
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

12-1-1989

On the Average-Case Running Time of the Boyer-
Moore Algorithm
Russell W. Quong
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Quong, Russell W., "On the Average-Case Running Time of the Boyer-Moore Algorithm" (1989). Department of Electrical and
Computer Engineering Technical Reports. Paper 684.
https://docs.lib.purdue.edu/ecetr/684

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages

X vIvX vIvIvX v’vX vtvIvX vX vIvX vIvX vIv!
jX;X;X;XvXvX;X;X;X;X\vX;X;XvX;X;X\;!vIv:

•X’I’X'I’I'X’X’X'X'XvXvX'XvIvX’X vX vX vX vI:-:-:-:*:-:*:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:
\; .\; .v .\; .v .v .v .v .v .v .v .> v .v .\v .v .v .\v .v . v .y

On the Average-Case
Running Time of the
Boyer-Moore Algorithm

Russell W. Quong

TR-EE 89-61
December 1989

!•XvX-X-XvXvXvX-XvXvXvXvXv

■.v.v.\v.\\\v.\v.v.;.v.v.x% v>X*X*X*>X*XvX*:

xxxx-x-x<vxx-x-xxxxxvx-xxxxxJx:x-xx-xxxvxxx-xxx-x-xxxxx:xv
■vX vX vX;X ;X vX;X vX \\;X ;X vXvX \vX vX vX

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

i
i

On the Average-Case Running Time of
the Boyer-Moore Algorithm

Russell W. Quong

Schoo l o f E lectrical Engineering

P u rd u e University

West Lafayette, IN

A b strac t

The Boyer-Moore algorithm (BM) is a fast, compact algorithm for finding all occurrences of a pattern

string in a text string. Previous papers have addressed the worst-case running time of BM, which occurs

rarely in practice. In this paper, we derive an approximation to Φ (BM) the average number of character

probes made by BM. Let M = pattern length, N = text string length, α = the alphabet size, q = 1 /α

and q= I — q. By modeling BM as a probabilistic finite automaton, we show that

Φ(BM) h when M < α

and that

Φ(B M) N q(l + g V)

An immediate consequence is that Φ(BM) is O(N/ loga M)i as M

well with measured data.

when M > α.

oo. The above formulas match

K ey W ords: Algorithm, average-case complexity, pattern, pattern matching, string, string searching.

I Introduction
String searching is a common, fundamental problem in computer science. String searching involves finding

all occurrences of a pattern string in a text string, by examining or probing different tex t characters. For

example, the pattern “or* occurs twice in the text cBover-Moore Algorithm ” . Let M = the length of the

pattern and N = the length of the tex t string. The probability a random pattern character matches a

random text character is q. Let 5 = 1 - q. The effective alphabet size is a = I /q. If the pattern and text

are uniformly distributed over the alphabet, then a = the size of the underlying alphabet.

In 1974, R. Boyer and J . Moore [2] and (independently) R.W. Gosper developed an algorithm, BM,

th a t ran much faster than previously known algorithms. BM runs in “sublinear” time, because significantly

fewer than N characters are examined on the average. The average number of probes made by BM, denoted

Q(BM), decreases as M increases. In particular, when the length of the pattern is short compared to the

I

alphabet sise, G(BM) is roughly N /M . Because BM requires 0 (1) time per probe, its expected running

time is proportional to G(BM). We ignore the cost of preprocessing the pattern.

Analysing the running time of BM is not easy, because BM uses the better of two heuristics to guide

its behavior. Guibas and Odlysko [3] proved in the worst-case, BM makes 4N probes if the pattern is

not found. Apostolico and Giancarlo [l] proved a worst-case bound of 2N for a Boyer-Moore variant th a t

partially remembers which characters have been examined. Schaback [5] numerically computed the average

number of probes for a simplified BM, when M = 0 (a) .

In this paper, we derive two equations th a t approximate G(BM) for short and long patterns respectively.

Figure I shows quantitative behavior of the two equations. Empirically, we find th a t the crossover point

between the equations occurs when M « 2 a .

1— i I rt

Small Pattern Formula
Large Pattern Formula

Pattern Length
Figure I: Behavior of equations for G(BM).

First, we informally describe BM by example and summarise our results. Then, we model BM as a

probalistic finite automaton* and derive state probabilities and expected slides. Assembling the pieces gives

the desired result. Finally, we compare our results with measurements on random patterns and strings.

