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ABSTRACT

In this report, methods and computational techniques for predicting the 
static and steady state characteristics of a switched reluctance motor drive are 
developed and the predicted characteristics are compared with experimental 
results. Because of high local saturation and narrow airgap in the SR motor, 
accurate calculation of the static characteristics of the torque, flux linkage, 
inductances, and speed emf from its FE field solution is not straightforward. 
For the purpose of this study, a two-dimensional finite element model is 
developed to handle the nonlinear magnetic field inside the machine. Based on 
a thorough study of the potential sources of errors in the field solution and in 
the computational methods used in postprocessing, new guidelines are 
developed regarding the shape and uniformity of the mesh in the airgap and 
the preservation of these qualities of the mesh as the rotor is rotated. When the 
proposed guidelines on the mesh configuration and its rotation were used, 
significant improvement in the accuracy of the field distribution and in the 
accuracy of the predicted torque/angle characteristics as compared to the 
experimentally measured torque was observed. Furthermore, all three methods 
of torque calculation, namely global virtual work, local virtual work, and 
Maxwell-stress tensor methods are converging to the same results and the 
torque/angle characteristics are smooth. Improvement in the prediction of such 
static characteristics is also essential to a realistic prediction of the steady state 
behavior. In the study of steady state performance of the SRM drive, the con
verter is approximated by a controlled, square wave pulse generator. In the 
integration process, the coefficients of the governing differential equation, being 
dependent on the phase current and rotor angle, are updated using surface 
interpolation method on the static characteristics. The predicted steady state 
characteristics compare favorably with the experimental results over a wide 
range of torque/speed variation.



C H A PT E R l .
INTRpDUCTIOIsr

TJie Switched Reluctance Motor (SRM) is a variable reluctance stepping 
jnotpr that is designed to convert energy efficiently. The motor is double 
salient, and it is essential to machine operation that the number of rotor and 
stator poles be different. Torque is produced by the tendency of the rotor poles 
to ‘align with the poles of the excited stator phase, and is independent of the 
direction of phase current, giving rise to the possibility of unipolar current in 
which only one main switching device is required per phase.

: T te SRM is of very simple structure: its rotor is brushless and has no
winding of any kind. The motor is singly excited from stator windings, which 
are concentric coils wound in series on diagonally opposite stator poles. Both 
rotor and stator are made of laminated iron.

A typical example of an SRM cross-section is shown in Fig. 1.1. Also 
shown in this figure is the phase winding and switching circuit of one phase. 
The current in stator phases must be switched on and off in accordance with 
the rotor position. For example, for motoring action, a stator phase must be 
excited when a pair of opposite rotor poles is approaching its poles , and must 
be turned off before rotor and stator poles actually come into alignment. 
Continuous rotation of the rotor is obtained by sequential excitation of stator 
phases ; the rotor steps around in a direction opposite to that of stator phase 
excitation around the airgap. For the machine shown in Fig. 1.1, a 
counterclockwise rotation requires a stator excitation sequence of l-2-3-4r-l. 
The rotor position is sensed by optical devices placed on the stator. When 
interrupted by a disk rotating with the rotor and having the shape of rptor 
poles, the sensors generate the switching reference signals. For efficient and 
smooth energy conversion, the ignition and conduction angles of the stator 
phase current then must be varied as functions of rotor speed and load torque. 
To enhance the energy conversion efficiency, SR motors are usually designed 
to work under highly saturated condition.

In this chapter, first the fundamental principles in SRM design and their 
relation to its performance are briefly reviewed. Different switching circuit



Figure 1.1. Schematie Cross-Section of SH Motor



configurations that can be psed in an SRM drive are discussed next. The 
simple structure of SRM can bo Receiyjng, % ause Re analyjsR is indeed 
complicated. The difficulties in predicting the performance chara^oristics of 
SRM drive and the objective of this study are explained in detail next in the 
chapter. This will be followed Ry a rpieyr of technical papers on SRM drive. 
Finally, an qyeryie^ of the report is Rpsepted, ; , !

1.1. Fundamentals of Design and Operation
Torque in an SR motor is developed by the tendency of the rotor to 

adopt a position of minimum reluctance or maximum phase inductance, and 
in doing so converting some of the field energy to mechanical energy. The 
instantaneous torque developed is time-varying: its magnitude apd average 
depend on the profile of the excitation current waveform and its timing 
relative to the rotor position. For smooth and efficient performance at some 
particular speed and load condition the current must be initiated and 
commutated at certain rotor angles in relation to the rise and fall of the stator 
inductance. v - ’

Fig. 1.2 shows the hypothetical inductance waveform of an SR motor. In 
each revolution the inductance of each stator phase undergoes a cyclic 
variation; the number of cycles of inductance variation per revolution is the 
same as the number of rotor poles/ Nr. current pulse is applied to each 
phase during each cycle of inductance. Thqs, the number of current pulses per 
revolution is qNr, which is the same as tRe number of steps per revolution. 
The shape and peak of current pulse at any speed depend op Rs relative 
timing with respect to inductance waveform. The inductance profile, in turn, 
depends on such parameters as: the number of poles on rotor and stator, 
stator and rotor pole pitches, the ra.tio of pole arcs, the airgap separation in 
aligned and unaligned positions, the npmber of winding turns, and the 
magnetic characteristic of the iron used.

The following are some of the basic design considerations which have 
profound effects on the performance of an SR motor. The mutual inductances 
should be kept as small as possible in order to minimize Jheir negative effect 
on torque production. Since electromagnetic torque produced is directly 
proportional to the derivative of phase inductance with respect to rotor

&Li v .position,
. .r : irv . Y.
inductance at the aligned position and decreasing minimum inductance at the 
unaligned position. In order to increase the average positive torque and
... -..V -V ;. ; K ; • ■ - : . "■ : ■ 'W  . ' '' : r' ' '

^he slope should bo pi^ximized by increasing maximum
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Figure 1.2. Stator phase inductance variation



Tit1!"':""

decrease the negative torque production and copper losses, fast increase and 
a||sp decrease of currpnt at ignition and commutatipn angles are desirable. To

' di ' dL
achieve maximum -4* at the two ends of the positive torque regiqn ( >0)

dFi ■■■■ ' dd
inductance waveform is designed to have two flat regions which are usually

dLculled "dead zones" of torque production = 0 ). To allow for flat top

inductance waveform, the rotor and stator pole arcs are made to be not equal, 
and to provide more winding space, stator pole arc is usually smaller than 
rotor pole arc. Othgr factors in determining the number of poles  ̂ pole r^tio, 
pole pitches, and pole arc ratio are: starting and reversibility capabilities, 
maximum switching" frequency, low rotor inertia for quick mechanical 
response, and finally allowance for sufficient winding space. The consideration 
given to a combination of these factors has resulted in several practical 
stator/rotor pole ratios, such as 8/6, 6/4, and 10/4.

The large airgap separation in the unaligned position decreases the 
minimum inductance and mutual inductances and is the main reason for 
adoption of a double salient structure. On the other hand, a very small airgap 
at the aligned position provides a larger maximum inductance. Mpre 
importantly, a small airgap with the same level of excitation produces a higher 
saturation level which is essential in efficient power conversion. The effect of 
saturation on the energy conversion efficiency is illustrated in Fig. 1.3. In this 
figure, i0 is the smallest current in which the core saturates at the aligned 
position. If the motor is designed to operate under saturated conditions, at 
excitation current i i> i0, the converted energy is Wm and unconverted field 
energy which returns to source is Wf. With the saqae ignition and conduction 
angles and excitation current, the linear magnetic circuit results m additional 
converted energy of AWm and unconverted field energy of AWf. However, to
obtain a higher flux linkage in linear Case5Xg, 
required, since

\ :
Vs 0C

a larger source voltage is

(I-I)

wjaere speed u>, and conduction angle Oc, are assumed to be the same in both 
c|ses. Thus, the linear magnetic circuit has slightly higher energy conversion 
capability, but the source voltage and unconverted energy are much higher 
than in a saturated circuit. In the saturated case, additional energy AWm can 
be obtained by increasing the current from ix to i2 without an increase in the 
unconverted energy. Higher unconverted field energy results in higher copper

A



vA

m m M

m
WSSWSWWWWWi

^ S \ \V i\S \ \V \\ \ \ \ \S N \N \S i^x'̂ V\>AyA\N\V\\NN\\1

P a\N\\V\V\\J\\\s\W\VN\\\\VR̂XNWWWNWViXSWVWWNWNNWV 
,JfNWNWNNNWVNVkWSWVSWNWWNW' 
SFWWWSWSVWVVkSWWNWWWWWX' 

_ \ \ \ \ \ N \ N \ \ V V \ \ \ \ V k \ \ N \ \ \ \ \ \ \ \ \ \ \ \ \ \ '  
K \ \ \S \ \ \ \ \ \S \ \S \ N V k \ N \ V N \ \ \ \ \ \ \ \ \ \ U J  

_  U \ \ \ \ \ \ V \ \ \ \ S V V \ W ^ \ \ \ \ \ V \\V <  I I I I 1^

j» 11 j H E 11 tT s
Lmin I

Figure 1.3 Effect of saturation 1



7

losses which reduces the overall efficiency. As a result, by operating the motor 
under a high saturated condition, the efficiency of the energy conversion 
process as defined by the ratio of converted energy Wm, to input apparent 
energy will increase significantly. Also a lower volt-ampere rating is required 
for switching devices and the overall efficiency is higher because of smaller 
copper losses.

In order to maximize the efficiency of the energy conversion process, the 
highest saturation level is desirable. At the same time, to decrease the motor 
size for the same power requirement, the torque producing capability can be

increased by increasing the ratio of max in the unsaturated condition. These
I jUliDl

conditions are met, to some extent, by keeping the airgap as small as 
manufacturing tolerance allows, and using very high permeability silicon steel 
lamination in the stator and rotor structure.

By appropriate timing of current pulse with respect to inductance
waveform, SRM can operate as a motor or generator. In the region where
(9L

>  0, positive or motoring torque is produced (see Fig. 1.4); in the region 

where -^ -= 0 , no torque is produced (dead zone); and in the region where

< 0 , negative or generating torque is produced. It is clear that excitation in

the — -= 0  region is just transitional in that it does not contribute to any 

torque production, but it does contribute to stator copper losses.

1.2. Switching Circuit
In a switched reluctance motor the production of torque in any direction 

of rotation is independent of the direction of the phase current, and depends 
only on the excitation sequence of the stator phases. This means that the 
phase current can be unipolar, which will then permit the use of only one 
switching device per phase, reducing the number of switches per phase 
required by half in comparison to other drives.

Many different power circuits have been designed for SRM drives [15]. 
Figure 1.5 shows three common power circuits that have been designed for an 
SRM drive. These circuits have the following common features: the phase 
winding is in series with its switching device, protecting the device against 
shoot-through; the phases can operate independently, which permits, 
operation at reduced power level even if one of the phases is lost.
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Figure 1.4. Ideal torque profile with constant current and linear inductance
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Figure 1.5. Cpmmon switching circuits for SRM drive



In drive circuit 1.5(1), which has two switches per phase, both switches 
are turned on and off together, tire diodes provide the path for energy return 
after the main switches are turned off. An SRM With bifilar wound stator 
winding requires a simpler drive circuit as shown in Rig. 1.5(2); in exchange 
bifilar windings have poof space factor and double the number of terminal 
!connections. Drive circuit 1.5(3) also has the advantage of one main switching
device per phase, but requires a Split source to provide a path for the return 
energy.

1.3. Motivation and Objective
Although the first application of a switched reluctance motor dates back 

to the 19th century, the history of its development has not been a continuous 
one. It is only in the past 10 years or so that the development of the modern 
SRM took off with great fervor. In this short period of time, through the work 
of many in this field, the inherent advantages and potentials of the SRM drive 
were investigated. Yet, there is still a lot that can be done in the design and 
control of the drive. The outward simplicity of the motor’s construction is 
deceiving; the modeling complexity of the field inside the motor still takes the 
modeling capability of inany~Workers, aS can be seen from publications on the 
subject.

The study of the SRM drive is indeed complicated by the large number of 
parameters involved. The static characteristics of an SR motor such as the 
static torque, flux linkages, and inductances are functions of both rotor 
position and current. In continuous operation, the profiles of the current and 
the torque are affected by switching angles that places the current pulse 
relative to the stator phase inductance waveform or rotor position. The 
average torque, of course, is a complicated function of not only iron geometry 
and current level (saturation), but also the timing and shape of the current 
pulse, the shape of which, in turn, is affected by the timing relative to the 
rotor position and the speed. The main hurdles in any study aimed at 
prediction of SRM drive performance are those from the close inter
relationship between switching strategies and motor parameters on one hand 
and the numerical difficulties in obtaining an accurate prediction of even the 
static characteristics of the machine on the other.

Today’s technical literature on the SRM drive contains reports of analysis 
and performance evaluation based on experimental results, and on a linear or 
simplified nonlinear model of the magnetic field. To our knowledge, there is 
no available report of a numerical model for predicting the performance



characteristics of an SRM drive over the full range of torque/speed 
characteristics.

Analyses that are based on linear or simplified nonlinear models provide 
good starting points to the qualitative study of machine operation, to the 
preliminary design of the motor, and to the estimation of converter rating. 
However, the study of the effects of new designs or the improvements from 
new control strategies on the drive performance requires a realistic model of 
the drive system. Such a realistic model should be able to predict drive 
performance over a wide range of torque/speed characteristics with sufficient 
accuracy. To establish such a model, a thorough knowledge of machine 
parameters, static characteristics, control strategies, and switching circuit 
limitations (current and frequency) is necessary. Obviously an understanding 
of the relationships between the machine, control, and converter operation is a 
prerequisite in devising a realistic model.

The main objective of this study is to establish a mathematical model, 
along with the required computational techniques, for predicting the 
performance characteristics of an SRM drive. As shown in Fig. 1.6, the 
mathematical model of an SRM drive is divided into three major blocks: 
motor, control, and converter. The mathematical model of the motor itself 
consists of three components: magnetic field, windings, and mechanical 
system. The inter-relations among the blocks are shown by arrows. In this 
study, the nonlinear magnetic field of the machine will be handled by a two- 
dimensional finite element model. The stator phase windings are represented 
by phase voltage equations, and the converter approximated by a controlled, 
square wave, voltage pulse generator where the number and duration of 
voltage pulses depend on speed and loading. The transients within the 
converter circuit will be neglected as these will vary with the circuit topology. 
If required, detail modeling of a given converter can be handled using the Cn 
matrix method given in [63].

Accurate prediction of the parameters and the static characteristics of an 
SR motor using FE method is not a straightforward procedure because the 
field distribution in the SR motor is highly nonuniform, and contains pockets 
of very high field gradient in the narrow airgap region of overlapped poles. 
Most FE studies of an SR motor [30-33] are concerned with the determination 
of the gross behavior of its static characteristics; few deal with the accuracy 
problems in postprocessing of FE field solution for prediction of static 
characteristics [88]. This is especially evident in the noticeable discrepancies 
between predicted and measured static torque/angle characteristics. A major
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part o f  this study is devoted to the analysis of the field patterns and torque 
distribution in a SR motor, and experimentation with the different methods to 
improve the accuracy in the torque calculation. The study reveals that most 
of the field energy is concentrated in the narrow airgap region between 
overlapped poles of the rotor and stator where local saturation occurs and the 
fringing flux lines curve sharply. Unfortunately, inadequate modeling of the 
field in this region will adversely affect the accuracy of results in the 
postprocessing stage regardless of the method used. In [88], it was suggested 
that the accuracy in torque prediction can be improved by increasing the 
number of elements in the critical region.

In FE literature, increasing the mesh resolution is an accepted remedy for 
overcoming the accuracy problem. For a SRM that has a narrow airgap, 
increasing the mesh resolution in the airgap could be meaningful only if the 
resolution in radial and 6 directions is kept about the same and similar 
increases in resolution of neighboring layers of the mesh are made, in which 
case the order of the mathematical model will escalate, thus increasing the 
computational storage and time substantially. Furthermore, if such an 
increase in resolution is not carried Out judiciously, the result is no better than 
in the case when more layers are added in the narrow airgap with no 
corresponding increase in the mesh resolution circumferentially in which the 
resulting elongated elements with large aspect ratio yield poor accuracy of the 
field solution.

In this study, a new method based on uniform distribution of nodes in 
the airgap is devised which results in finite elements that have low aspect ratio 
and significantly improve the accuracy of both the overall field solution and 
the postprocessing results, especially those that require taking the derivatives 
of the field solution as in the case of torque calculation. Using this method, the 
static torque calculated using this method shows very good agreement with the 
measured result.

Having the capability to accurately predict the static torque/angle 
characteristics and other machine parameters enables us to proceed to 
prediction of performance characteristics of the SRM drive.



1.4. Literature R eview

The principle behind the torque production in an SR motor is a basic 
principle in electromagnetic theory. Early designers of electromechanical 
devices long recognized that the electromagnetic force on movable iron parts 
tends to orientate them in such a way as to achieve minimum reluctance to 
the magnetic flux path , or into a position of minimum field energy. In the 
CQUrse of the movement, some of the field energy will be converted to 
mechanical energy.

