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ABSTRACT

Traditional query optimization concentrates on the optimization of 
the execution of each individual query. More recently, it has been 
observed that by considering a sequence of multiple queries some addi
tional high-level optimizations can be performed. Once these optimiza
tions have been performed, each operation is translated into executable 
code.

The fundamental insight in this paper is that significant improve
ments can be gained by careful choice of the algorithm to be used for each 
operation. This choice is not merely based on efficiency of algorithms for 
individual operations, but rather on the efficiency of the algorithm choices 
for the entire multiple-query evaluation. An efficient procedure for 
automatically optimizing these algorithm choices is given.

I . Introduction

High level relational database query languages such as SQL and QUEL allow users 
to express what information is desired, not how to obtain it. This enables applications to 
be independent from details of secondary storage management. The query optimizer is 
responsible for determining the strategy for efficiently evaluating the queries presented by 
the user.

Optimization of database queries specified in high level query languages involves 
resolving issues such as:

• In what order should the database relations be scanned and by what access path?
• Which algorithms should be chosen for basic algebraic operations such as join and 

selection?
• When and where should temporary results be stored?

In centralized database systems, computation cost and secondary storage access cost dom
inate the cost of processing a query. The structure of query optimization is guided by the 
interactions between these cost components.



Many papers address the problem of optimization of individual queries for relational 
database systems [6,7,13]. A separate “access plan” is generated and executed for each 
query. The cost of processing a series of queries evaluated in this, manner is equal to the 
sum of the processing costs for each query.

Recently, multiple-query optimization has been addressed in many papers [3,11,15]. 
A single access plan is generated for a series of queries to reduce the overall cost of pro
cessing the series of queries in comparison to the combined cost of processing each query 
from the series separately. The multiple-query optimization approach is attractive when:

• A series of queries is embedded in an application program such as EQUEL [16].
• A series of queries is submitted for batch processing.
• Queries are interactively submitted such that several may be pending at some point 

in time.
• Deductive query processing causes single deductive queries to generate a series of 

conventional queries.

The multiple-query evaluation process can be divided into the following steps:

[1] Decompose queries into high-level primitive operations (e.g., selection, join, projec
tion).

[2] Identify common expressions and construct a global access plan.
[3] Choose the most efficient algorithm for each operation.
[4] Convert the series of queries into a lower-level program (perform query translation).
[5] Compile using whatever conventional optimization techniques are appropriate (e.g., 

loop jamming, register allocation, etc.).

Previous research on algorithm selection has centered around choosing the best algo
rithm for each basic algebraic operation (e.g., join, selection) considered independent of 
context [2]. In other words, the same algorithm is always used for the same type of 
operation. Some work has been done toward using information about the operands of 
each query (e.g., relation size) to choose among alternative algorithms for each operation 
type [4,13]. However, in this paper we propose tha t algorithms for each operation be 
selected by examining the entire series of queries and the interactions implied by particu
lar algorithm choices.

Using the analysis of individual operations, it is relatively easy to determine for each 
operation a small series of feasible algorithms. Some of these algorithms are clearly infe
rior to others, regardless of context; these can be eliminated to create a series of possibly- 
optimal algorithms for each type of operation. The problem of optimal algorithm selec
tion is then simply the choice of the proper algorithm from each series for each operation. 
We represent the differences between alternative possibly-optimal algorithms by the series 
of hashed temporary values (temporary relations) each algorithm uses and creates.

If a temporary relation is created in one operation and can be reused in a later 
operation, then the cost of recreating that temporary relation can be averted. This effect
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can make the later operation be “cheaper” using the algorithm involving the temporary, 
whereas if the temporary actually had to be created rather than reused, an alternative 
algorithm would be cheaper. Some operations also have the effect of making temporaries 
become invalid because they modify the underlying relation, in such cases, one has the 
opportunity to update the temporary so that it may be reused (still possibly cheaper than 
recomputing the temporary relation) or the algorithm may simply invalidate the tem
porary relation (assuming that the temporary relation would not be used again). These 
interactions are at the core of the proposed algorithm selection procedure.