2 An overview of BM
BM [2] compares the pattern starting at the end and progresses to the front. On a mismatch, BM slides the

pattern to the right realigning the pattern based on either (I) the text character Just seen or (2) the current

position within the pattern. BM resumes the search at the end of the new position.

The following example illustrates the sequence of probes and pattern alignments when searching for the

pattern “abxabyab*. A “*■ represents an unseen text character. Note that only a fraction of the text is

2

probed.

probe I 4 3 2 6 5 10 9 8 7

tex t * * * * * * * X * * b a b * b b * * * * y y a b

Alignment I a b x a b y a b

Alignment 2 a b x a b y a b

Alignment 3 a b x a b y a b *

Alignment 4 a b x a b y a b

Before searching the text, BM processes the pattern creating two tables, A i and A2, which it consults on

a mismatch. For a character c, A i [c] = the rightmost occurrence of c in the pattern . Let m be the number

of !"a+'-l.ing characters seen so far starting from the end of the pattern. A 2 [m] = the rightm ost plausible

alignment, given th a t the last m characters of the pattern m atch, but the m + 1th character does not match.

We show th a t if M < a, the sublinearity of BM is due almost exclusively to the A 1 table, so th a t

N (M + !)<?.
Af1 2

When AT > a, the A2 table becomes increasingly im portant, so tha t

q jl + q*?)
M B M) * + _ qtj) E ^ i(1 _ 9<)(1 _ e_qi, M) •

We now examine the above search in detail to illustrate the use of the A i and A 2 tables.

Case I) Use of the A i table. Here, m = 0 and the first probe mismatches on text character c. Align

with its rightmost occurrence in the pattern via A i Jc]. In this example, c = the x at 8.

index 1 2 3 4 5 6 7 8 9 10 11
Itex t * * * * * * * x * * *

pattern a b x a b y a b slide = 5, anchor * 0

next a b x a b .

c

Case 2) Slide into the middle via A 2 *

Next, BM finds the “b* a t 13 and then the “a” a t 12. Because m = 2, on finding the “b* a t 11,

BM knows th a t “ab” has already been found. The current text “bab” does not m atch the rightm ost

“ab* pattern substring (“yab”), but the text might match the next “ab” substring which is different

(“xab”). Note th a t A2 ignores the character from the last probe, the “b” a t 11, as it is indexed solely

by m.

3

index 5 6 7 8 9 10 11 12 13 14 15

te x t * * * x * * b a b * *

p a t t e r n a b x a b y ^ ^ slide - 4 , anchor - 6 (x)

n ex t a b x a b y . . .

Case 3) Slide entirely past the current pattern via A 2 .

Nextr BM finds the matching “b” at 16, setting m = I. The next probe finds the mismatching “b* at

15. The A 2 table gives a slide of 8, because in this pattern, every “b* is preceded by an “a*. If the

text does not m atch the “ab” at the end, no other *b* in the pattern can match,

index 8 9 10 11 12 13 14 15 16 17 18

t e x t x * * b a b * b b * *

p a t t e r n a b x a b y a b slide m 8 , anchor * 4 ,5 (a ,b)

n ex t a b . . .

Case 4) Slide almost entirely past the current pattern, via a partial alignment via A 2 .

BM finds aayab* at 21-24. The aa" at 21 mismatches, with m = 3 and A 2[m] = 6. The current text

“ayah” does not match the current “yab" pattern substring (“byab*). No other ayab" substring exists

in the pattern, but the text forms a partial alignment with the aab* at the beginning of the pattern,

index 15 16 17 18 19 20 21 22 23 24 25

te x t b b * * * * a y a b *

p a t t e r n a b x a b ^ ^ i) slide « 6 , anchor * 0

n ex t a b

The anchor, A, is the set of previous matching probes th a t caused the most recent shift. The anchor is

underlined above. The indices in A are measured from the end of the pattern with I being the last character

in the pattern. For example, in case 2, A is {6}; in case 3, A is {4,5}. We set A = O when there is no anchor,

as in cases I and 4. The offending index is pattern index of the mismatch. For example, the offending index

is 3 in case 2.

On a mismatch, BM takes the maximum slide of the two tables. When m = 0 (case I), A i always

dictates the slide amount. For m = I, each tables contributes the maximum about half the time. For m >

2, A 2 almost always has the greater slide amount, because it aligns m characters, whereas A i aligns just

one character.

4

S im p lifica tio n I For m > £ , we assume A 2 always gives the slide.