The concept of variable reluctance led to the development of a wide 
variety of devices such as linear solenoids and relays. By the 1920s the 
analysis of variable reluctance was extended to the synchronous motors [1], 
leading to the design of unexcited synchronous motors several years later [2,3]. 

The first switched reluctance motor used mechanical switches and it whs
employed by the British Navy during World War II to perform remote 
positioning of the guns on the ship. Because of the unavailability of fast 
switching devices ,like today’s electronic switches, and because of the advent of 
closed-loop position servo mechanism using DC motors, the early YRM drives 
were not competitive and they faded into the background. But with the 
ayailability of inexpensive and fast electronic power switches (power 
transistors and thyrestors) and high performance digital controllers to manage 
the switching strategies, by the late 1960’s the idea of a high-power variable 
reluctance motor was revived by several researchers in universities, notably 
Lawrenson [4-7], Unnewehr and Koch [8], Wagner [9-10], and Lang [11]. They 
examined various aspects of the VR motor, such as new designs for better 
performance, torque production process in doubly-salient structure, and new 
drive circuit configurations.

It was not until 1980 that Lawrenson [13] laid the fbundatibh for a 
practical design of the switched reluctance motor drive with comparable 
performance to that of an an induction motor drive. In [13], they examined 
the fundamental design considerations of an SR motor, such as the number of 
stator and rotor poles, the pole pitches, suitable configurations and rating of 
the drive circuit. They also presented informative data measured from their 
machine, such as flux-current, inductance-angle, and torque-angle curves.

There were also notable contributions from other researchers. Davis and 
Ray in [14] examined different inverter drive circuits and component ratings 
for an SR motor; Miller et al. [15-17] examined microprocessor control 
strategies for an SR motor and the drive circuit ratings; and Harris in [18]
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discussed the effects of using multiple teeth on the pole surface.

In all these papers, the analyses were based on a linear or an idealized 
nonlinear model of magnetic circuit. Furthermore, only the static 
characteristics of the SR motor were examined. Most of the papers [19-24] 
published between 1980-1985 on the SR drive dealt with refinements and/or 
special applications.

Idealized approximation of the magnetic saturation for a machine in 
which the saturation level is high, at best, can be used for qualitative analysis 
of drive performance, estimation of design parameters, and switching circuit 
ratings. With a numerical approach, the nonlinear magnetic field in an 
electrical machine can be handled by finite element method. The application 
of the FE method for solving magnetostatic field problems was first reported 
by Sylvester [45]. Ever since, there have been numerous reports on the 
application of finite element method for field analysis of a wide variety of 
electric machines [50-55].

Lindsay, Lowther, and Krishnan in [30] used a two- dimensional finite 
element model to determine the flux patterns of a 4 /6 pole, SR motor at 
different rotor positions. From the FE field solution, they predicted the 
variation of the stator winding inductance with respect to rotor position. 
Later, in [32], they extended their work to predict the inductances of an SR 
motor with multiple teeth per pole. Dawson et al. in [33] used the FE field 
solution to predict the static torque characteristics of an SR motor. They 
used the coenergy method for the torque calculation, but the computed result 
shows discrepancies with test results. In a recent paper [88], the same authors 
reported improvement in their computational results of the torque by 
introducing more elements in the region where the field gradient is high. Also, 
they compared the computed results for two methods of torque calculation: 
namely, Maxwell stress tensor method and global virtual work method. 
Nevertheless, the calculated torque/angle characteristics in these studies still 
do not compare well with the experimental results.

On the subject of dynamic modeling, cases of current waveform at speeds 
near nominal speed have been reported in the literature, but without details of 
what methods have been used. To our knowledge, there is no published 
method that can be used satisfactorily to predict accurately the performance 
characteristics of an SRM drive.

The potential advantages of the SRM drive attracted the attention of 
many researchers in recent years. Reports of recent studies range from



statistical modeling of the phase current based on measured data [34,35], new
desigh refinements to increase the energy conversion ability of motor by 
introducing a higher level of saturation [38], sensitivity analysis of pole arch 
for more Cfldcient performance [37], iron loss estimation [40], to refinements in 
switching strategies for higher energy conversion [41,42].

1.5. Report Overview

In this report,: a mathematical model and simulation techniques required 
for prediction of steady state characteristics of an SRM drive system are 
developed. The content of the work is organized as follows: In Chapter 2, a 
review of the finite element method to solve for the magnetic field is 
presented. The formulation and basic concepts of FE method are briefly 
discussed. The discretization (mesh or grid generation) of a motor cross-section 
is explained next. The discretization errors are discussed and the methods of 
computer implementation is presented. An efficient technique for updating the 
mesh after each rotor movement is given next. Then the modeling of nonlinear 
magnetization curve for computer simulation is described. Finally, the solution 
techniques and different convergence criteria are explained and the results of 
FE field solution for an SR motor are presented.

Chapter 3 deals with the problems affecting the accuracy of torque 
calculation using the FE field! solution.. It begins with a review bf the common 
methods of torque calculation and their formulation. This is followed by a 
discussion of the problems affecting the accuracy of FE-based torque 
calculation in general, and the additional problems related to the special 
geometry of the SR motor. Based on the examination of the problems affecting 
the accuracy of torque calculation, it is later shown that a rearrangement in 
mesh can significantly improve the accuracy of the field solution and of the 
torque calculation. The method is new and computationally is more efficient 
than previous methods reported in the literature. As a verification of the new 
technique, the static torque/angle characteristics of SR motor computed using 
the global virtual work, Maxwell-stress tensor, and local virtual work methods 
are presented, and compared with measured results.

Ih Chapter 4, the postprocessing techniques used to calculate the energy, 
the flux linkages, the stator phase inductance, and the winding emf are 
presented.

: , Chapter 5 describes the modeling techniques used to determine the steady 
state performance of the SRM drive. To explain the underlying philosophy of
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the switching strategy used, an analysis based on a simplified magnetic model 
of the SRM is given at the beginning. Control strategies and their relation to 
machine parameters are discussed next. The techniques for simulating the 
different modes of operation, low speed and high speed, of an SRM drive are 
given. Simulated results of the instantaneous current, flux, and torque, and 
computed average torque and power are all presented. Also, experimental 
results of the current and flux linkage characteristics at different speeds and 
loading are presented.

Finally, Chapter 6 presents a summary of the contributions and findings 
of this work, and suggestions for future research.



CHAPTER 2
FINITE ELEMENT SOLUTION OF 

ELECTROMAGNETIC FIELD

The distribution of the electromagnetic held in electrical machines may 
be determined by solving Maxwell’s field equations with the given boundary 
conditions. Since closed form solutions to Maxwell’s equations are very difficult 
of impossible to obtain for such a device having complicated geometries and 
nonlinear materials, numerical solution of the Maxwell’s equations becomes a 
necessity. The method of finite element (FE), an excellent numerical method 
for structures with complicated geometries and material nonlinearities, is used 
here to obtain an approximate Solution to the two-dimensional field 
distribution in the SRM cross-section. The solution technique accounts for the 
material nonlinearity and the rotor movement.

Due to high local saturation and nonuniform field distribution in the 
SRM, even with the FE method, special care has to be taken in modeling the 
field in the critical regions. In this chapter, a review of the finite element 
formulation for solving two-dimensional electromagnetic field problems is 
presented. The assembly of the equations and implementation of the FE 
program are discussed next. Because the size, shape, and uniformity of 
elements has profound effect on the accuracy of the final solution, the choice 
of proper mesh is important, and because the SRM has high local saturation, 
the representation of material nonlinearity (magnetization curve) is important 
too. As the iterative solution of large numbers of nonlinear equations requires 
a lot of computer time and memory, efficient sparsity-oriented algorithms 
have to be used. The field solution from the FE method has to be further 
processed to obtain important machine parameters and terminal variables, 
such as inductances, flux linkages, torque, and induced electromotive forces 
(emfs).



Finite Element Formulation
The field distribution inside the machine is governed by Maxwell’s 

electromagnetic field equations:

VxH =  Js

V vD

V • B

(SU)

(2.2)

(2*4)

where JEand H are the electric and magnetic field intensities, respectively, 
D and B the corresponding field densities, and Js is the source current density. 
The displacement current and electric charge terms have been excluded from 
these equations, because the machine can be considered as a low frequency 
device with neglible electrostatic flux.

For two dimensional field distribution problems with current input, it is 
convenient to express these equations in terms of the magnetic vector 
potential. As with any other solenoidal field (V • B =  0), a vector potential can 
be defined as

' B — VxA ■ (2.5)

where A  is magnetic vector potential (MVP). This definition does not 
determine A  uniquely; like any other potential, MVP should be specified with 
respect to some reference. Ignoring the end condition, the winding currents 
are assumed to flow only in the axial direction (z-direction) of the machine, 
hence only the axial (or z) component of the vector potential A exists. 
Consequently, the vector equations reduce to single partial differential 
equations of the axial component of vector potential.

The relation between the field density B and the field intensity H is the 
constitutive relation

H = (2.G)
which describes the material characteristic of the medium in term of the

reluctivity v  {y — —) > where n  is the permeability of the medium. Using (2.6)

to-su^stitutejbr H in (2.2) and (2.5) for I, the resulting partial differential 
equation for A is
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When the excitation current is assumed to flow only in the axial direction (z- 
direction) of machine, A  will only have Az component too, which then (2.7) 
reduces to

V x (^ V x A zITz)= J g a z (2.8)

Performing the curl operations in (2.8) yields

V x (^ V x A )= J s (2.7)

Equation (2.9) is the nonhomogeneous, nonlinear diffusion equation which 
should be solved along with the appropriate boundary conditions to obtain the 
Vector potential distribution over the entire cross-section of machine.

The spatial PDE of (2.9) takes different forms, depending on the material 
property, v, and presence of Js. The SRM like other electromechanical devices 
has iron for directing the flux lines, air for relative motion between rotor and 
the stator, and current carrying conductors to provide the field and to convey 
the power. Figure 2.1 shows different sub-regions of the SRM cross-section. In 
the current carrying region (region I), linear Poisson’s PDE holds, since the 
permeability of copper is nearly unity.

: : V0 V 2A i = - I s (2.10)

In region 2, the iron has nonlinear magnetic characteristics and its 
reluctivity ,v, is space-dependent. However, with no current source in the iron 
region, (2.8) reduces to a nonlinear pseudo Laplaces equation of the form

Vx(^VxAz) = O  (2.11)

The normal reluctivity, u, is assumed to be single-valued for the iron region; it 
is the reciprocal of the normal permeability, that is defined as

A* =  I B I / 1 H I (2.12)

Equation (2.11) is a nonlinear equation because u  is a function of the field 
density B, or

a  v  — i^B) (2.13)

In the air region, the reluctivity of air is independent of B and the 
resulting PDE is a linear, homogeneous Laplace equation of the form
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Specifying the boundary conditions for the field distribution uniquely 
determines the field solution for the partial differential equation (2.9). The 
boundary conditions specifying the relations between field components at the 
material interfaces are derivable from Maxwell’s equations; for magnetostatic 
field problem these boundary conditions are

n x (H1 -  H2j =  Js (2.15)

n -  [S1 - B 2] = O  (2.16)

The first condition of (2.15) states that there is a discontinuity in the 
tangential component of the field intensity H at the interface between two 
media separated by a current carrying surface. However, if both media are 
current-free, the tangential component should be continuous (Hti =  H12). The 
second condition of (2.16) expresses the continuity of the normal component of 
flux density at the interface of two neighboring regions (Bnl =  Bn2).

U0V 2A 1 =  O (2.14)

2 .1 .1  V aria tion a l F orm u lation

The variational formulation seeks an approximate solution for the 
differential equation of (2.9) in the form of a linear combination of 
independent basis functions each Of which satisfies the stated boundary 
conditions. For a two-dimensional field problem with only z-th component of 
vector potential, A at each point (x,y) can be approximated as

A(x,y) — Y j Ci Lj(x,y) (2.17)
i=l

where L1 (x,y)’s are N  linearly independent functions. The error or residual 
resulting from using such an approximation in (2.9) can be expressed as

E(x,y,Ci) (2.18)

In the weighted-residual method, the coefficients are determined in such a way 
that the partial differential equation is satisfied with minimal error. For this 
purpose, a set of N independent weighting functions, ^>/s, is chosen so that
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J'i\i(x,y) E(x,y,Cj) dxdy =  O for i =  I, 2, • • • , N (2.19)

Therefore, each of the weighting functions ipi is orthogonal to the residual E. 
The set of N parameters q can be determined from (2.19). For obvious 
reasons, this method is called the weighted-residual solution of the PD 
equation.

If the set of weighting functions, Ipi1s, is chosen to be the same as the 
basis functions, Lj's, the method is called the Galerkin method, that is

/L  i(x,y)
R

d_
dx + dy +  Js dxdy =  0 (2.20)

Integrating the first two terms by part, we obtain 

dA
f L i(x.y)
R ,

. f L i(+y)

d_
dx dxdy =  f  sLi(x,y) v  dy -  ^  dxdy  (2.21)

dy
u

dy dxdy =  § sL;(x,y) v  dx -  / ~  dxdy (2.22)

Since on the boundary of the region either homogeneous Dirichlet or Neumann 
; dA

condition holds(A=Q or =0), the combination of line integrals on the
d°-

right hand side of (2.21) and (2.22) is always zero; consequently (2.20) reduces 
to

dLj dA  dA
dx dx dy dy

dxdy =  0 (2.23)

Equation (2.23) indicates that the basis functions Lj(x,y) must belong to a set 
of once differentiable functions or C1; the lowest order being a set of 
continuous, piecewise, linear basis functions. However, with the choice of 
linear basis function, continuity of only one of the field components can be 
guaranteed at the interfaces.

It pan be shown that the Galerkin method formulation given in (2.22) is 
equivalent to that of minimizing the error in the field energy. The difference 
between the field energy and the input energy is given as
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B

F = /
n

j  i/BdB -  JsA (2.24)

where f2 is the volume of whole region. For simplicity, let’s consider the linear 
case of (2.24) in which the energy per unit volume can be written as 

B

AWp =  /  ItedB = 1AiM 2 (2.25)

The component of flux density can be obtained by performing the curl 
operation in (2.5), that is

dA „ dA  
dy

B , B„ (2.26)

Representing A by the expression of (2.17), the partial derivatives can be 
expressed as

I * ,  XK- c i 2l
<9x jZj 1 <9x

Sy h  '  Sy

(2.27)

(2.28)

Since the square of the flux density may be written as
2

+

'O . .  -

B2 d A
dx

'■ 2̂ 
dA (2.29)

(2.25) can be written as 

AWf = Vz u
N 2 ' N  ■2

E  Ci Lix + S  c i ^ i y
i - ' l\ / i —I\ /

(2.30)

where Ljx and Ljy are the partial derivatives of shape function ,Li, with 
respect to x and to y, respectively. Substituting (2.30) for the field energy, and 
(2.17) for A  in (2.24), yields

F(c1, -C2 > -Vn> = / % V | E  c i B j x j  -J- | e  c i ^ i y - J s  E  c i L j dv (2.31)

The minimizing function of the functional F is the solution of the Euler-



Lagrange equation which is the same as the partial differential equation in 
(2,9). But a direct minimization of F with respect to coefficients ,Ci ’s, yields

- J  Xlci Lix +  iAjx J]Cj Liy — JsLiJdv =  0 (2.32)

which, in the two-dimensional region R, is the same as the Galerkin 
variational form given in (2.22).

2.1.2 Derivation of Element Matrices

The finite element method used in this study is based on first order 
triangular elements. The two-dimensional region R is divided into triangular 
subregions as shown in Fig. 2.2, where an effort is made to ensure that 
material interfaces1 and other physical boundaries coincide with the edges of 
the triangles. In each triangle, the vector potential A is assumed to be a linear 
polynomial in x and y.

A(x,y) =  Qf1 +  a 2x  +  a-3y (2.33)

In the two-dimensional problems only the z-th component of the vector 
potential exists at each node, so each node has one degree of freedom; the 
total degree of freedom for a triangular element is three. This is consistent 
with the 3 unknown parameters in (2.33).

Vector potential, A, at any interior point of the triangle can be expressed 
as a linear combination of the values of A at its vertices.

