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? ABSTRACT

, A nonlmear neural framework called t.he Generahzed Hopﬁeld Network, is .
- proposed, which is able to solve in a parallel distributed manner systems of nonlinear
~ equations. The method is applied to the general nonlinear optimization problem. We =

demonstrate: GHNs implementing the three most important optimization algorithms,
- namely the Augmented Lagrangian, Generalized Reduced Gradient and Successxve
;Quadranc Programrmng methods. - v «

- The study results in a dynamic view of the optimization problem and offers a
- straightforward model for the parallelization of the optimization computations, thus
~ significantly extending the pracucal limits of problems that can be formulated as an -
* optimization problem and which can gain from the- introduction of nonlinearities in -

their structure (eg. pattern recognition, supervised leammg, dcs1gn of content- -

_addressable memones)



‘ l Introductlon

'I'he ability of networks of hrghly mterconnected nonlmear processors (neurons) to.
~ solve complicated opumuauon problems was demonstrated in a series of papers by
- Hopfield and Tank, (Hopﬁeld, 1984), (Tank et al.,’ 1986) Problems that can be
o formulated and solved on such neural circuits include s1gna1 decoding, pattern

’ recogmuon, linear programs, the Travehng Salesman Problem and other decision

~ problems ‘whose ob_]ecuve function can be conveniently expressed as a quadratic
function of the system’s independent variables. The dynamics of such networks,
generated by the analog response, high mterconnectrvrty and the existence of feedback
connections, produce a path through the space of independent variables that tends to
minimize the objectwe function value. Eventually, a stable steady-state’ conﬁguratlon is
reached wh1ch corresponds toa local minimum of the objective function.

, Since each optimization or, in general, nonlinear equation solving problem can be
considered as a transition. from an initial state to an optimal one, we will try to extend
. the ‘original model, so that it can handle general nonlinear optimization problems
o Specxﬁcally in this paper we will: L

(1) propose a systematm procedure to transform a nonlinear opumrzatmn problem (both
‘ unconstramed and constramed) 1nto a dynamlc model '

, (n) mvesugate the necessary structure of a network of sunple nonlinear analog :
processors whlch are able to unplement the dynamrc model and

(m) propose  a thhly distributed computauonal model for solvmg nonlinear
optimization problems in a series of parallel processors, able to implement all the
_existing important solution approaches (Cauchy’s and Newton’s method,
- Augmented ' Lagrangian, - Generalized Reduced Grad1ent -Successive” 'Quadratic
" Programming). . :

2. therature Revrew |

t The bulk of the research effort on the apphcatlon of neural networks in opumrzatxon

has been concentrated on the solution of combinatorially complex decision problems. It 3

was soon realized, (Bruck et. al, 1987), that the quality of the neural networks solution .
depends on the quality of the underlying algorithm and that combinatorial problems
(eg. Traveling Salesman Problem) can not be solved with guaranteed quality, getting
‘trapped in locally optimal solutions. Jeffrey and Rossner, (Jeffrey et al., 1986),
extended Hopfield’s technique to the nonlinear unconstrained optimization problem,
using Cauchy dynamics.. Kennedy and Chua, (Kennedy et al., 1988), presented an
analog implementation of a network solving a nonlinear optimization problem. The -
- underlying optimization algorithm is a simple transformation method, (Reklaitis ef al.,

1983), which was proved relatively mefﬁcrent for large nonlmear opumrzatlon R 1

problems



' }, 3. Béckground

3 l Linear Hopﬁeld Networks S o
The computauon in a Hopﬁeld network is done by a collectlon of mghly -

‘ ‘:'mterconnected simple nonlinear processors - (ampllﬁers) also_ called neurons. Each o :
- processing element, i, is charactérized by the activation level, u;, which isa functionof =

~ the cumulative input that the processor receives. from the external environment and the
other members of the network, through their welghted interconnections. The activation

~ level of i is transmitted to the other processors, after passing through a filter that . . = -
- converts u; toaQor 1 d1screte value, Vi. The time behavwr of the systcm is descnbed CAL T

by the followmg model
du; W o ot e
(—") = ZTijVj'— R_ +I; o @B
u = si (V) 312

| where, T,, is the strcngth of the connection ﬁ'om processor j to i, I; denotes the: fixed |
: extemal input, and the parameters R;, C; control the time behavior of the processor. -

“The function V; = 5;(u;) describes the aforementtoned filter. Ideally, it should be

N . a hard threshold function. This is not realizable because of the discontinuity 1ntroduced

~atu=0: Aconnnuously differentiable s- shaped function (eg. tanh (Au) , 1/ (1 +e M 1)
is used to approximate the threshold behavior. In the limit A —» oo the s1gm01d funcuon
reproduces exactly the hard threshold function (Figure 1). .