In section 2 a summary of relevant work is presented, discussing both previous work 
on multiple-query optimization and the hash-based algorithms typically used to imple
ment individual operations. Section 3 presents the proposed algorithm choice optimiza- 
tion procedure. The interactions between previous multiple-query optimizations and the 
proposed algorithm choice procedure are outlined in section 4. Finally, section 5 summar
izes the paper and indicates the direction of future research.

2. R elated W ork

In this section, previous multiple-query optimization techniques and hash based algo
rithms for individual operations are reviewed. Throughout the examples in this paper, 
queries are expressed in the tuple relational calculus language QUEL [16].

2.1. M ultiple-Q uery O ptim ization

The objective in grouping a series of queries together is to reduce the total evalua
tion cost by identifying and eliminating common subexpressions. This goal is approached 
in two slightly different ways, one based simply on detecting common subexpressions 
given a particular query execution order, the other based on reordering the execution of 
queries so as to minimize the expected execution time (by inducing common subexpres
sions).

It is relatively straightforward to identify common subexpressions and implied rela
tionships [11]. However, sharing of common expressions during execution is not always 
better than re-evaluation of the expressions (due to variations in the sizes of relations 
meeting particular constraints).

Exam ple I

Consider 3 relations:

EMP(name, salary, department)
SALES(department, item)
SUPPLY(item, supplier)

and two queries Q1 and Q2:
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Q1: r e t r i e v e  EMP
w h ere  S A L E S . i t e m  = ' r a d i o '  . 

and EMP. s a l a r y  > 2 0 0 0 0
and EMP. d e p a r t m e n t  = SALES. d e p a r t m e n t  

Q2: r e t r i e v e  EMP
w h ere  S A L E S . i t e m  = ' t o y *

and EMP. s a l a r y  < 15000
and EMP. d e p a r t m e n t  = SALES. d e p a r t m e n t

In Q1 and Q2, sharing the common subexpression EMP. d e p a r t m e n t  = 
SALES . d e p a r t m e n t  might not be beneficial because early restrictions (e.g., selection 
operations) may substantially reduce the size of the relations which are involved in this 
join operation.

Also it should be noted tha t common subexpressions cannot be identified across 
update operations because the updated relation is treated as a completely new relation 
unrelated to the original relation. This problem is very similar to tha t which arises in 
disambiguating array references within conventional language compilers: storing a value 
into a [ i  ] where the nothing is known at compile time about the value of i  makes it 
necessary to assume that any element of a may have been changed [I].

The other approaches, which are based on reordering the execution of queries, are 
generally referred to as techniques for formulating a “global access plan” — an execution 
ordering of the subqueries within a series of queries. Typically, these systems do not 
reorder update operations, but only retrieve queries [15].

The approach consists of formulating several different access plans, computing 
expected evaluation costs for each, and then accepting the best of those tried [15]. This 
can also be treated as a dynamic programming problem [11].

Exam ple 2

Consider three queries using the same relations as in example I:

Q1 ! ' r e t r i e v e  EMP
w h e r e  EMP. d e p t  = ' s e r v i c e '

Q 2 : r e t r i e v e  EMP
w h e r e  S A L E S . i t e m  = ' r a d i o '

and  S A L E S .d e p t  = EM P.dept  
Q3: r e t r i e v e  EMP

w h e r e  S A L E S . i t e m  = ' r a d i o '  
and  EMP. s a l a r y  > 2 0000  
and S A L E S .d e p t  = EM P.dept

In this series of queries, the result of Q 2 implies the result of Q 3 and there are two 
common subexpressions which are SALES, i t e m  = ' r a d i o '  an d  SALES, d e p t  
= EM P.dept .  But Q1 has neither common subexpressions nor implied relationships
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with Q2 and Q3. Therefore the following access plan could be applied:

SALES.item
Tempi 4-

radio

Result3 «-
Tempi,salary > 20000

Result2 4-

Templ.dept = EMP.dept

EMP.dept
Resultl 4-

service

In order to distinguish between the multiple-query optimization described above and 
the multiple-query optimization we propose, we find it convenient to refer to the above as 
“operation-level optimization whereas the optimization presented in this paper is 
“algorithm-level optimization. ’9

2.2. Algorithm s for Relational Algebra Operations

It is generally accepted that there are three main types of algorithms for computing 
relational algebra operations. These differ primarily in the basic indexing structure used: 
linear scan using nested loop, a tree structured sort-merge, or a hash indexing scheme.

