
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

9-1-1989

Parallel, Self-Organizing, Hierarchical Neural
Networks
O. K. Ersoy
Purdue University

D. Hong
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Ersoy, O. K. and Hong, D., "Parallel, Self-Organizing, Hierarchical Neural Networks" (1989). Department of Electrical and Computer
Engineering Technical Reports. Paper 680.
https://docs.lib.purdue.edu/ecetr/680

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages

f ! v ; v ! v ! v ! v ! v ; v ! v ! v i ,4 ,o ; ,j^ i» > ;v ! i> ;v ;v ;v ;

Parallel, Self-Organizing,
Hierarchical Neural Networks

O. K. Ersoy
D. Hong

TR-EE 89-56
September, 1989

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

PA RA LLEL, SELF-O RG A N IZIN G

HIERARCH ICAL NEURAL N E T W O R K S

O. K. E rsoy and D. Hong

School of E lectrical Engineering, P u rd u e U niversity
W est L afayette , IN 47907 U.S.A.

A BSTR A CT

A new neural network architecture called the parallel self-organizing
hierarchical neural network (PSHNN) is discussed. The PSHNN involves a
number of stages in which each stage can be a particular neural network
(SNN). At the end of each SNN, error detection is carried out, and a number
of input vectors are rejected. Between 2 SNN’s there is a nonlinear transfor­
mation of those input vectors rejected by the first SNN. The PSHNN has
many desirable properties such as optimized system complexity in the sense of
minimized self-organizing number of stages, high classification accuracy,
minimized learning and recall times, and truly parallel architectures in which
all SNN’s are operating simultaneously without waiting for data from each
other during testing. The experiments performed in comparison to multilay­
ered networks with backpropagation training indicated the superiority of the
PSHNN.

2

I. IN T R O D U C T IO N

Some of the most important problems in artificial neural networks are
network complexity, learning and recall times, robustness, fault-tolerance and
quality of generalization. In this paper, we describe a new neural network
(PSHNN) architecture which address these problems.

The PSHNN involves a number of stages, similar to a multilayer net­
work. Each stage can be a particular neural network, to be referred to as the
stage neural network (SNN). Unlike a multilayer network, each SNN is essen­
tially independent of the other SNN’s in the sense that each SNN does not
receive its input directly from the previous SNN. Between two SNN’s, there is
a transformation which transforms certain input vectors rejected by the first
SNN nonlinearly. The transformed vectors are input to the later SNN. This
is probably the most original property of the PSHNN, as distinct from other
artificial neural networks. „

The motivation for the PSHNN architecture evolves from the considera­
tion that most errors occur due to input signals to be classified which are
linearly nonseparable or, which are close to boundaries between classes. At
the output of each SNN such signals are detected by a scheme and rejected.
Then the rejected signals are passed through a nonlinear transformation so
that they are converted into other vectors which are more easily classified by
the succeeding SNN.

The paper is organized into 6 sections. Sec. 2 discusses signal representa­
tions, and how signals belonging to different classes but also linearly nonsepar­
able or close to class boundaries can be transformed nonlinearly so that they
become less similar and more easily classifiable. Sec. 3 introduces the PSHNN
in detail. Sec. 4 describes the performance results obtained with the PSHNN
in comparison to multilayer networks using backpropagation training, in
classification experiments with aircraft and satellite remote-sensing data. Sec.
5 discusses the fault-tolerance and robustness properties of the PSHNN. Sec.
6 is conclusions.

3

2 SIGNAL R E PR E SE N T A T IO N S AND TH EIR N O N LIN EA R
TR A N SFO R M A T IO N S

Number representation of signal values is very important in neural net­
works because it influences a number of factors such as network size, complex­
ity, and quality of performance.

Class I Class 2

Figure I. Two classes of integers.

For example, let us consider the problem of two integer classes to be
classified. One class consists of the numbers from I to 32, the other from 33
to 64, as shown in Fig. I. There are a number of ways to represent the
integers with the binary numbers (1,0) or (I, -I), such as binary coding, tem­
perature coding, and Gray coding [l].

Among these, the temperature coding is one of the most fault tolerant
schemes, even though it is not economical in the number of bits. In this
scheme, each integer is represented by l ’s and 0’s (or - l ’s), the l ’s adding up
to the integer value and increasing as in a thermometer as the integer gets
larger. One important advantage of this scheme is that similar integers are
represented similarly. In this section, we will use temperature coding.
Another scheme which gives similar representations with similar integers as
well as compact representation is the Gray code. It is often used in digital
communications. An example of the Gray code is shown in Table I [2]. We
will use the Gray code in Sec. 4.

The gray code representation can be derived from the binary code
representation as follows: If b2 ... bn is a code word in an n-digit binary
code, the corresponding Gray code word g\ g2 ... gn 13 obtained by the rule

4

Table I. 3-Bit binary and gray code representation of integers between 0
and 7.

Integer Binarv Code Crav Code
0 0 0 0 0 0 0
I 0 0 1 0 0 1
2 0 1 0 O i l
3 o i l 0 1 0
4 1 0 0 1 1 0
5 1 0 1 1 1 1
6 1 1 0 1 0 1
7 1 1 1 1 0 0

91 = f>l
9k — H © ^k-I k > 2

where, Q is modulo-two addition.
In the 2-class problem discussed above, 64 bits are needed to represent

one integer in the temperature coding. Consider only the boundary integers
32 and 33. The difference between these data is just one bit with the tempera­
ture coding, but they are in the opposite classes. Such data make classification
difficult and causes errors in the presence of noise. However, a more impor­
tant source of classification errors in one-stage networks is often the linear
nonseparability of the classes. An example of linear nonseparability is shown
in Fig. 2. The vectors close to the class boundaries, say within the dotted
lines, are also difficult to classify. We will call the set of vectors which are
difficult to classify or causing errors the "hard" vectors. We can reduce and
possibly eliminate classification errors if we can find a transformation of the
set of hard vectors into another set in R n such that they are easier to classify.
In so doing, it is important to separate the set of easily classifiable vectors
from the set of hard vectors since we want to minimize the possibility of
creating new sets of hard vectors.