" The nght hand side of equation (3.1.2) describes the mputs to neuron 3 Wthh are
linearly combined, after being weighted by a corresponding: interconnection strength.
- We will refer to these architectures as linear Hopfield networks (LHN). Hopﬁeld
3 ‘showed, (Hopﬁeld 1984), that the underlying Lyapunov function of the network for

symmetnc mterconnectlon strengths T,J is glven by: ‘

on = E, + E2

Ey =”"‘§ZZTijV1Vj + XLV (3.13)
o A

E =3 (-—) fs,“‘(V)dV

The ’energy’ funcuon Eo is- composed of two. terms. E; is a quadrauc form of the A
activation levels. E is produced by the sigmoid approximation to the filter equation. In' - e
the high gain limit, A — e, and for symmetric T matrix, E, becomes neghglble and R




does not affect the topology of E g, which becomes identical to E . When A is finite, E,
- dominates because the function s; (V;) becomes unbounded for extreme values of V;. It
is proven that if the system is ass1gned an initial value, it will relax to a steady state
(t = o) correspondmg toa local minimum of the system’s energy function E . For a
- symmetric T, the local minima of Eq lie on the corners of the hypercube (feasible
region) —1 < V; <1, where some V; will be -1 and others +1. These observations turn
~ the linear Hopfield network to a very useful discrete optimization tool. '

-~ 3.2 The Nonlinear Optinﬁzatﬁon Problem

In the general nonhnear opumlzanon problem we are looking for the values of the
mdependent variables x;, i = 1,2,...,N, which minimize a certain multivariable objective
function so-that. certain- conditions (constramts) are. sansﬁed at the opumum The -

‘ problem can be expressed as:-

' miniiniz’e ‘ f (15 X2, 2oy Xn)

_ subject to ‘ L
" h; (xl,xz,‘..., X)) =0 : 1= 1»,2,;..;K, K < N
3; < gj (X1, X2, - Xa) S b Jo=12,..M (3.2.1)
i s X < x,ﬁ’ o k = 1,2,...,N o |

where, f is the objective funcuon, h; are the equality constraints and g; are the
inequality constraints. xf and x{ are respect1vely the lower and upper bounds of the
independent variables. |

"~ The features of the nonlinear opumlzatron problem require more expressrve
power that tlus offered by the LHN architecture:

;- @) - The energy (obJectrve) function f, to be mmlmrzed can take any nonlinear form, as
" opposed to the E’s quadratic formin (3.1.3).

(u) The feasible region, 1mphc1tly defined by equanons h;, gj, can have any shape, :
opposed to the original hypercube geometry -1V, 1)

(iii) - The optlmum can lie anywhere in the feasible region.

An extension to the original network structure is necessary. The processors must -
be allowed to interact in a general nonhnear fashlon contrary to the linear input
- structure in (3.1.1). ' »



B 3 _3 Necessary Optlmahty Condmons o i
“In the following. analysrs, -we will concentrate on the equahty consu-am ed]’ .

opttmrzauon problem (wrth bold characters denotmg vectors)

sub‘]'eci to o
h(x)

Each mequahty constmmt can take an eqmvalent equahty form by mtroducmg an A

3  additional slack variable, (Reklaitis et al., 1983
g(x) 2 'Of - g(x) - xN+i""‘= 0, xhl-t-l 20

- Assummg that funcuons I h are drfferenuable, the necessary condmons fora pomt x
- to be the solutlon of problem (3 2. l) are: :

Vf—vTVh 20 632)

ha) =0 (333) L

' ';Equauons (3.3. 2) and (3 3 3) are called Lagrangzan conditions. The parameters v are‘
the Lagranglan multipliers. Tt is ‘customary ‘t0 use a umﬁed notation for both of the"

B above equauons by mtroducmg the Lagrangian functzon

L=fvh o e
= - _‘ Then conditions (3.3.2) and (3.3.3) are simply:

Vil =0 (Neguations) 3375

.....