In general, as databases become large, the hash based algorithms tend to be most 
efficient; for example, the GAMMA [5] database machine uses only hash based algorithms. 
The remainder of this section outlines hash based algorithms implementing join, union, 
intersection, set difference, division, and selection1.

1 A hash based Cartesian product is not described because a linear scan using nested loops — the
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For convenience, in the following examples which require relations, the three rela
tions R(a,b,c), S(d,e,f), and T(g,h,i) are used.

2.2.1. A lgorithm s Im plem enting Join

It is well known that one of the most costly operations in database processing is join. 
Several join algorithms (nested-loop, sort-merge [2], and hash based join [8]) have been 
studied and the performance of these alternatives has been compared [4,13]. There are 
two kinds of hash based join algorithms, split based and non-split based [10]. The split- 
based join algorithm divides relations into a number of disjoint subrelations before pro
cessing the join operation. The non-split join algorithm does not divides relations before 
processing. Which algorithm is best depends on the ratio between the size of relations 
which are involved in the join and the size of main memory [10].

If one assumes that relations are always very large, then the split-based join is 
always preferable. The split works because if a tuple x in R  is in R- and it joins with a 
tuple y in S, then the joining attributes of x and y must be equal. Therefore there is no 
joining of tuples across different hash buckets. This is why, to join R  and S, it suffices to 
join the subsets R- and Si for each i.

The algorithm is roughly:

[1] Select a hash function h and partitions the values of h into, say, H1, ..., Hn.
[2] Partition relation R  into partition elements R 1, ..., R n, where a tuple x in R  is in R. 

whenever h(x.a) is in Hi where a is a hash attribute.
[3] Partition relation S  into partition elements S1, ..., Sn, where a tuple y in S  is in S. 

whenever h(y.d) is in H  where d is a hash attribute.
[4] Join R . and Si Zor each i in I  to n.

It is convenient to represent these algorithms using a somewhat more compact abstract 
notation. In this notation, the above algorithm becomes:

[1] select hash-function h
[2] [ R 1, . . . ,  R n ] «— h(R.a) ; a is the join attribute of R
[3] '[  Si , ... , S J -  h(S.d)
[4] for each i in I  to n do

join( R i, Si )

As hinted above, the apparently recursive invocation of join( R ij Si )  simply indicates that 
the split-based join decomposes the relations into smaller relations which must be joined. 
Since these relations are so much smaller, it is not critical for our purposes exactly which 
join algorithm implements them.

obvious implementation — is generally the most efficient for this task.
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2.3. Algorithm s Im plem enting Selection

Because selection is generally viewed as straightforward and relatively inexpensive, 
little attention has been given to the analysis of alternative selection algorithms. How
ever, selections are common in database programs and even a small improvement can be 
noticeable. Two selection algorithms are considered in this paper:

Loop Selection Algorithm:
Tuples are selected from a relation by testing each tuple against the selection 
condition and extracting only those which satisfy the condition. This algorithm is 
generally represented in the low-level form as a loop over all tuples in the relation.

Hash Selection Algorithm:
Hash selection operates much as the loop selection algorithm, but attempts to 
minimize the number of full tests against the selection condition by using a hash 
function to partition the relation so that the test loop need only be performed on the 
tuples within one partition element. The algorithm is (assuming that the condition 
is an equality):
[1] select hash-function h
[2] [ R 1, ... , R n ] +— h(R.a) ; a is the hash attribute of R
[3] i «— h(selection-value)
[4] selectfRj.a =  selection-value)

Clearly, loop selection performs better than hash selection unless the hash function 
is significantly cheaper than the full condition test and only a small fraction of the tuples 
will be in the partition element requiring the full test. It is unlikely that hashing would be 
more efficient, since the full test is most often a simple comparison for equality.

