformly distributed across all disks. If these joins are run in parallel using the non-split hash-

based join algorithm [NaK88], the approximate I/O cost is IT l1I + 2 * |T21| + IiT l2I + 2 * |T22| =

76. If the two joins are run in sequence, the approximate I/O cost is ITl1I + |T21| + JT l2I + |T22|

= 46. Hence, given that the computation is I/O limited, the sequential form would execute faster

than the parallelized version. Therefore, it is very important to decide which potentially parallel

tasks should be executed in parallel and which should be executed in sequence. This topic will be

discussed in section 6.3.

- 9 -

4 3 . Low-Level

Algorithm-level representations of database queries can be translated into a lower-level

corresponding to conventional language programs. Each s e l e c t , h ash , or j o i n operation

will be translated into a parallelizable loop. For example, the s e l e c t operation S l can be

translated into:

f o r e ac h t u p l e x in SALES {
i f (x . i te m - - ' r a d i o ') {

add(T em pi, x)
}

}

Note that the parallelism-width of this example is directly related to the number of tuples in the

relation SALES — which might not be known at compile time.

Parallelization and scheduling of the low-level representation closely resemble paralleliza­

tion and scheduling of conventional programs and much work on this topic appears in the litera­

ture [PaW86, PoK87]. Hence, these techniques arc not a major focus of this paper.

5. Overview of Automatic Parallelizer

Even though much work has been done in the area of multiple-query optimization, it has

centered on high-level (i.e., command level) optimization, leaving low-level optimization for the

compiler. By considering both high-level and low-level optimization as a single, coordinated,

process, some additional optimizations3 are made possible.

Aside from optimization, queries can be made to execute faster using parallelism. Despite

recent advances in automatic parallelization of conventional language programs, very little work

has been done toward parallelizing query programs. This is partly due to the fact that conven­

tional language parallelization techniques need to be modified to operate on queries, and partly

because other techniques must be developed to manage the relatively dynamic properties of

queries (e.g., memory requirements based on relation size).

3. The details o f query optimization are beyond the scope of this paper. A good
overview appears in [KaD89].

The unified query optimizer/parallelizer structure we propose is shown in figure 2.

- 10 -

Series of Queries

Optimized Flow Graph

Potential Processes

Code & Sched, Directives

Process Packaging

(static)

Load Balancing &

Scheduling (dynamic)

Multiple-Query

Optimization

Concurrency

Detection

Figure 2: Stracture of Query Optimizer/Parallelizer

In this section, we describe the target machine model and outline our approach to automatic

parallelization of database programs.

5.1. TargetMachineModel

The target machine described here serves primarily to simplify our discussion — it is not

our intention to exclude other architectures, but to present an overview of our approach for a rela­

tively straightforward machine.

Our target architecture will be a tightly-coupled, general-purpose, shared memory, mul­

tiprocessor (see figure 3). The machine is tightly-coupled in that, although each processor may

- 11 -

operate independent of all others, it is also possible for multiple processors to synchronize

quickly so that multiple processors can easily cooperate on a single task. AU p processors of the

machine are assumed to be identical and general-purpose in the sense that they do not have any

special-purpose database hardware (e.g., sorter, bit filter). Main memory is assumed to be physi-

caUy distributed across m memory modules, but access to aU memory is shared by aU processors

— processors simply access memory addresses and hardware services these requests using some

type of interconnection network.

Interconnection Networic

Interconnection Network

Figure 3: Target Architecture

It is further assumed that the target machine has the capability of accessing a very large

amount of disk storage spread across d disk drives. Each of these disk drives is assumed to be

capable of performing a disk-to-memory or memory-to-disk operation independent of the actions

of the other disk drives. Relations are assumed to be horizontally partitioned across aU disk

drives.

-12 -

5.2. Multiple-Query Parallelization

Our goal is to minimize the total execution time of a given sequence of queries by optimiza­

tion and parallelization. This is not equivalent to maximizing parallelism; parallelism is used iff

the total execution time will he reduced through its use. In this sense, parallelization is really

nothing more than optimization for a parallel target machine.

After multiple-query optimization is performed, dependency analysis will be applied to the

optimized intermediate form of the query program. The resulting task graph directly provides

both dependence and inherent concurrency information. However, the concurrency is typically at

too fine a level of granularity — executing each potentially parallel operation as a separate pro­

cess would result in excessive parallelism overhead (e.g., process creation, process termination,

synchronization, and communication). Hence, the next step is to re-package the inherent parallel­

ism so as to achieve the most efficient parallel structure possible, as suggested in [Die87]. How­

ever, unlike a conventional program, a program which represents a series of database queries

embodies widely varying granularity and a relatively strong dependence on runtime information.

