Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
1-1-1990

TARDIS: A Numerical Simulation Package for
Drive Systems

W. Suwanwisoot
Purdue University

C.M.Ong
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Suwanwisoot, W. and Ong, C. M., "TARDIS: A Numerical Simulation Package for Drive Systems" (1990). Department of Electrical and
Computer Engineering Technical Reports. Paper 695.
https://docs.lib.purdue.edu/ecetr/695

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages

TARDIS A Numerlcal
Simulation Package for
Drive Systems

| W. Suwanwisoot
C. M. Ong

| TR-EE90-3
1 January, 1990

: 'School of Electrlcal Englneermg
| Purdue University
| West Lafayette, Indlana 47907

PREFACE

TARDIS is a drgrtal computer srmuIatron package or|g|nally mtended to
:srmulate dnve systems Its versatrhty has proved to be very useful in .other
| areas as well. Itis desrgned to replace the functronalrty of analog computers
S0 that the user who cannot afford to have one can use the program on a .
personal or mainframe computer The author believes that it is one of the
most effrcrent and accurate slmulatlon programs of its’ kind at this point even
though not all of its potential- has been exploited to.the fullest. It can handle - “
|ndex 0 and 1 differential-algebraic systems with drscontrnurtres |
The author's intention 'in{creating this package is to help re-search‘ers with a
simulation tool that will eventually result in a better quality of living. PLEAS-E
DO NOT USE THIS PACKAGE TO DESIGN WEAPONS. IF THAT IS NOT
‘\ POSSIBLE, PLEASE AT LEAST MAKE IT THE VERY LAST CHOICE FOR
: WEAPON SIMULATlQN._ IN ANY CASE THE USER “WILL BE
RESPONSIBLE FOR ANY PROPERTY DAMAGE, INJURY, | OR LOSS OF»V

LIFE AS A DIRECT OR INDIRECT RESULT OF THE USE OF THIS

PACKAGE

TABLE OF CONTENTS

Page
LIST OF TABLES oo e o e ¥
LIST OF BIGURES oo eseo et —— vi

ABSTRACT .. et S Vil

CHAPTER 1- SIMULATION PROGRAMS FOR ELECTRIC DRIVE

SYSTEMS ...oiiiriinriesreeiere e sessss s st ss s ssssssss s sres s e bsssee st eerecssenessssoses w1
1.1. What are Electric Drive Systems’? SR, |
1.2. Simulation of Drive Systems on Dlgltal Computers...............' e 2
1.2.1. ACSL ot e s reetenet s 3
1.2.2. ESL ccrrvrrreren. rerenerinensanesnesens sedres ettt eee e e 4
1.2.3. EASYD ...ttt e e 4
1.2.4. PSCSP ...ttt stsss st 4
1.2.5. SPICE2............. e reveneens eerrrae ettt aend s nenen weererenesenee D
1.2.6. EMTP.....ccceenune SR reree e eeeeereneenes e e 5
1.2.7. ATOSEC.....ocooiveirccnreininsecs s sesssssssesesssssesssenssses e D
1.2.8. IESE ..ot ssereseneens SO e cereereas 6
1.2.9. SABER.......overrrrreerrrrereeniene NOPUPIRETUON e 6
1.3. Motivation and ODJECHVE..........cc.everveerrrrerrirrersiseeeiaeinesees SOS 7
1.4. Thesis OUINE......cccveveirereieece s S e 9
CHAPTER 2 - OVERVIEW OF TARDIS.........coiriircrrereesnrecssscssssnissssiienens 11
- 2.1. Simulation Language to be used with TARDIScccouerveernen 11
2.2, Equation Formulations from Electrical CirCUitsccocuivevcununnne. 15
2.3. Handling of Components Associated with Discrete Events........... 16

2.4. Error Control Parameters in Simulation ..., 22

Page
CHAPTER 3 - NUMERICAL INTEG RATIO‘N WITH DISCONTINUITIES.......... 23
3.1. Introduction to Differential-Algebraic Equations............cccceeuuu.. e 23
3.2, System StIffNeSS ..o s bene 24
3.3. Gear Backward Differentiation Formulae..........cccccovvervienereneene. w25
3.4. Comparison between Gear and Trapezoidal Algonthms 34
3.5. Handling of State Machinescccoeeeecrviveeressce e 37
3.6. Locating Zeros of Switching FUNctions............cccoeveevivevienvennnns eeeneens .40
3.7. Test.Examples on Integration with Discontinuities................. P 43
CHAPTER 4 - SOLVING NON-LINEAR ALGEBRAIC EQUATIONS51
4.1. Newton-Raphson AlGONtNM.....coiiiiiee e 51
4.2. Solving the Jacobian EQUAtioN ...t 54
4.3. Sparse Matrix Techniques for LU Decomposition.................... SRV 4
- 4.3.1. Data Structures for Sparse Jacobian.............. reeeeenees e D8
4.3.2. Markowntz Strategy with Threshold Plvotlng rseressinnninieen. 60
CHAPTER 5 - SAMPLE(SYSTEMS.., reeserenaens 63
5.1. Modelling of Switches in Electrical CirCUits.......c...ccoevrivirunnnen B3
5.2. Sample Test CircuitS....cccmvrerereererreeeeeeeree e reevereiennan e 64
5.2.1. Simple R-L Circuit with One Diodecceeureiererrnennee. 65
5.2.2. Single-Phase Full-Bridge with DC Motor............ccccveunnee. 70
5.2.3. High-Frequency Inverter.........covvvecnninens e e 70
5.2.4. Induction Machine with Current Source Inverter.............. 75
CHAPTER 6 - CONCLUSION AND RECOMMENDATIONS..........ccoeererereeenn. 91
6.1, CONCIUSION....c.coeeirrint st sa sttt et 91
6.2. Recommendations for Future Work .. 93
LIST OF REFERENCES ...ttt 95
APPENDICES |
-Appendix A - Newton's Divided Differences................ eveerrneneeees ceereneee 101
Appendix B - Source Code for GetZero().._ 102
Appendix C - "mainsys.c" file for test Gircuit 1..........vvovevoeoeoe. 107

Appendix D - MainSystem() and MainEvent() for Test Circuit 2........ 111

v
Page

Appendix E - MainSystem() and fiMain‘Eve’nt-() for Test Circuit 3....... 118
Appendix F - MainSystem() and MainEvent() for Test Circuit 4........ .122

LIST OF TABLES

3.1. Comparison of the results of test EXAMPIE 1 oot 46
3.2. Comparison of the results of test eXample 2., 48
3.3. Comparison of the results of test example 3.........co.vereereeiieirenniunness 50

“Figure }

2.2.-

- 34,
-.3.2.

3.4.
35.

36.

4.1.
4.2.

4.3,

4.4,
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

- 8.8,

5.9.

5.10.
5.1,
5.12.
5.13.

Vi

LIST OF FIGURES

Page
TARDIS With & trANSIGIONe.oeeeesrsreeessissesosesesrssssinssnsen 12
A sample state machme...,._...: reeveestees e sssss smsrenamasenes e seen e wetreerenn 19
‘Example system with indeX 2..............o....cevereen SO .
Hlustration Of GEar AIGOMNMwvwwrermrrsssssrsrsrsssrsnnnsnros s 28
Errors of y, of 2N O AEr SYSIOM oerer oo seeeessenrsesee s snesenn. 36
Flow chart at the start of the sumulatlon‘...» raviuerese e erbesesseenspsrens b asaens ..38
Criterion for switching methods in Iocatlng azeroin TARDIS s 42
-Locating a zero-crossing point................. reereseesennnnas reeereereenas 44 _
Short-lived dlscontlnwty....~......5“5’?;...................Q..i SRS -
Data structure for individual entry................... e ive st rasnsbessan s serees e 58
“Sample matrix............ hessaenerersenenes reeersnerireseseme et nis i rteserens cvnsrmssrnerensaeeriss D9
Row and column linked lists for sparse matnx eeerreens SRR . 1
Separate row and column linked lists................ reebee s ireneeaters vreerrerreineerss 01
Circuit diagram of an R-L circuit with one diode................ terviereseeseernenenes OO
‘State transition diagram of @ diode.........coeeeeeerereriensrenserrsseones SRR |-
~ Output of simple R-L circuit with one diodeccccomereerreeen ceeviensasnenns 67
Output of the circuit in Fig. 5.1 using IF statements......c.co.oveiiericiveenenn. 69
Single-phase full-bridge rectifier with dc motor.............ccciiinnnnne 71
Output of the simulation of the circuit in Fig. 5.5......... TR i 12
High frequency iNVENer GirCUItooewv.uesmeeesssessssvesss SO 4
Output of high frequency inverter as shown in Flg 5. 7. SRR .74
- Induction motor with current source INVEIET et ieieeeresseesiastsernns 76
Control scheme of induction motor system in Fig. 5.9.......cwmeciessc 77
Operations of induction motor with CSI from 0 §10°.5 S...cccvrvmrecrciviicnene. 79
Operations of induction motor with CSI from .5st0 1 S......cccceveeniiveec.... 83
‘Operatlons of induction motor with CSI from 5.5 S 10 5.6 Si....c..iverernn. 87

vii

ABSTRACT

TARDIS is a differential-algebraic equation solver with discontinuity handling
}capablllty It can be used with a""lan'guage translator to create a 'complete
simulation package with user-interface. Written in C, TARDIS is intended for
solving a system of differential- algebralc equations with index 0 and 1 only.
The integration part of TARDIS is the variable-step, variable-order Gear
algorithm with new local truncation error control. The objective of the control
is to have one iteration per time step to reduce the total number of calls to the
routine contammg system equations. |

- TARDIS allows two types of'dilsc,r,_etéﬁ" events: state and scheduled events. For
locating state events, TARDIS uses a simple interpolation scheme which is
found to be working accurately and efficiently. The scheme requires
integration to the points of discontinuities to avoid locating false state events.
TARDIS handles discrete events by using finite state machines.. TARDIS also
uses sparse matrix techniques to reduce computation for large systems.

CHAPTER 1
SIMULATION PROGRAMS FOR ELECTRIC DRIVE SYSTEMS

1. 1 What are Electric Drlve Systems°

;‘The term “electrrc drrve system" refers to a wide varlety of electric machines
system in lndustrral and non-industrial applrcatrons where position, speed,

- torque, or power are to be controlled to better match the load characteristics.

A drive system can be as simple as an adjustable speed electric fan or as
sophisticated as a computer- controlled manipulator. The power. rating of.
drive systems ranges from a fractronal horsepower to more than one million
, horsepower '

Both ac and dc motors are used in drive systems, though ac motors are
: gradually replacing dc motors in many applrcatrons because they requrre'
less malntenance and cost less. However, controls for ac motors are often

much more complicated than those of dc’ motors, in order to achieve a
response as fast as that of dc motors. Consequently, dc motors can still be
found in some Iow-power and less expensive applications. The ac motors
used in drive systems may be synchronous motors, induction motors, or
reluctance motors [1] for the larger horsepower units, and permanent magnet -
motors or stepper motors for smaller horsepower units. :

" In modern electric drives, the volt'age and current supplied to the electric
machine is electronically regulated by power semiconductor devices. The
kinds of power semiconductors devrces presently in use include thyristors,
diodes, gate turn-off thyristors (GTO), power MOSFET, bipolar junction
transistors (BJT), insulated gate bipolar transistors (IGBT), and MOS-
controlled thyristors (MCT). These fast acting devices perform the switching -
needed to shape the current or voltage supplied to the machine. :

2

The SWitching;'control and/or the 'highe'r level control are-usually done by
| COmpUters‘ or microprocessors. Besides controlling the output position,
_ speed, or torque, more sophisticated control may include the mrnrmrzatron of
) power loss, as in- induction motors [2]; torque pulsation reduction, as in

vcurrent fed |nduct|on motor dnves (3l harmonlc elrmrnatron as in voltage
source inverter [4] etc.

o The technology and the control methods are continually changrng, several
‘ new devices and ideas are emerglng which will further improve drlves)
- .performance The main questron still is cost effectiveness. As the ratio of
cost 10 performance of drive and controller decreases and ‘control methods

" become more sophlstlcated in requmng mrnrmal sensors, we wrll see greater
- use of drive systems |

1"'2 "Simulation of‘”Drive' Systems on 'Digital ,Computers‘. o

: The srmulatlon of modern dnve systems on drgrtal computers |s very
' complrcated due to the following reasons. First, the dlfferentral equatlons
N descnblng the behavior of the motors or the control are often nonllnear This
is usually not a problem since there are many excellent dlfferentlal equation
'solvers that can handle such nonlrnearrty The solvers may come in the form
_of ready -to-use appllcatlon specrflc package or subprograms. Second, the

S swrtchmg actlon of the power semiconductor devices or even some control

' parts may mtroduce discontinuities in the form of a change in the structure of
the systems ora change in the values of the device parameters If the
;drfferentral equatlon solver is not specifically de3|gned to handle '
' drscontlnurtres it may be unable to handle them or very |neff|C|ent at handllng‘ ‘
: them RS o

Exustrng srmulatron packages may be Ioosely drvrded mto two categorles |
general purpose and appllcatlon-specrflc Most general- purpose packages
will require the input in the form of dlfferentlal or dlfferentlal -algebraic

"”"equatlons Such packages are also referred to as equatlon onented

packages. To use. them the user will have to denve the system equatrons by o |

3

~hand and put them in the format required by the package. On the other hand,
: app.licat.ion-.specific simulation packages provide ready-to-use modules for
typical components. The user specifies the mterconnectlons between or
relatlonshlps of the components in the systems accordlng to some rules
imposed by the packages but seldom has to deal with the system equations
~directly. Since the mterconnectlon of modules |s in a network-like- fashion,
such. packages are also called network-oriented - The main disadvantage of
-application-specific programs is that the capability of the programs will be

restricted to whatever models are provrded by the programs There are also -

_;srmulataon packages that are in between the two categories; they let the user
'specn‘y the equations. for the modules and use them in the network like .

' fashlon

Si;n,ce some of the ideas used in this research are based on the disclosed
_a'fe-atu:res of several existing simulation packages, a brief description-of some
of them is in order. The first four simulation packages, ACSL, ESL, EASY5,
- and PSCSP, are the general- purpose ones; the next three SPICE2 EMTP,
‘and ATOSECS are specifically for the simulation of electrical or electromc -

a “circuits. The last two, IESE and SABER, are general- purpose - electrrcal

network simulation programs whose component definitions are based on a
black-box or module concept. : :

1.2.1. ACSL

Advanced Continuous Simulation Language (ACSL) [5] is-a general-purpose
simulation package that can -hand_le,time~dependent, non-linear systems of
differential equations. With the MACRO preprocessor, ACSL may be tailored
to any speoific application but not in the network-like fashion. The user has to
formulate the differential equations of the system and put them into the form
- r‘eq"»ui;re.}df by the package. ACSL provides a wide variety of integra_tio,n
~ schemes: namely, Runge-Kutta, Adam-Moulton, and Gear algorithm [6).
also has multi-derivative capability in.that slow and fast transients can be
' mtegrated with dufferent step sizes or algonthms -

4

’The Ianguage used to specn‘y models conforms with the specn‘lcatron laid

:,down by-the Continuous System Slmulatlon Language (CSSL) Commlttee

~ with- extension to handle drscontmurtles which are located by binary search.
'-ACSL has a sortmg capablllty Wthh lets the user enter the equatlons in any

order
11.'2;2-.' EsL-

'ESL [7] is another 'simulation program based on CSSL Wrrtten in
FORTRAN77, ESL comprises of an interpreter and a translator to FORTRAN
~ ESL uses interpolation to locate the discontinuities. The program accepts the
- system equations in the form of differential equations, whlch can also be
grouped into subsets, of which only one will be active at a time. The user can
~define submodels which may contain discontinuities. ESL also provudes
several default submodels that can be used or modified. Unlike ACSL ESL
S does not have sonting capablllty : i

1 12 3 EASY5

} EASY5 [8] is a simulation package that has a provusron for swutch states to |
srmphfy the modelllng of discrete devrces It requrres the user to enter system
-equations in the form of dn‘ferenttal equations.. The handling of

_ dlSCOﬂtanItleS in. EASY5 is a slightly modified version of Gear's. [9] whuch
uses step snze control for output and drscontmuutres : -

1.2.4. :PscsP

The Power Series Contmuous -System Simulation Program (PSCSP) [1 0]
-. -takes a different direction from the other simulation packages menttoned

o before The program uses semi- -analytical methods based on power senes

| expansuon for mtegratlon and for locating the discontinuities. The program
will translate the user's input equation mto a FORTRAN subprogram. The:
step sizes used in the integration are often more than an order of magnitude
larger than those used in fourth order Runge-Kutta due to the hlgher-order‘
mtegratron method used S

1.2,5. SPICE2

- SPICE2 is a simulation program for semiconductor circuits. It has many
capabilities besides transient analysis. The input to the program is a file
v :idesfcribing the interconnections of the devices in the circuit, jbot'h active and
“passive devices. The user can choose either Gear or trapezoidal method for
i:ntegration, but Nagel, the author of SPICE2, sug’gests that the trapeiotdal
‘algorithm with local truncation error control is preferred [11]. SPICE2 has no
:‘capabmty to handle power semiconductor switches other than modellmg
them in detail. - Also with the models provided, it would not be a trrvral
"problem to use SPICE2 to srmulate ac machines in general

lThere are several versions of SPICE on the market now. One versron of
SPICE called IGSPICE lets the user specify equations to describe ‘the
behavior of modules. Keyhani and Tsai have used this feature in [12] to
srmulate a start-up of an lnductron machme with saturable mductance

’1 2. 6 EMTP

vThe Electro -Magnetic Transients Program (EMTP) [13] is designed for
‘S|mulatmg power system components and large scale networks The
’ :program is written mainly in FORTRAN. EMTP uses the trapezordal method
wrth equal step size for integration; the choice of step size is based on the
user's expenence with the circuits. The program has several built-in models
for transmission lines, circuit breakers, surge arrestors, synchronous
-machine, thyristors or diodes. It does not seem to have the provusrons
needed to facilitate the srmulatlon of the kinds of components found in the

'modern drive systems

"1 2. 7. ATOSEC

The simulation program ATOSEC [14] is deS|gned for sumulatmg power
~ electronic circuits where power semiconductor devices are treated as ideal
'sw’it‘ches Representing power semiconductor devices as ideal switches
makes ‘the simulation run faster than those which use detarled
representatlon. The lnput language is similar to that used by SPICE2.

6

VA'_I'O_SEC can be used to simulate electric machines as long as they can be
represented by circuit components provided by-the program.. ‘The program
uses the backward Euler method wrthout any local truncation error control.

" As with EMTP, the user must have some |dea of the circuit response in order

K to choose the integration step size.

1.2.8. IESE

'IESE*(Integrated Engineering Simulation Enyironment) is a graphic-,oriented
user interface to EMTP or SOLVER-Q [15]. A novice user can specify
connections of electrical components graphically, while thev-more 'advanced
user can define modules’ equations. The input is then translated into the
language used by E-MTP or SOLVER-Q, vwhich does the simulation ’

53

SOLVER Q [16] is a general purpose symbolic simulation package for
“electrical networks. For transient simulation, the program DIFTOALG
converts dlfferentlal equations into algebraic equations using any desured '
numencal integration algorithm, mcludrng all implicit methods.. The resultlng
algebrarc equations are solved by a program called SOLVE. 1t has been
| reported, however, that SOLVER Q can be about 10 times slower than EMTP
for certain problems -

1.2.9. SABER
"SABER [17] is a simulation package that has a powerful user mterface
especrally for post- processing of data after simulation. It can do many kinds

of crrcuut analyses similar to SPICE2 The package also allows the user to
restart the srmulatron from a previous run, a useful feature for Iong sumulatlon

There are other numerical simulation packages in the form of FORTRAN ’
jsubroutmes for solving dn‘ferentral or differential- algebralc equatlons e.g.,
lMSL (18], ODEPAK [19] DASSL [20], etc. . When presented with
discontinuities, these packages perform poorly since they do not have any‘
dlscontrnurty handlrng capabrlrty other than local truncation error control
which usually reduces the rntegratron step size to very small values

~1.3. Motivation and Objective

Although some of the simulation packages mentioned above can be used to
simulate modern drive systems they are far from providing the most efficient
and 'accurate way to handle mlxed dlscrete-contlnuous systems Some of
them have been used to simulate simple drive systems - e.g., dc drives or ac
drives operated in certain modes only. But for more complicated drive
'systems, engineers and researchers usually resort to writing their own
~simulation programs for the specific application at hand in general purpose
programmmg languages such as FORTRAN

The objective of this research, then, is to determine the combination of
modelling and numerical methods, and the data stru'otures to form a suitable
framework for simulating electric drive systems efflcrently on digital
‘computers. : o

The‘results of this research have been' incorporated into a new simulation
program called TARDIS. The core of this program is the numerical part that
‘combmes several numerical techmques including a vanablesstep, varlable-
order integration with a new local truncation error control, state machines to
‘handle discrete components, andﬁ sparse matrix techniques, to ‘maximize its
computational efficiency, because‘ it is known that time-domain simulation
can be notoriously slow on the dlgltal computer. With these numerical
techmques incorporated, TARDIS also achieves the same capabilities as a
 general-purpose analog computer in terms of functionality.

TARDIS is written in C programming language, and the current version is
about 4500 lines long (including some comments). Although, in theory, the
program can be written in any computer language, the choice of C over other
languages, including FORTRAN which has long been the workhorse for
scientific computations, is due to some desirable features in C that do not
exist in other languages locally available. For example, during exeoution
TARDIS can adjust its own size according to how big the problem is by
asking the operating system to give it more memory space whenever that is
needed. TARDIS requests the _space through several routines specifically
destgn‘ed for each type of internal data structure. These routines request the

8

~ space from the operating system in as small a chunk as 1 Kbyte, and hand
out the space with the size needed by the calling routines. TARDIS also has
its own space management routines that will reuse unwanted space. Note
that if one wants to run the simulation in the standard FORTRAN 77 language
‘which does not have any memory allocation function, one needs to declare a
big enough work space. However, when dealing with sparse matrices, the
“memory space needed in the S|mulat|on will be known at run t|me So one

- must guess, based on previous experience, how much memory is needed - a
practice which is not all that practical.

Although both efficiency and accuracy are important, the program’s emphasis
is ‘on accuracy. Thus all floating-point computations in TARDIS are done in
double precnsnon to ensure maximum accuracy, although the speed may be
~ lower than the speed of single-precision computations on some computers
With C, TARDIS has ability to do bitwise operations directly. Moreover if
there are floating-point operations.that can be done by using bitwise
manipulations, TARDIS will use the bitwise version to improve the speed.
TARDIS also avoids using indices to access successive elements in arrays or
matrices. Whenever possible, pointers to the elements in arrays are used
instead to increase speed. Registers are also used for often-USe'd variables
to improve the speed a bit fUrther. Nevertheless, it has been noticed that
such implementations resuilted in only a'slight improvement in speed of about

1% of overall floating-point operations. So the major factor used to ensure
efficiency and accuracy in the simulation is still a careful lmplementanon of
the numerlcal algorithms.

' The numerical algorithms used in TARDIS have been tested_before’being
incorporated into the program to ensure that the resulting performance is
comparable to or better than that of other existing simulation packages.
Although not all the potential in TARDIS has been exploited, the results of the
experiments show very convincingly that TARDIS can handle the simulation
of most dnve systems efficiently and accurately.

1.4. Report Outline

FoﬂoWing” this introduction, Chapter 2 presents an overview of TARDIS. This
~ chapter discusses the translators for TARDIS, the black box ~concept for
- component modules, equatlon fofmiulations from electrical networks and the
"descnptron of state machines for handllng discrete components

‘Chapter 3 dlscusses the numencal mtegratron method used in TAHDIS more
specn‘rcally the variable-step, variablé-order Gear algorlthm with local .
;truncatron error scheme to control the step size of the integration. The rest of

.the chapter is devoted to how TARDIS Iocates discontinuities. Three
: _lexam “iles are also grven to |Ilustrate how accurate TARDIS is'in locating the

Chaptet 4 describes the data structures and solution technigues used in
TARDIS to haridle sparse matrices. TARDIS uses sparse matrix technigues
o reduce the cormputation involved in the Jacobian equation arising from the
Newton-Raphson algorrthm whrch in turn is used to solve algebralc
;}equatrons resultrng from the Gear algorrthm I o

’ Chapter 5 grves several examples demonstratrng the usé of TARDIS Some
of the examples in this chapter are purposely selected from the past work of -
others to validate the capabrlltles of TARDIS. Representations of swrtches by
'hrgh and low resistance and ideal swrtches are also discussed.

C‘hapte‘r 6 summarizes 'th‘e main ¢ontributions of the. -research" and -also
- diséusses useful features that could be added to the current version of
| TARDIS : . ‘ '

Appendlx A prowdes a brief explanatlon of the basrcs of Newton s drvrded
dn‘ference ’

Appendrx Bis a I|st|ng of the GetZero() foutine which is modified from the
idea of Brent's zéroin() routine for locating a zero of a function [21, 22]. For
smooth functions, GetZero() uses the same number of iterations as Brent's

10 :

v ‘zerom() does. However, for the worst case, GetZero() uses the number of
lteratlons in the order of O(Iogzn) while zeroin() uses O((Iogzn)z)

The rest of the appendices are the source codes forﬂMainSyst’em() and
MainEvent() routines which are used in sample circuits described in Chapter

11

CHAPTER 2
OVERVIEW OF TARDIS

As is, TARDIS is a differential-algebraic equation solver that can handle
=d|scont|numes It does ‘not attach any physical meaning to the system
_ »equatlons TARDIS treats them in.a strictly mathematical sense. It is the
user's responsibility to provide a correct mathematical representation of the
system. One approach to making TARDIS more user-friendly is to have a
translator acting as a user mterface to TARDIS as illustrated in Fig. 2.1. The
translator will then translate the user's input to necessary the necessary
forms that can be compiled and linked with TARDIS's numencal routines.
Although the user will then be reqmred to learn the language used by the
translator, this is usually preferable to writing the mathematical models
directly, even though the latter gives the user more control over the codes.