However, if, as a side effect of computing some other high-level operation, there 
exists an appropriate partition element for the same hash attribute, then the hash selec
tion algorithm is more efficient because it tests fewer tuples.

2.4. Algorithm s Im plem enting Other Operations

Hash based union, intersection, and set difference algorithms work same as hash 
based join algorithm if join( R i, Si )  in step 4 of join algorithm is replaced by union( R i, 
Si ), intersectf R i, Si ), or difference( R i, Si ). Hash based division algorithm which 
divide R by S  can be represented as follow:

[1] select hash-function h
[2] [ R 1, ... , R n ] h(R.a) ; a is the hash attribute of R

[3] i S,. . . . ,  S„”i -  h/S.d}
[4] for each t in I  to n do

T- «— divide ( R-, S -)
[5] intersectf T1, . . . intersectf Tfi l , Tn ))
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Note that divide( R^i )  is the same as join( R^j S . )  if the hash function perfectly parti
tions the divisor relation S. Hash based algorithm can be used for projection at duplicate 
elimination stage. 2

3. Algorithm -Level Optim ization

After the operation-level optimization has been performed and algorithms for these 
operations have been selected, queries are converted into a lower level representation of 
the program. This lower level form is essentially a program or intermediate code struc
ture with only operations close to the machine instruction level represented, i.e., database 
operations do not appear as single items, but as sequences of instructions which imple
ment the database operations.

Since the database program in this form is indistinguishable from a conventional 
program, conventional compiler optimization techniques can be applied at this stage. For 
example, if two selections on a relation are converted into two low level loops with identi
cal ranges, then the compiler can apply loop jamming [1] to remove the overhead of one 
of the loops. Note that loop jamming would not have been applicable to the original form 
of the query program^ This is also true of common subexpression elimination, instruction 
scheduling, etc.

Conversely, current compiler transformation technology does not provide the ability 
to recognize an algorithm and to select a dramatically different alternative algorithm —- 
yet this is easily done at the higher operation level. In addition, since the compiler 
operating on the low level form has no concept of a “relation,” it is unable to figure out 
the effect of changes to relations. For example, let Temp be a temporary relation tha t is 
a subset of relation R such a particular property holds. The low level form cannot 
represent the fact tha t the tuples in Temp still maintain the desired property after a 
change has been made to Temp. However, high level optimization might use Temp 
instead of R in computing a further-constrained relation.

To span the gap between operation-level and traditional compiler optimization, we 
propose “algorithm-level optimization.” The algorithm-level optimizer does not optimize 
high-level operations nor does it optimize low-level code in the traditional optimizing 
compiler sense, rather, it uses information from both levels to intelligently decide which 
algorithm should be used to represent each occurrence of a high-level operation in the 
low-level form.

A prime consideration in the choice of algorithm for each high-level operation is the 
amount of the computation which is not redundant with other computations. In other 
words, one algorithm may be cheapest when considered by itself, but if a partial result is 
available, a different algorithm may be cheapest. The availability of these partial results,

2 For completeness, we have included these operations in our discussion although space did not 
permit including them in the algorithm choice procedure given in the appendix.
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or ‘‘common subexpressions,5’ is determined by predicting what temporary relations will 
exist in later operations. Unlike low-level optimizers, the algorithm-level optimizer knows 
what effect high-level operations may have on relations, hence it can be applied to queries 
that contain update operations (i.e., append, delete, and replace) as well as to those which 
simply retrieve values.

It should be noted that the algorithm-level optimizer tracks “ temporary relations” 
which are created within individual high-level operations and that these relations are not 
directly represented either in the high-level or low-level forms. For example, each hash 
partition of a relation can be viewed as a temporary relation in this sense.

3*1. U pdate Operations

We consider three update operations: delete, append, and replace. As for the retrieve 
operation, each operation specifies a relation to be updated and a qualification clause 
specifying which tuple of the relation are to be affected. We term two kinds of 
qualification clauses simple and complex. A complex qualification requires examination of 
multiple relations in order to determine the tuples to be updated. A simple qualification 
is one which involves only one relation and, hence, which can always be performed in a 
single scan of the relation.

