
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

1-1-1990

TARDIS: A Numerical Simulation Package for
Drive Systems
W. Suwanwisoot
Purdue University

C. M. Ong
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Suwanwisoot, W. and Ong, C. M., "TARDIS: A Numerical Simulation Package for Drive Systems" (1990). Department of Electrical and
Computer Engineering Technical Reports. Paper 695.
https://docs.lib.purdue.edu/ecetr/695

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages

, v ttm m m m m m

• ., . ^ , . , . , . , . , . , . V . V . V . V . , . • .V .V . , . ^ ^ , . , . , . ^ , . , . V . • . ^- m m m m m m m
^•X’lv t tX v iv iv i 'X v i’X v X v t t X ’X v X v iv i ’X v i TARDIS: A Numerical Simulation Package for

DriveSyistems

W. Suwanwisoot
C. M. Ong

TR-EE 90-3
January, 1990

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

TARDIS is a digital computer simulation package originally intended to

simulate drive systems. Its versatility has proved to be very useful in other

areas as well. It is designed to replace the functionality of analog computers

so that the user who cannot afford to have one can use the program on a

personal or mainframe computer. The author believes that it is one of the

most efficient and accurate simulation programs of its kind at this point even

though not all of its potential has been exploited to. the fullest. It can handle

index 0 and 1 differential-algebraic systems with discontinuities.

The author's intention in creating this package is to help researchers with a

simulation tool that will eventually result in a better quality of living. PLEASE

DO NOT USE THIS PACKAGE TO DESIGN WEAPONS. IF THAT IS NOT

POSSIBLE, PLEASE AT LEAST MAKE IT THE VERY LAST CHOICE FOR

W EAPON SIMULATION. IN ANY CASE THE USER WILL BE

RESPONSIBLE FOR ANY PROPERTY DAMAGE, INJURY, OR LOSS OF

LIFE AS A DIRECT OR INDIRECT RESULT OF THE USE OF THIS

PACKAGE.

ii

TABLi OF COOTiNTS

Page

LrSfOFtAiLiS........ v

LIST OF FIGURES. • • 0 vi

ABSTRACT vii

CHAPTER 1- SIMULATION PROGRAMS FOR ELECTRIC DRIVE
3̂ I S-...I i . .'..a........a a. ■ 3

1.1. What are Electric Drive Systems?_____ __________v 1
1.2 . Simulation of Drive Systems on Digital Computers......... . 2

1.2.1 ACSL.....3
1.2.2. ESL......
1.2.3. EASY5........
1.2.4. PSCSP........
1.2.5. SPICE2......
12.6. EMTP.......
1.2.7. ATOSEC....
12.8. IESE........
1.2.9. SABER.....

1.3. Motivation and Objective
1.4. Thesis Outline........

CHAPTER 2 - OVERVIEW OF TARDIS........ 11

2.1. Simulation Language to be used with TARDIS '„„11
2.2. Equation Formulations from Electrical Circuits 15
2.3. Handling of Components Associated with Discrete Events.....16
2.4. Error Control Parameters in Simulation22

CD
*v

JO
O>

ai
pi

Ol
4^

4^
^

Page

CHAPTER 3 - NUMERICAL INTEGRATION WITH DISCONTINUITIES.........23

3.1. Introduction to Differential-Algebraic Equations............................. 23
3.2. System Stiffness........ ...24
3.3. Gear Backward Differentiation Formulae.....25
3.4. Comparison between Gear and Trapezoidal Algorithms..........34
3.5. Handling of State Machines............. ..37
3.6. Locating Zeros of Switching Functions.....40
3.7. Test Examples on Integration with Discontinuities.........................43

CHAPTER 4 - SOLVING NON-LINEAR ALGEBRAIC EQUATIONS.................51

4.1. Newton-Raphson Algorithm.......51
4.2. Solving the Jacobian Equation......54
4.3. Sparse MatrixTechniques for LU Decomposition....................57

4.3.1. Data Structures for Sparse Jacobian......58
4.3.2. Markowitz Strategy with Threshold Pivoting60

CHAPTER 5 - SAMPLE SYSTEMS................. 63

5.1. Modelling of Switches in Electrical Circuits....63
5.2 . Sample Test Circuits................... ...64

5.2.1. Simple R-L Circuit with One Diode.....................................65
5.2.2. Single-Phase Full-Bridge with DC Motor.............................70
5.2.3. High-Frequency Inverter..........................70
5.2.4. Induction Machine with Current Source Inverter.............75

CHAPTER 6 - CONCLUSION AND RECOMMENDATIONS.......91

6.1. Conclusion.....91
6.2. Recommendations for Future Work.........93

LIST OF REFERENCES............. ...95

APPENDICES

Appendix A - Newton's Divided Differences........ 101
Appendix B - Source Code for GetZero()..... 102
Appendix C - "mainsys.c" file for test circuit 1................... t0 7
Appendix D - MainSystem() and MainEvent() for Test Circuit 2111

iii

iv

Page

Appendix E - MainSystemQ and MainEventQ for Test Circuit 3 118
Appendix F - MainSystemQ and MainEventQ for Test Circuit 4 122

V

LIST OF TABLES

Table Page

3.1. Comparison of the results of test example 146
3.2. Comparison of the results of test example 2 48
3.3. Comparison of the results of test example 3,........... :50

UST OF FIGURES

Figure Page

2.1. TARDIS with a translator.......—12
2.2. A sample state machine.......___________________________ 19
3.1. Example system with index 2 _________ _________________ 24
3.2. Illustration of Gear algorithm------------------------ 28
3.3 Errors of y1 of 2nci order system_______ 36

3.4. Flow chart at the start of the simulation....-----______ 38
3.5. Criterion for switching methods in locating a zero in TARDIS............... 42
3.6. Locating a zero-crossing point.....44
3.7. Short-Iiveddiscontinuity........ ________ _____*...................44
4.1. Data structure for individual entry.........____ ____ ____ ______ _— ..,.58
4.2. Sample matrix____ ___________ 59
4.3. Row and column linked lists for sparse matrix........ „59
4.4. Separate row and column linked lists..........61
5.1. Circuit diagram of an R-L circuit with one d i o d e 66
5.2. State transition diagram of a diode.....66
5.3. Output of simple R-L circuit with one diode.... 67
5.4. Output of the circuit in Fig. 5.1 using IF statements......69
5.5. Single-phase full-bridge rectifier with dc motor......71
5.6. Output of the simulation of the circuit in Fig. 5 .5„ „„.— „72
5.7. High frequency inverter circuit............... .73
5.8. Output of high frequency inverter as shown in Fig. 5.7..........................74
5.9. Induction motor with current source inverter......76
5.10. Control scheme of induction motor system in Fig. 5 .9 77
5.11. Operations of induction motor with CSl from O sto .5 s„..............79
5.12. Operations ofinduction motor with CSI from .5 s to 1 s.............83
5.13. Operations of induction motor with CSI from 5,5 s to 5.6 s„...................87

ABSTRACT

TARDIS is a differential-algebraic equation solver with discontinuity handling

capability. It can be used with a language translator to create a complete
simulation package with user-interface. Written in C, TARDIS is intended for
solving a system of differential-algebraic equations with index 0 and 1 only.
The integration part of TARDIS is the variable-step, variable-order Gear

algorithm with new local truncation error control. The objective of the control
is to have one iteration per time step to reduce the total number of calls to the

routine containing system equations.

TARDIS allows two types of discrete events: state and scheduled events. For
locating state events, TARDIS uses a simple interpolation scheme which is

found to be working accurately and efficiently. The scheme requires

integration to the points of discontinuities to avoid locating false state events.
TARDlS handles discrete events by using finite state machines. TARDIS also
uses sparse matrix techniques to reduce computation for large systems.

1

CHAPTER 1

SIM ULATION PROGRAMS FOR ELECTRIC DRIVE SYSTEMS

1.1. What are Electric Drive Systems?

The term “electric drive system” refers to a wide variety of electric machines

system in industrial and non-industrial applications where position, speed,
torque, or power are to be controlled to better match the load characteristics.
A drive system can be as simple as an adjustable speed electric fan or as
sophisticated as a computer-controlled manipulator. The power rating of
drive systems ranges from a fractional horsepower to more than one million

horsepower.

Both ac and dc motors are used in drive systems, though ac motors are

gradually replacing dc motors in many applications because they require

less maintenance and cost less. However, controls for ac motors are often

much more complicated than those of dc motors, in order to achieve a

response as fast as that of dc motors. Consequently, dc motors can still be

found in some low-power and less expensive applications. The ac motors
used in drive systems may be Synchronous motors, induction motors, or
reluctance motors [1] for the larger horsepower units, and permanent magnet
motors or stepper motors for smaller horsepower units.

In modern electric drives, the voltage and current supplied to the electric

machine is electronically regulated by power semiconductor devices. The

kinds pf power semiconductors devices presently in use include thyristors,
diodes, gate turn-off thyristors (GTO)1 power MOSFET, bipolar junction

transistors (BJT)1 insulated gate bipolar transistors (IGBT), and MOS-
controlied thyristors (MCT). These fast acting devices perform the switching

needed to shape the current or voltage supplied to the machine.

2

The switching control and/or the higher level control are usually done by

computers or microprocessors. Besides controlling the output position,
speed, or torque, more sophisticated control may include the minimization of
power loss, as in induction motors [2]; torque pulsation reduction, as in

current-fed induction motor drives [3]; harmonic elimination, as in voltage

source inverter [4], etc.

The technology and the control methods are continually changing; several
new devices and ideas are emerging which will further improve drives'
performance. The main question still is cost effectiveness. As the ratio of
cost to performance of drive and controller decreases, and control methods

become more sophisticated in requiring minimal sensors, we will see greater
use of drive systems.

1.2. Simulation of Drive Systems on Digital Computers

The simulation of modern drive systems on digital computers is very

complicated due to the following reasons. First, the differential equations
describing the behavior of the motors or the control are often nonlinear. This

is usually not a problem since there are many excellent differential equation

solvers that can handle such nonlinearity. The solvers may come in the form

of ready-to-use application-specific package or subprograms. Second, the
switchirtg action of the power semiconductor devices or even some control
parts may introduce discontinuities in the form of a change in the structure of
the systems or a change in the values of the device parameters. If the
differential equation solver is not specifically designed to handle

discontinuities, it may be unable to handle them or very inefficient at handling
them.

Existing simulation packages may be loosely divided into two categories:
general-purpose and application-specific. Most general-purpose packages

will require the input in the form of differential or differential-algebraic

equations. Such packages are also referred to as equation-oriehted

packages. Tb use them, the user will have to derive the system equations by

hand and put them in the format required by the package. On the other hand,1
application-specific simulation packages provide ready-to-use modules for
typical components. The user specifies the interconnections between or
relationships of the components in the systems according to some rules

imposed by the packages, but seldom has to deal with the system equations

directly. Since the interconnection of modules is in a network-like fashion,
such packages are also called network-oriented The main disadvantage of
application-specific programs is that the capability of the programs will be

restricted to whatever models are provided by the programs. There are also

simulation packages that are in between the two categories; they let the user
specify the equations for the modules and use them in the network-like
fashion.

Since some of the ideas used in this research are based on the disclosed

features of several existing simulation packages, a brief description of some

of them is in order. The first four simulation packages, ACSL, ESL, EASY5,
and PSCSP, are the general-purpose ones; the next three, SPICE2, EMTP1
and ATOSEC5 are specifically for the simulation of electrical or electronic

circuits. The last two, IESE and SABER, are general-purpose electrical
network simulation programs whose component definitions are based on a
black-box or module concept.

1.2.1. ACSL

Advanced Continuous Simulation Language (ACSL) [5] is a general-purpose
simulation package that can handle time-dependent, non-linear systems of
differential equations. With the MACRO preprocessor, ACSL may be tailored
to any specific application but not in the network-like fashion. The user has to

formulate the differential equations of the system and put them into the form
required by the package. ACSL provides a wide variety of integration

schemes: namely, Runge-Kutta, Adam-Moulton, and Gear algorithm [6]. It
also has multi-derivative capability in that slow and fast transients can be

integrated with different step sizes or algorithms.

3

The language used to specify models conforms with the specification laid
down by the Continuous System Simulation Language (CSSL) Committee,
with extension to handle discontinuities which are located by binary search.
ACSL has a sorting capability which lets the user enter the equations in any
order.

1.2 .2 . ESL

ESL [7] is another simulation program based on CSSL. Written in
FORTRAN77, ESL comprises of an interpreter and a translator to FORTRAN.
ESL uses interpolation to locate the discontinuities. The program accepts the

system equations in the form of differential equations, which can also be

grouped into subsets, of which only one will be active at a time. The user can

define submodels which may contain discontinuities. ESL also provides

several default submodels that can be used or modified. Unlike ACSL1 ESL
does not have sorting capability.

1 .2 .3 . EASY5

EASY5 [8] is a simulation package that has a provision for switch states to
simplify the modelling of discrete devices. It requires the user to enter system

equations in the form of differential equations. The handling of
discontinuities in EASY5 is a slightly modified version of Gear’s [9] which
uses Step size control for output and discontinuities.

1 .2 .4 . PSCSP

The Power Series Continuous-System Simulation Program (PSCSP) [10]
tqkes a different direction from the other simulation packages mentioned

before. The program uses semi-analytical methods based on power series

expansion for integration and for locating the discontinuities. The program

will translate the user's input equation into a FORTRAN subprogram. The

step sizes used in the integration are often more than an order of magnitude

larger than those used in fourth order Runge-Kutta due to the higher-order
integration method used.

5

1.2,5; .SPICE?

SPICE2 is a simulation program for semiconductor circuits. It has many

Capabilities besides transient analysis. The input to the program is a file
describing the interconnections of the devices in the circuit, both active and

passive devices. The user can choose either Gear or trapezoidal method for
integration, but Nagel, the author of SPICE2, suggests that the trapezoidal
algorithm with local truncation error control is preferred [11]. SPICE2 has no

capability to handle power semiconductor switches other than modelling

them in detail. Also with the models provided, it would not be a trivial
problem to use SPICE2 to simulate ac machines in general.

There are several versions of SPICE on the market now. One version of
SPICE called IGSPICE lets the user specify equations to describe the

behavior of modules. Keyhani and Tsai have used this feature in [12] to

simulate a start-up of an induction machine with saturable inductance.

1.2.6. EMTP

The Electro-Magnetic Transients Program (EMTP) [13] is designed for
simulating power system components and large scale networks. The
program is written mainly in FORTRAN. EMTP uses the trapezoidal method
with equal step size for integration; the choice of step size is based on the

user's experience with the circuits. The program has several built-in models

for transmission lines, circuit breakers, surge arrestors, synchronous
machine, thyristors or diodes. It does not seem to have the provisions

needed to facilitate the simulation of the kinds of components found in the

modern drive systems.

1.2.7. ATOSEC

The simulation program ATOSEC [14] is designed for simulating power
electronic circuits where power semiconductor devices are treated as ideal
switches. Representing power semiconductor devices as ideal switches

makes the simulation run faster than those which use detailed

representation. The input language is similar to that used by SPICE2 .

6.

ATOSEC can be used to simulate electric machines as long as they can be

represented by circuit components provided by the program. The program

uses the backward Euler method without any local truncation error control.
As with EMTP, the user must have some idea of the circuit response in order
to choose the integration step size.

1.2.8. IESE

IESE (Integrated Engineering Simulation Environment) is a graphic-oriented

user interface to EMTP or SOLVER-Q [15]. A novice user can specify

connections of electrical components graphically, while the more advanced

user can define modules' equations. The input is then translated into the
language used by EMTP or SOLVER-Q, which does the simulation.

SOLVER-Q [16] is a general-purpose symbolic simulation package for
electrical networks. For transient simulation, the program DIFTOALG

converts differential equations into algebraic equations using any desired
numerical integration algorithm, including all implicit methods. The resulting

algebraic equations are solved by a program called SOLVE. It has been

reported, however, that SOLVER-Q can be about 10 times slower than EMTP
for certain problems.

1.2.9. SABER

SABER [17] is a simulation package that has a powerful user interface^
especially for post-processing of data after simulation. It can do many kinds

of circuit analyses similar to SPICE2 . The package also allows the user to

restart the simulation from a previous run, a useful feature for long simulation.

There are other numerical simulation packages in the form of FORTRAN

subroutines for solving differential or differential-algebraic equations - e.g.,
IMSL [18], ODEPAK [19], DASSL [20], etc. When presented with

discontinuities, these packages perform poorly since they do not have any
discontinuity handling capability other than local truncation error control,
which usually reduces the integration step size to very small values

7

1,3- Motivation and Objective

Although some of the simulation packages mentioned above can be used to

simulate modern drive systems, they are far from providing the most efficient
and accurate way to handle mixed discrete-continuous systems. Some of
them have been used to simulate simple drive systems - e.g., dc drives or ac

drives operated in certain modes only. But for more complicated drive

systems, engineers and researchers usually resort to writing their own

simulation programs for the specific application at hand in general-purpose

programming languages such as FORTRAN.

The objective of this research, then, is to determine the combination of
modelling and numerical methods, and the data structures to form a suitable
framework for simulating electric drive systems efficiently on digital
computers.

The results of this research have been incorporated into a new simulation

program called TARDIS. The core of this program is the numerical part that
combines several numerical techniques, including a variable-step, variable-
order integration with a new local truncation error control, state machines to

handle discrete components, and sparse matrix techniques, to maximize its

computational efficiency, because it is known that time-domain simulation

can be notoriously slow on the digital computer. With these numerical
techniques incorporated, TARDIS also achieves the same capabilities as a

general-purpose analog computer in terms of functionality.

TARDIS is written in C programming language, and the current version is

about 4500 lines long (including some comments). Although, in theory, the
program can be written in any computer language, the choice of C over other
languages, including FORTRAN which has long been the workhorse for
scientific computations, is due to some desirable features in C that do not
exist in other languages locally available. For example, during execution

TARDIS can adjust its own size according to how big the problem is by

asking the operating system to give it more memory space whenever that is

needed. TARDIS requests the space through several routines specifically

designed for each type of internal data structure. These routines request the

space from the operating system in as small a chunk as 1 Kbyte, and hand

out the space with the size needed by the calling routines. TARDIS also has

its own space management routines that will reuse unwanted space. Note

that if one wants to run the simulation in the standard FORTRAN 77 language
which does not have any memory allocation function, one needs to declare a

big enough work space. However, when dealing with sparse matrices, the

memory space needed in the simulation will be known at run time. So one

must guess, based on previous experience, how much memory is needed - a

practice which is not all that practical.

Although both efficiency and accuracy are important, the program’s emphasis

is on accuracy. Thus all floating-point computations in TARDIS are done in

double precision to ensure maximum accuracy, although the speed may be

lower than the speed of single-precision computations on some computers.
With C, TARDIS has ability to do bitwise operations directly. Moreover, if
there are floating-point operations that can be done by using bitwise

manipulations, TARDIS will use the bitwise version to improve the speed.
TARDIS also avoids using indices to access successive elements in arrays or
matrices. Whenever possible, pointers to the elements in arrays are used
instead to increase speed. Registers are also used for often-used variables

to improve the speed a bit further. Nevertheless, it has been noticed that
such implementations resulted in only a slight improvement in speed of about
1% of Overall floating-point operations. So the major factor used to ensure

efficiency and accuracy in the simulation is still a careful implementation of
the numerical algorithms.

The numerical algorithms' used in TARDIS have been tested before being

incorporated into the program to ensure that the resulting performance is

comparable to or better than that of other existing simulation packages.
Although not all the potential in TARDIS has been exploited, the results of the

experiments show very convincingly that TARDIS can handle the simulation
of most drive systems efficiently and accurately.

9

1.4. Report Outline

Following this introduction, Chapter 2 presents an overview of TARDIS. This

chapter discusses th§ tfsmsiatdfS for TARDIS, the black box concept for
component modules, equation formulations from electrical networks, and the

description of state machines for handling discrete components.

Chapter 3 discusses the numerical integration method used in TARDIS' more
specifically the variable-step, variable-order Gear algorithm with local
truncation error scheme to control the step size of the integration. The rest of
the chapter is devoted to how TARDIS locates discontinuities. Three

examples are also given to illustrate how accurate TARDIS is in locating the

discontinuities.

Chapter 4 describes the data structures and solution techniques used in

TARDIS to handle sparse matrices. TARDIS uses sparse matrix techniques

to reduce the competition involved in the Jacobian equation arising from the

Newton-Raphsoh algorithm, which in turn is used to SOlve algebraic

equations resulting from the Gear algorithm.

Chapter 5 gives several examples demonstrating the use of TARDIS. Some

of the examples in this chapter are purposely selected from the past work of
others to validate the Capabilities of TARDIS. Representations of switches by

high-ahd-lOW resistance Ohd ideal switches OrO IIsO discussed.

Chapter 6 summarizes the main contributions of the research and also
discusses useful features that could be added to the current version of

TARDIS.

Appendix A provides a brief explanation of the basics of Newton’s divided

difference.

Appendix B is a listing Of the GetZerO() routine which is modified from the

idea of Brent's zeroin() routine for locating a zero Of a function [21, 22]. For
smooth functions, GetZeroQ uses the same number of iterations as Brent’s

zeroinQ does. However, for the worst case, GetZeroO uses the number of

iterations in the order of 0 (log2n) while zeroinQ uses O((log2n)^).

The rest of the appendices are the source codes for MainSystemO and
MainEventO routines which are used in sample circuits described in Chapter
5. ' : ' '

11

CHAPTER 2

OVERVIEW CF TAROIS

As is, TARDIS is a differential-algebraic equation solver that can handle

discontinuities. It does not attach any physical meaning to the system

equations; TARDIS treats them in a strictly mathematical sense. It is the

user's responsibility to provide a correct mathematical representation of the

system. One approach to making TARDIS more user-friendly is to have a

translator acting as a user interface to TARDIS as illustrated in Fig. 2.1. The

translator will then translate the user's input to necessary the necessary
forms that can be compiled and linked with TARDIS's numerical routines.
Although the user will then be required to learn the language used by the

translator, this is usually preferable to writing the mathematical models

directly, even though the latter gives the user more control over the codes.

2.1. Simulation Language to be used with TARDlS

The proposed simulation language used by TARDIS is a network-oriented

type. Since components in the system to be simulated are from a mixture of
mechanical, electrical, electronic and logic types, they pose some difficulty
when connecting modules of different types together. To overcome the

problem, Runge [23] proposes a simulation language called Modular

Ordinary Differential Equation Language (MODEL) that integrates network
modules from different types into a single framework. In MODEL, the user

can define equations for modules in the form

Ieft hand side = right hand side (2.1)

Variables used within a module are referred to as local variables, and those

which are shared among modules, global variables. The variables at the

User's input

Templates for Modules

Routines needed
by TARDIS

Routines provided
by TARDIS

Linker

Compiler

Translator

Simulationprogram

Figure. 2.1. TARDIS with a translator.

terminals of the modules (e.g., pins of integrated circuits, input and output
pins of the modules) are terminal variables. A node is a common point to

which the terminals of modules are connected. If the terminal variables

connected to the same node are to take on the same value, the variables are

called E-type terminal variables. If the sum of the terminal variables

connected to the same node is to be zero, these terminal variables are called

l-type variables. The equations describing a module can refer to local,
terminal, and global variables, and even user-defined FORTRAN

subroutines. Discontinuities are also allowed in MODEL; they are handled

by the use of IF statements.

TARDIS uses a different approach to combine modules from several
disciplines. (Although the translator for TARDIS has not been completed at
this point, some of the ideas have been implemented in the numerical part.)
TARDlStreats each module as a black box with pins or terminals to connect
to the outside. Theusercan define modules withequations oftheform

O = f(y,i) (2.2)

Associated with pins of the modules are pin variables. Similar to MODEL, the
user can use pin, local, and global variables, user-defined or other
predefined subprograms in these equations. Unlike MODEL, there are three

types of variables used in TARDIS: electrical, non-electrical, and logic
variables corresponding to electrical, non-electrical, and logic pins.
Distinguishing these three variable types facilitates the simulation tasks.
There are two variables associated with each electrical pin, namely, voltage
and current. There is no convention imposed on the direction of the current -
whether into or out of the modules. The user can choose either direction, but
must be consistent throughout. For the purposes of discussion in this report,
the direction of the pin currents is assumed to be into the modules.

The nodes where the pins are connected are also classified the same way:
electrical, non-electrical, and logic nodes. The variables of the pins

connected to the same node take on the value of the variable at the

corresponding node. For electrical nodes, Kirchhoffs current law (KCL) must

13

14

also be satisfied. Usually a node has pins of the same type, but certain

mixed-type connections are allowed to reduce the number of unknown
variables. For example, the non-electrical pins can be connected to an

electrical node; these pins are not included in the KCL equation for that node,
and KCL still applies to all currents of electrical pins connected to that
electrical node. The variables of the non-electrical pins connected to

electrical nodes will take the value of the corresponding node vbltages.

A module can have pins of different types. For example, a motor may have

two electrical pins to be connected to a power supply and two non-electrical
pins for torque and speed. A thyristor may have two electrical pins and one
logic pin.

There are differences among the three types of variables. The electrical and

non-electrical variables are unknown variables in the system equations to be

solved. The Iogicvariables are not part of the unknowns. The logic variables

are to be used by a module to communicate its status to other modules. The

electrical and non-electrical are represented by double-precision variables,
but the size of logic variables is user-defined and may have different sizes as

well. All three types of variables are global variables; they can be used
inside any module or in the output routine.

Besides the above-mentioned variables, there are other double-precision
global variables also: intermediate variables and parameter variables. An

array of intermediate variables is used to store meaningful intermediate
values that may be used by other modules, other subprograms, or the output
routine. The intermediate variables are also used to avoid repeated
calculations. The array of parameter variables is intended for the variables

that are constant or changed occasionally. They may be used in various

modules, some subprograms, or the output routine. Although the use of
variables in these two arrays may be interchangeable, it is not advisable

because they can make the debugging of the program difficult. Both these
arrays are not part of the unknown variables to be solved.

