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Backtracking IC Placement Algorithm

ABSTRACT

A new algorithm for integrated circuit (IC) layout placement is introduced. As 
in simulated annealing, it allows uphill movements but in a more restrictive manner; 
thus, the search for an optima is more directed. Experiments on standard cell place
ment have shown that the average convergence time is faster than the simulated 
annealing algorithm while achieving similar results.

I. Introduction
The goal of IC layout placement is to reduce the wiring length of cell intercon

nections so that the layout area is minimized. A fairly complete bibliography of pre
vious placement techniques can be found in [1,2]. As indicated in [I), most previous 
approaches failed to compete with a human designer because the placement problem 
is NP-complete [3] and traditional greedy algorithms Often end at local minima.

Recently, the simulated annealing algorithm [4] became very attractive for the 
placement problem because it can converge to a global optima with probability one. 
Successful implementations of this algorithm have been reported in [I]. However, 
simulated annealing theoretically needs an infinite number of iterations to reach the 
global optima, A carefully planned cooling schedule is necessary when only a finite 
number of iterations are available [5, 6, 7]. Adjusting the cooling schedule experi
mentally may be time consuming and tedious in applications.

In this report, we propose a new approach for IC layout placement. This method 
searches for the best solution among all the randomly generated configurations in the 
placement process. The algorithm has the following features:

1) The algorithm does not require a process schedule such as the cooling 
schedule used in simulated annealing. It starts with a randomly chosen initial 
placement and searches for the best solution until a specified stop criterion is 
satisfied. The user specified stop criterion can be used to control the quality of 
the solution within the allotted computer execution time.
2) In order to avoid being trapped in a local optima, the algorithm maximizes 
the distance between the current placement and a worse placement result gen
erated during an earlier iteration; this permits uphill movements in the place
ment process.
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3) The average computation time complexity is lower than the simulated
annealing with comparable results.
In this report, we will model the behavior of the algorithm using a finite Markov 

chain transition matrix and show that the algorithm converges to a global optima 
quickly. Some basic definitions are given in section 2 and the basic algorithm is dis
cussed in section 3. Theoretical discussions appear in section 4. In section 5, we 
show some computer simulation results and examine the effectiveness of our 
approach. Section 6 gives conclusions.

2. Definitions
To describe our algorithm, we need the following definitions: 

BacktrackingChain
It is a sequence of placement configurations with decreasing wiring cost. For 

example, assume we have 6 different placement configurations in a stack Sp = {c6, 
c5, c4, c3, c2, c l }, with c6 at top of the stack and with corresponding wiring costs C 
= {100, HO, 120, 170, 150, 90}. In this case, SI = {c6, c5, c4, c3} is a backtracking 
chain; however neither S2 ={c2 c3 c4} nor S3 = {c3, c2, c l } are backtracking chains. 
In SI, the tail of chain, c3, corresponds to the placement configuration with the larg
est wiring cost, while the head of chain, c6, has the smallest wiring cost. The length 
of the backtracking chain is the difference in cost between its head and tail.

Peak Distance
It is the wiring cost difference between the head and tail of the longest back

trackingchain Siongest.

Current Placement Configuration
It is the most recently accepted layout placement configuration. From this 

configuration, we search for a better layout placement configuration.
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Valley Distance
. It is the wiring cost difference between the current placement configuration and 

a past placement configuration with the lowest cost. This cost difference is expressed 
as:

V0 = Valley distance = Ci - C  o

Where Ci = wiring cost of current placement configuration, and Co = the lowest wir
ing cost of past accepted placement configurations.

Cell
It is a standard cell which will be placed by the algorithm.

Backtracking Chain Length K
It represents the depth of the backtracking stack; thus, the maximum number of 

elements in the stack is K. Experiments have shown a value of K between 3 and 5 is 
optimal.

3. TheAlgorithm
In a real placement problem, we need to consider wire length, overlap penalty, 

critical path weighting and several other parameters that will affect the final layout. 
However, to simplify the discussion, we will only use wire length cost to gauge the 
quality of a placement result. Using the definitions given in section 2, we can now 
describe our algorithm as follows:
1) A backtracking stack Sp is used to keep track of placement configurations which 

have been rejected; the size of Sp is equivalent to the number of entries in the 
stack. Initially, the stack is empty, the peak distance is set to zero, and the value 
of Vo is set to infinity. The algorithm begins with a randomly chosen placement 
configuration.