3.1.1. Delete

The delete operation simply removes all selected tuples, hence, a delete with a sim
ple qualification requires no temporary relations and is not amenable to algorithm-level 
optimization. However, complex qualifiers used in delete operations effectively embed join 
operations and algorithm-level optimizations can be applied.

Although the fastest way to determine the set of affected tuples for a complex 
qualifier delete operation is using hash partitions, there are two techniques for this. In 
one case, the hash partitioning is used only for the delete operation — the partition is not 
updated to reflect the delete, hence it is generally not useful after the delete. In the other 
case, the partition is updated to reflect the relation with the tuples deleted, hence, the 
partition remains valid after the operation. The first method is better than the second if 
no operations following the delete require hash partitions with the same hash attribute. 
However, if further operations can use the same hash attribute, the second technique 
saves the expense of rehashing the entire relation. For example:

delete R
where R.a = S.d

can be represented in abstract form as:
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[ R 1, ..., R n ] 4— h(R.a) ; a is the hash attribute of R  
[ S1, ..., Sn ] 4— h(S.d) 
for each i in I  to n do 

delete( R i, jo in f R i, Si ))
; delete tuples from R  and R i which satisfy 
; the condition jo in f R i, Si )

Notice that all tuples which remain after the deletion are still validly partitioned accord
ing to the hash function. Hence, if a later operation can also make use of partitioning by 
this hash function, the re-partitioning of the relation is unnecessary. For example, if the 
next operation was:

retrieve R
where R.a = 'abc'

then the complete computation would simply be:

[ R 1, ..., R n ] 4— h(R.a) ; a is the hash attribute of R  
[ S1, S J  <- h(S.d) 
for each i in I  to n do 

deletef R i, jo in f R i, Si ))
; delete tuples from R  and R i which satisfy 
; the condition jo in f R i, Si )  

i 4— h(’abc’)
retrievef R i, selectfR^a =  ’abc’) )

which avoids the recomputation of the hash partition for the relation R.

3.1.2. Append

Append is used to add new tuples to a relation. The new tuples can either be expli
citly given in the append command or they can be derived by performing a specified 
operation to a set of tuples selected from an existing relation. We call these two kinds of 
append “explicit” and “derived.” Explicit appends are far more common than derived 
appends.

An explicit append is specified by giving the name of the relation and a list of tuple 
values to be appended to that relation. In general, it is preferable tha t if a tuple to be 
appended exactly matches a tuple which exists in the target relation then the tuple is not 
appended — duplicate tuples are not created. In order to avoid making duplicate tuples, 
it is necessary to scan the target relation for copies of the tuples to be appended. This 
can be accomplished either using a hash partition of the target relation or by linearly 
scanning the target relation itself.

A derived append specifies the target relation, a clause which selects a set of tuples 
from which the new tuple set will be derived, and the operations to be performed to 
derive the new tuple set. Just as for the delete operation, the clause which selects a set of
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tuples can be simple or complex (using the same definitions as for delete).

A derived append with a simple selection clause can be implemented very much as 
an explicit append, except in that the tuples being selected may be taken from a relation 
other than the target relation.

However, a derived append with a complex selection clause is somewhat more pro
found than a complex delete. Suppose that a new relation R(a,b,c) is to be created using 
a derived append with a complex clause involving relations S(d,e,f) and T(g,h,i)e For 
example:

append to R ( a=S.d, b=T.h, c=S.f+T.h ) 
where S.d = T.g

In this example, only the S.d, T.h, and S .f fields are used in deriving the tuples to be 
appended. Hence, the implicit join can actually be filtered by a projection of the fields 
used in the operations creating the new tuples, in this case, a projection of d, /, and h over 
the temporary relation. Further, although the operations creating the new tuples are 
specified in terms of the original relation field names, these references would have have to 
be internally translated to reference the fields of the temporary relation resulting from 
the join.

If there are further clauses using the same condition, then the projection used should 
be over the union of the fields needed by the entire sequence of such operations. This is 
actually a multiple-query optimization, noted here simply because it is not generally dis
cussed in multiple-query optimization.