We will assume the input and output vectors to be binary with elements
equal to ± I (I and 0 also possible). The first method for the desired transfor­
mation will be achieved by using a fast transform followed by the bipolar
thresholding (sign) function given by

Sf(Ti) = sgn (S (n))
I , S(n) > 0

—‘1 , otherwise (I)

5

Figure 2. A Five-Class Linearly Nonseparable Problem.

There are a number of fast transforms which can be utilized. Because of
its many excellent features, the real discrete Fourier Transform (RDFT) will
be utilized in this paper [3]. The one-dimensional RDFT of a sequence x(n) of
N data points is given by

I

where

r(»)
N - 1

x{k) cos
A = O

27rnA:
N + Q{n)

0
0(») -

7T

2

^ . N ,0 < n < —
------ 2

, otherwise

The inverse RDFT (IRDFT) is

x{n) J j V r (k) V (Ar) cos
i V A = O

27rnk
N

+ e{n)

(2)

(3)

(4)

6

where

k

, otherwise
(5)

The fast algorithms for the computation of the RDFT are known as the fast
real discrete Fourier transform (FRFT) algorithms [4].

The nonlinear transformation using the RDFT is very sensitive to the
Hamming distance between the binary vectors; the difference between two
binary vectors is changed from I bit to many bits after using the nonlinear
transformation.

Fig. 3 shows how the similar inputs (32 and 33) trained well after con­
verting them with the nonlinear transformation. In this figure, the error is
given by

Z = T S («*»,-»(HO,-)* (6)
1 i

where doj is the desired output and o (W)j is the actual output as a function
of the interconnection matrix W. In the first system (dashed line), the input
vectors were coded with the temperature scheme. In the second system (solid
line), the temperature coded vectors were converted into other binary vectors
by the nonlinear transformation. The training was based on the delta rule [5].
It is apparent that the second system converges much faster.

Even though the nonlinear technique discussed above gives excellent per­
formance, its implementation is not trivial. The main purpose of the fast
transform followed by pointwise nonlinearities is to "shake up" the hard vec­
tors so that they look different and hopefully become simpler to classify. This
can be done by easier techniques. One way is to simplify the fast transform
further. For example, the discrete Fourier preprocessing transforms (DFPT’s)
are obtained by replacing the basis function cos(——--- 1- 0(n)) in Eq. (2) by a
very simple function [6]. There are many DFPT’s. The simplest one is Class-
2, Type-5 DFPT [7]. Its basis function values are mostly zeros. The nonzero
values are i I.

The simplest approach, however, to achieve the "shake-up" of the hard
vectors is by simply complementing the input vector if it is represented in a
binary code. Another simple approach, which can also be used together with
complementing, is the scrambling of the binary components of the input vec­
tor.

7

SO.OOOO I

t 3 .7300 ■

37.5000 -

31.2300-

18.7300 •

6.23000 -

0.00000

I te r a t io n s

Figure 3. Training time versus error with two systems when the input
vectors are close to class boundaries.

3. THE PARALLEL, SELF-ORGANIZING, HIERARCHICAL
NEURAL NETWORK

The parallel, self-organizing hierarchical neural network (PSHNN) to be
described is envisioned for the purposes of decreasing system complexity, self-
organizing the number of stages needed in each application, increasing
classification accuracy, avoiding local minima, reducing learning and recall
times, obtaining a high degree of robustness and fault-tolerance, and achieving
truly parallel architectures.

The PSHNN involves a number of stages, which is self-organizing. Each
stage is a particular neural network, to be referred to as the stage neural net­
work (SNN). In the experiments to be described in Sec. 4, each SNN is chosen
as a I-layer network with delta rule learning [8].

8

Between two SNN’s there is a transformation (the nonlinear RDFT or
DFPT or complementing methods in the experiments to be discussed) which
transforms those input vectors rejected by the first SNN nonlinearly, using
the procedures described in the last section. The rejection and acceptance of
input vectors is done according to a procedure described below.

3.1 T ra in in g

In order to speed up learning, the upper limit of iterations in each SNN
during learning will be restricted to an integer k. If k is arbitrarily large, then
the SNN usually reaches convergence after a certain number of iterations. Let
us assume that the i-th SNN is denoted by SNN(i). Below we describe the
training procedure:

TRAINING PROCEDURE

Assume : The number of iterations is upper-bounded by
k for each SN N

Initialize : i = I

1. Train SNN(i) by a maximum of k iterations.
2. Check the output for each input vector.

1) I f no error —> stop the training
2) I f errors — > get the reference values and go to

step 3.
3. Select the data which are within the rejection bounds.

1) I f all the chosen data are in one class, then
define the final reference value (FRV) as that
class. Stop the training.

2) I f not, go to step 4-
4. Take the nonlinear transform(NLT) of the rejected

data set. Increase i by I. Go to step I.

The reference values referred to in step 2 above are the bounds (thres­
holds) discussed in the section below.

9

3.2 D e te c tio n o fP o te n tia lE r ro rs

How do we reject and accept input vectors at each SNN?' The output
neurons yield I, O (or —1) as their final value. The decision of which binary
value to choose involves thresholding. It is possible to come up with a number
of decision strategies. Below we will describe a particular algorithm.

