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ABSTRACT

A nonlinear neural framework, called the Generalized Hopfield Network, is 
proposed, which is able to solve in a parallel distributed manner systems of nonlinear 
equations. The method is applied to the general nonlinear optimization problem. We 
demonstrate GHNs implementing the three most important optimization algorithms, 
namely the Augmented Lagrangian, Generalized Reduced Gradient and Successive 
Quadratic Programming methods.

The study results in a dynamic view of the optimization problem and offers a 
straightforward model for the parallelization of the optimization computations, thus 
significantly extending the practical limits of problems that can be formulated as an 
optimization problem and Which can gain from the introduction of nonlinearities in 
their structure (eg. pattern recognition, supervised learning, design of content- 
addressable memories).
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1. Introduction

The ability of networks of highly interconnected nonlinear processors (neurons) to 
solve complicated optimization problems was demonstrated in a series of papers by 
Hopfield and Tank, (Hopfield, 1984), (Tank et a/., 1986). Problems that can be 
formulated and solved on such neural circuits include signal decoding, pattern 
recognition, linear programs, the Traveling Salesman Problem and other decision 
problems whose objective function can be conveniently expressed as a quadratic 
function of the system’s independent variables. The dynamics of such networks, 
generated by the analog response, high interconnectivity and the existence of feedback 
connections, produce a path through the space of independent variables that tends to 
minimize the objective function value. Eventually, a stable steady-state configuration is 
reached, which corresponds to a local minimum of the objective function.

Since each optimization or, in general, nonlinear equation solving problem can be 
considered as a transition from an initial state to an optimal one, we will try to extend 
the original model, so that it can handle general nonlinear optimization problems. 
Spectiically in this paper we will:

(i) propose a systematic procedure to transform a nonlinear optimization problem (both 
unconstrained and constrained) into a dynamic model

(ii) investigate the necessary structure of a network of simple nonlinear analog 
processors which are able to implement the dynamic model, and

(iii) propose a highly distributed computational model for solving nonlinear 
optimization problems in a series of parallel processors, able to implement all the 
existing important solution approaches (Cauchy’s and Newton’s method. 
Augmented Lagrangian, Generalized Reduced Gradient, Successive Quadratic 
Programming).

2. LiteratureReview

The bulk of die research effort on the application of neural networks in optimization 
has been concentrated on the solution of combinatorially complex decision problems. It 
was soon realized, (Brack et. al, 1987), that the quality of the neural networks solution 
depends on the quality of the underlying algorithm and that combinatorial problems 
(eg. Traveling Salesman Problem) can not be solved with guaranteed quality, getting 
trapped in locally optimal solutions. Jeffrey and Rossner, (Jeffrey et al., 1986), 
extended Hopfield’s technique to the nonlinear unconstrained optimization problem, 
using Cauchy dynamics. Kennedy and Chua, (Kennedy et al., 1988), presented an 
analog implementation of a network solving a nonlinear optimization problem. The 
underlying optimization algorithm is a simple transformation method, (Reklaitis et al., 
1983), which was proved relatively inefficient for large nonlinear optimization 
problems.
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3, Background

3.1 Linear RopficId Networks

The computation in a HPpfield network is done by a collection of highly 
interconnected simple nonlinear processors (amplifiers) also called neurons. Each 
processing element, i. is characterized by the activation level, n,-, which is a function of 
the cumulative input that die process receives froth the external environment and the 
other members of the network, through their weighted interconnections. The activation 
level of i is transmitted to the other processors, after passing through a filter that 
converts U1- to a 0 or I discrete value, V,-. The time behavior of the System is described 
by the following model:

dui w
- j - )  = z w  -  j r  + h (3.1.1)

= J f1(Vj) (3.1.2)

where, 77/ is the strength of the connection from processor j to i, /,• denotes the fixed 
external input, and the parameters /?;, Cj control the time behavior of the processor.

The function Vj = j,•(«,•) describes the aforementioned filter. Ideally, it should be 
a hard threshold function. This is not realizable because of the discontinuity introduced 
at u = 0. A continuously differentiable s-shaped function (eg. tanh (Xu) , I / [I + «“*“] )  
is used to approximate the threshold behavior. In the limit X «>the sigmoid function
reproduces exactly the htud threshold function (Figure I).