2.1.. Simulation Language to be used with TARDIS

The proposed simulation language used by TARDIS is a network-oriented
type. Since components in the system to be simulated are from a mixture of
mechanical, electrical, electronic and logic types, they pose some difficulty
when connecting modules of different types together. To overcome the.
problem, Runge [23] proposes a simulation language called Modular
Ordinary Differential Equation Language (MODEL) that integrates network
' mo.dul'es from different types into a single framework. In MODEL, the user
can define equations for modules in the form

left hand side = right hand side @)

Variables used within a module. are referred to as local variables, and those
which are shared among modules, global variables. The variables at the

User's input

™

Translator- d—Templ'ates for Modules

Routines needed
by TARDIS

Compiler

l

= _ Routines provided
Linker [*— 1y TARDIS

Simulation program .

Figure. 2.1. TARDIS with a translator.

12

13

terminals of the mo-dules'(e.g., pihs of integrated circuits, input and output
pins of the modules) are terrhi_nal variables. A node is a common pointto
‘which the terminals of modules are connected. If the terminal variables
connected to the same node are to take on the same value, the variables are
called E-type terminal variables. If the sum of the terminal 'variables
.connected to the same node is to be zero, these terminal variables are called
1- type variables. The equations’ descnbmg a module can.refer to local,
-"termlnal and global variables, and. even user-defined. FORTRAN
fsubroutmes Discontinuities are, also allowed in MODEL they are handled »
by the use of IF statements.

. TARDIS uses a different approach to comblne modules from several |
dlsmplmes (Although the translator for TARDIS has not been completed at
this point, some of the ideas have been implemented in the numerical part)
?TARDIS treats each module as a black box with pins or terminals to connect
to. the outS|de The user can define modules W|th equations of the form -

“Associated with pins of the modules are pin variables. Similarto MODEL, the
user can use pin, local, and global variables, user-defined: or other
predefmed subprograms in these equations. Unlike MODEL, there are three
types of variables used in TARDIS electrical, non-electrical, and logic
variables corresponding to_.,el,eot.rlcal, non-electrical, and logic pins.
Distinguishing these three variable types facilitates the simulation tasks.

There are two variables associated with each electrical pin, namely, voltage -

and current. There is no convention imposed on the direction of the current -

whether into or out of the modules. The user can choose either direction, but

must be consisterit throughout. For the purposes of discussion in this report,
- the direction of the pin currents is assumed to be into the modules. -

- The nodes where the pins are connected are also classified the same way:
ele-ctrical, non-electrical, and logic nodes. The variables of the pins
connected to the same node take on the value of the variable at the
corresponding node. For electrical nodes, Kirchhoff's current law (KCL) must

14

also be satisfied. . Usually a node has pins of the same type but certain

mixed- -type connectlons are allowed to reduce the number . of unknown
~ variables. For example, the non-electrical pins can be connected to an
;electncal node; these pins are not included in the KCL equation for that node,
and KCL still applles to all currents of electrlcal pins connected to that
,electncal node. The variables of the non-electrical pins connected to
. electrlcal nodes will take the value of the correspondlng node voltages '

A module can have pins of different types For example a motor may have
two electrical pins to be connected to a power supply and two non-electrical
: pins for torque and speed. A thyristor may have two eIectrlcal pms and one

“logic pin. -

nThere are differences among the three types of variables. The electrlcal and
; non electncal variables are unknown variables in the system equatlons to be
solved The logic variables are not part of the unknowns. The loglc vanables
are to be used by a module to communicate its status to other. modules The
: electncal and non- electncal are represented by double- precus:on varrables
but the size of logic variables is user-defined and may have dlfferent sizes as
'well All three types of variables are global variables; they can be used '
inside any module orin the output routine. '

Besndes the above- mentioned varlables there are other double precusuon
global varlables also: intermediate variables and parameter vanables An
N array of mtermednate variables is used to store meanlngful mtermedlate
| values that may be used by other modules other subprograms or the output
~ routine. - The intermediate vanables are also. used to avoid repeated
- calculatlons The array of parameter variables is intended for the. varlables.
' that are constant or changed occasionally. They may be used in various
modules, some ‘subprograms, or the output routine. Although the ‘use of
varlables in these two arrays may be lnterchangeable it is not: advusable
' because they can make the debugging of the program difficult. Both these
arrays are not part of the unknown varlables to be solved o '

| | 15
2.2, Equation Formulations from Electrical Circuits -

The formulation of equations from electrical circuits in TARDIS is not
restricted to a specific method. The method used can be tableau formulation,
modified nodal formulation, or even a combination of the two. For example,
the -equation formulation for a resistor may be done by modified nodal
formulation while the equation formulation. for a capacitor rhay be done by
tableau formulation because the branch voltage of the capacitor is a state
variable and is needed in the equation. Other types of formulations are also
allowed, but they are less popular;fthan these two. Note that one objective in
TARDIS is to make all variables available at all times so the user may refer to.
them anywhere in the user-defined modules or subroutines without having to
worry whether such and such a variable is available or.not. Because the
tableau formulation has all variables available as unknowns to be solved, -
this may suggest that the .tablea‘u‘formulation is the best for TARDIS; this,

- however, is not necessarily the case. By the use of intermediate variables,
the user can make all the variables available without increasing the number
of ‘u‘n'know‘ns. For example, the modified nodal formulation for a resistor with
the conductance G between nodes i and j may be written as

| | o | o currents leaving
KCL at node i: 0 G» V, -G Vi+ Z (node i ’) (2.3)

J

o : currents leavin
KCLatnodej: 0 ’-G_vVi+GVj+2 (nodej °A9) (2.4

As one can see, the current through the resistor above is not defined
explicitly. To define the current of the resistor, the usual way is to include the
current as an unknown variable. The equations now can be rewritten as

Constitutive eq.: 0 = G Vi-G Vj-ﬂl » - (2.5)
‘ ' reurrents leavingy |
'*Z (Rode) (26)

o
]

KCL at node i:

16

. l) ,\ |
KCLatnodej; 0 = _|‘+2(ﬁ%r52njts eavmg) @)

where | is the current passing through the resistor. However, this method is

not suggested since the number of unknowns is unnecessarily .increased,

resuilting in more computations when many resistors are defined this way. By

~ the use of mtermedlate variables, the equations above may be rewritten as
foIIows

= G-V SR (2.8)
KCL at node i: 0 = I+ Z (ﬁ‘gzg”fs 'eav'"g) (2.9)
KCL at node j: 0 = -l+ z (ﬁggznjts leavmg) (2.10)

where | is now an intermediate variable whose value is set by_Eqi (2.8).
~Although the number of unknowns remains the same, the order ‘of the
equations is lmportant in the execution of the solution. The Eq. (2.8) must be
executed before Eq. (2.9) and (2.10) to obtain the correct result. By itself,
TARDIS does not have the equation sorting capability of a program like
ACSL. The user or the translator must do.the sorting for the equations that
- set the values for intermediate variables. These equations - like Eq. (2.8) -
should then be put at the beginning of the routine, MamSystem(), which
~contains aII the system equations.

2.3. Handling of Components Associated with Discrete Evehts

The simplest way to handle components associated with discretev 'events may
be by the use of IF-ELSE statements: for example, the pseudo code for an
ideal dlode connecting between nodes i and j may be wrltten as follows:

17

if (diode currentis positive)

{ .
) -v() =0;
~ elseif (voltage across diode is negative)
diode current =0;

‘Due o the numerical integration algorithm used :in TARDIS, ‘handling of

~-components :associated with discrete .events by such simple ‘mechanism may
lead to 'some numerical problems - i.e., the program would :be :unable to find
the 'solution -or would use many calls ‘to ‘the routine containing :system
iequations. The reason is, when TARDIS solves the system ‘equations by an
-iterative :method (as part -.of the integration), the -conditions .used in IF-ELSE
'statements as ‘well as the ‘corresponding terms or equations may change
from.. one iteration to another, the change which may ‘result .in divergence of
the iterative method. ‘Even when the iterative algorithm does converge, there
}:can be many .calls tothe routine ccontaining system equations due to the ‘local
truncation error control scheme wused in the mtegratlon algomhm
zlmplemented in TARDIS.

Bodry .and Foch [24] propose a framework to handle components .vas.SOCiated
with discrete events, called Petri nets which are very powerful models. to
describe the flow of information [25]. Petri nets are also adopted in TARDIS
because they provide simple conceptual models. However, the use of Petri
nets in TARDIS represents only :a small portion of their real potential, and
thus the term "state machines" will be used instead of the term "Petri nets".
-~ With the use of state machines, the numerical problems associated with the
above simple mechanism for handling components associated with discrete
events can be avoided. ' : '

in TARDIS all components associated with discrete events must be
represented by state machines. The status of a state machine is indicated by
a state associated with that state machine. A state machine can change its

18

state when certain condition is satisfied. For example, a diode may have two
states: ON and OFF. The diode will change its state from ON to OFF when its
forward current reverses direction, and the diode will change its state from
OFF to ON when its forward voltage drop is positive. For the rest of this
report, such conditions will be called transitions instead. Figure 2.2.
illustrates a state machine for some discrete device. The numbers in circles
indicate the status of the state machine. The paths with arrows from one
~ circle to itself or the other circles indicate the possibilities of the next states
from the current state. The bars on the paths are the transitions which must
be satisfied (or fired) for the paths to be used. The transitions connected to
the current state are termed active, even though they may not be fired. If
there is more than one fired transition, the one with highest priority assigned
by the user will be chosen. From Fig. 2.2, if the current state is 1,only T1is
an active transition. If the current state is 2, there are three active transitions,
T2, T3, and T4; only one of these three transitions will be fired. Note that if
the current state is 3 and T6 is fired, the next state will still be 3. If state 4 is
reached, the state machine will be in this state forever since there is no other
pathto go. | ‘ e

The program codes for all state machines will be in a separate routine called
MainEvent(), for purpose of efficiency. When the MainSystem() is executed,
no status change in the state machines is allowed, the program codes for the
state machines will not be executed. Only when the program needs the
information on status changes in the state machines will the program codes
for the state machines in the MainEvent() routine be exe_cuted.
Communication between the two routines, MainSystem() and MainEvent(), is
done through global variables and variables common to these two routines.
The separation of the two routines makes TARDIS different from"se’\i‘eral other
simulation packages which allow the descriptions of the discrete components
and the system equations to be mixed. Although the separation of the two
routines helps avoid redundant'calculations the casual user may have
»dlfflCUlty writing the code to describe the behavior of discrete events This

problem however, will be alleviated W|th the use of a translator.

Figure 2.2. A sample state machine.

19

20

‘Several state machines can change their states at the same time. However,
 the program executions are done serially - one inStr_uction} after‘ahother. The
‘serial operations cannot guarantee the correct status of those state machines

whose transitions are dependent on the status of other state machines. It is
impossible to use sorting procedure to order the codes for the state machines
because the information for sorting cannot be extracted from the semantics of
‘the codes. What is done in TARDIS to ensure the correct status of the state
maohmes is to delay updatmg the status until the program codes for all state
machines in'MainEvent() are executed. Thus going from the current state to
the next state requires a procedure rather than an asslgnment statement.
" This is also applied to logic variables; they are not allowed to take on the new
values until all the information about the new values is received. In this .
manner, when a state machine whose transitions depend on the status of
other state machines or logic variables is encountered, TARDIS: ensures that
the resulting status of the state machlne and the values of loglc vanables will
be correct. T

There are two types of discrete events allowed in TARDIS scheduled and
condltlonal events. Scheduled events are events whose instants of
occurrences are known in advance - e.g., sampling time that occurs
periodically, thyristors' firing time that is synchronized with know}h voltage or-
current sources, etc. Conditional events are events whose instants of
occurrences are not absolute but instead dependent on expressions of state
variables, non-state variables, and time. These expressions can be used in
the transitions of the state machines. The adopted convention in- TARDIS is
that when the expressmns of active transmons are negatlve these transitions
will be. fired. If possnble TARDIS will fire a transition when the: values of
. expressions of those transmons are within certain negatlve bands specmed

by the user. ' R ‘

Typically in the codes for state machines, the user'may make use "‘Of‘SWlTCH
statements in C to simulate the behavior of the state machines, ‘and,
needed, IF-ELSE statements to assign priority to the transitions. For
example, the pseudo code for a state machine of a diode can be as follows:

21

switch (diode's State)

o f
~ case ON:
_ if (diode's current is Iess than’ zero)
{ . ‘
next diode's staie will be OFF;
diode's resistance is 1.6 Q,
set a flag to reevaluate the Jacobian due to abrupt
change |n dlodes resistance; ‘
y . .
, break;
~ case OFF: : :
SR if (voltage drop across dlode is positive)

next diode's state will be ON;
diode's resistance is 1.e-3 Q; T
set a flag to reevaluate the Jacobian due to abrupt'-‘; PR
_ change in diode's resistance; :
}
, break;
case STATE_INIT: B
next diode's state will be OFF;
diode's resistance is 1.66 Q;

}.

“At the beginning of the simulation, all state machines will be set to the same
initial state, STATE_INIT. The user can then change these states to any
f desired states. In the above case, the initial state of the diode is reassigned
to the OFF state with a corresponding value of the diode resistance. Due to
_the numencal integration algorithm used in TARDIS, the Jacobian of system
equations is needed. Whenever there is an abrupt change in the parameters
of system equations, the user must set a flag calling for the Jacobian to be
reevaluated. There is no need to. set a flag at the begmmng because the
Jacobian will be calculated by default

22

The current version of TARDIS calculates the Jacobian by faking a numerical
difference. As this method of finding the Jacobian is time consuming,
especially when the system has many discontinuities, the next version of
TARDIS will be more selective in choosing the equations to be updated, or
will let the user update the entries in the Jacobian directly. Y

2.4. Error Control Parameters in Simulation

Error control parameters are key input parameters that the user can specify to
ensure that the simulation results are within the desired degree of accuracy.
When the dynamic range of the values of the unknown variables is Iarge -

e.g., 5 mA for typical values of currents in control circuits and 1000 A for the
motor currents - the same error control parameters should not be used for a!l
variables. Although most of the application-specific simulation programs
allow the user to specify error control parameters in the integration or in the
ltera’uon process, the error specification is not done on an individual basis.
Faced with such a limitation, the user may resort to scaling the values of all
variables to the same order of magnitude. However, in TARDIS, the user has
the choice of specifying the error control parameters for each individual
variable. The specification of error control parameters should be done when
the modules are defined. '

23

, CHAPTER 3 o
NUMERICAL INTEGRATION WITH DISCONTINUITIES

k3.1.;“‘lntroductio’n to Differential-Algebraic Equations

The differential-algebraic equati“oh'é' (DAE) being considered can be written
~in the following form: ' o : o

Wwhere Ynst @re non-state variables, Vst and .y’St are state variables and their

derivatives, respectively.

In general DAE's may not be eq'uyfi’/alent to ordinary differential equations
(ODE) [26]. DAE's are classified by an index system. Not all types of DAE's
are numerically solvable by existihg'numerical algorithms. DAE's with lower
index numbers can be solved, but that is not the case for higher index
equations. DAE's with index 0 are actually ODE's. DAE's with index 1 are
ODE's with some algebraic equations which can be symbolically or
numerically reducible to ODE's. For the DAE's with an index greater than or
equal to 2, one will have to do differentiation - instead of the usual integration
- to get to the solution. Loosely speaking, if one has to find the nt order
derivative of the input to get the solution, the index number of that DAE
system will be n+1, for n 2 1. A more precise definition of the index of DAE's
can be found in [26, 27]. Usually, systems of indices greater than 1 are those
having the ability to change their state variables arbitrarily. For example, Fig.
3.1 illustrates an index-2 system whose equations are below.

L-lg = 0 o - (3.2)

24

®

FigUre 3.1. Example system with index 2.

Vi-lgg = 0 | (3.3)

As one can see from the equatibns‘, in order to find the voltage across the
inductor, one needs to differentiate the current which is determined by the
current source. There are some software package, like DASSL that attempt
to handle DAE's with indices higher than 1, but for this research, the index of
DAE systems will be limited to 0 and 1 only. In other words, the ability to
change the values of state variables arbitrarily will not be allowed.

3.2. System Stiffness

Loosely speaking, stiffness usually means having fast and slow transients
~ together in the system. Actually, the stiffness does not depend on the system
characteristics alone but also on the initial conditions, accuracy requirement
[28], and duration of integration. Since the stiffness of the system to be
simulated may not be known in advance, it is prudent to use an jhtegration
al‘g‘qrith‘m suitable for stiff systems just in case that the system is stiff. It is
po’ss'ibleAto implement two integration algo’rithms - one for stiff systems and
the other for non-stiff systems - together in the same program, as is done in
many existing software. “In that case, the user may decide which one to
choose, or the selection of algorithms can be made automatic according to

25

how the system responds. In TARDIS, only the integration algorithms for stiff
systems will be considered for the time being. ‘

3.3. Gear Backward Differentiation Formulae

The implicit integration algorithms can generally handle stiff systems better
than the explicit ones [11]. There are several implicit algorithms, among
which the ones most commonly used are the trapezoidal, Adams, and Gear
'algonthms [29, 30]. The Adams algonthm is usually used for smooth or non-
_stlff systems. Both the trapezondal and the Gear algorithms can be found
~ implemented in several simulation programs for electrical or electronic
- circuits. Of the three, the Gear algorithm is the best |mpl|cn algonthm for
handlmg stiff systems '

TARDIS uses a variable- -step, vanable order Gear algorithm |mplemented by
- using Newton's divided difference as described in [31]. The implementation
is also repeated here with a sllght change in notation to avoid nested
~ subscripts. The following descnptlon is for the state variable part and it
assumes that we have a single first-order implicit differential equation only.

So the following y will replace Yst- I there is more than one state variables,

the fellowing discussion will appiy to every one of them.
Let ¥, ¥i.1, ¥j-0 - Yji D€ k+1 solution values of a differential equation

0 = .y, N X

catt, g, tios s b respectlvely To find Yisq at t|+1' the algorithm replaces Vy'
of Eq. (3.4) with |
Yier = BYig*+S o - (38)

where [depends on t;, V"(H, tio, - tik and S depends ony;, Vi-1? Yi-or - Yik
.and 14 1,'t,_2, .. Yj_k» respectively. The resulting Eq. (3.6) after the

26

substitution is algebraic which will be solved by the Newton-Raphson
algorithm (NR). ~

0 = 9(¥j41 bigq) - (36)

The NR algorithm will be described in detail along with sparSe matrix
techniques in the next chapter. ’ :

If there are non-state variables, the Eq. (3.6) will become a system of

algebraic equations with both non-state and state variables as unknowns. In

- the course of calculating 8 and S, the predictor YiEA which is the polynomially

extrapolated value of the previous k+1 solutions at t; 4 wil‘lv be found also.
This yiri_1 Will be‘used as an initial guess to the NR method which should
make the iterations converge faster. The steps in finding B, S, and yiF_)H' are
‘as follows: |
1. Find fhe divided differences y[t;, t;_¢, .., ti_j] forj =1, 2 3, ... k.
(The divided differences can be found in Appendix A.)

2. Calculate the coefficients o, B;, and L; as follows: |

Lj = tiq 'ti-j+1 forj=1,2, ...,k
o = Ly
O‘j = o:j_1- Lj forj=2,3,4, ...,k

' [31 = [1“
B = Bjq +ﬂ—j forj=2,3,4, ..,k

3. FindS and yiF:_1 by

O =y
YET = yij'ﬂ +opylty tig, gl forj=1,2,3,.,k

27

p_
vyi+p1
S = Ll
1=
Pi.1
: % T

Fig. 3;2 illustrates how some v'a‘riables are defined in the implementation of
Gear algorithm. '

The order of integration k can be“?és high as 6, which still be a stiffly stable
algbr‘ith‘m [11]. When the order is higher, the step size tends to be 'l‘ar"ger also,
and this usually results in fewer steps in integration, but more overhead
computation. So some software packages that use this algorithm - such as
DASSL [20], LSODAR [32], and IVPAG from IMSL [18] - limit the integration
order to 5. These programs, except DASSL, aiso incorporate the Adams
algorithm with order of up to 12 for smooth systems. However, in TARDIS, an
arbitrary limit of integration order ot 6 is set since it does not incorporate the
* Adams method. This is done so that, for smooth systems the integration of
order 6 can reduce someé computations by using larger time steps than those
obtained when the order is limited to 5. - |

yD 4 is used not only 16 start the NR method but also to estimate the local
truncation error (LTE), a measure oh which the adjustments of integration
order and step size of the integration are based. There are various formulae
for calculating the current local truncation error (LTEcurr)..‘ Brayton
(reference from Vlach and Singhal in [33]) compared them and concluded
that the correct formula should be |

: P
‘Vi+_1 ” /Vi+1‘l
curr © B Lk+1

LTE (3.7)

- Figure 3.2. lllustration of Gear algorithm. -

v vP
-t k+1 solutions - yi+1
) 1‘@
o
'y ' ‘ i
,up/" Yi+1
>,
ik Ykt ik tio 1 G bt
.‘gﬂ“hk" ' <—h3—><—h2—><—h1j_>¢,'
- k+1 ;
< LZ >’.
< Ly -l
— Lk‘ —p
» |
, Lk+1 gt

28

29

The above formula is also used by Zein, et al. [34]. To use this information to
adjust the step size of ihtegration one may compare this LTE, s 10 the
allowable Iocal truncation error (LTE 4;,,,,) at this step. Brayton [35], Van

B'o:kh‘oven[3'1],, and Vlach and Singhal [16] calculate this LTE) 1ow from the

vspecmed truncation error per unit time «, which is a ratio of global truncatlon
error to duration of simulation, as ‘

LTE, = x h (3.8)

allow allow

where h is the allowable step size.

allow

Smce the local truncation error of the kth order integration is propomonal to
k+1
h -Le.,

LTEqjjow hallow e | 3 9)
LTE heurr | A

Ccurr

~ the allowable step size can be found by
| 1

K h ‘ :
curr |k .
R iiaw = h . ; (3.10)
| allow _eurr (LTEcu:rrJ- |
|
This h 515 Will be used as the next step S|ze It there is: more than one state

varlables the value of hallow will be calculated for each of them. Then the

next step size will be taken from the smallest values of h allow:"
hpext = | min (hallow) . ' (3.11)

’To adjust the order of mtegratnon one also uses the Eq. (3.7) to calculate LTE
- different orders by using yI +1» B, and L of different orders: - usually one

order lower and one order higher. Then the order of integration will be
decided upon the maximum of h; .. of these three different orders.

30

However, the use of the truncation error per unit time may soméiime_s cause
~the step size calculated from the Eq. (3.10) to be very small, espécia’ily when
“simulating stiff systems or running the simulation for a long duration. Thus in

TARDIS, the LTE 0w Will not be calculated from the Eq. (3.8).

MOSt of the software packages, such as IVPAG from IMSL, ACSL ['5],
- ODEPACK [36], and DASSL[20], will try to control LTE by letting the user
specify some kind of error tolerance and the routine will use that information

o calculate the anticipated LTE 0w~ One approach is as follow: -

LTE zllow = el [Yis1] * Eabs (3.12)

where g, and e, 4 are relative and absolute error tolerance spegiﬁed by the

user respectively. Using the Eg. (3.10) to calculate LTEy;;,, will adjust the

step size acCording to the responses of the system on a local basis -notona
global ‘basis as in the scheme used before. This scheme makes the
integration step size adapt to the system response better and'stillv gives
acceptable accuracy for both fast and slow responses. For smooth systems;
the Eq. (3.9) and (3.10) will give comparable accuracy if both schemes use a
comparable number of steps in integration. '

By"ljsing the Eq. (3.10), the‘allowable step size can be calculafed from

1

‘ €rol |Yi+1| * Eaps) K+l o
» hallow = hcurr ~ LTE s i :,,.(3.13)

curr

When starting the lntegratlon there is no lnformatlon about previous values ,
so one cannot use the Eq. (3.7) to find out the LTE at the first point. What'is
usually done is to take the first step, after the discontinuities or from the
beginning of simulation, small enough so that the LTE should be acceptable.
For-example, IVPAG of IMSL arrives at the default initial step size by dividing
the output interval by a factor of 1000. However, this is not good enough

31

: when dealing with dlscontmumes because the instants of their occurrences
“are not known in advance, and whatever first step size is chosen may be too
‘big to locate the discontinuities accurately. So the LTE at the initial point is

| needed to be able to adjust the initial step size accordingly. It is proposed

that the initial LTE can be calculated from Eq. (3. 7) with yf” derlved from the

vforward Euler formula that is

oo = vy R (3.14)
Note that using the LTE information to adjust the first step size will defeat the
' purpose of relying on the stiff method implemented in the program, because
| the stiff method is not employed to skip very fast transients. Note that both the
Adams and Gear algorithms start out with the first-order backward Euler
formula. It would be an interesting subject for a comparative study to see-
- Awhichﬁvalgor'ithm’ is more efficient and accurate.

) Usmg the LTE information to- change the order, as mentioned earlrer may
I’sometlmes lead to spurious change of order. To reduce such spunous order
‘changes the order is reduced only if '

‘hallow(k-1) > Raliow(k) > Nallow(k+1)-
Svim‘itlarly,the orderof integration will t')e'increased only if

Nallow(k-1) < Malow(k) < Mallow(k+1)
Thevse condit'ione are similar to the ones used in DASSL by Petzold [20].

in TARDIS if haow 1S Iess than .75 h curr then the current step of mtegratron

will be repeated since this may indicate that the current step srze could glve
an unacceptable LTE. The factor .75 is chosen to prevent the algorithm from
‘hunting - that is if the LTE after changing the step size were still too big, the
integration would otherwise have to be repeated several times. To further

32

j amelior'ate this problem, one can reduce the step size hy;|,, even further.