2) A candidate placement configuration is generated randomly through either a) 
interchange of cell positions, b) single cell displacement, or c) cell orientation 
changes.

3) The wiring cost of the candidate placement configuration is pushed onto the 
stack Sp.

4) If the candidate placement configuration has lower wiring cost than the current 
placement configuration, it is accepted as the new current configuration, stack Sp 
is cleared, the value of Vq is updated and we go back to step 2. However, If the 
candidate configuration has higher wiring cost than the current placement
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configuration, the following steps are carried out to see if it should be accepted.
5) If the size of Sp is less than K or if it is equal to K but the Sp does not form a 

backtracking chain, the candidate configuration is rejected and we go back to 
step 2.

6) If size of the stack Sp is equal to K and Sp forms a backtracking chain, the fol- 
“ lowing procedures are carried out:

- update Vpeofc
- fd = wiring cost of candidate configuration - C1
- if (a*fd < V0 and fd <  Siongest) {

accept the candidate configuration;
- clear Sp;

go back to step 2).
-} else {

reject the candidate configuration; 
go to step 2);

- }
a  is a user specified variable which controls the acceptance ratio. Its value 
ranges between O and I. When a  is equal to I, the algorithm turns into a greedy 
algorithm. Usually, a  is selected to be small at the beginning of the search pro
cess; then we increase it by a small fraction every M iterations (M is propor
tional to the number of cells in the layout, e.g. M=25*cell_number). It functions 
like the temperature parameter in the simulated annealing algorithm and can be 
used to control the acceptance ratio of newly generated configurations. In our 
experiments, a  is set to 0.002 initially and increased 2% every 25*Nc iterations 
(Ne is the number of cells in the layout).

7) In above iterations, we will check a stop criterion as follows: if in M iterations 
(M is the same as specified above) less than P% of newly generated 
configurations are accepted, the algorithm terminates. P is set to 2% in our 
experiments.
The basic idea behind this algorithm is to simultaneously maximize the distance 

between the current configuration and a worse placement configuration (approxi
mated by Siongest) and minimize the distance between the current configuration and 
the best configuration (approximated by Uq).
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4. Theoretical Discussion
The Markov chain has been used as an effective model to analyze the behavior 

of the simulated annealing algorithm [7, 8,10]. We will also use the Markov chain to 
analyze our algorithm and compare it to simulated annealing.

Let S={ 1 ,2, 3 , ...... .. Nj be a finite set and let / b e  a function defined on S; the
elements in S denote the state number in the solution space. The simulated annealing 
approach, is modeled as an inhomogeneous Markov process with state space S and 
with entries of the transition matrix defined as:

q (iJ)exp[-(/ ( / ) - /  (i))+/T (f)]
Py = I i -  Ep*

kn

for j*i 
for j=i (I )

Where T (t) is a positive function converging to zero as t goes to infinity. /  (i) is the 
wiring cost of placement configuration i. q(i,j) is the probability of generating 
configuration j from configuration i. It has been proven that the annealing process 
will converge to the lowest cost configuration with probability one [5, 7]. To sim
plify the analysis and comparison, we assume that the elements of set S have cost 
corresponding to their index I, 2,..., N. We construct the transition matrix with lower 
cost elements occupying the lower index position. Equation (I) can be rewritten as

I - E p * for M
k*i

(2)

Since we assume that there is an equal chance to generate any placement

configuration, q(i,j) equals . The Markov process corresponding to equation 2

can easily be simulated with a computer program. Using the mean first passage 
matrix M [9], one can estimate the convergence time by looking at the matrix entry 
M (i ,j) which denotes the mean number of iterations required for transition from state 
i to state j. Using the limiting vector A discussed in [9], one can estimate the proba
bility of reaching a global optima. Table I shows the results from mean first passage

matrix and limiting vector on a problem with state space S = 40 and q(i,j)=— . In

order to simulate a realistic case (the case when there is a local minima), we set 
q(l,2)=q(2,l)=0 which specifies that configuration 2 cannot go to the global optima 
(configuration I) directly, An up-hill movement is necessary before the placement 
configuration can change from the local minima (configuration 2) to the global



6

optima (configuration I).