The right hand side of equation (3.1.2) describes the inputs to neuron j, which are 
linearly combined, after being weighted by a corresponding interconnection strength. 
We will refer to these architectures as linear Hopfield networks (LHN). Hopfield 
showed, (Hopfield, 1984), that the underlying Lyapunov function of the network, for 
symmetric interconnection strengths Tjy is given by:

E °

E i

E\  + is 2 
I

Z Z T i j V l Vj + Z h V i  
* it I

l V'
Z ( t - )  f  ST1CVW
» Ri O

(3.1.3)

The ’energy’ function E q is composed of two terms. E i  is a quadratic form of the 
activation levels. E  2 is produced by the sigmoid approximation to the filter equation. In 
the high gain limit, X —» «>, and for symmetric T matrix, £2 becomes negligible and



does not affect the topology of E q, which becomes identical to J?i. When X is finite, E j  
dominates because the function S1 (V1) becomes unbounded for extreme values of V1. It 
is proven that if the system is assigned an initial value, it will relax to a steady state 
(t oo) corresponding to a local minimum of the system’s energy function E q. For a 
symmetric T, the local minima of E q lie on the comers of the hypercube (feasible 
region) - I  £ Vi £1, where some V; will be -I and others +1. These observations turn 
the linear Hopfield network to a very useful discrete optimization tool.

3.2 The Nonlinear Optimization Problem

In the general nonlinear optimization problem we are looking for the values of the 
independent variables X1, i = 1,2,...,N, which minimize a certain multivariable objective 
function so that certain conditions (constraints) are satisfied at the optimum. The 
problem can be expressed as:

minimize /(x i,X 2 , ...,*«) 

subject to

h  Cxi i X i,"... , xn)  = O i — 1,2,,..,1C, K < N

Oj £ gj Oci t X2, ...,xn) £ bj j  = 1,2,...,Af (3.2.1)

x£ S X k S  x% k = 1,2,...,//

where, f  is the objective function, hi are the equality constraints and gj are the 
inequality constraints. and are respectively the lower and upper bounds of the 
independent variables.

The features of the nonlinear optimization problem require more expressive 
power that this offered by the LHN architecture:

(i) - The energy (objective) function f, to be minimized, can take any nonlinear form, as 
opposed to the £ o ’s quadratic form in (3.1.3).

(ii) - The feasible region, implicitly defined by equations A1-, gy, can have any shape, as 
opposed to the original hypercube geometry (-1 £ V/ < I ).

(iii) - The optimum can lie anywhere in the feasible region.

An extension to the original network structure is necessary. The processors must 
be allowed to interact in a general nonlinear fashion, contrary to the linear input 
structure in (3.1.1).



3 3  Necessary Optimality Conditions

In the following analysis, we will concentrate on the equality constrained 
optimization problem (with bold characters denoting vectors):

minimize f ( x )  

subject to 

A<x) = 0

(3.3.1)

Each inequality constraint can take an equivalent equality form by introducing an 
additional slack variable, (Reklaitis etal., 1983):

g(x)  £ 0 gOc) -  xN+1 = 0 , Xff+i £ 0

Assuming that functions/, hi are differentiable, the necessary conditions for a point x* 
to be the solution of problem (3.2.1) are:

V f V v r  VA * 0  (3.3.2)

A(x) = 0 (3.3.3)

Equations (3.3.2) and (3.3.3) are called Lagrangian conditions. The parameters v are 
the Lagrangian multipliers. It is customary to use a unified notation for both of the 
above equations by introducing the Lagrangian function:

X = /  -  vr A (3.3.4)

Then, conditions (3.3.2) and (3.3.3) are simply:

VxL = 0 (N equations) (3.3.75)

VvL -  0 {K equations) (3.3.6)

These are (N+K) equations with (N+K) unknowns, x and v. hi order to solve the 
problem (3.3.75) - (3.3.6) the nonlinear optimization algorithms rely on the following 
theorem:

Theorem 3.3.1: If x* is the solution of the nonlinear optimization problem, then 
(x*, v*) is a saddle-point of the Lagrangian function satisfying:

L(x*, v) £ L(x*, v** £ L(x, v*^ for all x a n d v  (3.3.7)



Therefore, in the neighborhood of the optimum x* minimizes L and v* maximizes L.

