
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

8-1-1989

Algorithm Choice For Multiple-Query Evaluation
Myong H. Kang
Purdue University

Henry G. Dietz
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kang, Myong H. and Dietz, Henry G., "Algorithm Choice For Multiple-Query Evaluation" (1989). Department of Electrical and
Computer Engineering Technical Reports. Paper 675.
https://docs.lib.purdue.edu/ecetr/675

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages

IilliIllllMii

Algorithm Choice For
Multiple-Query Evaluation

M. H. Kang
H G. Dietz

TR-EE 89-50
August, 1989

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

A lgorith m C hoice

F or M u ltip le-Q u ery E va lu a tion

Myong H . Kang and Henry G. Dietz

School of Electrical Engineering
Purdue University

W est Lafayette, IN 47907
August 1989

ABSTRACT

Traditional query optimization concentrates on the optimization of
the execution of each individual query. More recently, it has been
observed that by considering a sequence of multiple queries some addi
tional high-level optimizations can be performed. Once these optimiza
tions have been performed, each operation is translated into executable
code.

The fundamental insight in this paper is that significant improve
ments can be gained by careful choice of the algorithm to be used for each
operation. This choice is not merely based on efficiency of algorithms for
individual operations, but rather on the efficiency of the algorithm choices
for the entire multiple-query evaluation. An efficient procedure for
automatically optimizing these algorithm choices is given.

I . Introduction

High level relational database query languages such as SQL and QUEL allow users
to express what information is desired, not how to obtain it. This enables applications to
be independent from details of secondary storage management. The query optimizer is
responsible for determining the strategy for efficiently evaluating the queries presented by
the user.

Optimization of database queries specified in high level query languages involves
resolving issues such as:

• In what order should the database relations be scanned and by what access path?
• Which algorithms should be chosen for basic algebraic operations such as join and

selection?
• When and where should temporary results be stored?

In centralized database systems, computation cost and secondary storage access cost dom
inate the cost of processing a query. The structure of query optimization is guided by the
interactions between these cost components.

Many papers address the problem of optimization of individual queries for relational
database systems [6,7,13]. A separate “access plan” is generated and executed for each
query. The cost of processing a series of queries evaluated in this, manner is equal to the
sum of the processing costs for each query.

Recently, multiple-query optimization has been addressed in many papers [3,11,15].
A single access plan is generated for a series of queries to reduce the overall cost of pro
cessing the series of queries in comparison to the combined cost of processing each query
from the series separately. The multiple-query optimization approach is attractive when:

• A series of queries is embedded in an application program such as EQUEL [16].
• A series of queries is submitted for batch processing.
• Queries are interactively submitted such that several may be pending at some point

in time.
• Deductive query processing causes single deductive queries to generate a series of

conventional queries.

The multiple-query evaluation process can be divided into the following steps:

[1] Decompose queries into high-level primitive operations (e.g., selection, join, projec
tion).

[2] Identify common expressions and construct a global access plan.
[3] Choose the most efficient algorithm for each operation.
[4] Convert the series of queries into a lower-level program (perform query translation).
[5] Compile using whatever conventional optimization techniques are appropriate (e.g.,

loop jamming, register allocation, etc.).

Previous research on algorithm selection has centered around choosing the best algo
rithm for each basic algebraic operation (e.g., join, selection) considered independent of
context [2]. In other words, the same algorithm is always used for the same type of
operation. Some work has been done toward using information about the operands of
each query (e.g., relation size) to choose among alternative algorithms for each operation
type [4,13]. However, in this paper we propose tha t algorithms for each operation be
selected by examining the entire series of queries and the interactions implied by particu
lar algorithm choices.

Using the analysis of individual operations, it is relatively easy to determine for each
operation a small series of feasible algorithms. Some of these algorithms are clearly infe
rior to others, regardless of context; these can be eliminated to create a series of possibly-
optimal algorithms for each type of operation. The problem of optimal algorithm selec
tion is then simply the choice of the proper algorithm from each series for each operation.
We represent the differences between alternative possibly-optimal algorithms by the series
of hashed temporary values (temporary relations) each algorithm uses and creates.