A (x>y) = E  Ai Li(x,y) (2.34)
. . iefi : ;

The index i is the sum over fl , the set of nodes {1, m, n} of the triangle, and 
the basis, Li, have the property

LifaVyj)  =  ^  (2.35)
where <5jj is the Kronecker delta

I if H  
O if

and

S L i
ien

(2.36)



Figure 2.2. Subdivision of region R by triangular elements
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In order to facilitate the analysis, the so-called area co-ordinates (see 
Appendix A) will be used. As shown in Appendix A, the value of A at some 
interior point (x,y) of the triangle, expressed in terms of the area coordinates, 
is

A (x>5̂  =  ^ j p iAl^ m A m+pnAnJ + _ j ^ A 1+qmAm+qI1AI1j (2.37)

“t-g -|ri Aj "Frm Am-|-rn An j

where D is twice the area of element, Ae. With A represented by (2.37), the 
partial derivatives of A  at interior points of the triangle element are

Sx """ I)" Ftl Al "^lln Am (2.38)

[rl Al +rm Am +TnAnJ (2.39)

Similarly, using (1-10), we obtain

SLi i
—  ' D « A' i C ! i (2.40)

.VI.; I
(2.41)

Lets denote the first two terms of (2.23) by Ii , that is ■ ■ ■ •
/  V

T _  r  „  SA , SLi SA , ,
1I — J  u e ~ K —  - k ~  +  u S - K -  - K -  dxdy Ae ( Ox Sx Sy Sy (2.42)

Using (2.38) through (2.41) to replace the partials and using the 
transformation formula given in Appendbc B, one obtains

Ii Ve <li £  tIjAj +  ri E r jAj 
4 Ae jen jen ien (2.43)

Equation (2.43) gives the contribution of each triangle element to the 
functional value (2.23). For the elements in the iron region the field density, 
B, which is required for updating the reluctivity of the elements in iron at 
each iteration, can be calculated as follows: From (2.5), B can be written as

(2.44)

Substituting (2.38) and (2.39) in (2.44), the above expression of B becomes



_1_
D

TjAj “f" rmAm “1” raA] ] * * - [ qjAl +  qmAm +  ^ A n Sty (2.45)

thus, the value of | B | 2 is given by

P ' ' - W

/ N2 f ^2
E r iAi + EqsAi
ien ien

V )
(2.46)

!Finally, in term of elemental areas, the third term in (2.23) may be Written as

IIj =  J  j  LjJs dxdy (2.47)

Putting (2.43) and (2,47) together for i =  I, m, n; the matrix equation for 
a triangle element can be written as

Aj '

Am

An

qf+rf qiqm+rifm qiqn+rirn

qi q® rm qm qn ~̂”̂ n

qnqi+rnri Qmqn+rnrm ql+rn

In matrix notation, (2.48) can be written compactly as 

SeAe =  Ie ;

JsA

JsAe

JsAe

(2.48)

(2.49)

Note that the elements of Se are functions of i/e which in the case of an 
iron element is dependent on the field density B . Since B is, in turn, related 
to the nodal vector potentials, Aj»s, (2.49) is nonlinear for elements in the iron.

2.1.3 Matrix Assembly and Global !Equations
Once the elemental equations for all the elements in the various regions of 

R are determined, they can be assembled into a global equation of the form,

SA=I (2.50)

The coefficient matrix, S, of global equation can be constructed element by 
element as follows: The diagonal element sjj in matrix S is the sum of the 
contributions of all elements connected to node i, and the off-diagonal element 
Sjj is the sum of the contributions from the two adjacent elements sharing the 
common edge ij.



The global matrix equation (2.50) is a set of nonlinear algebraic equations 
of n order , where n is the number of nodes in region R. The only practical 
method of solving these nonlinear equations is by a numerical iterative 
method. Generalized and modified Newton-Raphson methods are two of the 
most suitable ways for solving these nonlinear algebraic equations. In this 
finite element formulation, the vector potential within an element is assumed 
to be piece-wise linear, as a result the magnetic field B and the reluctivity ^ 
are uniform within each element. Hence, it is advantageous to update the 
Newton-Raphson iteration formula for each of the triangles individually and 
then use them to update the overall coefficient matrices as; follows: First, for 
each element, we define a mismatch equation,

F(Ae) =  SeAe - I e =O (2.51)

In applying the N-R method to the above mismatch equation, at kth iteration, 
we have

F |A e+1| = F'M+[J*] [■Ae + 1 — Ao

where .

SF(Ae)
SAe

r ■ ’ • ■

Defining the change in A as

AAe =  A e+1 -  A e 

and setting F [a £+1]

■A.k-

0, we obtain 

[)ej AAe =  —[seAe — IeJ

(2.52)

(2.53)

(2.54)

(2.55)

[j©] from (2,53) for the elements in iron are derived in Appendix C as
„ V- ” due . " ’
functions of - , _  . „ , and can be written as s

9 I-B I

Sk +
due
9B2

[AAk] = - [ s kAk - I e] (2.56)

As in the case of constructing S in (2.50), the linearized element matrices 
can then be assembled to form the global equation for the entire region.
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[J] [AA] — [b] (2.57)

The above set of n linear equations can be solved using either iterative or 
direct method to obtain [AA] which is then used to update the value of [A] 
Iintil it converges within some prescribed tolerance.

Ak+1 (2.58)

2,2 Implementation of FE System
Computer solution of electromagnetic field problems by finite element 

method can be divided in three parts, each involving several steps as shown in 
Fig. 2.3. Preprocessing is the part dealing with setting up the problem for 
computer solution and has two steps: generating a finite element mesh 
consistent with geometry of the device, and representing the material 
nonlinearity in a form suitable for computer simulation.

The solution part deals with the construction and updating of the 
elemental and global matrices. The product of the solution process is the 
vector potential distribution within the machine cross-section. The vector 
potential distribution is hardly of any use by itself and should be further 
processed to obtain machine parameters and variables of interest. The task of 
the postprocessing section is to extract the desired results from field solution.

During the course of this study, a finite element program consisting of all 
three parts has been developed. The techniques used in the preprocessing and 
solution parts will be discussed in the rest of this chapter while those of the 
postprocessing part will be discussed in the next two chapters.

2.2.1 Mesh Generation
The main part of data preparation or preprocessing is to divide the 

domain of interest into appropriately sized and shaped elements which are 
called finite elements. The process of discretization is usually referred to as 
mesh or grid generation. Proper discretization of different regions in a domain 
can have profound effect on the accuracy of the global and local results 
obtained from a finite element solution.

The finite elements most commonly used in electromagnetic problems are 
of triangular shape. The size of the triangular elements in a region depends 
on the field gradient and the geometry of the material boundaries in that 
region. Since the formulation of FE method is based on a weighted-integral



Figure 2.3.
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minimization of the error in the energy of all the elements in a domain, the 
accuracy of the FE solution improves when there is a uniform distribution of 
error over all elements. As the error in field calculations tends to be higher in 
regions with high field gradient, the size of elements in these regions should be 
kept small. Thus, a general rule on the sizing of elements is to use larger size 
elements where the change in the magnitude and direction of flux density is 
small, and to use smaller size elements where the field gradient is large, or 
where the flux lines sharply curve. Also, for uniform error distribution, the 
transition from large elements to small ones should be gradual like the nature 
of the field itself.

The proportion of triangular elements is the other measure which affects 
the accuracy of FE results. The optimal proportion for triangular elements is 
equilateral. However, due to geometrical limitations and computational 
efficiency, it is not possible to make an entirely equilateral mesh. It has been 
proved [60] that for mesh integrity no triangular elements should have angles 
near 180° or, equivalently, no element has too small an angle; that is because 
the error in approximation within a triangle has been shown to be inversely 
proportional to sin(a) , where a  is the smallest angle [61]. Such conclusion are 
also consistent with the rule of low aspect ratio [47], which states that the 
aspect ratio (the ratio of largest edge of one element to the smallest one) of 
the triangle should be kept as small as possible. The effects of elemental shape 
on the accuracy of global and local results, especially torque calculation, will 
be discussed in more detail in the next chapter, but for now we will continue 
with other aspects of mesh generation.

Symmetry of the mesh along lines of symmetry of the device is also 
important, as an asymmetric mesh, if not sufficiently fine, can result in 
unrealistic asymmetry in the FE field solution. For example, the lines of 
symmetry of an electrical machine are the tooth centerlines (lines of odd 
symmetry), and slot centerlines(lines of even symmetry).

The mesh generator developed for this study is based on a modular 
method in which the entire region of the stator and the rotor is divided into 
basic subregions about selected lines of symmetry. Once a proper mesh for a 
basic subregion is devised, it can then be transformed to cover the entire cross 
section of the stator or the rotor. Using such a modular mesh generation 
approach reduces the effort of meshing to a smaller subregion by exploiting 
the symmetry of the device; moreover, the resultant mesh for the entire region 
automatically is symmetric.



An important aspect of mesh generation for machines with moving parts 
is that the mesh movement, as the rotor rotates, relative to the stator be 
accomplished efficiently. To facilitate the relative motion, the entire region is 
divided into three subregions: rotated, distorted, and static as shown in Fig.
2.4. The subregion of the mesh that rotates consists o f elements inside the 
rotor and a cylindrical envelope; nodes in this subregion of the mesh rotate 
together with a common angle A 9, but the mesh configurations remain 
unchanged. The subregion that is static begins from the mid airgap layer; it 
Contains all of the stator up to some outer boundary. The distorted subregion 
consists of the remaining portion of the mesh that is sandwiched between the 
mid-airgap layer and rotor surface; the finite elements in this subregion will 
become distorted as the rotor moves, and will need special treatment in order 
to maintain mesh integrity for satisfying the previously mentioned findings 
governing the shape of the elements.

To preserve the mesh integrity during rotation, a new indexing scheme is 
used in which one node on the mid-airgap layer (the node with 0 =  0) is 
chosen as the reference node. After each movement of the rotor, the closest 
node of the rotor surface to reference node is identified and indexed as number 
I. The other nodes on the rotor surface are indexed relative to this node. In 
this way, the nodes on rotor surface and mid airgap layer are grouped in pairs. 
Adjacent pairs of nodes are then examined on the basis of the Delaunay 
criterion [62] as to whether the sides of the triangular elements ought to be 
redefined to achieve better angle conditions. The Delaunay criterion simply 
states that for two adjacent triangles, ABC and BCD in Figure 2.5, to be of 
satisfactory shape, the circumcircle of ABC should not contain D. This is 
equivalent to keeping all included angles less than 90° for each triangle. If the 
rotor movement causes D to enter the circumcircle of ABC, then an 
interchange of edge BC with AD will result in new satisfactory elements. 
Figures 2.6 to 2.8 show the mesh generated for an SRM using the above 
mentioned procedures. The iron mesh at aligned and IO 0 position of the rotor 
are shown in Figs. 2.6 and 2.7 respectively. Figure 2.8 shows the air mesh in 
which the outer boundary is chosen outside the stator iron boundary.
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Figure 2.5. Delaunay criterion
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Figure 2.6. Iron mesh at aligned position



Figure 2.7. Iron mesh at 10 ° position



Figure 2.8. Air mesh at 20 0 position



2.2.2 Material Representation

The task of representing the iron magnetic properties is complicated by 
such phenomena as hysteresis, anisotropy, and a wide range of changes in the 
slope of the magnetization curve. However, in most o f the studies, the effect 
of hysteresis and anisotropy are ignored, and the concave region near the 
origin is not modeled. With the above assumptions B-H curve is a single- 
valued, continuous, and monotonie curve. The nonlinear magnetization 
characteristic of iron should be represented in a form suitable for computer 
simulation and it should be an accurate representation because its accuracy 
directly affects the accuracy of the solution, especially in problems involving 
highly saturated conditions.

dv
As indicated in (2.56) the value of ("^ 2 )> or the slope of Z^B2 ) curve, is

required to update the Jacobian matrix in the N-R iteration; therefore, the 
magnetization curve is modeled to represent reluctivity as a function of the
square of the flux density. The data for fully processed, M-19, magnetic steel 
given in Table E.3 are obtained from the US Steel Handbook. The 
corresponding B-H curve is shown in Fig. 2.9. In this study a cubic spline 
interpolation technique is used on the magnetization curve data at uniform 
stored intervals of flux density of 0.05 Telsa. In the region of high saturation
(B >  2.1) the curve is assumed to be linear with a slope of v P0 (reluctivity 
of the air).

2.2 .3  D ata  M anipulation

The first step of the solution procedure is to derive the element equations, 
and for the elements in the iron regions the linearized element equations. The 
derivation of an elemental equation has been described earlier in this chapter 
and the derivation of the element’s Jacobian matrix of (2.56) is discussed in 
Appendix C.

The second step in the solution procedure is to assemble the global 
matrix J in (2.57). The size of matrix J is nxn, where n is the total number of 
nodes in the entire FE domain. As each node of the FE mesh is connected to 
only a few neighboring nodes, both S and J are very sparse, with the 
percentage of non-zero usually less than one. Because of the large number of 
nodes involved in most practical problems, sparsity storage and manipulation 
techniques are necessary for reasonable computational efficiency. Since the 
element matrices are symmetric, the global matrix J is also symmetric; storage 
and computation time can be reduced further using sparsity techniques for
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symmetric matrices. A row pointer- column index" technique is used in this 
study for the storage and manipulation of the global matrix which, being 
symmetric, requires storing of the upper right hand elements.

2.2.4 Boundary Condition Implementation

Maxwell equations describe the magnetic and electric field in a medium 
and implicitly prescribe their behavior near material interfaces. For practical 
purposes, the region of interest has to be confined to the local space, for Which
appropriate boundary conditions have to be specified.

In electromagnetic problems, flux lines are the lines of constant A. Since 
the flux lines are often conveniently used to give a pictorial view of the field 
distribution, a closer examination of their relation to potential is necessary. 
The expression for the flux through a surface S is given by Gauss law as

<p =  / B - n  da (2.59)

Replacing B by VxA and using Stokes theorem, (2.59) becomes

^ — $ r A ' dl (2.60)

where £  is the boundary of the surface S. For two-dimensional field problems 
where A has only the axial component, (2.60) simplifies to

6 =  Z(Ar -A l ) (2.61)

where, Z is the axial length of machine, and Ar and Al are the vector 
potential values on the right and left hand side of the contour F. Now 
suppose that the contour is chosen so that Ar =  Al ; then the contour T in 
(x,y) domain represent a flux line and flux through this contour is zero. With 
no flux crossing the flux line, adjacent flux lines traced out by following the 
contour with constant A at two different values contain a certain amount of 
flux. Thus, the grating density of flux lines in a plot generated with a fixed 
increment of A indicates the crowding or spreading out of a certain quantity 
of flux, indirectly showing the flux density distribution.

The flux lines run parallel to a line of odd symmetry, where A is equal in 
value and opposite in sign on both sides of this line, and along it has a fixed 
value. For convenience, this value may be taken as zero (A = 0  along the line
of odd symmetry). Thus, the line of odd symmetry satisfies the Dirichlet 
homogeneous condition.
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On the other hand, along the line of even symmetry the flux lines are 
orthogonal to the line, that is the homogeneous Neumann condition holds,

^ = 0 ;  (2.62)

In a finite element solution, these kinds of boundary conditions are called 
natural boundary conditions. They are being imposed by the solution 
procedure without explicit specification.

In rotating machines, the actual exterior surface of stator iron yoke or a 
remote imaginary cylindrical envelope can be chosen as the outer boundary. 
Since the flux lines tend to remain within the iron yoke, it can be assumed 
that little pr no flux line leaves the exterior boundary of stator iron, the 
exterior boundary can be assumed to have constant vector potential, which for 
convenience is often arbitrarily set at zero. Hence, the outer surface of the 
stator can be represented as a homogeneous Dirichlet boundary with A =  0.

2.2.5 Solution of Global Equations
There has been a lot written on the solution techniques for handling large 

set of equations like that given by (2.57) [58]. The methods can be categorized 
as direct or indirect. In direct methods, the set of equations are solved by 
matrix manipulation based on Gauss elimination and LU decomposition. 
Indirect methods involve an iterative process which begins with an initial 
guess refining the estimated solution along a gradient path until it converges. 
In this study, a direct method using LU decomposition, and an indirect 
method using conjugate gradient method are applied, finding that the direct 
method is faster and more reliable.

2.2.6 ConvergenceCriteria
When using the N-R iterative method, a convergence criterion for 

stopping the iterative process is required. As error norms can be used to 
ascertain that the solution has reached some acceptable accuracy, various 
error norms are used for this purpose. In this study three different error 
norms are used. The first error norm is on the vector potential at the nodes, 
given by



E I Ajc+1 - A j c I
i—I

E  Ia M
i=l

^  eA (2.63)

where k is the number of iteration and is an admissible tolerance, which is 
set at 0.01 in our study. The second error norm is on the total magnetic 
energy stored in the field

I Wk+1 - W k I
/k <  ew (2.64)

where the error tolerance, has been taken as 0.01 too.

The third error norm used is on the maximum change in the reluctivity 
of the iron elements, expressed as

Max M M 1 X

PT
S (2.65)

In this study, e„' was taken to be 0.1. With the SR machine, it is observed 
that most of the time the order in which the convergence is obtained is the 
order that they are presented here; that is, the most severe criterion, especially 
in problems with highly saturated conditions, is the one concerned with the 
convergence of reluctivity in iron elements.

2.3 Results and Discussion
Plots of flux lines or equipotential contours can be obtained directly from 

field solution and can provide valuable information about both the overall 
accuracy of the data provided by discretization and the saturation level in 
various parts of the device. Here we present flux distribution plots of SRM at 
different rotor angles.

Figure 2.10 shows the flux pattern at the aligned position of the stator 
and the rotor poles. The symmetry and smooth curving of flux lines indicate 
the sufficient modeling of the field provided by discretization procedure. Also, 
bulk saturation of stator poles is noticeable. Figures 2.11 and 2.12 show the 
flux pattern at 10 and 20 degree of rotor rotation respectively. The local 
saturation at the opposite pole corners and sharply-curved fringing flux lines 
are noticeable in these figures. Also, small leakages of flux to other poles or 
stator yoke can be seen here. Finally, the flux pattern at 30 degree rotation
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which corresponds to the unaligned position is shown in Fig. 2.13. Symmetry 
of flux lines is noticeable in this figure.



45

Figure 2.10, Flux lines at aligned position
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Figure 2.12. Flux lines at 20 ° position

■ ■ - ■ ■ .