L ="_o‘ (K equations) (336)" R

: These are (N+K) equanons wrth (N+K) unlcnowns, X andv In order to solve the N

~ problem (3.3.75) - (3.3.6) the nonlinear opnmtzauon algonthms rely on the followmg;‘ g

theorem. ’

| Theorem 3. 3.1' If x'is. the soluuon of the nonlmear opnmrzauon problem, then o ;"3 T

}(x vi 1s a saddle-pomt of the Lagrangran funcnon sansfymg

L(x v) s L(x vY) < L(x, v for all xandv | | (337)




) Therefore. in the netghborhood of the opumum x* mmmtzes L and v max1mlzes L.

: The exxstmg nonhnear optimizers try to approach the solutlon of the nonhnear set | g
.of equatlons (3.3.2) and (3.3.3) through an iterative procedure, so that the Lagrangian

~function is minimized by the x variables and maximized by the v variables. Clearly, |

problems (3.3.75) and (3.3.6) are eqmva.lent to locatmg the extremums of an__
 unconstrained function f: A . : -

Vf = o . __'(3.3_:8)-

' Two methods have been extenslvely used for the solutxon of (3.3. 8)

K (1) Cauchy’s method: - It is the famous steepest descent algorithm, wh1ch tracks the_'- -
dJrecuon of the largest change in the value of the objective function: o

x&ED = x(k) + er &= £1 : _._(3;3.9)

- 'V‘The opt1m12at10n problem 3. 3 8) can be viewed as a dynamically changmg system that -
progresses from an initial state to a final one (optxmum) Equatlon (3.3.9 suggests the
followmg "equation of motion” for the system: , t

5
dt
Ev1dently, the steady states ‘'of the initial value problem 3. 3. 10) are identical to the

roots of equation (3.3.8). These steady states correspond to the extreums of the
original function f:

& ; ox; dt vs dt C (3'.3.11)
Combining (3.3.10) and (3.3.11) :
i ellVA® | o (3,3.12)_ _;

B eVl ; x(0)=x, Tl (3310)

If e = -1 the value of f monotomcally decreases with time and the steady state'

: vcorresponds toa local minimum.

(ii) - Newton’s method: If second-order information about the Lagrangian funcuon 1s. o

available, a more rapid convergence is produced using Newton s approximation: o

x®D = xgy +e(VPHTVf ekl (3313) o



o ,"wnh correspondmg "equauon of motlon '
'd'x
ar

— e(sz)‘l Vf e | .(3.3.14) o .

Newton’s method is apphcable only 1f sz exrsts and is non-smgular Under these]” -

‘conditions the steady states of G. 3 14) and the roots of (3.3.8) are 1denuca1 The nme- ah
behavrorofthealgont.hmxs SR . ;

dr ax, de

z. }:—4‘5- - VfT & erT i Vf | v(3.3.f'.75)’: S

| The s1gn of (3 3. 75) is determmed by the quadratlc form Q If O is elther posmve orf e

negauve definite, the behavior of f as a function of time can be controlled through €. If -~
Q is indefinite, the Levenberg ‘Marquardt approach can be adopted, (Reklams etal,
1983): . '

Y =@:(sz,+ M)“Vf o '(3..3.-17)

. Large values of the adjustable parameter A turn the: correspondmg quadrauc form mto_
positive definite. As it is proved in Appendix I, any method that combines the above
: menuoned solutron procedures and the results of ’I'heorem 3.3.1 is stable.

In the next section we will combine the formulation of the problem and the
- dynamic solution methods in generahzed Hopfield architectures, capable to implement

‘all the important optimization algorithms (Augmented Lagrangian, Generali zed | -

. : Reduced Grad.rent Successwe Quadrauc Programmmg) and thelr vanants
4, ‘Geherali‘zed Hopfield Networks and OptimizatiOn

4 1 Unconstramed Optmuzatnon ,
The unconstramed opnmrzanon problem can- be expressed as follows
 minimize f (x)

Applying the dynamic vaﬁaﬁoh:of Cauchy’s method:



_ o dx af '._,\ |
AR A I 12N LD

The correspondmg Hopﬁeld network solv1ng the unconstrained. m1n1mlzatron problem
~ consists of N processors, each one representing an mdependent variable. Equations
(4.1.1) describe the time behavior of each processor. Tt is clear that the input structure
of each processor must be arbitrarily nonlinear, dictated by (4.1.1), as opposed to the
ongmal linear Hopfield model. We will refer to the networks of these processors as
nonhnear or. generahzed Hopﬁeld networks (GHN). :