Hence, new process-packaging and scheduling techniques are needed.

A scheduler will determine the order of execution and reassigning processes to balance

load. Even though load balancing will be achieved by the static scheduler, it may be too coarse

because the granularity of some processes may be large. Finer load balancing will be achieved at

runtime using dynamic scheduling.

6. Process Packaging And Scheduling

Clearly, more parallelism is evident at the lower-level than at algorithm-level or command-

level. Much work has been done in the area of low-level parallelization and scheduling in the

context of conventional program parallelization. Because most database algorithms result in

low-level code strongly resembling the parallelizable DO loops found in Fortran programs, work

such as that discussed in [PaW86, PoK87] is particularly relevant. However, unlike Fortran

loops, lower-level code structures representing database operations are derived from higher-level

forms, hence some information may be lost and some analysis made more complex by ignoring

the higher-level forms.

- 13 -

For this reason, we wish to consider higher-level forms. However, all the objects which

existed at the command-level still exist at the algorithm-level (unless they were redundant or oth­

erwise unnecessary) — no relevant information is lost in using algorithm-level instead of

command-level for our analysis, Hence, the discussion in this section centers on the analysis of

algorithm-level constructs.

6.1. Estimation of I/O Costs

Concurrency detection determines which operations could be executed in parallel;

automatic parallelization, however, must decide which operations should be executed in parallel.

The problem is to be able to detect when parallelism will result in a speedup and to select the

form with the greatest speedup. In automatically parallelizing conventional programs, this is pri­

marily a matter of estimating synchronization and communication. However, database systems

typically operate on data structures which do not fit within main memory, hence it is important to

estimate I/O costs and memory requirements.

We propose to use a cost function which accurately represents the costs derived using a

“ smart” page management technique.

One such technique is the “ query locality set model” [ChD85], in which it was observed

that for each type of database operation, one particular page management scheme (e.g., LRU,

MRU, etc.) exhibited consistently better performance than the others, hence performance could

be improved by altering page management technique depending on the database operation being

performed. Each relation is given a local buffer pool to hold its locality set, which is the set of

the buffered pages associated with the relation. The size of locality set is determined before the

database operation is executed, and needs not be recalculated while the execution of the database

operation.

More recently, [ChD88, Chi89] presented a compiler-driven technique for deriving the

optimal set of register/cache management operations given the references extracted from an arbi­

trary program; this work can be directly applied to generate code implementing optimal page

management. Unfortunately, the compile-time analysis is more complex than that for the locality

set model.

- 14 -

Since [Chi89] insures optimality whereas [ChD85] does not, we prefer to think in terms of

implementing Chi’s technique, however, either technique generates a valid cost function which

can be applied toward improving the quality of the parallelization — which is the primary goal of

this paper.

For example, consider a non-split hash-based join on two relations, Rl (|R1| = 4) and R2

(|R2| = 8). Assume that the join is implemented as the usual pair of nested loops such that the

elements of Rl are enumerated within the inner loop. Further, assume that the join result is sim­

ply displayed without taking memory space or causing I/O additional operations.

Intuitively, it is clear that the maximum number of input operations would be |R1|*|R2|,

which is 32. However, if optimal control of paging is used, the actual number can be substan­

tially lower. For example, if at least 5 page frames fit in memory, then only 12 page reads are

required. If fewer than 5, but at least 3, page frames fit in memory, then only 20 reads (i.e.,

memory requirement is 3 pages) are required. If only 2 pages frames fit, then 32 reads are

required.

6.2. ProcessPackaging

After detecting the parallelism inherent in a sequence of queries by applying dependency

analysis (i.e., after the initial task graph, as discussed in section 4.2, is determined), the scheduler

must package the tasks so that execution time will be minimized. This consists of determining

which potential tasks should be merged (packaged) to become a larger task. Potentially parallel

tasks are merged when the parallel structure would have executed slower than the serial structure

— when extra I/O due to sharing of main memory among processes, synchronization, and com­

munication costs are greater than the time savings by parallel execution. Serial tasks are merged

if the merged task achieves better load balancing and better utilization of main memory.