The value obtained after the weighted summation at the i-th output neu­
ron is first passed through the sigmoid function defined by Eq. (7) to give a
value yj between O and I:

f(x) = sigmoid (x) = ---- - (7)
I + e

The parameter x in the sigmoid function f(x) is actually the weighted summa­
tion plus a threshold term 6, which is trained by using an extra input neuron
whose input is I. The final output value z; is obtained by the hard-limiter:

(l, if y; > 0.5
Zi = {o, if y5 < 0.5 ^

In this process, it is assumed that the desired output of the system is
represented by a binary number.

It is observed that there are 3 vectors involved: the input vector X, the
vector Y with elements yj, and the output vector Z with elements zj. We can
also show time-dependence by using subscript i in the form X1JY1jZ1.

After training the SNN by a maximum of k iterations, we compare the
output vector Z with the desired output vector Z^. If they are different from
each other, the input vector is counted as an "error-causing" vector of the
SNN.

The set of error-causing vectors are the input to the next SNN after being
processed by the nonlinear transformation technique discussed in Sec. 3.

Now we need an algorithm to detect potential errors during testing. For
this, we will define error bounds and no-error bounds. The following is the
current procedure for estimating the error bounds during training:

ERROR BOUNDS

Assume : number of data vectors = I
length of vector = n
y*j = j —th component of the i-th vector Y t

Initialize the reference values y°:

10

yy(upper) = 0.5
- ' , where j = 1,2, n

xfj{lower) = 0.5

Initialize : i = I

I.

3.

Check whether the i-th data vector is an error-causing
vector. I f so,
1) if. yf>o-5,

y){upper) = M AX[yj > (upper), y)]
2) //; V ij < 0.5,

ylj(lower) = MIN[y\j ’{lower), j/y]

then

then

If i = I then
rj(upper) == y^ (upper)
rj(lower) — yj (lower)
else i = i + I and go to step I.
End

rj (upper) and rj (lower) in step 3 above are the reference values (error bounds).
In pattern recognition, we often use basis vectors of Rn as the desired

outputs to denote classes when the number of classes is n. In other words, the
desired output of each class can be represented as

class I ------ ► (I, 0, 0, ..., 0)T
class 2 ----—► (0, I, 0, ..., 0)T

class n —— ► (0, 0, ..., 0, 1)T

In this case, an input vector is classified as an error-causing vector if any
of the output bits is incorrect. The binary scheme described above can be
replaced by any other suitable binary scheme. Each output neuron i can also
be duplicated a number of times before finding X1 , and the final thresholding
to find Zj can be done after summing them to increase accuracy.

The simplest rejection procedure during testing is to check whether the
vector Y is within the error bounds or not. If it is, then the corresponding
input data vector is rejected. During testing, some misclassified data may not
be rejected since they are not within the error bounds. Simultaneously some
correctly classified data may also be rejected since they are within the error
bounds. These sources of error can be further reduced by simultaneously util­
izing no-error bounds. The following is the current procedure for estimating

11

the no-error bounds:

NO-ERROR BOUNDS

Initialize the reference values y*}:

y°j{upper) = 0*5
, where j = 1,2,...,n

y®(lower) = 0.5

Initialize : i = I

1. Check whether the i-th data vector is an error-causing
vector. I f so,
then i = i + I and go to step I
else go to step 2.

2. Get the reference values for j = 1,2, ...,n ,
1) if i/feo.5, then

y){upper) = MIN[yX l> (upper),y)\
2) I f y)<.0.5, then

y*j(lower = MAX[y^j~^ (lower), y)]
3. I f i = I then

rj(upper) = yj (upper)
rj(lower) = y*j (lower)
else i — i + I and go to step I.
end

With the no-error bounds, the rejection procedure can be to check
whether the vector Y is not in the correct region determined by the no-error
bounds. If it is not, then the corresponding input data vector is rejected.
However, a more accurate procedure is to utilize both the error and the no-
error bounds. In this case, we check whether the vector Y is within the error-
bounds and not in the correct region determined by the no-error bounds. If
so, the corresponding input data vector is rejected. With this procedure,
better accuracy is achieved because correctly classified data vectors are not
rejected even if they are within the error bounds. However, some error-
causing data vectors can still be among those not rejected since they satisfy
the above criterion.

12

3.3 T esting

Testing (recall) with the PSHNN is similar to testing with a multilayer
network except that error-detection is carried out at the output of each SNN,
and the procedure is stopped without further propagation into the succeeding
SNNs with vectors which are correctly classified. The following describes the
testing procedure:

TESTING PROCEDURE

Initialize : i = I

1. Input the test vector to SNN(i).
2. Check whether the output indicates an error-causing

input data vector. If so, then,
a) if it is the last SNN, then classify with the FRV
b) if it is riot, nonlinearly transform the input test vec­

tor and go to step I
else, classify the output vector.

An interesting observation is that the testing with the PSHNN can be
done in parallel with all the SNN’s simultaneously rather than each SNN wait­
ing for data from the previous SNN. This is shown in Fig. 4 in case of 3
SNNs. In this scheme, the test input is multiplexed into 3 inputs in terms of
itself and the 2 additional vectors obtained by the nonlinear transformations
NLTl and NLT2. Then, these 3 inputs are fed into SNNl, SNN2 and SNN3,
respectively. The logic unit chooses one of the 3 outputs from the SNNs as
the correct output and passes it to the hard limiter.

The logic unit is shown in Fig. 5. The output of each Ref(i) is zero when­
ever error is detected. Each switch SW(i) allows its input through only if its
Control bit is I. In this way, one of the 4 possible outputs (including FRV) is
demultiplexed through the logic unit.

13

Test Input

Output

Limiter
Hard

NLT 2

NLT I

SNN I

SNN 3

SNN 2

Figure 4. Block diagram of the parallel testing procedure with the PSHNN
when the number of SNN’s is 3.