Figure 2.13. Flux lines at unaligned position
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CHAPTER 3
AND ACCURACY OF TORQUE CALCULATION

r Predicting the torque of a switched reluctance machine from its finite 
element field solution is not a straightforward procedure, mainly because the 
doubly salient iron structure is highly saturated and the airgap is narrow, and 
also because the accuracy required for getting a reasonable prediction of 
torque is more stringent than that for a qualitative idea of flux distribution. 
Nevertheless, an accurate knowledge of the torque forms an essential part of 
realistic modeling that will be needed to obtain efficient design of the SRM.

The mathematical theory behind the common methods of calculating 
torque based on a FE field solution are well established [71-77]. The common 
methods for torque calculation based on FE field solution are: the global 
virtual work method; the Maxwell stress-tensor method; the Coulomb virtual 
work method on which the local virtual work method in this study is based; 
and the Lorentz force formula. Since the Lorentz force formula is limited to 
force calculation on current-carrying conductors, it will not be considered in 
this study.

Most of the difficulties in calculating the torque of a switched reluctance 
machine have to do with the high field gradient in the very narrow airgap 
near the edges of the excited poles. When the torque is to be calculated by 
integrating around the airgap, the path crosses pockets of high field gradient 
where most of the torque is developed, but unfortunately it is in these pockets 
that the accuracy of the derived field components computed from the local 
potential distribution is the poorest.

In this chapter, first the basis and formulation of three methods of torque 
calculation, the global virtual work, the Maxwell-stress tensor, and the local 
virtual work method are reviewed. This is followed by a discussion on the 
gpurpes of error in finite element field solution pertaining to requirements fpr 
calculating the torque. The previous works on improving the accuracy in the 
torque calculation are reviewed. Finally, we present our findings that a mesh 
o f uniform, proper shaped and sized elements in the critical region can 
significantly improve the accuracy of the computed flux density components
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and torque. Furthermore, the computed torque/angle characteristic-will be 
smooth and accurate when the proper mesh model is preserved as the rotor is 
rotated. The computed torque/angle characteristics of test motor from all 
three different methods using the proposed guidelines in mesh are then 
checked against the measured torque/angle characteristics.

3.1. Global Virtual Work Method
The method of virtual work is widely used in applied mechanics; it makes 

use of the fact that the change in the energy of a rotary mechanical system is 
equal to the product o f the torque and incremental displacement, that is

(3.1)

The method of virtual work relies on the fact that torque does not change 
significantly during small motions and, therefore, is valid for small 
displacements only. Thus, to evaluate the torque exerted on a rotor body at a 
position, 6, the field energies for constant flux linkage or, equivalently, the 
coenergies for constant excitation current, at rotor positions 6 and 0 + A 8  are 
evaluated; the torque then is given by

(3.2)

Torque calculation using virtual work method requires two field solutions 
of the machine at slightly different rotor positions, thus, it has the 
disadvantage of being prone to errors from the numerical differentiation. In 
cases where the difference in energy is very small for small displacements, 
substantial truncation errors in the subtraction may arise. Such errors can be 
reduced if the precision in the calculation and the representation of field 
energies can be improved. The accuracy of calculated energy is, in turn, 
dependent on the mesh configuration and the representation of nonlinear 
material (magnetization curve ).

Proper discretization of the domain and realistic representation of the 
magnetic material , especially around and in regions of high energy density, 
can improve the accuracy of torque obtained from global virtual work method. 
Furthermore, if and W2 are computed using similar finite element meshes, 
errors in W 1 and W j are likely to be similar and coenergy difference is more 
accurate. Further improvements in the smoothness of the torque/angle 
characteristic can be obtained when the coenergy is evaluated at uniformly 
spaced rotor positions, and when curve fitting techniques are applied to enable



the differentiation, in (5.2) to be performed analytically; the latter approach 
can only increase the smoothness of the torque/angle characteristic, but does 
not affect the accuracy of the calculated torque.

8.2. Maxwell-Stress Tensor Method
The Maxwell-stress tensor method is based on the expression for force 

density, f, which in an electromagnetic system consisting of bodies of iron and 
current carrying conductors is given by

Y =  J x B (3.3)

where J is the current density and B is the flux density. Equation (3.3) 
represents only the magnetic portion of the Lorentz force formula. The force 
density, f, is a vector quantity with components in different directions of 
coordinate system, and has the dimension of force per unit volume. Thus, the 
resultant force on a body of iron in each of the directions can be calculated by 
the volume integration of f over that body in that particular direction.

Using Maxwell equation (2.2) to substitute for J, equation (3.3) becomes

Y - V ( V x B ) X B  (3.4)

where u  is the reluctivity of the medium. In the xyz-coordinates, the 
expression for x-component of force density is given as

Using

, <3b x m
f x " t/(Bz“v r + B y ^

X <9Bz
'Bli

<9Bj T Q „
BiT*r-jlr(Bf>

(3.5)

(3.6)

in (3.5), after some manipulations, (3.5) can be rewritten as

<■«-• V i ‘(B 5_B *_ B ‘ ) +  V (BsBj,)* V l y i =' b  ̂ v ' b i ■ <3-7)

Since V *B=0,  the last term in (3.7) vanishes; then (3.7) can be written 
compactly as

Yx =  V - T x (3.8)
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The total force in the x-direction is given by the volume integral of fx over 
the entire body, that is

F , -  /  f.d v  =  /  (V • T„)dv (3-10)
n n

Using the divergence theorem, (3.10) can be reduced to a surface integral.

Fx = ^ T x Vnds (3.11)
s

where n is the outward normal to the surface S. Likewise, the other 
components of force in y and z direction can be obtained using the same 
method. Gathering the x, y, and z components of force together, the force 
density in all directions is given by

F = f  T * n ds (3.12)
s

where

I (B )-B )-B i)

By Bx

BzBx

BxBy

I ( b ) - b V bI)

BzBy

BxBz

ByBz

I (B i-B t-B ))

(3.13)

Tensor T is known as the Maxwell magnetic stress tensor. Its elements have 
the dimension of force per unit area, hence they are also referred to as surface 
stresses. A  Maxwell electric stress tensor with the same structure and with B

replaced by E and u  by — can be defined for calculating the force in an

electrostatic fields. The total force acting on a rigid body can be calculated by 
integrating the components over a boundary surface enclosing the whole body.

In two-dimensional problems where there is no z-component, T reduces to 
a 2 x 2 tensor.



V
- ( B 2 - B 2 )  BxBy

ByBx -I-(BJ-Bi)
(3.14)

For rotary machines, polar coordinates are better suited to the geometry of 
the machine, in which case the radial component, rr, and the tangential 
component, T 6 , are as follows:

rT = ±  U(B2r - B 20)  

T 6 = UB1B 0 (3.15)

T1 is a tensile stress, which tries to reduce the length of airgap by attracting 
rotor and stator poles together, and T6 is the tangential stress which tries to 
reduce the airgap separation by increasing the pole overlap area (see Fig. 3.1). 
When the poles are exactly opposite and the airgap uniform, integration of T1 
and T 6 over a cylindrical surface enclosing the whole rotor is zero. Moreover, 
since T1 is directed along the center, no torque is produced by this component, 
all the torque is produced by the tangential component of stress. The torque 
surface density developed by tangential stress is given by

t  =  TXT6 =  UtB i B 6 (3.16)

where t has dimension of torque per unit area. When using two-dimensional 
FE model, a convenient contour of integration is a cylindrical surface inside 
the airgap enclosing the whole of the rotor(see Fig. 3.2); in which case the 
total torque developed is given by

T =  U0ZR  £ BrBfldr (3.17)

where Z is the stack length of the motor and R is the radius of the cylindrical 
surface. Using the discrete solution of the field from the FE method, the 
integral equation of (3.17) is usually approximated by the summation

T =  U0 ZR2 §  Bri Btfi SBi (3.18)
' i= l

where in is the total number of segments on the circular contour F and the 
summation is over the cylindrical surface generated by F (see Fig. 3.3).

Equation (3.18) shows that torque calculation using the Maxwell- stress 
tensor method depends on the calculated radial and tangential components of
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Figure 3.1. Surface stress components
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Figure 3.2. Contour of integration for Maxwell-stress tensor method



Figure 3.3. Surface of integration for Maxwell-stress tensor method



the flux density on T- inside the airgap. This kind of calculation which relies on 
the local information derived from a FE solution is referred to as local 
calculation. Local calculations are usually more prone to errors than global 
calculations, since the FE solution is obtained by a weighted- integral 
minimization of energy. The types of error in FE-based calculations will be 
discussed in detail later in this chapter.

3.3. Local V irtualW orkM ethod
The local virtual work method referred to in this study is an adaptation 

of the Coulomb virtual work method or the local Jacobian derivative method. 
It is also based on the virtual work principle; it differs from the global virtual 
work method only in the implementation, The electromagnetic coenergy 
density is given by

w' =  /  BdH (3.19)
, o

Integrating w over the whole volume^gives the total electromagnetic coenergy 
in the system. Using a FE solution, the electromagnetic coenergy can he 
obtained by summing up the coenergy in all elemental volumes defined by the 
triangular element along the machine axis.

W ' = X W e  (3.20,)

where the summation is over all the elements of FE mesh and Wg is the 
coenergy of the e^ element, which is given by

He
W l = / B e d H e - Ve (3.21)

Ve is the volume of each element along the stack length of motor and can be 
obtained from

Ve =  Z Ae (3.22)

where Z is the stack length of the motor and Ae is the area of 6th element. 
Using (3,22), (3.20) can be written as

' H=
W' = Z £  A e / B edHe (3.23)

e O
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In the local virtual work method, the torque contribution from an 
element is calculated analytically using

T e
a w ;

86
(3.24)

Then,, adding torque contribution of all elements -gives the total ■ torque.
developed on the rotor. The advantage of this method over the global virtual 
ivbrk ihethod in calculating the elemental torque contribution aMtytibally is 
that the analytical differentiation introduces fewer errors than the numerical 
differentiation.

To calculate the torque contribution of each element, it is necessary to 
derive an expression for Te. In this study, a new formulation for evaluating Te 
is derived that significantly reduces the computational time as compared to 
that taken by direct implementation of the original formulation by Coulomb 
[77].

As the area of each element and flux density inside each element are 
functions of element nodal coordinates, the substitution of (3.21) into (3.24) 
yields

T = Z 1  
Te Z 86

=  ZAe

He
/  BedHe Ae

9 H; H; <9 Ae
A- J  BedHe +  Z /  BedHe
a O 0 86

(3.25)

During rotation of the rotor, the mesh consists of three regions: rotated, static, 
and distorted (see Fig.2.4). The resultant torque contributions from the static 
and rotated elements are zero, but the resultant torque contribution from the 
distorted elements in the airgap annulus between rotor surface layer and mid- 
airgap layer is non-zero. In fact, the change of energy in the distorted element 
surrounding the rotor body represents the change in energy flow from rotor to 
stator or vice versa, and with the iron losses neglected this energy flow 
converts to mechanical energy. Therefore, Te is only non-zero for distorted 
elements, which are all located in the airgap region. The elements being in the 
air, He =  Î0Be, (3.25) becomes

, . A e SB*
"o Z | ~ r “ 5 r

^Ae
HF (3.26)
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S A e Qb 2
Expressions for and 1 can be conveniently obtained when Ae

O v  O v

and Be are expressed in polar coordinates.

A s  shown in Fig. 3.4, the elements in the distorted region have either one 
node or two nodes on the moving surface; however, the radial coordinates of
the nodes do not change by rotation of the rotor. To derive an expression for

<9 Ae :■■■; ..
the - QQ term in (3.26), the area of the e‘“ element, Aej Is first expressed in 

term of its nodal coordinates, that is

Ae -  i [ r mrn sin(#n—#m) +  rnr/ sin[Of - O u ) +  r/rm sin(0m-0*)] (3.27)

If one of the nodes of the triangle /m n, say node £, is perturbed by an angle 
86, the change in area with respect to the perturbation is given by partial 
derivative,

: S A e ■
-QQ^ =  rnr̂  cos(8e- 8 n) (3.28)

For those elements with two nodes on the moving surface, the change in the 
area can be calculated by the addition of change caused by movement of the 
second node. It can be shown that

. S A e <9Ae ’ ,
: d0mn ; dO i

where subscript mn indicates that nodes m and n are perturbed, and that

(3.29)

<9 Ot̂ mn
(3.30)

(3.30) shows that there is no change in area of an element where all its nodes 
are moved by an angle 80.

c B l  ,
The term, - ■- a , can be calculated as follows: Be can be written in terms

O v

of its polar components, that is

B f = B l r + B ^

Differentiating with respect to 0, yields

(3.31)

dB l SBer —  SBe.
2(®er “aZ I- Bê  )

5B.
(3.32)do-, A 61 do-, ' ev SOi J e Soi

The algebraic manipulations involved in getting the expressions for the right
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hand side of (3.32) and is described in Appendix D; the resulting expression is 

SBe 1V(Am- A n)
B

dd/ (2Ae)
2 [rm (An A<?)sin(^m Bf)

v : ^
B 2

+  rn (A^-Am )sin(#n —6()} -  -A -
Ae

d A e

ddr
(3.33)

Again, it can be shown that

<3Be <®e ^Be
(3.34)

+  86n

and that ■ . . ■ ; . ' ' ' ;■ "

<9Be
A ^ . ... =  O (3.35)

Thus, with the help of expression like those given in (3.26), the torque 
contribution from the eth element in the distorted region can be calculated; 
then summing the torque contribution from all the elements in the distorted 
region yields the total torque developed on the rotor.

The expression in (3.26) shows that torque calculation using the local 
virtual work method also depends on the locally calculated flux density 
components; thus it will be subjected to errors in these components as in the 
case of the Maxwell-stress tensor method.

3.4. Accuracy Consideration
In general, calculations based on a finite element solution of the partial 

differential equations are subject to several sources of error; the major ones 
•being:

•  Numericalerrors

•  Modelingerrors

•  Approximation errors

•  Discretizationerrors

•  Local error

Numerical errors such as round-off and truncation errors have to do with 
the machine precision and numerical methods used in computational 
procedures, and have not been found to be of great importance, if higher
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precision and methods with higher order truncation are used for the solution.

Modeling errors come from the assumptions made in approximating the 
real system with a mathematical model that can be handled efficiently. One 
example of such assumptions in modeling of an SRM is the approximation of 
the complicated geometry of a three-dimensional device by a two-dimensional 
discrete model. Another such assumption is the modeling of the nonlinear 
material as being monotonic, single-valued, isotropic, and homogeneous. The 
modeling errors can, of course, be reduced by such refinements aS three- 
dimensional FE model and representation of nonlinear material in forms 
which account for anisotropy and hysteresis phenomena, but the accuracy 
improvement may not justify the extra efforts required by the computation 
and modeling.

Approximation errors have to do with insufficient approximation of the 
field behavior by the choice of basis (or shape) functions. The choice of shape 
functions is often based on the fact that they should at least satisfy the 
continuity of the main variable at the boundaries of the elements. However, 
the choice of the shape function based on the minimum continuity 
requirement may result in two sources of error: First, if the calculation 
requires the derivatives of main variable, then the final result may be 
inaccurate due to the discontinuity of the derivatives not allowed for in the 
choice of basis functions. Secondly, certain boundary conditions at the element 
interfaces may be violated because of discontinuity in field derivatives.

First order triangular elements with linear shape functions will be 
sufficient for the continuity of magnetic vector potential (the main variable) in 
a two-dimensional finite element model, but at least flux density components, 
which are spatial derivatives of vector potential, may be discontinuous at the 
boundary between the elements. Thus, not all boundary conditions mentioned 
in section 2.1 will be enforced properly (see Fig. 3.3). For example, a 
formulation based on the vector potential only guarantees the continuity of 
the normal component of field density, Bn, at the borders of elements, whereas 
a formulation based on the scalar potential, <j> (where H =  —V0), enforces the 
continuity of the tangential component of the field intensity, Ht, at borders of 
elements in a current-free region. Also, since the solution procedure as 
outlined in Chapter 2 involves the calculation of flux density for elements in 
iron to update the elemental reluctivity at each iteration, the accuracy of final 
solution which depends on the accuracy and continuity of computed flux 
densities may be at risk.
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Figure 3.5. > Boundary conditions at element interfaces
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The approximation errors of the field solution can be i educed if higher 
order shape functions are chosen. However, the choice of higher order shape 
functions if applied over the whole domain will require more storage and 
computation time. For the problem tha t has only small regions in which the 
field variation is high, a hybrid method in which higher order shape functions 
are selectively used for critical regions may be advantageous.

Discretization errors have to do with mesh size and configuration In 
different regions of the domain. The guidelines for the shape, size, symmetry, 
and uniformity of the mesh already have been discussed in detail and can be 
summarized as follows: the triangle elements should not have angles near 
1800, should be as close to equilateral proportions as possible; the size of 
elements should be small where the field gradient is high and large where the 
changes are small; the symmetry of the field solution should be preserved by 
symmetry of the mesh; and finally, the grading of the mesh from large 
elements to small ones should be uniform.