The conditions permitting initial tasks to be merged are:

[1] Each task should be translatable to a parallelizable loop (e.g., s e l e c t , h ash , and non­
split hash-based or nested-loop jo in) , and

[2] the memory requirement of the combined tasks does not exceed the size of the main
memory

- 15 -

and additionally either:

[3] tasks which satisfy condition [1] and [2] and operate on the same relation (i.e., correspond
to low-level loop fusion), or

[4] tasks, say SI and S2, which satisfy conditions [1] and [2] and SI depends on S2 and S2
operates on the subset of the relation on which SI operates (i.e., correspond to software
pipelining)

' . ' . ■ ■ ■ • ,

For example, consider the two queries Ql and Q2 from section 4.1. The algorithm-level

representation Of Q l and Q2 is:

■SI; s e le c t (T e m p i , SALES.item = ' r a d i o ') .
S 2 : s e le c t(T e m p 2 , EMP.s a l a r y > 20000)
S3: h a s h ([T l1, . . . , T ln] , Ii1 (T e m p i.d e p a r tm e n t))
S 4 : h a s h ([T2lf . . . , T2n] , Ia1 (Temp2 . d e p a r tm e n t))
S 5 [I . . n] : DOALL i = I t o n

jo in (R e s u l t l , T l j^ d e p a r tm e n t = T2i . d e p a r tm e n t)
S 6 : s e le c t(T e m p 3 , SALES.item = ' t o y ')
S 7 : s e le c t(T e m p 4 , EMP.s a l a r y < 15000)
S 8 : h a s h ([T 3 1, . . . , T 3 J , h 2 (T e m p 3 .d e p a rtm e n t))
S 9 : h a s h ([T4lf . . . , T4m] , h 2 (Temp4 . d e p a r t m e n t))
S l O [I . . m] : DOALL i = I t o m

jo in (R e s u l t 2 , T3.. . d e p a r tm e n t = T4± . d e p a r t m e n t)

Assuming that |M| > (n + m) pages, s e l e c t requires 2 pages of memory (i.e., one for

input and the other for output) and h ash requires (n + I) pages of memory. Since SI and S 6

operate on the same relation SALES, these s e l e c t operations can be translated into a single

parallelizable loop (by loop merging/fusion). Because the memory requirement for this parallel-

izable loop (i.e., 3 pages of memory) does not exceed |M|, it is profitable to combine S I and S 6

in this way.

In other words, S I and S6 satisfy conditions [1], [2], and [3] given above. The same is

true of S2 and S7. Tasks S la n d S3 satisfy conditions [1], [2], and [4], hence, these tasks

can also be combined, as can tasks S 6 and S 8. The modified task graph is shown in figure 4.

16 -

S10[m]S10[l]

t(n+3): It(n+2): I

t(task number): label

Figure 4: Task Graph of Queries QI and Q 2

Performing these task merges has the beneficial effect of:

• reducing the start-up cost of each parallelizable loop,

• generating larger-grain processes, which provide better opportunities for use of fine-grain
scheduling to hide pipeline delays, and

• simplifying algorithm-level scheduling.

A simple method for translating merged tasks into a lower-level form is presented in the appen­

dix.

63. Scheduling

There are two typical task scheduling approaches: static scheduling and dynamic schedul­

ing.

Static scheduling is performed before the execution of any task and makes use of global

information about tasks. Most of the static scheduling schemes developed for conventional pro­

grams are complex, time consuming, and require some estimation of the execution time of tasks.

These time estimates often depend critically on relation size, which, unfortunately, may vary

-17 -

widely at runtime. Further, database programs or multiple queries are not expected to be exe­

cuted as many times as conventional programs might be executed, hence, long static analysis

times might be unacceptable.

Dynamic scheduling is typically based on local information. Scheduling decisions are

made at runtime, hence, time spent scheduling can be a significant overhead; further, the lack of

global task information inherently limits the quality of the schedules.

For these reasons, database code is typically scheduled using very simple dynamic policies

— which are easy to implement, but perform poorly. Instead, we propose to use a scheduling

method which combines both static and dynamic scheduling techniques. This method is outlined

in the hybrid scheduler algorithm (below). It begins with the static scheduling scheme proposed

in [ChL74], but adds dynamic scheduling implemented by steps [3], [4], and [5]:

Algorithm: Hybrid Scheduler

[1] Produce the task precedence graph as described in sections 4.2 and 6.2.

[2] Label the task according to the following rules:

[2a] The label of a task which has no successor is I (e.g., tasks t(3) through t(n+m+2) in
figure 4).