The ability to adjust the current step size - not just the next step size - ensures
" that the location of discontinuities can be determined accurately.

.-Since .LTE calculation is just an approximation, it may not bef sufficiently -
__reliable for the purpose at hand. One may want to make the calculation of the
*next time step more conservative by reducing it by some means; for example,
by multiplying the right—handfs'ide of Eq. (3.10) by some factor less than 1.
- Even then hallow may be too big compared to h curr If the next step size is

too big, it is very likely that the next step will not pass the monitoring of LTE,
and th’e‘next integration will have to be repeated. To minimize the likelihood
h o

|
of th|s happemng, one may a priori set the limit of the ratio ;I :
curr

number. If the ratio is higher than the limit, Pallow will take the value

- to some

determin'ed by this limit. Choosing too large a value of the limit wull not solve
, the problem but |f the hmlt is too small, the mtegratlon will take more steps
. than necessary '

' Nevertheless it has been noticed that the speed of the implemented
algorlthm is slower than that of IVPAG of IMSL due to the fact that TARDIS
'typlcally uses two or more iterations per time step in NR algonthm whlle
IVPAG usually uses one iteration per time step This observat:on prov:des an
.mcentlve to find a better LTE control scheme. RS

Let us consnder how one can obtain one iteration per t|me step on the
average One way to achieve this is to fmd values of hallow small enough to

guarantee that the predlcted value of state variables are close to the corrector'
-values® within the tolerance of the NR algorithm. However many

' :comblnatlons of parameters in the LTE control scheme as described above

had been tried but were not successfu! in reducing the number of iterations
_-per t|me step in sample tests. The expenmentatlon fmally leads to another, :
: ,LTE control scheme in which: ‘

33

N . Error Tol. for NR algo.\=~ ,
hallow = |[-75 k (3.15)
,yi+1) yi+1l
wher‘e‘
7 Error Tol. for NR algo. = Erel ,yi”l + E3hg . (3.18)

and g, and €4phs are relative and absolute error tolerance, respectr,vely‘, for

- stopping criterion of NR algorithm. Note that the new scheme uses the same
€rg) @nd €4pg for error control in integration and for the stopping criterion of
the NR algorithm. The factor of .75 is used to reduce the ratio of the expected

-error-in the NR algorithm to the correction made to the predictors at the
current step. The factor of .7 in the exponent is used to account for fact that
t,he_Eq. (3.14) is a very roughly estimate of the relatlonshlp between local
truncation error and step size. The two factors given are by no means

‘ :‘r'optlmal but they have so far given satlsfactory results in all the test problems

tA relevant question at this point is whether finding the new step size from Eq
(3.14) is reliable or not. The answer seems to be yes since the equatlon
tends to select a step size smaller than the one calculated by the previous
LTE control scheme, and TARDIS is able to achieve one iteration per time
step, when using the same error criterion for the NR algorithm. This way one
can use each call to the routine containing the system equations to advance
in time and stop the iteration process, while the previous LTE control will be
likely to use one call to the routine to advance in time and another call to stop
the iteration process. Moreover, by choosing appropriate parameters in Eq.
(3.14), one can make the new'step;size not too conservative also.

It h'as been observed that there are ~spurious changes of order of integration
even with the Eq. (3.14) implemented. Gear [37] suggests using some factors
to multiply the step size before selectmg the order of mtegratlon So the
following lmplementatlon has been. added to the LTE control.

34
The order will be reduced if

Nallow(k-1) Nallow(k+1)
11 7 Nallow(k) >~ 1.21

“and the order will be increased only if

 Nallow(k+1) Pallow(k+1)
7 1.005 < Nallowk) < 1.2 -

_“Again, the 4 factors above are not guaranteed to be optimal 'in,allicases but
~ they seem to work just fine with the sample tests. With the Eq. (3.14) and the
implementation above to reduce the .spurious order change, the ratio of
number of iterations to total steps of TARDIS is roughly 1.5 on the average.

“For most cases, the speed up is double when compared to the previous LTE
control scheme in Eq. (3.13).

It is also observed that the LTE control parameters g, and €abs & are not qurte

relrable For example, when these parameters are reduced, onewould .

expect less error and more iterations or time steps needed. When the
parameters are increased, the reverse should happen. Test. results on
TARDIS do not’fully} support such reasoning.'- When the two parameters are
slightly reduced, one may not obtain higher accuracy even though TARDIS
uses more calls. At other times, TARDIS may give higher accuracy with fewer
calls when the parameters are slightly reduced. This behavior happens with
both LTE control schemes and should deserve further investigation. It may
be of mterest to note that IMSL's IVPAG uses one parameter to control the

- accuracy of the solutrons instead of the usual two parameters used in Eq. -
. (8.12). ' '

'3.4.,-Comparison ‘between Gear and Trapezoidal Algorifhmét e

o Let us compare the Gear method |mplemented in TARDIS and the

trapezordal algorithm, which is one of the most widely - used mtegratron

35

algorithms for a number of simulation packages on the following 2nd order
system

Yi o= v (3.17)
Y2 = ¥ BNCAL:)

'wtt.h the initial condition y4(0) = 1 and y,(0) = 0. The exact soluti’ohs are

. y{ = cos(t) | v | ,_'(3'_1__9)

sinft) (a0

Y2

Let us integrate this system using both algorithms for 100 cycles and‘-'adjus'.t
the step size of the trapezoidal algorithm or the error tolerances of the Gear
algorithm to give the same magnitude of global error of yq at 100th cycle
(compared with the exact solution of y4) to compare the computatlon

‘reqwrements of both algorithms. For the trapezoidal algorithm, let us use
equal step size equivalent to .5 degree and for the Gear method, let us use a

variable- step variable-order method as described in the previous section
with Srel =g,pg = -96-7 and a maximum order of 6. Figure 3.3 shows the

‘errors of y4 of both algorithms at the final cycle. Designed specmcally for this

smooth system, the program for the trapezoidal algorithm is written to be as
efficient as possible - that is using the intermediate variables to store values
that are used more than once. The trapezoidal algorithm uses 72,000 steps
while the Gear algorithm gives 3,423 output points and 3,431 calls to
the -routine containing the above differential equations. The total
simulation times on Mac llcx are 11 s and 13 s for the trapezoidal and Gear
‘algorithms respectively. Although the trapezoidal algorithm uses many more
st‘eps than the Gear algorithm, the trapezoidai algorithm is faster than the
Gear algorithm in this case. However, the execution time cannot be used as
an indication that the trapezoidal method is more efficient than the Gear
method, since the trapezoidal program is being optimized for this specific
case. Nevertheless, from this test one may conclude that, to achieve the
same accuracy, .using the trapezoidal algorithm will require many more

.000E-03
.000E+00

.000E-03

.000E~-03
.000E+00

.000E-03 -

6.220E+02

T T T —

6.251E+02

a) TARDIS (34 points)

6.283E+02

6.220E+02

Figure‘ 3.3. Errors of y of 2nd ordersystem.

6.251E+02

b) Trapezoidal method (720 points)

a) TARDIS (34 points)

6.283E+02

b) Trapezoidal method (720 points)

36

37

output pornts and thus many more calls to the routine contalnlng system'
, equatlons than those of the Gear method. S

For stiff systems, the .comparison of TARDIS and equal step-size trapezoidal
algorithm will not be Justufred since the step size for the trapezoidal algorithm
will be very small throughout the simulation to avoid numerical oscillations, A
varlable step-size trapezoidal algonthm such as the one used in SPICE2,

will be needed for a fair comparrson However, the direct companson
”between SPICE2 and TARDIS cannot be justified because there is overhead
in SPICE2 to process the user's.input which will be added to the executlon

; tlme " Although, in designing SPICE2, Nagel points out that the trapezondal

method is more efficient than the Gear method, the implementations of Gear
in’ SPICE2 and in TARDIS are very different, mainly in the local truncation

error control scheme and the calculatron of § and S in Eq. (3.5). This can be
a subject for comparatlve study on the efflcrency and accuracy of both

’algorrthms '

3.5. Handling of State Machinjes'

Before starting the simulation, all ihitialcbnditions of state variables and all
states of state machines must be set. ‘With these initial values of state
variable and state machines, TARDIS solves the system equations for the
- values of non-state variables and the derivatives of state variables at the
initial time. If TARDIS detects some fired transitions, TARDIS will fire those
' trartsitions, change the states of the state machines, and solve for the new
values of non-state variables and the derivatives of state variables. This
process is repeated until there is no more fired transition at the initial point.
Figure 3.4 shows the flow chart of TARDIS at the beginning of the simulation.

After no fired transition is detected, the integration process begins. With the
dérivatiVes of state variables being replaced by the values obtained from Eq.
(3.5), TARDIS will solve the system equations for the values of state and non-
state variables. After a step is completed, TARDIS goes through all active
transitions to see whether any of them can be fired. If none is detected, the

Initialize state
variables

l

Initialize state
machines

Solve alg. eq.
at standstill

Transitions
fired
?

Change states of
state machines

Integration

Figure 3.4. Flow chart at the start of the simulation.

38

39

next step of integration will be carried out. [f the occurrences of some
discrete events are detected within the current time step, TARDIS will treat
the discrete events according to their types - scheduled or conditional.

For a scheduled event, the integration process will be carried out to the
instant where the scheduled event occurs because the instant is known in
advance. Then all active transitions will be checked to find out the fired
transitions. If no fired transition is detected, the integration will continue. If
there are fired transitions, the corresponding state machines will change their
states. Then the system equations will be solved for the values of non-state
variables and the derivatives of ‘state variables. This process will be
repeated until there is no more fired transition. Note that the state variables
take on their current values; they are known variables at this instant. |

For a conditional event, the current-integration step will actually go beyond
the instant where the event occurs since the instant is not known in advance.
There are several methods proposed by various researchers to locate the
instant of the conditional event, which will be mentioned briefly in the next
section. After the instant of the event is found, repeated solving of the system
equations and changing states of the state machines will be carried out until
there is no fired transition. Then the integration will resume again.

Changes in the states of the stat_e'machines may cause changes in input
signals to the system or in system parameters. Whenever a change that
cannot be locally expressed by polynomials, such as an abrupt change,
occurs, previous values of state variables should be discarded and the
integration order should be reset to 1. This is because the integration
algorithm used is based on interpolating polynomials. If the integration is
allowed to be carried on without resetting the order, it is very likely that the
next several integration steps will repeatedly fail, and the step size will
eventually be reduced to a very small value before the integration process
can continue. For abrupt changes in the system parameters, the Jacobian
matrix used in the NR method must be updated accordingly also.

40

3.6. Locating Zeros of Switching Functions

‘There are several methods proposed by various researchers to handle
“discontinuities in the integration. Some of them try to handle the
discontinuities by the integration routines directly, and others use.
interpoléting polynomials to locate the discontinuities. Carver [38, 39] uses
another set of differential equations which are derived from switching
functions which are to be solved with the system differential equations and
also uses inverse interpolation to locate discontinuities. This seems to add
more computation to the simulation. Gear [9] uses the step size control to
locate discontinuities. Ellison [40] and Birta, et al. [41] use the values of
switching functions and their derivatives in interpolating polynomials to locate
discontinuities with the Runge-Kutta integration algorithm.

There are also some integration routines that have a root-finding capability.
One such routine is LSODAR [32, 36]. To use this package, the user has to.
specify switching functions in another routine. The locations of zeros are
’dete‘cted by the sign change of the specified functions. However, this is
slightly- different from what has been implemented in TARDIS'dUe to
TARDIS's greater complexity. Instead of detecting the sign change, TARDIS
detects the negative values of expressions used for transitions. The normal
values of these expressions are 'positive. Whenever they are negative,
TARDIS will try to locate the zero-crossing points. Then the integration will
be carried out to the minimum values of all zero-Crossing points detected. -

For locating the zero-crossing points, TARDIS uses the simple interpolating
polynomials. The values of switching functions of active transitions will be
stored in terms of divided differences for interpolation. The order of
interpolation will be equal to or less than the integration order. If the order of
integration is reset, the order of interpolating polynomials is also reset. At
any time, the order of interpolating polynomials will be less than or equal to
the integration order. Locating negative-going-zero-crossing is done by a
routine modified from Brent's [22]. Brent's routine alternately uses the three
methods depending on how the function whose zero is o be found behaves:
linear interpolation, inverse quadratic interpolation, and binary search.

41

‘However, TARDIS uses inverse quadratic interpolation and binary search to
locate the zero-crossing point, except at the beginning where the routine
,starts off with linear interpolation. The criterion for switching between the two

~methods is shown in Fig. 3.5. If the middle point, 2a, is in the area of the two
inverse ’parabolas which have the slope at one end equal to infinity, the
inverse quadratic will be used to find a zero. Otherwise, the bisection method
will be used (point 2b in Fig. 3.5). "

For smooth functions, the implemented routine, GetZero(),‘ and Brent's routine
atp
function evaluations, where t, and t,, are the end points, and { is a specified
‘ ot

e
evaluations. The source code of the routine is listed in Appendix B. In the
simulation, the functiori whose zero is to be found is usually smooth from one
time step to another so the routlne needs only 1-2 function calls to Iocate a
zero- crossmg point.

p‘erfdrm similarly, but for the worst case, GetZero() will use 3 I092

)‘2 function

error tolerance, while Brent's routine will use (I092

Locating the zero-crossing -'points using interpolating polynomials is not
always reliable. Sometimes, it may predict a false zero-crossing point. This
usually happens in a very short period of time: one or two time steps just
before the real zero- crossing point occurs. Thus one cannot take the zero-
~crossing pomt predicted by the mterpolatmg polynomial right away. TARDIS
avoids this problem by reintegrating to that point to confirm whether that point
is a real zero-crossing point. This, however, can make the step size very
small. So the integration part of TARDIS is designed to expect this very small
step size on such occasions.

To avoid numerical problems, some "band of certainty" which is suggested by
Birta, et al [41] in locating discontinuities is also used. In TARDIS, this band
must be on the negative side and will be called a negative band. As to how
large this negative band ought to be, that depends on the switching function
and how accurate the user wants it to be. As illustrated in Fig. 3.6, TARDIS
will try- to locate a zero-crossing point which gives a magnitude of the

42

2a .
@ Use inverse
)) quadratic
Use bisection @

2b Slope = oo

Figure 3.5. Criterion for switching methods in locating a zero in,TARDIS,

43

SWitching function less than that of the band but as close to it as possible

V(‘doWn to the machine precision). The reason is that when there is more than
one fired transition in the current step, the switching functions at the zero-
'crossmg point will have the values within the band as shown by the gray line
in Fig. 3.6.

For detecting short-lived discontinuities, such as the one shown in Fig. 3.7,
the signs of the slopes at the end points are aiso used whenever such
information is available. In TARDIS the slopes are approximated from the
interpolating polynomials which are calculated and stored from one time step
to an¢ther. When the slopes at the end points have different signs, TARDIS
will first approximate the location of the minimum point using linear
flnterpolatlon of slopes (see point 1 in Fig 3.7), and then use the mterpolatlng
polynomlal to find out whether the value at that point is lower than the
negatlve band or not. Ifitis, TARDIS will use the information at the minimum
point and previous points to locate the zero-crossing point (see point 2 in Fig.

37).

3.7. Test Examples on Integration with Discontinuities

The following three tests are taken from Birta, et al. [41]. In [41] Birta, et al.
use the Runge-Kutta (RK) formula for integration with local truncation error
control; thus without further details, it is not possible to compare the efficiency
of the two methods. The purpose of these examples here, therefore, is just to
show that what has been implemented in TARDIS is reliable. For
completeness, however, numbers of calls to the routines containing systems
equations by both methods are listed. Note that all three test systems are not
stiff, and if the new Jacobian matrix is needed, TARDIS will require n+1 calls
to the routine that contains n systerh équations to approximate the Jacobian.
This is a very expensive way to find the Jacobian, especially in medium and
large Systems. The current version of TARDIS requires calculation of the
Jacobian at each discontinuity regardless of its type. This inefficiency will be
stiff, and if the new Jacobian matrix is needed, TARDIS wili require n+1 calls
ic the routine that contains n system equations to approximate the Jacobian.

Locationof
Calculated Root

0

Small -
Negative

Band - B \ B

- ,Figuré 3.6. Locating a zero-crossing point.

Figure 3.7. Short-lived discontinuity.

44

45

This is a very expensive way to find the Jacobian, especially in medium and
large systems. The current version of TARDIS requires calculation of the
Jacobian at each discontinuity regardiess of its type. This inefficiency will be
corrected in the next version of TARDIS. The data from TARDIS are obtained
- using Mac llcx with THINK C version 4, and all calculations are done using
double precision. '

*Examble 1 The system differential }equatio_ns are as follows:

Y = 0y ‘ o (3.’19)
Yo = -0y ‘ . (3.20)

with y4(0) = 0, y5(0) = 1, 0 <t <3, and @==. The switching functionis

o = yy-At) '(3.21)

Assume that the locations where ¢"9hanges sign are to be found in the time
‘interval-above. The critical value of A is .4033006 where there will be two
.di'sc;ontinu'ities in the interval of interest. If A is greater than the critical value,
there will be only one discontinuity. However, if A is less than the critical
value, there will be three discontinuities. Table 3.1 compares the results of

TARDIS, those of Birta, et al., and exact values given by Birta, et al. Note that
the parameters used in TARDIS are g, = eabs‘= .9e-7, the negative band is

1.e-10, and the maximum order of integration is 6 on Max llcx. The exact time
is also from Birta, et al. ,

Again, one should not conclude that the implementation of Gear method in
TARDIS is more efficient than Runge-Kutta even though for each value of A
the number of calls to the routine containing the system equations by TARDIS
is less than those used by Runge-Kutta. Much more information is needed.
Nevertheless, one can see from the instants of discontinuities just how
reliable TARDIS is for this problem. Incidentally, EASY5 [8] with the Adams
method also uses fewer calls with the same accuracy for this problem.

Table 3.1. Comparison of the reéults of test example 1.

46

Calls in-

A Exact time |Birta, et al. f TARDIS RHS calls
1for BRK TARDIS
| (s) T
.35 .898206 |.898206 |.8982060 344 302
2.29733 |2.29733 |2.297335 |
2.62827 [2.62828 |2.628273 |
.40 .884843 |.882843 |.8848427 330 293
2.41850 [2.41849 |2.418501
2.50000 |2.50001 |2.499998
41 .882196 |.882197 |.8821963 288 203
871693 8716927 295

.45

.871693

- 199

47

Let us push‘TARDIS more to the limit by trying the value of A closer to the
critical value. If A is .4033, with the old values of e, and e4p, TARDIS will

miss two discontinuities completely. However, if one decreases Epg) aNnd €5p

to 1.‘e-'1,0,‘ TARDIS will be able to detect all three discontinuities.

Example 2 The system differential equations are

Yi = Yo (3.22)

Yo uft) - 2y - ¥4 (3.23)

from 0 <t < 30. The input func’uon u(t) takes the value either 0 or 1 whenever
the SW|tch|ng function

o = yq-1 : (3.24)

changes sign. Initially u(0) is 1. The results of this system are shown in
Table 3. 2. The same parameters used in TARDIS in the first test are also
used |n ‘this test. The exact time is from Birta, et al. In this case, EASY5 (8]
uses twice the number of calls used by Birta, et al. for the same accuracy.

Example 3 The last example is a 3" order system.

Vi = aqy - (3.25)
Y3 = Yi+Yo (3.27)

with y4(0) = y5(0) = 0.5 and y5 =0. o4 and a, will assume the values either
2 or -1 alternately. Initially oy is 2 and ap is -1. The switching function

alternates between

0 = 1-yq (3.28)

Table 3.2. Comparison of the results of test example 2.

1 Exact time |Birta, et al. | TARDIS RHS calls jCalls in -
for RK TARDIS |
(s) AR
1.679382 |[1.679382 |1.679382 71 61
3.037086 |3.037087 |3.037085 127 126
6.194505 |6.194505 |6.194505 225 209
7.186908 |7.186914 |7.186906 274 263
10.34433 [10.34433 |10.34433 365 341
111.05712 [11.05713 |11.05711 407 390
14.21454 [14.21455 |14.21453 498 470
14.72415 [14.72418 |14.72415 533 519
17.88157 |17.88159 |17.88157 617 596
118.24636 |18.24639 |18.24634 | 645 642
{21.40378 |21.40380 |21.40377 729 719
21.66569 |21.66573 |21.66567 757 762 |
24.82311 |24.82314 |24.82309 834 836 |
25.01178 [25.01183 |25.01176 862 877
28.16920 [28.16924 |28.16918 939 951
28.30551 [28.30556 |28.30547 974 1002

48

49

and o
| 9 = 14y, | o (3.29)
Initially ¢4 is in effect. | | | |

The solutions yq and y, are in the form aeP!. ~The value of b alternates
between 2 and -1. As time goes on, the switching frequency increases.

~ Table 3.3 shows the comparison of the results from Birta, et al., and TARDIS; |
the exact values shown in the tabie are also from Birta, et al..

From these three examples, one can see that TARDIS is quite accurate in
,loca-ting zeros. The performance of the present version of TARDIS can even
be further improved by using user's defined Jacobian or providing a way for
the user to update the Jacobian directly without numerical differencing.

Table 3.3. Comparison of the results of test example 3.

.386292

Exact time |Birta, etal. | TARDIS RHS calls [Calls in
for RK TARDIS
(s) | e
3465736 |.3465740 |.3465735 50 55
.8664340 |.8664352 |.8664338 92 121
1.126364 |1.1263665 | 1.126364 113 177
1.2563298 | 1.2563314 | 1.256329 148 226
1.321312 11.321314 |1.321311 190 276
1.353803 |1.353805 |1.353803 239 314
1.370049 |1.370051 1.370048 288 347
1.378172 |1.378174 |1.378171 337 377
1.382233 |1.382235 | 1.382232 386 408
1.384264 |1.384266 |1.384263 435 437
1.385279 |1.385281 |1.385279 484 465.
1.385787 |1.385789 [1.385786 533 490
1.386041 1.386043 |1.386040 582 514
1.386167 [1.386170 |1.386167 631 536
1.386231]1.386233 |1.386230 680 560
1.386263 |1.386265 |1.386262 729 583
1.386278 | 1.386281 |1.386278 778 605
1.386286 |1.386289 |1.386286 827 627
1.386290 |1 .386293 1.386290 876 649
1 11.386295 |1.386292 925 669

50

51

CHAPTER 4

- SOLVING NON-LINEAR ALGEBRAIC EQUATIONS

4.1. Newton-Raphson Algorithm -

There are quite a few methods that can be used to solve nonlinear algebraic
equations. However, none seems to be as reliable as the Newton-Raphson
(NR). algorithm, which is widely used in several general-purpose and
application-specific simulation programs. leeW|se TARDIS uses the NR
’algorlthm to solve nonlinear equations.

G@y,,ergv t_he algebraic equations of the;form
gy) = 0 S e

and the initial values for the varlables in y, the NR. algorlthm solves the Eq
(4.1) for y as follows: | | |

-g | -)

i+l o yiiayl : (4.3)

J ij

where J-is a Jacobian of g evaluated at y.

if the initial values are close to the solution, the convergence will be fast. At
the beginning of the simulation, TARDIS uses default zero initial values or
user-supplied initial values to start the NR algorithm. After the state machines
chahgé their states, the initial values of y (the unknowns which include the
non-state variables and the derivatives of state variables only) of the system
equations at that point are taken from the values before the changes in the
state machines. During the integratidn, however, the initial values of state

52

- variables are the predicted values of the Gear algorithm. Since TARDIS also
: stores previous values of non-state variables for interpolations, these data
~can be used to provide the predicted values of the non-state variables In
~ sample test problems, the use of such extrapolated values of non-state
variables does help the NR algorrthm to converge faster resultmg in fewer

v computatrons overall '

“ Solving the ‘Jacobian equation (4.2) is usually done by LU decomposition -
instead of matrix inversion - to reduce the computations and preserve
~ sparsity. Although during the integration, the LU decomposition changes
accordrng to the new order and step size of integration, it is common practice
in many simulation programs to reduce computations further by repeatedly
using the same LU decomposition over a period of simulation time, as. long
asthe convergence of the NR algorithm can be achieved in a few |terat|ons
But with the variable-order, variable-step-size Gear algorithm, it is very
unlikely that the same LU decomposition can be used for several steps
- without. some modifications to retlect the change in the order or step size of
the mtegratlon : '

rPetzold uses the tollowmg scheme in DASSL [20] to speed up the NR
) convergence.

‘and c'is calculated from |

1+ Beurr/Bold

| wh}er’e" ,Bcurr is the current value of B, and ﬁold is the value of B where the |
JaCobian was last evaluated (see equation (3.5) for B). This scheme had*
been tried in TARDIS, but it was found that, for the kinds of problems of -
interest, the computations required actually increased. Thus the scheme
above is not suitable for TARDIS, and another scheme is needed.

53

Duri'ng integration, it was observed that the value of B is very large compared
to other terms in the system equations most of the time. Consequently, when
the LU decomposition is performed, the entries involved with B are often

chosen as pivots. This observation led us to implement a scheme for
| updatlng the LU decomposition directly based on the ratio of Bcurr to Bold

’PIVOtS involved with B will be modified as follows:

pivot o = pivot (4.6)

Pivots that are not involved with B will not be updated. This scheme seems to
extend the use of the same Jacobian for several more time steps in the
sample tests. -

A straightforward implementation of the NR algorithm may not be suitable for
certain problems: for example,‘ problems with exponential functions which
‘can-make the algorithm diverge. When faced with this type of problem,
‘TARDIS lets the user specify any limit function that will be applied on some or
all vanables in Ay. By default there is no Ilmlt function.