15

2.2- Equation Formulationsfrom Electrical Circuits

The formulation of equations from electrical circuits in TARDIS is not
restricted to a specific method. The method used can be tableau formulation,
modified nodal formulation, or even a combination of the two. For example,
the equation formulation for a resistor may be done by modified nodal
formulation while the equation formulation for a capacitor may be done by

tableau formulation because the branch voltage of the capacitor is a state
variable and is needed in the equation. Other types of formulations are also

allowed, but they are less popular than these two. Note that one objective in

TARDIS is to make all variables available at all times so the user may refer to

them anywhere in the user-defined modules or subroutines without having to

worry whether such and such a variable is available or not. Because the
tableau formulation has all variables available as unknowns to be solved,
this may suggest that the tableau formulation is the best for TARDIS; this,
however, is not necessarily the case. By the use of intermediate variables,
the user can make all the variables available without increasing the number
of unknowns. For example, the modified nodal formulation for a resistor with

the conductance G between nodes i and j may be written as

KCL at node i: O = G Vj - G Vj + 2 j (node i J (2-3)

KCLat node j: O = -G Vi + G V j + ^ (node j J (2-4)

As one can see, the current through the resistor above is not defined

explicitly. To define the current of the resistor, the usual way is to include the

current as an unknown variable. The equations now can be rewritten as

Constitutive eq.: O = G Vj - G Vj - 1 (2.5)

. X /currents leaving^
KCL at node i: O = l + Z / (n o d e i j (2-6)

16

x . . V /currents leaving^ _
KCL at node j: 0 = -l + 2 w (n o d e j J (2 -7)

where I is the current passing through the resistor. However, this method is
not suggested since the number of unknowns is unnecessarily increased,
resulting in more computations when many resistors are defined this way. By

the use of intermediate variables, the equations above may be rewritten as
follows:

Ii 0 5
1 (2-8)

KCL at node i:
_ . /currents leaving^
0 = , + Z j (node i J (2.9)

KCL at node j:
n . V v /"currents leaving-,
0 = - | + 2 v (node j J (2.10)

where I is now an intermediate variable whose value is set by Eq. (2.8).
Although the number of unknowns remains the same, the order of the
equations is important in the execution of the solution. The Eq. (2.8) must be

executed before Eq. (2.9) and (2.10) to obtain the correct result. By itself,
TARDIS does not have the equation sorting capability of a program like

ACSL. The user or the translator must do the sorting for the equations that
set the values for intermediate variables. These equations - like Eq. (2.8) -
should then be put at the beginning of the routine, MainSystem(), which
contains all the system equations.

2.3. Handling of Components Associated with Discrete Events

The simplest way to handle components associated with discrete events may

be by the use of IF-ELSE statements: for example, the pseudo code for an

ideal diode connecting between nodes i and j may be written as follows:

if (diode current is positive)

 ̂ I ' ' \ ,
v(i) - v(j) = 0;

} ' ; ■
else if (voltage across diode is negative)

■■■ (. . ;
diode current =®;

:1 ■.

Due to the numerical integration algorithm used in TARDIS1 handling of
components associated with discrete events by such simple mechanism may
lead to some numerical {problems - i.e., the {program would be unable to find
the solution or would use many calls to the routine containing system

equations. The reason is, when TARDIS solves the system equations by an

iterative method (as part of the integration), the conditions used in IF-ELSE

statements as well as the corresponding terms or equations may change
from one iteration to another, the change which may result in divergence of
the iterative method. Even when the iterative algorithm does converge, there

can be many calls to the routine containing system equations due to the local
truncation error control scheme used in the integration algorithm
implemented in TARDIS.

Bodry and Foch [24] propose a framework to handle components associated

with discrete events, called Petri nets which are very powerful models to

describe the flow of information [25]. Petri nets are also adopted in TARDIS
because they provide simple conceptual models. However, the use of Petri
nets in TARDIS represents only a small portion of their real potential, and
thus the term "state machines" will be used instead of the term "Petri nets".
With the use of state machines, the numerical problems associated with the
above simple mechanism for handling components associated with discrete
events can be avoided.

In TARDIS all components associated with discrete events must be

represented by state machines. The status of a state machine is indicated by

a state associated with that state machine. A state machine can change its

18

state when certain condition is satisfied. For example, a diode may have two
states: ON and OFF. The diode will change its state from ON to OFF when its

forward current reverses direction, and the diode will change its state from

OFF to ON when its forward voltage drop is positive. For the rest of this
report, such conditions will be called transitions instead. Figure 2 .2 .
illustrates a state machine for some discrete device. The numbers in circles

indicate the status of the state machine. The paths with arrows from one
circle to itself or the other circles indicate the possibilities of the next states
from the current state. The bars on the paths are the transitions which must
be satisfied (or fired) for the paths to be used. The transitions connected to

the current state are termed active, even though they may not be fired. If
there is more than one fired transition, the one with highest priority assigned

by the user will be chosen. From Fig. 2.2, if the current state is 1, only T 1 is

an active transition. If the current state is 2 , there are three active transitions,
T2 , T3, and T4; only one of these three transitions will be fired. Note that if
the current state is 3 and T6 is fired, the next state will still be 3. If state 4 is

reached, the state machine will be in this state forever since there is no other

path to go.

The program codes for all state machines will be in a separate routine called

MainEventO, for purpose of efficiency. When the MainSystem() is executed,
no status change in the state machines is allowed, the program codes for the
state machines will not be executed. Only when the program needs the

information on status changes in the state machines will the program codes
for the state machines in the MainEventQ routine be executed.
Communication between the two routines, MainSystem() and MainEvent(), is

done through global variables and variables common to these two routines.
The separation of the two routines makes TARDIS different from several other
simulation packages which allow the descriptions of the discrete components

and the system equations to be mixed. Although the separation of the two

routines helps avoid redundant calculations, the casual user may have

difficulty writing the code to describe the behavior of discrete events. This
problem, however, will be alleviated with the use of a translator.

19

Figure 2.2 . A sample state machine.

Several state machines can change their states at the same time. However,
the program executions are done serially - one instruction after another. The

serial operations cannot guarantee the correct status of those state machines

whose transitions are dependent on the status of other state machines. It is
impossible to use sorting procedure to order the codes for the state machines
because the information for sorting cannot be extracted from the semantics of
the codes. What is done in TARDIS to ensure the correct status of the state

machines is to delay updating the status until the program codes for all state

machines in MainEventO are executed. Thus going from the current state to

the next state requires a procedure rather than an assignment statement.
This is also applied to logic variables; they are not allowed to take on the new

values until all the information about the new values is received. In this

manner, when a state machine whose transitions depend on the status of
Other State machines or logic variables is encountered, TARDIS ensures that
the resulting status of the state machine and the values of logic variables will
be correct.

There are two types of discrete events allowed in TARDIS: scheduled and
conditional events. Scheduled events are events whose instants of
occurrences are known in advance - e.g., sampling time that occurs

periodically, thyristors' firing time that is synchronized with known voltage or
current sources, etc. Conditional events are events whose instants of
occurrences are not absolute but instead dependent on expressions of state
variables, non-state variables, and time. These expressions can be used in
the transitions of the state machines. The adopted convention in TARDIS is

that when the expressions of active transitions are negative, these transitions
will be fired. If possible, TARDIS will fire a transition when the values of
expressions of those transitions are within certain negative bands specified
by the user.

Typically in the codes for state machines, the user may make use of SWITCH

statements in C to simulate the behavior of the state machines, and, if
needed, IF-ELSE statements to assign priority to the transitions. For
example, the pseudo code for a state machine of a diode can be as follows:

20

21

switch (diode’s State)

{
case ON:

if (diode’s current is less than zero)

{

next diode's state will be OFF;
diode's resistance is 1 .e6 Cl;
set a flag to reevaluate the Jacobian due to abrupt

change in diode’s resistance;
■)■ j * r ,

break;
case OFF:

if (voltage drop across diode is positive)

next diode's state will be ON;
diode's resistance is 1.6-3 Q;
set a flag to reevaluate the Jacobian due to abrupt

change in diode's resistance;

: ' . - V
break;

case STATEJ N IT:
next diode's state will be OFF;
diode's resistance is 1 .e6 £2;

At the beginning of the simulation, all state machines will be set to the same
initial state, STA TEJN IT. The user can then change these states to any

desired states. In the above case, the initial state of the diode is reassigned

to the OFF state with a corresponding value of the diode resistance. Due to
the numerical integration algorithm used in TARDIS, the Jacobian of system

equations is needed. Whenever there is an abrupt change in the parameters

of system equations, the user must set a flag calling for the Jacobian to be

reevaluated. There is no need to set a flag at the beginning because the

Jacobian will be calculated by default.

22

The current version of TARDIS calculates the Jacobian by taking a numerical
difference. As this method of finding the Jacobian is time consuming,
especially when the system has many discontinuities, the next version of
TARDIS will be more selective in choosing the equations to be updated, or
will let the user update the entries in the Jacobian directly.

2.4. Error Control Parameters in Simulation

Error control parameters are key input parameters that the user can specify to
ensure that the simulation results are within the desired degree of accuracy.
When the dynamic range of the values of the unknown variables is large -
e g., 5 mA for typical values of currents in control circuits and 1000 A for the

motor currents - the same error control parameters should not be used for all
variables. Although most of the application-specific simulation programs

allow the user to specify error control parameters in the integration or in the

iteration process, the error specification is not done on an individual basis.
Faced with such a limitation, the user may resort to scaling the values of all
variables to the same order of magnitude. However, in TARDIS, the user has
the choice of specifying the error control parameters for each individual
variable. The specification of error control parameters should be done when
the modules are defined.

23

CHAPTER 3

NUMERICAL INTEGRATION WITH DISCONTINUITIES

3.1. Introduction to Differential-Algebraic Equations

The differential-algebraic equations (DAE) being considered can be written
in the following form:

0 = f (ynSf Vsf y 's r» <3-1>

where Ynst are non-state variables, yst and y'st are state variables and their

derivatives, respectively.

In general DAE's may not be equivalent to ordinary differential equations
(ODE) [26]. DAE's are classified by an index system. Not all types of DAE's
are numerically solvable by existing numerical algorithms. DAE's with lower
index numbers can be solved, but that is not the case for higher index

equations. DAE's with index 0 are actually ODE'S. DAE's with index 1 are

ODE's with some algebraic equations which can be symbolically or
numerically reducible to ODE's. For the DAE's with an index greater than or
equal to 2, one will have to do differentiation - instead of the usual integration
- to get to the solution. Loosely speaking, if one has to find the nth order
derivative of the input to get the solution, the index number of that DAE
system will be n+1, for n > 1. A more precise definition of the index of DAE's

can be found in [26, 27]. Usually, systems of indices greater than 1 are those

having the ability to change their state variables arbitrarily. For example, Fig.
3,1 illustrates an index-2 system whose equations are below.

s (3.2)0

24

Figure 3.1. Example system with index 2.

dlL
V L - L dT - 0 (3-3)

As one can see from the equations, in order to find the voltage across the

inductor, one needs to differentiate the current which is determined by the

current source. There are some software package, like DASSL that attempt
to handle DAE's with indices higher than 1, but for this research, the index of
DAE systems will be limited to 0 and 1 only. In other words, the ability to
change the values of state variables arbitrarily will not be allowed.

3.2. System Stiffness

Loosely speaking, stiffness usually means having fast and slow transients
together in the system. Actually, the stiffness does not depend on the system

characteristics alone but also on the initial conditions, accuracy requirement

[28], and duration of integration. Since the stiffness of the system to be

simulated may not be known in advance, it is prudent to use an integration

algorithm suitable for stiff systems just in case that the system is stiff. It is

possible to implement two integration algorithms - one for stiff systems and

the other for non-stiff systems - together in the same program, as is done in
many existing software. In that case, the user may decide which one to

choose, or the selection of algorithms can be made automatic according to

how the system responds. In TARDIS, only the integration algorithms for stiff
systems will be considered for the time being.

3.3. Gear Backward Differentiation Formulae

The implicit integration algorithms can generally handle stiff systems better
than the explicit ones [11]. There are several implicit algorithms, among

which the ones most commonly used are the trapezoidal, Adams, and Gear

algorithms [29, 30]. The Adams algorithm is usually used for smooth or non-
stiff systems. Both the trapezoidal and the Gear algorithms can be found

implemented in several simulation programs for electrical or electronic

circuits. Of the three, the Gear algorithm is the best implicit algorithm for
handling stiff systems.

TARDIS uses a variable-step, variable-order Gear algorithm implemented by
using Newton's divided difference as described in [31]. The implementation

is also repeated here with a slight change in notation to avoid nested

subscripts. The following description is for the state variable part and it
assumes that we have a single first-order implicit differential equation only.

So the following y will replace ysk If there is more than one state variables,

the following discussion will apply to every one of them.

Let y , yj.^, yj_2> —, yj_k be k+1 solution values of a differential equation

0 = f(y,y',t) (3.4)

at tj, tj_-|, tj_2 , tj_k respectively. To find yj+1 at tj+1, the algorithm replaces y'

of Eq. (3.4) with

. 25

y'i+1 = PVi+1 + S (3.5)

where p depends on tj, , tj_2......tj_k and S depends on yj, yj.-j, yj.2, yj_k

and I , tj_1, tj_2 tj_k, respectively. The resulting Eq. (3.6) after the

26

substitution is algebraic which will be solved by the Newton-Raphson

algorithm (NR).

0 = g(yi+1. t i+1) (3.6)

The NR algorithm will be described in detail along with sparse matrix

techniques in the next chapter.

If there are non-state variables, the Eq. (3.6) will become a system of
algebraic equations with both non-state and state variables as unknowns. In

the course of calculating P and S, the predictor y ^ which is the polynomially

extrapolated value of the previous k+1 solutions at tj+1 will be found also.

This yj^_i will be used as an initial guess to the NR method which should

make the iterations converge faster. The steps in finding p, S, and yj -̂j are

as follows:

1. Find the divided differences y[tj, t j^tj.j] for j = 1 ,2 , 3 ,.... k.

(The divided differences can be found in Appendix A.)

2. Calculate the coefficients otj, fy, and Lj as follows:

LJ ~ *i+1 ‘ V j+ I for j = 1 ,2 ,.... k

a 1 = L1>

a j

Il
Il -Jr
m for j = 2, 3, 4, k

Pl

Pj = ,4;-i + Lj forj = 2, 3, 4,..., k

3. Find S and y j^ by

y(tj)

yk i 1 + “i y[ti' tM ' for j = 1,2, 3,.... k

s,

£-rIl

Sj “ sM
y.PH
yi+1

for j = 2, 3, 4,.... k-1.

Pig. 3.2 illustrates how some variables are defined in the implementation of
Gear algorithm.

The order of integration k can be es high as 6, which still be a stiffly stable
algorithm [11]. When the order is higher, the step size tends to be larger also,
and this usually results in fewer steps in integration, but more overhead
computation. So some software packages that use this algorithm - such as
DASSL [20], LSODAR [32], and IVPAG from IMSL [18] - limit the integration

order to 5. These programs, except DASSL, also incorporate the Adams

algorithm with order of up to 12 for smooth systems. However, in TARDIS, an

arbitrary limit of integration order of 6 is set since it does not incorporate the

Adams method. This is done so that, for smooth systems the integration of
Order 6 can reduce some computations by using larger time steps than those
obtained when the order is limited to 5.

y ^ is used not only to start the NR method but also to estimate the local

truncation error (LTE), a measure on which the adjustments of integration

order and step size of the integration are based. There are various formulae

for calculating the current local truncation error (LTEcu rr). Brayton

(reference from Vlach and Singhal in [33]) compared them and concluded

that the correct formula should be

LTEcurr
X i+ 1 • Xm

P M< + 1
(3.7)

k+1 solutions

2

Figure 3.2. Illustration of Gear algorithm.

29

The above formula is also used: by Zein, et al. [34]. To use this information to

adjust the step size of integration, one may compare this LTEcurr to the

allowable local truncation error (LTE a||ow) at this step. Brayton [35], Van

Bokhoven[31], and Vlach and Singhal [16] calculate this LTE^uow from the

specified truncation error per unit time k, which is a ratio of global truncation

error to duration of simulation, as

^ ^ a llo w “ K ^allow (3.8)

where ha||ow is the allowable step size.

Since the local truncation error of the k**1 order integration is proportional to
hk+1 - i.e.,

LTEallow

-purr
•''allow i K+;

curry
(3.9)

the allowable step size can be found by

'allow 'curr
K hcurr
LTEcurr

A f
(3.10)

/

This h a||OW will be used as the next step size. If there is more than one state

variables, the value of ha ||OW will be calculated for each of them. Then the

next step size will be taken from the smallest values of h a||OW>

^next v m'n (hallow) (3.11)

To adjust the order of integration, one also uses the Eq. (3.7) to calculate LTE
of different orders by using y ^ , |3, and L^ of different orders: - usually one

order lower and one order higher. Then the order of integration will be

decided upon the maximum of I^now of these three different orders.

30

However, the use of the truncation error per unit time may sometimes cause

the step size calculated from the Eq. (3.10) to be very small, especially when

simulating stiff systems or running the simulation for a long duration. Thus, in

TARDIS, the LTE^uow will not be calculated from the Eq. (3.8).

Most of the software packages, such as IVPAG from IMSL, ACSL [5],
ODEPACK [36], and DASSL[20], will try to control LTE by letting the user
specify some kind of error tolerance and the routine will use that information

to calculate the anticipated L T ^ iiow. One approach is as follow:

*-^allow ~ erel 1̂ 1+1 j + eabs (3-12)

where ere| and EaJ38 are relative and absolute error tolerance specified by the

user respectively. Using the Eq. (3.10) to calculate LTEaNow will adjust the

step size according to the responses of the system on a local basis - not on a

global basis as in the scheme used before. This scheme makes the

integration step size adapt to the system response better and still gives

acceptable accuracy for both fast and slow responses. For smooth systems;
the Eq: (3.9) and (3.10) will give comparable accuracy if both schemes use a
comparable number of steps in integration.

By using the Eq. (3.10), the allowable step size can be calculated from

’allow
ferel | M * ea b s lk+ 1

'curr -curr
(3.13)

When starting the integration there is no information about previous values
so one cannot use the Eq. (3.7) to find out the LTE at the first point. What is

usually done is to take the first step, after the discontinuities or from the

beginning of simulation, small enough so that the LTE should be acceptable

For example, IVPAG of IMSL arrives at the default initial step size by dividing

the output interval by a factor of 1000. However, this is not good enough

■■ 31

when dealing with discontinuities because the instants of their occurrences
dre hot known in advance, and whatever first step size is chosen may be too

big to locate the discontinuities accurately. So the LTE at the initial point is
needed to be able to adjust the initial step size accordingly. It is proposed

that the initial LTE can be calculated from Eq. (3.7) with y ^ derived from the

forward Euler formula; that is

vf+i = Vi + l I y'i (3.14)

Note that using the LTE information to adjust the first step size will defeat the
purpose of relying on the stiff method implemented in the program, because
the stiff method is not employed to skip very fast transients. Note that both the

Adams and Gear algorithms start out with the first-order backward Euler
formula. It would be an interesting subject for a comparative study to see
which algorithm is more efficient and accurate.

Using the LTE information to change the order, as mentioned earlier, may

sometimes lead to spurious change of order. To reduce such spurious order
changes, the order is reduced only if

^allow(k-l) > Pallow(k) > *1allow(k+1)-

Similarly, the order of integration will be increased only if

hallow(k-1) < hallow(k) < hallow(k+1)-

These conditions are similar to the ones used in DASSL by Petzold [20].

in TARDIS, if ITaJjow is less than .75 h curr, then the current step of integration

Wjfj be repeated, since this may indicate that the current step size could give
an unacceptable LTE. The factor .75 is chosen to prevent the algorithm from

hunting - that is if the LTE after changing the step size were still too big, the

!ntegration would otherwise have to be repeated several times. To further

32

ameliorate this problem, one can reduce the step size fTaUow even further.

The ability to adjust the current step size - not just the next step size - ensures
that the location of discontinuities can be determined accurately.

Since LTE calculation is just an approximation, it may not be sufficiently

reliable for the purpose at hand. One may want to make the calculation of the
next time step more conservative by reducing it by some means; for example,
by multiplying the right-hand-side of Eq. (3.10) by some factor less than 1.

Even then It3U0w may be too big compared to hcurr If the next step size is

too big, it is very likely that the next step will not pass the monitoring of LTE,
and the next integration will have to be repeated. To minimize the likelihood

fallow
of this happening, one may a priori set the limit of the ratio h to some

number. If the ratio is higher than the limit, h3 ||0W will take the value

determined by this limit. Choosing too large a value of the limit will not solve
the problem, but if the limit is too small, the integration will take more steps

than necessary.

Nevertheless, it has been noticed that the speed of the implemented

algorithm is slower than that of IVPAG of IMSL due to the fact that TARDIS
typically uses two or more iterations per time step in NR algorithm while
IVPAG usually uses one iteration per time step. This observation provides an
incentive to find a better LTE control scheme.

Let us consider how one can obtain one iteration per time step on the

average. One way to achieve this is to find values of f̂ now small enough to

guarantee that the predicted value of state variables are close to the corrector
values within the tolerance of the NR algorithm. However, many

combinations of parameters in the LTE control scheme as described above

had been tried but were not successful in reducing the number of iterations

per time step in sample tests. The experimentation finally leads to another
LTE control scheme, in which:

33

^allow ~
75 Error Tol. ôr HR alqoA r ^

(3.15)

j

ai .u fcr@| CUIUtabg are reianve ana aosoiute error tolerance, respectively, for

stopping criterion of NR algorithm. Note that the new scheme uses the same
SrbI and Sabs for error control in integration and for the stopping criterion of

the NR algorithm. The factor of .75 is used to reduce the ratio of the expected

error in the NR algorithm to the correction made to the predictors at the

current step. The factor of .7 in the exponent is used to account for fact that
the Eq, (3.14) is a very roughly estimate of the relationship between local
truncation error and step size. The two factors given are by no means

optimal but they have so far given satisfactory results in all the test problems.

A relevant question at this point is whether finding the new step size from Eq.
(3.14) is reliable or not. The answer seems to be yes since the equation

tends to select a step size smaller than the one calculated by the previous

LTE control scheme, and TARDIS is able to achieve one iteration per time

step, when using the same error criterion for the NR algorithm. This way one

can use each call to the routine containing the system equations to advance

in time and Stop the iteration process, while the previous LTE control will be
likely to use one call to the routine to advance in time and another call to stop
the iteration process. Moreover, by choosing appropriate parameters in Eq.
(3.14) , one can make the new step size not too conservative also.

It has been observed that there are spurious changes of order of integration

even with the Eq. (3.14) implemented. Gear [37] suggests using some factors

to multiply the step size before selecting the order of integration. So the

following implementation has been added to the LTE Control.

34

The order will be reduced if

^allow(k-l)
1.1 > "allow(k) 51

^allow(k+1)
1.21

and the order will be increased only if

^allow(k+1)
1.095 < hallow(k) <

^allow(k+1)
1.2

Again, the 4 factors above are not guaranteed to be optimal in all cases but
they seem to work just fine with the sample tests. With the Eq. (3.14) and the

implementation above to reduce the spurious order change, the ratio of
number of iterations to total steps of TARDIS is roughly 1.5 on the average.
For most cases, the speed up is double when compared to the previous LTE
control scheme in Eq. (3.13).

It is also observed that the LTE control parameters ere| and egbs are not quite

reliable. For example, when these parameters are reduced, one would

expect less error and more iterations or time steps needed. When the

parameters are increased, the reverse should happen. Test results on

TARDIS do not fully support such reasoning. When the two parameters are
slightly reduced, one may not obtain higher accuracy even though TARDIS

uses more calls. At other times, TARDIS may give higher accuracy with fewer
calls when the parameters are slightly reduced. This behavior happens with
both LTE control schemes and should deserve further investigation: It may

be of interest to note that IMSL's IVPAG uses one parameter to control the
accuracy of the solutions, instead of the usual two parameters used in Eq.

3.4. Com parison between Gear and Trapezoidal Algorithm s

Let us compare the Gear method implemented in TARDIS and the

trapezoidal algorithm, which is one of the most widely used integration

(3.12)

algorithms for a number of simulation packages, on the following 2nCI order
System

y'l = -V2 (3.17)

V2 = Vr (3.18)

With the initial condition y ̂(0) = 1 and y2(0) = 0. The exact solutions are

35

V1 = coS(t) (3.19)

V2 - sin(t) (3.20)

Let us integrate this system using both algorithms for TOO cycles and adjust
the step size of the trapezoidal algorithm or the error tolerances of the Gear

algorithm to give the same magnitude of global error of y1 at 100^ cycle

(compared with the exact solution of y |) to compare the computation

requirements of both algorithms. For the trapezoidal algorithm, let us use
equal step size equivalent to .5 degree, and for the Gear method, let us use a
variable-step, variable-order method as described in the previous section
with £rej = Eab8 = .9e-7 and a maximum order of 6. Figure 3.3 shows the
errors of ŷ of both algorithms at the final cycle. Designed specifically for this

smooth System, the program for the trapezoidal algorithm is written to be as

efficient as possible - that is using the intermediate variables to store values

that are used more than once. The trapezoidal algorithm uses 72,000 steps

while the Gear algorithm gives 3,423 output points and 3,431 calls to

the routine containing the above differential equations. The total
simulation times on Mac Ilex are 11 s and 13 s for the trapezoidal and Gear
algorithms respectively. Although the trapezoidal algorithm uses many more
steps than the Gear algorithm, the trapezoidal algorithm is faster than the
Gear algorithm in this case. However, the execution time cannot be used as
an indication that the trapezoidal method is more efficient than the Gear

method, since the trapezoidal program is being optimized for this specific

case. Nevertheless, from this test one may conclude that, to achieve the

same accuracy, using the trapezoidal algorithm will require many more

4.000E-03

O’. OOOE+OO

-4.000E-03
6.220E+02

a) TARDIS (34 points)

4.000E-03

0.000E+00

■4.00OE-03
6.220E+02

b) Trapezoidal method (720 points)

Figure 3.3. Errors of yj of 2
nd

order system.

a) TARDIS (34 points)

b) Trapezoidal method (720 points)

37

output points and thus many more calls to the routine containing system
equations than those of the Gear method.