If a temporary relation is created in one operation and can be reused in a later
operation, then the cost of recreating that temporary relation can be averted. This effect

Page 2

can make the later operation be “cheaper” using the algorithm involving the temporary,
whereas if the temporary actually had to be created rather than reused, an alternative
algorithm would be cheaper. Some operations also have the effect of making temporaries
become invalid because they modify the underlying relation, in such cases, one has the
opportunity to update the temporary so that it may be reused (still possibly cheaper than
recomputing the temporary relation) or the algorithm may simply invalidate the tem
porary relation (assuming that the temporary relation would not be used again). These
interactions are at the core of the proposed algorithm selection procedure.

In section 2 a summary of relevant work is presented, discussing both previous work
on multiple-query optimization and the hash-based algorithms typically used to imple
ment individual operations. Section 3 presents the proposed algorithm choice optimiza-
tion procedure. The interactions between previous multiple-query optimizations and the
proposed algorithm choice procedure are outlined in section 4. Finally, section 5 summar
izes the paper and indicates the direction of future research.

2. R elated W ork

In this section, previous multiple-query optimization techniques and hash based algo
rithms for individual operations are reviewed. Throughout the examples in this paper,
queries are expressed in the tuple relational calculus language QUEL [16].

2.1. M ultiple-Q uery O ptim ization

The objective in grouping a series of queries together is to reduce the total evalua
tion cost by identifying and eliminating common subexpressions. This goal is approached
in two slightly different ways, one based simply on detecting common subexpressions
given a particular query execution order, the other based on reordering the execution of
queries so as to minimize the expected execution time (by inducing common subexpres
sions).

It is relatively straightforward to identify common subexpressions and implied rela
tionships [11]. However, sharing of common expressions during execution is not always
better than re-evaluation of the expressions (due to variations in the sizes of relations
meeting particular constraints).

Exam ple I

Consider 3 relations:

EMP(name, salary, department)
SALES(department, item)
SUPPLY(item, supplier)

and two queries Q1 and Q2:

Page 3

Q1: r e t r i e v e EMP
w h ere S A L E S . i t e m = ' r a d i o ' .

and EMP. s a l a r y > 2 0 0 0 0
and EMP. d e p a r t m e n t = SALES. d e p a r t m e n t

Q2: r e t r i e v e EMP
w h ere S A L E S . i t e m = ' t o y *

and EMP. s a l a r y < 15000
and EMP. d e p a r t m e n t = SALES. d e p a r t m e n t

In Q1 and Q2, sharing the common subexpression EMP. d e p a r t m e n t =
SALES . d e p a r t m e n t might not be beneficial because early restrictions (e.g., selection
operations) may substantially reduce the size of the relations which are involved in this
join operation.

Also it should be noted tha t common subexpressions cannot be identified across
update operations because the updated relation is treated as a completely new relation
unrelated to the original relation. This problem is very similar to tha t which arises in
disambiguating array references within conventional language compilers: storing a value
into a [i] where the nothing is known at compile time about the value of i makes it
necessary to assume that any element of a may have been changed [I].

The other approaches, which are based on reordering the execution of queries, are
generally referred to as techniques for formulating a “global access plan” — an execution
ordering of the subqueries within a series of queries. Typically, these systems do not
reorder update operations, but only retrieve queries [15].

The approach consists of formulating several different access plans, computing
expected evaluation costs for each, and then accepting the best of those tried [15]. This
can also be treated as a dynamic programming problem [11].

Exam ple 2

Consider three queries using the same relations as in example I:

Q1 ! ' r e t r i e v e EMP
w h e r e EMP. d e p t = ' s e r v i c e '

Q 2 : r e t r i e v e EMP
w h e r e S A L E S . i t e m = ' r a d i o '

and S A L E S .d e p t = EM P.dept
Q3: r e t r i e v e EMP

w h e r e S A L E S . i t e m = ' r a d i o '
and EMP. s a l a r y > 2 0000
and S A L E S .d e p t = EM P.dept

In this series of queries, the result of Q 2 implies the result of Q 3 and there are two
common subexpressions which are SALES, i t e m = ' r a d i o ' an d SALES, d e p t
= EM P.dept . But Q1 has neither common subexpressions nor implied relationships

Page 4

with Q2 and Q3. Therefore the following access plan could be applied:

SALES.item
Tempi 4-

radio

Result3 «-
Tempi,salary > 20000

Result2 4-

Templ.dept = EMP.dept

EMP.dept
Resultl 4-

service

In order to distinguish between the multiple-query optimization described above and
the multiple-query optimization we propose, we find it convenient to refer to the above as
“operation-level optimization whereas the optimization presented in this paper is
“algorithm-level optimization. ’9

2.2. Algorithm s for Relational Algebra Operations

It is generally accepted that there are three main types of algorithms for computing
relational algebra operations. These differ primarily in the basic indexing structure used:
linear scan using nested loop, a tree structured sort-merge, or a hash indexing scheme.