The_re are several criteria that can be used to test the convergence of the NR
algorithm [42]. The default convergence criterion used in TARDIS is

| < el * €abs @)

where g,,) and e, are relative and absolute error tolerances. The stopping
criterion is implemented in a separate routine so that the user can change it if
needed. By default, the same §g) @nd €5p ¢ are applied to all variables in y.

In the current version, TARDIS calculates the Jacoblan J by numerical
approximation. Thus ‘

o iy v+ o ’Yn)'fl(yl""yi""'y”) - (4.8)
¥ - N

' should be such that the difference of #

54

~ The value of o; is critical to avoid numerical cancellation and to achieve fast _
| convergence for NR’algorithm Stoer and Bulirsch [43] suggevsts:that Kf

) in Eq. (4.8) is about,;.-the‘vhalf the

. machine precision. of f; itself. However, for TARDIS there'is' no' a priori

-’vknowledge of the types of functions, so the value of y; will be. perturbed by>

| "half the machine precision lnstead This approach seems to be workmg well
for the sample problems tested. As in the case of the stopping criterion, the
- user can write a routine to replace the default routine for perturbmg the value .

of Y provnded in TARDIS

‘ -4.2.,: Solving the Jacobi‘an Equation

lnstead of matrix inversion, the LU decomposmon technlque is employed in
solvmg the Jacobian equation (4.2) to reduce computations and preserve
- sparsity. Note that the LU decomposition is equivalent to Gaussian
elimination, but the LU decomposition is prefered because. the
decomposrtron can be reused for different problems in which only the right- -
~ hand-side vector in the Jacobian equation (4.2) changes, whereas, with the
- Gaussian elimination, the whole elimination process must be repeated if the .
‘ right-hand-side vector changes. There are several equivalent methods for

LU decomposition [44, 45, 46], and ‘there are also incomplete LU
decomposition methods which need some iterations [47, 48). TARDIS
provndes just the Crout algorithm for LU decomposition [46, 49] at this time.
The decomposmon of J-will give L and U matnces such that

b= Ly - @)
where Land U matrices have the:follov‘ving forms

X000

L - [xx00 | | e
o X X x 0 P (410)
X X X X ' V

- 55
and
1 X XX
' 01xx
) = : 4.11
001 x| ' ()
0001

5 T h_ﬁe_ 'entries of L and U matrices can be found as follows: The ﬁrst step. is
Ly = Y forj=t,..on — ©(412)

Fori=2,..,n, the |th step is

< i1 }
_ Lij = Jij' zLikUkj forj=i,...n (4_;14)‘
k=1
Ui = Wiz LU/ Ljj forj=i+1, on - (4.15)
k=1 .

vTo conserve memory space, entries in the original matrix J can be ‘replaced

‘ one by one by the entries obtained during the decomposmon one- by one.
Since the diagonals of U are always 1, there is no need to reserve any space
for them.-

The result after the ith step is a subma’mx of the suze (i-1)><(i-'1) to be
processed the same way as the previous step - i.e., '

Jj = Jij i forj=i+1,...,n - (4.16)
- forj=i+t, n
G o= e JJIJIK fork =i+1, .. 'n (417)

' FromEq. (4.16), it is clear that the pivot Jij should not be zero, a condition

which cannot be guaranteed for general matrices. To avoid a division by
zero, other nonzero entries in the rows must be chosen as pivots. Note'that

56
~ the pivots are used to divide all other entries in the same rows to get the
N er‘tt'riets in the U matrix; the above pivoting scheme is called row pivoting.
Choosing the biggest entries in the rows for row pivoting (or columnsbvfor

celumn pivoting) of submatrices is called partial pivoting. It has the effect of

Iirhiting the growth of values in the decomposition process, which usually

results in better numerical stability. Note that large values of ehtries involved

- in partial pivoting are more common. ‘But large values do not necessarily

.imply large backward error in the solution [50] ~ The user should take this into

_consideration when choosing a threshold to determine which entrles are to
" be chosen as pivots. The threshold pivoting strategy used in TARDIS will be
‘described later in Section 4.3.2.

There is another LU decomposntlon method called the Doolittle- algonthm [46]

“in which the column pivoting scheme is used. Column pivoting is |n fact more
‘common than the row pivoting [51] descnbed above. The value of the norm
of residue r whrch is defined as

ro= Jy-to ;]1(41&

wnII be smaller in column pivoting than in row pivoting [51] However,
TARDIS uses the row pivoting scheme because it is more compatlble with the
LU decomposmon and the data structures of sparse matrices. Nevertheless

the stoppmg criterion. of the NR algonthm will guarantee that Ay must be
within some specified bound before the NR algonthm stops. ' '
The sclution of the Jacobian equation (4.2) using L and U matrices can be
dlvuded into two steps: forward elimination and back substltutlon In the

: forward ellmlnatlon step, a temporary vector solution Vtmp is found from s
Limp = -9 - °, ;' (418)

The‘expanc‘ted form of Eq. (4.18) is B
| Yomp = ot BT (4.19)

Yotmp = (-92-Lpy Y1 imp)/ oo, (420

57

Yntmp = (9n Z Lni‘yi,tmp)/Lnn' o (4.21)

-where n is the number of equations. The desired solution, Ay, is calculated
in the back substitution step from the followmg equatlon

Uay = Yimp ’ - (4.22)

The expanded form of Eq. (4.22) is

Mpt = Ynttmp~ Yin-1),n An (4.24)

As one can see, the above forward elimination and back sUbstitutio'h'strebs
can be repeated for different right- hand side vectors without gomg through
the LU decomposition process agam

4.3. Sparse Matrix Techniques for LU Decomposition

Sparse matrix techniques have been implemented in TARDIS mainly to
reduce computations, especially in large systems. Symbolic LU
decomposition is not appropriate for TARDIS because the structure of the
system equations is not known. The structure of the system equaﬁons
| depe_rids on the order in which the equations are written. Although the
equations for the electrical components may be written so that their
" corresponding parts in the Jacobian are'symmetric or nearly symmetri‘c in
structure, the equations from other non-electrical components may not be
written as such. Moreover, with the symbolic LU decomposition, it is not
possible to consider the value of the pivots. If the pivots chosen by symbolic

- 58

- decomposition happen to be much smaller than other terms, the entries inL
and U may increase to very large values. To avoid such numerical
problems the method used in TARDIS decomposes the Jacobian matrix
. based on numerical vaiues while trying to preserve sparsity at the same time.

. Th|s method will be explained later. , '

4.3.1. Data_ Structures for Sparse Jacobian

- The data structure chosen for sparse Jacobian must be suitable for the LU
~ decomposition. In the LU decomposition, elements of the original matrix
must be readily accessible by both rows and columns. The data structure
used in TARDIS for sparse matrices is modified from that of Horowitz and
'Sahni [52] which uses C|rcular linked lists. For the LU decomposmon
however, there is no need to use circular linked lists, so S|mple hnked lists
are ‘used instead. Figure 4.1 shows the data structure for one entry of the
matrix. * Each entry has five fields: value of entry, row number, column
number, - pointer to the next entry in the same row, and pointer to the next

o | % | =
2
2|l =z =
[
>| &8
| , Pointer to next entry -
Pointer to next entry $ - inthesamerow
in the same column : S

Figure 4.1. Data structure for individual entry.

Row Heéder‘s |

==

A
ocwo
coo~N

“Wwmoo

Figure 4.2. Sample matrix.

' Column Headers

l

71113

|-112]2
9o

b

9]3]2

olo

A J

5[3]4]

-4[114

o | &

®lo

v

[3]2]2

-

o |&1—

g|o

Figure 4.3. Row and colu_i'nn [inkjed lists for sparse matrix.

59

60

entry in the same column. Figure 4.3 illustrates how the structures are

" combined to represent a sample matrix in Fig. 4.2. The NULL pointer, g,

‘indicates that there are no more elements in the same row or column. Every
row- and column-linked list begins with a head node. The search for
elements in the matrix starts from these head nodes. This data structure
' allows orderly sequential access to all elements in the matnx in both rows-
and column-dlrectlons :

_Using this data structure described above, the LU decomposition' is about five
~ times slower than that with symbolic LU decomposition on a medium-size ‘
finite-element problem with about 1700 equations. A significant portion of :
time is spent on arranging elements in the linked lists in- ascending order.
Since the LU decomposition does not require the ordering of column linked
lists, separating the column linked lists from the row linked list as shown in
Fig.. 4.4 may improve the speed by not updating the column- -linked lists
without -ordering (new information about fill-ins' can be added' to the
beginning of column linked lists). The information about -columns which.is no
longer. needed after the pivots corresponding to those columns are selected ,
can be put back in the free-storage pool for reuse. Note that after the L
decomposition is done, all the elements in column linked lists are returned vto
the free-storage pool. The double-precison values of the entries are stored in -
the row linked lists only. The speed improvement with these separated data
structures is found to be about a factor of two. It is pOSSIble not to order
entries in row linked lists also, and this is left for future mvestlgatlon to see
v whether further speed |mprovement can be made. -

4.3.2. Markowitz Strategy with Threshold Pivoting

There are several strategies for reordering equations to minimize the number
of fill-ins. Nagel [53] and Duff, et al. [54] have, however, reported'that none
seems to perform better than the Markowitz strategy. The - strategy of
Markowitz [48] is to select the prvot from the entry with the Iowest Markowitz
count

(rk.- 1) (e~ 1), : ‘- (425)

Pointer to next entry
in the same row
; .

Value
Col #

)

Row Head Nodes

LA K

¥L ‘L ; JL-'-":::ZIIIIII. |

a) Rowvlinked lists.

Column Head Nodes #

eTelele]
%-;::::::::. Roé/v#

RS : ’
i Pointer to next entry
in the same column

4]
‘g.‘

b) Co'lumn.link;_ed lists.

- Figure 4.4. Separatefow arid column linked lists.

a) Row linked |iS§tS.
b) Column linked lists.

61

62
where r, and ¢, are respectively the numbers of row and column of nonzero
entries of the kth candidate for pivot. However, to ensure numerical Stability

in the LU decomposition, entries that have large values should be chosen as
the pivots. To compromise between sparsity and numerical stability as
suggested by Duff, et al. [65], TARDIS uses the Markowitz strategy with
threshold pivoting. In this pivoting scheme, those entries having values
larger than some threshold relative to the maximum value in the same row
are considered as candidates for the pivots - i.e.,

J > u max | (4.26)

pv.k - 'JI

where Jpv k is the kN candidate for the pivot of the ith row, and pis a

}con:stant between 0 and 1. When 1 is used for i, the pivoting scheme
becomes partial pivoting. Duff, et al., suggest a value of 0.1 for y from their
extensnve testing. In TARDIS, the user may specify the value of u between 0
and 1, or use the default value of 0.1 provided.

The Markowitz strategy requires the storage of numbers of nonzero entries in
the rows and columns. Duff, et al. suggest storing them in separate doubly
linked lists, one for rows and the other for columns, for easy updating [55].
The row and column linked lists are alternately scanned in the order of the
increasing number of nonzero entries. The limit on the number of rows and
columns to be scanned can be specified by the user. The default limit is 3.
Whenever there are several candidates for pivots that have the same
minimum Markowitz counts, TARDIS will choose the entry w:th the Iargest
value to be the pivot, as suggested by Osterby and Zlatev [56]. -

63

CHAPTER 5
| SAMPLE SYSTEMS

5.1. .Modelling of Switches in Elecirical Circuits

The swnches in electrical. cnrcunts are usually handled in two dlfferent ways:
ldeal switches and high- -and-low resistance switches. For an ideal swﬂch
when it is ON, there is no resistance, and thus the voltage drop across it is
zero. When the switch is OFF the current passing thfough it is zero. The
~ system equations of an electrical circuit having its switches modelled as ideal
- switches are usually varied”debending on the states of the switches. - The
numbers of state variables and non-state variables are also varied.
Simulating such system is very tricky. One technique that can be done is.to
find the equations of all poss‘ible} combinations of switch st‘ates. ~For a
, complica'ted system, such combinations can be prohibitively large. Another
te‘chn‘ique is to use a tensor approach which uses a connection matrix to
relate independent variables of the connected subcircuit [57]. Note that it is
possibl‘e for an electrical circuit to have several unconnected subcircuits, in ,
‘which case the simulation must be done separately on each subcircuit. What
is usually done, however, is to have components with high impedances
" connecting all unconnected subcircuits to a reference node.

For a 'high-and-low resistance switch, the on state is represented by a low
‘ resistance while the OFF state is represented by a high resistance. With such
' modelhng of switches, the structure of the system equations of an electrical
cireuit containing switches is fixed, but the parameters in the equatlons can
vary depending on the states of the switches. The number of state variables
and the number of non-state variables are also fixed.

64

In terms of simulation, both switch models require about the same amount of
computations when they are handled properly. Using the ideal switches may
vhave the advantage that the number of state variables may be reduced
somewhat for some periods of the simulation. But there is an overhead in
formulating the equations from the changing circuit topology. _

For TARDIS, any model of switches will work just fine as long as the system
equations are posed correctly. Note that TARDIS expects fixed numbers of
state variables and non-state variables. Using ideal switches in TARDIS
would be more tricky than using high-and-low resistance switches.
Therefore, switches in all sample tests in this chapter are modelled by high-
and-low resistance.

5.2. Sample Test Circuits

Presented in this chapter are simulations of four sample systems to show
how the various ideas discussed earlier will perform when implemented
together within TARDIS. As in other simulation programs, TARDIS has some
limitations, which the user is advised to take notes. The following
suggestions are offered to avoid numerical problems that may arise.

‘1. When dealing with switches, avoid extreme values of ON and OFF
“resistance. Choose some reasonable values that will have no

‘ ‘significant effect on the simulation. Using extreme values can
make the program reduce the integration step size to very small
values or even abort when the Jacobian matrix becomes singular. .

2. Choose a small enough value of the negative band tolerance so
~ that the residue will not affect the accuracy of the simulation. But
too small a value may lead to numerical problem. Do not choose

~ zero for this tolerance.

3. If equations can be reduced by mere inspection, the user is
encouraged to reduce them and thus speed up the simulation.

65

4. If it is known in advance that dynamics which occur very fast are not
of interest, the user is advised not to include the corresponding
terms or equations in the simulation since TARDIS will not hesitate
to reduce the step size down to a very small value to accommodate
such fast transients.

5. Do not eliminate the number of state variables by merely zeroing
their coefﬁcients; they should be eliminated explicitly. For example,
inV= Ldt' the state variable i cannot be eliminated by zeroing the
L. A very small value of L :may result in a very small integration |
step size. The best way to get rid of some state variables from the

- simulation is not to inciude them in the equations.
In the next sections, the following sample systems will be examined:
'_ 1. simple R-L circuit with one diode,
smgle phase full-bridge wuth dc motor,

high-frequency inverter, and

». w S

‘induction motor with current source inverter.

The compiexuty of these sample systems increases in the order that they are
presented :

5.2.1. Simple R-L Circuit with One Diode

~ Although the circuit diagram shown in Fig. 5.1 looks like a simple circuit, it is
not easy to simulate the behavior of diode correctly without reintegrating to
the discontinuity points, as mentioned in Chapter 3. The MainSystem() and
~ MainEvent() routines for this system are shown in Appendix C.

The state transition diagram describing a diode's behavior is shown in Fig.
5.2. Since the voltage-current relationship of the diode is simply o =Rp Ip.

the current and voltage always have the same sign. Detecting the value of

66

5 sin2nt

'Figure 5.1. Circuit diagram of an R-L circuit with one diode.

Current<0 -

Initial

State }

Current>0

Figure‘ 5.2. State transition diagram of a diode.

67

 5.00E+0Q

A4t

 2.50E+00

FRWEE

Vs .
(V) 0.00E+00

AL

£2.50E400 —f——freto

411

5. 00E+00 el AL i
0.00E+00 '2.50E+00 S ~ 5.00E+00

. Time (s)

. 1.50E+00

©1.00E+00
. IA i
(&) 5. 00E-01

0.00E+00

IEEERENENE RN NN

:,—'5,.00'3_,‘?01 N R A R l’ T - T A T .
0.00E+00 ~ 2.50E+00 ' 5.00E+00

Time (s)

Figure 5.3. Qutput of simple R-L circuit with one diode.

68

current passing through the diode is equivalent to detecting the value of
voltage across it. Better accuracy is obtained by tracking the diode voltage
for the transition from OFF to ON and the diode current for transition from ON
to OFF. The output points of the results obtained from TARDIS are plotted in

~Fig. 5.3. These points are close together right after the discontinuities
because the order of integration is reset to one and the step size begms with
some small value.

For this circuit, if a zero-crossing point of the diode's switching function,

obtained from the root-finding routine, is used without remtegratlng to such

point to confirm the existence of the discontinuity, a false ON state of the
diode may occur at that point. '

If a simple mechanism is used to handle the discontinuities of the diode's
operation, such as the IF-ELSE statement used in the foIIowi’ng pseudo code

if (IL > 0.e0)

Rp = 1.e-4;
else

RD = 197,

i
-0=5sin(2nt) - Iy (Rd+1) - =

where RD is the diode resistance, then there will be output ponnts close

together both before and after the discontinuities, and the instants where the
diode starts conduction will be less consistent than those obtained by usmg
the state machine, as shown in Fig. 5.4. The reason is, when the mtegratlon
process encounter a discontinuity the first time around when mtegratmg
beyond the discontinuity point, the local truncation error detected i is large due
to an abrupt change in the diode's resistance. As a result, the current
integration step has to be repeatedly carried out with a smaller‘and smaller
step size until the local truncation error criterion is satisfied, and the number
of |terat|ons required by the Newton-Raphson algorithm also increases
‘because the diode's resnstance beyond the discontinuity point does not

Vs

fv)io,

() s,

0.

- -5,

.DOE+00

-50E+00

.S0E+00

69

/\

N
/|

i

COE+00 -

B

. 0DE+00 .

.0.00E+00

2.50E+00
Time (s)

5.00E+00

0.00E+00

 2.50E+00

Time (s)

el AN A NN
ETANAWINAYA
I BVEVIIVEVE!

5.00E+00

- Figure 5.4. Output of the circuit in Fig. 5.1 using IF statements.

70

, ¢ .
correspond to that in the Jacobian which is evaluated before the
discontinuity. Thus the perform’ance using the above form of coding to handle
the diode's operation is much poorer than the state machine lmplementatlon

used in TARDIS.

 For more complicated systems, the use of slmllar codlng, like the one above _
to handle components associated with dlscrete events may Cause the
Newton-Raphson to diverge, no matter how small the integration- step size

might be.

5.2.2. Single-Phase Full Bridge with DC Motor

The single-phase drive system shown in Fig. 5.5 is taken from [38]. The
purpose of this simulation is to compare the results with those given in [38]
which were obtained from an analog computer. The "mainsys.c" file for this
system is given in Appendix D.) '

The machine is a 240 V, 5 hp dc shunt motor. The rated motor current is 16.2
A and the rated speed is 1220 rpm. The slmulated condition is with the motor
runmng at a constant speed of 1318 rpm (138 rac;l/s) carrying the rated load
torque. The voltages and currents of the dc motor and the voltage source are
shown in Fig. 5.6. For this particular operating condition, there are mtervals
in WhICh the motor current is zero. Such discontinuous conduction of the
'bridge occurs when the back electromotive force (e.m.f.) of the motor is
higher than the source voltage. Note that as simulated the commutation _
inductance of the voltage source is not zero. If it is, the problem reduces to
one with ideal ac voltage supply to the bridge - a simpler problem.

5.2.3. High-Frequency Inverter

The circuit of this system is shown in Fig. 5.7. The purpose of this 'samp‘le test
is to show the comparison of the modelling of a capacitor and . an mductor
Connected between nodes 3 and 4 is a capacitor in series with the resnstor of
0. 1 Q these elements are modelled as follows:

71

R, =.6Q
q = 12 mH

W, = 138 rad/s

i, = 1A

Figure 5.5. Single-phase fuII4bridge rectifier with dc motor.

Vs

(V) 0 .

Is
(A)

Vm 2.
V)

Im 2.
(A)

.00E+02

008400 \/ /\
.00E+02 - T T T T ; T T T
0.00E+00 2.50E-02 5.00E-02
Time (s) '
.00E+01 —
.00E+00 : \/P\ /\y \/ /\v \-/)\ /\
.00E+01 —] — T T T T T T
0.00E+QO 2.50E-02 5.00}}02
Time (s) :
NEVANWANANAWAYA
00E+02 — \/ \/ \/ \/
.00E+00 — :
';00E+02 — T T T T T T T T
0.00E+00 2.50E-02 5.00E-02
Time (s)
.00E+01 — - : :
00E+01 //\\ //\\ //\\ //\\ //\\ //\
00E+00 ——4—— \ v 4
.00E+01 T] T T T T T T v
» 0.00E+00 2.50E-02 S5.00E-02
’ Time (s)

Figure 5.6. Output of the simulation of the circuit in Fig. 5.5.

72

100V

Figure 5.7. High frequenéy inverter circuit.

73

V)

2

-1

w2

(V)

@

: Figure 5.8. Output of high frequency inverter as shown in Fig. 57 -

.00E+02
1.00E+02
0.

00E+00
.00E+02
.00E+02

aerelueethannelaig

| — T

'

- 2.00E+02
" 1.00E+02

0.00E+00

[} I i i

1.67E-04

3.33E-04

Time

5.00E-04

0.00E+00

N

.00E+02

Letaleaandpeendunyte

y

A
T L}

200E+02 T
0.00E+00

-

1.67E-04

3.33E-04

Time

.00E+01

/

.00E+01

\/1"

A

.00E+00

N
\

.00E+01

vodotlynlian

|

[NV
W

.00E+01
o,ooa+oo

1.67E-04 =

i 1 1 4

3.33E-04

Time'(s)

.00E+02

.00E+02

.00E+00

.00E+02

STERARERTA NN AT

.00E+02 T
0.00E+00

1.67E-04

Time (s)

~ 3.33E-04 '
|

5.00E-04

74

75

0 = Wﬁ?WM-wﬂktv& DR CH)

av,. , _ . .
C—ﬁv? 52

0 ot

As one can see from the above equatrons V is a state variable while V(3)
: V(4) and I are nan-state variables. In generaf adding a capac:tor to the
_ cqrg:ult will add; one state variable (\ C) and one non-state variable (t.) to the

system equations. Adding an inductor to the circuit will, on the other hand,
“add anly one state variable; for example, the equation for the inductor of 24
;uH m senes with: the resrstance 0 1 Q can be written as

T
0 = V@%V@%ﬂ%ﬁ+&tm} S 6y

When operated at the swnchlng frequency of 10.83 KHz v.w.th zero initial
condttlons for both the capacitor voltage and the mductor current the
}waveforms of the circuit are as shown] F|g 5.8. ’

5.2.4. Induction Machine with Current Source Inverter

The .power cireuit of a current-fed induction motor drive is s:hewnl in Fig 5.9,
and the block diagram of the control part is shown in Fig. 5.10. The
parameters of the machines and the control scheme are the same as those
given in [39] The initial values of the motor speed and de-link current are
zero. For the simulation results Sah'ow n, the. input speed was set at 900 rpm or.
50 % of the rated speed. The load to-rq;use was assumed to be proportional to
the speed; thus at 50 % of the rated speedf._ the load torque is 50 % of the
rated value. The induction machine equations are nonlinear due to the
~ nonlinearities in the magnetization characteristics, in- the speed voltage
terms, and in: the torque term. Furthermaore, some control elements can be
: nonl"ineaf or can cause discontinuities. The "mainsys.c" file Qamalmng
program codes of the system equatlons and state machines is ||sted in
Appendlx F. ’

Ds fZ Dagz
° e !

. T41{ TSJ,A[Taj{» T10 T,”J 7“12 ~ .» -

&

=

- Figure 5.9. Induction motor with current source inverter. .

76

AC Line

RECTIFIER

INVERTER

INDUCTION
MOTOR

 Figure 5.10. Control scheme of induction motor system in Fig. 5.9.

77

78

For this particular system, specual considerations have to be given to the Y-
connected 3-phase voltage source and two A-connected capacitor banks in
the inverter circuit. The three inductor currents in the Y-connected source are -
- not independent of each other, and neither are the three capacitor voltages of
each A-connected capacitor bank. The three inductors in the voltage source
should be considered together as one single unit with only two state
variables; the same applies to the three capacitors of the A- connected bank.

Since the startup of the drive takes a long time, relative to the swntchlng'
- operations, to preserve some of the details due to the switching the results of
the startup run are divided up into three separate sections: the interval from 0
s t0.5sin Fig. 5.11, the interval from 5sto 1 sin Fig. 5.12, and the interval
from 5.5 s to 5.6 s in Fig. 5.13. As one can see, there are many -
discontinuities in the current waveforms; these are also reﬂected in the
magnetic flux and torque of the motor. The firing of the thyrlstors in the

. rectifier is synchronlzed to the frequency of the ac voltage source, and that of

the thyristors in the inverter is synchronized to the motor speed whlch'
increases from a zero value to the desnred value at 900 rpm.

‘79

. 1.00E+03
'

4. 5.00E+02

SARANAN]

(V) 0.00E+00

~ =5.00E+02 —+—
0.00E+00

T

I] T

1.25E~01

T T T 1
2.50E-01
Time (s)

T T

3.75E-01 5.00E-01

5.00E+02 -

Vs 0.00E+00 -

?‘,‘1'11”{H'

T Hﬂ T

(V) s .00E402

EANNRINST

21.00E+03
’ 0.00E+00

1.25E-01

2.50E-01
Time (s)

| — S S

T | S N

3.75E-01 '5.00E-01

1.50E+02

Tie

iy
o
o
=
+
o
[\
|

(A) 5.00E+01

INERRNENT

0.00E+00 ——
0.00E+00

1.25E-01

' 2.50E-01
Time (s)

3.75E~01 5.00E-01

1.00E+03

chpl 5.00E+02

| | [

[1,,

(V) 0.00E+00

i

A
T

=5.00E+02

LTI TTATR TN

-=1.00E+03 =
0.00E+00

T

=1 T
1.25E-01

o R T
2.50E-01
. Time (s)

T |

3.75E-01 5.00E-01"

“Figure 5.11. Operations of induction motor system from 0 s to .5 s.