Since the field solution is usually obtained from a direct global 
extremization of energy, which only requires that the potential distribution 
over the whole region yields a minimum difference between input and 
magnetic field energy, the accuracy of the local potential distribution from a 
finite element field solution is not guaranteed; therefore, secondary results 
obtained from processing the local potential distribution, such as the-flux 
density and torque, are subject to the same uncertainties.

Once a decision is made about the choice of shape functions, further 
improvement in accuracy of solution can still be obtained by proper modeling 
of the mesh. Proper mesh modeling requires a preliminary knowledge of the 
field distribution patterns based on past experience or previous FE solution. 
With some ideas, the mesh in different regions can be refined or rearranged to 
enhance the accuracy of the solution. For example, sharp curving of the flux 
lines indicating large nonlinearity of the field, should be modeled by elements 
capable of portraying the field variations in both directions. Since the 
curvature of flux lines depends on the changes in the flux density components, 
the rate of change of flux density components is perhaps the best measure for 
selecting a proper mesh model. For example, in regions where the rate erf 
change of the flux density components is high, the mesh size should be kept 
small.'Also, if field gradient is high in one direction, the size of element edges 
in that direction should be small, subject to the angle conditions mentioned i s  

Chapter 2. The shape and uniformity of the elements in critical regions can 
have profound effects on the accuracy of calculation of field components;



properly chosen, these features can enhance the continuity of the flux density 
components between adjacent elements. We have found that a significant 
improvement in accuracy of flux density components in an SRM can be 
obtained with a reasonably fine, but not overly fine, mesh in the airgap simply 
by selecting properly shaped and uniform triangular elements. Such 
improvements in accuracy of the computed flux density components are 
reflected in the results of global solution and also those that rely on local 
calculations such as the torque. As a result, insufficiency in the choice of shape 
functions may be somewhat compensated by careful discretization of the 
domain.

3 ,5 . P revious W ork on T orque C alculation

Since the Maxwell-stress tensor and the local virtual work methods rely 
on the locally calculated flux density components, they are consequently more 
sensitive to errors in the locally calculated flux density components; when the 
errors in the flux density components are large, these methods often exhibit 
discrepancies, sometimes even inconsistencies.

There have been a number of recent papers on techniques to imp rove the 
accuracy of the force or the torque computed from a FE field solution [84-88]. 
In [84], the authors proposed a so-called dual energy method in which they 
established the lower and upper bounds on the energy of system, claiming that 
the average of the forces computed at these two bounds would provide a more 
accurate value of the force.

In [85], the authors investigated the effects of mesh refinement and 
distance of the remote boundary on the force calculation. Using a two-wire 
line example, they showed that the local distribution of the flux density could 
still be not smooth, even after convergence, based on a global measure, has 
been attained. They Concluded that the convergence of the force calculated 
by the Maxwell-stress tensor method lagged behind that of the potential 
distribution.

In [86], the authors compared the torque calculated from the global 
virtual work method with that from the Maxwell stress-tensor method. They 
suggested using a very fine mesh in the pole overlap region to improve the 
accuracy of the torque calculated by the Maxwell stress method.

Reference [87] proposed two methods to reduce the mismatch in 
boundary conditions between adjacent elements: that of extrapolating the flux 
density from the values at Gauss points inside each element and that of using
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non-conforming elements to enforce the continuity conditions on the flux 
density components. Although the authors could not confirm the 
improvement from the use of non-conforming elements, they asserted that 
fulfilling the boundary conditions across the edges of elements could reduce 
the inaccuracies in the calculated torque.

In [88], the authors examined the accuracy and consistency of the global 
virtual work method, the Maxwell stress-tensor method, and the local virtual 
work method. They introduced an error measure, which is based On the 
Maxwell stress-tensor formulation, to select the contour of integration, and 
demonstrated its usefulness on a test system consisting of an iron bar placed 
within two current-carrying conductors.

3.6. Torque Calculation for the SRM
In the case of the SRM, most of the errors in the computed torque from 

the Maxwell stress-tensor and the local virtual work method are caused by  
errors in the calculation of the radial and tangential components of the flux 
density in the critical region of overlapped poles in the airgap. In polar 
coordinates, the flux density components are given by

Br I dA
T 86

Be
8A
dr

(3.36)

To see the significance that accurate prediction of flux density components has 
on the torque calculation, let’s examine the magnified view of flux lines in the 
overlap region at different rotor angles shown in Figs. 3.6 through 3.9. The 
sharply curved fringing flux lines in the neighborhood of locally saturated iron 
are clear in these figures. The accuracy of the field solution is affected by 
inaccurate modeling or representation of the sharply curved flux lines, and by 
difficult convergence conditions caused by large changes in reluctivity of 
highly saturated elements in iron from iteration to iteration. The profile of 
vector potential in the 0-direction as shown in Fig. 3.10, indicates that the 
vector potential remains relatively constant at the maximum and ̂ minimum 
level, but changes sharply under the overlap region. The profiles of radial and 
tangential components of flux density are shown in Figs. 3.11 through 3.14. 
The profiles of Br given in these figures are consistent with the profile of A  
shown in Fig. 3.10. The profiles of the tangential component can also be 
verified by a close examination, of flux .lines at the pole tips. The tangential 
component of flux density is non-zero only at the opposite corners of the 
overlap region, but zero everywhere else. Both Br and B  ̂ have sharp changes
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Figure 3.6. Flux lines near pole tips at #



HS

Flfiift I.?, VFMt IiiMVMir pritti** «*1®*



U
ec

to
r 

P
o

te
n

ti
a

l 
A

71

A N G L E

Figure 3.10. Profile of vector potential on the mid-airgap layer
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T'lguro 3 .11. Radial and Tangential components of flux density at (>
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Figure 3.12. Radial and Tangential components of flux density at H =  5
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Figure 3.13. Radial and Tangential components of flux density at £?= 10 0
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A n g l e  ( d e g )

Figure 3 .1 4 . Radial and Tangential components of flux density at 6 — 20

ft?



: at the . .comers of the opposite poles, -Based on the above' obserYatioiij an : 
, accurate modeling of the .field at these comers will impreve the accuracy of-FE;

soliition-.and/m ore Importaiitly5-will-improve significantly the accuracy>f the 
; local calculations in these critical regions' where..the -field, is .intense'.and..the
-''torque-vcpntributibh-is highest*. .. ...

/. ,. '.. When using' th e .Maxwell ■ stress-tensor- method or the local'virtual work -
, method to., compute.-the-torque of . the SRM5 the integration contour Inyariably 

' has- to.,pass through- pockets of 'high;'"field gradient at the. comers 'of-the-'pole 
tipSj .where- most of ..the torque is. being developed. The very narrow- airgap of 
th e  SRM; does not allow much room for one to p ick -an integration contour 
&way froiil the iron Surfaees5 as recommended by some workers [88].'

tensor method formulation as given by (3.18) is the integral 
of the product of flux density components around a mid-airgap layer. This 
product i s . almost .zero- everywhere . on such a. contour except- at the pole 
corners where the tangential component of flux density is non-zero, ks shown 

' ,in Figs.:,. 3.15 through. 848.-' ■

The local virtual work formulation is based on the change of energy in 
the elements within;a circular annulus of the airgap to a small displacement in'

. rotor position. - The change- of elemental energy is mainly related to- change in ;
flux density components. The stored energy in the elements of overlap region 

: is sixxall, because .there;;is no sizable change in the magnitude of flux density in '
this region, and the energy stored in the airgap elements away from the poles 
of excited phase is almost Zero; therefore, the major contribution in calculated 
torque using local virtual work also comes from the elements near the pole 
corners wfiere the change in the flux density and the stored energy are the 
highest.

Oiie of the ways to improve the accuracy of the computed torque from 
these two methods is to refine the finite; element mesh covering the high .field 
.gradient regions at the pole corners. Yet5 to keep the computational;effort te
a reasonable level, the mesh in the airgap should not be too fine. Also, simply 
adding more layers with no corresponding increase in the number of 
circumferential elements will result in more elongated triangular elements 
which are not desirable.

The  following simplified analysis, together with the results presented 
later,; will-show that indiscriminate; addition of/elongated elements,' with'large-
aspect ratio in critical areas is ineffective and counterproductive, because it 
yields erroneous values for the flux density components. From (IVJ)5 the
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Figure 3.17. Product of flux density components at 0 =  10
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expression of the tangential component of the flux density is

Bo==J K  [Al(rm sin^ m +  r“ sin^  -  *»))

+ 'An,(rn Sin(^n - 6 )  +  n sin (0 -0 ,))

+  An(ri sin(0j - 0 )  +  rm s in (0 -0 m))j (3.37)

where I, m, and n are the nodal points, and 0 is the angular coordinate of the 
centroid of the element. For circumferentially elongated elements with high 
aspect ratio on the annulus, as shown in Fig.3.19(a), (3.37) can be
approximated by

(Am — Aj )
(3.38)Ba

Sr

where <?>r is the radial thickness of the annulus. Equation (3.38) shows that the 
Bfl of such elongated element is mostly dependent on the difference of 
potentials at the two nodes which are close together and not on that of the 
remote node. When the nodes I and m are very close together in the same 
radial direction, the value of Am could be very close to that of A1. Moreover, 
the values of Bfl in the two adjacent elongated triangular elements sharing the 
short edge Im will be almost equal, indicating that the subdivision of the short 
edges like Im has brought no significant benefit - as if the functional spaces of 
the two adjacent triangular elements, Imn and lmo, have degenerated into one 
representable by a single large triangular element lno. Furthermore, where 
the variation of potentials from node to node is large, the discontinuity in Ba 
between adjacent elements sharing a long edge will be large too. The above 
illustration expands on what has been mentioned earlier, that of the error in 
Bfl being an inverse function of the smallest angle in element.

In comparison to the elements of Fig. 3.19(a), those of Fig. 3.19(b) have a 
lower aspect ratio and a more uniform distribution of the nodal points; both 
improvements achieved without the added expense of a finer resolution mesh. 
Another aspect of the improvement becomes evident when the previous 
expression in (3.38) for B a is compared with the following for the new 
elements shown in Fig. 3.7(b)

(2 Am An A j)
— — JTr------ - <3'39>

If-(3.38) and (3.39) are compared with standard expression for forward and

B a



82

Figure 3.19. Mesh types (a) Elements -with large aspect ratio (b) Elements 
with low aspect ratio
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central difference methods of numerical differentiation, the advantage of (3.39) 
over (3.38) can be appreciated. Thus, the uniform mesh of Fig. 3.19(b) not 
Only provides a more evenly distributed vector potential field solution but also 
reduces the computational errors and discontinuity in the flux density 
components. The above analysis indicates that satisfying the maximum angle 
condition in the critical region is not sufficient by itself; better result can be 
obtained by minimizing the aspect ratio of the elements and positioning the 
nodes of the mesh uniformly, especially in the overlapped region under the 
poles.

3.7. Results and Discussion
Here the computed results of torque/angle characteristics for the test 

SRM obtained from the global virtual work , the Maxwell-stress tensor, and 
the local virtual work methods are presented and compared with the 
experimentally measured static torque at various levels of excitation. At the 
same time, results are also presented to illustrate the improvements obtainable 
in the computed torque/angle characteristics when the proposed guidelines for 
picking the shape of the triangular elements and the stepping of the rotor are 
followed.

Of particular interest in the torque calculation is the effect of the mesh 
types on the computed flux density components in the critical regions. Several 
mesh types for the airgap region were tried out, but for illustration purposes 
the two shown in Fig.3.20 will suffice: Mesh A in Fig.3.20(a) satisfies the angle 
conditions, but its elements have aspect ratio higher than five, whereas mesh 
B, shown in Fig. 3.20(b), is an improved mesh as its elements have aspect ratio 
less than two.

Figures 3.21 shows the mid-airgap distribution of the tangential and 
radial components of the flux density in the overlapped region computed from 
the field solutions with the mesh A and mesh B, respectively, for the case of 
an angular displacement of IO0 and an exciting current of 10A. Since the 
product of the two components of the flux density is highest at the opposite 
corners of the overlapped region, most of the torque is developed around these 
two corners. From both Fig. 3.21, we can see that the distributions of the 
tangential and radial components of the flux density obtained using mesh B 
have more uniform steps than those obtained using mesh A. At the pole 
corners, the tangential component obtained using mesh A not only is lower in 
magnitude than that obtained using mesh B, but also tended to be oscillatory 
from element to element in the vicinity of the corner. As we will see later, this
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Figure 3.20. Mesh types in the airgap (A) mesh with high aspect ratio (B) 
mesh with low aspect ratio
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used has high aspect rat!© elements,.

. When both the mesh shape and the stepping angle are properly chosen, 
the computed torqne/angle characteristics from the Maxwell stress-tensor and 
the local TirtnaI methods are smooth and almost indistinguishable. Fignre

excitation of IOA0 The agreement between the measured and the computed 
■ characteristics Is good, considering the assumptions we have to made in ' the 
computation, especially those on the material model.

To show that the agreement between the computed and measured 
characteristics is just as good at a different excitation, • Figs. 3.23 and 3.24 
show similar sets of characteristics for excitation currents of 7.5A and 12.5A« 
The results in these figures show that when proper care is taken in selecting 

. the shape of the-elements and the stepping of the rotor, reasonable accuracy 
and smoothness of the computed -torque/angle characteristic can be obtained 
with any of the methods.

■ The following results illustrate what could happen ' to the computed 
torque/angle characteristic when the shape of the elements has high aspect 
ratio and are circumferentially elongated,, when the stepping of the rotor ..angle 
does ,not maintain the mesh uniformity, or when the number of layers- of the 
mesh in the airgap .Is increased from the previous value of tw o 'to three and 
the elements have high aspect-ratio. The results shown in Figs. 3.25,- 3.26,- and 
3.27 are obtained from the global virtual work method, the Maxwell stress- 
tensor method, and the local virtual work method, respectively; all of them 
are for an -excitation current of 10A« The' solid curve was obtained-with well- 
shaped triangular elements of the type shown in Fig. 3.19(b) and the 
uniformity of the mesh at the sliding layers was maintained while the rotor 
was -being rotated through a pole pitch to generate the entire torque/angle-- 
characteristic..- The dash curve was obtained with the same well-shaped 
triangular elements for the solid curve but with a rotor step size that did not 
preserve the uniformity of mesh in the distorted region. The curve with the 
triangular markers was obtained with not so well-shaped elements that have 
aspect ratio higher than 5. Merely adding more elements in the critical region, 
without paying attention to their shapes and distribution does not bring about 
the best-result with the Maxwell-stress and local virtual work methods,- as 
Illustrated here fey the curves with square markers in Figs. 3 .26.. and , 3 .27, 

which were obtained with three instead of two layers of elements and about 
50% more nodes in the airgap than those used to obtain the curves with the
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Figure 3.22 ■ Calculated torque vs. measured at 1=10 A
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Figure 3.23 Calculated torque vs. measured at 1=7*5 A
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Figure 3,24 Cakulatedrtorque vs. .measured at 1=12.5 A
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Mesh B, u n ifo rm  s t e p p in g  
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I'igure 3.25 Torque/angle characteristics-global virtual work method
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Hgure 3.26 Torque/angle characteristics-locai virtual .-work method
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Figure 3.27 Torque/angle characteristics-Maxwell-stress tensor method
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triangular markers.

In examining the computed results, we found that the tangential flux 
density component at a given position and operating condition with elongated 
elements was usually lower than the corresponding value with properly shaped 
elements. This may explain why, in the case of the Maxwell stress or local 
virtual work method, a mesh with poorly shaped elements, even with up to 
50% more nodes in the critical areas, yields an erratic torque/angle 
characteristic that tended to lie below the actual characteristic. The 
discrepancy is large in the intermediate angles because errors in the computed 
fliix density, especially the tangential component, at the departing pole tips 
are large, as mentioned earlier using the results presented in Figs. 3.21(a) and 
3.21(b).

Thus, we can conclude that for machines like the SRM that have a 
narrow airgap with very high field gradient, special care must be taken to use 
elements with low aspect ratio if the errors in the computed torque are to be 
kept small. The errors will be small when the aspect ratio is small; if possible, 
the best result is obtained with equilateral triangular elements in the critical 
field region. The results show that with proper care in selecting the shape and 
distribution of the elements, all three methods of calculating torque, namely 
the global virtual work, the Maxwell stress-tensor, and the Coulomb virtual 
work methods, can provide reasonably accurate torque. Moreover, if the 
uniformity of the mesh is preserved while stepping through the rotor angles, a 
smooth and accurate torque/angle characteristic will be generated by any of 
the three methods used.
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C H A PT E R  4
ST A T IC  C H A R A C TER ISTIC S A N D  PA R A M E T E R S

This chapter describes the postprocessing procedures which are being 
used to compute the energy and coenergy, the flux linkage, the inductances, 
and the terminal speed voltage (emf). The accuracy of these results depend on 
the accuracy of the FE solution as well as ,the numerical procedure for the 
operation involved. Since 't h e 'm e s h : arrangem ent technique described in 
Chapter 3 improves the local as well as the overall accuracy of the FE 
solution, it enhances the accuracy of the postprocessing results, too.