For stiff systems, the comparison of TARDIS and equal step-size trapezoidal
algorithm will not be justified since the step size for the trapezoidal algorithm

will be very small throughout the simulation to avoid numerical oscillations. A
variable step-size trapezoidal algorithm, such as the one used in SPICE2,
will be needed for a fair comparison. However, the direct comparison

between SPICE2 and TARDIS cannot be justified because there is overhead
in SPICE2 to process the user's input which will be added to the execution

time. Although, in designing SPICE2, Nagel points out that the trapezoidal
method is more efficient than the Gear method, the implementations of Gear

in SPICE2 and in TARDIS are very different, mainly in the local truncation
error control scheme and the calculation of (3 and S in Eq. (3.5). This can be

a subject for comparative study on the efficiency and accuracy of both
algorithms.

3.5. Handling of State Machines

Before starting the simulation, all initial conditions of state variables and all
states of state machines must be set. With these initial values of state

variable and state machines, TARDIS solves the system equations for the

values of non-state variables and the derivatives of state variables at the

initial time. If TARDIS detects some fired transitions, TARDIS will fire those
transitions, change the states of the state machines, and solve for the new
values of non-state variables and the derivatives of state variables. This
process is repeated until there is no more fired transition at the initial point.
Figure 3.4 shows the flow chart of TARDIS at the beginning of the simulation.

After no fired transition is detected, the integration process begins. With the

derivatives of state variables being replaced by the values obtained from Eq.
(3.5), TARDIS will solve the system equations for the values of state and non

state variables. After a step is completed, TARDIS goes through all active

transitions to see whether any of them can be fired. If none is detected, the

Initialize state
variables

Integration

Initialize state
machines

Solve alg. eq.
at standstill

Change states of
state machines

Figure 3.4. Flow chart at the start of the simulation.

39

next step of integration will be carried Out. If the occurrences of some
discrete events are detected within the current time step, TARDIS will treat
the discrete events according to their types - scheduled or conditional

For a scheduled event, the integration process will be carried out to the

instant where the scheduled event occurs because the instant is known in

advance. Then all active transitions will be checked to find out the fired

transitions. If no fired transition is detected, the integration will continue. If
there are fired transitions, the corresponding state machines will change their
states. Then the system equations will be solved for the values of non-state
variables and the derivatives of state variables. This process will be
repeated until there is no more fired transition. Note that the state variables
take on their current values; they are known variables at this instant.

For a conditional event, the current integration step will actually go beyond

the instant where the event occurs since the instant is not known in advance.
There are several methods proposed by various researchers to locate the

instant of the conditional event, which will be mentioned briefly in the next
section. After the instant of the event is found, repeated solving of the system

equations and changing states of the state machines will be carried out until
there is no fired transition. Then the integration will resume again.

Changes in the states of the state machines may cause changes in input
signals to the system or in system parameters. Whenever a change that
cannot be locally expressed by polynomials, such as an abrupt change,
occurs, previous values of state variables should be discarded and the

integration order should be reset to 1. This is because the integration

algorithm used is based on interpolating polynomials. If the integration is

allowed to be carried on without resetting the order, it is very likely that the

next several integration steps will repeatedly fail, and the step size will
aventuilly be reduced to a very small value before the integration process
can continue. For abrupt changes in the system parameters, the Jacobian

matrix used in the NR method muCt be updated accordingly also.

40

3.6. Locating Zeros of Switching Functions

There are several methods proposed by various researchers to handle

discontinuities in the integration. Some of them try to handle the

discontinuities by the integration routines directly, and others use

interpolating polynomials to locate the discontinuities. Carver [38, 39] uses

another set of differential equations which are derived front switching

functions which are to be solved with the system differential equations and

also uses inverse interpolation to locate discontinuities. This seems to add
more computation to the simulation. Gear [9] uses the step size control to

locate discontinuities. Ellison [40] and Birta, et al. [41] use the values of
switching functions and their derivatives in interpolating polynomials to locate
discontinuities with the Runge-Kutta integration algorithm.

There are also some integration routines that have a root-finding capability.
One such routine is LSODAR [32, 36]. To use this package, the user has to

specify switching functions in another routine. The locations of zeros are

detected by the sign change of the specified functions. However, this is

slightly different from what has been implemented in TARDIS due to

TARDIS's greater complexity. Instead of detecting the sign change, TARDIS

detects the negative values of expressions used for transitions. The normal
values of these expressions are positive. Whenever they are negative,
TARDIS will try to locate the zero-crossing points. Then the integration will
be carried out to the minimum values of all zero-crossing points detected.

For locating the zero-crossing points, TARDIS uses the simple interpolating

polynomials. The values of switching functions of active transitions will be

stored in terms of divided differences for interpolation. The order of
interpolation will be equal to or less than the integration order. If the order of
integration is reset, the order of interpolating polynomials is also reset. At
any time, the order of interpolating polynomials will be less than or equal to

the integration order. Locating negative-going-zero-crossing is done by a

routine modified from Brent's [22]. Brent's routine alternately uses the three

methods depending on how the function whose zero is to be found behaves:
linear interpolation, inverse quadratic interpolation, and binary search.

41

However, TARDIS uses inverse quadratic interpolation and binary search to
locate the zero-crossing point, except at the beginning where the routine

starts off with linear interpolation. The criterion for switching between the two

methods is shown in Fig. 3.5. If the middle point, 2a, is in the area of the two

inverse parabolas which have the slope at one end equal to infinity, the

inverse quadratic will be used to find a zero. Otherwise, the bisection method
will be used (point 2b in Fig. 3.5).

For smooth functions, the implemented routine, GetZero(), and Brent's routine
/ ' V tI

perform similarly, but for the worst case, GetZeroO will use 3 Iog2 —jr
function evaluations, where ta and t^ are the end points, and £ is a specified

error tolerance, while Brent's routine will use (Iog2
V *b

X r function

evaluations. The source code of the routine is listed in Appendix B. In the

simulation, the function whose zero is to be found is usually smooth from one

time step to another so the routine needs only 1-2 function calls to locate a
zero-crossing point.

Locating the zero-crossing points using interpolating polynomials is not
always reliable. Sometimes, it may predict a false zero-crossing point. This

usually happens in a very short period of time: one or two time steps just
before the real zero-crossing point occurs. Thus one cannot take the zero-
crossing point predicted by the interpolating polynomial right away. TARDIS

avoids this problem by reintegrating to that point to confirm whether that point
is a real zero-crossing point. This, however, can make the step size very
small. So the integration part of TARDIS is designed to expect this very small
step size on such occasions.

To avoid numerical problems, some "band of certainty" which is suggested by

Birta, et al [41] in locating discontinuities is also used. In TARDIS, this band

must be on the negative side and will be called a negative band. As to how

large this negative band ought to be, that depends on the switching function

and how accurate the user wants it to be. As illustrated in Fig. 3.6, TARDIS

will try to locate a zero-crossing point which gives a magnitude of the

1
Slope

Inverse parabolas

Use inverse
quadratic

Use bisection •

Figure 3.5. Criterion for switching methods in locating a zero in TARDIS

switching function less than that of the band but as close to it as possible
(down to the machine precision). The reason is that when there is moire than

one fired transition in the current step, the switching functions at the zero
crossing point will have the values within the band as shown by the gray line

in Fig. 3.6.

For detecting short-lived discontinuities, such as the one shown in Fig. 3.7,
the signs of the slopes at the end points are also used whenever such
information is available. In TARDIS the slopes are approximated from the

interpolating polynomials which are calculated and stored from one time step

to another. When the slopes at the end points have different signs, TARDIS
will first approximate the location of the minimum point using linear

interpolation of slopes (see point I in Fig 3.7), and then use the interpolating

polynomial to find out whether the value at that point is lower than the

negative band or not. If it is, TARDIS will use the information at the minimum

point and previous points to locate the zero-crossing point (see point 2 in Fig.

3.7. Test Examples on Integration with Discontinuities

The following three tests are taken from Birta, et al. [41]. In [41] Birta, et al.
use the Runge-Kutta (RK) formula for integration with local truncation error
control; thus without further details, it is not possible to compare the efficiency

of the two methods. The purpose of these examples here, therefore, is just to
show that what has been implemented in TARDIS is reliable. For
completeness, however, numbers of calls to the routines containing systems
equations by both methods are listed. Note that all three test systems are not
stiff, and if the new Jacobian matrix is needed, TARDIS will require n+1 calls

to the routine that contains n system equations to approximate the Jacobian.
Ttiil (S a very expensive way to find the Jacobian, especially in medium and

large systems. The current version of TARDIS requires calculation of the

Jacobian at each discontinuity regardless of its type. This inefficiency will be

stiff, and if the new Jacobian matrix is needed, TARDIS will require n+1 calls

to the routine that contains n system equations to approximate the Jacobian.

Location of
Calculated Root

Small
Negative

Band

Figure 3.6. Locating a zero-crossing point.

Negative
Band

Figure 3.7. Short-lived discontinuity.

45

This is a very expensive way to find the Jacobian, especially in medium and

large systems. The current version of TARDIS requires calculation of the

Jacobian at each discontinuity regardless of its type. This inefficiency will be

corrected in the next version of TARDIS. The data from TARDIS are obtained

using Mac Ilex with THINK C version 4, and all calculations are done using
double precision.

Example 1 The system differential equations are as follows:

y'l = (oy2 (3 .19)

y'2 = -Coy1 (3 .20)

with V1 (0) = 0, y2 (0) = 1 ,0 S t < 3, and co = k. The switching function is

0 = V1 - A t (3.21)

Assume that the locations where 0 changes sign are to be found in the time

interval above. The critical value of A is .4033006 where there will be two
discontinuities in the interval of interest. If A is greater than the critical value,
there will be only one discontinuity. However, if A is less than the critical
value, there will be three discontinuities. Table 3.1 compares the results of
TARDIS, those of Birta, et al„ and exact values given by Birta, et al. Note that
the parameters used in TARDIS are erej = EaI3s = -9e-7. the negative band is

1.e-10, and the maximum order of integration is 6 on Max Ilex. The exact time
is also from Birta, et al.
Again, one should not conclude that the implementation of Gear method in
TARDIS is more efficient than Runge-Kutta even though for each value of A

the number of calls to the routine containing the system equations by TARDIS
is less than those used by Runge-Kutta. Much more information is needed.
Nevertheless, one can see from the instants of discontinuities just how
reliable TARDIS is for this problem. Incidentally, EASY5 [8] with the Adams

method also uses fewer calls with the same accuracy for this problem.

Table 3.1. Comparison of the results of test example 1.

A Exact time

(s)

Birta, et al. TARDIS RHScaIIs
for RK

Calls in
TARDIS

.35 .898206
2.29733
2.62827

.898206
2.29733
2.62828

.8982060
2.297335
2.628273

344 302

.40 .884843
2.41850
2.50000

.882843
2.41849
2.50001

.8848427
2.418501
2.499998

330 293

.41 .882196 .882197 .8821963 288 203

.45 .871693 .871693 .8716927 295 199

47

Let us push TARDIS more to the limit by trying the value of A closer to the
Critical value. If A is .4033, with the old values of erej and eabs, TARDIS will

miss two discontinuities completely. However, if one decreases ere(and eabs

to 1.e-10, TARDIS will be able to detect all three discontinuities.

Example 2 The system differential equations are

y'i = V2 (3.22)

x'2 = u(t) - .2 y2 - y1 (3.23)

from 0 < t< 30. The input function u(t) takes the value either 0 or 1 whenever

the Switching function

<|> = yT -1 (3.24)

changes sign. Initially u(0) is 1. The results of this system are shown in

Table 3.2. The same parameters ysed in TARDIS in the first test are also

used in this test. The exact time is from Birta, et al. In this case, EASY5 [8]
uses twice the number of calls used by Birta, et al. for the same accuracy.

Example 3 The last example is a 3rcl order system,

y't = a i Y1 (3.25)

y'2 = a2 y2 (3.26)

y ' s = yr + y 2 (3.27)

with y1 (0) = y2(0) = 0.5 and y3 = 0. Ot1 and a 2 will assume the values either

2 or -1 alternately. Initially Oc1 is 2 and a 2 is -1. The switching function

I l t t r q g fs between

(I)1 = T - V 1 (3.28)

Table 3.2. Comparison of the results of test example 2.

Exact time

(s)

Birta, et al. TARDIS RHScaIIs
for RK

Calls in
TARDIS

1.679382 1.679382 1.679382 71 61
3.037086 3,037087 3.037085 127 126
6.194505 6.194505 6.194505 225 209
7.186908 7.186914 7.186906 274 263
10.34433 10.34433 10.34433 365 341

11.05712 11.05713 11.05711 407 390
14.21454 14.21455 14.21453 498 470
14.72415 14.72418 14.72415 533 519
17.88157 17.88159 17.88157 617 596
18.24636 18.24639 18.24634 645 642

21.40378 21.40380 21.40377 729 719 ;
21.66569 21.66573 21.66567 757 762'
24.82311 24.82314 24.82309 834 836
25.01178 25.01183 25.01176 862 877
28.16920 28.16924 28.16918 939 951
28.30551 28.30556 28.30547 974 1002

49

and

<t>2 = 1 + y2 (3-29)

Initially is in effect.

The solutions y.| and y2 are in the form ae^ . The value of b alternates

between 2 and -1. As time goes on, the switching frequency increases.
Table 3.3 shows the comparison of the results from Birta, et al., and TARDIS;
the exact values shown in the table are also from Birta, et al.

From these three examples, one can see that TARDIS is quite accurate in

locating zeros. The performance of the present version of TARDIS can even

be further improved by using user's defined Jacobian or providing a way for
the user to update the Jacobian directly without numerical differencing.

50

Table 3.3. Comparison of the results of test example 3.

Exact time

(s)

Birta, et al. TARDIS RHS calls
for RK

Calls in
TARDIS

.3465736 .3465740 .3465735 50 55

.8664340 .8664352 .8664338 92 121
1.126364 1.1263665 1.126364 113 177
1.2563298 1.2563314 1.256329 148 226
1.321312 1.321314 1.321311 190 276
1.353803 1.353805 1.353803 239 314
1.370049 1.370051 1.370048 288 347
1.378172 1.378174 1.378171 337 377
1.382233 1.382235 1.382232 386 408
1.384264 1.384266 1.384263 435 437
1.385279 1.385281 1.385279 484 465
1.385787 1.385789 1.385786 533 496
1.386041 1.386043 1.386040 582 514
1.386167 1.386170 1.386167 631 536
1.386231 1.386233 1.386230 680 560
1.386263 1.386265 1.386262 729 583
1,386278 1.386281 1.386278 778 605
1.386286 1.386289 1.386286 827 627
1.386290 1.386293 1.386290 876 649
1.386292 1.386295 1.386292 925 669

51

CHAPTER 4

SOLVING NON-LINEAR ALGEBRAIC EQUATIONS

4.1. Newton-Raphson Algorithm

There are quite a few methods that can be used to solve nonlinear algebraic
equations. However, none seems to be as reliable as the Newton-Raphson
(NR) algorithm, which is widely used in several general-purpose and
application-specific simulation programs. Likewise, TARDIS uses the NR

algorithm to solve nonlinear equations.

Giventhealgebraicequationsoftheform

g(y) = o (4.1)

and the initial values for the variables in y, the NR algorithm solves the Eq
(4.1) for y as follows:

J AyJ = - g (4.2)

yj+1 = yj + Ayj (4.3)

where J is a Jacobian of g evaluated at y l

If the initial values are do se to the solution, the convergence will be fast. At
the beginning of the simulation, TARDIS uses default zero initial values or
user-supplied initial values to start the NR algorithm. After the state machines
change their states, the initial values of y (the unknowns which include the

non-state variables and the derivatives of state variables only) of the system

equations at that point are taken from the values before the changes in the

state machines. During the integration, however, the initial values of state

52

variables are the predicted values of the Gear algorithm. Since TARDIS also
stores previous values of non-state variables for interpolations, these data

can be used to provide the predicted values of the non-state variables. In

sample test problems, the use of such extrapolated values of non-state
variables does help the NR algorithm to converge faster, resulting in fewer
computations overall.

Solving the Jacobian equation (4.2) is usually done by LU decomposition -
instead of matrix inversion - to reduce the computations and preserve
sparsity. Although, during the integration, the LU decomposition changes

according to the new order and step size of integration, it is common practice

in many simulation programs to reduce computations further by repeatedly

using the same LU decomposition over a period of simulation time, as long

as the convergence of the NR algorithm can be achieved in a few iterations.
But with the variable-order, variable-step-size Gear algorithm, it is very

unlikely that the same LU decomposition can be used for several steps

without some modifications to reflect the change in the order or step size of
the integration.

Petzold uses the following scheme in DASSL [20] to speed up the NR
convergence.

yj+1 = yj + cAyj (4.4)

and c is calculated from

1 + Pcurr^old

where Pcurr is the current value of p, and Poid is the value of p where the

Jacobian was last evaluated (see equation (3.5) for P). This scheme had

been tried in TARDIS, but it was found that, for the kinds of problems of

interest, the computations required actually increased. Thus the scheme
above is not suitable for TARDIS, and another scheme is needed

During integration, it was observed that the value of pis very large compared

to other terms in the system equations most of the time. Consequently, when
the LU decomposition is performed, the entries involved with p are often

chosen as pivots. This observation led us to implement a scheme for
updating the LU decomposition directly based on the ratio of Pcurr to P0Icj.

Pivots involved with p will be modified as follows:

Pivots that are not involved with p will not be updated. This scheme seems to

extend the use of the same Jacobian for several more time steps in the
sample tests.

A straightforward implementation of the NR algorithm may not be suitable for
certain problems: for example, problems with exponential functions which
can make the algorithm diverge. When faced with this type of problem,
TARDIS lets the user specify any limit function that will be applied on some or
ail variables in Ay. By default there is no limit function.

There are several criteria that can be used to test the convergence of the NR

algorithm [42]. The default convergence criterion used in TARDIS is

where ere| and eabs are relative and absolute error tolerances. The stopping

criterion is implemented in a separate routine so that the user can change it if

needed. By default, the same and eabs are applied to all variables in y.

In the current version, TARDIS calculates the Jacobian J by numerical
approximation. Thus

(4.6)

|Ayj| < erel|yj I + eabs (4.7)

(y 1? 1 y j * ® j * • • • ’ y n) ~ (y 1»• • •» y j > * • •> y n)
Syj (J;

The value of Cj is critical to avoid numerical cancellation and to achieve fast

convergence for NR algorithm. Stoer and Bulirsch [43] suggests that Oj

should be such that the difference of fj in Eq. (4.8) is about the half the

machine precision of fj itself. However, for TARDIS there is no a priori

knowledge of the types of functions, so the value of yj will be perturbed by

half the machine precision instead. This approach seems to be working well
for the sample problems tested. As in the case of the stopping criterion, the

user can write a routine to replace the default routine for perturbing the value

of y provided in TARDIS.

4.2. Solving the Jacobian Equation

Instead of matrix inversion, the LU decomposition technique is employed in

solving the Jacobian equation (4.2) to reduce computations and preserve

sparsity. Note that the LU decomposition is equivalent to Gaussian

elimination, but the LU decomposition is prefered because the
decomposition can be reused for different problems in which only the right-
hand-side vector in the Jacobian equation (4.2) changes, whereas, with the

Gaussian elimination, the whole elimination process must be repeated if the

right-hand-side vector changes. There are several equivalent methods for
LU decomposition [44, 45, 46], and there are also incomplete LU
decomposition methods which need some iterations [47, 48]. TARDIS

provides just the Crout algorithm for LU decomposition [46, 49] at this time.
The decomposition of J will give L and U matrices such that

J L U (4.9)

where L and U matrices have the following forms

55

and

1 x x x
0 1 XX
0 0 1 x

-0 0 0 1 .
(4-11)

The entries of L and U matrices can be found as follows: The first step is

Lj1

uU

Fori = 2, n, the iTn step is

LU

Ji- for j = 1,.. . , n

J 1JZL11 for j = 2, n

Jij ‘ X ^ ik^k j
k=1

for j

(4.12)

(4.13)

(4.14)

U;: (Jji ̂ 1 Lii f0rj = i+1, ' n (4-15)
k=l

To conserve memory space, entries in the original matrix J can be replaced

one by one by the entries obtained during the decomposition one-by-one.
Since the diagonals of U are always 1, there is no need to reserve any space
for them.

The result after the ith step is a submatrix of the size (i-1)x(i-l) to be

processed the same way as the previous step - i.e.,

Jjj = Jjj /Jjj for j = i+1............ n (4.16)

i _ l i i for j = i + 1 , n . _
Jjk - Jj k ' JjiJik for k = i + 1 , ..., n (4 1 7)

From Eq. (4.16), it is clear that the pivot Jjj should not be zero, a condition

which cannot be guaranteed for general matrices. To avoid a division by

zero, other nonzero entries in the rows must be chosen as pivots. Note that

56

the pivots are used to divide all other entries in the same rows to get the
entries in the U matrix; the above pivoting scheme is called row pivoting.
Choosing the biggest entries in the rows for row pivoting (or columns for
column pivoting) of submatrices is called partial pivoting. It has the effect of
limiting the growth of values in the decomposition process, which usually

results in better numerical stability. Note that large values of entries involved
in partial pivoting are more common. But large values do not necessarily
imply large backward error in the solution [50]. The user should take this into
consideration when choosing a threshold to determine which entries are to

be chosen as pivots. The threshold pivoting strategy used in TARDIS will be
described later in Section 4.3.2.

There is another LU decomposition method called the Doolittle algorithm [46]
in which the column pivoting scheme is used. Column pivoting is in fact more

common than the row pivoting [51] described above. The value of the norm
of residue r which is defined as

r = J A y - (- g) , (4.18)

will be smaller in column pivoting than in row pivoting [51]. However,
TARDIS uses the row pivoting scheme because it is more compatible with the

LU decomposition and the data structures of sparse matrices. Nevertheless,
the stopping criterion of the NR algorithm will guarantee that Ay must be
within some specified bound before the NR algorithm stops.
The solution of the Jacobian equation (4.2) using L and U matrices can be

divided into two steps: forward elimination and back substitution. Io the

forward elimination step, a temporary vector solution ytmp is found from

^fmp ~ ' 9 (4.18)

The expanded form of Eq. (4.18) is

3 “O

Ii i CQ J~ (4.19)

y2,.t.mp " (' 9 2 ‘ L21 y i,tm p)/L 22’ (4.20)

57

n-1

P r+ 3 T3

II (' 9n ' ^ni 7Ltmp) ■{ ^nni
i=1

(4.21)

where n is the number of equations. The desired solution, Ay,
in the back substitution step from the following equation

is calculated

U A y = 7tmp (4.22)

The expanded form of Eq. (4.22);is

> *< ZJ

Il 7n,tmp (4.23)

% • ! “ 7n-1,tmp' ^(n-1),n ^ n (4.24)

k-1

AVk ■ TkJmp" ^ J ^ k i
i=n

(4.25)

As one can see, the above forward elimination and back substitution steps

can be repeated for different right-hand-side vectors without going through
the LU decomposition process again.

4.3. Sparse Matrix Techniques for LU Decomposition

Sparse matrix techniques have been implemented in TARDIS mainly to

reduce computations, especially in large systems. Symbolic LU
decomposition is not appropriate for TARDIS because the structure of the

system equations is not known. The structure of the system equations
depends on the order in which the equations are written. Although the

equations for the electrical components may be written so that their
Corresponding parts in the Jacobian are symmetric or nearly symmetric in

structure, the equations from other non-electrical components may not be

written as such. Moreover, with the symbolic LU decomposition, it is not
possible to consider the value of the pivots. If the pivots chosen by symbolic

decomposition happen to be much smaller than other terms, the entries in L
and U may increase to very large values. To avoid such numerical
problems, the method used in TARDIS decomposes the Jacobian matrix

based on numerical values while trying to preserve sparsity at the same time.
This method will be explained later.

4.3.1. Data Structures for Sparse Jacobian

The data structure chosen for sparse Jacobian must be suitable for the LU

decomposition. In the LU decomposition, elements of the original matrix

must be readily accessible by both rows and columns. The data structure
used in TARDIS for sparse matrices is modified from that of Horowitz and

Sahni [52] which uses circular linked lists. For the LU decomposition,
however, there is no need to use circular linked lists, so simple linked lists

are used instead. Figure 4.1 shows the data structure for one entry of the

matrix. Each entry has five fields: value of entry, row number, column

number, pointer to the next entry in the same row, and pointer to the next

'■■58

Pointerto next entry
in the same rowPointerto next entry

in the same column

Figure 4.1. Data structure for individual entry.

59

2 0 7 0
O *1 0 0
0 9 0 5
*4 0 0 3

Figure 4.2. Sample matrix.

5o
o:

Column Headers

Figure 4.3. Row and column linked lists for sparse matrix.

entry in the same column. Figure 4.3 illustrates how the structures are
combined to represent a sample matrix in Fig. 4.2. The NULL pointer, 0 ,
indicates that there are no more elements in the same row or column. Every

row- and column-linked list begins with a head node. The search for
elements in the matrix starts from these head nodes. This data structure
allows orderly sequential access to all elements in the matrix in both rows-
and column-directions.