3.1.3. Replace
)

Although the replace operation is often treated as a delete followed by append, how
ever, the append operation is potentially far more complex than replace. This is because 
the replace qualification clause is constrained to refer to the target relation: only existing 
tuples can be replaced.

JFor this reason, replace is most similar to a delete operation, differing only in that 
the selected tuples are modified rather than deleted.

3.2. A lgorithm  Choice

As discussed above, many of the basic database operations (not just retrieve opera
tions) are implementable by any of several algorithms and proper handling of interactions 
between algorithms for a series of operations can yield significant performance improve
ments. In this section, we attempt to formalize the way in which optimal algorithm 
choices can be made. There are several steps before the optimization algorithm can be 
applied.
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3.2.1. Preparatory Steps

First, each query is separated into two steps: qualification and effect. The 
qualification step selects tuples which satisfy the qualification clause of the query. The 
effect step performs the operation specified on the tuples which were selected in the 
qualification step. For our purpose, retrieve operations are considered to have no effect 
step since they do not change any relation; further, simple delete, simple replace, and 
explicit append operations are considered to have no qualification step.

Second, either a local or global access plan is established. This was described in sec
tion 2.1.

Finally, in the third preparatory step, queries are transformed into an intermediate 
form which will be the input to the algorithm-choice analysis procedure. This intermedi
ate form includes predictions for the costs incurred if hash partitions need to be updated.

For the computation of costs, the following table defines the relevant variables.

comp time for comparing keys in main memory

hash time to hash an attribute which is in main memory

move time to move a tuple in main memory

IO time to read or write a block between disk and main memory

n number of hash partitions for a given relation

|R | number of pages in R (similar for S and T)

{R} number of tuples in R (similar for S and T)

Suppose temporary relation Temp is appended to relation R, then the approximate cost 
will be:

{Temp} *' (hash + move) ; hash tuple and move to
; output buffer

+ !Temp! * 2 * IO ; read and write partitioned
- ; relation from and to disk

and cost—of-rehashing—relation (the relation R) at that time will be:

; hash tuple and move to 
; output buffer 
; read and write partitioned 
; relation from and to disk

W hereT vew -R isiJuJlCmp.

The cost of delete depends on the type of deletion. In the case of a complex delete, if 
the hash partitions can be updated while the qualification clause is being evaluated (e.g., 
change hash partitions for R.a  with delete R  where R.a =  S.d ) then the cost is simply

{New_R} * (hash + move) 
+ !New_R! * 2 * IO
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I New—R\ * IO where New—R  is R - Temp. But if temporary relation Temp is deleted from 
relation R  which already has hash partitions, then the approximate cost will be:

{Temp} * (hash + move) ; hash tuple and move to
; output buffer

+ ({Temp}/n * {R}/n) * n * comp ; probe for a match
+ (Ir ! + !Temp!) * IO ; read relations from disk
+ !New_R! * IO ; write relation to disk
This exceeds cost—of—rehashing—relation (i.e., {New—R} * (hash + move) + | New—R \ * 2 * 
IO ), hence it is not necessary to consider the possibility of using a hashing scheme.

In the case of simple delete, the cost of delete ranges from one partition element 
being changed (e.g., change hash partitions for R.a with delete R  where R.a — ’abc’ ) to 
all partition elements being changed (e.g., change hash partitions for R.a  with delete R  
where R.b — ’ede’ ). If all partition elements must be changed, the cost of hash delete 
exceeds cost—of—rehashing—relation.

The cost of replace can be thought of as the sum of the cost of delete plus the cost of 
append operation.

3.2.2. The A lgorithm  Selection Procedure

In the algorithm there are three types of operations:

[1] those which do not require hash partitions, but which can be efficiently implemented 
using hash partitions if they are available (e.g., selection)

[2] those which require hash partitions which are then modified, with the algorithm 
choice being whether to update the hash partition or simply to update the base rela
tion (e.g., delete, append, replace)

[3] and those for which there is only one good algorithm, which always produces hash 
partitions (e.g., join)

We call each potentially-generated hash partition an “available node” (anode). When it 
cannot be determined in one pass (without lookahead) whether the optimum algorithm is 
the choice which generates a particular hash partition, the algorithm selection procedure 
produces a “conditional” available node. Later, when sufficient lookahead has been 
obtained to decide tha t these conditional anodes should have been generated, the anodes 
are made unconditional. After the entire input has been processed, any remaining condi
tional anodes indicate that the corresponding algorithms should not be applied (i.e., the 
alternative algorithms should be used). Hence, a second pass can directly encode the 
selected algorithms for the entire input.