4. EXPERIMENTAL RESULTS

In this section, we will describe experiments to study the performance of
the PSHNN in comparison to 3-layer and 4-layer networks with backpropaga-
tion training [8]. Each SNN of the PSHNN was chosen as a 1-stage network
with delta rule training. The initial weights were randomly chosen in the
range from —0.5 to 0.5. The gain parameter was chosen as 0.05.

14

SW I

SW 3

SW 4

Ref 3

Ref 2

Figure 5. Logic unit of the PSHNN when the number of SNNs is 3
(parallel scheme).

Two sets of remotely sensed data sources were used in the experiments.
The first set was aircraft remotely-sensed image data, called Flight Line C l,
covering the southern part of Tippecanoe county, Indiana [9]. The second set
was multispectral earth observation remotely sensed data covering a moun­
tainous area in Colorado [10].

15

4.1 E xperim ents w ith th e F irs t Set of D a ta

The first set of data had 12 bands. 8 spectral bands out of 12 bands were
chosen representing 8 classes of farm products (alfalfa, corn, oats, red clover,
soybean, wheat, bare soil, rye). Each band signal value represents 256 gray
levels, requiring a minimum of 8 bits for binary representation. Each signal
value is generated by concatenating the corresponding band signal values
together, thus requiring 64 bits for binary representation. The Gray code was
used for representing the input signals.

In the experiments, we first tried to answer the question as to whether the
nonlinear transformations are really useful in the construction of the PSHNN.
When we removed the RDFT-based nonlinear transformations, 9 SNN’s were
required, as compared to 3 SNN’s with the nonlinear transformations included
in the PSHNN.

Table 2. Number of rejected data of PSHNNl at each SNN when the
allowed number of iterations is 70 in the 4-class problem (data
set I).

Stage No. rejec ted data Total number

class I class 2 class 3 class 4
0 200 200 200 200 800

SN N l 7 150 34 45 236
SNN 2 I 25 10 6 42
SNN 3 0 I 0 0 I

Training and testing with the networks were done with 200 signal sam­
ples per class and 375 other signal samples per class, respectively. Two sets of
experiments were generated in terms of a 4-class problem and an 8-class prob­
lem. The first experiments to be described below with Tables 2 through 11
were carried out with the RDFT-based nonlinear transformations of the
rejected vectors.

In the first set of experiments, 2 PSHNNs were constructed; the first one
(PSHNNl) was based on the error bounds only, and the second one (PSHNN2)
was based on both the error and the. no-error bounds.

Table 2 shows the number of rejected data vectors at each SNN of the
PSHNNl, when the allowed number of maximum iterations is 70. Table 3
shows the number of SNNs used and the classification accuracy of PSHNNl as
a function of the allowed number of iterations.

Table 4 shows the number of rejected data at each SNN of the PSHNN2,
when the number of maximum iterations is 90. Table 5 shows the number of

16

Table 3. The classification accuracy of PSHNNl and the total number of
SNN’s as a function of the number of iterations in the 4-class
problem (rj = 0.05) (data set I).

Number of Number of Classificatio: i Accuracy

Iterations SNNs Train (%) T e s t - m
5 6 99.98 82.60

10 5 99.98 86.33
20 4 99.98 87.87
30 3 99.98 87.60
40 3 99.98 87.87
50 3 99.98 89.07
60 4 99.98 88.33
70 3 99.98 89.27
80 4 99.98 88.07
90 4 99.98 87.73

100 4 99.98 87.87
150 3 99.98 87.93
200 3 99.98 87.00

Table 4. Number of rejected data of PSHNN2 at each SNN when the
allowed number of iterations is 90 in the 4-class problem (data
set I).

Stage No. rejec ted data Total number

class I class 2 class 3 class 4
0 200 200 200 200 800

SNN I 7 10 25 6 48
SNN 2 0 0 0 0 0

SNNs used and the classification accuracy of PSHNN2 as a function of the
allowed number of iterations.

The number of SNNs of the PSHNN2 is found to be always smaller than
that of the P SHNNl. The classification accuracy during testing of the
PSHNN2 is also better than that of PSHNNl. The best classification accuracy
of the PSHNNl is 89.27 % when the maximum number of iterations is 70 and
the number of SNNs is 4. The corresponding values for PSHNN2 is 92.13 %
accuracy with 90 iterations and 2 SNNs. The classification accuracy for train­
ing samples of PSHNNl is always almost perfect, but during the recall

17

Table 5. The classification accuracy of the PSHNN2 and the total number
of SNN’s as a function of the number of iterations in the 4-class
problem (rj = 0.05) (data set I).

Number of Number of Classificatio: i Accuracy

Iterations SNNs Train (%) Test (%)
5 4 95.38 89.93

10 3 96.12 89.73
20 3 96.50 89.67
30 2 97.50 90.40
40 2 97.87 90.73
50 2 97.88 91.20
60 2 98.63 91.87
70 2 98.75 91.93
80 2 98.75 92.00
90 2 98.75 92.13

100 2 98.50 92.03
200 2 99.00 90.80

Table 6. Number of rejected data of PSHNN2 at each SNN when the
allowed number of iterations is 100 in the 8-class problem (data
set I).

Stage Islo. rejec ;ed data Total

C I c 2 c 3 c 4 c 5 c 6 c 7 c 8
0 200 200 200 200 200 200 200 200 1600

SN N l 5 28 34 8 3 28 0 4 HO
SNN 2 2 10 5 0 0 2 0 I 20
SNN 3 0 0 0 0 0 0 0 0 0

procedure, its accuracy is not as good as that of PSHNN2. An interesting
observation is that the accuracy of the network increases as the number of
iterations increases until some point. After that, the accuracy starts to
decrease.