The existing nonlinear optimizers try to approach the solution of die nonlinear set 
of equations (3.3.2) and (3.3.3) through an iterative procedure, so that the Lagrangian 
function is  m inim ized  by the x  variables and maximized by the v variables. Clearly, 
problems (3.3.75) and (3.3.6) are equivalent to locating the extremums of an 
unconstrained function f:

V f  = 0 (3.3.8)

Two methods have been extensively used for the solution of (3.3.8):

(i) - CauchyyS method: It is the famous steepest descent algorithm, which tracks the 
direction of the largest change in the value of the objective function:

,(t+ i) -  xW + e  V f ,e =  ± l  (3.3.9)

The optimization problem (3.3.8) can be viewed as a dynamically changing system that 
progresses from an initial state to a final one (optimum). Equation (3.3.9) suggests the 
following "equation of motion" for the system:

= e V f  ; X m  = X0 (3.3.10)

Evidendy, the steady states of the initial value problem (3.3.10) are identical to the 
roots of equation (3.3.8). These steady states correspond to the extremums of the 
original function f:

= Y —  = V f  —  (3.3.11)
dt Bxi dt dt

Combining (3.3.10) and (3.3.11) :

4  = e IIV/ll2 (3.3.12)
; dt ;

If e = —I the value of f  monotonically decreases with time and the steady state 
corresponds to a local minimum.

(ii) - NewtonyS method: If second-order information about the Lagrangian function is 
available, a more rapid convergence is produced using Newton’s approximation:

x<*+1> = X(k) + ZiV1JT 1 V f  ,e = ± I (3.3.13)



with corresponding "equation of motion":

= E(V2Z)-1 V / (3.3.14)
at

Newton’s method is applicable only if V2/  exists and is non-singular; Under these 
conditions the steady states of (3.3.14) and the roots of (3.3.8) are identical. The time- 
behavior of the algorithm is:

K  = y  i- £  (3.3 .75)
dt i dxi dt dt

Q = E V Z r (V2Z)-1 V / (3.3.16)

The sign of (3.3 .75) is determined by the quadratic form Q. I fQ  is either positive or 
negative definite, the behavior of fas  a function of time can be controlled through e. If 
Q is indefinite, the Levenberg - Marquardt approach can be adopted, (Reklaitis era/., 
1983):

—  = BiV2/ + X I T 1 V f  (3.3.17)
dt

Large values of the adjustable parameter X turn the corresponding quadratic form into 
positive definite. As it is proved in Appendix I, any method that combines the above 
mentioned solution procedures and the results of Theorem 3.3.1 is stable.

In the next section we will combine the formulation of the problem and the 
dynamic solution methods in generalized Hopfield architectures, capable to implement 
all the important optimization algorithms (Augmented Lagrangian, Generalized 
Reduced Gradient, Successive Quadratic Programming) and their variants.

4. Generalized Hopfield Networks and Optimization

4.1 UnconstrainedOptimization

The unconstrained optimization problem can be expressed as follows:

minimize / ( x )

Applying the dynamic variation of Cauchy’s method:



= - V  f  = - Q -  I = 1,2,...,N (4.1.1)
dt dr ox;

Tlie corresponding Hopfield network solving the unconstrained minimization problem 
Opnsists of N processors, each one representing an independent variable. Equations 
(4.1.1) describe the time behavior of each processor. It is clear that the input structure 
of each processor must be arbitrarily nonlinear, dictated by (4.1.1), as opposed to the 
original linear Hopfield model. We will refer to the networks of these processors as 
nonlinear or generalized Hopfield networks (GHN).