Example '

. In order to demonstrate the power of GHN’s in unconstrained optimization the ’
followmg problem was solved using Cauchy dynamrcs (Rek]ams et al., 1983)

minimize f(x) (x1 + X9 — 11) + (x1 + x% - 11)2

As shown in Flgure 2 the above funcnon, known as Hlmmelblau function, possesses
four local minima. Two neurons are needed, representmg the problem’s independent
variables. The nonlmear input ‘structure of each neuron is dictated by equauon (4.1.1).
Steepest descent is a local optimization algorithm. The system’s steady state is
determined by the choice of initial values. This is shown clearly in Figure 2, where two
: different, initial points produce convergence to different steady states. Euler’s. explicit
o mtegranon method was employed to calculate the trajectories shown in Figure 2 "

4.2 Transforr_nation Methods . Augmented Lagrangian

One of the first attempts to solve the general nonlinear optimization problem
involved the incorporation of the constraints into the objective function. In these
transformation methods, the constraint opumlzatlon problem is reduced to the
“unconstrained minimization of the lumped function:

P@R) = f(x)+Rn(h,,,) @2

If the constraints are violated, a large penalty (function Q) is added to the objective
~ function. If the value of the adjustable parameter R is appropriately updated after each

- iteration, the unconstrained minimum of (4.2.1) will be identical to the optimum of the

~ original problem. It was soon realized that the transformation methods are not very
efficient, because of numerical difficulties implicitly embedded in their structure,
(Reklaitis ef al., 1983). The Augmented Lagrangian Method is specifically designed to

“avoid these problems. The transformed unconstrained objective function becomes:



‘,P(x,c,'c)' = f@+ RY( <g}(x) + 0;>? ~ v°%}

B where R isa predeterrmned ‘constant. Funcuon (422) is an approx1mauon of the :

vLagrang'ran functon (3. 3 4). Vanables o, tare iteratively updated by the equauons

o('“) = <gj(x) + o>

¥ = h@ + @23

The hracket operator (<.>) is defined as :

When the process converges, x is the solutlon of the ongmal problem and oj, ‘c, the'- -
correspondmg inequality - equality Lagrange multipliers. Equations (4.2.3) suggest that -
the dynamical behavior of a network 1mplement1ng the Augmented Lagranglan T

[

optxmlzauon method is:

- % = -V,P = }Vf - 2R<g + 6>T Vg v_— 2R [k + 1 Vh o
dS _ \V.P = 2R <g -2Re 424
T _>+}°1f’ = <g + 0> - 2Ro | | (.2;.‘_)
dt bk L
o VP = RA

“where Vg and VA are matrices, eg. Vh _ = [Vhy, ... VA

In the correspohding GHN (N+K+M) neurons, representing the independent
variables and the equality - inequality Lagrange multipliers, are necessary. The .
connectivity among the neurons (processors) is dictated by equation (4.2.4).

4.3 Generahzed Reduced Gradlent

_ In the Generalized Reduced Gradient (GRG) method, the mdependent vanables x
- form two disjoint subsets:

- the set of K basic vanables (dependent vanables), X



" — the set of N-K non-basic variables -_(independcnt variables), X;

 Then, equations (3.3.2) and (3.3.3) can be rewritten as follows:

VF-vT VE = 0 (N-K equations) @3.1)
. VFf-vI Vi = 0 (K equations) - 432
R =0 & equations) | | (4.3'.3)

whcre Vf is a (N-K) d1mens1on vector contammg the parual denvatlves of f w1th
respect to the non-bas1c vanables and vT = [ Viseoos Vi L

Equauons (4.3.2) can be exphcnly solved for vT
- v VA" | @34 |

~Basic variables are chosen so that Vhis non-singular. Equatlon @4.34) is subst1tuted in
(4.3.1), so that equations (4.3.1)-(4.3.2) are transformed to

VFi= VF-Vi(VR) Vik =0 (4.3.75)
ChG) =0 o (4.3.6)
- wherc Vf is a modified reduced gradient for the independcnt‘variable‘s 5c', influenced by
the shape of the constraints. The values of the K dependent variables x; are computed

. from the system of K nonlinear equations (4.3.3). In' GRG, equations 4.3.75) and
(4.3.6) are solved using Cauchy’s and Newton’s method, respectively.