80

Figure 5.11. Continued.

1.00E+03 —
Ve
" 0..00E+00 —
_(V)vv '
-1.00E+03 T T T 7T | AN B e R O S B N B B B B _
‘ 0.00E+00 1.25E-01" 2.50E-01 3.75E-01 - 5.00E-01
Time (s)
2.00E+02 -
Iru1 1.00E+02 = ﬂ ﬂﬂﬂﬂﬂ 7 _ :
(A) 0.00E+00 — ﬂvﬂ ”““““M
-1.00E+02 —F—T—T—T17 T T 1 T T T T I‘J
' 0.00E+00 = 1.25E-01 2.50E-01 3.75E-01 5.00E-01
Time (s)
5.00E+02 — —
\V4 0.00E+00 f -
D1 E L ’ W CARCR R
-5.00E+02 —3 W ¥
(V) E |
: -1.00E+03 ——T1T—T—T1 T T T E R T 71
0.00E+00 1.25E-01 2.50E-01 3.75E-01 5.00E-01
Time (s)
: 2.00E+02 —
I =
D1 1.00E+02 3 ; - ~
’ 3 ,] ™~ ,
A) 4. 00E+00 3 : r [n.nnr
-1.00E+02 = | R B | T T T T T 1 T T 1
0.00E+00 1.25E-01 2.50E-01 3.75E-01 5.00E-01
Time (s)

81

- 6.00E+02

V.. 3.00E+02 = g
abs . = 14 B W
. 0.00E+00 = 3 J"‘.WJ"‘ A
V) _3.008+02 3 3 EINE § S | W |
-6.00E+02 11 T—T7 L . LI S I B Y B N B
| 0.00E+00 . 1.25B-01 2.50E-01 3.7SE-01 5.00E-01
Time {s) |
5.00E+02 —-
v]
as] B :
. 0.00E+00 —5-—-]»; —
-~5.00E+02 7 T T T T T T 7 bi-f I —
0.00E+00 1.25E-01 2.50E-01 3.75E-01. 5.00E-01
Time (s)
- 2.00E+02
fas 000400 -3 | I T muﬁumuﬂumh
(A) 3 . L | W | -
'2-003"’02? T T 1 T T T T T [T T T T
0.00E+00 1.25E-01 2.50E-01 3.7SEf01 5.00E-01
Time (s)
 3.00E+02
Yo 2.00E+02 / A A A A A
(V) 1.00E+02 T2 ' .
';‘”O}OOE+00 T T 1 T T T =TT~
] 0.00E+00 - 1.25E-01 N 2.50E-01 3.75E-01 5.00E-01
Time (s) ’ '

Figure 5.11. Continued.

82

5.00E+02

11 44

% e AL AL
R L

-5.00E+02 7‘|1|i|||-| ll'llilT.‘ll
0.00E+00 1.253-01 ‘ 2.50E-01 3.75E-01 5.00E-01

113t

Time (s)
- 1.50E+02 3 ;
I 7.50E+01 M A.fp-0 , -
e 7o S T
@) _; somson L Ly LULLIERY
-1.505+02,x1lll|xi11||rir
0.00E+OO 1.25E-01 2.50E-01 3.75E-01 5.00E-01
Time (s) o
9.00E+02
W 6.75E+02

M 4. 50E+02

e

ITLTITHTT T

(rpm) 2 25E+02 e
0.00E+00 T II’I—I/- T T 7 | IR B T |v T
0.00E+00 . 1.25E-01 2.50E-01 3.75E-01 5.00E-01
Time (s) -
. 1.60E+02 3 AW -
T . — 3 i i Loacdogo {
e 1:20E+02 3 h :
1202202 VAR
-y 8- E VR RRRRAELAMI L]
(N-m) E ™
4.00E+01 3 J X . -
0.00E+00 T T I l‘ T 7T T T N —
0.00E+00 1.25B-01 2.50E-01 3.75E-01 ~ 5.00E-01

Time (s) = -

Figure 5.11. Continued.

83

1.00E+03

-

v

4. 5.00E+02

(V) 6. 00E+00

L} 1 I ‘

1 'I

LALE

-5.00E+02 £ .
5.00E-01

L

6.25E~01

I I L3 ¥
7.50E-01
Time (s)

8§.75E-01

1.00E+00

4@0ﬁE&02

v 2.00E+02

S

(vy 0-00E+00

I

il

- =2.00E+02

1L

LEETHEEL:
REEEL

-4.00E+02 F— 1
- 5, 00E-01

i b

6.25E-01

T i: T
7.50E~01
Time (s)

T

T T
8.75E-01

1.00E+00

1..50E+02

I1¢ 1.00E402

(A) s5.00E+01

i

0'. 00E#+00. ~fmg——
5. 00E-01

6}25E-01

7.50E-01
Time (s)

| - I

T

-8.75E=-01

T

13
1.00E+00

4.. O0E+02

)

A" .
cupl 2. 00E+02

I

(V) 0.00E+00

!
——
——

—
]
]

d,

il

L e

-2 . 00E+02

.;d:

u

E}

¥Q.QQE$QZ T
5..00E-01

6.25E-01

I l' t
7.50E-01
Time (s)

1T
8. 7SE-01

1.00E+00

F‘;‘-"iig;éu;r-.ez. 5.12. Operations of induction: motor system from .5sto1s.

D1
(V)

D1
(a)

.00E+03

.00E+03

.50E+02
.00E+01

.00E+00
.CO0E+01

.00E+02
.00E+00

.00E+02

. 00E+02
.00E+01 -
0.00E+00
.00E+01

84

1 I | lvl

5.00E-01

i ¥ | I U I 1 I I 1 i

6.25E-01 7.50E~01
Time (s)

8.75E-01 _-'1.ooz+oo

ISLATST]

00E+02

RN

HTELAT

"T[n"

5.00E-01

LGN {
1 1] 1 1 1] T I i 1 I I T 1.] i

6.25E-01 7.50E-01" 8.75E~01 1.00E+00
Time (s) R

P1itit

I

AW

RLILES

5.00E-01

7;50E-01 8.75E-01 1.00E+00

Time (s)

'6.25E-01

lllll

SEANERATEY]

l =

5.00E-01

l t LR

T LR I li i |

6.25E-01

T LN B 1.
7.50E-01 8.75E-01 1.00E+00
Time (s) o '

Figure 5.12. Continued.

85

5. 00E+02 —
Vabs E J-’(.J“.
T 0.00E+00 — 4]
) 3NN W
-5.OOE+02'1!T| S HLAN N SR S SR N SR S N
5.00E-01 6.25E-01 7.50E-01 8.7SE-01 1.00E+00
‘Time (s).
" 5.00E+02 —
B eron b SN WP NI
AV RRRRRERE I L A T A L e
-5.00E+02 — T T T T I I I L
5.00E-01 6.25E-01 ' 7.50E-01 8.75E-01 1.00E+00 -
Time (s)
1. 00E+02 —— '
L o MR IR AN A K
® E IRV IRV IRVRIV IR VIRV IRV IRV IRV IRV IRN RN AN
-1.00E+02 ~ —TT —TTT T T 7 S —
' 5.00E-01 6.25E-01 7.50E-01 8.75E-01 1.00E+00
’ Time (s)
3.00E+02 3
Wm 2.00E+02 ;
(V) 1.00E+02 3
0.00E+00din:l B . 1 T T T T T 7T
S.00E-01 6.25E-01 | 7.508-01 8.75E-01 1.00E+00
: Time (s)

Figure 5.12. Continued.

86 -

~ 5.00E+02

WAL]

. (A)

Sl . '
1 . v
, 0.00E+00 — : . T
O
'~ =5_.00E+02 N I LI N T T 1 | T :
5.00E-01 6.25E-01 7.50E-01 8.75E-01 ' 1_.003+00
' l Time (s) ’
1.50E+02 - - »
I 7.50E+01 - : e
el o oomsco SAANNAANDANAARNRARANOANANARAAARN
- JUUTUPORIUUFyUUNUqUUTIRpIyyIT
-7.50E+01 3 : ‘
~1.50E+02 ——1T—T7 T T T T T T 1 T -
S.OOE-Ol 6.25E-01 7.50E-01 8.753 -01 1.00E+OQ ‘
o Time (s)
~ 9.00E+02
@ 6.002}025
~ (rpm) 3-00E+02 -3
v 0.00E+00 = T T 1 T T T — T | T T T
5.00E-01 = 6.25E-01 7.50E-01 8.75E-01 1.00E+00
‘Time (s) ' ’ o
1.60E+02 —~ — 'j- .
T. 12084023 e T
(N-m) &-00E+01 s i
: » 4.0‘OE+01 3 _ JU\WWUWWWWWWUW
0.00E+00 —F——1— T T 7 LI B I T T o

5.00E-01 6.25B-01 7.50E-01 §.75E-01 '1.00E400
Time (s) S

‘ vFigUre 5.12. Continued.

87

2N AN A NS
U AVARVAAVARVARVARVA

-500.000 T T T T T T T T T T
5.500 : 5.525 5.550 5.575 5.600

Time (s)

100.000
I

" 0.000 3 m : A M]
@ VAR VO R VU R WS R N [R Y

B

=100.000 77— 7T 1T T T 1 T T T 1 T T 1
5.500 5.525 5.550) 5.575 » 5.600
~ Time (s) ' '
.1000.000
@ 3
500.000 —
(rpm) 3
0.000 —F— T T LN N s ER I SN N I A AU A AN B
5.500 5.525 5.550 5.575 5.600
Time (s)
150.000
€ 100.000

O N NI N N N R VR U WY A WY VYA VYA VA AW
WoW W W W W W WMWY VNV NEN NN NA

(N-1m) " 50.000

(GEERENNEERUNE]

Q.OOO S R R i | | AR D A D B B S | T T T
- 5.500 » 5.52% 5.550 5.575 - . 5.600
Time (s)

Figure 5.13. Operations of induction motor system from 5.5 s to 5.6 s.

88

400.000 3 \ \ N

L

AR |l I
(V)-ZOZ:Z::Z éi l\ \l T | A S \f\ ‘ \I\ \l\
5.500 5.525 Tl.ne (s), . . . |

R e

N VNN NNV NSNS NN
o gttt rrrrrrerrey
- 5.500 '~ 5.525 Ti&ijo(s) | 5.575 - 5.600

1f , .
(B) 50000 AR RN R AT RN R RN IR AR o

0.000 —— ,
5.500 15.525 5.550 5.575 5.600
' Time (s)

500.000 : ' ; | J'3?‘;
e Dl e B
W) .o.ooo - __; ’ v

-500.000: B B ‘_/I T \—/

5.500 5.525 5.550 5.575 5.600
~ Time (s) o

Figure 5.13. Continued.

500.000 —— ‘ - :
0.000 - — Ry Sdulit.b | -
-500.000 T T T T T T I B ‘
5.500 . 5.525 - 5.550 5.575 5.600
Time {(s)
500.000 —
v 3 , ; :
’vas’ 0.000 : M\l\'\" g e ELENN
v 3 L =
~500.000 — LI B B T —TTT T T 1
5.500 5.525 5.550 5.575 5.600
' Time (s) .
100.000 —
I"as 0.000 — M /VJ\’ J\ , [: \ ‘
-100.000 — | B B S S B T T T T T T
5.500 5.525 5.550 5.575 5.600
Time (s)
, 250.000
'Wm 166.667 —
AV) 83.333 3
0.000 - DA B S T T 1 T T [T T
5.500 5.525 5.550 5.575 5.600
Time (s)

Figure 5.13. Continued.

1000.
Vorna
0
V)
-1000.
100
ITHI 50
(a) 0
-50
500
v
- D1
0
(V)
-500
100.
T .
b1 50.
(A)
-50

M IV 414

90

1 A/

i
U

000 I . T L D B T T
5.500 5.525 5.550 5.575 5.600
Time (s)
000 —
POORE o T AT O T o I
.000 3 — -
.000 =TT | R I T T 1 | I e
5.500 5.525 5.550 5.575 5.600
~ Time (s) -
.000
"N PN]
;000 n T T T T T G e — T T
5.500 5.525 5.550 5.575 5.600
Time (s)
000
000 3 [N"w"\ /wf\rd‘\ v-’\f'\
-000 3 > :
.000 11— T T 1 T T T
5.500 5.525 5.550 5.575 5.600
Time (s)

Figure 5.13. Continued.

91

CHAPTER 6
CONCLUSION AND RECOMMENDATIONS

6.1.,{},Concljusion

In this research a study has been performed to look into the modelling of
components used in drive systems, the framework for handling components
assocnated with discrete events, the data structures for sparse matrices, and
numerical technlques for integration and LU decomposition, for an accurate
and ’efficient simulation of any drive system on a digital computer, The
research results in several contributions in the area of transient simulation.
The first contribution of this research is in a new scheme for local truncation
error control that selects the step size such that the Newton- Raphson
algonthm converges in one iteration on most occasions. With the usual local
truncation error control scheme, the Newton- Raphson algorithm usually
needs two iterations: one for correcting the predictor values and the other to
stop the iteration process. The new scheme selects the step size that makes
the differences between the predictor values and the values obtained from
the first iteration fall within the bounds for stopping the Newton-Raphson
iterative process. Although this scheme generates slightly more output points
than the usual scheme does, the new scheme can reduce the number of calls
to the routine containing system equations, since each call to the routine is
used effectively to advance time in the simulation - not wasted in the stopping
criterion of the Newton-Raphson aigorithrm. The new scheme is also more
reliable than the usual scheme because the new scheme uses a smaller step
“size than does the usual scheme with the same stopping criterion for the
Newton Raphson algorithm. By choosing appropriate error control
p}aramete»rs in the scheme, it is possible to avoid too small a step size. The
computations involved in the new scheme are also fewer than those of the

usual scheme.

92

~ The second contribution is in the use of state machines to represent the -
components associated with discrete events. Although the idea of state
machines has been used to simulate the behavior of swnches the use of
~state machines in TARDIS is extensively apphed to all discrete components -
..nhot Just switches. * Using the state machines to simulate the behavror of
- discrete components simplifies the modelllng of discrete components and.
| “also contributes to better convergence characteristic for the Newton- Raphson X
algorithm when solving equations mvolvnng discrete parameters because
the state machines will-allow those parameters to be changed only after the
convergence of iteration process is achieved, not during the iteration

prOCess.

Keepmg the system equations in a separate routine from that contalnlng the
state machines improves the speed, because, when the states of the state
machmes are to be changed TARDIS does not have to go through the
- system equatrons Yet changes in the state machines are effected on the
system equations in the other routine by the use of variables common to both
- routines. - In TARDIS the simultaneous changes in the state machmes ‘are
~ simulated by updatmg the status of all the state machines after the program
.codes for all the state machines have been executed. . ‘

| 'The thlrd contrlbutlon is in the method of Iocatlng the zeros of swnchlng
vfunctlons and conflrmmg the existence of zeros by integrating to the mstants
'm questlon Slmple polynomial interpolation will work fine when Iocatlng a
‘zero that occurs away from a-minimum pomt There is no need to use more
elaborate algonthms for this kind of zero crossmg But for zeros that occur - _
near the minimum points, information on the first derivatives is found to be
helpful in locating such zeros. In any case, the existence of a zero should be
‘confirmed by actually integrating to the instants found from the lnterpolatlon ~.
to-avoid a false Iocatlon of zero. : o

' The fourth contnbutlon is in the data structures. for the sparse Jacoblan and
the LU decomposmon method used. Usmg separate data structures for the
rows and columns is found to be faster than usmg a structure which has the
row and column combmed some t|me is saved by not ordenng the” »‘

93

information in the separate column structures, ordering WhICh is unavondable ,
when the comblned data structure is used.

Re"prese‘ntm‘g the t‘ang.ible result of this research, TARDIS is esséntially a
v»ersa-tilfe simulation program that has a variable-step, variable ’structure
?"ihtegrration algorithm with root-finding capability, state machines to handile
‘components associated with discrete events, and sparse matrix techniques
‘As such features have never before been incorporated mto a single
snmulatlon package, TARDIS is unlque in this sense.

6.2. Recommendations for Future Work

‘There are several areas that still need to be investigated to improve the
speed- and usefulness of the package: for example, the handling of
com‘ponentswith time-delay representation such as transmission lines. Most
of the time-delay models are usually based on equal step-size integration. It
is possible to approximate the behawor of such devices by the chord method, :
but then how efficient and accurate will the simulation be? Another area to
be mvestngated is the impact of the Adams method on this kind of S|mulat|on
because there seems to be no advantage in using the Gear method in th|s
"package when it does not skip the fast transients. ‘

As is, TARDIS may not be able to simulate certain systems' on some
- computers because the implementation of the Gear method using divided
' ‘d_i"fference can cause a floating-point overflow in some internal variables.
There are several possible ways to overcome this. Further investigation on
the trade-off between efficiency and accuracy has to be done.

Several error detection methods should be added to the package to make it
easier to debug the program. TARDIS skips some error detection for
efﬁc_ie«ncy, but it is found that some of them should be implemented to prevent
the program from crashing. Also if one is not careful, TARDIS can get stuck in
“an infinite loop at standstlll where. the state machines never stop changlng
their states.

94 .

~“Instead of using the limit functions in the modified Newton-Raphson algorithm
for certain types of nonlinear functions which make the algorithm difficult to
converge, one can use the state machines to model these nonlinear
functions. As an example, a nonlinear function will be divided into several
‘segments each associated with a state in a state machine. Both ends of a
- segment will be extended by straight lines having the same slopes at the end
points of the segment. The more segments there are, the easier the
convergence of the Newton-Raphson algorithm is, and the more
computations are involved. The comparison of computational efficiency of
the segmentation of nonlinear function and that of the limit functions should
be a very interesting topic to be investigated. ‘

‘Although one can write system equations out in order to use the programs, it
is a ~very cumbersome and error prone process. It is better to have an input
language so that the user can specify the system equatlons in terms of
modules. The language part will have to be completed to. make it easler for .
| someone else to use the package. :

LIST OF REFERENCES

[1]

[2]

13]

2

[5]

[6]

[7]

8

95

LIST OF REFERENCES

Lipo, Thomas A., "Recent pfogress‘ in the development of solid-state |

‘motor drives," IEEE Trans. Power Electronics, vol. 3, no. 2, April, 1988,

pp. 105-117.

Kirschen, Daniel S., Donald W. Novotny, and Warin Suwanwisoot,

"Minimizing induction motor losses by excitation control in:variable

frequency drives," IEEE Trans. on Ind. Appl., vol. IA-20, no. 5,

September/October 1984, pp. 1244-1250.

Lipo, T. A., "Analysis and control of torque pulsations in current fed

induction motor drives," Adjustable Speed AC Drive Systems, Bimal K.
Bose, Ed., IEEE Press, New York, 1980, pp. 244-251. .

Patel, Hasmukh S. and Richard G. Hoft, "Generalized techniques of
harmonic elimination and voltage control in thyristor inverters: part.i -

“harmonic elimination," Adjustable Speed AC Drive Systems,. Blmal K.
Bose, Ed., IEEE Press, New York, 1980, pp. 110-117.

Mitchell, Edward E., "Advanced continuous simulation language
(ACSL): an update," IMACS World Congress on System Simulation
and Scientific Computation, Montreal, Canada, voI 1, August, 1982,
pp. 462-464.

Advanced Continuous Simulation Language (ACSL) Reference

- Manual, Mitchell and Gauthierr Associates, Concord, Mass., 1987.

Crosbie, Roy E. and J. L. Hay, "Description and processing of
discontinuities with the ESL simulation language," Proceedings of the
Conference on Continuous System Simulation Languages, Ed.
Francois E. Cellier, San Diego, Society for Computer Simulation,
California, 1986, pp. 30-35. :

Ummel, Brian R., "S|mphf|ed modelmg of discontinuous phenomena

‘using EASY5 switch states," Proceedings of the 1986 Summer

Computer Simulation Conference, Eds. Roy Crosbie and Paul Luker,
July, 1986, pp. 99-104.

e

[10]

O[]

2

[13]

[14]

[15]
i
[17]

[i8]

9]

[20]

96

Gear, C. W., "Efficient step size control for output and discontinuity,"

Trans. of the Society for Computer Simulation, vol. 1, no. 1, 1984, pp.
27-31. '

Halin, H.J. and H. Benz, "Continuous-system simulation with PSCSP a
new simulation program based upon semianalysis methods," IMACS
World Congress on System Simulation and Scientific Computation,
Montreal, Canada, vol. 1, August, 1982, pp. 358-360. ‘

Nagel, Laurence W. SPICE2: A Computer Prdgram to Simulate
Semiconductor Circuits, Memorandum No. UCB/ERL M520,
Electronics Research Laboratory, College of Engineering, University of

. California, Berkeley, CA, May 9, 1975, pp. 160-233.

Keyhani, A. and H. Tsai, "IGSPICE simulation of induction machines
with saturable inductances," IEEE PES Summer Meeting, 1988.

Electromagnetic Transients Program (EMTP) Application Guide, S. F.
Mauser and T. E. McDermott, Principal Investigators, EL-4650,
Research Project 2149-1, Westinghouse Company. o

Rajagopalan, Venkatachari, Computer-Aided Analysis: of Power
Electronic Systems, Dekker, 1987. e .

Alvarado, F. L., R. H. Lasseter, and Y. Liu, "An integrated engineerin‘g

-simulation environment," Power Industry Computer Application

Conference Record, 1987, pp. 213-221.

Alvarado, Fernando L. and Yenfen Liu, "General purpose symbolic
simulation tools for electric networks," Power Industry Computer
Application Conference Record, 1987, pp. 222-229.

Smith, David W., Scott A. Majdecki, and Doug Johnson, "Interactive
control of analog system simulation," VLS/ Systems Design, July,
1987, pp. 46-54. _

MATH/LIBRARY FORTRAN subroutines for Mathematical'Appliéatidns, '
IMSL Inc., U.S.A., 1987, pp. 640-651. o

Hindmarsh, Alan C., "Toward a systematized collectidn,'of ODE
solvers," IMACS World Congress on System Simulation and Scientific
Computation, Montreal, Canada, vol. 1, August, 1982, pp. 427-429.

Pétzold, Linda, "A Description of DASSL: A differential/algebraic -
system solver,", IMACS World Congress on System Simulation and
Scientific Computation, Montreal, Canada, vol. 1, August 1982, pp.

| 430-432,

[21]
| 122]
23]
124]

28]
[26]
- 127]

[28]

[29]

[30]

[31]

[32]

[33]

97

Forsythe George, Michael A. Malcolm and Cleve B. Moler, Computer

.Methods for Mathematical Computat/ons Prentice-Hall, Englewood

Cliffs, NJ, 1977, pp. 161-166.

Brent Rlchard P., Algorithms for Minimization without Derivatives,

- Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973, pp. 47-60, 187-191.

Runge T. F. "A universal language for network simulation," Numerical
Methods for Differential Equations and Simulations, Eds. A. W. Bennett

and R. Vichnevetsky, IMACS, North-Holland, Amsterdam, 1978, pp.
169- 175 -

Bordry, F. and H. Foch, "Computer-aided analysis of power—electronlc

systems," /EEE Power Electronics Specialists Conference Record,
1985, pp. 516-522.

Peterson, James L., "Petri nets," Comput. Surveys, vol 9, no. 3

September, 1977, pp. 223- 252.

| Petzold, Linda, "leferentlallalgebralc equations are not ODE's," SIAM
J. Sci. Stat Comput vol. 3, no. 3, September, 1982, pp. 367-384.

:Ma«tt_s,_s.on., Sven Erik, "On modelling and differential/algebraic
systems,” Simulation, January, 1989, pp. 24-32.

}Ennght W. H., "The compansoh of numerical methods for stiff ODEs,"

Stiff Computat/on Richard C. Aiken, ed., Oxford Umversuty Press, New
York, 1985, pp. 175-180.

Chua Leon 0. and Pen- M|n Lin, Computer-Aided Analysis of
Electronic Circuits, Prentice-Hall, Englewood Cliffs, New Jersey, 1975,

pp. 480- 534

‘Vlach, Jiri and Kishore Singhal, Computer'Methods for Circuit Analysis
~and Design, Van Nostrand Reinhold Company, New York 1983, pp.

364-394.

Van Bokhoven, W. M. G., "Linear implicit differentiation formulas of
variable step and order," /EEE Trans. Circuits and Syst., vol. CAS-22,

“no. 2, February, 1975, pp. 109-115.
‘Petzold, Linda and Alan C. Hindmarsh, LSODAR code from

ODEPACK.

‘Vlach, Jiri and Kishore Singhal, Computer Methods for Circuit Analysis

and Design, Van Nostrand Reinhold Company, New York 1983, pp.
364-394. ’

[34]

[35]

3]

[37]

[38]

[39]

[40]

[41]

[42]

143]

[44]

[45]

98

Zein, D. A., C. W. Ho, and A. J. Gruodis, "A new interactive circuit

- design program in APL," International Symposium on Circuits and

Systems, 1980, pp. 913-917. .

Brayton, Robert K., Fred G. Gustavson and Gary D. Hachtel, "New
efficient algorithm for solving differential-algebraic systems using
implicit backward differentiation formulas," Proc. IEEE, vol. 60, no. 1,
Jan. 1972, pp. 98-108.