Example
In order to demonstrate the power of GHNs in unconstrained optimization the 

following problem was solved using Cauchy dynamics (Reklaitis etal., 1983):

minimize f  (x) = (x? + *2 — H )2 + (*1 + ~  H )2

As shown in Figure 2 the above function, known as Himmelblau function, possesses 
four IocaJ minima. Two neurons are needed, representing the problem’s independent 
variables. The nonlinear input structure of each neuron is dictated by equation (4.1.1). 
Steepest descent is a local optimization algorithm. The system’s steady state is 
determined by the choice of initial values. This is shown clearly in Figure 2, where two 
different initial points produce convergence to different steady states. Euler’s explicit 
integration method was employed to calculate the trajectories shown in Figure 2.

4,2 Transformation Methods - Augmented Lagrangian

One of the first attempts to solve the general nonlinear optimization problem 
involved the incorporation of the constraints into the objective function. In these 
transformation methods, the constraint optimization problem is reduced to the 
unconstrained minimization of the liunped function:

P(x,R) = f ( x )  + R a(hitj) (4.2.1)

If the constraints are violated, a large penalty (function Q) is added to the objective 
function. If the value of the adjustable parameter R is appropriately updated after each 
iteration, the unconstrained minimum of (4.2.1) will be identical to the optimum of the 
original problem. It was soon realized that the transformation methods are not very 
efficient, because of numerical difficulties implicitly embedded in their structure, 
(Reklaitis e t a l , 1983). The Augmented Lagrangian Method is specifically designed to 
avoid these problems. The transformed unconstrained objective function becomes:



P(x,o,x) = f { x )  + R J^{ <8jfr) + <5j>2 -  <Sj)
j  .

+ P S a ^ iO c )  + Xi]2 -  X?;
V .,  v : : , ■ . .  -■ - C l " : . :  ....

(4.2.2)

where R is a predetermined constant. Function (4.2.2) is an approximation of the 
Lagrangian function (3.3.4). Variables o , x are iteratively updated by the equations:.

o{*+1) = <gj(x) + aP >  

x|*+1) = Hi(X)  + x|° (4.2.3)

The bracket operator (<.>) is defined a s :

a if a  £ 0
0 if a  > 0

When the process converges, x is the solution of the original problem and Oy, X,- the 
corresponding inequality - equality Lagrange multipliers. Equations (4.2.3) suggest that 
the dynamical behavior of a network implementing the Augmented Lagrangian 
optimization method is: I

—  = -V xP = - V / -  2R <g + O r Vg -  2R[h + x]r  VA
. dt '.....

—  = +V0P = 2P <g + O  -  TR &  
dt:

= +VxP = 2fl h 
dt -

(4.2.4)

where Vg and VA are matrices, eg. VA = [V A j,...» VA*].

In the corresponding GHN (N+K+M) neurons, representing the independent 
variables and the equality - inequality Lagrange multipliers, are necessary. The 
connectivity among the neurons (processors) is dictated by equation (4.2.4).

43  Generalized Reduced Gradient

In the Generalized Reduced Gradient (GRG) method, the independent variables x 
form two disjoint subsets:

-  the set of K basic variables (dependent variables), x*
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— the set of N-K nort-basic variables (independent variables), xj

Then, equations (3.3.2) and (3.3.3) can be rewritten as follows:
V y .

V / -  vr  VA = 0 (N -K  equations) (4.3.1)

V f  -  v T VA = 0
.5 . '■■■. •

\K  equations) (4.3.2)

a* Il O (K equations) (4.3.3)

where V f  is a (N-K) dimension vector containing the partial derivatives of f with 
respect to the non-basic variables and vr  = [ v i . , Vfc ]T

Equations (4.3.2) can be explicitly solved for v :

v = v/(VA)'‘ (4.3.4)

Basic variables are chosen so that Vh  is non-singular. Equation (4.3.4) is substituted in 
(4.3.1), so that equations (4.3.l)-(4.3.2) are transformed to

V f  = V f -  V f  (VA )"1 Vh = 0 (4.3.75)

A(x) = 0 (4.3.6)

where V f  is a modified reduced gradient for the independent variables Xj influenced by 
the shape of the constraints. The values of the K dependent variables x; are computed 
from the system of K nonlinear equations (4.3.3). In GRG, equations (4.3.75) and 
(4.3.6) are solved using Cauchy’s and Newton’s method, respectively.