In general, as databases become large, the hash based algorithms tend to be most
efficient; for example, the GAMMA [5] database machine uses only hash based algorithms.
The remainder of this section outlines hash based algorithms implementing join, union,
intersection, set difference, division, and selection1.

1 A hash based Cartesian product is not described because a linear scan using nested loops — the

Page 5

For convenience, in the following examples which require relations, the three rela
tions R(a,b,c), S(d,e,f), and T(g,h,i) are used.

2.2.1. A lgorithm s Im plem enting Join

It is well known that one of the most costly operations in database processing is join.
Several join algorithms (nested-loop, sort-merge [2], and hash based join [8]) have been
studied and the performance of these alternatives has been compared [4,13]. There are
two kinds of hash based join algorithms, split based and non-split based [10]. The split-
based join algorithm divides relations into a number of disjoint subrelations before pro
cessing the join operation. The non-split join algorithm does not divides relations before
processing. Which algorithm is best depends on the ratio between the size of relations
which are involved in the join and the size of main memory [10].

If one assumes that relations are always very large, then the split-based join is
always preferable. The split works because if a tuple x in R is in R- and it joins with a
tuple y in S, then the joining attributes of x and y must be equal. Therefore there is no
joining of tuples across different hash buckets. This is why, to join R and S, it suffices to
join the subsets R- and Si for each i.

The algorithm is roughly:

[1] Select a hash function h and partitions the values of h into, say, H1, ..., Hn.
[2] Partition relation R into partition elements R 1, ..., R n, where a tuple x in R is in R.

whenever h(x.a) is in Hi where a is a hash attribute.
[3] Partition relation S into partition elements S1, ..., Sn, where a tuple y in S is in S.

whenever h(y.d) is in H where d is a hash attribute.
[4] Join R . and Si Zor each i in I to n.

It is convenient to represent these algorithms using a somewhat more compact abstract
notation. In this notation, the above algorithm becomes:

[1] select hash-function h
[2] [R 1, . . . , R n] «— h(R.a) ; a is the join attribute of R
[3] '[Si , ... , S J - h(S.d)
[4] for each i in I to n do

join(R i, Si)

As hinted above, the apparently recursive invocation of join(R ij Si) simply indicates that
the split-based join decomposes the relations into smaller relations which must be joined.
Since these relations are so much smaller, it is not critical for our purposes exactly which
join algorithm implements them.

obvious implementation — is generally the most efficient for this task.

Page 6

2.3. Algorithm s Im plem enting Selection

Because selection is generally viewed as straightforward and relatively inexpensive,
little attention has been given to the analysis of alternative selection algorithms. How
ever, selections are common in database programs and even a small improvement can be
noticeable. Two selection algorithms are considered in this paper:

Loop Selection Algorithm:
Tuples are selected from a relation by testing each tuple against the selection
condition and extracting only those which satisfy the condition. This algorithm is
generally represented in the low-level form as a loop over all tuples in the relation.

Hash Selection Algorithm:
Hash selection operates much as the loop selection algorithm, but attempts to
minimize the number of full tests against the selection condition by using a hash
function to partition the relation so that the test loop need only be performed on the
tuples within one partition element. The algorithm is (assuming that the condition
is an equality):
[1] select hash-function h
[2] [R 1, ... , R n] +— h(R.a) ; a is the hash attribute of R
[3] i «— h(selection-value)
[4] selectfRj.a = selection-value)

Clearly, loop selection performs better than hash selection unless the hash function
is significantly cheaper than the full condition test and only a small fraction of the tuples
will be in the partition element requiring the full test. It is unlikely that hashing would be
more efficient, since the full test is most often a simple comparison for equality.

However, if, as a side effect of computing some other high-level operation, there
exists an appropriate partition element for the same hash attribute, then the hash selec
tion algorithm is more efficient because it tests fewer tuples.