~'The time behavior of a dynamic optimizer that uses GRG method is represcntcd

by the following system of equations:

%’ = -Vf = -VF+ Vi (VRY' Vi 437)
hx) = 0 (- % = K (VRY ") (43.8)

-x(O)’ = X

- System (4.3.7)-(4.3.8) is a differential - algebraic system, with an inherent sequential
character: for each small step towards lower objective values, produced by (4.3.7), the
system of nonlinear constraints should be solved, by relaxing equations (4.3.8) to a
steady-state. The procedure is repeated until both equations reach a steady state. The



11

above problem can be solved using a GHN of N-K+K=N nonlinear p,roceséors, the

*connectivity of which is dictated by (4.3.7) - (4.3.8). GRG uses K less processors than -

" the Augmented Lagrangian method, but spends more effort in the computation of the

 reduced gradient.

4.4 Successive Quadratic Programming |

~ In the SQP strategy, Newton’s method is employed in the cdmputation‘ of .b;oth_' the
‘independent variables, x, and the Lagrange multipliers, v. The state equations of a
- dynamic SQP optimizer are: . SRR S o
‘ e
dt

z(0) = zy

where z is the aﬁgménted set of indcp_éndcnt variables, and L is the Lagranglan o

function, defined as follows:

z = [x;v] -

L =f-vTh
If matrix H is nonsingular, t_heh the steady states of equations (4.4.1) are identical t6 the
stationary points of L. In order to attain convergence to a local optimum of the
optimization problem, which is a saddle point of L, we must guarantee, through

continuous manipulation of €, that the x state equations produce a descent in L-space .
and the v equations produce an ascent init. - o ; T

Example | . | | :
The dynamics of the three algorithms were investigated with the following
nonlinear optimization problem: '_ ’ ‘ ‘
minimize f(x) = —x1x3 53 /81
: ,.sicbject to . |
e = x? + x5 + x3-13 =0

B = B2 -1 =0

The SQP neﬁvork was an adaptation Ofbcquationéb» (4.4.1) which uvsed.thevLevenbe'rg-

-~ Marquardt method. Figure 3 ‘shows the transient behavior of the SQP and the
- Augmented Lagrangian (AL) networks, starting from a feasible initial state. The



o

behavior of the GRG algonthm is almost 1dent1cal to that of the AL. Since uuually, the
v _obJectlve-funcuon gradients are very small, the second-order Newton dynamics of the

| 'SQP network prevail over the first-order steepest-descent dynamlcs of the GRG and AL.

" networks.

A maJor d1sadvantage of the ongmal GRG algonthm is the requlrement of ‘

feasibility for both the initial and intermediately generated points. Figure 4 shows the
transient behavior of the networks starting from an infeasible initial state. Again, the
GRG and AL dynamics are almost identical. All three networks converged to a local
opumum Additional experiments showed that startmg from an infeasible initial point,
x, = [ X, , X, ], the GRG network always converges to a local optlmum, as long as
there exists a solution to the system of nonhnear equatlons :

5 Optlmlzatlon and Parallel Computatlon

- A most important apphcatlon of the proposed model hes in its direct translatlon to a
parallel algorithm which can distribute the computational burden of optlmlzauon toa
large (at most N+K) number of simultaneously computmg digital processors. Each one
of them simulates the nonlinear analog processors of a GHN, which represents either a
variable ora Lagrange multtpher and is contmuously updated through the mtegratlon of
the state equatlons

xj = _x,-ﬁ+’_¢(x;v)

where x , v are the most recent updates of the independent variables and the Lagrange
multipliers, and ¢ depends on both the optimization algorithm and the integration
‘method. Here are two unique features of the algorithm:

© (i) - An integral of the state equations is available, namely the Lagranglan function,
which was differentiated in the first place. Thus, since only a steady-state solution is

- desired, it is not necessary to use a method for stiff O.D.Es. Any explicit or semi-
implicit integration method will suffice.

@ii) - Because of the above and the fact that the state equations are autonomous, it is

~ possible to update each variable in each processor completely asynchronously: the

(k+1)"* update of x; does not require the k™ update of all the other variables. Thus

- the need to synchronize the computations done by the various processors is avoided.

- Consequently, the algonthm is robust with respect to intercommunication and

execution delays. In contrast, the conventional forms of the opumnanon algonthm
require complete synchromzauon in:

- the u‘nderlyl_ng unconstrained optimizations and



- the solution of linear (SQP) and nonhnear (GRG) algebraic equatlons S

: As a result their potenual for para]lehzauon is s1gmﬁcantly reduced. The Proposed- e
algonthm efficiently dlstnbutes the computational burden among the parallel SRR

- processors.