3 Modeling BM

We view BM as a probablistic finite autom aton with transitions occurring on each probe. BM converges to

a steady state probabilistically as the search progresses. We determine the probability and expected slide

for each state. To search through the text, BM must slide the pattern past the text, so th a t asymptotically,

the average number of probes is the text length divided by the expected slide over all states.

Formally, we model BM as an aperiodic, irreducible Markov chain. We derive the transition m atrix, and

then solve for the stationary probability vector. This type of Markov chain is guaranteed to converge to a

stationary state over time.

The state £*:m means tha t m text characters have matched so far, with anchor A. For example, before

case I, we are in the start Statei £o;o* Immediately after the shift in case I above, we are in state £6 :0 * In

case 2, before the mismatch, we move through states £6:o> £6 :1 » and £6 :2 * After sliding, we s ta rt case 3 in

state £5 ,4 :0 *

S im p lifica tio n 2 To simplify the analysis, we restrict A to a single index, a. This assumption is reasonable

except for M a 2.

The anchor holds future probes tha t are guaranteed to m atch if we get to them. If we match past the

anchor, set A = a = 0. For example, on successive matches, BM might progress through states £2:0 —► £2:1

—*> £o;2 —► £o:3 * Thus, either a > m or a = 0. Note, when in state £m+i:m» the next probe must match

giving £o:m+i* Also, there is no state £ i;o*

Our analysis consists of calculating

1. the probabilistic transition diagram,

2. Pr(£) = the steady-state probability of each state £, and

3. s(£) = the average slide when in state £ on the next probe.

Once this has been done, the average slide per probe is

slide
£ P r (f l ’ (I)

with both sums taken over all states. $ (B M) is asymptotic to N /slide for large N.

Let ta*tm be the set {£<>:*», £m+2:m, £m+3:m, • • •, fa-.m }• The indicates the next probe has not been

seen previously. For all £1 , & € *(&) = a(f l) = att«*:m). Similarly, P rtto .:m) = e£a.:m P r (^ ‘

We derive the state probabilities from the following probabilistic transition table.

5

(«:0

£m+l:m

(a :m

4?a: I + X) 99* 16:0 + 9** &>:<
»=2

6):m+l

9£<*:n»+l 9&:0

fa:0 ^ £a*:0

I < m < Af — I

(a:m ^ fa*:m

Case I (2)

Case 3 (3)

We use ^ -n o ta tio n to represent several states in the obvious way. For example, Co=O -» £ f e 2 99*- 1 &:o

means th a t BM goes from Co=O to £2=0 w ith probability 9g, from Co=o to &:o w ith probability q t f , and so on.

We have used Simplifications 3 M id 4 to simplify Equation 3. These assumptions affect Pr(C), but not a(C)-

S im p lifica tio n 3 For m > £, on a mismatch, we get a slide o f M. We ignore the possibility of intermediate

slides, namely eases S and 4- This assumption follows directly from Simplification 2 which limits the anchor

to a single index.

S im p lifica tio n 4 For m = I, we have assumed that A 2 gives the slide, and on a mismatch, we enter state

£o:0-

For convenience, we assign Pr(Co:o) = I, as Equation I ignores constant factors in Pr(C). Let 6 ~

Pr(Co*:o)- Note th a t immediately after a mismatch, BM is in | o*:0 - Collecting similar terms on the right

side of the above equations gives Pr(C).

Pr(Co=O) = I

Pr(C«:o) = ^ - 1W 2 < a < M (4)

Pr(C«:m) = 9mPr(Ca:o) I < m < 0 < M (5)

Pr(Co=Hl) = 9 Pr(Co:m-i) + Pr(Cm:m- i) 2 < m < M

Summing Equation 4 for 2 < a < M, gives 0 - I = 0(9 — 9**), or 0 = l / (g + 9**)- Table I summarizes

the state probabilities.

4 The expected slide

For a given C, the expected slide s(C) is the sum of possible slides, s, resulting from the next probe, weighted

by their respective probabilities, p(s). Thus, 7(C) = £ * («)[«]• Let c be the character found on the next

probe.

6

State Probability

£<):0 I

£a:m Sqm+1 Ip -1 m < a < M

(o:m 9m(l + * « -1(9 - 9 m))

(a*:m ^9m -1(l ~ 99)(1 — 9”*)-

Table I: S tate Probabilities

4.1 The slide from Ai

For m = 0, table A x dictates the slide amount. The probability th a t the pattern and tex t match is q, in

which case the slide is 0. For a slide of t, where I < * < M - I, the previous t - I pattern characters must

not match c, and the Hth character must match c for a probability of If the pattern does not contain

c, the slide is M.