2.4. Algorithm s Im plem enting Other Operations

Hash based union, intersection, and set difference algorithms work same as hash
based join algorithm if join(R i, Si) in step 4 of join algorithm is replaced by union(R i,
Si), intersectf R i, Si), or difference(R i, Si). Hash based division algorithm which
divide R by S can be represented as follow:

[1] select hash-function h
[2] [R 1, ... , R n] h(R.a) ; a is the hash attribute of R

[3] i S,. . . . , S„”i - h/S.d}
[4] for each t in I to n do

T- «— divide (R-, S -)
[5] intersectf T1, . . . intersectf Tfi l , Tn))

Page 7

Note that divide(R^i) is the same as join(R^j S .) if the hash function perfectly parti
tions the divisor relation S. Hash based algorithm can be used for projection at duplicate
elimination stage. 2

3. Algorithm -Level Optim ization

After the operation-level optimization has been performed and algorithms for these
operations have been selected, queries are converted into a lower level representation of
the program. This lower level form is essentially a program or intermediate code struc
ture with only operations close to the machine instruction level represented, i.e., database
operations do not appear as single items, but as sequences of instructions which imple
ment the database operations.

Since the database program in this form is indistinguishable from a conventional
program, conventional compiler optimization techniques can be applied at this stage. For
example, if two selections on a relation are converted into two low level loops with identi
cal ranges, then the compiler can apply loop jamming [1] to remove the overhead of one
of the loops. Note that loop jamming would not have been applicable to the original form
of the query program^ This is also true of common subexpression elimination, instruction
scheduling, etc.

Conversely, current compiler transformation technology does not provide the ability
to recognize an algorithm and to select a dramatically different alternative algorithm —-
yet this is easily done at the higher operation level. In addition, since the compiler
operating on the low level form has no concept of a “relation,” it is unable to figure out
the effect of changes to relations. For example, let Temp be a temporary relation tha t is
a subset of relation R such a particular property holds. The low level form cannot
represent the fact tha t the tuples in Temp still maintain the desired property after a
change has been made to Temp. However, high level optimization might use Temp
instead of R in computing a further-constrained relation.

To span the gap between operation-level and traditional compiler optimization, we
propose “algorithm-level optimization.” The algorithm-level optimizer does not optimize
high-level operations nor does it optimize low-level code in the traditional optimizing
compiler sense, rather, it uses information from both levels to intelligently decide which
algorithm should be used to represent each occurrence of a high-level operation in the
low-level form.

A prime consideration in the choice of algorithm for each high-level operation is the
amount of the computation which is not redundant with other computations. In other
words, one algorithm may be cheapest when considered by itself, but if a partial result is
available, a different algorithm may be cheapest. The availability of these partial results,

2 For completeness, we have included these operations in our discussion although space did not
permit including them in the algorithm choice procedure given in the appendix.

Page 8

or ‘‘common subexpressions,5’ is determined by predicting what temporary relations will
exist in later operations. Unlike low-level optimizers, the algorithm-level optimizer knows
what effect high-level operations may have on relations, hence it can be applied to queries
that contain update operations (i.e., append, delete, and replace) as well as to those which
simply retrieve values.

It should be noted that the algorithm-level optimizer tracks “ temporary relations”
which are created within individual high-level operations and that these relations are not
directly represented either in the high-level or low-level forms. For example, each hash
partition of a relation can be viewed as a temporary relation in this sense.

3*1. U pdate Operations

We consider three update operations: delete, append, and replace. As for the retrieve
operation, each operation specifies a relation to be updated and a qualification clause
specifying which tuple of the relation are to be affected. We term two kinds of
qualification clauses simple and complex. A complex qualification requires examination of
multiple relations in order to determine the tuples to be updated. A simple qualification
is one which involves only one relation and, hence, which can always be performed in a
single scan of the relation.

3.1.1. Delete

The delete operation simply removes all selected tuples, hence, a delete with a sim
ple qualification requires no temporary relations and is not amenable to algorithm-level
optimization. However, complex qualifiers used in delete operations effectively embed join
operations and algorithm-level optimizations can be applied.

Although the fastest way to determine the set of affected tuples for a complex
qualifier delete operation is using hash partitions, there are two techniques for this. In
one case, the hash partitioning is used only for the delete operation — the partition is not
updated to reflect the delete, hence it is generally not useful after the delete. In the other
case, the partition is updated to reflect the relation with the tuples deleted, hence, the
partition remains valid after the operation. The first method is better than the second if
no operations following the delete require hash partitions with the same hash attribute.
However, if further operations can use the same hash attribute, the second technique
saves the expense of rehashing the entire relation. For example:

delete R
where R.a = S.d

can be represented in abstract form as:

Page 9

[R 1, ..., R n] 4— h(R.a) ; a is the hash attribute of R
[S1, ..., Sn] 4— h(S.d)
for each i in I to n do

delete(R i, jo in f R i, Si))
; delete tuples from R and R i which satisfy
; the condition jo in f R i, Si)

Notice that all tuples which remain after the deletion are still validly partitioned accord
ing to the hash function. Hence, if a later operation can also make use of partitioning by
this hash function, the re-partitioning of the relation is unnecessary. For example, if the
next operation was:

retrieve R
where R.a = 'abc'

then the complete computation would simply be:

[R 1, ..., R n] 4— h(R.a) ; a is the hash attribute of R
[S1, S J <- h(S.d)
for each i in I to n do

deletef R i, jo in f R i, Si))
; delete tuples from R and R i which satisfy
; the condition jo in f R i, Si)

i 4— h(’abc’)
retrievef R i, selectfR^a = ’abc’))

which avoids the recomputation of the hash partition for the relation R.

3.1.2. Append

Append is used to add new tuples to a relation. The new tuples can either be expli
citly given in the append command or they can be derived by performing a specified
operation to a set of tuples selected from an existing relation. We call these two kinds of
append “explicit” and “derived.” Explicit appends are far more common than derived
appends.

An explicit append is specified by giving the name of the relation and a list of tuple
values to be appended to that relation. In general, it is preferable tha t if a tuple to be
appended exactly matches a tuple which exists in the target relation then the tuple is not
appended — duplicate tuples are not created. In order to avoid making duplicate tuples,
it is necessary to scan the target relation for copies of the tuples to be appended. This
can be accomplished either using a hash partition of the target relation or by linearly
scanning the target relation itself.

A derived append specifies the target relation, a clause which selects a set of tuples
from which the new tuple set will be derived, and the operations to be performed to
derive the new tuple set. Just as for the delete operation, the clause which selects a set of

Page 10

tuples can be simple or complex (using the same definitions as for delete).

A derived append with a simple selection clause can be implemented very much as
an explicit append, except in that the tuples being selected may be taken from a relation
other than the target relation.

However, a derived append with a complex selection clause is somewhat more pro
found than a complex delete. Suppose that a new relation R(a,b,c) is to be created using
a derived append with a complex clause involving relations S(d,e,f) and T(g,h,i)e For
example:

append to R (a=S.d, b=T.h, c=S.f+T.h)
where S.d = T.g

In this example, only the S.d, T.h, and S .f fields are used in deriving the tuples to be
appended. Hence, the implicit join can actually be filtered by a projection of the fields
used in the operations creating the new tuples, in this case, a projection of d, /, and h over
the temporary relation. Further, although the operations creating the new tuples are
specified in terms of the original relation field names, these references would have have to
be internally translated to reference the fields of the temporary relation resulting from
the join.

If there are further clauses using the same condition, then the projection used should
be over the union of the fields needed by the entire sequence of such operations. This is
actually a multiple-query optimization, noted here simply because it is not generally dis
cussed in multiple-query optimization.

3.1.3. Replace
)

Although the replace operation is often treated as a delete followed by append, how
ever, the append operation is potentially far more complex than replace. This is because
the replace qualification clause is constrained to refer to the target relation: only existing
tuples can be replaced.

JFor this reason, replace is most similar to a delete operation, differing only in that
the selected tuples are modified rather than deleted.

3.2. A lgorithm Choice

As discussed above, many of the basic database operations (not just retrieve opera
tions) are implementable by any of several algorithms and proper handling of interactions
between algorithms for a series of operations can yield significant performance improve
ments. In this section, we attempt to formalize the way in which optimal algorithm
choices can be made. There are several steps before the optimization algorithm can be
applied.

Page 11

3.2.1. Preparatory Steps

First, each query is separated into two steps: qualification and effect. The
qualification step selects tuples which satisfy the qualification clause of the query. The
effect step performs the operation specified on the tuples which were selected in the
qualification step. For our purpose, retrieve operations are considered to have no effect
step since they do not change any relation; further, simple delete, simple replace, and
explicit append operations are considered to have no qualification step.

Second, either a local or global access plan is established. This was described in sec
tion 2.1.

Finally, in the third preparatory step, queries are transformed into an intermediate
form which will be the input to the algorithm-choice analysis procedure. This intermedi
ate form includes predictions for the costs incurred if hash partitions need to be updated.