The second set of experiments in terms of 8 classes resulted in the same
type of results as the 4-class case. Thus, PSHNN’s appear to scale nicely as
the Tmmhw of classes increase. Table 6 shows the number of rejected data
vectors at each SNN of the PSHNN2, when the allowed number of maximum

18

Table 7. The classification accuracy of PSHNN2 and the total number of
SNN’s as a function of the number of iterations in the 8-class
problem (rj = 0.05) (data set I).

Number of Number of Classificatio: i Accuracy

Iterations SNNs Train Test (%)
5 6 94.19 85.06

10 4 95.25 85.63
20 4 96.25 86.46
30 3 96.81 86.67
40 3 97.87 87.33
50 3 97.25 88.01
60 3 97.37 88.47
70 3 97.38 88.87
80 3 97.38 88.90
90 3 97.44 89.13

100 3 97.75 89.30
200 3 97.63 88.67

iterations is 100. Table 7 shows the number of SNNs used and the
classification accuracy of PSHNN2 as a function of allowed number of itera­
tions. The best classification accuracy 89.30 % is obtained at 100 iterations
with 3 SNN’s. •

The performance of PSHNN’s were compared to the performance of mul­
tilayer neural networks using backpropagation algorithm with 3 layers (3NN)
and 4 layers (4NN). In both cases, the length of each layer was fixed as 64.
The initial weights were randomly chosen between —0.5 and 0.5. Again, 2 sets
of experiments were performed in terms of 4 classes and 8 classes, respectively.
The scaling parameter rj for updating weights was chosen as 0.01 and 0.02 in
the first and the second set of experiments, respectively.

The results of the first set of experiments are shown in Tables 8 and 9, in
terms of the classification accuracy of the 3NN and the 4NN as a function of
allowed number of iterations, respectively.

It is observed that the performance of the 4NN is always better than that
of the 3NN. The best classification accuracy 92.80 % during testing is
obtained with about 800 iterations for the 4NN. After that, the classification
accuracy during testing is decreasing even though the classification accuracy of
the training samples is increasing. For the 3NN, the best accuracy rate 89.07

19

Table 8. The classification accuracy of 3NN as a function of the number
of iterations in the 4-class problem (r/ = 0.01) (data set I).

Number of Classificatio: i Accuracy

Iterations Train (%) Test, (%\
100 80.75 73.60
500 91.25 86.07

1000 92.62 87.87
1500 93.37 88.26
2000 93.88 88.27
2500 93.88 88.60
3000 93.50 88.93
3500 93.37 89.07
4000 93.50 89.07
5000 93.74 88.93

Table 9. The classification accuracy of the 4NN as a function of the
number of iterations in the 4-class problem (r) — 0.01) (data set
I)-

Number of Classificatio: i Accuracy

Iterations Train (%) T est (% \

100 87.75 84.74
500 99.63 92.47
800 99.88 92.80
900 99.88 92.80

1000 99.88 92.60

% is obtained around 3500 - 4000 iterations.
The classification accuracy of the PSHNN2 is almost the same as that of

4NN and better than that of 3NN. If we assume the computation time of one
pass in a one-stage network is I, the training time for the PSHNN2 is 800 x 90
for SNNl and 48 x 90 for SNN2, totaling 76,320. For the 4NN, to get the best
accuracy, the computation time is 800 x 800 x 3 = 1,920,000, which is about
25 times longer than the time for the PSHNN2. In this estimation, the compu­
tation time for the nonlinear transformation of the rejected vectors in the
PSHNN2 is not included since it involves fast, constant and simple operations.

2d

Table 10. The classification accuracy of 3NN as a function of the number
of iterations in the 8-class problem (rj = 0.002) (data set I).

Number of Classificatio: i Accuracy

Iterations Train (%) Test, (%)
100 51.00 44.27
500 78.19 71.47

1000 81.62 75.60
1500 83.63 77.23
2000 84.37 78.23
2500 84.87 78.97
3000 85.19 79.33
3500 85.44 79.63
4000 85.68 79.70

Table 11. The classification accuracy of 4NN as a function of the number
of iterations in the 8-class problem (ij = 0.002) (data set I).

Number of Classificatio: i Accuracy

Iterations Train (%) Test, (%)
100 86.44 82.22
500 94.00 88.70
600 95.00 88.76
700 96.00 89.17
800 97.00 89.50
900 97.93 89.50

1000 98.31 89.47
1500 98.93 89.49

The results of the second set of experiments with 8 classes are shown in
Tables 10 and 11, in terms of the classification accuracy of the 3NN and the
4NN as a function of allowed number of iterations, respectively. The best
accuracy rate of 79.7% with the 3NN is obtained around 4000 iterations. The
best accuracy rate with the 4NN is 89.5% at around 900 iterations.

Again the classification accuracy of the PSHNN2 is basically the same as
that of 4NN and much better than that of 3NN. If we assume the computa­
tion time of one pass in a one-stage network is I, the training time for the
PSHNN2 is 1600 x 100 for SNNl, HO x 100 for SNN2, and 20 x 100 for SNN3,

21

totaling 173,000. For the 4NN, to get the best accuracy, the computation
time is 1600 x 900 x 3 = 4,320,000, which is about 25 times longer than the
time for the PSHNN2.

In Sec. 2, we discussed the simplication of the nonlinear transformations
of the rejected vectors in order to achieve easier hardware and software imple­
mentations. Table 12 shows the classification accuracy of the PSHNN2 and
the total number of SNN‘s as a function of the number of iterations in the 4-
class problem with the Class-2, Case 5 DFPT-based nonlinear transformation.
Table 13 shows the same type of results with the complementing of rejected
vectors for their nonlinear transformations. Tables 12 and 13 can be com­
pared to Table 5. The RDFT-based nonlinear transformation gives only I %
better accuracy in testing than the DFPT-based nonlinear transformation.
Complementing the rejected vectors, the simplest approach, is almost as good
as the RDFT-based approach with this data set.