Using this data structure described above, the LU decomposition is about five
times slower than that with symbolic LU decomposition on a medium-size

finite-element problem with about 1700 equations. A significant portion of
time is spent on arranging elements in the linked lists in ascending order.
Since the LU decomposition does not require the ordering of column linked

lists, separating the column linked lists from the row linked list as shown in

Fig. 4.4 may improve the speed by not updating the column-linked lists

without ordering (new information about fill-ins can be added to the

beginning of column linked lists). The information about columns which is no
longer needed after the pivots corresponding to those columns are selected

can be put back in the free--storage pool for reuse. Note that after the LU
decomposition is done, all the elements in column linked lists are returned to

the free-storage pool. The double-precison values of the entries are stored in

the row linked lists only. The speed improvement with these separated data
structures is found to be about a factor of two. It is possible not to order
entries in row linked lists also, and this is left for future investigation to see

whether further speed improvement can be made.

4.3.2. Markowitz Strategy with Threshold Pivoting

There are several strategies for reordering equations to minimize the number
of fill-ins. Nagel [53] and Duff, et al. [54] have, however, reported that none

seems to perform better than the Markowitz strategy. The strategy of
Markowitz [48] is to select the pivot from the entry with the lowest Markowitz
count,

(rk - 1Hck - 1), (4 .25)

R
ow

 H
ea

d
N

od
es

Pointer to next entry
in the same row

9 2

-4 1

5 4 0

3 4 0

a) Row linked lists.

Column Head Nodes

Pointer to next entry
in the same column

b) Column linked lists.

Figure 4.4. Separate row and column linked lists.

a) Row linked lists.
b) Column linked lists.

62

where rk and ck are respectively the numbers of row and column of nonzero

entries of the k**1 candidate for pivot. However, to ensure numerical stability

in the LU decomposition, entries that have large values should be chosen as

the pivots. To compromise between sparsity and numerical stability as
suggested by Duff, et al. [55], TARDIS uses the Markowitz strategy with

threshold pivoting. In this pivoting scheme, those entries having values

Iarger than some threshold relative to the maximum value in the same row

are considered as candidates for the pivots - i.e.,

j PVk - |Jij| (4 -26)

where ^ v k is the kth candidate for the pivot of the ith row, and p is a

constant between 0 and 1. When 1 is used for p, the pivoting scheme

becomes partial pivoting. Duff, et al., suggest a value of 0.1 for p from their
extensive testing. In TARDIS, the user may specify the value of p between 0

and 1, or use the default value of 0.1 provided.

The Markowitz strategy requires the storage of numbers of nonzero, entries in
the rows and columns. Duff, et al. suggest storing them in separate doubly
linked lists, one for rows and the other for columns, for easy updating [55].
The row and column linked lists are alternately scanned in the order of the
increasing number of nonzero entries. The limit on the number of rows and

columns to be scanned can be specified by the user. The default limit is 3.
Whenever there are several candidates for pivots that have the same

minimum Markowitz counts, TARDIS will choose the entry with the largest
value to be the pivot, as suggested by Osterby and Zlatev [56],

63

CHAPTER 5

SAMPLE SYSTEMS

5.1. Modelling of Switches in Electrical Circuits

The switches in electrical circuits are usually handled in two different ways:
ideal switches and high-and-low resistance switches. For an ideal switch,
when it is ON, there is no resistance, and thus the voltage drop across it is

zero. When the switch is OFF the current passing through it is zero. The

system equations of an electrical circuit having its switches modelled as ideal
switches are usually varied depending on the states of the switches. The

numbers of state variables and non-state variables are also varied.
Simulating such system is very tricky. One technique that can be done is to

find the equations of all possible combinations of switch states. For a

complicated system, such combinations can be prohibitively large. Another
technique is to use a tensor approach which uses a connection matrix to

relate independent variables of the connected subcircuit [57]. Note that it is

possible for an electrical circuit to have several unconnected subcircuits, in

which case the simulation must be done separately on each subcircuit. What
is usually done, however, is to have components with high impedances
connecting all unconnected subcircuits to a reference node.

For a high-and-low resistance switch, the on state is represented by a low
resistance while the OFF state is represented by a high resistance. With such
modelling of switches, the structure of the system equations of an electrical
circuit containing switches is fixed, but the parameters in the equations can

vary depending on the states of the switches. The number of state variables

and the number of non-state variables are also fixed.

64

In terms of simulation, both switch models require about the same amount of
computations when they are handled properly. Using the ideal switches may
have the advantage that the number of state variables may be reduced

somewhat for some periods of the simulation. But there is an overhead in

formulating the equations from the changing circuit topology.

For TARDIS, any model of switches will work just fine as long as the system

equations are posed correctly. Note that TARDIS expects fixed numbers of
state variables and non-state variables. Using ideal switches in TARDIS

would be more tricky than using high-and-low resistance switches.
Therefore, switches in all sample tests in this chapter are modelled by high-
and-low resistance.

5.2. Sample Test Circuits

Presented in this chapter are simulations of four sample systems to show
how the various ideas discussed earlier will perform when implemented
together within TARDIS. As in other simulation programs, TARDIS has some
limitations, which the user is advised to take notes. The following

suggestions are offered to avoid numerical problems that may arise

1. When dealing with switches, avoid extreme values of ON and OFF
resistance. Choose some reasonable values that will have no

significant effect on the simulation. Using extreme values can

make the program reduce the integration step size to very small
values or even abort when the Jacobian matrix becomes singular.

2. Choose a small enough value of the negative band tolerance so

that the residue will not affect the accuracy of the simulation. But
too small a value may lead to numerical problem. Do not choose
zero for this tolerance.

3. If equations can be reduced by mere inspection, the user is

encouraged to reduce them and thus speed up the simulation.

65

4. If it is known in advance that dynamics which occur very fast are not
of interest, the user is advised not to include the corresponding

terms or equations in the simulation since TARDIS will not hesitate
to reduce the step size down to a very small value to accommodate
such fast transients.

5. Do not eliminate the number of state variables by merely zeroing

their coefficients; they should be eliminated explicitly. For example1

in V = L^j1 the state variable i cannot be eliminated by zeroing the

L. A very small value of L may result in a very small integration

step size. The best way to get rid of some state variables from the
simulation Is not to include them in the equations.

In the next sections, the following sample systems will he examined:

I . simple R-L circuit with one diode,

■:-2. single-phase full-bridge with dc motor,

3. high-frequency inverter, and

4. induction motor with current source inverter.

The complexity of these sample systems increases in the order that they are
presented.

5.2.1. Simple R-L Circuit with One Diode

Although the circuit diagram shown in Fig. 5.1 looks like a simple circuit, it is
not easy to simulate the behavior of diode correctly without reintegrating to

the discontinuity points, as mentioned in Chapter 3. The MainSystemO and
MainEvent() routines for this system are shown in Appendix C.

The state transition diagram describing a diode's behavior is shown in Fig.

5.2. Since the voltage-current relationship of the diode is simply = Rp Ip,

the current and voltage always have the same sign. Detecting the value of

L = 1H

Figure 5.1. Circuit diagram of an R-L circuit with one diode.

Current < 0

Current > 0

Figure 5.2. State transition diagram of a diode.

67

-2.50E+00

5.00E+00

I.OOE+OO

5.OOE-Ql

0.00E+00 2.50E+00 5.OOE+OO
Time (S)

Figure 5.3. Output of simple R-L circuit with one diode.

68

current passing through the diode is equivalent to detecting the value of
voltage across it. Better accuracy is obtained by tracking the diode voltage
for the transition from OFF to ON and the diode current for transition from ON
to OFF. The output points of the results obtained from TARDIS are plotted in

Fig. 5.3. These points are close together right after the discontinuities
because the order of integration is reset to one and the step size begins with
some small value.

For this circuit, if a zero-crossing point of the diode’s switching function,
obtained from the root-finding routine, is used without reintegrating to such
point to confirm the existence of the discontinuity, a false ON state of the
diode may occur at that point.

If a simple mechanism is used to handle the discontinuities of the diode's

operation, such as the IF-ELSE statement used in the following pseudo code

if (lL > O.eO)
Rp = 1.e-4

else
Rd = 1.e7;

dlL
0 = 5 sin(2jtt) - l[_(Rd+1) -

where R d is the diode resistance, then there will be output points close

together both before and after the discontinuities, and the instants where the
diode starts conduction will be less consistent than those obtained by using
the state machine, as shown in Fig. 5.4. The reason is, when the integration

process encounter a discontinuity the first time around when integrating

beyond the discontinuity point, the local truncation error detected is large due

to an abrupt change in the diode's resistance. As a result, the current
integration step has to be repeatedly carried out with a smaller and smaller
step size until the local truncation error criterion is satisfied, and the number
of iterations required by the Newton-Raphson algorithm also increases

because the diode's resistance beyond the discontinuity point does not

69

5.OOE+OO

2.50E+00

5. OOE+OO2.50E+00
Time (s)

1.50E+00

I.OOE+OO

0.OOE+OO

0.OOE+OO 2.50E+00
Time (s)

5.OOE+OO

Figure 5.4. Output of the circuit in Fig. 5.1 using IF statements.

i
correspond to that in the Jacobian which is evaluated before the

discontinuity. Thus the performance using the above form of coding to handle

the diode's operation is much poorer than the state machine implementation
used in TARDIS.

For more complicated systems, the use of similar coding, like the one above,
to handle components associated with discrete events may cduse the
Newton-Raphson to diverge, no matter how small the integration step size
might be.

5.2.2. Single-Phase Full Bridge with DC Motor

The single-phase drive system shown in Fig. 5.5 is taken from [38]. The

purpose of this simulation is to compare the results with those given in [38]
which were obtained from an analog computer. The "mainsys.c" file for this
system is given in Appendix D. '

The machine is a 240 V, 5 hp dc shunt motor. The rated motor current is 16.2
A and the rated speed is 1220 rpm. The simulated condition is with the motor
running at a constant speed of 1318 rpm (138 rad/s), carrying the rated load

torque. The voltages and currents of the dc motor and the voltage source are
shown in Fig. 5.6. For this particular operating condition, there are intervals

in which the motor current is zero. Ŝ uch discontinuous conduction of the
bridge occurs when the back electromotive force (e.m.f.) of the motor is

higher than the source voltage. Note that as simulated the commutation
inductance of the voltage source is not zero. If it is, the problem reduces to
one with ideal ac voltage supply to the bridge - a simpler problem.

. . V ■ . I .

5.2.3. High-Frequency Inverter

The circuit of this system is shown in Fig. 5.7. The purpose of this sample test
is to show the comparison of the modelling of a capacitor and an inductor.
Connected between nodes 3 and 4 is a capacitor ip series with the resistor of
0.1 Q; these elements are modelled as follows:

70

71

Figure 5.5. Single-phase full-bridge rectifier with dc motor.

5.00E+02 -

0.OOE+OO

-5.00E+02
0.OOE+OO 2.50E-02

Time (s)

5.00E+01

0.OOE+OO

-5.00E+01
0.OOE+OO 2.50E-02 5.00E-02

Time (s)

4.00E+02
2.00E+02 —
0.OOE+OO
2.0OE+O2

0.OOE+OO 2.50E-02
Time (s)

5.00E-02

4.00E+01
2.OOE+Ol
0.OOE+OO
2.00E+01

0.OOE+OO 2.50E-02 5.00E-02
Time (s)

Figure 5.6. Output of the simulation of the circuit in Fig. 5.5.

73

1

24 IiH J Q 3 -1&100 V

Figure 5.7. High frequency inverter circuit.

2.00E+02
I.00E+02
O.OOE+OO

-1.00E+02
-2.00E+02

0.OOE+OO I .67E-O4 3.33E-04 5.OOE-O4
Time

2.00E+02
1.00E+02 -
0.OOE+OO

-1.00E+02
2.00E+02

0.OOE+OO I.67E-04 3.33E-04 5.00E-04
Time

4.00E+01 -q
2.00E+01
0.OOE+OO

-2.00E+01
4.00E+01

0.OOE+OO 3.33E-04I.67E-04 5 .00E-04
Time (s)

2.00E+02
I.00E+02
0. OOE+OO
•1.00E+02
2.OOE+02 —

0.OOE+OO I.67E-04 3.33E-04 5.OOE-04
Time (s)

Figure 5.8. Output of high frequency inverter as shown in Fig. 5.7.

75

O V(3) - V(4) - (0.1 Ic + Vc)
HV

(5-1)

0

As one can see from the above equations, Vc is a state variable while V(3),
V(4), and Ic are non-state variables. In general, adding a capacitor to the

circuit will add one state variable (Vc) and one non-state variable (Ic) to the

system equations. Adding: an inductor to the circuit will, on the other hand,
add only one state variable; for example, the equation for the inductor of 24
pH in series with the resistance 0.1 £1 can be written as

When operated at the switching frequency of 10.83 KHz with zero initial
conditions for both the capacitor voltage and the inductor current, the

waveforms of the circuit are as shown in Fig. 5.8.

5.2.4. Induction Machine with Current Source Inverter

The power circuit of a current-fed induction motor drive is shown in Fig 5.9,
and the block diagram of the control part is shown in Fig. 5.10. The

parameters of the machines and the control scheme are the same as those

given in [39]. The initial values of the motor speed and dc-link current are

zero. For the simulation results shown, the input speed was set at 900 rpm or
50 % of the rated speed. The load torque was assumed to be proportion al to
the speed; thus at 50 % of the rated speed the load torque is 50 % of the

rated value*.. The induction machine equations are nonlinear due to the

nonlinearities in the magnetization characteristics, in the speed voltage
terms, and in the torque term. Furthermore, some control elements can be

nonlinear or can cause discontinuities. The "mainsys.c" file containing

program codes of the system equations and state machines is listed in
Appendix F.

0
dlL

V (2) - V (3) - C L ^ + 0 .1 Il) (5.3)

Induction
Motor'

Tlo 2

Figure 5.9. Induction motor with current source inverter.

AC Line

INVERTER

INDUCTION
MOTOR

Figure 5.10. Control scheme of induction motor system in Fig. 5.9.

. 78

For this particular system, special considerations have to be given to the Y-
connected 3-phase voltage source and two A-connected capacitor banks in
the inverter circuit. The three inductor currents in the Y-connected source are

not independent of each other, and neither are the three capacitor voltages of
each A-connected capacitor bank. The three inductors in the voltage source

should be considered together as one single unit with only two State
variables; the same applies to the three capacitors of the A-connected bank.

Since the startup of the drive takes a long time, relative to the switching

operations, to preserve some of the details due to the switching the results of
the startup run are divided up into three separate sections: the interval from 0
s to .5 s in Fig. 5.11, the interval from .5 s to 1 s in Fig. 5.12, and the interval
from 5.5 s to 5.6 s in Fig. 5.13. As one can see, there are many

discontinuities in the current waveforms; these are also reflected in the
magnetic flux and torque of the motor. The firing of the thyristors in the

rectifier is synchronized to the frequency of the ac voltage source, and that of
the thyristors in the inverter is synchronized to the motor speed which
increases from a zero value to the desired value at 900 rpm.

7 9

I.00E+03
V 4 5.00E+02 -E

(V) o.OOE+OO
-5.00E+02 i — i— i— i — j— i— i— i i I I i I I I I I i I

0.OOE+OO 1.25E-01 2.50E-01 3.75E-01 5.00E-01
Time (S)

5.00E+02
V 5 0.OOE+OO
(V) -5.00E+02

-I.OOE+03
' 0.OOE+OO I.25E-01 2.50E-01 3.75E-01 5.00E-01

Time (s)

I.50E+02
1.00E+02 -E

3.7SE-01 5.00E-012.50E-011.25E-010.OOE+OO
Time (S)

I.OOE+03
V c u p l 5 .00E+02
(V) 0.OOE+OO

- 5 .00E+02
-1.00E+03 •

f
n ■ . n r M tLI u u L/

0.OOE+OO
1 I 1

1.25E-01 2.50E-01
Time (S)

1 I 1
3.7SE-01 5.OOE-Ol

Figure 5.11. Operations of induction motor system from 0 s to .5 s.

80

2.00E+02
TTHl 1.00E+02
(A) 0.00E+00

-I.00E+02

IL-Jy-

J . . . I M O i l 111 fin I) ii (in fill
n — i— i— i— i— \“ i— I— I— I— H “ i I I I h ~ i i n— i—

0.OOE+OO I.25E-01 2.50E-01 3.75E-01
Time (S)

5.OOE-Ol

5.00E+02
V _ 0. OOE+OO Dl

-5.00E+02
-I.00E+03

0.OOE+OO 1.25E-01 2.50E-01 3.75E-01 5.OOE-Ol
Time (s)

2.00E+02
01 I.00E+02

0.OOE+OO
-I.00E+02

0.OOE+OO I .25E-01 2.50E-01 3.75E-01 5.OOE-Ol
Time (s)

zj • FM n n n n

I T T I I I I I I j H I I I----- 1----- 1----- 1"" I I

E

- I kuLV.*..... •***

■— T— r

__
u j g U A j u f v l ^ y l ^

I I I I------1 ---- J— I----- I ' " 1......1 1 1 I -----I----- 1— T — I------1

Figure 5.11. Continued.

81

6.00E+02
3.00E+02 aos ^
0. OOE+OO-q"

(V) -3. OOE+02 -§
-6.00E+02 r n i) j i I I r | I I r i j I I i r

0.00E+00 I.25E-01 2.50E-01 3.75E-01 5.00E-01
Time (s)

(V)

5.00E+02

0.00E+00

-5.00E+02

y[~n"i i

I T T I I I I I I I I I I I] I I T I

0.OOE+OO 1.25E-01 2.50E-01 3.75E-01 5.OOE-Ol

Time (S)

3.OOE+02 ~n

m 2 . OOE+02 -=
(Y) I,OOE+02 -E

0.OOE+OO i i i i j i n i i p i i i n “| r , I I ;
0.OOE+OO I.25E-01 2.50E-01 3.75E-01 5.OOE-Ol

Time (s)

Figure 5.11. Continued.

82

O.OOE+OO

5.00E+02
O.OOE+OO I.25E-01 2.50E-01

Time (s)

5.OOE-Ol3.. .7 SE-01

lc l
(A)

I.50E+02
7.50E+01
O.OOE+OO
-7.50E+01
-1.50E+02

h - - « » a. M :.. I J ... L « M h - J j __________:
___________ i r r j r i l y f u i y n n

.... E I t t I . . J . , T M U U U U U U
1 ” » ;T I I I j I I I I I I I T j I---- T— T —T

O.OOE+OO I.25E-01 2.50E-01 3.75E-01 5.00E-01
Time (s)

9.00E+02
CO 6.75E+02

rm 4.50E+02
(rpm) 2.25E+02

0.00E+00
0.00E+00 I.25E-01 2.50E-01 3.75E-01 5.00E-01

Time (s)

I.60E+02
T e 1.20E+0 2
, ' 8.00E+01(N-m) 4.00E+01

0.00E+00
O.OOE+OO 1.25E-01 2.50E-01 3.75E-01 5.00E-01

Time (s)

Figure 5.11. Continued.

83

4

(V)

I . 0 0 E + 0 3 •

5 . 0 0 E + 0 2 -

0 . 0 0 E + 0 0 — a s ™ ™ *

- 5 . O O E + 0 2 T T T \ T I r

5 . O O E - O l 6 . 2 5 E - 0 1
T I r i I i I i i i i

7 . 5 0 E - 0 1 8 . 7 5 E - 0 1 I . 0 0 E + 0 0

Time (s)

I . 5 0 E + 0 2

1 l f I . O O E + 0 2

(A) 5 . 0 0 E + 0 1

0 . 0 0 E + 0 0

5 . O O E - Q l 6 . 2 5 E - 0 1 7 . 5 0 E - 0 1 8 . 7 5 E - 0 1 I . O O E + O O
Time (S)

■—I ■ I

I r

- nqift YTrrmfnWm

5 I. i i i I i T F T" j T T “ T T ' T T I I.

4 . 0 0 E + 0 2
V ,

c u p l 2 . O O E + 0 2

(V) 0 . Q O E + 0 0

- 2 . 0 0 E + 0 2

- 4 . 0 0 E + 0 2

5 . O O E - O l 6 . 2 5 E - 0 1 7 . 5 0 E - 0 1 8 . 7 5 E - 0 1 I . O O E + O O
Time (s)

Figure 5.12. Operations of induction motor system from .5 s to 1 s.

84

1.00E+03

0.OOE+OO

I.00E+03
5.OOE-Ol 6.25E-01 7.50E-01

Time (S)
8.75E-01 I.OOE+OO

5.OOE-Ol 6.25E-01 7.50E-01 8.75E-01 I.OOE+OO
Time (s)

5,00E+02

0.OOE+OO

-5.00E+02

-L
I I

I

1 i ' 1 *
[(1P 1P
I ' ' 1 ' I

f i J W
— I— r—i— i— I j i "r i

5.OOE-Ol 6.25E-01 7.50E-01 8.75E-01 I.OOE+OO
Time (s)

1.00E+02 -q
5.00E+01 -E -
0. OOE+OO

-5.00E+01

='f7 . M t . ITTTTTir f t rI ff il M
I ' I i I j I— I— I— I— p- i i i I I I—I— I— I—

Time (s)

Figure 5.12. Continued.

85

' O.OOE+OO

5.00E+02
5.OOE-Ol 6.25E-01 7.50E-01

Time (S)
8.75E-01 I.OOE+OO

V
0.OOE+OO

5.00E+02
5.OOE-Ol 7.50E-01

Time (s)
8.75E-01 I.OOE+OO

I.00E+02

0.OOE+OO

-I.00E+02

eJ I1II. f l ii n fl n f t f l ; n fl fl fl n r
I U U U U U U I j

i 1 i — i— I— [—I— I— I— i— j

V U u

— r—i....i" i—]

J U V V
I I l I

5.OOE-Ol 6.25E-01 7.50E-01 8.75E-01 I.OOE+OO
Time (S)

3.00E+02
¥ ®: 2.00E+O2

(Y) I.00E+02
0.OOE+OO

5.OOE-Ol 6.25E-01 7.50E-01 8.75E-01 I.OOE+OO
Time (s)

n v v#i*i vt*ri v i i v

j*
I I I I j I I l I j I I l l l I 1 1 1

Figure 5.12. Continued.

86

5.00E+02—

O.OOE+OO

5.00E+02
8.75E-015vOOE-Ol 6.25E-01 7.50E-01 I . OOE+OO

Time (s)

I n fi n rt fi n h fi n rt rt-n n ¥ h h n n n n n h it t \ n y n n

I . 50E+02 —
5 .00E-01 6.25E-01 7.50E-01 8.75E-01 I . 00E+00

Time (s)

9.00E+02
05 m 6.00E+02
(rpm) 3•00E+02

0.00E+00
5.00E-01 6.25E-01 7.50E-01 8.75E-01 I.OOEtOO

Time (s)

I.60E+02
T e I.20E+02
... 8.00E+01(N-m)

4.00E+01
0.00E+00

5.00E-01 6.25E-01 7.50E-01 8.75E-01 I.00E+00
Time (S)

n I T T n i i— r

Figure 5.12. Continued.

87

500.000

0 ,000

500.000
5.500 5.525 5.550 5.575 5.600

Time (s)

(A)

100.000

0.000

-100.000

. , P O , P T , P T n p i , n
U V U l U U U

5.500 5.525 5.550 5.575 5.600
Time (s)

5.500 5.525 5.550
Time (s)

5.575 5, 600

(N-m)

150.000

100.000
50.000

0.000
5.500 5.525 5.550 5.575 5.600

Time (s)

T— I— I— r—j— i— T— i i j— i—i— i— i— I— i— r—T— r~

Figure 5.13. Operations of induction motor system from 5.5 s to 5.6 s.

400.000*

V 4 200.000 *

(U) 0.000 -
-200.000 -

5.500 5.525 5.550 5.575 5.500
Time (s)

500.000

0.000

500.000
5.500 5.525 5.550

Time (s)
5.575 5.600

150.000 -q

100.000

0.000 -
5.500 5.525 5.550

Time (s)
5.575 5.600

500.000

0.000

-500.000
5.500 5.525 5.550

Time (s)
5.575

Figure 5.13. Continued.

89

0.000 -

-500.000

5.550 5.575 5.600

500.000 ■

i t —

5.500 5.525 5.550
Time (s)

5.575 5.600

100.000
I

as 0.000
(A)

- 100.000
5.500 5.525 5.550 5.575 5.600

Time (s)

250.000

m 166.667

(V) 83.333

0.000

5.500 5.525 5.550 5.575 5.600
Time (S)

, T vnT | i A
\I] I n - : i w v

T I I T] I i I I J I I T T J I I I------ T

Figure 5.13. Continued.

90

1000.000

0.000

-1000.000
5.500 5.525 5.550

Time (s)
5.575 5.600

100.000 -q------------------- j------*---------------1— ----- -----— . ■ . ' ; : H— — r
1Dl I I I I
(A) 50-0G0 . - 'p /W j ..."j " " -----------

"5Q-000 H — I— I- T— r-j- I I— I— I— I— I— I— I' I j— r I I I—
5.500 5.525 5.550 5.575 5.600

Time (s)

z W W j

•:— I— I— T — r — j 1 T I r j I i I I j— I— I— I— r—

Figure 5.13. Continued.