For the computation of costs, the following table defines the relevant variables.

comp time for comparing keys in main memory

hash time to hash an attribute which is in main memory

move time to move a tuple in main memory

IO time to read or write a block between disk and main memory

n number of hash partitions for a given relation

|R | number of pages in R (similar for S and T)

{R} number of tuples in R (similar for S and T)

Suppose temporary relation Temp is appended to relation R, then the approximate cost
will be:

{Temp} *' (hash + move) ; hash tuple and move to
; output buffer

+ !Temp! * 2 * IO ; read and write partitioned
- ; relation from and to disk

and cost—of-rehashing—relation (the relation R) at that time will be:

; hash tuple and move to
; output buffer
; read and write partitioned
; relation from and to disk

W hereT vew -R isiJuJlCmp.

The cost of delete depends on the type of deletion. In the case of a complex delete, if
the hash partitions can be updated while the qualification clause is being evaluated (e.g.,
change hash partitions for R.a with delete R where R.a = S.d) then the cost is simply

{New_R} * (hash + move)
+ !New_R! * 2 * IO

Page 12

I New—R\ * IO where New—R is R - Temp. But if temporary relation Temp is deleted from
relation R which already has hash partitions, then the approximate cost will be:

{Temp} * (hash + move) ; hash tuple and move to
; output buffer

+ ({Temp}/n * {R}/n) * n * comp ; probe for a match
+ (Ir ! + !Temp!) * IO ; read relations from disk
+ !New_R! * IO ; write relation to disk
This exceeds cost—of—rehashing—relation (i.e., {New—R} * (hash + move) + | New—R \ * 2 *
IO), hence it is not necessary to consider the possibility of using a hashing scheme.

In the case of simple delete, the cost of delete ranges from one partition element
being changed (e.g., change hash partitions for R.a with delete R where R.a — ’abc’) to
all partition elements being changed (e.g., change hash partitions for R.a with delete R
where R.b — ’ede’). If all partition elements must be changed, the cost of hash delete
exceeds cost—of—rehashing—relation.

The cost of replace can be thought of as the sum of the cost of delete plus the cost of
append operation.

3.2.2. The A lgorithm Selection Procedure

In the algorithm there are three types of operations:

[1] those which do not require hash partitions, but which can be efficiently implemented
using hash partitions if they are available (e.g., selection)

[2] those which require hash partitions which are then modified, with the algorithm
choice being whether to update the hash partition or simply to update the base rela
tion (e.g., delete, append, replace)

[3] and those for which there is only one good algorithm, which always produces hash
partitions (e.g., join)

We call each potentially-generated hash partition an “available node” (anode). When it
cannot be determined in one pass (without lookahead) whether the optimum algorithm is
the choice which generates a particular hash partition, the algorithm selection procedure
produces a “conditional” available node. Later, when sufficient lookahead has been
obtained to decide tha t these conditional anodes should have been generated, the anodes
are made unconditional. After the entire input has been processed, any remaining condi
tional anodes indicate that the corresponding algorithms should not be applied (i.e., the
alternative algorithms should be used). Hence, a second pass can directly encode the
selected algorithms for the entire input.

A detailed description of algorithm selection procedure, PreAvail, is presented in
appendix.

Page 13

3.2.3. Increm ental Application

It is significant that this procedure also can be incrementally applied to queries in an
interactive query environment.

Suppose that the system is given, in real time, a series of queries Q9 which at time
T0 is {q19 q2, qs, ..., The above algorithm selection procedure is applied, hence gen
erating a table of anodes representing the optimal algorithm choices given the queries
available at time Tq. Hence, the system can now initiate the computation of q^ at this
time, any remaining conditional anodes for, or linked to, q± are deleted.

While q ̂ is executing, time passes and new queries are added to the system. Suppose
that at time TQ+̂ one additional query is made, giving the sequence {qgt} q$9 q^9 ..., qn,
qn+1}- All the existing anodes are still valid; only the anodes for query must be
evaluated. Notice, however, that the evaluation of the anodes for qn+1 may cause earlier
conditional anodes become unconditional.

Hence, using simple incremental application of the algorithm selection procedure,
the algorithm choice for earlier, but not yet executed, operations can be optimized on the
basis of all enqueued queries.

3.2.4. Other Considerations

As stated above, the principle upon which algorithm selection is based is the availa
bility and reuse costs associated with hashed temporary relations.

In computing these costs, we have not considered the use of various physical data
organizations (data layouts) which may differ from system to system. We further
assumed that there is no limit on the number of simultaneously live temporary relations.
However, these restrictions could be lifted with only minor adjustment to the algorithm
selection procedure.