‘Hindmarsh, Alan, "The ODEPACK solvers," Stiff Computation, Richard

C. Aiken, ed., Oxford University Press, New York, 1985, pp. 167-174.

Gear, C. W., "The automatic integration of ordinary differential
equations,” Commun. ACM., Ed. W. P. Timlake, vol. 14, no. 3, March,
1971, pp. 176-179. _

Carver, M. B. and S. R. MacEwen, "Numerical analysis of a system
described by implicitly-defined ordinary differential equations
containing numerous discontinuities,” Appl. Math. Modelling, vol. 2,
December, 1978, pp. 280-286. . o ‘

Carver, M. B., "Efficient integration over discontinuities in ordinary

- differential equations,” Numerical Methods for Differential Equations

and Simulation, Ed. A. W. Jennett and R. Vichnevetsky, 1978 IMACS,
North-Holland Publishing Company, pp. 51-56. i

Ellison, D., "Efficient automatic integration of ordinary. differential
equations with discontinuities," Math. and Comp. in- Simulation, vol.
XXIl, 1981, pp. 12-20. ' : o

Birta, L. G., T. I. Oren, and D. L. Kettenis, "A robust procedure for
discontinuity handling in continuous system simulation,” Trans. of the
Society for Computer Simulation, vol. 2, no. 3, 1985, pp. 189-205.

Rice, John R., Numerical Methods, Software, and Analysis: IMSL

. Reference Edition, McGraw-Hill Book Company, New York, 1983. pp.-

226-227.

Stoer, J and R. Bulirsch, Introduction to Numerical Analysis, Springer-

Verlag, New York, 1980, p. 267. .

Nagel, Laurence W., SPICE2: A Computer Program to Simulate

Semiconductor Circuits, Memorandum No. UCB/ERL M520,

Electronics Research Laboratory, College of Engineering, University of

, California, Berkeley, CA, May 9, 1975, pp. 88-90.

Stoer, J and R. Bulirsch, lntroducfion-to.Numerica/ Analysis, Springer- :

~ Verlag, New York, 1980, pp. 159-168.

: [46]
[47]

148]

149]

99

Duff l S, A M. Ensman andJ K Reld Direct Methods for Sparse
. Matr/ces“Oxford UP, Oxford 1989, pp. 46-53.

Duff, I.S., A. M. Erisman, and J. K. Reid, Direct Methods for Sparse
’ Matnces Oxford UP Oxford 1989, pp. 195-197. .

*Markowrtz Harry, "The ellmmatlon form of the lnyerse \antdvjlts
~ application to linear programming,” Management Science, Journal of
_the -Institute of Management Sciences, vol 3, no. 3, Apnl 1957 PPp.
»255 269.

f‘Chua Leon O and P. M. Lin, Computer Aided Analysis of 'EleCtroh/c
Circuits: Algorithms & Computat/onal Techniques, Prentice- Hall lnc }

? ‘_':)Englewood Ciifts, New Jersey, 1975, pp. 181-185.

- 150)

[51]

| [52]

s

54

' [55]

[56]

58]

?ngham Nicholas and Desmond J. Higham, "Large growth factors in
~ Gaussian elimination with pivoting," SIAM J. Matr/x Anal. Appl.; vol. 10,
‘no. 2, April, 1989, pp. 155- 164 : ‘

Skeel Robert D., "Effect of equrlhbratlon on residual -size for. partial
pivoting,” SIAMJ Numer. Anal., vol. 18, no. 3, June, 1981, pp. 449-

454

Horowitz, Ellis and. Sartaj Sahm Fundamentals of Data Str_uctures
;Computer Science Press, Inc., Maryland 1982, pp. 134- 140.

vNagel Laurence W., SPICE2: A Computer Program to S/mulate
-Semiconductor C/rcwts Memorandum No. UCB/ERL M520,

Electronics Research Laboratory, College of Engineering; Umversnty of

- California, Berkeley, CA, May 9, 1975, pp. 97-104.

'Duff I. S., A. M. Erisman, and J. K. Reid, Direct Methods for Sparse
. Matr/ces Oxford UP, Oxford, 1989, p. 135. ,

Duff I. 8., A. M. Erisman, and J. K. Reid, Direct Methods for Sparse

 Matrices, Oxford UP, Oxford, 1989, pp. 178-183.
'Osterby, Ole and Zahari Zlatev Direct Methods for Sparse Matrices,

Lecture Notes in Computer Scaence Sprmger-Verlag, Berlin, 1983,
pp. 48-49. .

: Ong, C. M, C. T. Liu, andC N. Lu, "Generation of connectlon mafnces

for digital computer simulation of converter circuits using the tensor
approach,” IEEE Trans. Power Systems, voI PWRS 2, no. 4,

- November, 1987, pp. 906-912.

Krause Paul C., Analysis of Electric- Machiney, McGraw Hull Book

| ‘Company, 1986, pp. 101-102.

[59]

100

Cornell, Edward P. and Thomas A. Lipo, "Modeling and dfesign, of
controlled current induction motor drive systems,” Adjustable Speed

. AC Drive Systems, Ed. Bimal K. Bose, IEEE Press, New York, 1980,
 pp. 234-243. o ’ , L '

2

[63]

Scheid, Francis, Theory and Problem of Numericai Analysis,
Schaum's outline Series in Mathematics, McGraw-Hill Book Company,

- New York, 1968, pp. 58-59. | '

Stoer, J. and R. Bulirsch, Introduction to Numerical Analysis,
Translated by R. Bartels, W. Gautschi, and C. Witzgall, Springer-
Verlag, New York, 1983, pp. 43-49. =~ =~ R

Kunz, Kaiser S., Numerical Analysis, McGraw-Hill Book Company,
Inc., 1957, p. 101. : -

APPENDICES

101

APPENDICES

»V'Afp’pénmx A - Newton's Divided Differences
The following describes the basics of the divided differences [60 1] which ar used
in the Gear algorithm as described in Chapter 3. A first divided difference is defined

[t) t_ 5 = -
LANTRY 1] ot

- The second order divided difference is then

VIt b1 - ¥ltiq, bipl
i~ tip

The nth order divided difference can be ertten aS

Yl b4 o tioneg 1= VI q0 tiogs oo Y

yﬁ[ti’ L TCTIRNS tj.an}] = o .

Note that

yltp 4] (3.4)

—
f

and

15dn," o
HTJ ‘ ylt, b 4, -] , | 5

with h+1 terms of t; in the right-hand side argument [62]

Appendix B - Source Code for GetZero()

*include <stdio.h>
Binclude <math.h>
2include <values.h>

#define DEBUG
#undef DEBUG

extern double Get2ero(), my_func{);
extern double _ ny_pow();
%ifdef sun
extern double dbl_scalbn(};
fendif '
main()
{ .
double o, b, reszult;
Pnt count ;
a = -1.e0, b = 1,e0;

ferintf(stderr,“Enter .a and b: ");
{uaid) sconf("¥1f %I1f", &a, &b); '

102

printf("%22.15&%n", result = GetZeﬁb(a,b,mg_func,l.e—lU,&count));

printf("count =%d, “, count);
cooprintf{"f =¥22.15e\n", my_func{result}));
y o v
double my_funcix)
double X ;
{ .
double rvalue;
/%
double n = 5.el;
double o, b;
a = 0,e20;
b =.1.e-4%;
rualue = powlx,n) + b;
rvalue = exp(40,e0%x-27.631e0) - 1.e-12 - 1.e-1;
rvalue = x >= 0,207 pow(x,5.e-1): -pow(-x,5.e-3);
rvalue = my_pow(x,7) + 28.e0*my_pow(x,4) - 480.e0;
* / ,
rvalue = powi(x,9.e0};
return rualue;
} .
double my_pow(x,n)
double x;
int n;
{ ! .

double return_value = x;

‘white (--n)
return_value *= x;
return . return_value;

103
}

double GetZero(a,c,f,tol,cnt_addr)

double a, c, {(*¥f)(), tol;

int *cnt_addr; -

{

double fa, fb, fec, fd, a_b, b_c, a_c, a_d, b_d, fa_fb, fb_fc, fa_fc;
double dudfi0, dudfll, dvdf2, dtmp, mag_a_b;

double c_d, b, 4, slope_inv, old_a_bl, old_a_b2;

double e=pst, =ta2; _

int sign_fa, sign_fb, sign_fc, sign_fd, ‘inug_cnt;

double sc_fa, sc_fb, sc_fc;

*cnt_addr = ;
epst = 4.4e-16; /* Should be set according to the hardware. */

etad = 2.2e-16; /* 2 * epsq4 */
/*
* Initial checking.
*/ o
if ((*cnt_addr)++, !{(fa = (*f)(a)))
return a;
if ((*cnt_addr)++, !{fc = (*f)(c)))
return c; :
if ((sign_fa = signbit(fa)) == (sign_fc = signbit(fc)))
{ .
printf("Error: fa and fb cannot have the same sign.\n"});
printf("fa = ¥22.15e, fb = %22.15e\n", fa, fc);
return NARDOVELE; o
3
if {fabs{fa) > fabsi{fc)) /* Swap a and ¢ if [|fal > Ifcl|. */
{
dtmp = a, a = ¢, = = dtmp;
dtmp = fa, fa = fc, fc = dtmp;
sign_fa = l!sign_fa, szign_fc = lsign-fc;
}
ac = a - /% Jfal < |fel. */
tol = epst * fabs(a) + eta2;

if (fabs{o_c) < tol)
return a;

/%
* Start with linear interpolation.
sc.fa = fa / fcj
fa_fc = sc_fa - 1,e0;
slope_inv = a_c / fa_fc;
ifdef QEBUG .
printf{(“Linear interpolation. la=cl = #22.15e\n", fabs(a_c));

printf("a =%22.1%, c¢ =%22.15e\n", a, c);
printf("fo=%22.15=, fc=%22.15e\nslope_inv %22.15e\n", fa, fc, slope_inu);

dendif

a_b = sc_fa * slope_inv;
if (fabs(a_b} < tol)
a.b = copysignitol,a-c);

b = a - a_b;
if ((*cnt_addri++, 1(fb = (*f)(b)))
return b;

sign_fb- = =igrbit{fb);
bc = b - c;
if (sign_fb != sign_fc) /* Is sign(fb) != sign{fc)? */

{ /* Switch a and c. */

104

“dtmp = a, a = ¢, ¢ = dtmp;
dtmp = fa, fa = fe, fc = dtmp;

sign_fa = !sign_fa, sign_fc = !sign_fc;
d_c = -a.c;
dtmp = a_b;
a_b = -b_c;
b.c = -dtmp;
} .
/%

* Big loop; switch between inverse quadratic and bisec;ion methods.
* Knownsz -are: a_b, a_c. ‘ : i

x/
inug_cnt = 1J; ;
while (fb & ({mag_a_b = fabs(a_b)) > (tol = eps4*fabs(b) + eta2)))
{ v
sifdef DEBUG
printf{"After processed. la-b| - = %22.15e, tol = %22.15e\n", mag_a.b,
tod); ' '
printf{"b =%22.15¢, fb =%22.15e\n", b, fb);
phantt("a b=822.15e, a_c=%22.15e, b_c=%22.15e\n\n", a.b, a_c, b_c);
*endif ’ ~
/¥ a b-> ¢
*./ . .
if ((fabs(fb) > fabs(fe)) || {mag_a_b < lIdexp(tol,1)))
goto bisect; ' '
if" (fabs{fc) > fabs{fa))
{
sc_tfa = fa /. fc;
sc_fb = fb / fc;
sc_fc = 1.el;
3
else
[|
sc_fa = 1,205
sc_fb = fb / fa;
sc_fc = fe / fa;
} .
fa_fc = sc_fa - sc_fc;
slope_inu = a_c / fo_fe;
if ((fo_fb = se_fa - sc_fb) && (fb_fc = se_fb - sc_fc))
{

dudflld = a_b ¢/ fa_fb;
dudf1] b_c / fb_fe;
dtmp = dudfl0 - dudfli;
®jfdef DEBUG
printf("dtmp = $22.15e\n\n", dtmp);

Bendif’ v
if (fabs{dtmp) < fabs{slope_inuv))

X

¢ .
* tnverse quadratic with a. <-d-> b-> c.
?t‘/'
switch (inug_cnt)
(.
ca

w

d 2
if {mag_a_b > Idexp(old_a_b2,-1))

goto b|=r-cf

case |:

old_a_b2 = aid_a_bl;

105

case 0:
ofd_a_bl = mag.a_b;
if (invg_ent < 2)
inug_cnt+s;
¥ ’
*ifdef BEBUG :
print f{“Inverse quadratic. fa-bl = %22.15e\n", mag_a_b);
print f{"a =%22.15e, b =%22.1%, ¢ =%22.15e\n", a, b, c);
printf("fa=%22.15e, fb=%22.15e, fe=%22.1Se\nslope_inuv %22.15e\n",
_ fa, fb, fc, slepe_inu};
tendif .
dudf2 = dtmp / fa_fe;
bh_d = ac_fb¥*{dudf10 - sc.fa*dudf2);
if (fgbs(b_d) < tol)

b-d = copysign{tol,-a_b);
- b_d;

d = b - b_d;
if (fabs{a_d = a - d) < tel)
{
a_d = copysign(tol,a_b);
d = a - o_d;
bd = b - d;
3 ¥
b . '
: fd = (*£)(d); C*ent_addr)++;
jifdef DEBUG
printf("d = %22.15e, fd = &22.15e\n’, d, fd);
printf{"a-d = %22.1%e, b-d = %22.15e\n", a_d, b._d); 2
Yendif
pf (r(fd))
return d;
sign_fd = signbit(fd);
if (sign_fd == sign_fe)
{
%ifdef BEBUG
printf("a d

-> b-> c\n");
printf{“a b-> ¢

<== peplace\n");
*endif
: fb;
fh td;
o = a_b; a_b = a.d; b_c = -b_d;

N
o
- -
-
[e]
non

{
prrintf("a <-d b-> e\n"});
®endi f '
if (mag_a_b > fabs{c_d = c - d))
{ ,
tifdef BEEBUG
printf(" a b~> c<== replace\n");
*endi f :

-
Q
n
-
a

a = d; ;
at = -b_d; a.c = -c_d;

}
elge
{
#ifdef DEBUG
printf{"c <-b a <== peplace\n");
Bendif
c = o; fe = fa; sign_fc = sign_fa;
a b; fa = fb; sign_fa = sign_fb;
b = d; fb = fd; sign_fb = sign_fd;
a_c = -a_b; b_c = -a_d; a_b = b_d;
}
}
~continue;
}
}
/¥ Bisection.
*/
bisect:
#jifdef DEBUG
printf("Biséction. la-b| = %22.15e\n", mag_a_b);
printf("a =%22.15e, b =%22.15e, c =%22.15e\n", a, b, c); _
printf("fa=%22.15e, fb=%22.15¢, fc=%22.15e\nslope_inv %22.15e\n", - fa,
fb, ’ » ’
fo, slope_inu);’
#endif
invg_cnt. = 0;
c = b; fc = fb;
sifdef DEBUG
printf("After shifting in bisection.\n");
printf("a =%22.15e, ¢ =%22.15e\n", a, c¢);
printf{"fo=822.15s, fc=%22.15e\n", fa, fec);
tendif
a_c = a - cj
a_b = b_c = ldexpla_c,-1); -
b= ¢ + b_g;)
fbo = (*f){b); (*cnt_addr)++; sign_fb = signbit(fb);
if (sign_fb != sign_fe) /* a <- b ¢ */
{ /¥ ¢ <- b a<== replace */
dtmp 0, a = ¢, ¢ = dtmp;
~dtmp = fa, fa = fec, fc = dtmp;
sign_fa = !sign_fa, sign_fc = !sign_fc;
a_c = -a_c;
a_b = -b_c; /* la-bl == [b-c| */
‘b_c = a_b;)
-}
} /¥ End big loop. */
%ifdef DEEBUG v
frintf("ﬁfter processed, la-bl = 822.15e, tol = £22.15e\n", mag_a_b,
tol); :)
printf("b =%22.15¢, fb =%22.15e\n", b, fb);
printf("m_b=£22.15e, a_c=%22.15e, b_c=%22.15e\n\n", a_b, a~c, b_c);
Bendif. :
“if (fabs(fal > fabs(fb))
return b; : o

return a;

106

107

Appendix C - "mainsys.c" file for test circuit 1

is a simple R-L circuit with o diode using a state machine.
KK oK K K oK R oK K RO oK K K oK KK K 3K oK 2K K KKK oK KKK K K oK oK K KK KK K KK K KK K oK Kk K KR K KRk ok K

* This

‘#include “compdep.h”

"#include
tinclude

#include
8include
Binclude
#include
incifude
#include
#include
‘#include

tdefine
$undef

#define
#define
tdefine

”dcfine
tdefine

sdefine
udqfine_
tdefine
sdefine
tdefine

tdefine
tdefine

sdefine

*define
~#define

sdefine

‘#define
“#gefine
tdefine
#define

<math.h>
<stdio.h

"alloc.h
"dbl.h"

"default
"digsc.h"
“intg.h"
"machdep
"mainsys
“msg.h"

>

.h”

.h*"
.h"

DEBUG_event
DEBUG_event

Reset Intglrd (rs_order =
Recomputedac (comp_jac. = .}
ResetEventOrd{x) ((x)y->order = 0)

MOHITOR{ste_ptr,expr,tol) monitor_ste(ste_ptr,expr,tol)
SCHEOULE{sch_ptr,expr) - schedule(sch_ptr,expr,t)

SCH_ALLOC() (ECALLOC(t,SCH_t))

STRTE_IH

L

R

Um

OH
OFF
DIODE

123
di23

Rd’

1230
tol

ron’
roff

static char

static double

sipiic_.double
static FILE

LY -1 /* Initially alf state will be set to -1. */
-1
.20
3.el
1 /¥ States of a diede., */
0
o /* State machine number., */
yst[0]}
dyst[0]
dbi_parn{0]
D.e0 /* tnitial condition. */
- 1.e-t8
1.e-4
t.e?
*|ocal_frname = “mainsys.c";

dbi_interm[1],
-db!_parn[t];

piZ;
*put file2;

108

int numst = 1,

numnst = 0,

numeq = 1,

HumStMach = t,

HumLnode = 0;
long count_mainsys = 0,

count_output = 0;
/**#***#&******************

* Diode() simulates behavior of a diode using a finite state machine.
*****************m**x*************/

stdtic void Diode(gst,current,resistanceﬂddr,inftStute,iﬁﬂéxS{ﬁath;
name,stetmpfAddr)
double *yst, current, *resistancefddr;

int initState, indexStMach;
“char *name;
STE_t ¥*stetmpAddr;
(.
switch (StMachl[indexStMachl)
{
case OFF;
if (MONITOR(*stetmpAddr, -current, -tol))
¢ , .
HextState{indexStMach, OHN);
Fecomputedac;
*resistanceAddr = ron;
}
break;
case ON:
“if (MONITOR(*stetmpAddr, current, tol))
{
NextState(indexStMach, OFF);
Recomputedac;
*resistancefddr = poff;
P
break;

case STATE_IHIT:
*¥stetmpAddr = STE_alloc(1);
NextState(indexStlach, initState);

*resistancefiddr = (initState == OFF? proff: ron);
break; '
‘default: S
fprintf(stderr,"No state %d for ‘&s\n", StMach[indexStMach], name);
break;

}
Bjfdef DEBUG_event
fprintfloutfile,"¥s->order is ¥d, Xs->state is ¥d\n",
name, (*stetempAddr)->order, name, Stfach[indexStHachl);
fprintf(outfile,"fire_type is &d, fire_h = S%g\n", {(*stetempAddr)-
>fire_type,) o
(*stetempAddr)->deltat);
Printuvec((*stetenpAddr)->data, (int) (MAX_ORD+1));
printvec((*stetempAddr)->dudf, (int) MAX_ORD);
Bendif
}

/*”ﬁ,**

* MainSysten() calculates f given y and t,
x*m*************m***m**m********/'

void MainSystem({f, yst, t)
double xf, :

109

register double *¥yst;
double - t;
{

register double *ynst, *dyst ;

count_mainsys++;
ynst = yst + numst;
dyst = yst + pumegq;

bf[U] = - L*d|123 + (Um*sin(piZ*t)‘ - 123*%(Rd+R));
N

/*****************************#**

¥ MainEvent() calculates the expression for events. :
*****************************#***************************************m****/

veid TainEvent(yst, t)
register double ¥yst;
double t;

{ static STE_t *tmp;

Diode(yst, 123,&Rd, 0N, DIODE, "DIODE" ,&tmp);
¥ .
)

/***#*****#***#******************xm*******m********************************
*"usr_init(} sets up initial conditions and file pointers.

* ,

¥ Anether way to initialize data is to read data from a file and this

¥ .gives more flexiblity to modify initial data. This file should prouide

¥ both names and their numerical values.
mm*****»***mwt*«*m**m*#*****************m**m****************************m*/

void Mainlnit{yst, t)

 ragL$ter double *¥yst;
double t;
{

int . ¥

pi2 = atan2(0.e0,-1.e0) * 2.e0;

123 = 1230;

TSTART = 0.e0;

TFINAL = 5.e0;

HPRINT = t,e-3;

outfile2 = fopen("out2", “u");
event_init();

for (i = 0; i < NHumStMach; i++)

Sthach(i]l = STATE_INIT;
}

/*#**********#*k**************************#****#**#********************#***

R output() prints output "at each time step of the size HPRINT,
*****3**»****m*****m***mm***/
-void output{yst, t)
register double *yst;
double t; .
{
count_output ++;
fprintf(outfile2, “¥e\tX¥e\tX¥d\t%e\t¥e\n", t, *h, prev_ord, Um*sin(pi2*t),
*¥yst}; .
-}

/**##*****#**

110

~*" DumpUserUar() .dumps user's uariubles, StMach, 'Lnode, de;parm, “and
o % dbl_interm. : S
************x**#************;

“void DumpUserUar{dunpStrean)

Y

FILE *dumpStreanm;
int .errorFlag;
;érrdﬁFlag = 0; »
“/* You can write your dump routine here too.
. X/ R o
/¥ "NainSystem variables.
Y A : . : . : o
. erporFlag |= Dumpﬂrnag((chur - X) dbl_parm, (size_t) sizeof(*dbl_parn),
R (size_t) NO_OF_ELM(dbl_parm), dumpStream; “dbl_parm"); S
‘grrorFlag. |= DumpArray({char *) dbl_interm, (size.t) sizeof(*dbl_intern),

(size_t) NO_OF_ELN{dbl_interm), dumpStream, "dbl_interm");

if (errorFlag) ' o : ’ : B '
exit(l);

730 oo o oK KKK K KK oK oK KK R oK K Ko o oK oK KKK K 3 K KR KK K K K S oK KKK R KKK KK K
¥ RestoreUserUar()' restores user's uaribbles, Stitach, Lnode, 'dbl_parm, and
* dbl_interm. N

#***#*#*#**A***************************#***************************#/ e

void ReqtoreU°ePUar(PestoreStream)

FILE - *restorebtream,
(. ‘
it errorFlug;
.errthlag 0;
VA ?ou can wrufe your' restore routlne here too.
*f
S ¥ ﬂannqystcm variables.
*/ ' ' ‘ ~ e
errorFlag |= FRestaorefArray({char *) dbl_parn, (siié.t) "3}ié0f(*dbl_barm),
“(size-t) HO_OF_ELN(dbl_parm), restoreStream, dbl_parm")
~errorflag |= RestoreArrey((char *) ‘dbi_interm, (size. t) n
snzeof(*db —intermy, : C

(size_t) HO_OF_ELN{dbi_intern), hestoreStreqm,: "dbl_interm");
i'f (errorfFlag) ’ : ' ‘ ‘ g
exit(1);

111

Appendix D - MainSystem() and MainEvent() for Test Circuit 2

‘Notevthat DumpU‘se’rVar(). and RestoreUserVar() are the same as those in test circuit
1. The #define and #include statements at the beginning are also the same.