Table I: Simulation Results Modeling Behavior 
of Simulated Annealing Algorithm.

Optimal Probability # of iteration

68% 177

92% 935

99.2% 11830

From Table I, it can be seen that the computation time increases dramatically 
when the optimal probability (the probability for a configuration to be a global 
optima at the end of iterations) is close to I. When N is very large in real implemen
tations, the required computation time could be extremely long.

Using set S and the same assumptions that we used to construct equation 2, the 
transition matrix for the Markov process in our algorithm can be written as (see 
Appendix for derivation):

Where

p U

c V
< W ) — T  N k

J_
N

I - V i m
mti

for j>i 
for j<i 
for j=i

if ( j—i < j - 1  and. j - i  < N -j)

(3)

(4)

d U J ) =  I

else d (Jj) = O

Simulations on a 40x40 matrix are again carried out to observe the behavior of 
our algorithm. Table 2 shows the results of simulations.

Table 2: Simulation Results Modeling Behavior 
of Best Searching Algorithm.
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Optimal Probability # of iteration K

100% 43 2

100% 48 3

100% 77 4

It can be noted from Table 2 that the results are far superior to those shown in 
Table I. The computational complexity is of order <9(N).

It should be noted that in order to obtain the results shown in Table 2, we have 
made a very unrealistic assumption that we know from the outset the wiring cost of 
the best placement. This assumption becomes reasonable in the later stages of the 
search process as we get closer and closer to the global optima. Since a large number 
of iterations are still performed in the later stages of the search process, our algorithm 
can still be advantageous (compared to simulated annealing) by reducing the number 
of iterations. This is shown in the next section by two real placement examples.

5. ExperimentalResults
We used two real placement examples to compare our algorithm against simu

lated annealing. The results are shown in Tables 3 and 4.

Table 3: Actual IC Placement Results, Number of Cells=30.

Backtracking SimulatedAnnealing

Wire Length Reduction 31% 25%

CPUTime 25.1 sec. 68.6 sec.

Table 4: Actual IC Placement Results, Number of Cells=90.

■ - Backtracking Simulated Annealing

Wire Length Reduction 61% 62%

CPU Time 68.0 sec. 250.3 sec.

The results shown in Tables 3 and 4 represent the average of several simulation runs. 
We can see that the new algorithm achieves the same results as simulated annealing 
in substantially shorter time.
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6. Conclusions
A new algorithm for IC placement has been introduced. It allows uphill move

ments to avoid being trapped in a local minima. Its advantages are : I) no fine tuning 
of algorithm necessary; 2) on the average, it converges to a global optima at faster 
rate than simulated annealing; and 3) uses simple arithmetic computations, (i.e., no 
exponential computations). The algorithm can be useful in other combinatorial 
optimization problems where the computation complexity is NP complete.

Appendix
To derive equation 3, we need two assumptions.

1) The probability to generate any configuration from a given configuration is the 
same, i.e., it is uniformly distributed.

2) We assume that the backtracking chain has length K.
A new configuration which decreases the wiring cost, is always accepted, i.e., 

the probability of selecting a configuration with lower wiring cost is simply equal to

the probability of generating it,

A  new configuration which increases the wiring cost, is not accepted unless a) a 
backtracking chain is found, and b) the increased cost is less than the valley distance 
and the peak distance. By considering a) and b) together we get equation 3.

To find a backtracking chain, we need to pick K configurations with decreasing 
wiring cost. From assumption I), the upper bound of the probability to generate K 
configurations with decreasing wiring cost is:

c T i
N k

(N -j)\
^  %

I
< K \(N -j-K )\ N k

CI
for N - /  >K 
for N - j  <K

(5)

The condition that the increasing cost must be less than the valley distance can be 
idealized as

j - i < j - 1 (6)

Which is satisfied by all i except i = I. Note that j-1 here actually is the distance 
from current configuration to the best configuration.

The condition that the increasing cost must be less than the peak distance can be 
idealized as
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(7)

Combining equations 5 through 7, we get equation 3.
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