Although we presented the computation of simple, fixed, costs, the procedure does
not change if the costs are variables; such cost computations are simply beyond the scope
of this paper. If only a limited number of simultaneously live temporary relations can be
accommodated, then the problem of selecting which should be created is equivalent to
that of register allocation and assignment within conventional compilers. Hence, any of
the usual register allocation techniques can be used as a second pass to correct algorithm
choices which created too many temporaries.

4. Interaction Between Algorithm -Level Ajnd Operation-Level O ptim ization

So far, the algorithm-level optimization has been applied to fixed access plan. But
better benefit can be obtained if global access plan considers the effect of the algorithm-
level optimization. Let’s consider the following example:

Page 14

Q1 : retrieve R
where R.a = 'abc' and R.b = 'def'

can have two access plans P l or P2:

P1: Tempi <- R.a = 'abc'
result <- Tempi.b = 'def'

or

P2: Tempi 4 - R.b = 'def'
result 4- Tempi.a = 'abc'.

If one of the hash partitions of R . a or R.b already exists then one plan is better
than the other. If the global access plan analysis generates two apparently equivalent
access plans P 1 and P 2 then algorithm-level optimizer will select one of them based on
performance at tha t level. For example:

Q1: retrieve R
where R.a = 'abc'

Q2: retrieve R
where R.a = S.d and R.b = S.e

Q3: retrieve T
where R.b = T.g

will produce either access plan P 1:

P1 : resultl 4- R.a = 'abc'
Tempi ♦- R where R.a = S.d
Result2 4- Tempi where Tempi.b = S.e
Results 4- T where R.b = T.g

or P 2:
P2:- resultl 4- R.a = 'abc'

Tempi 4- R where R.b = S.e
Result2 4- Tempi where Tempi, a = S.d
Result3 4- T where R.b = T.g

If plan P 1 is chosen, then hash partitions of R.a are shared between selection of Ql
and join of Q2; if plan P 2 is chosen then joins of Q2 and QS share hash partitions of R.b.
This leads to the following evaluation:

Page 15

benefit of one extra selection operation (P1):
((n-1)/n) * ({R} * comp + Sr ! * 10)
benefit of one extra join operation (P2):
{R} * (hash + move) + 2 * Ir ! * IO

Hence, since plan P 2 is expected to be faster, it will be chosen.

5. Conclusions And Future W ork

This paper shows that significant improvements can be gained by careful choice of
the algorithm to be used for each operation. This choice is not merely based on efficiency
of algorithms for individual operations, but rather on the efficiency of the algorithm

' choices for the entire multiple-query evaluation. An efficient procedure for automatically
optimizing these algorithm choices is given.

The interaction between the algorithm-level optimizer and operation-level optimizer
further demonstrates the potential improvements to be gained by the integration of both
optimization levels.

Although the algorithm selection procedure is given using hash based algorithms, we
believe that the same general approach can be applied to a far wider range of algorithms.
There is also very little linking the procedure to a particular query language, and the
technique should easily apply to other very high level languages such as SETL [14] and
PROQUEL [9].

Ongoing research centers on the parallelization and optimization of multiple queries
for multiprocessor systems.

Page 16

References

[1] Aho, A. V., and Ullman, J. D. Principles of compiler design. Addison-Wesley (1977)
[2] Blasgen, M. W., and Eswaran, K. P. Storage and access in relational databases. IBM

Syst. J. 16, 4 (1977)

[3] Chakravarthy, U. S., and Minker, J. Multiple query processing in deductive data
base using query graphs. Proceedings of the Conference on Very Large Data Bases
(1986)

[4] Dewitt, D., and Gerber, R. Multiprocessor hash based join algorithms. Proceedings
of the Conference on Very Large Data Bases (1985)

[5] Dewitt, D., et al. GAMMA - A high performance dataflow database machine.
Proceedings of the Conference on Very Large Data Bases (1986)

[6] Finkelstein, S. Common expression analysis in database applications. Proceedings of
the ACM-SIGMOD International Conference on Management of Data, (1982)

[7] Jarke, M., and Koch, J. Query optimization in database systems. ACM Computing
Surveys, 16, 2 (June 1984)

[8] Kitsuregawa, M., et al. Application of hash to database machine and its architec
ture. New Generation Computing. I (1983)