6. Conclusions | S . S A  ~; _'

In th1s paper we presented an extens1on to the linear Hopﬁeld network wmch can
solve any constrained nonlinear optimization problem, or set of nonlinear algebraic -
. equations, simulating any existing solution algorithm. The existence of strong
~ nonlinearities demands s1gn1ﬁca.nt1y more express1ve power than- that offered by the

~ Linear Hopfield Network.

The whole study resulted in a dynamic view of the optimization problem, Which -

~ significantly contributed in gaining some 1ns1ght to the problem and the existing
solution methods and offered a straxghtforward model for parallehzmg the opumlzatlon
computations.
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= Appendix I - Extension of Lyarput:l‘(')v;’s Stability Theorem

We considef the autonomous system of n nonlinear OD.Es:

_' 71- = vf;(xl, 'x ) - i= 1,2,...,n | | (I:l)
where fl and a—f-, j=1 2, ,}n are cdiitinﬁbus ina reg‘ion’b of the n—&me’nsional x-
J

‘ space‘ We will assume that D contains the ongm 0, ‘which i isa crmcal point such that
£ =0  i=12..n |  (1.2)

The above assumption is not restrictive. Any critical point of f can become the origin
with the appropriate translation of the coordinate axes.

Lemma L1. Suppose that V(x) is a scalar function of the n-dlmenszonal vector, x, with
the following properties:

(i) V is continuous with continuous first partial denvanves inside a region Q of the
domain of x, containing the ortgm, x=0.

(ii) V has a stationary pomt (mzmmum, maxlmum or saddle point) at the origin.
Then,

(i) There exists a netghborhood D around 0 inside which no other stationary pomts of V
exists (D = DyxDgx -+- xDp). .

(ii) If c € D then the smgle-vanable scalar functions (mtersecnons) deﬁned by the
‘equations:

Vi€ s X1 =C1s o Xpo v Xn =€) k= 1,2,m @3)

~ also have, in the neighborhood Dy, a single stationary point, E(c).

(iii) The pomts x; = (c1, cz, wees Ck=1» Gks Cka1s waCn), for every c1 € Dy, c3€ Do,
Ck-1 € Dg_q, Ck41 € D4ty i Cn € D,. form a curve, called a stationary point curve,
- Cy, with the following properties: :

(o) Cy is a continuous curve with no cycles

(B) There exists one and only one pomt zdenncal to the ongm, on whzch all the

curvesCy, k=1, .., nmeet
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Proof We w1ll prove each proposmon separately

(1) If there did not exlst such a nelghborhood, then 0 would not be a stanonary pomt or
v V would be constant. v A _

(u) The funcnons Vk(c xk) are contmuous and contmuously d1fferent1able, otherwrse V "
~ would not possess the same properties. If no stationary points existed for the functions
V, inside D, then V, would be either constant, thus making V constant, .or
d1scontmuous, ‘also makmg V- discontinuous. No more than one stationary point can
exist: for- each V. Otherwise, there would exist erther a d1scontmu1ty in V or multiple’

o statlonary pomts of Vin D, not allowed by (i).

. __(m a) The conunulty of V and property (u) do not allow for a d1sconunu1ty of curve. - '
- . Cy, inside the region D. The existence of a single stationary point & for each Vk and c.
ms1de D precludes the exlstence of cycles in the curve Cg.

- (idi - B) It is clear that all curves Cr, k=1,2,....n, are met on the origin, which is a

- stationary point of V. Any other meeting point would also have all partial derivatives
- equal to zero, therefore it would be another stauonary pomt msrde D, thus contradlctmg ‘
- with proposmon ). R : .

,Theorem L l Suppose that for the nonlmear system (I.1) one can identify a continuous
scalar functton V (x) with the following properties:

(@) Vis contmuous wtth eontmuous first derivatives.

(ii)Oisa saddlepomt of V.