-(&.:<>)= «[0] + + ^ - 1M -
i=l

Slide 0 * M

We have put the slide value in braces. Simplifying gives

(£a:o)
9(1 -9**)

9
(6)

4.2 The slide from A2

For m > I 1 we assume table A 2[m] dictates the amount of slide from Simplifications I and 4. Thus, a(£a*:m)

= A 2Im], which is im portant when M » a . We summarize p(a) and a, assuming a mismatch.

p(s) Slide Conditions Case

9m9 (l - 9 m9) - 1 S 1< s < A f — m — I 2

,"»(1 _ M - m 2 ̂ (seetext)

(l _ gm9)M -m -l n (l " 9 y) M — m + s l < s < m —I 4

(I 3 (1 - ^)
J=I

M 3

The value of p(a) is the probability th a t lesser slides do not align and slide a does align. In case 2, the

probability for slide a is q™ (align m characters) times 9 (the character just before this alignment is different

7

from the character a t the offending index) times (I - (the previous slides did not align). Case

2 t occurs when the last m characters align with the beginning m characters of the pattern , eliminating the 9

factor from the offending index. Case 4 results in a partial alignment. The product term rules out previous

partial alignments. Case 3 results when none of the previous possible alignments match.

Summing everything gives !>, the expected slide on a mismatch. A m atch occurs w ith probability 9 . in

which case the slide is 0. Thus, «(£,*:»») = "QS.

S = qm M X T V “ 9m3)<_1 [*'] + (I “ [M - m] +
»=1

(I — qmq)M~m~1 [qm~* n (I — Q1)) [M — m + 1] +
t= l j —m+1—»

(I - g "* 9)"-m- H U (I ~ «*)) [Ml
j= 1

For x < I, (l —x)M « e~xM. Assuming x = qmQ < I, and m C M , then (I —9m3)W w exp(—iA f). After

simplifying and applying the approximation, the first two terms become x- 1 (l - e x p (- x M)) -M e x p (- x M) .

Judicious simplification of the last two terms yields M e x p (-x M). Thus,

«(&.:,») = i S * 9 ^ (1 - e x p (- g ro9M)). (7)

Finally, s(£m+i:m) = 0, because the next probe always matches.

5 Putting it together

All th a t remains is to apply Equation I. We consider two cases.

When M < a, the dominant set of states is £o*:0- We ignore the remaining states, greatly simplifying

m atters, because slide= s(£o. :0). Thus, the “small M* approximation is

Q (B M)» N ^ 1 ^ when M ^ “ • (8)

When M » a, all the states are im portant. The sum of the probabilities 5^P r(£) = Pr(£a*:o) +

Em=I p r(^o*:m) + E m Z i Pr(£m+i:m). We throw out all terms of order 0 (q M) and O(Qm), which gives

E Pr(£) « 0 (1 - 93 + 92 92) / (9 (l - 9 9))- Using (I - * + * ?) /(l - x) « I + X3 with x = 93 yields

• (9)

8

In determining the nm nerntor of Eqnetion I, the etetee contribute nothing beeeoee

= 0. ph“» “ e “ ’" J »“ fr° m T *b k 1

and Equations 6 and 7 gives

£ P r t f)7 ^ = 9 [^ S J] + f) [9 ro- 1t f (l - 9 9) (l - r)] [^ (l - « P (- 9 rô))] -
m = l

Dividing the weighted slide by Equation 9 gives slide. Thus, the “large M* approximation is

when M > a. (10)
*(BW) - */.w, “ + SjiltI - .vm - « p (-*¥))'

The sum term behaves differently depending on ? and M, and we were unable to simplify it. The

(l — exp(—q*qAf)) factor quickly approaches sero once * > loga M , so th a t in practice, we need only sum to

% = Ioga IOOM.
An immediate result from Equation 10 is th a t « (B M) is 0 { N / Ioga M) as M -+ oo. Let L .« Ioga M.

The term (I - exp(-q*qJlf)) is greater than (I - e- 1) for all t < L. The quantity if = (I - l/o)* < « 1

Thus, (I — 5*) > (I - e - 1) for » > or. As Jlf -+ oo, 2 (1 - 9*)(l - e x p f-q ^ J lf)) > Eg^aC1 “ e^ H 1 “ e_1)

which is 0 (loga M).

6 Empirical Verification
To check the validity of our derivation, we compared our approximations against measured values of 9 {BM) .