[9] Lingat, J., et al. Rapid application prototyping the PROQUEL language. Proceed
ings of the Conference on Very Large Data Bases (1988)

[10] Nakayama, M., et al. Hash-partitioned join method using dynamic destaging stra
tegy. Proceedings of the Conference on Very Large Data Bases (1988)

[11] Park, J., and Segev, A. Using common subexpressions to optimize multiple queries.
Proceedings of Conference on Data Engineering (1988)

[12] Rosenkrantz, D. J., and Hunt, H. B. Processing conjunctive predicates and queries.
Proceedings of the Conference on Very Large Data Bases (1980)

[13] Shapiro, L. D. Join processing in database systems with large main memories. ACM
Transactions on Database Systems, 11, 3 (1986)

[14] Schwartz, J., et al. Programming with sets: An introduction to SETL. Springer-
Verlag (1986)

[15] Sellis, T. K. Multiple-query optimization. ACM Transaction on Database Systems,
13, I (1988)

[16] Stonebraker, M., et al. The design and implementation of INGRES. ACM Transac
tions on Database Systems, I, 3 (1976)

Page 17

A ppendix

Algorithm: PreAvail
Precompute availability of hashed temporaries so that
hash based algorithms will be applied only when either
the hash algorithm is always superior or the hash
algorithm generates as temporary which can be profitably
reused later in the multiple-query sequence.

Given input of:
join(R, a, S, d, 0)
selection(R, a, null, null, 0)
delete(R, null, R, a, cost.of.delete)
replace(R, null, R , a, cost.of.replace)
append(R, null, null, null, cost.of.append)

with the generalized form:
op(r1, a1, r2, a2, opcost)

Constructs output consisting of a list of:
anode(rel, att, op, cond, cost, avail, pointer)

where:
anode:
r e l :
att:
op:
condition:
cost:
availability:
pointer:

available node structure
relation
attribute
database operations
either cond for conditional or
uncond for unconditional
the cost of modifying hash partitions
either true or false
pointer to previous conditional anode

July 1989 by Myong Kang &. Hank Dietz
* /

PreAvail()
{
for (i is each high-level operation) {

Process(i);
}

}

Page 18

Process(i)
{
switch (i.op) {
case selection:

t = anode(i.r1, i.a1, true, _);
if (It) {

create(anode(i.r1, i.a1, selection, cond, 0, true,
}
break;

case join:
hash(i.r1, i.a1);
hash(i.r2, i . a2);
break;

case append:
append(i.r1, i.opcost);
break;

case delete:
case replace:

delete_replace(i.r1, i.r2, i.a2, i.op, i.opcost);
}

>

hash(rel,att)
{
a = anode(rel, att, _, _, _, true, _);
if (a) {

if (a.condition = = cond) {
do {

a.condition = uncond;
a = a.pointer;

} while (a I= null);
}

} else {
create(anode(rel, att, join, uncond, 0, true, null));

}

a>

null));

Page 19

— 9 — 9 — 9 — 9

append(relation,
{

mod.cost)
for (a is each anode(relation,

a.availability = false;
if (a.condition == uncond) {

create(anode(a .rel, a.att,

true,.)) {

append, cond,
mod.cost, true, null));

} else {
new.cost * a.cost + mod.cost;
if (new.cost < cost.of.rehashing.relation) {

create(anode(a.rel, a.att, append, cond,
new.cost, true, a));

}
>

}
}

delete.replace{rel1,rel2,att2,op,mod.cost)
{ ■ ■ . . .

for(t is each anode(_, ., selection, _, _, true, _)) {
t .availability = false;

. >

if (rel1 ** rel2) {
a = anode (rel2,att2, _, true,..).;
if (a) {

a.availability = false;
if (a .condition -- uncond) {

t = create(anode(rel2, att2, op, cond,
mod.cost, true, null));

} ■'else {
new.cost = a.cost + mod.cost;
if (new.cost < cost.of.rehashing.relation) {

t - create(anode(rel2, att2, op, cond,
new.cost, true, a));

' ’ ' ■ > ■

.: > ' ■ ■

■■ ■ }

for (a is each anode (rel 1, _, _, true, _) && a ! = t) {
a.availability * false;

} ■ ■■

Page 20

	Purdue University
	Purdue e-Pubs
	8-1-1989

	Algorithm Choice For Multiple-Query Evaluation
	Myong H. Kang
	Henry G. Dietz

	tmp.1542052450.pdf.HB4xM