/****#*********6*#***

* This system is a full-bridge rectifier with a de¢ motor running at

* _constont speed. :
K KKK T KK KKK R KK K KKK K KK KK KK KKK K 3ok K R KK K K Kk KK ok KKK 3 o KK KK KK K KK Ok

#define il yst[0]
tdefine im yst[1]

*define vl ynst{0]

#define w2 ynst[1]

*define v3 ynstf2]

#define itl ynst[3]

tdefine it2 ynst{4]

tdefine it3 ynst[5]

#define itd ynst[6]

tdefine dil dyst[0]

#define dinm ~dyst[1]

tdefine rtl dbi_parn[0]

tdefine rt2 dbl_parm{1]

tdefine rt3 dbi_parm[2]

*define nrtd dbli_parm[3]

tdefine pulse_width dbl_parm[4]

tdefine off_time , dbl_parn[5]

tdefine tol dbl_parm[6]

tdefine Um dbl_parm[7]

#define ron 1.e-3

#define ‘proff 1.e5

sdefine 10 0.e0 /% initial condition., ¥/
tdefine im0 0.el

tdefine L¢c .3e-3

#define Ra .6e0

tdefine Laa .D12e0

tdefine Laf 1.6e0

tdefine MWr 136.e0 /* CHANGE SPEED HERE. */
#define |f 1.e0

#define OFF 0 /¥ States of state machines. */

8define QH 1
#define. TRIOD 2

112

8define THYI 0
#define THYZ2 1
#define THY3 2
tdefine THY4 3
tdefine GRATEICON 4
#define GATE2COH 5

*define LOGIC_NODEO 0

#define LOGIC_NODE1 1
static char *local_fname = "mainsys.c";
static FILE *outfile2;
static double dbl_parmn[8],
dbi_interm[1];
static double pi_120, pi_over_b6;
int numst = 2,
numnst = 7,
numeq = 9,
HumStHMach = 6,

© Humlnode = 2;
KRR KRR KRR RO KK K R R 3 K K K K KK 30K KKK K KK KK R K Kok K K K K o 3K K oK KKK KKK K ook Rk o K K K
* Thyristor() simulates behavior of a thyristor using a finite state

¥ machine.
*m*****m**#**mmm***w*t*m*m;

static wvoid Thyristor(yst,current, Pesnstanceﬂddr,lnltState,lndexStNach
indexLnode, name, stetmpﬂddr)

double *yst, current, *resistancefddr;
int initState, indexStMach, indexLnode;
char *name ; .
STE_t *¥stetmpfdde;
{
double *ynst, *dgst;
ynst = yst + numst;
dyst = yst +. numeg;
“switch (StMachl[indexStMach])
{
case 0OFF:
if (*({int *) LnodelindexLnodel.val) == TRIG)
NextStatelindexStMach, TRIG); :
break;

case TRIG: v
if (HDHITUH(*stetmpHddP, -current, tol))

{
HextState(indexStMach, ON);
Recomputedac;
*resistancefAddr = ron;
}
else if (*({int *) LnodelindexLnode].val) == OFF)
{
FResetEventOrd(*stetmpAddr);
© HextState(indexStMach, OFF);
}
break;
case. 0OH:

if (MOHITOR(*stetmpAddr, current, tol))
{

113

NextState(indexStMach, OFF);
Recomputedac;
*resistancefddr = roff;
}
break;
‘case STATE_IHIT:
*stetmpAddr = STE_alloc(1);
NextState(indexStlach, initState);

*resistancefAddr = (initState == OFF? roff: ron);
break;
default:
- fprintf(stderr,"No state %d for %s\n", Stitach[indexStMachl, name);
“ break; ' ‘

}
$ifdef DEBUG_evert v o
fprintfloutfile,"%s->order is &d, ¥s->state is &d\n",
' name, (*stetmpAddr)->order, name, SthachlindexStitach]};
“fprintf(outfile,"fire_type is &d, fire_h = %g\n", (*stetmpAddr)-
>fire_type,
, (*stetmpAddr)->deltat);
printvecf{{*stetmpfAddr)->data, C(int) (MAR_ORD+1));
printvec{{(*stetmpAddr)->dudf, (int) MARX_ORD);

Bendif
} .
void MainSystemi{f, yst, t)
double *f,
register double *yst ;
doubie t;
{
double *ynst, ‘*dyst;
gﬁst = yst + nunmst;
dyst = yst + numegq;
’* '
* Calculate intermediate -variables.
*/
{ /* Do KCL.
’ ~* fon't forget to translate currents of two terminal devices into
* single variables.
*
- ¥ {eok into. how one will define internal KCL for general nulti-terminal
* devices. :
x7 :
double *Enode = f;
 *Enode++ = itl + it2 - im;
¥*Enode++ = it3 - il - it

*Enode = il =~ it2 + it4;
L ‘
/* Equations. .
* Comments on components and modules can be copyable.
* One may d=fine symbols for copyabie comments.

X
* Begin with index 3. (3 equations has been specified before.)
*/
f(3) = v2 - v3 - Le * . dil - Um * sin(pi_120%t);
fl4] = w2 - ul - ptt ¥ jt1;
f[5] = w3 - ul - rt2 * jt2;

= w2 o= pt3 %t 3;

f{6]

114

fI?] = - u3 - rt4 * it4; .
v f{8] = vl - Ra * im - Laa * dim - Laf * Ur * |f;
b v _ . ,
7o oo oo A o o K o o K 3K R o KK R o o R o o 3 3K o K KK o o R K K KK K o o R o KKK O KKK K O K ok o K o
¥ MNainEvent() contains all state machines, '
* .
¥ MainEvent() may be called repeatedly until all states are initialized

* before integration. » _ .
K KR oK KKK KR K KK KK KK KK KK K KKK KK KKK K KR KK K KKK KR KK KKK KKK KRR R KOk K

void MainEvent(yst, t)

register double *yst;

double t;

{
double *ynszt, *dyst;
ynst = yst + numst;
dyst = yst + numeq;

#jfdef DEBUG_event
fprintf(outfile,"event_h is\n");
printvec{event_h,NAX_ORD);

fprintf(outfile,"event_al 1is\n");
printvec({event_al,MAX_0RD);
sendif: :

{ static STE_t *tmp;

“Thyristor(yst,itl,&rt1,0FF, THY!,LOGIC_NODEQ, "THY1* ,&tmp);
{ static STE_t *tmp; | ’ |
Thgriston(gst,itz,&ptz,UFF,THvz,Lotlc;NUDEI,"THVZ",&tmp);
{ static STE_t ¥tmp;
L Thyristor(yst,it3,&rt3,0FF, THY3, L0GIC_NODET, *THY3" ,&tnp)
{ 8;afic STELt *tmp;

7 Thyristor(yst,it4,&rt4,0FF, THY4,L0GIC_NODEQ, "THY4" ,&tmp);
{./* next_event_time, off_time and pulse_width arée parameters.
*/
‘static double next_time;
static SCH_t *tmp;
int) . state_tmp;

switch (S5tMach[GATEICON]) /* State of gate signal at Lnode 1. */
case TRIG:
©if (SCHEDULE(tmp,next_time))
f : ’ ;
“stote_tmp = 0FF; !
HextState (GRTEICON, state_tmp);
NextLogic(LOGIC_NODEO, (char *) &state_tmp, GATEICON);
next_time += off_time; ;)
) -
break;
case OFF: v
if. (SCHEODULE{tmp,next_time))
o o

115

state~tmp = TRIG;

NextState(GATEICON,
NextLogie{LOGIC_NHODEO,

next.time *+= pulse.width;

state_tmp); : o
- {chap *) &state ~tap, GATEICON);

o}
~ break;
case STATELINIT:
tmp = SCH.ALLOC();
state.tmp = TRIG;
NextState{GATEICON, state.tmp); «
~HextLogic(LOGIC.NODED, {(char *) &state tmp, GATEICON);
= pulse_width; 7* Time for next event., %/

. pext.time =
breck;
default: v : :
fprintf(stderr,"No state %d for Zs\n", StHackh[GATEICON], “GATEICON");
%d-in file %5 at time = %e\n '

7% Print stop at line ¥d~
LY A :
- break;
o})
#ifdef DEBUG.event : ‘
fprifntfloutfile,"State of control GATEICON is ®%d, Lnodel0]l = gd\n",
StiMach[GRTEICON], *({int *) Lnode{0].val)); .

tendi f

} - . . A

{" 7* npext.tvent_time, off.time and pulse.width daré parameters

x/ s

static double next.time;

static SCH.t ‘*tmp; %,

int. state.tmp; E

switch (StHach[GATE2CON]) /* State of gate sighal at Lnode 2. */

{- - '

‘case TRIG: ‘ :
if (SCHEDULE{tmp,next.time))

{
state.tmp = OFF; :
NextState{GATE2CON, state.tnp);

‘HextLégic(LOGQC_HUDEI (char *) R&statextmp, GATE2CON);
next.time += off_tine; :

-3

break;

case OFF: »

if (SCHEDULE(tmp,next_time))

{
state_tmp = TRIG;
HextState(GATE2CON,
NextLogic{LOGIC_NODET,
next_time += pulse. w|dth

state_tmp); ‘ _
(char *) Rstate. tmp, GATEZ2CON);

)
break;

-~ case STATELINIT:
“otmp = SCHUALLOC();
state_tmp = OFF;

NextState(GATE2CON,

NextLogic(LOGIC_NBDE1,
next-time = 1.,8e0/120.e0;
break; . :

StHach[GATE2CON],

defdult:
fprintf{stderr,"No state %d for %s\n",

state_tmp); o »
(char *) &state_tmp, GRATE2CON);
/7* Time for next _event.,

*/

"GATE2COH");

/* Print stop at
x/
break;

}
#ifdef - DEBUG_euvent
fprintf(outfile,"State of control

ECALLOC(Lnode[i].size,
ECALLOC(Lnodel[i].size,

Lnode[i].val
NextLnode[i]

)

}

void output(yst,t)
double *¥yst;
‘double 't

S

double *ynst;
gnét = yst + numst;

#ifdef DEBUG_event

line %d in file %s at time = Xe\n

integration.

i==;)

StNach[GATE2CON], *{((int *)
Bendif
}
yo
void Mainlnit{yst) .
. doub le ¥yst;
{ ,
double *ynst, *dyst;
double pi;
int i
short int *p_StlMach;
ynst = yst + numst;
dyst = yst + numegq;
TSTART = 0.e0; /* Control parameters for
"TFINAL = 5.,e-2;)
HPRINT = 1.e-%;
outfile2 = fopen("out2", “uw");
it = il0; /* Initial value of a state variable, */
pi = atan2(0.e0, -1.e0);
piz120 = 120.e0%pi;"
pi_over_6 = pi / 6.e0;
‘pulse_width = 1.,e0/120.e0;
~off_time = 1.e0/60.e0 - pulse_width;
tol = 1.e-8;)
~Un = 280.e0 * sqrt{2.e0);
'f' *
* “State machine initialization.
x/
event_init();
Lnode[0].size = sizeof(int);
Lnode[1].size = sizeof(int);
for (i = NumStMach, p_Stiach = StHach;
" ¥p_StNach++ = STATE_INIT;
for (i = 0; i < HNumLnode; j++)
{ .

char);
char);

GATEICON is ¥d, ‘LnOdE[U]
Lnodel1].val)});

*/

116

Xd\n",

117

fpute{'\n', outfile);
8endif
fprintfloutfile,"¥12.5¢ “, t);
fprintf(outfile,"812.5¢ ¥1d *, hi0D], prev.ord);
fprintf(outfile, "8d¥d¥d¥d %12.5e ", StHach[0], StHach[1], SthMachl2],
StMach[3], wi);
printvee(yst, 2);
fprintf{outfile2,"¥e\t¥e\t¥ertZe\tZe\n", t, Un*sin(pi_120%t), il, ul, im);
#ifdef DEBUG_&vent
fpute('S\n', outfile);
fflushloutfile);
sendif

}

118

Appendix E - MainSystem() and MainEvent() for Test Circuit 3

Note that DumpUserVar() and RestoreUserVar() are the same as those in test circuit
1. The #define and #include statements at the beginning are also the same.

/**********#***********#*******#*************#*****************************

* This system is from Ghazy. It is a high-frequency converter.
*********************************##************************************#**/
#define i! yst{0]

#define wvc yst[1]
#define vl ynst[0]
#define v2 ynst[1]
*define v3 ynst{2]
#define wu4 ynst[3]

#define itl ynst[4]
tdefine it2 ynst{5]
#define . it3 ynst[6]
#define " it4 ynst[7]

*define ie ynst[8]
*define .ic ynst[9]
#define ir ynst[10]

*define dil dyst([0]
#define duc dyst[1]
sdefine nrtl dbl_parmn[0]
tdefine nrt2 dbi_parm[1]
*define rt3 dbl_parm[2]
tdefine rt4 dbl_parmn[3]
#define pulse_width dbi_parm[4]
#define’ tol ’ dbi_parmn[5]
sdefine .fO dbl_parn[6]
tdefine fs dbl_parm[7]
tdefine ron 1.e-3
sdefine roff 1.eb
*define Em 100.¢0
sdefine L 24.e-6
*define C 1.e-6
tdefine R .1e0

 #define Rc C .1eD
“define RO 10.e0
tdefine il0 0.0 /* Initial condition. |*/
8define wvcO - D.e0
étqtic char *local_fname = "mainsys.c"; %

static FILE *outfile2;

static double dbl_parm([8], /* Uhere to initialize this paraneter
array. */ '

119

dbl_interm[1}; "

int rumst = 2,
numnst = 1T,
riumeg = 13,
HumStfach. = 1,

Humlnode = 0;

void MainSysten(f, yst,)

doubie 1
register double *yst;
double t;
oo
double *ynst, *dyst;’
ynst = yst + numst;
dyst = yst + numeg;
/% .
" .* Caleulate intermediate variables.
A
{ /% Do KCL.

y

* Dori't forget to translate currents of twe terminal devices into
. ¥ single .variables, '

*
¥ 'Look: into how one will define internal” KCL for general multi-terminal
¥ devices.

*/

double *Enode = f;

 *Enode++ = e + itl + it3;
*Enode++ = it - it4 - il
*Enode++ = il - i¢c = ir;
*Enode = itd + ic + ir - it2;

}.
/*. Equations,

“ % Comments on components and modules can be copyable.
*¥. One-may define symbols for copyable comments.

* .
* Begin with index 4. {4 equations has been specified before.)

Y .

fE4) = wi - Em; /* Uoltage source. */

fI5F = (vl - w2) - itl * ptil;

fE6] = (ut - wd) - it3 * pt3;

FI7] = w2 - itd * pt4;

fl8] = vd - it2 * rt2;

f[9] = w2 - u3 - Rl * il - L * dil;

f[10} = w3 - vi - vec - -ic * Re;

f{11] = ic - C * dug;

ff12) = .v3 - v4 - ir * RO;

/*****{«*mc*mc»:»:»::m:azucum*****m*********n_******************‘*****m***mm

* MainEuent() contains all state machines.
¥ MNaginEuent() may be called repeatedly until all ‘states are initialized
¥ before -integration, : ‘

*********:0:*:+:JO:*:#:#******#****#*************#******#*********_****f*******‘***#/

void MainEvent (yst, t)
register doubls *yst;

.’{

-double L

#define StateMach switch
#define ONE_TUD 1

*define THREE_FOUR 0
double *ynst, *dyst;

ynst = yst + numst;
dyst yst + numeq;

sifdef DEBUG_event v
fprintf(outfile,"event_h is\n");
printvec(event_h,MAX_ORD);

fprintfloutfile,"event_al is\n");
printvec{event_al,NAX_0RD);
tendif
-

static SCH_t *tmp;
static double next_time;

~switch (StNach[01)

{

case ONE_TUD: /* Thyristors 1 and 2 are on.
if (SCHEDULE(tmp, next_time))

{
HextState(0, THREE_FOUR);
rtl = rt2 = proff;
rt3 = rtt = ron;
next_time += pulse_width;
Recomputedac;

'}

break;

case THREE_FUOUR:
if (SCHEDULE(tmp, next_time))

{
HextState(0, ONE_THO);
rtl = rt2 = ron;
Pt3 = prtd = roff;
next_time += pulse_width;
Recomputedac;

¥

break; .

case” STRTE_IMIT:

tmp = SCH_ALLOC{);
HextState(0, QNE_TWO);

rtl = rt2 = ron;
rt3 = rt4 = proff;
" next_time = pulse_width;
Recomput=eJac;
break;
default:

fprintf(stderr, "Ho state %d for &s\n"

*/
break;
)
}
) : .
void Mainlnit(yst).
double ¥yst ;-

*/

, StMachl0],
/¥ Print stop at line %d in file %s at time

"control");

120

}

double *ynst, *dyst;

int i;

short int *p_StMach;

gnst = yst + numst;
dyst = yst + numeq;

‘ TSTHHT = 0.e0; /* Control parameters for integration.
TFINAL = .5e-3; . .
- HPRINT = 1.e-4;
b= il0; /% Initial value of a state variable. */
-ve = ouel;
outfile2 = fopen("ou;?", "w");

f0 = 1.e0 / (2.e0 * atan2(D.e0,-1.e0) * sqrt(L * C));
fs = f0 / 3.80; : ,

pulse_width = .5el ¢ fs;
tol = 1 e-10;
/¥ v
* State wmachine initialization.
x/
event__init{);
for (i = HumStMach, p_StMach = Sthach; i--;)
*p_Stftach++ = STATE_INIT;
for: (i = 0; i < Humbnode; i++)
{ : ‘
“Lnode([i).val = ECALLOC(Lnodelil.size, char);
Nextlnodel[i] = ECARLLOC(Lnodelil.size, char);
}

void outputfyst,t)
double *yst ;
double t;

{

double *ynst;

ynst = yst + numst;

Bifdef DEBUG_event

fputc{'\n', outfile);

tendif

fprintfloutfile,"%12.5¢ ", t);
fprintfCoutfile,"%12.5¢ %1d “,, h[0], prev_ord);
fprintfloutfite,"%12.5¢ ", u3 - u4);
printuec(yst, 2);

ferintf(outfile2, “Se\t¥e\tZe\t¥e\t¥enn", t, uv2-ud, u3-ud, |

#ifdef DEEUG_event

fpute('\n', outfile);
fflush(outfile);

*endif

: }_

*/

121

ve);

122

Appendix F - MainSystem() and MainEvent() for Test Circuit 4

Note that DumpUserVar() and RestoreUserVar() are the same a_s those in test circuit
1. The #define and #include statements at the beginning are also the same. The
routines Diodes() and Thyristors() can be taken from those in Appendices 1 and 2
respectively. ' ‘ '

¥ This system is an induction machine with current source inuverter. o
KKK KK A KKK KKK KKK KK K KKK KKK KK KKK KKK KKK KK oK K K KKK KR KK/

*define .ilcl - yst[0]
*define ilc2 yst[1]
*define ilf : ystf2]
#define. vcupl yst[3]
#define wvcup2 : yst[4]
*define wvclowl yst[5]
*define wvclow2 ystf{6]
tdefine psi_qgs yst[7]
#define psi_ds yst[8]
*define psi_gr yst[9]
tdefine psi_dr yst[10]
*define thetan yst[11]
tdefine wr ' yst[12]
#define y_inw yst[13]
tdefine y_ctrl yst[14]
*define .angls yst[15]
#define ilc3 ynst[0]
tdefine . ul , ynst[1]
*define u?2 ynstfzl]
tdefine v3 ynst[3]
*define v+ : ynst4]
#define u§ ynst[5]
#define b . ynst[6]
#define 7 ynst[7]
*define u8 ynst[8]
#define v9 . ynst[9]
*define vl ; ynst[10]
*define vl o ynst[11]
tdefine wil2z " ynst[12]
tdefine w13 ynst[13]
#define vi4 - , ynstl14]
*define, uml. ynst[15]
tdefine wum2 ynst[16]
*defing iml « " ynst[17]
#define im2 ynst[18]
*define im3 ynst{19] .
#define iupl _ _ ynst[20]
*define iup? ynst[21]
#define iup3d . ynst[22]
#define ilouwl . ynst[23]
‘#define ilow?2 " ynst24]

- %define - ilow3 © ynst[25]

8define
tdefine

8define
sdef.ine
%define
#define
tdefine
tdefine
sdefine
tde fine
tdefine
tdefine
.*define
Bdefine
Bdefine
?déf1he
#define
#define

sdefine
sdefine
sdefine
tdefine
*define
tdefine

tdefine .

define
sdefine
sdefine
#define
#define
#tdefine
sdefine
*define
tdefine
tdefine
tdefine
sdefine
tdefine
#define
tdefine
#define
tdefine
tdefine

tdefine.

tdefine
tdefine
sdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
*define
kdefine
*define

psi_mq
psi_md

dilet

dilc2-
dilf

dvcup !l -
dvcup?
dvclowt
duclowZ

‘dpsi_qgs

dpsi_ds
dpsi_qr
dpsi_dr
dtheta
dwr
dy_inv
dy_ctrl
dangle

um3

vpeak

vgs

uds

psi_m
f_psi_m
wrm
sin_theta
cos_theta
sin_theta_pib
cos_theta_pib
pil20t
T_elec
igs

ids
inverter_freq
fire_angle
w_ereror
i_error
iref
iref_atar
w_slip
T_load

E1

E2

E3

it

itz

it3

it4

itS

ith

ity

it8

it9

it

it1i

it12

idl

ynst[26]
ynst[27]

dyst[0]
dyst[1}
dyst[2]
dyst[3]
dyst[4]
dyst[S]
dyst[6]
dyst[7]
dyst[8]
dyst[9]
dyst[10]
dystlitt]
dyst[12} -
dyst[13]
dyst[14]
dyst[15]

dbl_interm[0]
dbl_interm[1]
dbl_intern[2]
dbli_interan[3]
dbi_intern[4]
dbl_intern[5]
dbl_intern[6]
dbi_interm[7]
dbl_intern{8]
dbl_interm[9]
dbi_interm[10]
dbl_interm{11]
dbl_interm[12]
dbli_interm[13]
dbl_interm[14]
dbl_intern[15]
dbi_interm[16]
dbli_interm[17]
dbl_interm{18]

~dbl_interm[19]

dbi_interm[20]
dbl_interm[21]
dbl_intermf[22]
dbl_interm[23]

dbl_intern[24] -

dbl_intera{25]
dbl_interm[26]
dbi_intern[27]
dbi_intern{28]
dbl_interm[29]
dbi_intermn[30]
dbl_interm[31]

dbl_interm[32]

dbi_interm[33]
dbl_interm[34]
dbl_intern{35]
dbl_intern[36]
dbl_intera[37]
dbi_interm[38]

123

tdefine J

124

tdefine id2 dbi_interm[39]

tdefine id3 dbl_interm[40]

sdefine id4 dbl_interm[41]

#define idS dbi_intern[42]

tdefine idb6 dbli_interm[43]

tdefine rti dbl_parmn[0]

tdefine rt2 db!_parm[1]

tdefine rt3 dbl_parm[2]

tdefine rt4 dbl_parm[3]

¥define nrtS dbi_parml4]

tdefine rtb dbl_parm[5].
“#define rt? dbl_parm[6]

tdefine nrtd dbi_parn[7]

tdefine rt9 dbl_parm(8]

tdefine rtl0 dbl_parn[8]

#define rtll dbi_parmn[10]

tdefine rtl12 .dbl_parm[11]

tdefine 'rdl dbl_parm[12]

tdefine rd2 dbl_parn([13]

tdefine rd3 dbl_parn[14]

tdefine nrd4 dbl_parm[15]

sdefine rdS dbl_parm[16]

tdefine rdb dbi_parm[17]

tdefine tol dbi_parm{18]

tdefine pulse_width dbi_parm[19]

*define sign_w_slip dbl_parm[20]

tdefine sign_load dbl_parmn[21]

#define sign_inu dbl_parm[22]

#define tbase dbi_parm[23]

tdefine rect_next_time dbl_parm[24]

#define inv_next_time dbl_parm(25]

#define nron 1.e~3

*define roff 1.e6

#define lc .2e-3 /* Commutating ‘inductor has

¥ been chosen with less than
_ * 50 times the capacity of machine. */

tdefine rf .091e0 ' !
#define |If 14.58%e-3 /¥ Smoothing inductor. */ !
tdefine ¢ j0.e-6 /* lnverter. capacitor. *} i
*define TAHU 10.e-3 /¥ Current control, */
*define CURREMT_GAIN 1.e0

sdefine ilf_max (115.18e0)

tdefine ilf_min (25.6699e0)

tdefine rpm_ref 900.e0

tdefine ksp (2.e0*Cilf_max - ilf_min)/377.e0)
#define kc : 1.e0 /¥ 1.e0 *x/

define rs .0788e0 / Induction motor parameters.
8define xls .2118e0

tdefine xm_unszat 9.23e0

#define xlr .4628e0

tdefine rr .0408e0 .
*define xm_star (1.e0/(1.e0/xm_unsat+1.e0/xIs+1.e0/xIp)) .,

.31e0 ‘

*/

125

#*define pole_pair 2 .el
Bdefine w we
. #define DERD_BAHD 1.e=2

.80 /% Initial conditioms. */
.eh
el
.20
el
el
el
el
.e0
el
el

itedd
ile20

i1f0

weup i
veup2d
#define wvclowld
#define vclowdd
2define psi_qgs0
#d@{ﬁﬁe psi_dsd
2define psi_qrl
#define psi_drd

: thetal el
sdefine wrd .el
#define y_inu0 . 1e0
#define y_ctrid 0.e0

ODOEOHOLOLOEHO O

7% The followings are indices to Stllach. */ : _
#define THY1 a /* Thyristors indices are used as Lnode indices also.
*y » ,
tdefine THY2
sdefine THY3
#define THY¥4
#define THYS
tdefine THYH
sdefine ~THY?
tdefine THYS
sdefine THY9
®define THY1UO
sdefine THY!I
sdefine THY12
Bdefine D1 12
tdefine D2 13
*define D3 14
sdefine D4 15
#define DS 16
#define D6 17 ,
‘#define INVERTER 148 . 7* Control part. */
sdefine 1NU_CTRL 19
#define RECTIFIER 20
sdefine RECT_CTRL . 21
tdefine CURREMT_LINIT -22
#define ANGLE_LIMIT 23
sdefine ABS_URLUE 24
tdefine BLOCKZ 25
#define LOAD 26

—d e WA b L N =S

o e
— &

tdefine OFF 0
tdefine OH - 1
sdefine TRIO 2
tdefine DOUN 3
sdefine START_PULSE - 4
tdefine UP 5
sdefine - 1DLE)
sdefine TRACK 7
#define UNDER_LINMIT 0

“&efine

double‘*gnst, *dyst, *pf;

126

LIntT

1
tdefine NEG .. 1
tdefine POS 2
_®define. DERAD_Z0HE - 1]
~#define ALIVE_ZONE 1
stotic char "~ *local_fname = “mainsys.c";
static double ' dbl_interm[44],
dbl_parmn[26];
.static double v sin_pi_over_6, cos_pi_over_6, hi;Z;OOer;3,
o » "wb, two_over_sqrt3, pi2, rpa_to_we;
static int rect_seq_index, inu_seq_index; N
static FILE . “*timeFilePtr, *motorFilePtr, *controlFilePtr,
*deviceFilePtr, *supplyFilePtr;: R
static double f_sat();
static .void Thyristor(), Diode();
“int numst = 186, '
numnst = 28,
numeq = 44,
NumStHach = 27,
NumLnode = 12;
tong ' count_mainsys = 0,

o : count_output = 0; .
void MainSystem(f, yst, t) /* MNMain system to be simulated. */
double Xf, - ‘ ’ ’
register double *yst;
double t; '

{

ynst = yst + numst;
‘dyst = yst + numegq; i
wpf=f',, ’ !
count_mainsys++;
7% :
¥ Calculate intermediate variables.
x/
{ /7% 12 thyristors,
*/
ith = (ul - vd) / rtil;
it2 = (2 - vd) / prt2;
itd = (u3 - vi) / rt3;
Coitd = (0.0 - vl) 7/ pt4;
“UitS = (0.e0 - w2) / pt5;
ite = (0.0 - u3) / rt6;
T o= (U5 - wB) /S oet?
it8 = (VS - W) / rtB;
it9 = (u5 - u8) / rty; :
it10 = (uv9 - 0.e0) / rtl10;
ittt o= (vld - 0.e0) / rtll;
: } ’it12 = €vll - 0.e0) / rt12;
{-7* 6 Diodes.
B 7 . o
- idl = (V6 - v12) / rdi;
id2 = (u7 -"v13) / rd2;

127

43 = (U8B - v14) / ~rd3;
idd = (w12 - w9) 7 rdd;
idS = (v13 - vi0) / rdS;
id6 = (vi4 - w11} / rd6;

3 '

un3 = =(uml + um2);

pi120t = wbri;

sin theta = sin{theta);

cos_theta = cos{thetan);

sin_theta pit = sin_theta*cos_piover_6 -
cos.theta_pif = wos_theta*cos_pi_over.6
El: = wpeak*cos{pil20t);

E2 = wpeak*cos{pil20t-pi_2_over_3);

cos_theta*sin_pi_over_6;
sin_theta*sin_pi_ouver_H;

B30 = - (E1 w* E2),-
igs = two_ouer_sgrt3 * (cos_theta_pit*iml + sSin_theta*im2);
ids = two_over_sqrt3 * ({sin_theta_pit*im] - cos_theta*im2);
vqs = two_over_sqrt3 * (cos_theta_pif*uml sin_theta*um2);
vds - = two_cuer_sgrtd * (sin_theta_pit*uml - cos_theta*um2);
fopsi_m = f_sat{psi_m = dbl_hypot{psi_mng, psi_mnd));
T-lead = sign_load * 98,865e0/377.e0%ur;

T.elec = 1.%0%pole_pair*{psi_ds*igs - psi_gs*ids)/ub;
{ #* Do KCL.

forget to translate currents of two terminal devices into

* Don"t
* single wariables.
© % Look into how one will define internal KCL for general multi-terminal
* devices.
*/ ‘
¥pfe+r = flcl + ittt - it4; / Hode 1 */
pf++r = o2 + 412 - 415 / Hode 2 */
pfes = 13 + it3 - ith; / Hode 3 *7
*¥pf++ = P - it1 - it2 - §t3; /% Node 4 */
*pf++ = (17 + it8 + it9 - ilf; /% Hode S5 */
Fpf++ = qdl + jupl - -it?; 7* Hode 6 */
*pf++ = jd2 + jup? - it8; /% HNHode 7 */
pf++ = §d3 + jupd - i19; / HNHode 8 */
pf++ = 410 + ilow! - id4; 7 Hode 9 */
*pf++ = j211 + jdow2 - idS; /% Hode 10 */
*¥pf+e = jti12 + ilow3d - id6; /% HNode 11 */
*pf++ = jml + (44 - ddi; 7% Node 12 */
pf++ = im2 + 4dS - id2; - /¥ Node 13 */
¥pf++ = im3 + idb - id3; /* HNode 14 */

}
/¥ Equations.