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

6.1. Conclusion

In this research a study has been performed to look into the modelling of
components used in drive systems, the framework for handling components
associated with discrete events, the data structures for sparse matrices, and
numerical techniques for integration and LU decomposition, for an accurate
and efficient simulation of any drive system on a digital computer. The

research results in several contributions in the area of transient simulation.
The first contribution of this research is in a new scheme for local truncation

error control that selects the step size such that the Newton-Raphson

algorithm converges in one iteration on most occasions. With the usual local
truncation error control scheme, the Newton-Raphson algorithm usually

needs two iterations: one for correcting the predictor values and the other to

stop the iteration process. The new scheme selects the step size that makes

the differences between the predictor values and the values obtained from

the first iteration fall within the bounds for stopping the Newton-Raphson

iterative process. Although this scheme generates slightly more output points
than the usual scheme does, the new scheme can reduce the number of calls
to the routine containing system equations, since each call to the routine is

used effectively to advance time in the simulation - not wasted in the stopping
criterion of the Newton-Raphson algorithm. The new scheme is also more

reliable than the usual scheme because the new scheme uses a smaller step

size than does the usual scheme with the same stopping criterion for the

Newton-Raphson algorithm. By choosing appropriate error control
parameters in the scheme, it is possible to avoid too small a step size. The

computations involved in the new scheme are also fewer than those of the

usual scheme.

92

The second contribution is in the use of state machines to represent the

components associated with discrete events. Although the idea of state

machines has been used to simulate the behavior of switches, the use of
state machines in TARDIS is extensively applied to all discrete components -
not just switches. Using the state machines to simulate the behavior of
discrete components simplifies the modelling of discrete components, and
also contributes to better convergence characteristic for the Newton-Raphson
algorithm when solving equations involving discrete parameters, because

the state machines will allow those parameters to be changed only after the

convergence of iteration process is achieved, not during the iteration
process.

Keeping the system equations in a separate routine from that containing the

state machines improves the speed, because, when the states of the state

machines are to be changed, TARDIS does not have to go through the

system equations. Yet changes in the state machines are effected on the
system equations in the other routine by the use of variables common to both

routines. In TARDIS the simultaneous changes in the state machines are
simulated by updating the status of all the state machines after the program
codes for all the state machines have been executed.

The third contribution is in the method of locating the zeros of switching

functions and confirming the existence of zeros by integrating to the instants
in question. Simple polynomial interpolation will work fine when locating a
zero that occurs away from a minimum point. There is no need to use more
elaborate algorithms for this kind of zero crossing. But for zeros that occur
near the minimum points, information on the first derivatives is found to be
helpful in locating such zeros. In any case, the existence of a zero should be

confirmed by actually integrating to the instants found from the interpolation,
to avoid a false location of zero.

The fourth contribution is in the data structures for the sparse Jacobian and

the LU decomposition method used. Using separate data structures for the
rows and columns is found to be faster than using a structure which has the

row and column combined; some time is saved by not ordering the

information in the separate column structures, ordering which is unavoidable
when the combined data structure is used.

Representing the tangible result of this research, TARDIS is essentially a
versatile simulation program that has a variable-step, variable structure
integration algorithm with root-finding capability, state machines to handle
components associated with discrete events, and sparse matrix techniques.
As such features have never before been incorporated into a single

simulation package, TARDIS is unique in this sense.

6.2. Recommendations for Future Work

There are several areas that still need to be investigated to improve the

speed and usefulness of the package: for example, the handling of
components with time-delay representation such as transmission lines. Most
of the time-delay models are usually based on equal step-size integration. It
is possible to approximate the behavior of such devices by the chord method,
but then how efficient and accurate will the simulation be? Another area to

be investigated is the impact of the Adams method on this kind of simulation,
because there seems to be no advantage in using the Gear method in this

package when it does not skip the fast transients.

As is, TARDIS may not be able to simulate certain systems on some

computers because the implementation of the Gear method using divided
difference can cause a floating-point overflow in some internal variables.
There are several possible ways to overcome this. Further investigation on

the trade-off between efficiency and accuracy has to be done.

Several error detection methods should be added to the package to make it
easier to debug the program. TARDIS skips some error detection for
efficiency, but it is found that some of them should be implemented to prevent
the program from crashing. Also if one is not careful, TARDIS can get stuck in

an infinite loop at standstill where the state machines never stop changing

their states.

93

94

Instead of using the limit functions in the modified Newton-Raphsoh algorithm
for certain types of nonlinear functions which make the algorithm difficult to

converge, one can use the state machines to model these nonlinear

functions. As an example, a nonlinear function will be divided into several
segments, each associated with a state in a state machine. Both ends of a

segment will be extended by straight lines having the same slopes at the end

points of the segment. The more segments there are, the easier the

convergence of the NewtOn-Raphson algorithm is, and the more

computations are involved. The comparison of computational efficiency of
the segmentation of nonlinear function and that of the limit functions should
be a very interesting topic to be investigated.

Although one can write system equations out in order to use the programs, it
is a very cumbersome and error prone process. It is better to have an input
language so that the user can specify the system equations in terms of
modules. The language part will have to be completed to make it easier for
someone else to use the package.

LIST OF REFERENCES

95

LIST OF REFERENCES

[1] Lipo, Thomas A., "Recent progress in the development of solid-state
motor drives," IEEE Trans. Power Electronics, vol. 3, no. 2, April, 1988,
pp. 105-117.

[2] Kirschen1 Daniel S., Donald W. Novotny, and Warin Suwanwisoot,
"Minimizing induction motor losses by excitation control in variable
frequency drives," IEEE Trans, on lnd. Appl., vol. IA-20, no. 5,
September/October 1984, pp. 1244-1250.

[3] Lipo, T. A., "Analysis and control of torque pulsations in current fed
induction motor drives," Adjustable Speed AC Drive Systems, Bimal K.
Bose, Ed., IEEE Press, New York, 1980, pp. 244-251.

[4] Patel, Hasmukh S. and Richard G. Hoft1 "Generalized techniques of
harmonic elimination and voltage control in thyristor inverters: part i -
harmonic elimination," Adjustable Speed AC Drive Systems, Bimal K.
Bose, Ed., IEEE Press, New York, 1980, pp. 110-117.

[5] Mitchell, Edward E., "Advanced continuous simulation language
(ACSL): an update," IMACS World Congress on System Simulation
and Scientific Computation, Montreal, Canada, vol. 1, August, 1982,
pp. 462-464.

[6] Advanced Continuous Simulation Language (ACSL) Reference
Manual, Mitchell and Gauthierr Associates, Concord, Mass., 1987.

[7] Crosbie, Roy £. and J. L. Hay, "Description and processing of
discontinuities with the ESL simulation language," Proceedings of the
Conference on Continuous System Simulation Languages, Ed.
Francois E. Cellier, San Diego, Society for Computer Simulation,
California, 1986, pp. 30-35.

[8] Ummel, Brian R., "Simplified modeling of discontinuous phenomena
using EASY5 switch states," Proceedings of the 1986 Summer Computer Simulation Conference, Eds. Roy Crosbie and Paul Luker,
July, 1986, pp. 99-104.

96

[9] Gear, C. W., "Efficient step size control for output and discontinuity," Trans, of the Society for Computer Simulation, vol. 1, no. 1, 1984, pp.
27-31,

[10] Halin, H.J. and H. Benz, "Continuous-system simulation with PSCSP a
new simulation program based upon semianalysis methods," IMACS
World Congress on System Simulation and Scientific Computation
Montreal, Canada, vol. 1, August, 1982, pp. 358-360.

[11] Nagel, Laurence W. SPICE2: A Computer Program to Simulate Semiconductor Circuits, Memorandum No. UCB/ERL M520,
Electronics Research Laboratory, College of Engineering, University of
California, Berkeley, CA, May 9, 1975, pp. 160-233.

[12] Keyhani, A. and H. Tsai, "IGSPICE simulation of induction machines
with saturable inductances," IEEE PES Summer Meeting, 1988.

[13] Electromagnetic Transients Program (EMTP) Application Guide, S. F.
Mauser and T. E. McDermott, Principal Investigators, EL-4650
Research Project 2149-1, Westinghouse Company.

[14] Rajagopalan, Venkatachari, Computer-Aided Analysis of Power Electronic Systems, Dekker, 1987.

[15] Alvarado, F. L., R. H. Lasseter, and Y. Liu, "An integrated engineering
simulation environment," Power Industry Computer Application Conference Record, 1987, pp. 213-221.

[16] Alvarado, Fernando L. and Yenren Liu, "General purpose symbolic
simulation tools for electric networks," Power Industry Computer Application Conference Record, 1987, pp. 222-229.

[17] Smith, David W., Scott A. Majdecki, and Doug Johnson, "Interactive
control of analog system simulation," VLSI Systems Design, July
1987, pp. 46-54. . ’

[18]

[19]

[20]

MATH/LIBRARYFORTRAN subroutines for Mathematical Applications
IMSL Ine., U.S.A., 1987, pp. 640-651. ’

Hindmarsh, Alan C., "Toward a systematized collection of ODE
solvers," IMACS World Congress on System Simulation and Scientific Computation, Montreal, Canada, vol. 1, August, 1982, pp. 427-429.

PetzoId, Linda, "A Description of DASSL: A differential/alqebraic
S0^ er’ ’ IMACS World Congress on System Simulatfon and

4 3 a 4 3 2 ° Computatlon’ Montreal, Canada, vol. 1, August 1982, pp.

97

[21] Forsythe, George, Miehael A. Malcolm, and Cleve B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, Englewood
Cliffs, NJ, 1977, pp. 161-166.

[22] Brent, Richard P., Algorithms for Minimization without Derivatives,
Prentice-Hall, Inc., Englewood Cliffs, NJ1 1973, pp. 47-60, 187-191.

[23] Runge, T. F. "A universal language for network simulation," Numerical Methods for Differential Equations and Simulations, Eds. A. W. Bennett
and R. Vichnevetsky1 IMACS1 North-Holland, Amsterdam, 1978, pp.
169-175.

[24] Bordry, F. and H. Foch, "Computer-aided analysis of power-electronic
systems," IEEE Power Electronics Specialists Conference Record,
1985, pp. 516-522.

[25] Peterson, James L , "Petri nets," Comput Surveys, vol. 9, no. 3.,
September, 1977, pp. 223-252.

[26] Petzold, Linda, "Differential/algebraic equations are not ODE's,” SIAM J. Sci. Stat Comput., vol. 3, no. 3, September, 1982, pp. 367-384.

[27] Mattsson, Sven Erik, "On modelling and differential/algebraic
systems," Simulation, January, 1989, pp. 24-32.

[28] Enright, W. H., "The comparison of numerical methods for stiff ODEs," Stiff Computation, Richard C. Aiken, ed., Oxford University Press, New
; York, 1985, pp. 175-180.

[29] Chua, Leon 0 . and Pen-Min Lin, Computer-Aided Analysis of
Electronic Circuits, Prentice-Hall, Englewood Cliffs, New Jersey, 1975,
pp. 480-534.

[30] Vlach, Jiri and Kishore Singhal, Computer Methods for Circuit Analysis
and Design, Van Nostrand Reinhold Company, New York 1983, pp.
364-394.

[31] Van Bokhoven, W. M. G., "Linear implicit differentiation formulas of
variable step and order," IEEE Trans. Circuits and Syst., vol. CAS-22,
no. 2, February, 1975, pp. 109-115.

[32] Petzold, Linda and Alan C. Hindmarsh, LSODAR code from
ODEPACK.

[33] Vlach, Jiri and Kishore Singhal, Computer Methods for Circuit Analysis and Design, Van Nostrand Reinhold Company, New York 1983, pp.
364-394.

98

[34] Zein1 D. A., C. W. Ho, and A. J. Gruodis, "A new interactive circuit
design program in APL," International Symposium on Circuits and Systems, 1980, pp. 913-917.

[35] Brayton, Robert K,, Fred G. Gustavson and Gary D. Hachtel, "New
efficient algorithm for solving differential-algebraic systems using
implicit backward differentiation formulas," Proc. IEEE, vol. 60 no 1
Jan. 1972, pp. 98-108. ’ ' ’

[36] Hindmarsh, Alan, "The ODEPACK solvers," Stiff Computation, Richard
C. Aiken, ed., Oxford University Press, New York, 1985, pp. 167-174.

[37] Gear, C. W., "The automatic integration of ordinary differential
equations," Commun. ACM., Ed. W. P. Timlake, vol. 14, no. 3, March
1971, pp. 176-179.

[38] Carver, M. B. and S. R. MacEwen, "Numerical analysis of a system
described by implicitly-defined ordinary differential equations
containing numerous discontinuities," AppL Math. Modelling vol 2
December, 1978, pp. 280-286.

[39] Carver, M. B., "Efficient integration over discontinuities in ordinary
differential equations," Numerical Methods for Differential Equations and Simulation, Ed. A. W. Jennett and R. Vichnevetsky, 1978 IMACS
North-Holland Publishing Company, pp. 51-56. t

[40] Ellison, D., "Efficient automatic integration of ordinary differential
equations with discontinuities," Math, and Comp, in Simulation vol
XXIII, 1981, pp. 12-20.

[41] Birta, L. G., T. I. Oren, and D. L Kettenis, "A robust procedure for
discontinuity handling in continuous system simulation," Trans, of the Society for Computer Simulation, vol. 2, no. 3, 1985, pp. 189-205.

[42] Rice, John R., Numerical Methods, Software, and Analysis: IMSL Reference Edition, McGraw-Hill Book Company, New York, 1983 d d00C.007 • * rr-

[43] Stoer, J and R. Bulirsch, Introduction to Numerical Analysis Sorinaer-
Verlag, New York, 1980, p. 267. ' ■ y

Verlag, New York, 1980, pp. 159-168.

[46] Duff, I. S., A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford UP, Oxford, 1989, pp. 46-53.

[47] Duff, I. S., A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford UP, Oxford, 1989, pp. 195-197.

[48] Markowitz, Harry, "The elimination form of the inverse and its
application to linear programming," Management Science, Journal of
the Institute of Management Sciences, vol. 3, no. 3, April, 1957, pp.
255-269.

[49] Chua, Leon 0 . and P. M. Lin, Computer Aided Analysis of Electronic
Circuits: Algorithms & Computational Techniques, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1975, pp. 181-185.

[50] Higham, Nicholas and Desmond J. Higham, "Large growth factors in
Gaussian elimination with pivoting," SIAM J. Matrix Anal. Appl., vol. 10,
no. 2, April, 1989, pp. 155-164.

99

[51] Skeel, Robert D., "Effect of equillibration on residual size for partial
pivoting," SIAM J. Numer. Anal., vol. 18, no. 3, June, 1981, pp. 449-
454.

[52] Horowitz, Ellis and Sartaj Sahni, Fundamentals of Data Structures,
Computer Science Press, Inc., Maryland, 1982, pp. 134-140.

[53] Nagel, Laurence W., SPICE2: A Computer Program to Simulate
Semiconductor Circuits, Memorandum No. UCB/ERL M520,
Electronics Research Laboratory, College of Engineering, University of
California, Berkeley, CA, May 9, 1975, pp. 97-104.

[54] Duff, I. S., A. M. Erisman, and J. K. Reid, Direct Methods for Sparse
Matrices, Oxford UP, Oxford, 1989, p. 135.

[55] Duff, I. S., A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford UP, Oxford, 1989, pp. 178-183.

[56] Osterby, Ole and Zahari Zlatev, Direct Methods for Sparse Matrices,
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1983,
pp. 48-49.

[57] Ong, C. M., C. T. Liu, and C. N. Lu, "Generation of connection matrices
for digital computer simulation of converter circuits using the tensor
approach," IEEE Trans. Power Systems, vol. PWRS-2, no. 4,
November, 1987, pp. 906-912.

[58] Krause, Paul C., Analysis of Electric Machiney, McGraw-Hill Book
Company, 1986, pp. 101-102.

[59] Gornell1 Edward P. and Thomas A. Lipo1 "Modeling and design of
controlled current induction motor drive systems," Adjustable Speed AC Drive Systems, Ed. Bimal K. Bose, IEEE Press, New York, 1980,
pp. 234-243.

[60] Scheid, Francis, Theory and Problem of Numerical Analysis, Schaum's outline Series in Mathematics, McGraw-Hill Book Company,
New York, 1968, pp. 58-59.

[62] Stoer, J. and R. Bulirsch, Introduction to Numerical Analysis,
Translated by R. Bartels, W. Gautschi, and C. Witzgall.Springer-
Verlag, New York, 1983, pp. 43-49.

[63] Kunz, Kaiser S., Numerical Analysis, McGraw-Hill Book Company,
Inc., 1957, p. 101.

100

APPENDICES

101

A P P E N D IC E S

Appendix A - Newton's Divided Ditferences

The following describes the bastes of the divided differences [60, 61] which are used
in the Gear algorithm as described in Chapter 3. A first divided difference is defined

by

Vlti l Ii. ,]
y[t|] - y iv ,]

V t M
(3.1)

The second order d ivided difference is then

^ y [tj, V 1] - y ft j.- j, tj_2]
y i v v i - v d « . : 1— “

The n ^ order d iv ided difference can be w ritten as

y [tj, t M ------ t j-n -1) ’ Ytt S-I ’ t i-2 ’ •••' V n j

(3.2)

V î- tMVn3 tI ' 1I-O
(3.3)

Note that

dy
dt y[tj. V (3.4)

and

I dny
nl dtn y[tj, tj, t j , ... y (3.5)

with n+1 terms of f in the right-hand side argument [62].

102

Appendix B - Source Code for GetZeroQ

i n c I u d e < s t d i o . h >
* i no I ude < ma t h . h >
n i n c l u d e < u a I u e s . h >

»de f I ne DEBUG
* u n d e f DEBUG

e x t e r n double G e t Z e r o O , m y _ f u n c O ;
e x t e r n double my_poiu () ;

i f d e f sun
e x t e r n double d b I _ s c a I b n () ;
n en d i f

m a i n (){ ̂ '
double Lij b., r e s u l t ;
int c o u n t ;

Cl = - I . e U , b = I , e O;
,f pr i nt t (s t d e r r , " Ent er a and b: ") ;
f u o i d) scan f (" % I f % I f " , &a, &b) ;
pr I nt f (" %Z2 . I Se \ n ", r e s u l t = Get Zero (a , b , my_f unc O . e-1 O I L c d u n t)) ;

p r i n t f ("count = Sd, " , count) ;
• p r i n t f (" f = $ 2 2 , 1 5 e \ n" , my_fu n c (r e s u 1 1)) ;

doubl e my_f unc (x)
doub I e x ;
{ ■ - ■ ■

double r o a Iu e ;
/ *

d oub l e n = 5 . eO;
double a , b ;

a = O . e O;
b = I . e - 4;
r u a I u e = p o w (x , n) + b ;
rvalue = exp(4 0 . e 0 * x - 2 7 . 6 3 1eO) - I . e- 1 2 - l . e - 1 ;

XruaIue = x >= O . eO? poui(x , 5. e - 1): - p©» (- x , 5 . e-3) ' j
rva l ue = m y_p o«i (x , 7) + 28. eO*my_po«i(x, 4) - 4 8 0 . eO:

* /
r u a I u e = p o ui (x , 9 . e O);
r e t u r n r ua l ue ;

} -
doubl e ■ m y __p o ui (x , n)
d o u b l e x ;
i n t n ;
{ '

double r e t u r n _ u a Iue = x ; . s - '

ui h j I e (- - n)
r e t u r n _ u a Iue *= x;

r e t u r n r e t u r n __u a I u e ;

103
}
d o u b l e G e t Z e r o (q , e , f , t o I (c n t ^ a d d r)
d o u b l e a , c , (* f) () , t o I ;
I n t * c n t _ a d d r j
{

d o u b l e f a , f b , f c , f d , a _ b , b _ c , a _ c , a _ d , ;b_d, f a _ f b , f b _ f c ,
d o u b l e d u d t l O , d u d f l l , d u d f 2 , d t m p , mag_a__bj
d o u b l e c _ d , b , d , s I o p e _ i n u , o l d . « , a _ b 1 , o I d _ a _ b 2 ;
d o u b l e e p s l j e t a 2 ;

I n t 3 i g n _ f a , s i g n M b , s i g n _ f c , s i g n _ f d , i n u q _ c n t j
d o u b l e 5 c _ f a , s c _ f b , s c _ f c j

* c n t _ a d d r = 0 ;

e p s 1 = I M e - I b ; / * S h o u l d b e s e t a c c o r d i n g t o t h e h a r d w a r e . * /
e t a 2 = 2 . 2 e - 16 ; / * 2 * e p s 4 * /

/*
* I n 1 1 i a I c h e c k i n g .

■*/
I f ((* c n t _ a d d r) + + , ! (f a = (* f) (a)))

r e t u r n a;
i f ((* e n t _ a d d r) + + , I (f c = (* f) (c)))
r e t u r n c;

i f ((s i q n _ f a = s i q n b i t (f a)) == (s i g n _ f c = s i g n b i t (f c)))
{

p r i n t f (" E r r o r : f a a n d f b c a n n o t h a u e t h e same s i g n . \ n ") j
p r I n t f (" f a = * 22 . . I S e , f b - S 2 2 . 1 5 e \ n " , f a , f c) ;
r e t u r n Df l XDOUBLEj

} ' ̂ . /
I f (f a b s (f a) > f a b s (f c)) / * Swap a a n d c i f I f a I > I f c I . * /

{
d t mp = a , a = c , c = d t mp ;

d t m p = . f a , f a . = fc. , f c = d t mp ;
s i q n _ f a = ! s i q n _ f a , s i g n _ f c = ! s i g n _ _ f c j

}
a _ c = a - Cj / * I f a l < | f c | . * /
t o ! = e p s 1 * f a b s (a) + e t a 2 ;
i f (f a b s (a _ c) < t o I)

r e t u r n a j

/*
* S t a r t w i t h l i n e a r i n t e r p o l a t i o n .

* /
s c _ f a = f a . / f c j
f a _ f c = s c _ f a - I . eOj
s I o p e M n u = a ^ c / f a _ f c j

I f d e f DEB UG
p r i n t f (" L i n e a r i n t e r p o l a t i o n . I a — c I = * 2 2 . I 5 e \ . n " , f a b 3 (a _ c)) j

’ p r l n t f C a = & 2 2 . 1 5 e , c = * 2 2 . I 5 e \ n " , a , c) ;
p r i n t f (" f a - * 2 2 . I S e , f c = * 2 2 . I 5 e \ n s I o p e _ i nu * 2 2 . I 5 e \ n " , f a , f c ,

^ e n d i f
a ^ b = s c _ f a * s l o p e _ i n u ;

i f (f a b s (a _ b) < t o I)
a_,b - c o p y s i gn (t o I , a _ c) j

b == a - a _ b j
i f ((* c n t _ a d d r .)+ + , I (f b = (* f) (b)))

r e t u r n b j
s i g n _ f b = s i g n b i t (f b) j

b _ c = b - c j
i f (s i g n M ’ b I = s i g n M c) / * I s s i g n (f b) ! = s i g n (f c) ? * /

{ / * S w i t c h a a n d c . * /

f a_ - f c j

s I o p e _i n u) j

104
d t m p = a, a = c , c = d t m p ;

d t iti p = f a j f a = f c , f c = d t m p ;

s i g n _ f a = ! s i g n _ f a , s i g n _ f c = ! s i g n _ f c ;
a _ c = - a _ c ;
d t mp = a _ b ;
a _ b = - b _ c ;
b _ c = - d t m p ;

" } ■■■/
/* ■-

* B i g l o o p ; s w i t c h b e t w e e n i n u e r s e q u a d r a t i c a n d b i s e c t i o n m e t h o d s .
’ * K n o wn s a r e : a _ b t a _ c .