We averaged the d a ta over many searches, using random pattern and text strings for various values of a

and M. O ur approximations agree quite closely with the measured data. The error term is [(predicted -

measured)/measured] expressed as a percentage.

To test Equation 8 for small M, we averaged a t least 100 searches t o each value of M on a 50,000 character

text file, for a = (4, 10, 26, 70). Figure 2 shows th a t the predicted slide values from Equation 8 are almost

identical to the measured results except t o a = 4. For large a(26, 70), the predicted and measured results

are virtually indistinguishable. Figure 3 shows th a t the error from Equation 8 decreases as a increases. For

o > 10, the error is always less 4%, with a typically value of 1%. For o = 4, the error was between 9% and

20%, although Jlf = 20 is not really a small pattern. In all cases, Equation 8 under estimates the slide value,

because it ignores the helpful effects from the A? table.

To test Equation 10, we averaged 100 searches t o each value of M on a tex t file w ith at least 1,000,000

characters t o a = (3, 4, 10, 20), and for M between 27 and 3000. Figure 4 shows th a t the predicted slide

values m atch well with the measured results in all cases when M > 2a . For very large M, Equation 10

becomes less accurate as shown when a = 10 and Jlf > 1000. Figure 5 shows the error from Equatfon 10 is

less than 5% in most cases.

9

1— I' 1I -TTi i i i r r
Predicted Data
Measured Data a * 70

Pattern Length

Figure 2: Predicted and measured slide on short patterns w ith o = (4,6,10,26,70).

te 10.00 -

0 = 70
1.00 : r

Pattern Length
Figure 3: Elrror between measured and predicted d a ta for short patterns.

10

. . . PredictedData
— MeasuredData

Pattern Length

Figure 4: Predicted and measured slide on long patterns with a — (2,3,4,6,10,20,70).

I I I I l U

Pattern Length

Figure 5: Error between measured and predicted d a ta for long patterns.

11

of

 c
om

pa
ri

so
ns

Each approximation is accurate over its designated range of M . Figure 6 shows the predicted and

measured number of comparisons for a = 10 from small to large M values for N = 50,000. The short and

!/mg approximations cross over when M » 2a.

Short PattOTi formula
Large Pattern formula
Measured data

Pattern length

Figure 6: Number of comparisons for 4 < M < 3000 with a — 10.

Equation 10 starts to break down for very large M, because Simplification 2, which limits the anchor to

one index, causes us to underestimate P r (^ im) for large m ^T hese states occur rarely, bu t their expected

shift increases as M increases, so th a t their contribution to slide becomes increasingly significant.

The growing inaccuracy of Equation 10 a t very large M is of little practical importance, because a

modified algorithm would normally be used. For large M, it U much more efficient to index the A i table

by a block of 6 characters, ra ther than a single character [4] [6]. This approach gives an effective alphabet

si*e of ab which makes Equation 8 applicable. By choosing b = | Ioga M |, the average num ber of characters

examined is roughly N h g a M /M , which is close to optimal [6].

7 Future Work
Several steps in our derivation could be stronger. In particular, removal of the assumption th a t the anchor

is only indice should yield an expression for 9 (B M) accurate for very large M. We should also correctly

12

calculate ra ther than using Simplification 4.

References
(I) Alberto Apostolico and Eaffaele Giancarlo. The Boyer-Moore-Galil string searching strategies revisited.

SIAM Journal of Computing, 15(l):98-105, February 1986.

|2] Robert S. Boyer and J. S trother Moore. A fast string searching algorithm. Communications of the ACM,

20(10):762-772, October 1977.

[3] Leo J. Guibas and A. M. Odlysko. A new proof of the linearity of the Boyer-Moore string search

algorithm. SIAM Journal of Computing, 9:672-682, 1980.

[11 Donald E. KbuH 1 Juno. H. Morria1 nnd Vnnghnn B. P rn tt. F u l p n tu m mnlehing in ntringn. S U M

Journal o f Computing, 6(2):323-350, June 1977.

[5] R. Schaback On the expected sublinearity of the Boyer-Moore algorithm. SIAM Journal of Computing,

17(4)-.648-658, August 1988.

(6] Andrew Chi-Chih Yao. The complexity of pattern matching for a random string. SIAM Journal of

Computing, 8(3):368-387, August 1979.

13

	Purdue University
	Purdue e-Pubs
	12-1-1989

	On the Average-Case Running Time of the Boyer-Moore Algorithm
	Russell W. Quong

	tmp.1542052450.pdf.Y73q8