[2b] The label of a task that has more than one successor is equal to one plus the maximal
label value of the successor of the task (e.g., task t(l) and t(2) in figure 4 have label 2).

[3] Classify each task as either (completely) parallelizable or non-parallelizable tasks (e.g.
selection, hash, and non-split hash-based join algorithm are parallelizable but ap p en d a
tuple to a relation or perform an associative reduction are classified as non-parallelizable
tasks).

[4] At runtime (dynamically), use “ level-order” priority scheduling among the ready tasks
(i.e., a task is ready if all its predecessors have been executed). Highest priority is given to
the non-parallelizable tasks which has the highest label (level), then to parallelizable tasks
with the highest label, and so forth.

[5] By delaying the execution of ready parallelizable tasks, bottlenecks which may be created
by the non-parallelizable tasks should be avoided in step [4], but load imbalances may
result. Load-balancing is achieved by dynamic low-level scheduling within parallelizable
tasks using guided self-scheduling [PoK87].

The hybrid scheduling algorithm uses static scheduling, at the very large grain level, in

order to minimize the dynamic scheduling overhead. However, there is a second effect: due to

- 18 -

stcps [3] and [4], the tasks which are scheduled last generally will be tasks with large task paral­

lelism widths. At first, this seems counterproductive, because these massively-parallel tasks will

initially obtain only a small fraction of the machine... hence, some parallelism within these tasks

is discarded. The paradox is that this is a desirable effect which meshes perfectly with the guided

self-scheduling of step [5], which, as described in section 2.1, assumes that a large number of

very fine-grain potentially-parallel processes are available and schedules them in groups of

decreasing size.

The only potential problem with using guided self-scheduling in this way is that, in some

cases, the assumption that a large-number of very fine-grain potentially-parallel processes are

available may be invalid. For example, a s e l e c t would normally be expected to contain such

parallelism, but not if the relation it selects from only has 2 tuples. It is also possible that the

assumption would be wrong because the system does not have enough memory to support paral­

lel execution of a particular task while other tasks are executing. We attempt to avoid these con­

ditions by runtime task clustering.

As demonstrated in section 4.2, database operation can produce many compatible paralleliz-

able tasks (i.e., tasks are compatible if tasks can be executed in parallel) which have the same

predecessors and the same successors (e.g., join of the same indexed buckets such as t(3) through

t(n+m+2) in figure 4). When such tasks are scheduled by the scheduler described above, no new

ready task will be generated until all of them are completed. Therefore, those tasks can be

artificially combined and the clustering scheduler can schedule them based upon runtime infor­

mation.

The following is the runtime task clustering algorithm:

Algorithm: Task Clustering

[I] Form a list of compatible tasks, sorted in order of increasing task memory requirement.

[2] If the list has fewer than 2 elements, ignore the rest of this algorithm — there is nothing to
cluster (combine).

[3] Take out the last task and form task T (i.e., T = {last task })

[4] Try to schedule in parallel with the first task in the list with T — compare the memory
requirements of potentially parallel tasks with the size of the available main memory. If
task T md the first task in the list cannot be scheduled in parallel, the task T is scheduled by

- 19 -

itself and go to step [2]. Otherwise, proceed with step [5].

[5] In sequence, search for a task in the list such that this ith task cannot be scheduled in paral­
lel with task T. Schedule the (i-i)th task with T in parallel and go to step [4].

Hence, this clustering algorithm eliminates the useless overhead imposed by guided self­

scheduling technique in the aforementioned worst-case scenarios.

7. Summary

In this paper, we have presented an argument in favor of automatic parallelization for data­

base programs (multiple queries) as well as the basic approach to constructing such a parallelizer.

In constructing a multiple-query parallelizer, conventional (e.g., Fortran code — what we

refer to as “ low-level” representations) vectorization and parallelization techniques can and

should be applied, but these techniques alone are unlikely to produce good results. The primary

differences between conventional and multiple-query parallelization derive from the fact that,

unlike conventional programming languages, database queries have properties which are very

dependent on dynamic (runtime) information. Further, queries differ in that higher-level abstrac­

tions of the database operations are readily available, hence some information is lost when only

lower-level forms are considered.

In our approach, we have explicitly dealt with the dynamic character of database operations

by suggesting a variety of mechanisms to efficiently integrate static (compile-time) and dynamic

(runtime) control of parallel process structure.