■ * /
i nu q_ _ c n t = Cl;

- w h i l e ' (f b S.8, ((m a g _ a _ b = f a b s (a _ b)) > (t o t = e p s 4 * f a b s (b) + e t a 2)))

* i f d e f D E B U G

print f'("After processed. I a-b I X 2 2 . ISej tott o I) ;
print f ("b =%22. I 5e, fb =XEZ1ISeVn", b, fb);
printf("a_b=X22.I Se, a_c=X22.15e, b_c=X22.I5e\n\n"

*end if

= %22. I BeNnnj mag_

a _ b , a _ c , b _ c) ;

/ * a b - > c

* /
i f ((f a b s (f b) > f a b s (f c)) | | (m a g _ a _ b

g o t o b i s e c t ;
i f (f a b s (f c) > f a b s (f a))

s c _ f a = f a / f c ;
s c _ f b = f b / f c ;
s c _ f c = I . eQ;

} -
e l s e

■ {
s c . _ f a = I , e O ;
s c _ f b = f b / f a ;
s c _ f c = f c / f a ;

‘ ' }
f a _ f c = s c _ f a - s c _ f c ;
s I o p e _ i nu = a _ c / f a _ f c ;

i f ((f a _ f b = s c _ f a - s c _ f b) && (f b _ f c
{ .

d u d f 10 = a _ b / f a _ f b ;
d u d t i l = b _ e / f b _ f c ;
d t mp = d u d f I G - d u d f l l ;

“ i f d e f D E B U G

p r i n t f C ' d t m p = X 2 2 . I 5 e \ n \ n " , d t m p) ;
e n d i f

i f (f a b s (d t m p) < f o b s (s i o p e _ i n v))

/*

< , I d e x p (t o I , I)))

sc_fb - sc_fc))

* Inuerse quadratic with a <-d-> b-> c
*/
s«i itch (i nuq_cnt)

{
c a s e 2 :

' f (m a g _ a _ b > I d e x p (o I d _ a _ b 2 , - 1))
g o t o b i sec t ;

c a s e l :
old_a_b2 = oId_a_bI ;

105
c a s e Q :

o I d _ a _ b I = r a a g_ a_ b;
i f (i n y q _ c n t < 2)

i n y q _ c n t ++ ;
}

* i fdet D E B U G

printf(“Inverse quadratic. Ia-bI = *22.15e\n", mag_a_b);
printfC'a =*2 2 . 1 Se , b =*22.156, e =*2 2 .I5e\n", a, b, c);
print f(“fa=*2 2 .I5e, fb=*22.15e, fc=*22.15e\nsIope_i ny *22.15e\n"
fa4, fb, fct s I ope_i ny);

e n d i f
d y d f 2 = dt rap / f a _ f c ;

b _ d * 3 c _ f b * (d v d f 10 - s c _ f a * d v d f 2) ;
i f (f a b s (b _ d) < t o I)

' <
b _ d = c o p y s i g n (t o l , - a _ b) ;

; 4 * b -• b _ d ;
cj—d = a - d ;

: ; . - }
e l s e

{ '
d = b - b _ d ;

i :f (f a b s (a _ d = a - d) < t o l)
{

a _ d = c o p y s i g n (t o I , a _ b) ;
4 = 0 - a _ d ;

b _d = b - d;

; ; : -
fd: - C3H X C d :) ; (H n t _ . a d d r) + + ;

* i f d e f D E B U G

C r i n t f C ' d = 8 2 2 . I S e , f d * • ' * 2 2 . I r S f t W * , d ; f d) ;
p r i n t f C ' ' a - d = 822.1 Se, b - d = 822. I S e A n u , cud, feud)-; j

* e n d i f

i f C K f d l X
r e t u r n d;

s i g.n_.fdl = s i g n b i t C f d) ;
t f C s i g n _ f d == s i g n ^ f c)

{
* i ; f d e f D E B D G

C r it n t f (" a d;- > b - > c \ n ") ;
p r i n t f ("a b - > c < = = r e p I a c e \ n ") ;

^ e n dFi f
c = b ; f c = f b ;
b = d; f b = f d ;

c u e = a _ b ; a _ b =• a _ d ; b _ c - - b _ d ;
}: ■ ■
e I s e

' ‘ ' {
* i f d e f D E B U G

p r i n t f C a < - d b - > c \ n ") ;
* e n d i f

i f (ma g _ a _ b > f a b s Cc _ d = c - d) X

{
« E f d f t f D E D U G

p r i n t f C " a; b - > c < ==? r e p I a c e N n ") ;
* e n d i f

Q - d ; f a ; - Cd;
c u b - - b _ d ; auQ =• - c _ d ;

106

« i f d e f

’ • ■end i f

}
e I se

{
DEBUG

p r i n t , f ("c < - b a r e p I a c e \ n ") ;

c = a; fc = fa j sign_fc = sign_fa;
a = b; f a . = f b ; s i g n _ f a = • s i gn f b ;
b = d; f b = fd; sign_fb = sign__fd;
a - c = - a _ b ; b _ c = -a_d; a__b = b_d;

}

}
continue;

}
/ ♦ B i s e c t i o n .
* / ' ̂ . ■ ■■

b i s e c t :
* i f d e f D E B U G

p r i n t f (“ B i s e c t i o n . I a - b I = X 2 2 . 1 5 e \ n " , m a g _ a _ b) ;
p r i (i t f (" a = %22. I S e , b = X 2 2 , I 5 e / c =%22 . I 5 e \ n “ , a , b , c) ;

p r i n t f (" f a = $ 2 2 . 1 5 e , f b = S 2 2 , 1 5 e , f c = S 2 2 . I 5 e \ n s I o p e _ i nu S 2 2 . I 5 e \ n " , f a ,
f b ; ■

f c , s I o p e _ i n o) ;
e n d i f

i n u q _ c n t = 0 ;
c = b ; f c = f b ;

« i f d e f D E B U G

p r i n t f (" f l f t e r s h i f t i n g i n b i s e c t i o n . \ n ") ;
p r i n t f (. ” d = S 2 2 , 1 5 e , c = S 2 2 . 1 5 e \ n " , . a , c) ;
p r i n t f (" f a = $ 2 2 . I 5 e , f c = $ 2 2 . I 5 e \ n " / f a , f c) ;

■ * e n d i f
a _ c - a - c ;

a _ b = b__c = I dexp C a_c, -1); ’
b = c + b _ c ;

f b = (* f) (b) ; (* c n t _ a d d r) + + ; s i g n _ f b = s i g n b i t (f b) ;
i f (s i q n _ f b ! = s i q n _ f c) / * a < - b c * /

{

}

/* c <- b a< = = r e p l a c e
d t m p = a, a itOOIl d t m p ;
dtmp = fa, fa = f c , f c = d t m p ;
s I gn_fa = !sign_fa, sIg n _ f c = ! s i g n _ f c ;0ICi1OIO

a_b = - b_c j
b_c = a_b j

/*. I a-b I == Ib - c I */

}

I a - b I $ 2 2 . I 5 e , t o I

/* End big loop. */
n U d e i D E B LI G

p r int t("After processed,
t o I) ;

print f ("b = & 2 2 . I 5 e, fb -X22 . I 5e\n“, b, fb);
print f("a_b“X22.15e, a_c«X22.15e, b_c=X22.15e\n\n",“end i f
i f (f ab s (f a) > f q b s (f b))
return b;

return a;
}

= $22 .I5e\n", mag__a_b,

a-b, a_c, b_c);

107

Appendix C - "mainsys.c" file for test circuit 1

♦ T h i s i s a s i m p l e R - L c i r c u i t w i t h a d i o d e u s i n g a s t a t e m a c h i n e .
* * * * * * * * * * * * * * * * * * * * * * I

♦ in cIud e "c o m p d e p . h"
♦include < m a t h . h >
♦ i nc Iude < st d I o . h >

* i n c I u d e " a I I o c . h "
♦ i n c l u d e " d b I . h "
♦ i n c I u d e " d e f a u I t . h "
♦ i n c I u d e " d i s c . h "
♦ i n c l u d e " i n t g . h "
♦ I n c I u d e " m a c h d e p . h "
♦ i n c I u d e " ma i n s y s . h "
♦ I n c I u d e " m s g . h "

♦ d e f i n e OEBI IG^eoeot
♦unde f DEBUG_euent
♦ d e f i n e R e s e t I n t g O r d (r s»o r d e r - I)
♦de f i ne Recomput eJac (comp_j ac = I)
♦ d e f i n e R e s e t E u e n t 0 r d (x) ((x) - > o r d e r = 0)

♦ d e f i n e HOM I T 0 R (s t e _ p t r , e x p r ; t o I) m o n i t o r _ s t e (s t e _ p t r J e x p r , t o I)
♦ d e f i n e S C H E D U L E (s c h ^ p t r , e x p r) y s c h e d u I e (s c h _ . p t r , e x p r , t)

♦ d e f i n e SC H_RL LO C () (E CRLLOC (T j SCH__t)) '

♦ d e f i n e SJflTELlHI-T -I .7* i n i t i a l l y a l l s t a t e w i l l b e s e t t o - I . */

♦ d e f i n e L I . e O
♦ d e f i n e R I . e O

♦ d e f i n e U m 5 . e Cl

♦ d e f i n e OH I / * S t a t e s o f a d i o d e . * /

♦ d e f i n e O F F 0

♦ d e f i n e 0 I ODE 0 / * S t a t e m a c h i n e n u m b e r .

♦ d e f i n e I 2 3 y s t j O]

♦ d e f i n e d I 2 3 d y 3 1 [0]

♦ d e f i n e Rd d b I ^ p a r m [0]

♦ d e f I n e 1 2 3 0 0 . e G / * . I n i t i a l c o n d i t i o n . * /

f d e f i n e t o I l . e - 1 0

♦ d e f i n e r o n I . e - ^

♦ d e f i n e r o f f I . e 7

S t a t i c c h a r * I o c a I _ f n a m e = " m a i n s y s . c " ;

s t a t i c d o u b I e d b I _ i n t e r m [I] ,
d b I _ p a r m[I] ;

s t a t i c d o u b l e p i 2 ;

s t a t i c F I L E * o u t f i I e 2 ;

108
Int

I o n g

numst '■ I1
numnst = 0,
numeq = I,
NumStDach = I
NumLnode = 0;
count.mainsys
coun t__out put

0,
/*** # # *********

* D i o d e O s i m u l a t e s b e h a v i o r o f a d i o d e u s i n g a f i n i t e s t a t e m a c h i n e ,
a * - * * * * * * * * * * * * * * * - * * * * * * * * * * * * * * * * * - * * * * * . * * * * * i * * * # # / ,

stdt i c v o i d D i o d e (y s t , c u r r e n t , r e s i s t a n c e f l d d r , i n i t S t a t e , i r t d e x S t M a c h ,
n a m e , s t e t m p f l d d r)

d o u b l e * y s t , c u r r e n t , * r e s i s t a n c e f l d d r ;
■ n t i n i t S t a t e , i n d e x S t M a c h ;

* n a m e ;
* * s t e t m p fl d d r ;

c h a r
STE__t

{
s w i t c h (S t M a c h [i n d e x S t M a c h]) ■

{
c a s e O F F :

i f (MON I T O R (* s t e t m p f l d d r , - c u r r e n t , t o !))
{

N e x t S t a t e (i n d e x S t M a c h , O N) ;
R e c o m p u t e J a c ;
* r e s i s t a n c e f l d d r = . r o n ;

}
b r e a k ;

c a s e ON:

i f (MON I T O R (* s t e t m p f l d d r , c u r r e n t , t o l))

N e x t S t a t e f i n d e x S t M a c h , O F F) ;
R e c o m p u t e J a c ;
* r e 3 i s t a n c e f l d d r = r o f f ;

b r e a k ;
c a s e STf l T E_I N I T :

♦ s t e t m p f l d d r = S T E . a l I o c (I) ;
N e x t S t a t e f I n d e x S t M a c h , i n i t S t a t e) ;

* r e s i s t a n c e f l d d r = (i n i t S t a t e == OFF? r o f f : r o n) ;
b r e a k ;

de f a u 1 1 :

f p r int f (stdenn, "No state %d f o r Xs\n”, StHach[indexStMach] . break; name);
}

* i fdef DE6UG_euent
fprint t(out t i Ie,"*s->order is *d, *s->state

name, (*s.t et empflddr)->order, name,
fprintt(outf i Ie,"fire_type is *d, fire_h =

> fire.type,

is * d\ n",
StMachfindexStMach]);
^g\n", (*stetempflddr)-

(■* s t e t e m p fl d d r) - > d e I t a t) ;

p r i n t v e c ((* s t e t e m p f l d d r) - > d a t a , (i n t) (MflX_ORD+l)) ;
p r i n t v e c ((* s t e t e m p f l d d r) - > d v d f , (i n t) MflX ORO)*

* e n d i f V
}

/ r ; * * ; * * ; : * “ , * * ; * * * * * * , * * * * * * * * " * * * * * * ' * * * * * * * * * * * * * « * « « *MainSystem/; calculates f given u and t
■*j*M***r***7************-*****i***i*****,*****i![*^************«*>'void Ma InSystem(f, yst, t)

doub Ie * f •
***********y

I UcJ
r e gis ter do ubIe *y st;
double t ;
{

register double *ynst,
eount_maInsy s + +;
ynst - yst + numst;
dyst = yst + numeq;
f CO]

*dyst ;

- -1*4123 + (Um*sin(pi2*t) - 123*(Rd + R)):f "/**###X X X X X t t XXX********
* Hai nEuent () ca l cu l ates the expression for euertts.***** *** ̂ C** ****** ************************:X 3#C * j#c 3fC 3|C 3|C 3|C » 3»C 3*C * 3#C 3#C 3«COfC ̂COfC 3#C * * ̂* D|C 3#C 5|C 3#C 3#C * * * /

uoid HainEuent(yst, t)
regis t e r d o u b l e *yst;
d o u b I e

{ stat i c
V; .
STE_t * t mp;

}
D i ode (yst, 123, &Rd,ON,D I ODE, " D I QDE* , &t mpJ;

k * * * * * * *

}
/* ** *********** * * * * * ** ****************** * * * * * * * * ** * * * * * ************* y

* usr_init () s e t s up initia I Conditions and fi I e pointers.*
* Another may to initialize data is to read data from a file and this
* gives more flexiblity to modify initial data. This file should provide
* both names and their numerical values.***** * * ** * * ** * ***************** * * * * * * ******* * ****** * * * * * * * ****************/

uo id Hg I n I nit(y s t , t)
register double * y s t ;
double t;
(

Int I I
Pt2 = atan2(0.eO, -1.eO) * 2.e0;
123 = f 230;
TSlRRT = O.eO;
TFIWRL = 5.eO;
HPRIWT = I.e-3j

out f i I e2 = fopen("out2“, "«i“);
event_init();
for (i = 0; i < HumSttlach; i + +)

StWach[i] = STRTE_I WIT;
} ■
/******* ************************ ************* ************ ** ** * ** * * ** * ******
* output () prints output at each time step of the size HPRIWT,

j t l * # * # # * * * , , ; * ^ , ^ ^ , , , ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

voi d output(yst, t)
register double *yst;
doubIe t ;
(

count_out put + +;
f pr i Ptt f (out f i I e2 , " X e U X e U X d U X e U X e W , t, *h, prev_ord, Um*s i n(p i 2*t),

♦ yst);
} - V . " "

I ' 10 ■
♦ D u m p U s e r U a r () dumps u s e r ' s v a r i a b l e s , S t M a c h l L n o d e , db I _ p a r m , a n d
♦ d b I _ i n t e r m .

v o i d D u m p U s e r U a r (d u m p S t r e a m)
F I L E * d u m p S t r e a m ;

{ ‘ ■■ ■. ■„ - ■■ ' . ‘ : ■ .. : . ■; ,
i n t e r r o r F l a g ;

e r r o r F l a g = Oj
/ ♦ Vo u c a n w r i t e y o u r dump r o u t i n e h e r e t o o .

.. * / ‘ ■ . ;
/* M a i n S y s t e m v a r i a b l e s .

* / ̂ "■ 'f;
e r r o r F l a g I - D u m p f l r r a y ((c h a r ♦) d b l _ p a r m , (s i z e _ t) s i z e o f (* d b I _ p a r m) ,

(s i z e _ t) N0_0F__ELM (db I _ p a r m) , d u m p S t r e a m , " db I _ p a r m") ;
p r r o r F l a g I = D u m p f l r r a y ((c h a r ♦) d b I _ i n t e r m , (s i z e _ t) s i - zeo- f (* d b I _ i n t e r m) ,

(s i z e _ t) N 0 _ Q F _ E L M (db I __ i n t e r m) , d u m p S t r e a m , " d b I _ i n t e r m ") j
I f (e r r o r F l a g)

e x i t (I) ;

}

♦ R e s t o r e U s e r U a r () r e s t o r e s u s e r ' s v a r i a b l e s , S t M a c h , L n o d e , d b I _ p a r m , and
* d b I _ i n t e r m .

v o i d R e s t o r e U s e r U a r (r e s t o r e S t r e a m)
F I L E ♦ r e s t o r e S t r e a m ;

{ ■ ■ ■- ̂ ' ■ ■ .■:.'■■■■.. ■ . ■"
i n t e r r o r F I a g j

e r r o r F I a g = 0;
/ ♦ Vou c a n w r i t e y o u r r e s t o r e r o u t i p e h e r e t o o .

/ ♦ M a i n S y s t e m v a r i a b l e s .

- *;/
e r r o r F l a g I = R e s t b r e f l r r a y (■(c h a r ♦) d b l _ p a r m , (s i z e _ t) s i z e o f (♦ d b I _ p a r m) ,

(s i z e _ t) N O _ O F _ E L M (d b I _ p a r m) , r e s t o r e S t r e a m , " d b I _ p a r m ") ;
e r r o r F l a g I = F l e s t o r e f l r r a y ((c h a r *) d b I _ i n t e r m , (s i z e _ _ t)

s i z e o f (♦ d b I _ i n t e r m) , ,
(s i z e _ t) N O _ O F _ E L M (d b I __i n t e r m) , r e s t o r e S t r e a m , " d b I _ i n t e r m ") ;

i f (e r r o r F l a g)
e x i t (I) ;

111

Appendix D - MainSystemQ and MainEventQ for Test Circuit 2

Note that DumpUserVarQ and RestoreUserVarQ are the same as those in test circuit
I . The #define and #include statements at the beginning are also the same.

/ ***:*****•********************#** * *** *
* T h i s s y s t e m i s a f u l l - b r i d g e r e c t i f i e r w i t h a dc m o t o r r u n n i n g a t
* c o n s t a n t s p e e d .* * ******************************* * * * ************** ** ** ********** * * ******** j

♦ d e f i n e i I y s t [O]
♦ d e f i n e i m y s t [I]

♦ d e f i n e u I y n s t [. Q]
♦ d e f i n e u 2 y nst [I I
♦ d e f i n e u 3 y n s t [2]
♦ d e f ine i t I y nst [3]
♦de f i n e i t 2 y ns t [4]
♦ de f i n e i t 3 yns t [5]
♦de f i n e i t 4 ynst C 6]

♦ d e f ine d i l d y s t [O]
♦ de f i he dim d yst [I]

♦ d e f i n e r t I d b I _p arm[O]
♦ d e f ine r t 2 d b I _p arm[I]
♦ d e f ine r t 3 d b I _p arm[2]
♦ de f i n e r t f d b I _par m[3]

♦ d e f i n e p u I s e _ . w i d t h db I « p a r m [4]
♦ d e f i n e o f f _ t i m e db I _ p a r m [5]
♦ d e f i n e t o I db I _ p a r m [6]
♦ d e f i n e Um db I _ p a r m [7 I

♦ d e f i n e n o n I . e - 3
♦ d e f i n e ' r o f f I . e 5

♦ d e f i n e i I O O . e 0 / * I n i t i a l c o n d i t i o n . * 7
♦ d e f i n e i mO O . e Q

♦ d e f i n e L c . 3 e - 3
♦ d e f i n e R a . 6 e O
♦ d e f i n e L a a . 0 1 2 e 0
♦ d e f i n e L a f I . 8 e 0

♦ d e f i n e LI r I 3 8 . eO /* CHANGE SPEED H E R E . * /

♦ d e f i n e I f I . e 0

♦ d e f i n e O F F 0 / * S t a t e s o f s t a t e m a c h i n e s .

♦ d e f i n e QN I
♦ d e f i n e TR I G 2

* /

112
* d e f i n e T H V I O
d e f i n e T H V 2 I
n d e f i n e T H V 3 2
d e f i n e T H V 4 3
d e f i n e G f l T E I C O N 4
d e f i n e G Fl T E 2 C O N 5

* d e f i n e L O G I C _ N Q D E O O
d e f i n e L O G I C ^ N O D E I I

s t a t i c c h a r ♦ I o c a L f n a m e = "ma i n s y3 .
s t a t i c F I L E * o u t f i l e 2 ;
s t a t i c d o u b l e d b l _ _ p a r m [8] ,

d b I _ i n t erm [I];
s t a t i c d o u b l e pi_I 2 0 , pi_o v e r„6;
i n t n u ms t = 2 ,

n u m n s t = 7 ,
numeq = 9 ,
N u m S 1 11 a c h = 6 , •
NumLnode = 2;

/ * * * * * *% * * * * * * * * * * * * * *

♦ T h y r i s t o r f) s i m u l a t e s b e h a v i o r o f a t h y r i s t o r u s i n g a f i n i t e s t a t e
♦ m a c h i n e .* *;* ***************************** * * * * ********************************** ****/

static u o id Thyrist or(yst,current,resistanceflddr, initState, indexStMach,
indexLnode,name,stetmpflddr)
♦ y s t , c u r r e n t , *res i s t anceflddr;
i n i t b t a t e, i n d e x S t Hach, i ndexLnode;
♦ n a m e ;
♦♦stetmpflddr;

d o u b I e
i n t
char
S T E _ t

{
d o u b l e ♦ y n s t , ♦ d y s t ;

y n s t = y s t + n u m s t ;
d y s t = y s t + n u m e q ;

s w i t c h (S t M a c h f i n d e x S t M a c h])
{
c a s e OFF:

i f (♦ ((i n t ♦) L n o d e f i n d e x L n o d e] . v a I) == T R I G)
N e x t S t a t e C i n d e x S t M a c h , T R I G) ;

b r e a k ;

c a s e T R I G :
i f (MON I T O R (* s t e t m p f l d d r , - c u r r e n t , t o I))

N e x t S t a t e f i n d e x S t M a c h , ON) ;
R e c o m p u t e J a c ;
♦ r e s i s t a n c e f l d d r = r o n ;

}
 ̂ e l s e i f (* ((i n t ♦) L n o d e [i n d e x L n o d e] . v a I) = = O F F)

R e s e t E v e n t G r d (* s t e t m p f l d d r) ;
N e x t S t a t e f i n d e x S t M a c h , O F F) ;

b r e a k ;
c a s e ON:

i f (MO N I T O R (* s t e t m p f l d d r , c u r r e n t , t o I))

NextState(indexStNach, OFF);
Recomput eJac;
♦resist anceflddr = raff;

. } ‘ '
break;

case STflT E_I M11:
♦stetmpflddr = STE_aI Ioc(I);
Next St at e(indexStHach^ init St ate);
♦resist anceRddr - (in it St at e == OFF? roff: ron);
break;

default:
fprintf(stderr/'No state Xd for Xs \ n" , -StNachCtndexStNach] name);

break;
J . ■ ■ _♦ifdef DEBUG^euent
fprintf(outfiIe>"Xe->order is Xd, Xs->state is XdVn",

name, (*stetmpRddr)->ordername, StNachEindexStMach]);
f p r int f (out f i I e , " f i r e_t y p e is Xd, fire^h = Xg\n", (*stetmpRddr)-

>fire-typej
(* s t e t m p R d d r) - > d e It a t);

pr i ntuec((♦stet mpflddr)->data, (int) (NflX^ORD+I));
pr i ntuec((*st etmpRddr)->dudf, (int) flflX̂ ORD) ;

♦end if
}
uoid NainSyst em(f, yst, t)
doub Ie ♦ f;
register double ♦yst;
doubIe t; 7
{

double *ynst, ♦dyst;

ynst = yst + numst;
dyst = yst + numeq;
/♦

♦ Calculate intermediate uariables.
* /
{ /♦ Do KCL.

* Don't forget to translate currents of two terminal deuices into
* single uariables.*
* Look into how one will define internal KCL for general mu 11 i-t erm i na I
♦ deuices.

♦/
double *Enode = f;
♦Enode++ - i 1 1 + i1 2 - i m;
♦Enode++ - i 13 -■ i I - i 1 1;
♦Enode - i I - i1 2 + i 14;

■' I
/♦ Equations.
♦ Comments oh components and modules can be copyable.
♦ One may define symbols for copyable comments.

*
♦ Begin with index 3. (3 equations has been specified before.)

♦/
f [3] - u2 - u3 - Lc ♦ d i I - Um * si nlpiU 20*t);
ft4] = u2 - uI - rtI ♦ i11 ;
f E S 3 - u3 - uI - rt2 * it 2;
ft6J = - u2 ̂ r13 ♦ it3;

113

114

f [7] = - v3 - r M ♦ i 14;
f[8] = ui - Ra * im - Laa * dim - Laf * Ur * If;

/********************************* * * ** ***** ***** ******************** * * *****
♦ MainEuentO contains all state machines.
* V
♦ MainEvent() may be called repeatedly until all states are initialized
* before integration.************************************ * ** *********************************** ̂/

u o i d M a i n E u e n t (y s t , t)
reg 1ster doubIe *y s t ;
doub I e
{

doubIe
t ;

♦ynst, ♦dyst;’
ynst = yst+numst;-
dyst = yst + numeq;

* ifdef DEBUG^event
fprintf(outfiIe,"event_h is\n");
printuec(event_h,MflX__ORD);
fprintf(outf i Ie,"euent_aI is\n");
printuec(event_aI,MflX_0RD);

•end i f
{ static STE__t ♦ t mp ;

Thyr i stor(qst, 1 1 1 ,&r1 1,OFF,THVI,LOG IC_NODEO, H THV I" ,Ect mp);
} ■■
{ statTc STE_t ♦ t m p ;

Thyr I stor (yst, 11 2, Scr1 2, OFF, THV2, LOG I C_NODEI , H THV2",get mp);
}
{ static STE_t *tmp;

Thyr istoHyst , 11 3 ,&r 13, OFF, TH V3, LOG I C_NODE I , " THV3", 8c t mp) ;
{ static STE_t ♦t'mp; .

Thyr i st or (yst , iM ,&r1 1,OFF,THV4,LOG IC_NODEO, "THV1",&tmp);
}
{ /* next__euent_time, off__time and pulse__width are parameters.