% Comments on components and modules can be copyable.

* One may define symbols for copyable comments.
*/)
{ /% Yoltage source,.
y
*¥pf++ = ul - v2 + lc¥(dilc2 - dilel) + €2 - E1; S
“Hkpfe+ = oyl - v3 + lc¥(-2.eD*%dilc! - dile2) + E3 - El;
*pf+e. = ilel + flc2 + ile3;
}
{ /% Big dinductor.
*/ ‘

*pf++ = wdt - W5 - pf * GJIf - If * didf;

=

{ /* Upper bridge capaciters.

x/

¥pf++ = ub - uy? - wvcupl;
¥pf++ = u? - 8 - vcupZ;
*¥pf++ = - jupl + ¢ * (2.e0*dvcupl + ducup2);
¥pf++ = - jup2 + c * (dvcup2 - ducupl);
¥pf++ = jupl + jupZ + jup3;
}
{ /* Louwer bridge capacitors.
. x/ .
*pf+r+ = 09 - UID - uclowl;
*pf++ = 010 - vl - uclow2;
*¥pf++r = - ‘ilowl + ¢ * (2.e0*dvclow! + duclow2);
¥pf++ = - jlow2 + ¢ * (duclow2 - duclowl);
*pf++ = ilowl + ‘ilow2 + jfow3;
{ /% linduction nmotor.
* / '
double dtmp_q, dtmp_d;
*¥pf++r = wl2 - wi3 - uml + um2;
*¥pf+s = U12Z - uld - uml + yn3;
*¥pf++ = iml + im2 + im3;
*pf++ = .iqgs - (psi_gqs - psi_mq) / xls;
*pf++ = ids - (psi_ds - psi_md) / xls;
*pf++ -vgs + rs*igs + (dpsi_gqs + w*psi_ds)/ub;
¥pfre = -uds + rs*ids + (dpsi_ds - w*psi_qs)/ub;
pf++ = rr(psi_gr-psi_mq)/xIr + (dpsi_gr + (w-wr)*psi_dr)/ub;
*pi++ = rr¥(psi_dr-psi_md)/xlr + (dpsi_dr - (w-wr)*psi_qr)/ub;
“if (psi_m)
{
dtmp_q = psi_mg / psi_m;
~dtmp_d = psi_mnd / psi_m;
!
else
dtmp_q = dtmp_d = 0.e0; »
*pf++ = psi_mg - (xm_star/xls * psi.gs + xm_star/xlr * psi_gr
- xm_star/xm_unsat * dtmp_q ¥ fopsi_m); :
¥pf++ = psi_md - (xm_star/xls * psi_ds + xm_star/xIr * psi_dr
- xm_star/xm_unsat * dtmp_d * ‘f_psi_m); -
*pf++ = dtheta - w; ‘
*¥pf++ = T_elec - T_load - J*dwr/pole_pair;
/* Equations for control part.
x/
double w_ref;
w_ref = rpm_ref ¥ rpm_to_uwe;
w_error = w_ref - wpr;
*¥pf++ = dy_ctrl - w_error; .
iref = ksp * (kc * y_ctrl + w_error) + ilf_min;
switech (StMach[CURRENT_LIMIT])
{
case UNDER_LIMIT:
iref_star = jipef;
break;
case LINIT:
iref_star = ilf_max;
bﬁeak;
default:

fprintfistderr,"No state %d for ¥s\n", S;tNuch[CURREHT_LINIT],

128

129

“CURREHT_LINIT");
break;
}
i_error = iref_star - §lf;)
*pf++ = dangle + (angle - CURRENT_GRIN*i_errer)/TRU;
" _switch (StMach[BLOCK2]) : o
A
case UNDER_LIMIT:
w_slip = 0.e0;

break;
case LINMIT:
{ /* Find slip freguency from ilf using interpolation.
*/
static double all = {-4.88e0, .22e¢0, -1.3e-3, 5.276e-6};
int i ‘ '
w.slip = al3];
for (i = 2; i >= 0; i--)
- w=slip = w_slip*ilf + .a[il;
} v '
break;
default:

fphihtf(stderh,"ﬂo state %d for &s\n", StNach[BLOCK2],
"BLOCKZ2"); : :

. break;
) v v
¢ sdnvertér_freq = (wr + sign_w_siip*w_slip) / pi2;
- 4. /% lnuerter controller.
T,
% *¥pf++ = dy_inv - sign.inv * jnuverter_freq;
booo o
¥ /*¥ End of equations for contral part. */
Yoo
0K R K ok KKK K o K K K R K KKK KKK KK K o 3K 3K K KK K K 3K oK K KKK KK KK K K KK K K K KK K K K K K K K R Rk
* MainEvent() contains ail state machines.
* .
% MainEvent() may be called repeatedly until all states are initialized

* before integration.
SOR KKK K K KK K KKK KK KKK K KK 3K KKK KKK KK K KKK KKK K KK KOk K KoK K o K KR KKK KK

void MainEvent{yst, t)

register double *yst;

double t;

{
double *ynst, ‘*dyst;
ynst = yst + numst;
dyst = yst + numeq;

&jifdef DEBUG_event .)
fprintfloutfile, "event_h is\n");
printvec(event_h,NAX_ORD}; '

fprintfloutfile,"event_al is\n");
printvec(event_al,NAX_ORD);
tendif

{ static STE_t *tmp;

Thyristor{yst,it1,&rt!,0N, THYY, THY1, "THY1" ,&tmp);
} .
{ static STE_t *tmp;

130
Thyristor(yst, it2,&rt2,0FF, THY2, THY2, "THY2" ,&tap);
static STE_t *tmp; |
vvThgriston(gst{it3,&rt3,0FF,THV3,THV3,"THV3",&tmp);
static STE_t *tmp;
.Thgnistor(gstyit4,&rt4,0FF,THV4,THV1,“THV4“,&tmp);
static STE_t *tnmp;
‘Thgristop(yst;itS,&PtS,UFF,THVS,THVS,“THVS",&;mp);
static STE_t *tmp; - ' |
Thghistoh(gst,itﬁ,&rtﬁ,UH,THVﬁ,TH?ﬁ,“THVﬁ",&tmp);
static STE_t *tmp;
Thghistnn(gst,it?,&nt?,UN,THV?;THV?,“THV?",&tmp);
static STE_t *tmp;
Thgnistor(gst,it8,&rt8,0FF,THVB,THVB,JTHVB",&tmp);
static STE_t *tmp;
TEngstor(gst,itg,&rtg,UFF,THVQ,THVQ,“THVQ“,&tmp);
o static STE_t *tnmp; v
T_hgpistor(gat,it1o",&nt10,0FF,TH9|0,‘TH?10,"THVIU",&tmp)_;
stqtic STE_t *tmp;
Thgr-'istw(gst,itn,&nu1,0FF,TH?11,TH911,"THV1!",&tmp),-
static STE_t *tmp;
Thgristoh(gst,it12,&rt12,UHLTHV12,THV12,“THVIZ",&tmp);
static STE.t *tmp;
Diode(yst, idl,&rd1,0FF,D1,"D1",&tmp);
sta;ﬂc STE_t *tmp;
’Dfode(gstjid2,&rd2,UFF,02;"UZ",&tmp);
vvstati:: STE_t *tmp;
Diode(gst,id3,&rd3,DFF,03,"DS",&tmp);
static SfE_t *tmp;
Diode{gat,id%,&hd4,DFF,U4,"D4“,&tmp);

static STE_t *tnp;

131

Diede(yst, id5,&rd5,0FF,D5, "D5",&tnp);

}
{ statiec STE_t *tmp;

Diede(yst, id6,&rd6,0FF,D6,"06",8tmp);

}
A{ /% Load part. '
static STE_t ‘ *tmp;

switch (StMach[LOAD])

{ v
case ALIVE_20HE:

if (MOMITOR(tmp, fabs(wr) - DEAD.BAND, tol)).
{ e
~ NextState(LOAD, DEAD_20NE);
sign_load = 0.e0;
Recomputedac;
}

break;
case DERD_Z20HE;
if (MOWITOR(tmp, DERD_BAND - fobs{wr), tal))

{
MextState(LOAD, ALIVE_ZONE);
sign.load = copysign(l.el, wr);
Recomputedac;
} v
" break;

case STRTE_IHIT:
“tmp = §TE.alloe(1);
NextState({LORD, DERD_ZONE);
sign_toad = 0.e0; ‘
break;
default:
fprintfistderr,
break;
}

$ifdef DEBUG_event
fprcntf(outtule,"LUHD >erder is ¥d,

"Ho state ¥d for ¥s\n", StiMach[LOAD], "LORD");

LOAD->state is %d, and LOAD->data

are\n”,
tmp->order, StMach[LOAD]); '
fprintf(outfile,"fire_type is %d, fire.h = ¥g\n", tmp->fire_type,

top->deltat);
printvec{tmp->data, (int) (MAK_ORD+1));

prlntuec(tmp >dudf, (int) NAX_ORD);
#endif
} .
{ /% Control Part. */
{ /¥ Gain port.
ey
{ /* Hbaolutw value[
*/
static STE ~t *ste_tmp;

switeh (StMach[ABS_UALUE])

{

case PO3: '
if (MOMITOR(ste_tmp, w_error, tol))

NextState(RBS_UALUE, NEG);
sign_w_slip = -1.e0;

RecomputelJac;
}
. break;
case HNEG:
if (MONITOR(ste_tmp, =-w_error, tol))
{
NextState (ABS_UALUE, POS);
sign_w.slip = 1.e0;
‘ Recomputedac;
} .
break;

‘case STATE_ IHIT
" ste_tmp = STE_ ulloc(l),
NextState(ABS_UALUE, PO0S);

w_error = rpm_ref * rpm_to_we - wr; /¥ w_error is set here.

sign_w_slip = 1.e0;
break;.
default: . o
fprlntf(stderr,'No state ®%d for &s\n", Stﬂach[HBS_UBLUE],
"ABS_UALUE"); : '
break;

)

. “lfdef' DEBUG..event

fphlntf(outflIe,“Stnach[HBS UALUE] = %d\n", StMach[ABS_URLUE]);
Bendif . : :
oo _
{ /% Naximum value.

*/

static STE_t *ste_tmp;

switch (StMach[CURRENT_LINIT])
{ '
case UNDER_LIMIT: v ' ’
Sif - (NMOHITOR(ste_tmp, ilf_max - iref, tol))
{ :
NextState (CURRENT_LINIT, LIMIT);
. Recomputedac; : .
}
bréuk;
case LIMIT: .
if (MONITOR({ste_tmp, -(iif_max - iref), tol))
. ' ‘
‘ NextState (CURRENT. LIHIT UNDER_L IMIT);
Hecomputedac, :
}
break;
case STATE_INIT:
ste_tmp = STE_alloc(1); ’
NextState(CURHENT LINIT, UNDER_I LIHIT)
/* w_error must be set before. */

iref = ksp * (kc * y-ctrl + w_error) f ilf_min;
iref_star =.(iref 3= ilf_max)? ilf_ max: iref;
- break;)
default:

fprintf(stderr,"No state &d for %s\n”, Stﬂach[CURBENT LimiTl,
"CUHREHT LINIT") ’ . .

132

/o :

break;

)
Bifdef DEBUG_euent

Bendif
} /* End of maximunm ualue */
{ /% BLOCK2,
x/f
static STE_t *ste_tmp;

switch (StMach[BLOCK2])
(.
case UNDER_LIMIT: L
if (MONITOR(ste_tmp, ilf_min - ilf, tol))
{

NextState(BLOCK2, LINIT);
Frecomputedac;
} :
break;
case LIMIT:
if {(MONITOR(ste_tmp, ilf - ilf_min, tol))
(_ . .
HextState(BLOCKZ2, UNDER_LIMIT);
Recomputedac;
}
break;
case STATE_INIT:
ste_tmp = STE.alloc(1);.
HextState(BLOCKZ, UHDER LIMIT);
break;
default:

fprintf(stderr,"No state %d for %s\n", StMach[BLOCK2],

"BLOCK2");
break;

}
%ifdef DEBUG_event

fprintf(outfile," StNach[BLUCKZ] = Xd\n", Stﬂach[BLUCKZ]);
*endif

} /* End of BLOCK2., */
} /* End of gain part. */
{ /% Firing angle limiter,
*/
static STE_t *tmp;

suitch (StMach[ANGLE_LINIT])
{ ' '
case UNDER_LINIT:
fire_angle = angle;
if (MOHITOR(tmp, 90.e0 - fabs(angle), tol))
{ .
Hext3tate(RHGLE_ LIHIT LIMIT);
Resetlntglrd;
}
break;
case LINIT: i :
fire_angle = copysign(90.e0, fire_angle);
if (NONITOR(tmp, fabs(angle) - 90.e0, tol))
{ :

NextStatefHHGLE_LIHIT, UNDER_LINMIT);

133

fprlntf(outflIe,"StNach[CUHRENT LIFITY = g%d\n", StMach[CURRENT_LIMITI);

134

Reset IntgOrd;
}
break;
case STATE_INIT:
tmp = STE_alloc(1);
 HextState(ANGLE_LINIT, UNDER_LINMIT);
fire_angle = angle;
break;
default:
fprintf(stderr,"No state %d for %s\n", StMach[ANGLE_LIMIT],
"ANGLE_LIIT"); ' . '

break;
}
®ifdef DEBUG_event)
fprintf(outfile, "StMach{ANGLE_LINIT] = &d\n", StHach[ANGLE_LINITI]);
fendif . . ' .
}

{ /* Rectifier has 2 parts., */
{ /* Generate timing signal synchronizing with 60 Hz.
* f : .
static STE_t *ste_rect;

/¥ For -rectifier, thyristors THY! and THY6 should be on
* initially and THYZ is to be fired next.
*/
switch (StMach[RECTIFIER])
{
case TRRCK: _
if (MONITOR(ste_rect, 21.6e3*(tbase-t) - fire_angle;, tol))
{ ' :
NextState(RECT_CTRL, START_PULSE);
tbase += 1.e0/360.e0;
}
break;
case STATE_IHIT:
ste_rect = STE_alloc{!);
tbase = 1.e0/144,e0;
NextState(RECTIFIER, TRACK);
i—error = iref_star - ilf;
break;
default: _
fprintf(stderr,"No state %d for %s\n", StMach[RECTIFIER],
"RECTIFIER") ;" ' ' =
break; '
_ ' :
- ®ifdef DEBUG_event ‘ ‘ .
fprintf(outfile,"Stiach[RECTIFIER] = &d\n", StMach[RECTIFIER]);
tendif : ' v
} /* End of 1Ist part of rectifier control (generating timing
¥ szignal)., */ '
{ 7/* 2nd part of rectifier control.

*/ :

static int seq[] = {THY!, THvs, THYZ, THY4, THY3, THYS};
static SCH_t *sch_rect; :

int tmp_logic;

§
1

switch (StMach[RECT_CTRL])

case START_PULSE:

135

tmp_logic = TRIG;
HextState(RECT_CTRL, tmp_logic);

rect_next_time = t + puise_width; :
Nexttogic(seqlrect_seq_index], (char *) &tmp_logic, RECT_CTRL);
break;
.case TRIG:
if (SCHEDULE(sch_rect, rect_next_time))
(:
tmp_logic = OFF;
HextState(RECT_CTRL, tmp_logic);
HextLogic(seqlrect_seq_index], (char *) &tmp_logic, RECT_CTRL);
if (5§ > rect_seg_index)
rect_seq_index++;
else
rect_seq_index = 0;
) :
break;
case OFF:
break;

case STRATE_INIT:
sch_rect = SCH_ALLOC();
NextState(RECT_CTRL, OFF);

rect_seq_index = 2;
rect_next_time = t + pulse_width;
break;
default: .
fprintf(stderr,"No state %d for &s\n", StMach[RECT_CTRLI],
“RECT_CTRL"); :
break;

} /¥ End of switch (StMach[RECT_CTRLI). */
Bifdef DEEUG_gvent

fprintf(outfile,"StHach[HECT_CTRL] = %d\n", StMach[RECT_CTRL]);
8endif
} /* End of 2nd part of rectifier control. */
} /* End of rectifier control. */
{ /* Inuverter has 2 parts.
*/ :
{ /* This part generates ramp function. -
* / »
static STE_t ¥ste_inv;

switch (StMach[INUERTER])

{
case UP: :
if (MOHITOR(ste_inv, 1.e0/6.e0 - y_inv, tol))
{
sign_inv = -1.e0;
NextState(INUERTER, DOUN);
NextState(INU_CTRL, STRRT_PULSE);
Recomputedac; .
) ’
break;
case DOUN:

if (MONITOR(ste_inu, y_inu, tol))
{ .
sign_inv = 1.,e0;
HextState(INUERTER, UP);
MextState{!NU_CTRL, START_PULSE);
Recomputedac;

1
break;
case STRATE_INIT:
ste_inv = STE_alloc(1);
NextState(INUERTER, UP);

sign_inv = 1.e0;
break;
default: B .
_ fprintf(stderr,"No state %d for Xs\n", StMach[INVERTER],
"INUERTER"); : '
break;
, }
, ,“lfdef DEBUG_esvent ‘
' fprlntf(outflIe,"StHach[IHUERTER] = %d\n", StHach[INVERTER]);
tendif .
} _ :
{ /* This part sends pulses to thyristors.
X/ v
static int . seql] = {THY?, THY12, THYS, THY10, THY9, THYI1};
static SCH_t *sch_inv; ' L)
int . tmp=logic;

switch. (StMach[INU_CTRL])
{
case START_PULSE:
tmp_logic = TRIG;
HextState(INU_CTRL, tmp_logic);
inv_next_time = t + pulse_width;
HextLoglc(seq[lnu seq_lndex] (chur k) &tmp,loglc, IHU_CTRL);
break;
case TRIG:
i f . (SCHEDULE(sch_inv, inu_néxt_time))
{ :
HextState(INU_CTRL, OFF);
tmp_logic = OFF; ' B .
NextLogic(seqlinu_seq_index], (char *) &tmp_logic, INU_CTAL);
if (S > inv_seq.index) :
inu_seq_index++;
elase
inu_seq_index = 0;
}
break;
case UOFF:
break;
case STATE_INIT:
schoinv = SCH_ HLLUC()
HextState(INU_CTRL, OFF);

inu_seq_index = 2;
inu_next_time = t + puise_width;
break; '
default:
fprintf(stderr,"No. state %d for &s\n", StMach[INU_CTRL],
"INU_CTRL"); ' ’
break;

}o /% End of switch (StMach[INU_CTRL]). */
Bifdef DEBUG_event

fprintf(outfile, "Stﬁach[IHU CTRL] = -¥d\n", Stﬂach[lHU;CTRL]){
%endif v o

} /¥ End of 2nd part of inverter. */

¥ /* End of NalnEuenﬁ()

L 72
,.R/

uotd Haintnitlyst)

- double *yst;
¢

double ¥ynst, *dyst;
déubiie pl,

it Py

£ yst ¥ fumst;
gst ¥ fuieg;

CHBRINT = 1.e=4;

;pl s atan2(0.e0, =i.e0);
U A g b

sun(pl / 6 el)

2.68 * pi;
to;we & p:2 7 ﬁl el ¥ DO'B_.alp‘
pu lgg.width = e 3

tol = 1.e<8)

notarFilePtr & fopen(’monW”!
¢ortrelFilePtr = fopen(” control“ “GvY);
devicefileftr fopen(" :
supplgFtlePtr “fepent” supplg ,

¥ el
s ilf0;
2 yeupl0;
) = yeup2l;
velow! & wvélowl;

uclowZ'ﬁ‘,déldw2D;
: pgi.ds0;
< psi.ds0;
= p&Fi.grl;
£ ggiLdrl;

= {hetal;
= wrl;

YuOtBl = yudtril;

. * State machine initialization.

LT

CEueRituimit(]; ‘)
Cfer (b & 0; i< HuaStHaeh; i#+)

§tHachli] = STATEL IHIT
for (i 2 0; i < Huanode,.i*f)

/* Gontrol paraneters for ifteghation.

c# dtetd; o /% Initial conditiens setup. */

*/

137

138

Lnode[i].éize7 = sizeof(int); :

Lnodefi}.val = ECALLOC{Lnodelil).size, char);

NextLnode[i] = ECALLOC(Lnodelil.size, char);
} . A , »

void output(gst t)
double = *yst;
double t;
{

double *gnst

int ; -|,

count output++
if ((h[0] < 1.e- 5) && preu_ord)
" return;

gynst = yst * numst;

#ifdef DEBUG_event
- fpute('\n', outfile);
“Bendif)
fprlntf(outflle,"XIZ Se ", t);
fprintf(outfile,"%12.5¢ %td ", h[0], prev_ord);
for (i= 0; | < B; i++) '
fprlntf(outfile, "%d", StMachlil);
fpute(' ', outfile); '
for (5 i< 12; j++) ’
: fprintf(outfile, "%d", StHachl[i]);
. ofpute (', Coutfile); o
Lfor (G0 < 18; i) ,
fprintfloutfile, “%d", StHachlil);
fputc(' ', outfile); ‘
for (; i < HumStHach; i++) ‘
fprintf(outfile, "%d", StiHachl[il);
fprintfloutfile, “ "); .
for (i = 0; i < HNumLnode; i++) »
forintfloutfile, "%d", *((int *) Lnodelil.val));
Cfpute('\n'; outfile); ‘ :
-fprintf{timeFilePtr, "%e\n", t); ‘
fprnntf(motorFllePtr, "¥e\tXe\t¥e\t¥e\t¥e\tfe\n", ul2~0|3;.’um1;_ iml, -
psi_nm; : :
wr/rpn_to_we, T_elec);
fprintf{controlFilePtr, "fe\t¥e\t¥e\tXe\t%e\n", ud, v3, ilf, fire_angle,

. uvcupl); . _
fprintf(deviceFilePtr, "%e\t%e\t%e\t%e\t%e\t%q\n", wi-vd, Tit1, v6-ul2,
Coidl, uS-u6, it7); ‘ -

fprintf(supplyFilePtr, "Xe\tZ%e\n", EI, ilel);
®ifdef BEBUG_event v '
Cfpute('\n', outfile);
fflush(outflle)

sendif

} R] . - .
ddefine sat.coeffl "(-0.39286e3) /* Saturatlon coeff;cnents */
”deflne? sat_coeff2 21147e1 :

»/****#***#*************#*********#*****#*******************#*#****#*****#*#

* fisat() calculates f(psi_m) as described in. Prof. Krause's book.
****#******###**************************#***********************&#**#*#***/»

~ static double f_sat(x)

‘double X

139

return: x> 186.85e07 20.423e0*x-3806..38e0: exp{sat_coeffli+sat_coeff2¥x);

	Purdue University
	Purdue e-Pubs
	1-1-1990

	TARDIS: A Numerical Simulation Package for Drive Systems
	W. Suwanwisoot
	C. M. Ong

	tmp.1542052450.pdf.6QNw_