Table 12. The classification accuracy of the PSHNN2 and the total number
of SNNs as a function of the number of iterations in the 4-class
problem (rj = 0.05) (data set I). Class-2 Case-5 DFPT-based
nonlinear transformation of rejected vectors was used.

Number of Number of Classificatio: i Accuracy

Iterations SNNs Train [°7c!\ Tnst { % \

10 3 96.12 90.26
20 2 96.50 91.06
30 2 97.50 90.73
40 3 97.87 90.53
50 3 97.88 91.20
60 2 98.63 90.93
70 3 98.75 90.86
80 3 98.75 90.93
90 3 98.75 91.13

100 3 98.50 90.08
200 2 99.00 90.46

22

Table 13. The classification accuracy of the PSHNN2 and the total number
of SNNs as a function of the number of iterations in the 4-class
problem (Tj = 0.05). Complementing of rejected vectors was
used for nonlinear transformation of rejected vectors (data set I).

Number of Number of Classificatioia Accuracy

Iterations SNNs Train (%) Test (%\
10 5 96.37 91.34
20 4 96.62 90.46
30 3 97.00 90.80
40 3 97.00 91.00
50 4 98.12 91.00
60 2 98.25 91.40
70 3 98.25 91.60
80 3 98.99 91.06
90 3 98.50 92.06

100 3 98.50 91.60
200 2 98.87 91.87

4.2 Experiments with the Second Set of Data

The second set of data consists of the following 4 data sources:

1) Landsat MSS data (4 data channels)
2) Elevation data (in 10 m contour intervals, I data channel)
3) Slope data (0-90 degrees in I degree increments, I data channel)
4) Aspect data (1-180 degrees in I degree increments, I data channel)
The area used for classification is a mountainous are in Colorado. It has

10 ground cover classes which are listed in Table 14. Each channel comprises
an image of 135 rows and 131 columns, all of which are co-registered.

Ground reference data were compiled for the area by comparing a carto­
graphic map to a color composite of the Landsat data and also to a line
printer output of each Landsat channel [10]. By this method, 2019 ground
reference points (11.4 % of the area) were selected. Ground reference con­
sisted of two or more homogeneous fields in the imagery for each class. For
each class, the largest field was selected as a training field, The other fields
were used for testing. Overall, 1188 pixels were used for training and 831 pix­
els for testing the classifiers. The number of the samples from each class are

23

Table 14. 10 dominant classes of the multispectral image data of Colorado
area.

Class field
i Water
2 Colorado blue spruce
3 Montane / S ub alpine, meadow
4 Aspen
5 Ponderosa pine
6 Ponderosa pine/Douglas fir
7 Engelmann spruce
8 Douglas fir/White fir
9 Douglas fir/Ponderosa pine/Aspen
10 Douglas fir/White fir/Asnen

shown in Table 15.

Table 15. The number of the samples of each class of the multispectral
image data of Colorado area.

Class fielc

Test Train
I 195 408
2 24 88
3 42 45
4 65 75
5 139 105
6 188 126
7 70 224
8 44 32
9 25 25
10 39 60

Total 831 1 1 8 8

The neural network input data vector is constructed with 7 binary vec­
tors, one from each band. Therefore, each input data vector has 56 bits.

24

Table 16. The classification accuracy of the 4NN as a function of the
number of iterations in the 10-class problem (r/ = 0.01) (data
set II).

Number of Classificatio: i Accuracy

Iterations Train (cP n) Test (%)
100 71.04 46.32
500 89.06 51.87

1000 92.42 53.30
1500 93.68 54.03
2000 93.86 54.27
2500 94.11 53.79

Table 17. The classification accuracy of the PSHNN2 and the total number
of SNNs as a function of the number of iterations in the 10-class
problem (rj — 0.05). Complementing was used for nonlinear
transformation of rejected vectors (data set II).

Number of Number of Classificatio: i Accuracy

Iterations SN N s Train (%) Test, (<%)

10 8 95.37 55.23
20 10 95.79 56.19
30 5 95.53 55.00
40 5 95.45 54.75
50 4 95.71 56.43
60 4 95.20 53.06
70 5 95.20 56.20
80 5 94.45 55.23
90 4 94.45 55.35

100 5 94.45 56.31
130 4 94.45 57.03
200 4 95.20 56.50

In the case of the multilayer neural network using backpropagation algo­
rithm with 4 layers (4NN), the length of the input layer and the hidden layers
were fixed as 56, and the length of the output layer was 10. The initial

25

Table 18. The classification accuracy of the PSHNN2 and the total number
of SNNs as a function of the number of iterations in the 10-class
problem (rf = 0.05) when the rejected vectors are not classified
at the last stage (data set II).

Number of Number of Classification Accuracy Number of

Iterations SNNs Test, (%) Rejected vectors
10 8 55.23 9
20 10 56.26 I
30 5 56.00 15
40 5 54.75 0
50 4 56.43 0
60 4 55.61 38
70 5 57.02 12
80 5 56.52 19
90 4 58.52 45

100 5 56.31 0
130 4 57.03 0
150 4 59.58 45
200 4 57.95 20

weights were randomly set between - 0.5 and 0.5. Table 16 shows the accu­
racy of the 4NN (rj = 0.01) as a function of allowed number of iterations.
The best classification accuracy 54.03 % was obtained with 1500 iterations.