* /
static double next_time;
static SCH_t * t m p;
i nt 31 ate_tmp;

switch (StMach[GflTElCON]) /* State of gate signal at Lnode I. */
case TRIG:
: if (SCHEDULE(t mp,next_time))
{ ■

st at e_t mp = OFF; j
.NextState (GA T EICON,- s t a t e_t mp); |
; Next Log i c (LOG I C_NODEO, (char *) 8«st aie^tmp, GATE ICON);

nex t_time += o f f__time;
} . . j . .
break;

case OFF:
if (SCHEDULE(tmp,next_time))

(

115
state_tmp - TRIG;
NextState(GATE1CON, state_tmp);
NextLogIc(LOGIC-NOOEO, (char *) &state_tmp, GflTEICON);

next_time +* puise.width;
> ■
break;

Obse STflT E_I NIT:
tmp = SCH_flLLOC();
state_tmp = TRIG;
NextState(Gf)TElCON, state_tinp);
NextLogic(LOGIC_NODEO, (char *) &state-tmp, GflTElCON);
next_t i me = pulse—width; /* TI me for next event. */

break;
def au 11:

fpr i nt f(stderr, "No state %d for Xs\n", StllachfGflTEICON], "GATE) CON");
/* Print stop at I ine Xd in file Xs at time = Xe\n

. */
break;

. >
* ifdef DEBUG_ev ent

fprintf(outfile,"State of controI GflTEICON Is Xd, LnodefO] = XdYh",
St NachtGflTE I CON], *((int *) LnodetO].va I));

iOft d i f
. Y -

{ /* next—event-t I me, of f_t I me and pu I sê ai I dth are parameters .
; ' *i ■ ■ ■

static doubIe next_time;
static SCH_t *tftp;
int stat e_t mp;
switch (StNach[GflTE2C0N]) /* State of gate signal at Lnode 2. */
case TRIG:

if (SCHEDULER tmp,next_time))
- . (■ ■;"■■■" -

state_tmp = OFF;
NextState(GflTE2C0N, state.tmp);
NextLogic(L0GIC_N0DE1, (char *) 8,state-tmp, GATE2C0N);

next_time + = of f_time;
' ' V ■ .-Vbreak;

case OFF:
if (SCHEOULE(tmp,next_time))

. (
state_tmp = TRIG;
Ne x t S t a t e(G fl T12 C ON, state_tmp);
NextLogic(LOGIC_MODE I, (char *) &state_tmp, GATE2C0N);

next_t i me +- pu I se_tu i dt h;
} • . ■
break;

case StflTE-INITi
tmp = SCH_flLLOC()j
state—tmp = OFF;
NextState(GflTE2C0N, state—tmp);
NextLogic(LOGIC-N0DE1, (char *) 8.state_tmp, GATE2C0N);
next_t i me = I .eO/l 20.eO; /* Time for next event. */
break;

def au11:
fprifttf(stderr,"No st at e Xd for Xs\n", StNach[GFITE2C0N], "GflTE2C0H");

116

/* Print stop at line %d in file 8s at time = 8e\n
' * * - break;

}
* i f de f DEBUG_euent

fprintf(outfile,"State of control GfiTEICON is 8d, Lnode[G] - 8d\n",
StHach[GATE2C0N], *((int *) Lnode[I].ua I));

e n d i f
- } ■■
} .

uo i d HainIn i t(yst)
doub I e *yst;
{ \ . .

double *ynst, *dyst;
doubIe p i ;
int i ; ;
short int *p_StMach;
ynst = yst + numst;
dyst = yst +numeq;

TSTflRT = O.eO; /* Control parameters for integrqti
TFINflL = 5.e-2;
HPRINT = l.e-4;
outfiIe2 = fopen("out 2", "m");

il = ilO; /* Initial ualue of a state uariabIe. */
pi = atan2(0.e0, -I.eO);
p i __ I 2 O = I 2 O . e O * p i ;
pi_ouer_6 = pi / 6.eO;
pu I sej i dt h = I . eO/1 20 . eO;
otf__time = I.e0/60.e0 - pu I se_u> i dt h;
t oI = I.e-8;
Um = 280.eO * sqrt(2.e0);/*
* St at e machine initialization.
*/
e u e n t __ i n i t ();
LnodeCO].3ize = sizeof(int);
L n o d e[1].siz e = sizeof(int);
for (i = NumStnach, p_StHach = StHach; i-i)*p__St Hqch + + = STflTE_ I H IT;
for (i = 0; i < NumLnode; i++)
{

Lnode-C i-]. ua I = ECflLLOC(Lnode[i] . s i ze, char);
NextLnodeC i] = ECflLLOC(Lnode[i].size, char);

}
} ■
uoid output(yst,t)
double * y s t ;
double t ;
{ ■ '

doubIe * y n s t ;

ynst = yst + numst;

n if de f D E B U G _e u e n t

117
f put c (' V n ' , but f i l e) ;

• e n d i f
f pr iPt f (out f i I e, "$12 . Se ", t) ;
f p r i h t f (d u t f i I e , " $ I 2 . S e $ I d ", h [0] pr e v^or d);
f p r I h t f (o u t f I I e , "dddd $ 1 2 . Se % StHdbh[0] , StMdcht I] , S t Mdch[2] ,

St Mdch[3] , u 1) ;
p r I n t u e c (y s t , 2) ;
f p r I f i t f (o u t f i I e 2 , H$ e \ t $ e \ t $ e \ t $ e \ t $ e \ h " , t , U m * s i h (p i 2 0 * t) , i I , u i , i m) ;

• i f d e f O E B U G _ e v e n t
f p u t c (' \n ' , out f i l e) ;
f f I u s h (out f i I e); I

• e n d i f
}

118

Appendix E - MainSystem() and MainEventO for Test Circuit 3

Note that DumpUserVar() and RestoreUserVar() are the same as those in test circuit
1 . The #define and #include statements at the beginning are also the same.

/*3̂ ********************************** ************** * * ****j^ *****************
♦ This system is from Ghazy. It Is a high-frequency converter.

* * * * * * * * * * * * * * * * * * *j
•define i I yst[0]
•define V C y s t [I]
• define v I ynst[0]
•de T Ine v 2 ynst[I]
•de f ihe v 3 y n s t [2]
9define v1 ynst[3]
9de fine it I ynst[4]
9 d e f i n e I t 2 ynst[5]
9 de fine ; it 3 ynst[6]
• d e fIne i t ̂ ynst[7]
•de fine
• d e f i n e
•defIne

i e _yr,st [3]
ynst[9]
y n s t [I 0]

9de fine d i I dyst[0]
9 d e f i n e d V c d y s t [I]
9 d e fine r t I dbl_parm[0]
«define rt 2 dbl_parm[I]
9 d e fIne r t 3 dbI_parm[2]
9 d e f i n e r t 4 dbI_parm[3]
9 d e f i n e pu l se._uiidth db IMparm [4]
^define t o I dbl_parm[5]
rde fine f 0 d b I_p arm[6]
•'define f S d b I_p arm[7]
•de fine ron I . e - 3
•de Line roff I . e 6
•de fine Em 100.e 0
•de fine L 24.e-6
•de f i ne C I . e-6
•define R I . I e 0
•define R c .IeO
•define RO tO. eO
•define i 10 O.eO /* Initial condition. I*/•define v c 0 O CU CD

stat ic char * I oca IMname * "
stat ic FILE *out fi Ie2j

static double dbl__parm[8]
a r r a y . * /

mtiinsys.c";

* / * Uhere to initializ e this parameter

119
db I i nterm [I];

int v numst = 2,
n u m n s t = 1 1 ,
numeq = 1 3 ,
NumSt Hact i = I ,
N u mL n o d e = 0 ;

u o id: H d i n Sg s t e m (f / y s t , t)
d o u b l e * f ;
r e g I s t e r d o u b I e * y s t ;
d o u b l e t ;

{
d o u b I e * y n s t , * d y s t ;

y n s t = y s t + n u m s t ;
d y s t = y s t + n umeq;

/ *
* Ca I Cu I a t e i n t e r m e d i a t e u a r i a b I e s .

V

{/* Od K C L .
* D o n ' t f o r g e t t o t r a n s l a t e c u r r e n t s o f t w o t e r m i n a l d e v i c e s , i n t o

* s i n g l e u a r i a b I e s .
*

* L o o k i n t o how o n e w i l l d e f i n e i n t e r n a l KCL f o r g e n e r a l mu 11 i - t e r m i na I
* d e v i c e s .

d o u b l e 3lfcE n o d e = f ;

• . * E n o d e + + = ie + it I + it3;
* E n o d e + + = i t I - i t 4 - i I ;
* E n o d e ++ = i I - i c - I r ;
* E n o d e = i t 3 + i c + i r - i 1 2 ;

I :
/ * ; E q u a t i a n s .

* C o mm e n t s on c o m p o n e n t s and m o d u l e s c a n be c o p y a b I e .
* One may d e f i n e s y m b o l s f o r c o p y a b I e c o m m e n t s .

* \ ::
* Begin with index 4. (4 equations ha3 been specified before.)

■ ^ '
f[4] = uI ■- Em; /* Uoltage source. */
f [5] = (u I - u2) - Itl * rt I ;
f[6] = (ul - u4) - it3 * rt3;
f [7] = u2 - i 14 * r14;
ft8] = u4 - i12 * r12;
f [9] = u2 - u3 - Rl * i I - L * dll;
f [I 0] = u3 - u4 - uc - i c * Re;
f [I I] = i c - C 3+3 due;
ft 12] = u3 - u4 - ir * RQ;

} . ■ ■■ ■ ■
f ** * %* * * * * * * * X * X X X * ********************* 3ft * * * *************** ** **************

* H a i n E u e n t () c o n t a i n s a l l s t a t e m a c h i n e s .
* "
* H a i n E u e n t O may be c a l l e d r e p e a t e d I y u n t i I a l l s t a t e s a r e i n i t i a l i z e d
* b e f o r e i n t e g r a t i o n .

u o I d H a i n E u e n t (y s t , t)

r e g i s t e r d o u b l e * y s t ;
d o u b I e t ;

' I - '■ O-'"' ■" ‘ ■,

♦ d e f i ne ONE-TUO I
♦ d e f i n e THREE_FOUR Q

double * y n s t , * d y s t ;

ynst = yst + numst;
dyst = yst + n u m e q;

♦ i f d e f /' DEBUG—euent
f p r i n t f (o u t f i I e / ' e y e n t - h i s \ n ") ;
p r i n t u e c Ceuent _ h , MAX-ORD);
f p r i n t f (o u t f i I e , " e u e n t _ a I i s \ n ") ;
p r i n t u e c (e u e n t _ a I ,MfiX-ORD);

♦ e n d i f
'■ {

st a t ic SCH_t * t m p ;
s t a t i c double next . . t i me ;

3 wi tch (St Machf O])
{
case 0NE_TU0: / * T h y r i s t o r s I and 2 are on. * /

i f (SCHEDULE(tmp, n e x t _ t i me))
{

Ne x t S t a t e (0 , THREE-FOUR);
r t I = r t 2 = r o f f ;
r t 3 = r t 4 = ron;

n e x t - t i me += pul se_wi dth;
RecomputeJac;

I
break;

case THREE-FOUR:
i f (SCHEDULE(t mp, n e x t - t i m e))

{
Next St a t e (O, ONE-TUO);

r t 1 = r t 2 = ron;
r t 3 - ■ r t 4 = ro f f ;

nex t —time += pul se—width;
R e c a m p u te J ac;

}
bredk ;

case STflTE-I N I T :
tmp = SCH—flLLOC() ;
Next St a t e (Oj ONE-TUO);

r t I = rt.2 = ron;
r 13 = r t 4 = r o f f ;
n e x t - t i me = pu l se - wi d t h ;
RecomputeJac;

break;
d e f a u l t :

fprint f(st derr,"No state %d for Xs\n\ StHachtO],
/* Print stop at line Xd in file Xs at time = Xe\n
*/

b r e a k ;
}

}
) '
uo id M a i n l n i t (y s t)
d o u b l e * y s t ;

♦ d e f i n e S t a t e M a c h s w i t c h

"controI");

121
{ '

double *ynst, ♦dyst;
int I;
short int *p_StMach;
ynst = yst + numst;
dyst . = yst + numeq;

TSTflRT = 0 . e 0; / ♦ Control parameters for
TFINflL = .Se-3;
HPRINT = I.e-4;

i n t egr qt i on. ♦7

• I 1 I GI * * I n i t i a I va Iue of a st at e uar i ab I e . ♦ /
up = u e 0 ;

OUt f i f eZ = f open ("out 2" ,

fO = I .eG / (2 . e O ♦ a tan2(Q. e O , - I . eO) ♦ s q r t (L ♦ C)) ;
fs = fO / 3 . eO;
pulse_width = . SeO / fs;
to I = I . e-10;

' /♦. ' .
♦ State machine i n i t i a l i z a t i o n .

*/
eue n t _ i n i t () ;
for (i = NumStNach, p_StMach = StMach;: I - - ;)

♦p_St Mach + + = STflTE_INIT;
for (i = 0 ; i < NumLnode; I++)-Vyy . ■ ■ r ■

Lnode[I] . v a I = ECflLLOC(LnodeT i) . s i z e , c h a r) ;
NextLnodeTi] = ECflLLOC(Lnode[I] . s i ze , c h a r) ;

} '
void out put (y s t , t-)’
d o u b I e ♦ y s t ;
doubl e t ;
{

double ♦ yn s t ;

ynst = yst + numst;

• i f d e f DEBUG_euent
f pu t c (An ' , out f i I e);

• e n d i f
fpr i n t f (o u t f I l e , "$12.5e ", t) ;
f p r i n t f (out f i I e ,"$ I 2 . 5 e % I d ", h[0] , preu_ord);
f p r i n t f (o u t f i I e , "%]2 . Se ", v3 - v4) ;
p r i n t u e c Ty s t , 2) ;
f p r i n t f (out f i I e2, uXeW%e\t%e\tXeW $ e \ n H, t , v2-v4, v3-v4, M

• i f d e f D E B U G_e u e n t
f put c (A n ' , ou t f i I e); ”
f f I u s h (o u t f i I e);

• e n d i f
}

L uc);

122

Appendix F - MainSystem() and MainEvent() for Test Circuit 4

Note that DumpUserVarQ and RestoreUserVar() are the same as those in test circuit
1. The #define and #include statements at the beginning are also the same. The

routines DiodesQ and Thyristors() can be taken from those in Appendices 1 and 2
respectively.

/**
* This system is an induction machine with current source inverter. *********** ***

•define i Icl yst[0]
•define i I c 2 y s t [1]
•define i I f y s t [2]
•de f ine vcup I yst[3]
•de fine v c u p 2 yst[4]
•define V C I Q w I yst[5]
•de fine v c I o w 2 yst[6]
•de.fi ne psi_qs yst[7]
•define p s i _ d s yst[8]
•de fine . psi_qr yst[9]
•define p s i _ d r yst[I 0]
•de fine t h eta yst [11]
•de fine w r yst[12]
•de f ine y_inv yst[13]
• d e f i n e y~c trI yst[14]
•de fine a n g I e y s t [I 5]
•de fine i I c 3 ynst[0 3
•de fine v I ynst[I]
• d e f i n e v 2 ynst123•■de f i ne v 3 ynst[3]
•define v 4 ynst[4]
• d e f i n e v 5 ynst[5]
• d e f i n e v 6 ynst[6]
•de f i ne v 7 ynst[7]
•de fine v 8 ynst[8]
•de fine v 9 . ynst[93•d e f ine v I 0 ynst[I 0]
•de fine vil ynst[11]
• d e f i n e v I 2 ynst[I 2]
•de Tine v I 3 ynst[13]
•de f ine v I 4 ynst[I 4]
•de fine v m I ynst[I 5]
•de fTne V ITl 2 ynst[I 6]
• define i ffi I ynst[17]•define i m 2 ynst[I 8]
•define i m 3 ynst[I 9]
•define i u p 1 ynst[20]•define i u p 2 ynst[2 I 3•define i u p 3 ynst[22]•define i Iowl ynst[23]•define i I o w 2 ynst[24]•define i I o w 3 ynst[25]

♦define psi_mq
♦define p si_md
♦define d i I c I
♦define d i I c 2
♦ d e f i ne d I I f
♦define dueup I
♦defihe due u p 2
♦define d u c I o w 1
♦define due l o w2
♦define dpsi_qs
♦define dpsi—ds
♦define dpsi—qr
♦ d e f i n e dpsi-dr
♦define d t h e t a
♦define d w r
♦de fine d y_in u
♦def I ne d y_c t rI
♦de fine d a n g I e

♦define u m 3
♦define u p e a k
♦define uqs
♦define uds
♦define p s i — m-
♦define f - p s i — m
♦define mrm
♦define sin-theta
♦define cos — t beta
♦ define s in_th e t a
♦define cos—t beta
♦de fine p i 1201
♦define T_eIec
♦define i q s
♦de fine i d s
♦ d e f i ne i n u e r t e r -
♦define fir e_a ngI
♦define ui-e r r or
♦define I-err or
♦de fine i r e f
♦defin e ire f-3 t a r
♦define ui—S I i p
♦de fine T_lo a d
♦de f i ne El
♦defihe E 2
♦de fine E 3
♦defIne i t I
♦de fine i t 2
♦de fine it 3
♦define i t 4
♦define it5
♦defIne i t 6
♦define i 17
♦define it8
♦define i 19
♦define i t I 0
♦de fihe i t 1 I
♦define i t I 2
♦define i d I

ynst[26]
y ns t[27]
dyst[0]
dyst[I]
dyst[2]
dyst[31
dyst[4]
dyst[5]
dyst[6J
dyst[7]
dyst[8]
dyst[9 I
dyst[10]
dyst[It]
dyst[T2]
d y s t [I 3]
dy st [I 4 I
dyst[15]

d bI_interm[Q]
dbl-interm[I J
dbl-interm[2]
db I __ i n t er m [3]
db I _ i nt en[4]
dbI-Int erm[5]
db I _i.nter.in [6 I
d b I_i n t e r§ [7]
db I_int er in [8]
dbI_interm[9]
dbI_in t erm[10]
dbI_ int erm[I I]
dbI_ in term[I 2 I
d b I — interm[13]
d bI_ in t e rm[14]

f req dbI- 1n t erm[I 5 I
e dbl-interm[16]

d b I _ i n t e r m [I 7]
dbl_in t e r m [I 8]
dbI_interm[I 9]
dbI_interm[20]
d b I _ i n t e r m [2 I]
dbI_ in t erm[22]
dbI - int erm[23]
dbI-interm[24]
dbI_ in t erm[25]
dbI_interm[26]
d bI_interm[27]
dbI_interm[28]
dbI- interm[29]
dbl-int erm[30]
dbI- int erm[3 I]
dbI - interm[32]
dbl-interm[33J
db l-i nt erm [3-4]
dbI - int erm[35]
db I - i n t e r m [3 6]
dbI-in t erm[37]
dbI — in term[38]

124

d e f in e id2 dbl_interm[39]
*de fine i d3 dbl_interm[4G]
#de f i n e i d 4 dbl_interm[41]
* d e f i n e i d 5 dbl_interm[42]
#de fine i d6 dbl_interm[43]
n d e f i n e r t I dbI_par m[0]
*de f i ne r 12 dbI_parm[I]
*de fine r 13 db I __parm [2]
#de f i ne r 14 dbI_parm[3]
* d b f I n e r 15 dbI.parm[4]
*de fine r t 6 dbI_parm[5]
* d e f i n e r 17 dbI_parm[6]
rde fine rt8 dbI_p arm[7]
*def i ne r 19 dbI_parm[8]
#define rt 10 dbI_parm[9]
#de fine r t I I dbI_parm[I 0]
*de fine rt 12 db I _parm [M--]
^define r d I dbI_parm[12]
^define r d 2 dbI_parm[I 3]
*de fine r d 3 dbI_parm[I 4]
n'de f i ne r d 4 dbl_parm[15]
*define r d 5 dbI-parm[I 6]
nd efine r d 6 dbI_parm[I 7]
#de fine t o I dbI_parm[I 8]
* de fine puIse_widt-h dbI_parm[I 9]
nde fine sig n_w_slip dbI_parm[20]
* de f i ne 3 i g n _ I o a d dbI_parm[2 I]
* de f i ne; sig n_inu dbI_parm[22]
*de fine t b a s e dbI_parm[23]
#de fine rect_next_time dbI_parm[24]
#de fine inu_next_time dbI_parm[25]
*de f ine ron l.e-3
* d e f i n e ro f f I . e 6
* d e fi n e Ic . 2e-3 /**

*
*define r f . 09I eO
d e fine If I 4 . 5 8 9 e — 3 /
d e f I n e c 8 0 . e - 6

Commutating inductor has
been chosen with less than
50 times the capacity of machine. */

■ . ' J '
Smoothing inductor. */ i

/* Inuerter capacitor. */ & ■
^define TRU lO.e-3 /* Current control. */
*de fine CU RREHT_Gft I N I.eO

^define i If_max (115 . I 8 e 0)
*de fi ne i I f_m in (25.6699e0)
ndefine rpm_ref 900.eO
"define ksp (2.e0*(iIf_max - iIf_min)/377 . eO)
#define kc I.eO /* 1,eQ */
*define rs
^define xls
*de fine xm_unsat
^define x I r
*define rr
d e f i n e xm_star
#de fine J

■0788e0 /* Induction motor parameters. */
.2118e0
9.23e0
.4628e0
.0408e0

(I .e0/(I.e0/xm_unsat+1 .eO/xIs+1 .eO/xIr)) F
. 31 eO ' *

125

•define p o I e_p a i r 2. eO
Mdefine UJ uir
•define DEflD-BflND L.e-2
• d e f i n e i I cLO 0.. e 0 /* Tn)i t ;i a \ eon d i t ;i o n s .
•def me I h c M 0,. e O
•define i I fO O.eO
•define VCUp I # 0 . e 0
• d e f i n e vcup20 0.60
•de fine v c I O iu I 0 O.eO
•de fine vc I cm20 O.eO
•de fine ps i-qsO O.eO
• d e f ii n e ps i _dsO O.eO
•de fine P s I — q rO 0 . e 0
• d e f J n e p 3 i -dr O O.eO
•define t he tcO O.eO
•define W r O O.eO
• d e f i n e y-invO , I e O
•define y—c t ;r :l O O.eO

/* The f o i l hocTngs are ind ices to St Mach. */
Mdefine
*/

THV I O /* Thyristore indices are used

•d efine T H V 2 t
•define TM V 3 2

Mde fine T HV 4 3
•de fine THV 5 ■4
•def ino TM V 6 5
•define TM V 7 6
•define T m s 7
•define THVO O
•define TMVIO 9

•d e fine THVI I 10
•def ine T HV12 I I
•define 0 I 1 2
•define 0 2 I 3
•def ine 0 3 I 4
•de fine 0 4 I 5
•de fine 05 10
•define 0 6 17
•define I N UER TER I 0 /* Control part . */
•define I MO —C TRL I 9
•define RECT I F I ER 2 0
•define RECT-CTRL 21
•define C U R R E M T - L I fl I T 2 2
•def i ne RMGLE-U 11 I T 2 3
•define RBS-OflLLIiE 2 4
•define B LO C K2 25
Mdefj ns LORD 26

•define OFF 0

•define ON I
•define TR I G 2
•define DOUN 3
•define STflRT-PlJLSE 4
•define UP 5
• define I DLE 6
•de fine TRACK 7
•define UNDEFI-L I 111 T 0

* /

•define LIMIT I
•define NEG I
•define POS 2
•define DEflD^ZONE 0
•define AL IUE_Z0NE I

Static char ♦IbcaI_fname = "ma i nsys.c";
stat i c double dbI_ int erm[44],

dbI_parm[26];
stat I c double sin_pi_over_6, cos__p i _over_6, pi_2__over_

uib, t wo_over_sqrt 3, pi2, rpm_t o_uie;
stat i c int rect_seq_index, i nv__seq_i rtdex;
stat i c FILE ♦timeF I I ePtr, ♦motorFiIePtr, *contro I F i I ePtr,

♦deviceFiIePtr, *supp IyFiIePtr;
static double f-sat();
static void Thyristor(), Diode();
i nt numst =16,

numnst = 28,
numeq * 44,
NumStMach = 27,
NumLnode =12;

long count_maInsys = 0 ,
count^output = 0 ;

void M a in S y s t e m(f, yst j t) /♦ Main system to be simulated. ♦/doub I e * f;
register double ♦yst ;
double t ;

double *yn3t, ♦dyst, *pf;
ynst = yst + numst;
dyst = yst + numeq;
Rf * f ;
count __mainsys + + ;

/♦
* Calculate intermediate variables.

♦/
{ /♦ I 2 t hyrist ors.

♦/
Itl = (ui - u4) / nt I;
i 12 = (u2 - u4) / nt 2;
i 13 = (u3 - u4) / Pt 3;
it 4 = (0. eO - ui) / Pt 4;
JtS = (O.eO - u2) / nt 5;
i 16 = (O.eO - u3) / Pt 6;
it 7 = (u5 - u6) / Pt 7;
i 18 = (u5 - u7) / pt8;
119 = (u5 - u8) / Pt 9;
it 10 = (u9 ■- 0.eO) / nt 10ji 11 I = (u I 0 - 0. eO) / Pt 11;it 12 = (ull - 0.eO) / Pt I 2;
/♦ 6 Diodes.
V
i d I = (u6 - u I 2) / pd I j
i d2 = (u7 - u 1.3) / pd2;

127
id 3 = (u8 - u 14) / rd 3;
id4 = (u I 2 - u9) / rd:4 ;
id5 = (v I 3 - v 19) J rdS;
i d6 = (u I4 -) / rdi;

)
Mm3 = -OvmI + Mm2;);;
pi I 2 Qt = wb*t;
3 in_Lh eI a = s Ln(Lheta);
<coe_LheLa = CGs(Lhela)J
sin-Lhet a^p i 6 •= s in_theta*cos_p i._ouer_6 - cos_t heta*s i n_p i _over__6;
co s—Lh e I a__p i 6 = c o s_t he t a *c o s^p i ̂ o ue r^6 + s i n_t heI a * s i n_p i _o u e r_6;
EI - Mp e.a k ♦ c o s (p i I 291);
E2 = Mp ea kLc os (p i I 201 -p/i_2_.ouer_3),;
E 3 = - (E1 + E 2) j
Lqs = I U)0_ouer_3q,rl 3 * (cos_t he t a_p i 6* i m I + sin_theta* i m2);
i ds = two_over_sqrt 3 * Os in_t h eIa_p i 6* i;m I - cos_theta*im2);
M;qs = Iuic_guer_sqr I 3 * Ocos_thela_p 16*v mI + sIh_theta*um2);
Mds = Ii0—ouer__sqrl 3 * (s i n_t het a_p i 6*um I - eos_t het a*vm2);
f-p si_m = f—s at(p sim = d bI_h ypotOp si_-m:q, p si_m d));
T_'I oad = siyn_Joad * 9,8 .865e0/377 . eO*wr;
T_eIec = I,Se 0 * p a Ie _p a\r *(psi__d s * Lq s - psi_qs*ids)/mb;

I /* Do KCL.
* Don ' t f orget Io IransI at e current s of two terminal dev i ces i nI o
* s i ng l e var ied Ies.