The form at used isTo present the procedure and results obtained for each 
quantity, one at a time; first the computational procedure tha t is compatible 
with the FE solution, and then the results. Results presented are for half of 
the phase inductance cycle of the test'm otor, tha t is 30°; the results for the 
other half can be obtained by the rule of symmetry. The angular step size of 
the rotor rotation is taken to be 1.25 0, which for the mesh used will preserve 
its uniform ity 'during the rotation. Since the intention is to use the static 
results later in a steady state simulation of the SRM drive, all the quantities 
are calculated for a wide range of excitation currents a t one ampere intervals. 
Also a sensitivity analysis is presented, showing the effect on the machine 
param eters and characteristics due to changes in some of the design 
parameters.

4ol= E lee tro m ag n e tie  E nergy

Both electromagnetic energy and eoenergy are calculated during each
iteration of FE solution procedure. Since the calculated energy and coenergy 
can also be used in the computation of other quantities such as the 
incremental inductances, the torque, and the flux linkage, the calculation of 
energy and coenergy should be done as accurately as possible.

The energy density in etl1 element is given by
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B.. '
. we =  /  HedBe. (4.1)

O

For -the elements with linear material property (air and current carrying 
regions), (4.1) also yields the coenergy density of the element, and can be 
simplified to

w e =  W e =  J  I'o B l (4.2)

But lor an element in the iron region, where the relation between field 
intensity and flux density is nonlinear, the integration in (4.1) will be carried 
out numerically.

Since the flux density is constant within each element when MYP is 
approximated by linear shape functions, the energy of each element can easily 
be obtained from the product of energy density and the volume of the 
element, th a t is

We.= we • Ve = w e • Z Ae (4.3)

The total energy of in the SRM is obtained by summing up the AVe over all its 
elements.

W m = ^ W e (4.4)
e

In our implementation, the magnetic energy density for a range of field 
intensities on magnetization curve given in Fig. 2.6 is computed at fine 
intervals using the trapezoidal rule along with the Richardson extrapolation 
for integration in (4.1) to construct a table of values of energy density versus 
field intensity. In each iteration of the FE algorithm, the calculation of energy 
in all elements is done by a table search using the value of field intensity to 
access .. the ' corresponding energy density directly- by ' a simple linear 
interpolation. In this m anner the task of integrating the energy of all elements 
in iron is reduced to a search and linear interpolation procedure.

Once the energy density of one element is calculated, its coenergy density 
can be obtained from the relation,

w e - B eHe -  W e = /ZeBe — we (4.5)

Alternatively, the total coenergy of the device can be obtained from the 
following relationship, once the flux 'linkage and the total field energy are
known.
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Figure 4.1. Energy and,coenergy density in eth element
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■ w ' =  Xl -  W (4.8)

The energy and coenergy profiles of the test SRM calculated for different 
rotor positions, and current levels are given in Fig. 4.2 and Fig. 
■4.3,respectively.

4 .2 . 'Flux L inkage

The total flux linked by each turn of the phase winding is gififi by the 
Gauss formula

6  = f  Bmds (4.6)
s

where S is the area enclosed by the winding turn. Replacing B by V xA  and 
using Stokes theorem, (4.8) becomes .

0 =  I  A • d /  . (4.7)

where the line integration is performed around the closed contour formed by 
the winding sides. Ignoring the contributions from the end zones, the vector 
potential is constant along the axial direction of machine, and (4.7) can be 
simplified to

O =  Z(Ar - A l ) (4,8)

where Ap and A& are the values of the magnetic vector potential at right and 
left hand sides of the single turn (see Fig. 4.4).

For a thin multi-turn coil, (4.8) can be multiplied by the total number of 
turns in the coil to obtain the total flux linked by the coil. However, a thick 
multi-turn coil where the value of vector potential is changing through the 
winding cross-section should be regarded as a set of hypothetical small coils all 
having the same turn density. The number of turns in each hypothetical coil 
can be calculated from the product of turn density and the area of the coifs 
cross-section:

Nnk =  — - Sk (4.9)

where S is the cross-sectional area of the whole winding and Sk is the area of
coil cross-section. The total flux linked by kth hypothetical coil then can be■i "
calculated using
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Fiux linkage of a winding turn
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4}k — nk(AkR — AkL) ' (4.10)

■where Ak is the average value of the vector potential inside the coil’s cross- 
section. Tlie flux linkage of the phase winding is the summation, of the flux 
linked- by an entire set of hypothetical coils forming the phase winding,

(4.11)
k ■

The computational procedure for the flux linkage of the phase Winding 
can be based on the discretization of the phase winding’s cross-section into 
finite elements: First the turn-density for each winding cross-section is 
calculated, then the number of turns in each element inside the winding 
cross-section is obtained using (4.9). Next, the number of turns of each 
element is distributed equally to its nodes. Then the turn contribution from 
various elements sharing .the same node will be added to give the number of 
turns of the hypothetical coil concentrated at each node.

In our implementation, the number of turns of the hypothetical coil at 
each node is stored in a vector N, having the same size as the number of nodes 
in the FE domain. For nodes in the region occupied by a winding, the 
corresponding entry in N shows the turn contribution of that node and a .sign ■ 
to indicate the direction of current flow, The flux linkage of a phase winding is 
given by the inner product of the vectors N and.A, where A contains the 
vector potential at the nodes.

X = N aA (4.12)

..Computer implementation of .expression (4.12) can efficiently calculate the flux 
linked by each of the stator phase windings. The profile of the flux linkage for 
one phase of the test SRM for different rotor positions and current levels is 
shown in Fig. 4.5.

4.3o Inductances

The winding inductance is one of the most important parameters that has 
considerable impact on the operation and, of course, a key parameter in the 
simulation of the SRM drive. When dealing with a nonlinear magnetic circuit, 
the following definitions are common for inductance:

I) Apparent inductance (4.13)
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3) Effective inductance Leg- A

L- A d \  
,nc ~  di'

..■(4.14)

A 2W 'eff - ,2 (4.15)

Figure 4.6 shows the graphic interpretation of these three definitions. For the 
linear magnetic circuits, all three definitions yield the same value for 
inductance, however, for saturated magnetic circuit the relation BetWBeii three 
inductances is given as

L >  Lcff Ljnc (4.16)

Since the apparent and incremental inductances will be used in the simulation 
of the SRM drive, only these are calculated. The apparent inductance can be 
obtained from its definition given by (4.13). The incremental inductance can 
be calculated using either flux linkage or energy perturbation method. In the 
flux linkage method, the incremental inductance is computed from the change 
of flux linkage to a small change in the excitation current at the same rotor 
position.

Ljr AX
Ai (4.17)

In the energy perturbation method [91], the incremental inductance at a given 
rotor position is Calculated using the following expression:

Lir [W(i +  Ar) — 2 W (i)+W (i — Ai)] .
-  (4.18)

where Ai is a small change in the current. The profiles of the apparent and 
the incremental inductance of the test SRM are shown in Figs. 4.7 and 4.8, 
respectively.

4.4. Term inal Speed V oltage(em f)

The speed voltage or voltage induced in the phase winding by the motion 
of the rotor is another parameter required in the simulation of the SRM drive. 
For a winding with constant excitation current, the speed voltage can be 
calculated using Faraday’s Law, that is

. dX d \  . d6 8 \. ■ e =  —!— == ——   =  o j ----
dt 86 dt 86

To calculate the speed voltage, one needs to calculate , which will be
• 86 .

(4.18)
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Figure 4.6, Induetanees^df a,saturated: circuits



(H)

105

Figure 4.7. Apparent inductance profile
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Figure 4.8. Incremental inductance profile
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referred to as C11,. We experimented with two methods for calculating Ci.,. 
First, a rotor angle perturbation method used the change in flux linkage for

small perturbation of rotor position with C 1. :
A 9 The second method,

which resulted in smoother profiles for C11,, is based on differentiating (4.12), 
that is

A  =  N • —
39 39

(4 . 19)

. The profile of Cvv, of the test SRM for different rotor angles and current levels
is shown in Fig. 4.9.

4.5. S en sitiv ity  A nalysis

In this part, a sensitivity analysis showing the effect on the machine 
parameters and torque characteristic of the test SRM due to the changes in 
design parameters such as the airgap length, the rotor pole arc, and the 
magnetization characteristic of the iron is presented. This analysis is not a 
thorough optimization or refinement study for a special application; it is 
included here to demonstrate the capability of the developed model for such 
purposes.

Figure 4.10 shows the effect of a ±  10% change in the length of airgap of 
the machine. The dashed curves clearly show the predictable change in torque 
characteristic of SRM as airgap length changes.

Next, we experimented with two different rotor arcs: one with the rotor 
pole arc about the same width of the stator pole arc, and the other one with a 
10% wider rotor pole than the real one. Figures 4.11 and 4.12 show the 
changes in inductance and torque characteristics resulting from the 
perturbations of rotor pole arc. The inductance/angle profile of Fig. 4.11 
shows- that there is no noticeable' change in minimum inductance, b u t . the fiat 
region at the maximum inductance will be wider as the width pole arc 
increases, which is also predictable. The torque/angle profile of Fig.4.12 shows 
a shift in the torque characteristics which is proportional to the change in the 
pole arc, but the higher maximum, which was not predicted before, needs 
further study.

When the saturation Ievel(Bs) is varied by ±10% about the nominal
value (see Fig.- 4.13),. its effects on the ' flux/angle and .torque/angle- 

■characteristics of Figs.- 4.14 and 4.15 are not noticeable at small currents. A
plausible explanation to this observation is that only a small region of the iron
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Figure 4.9. Cv profile '
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is saturated. Such a change in Bs is academic in nature, in that there is no 
physical material that will provide such B-H characteristic. But the exercise is 
useful in that it provides us with an indication of how such a change would 
affect the performance of SRM.
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Figure 4.14. Change la lux/angle characteristics for saturation level change
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CHAPTER 5
STEADY-STATE PERFORMANCE OF SRM DRIVE

. A  study of the SRM drive performance is complicated because , of the 
large number of parameters involved. Close relationships between motor 
design and switching circuit on the one hand and dependency of machine 
parameters on current and rotor position on the other are the hurdles in any 
study aimed at the aechratly predicting the SJtM drive performance. 
Evaluation of new designs or improvements from new control strategies 
requires a realistic model of the system. Such a realistic model should be able 
to predict drive performance -over . a/:-wide- range of torque/speed variations 
with sufficient accuracy. Obviously, an:'Understanding of the SRM parameters 
and their relationships, to the control and converter operation is a prerequisite 
in devising a realistic model.

Simplified jimdels based on linear or idealized nonlinear approximation
•' ‘ ‘ ’ hr . .. _ • , ' - .

cannot predict the performance of the SR drive properly because of the high 
degree of nonlinearity involved. Therefore, a realistic model for the SRM drive 
should include the nonlinearities. In this chapter, steady-state performance of 
SRM drive based on parameters and static characteristics obtained from the 
FE field solution using special postprocessing techniques is simulated. The 
simulated result shows good agreement with test results, even though the 
exact data and control strategies of the test drive were not available.

To set the stage for steady-state simulation of the SR drive, it is
necessary to examine the relationship between the SRM parameters and 
control strategies' using a simplified , model based on idealized magnetic 
characteristics. First the control strategy for successful operation of ■ SRM in 
relation to its parameters is discussed. This will be followed by a description of 
switching strategies for both low speed and high speed modes ©f operation. 
The mathematical model and simulation techniques are discussed next, and 
finally, simulation and experimental results are presented.
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5.1 C o n tro i s tra te g y
As discussed earlier, both energy conversion and torque production in the 

SRM rely on the variation of the phase inductance as a pair of rotor poles 
move in and out of alignment with the stator poles of an excited phase. As the 
rotor moves, the inductance of each phase undergoes a cyclic variation with a 
angular period given by

A  =  -™ - : . ■ ' ■ ' (5.1)

A current pulse is -applied to the phase during each c y c l ic  variation of 
inductance. The shape and timing of the current pulse varies with speed and 
load torque. ■

To maximize the energy conversion capability of the SR motor, it is 
designed to operate under highly saturated conditions. For example, at base 
speed the energy conversion loops with idealized (piecewise linear) and real 
(nonlinear) magnetic characteristics for one current pulse are shown in Fig. 
5.1. In this figure, the polygon OABC is the ideal energy conversion loop and 
OMBNO is the real one. For optimal energy conversion, most of the field 
energy should be converted to mechanical energy, in other words the energy 
return to the electrical circuit should be minimized (OCB in Fig, -5.1). To 
achieve a real energy conversion loop close to that of the ideal loop, a control 
strategy based on the following steps should be adopted: bring the current-to 
its maximum during minimum inductance region (GA), maintain the current 
constant while flux linkage continues to build up to the saturation value Xs 
(AB), commutate the current before the peak region of inductance waveform 
is reached in order to bring the current down as fast as possible, before the 
negative torque region where the drop in flux linkage is small (BC). To keep 
the negative torque component small, minimize the tail current in the CO

region where <0. Such a flat-topped phase current pulse . corresponding to
: O v

the energy conversion loop of Fig. 5.1 is shown in Fig. 5.2. The points 0 , A, 
B, and C correspond to the same points in Fig. 5.1.

The current pulse shown in Fig. 5.2 is obtainable around the base speed 
of the SRM but not at all rotor speeds and load torques. In practice, with a 
fixed supply voltage, the shape of the current pulse depends on the speed and 
load torque. At low speed, the rate of current rise is high because of the small 
back-emf. Peak current should be limited by chopping. But at high speed, the 
back-emf becomes dominant; as a result the current peaks before 
commutation. Usually the base speed is defined as the speed at which the
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Figure 5.1, Energjf' conversion loops



Figure 5.2. Typical flat-top current pulse
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back-emf is equal to Supply voltage. Typical shapes of the current pulse for an 
SRM drive at different speeds are shown in Fig. 5.3. When the SRM is to be 
operated as a variable speed drive, two switching strategies are used: one for 
low speed operation in which the current level has to be limited by chopping, 
and the other for high speed operation, in which both the ignition and the 
conduction angles should be controlled properly in order for the torque to 
satisfy the load condition and to be as smooth as possible.

The expression for torque at constant current and linear magnetic circuit
is given by , /  - b \

^ 1Z2I r 2 (5.2)

With the linear inductance waveform given in Fig. 1,2 and constant current, 
the developed torque has a polarity that changes with the slope of inductance

o(L dLwaveform: positive for -^-r-> 0 , zero when -7-7- = 0 , and negative when
UV UV

Howeyerj in a saturated magnetic circuit, torque-current relation is

more complicated and the static torque has a rounded shape shown in Fig. 5.4. 
Nevertheless, in both cases the region with increasing inductance is the active 
torque- producing region for motoring, the regions near the totally unaligned 
and the totally aligned position are dead zones for torque production, and the 
region with decreasing inductance is the active torque- producing region for 
generation.

5.2 Simplified Analysis
The simplified analysis given here can be used to explain the control

strategies adopted and to estimate the voltampere requirement of the drive 
converter. The assumptions in this analysis are: winding resistances are 
neglected, the supply voltage is constant, current is flat topped over the region
of increasing inductance, and the width of the active torque region ,is'equal to 
stator pole arc, - Thiss analysis also uses - t h e idealized nonlinear energy 
conversion loop given in. Fig.-5.1 and the corresponding current waveform of 
Fig. 5.2. The following definitions based on machine parameters are helpful in 
the algebraic, manipulation that follows:

LjuHiax

Lmin
(5.3)
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Figure 5/3/ Typical current pulse shape at different speeds
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Figure 5.4., Typicai static torque/angle characteristic of SRM
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V
LI

where L | is the saturated inductance of the machine when the rotor and' 
stator poles are aligned; it is a function of excitation current. It is.clear that 
K>1 and ?7 < 1 .

W ith the voltage drop in the winding resistance neglected and speed 
assumed to be constant, the phase voltage equation can be written as

dX ujA \V “  — • =
dt A d

(5.5)

W ith a conduction angle of, c/3s, where c < l  and Xg is the flux linkage
corresponding to the full conduction angle /3S, the energy converted during 
each current pulse can be estimated as follows. Substituting for AX — cXs and 
A 9 =  c/?s into (5.5),

xs - h h  (S,J
OJ

Assuming that is is the value of the current at which magnetic circuit goes 
into saturation at the aligned position, then

cXs - ( L max Lmjn) is =  Lmm is (re l) (5./)

The expression for Xss can be given by

Xs = (L sa- L min) i = L m in i(^ -I )  (5.8)

where i is the peak of the flat-topped current. From (5.7) and (5.8), is can be 
determined, that is

. ic(/c??—I) _  £
s (/c—l)  s

where s is defined as

(5.9)

c _  ( « - ! )
(kt]-1)

(5.10)

The energy converted is given by the area of the polygon OACDO in Fig. 5.1 
and is given by

W -  OABCO -  OACD-OCD =  cXsi-l/2cX sis (5.11)

substituting is from (5.9) and Xs from (5.6) in (5.11) yields the following 
expression for energy converted per each current pulse:
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W =  1/2 Y  ci ( 2 ~ )
Oj  s

(542)

The average power is the sum of all energies converted in one second. Since in 
each revolution, each phase conducts as many current pulses as the number of 
rotor poles, Nr, there are qNr pulses of currents for all phases per revolution.