In case of the PSHNN, the length of the input vector was 56 and the
length of the output vector was 10. Rejected input vectors of an SNN were
nonlinearIy transformed with the complementing method and fed into the
next SNN. The initial weights were randomly set in the range -0.5 to 0.5.
The gain parameter for delta rule training was chosen as 0.05. Table 17 shows
the number of SNNs used and the classification accuracy of PSHNN as a func­
tion of allowed number of iterations. The best classification accuracy of the
PSHNN was 57.03 % when the maximum number of iterations selected was
130 and the number of SNNs was 4.

The number of SNN’s is determined during training by the criterion that
no input vectors belonging to more than one class are rejected with the last
SNN. However, the error and the no-error bounds are still determined in the
last SNN. These bounds can be used during testing in order not to classify

26

those vectors which indicate error in the last stage according to the bounds
criterion discussed in Sec. 3.2. Table 18 shows the results when this is done.
The best result is achieved with 59.58 % accuracy, an improvement of 2.55 %
over the best result in Table 17. However, this is obtained at the cost of not
classifying 45 input vectors.

Classification with the second set of data is a very difficult problem. Dur­
ing learning, there is only one training field available for each information
class. Hence, the accuracy obtained is considered respectable [10].

5. PR O P E R T IE S OF FA U L T -T O L E R A N C E AND R O BU STN ESS

One of the most important considerations in the evaluation of artificial
neural networks is their degree of fault tolerance and robustness. There are
two major mechanisms by which the network connections may have weights
different from the optimal ones. The first mechanism is due to the limitations
of the technology of implementation. For example, in analog electronic and
electro-optical implementations, it is difficult to achieve dynamic range
greater than several bits. In all technologies, larger number of bits means
more complex circuitry.

The second mechanism occurs when the weights are computed by a train­
ing set of input-output vectors, but the signal statistics change, and the
weights need to be updated. In a large network, this is by no means trivial to
achieve in real time.

We studied the robustness and the fault-tolerance properties of the
PSHNN’s in comparison to multilayer networks with backpropagation training
by adding noise to the calculated values of the weights. Both additive and
multiplicative noise were utilized.

The PSHNN was adapted to the corruption of the weight values by modi­
fying the four bounds per output neuron at each stage. The procedure is as
follows

A. The weights of a stage are learned.
B. The weights are corrupted.

4

27

C. The bounds are learned.
D. The procedure A to C is repeated for the. next stage.
In the case of the corruption of the weight values by additive Gaussian

noise, the amount of noise was measured in terms of the signal-to noise
ratio(SNR). It is defined by

SNR = 10.0 Iog10((9)

where, P n is the average power of the noise signal, and Pw is the average
power of the stage weight values. P w is defined by

Pw
1_
N

n m
EEwu 2 (10)

where, w, j is the (i,j)-th weight value, and N is the total number of weights in
the stage.

The performance of the PSHNN in comparison to the multilayered net­
work wi;th backpropagation training was studied through experiments with
the first set of aircraft multispectral image data of the Purdue area.

Table 19 shows the classification accuracy of the 4-layer neural network
with the backpropagation algorithm (4NN) when the number of iterations was
1000. As the SNR is decreased, the classification accuracy of the 4NN is also
observed to decrease rapidly. Below -3.01 db, the system is almost useless.
Even at -3.01 db, the classification accuracy of the 4NN for the testing sam­
ples is 85.33 %, considerably less than that of the 4NN with no errors (92.60
%) .

Table 20. shows that the classification accuracy of the PSHNN when the
m»Yimnm allowed number of iterations was 90. The RDFT based nonlinear
transformation of rejected vectors was utilized. The multispectral image data
of Purdue area is used for this experiment.

With the PSHNN, the classification accuracy decreases much more slowly
than with the 4NN as the SNR decreases. 87.60 % accuracy is achieved with
the testing samples when the SNR is -9.54 db, at which the power of the noise

28

Table 19. The classification accuracy of the 4NN as a function of the
number of iterations in the 4-class problem (r/ = 0.01).
Weights are corrupted by additive GAussian noise. The number
of iterations is 1000 (data set I).

SNR (db) Classification i Accuracy

Train (cP n) Test, (%\
no errors 99.88 92.60

20.0 99.87 92.53
10.0 99.50 92.33
3.01 97.75 91.00
0.00 96.62 88.60

-3.01 92.74 85.33
-4.77 75.37 76.06
-6.02 58.62 70.73
-6.98 70.87 68.13
-7.78 46.87 28.93
-8.45 53.62 43.86
-9.03 36.25 42.80
-9.54 38.24 50.34

-10.0 40.75 16.73

signal is 9 times bigger than that of the weight values. However, the number
of stages also grow as the SNR is further decreased.

In the case of the corruption of the weight values by multiplicative noise,
the corrupted weight values are obtained according to

w~ij = (I + a) Wij (11)

where, Wy is the trained weight value, w~jj is the corrupted weight value, and
a is a random number in the range [-k, k].

The comparative performance of the PSHNN and the 4NN was studied as
in the case of additive Gaussian noise. The results with the 4NN are shown in
Table 21. If k is less than .5, the performance of the noisy system is similar to
the performance of the error-free system. When k is greater than I, the per­
formance of the noisy system rapidly deteriorates. Table 22 shows the

29

Table 20. The classification accuracy of the PSHNN2 and the total number
of SNNs as a function of the number of iterations in the 4-class
problem (rj = 0.05). Weights are corrupted by additive
Gaussian noise. The maximum number of iterations allowed is
90 (data set I).