*
* Look into how one will define int erna I KCL for genera I mu Il i -termina I
* devices.
*/
pf++ = iI c l + it I - it 4; ./ Node i * /Lpf + + * i I c 2 + it2 - it5; /* Node 2 * /
*pf+ + = i I c 3 + it3 - it6; : . / * Node 3 * /
♦ p f + + ilf - ill - i 12 - it3; / * Node 4 */
*p f + + = it? + i 18 + Lt 9 - i I f; / * Node 5 */
*pf++ Ld 1 + iup I - i17; r * Node 6 */
Lpf++ = i d 2 + iup2 - it8; / * Node 7 * /
Apf + + = i d 3 + iup3 - it 9; /* Node 8 * /
Lpf + + -:=■ i I I 0 + Llowl - id4; /* Node 9 L/
Lpf + + •ss- ill 1 + i I ow2 - LdSf /* Node 10 L/
Lpf + + i 112 + iIow3 - id6; /♦ Node LI ♦/
Lpf + + = i m I + id 4 - id I; Node 12 */
Lpf + + = i m 2 + LdS - id2; J * Node 13 */
Lp f ++ S= i m3 + i do - id3; ■/* Node 14 * /

/ * E q u a t i o n s .
♦ C o mm e n t s on c o m p o n e n t s a nd m o d u l e s c a n be c o p y a b l e .
* One may d e f i n e s y m b o l s f o r c o p y a b l e c o m m e n t s .

*/
{ / * U o l t a g e s o u r c e .

* / ■■
L p f + + = u l - v2 + I c * (d i I c 2 - d i I c l) + E2 - E l ;
Lp f + + = v I — m 3 + I c * (- 2 . e Q * d LI c I - d i I c 2) + E3 - E l ;
* p f + + = i I c l + LI c 2 + i I c 3;

}
{ / * d i g i n d u c t o r .

* /
L p f + + s- - uS - r f * L l f - I f * d i I f

)
:{ / * U p p e r b r i d g e c a p a c i t o r s .

*pf + + = u6 - u7 - ucupl;
*pf + + = u7 - u8 - ucup2;
*pf + + = - i u p 1 + c * (2. eO*ducup1 + ducup2);
*pf + + = _ i u p 2 + c * (ducup2 - due up I);
*pf + + = iupl + iup2 + i up3 j

{ / * Lower bridge capacitors.
*'/
*pf + + = u9 - u 10 - uc I owI ;
*Pf++ = u 10 - u I I - uclow2;
*pf + + = - i Iowl + c * (2.eO*ducI owl + duclow2);
*pf + + = - j I o uj 2 + c * (due I ow2 - duclowl);
*pf + + = ilowl + i I o ui 2 + i I o w3;\ . ' . v

{ /* Induct ion motor.
*/double dtmp_q, dtmp—d;
* P f + + = u I 2 - u13 - uml + um2;*p f + + = u I 2 - uH - uml + urn3;*p f + + = i m I ■ + i m2 + i m3;*p f+ + = i q s - (psi-qs - psi-mq) /
* P f + + = ids - (psi_ds - psi-md) /* P f'+ + = - u q 3 + rs*iqs + (dpsi-qs* P f + + = -u d 3 + rs*ids + (dpsi—ds* P f + + = rr*(psi_qr-psi_mq)/xIr +* P f + + = ■rr*(psi_dr-psi_md)/xlr +

■ i f (p s i _m)
{

d t m p _ q = p s i - m q / p s i _ j n ;
dtmp__d = p s i - m d / p s i - m ;

}
else

d t m p _ q = d t m p _ d = O . e O ;
* p f + + = p s i - m q - (x m - s t a r / x l s

- x m _ s t a r / x m - u n s a t
* p f + + = p s i - m d - (x m - s t a r / x l s

- xm_star/xm—unsat
*pf + + = dtheta - w;
* p f + + = T _ e I e c - T - I o a d

x I s;
x Is;
+ w*psj-ds)/wb;
- w*psi-qs)/wb;
(dpsi-qr + (w-wr)*psi-dr)/wb;
(dpsi—dr - (w-wr)*psi—qr)/wb;

+ xm_ star/xlr * psi^qr
* f-psi-m);
+ x m_st a r/xIr * p s i _d r
* -f-psi-m);

* psi-qs
* dtmp—q
* psi-ds
* dtmp—d

J*dwr/poI e-pair;
{ /* Equations for control part.

* /doub Te w_r e f ;

w_ref = rpm-ref * rpm-to-we;
W—error = w_ref - wr;
*pf++ = dy—Ctrl - W-error;
iref = ksp * (kc * y_ctrl + W-error) + ilf-min;
switch (StMachC CURRENT—L InIT])

case UHDER-L I N IT:
i r e f - s t a r - = i r e f ;
break;

case L IN IT:
ire f_st ar = iIf_max;
break;

d e f a u l t :

t pr i nt f I1 s t derr, "No sta te Xd for Xs\n", StMach[CURRENT_L I M I T] ,

129
" CURRENT_L IWIT'') ;

break;
}
!-error = i ref_star - Hf;
*Pf++ = dangle + (angle - CURRENT-GRIN*i_error)/TRU;
suiitch (St Ilach [BL0CK2])

(
; case UNDER-L Ifl I Ti

w_s I ip = O.eO;
break;

case LIMIT:
{ /* Find slip frequency from Hf using interpolation.

*/
static double a[] = {-4.88eO, .22e0, -1. 3 e - 3, 5.2 7 6 e-6};
I nt i ;
w_slip = a [3];
for (i =2; i >= 0; i —)'

w_s I i p = ui__s I i p* i I f + a [i];
break;

def auIt:
fprint Hstderr, "No state Sd for Ss\n\ StHach[6L0CK2],
" B L 0 CK 2 ") ;

break;

i nuert er_f req = (wr + sign_w^sl ip*w_sl ip) / pi 2;
{ /* Inuerter controller.

*P f+ + = d.y_inu - sign_Jnu * inuert er__f req;
}

} /* End of equations for control part. */
}

Y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * X X X X X X X * . XXXXXX
* NainEuent () contains all state machines.
*
* MainEuentO may be called repeatedly until all states are initialized
* before integration.
' * * *** ** ** ** ** ** ** ** * * ********************.********** *** * *** xx * ** * *** ** * xx * * jt

uoid Ma i nEuent(yst, t)
register double * y s t;
double t ;
{ •

doubl e *ynst , :+cdyst;
ynst = yst + numst;
dyst = yst + numeq;

* i f de f DEBUG_euent
fpr i nt f (out f i I e, " eue-nt̂ h .■ is\n");
prInt uec(euent_h,NfiX_ORD);
fprintf(outf i Ie,"euent_aI is\n");
p r i n t u e c (e u e n t _.a I ,Nfl X_G R D);

* e n d i f
{ static STE_t *tmp;

Thyr i st or (yst, i 11 ,&rtI,ON,THYI,THYI, "7HYT " ,&tmp);
}
{ st atic STE_t * t m p ;

■ ThyristorCyst,it2,Srt2,OFF,THY2,THY2,"THY2",Strap);
{ static STE_t * t m p ;

: Thyr i star (yst, i 13,Srt 3, OFF, THV3, THV3, “THV3“,Stmp) ;
{ static STE_t +tmp;

/ ThyristorCyst-, i t 4,Srt 4, OFF, THY4, THY4, "THY4",Strap);
{ stat ic STE_t *t mp ;

 ̂ ThyristorCyst, it5,Srt5,OFF,THY5,THY5, "THY5" ,Strap) ;
{ st atic STE_t * t m p ;

 ̂ Thyr istorCyst, it6,Srt6,ON,THY6,THY6, “THY6*,Strap);
{ static STE_t +tmp;

 ̂ ThyristorCyst,it7,Srt7,ON,THY7,THY7,"THY7“,Stmp);
{ static STE_t *tmp;

 ̂ Thyristor(yst,it3,Srt8,OFF,THY8,THY8,”THY8",Stmp);
{ st atic STE_t * t mp;

 ̂ Thy r istorCyst, i 19,Srt 9, OFF, THY9, TH Y9, ” THY9", St mp);
{ static STE_t * t m p;

Th yristorCyst, i11 O,Srt I O,OFF,THY10,THYI O,"THYlO",Stmp);
{ static STE_t + tmp;

Thyr istorCyst, it11,Srt11 ,OFFjTHYI I , THY I I , "THY I I ", Strop);
{ static STE_t * t m p;

Thyr i stor (yst, i t I 2,Sr 11 2, ON ,.THYI 2, THYI 2, "THY12",Strop);
{ static STE_t *t mp;

'• DI ode(yst, i d I ,Srdl ,OFFjDl, "DI ", Stmp);
{ static STE_t +tmp;

: D i ode(yst, id2,Srd2,0FF,D2; "D2",St mp);
{ static STE_t +tmp;

' Di ode(yst, id3,Srd3,0FF,D3,"D3",St mp);
{ static STE_t *t mp;

 ̂ DiodeCyst,id4,Srd4,OFF,D4,"D4",Strop);
{ static STE_i *t mp;

131

D i ode (yst, IdSjSrdSjOFFjPS, "DS11iStrop);
)
{ static STE_t * t m p;

DiodeCyst,id6,Srd6,OFF,D6,“D6”,Stmp);
) ' , :
{ /* Lpgd, pcirt.

V * / : ■
static STE_t +tmp;
switch (StHach[LORD])

{ ■■
case RL I UE-ZONE:

if (HON I TOR(tmp, fabs(wr) - DEfiO-BRNO, to I))
{

NextState(LORD, DERD-ZONE);
sign-load - O.eO;
RecompyteJac;

}
break;

case 0EflD_Z0NE:
if (HON I TOR(tmp, DEflD-BRND - fabs(wr), to I))

{
NextState(LORD, RLIUE-ZONE);
sign-1 pad - capysign(I.eO, wr);
RecomputeJac;

> . . 4 .
break;

case STRTE-IH IT:
tmp = STE_aI I oc(I);
NextStateCLORO, DERO-ZONE);
sign-load - O.eO;
break;

default:
fpr i nt f(stderr, “Ho state Xd for Xs\n", StHaphElQflO] , "LOAD");

break; j
}

i fdef DEBUG_euent
fprint f(out f i le, ,,LOFID->erder is Xd, LOAD-*>state is Xd, and LOAD- >dat a

are\n “,
tmp->order, StNgph[LORD]);

fprint f(out fiIe,"fire_t ype is Xd, fire-h = Xg\n“, tmp->fire_type,
tmp->deI tat);

printuee(tmp->data, (int) (HflX_ORD+1));
printvec(tmp->dvdf, (i nt) HflX-ORD);

#end i f
' > '{ /* Control Part. */

{ /* Gain part.
*/
{ /* Absolute value.

. i * / .
statie STE_t +ste-tmp;

switch (StHachEflBS-UflLUE])

case POS:
if (HON ITQR(ste_tmp, w_error, to I))

{

132

{ :■
Next St ate(RBS—UflLUE, NEG);
sign_w-slip = -I . eO;
RecomputeJac;

; }
break;

case NEG:
if (MON I TOR(ste-tmp, -w—error, t o I))

' (.
Next St ate(RBS-UflLUE, POS);
s i gn_ui-s I i p = I . eO;
RecomputeJac;

'' } ■ "break;
case STflTE-I NIT:

ste-tmp = STE-alIoc(I);
NextState(RBS-URLUE, POS);
Hi—error = rpm_ref * rpm—to—we - wr; /* w_error is set here. */
sign—w-—s I ip = I . e O;
break;

defau11 :
fprintf(stderr,"No state Xd for Xs\n", StNach[RBS-URLUE],

"RBS-UflLUE");
break;

}♦ifdef DEBUG juent
fprintf(outfile,"StNach[RBS-URLUE] = -XdVn"/ StNachtflBS-URLUE]);

♦end i f
} ■ ■ ■
{ /* Maximum uaIue.

*/
static STE-t *ste-tmp;

switch (StMachtCURRENT-LIMIT])
{
case UNDER-LIMIT:

if (MON ITOR(ste—tmp, i If—max - iref, to I))
{

NextStat e(CURRENT-LI N IT, LIMIT);
Recomput eJac;

} ’ : ■■■■
break;

case LIMIT:
if (MON ITOR(ste—tmp, -(iIf—max’ - iref), t o I))

f ‘ .
Next St at e(CURRENT-LI M IT, UNDER-LIMIT);

Recomput eJac;
} • :. -v ■
break;

case STflTE-I NIT:
ste-tmp = S T E_a I Ioc(I);
NextState(CURRENT-LIMIT, UNDER-LIMIT);

/* w_error must be set before. */
iref = ksp * (kc * y-ctrl + w-error) i ilf-min;
i ref-star = (iref >= Mfjdx)? Mfjaxi- iref;

break; ’
default:

fpr i nt f (stderr, "No state Xd for Xe\n", StfIachfCURRENT LI 11 IT]
" C LI R R E N T_L INIT"); '

break; ,•
}

•ifdef DEBUG—event
fprint f(out fiIej"StHachtCURRENT-L INIT] • end i f

} /* End of maximum value. */
{ /* BL0CK2.

*/
static STE-t *ste_tmp;

133

*d\n", StHachtCURRENT_LI H I T])

switch (St Haeht BL0CK2])
{
case UNDER-LIHITi

'f. (H0HIT0R(ste_tmp, iIf_min - iff, to I))
NextState(BL0CK2, LIMIT);
RecomputeJac;

■ : ' ■■ }
break;

ease LimT:
if \NON I TOR(ste—tmp, i I f - iIf—min, to I))

Ne xtSt at e(BL OCK 2, UNDER-LIMIT);
Reconiput e Jac;

}
break;

case STflTE-IN I T:
ste_tmp = STE^aMoc(I)/
N ex t S t a t e(B L OC K 2, UNDER-LIMIT);

break;
defauIt:

fpr i nt f(stderr,“No state Xd for Xs\n”, StNach[BL0CK2],
“ 6 L 0 CIC 2 “);

break;
}

• ifdef DEBUG—event
fpr int f(out file,“StHach[BL0CK2] = Xd\n“, StHaeh[BL0CK2]);

•end i f
} /* End of BLOCK2. */

} /* End of gain part. */
{ /+Firing angle limiter.

*/
static STE-1 * t m p;

switch (StMachtRNGLE-LIMIT])
, {

case UNDER-LIMIT:
fire-angle = angle;
if (MON I TOR(tmp, 90.e O - fabs(angle), to I))
’NextState(RNGLE-LI MIT, LIMIT);
Reset IntqOrd;

}
break;

case LIMIT:
fire—angle = c o p y sig n(9 0.e 0, fire—angle);
i f (MGNITQR(tmp, fabs(ang le) - 9D.eO, to I))

NextState(RNGLE-L IM IT, UNDER-L IMIT);

134

Reset IntgOrd;
}
break;

case STflTE-IN IT:
tmp = STE-alIoc(I);
Next St ate(ANGLE—L I M I T, UNDER-LIMIT);

fire-angle = angle;
break;

default:
'fpr i nt f (st derr j "No state Xd for Xs\n", St Mach [RNGLE-L I M I T] y
"ANGLE-LIMIT");

break;
}

♦ifdef DEBUG-euent
fprintf(outfi Ie,"StNachfRNGLE_LI N I T] = Xd\n", St NachfRNGLE_L INIT]);

♦ e n d i f
}
{ /* Rectifier has 2 parts. */

{•V* Generate timing signal synchronizing with 60 Hz.
*/
static STE-t *ste_rect;

/* For rect i f i er, thyristors THVI and THV6 should be on
* initially and THV2 is to be fired next.

*/
switch (StMachtRECTIFIER])

{
case TRACK:

if (MON I TOR(ste_rect, 21.6e3*(tbase-t) - fire—angle, t o I))
Next St at e(RECT-CTRL, STRRT-PULSE);

tbase += I.e0/360.e0;
}
break;

case STRTE-I NIT:
■. st e_rect = STE_a I I o-c

tbase = I . eO/144.eO;
Next St ate(RECTI F I ER, TRACK);
i_error = iref-star - ilf;

break;
default:

fprintf(stderr,"No state Xd for Xs\n", StNachfRECTIFIER],
"RECTIFIER");

break;
}

♦ i f d e f ; DEBUG — euent
fpr i ntf(outfiIe,"StNachfRECT IFIER] = Xd\n", StNachfRECTIFIER]);

♦endif
} /* End of 1st part of rectifier control (generating timing

* signal). */
{ /* 2nd part of rectifier control.

*/ '
static 'nt «q[] {TH V1, THV6, THV2, THV4, THV3, T H V 5} •static SCH-t *sch—rect;
int t m p _ I o g i c ;
switch (StNachfRECT_CTRL])

{
case STRRT_PULSE:

135
t m p __ logic = TRIG;
Next State(RECT_CTRL, t m p_logic);
rect_next_t i me = t + pu 13e_«ii dt h;
NextLogic(seq[rect_seq_index], (char *) 8,tmp_logic, RECT_CTRL);

break;
. case TRIG:

if (SCHEDULE(sch__rect, rect_next_tI me))
{

tmp_logic = OFF;
NextSt at e(RECT_CTRL, tmp_logic);
NextLog ic(seq[rect_seq_i ndex], (char *) &tmp_Jogic, RECT_CTRL);

if (5 > rect_3eq_index)
rect_seq_i ndex++;

else
rect_seq_J ndex =0;

}
break;

case OFF:
break;

case STRTE_IN I T:
sch_rect = SCH_flLL0C();
Next State.(RECT_CTRL, OFF);
rect_seq__ index = 2;
rect_next_t i me = t + pu I se_w i dt h;

break;
default:

fprintHstderr, "No state Sd for Ss\n", StNach[RECT_CTRL],
" R E C T _ C T R L ");

break;
} /* End of switch (StNach[RECT__CTRL]). */

» ifdef DEBUG__euent
fprint f(out file," St Nach[RECT_CTRL] = Sd\n", StNach[RECT.CTRL]);

* end i f
} /* End of 2nd part of rectifier control. */

} /* End of rectifier control. */
{ /* Inuerter has 2 parts.

*/
{ /* This part generates ramp function.

*/
static STE_ *ste_inu;
switch (StNachf INUERTER])

{ - '■
case UP:

if (NON I TOR (st e_i nu, 1.e0/6.e0 - y_inu, to I))
(

s i.g-n_i nu = - I . eO;
NextState(INUERTER, DOUN);
NextState(INU_CTRL, STRRT_PULSE);

RecomputeJac;
}
break;

case DOUN:
if (NON I TOR(ste_inu, y_inu, tol))

3ign_inu = I . eO;
Next St ate(INUERTER, UP);
Next Stat e (I NU__CTRL, STflRTJ3ULSE);

RecomputeJac;

{

136

' ; } . . ■ ' ■ . ■ V ; ; .
break;

case STRTE-I NI T:
ste-inu = STE_a I I oc.(
.NextStatedNUERTERj UP);
sign_inu = T.eO;
break;

default:
fpr Intftstderrj "No state Xd for XsXn11j St MachE I NUEfiTER],

"INUERTER ") ;
break;

. ■ ' . . ' ■... ■ ■ • . -■ ■ ■ 't . .
♦ifdef DEBUG—event

fprintf(outfi I ej "StMachtINUERTER] = Xd\n", StMachTlNUERTER]);
♦end i f

{ /* This part sends pulses to thyristors.
'■ */

static int seq[] ' = UHVTj THVI2, JHVBj THVIOj THV9/ T H V11};
static SCH-t * sch-i nu;
int tmp-logic;

switch (StMachtTNU-CTRL])
case START—PULSE:

t mp-logic = TRIG;
NextState(I NU-CTRLj imp-logic);
inu_next—time = t + p u Ise-Width;
Next Logic(seq[inu-seq-index], (char *)

break;
case TRIG:

i f (SCHEDULE(sch— inu, I nv—next—t i me}.)
: { . . '

& t m p_Io gi c, I N U-C T R L);

NextStatedNU-CTRLj OFF);
tmp— Iogic ■ = OFF;

NextLog i c(seq[i nu-seq-i ndex], (char *) 8«tmp— I og i c, I NU-CTRL) ;
if (5 > inu-seq— index)

i nu-seq-index+ +;
e l 3e

inu-seq-index =0;
J . . V
break;

case OFF:
break;

case STflTE-IN IT:
schdnu = SCH-RLLOC();
Next St at e(INU_CTRL, OFF);
Inu-seq_index =2;
1nu-next-time = t + pulse-width;

break;
defauIt:

fpr i ntf(stderr,"No state Xd for Xs\n", Sttlachf INU CTRL] ."IHU_CTRL") " ’
break;

} / * End of switch (StNachf INU_CTRL]). */
"ifdef OEBUG.event

fpri nt f(outfiIe,"StNaehfINU_CTRL]
♦ e n d j f X d \ n", StMdchdNU-CTRL]);-

} / * End of 2nd pa r t o f i n u e r t e r . * /

I /* End of iriuerter port. */
JfV /* End of control port. */

} /* find of HoinEventO. */
void NairiInit(yst)
doubIe *yst;
{ • ■■■■:. . .

double' *ynSt, *dyst;
doubIe pi;
i nt i ;
ynst =' ySt * numst;
dyst = yst + numeq;
TSTfiRf = O.eO; / * Control parameters for i nt Sgrdtion. * /
TFINfiL = . 2e0';
HPR I NT = I.e-4;
pi = atan2(0.eO, -I.eO);
uib * 120.eO*pi;
sirî pi_over_6 = siri(pi / 6.eO);
CosJp i_ouerJ6 = cos(pi / 6.eO);
pi_2_overJ3 = pi / I.5eO;
t wo_over^sqr13 = 2.eO/sqrt(3.eOj;
vpeak = 240.eO * Sqrt(2.eO);
pi2 = 2.eO * pi;
rpmJo^we = pi2 / 60. eti * pole_pdir;
pu I se_ai i dt h = I . e = 3;
t oI = I.e-3; r
outfi Ie a foperi("out", ' V);
wariiF i I ePtr = fopen("warn i ng", " w”);
t imeFi IePtr = fopen("t iirie", 'V);
motorFiIePtr * foperi("motor", “w");
contro l FiIePtr = fopen(“controI", "w“);
deviceFiIePtr = fopen("device", "w“);
supplyFi IePtr =fopdri("supply", “«»");
i Id = i I c 10; /* Initial conditions setup. */
iIc2 = iIc20;
i I f = i If0;
vcupl = vcupI O;
vcup2 = vcup20;
vcIowI = vcI owl O;
vcIow2 = vcIow20;
psi_qs *. psi^qsO;
psi_ds - psi_dsO;
pSi^qr = psi_qrO;
psi^dr = psi_drO;
theta - thetciO;
wr = wrO;
y J nv - y_invO;
y_ctrI = y_ctr10;
/ * ■ '

* State machine initialization.
. . *i

event_init();
for (i = 0; i < NuiiiStNach; i ++)

StNacht i] = SffifEJNIf;
for (i = 0; i < NuniLriode; i+ +)

138

{ ■■
Lnodefi].size = si zeof(int);
Lnodefi].val = ECRLLOC(Lnode[i].size, char);
NextLnodef i] = ECRLLOC(Lnode[i].size, char);

}
} ■.
void output(yst,t)
d ou bIe * y s t ;
d o u b I e t ;
{

doubIe * y n s t ;
i nt i ;

count_output++;
if ((h[0] <1.6-5) && prev_ord)
ret urn;

ynst = yst + numst;
•ifdef DEBUG-event

fputc(' \n ' , out fi le);
•end i f ‘

fprint f(out file,"SI 2.Se ", t);
fprint f(out fiIe,"XI2.Se Xld ", h[0], prev_ord);
for (i = 0; i < 6; i+ +)

fprint f(out f i I e, "Xd", StNachfi]);
fput c(' ' , out file);
for (; i < 12; i + +)

fpr i nt f (out t'i I e, "Xd", StNachfi]);
fputc(' ' , out fi Ie);
for (; i < 18; i + +)

f print Hout file, "Xd", StNachfi]);
fputc(' ' , out file);
for (; i < NumStNach; i + +)

fpr int Houtfi le, "Xd", StNachfi]);
fprint f(out fM e , " ");
for (i = O; i < NumLnode; i+ +)

fprIntf(outf i I e, "Xd", *((int *) Lnodef i].vaI));
fputc('\n ' , out file);
fprintf(timeF i IePtr, "Xe\n", t);
fprint f(mot orFi I ePt r, "Xe\tXe\tXe\tXe\tXe\tXe\n", vl2-vI 3 , vmI, i m l

p si_m,
wr/rpm-to-we, T-elec);

f print f(c QntrolFi IePt r, "XeNtXeNtXeNtXeNtXeNn", v4, v5,, M f j fire.anqle
v c u p I) ; *

fpr i.n.tf CdeviceFi IePtr, "XeNtXeNtXeNtXeNtXeNtXpNn", vI-vi, H I, v6-v!2
idI, v5-v6, i 17); * ,

fpr intfCsupplyFi IePtrj "XeNtXeNn", Elj iId);
* ifdef DEBUG_event

fputcC'\n ', out file);
ff I ush(outfMe);

“endif
■ J : ■ ■■
“define sat-coeffl (-0.39286e3) /* Saturation- coefficients'. V“define sat_coeff2 .21147oI

« « * * * * * * * 3*t* * * * * * j*'=,c* * “t5,c:,c3'c* 3,c* ,,c3,cl,t* 3*c* * * 3*c* 3*t*********»#*»c***^t*j|c*jit***********^
* f_sat() calculates f(psi_m) as described in Prof. Krause's book*********** * * * * * * * ** * # # * g * * * * *

static double f-sat(x)
double x ;

139

r e t u r n - x > I 8 6 . 85e0? 20. "123e0*x-3806 . 3 8 e 0 : e x p (s a t_ c o e f f I + s a t _ c o e f f 2 * x);

	Purdue University
	Purdue e-Pubs
	1-1-1990

	TARDIS: A Numerical Simulation Package for Drive Systems
	W. Suwanwisoot
	C. M. Ong

	tmp.1542052450.pdf.6QNw_