The time behavior of a dynamic optimizer that uses GRG method is represented 
by the following system of equations:

= - V f  = - V / +  V / (V A )-1 Vh (4.3.7)
at

A(X) = 0 ( ^  ^  = A ( VA)"1 ) (4.3.8)

■ -X ( O ) '=  X0 -. ■'

System (4.3.7)-(4.3.8) is a differential - algebraic system, with an inherent sequential 
character: for each small step towards lower objective values, produced by (4.3.7), the 
system of nonlinear constraints should be solved, by relaxing equations (4.3.8) to a 
steady-state. The procedure is repeated until both equations reach a steady state. The



above problem can be solved using a GHN of N-K+K=N nonlinear processors, the 
connectivity of which is dictated by (4.3.7) - (4.3.8). GRG uses K less processors than 
the Augmented Lagrangian method, but spends more effort in the computation of the 
reduced gradient.

4.4 SuccessiveQuadraticProgramming

In the SQP strategy, Newton’s method is employed in the computation of both the 
independent variables, x, and the Lagrange multipliers, v. The state equations of a 
dynamic SQP optimizer are:

dz
dt

z(0)

J L  = e [ V2 L I " 1 ( V L )  = e H  ( V L  ) (4.4.1)

where z is the augmented set of independent variables, and L  is the Lagrangian 
function, defined as follows:

[ or; v ]

L = f  -  v T h

If matrix H is nonsingular, then the steady states of equations (4.4.1) are identical to the 
stationary points of L. In order to attain convergence to a local optimum of the 
optimization problem, which is a saddle point of L, we must guarantee, through 
ppntinnnm manipulation of c, that the x state equations produce a descent in L-space 
and the v equations produce an ascent in it.

' Example
The dynamics of the three algorithms were investigated with the following 

nonlinear optimization problem:

minimize f i x )  — —x\x \x% 1 % \

subject to

Ai(x) = x \  + A  + *3 -  13 =  0 

A2(X) = x \x 1 ia  - 1  = 0

The SQP network was an adaptation of equations (4.4.1) which used the Levenberg- 
Marquardt method. Figure 3 shows the transient behavior of the SQP and the 
Augmented Lagrangian (AL) networks, starting from a feasible initial state. The
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behavior of the GRG algorithm is almost identical to that of the AL. Since initially, the 
objective-function gradients are very small, the second-order Newton dynamics of the 
SQP network prevail over die first-order steepest-descent dynamics of the GRG and AL 

'networks.
A major disadvantage of the original GRG algorithm is the requirement of 

feasibility for both the initial and intermediately generated points. Figure 4 shows the 
transient behavior of the networks starting from an infeasible initial state. Again, the 
GRG and AL dynamics are almost identical. All three networks converged to a local 
optimum. Additional experiments showed that starting from an infeasible initial point, 
X0 — [ X0 , X0 ], the GRG network always converges to a local optimum, as long as 
there exists a solution to the system of nonlinear equations:

h ( x  ;x =  x0 ) = 0

5. Optimization and Parallel Computation
A most important application of the proposed model lies in its direct translation to a 

parallel algorithm which can distribute the computational burden of optimization to a 
large (at most N+K) number of simultaneously computing digital processors. Each one 
of them simulates the nonlinear analog processors of a GHN, which represents either a 
variable or a Lagrange multiplier and is continuously updated through the integration of 
the state equations:

x) = Xj + <Kjc, v )

where x  , v are the most recent updates of the independent variables and the Lagrange 
multipliers, and <|> depends on both the optimization algorithm and the integration 
method Here are two unique features of the algorithm:

( / ) -  An integral of the state equations is available, namely the Lagrangian function, 
which was differentiated in the first place. Thus, since only a steady-state solution is 
desired, it is not necessary to use a method for stiff O.D.Es. Any explicit or semi- 
implicit integration method will suffice.