SNR (db) Number of C lassificat io:i Accuracy

SNNs Train (%) Tnst (%)
no errors 2 98.75 ■ 92.13

20.0 2 98.87 91.80
10.0 2 98.50 92.06
3.01 2 98.37 92.33
0.00 2 97.25 90.23

-3.01 2 97.87 90.20
-4.77 3 97.75 91.00
-6.02 4 97.87 89.06
-6.99 3 97.62 88.00
-7.78 3 98.00 88.67
-8.45 3 97.87 90.04
-9.03 4 98.00 88.20
-9.54 4 96.75 87.60

-10.0 5 95.00 84.80
-20.0 11 81.25 62.80

performance of the PSHNN. If k is less than or equal to 2, the performance of
the noisy system is almost the same as the performance of the error-free sys­
tem. When k is greater than 2, the system still performs quite well, with
accuracy in the range of 80 %. The deterioration of the system performance
is very slow with increasing k. Even when k increases towards 10, the testing
accuracy remains around 60 - 70 %. However, as k increases, so does the
number of stages.

The results with both additive and multiplicative noise for the corruption
of the weight values indicate that the PSHNN is extremely fault-tolerant to
errors in the weight values. This is due to the adaptation of the bounds at the
end of each stage.

The results should also be valid when the input-output signal statistics
change in time such that the weights are less optimal than before. The system

30

Table 21.

Table 22.

The classification accuracy of the 4NN as a function of the
number of iterations in the 4-class problem (r/ = 0.01). The
number of iterations is 1000. Weights are corrupted by
multiplicative noise (data set I).

Error

Ic

Classificatio: i Accuracy

Train (%) Teat. (<%)
no errors 99.88 92.60

0.1 99.88 92.60
0.25 99.38 92.53
0.5 97.87 90.46
1.0 93.00 84.93
2.0 60.37 60.00
3.0 36.50 40.20

The classification accuracy of the PSHNN2 and the total number
of SNNs as a function of the number of iterations in the 4-class
problem (rj = 0.05). The maximum number of iterations
allowed is 90. Weights are corrupted by multiplicative noise
(data set I).

Error Number of Classificatio: i Accuracy

Ir SNNs Train (%) Tnst (%)
no errors 2 98.75 92.13

0.25 2 98.25 91.40
0.5 2 98.75 91.73
1.0 3 98.25 89.93
2.0 3 97.37 91.13
3.0 4 96.50 88.13
4.0 5 91.50 85.73
5.0 7 91.00 81.13
6.0 7 86.50 71.13

10.0 10 72.87 61.53

31

performance can be kept high by reai-time adaptation of the bounds. The
adaptation of the weights can be done with a longer time constant, if neces­
sary.

6. CONCLUSIONS

The PSHNN has many attractive properties. Its most unique property is
error detection at the end of each SNN. This makes possible the avoidance of
backpropagation of errors from stage to stage to learn the weights, the
avoidance of the requirement for differentiable and invertible nonlinearities,
faster learning time since fewer training vectors are utilized in later stages,
parallel operation of SNN’s during testing, real time adaptation to nonoptimal
connection weights by adjusting the error detection bounds, and thereby
achieving very high fault-tolerance and robustness. In this paper, each SNN
was implemented with the delta rule. It can also be implemented by any
other learning rule. This property increases the flexibility of the PSHNN
architecture.

The PSHNN is self-organizing in the sense of learning the number of
SNN’s needed during training. Easy problems often require 2 stages. With
more difficult problems, the number of stages increase. This is a very useful
property since it allows adaptation to any type of problem by the network
itself, without interference from other sources.

Better algorithms for the detection of errors should improve the accuracy
performance of the PSHNN further.

ACKNOWLEDGMENT
We thank Jon A Benediktsson and Prof. Phil H. Swain of the Labora­

tory for Applications of Remote Sensing, Purdue University for providing us
with the remote sensing data used in experiments.

REFERENCES

32

I .

2.

3.

4.

5.

6.

7.

8.

9.

10.

M. Takeda and J.W. Goodman, "Neural Networks for Computa­
tion : Number representations and Programming Complexity,"
Applied Optics, Vol. 25, No. 18, September, 1986.

L.W. Couch II, Digital and Analog Communication Systems, Mac
Millan Pub. Co., 1983.

O.K. Ersoy, "Real Discrete Fourier Transform", IEEE Tran.
ASSP, ASSP-SS, No. 4, p.880-882, Aug, 1985.

O.K. Ersoy, N.C. Hu, "Fast Algorithms for the Real Discrete
Fourier Transform", Proceedings of ICASSP 88, p. 1902-1905,
April, 1988.

G. Widrow, M.E. Hoff, "Adaptive Switching Circuits", Inst.
Radio Engineers Western Electronic Show and Convention
Record, Part 4, p. 96-104.

O.K. Ersoy, "A New Family of Discrete Orthogonal Transforms
and Their Application," Tenth Symposium on Signal Processing
and Application, Nice, France, May 1985.

O.K. Ersoy, N-C Hu, "The Discrete Fourier Processing
Transforms and their Fats Algorithms," submitted to IEEE
Tran. Acoustics, Speech, Signal Processing and ICASSP 1990.

D. E. Rumelhart, J. L. McClelland, PDP Research Group, Paral­
lel Distributed Processing, The MIT Press, Cambridge Mas­
sachusetts, 1988.

H. Ghassemian, D. Landgrebe, "On-Line Object Feature Extrac­
tion for Multispectral Scene Representation," Technical Report
No. TR-EE 88-34, Purdue University, August 1988.

J.A. Benediktsson, P.H. Swain and O.K. Ersoy, "Neural Network
Approaches versus Statistical Methods in Classification of

33

M ultisource Remote Sensing D ata," IEEE Int. Geoscience and
Remote Sensing Symposium, Vancouver, Canada, July 1989, and
subm itted to IEEE Tran. Geoscience and remote Sensing.

	Purdue University
	Purdue e-Pubs
	9-1-1989

	Parallel, Self-Organizing, Hierarchical Neural Networks
	O. K. Ersoy
	D. Hong

	tmp.1542052450.pdf.k8Sle