A detailed description of algorithm selection procedure, PreAvail, is presented in 
appendix.
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3.2.3. Increm ental Application

It is significant that this procedure also can be incrementally applied to queries in an 
interactive query environment.

Suppose that the system is given, in real time, a series of queries Q9 which at time 
T0 is {q19 q2, qs, ..., The above algorithm selection procedure is applied, hence gen
erating a table of anodes representing the optimal algorithm choices given the queries 
available at time Tq. Hence, the system can now initiate the computation of q^ at this 
time, any remaining conditional anodes for, or linked to, q± are deleted.

While q  ̂ is executing, time passes and new queries are added to the system. Suppose 
that at time TQ+̂  one additional query is made, giving the sequence {qgt} q$9 q^9 ..., qn, 
qn+1}- All the existing anodes are still valid; only the anodes for query must be
evaluated. Notice, however, that the evaluation of the anodes for qn+1 may cause earlier 
conditional anodes become unconditional.

Hence, using simple incremental application of the algorithm selection procedure, 
the algorithm choice for earlier, but not yet executed, operations can be optimized on the 
basis of all enqueued queries.

3.2.4. Other Considerations

As stated above, the principle upon which algorithm selection is based is the availa
bility and reuse costs associated with hashed temporary relations.

In computing these costs, we have not considered the use of various physical data 
organizations (data layouts) which may differ from system to system. We further 
assumed that there is no limit on the number of simultaneously live temporary relations. 
However, these restrictions could be lifted with only minor adjustment to the algorithm 
selection procedure.

Although we presented the computation of simple, fixed, costs, the procedure does 
not change if the costs are variables; such cost computations are simply beyond the scope 
of this paper. If only a limited number of simultaneously live temporary relations can be 
accommodated, then the problem of selecting which should be created is equivalent to 
that of register allocation and assignment within conventional compilers. Hence, any of 
the usual register allocation techniques can be used as a second pass to correct algorithm 
choices which created too many temporaries.

4. Interaction Between Algorithm -Level Ajnd Operation-Level O ptim ization

So far, the algorithm-level optimization has been applied to fixed access plan. But 
better benefit can be obtained if global access plan considers the effect of the algorithm- 
level optimization. Let’s consider the following example:
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Q1 : retrieve R
where R.a = 'abc' and R.b = 'def'

can have two access plans P l  or P2:

P1: Tempi <- R.a = 'abc'
result <- Tempi.b = 'def'

or

P2: Tempi 4 - R.b = 'def'
result 4- Tempi.a = 'abc'.

If one of the hash partitions of R . a or R.b already exists then one plan is better 
than the other. If the global access plan analysis generates two apparently equivalent 
access plans P 1 and P 2 then algorithm-level optimizer will select one of them based on 
performance at tha t level. For example:

Q1: retrieve R
where R.a = 'abc'

Q2: retrieve R
where R.a = S.d and R.b = S.e 

Q3: retrieve T
where R.b = T.g

will produce either access plan P 1:

P1 : resultl 4- R.a = 'abc'
Tempi ♦- R where R.a = S.d
Result2 4- Tempi where Tempi.b = S.e
Results 4- T where R.b = T.g

or P 2:
P2:- resultl 4- R.a = 'abc'

Tempi 4- R where R.b = S.e
Result2 4- Tempi where Tempi, a = S.d
Result3 4- T where R.b = T.g

If plan P 1 is chosen, then hash partitions of R.a  are shared between selection of Ql 
and join of Q2; if plan P 2 is chosen then joins of Q2 and QS share hash partitions of R.b. 
This leads to the following evaluation:
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benefit of one extra selection operation (P1):
((n-1)/n) * ({R} * comp + Sr ! * 10)
benefit of one extra join operation (P2):
{R} * (hash + move) + 2 * Ir ! * IO

Hence, since plan P 2 is expected to be faster, it will be chosen.