For a frequency of rotation, f =  , the average power is given by
v .'ir d '. - =  ■ ' • 27T: . . : , .. V v

AqNr
Pa^e= WqNr f = V i - - L - Q 1543)

where Q is defined by

I Q =  c(2—-L)

The corresponding value of the average torque can be calculated using
- P - ' -.'V

l ave (5.15)

Factor Q in (5.13) shows the improvement in energy conversion brought 
about by saturation; When the motor is unsaturated, rj =  I, and for c — I, Q 
is also equal to I. However, when the motor is saturated, r/<l and s > l ,  and 
for c = l , Q is greater than one. SR motors are usually designed with QVabout 
1.5 or higher. This can be interpreted as a 50% increase in the conversion of 

■ field energy-4©-UsefuFmeehanicaFenergy--With-Satpration' as-compared to.-the.' 
unsaturated, case. Equation (5.13) can also; be used to estimate the inverter 
voltampere requirement per kW of the f  SRM power. If the voltampere 
requirement of each switching device is defined as the product of maximum 
voltage and the peak current and the maximum voltage on each device, 
assuming perfect snubbing, is twice the supply voltage, the total voltampere 
requirement of the inverter, assuming one switching device per phase, is given

S =  2qVi (546)'

The inverter voltampere per kW . of motor rating, which is ,'-an important 
measure in the design of the drive system, is obtained from (543) andv(548)'

' ES

s_
p AN r Q (547)

Equation (547) dearly shows the reduction obtained 'in ' converter kVA
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requirement to motor rating by a factor Q for a saturated motor. Equation 
(5.13) also can be used to predict the commutation angle for a given average 
power, using the relationship between Q and c given in (5.14).

The base speed of the machine as Indicated by the flat-top current 
profile, can be obtained using (5.6) and (5.8) as

V/l
H  = -----Z l---- ^ (5.18)

lLmin (KTj-I) 1 '

5.3. Sw itch ing  S tra teg ies
A realistic control strategy for the SRM drive has to take into 

consideration the mutual dependence between motor parameters and 
excitation, and the limitations of the switching circuit. In this section, a brief 
review'of the basic switching strategies used In the SRM drive is made.

At low speed, the rate of increase of the current following the turn-on is 
high because the baek-emf at low speed is small, and peak current has to be 
limited by chopping. But at high speed, the back-emf becomes dominant. As a 
result, , the current peaks before commutation. In between there is. a condition 
usually referred to as the base speed at which the back-emf is nearly, equal to 
supply voltage and the current has a flat-top profile. When the SRM is to be 
operated as a variable speed drive, two different switching strategies are used: 
one for low speed operation in which the current level has to be limited by 
chopping (current control), and the other for high speed operation, in which 
both the ignition and the conduction angles should be controlled properly in 
order for the torque to satisfy the load condition and ‘to be as smooth as 
possible (angle control).

5 .3 .1 . Sw itch ing  Signals '

'.SiWitching of the power switches is synchronized to the rotor, position, 
with the- crossing of the rotor poles sweeping past fixed positions'being sensed
by Hall effect or optical devices. The signal from the position sensor starts a 
delay counter, and the output of the counter turns on the switching device 
after the desired delay time has elapsed. The switch is later turned off by a 
signal coming from another delay counter that is adjusted to give the desired
conduction angle. The position sensors should be so placed as . to . provide 
sufficient delay in the Ignition angle for all operating speeds. For example, the
sensor of each stator phase could be placed halfway between the stator poles. 
Figure 5.5 shows the reference signal, the delay signal for ignition, and the
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Figure »5.5. Switching signais for phase I



127

delay signal for commutating off phase 1» for the case when the sensors are 
placed midway between the stator poles.

i.UoSb A n g le  C o n tro l

Fpf higher speeds, approaching and above the base speed, the switching 
of the power devices.is controlled by adjusting both the ignition angle, 8on, ' 
and the conduction angle, 6C. Angle control results in a smoother- operation 
than that obtained by chopping control. Thus, for speeds where the current 
level can be controlled by delaying the ignition, angle control is preferred. 
Delaying the ignition of the phases at speeds lower than the base speed limits 
the current peak, so that the current reaches its peak at the commutation 
point. When the required average torque is low, the ignition angle can be 
delayed so that the current pulse lies entirely within the active torque region.

At nominal speed and loading, peak current is limited by the baek-emf 
and the current decreases even before the commutation point because the

diback-emf exceeds the applied voltage (—— <  0). Thus, to satisfy the increasing
City

power requirement at higher speed, it becomes necessary to turn on the phase 
earlier, even before the unaligned position, in order for the current to reach a 
higher level before the active torque region. The conduction angle is adjusted 
with changes in the load torque. For motoring operation, the excitation 
voltage should be turned off early enough for the current t© drop to -as low as 
possible before the onset of the negative torque region. Current commutated 
at the flat top region of the inductance waveform has a faster rate of decrease 
because the value of the incremental inductance near the aligned position is 
small.

5 .3 .3 . C urrent C ontrol (C hopping)

At low speeds, both the back-emf and the effective incremental reactance 
of the motor are reduced proportionately; consequently, with the same applied 
voltage, the current will rise to a higher level than that at high speed. To 
prevent the current from exceeding the ratings of the switching devices, it can 
be controlled simply by turning on and off the switching device. An upper 
current limit control is used to turn off the switching device whenever the 
reference current is exceeded. The reference current, subject to an absolute 
maximum, may be adjusted from an outer speed (or torque) feedback loop to 
satisfy the load condition. The phase excitation can be turned on as soon as 
the circuit condition permits, or after some fixed off-time that is longer than
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the minimum off-time required by switching devices.

Cbntrol in this mode is more complicated due to various limitations 
associated with the switches and circuit elements, such as the turn-on, turn-off 
and voltage reversal times of the main and auxiliary switching devices. 
Moreover, predicting the reference current required to satisfy a certain lbadihg 
condition is difficult, because the torque-current relation under saturated 
conditions is complicated. Also, with the small intervals between choppings, 
random and uncontrolled circuit transients can cause irregular pulsations in 
the electromagnetic torque and erratic and noisy operation at low speed.

• - " - Vi - "-V- ■ ' V -  - ... - .'1V •- -V 'i

5,4 Steady-Stnte Model
The voltage equations for the stator phase windings of a SRM .bah be 

written as ■

d \k dik 
vk =  Rk ik +  +  Ik - j - -

.................................V  ' "

k=l,2, . . . ,q

(5.19)

where V k  is the input voltage, Rk is the winding resistance, Ik represents the 
leakage and external circuit inductances, ik is the phase current, q is the 
number of phases, and Xk is the flux linkage. In general, "

I -,  xk =  XC^Ti j I2j ..,v iq) ' ... . v . ' ^ q)

But since the SRM is designed to have minimal mutual inductances, the effect 
of mutual inductances can be ignored, and the flux linkage, Xk, is a function
of the rotor position, Of -and:- the - phase current, ik. With this simplification, 
equation (5.19) reduces to a set of decoupled, first order differential equations 
with state-dependent coefficients. The time derivative of flux ■ linkage can be 
explicitly written a s .. v  , : . :

dX _  d  X dff . d \  di
dt • 3 $ ;dt ■ 3i dt

V
(5.21)

,In' this equation, is the rotor angular speed, cu, and -is the slope of
■ I - ■ d t ; ul .

flux/current curve also known, as the incremental inductance, Ljnc. The, first
term at t ie  right hand side of (5.21) is usually called the. speed voltage or the 
back-emf,! and the second term , is called the transformer voltage,. ..For

. I . .. . .... . . . . .  ' - " . ^

convenience, from here on, the subscript k will be dropped and — — will be
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denoted by cw. It should be noted that both Ljnc and cw are functions of-rotor
- dXposition and phase current.- Substituting for —— from (5.21), (5.19) can be 

rewritten as , '

v =  Ri +  Cu, cu +  Ljnc ”  +  I — ’ - (5.22)

For ,a motor with sisabie rotor inertia operating at a steady-state, the
0

speed, a;, can be assumed constant. With t  =  — , (5.22) can be rearranged in a
. U J -  .

form that can be used to obtain the Tariation of current with respect to rotor 
position, that is

' di „  I
d0 > ( 1 + Lilic)

Given Vjn and oj, (5.23) can be solved to obtain the current pulse waveform  
for different ignition and commutation angles. Knowing the current’at each 
rotor- position, it Is possible to compute instantaneous torque and-:-flux linkage 
from static characteristics of the machine, and also the average torque and 
power, and the average and effective value of the phase current.

5.5 S o lu tio n  M eth od  and  Sim ulation  T ech n iq u es ' :

As an illustration of the technique, a simulation study with, the following
simplifying assumption can be made: iron losses are neglected, voltage drops 
of the thyristors and the diodes are neglected, the on and off times of the main 
and auxiliary switching devices are neglected, and the converter is 
approximated by a controlled, square wave, voltage pulse generator where the 
duration and number of voltage pulses depend on the control angles, that is

vin

+Vdc if ôn — 0 — 0OS 

Vdc if >0oS< 0 < 0 sxi 

0 5f

(5.24)

The variable coefficients on the right hand side of (5.23) should be 
updated at each step of integration using the most recent value of the current
and the rotor position. The integration of the differential equations with time- 
varying coefficients can be carried out using a predictor-corrector method that 
evaluates the coefficients at each step and iterates until these values converge 
or using higher order methods with small time steps with intermediate 
evaluation of state and coefficients. Here the second approach is used, with a



fourth, order Runge-Kutta method, and for better accuracy in solution the 
angle steps are kept very small. The values of incremental inductance and cu.. 
are obtained at each current and rotor position using B-cubic spline 
interpolation technique [94].

Simulation of high and low speed modes of operation are performed. The 
high speed mode of operation is simulated using angle control. The main 
steps required in the simulation of this mode are shown in Fig. 5.6. The 
waveforms of the instantaneous current , torque, and flux linkage, and the 
values of average torque and power are obtained at three different speeds.

The low speed mode of operation is simulated using current control for 
turning off the switching device whenever the current exceeds the prescribed 
upper limitjand minimum off-time for subsequent turn-on. 'No angle control 
or lower limit current control are considered. The switching device of each 
phase is turned on at the unaligned position of rotor pole and turned off at the 
aligned position, chopping the current periodically during this interval. The 
main simulation steps of this mode of operation are shown in Fig. 5.7. The 
waveform of instantaneous current, torque, and flux linkage, and the values p f 
average torque and power can calculated for several upper current levels at 
three different rotor speeds.
ft : Vftftft ■' v  ■ . ."'-"ft..;...;i.... I .

'ftftftv; . . v- . ' I i  ■ : i 3  . ’ ,, ' J '.ft-:
5.6 Experimental and Simulation Results

The experimental results were obtained using the test set*op shown in 
Fig. 5.8. Measurement of the flux linkage was obtained from search coils 
encircling each of the stator poles. The scale factor for the measured current 
is 11. For the test drive, the control mqde changes over from the current limit 
control to the angle control around 620 rpm. The base speed, as gauged from 
the current !profile, is about 1000 rpm.

Shown in Figs. 5.9 through 5.17 are some of the measured waveforms 
with the test drive operating under c u r r e n t  (chopping) control and under 
angle control. The corresponding results obtained from the computer program 
simulating the measured conditions areJgiven in Figs. 5.18 through 5.20 for 
current control mode and 5.25 through 5.27 for angle control mode. The 
agreement between measured and computed results for the two modes of 
control operation is good.

ft Both experimental and simulation results of the chopping mode of 
operation, especially at very low speeds, show fluctuations in the upper 
current limit. The instability of the upper current limit in the experimental
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FPgure 5.6.

STOP

Flow diagram for high speed mode
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''

Figure 5.7. Flow diagram for low speed mode
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result fe due to circuit transients and speed fluctuations, whereas th at ©f the 
simulation With constant speed may also be. attributed to Inadequate 
resolution from the coarse step size of the rotor angle meed In the numerical 
integration • when the rate of change of current with respect to angle is high. 
■Such errors, can be minimised .by using a smaller integration step rise for the 
lower speeds. Lacking the facility to measure, the instantaneous torque, there’ 

.. is no basis of comparison for the computed torque w aveform  It is,' however, 
apparent from the computed torque'waveform that the current pubes In the 
minimum inductance region do not contribute to any useful -torque.. Also with 

.. Jong. off-time,' the ratio of peak to average torque is high, unless a higher 
current level is permitted at the expense of higher device rating and cost. 
Figures 5.21 through 5.23 show the current and torque waveforms for a higher 
current level (24A). A shorter off-time will decrease the peak to average'torque 
ratio, resulting in lower torque ripples as shown In Fig. 5.24; hence less noise 
and vibration. However, this will require faster and more expensive switching 
devices.

,- Figures 5.25' through 5.27 show the results of the drive operating ■ in : the 
angle control mode. While the current waveform at. 750 rpm has’ a peaky 
profile, that at the nominal speed of 1500 rpm peaks early and decreases in 
-the: .conduction period because the ’ back-em f at this speed is higher than the

■ applied voltage. Below the base- speed (1000 rpm), the peak current can be- 
reduced. by delaying the ignition angle further into the phase inductance cycle 
where the inductance is increasing with angle. Figure 5.26 shows the current 
profile of the drive at 1000 rpm; the flat-top current is an indication of base

■ speed operation. A t speeds higher than base speed, for the current-to'reach 
higher levels before the active torque region, the ignition angle-should be 
advanced ahead of the unaligned position (30 0 ).

' In these figures are. also shown the computed and .measured energy 
conversion loops at nom inal. speed. The area within the loop represents- the
converted energy fo r  one current pulse, which when multiplied by the number

of pulses per second (qNr x yields the average power.

The effects of constant on-angle, constant conduction angle, and constant
-off-angle"-.control strategies on the shaft torque, maximum currents and energy 
conversion loop are illustrated in Figs, 5.28 through 5.36. The results for three 
output power- levels (4, 3, and 2 kW) are given at three speeds. Comparison .of 

- the .shaft torque and energy conversion loops -will suggest that the constant
off-angle control results in less torque pulsation and more efficient energy
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conversion. !This is due to ike fact that all or most of the conduction period 
lies In the active torque region and also, by early commutation of the phase, 
negative torque contribution is minimized.

To illustrate the drive behavior for various loading conditions, computed 
profiles of the instantaneous current and shaft torque for various ignition and 
conduction angles are presented in Figs. 5.37 through 5.45. The profile of the 
shaft torque indicates that there is some advantage in reducing the torque 
ripple by using a longer conduction angle within the active region.

Figuro 5.46 shows the computed average power versus ignition angle for 
several conduction angles at '750, 1000, and 1500 rpm. These curves indicate 
that for a given conduction angle, there is an ignition angle that maximizes 
the average power, and as the conduction angle decreases, the maximizing 
ignition angle advances further into the phase inductance cycle.

•/ i 'i x ^

\ r
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Figure 5.8. Test set-up



Figure 5.9. Measured phase current at 200 rpm
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Figure 5.10. Measured phase current at 400 rpm
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Figure 5.11. Measured phase current at 600 rpm
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Figure 5.12. Measured phase current at 750 rpm





:V D..l_.T.'S.

0.006 0.008

S E C O N D S

0.01

Figure o.l4. Measured phase current at 1500 rpm
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Figure 5.16. Measured flux linkage at 1500 rpm



Figure 5,17. Energy conversion loop
fa) 750 rpm
fb) 1000 rpm
(e) 1500 :fprn:0!'i5’;u;:;a.
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(b)

Figure 5.16. continued.
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Figure''5.16. continued.
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Figure 5.18. SRM characteristics at 200 rpm, current level 12A
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Figure 5.20. SRM characteristics at 600 rpm, current level 12A 
fa) current 
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Figure 0.22. SRM characteristics at 400 rpm, current level 24A 
fa) current , , ;
(b) torque



T 
( I

sH
 m

 )

152

36 Iv...-

90

R o to r■angleCdeg)
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Figure 5,24. SRM characteristics at 600 rpm, current level 18A, off-time 0.2 
degree
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Figure 5.25. SRM characteristics at 750 rpm
(a) current 
lb) torque 
fc) flux linkage
(d) energy conversion loop
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Figure 5.25. continued.





Fl
ux

 
Ii

nk
ag

e(
W

b)
 

■ 
Fl

ux
 

li
nk

157

Rotor a n g le (d e g )
(c)

Current (A)

Figure 5e2S„ continued.
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Figure 5.27. SRM characteristics at 1£$0 rpm
fa) current 
fbj torque

. fc) flux linkage 
(d) energy conversion loop
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Figure 5.28. continued.



C
ur

r e
nt

 C
A)

162

Rotor angleCdeg)

h o  -  ’

Rot or angIe C deg >

Figw e 5.29.

; ;.r:: '■ f ’i

SRM characteristics at 1000 rpm8 constant on-angie
(a) current
(b) torque
(c) energy conversion loop
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Figure 5.29. continued.
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Figure 5.30 SRM characteristics at 1500 rpm, constant on-angle
faY current .
(b|.torque
(c) energy conversion loop
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(c) energy conversion loop



Figure 5.31. continued.