(U) -  Because of the above and the fact that the state equations are autonomous, it is 
possible to update each variable in each processor completely asynchronously: the 
(k+l)th update of Xj does not require the k th update of all the other variables. Thus 
die need to synchronize the computations done by the various processors is avoided 
Consequently, the algorithm is robust with respect to intercommunication and 
execution delays. In contrast, the conventional forms of the optimization algorithm 
require complete synchronization in:

- the underlying unconstrained optimizations and



- the solution of linear (SQP) and nonlinear (GRG) algebraic equations

As a result their potential for parallelization is significantly reduced. The proposed 
algorithm efficiently distributes the computational burden among the parallel 
processors.

6. Conclusions ~

13

In this paper we presented an extension to the linear Hopfield network which can 
solve any constrained nonlinear optimization problem, or set of nonlinear algebraic 
equations, simulating any existing solution algorithm. The existence of strong 
nonlinearities demands significantly more expressive power than that offered by the 
LinearHopfieldNetwork.

The whole study resulted in a dynamic view of the optimization problem, which 
significantly contributed in gaining some insight to the problem and the existing 
solution methods and offered a straightforward model for parallelizing the optimization 
computations.
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Appendix I - Extension of Lyapunov’s Stability Theorem

We consider the autonomous system of n nonlinear OJXEs:

■ ~ /(* i>  •••» •*/») i — 1,2,...,« (LI)

where fi  and -5—-, j  = 1,2,...,« are continuous in a region D of the n-dimensional x  -
OXj

space- We will assume that Z> contains the origin 0, which is a critical point such that:

/i(0) = 0 / = l,2,...,n a-2)

The above assumption is not restrictive. Any critical point o f /c a n  become the origin 
with the appropriate translation of the coordinate axes.

Lemma 1.1. Suppose that V(x) is a scalar function o f the n-dimensional vector, x, with 
the following properties:

(i) V is continuous with continuous first partial derivatives inside a region Cl o f the 
domain o f x, containing the origin, x  = 0.

(ii) V has a stationary point (minimum, maximum or saddle point) at the origin.

Then,

(i) There exists a neighborhood D aroundO inside which no other stationary points o f V 
exists (D = D i x • • • xDn).

(ii) I f  c G D then the single-variable scalar functions (intersections) defined by the 
equations:

15

V*(c \ X \  —  c j , X f > ,  . . . , X n - C i i )  ^ — 1,2,...>/1 (1*3)

also have, in the neighborhood Dk, a single stationary point, %k(c).

(iii) The points x l  = (c i, C2*. . . » 1  * §1» 'Ck+i*'—»<>)»Sb*'W G J .<? 4 fZ'Gp-p:.:
Ck-i e  Djc-I, Ck+i € Dk+i, ..., cn e Dn. form a curve, called a stationary point curve, 
Ck with the following properties:

(a) Ck is a continuous curve with no cycles.
(P) There exists one and only one point, identical to the origin, on which all the 
curves C*, k - 1 , ..., nmeet.



Proof: We will prove each proposition separately:

(i) If there did not exist such a neighborhood, then 0 would not be a stationary point, or 
Vwouldbeconstant

(ii) The functions V*(c j'.jt*) arc continuous and continuously differentiable, otherwise V  
would not possess the same properties. If no stationary points existed for the functions 
Vjfc inside A, then V* would be either constant thus making V constant, or 
discontinuous, also making V discontinuous. No more than one stationary point can 
exist for each V*. Otherwise, there would exist either a discontinuity in V, or multiple 
stationary points of V in D, not allowed by (i).

(iii - a ) The continuity of V and property (ii) do not allow for a discontinuity of curve 
Q , inside the region D. The existence of a single stationary point for each Vjt and c 
inside D precludes the existence of cycles in the curve Ck.

(iii - P) It is clear that all curves Ck, k  — I, 2,... ,n, are met on the origin, which is a 
stationary point of V. Any other meeting point would also have all partial derivatives 
equal to zero, therefore it would be another stationary point inside D, thus contradicting 
with proposition (i).

Theorem 1.1. Suppose that for the nonlinear system (IJ) one can identify a continuous 
scalar function V (x) with the following properties:

(i) V is continuous with continuous first derivatives.

(ii) O is a saddle point ofV.