5. Conclusions And Future W ork

This paper shows that significant improvements can be gained by careful choice of 
the algorithm to be used for each operation. This choice is not merely based on efficiency 
of algorithms for individual operations, but rather on the efficiency of the algorithm 

' choices for the entire multiple-query evaluation. An efficient procedure for automatically 
optimizing these algorithm choices is given.

The interaction between the algorithm-level optimizer and operation-level optimizer 
further demonstrates the potential improvements to be gained by the integration of both 
optimization levels.

Although the algorithm selection procedure is given using hash based algorithms, we 
believe that the same general approach can be applied to a far wider range of algorithms. 
There is also very little linking the procedure to a particular query language, and the 
technique should easily apply to other very high level languages such as SETL [14] and 
PROQUEL [9].

Ongoing research centers on the parallelization and optimization of multiple queries 
for multiprocessor systems.
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A ppendix

Algorithm: PreAvail
Precompute availability of hashed temporaries so that 
hash based algorithms will be applied only when either 
the hash algorithm is always superior or the hash 
algorithm generates as temporary which can be profitably 
reused later in the multiple-query sequence.

Given input of:
join(R, a, S, d, 0) 
selection(R, a, null, null, 0) 
delete(R, null, R, a, cost.of.delete) 
replace(R, null, R , a, cost.of.replace) 
append(R, null, null, null, cost.of.append)

with the generalized form:
op(r1, a1, r2, a2, opcost)

Constructs output consisting of a list of:
anode(rel, att, op, cond, cost, avail, pointer)

where: 
anode: 
r e l : 
att: 
op:
condition: 
cost:
availability: 
pointer:

available node structure
relation
attribute
database operations
either cond for conditional or
uncond for unconditional
the cost of modifying hash partitions
either true or false
pointer to previous conditional anode

July 1989 by Myong Kang &. Hank Dietz
* /

PreAvail()
{
for (i is each high-level operation) { 

Process(i);
}

}
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Process(i)
{
switch (i.op) { 
case selection:

t = anode(i.r1, i.a1, true, _);
if (It) {

create(anode(i.r1, i.a1, selection, cond, 0, true,
}
break; 

case join:
hash(i.r1, i.a1); 
hash(i.r2, i . a2); 
break;

case append:
append(i.r1, i.opcost); 
break;

case delete: 
case replace:

delete_replace(i.r1, i.r2, i.a2, i.op, i.opcost);
}

>

hash(rel,att)
{
a = anode(rel, att, _, _, _, true, _); 
if (a) {

if (a.condition = = cond) { 
do {

a.condition = uncond; 
a = a.pointer;

} while (a I= null);
}

} else {
create(anode(rel, att, join, uncond, 0, true, null));

}

a>

null));
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append(relation,
{

mod.cost)
for (a is each anode(relation, 

a.availability = false; 
if (a.condition == uncond) { 

create(anode(a .rel, a.att,

true,.)) {

append, cond, 
mod.cost, true, null));

} else {
new.cost * a.cost + mod.cost; 
if (new.cost < cost.of.rehashing.relation) { 

create(anode(a.rel, a.att, append, cond,
new.cost, true, a));

}
>

}
}

delete.replace{rel1,rel2,att2,op,mod.cost)
{ ■ ■ . . .

for(t is each anode(_, ., selection, _, _, true, _)) {
t .availability = false;

. >

if (rel1 ** rel2) {
a = anode (rel2,att2, _, true,..).;
if (a) {

a.availability = false; 
if (a .condition -- uncond) {

t = create(anode(rel2, att2, op, cond,
mod.cost, true, null));

} ■'else {
new.cost = a.cost + mod.cost;
if (new.cost < cost.of.rehashing.relation) { 

t - create(anode(rel2, att2, op, cond,
new.cost, true, a));

' ’ ' ■ >  ■

.: > ' ■ ■

■■ ■ }

for (a is each anode (rel 1, _, _, true, _) && a ! = t) {
a.availability * false;

} ■ ■■
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