FIux Iinkage(Wb)

4 kW



O
ur

re
nt

(A
)

I (i 8

Rotor a n g le (d eg )

Rotor 5'angle(deg)

Figure 5.32. SRM characteristics at 1000 rpm, constant conduction-angle
fa) current
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(c) energy conversion loop
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Figure 5.34. SRM characteristics at 750 rpm, constant off-angle
fal current
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(cj energy conversion loop
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Figure 5.37. SRM profiles at 750 rpm, constant %
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Figure 5.38. SRM profiles at 1000 rpm, constant 60 
fal current 
(b) shaft torque
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Figure 5,39. SRM profiles at 1500 rpm, constant 0oa
(a) , current
(b) shaft torque



Figure 5,40. SRM profiles at 750 rpm, constant Bconi
■ • fa) current 
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Figure 5.41. SRM profiles at 1000' rpm, coast&nt
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Figure 5.45. SRM profiles at 1500 rpm, constant doS
(a) current
(b) shaft torque
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Ignition angle
(a)

Figure 5.46 Average power vs. ignition angle at different conduction angles
fa] 750 rpm 
(bj 1000 rpm 
(c) 1500 rpm
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CHAPTER 6
SUMMARY AND FUTURE RESEARCH

6.1 Sum m ary

The objective of this study was to develop a mathematical model along 
with the necessary computational techniques to predict the static and steady 
state characteristics of an SRM drive with sufficient accuracy. A two- 
dimensional finite element model was developed to handle the nonlinear 
magnetic field inside the SRM. The study of field distribution revealed that 
most of the field energy is concentrated in the narrow airgap region between 
overlapped poles of the rotor and the stator, where high local saturation 
occurs and the fringing flux lines curve sharply. Inadequate modeling of the 
field in this region resulted in adverse inaccuracies in the results at the 
postprocessing stage regardless of the computational method used. However, a 
realistic model for prediction of steady state characteristics of SRM drives 
requires an accurate knowledge of the torque and other static characteristics of 
the SRM as a prerequisite.

The main contribution of this work is the study on the sources of error in 
SRM torque calculation from which guidelines on the model have been 
derived. The improved model yields accurate and smooth torque/angle 
characteristics when used with common methods of torque calculation such as 
the global virtual work method, the Maxwell-stress tensor method, and the 
local virtual work method. The guidelines for the shape of elements and mesh 
uniformity in the critical regions are more effective and efficient than the usual 
technique of just increasing the elemental density. It has been found that 
following the proposed guidelines also improves the accuracy of the overall FE 
solution by proper modeling of the field in critical regions, thus, improving the 
accuracy of other postprocessing results such as, flux linkage and inductances, 
too. The guidelines are not restricted to the case of an SRM; they can be 
applied to any electromechanical device with narrow airgap and high level of 
saturation.
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The spinoffs from the capability to predict the static characteristics with 
7-improved accuracy are many: the obvious use of this capability will be in 

design for optimization or performance studies, as demonstrated by the brief 
sensitivity study in Chapter 4. A more interesting use of the capability is the 
transient simulation of the SRM drive. The work on steady state simulation 
establishes the simulation techniques for the transient simulation. In this caser  
the steady state simulation also provided us with the opportunity to examine 
and study the purpose arid reasons behind the control strategies that are used 
in the test motor.

To predict the steady state performance of the SRM drive, the voltage 
equation of the phase winding was simulated. State-dependent coefficients of 
the voltage equation were updated using a B-cubic spline interpolation 
technique ori the static characteristics. For this purpose, static characteristics 
of the SRM over a wide range of excitation currents for a period of phase 
iriductarice variation were obtained. The instantaneous torque and flux linkage 
were calculated for each current and rotor position using the same 
interpolation technique. Steady state characteristics over a wide range of 
torque and speed have been calculated using the developed model which 
compared favorably with the measured. The model can also be used for study 
of control strategies to obtain better performance in efficiency and smoother 
operation. The brief sensitivity analysis of Chapter 4 can be extended to other 
desigri parameters and material characteristics to study the optimality of 
design. By including the dynamics of the converter circuit in the present 
model, the model can be extended for the study of SRM drive transient 
behavior during load change, start-up, or fault condition.

6.2. Future Research
The work presented in this report can be extended to several areas of 

research as outlined below.
I) The accuracy of field solution and torque calculation can further

be studied using hybrid type FE models. Also, automatic mesh 
generator programs to modify the mesh in the critical regions 
according to proposed guidelines will reduce the computational 
time and modeling effort.

ii) Optimal control of the switching circuit with respect to one or a 
compromise of performance measures is another extension to this
work. Some of the performance measures, which can be



considered are as follows: maximizing specific torque, (-7— -) 

minimizing torque ripple given by  ̂ max ^ mm ̂ ,

ave

and

maximizing kW/kVA rating of tbe drive.
• ave

For specific application such as for low or high speed operation, 
or for high starting torque, optimization on both motor 
geometry and switching strategies could be performed with an 
integrated design approach for lower overall cost.

Analysis of SRM drive transient behavior, especially during 
speed-up and during low speed mode of operation, is important.

Finally, the study of SRM iron losses is of particular importance 
for the motor designed for high speed operation. A transient FE 
model should be established to study the iron losses resulting 
from eddy current flow.
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A ppendix A- A rea C oordinates

In this system, the 'coordinates of an interior point N of the triangle is
expressed as

Al Am T Anx , L m =  —  , Ln - -

where Al, Am, and An are the areas of sub n triangles shown in Fig. A -1, and 
A is the area of the original triangle. Defined in this manner, -both properties 
of basis function, (2.3) and (2.4), are satisfied, that is

_ .T Al +  Am +  An , . • .
. S L i . - - ----- A-------- = 1 (A--I)

• - ien • .......

where

Lj (node j) — <5j;

I if H  
0 if Ml

(A-2)

Note that only two of the three co-ordinates are independent, since (A-I) 
holds.

If, A, at the point (x,y) inside the triangle is assumed to vary linearly
with x and y, then

A(x,y) =  Q1 +  a 2x +  Q3 y  (A-3)

At the vertices of the triangle,

A1 =  Qf1 +  Q2X1 .+ Q3 -J1 (A-4)

Am =  Q1 +  Q2Xm +  Q3 J m (A-5)

An =  Q 1 +  Q2Xn +  Q3J n . (A-6)

where the subscripts I, m, and n denote the values at the vertices of the 
triangle. Taking the inverse of the matrix equation formed by (A-4) through 
(A-S), the o*s can be determined from



Figure A .I.
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Area coordinates
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«1
:  ■

1 xi yi
-I

A1 ;
Oi2 = 1 Xm ym Am
%

— H4 $
I_

__
__

__
__

An

Defining a set of new notations for the elements of the adjoint matrix:

xn xm ? I rm Xj * Xnj- Tjl -  X111 ~ Xj

<ll =ym  -yn >  . qm = T n -Y lr  qn. — Yl -  Tm
Pi =Xmyn — xnyms Pm =  X1Jy1 -X jy n, pn =Xjym —xmyj

(A-7)

and ■ : ■

D =  2A =  Pj +  Pm +  Pn 

(A-7) can be rewritten as

«1
Oi2

W
1_
D

Pl Pm Pn 

Qm Qn (A-8)

Back substituting the expressions for Gtit Ce2 , and «3 into (A-3), the Yector 
potential at the interior point (x,y), is given by

A(x,y) _r
D-

[Pi Pm Pnl +  x[qj ^  qn] +  y(rj rm rn] X

Al

Am (A-.&).
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Appendix B- Integration and Differentiation in Area Coordinates

To facilitate integration and differentiation in an element with irregular 
a mapping of domain to a right-angled triangle as shown, in Fig. B-I is

•used

(x.y) —► (u,v) .(b 1̂)

where. T is the -transformation operator from (x,y) domain to (u, v ) domain. 
For mapping of triangless mapping of three vertices are needed. Lets define a 
set of 3 basis functions,

x =  £ n f i K v) Xi 
i=

y =  £ n f j ( u , v ) y i  
i=

The basis function should have the properties:

f i(Uj,Vj)  =Aj  

£fi(u,v)= I
i=l

(B-2)

(B-3)

(B-4)

(B-3)

An obvious choice is the set

fj =  l - u - v  , f m =  U , f n =  V

that has above properties. Substituting for fj in (B-2) and (B-3), we have,

X Xm X1 Xn X) U
4. Xl

y Ym-Tl Yn-Th V yi_
(B-6)

>From Appendix A, we have

Xm-X i= T n

ym-y i =  -Qn

xn Xj =  ■ rm

Tn-Tl — qm

and inverse transformation matrix is
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Figure B.l. Transformation of coordinates
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T- l rn rm
-qn Qm

Then the transformation matrix T is
L

T =  — —  -----—
rB qm rm qn

By inspection

^ q m -  Fmqa =  D =2A e

Thns •

U ■ ■ I Qm rm X - X 1

v. - D - [Qn 7 _  7 K
The vector potential in the new domain is given by: 

A =  (I-U -V )A 1 +  uAm +  vAn

(B-7)

(B-S)

(B-10)

To the evaluate a double integral in new domain, one needs to transform 
both the function and differential area to the new domain

I = / / g(x,y) dxdy (B-Il)

T
g(x,y) —► G(u,v)

dxdy =  I J I dudv

where J  is the Jacobian matrix given by

d x  d y
_  <9u <9u

d x  d y  
d u  d u

and

I j I =  rHqm- rmqn =  2A =  d  (b -13)

Then I can be evaluated as
' I 1—U

I =  D j  dV J  G(u,v) dudv (B-14)
0 0

Similarly, for differentiating of a function g(x,y) in new domain, we have

rn Qn
Qm

[T- l i t (B-12)



208

d g  _  d G  d u  d G  d v

d x  d u . d x .  d v d x

d g  _  d G  d u  d G  d v
d y  d u  d y  d v  d y

or in matrix form

dg_
" -

du dv
: I
dG

dx dx dx du
dg : du .dv ... dG
dy dy dy dv

(B-15)

Using (B-9), (B-15) can be rewritten as

d g <9G d G
d x _  I Qm Qn ' d u

-  E Jl" 1
d u

dg_ “  D rm rn d G d G
d y d v dv

(B-16)
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Appendix C- Elemental Jacobian Matrix

Within each finite element, the Jacobian matrix is 

<9[SeAe—I] <9[SeA*]
[Je] 5AeSAe

or in more expanded form

. . [Je] =  I 3[SeA,]/5Am I d[SeK } / d K

5 ISel [A I rq I 5 IAeI[AeJ +  [Se]

(C-I)

dA\

Each element of [Je] has two parts, the first part is given by

d ve
Se'Ae

due

dA\. e e (9Aj 

where SeMs Se///e and its (ij)th elements is Sy' =  qjqj A r̂ rj and 

U i = S i i M i A S i m M m A S j n M ll '

(C-2)

(C-3)

(C-4):

To evaluate
d u e

dA\

due

express

dAe
<9B2

(C-S)

The second term on right hand side of (C-5) can be evaluated from (2.45) as

3B 2 ri E riAj +  91 E 9jAj (C-6)
i-i j=iM i D

Now using (2,41), one obtains
+2

<9B
M

(C-7)

—►2
The first term on the right hand side of (C-5) is the slope of v—B curve which 
is obtained from the B-H curve. I tcan b e  shownthat

M, 2 dve

A H F
(U i-U j) (OS)

Now, matrix S may be defined as
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[Sij] =  (Ui -U j )  (C-9)

The second part of the (ij)th element of [J3] can be shown to be given by

W 2 =  H  (c-xa)

Thus, the Jacobian [Je ] can be expressed as the sum of the two matrices

r
'

r i
* c -V';'

dl'e _
Je = Se + —̂+2 ®

9 B e
(C -Il)

with its elements as

M11=Wli +
due
^2

8B b I s I 1
(C-12)

■ MW

-• -r -
' - : • •

4



Appendix D- Field Variables and Partial of 
Flnx Density in Polar CoOrdiriateS

■ '''Fhei^magnetic : vector. potential,A, ■ inside an element is expressed as -a 
:fnnetibn"©f:thte';MVP?s at the nodes of that element, that is by - hV "

; A - .  S L iA i..;; (D-I)

where .0 is the set of elements node, {1, rh, n}. The area coordinates,!^ , as 
defined in Appendix A  are given as

Li =  ^ -  =  (Pi +  qjx +  rsy)
■ . .

(D-2)

Tb obtain A  in polar form, we make the following substitution for cartesian 
coordinates x and y: .

x =  r cos#
y =  r sin 6 ^

In polar coordinates, the expression for the area of a triangle, Aes is

A.e =  [rm rnsin( )+rn 1Ys*11 ( )  +  iYrmsin(0m-0*)] (D-4)

and that for area coordinate of node /  is

Le =  [r rmsin(#m-# )+ r  rnsin(#-#n) +  rmrnsin(0n- 0 m)] (D-5)

The above expression for area coordinates can be substituted in (D-1) to 
obtain MVP in polar coordinates.

The components of the flux density,B, in polar coordinates can be 
obtained from

Br ^  , Br
r dd ' '  dr

Differentiating A with respect to 6 and r, respectively, we obtain

Br =  {A/ [—rm cos(#m —#)+rn cos(#n —#)]

; (D-6)

+  Am [~rncos(#n —#)+r/cos(#^—#)]
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+  An[—r^cos(fy-#)+rmcos(0m-<9)]}

Bo =  {A f [—rmsin((9m -tf)+rnsin(tfn -0)]

+  Am (—rn s in ((9n —<9) H-r ŝin ( —(9) ]

+ An (—r^sin (̂ —0) +rm sin (0m—0) }

(D-7)

(D-8)

To find the partial derivatives of Br and B tf due to small rotation of 
rotor, 86\, let (D-7) be written as:

Br M *.) > Btf
M *,)

2A(^i) ’ " 2A (4)

Now differentiation Br and Btf with respect to 0X yields

<9Br i  Sbr br QA

P b

<9Btf

2A BOi 

I <9btf

2 A2 80-x

W d A
2 A 80-x 2 A2 80x
dbr <9btf

where the partial, d e r i v a t i v e s , :aaid
UU[ U  C/j UU\

follows:

dhT
~80j

8be

V-80.

(Am - A n )rtf sin((9-^) 

(Am- A n)r^cos(0-0tf)

(D-9).

(D-IOa)

(D-IOb) 

can be calculated as

(D-Ila)

(D-Ilb)

=  y ! rn rycos(6^-£n ) - iy  rm cos(0m -B n)] (D-12)

The dot product, B" M
80e

expression given in (D-10).

m  -  SB

, in (3.32) can be evaluated with the help

B'
80f

SBtf
Br ^ ”33”oQf 80.' t
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I
2A

Sbr

~ d d ~ e
SA

d d f  J 2A d d j

Term is  brackets on the right hand side of (D-13) using- expressions from (D- 
7)s (B-S)s and (D-12) after some trigonometric manipulations, can be written
as

Sbr Sbo
>r ~KE~ +  Bo TT-Ovg dug

rHAm An)
2A

+  rn (A<?—Am)sin(#n —6£ )\ (D-14)

Now substituting for the term in brackets and for 4 ^ -  from (D-14) and (D-
OVf

11), B

B1

SB is as follows:dd£
SBe r/ (Am- A n)

e 88,'e 2A 2

B2

irm (An —A^)sin(^m —Of) +  rn (A£- A m)sin(8n - 6 e)\:

2A
[rnr^cos(^—0n)—r<frmcos(0m—dn)] (D-15)
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Appendix E- Parameters and Material Characteristies of 
T estS E M otor

; The test motor is a 4 kW , 6/8, 4-phase switched reluctance motor from 
TASK Drive of UK and the control is OULTON 112. The nameplate data for 
the SR motor is given in Table E.I.

Table E.I. Nameplate datafor SR testm otor

phases: 4
Rated hp: 5.5
Rated Voltage: 380/415 volts
Nominal Current: 9 Amps
Supply Frequency: 50/60 Hz
Nominal Speed: 1500 rpm

E.I. Motor Geometry
As the exact dimensions of the test motor were not available, the values 

given are our best estimate based on direct measurement. A cross-section of 
the test motor is shown in Fig. E .l. These data is given in Table E.2.

E .2 . M aterial Characteristics
The FE program requires the material characteristics for all regions in 

the motor cross-section. The regions occupied by air and the winding were 
assigned a permeability of the value equal to that of the free space(i/0). Rotor 
and stator, and rotor shaft are assumed to have the magnetic characteristics of 
M-IO steel given in Table E.3.

• -T
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\

N

Figure E.l. Dimensions of the test SR motor

■■ : :
i ■ . ■ ■ :
II ■■
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Table E.2. Geometric data of the SR motor 

(All dimensions in milimeters)

Rsh: 15.0
Ert: 30.3
Rr: 47.82
Rsi' 48.18
Ryt 78.4
Eso : 89.8
g : 0.36

V 17.52
hs: 30.22
Z : 151

22.5° '

A: 20.2°
N : 56 turns
Ns: 8
Nr: 6
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Tabif E.3 . Motor lamination B-H data 

B (Tesln) H (At/m)

0.5 54.
0.55 . 60.5
0.0 67.6
0.65 74.S
0.7 83.5
0.75 93.5
0,8 104.4
0.85 116.9
0.0 131.3
0.95 148.2
1.0 167.1
1.05 187.8
1.1 214.9
1.15 250.7
1.2 298.4
1.25 374.
1.3 485.5
1.35 652.6
1.4 1010.6
1.45 1551.8
1.5 2308.
1.55 3342.
1.6 4775.
1.65 6366.
1.7 8356.
1.75 10743.
1.8 14165.
1.85 18303.
1.9 23874.
1.95 30240.
2.0 44565.
2.05 . 79580.
2.06 87537.7
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