Further, rather than ignoring the existence of higher-level forms, we have defined a new

intermediate level -— algorithm level — to be used to bridge the gap between the high-level

information available in the original query representation and the increased parallelism exposed

by the lower-level form.

Hence, the work presented in this paper forms a foundation upon which a complete

multiple-query parallelizer will be built. Ongoing research involves the details of the algorithm-

level analysis and parallelization, integration of conventional parallelization techniques, and

finally the creation and performance evaluation of a prototype system.

- 2 0 -

References

[ChD85]
Chou, H. T., and Dewitt, D. J., An evaluation of buffer management strategies for relational
database systems. Proceedings of the Conference on Very Large Data Bases (1985)

[ChD88]
Chi, C-H., and Dietz, H. G., Register Allocation for GaAs Computer Systems. Proceedings
of the 1988 Hawaii International Conference on Systems Sciences, January 1988.

[Chi89]
Chi, C-H., Compiler-Driven Cache Management Using A State-Level Transition Model.
PhD Dissertation, School of Electrical Engineering, Purdue University, May 1989.

[ChL74]
Chen, N. F., and Liu, C. L. On a class of scheduling algorithms for multiprocessor comput­
ing systems. Proceedings of Sagamore Computer Conference on Parallel Processing (1974)

[DeG85]
Dewitt, D., and Gerber, R. Multiprocessor hash based join algorithms. Proceedings of the
Conference on Very Large Data Bases (1985)

[Die87]
Dietz, H. G. The refined-language approach to compiling for parallel supercomputers. Ph.D.
dissertation, Dept, of Comp. Sci., Polytechnic Univ. 1987

[KaD89]
Kang, M. H., and Dietz, H. G. Optimization of temporary relation use in multiple queries.
Submitted for publication (1989).

[Nak88]
Nakayama, M., et al. Hash-partitioned join method using dynamic destaging strategy.
Proceedings of the Conference on Very Large Data Bases (1988)

[PaW86]
Padua, D: A., and Wolfe, M. J. Advanced compiler optimizations for supercomputers.
Communications of the ACM, 29,12 (1986)

[PoK87J
Polychronopoulos, C. D., and Kuck, D. J. Guided self-scheduling: A practical scheduling
scheme for parallel supercomputer. IEEE Transactions on computers, C-36,12 (1987)

[QaI88]
Qadah, G. Z., and Irani, K. B. The join algorithms on a shared-memory multiprocessor data­
base machine. IEEETransaction on SoftwareEnginecring, 14,11 (1988)

[ScD89]
Schneider, D. A., and Dewitt, D. J. A performance evaluation of four parallel join

- 2 1 -

algorithms in a shared-nothing multiprocessor environment. Proceedings of the ACM-
SIGMOD International Conference on Management of Data, (1989)

[Sto76]
Stonebraker, M., et al. The design and implementation of INGRES. ACM Transactions on
Database Systems, 1 ,3 (1976)

[Sto88]
Stonebraker, M., et al. The design of XPRS. Proceedings of the Conference on Very Large
Data Bases (1988)

[TaY86]
Tang, P., and Yew, P. Processor self-scheduling for multiple-nested parallel loops.
Proceedings of the International Conference on Parallel Processing, (1986)

Appendix: Translation of Merged Tasks into Low-Level Form

In section 6.2, the technique of merging tasks is discussed, but no example is given of the

resulting code structures. In this appendix, we outline the translation of merged tasks into a con­

ventional low-level representation. This translation is guided by the following rules:

[1] If two tasks, SI and S2, are merged and SI and S2 are compatible (i.e., can be executed in

parallel), but the conditions of SI and S2 are mutually exclusive, then put SI and S2 within

an i f e l s e construct.

[2] If two tasks, SI and S2, are merged and S2 depends on SI or the condition of S2 is a subset

of the condition of SI then put S2 inside an i f construct.

[3] If two merged tasks, SI and S2, do not meet either condition [1] or [2], then put SI and S2

in sequence.

For example, the low-level representation of the merged task [S I , S3, S6, S 8] from the

example in section 6.2 is:

for each tuple x in SALES {
if (x.item == 'radio') {

i = Ii1 (x. department)
add(Tli, x)

}
else if (x .item == 'toy') {

i = h2(x.department)
add(T2i, x)

}

- 22 -

}

	Purdue University
	Purdue e-Pubs
	1-1-1990

	Automatic Parallelization of Database Queries
	Myong H. Kang
	Henry G. Dietz

	tmp.1542052450.pdf.AhitH