(iii) I f  we partition the set of independent variables Xt into two subsets:

X  = {xk I Vjfc(0; Jr*) have a minimum at xk = 0}

X  = .At' I Vjk(0; Jr*) have a maximum at x* = OJ 

the following relations are true, at leastfor a neighborhood Q around the origin:

a v  _s g n ( - ^ ~ )  = - sgn ( f k) , -v** e X

s g n ( j ¥ ~ )  = sgn(fk) , -Vxifc eX

where sgn(.) functionreturns the sign o f the argument.

(iv) \X I +  |X  | =  n (meaning that there is no Vk with an inflection point).
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Then, the origin x  -  O is a stable critical point of (LI).

Proof: Lemxna X l guarantees the existence of the stationary point curves C*. We will 
prove that there exists a function W, the dual of V, which is positive definite and for 
which the origin x = 0 is the sole minimum. The Energy function W is constructed as 
follows:
(i) The points x 0 that belong to curves Ck are given zero energy:

W(X0) = 0

(ii) For each other point X0 “  (x0i» ..., Jt0rt) e D we define a ’distance’ measure from 
each curve Ck, defined as:

<w*o)« n*o -  ii

where x l  is the stationaiy point of V,(c ;xt)> with cj -  icy, j  * k. and ||.|| is any 
vector norm of the n-dimensional real vector space, Note that for each X 0 there is only 
one x* in D. Then,

W(X0) I lOikdk(X0)
Jfc=I

where a* ate positive constants. It is clear from Lemma LI that W function has only 
one zero, namely at the origin. Condition (iii) implies that if Vk has a minimum at 
Xjfc = Othenequation

dxk
dt fk

drives the system towards it, given that X7-, j  * k are kept constant:

, dV . , BV dxksen ( —  ) = S g M - ^ - J r ) - I

Hence it tries to minimize dk(x) and cohsequently W(x). Therefore:

The Energy function W and the system (1.1) make the preconditions of the original 
Lyapunov’s theorem true. Therefore, the origin 0 is asymptotically stable.
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Notes:

(i) Lyapunov’s stability theorem, (Bauer et al., 1969), is concerned with energy 
functions having a minimum (maximum) and nonlinear O.D .Es that try to minimize 
(maximize) i t  Clearly, Theorem LI is an extension to the original theorem that also 
covers energy functions having a certain kind of saddle points.

(ii) It can be easily proved that if the stationary points of some Vj. around the origin are 
inflection points, then system (LI) is unstable.

(iii) It is the dual function W  that monotonically decreases in time. The value of V, 
which has a saddle point at the origin, can either decrease, increase or approach the 
stable value V  (0) in an oscillatory way.

Theorem L2, The system of nonlinear OD E.s, produced by the application of 
Cauchy’s dynamic method to the general optimization problem, as expressed by 
equations (3 3 2 ’) and (3 3 3 ’), has some stable points that coincide with the roots o f 
the above system of equations.

Proof: As stated in Theorem 3.3.1, in the neighborhood of a solution of the system of 
equations (3.3.2’) - (3.3.3’), x  variables minimize the Lagrangian function whereas v 
maximizR it. Therefore, according to Theorem LI, any dynamical method that treats x  
as minimizing variables and v as maximizing variables asymptotically converges to the 
solution of the system above. The above result is also true for the application of 
Newton’s method, as long as the quadratic form Q in equation (3.3.12) is positive 
definite.

Theorem L3. The GRG optimization method is stable.

Proof: GRG attempts to eliminate the basic variables x  by implicitly solving equation
(4.3.6) and solves the resulting unconstrained optimization problem (4.3.75). Therefore, 
equations (4.3.7) are stable, with corresponding Lyapunoff function the modified, 
reduced objective function, /.

If VMs nonsingular, then the system (4.3.8) has as steady-states the solutions of
(4.3.6) . Moreover, system (4.3.8) is stable, with corresponding Lyapunov function:

L = h T h = £  hf 
» = i .

Note: Equations (4.3.7) and (4.3.8) are integrated in a sequential manner. For each new 
set of x -  values, produced by the steepest descent in the f  space, the corresponding x  
(dependent) values must be computed by relaxing (4.3.8) to an intermediate steady- 
state, corresponding to the solution of (4.3.6).
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