- (ut ) If we partition the set of mdependent variables X; into two subsets

X = {xk | Vk(O; XK) have a minimum at x,‘, = 0}

X = {th | V,;_(O; Xi) ha,ve‘a‘ ma.xtmum at xk = (V)3
the‘ following relations are true, at least for a neighborhood Q around the origin:

v | S .
sgn(=— axk = —sgn o vy, eX
sgn( aV = sgn(fk) ) -‘Vx;_c eX

where sgn( ) ﬁmctzon returns the s:gn of the argument

'(tv) IX] + IX I =n (meamng that there is no Vk w1th an mﬂecaon pomt)
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‘ Then, the ongm x = 0 isa stable crmcal potnt of (I.1).

| Proof' Lemma L1 guarantees the existence of the stationary pomt curves Cy. We will
. prove that there exists a function W, the dual of V, which is positive definite and for -
which the ongm x = 0is the sole mlmmum. 'I'he Energy functlon Wis constructed as

follows:
v (1) The points xg that belong to curves Ck are given zero energy

: W(xo) =0

(ii) For each other point xp = (xm, s X0n) € D we define a ’drstance measure from
each curve Cy, defined as: '

di(xo) = llxo — xz |l

‘where x} is the stationary point of Vi(c ; X¢), With ¢j = xgj, j # k. and || is any
vector norm of the n-dimensional real vector space. Note that for each x¢ there is only
one xk in D. Then,

Wxo) = 3 oxdi(xo)
k=1

where o are positive constants. It is clear from Lemma L1 that W function has only
one zero, namely at the origin. Condition (iid) implies that if V has a minimum at
x =0 then equation

drives the system towards it, given that x;, j # k are kept constant:

Vv dx
sgn( ——- )—Sgn(—;;?t—)—“l

Hence it tries to minimize di(x) and'cohsequentlys W(x). Therefore:

aw

The Energy function W and the system 11 make the precondmons of the ongmal
- Lyapunov’s theorem true. Therefore, the origin 0 is asymptotlcally stable. '



‘Notes:

(i) Lyapunov’s stablhty theorem, (Bauer et al., 1969), is concerned w1th energy
functions having a minimum (maxrmum) and nonlinear O.D.Es ‘that try to minimize -
- (maximize) it Clearly, Theorem L1 is an extension to the ongmal theorem that also"
covers energy functions having a‘certain kmd of saddle pomts

(u) It can be easily proved that if the stationary pomts of some Vk around the ongm are _:'
mﬁecuon pomts then system (I.1) is unstable. : -

‘ _(m) It is the dual function W that monotonically decreases in time. The value of V
which has a saddle point at the origin, can either decrease, increase or approach the -
stable value V (0) in an oscﬂlatory way.

Theorem I.2. The system of nonlmear O.D E s, produced by the applzcanon of
Cauchy’s dynamic method to the general optimization problem, as expressed by

- equations (332°) and (3.3.3’), has some stable points that coznc:de with the roots of o

the above system of equations.

Proof: As stated in Theorem 3.3.1, in the nelghborhood of a-solution of the system of
equauons (3.3.2") - (3.3.3"), x variables minimize the Lagrangian function whereas v
maximize it. Therefore, according to Theorem I.1, any dynamical method that treats x
as minimizing variables and v as maximizing variables asymptotically converges to the
~ solution of the system above. The above result is also true for the application of

Newton’s method, as long as the quadratlc form Q in equatlon 3. 3 12) is positive
definite. « ,

Theorern L3. The GRG optimization method is stable. -»

Proof: GRG attempts to eliminate the ba51c vanables X by implicitly solving equation
(4.3.6) and solves the resulting unconstrained optimization problem (4.3.75). Therefore,
equations (4.3.7) are stable, with corresponding Lyapunoff function the modified,
reduced objective function, f .

If Vi is nonsingular, then the system (4.3.8) has as steady-states the solutions of
(4.3.6). Moreover, system (4.3.8) is stable, with corresponding Lyapunov function:

L =hTh = 3R

Note. Equanons 4.3.7) and 4. 3 8) are integrated in a sequennal manner. For each new
set of X - values, produced by the steepest descent in the f space, the corresponding x
(dependent) values must be computed by relaxing (4.3.8) to an intermediate steady-
state, corresponding to the solution of (4.3.6).



FILTER OUTPUT

" FILTER FUNCTION

" Figure 1. Sigmoid Filter Function and the Influence of A.



HIMMELBLAU FUNCTION

6.9 T T T T T | T T T ~1 —

3..0 B

-6.8  -4.0 -2.8 0.0 2.0 4.0

Figure 2. Convergence to Local Optima.
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Figure 3. Network Dynamics and Feasible Initial State.
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Figure 4. Network Dynamics and Infeasible 'Ivniti_al State.
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