
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

8-1-1989

Modeling, Simulation, and Analysis of Optical
Remote Sensing Systems
John P. Kerekes
Purdue University

David A. Landgrebe
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kerekes, John P. and Landgrebe, David A., "Modeling, Simulation, and Analysis of Optical Remote Sensing Systems" (1989).
Department of Electrical and Computer Engineering Technical Reports. Paper 674.
https://docs.lib.purdue.edu/ecetr/674

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages


vSSSSSra Modeling, Simulation, and 
Analysis of Optical Remote 
Sensing Systems

J. P. Kerekes 
D. A. Landgrebe

TR-EE 89-49 
August, 1989

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

• ; y ; -



MODELING, SIMULATION, AND ANALYSIS OF 

OPTICAL REMOTE SENSING SYSTEMS

August 1989

John P. Kerekes 

David A. Landgrebe

School of EIectriGaf Engineering 

Purdue University 

West Lafayette, Indiana 47907



TABLE OF CONTENTS

Page

LIST O F TABLES...................... ............... ............. ....... .........................  .............~iv

LIST OF FIGURES............. ..................................... ................................ ...................... vi

LIST OF NOTATIONS....... .................................................. .........................................xii

ABSTRACT......... ................................................ .........................................................xvii

CHAPTER 1 - INTRODUCTION......... ............................................. ................... .......... I

1.1 Background and Objective of the Investigation................. .......,..........,, I
1.2 Remote Sensing System Description........ ...................... .....................2
1.3 ReIatedWork.... ........................ ....... ......... ...................................8
1.4 Report Organization................................ ................................................10

CHAPTER 2 - REMOTE SENSING SYSTEM MODELING AND
SIMULATION.................................. ......................................................11

2.1 Overview of System Model.............. .......................................— ... 11
2.2 Scene Models....... ..................................... ............................ ................13

2.2.1 Surface Reflectance Modeling............... .....................................14
2.2.2 Solar and Atmospheric Modeling......... ................. ...................,25

2.3 Sensor Modeling.... ................................ .............................................. .47
2.3.1 Sampling Effects...... .....................................................................48
2.3.2 Electrical Noise Modeling................. ...........................................52
2.3.3 HIRIS Model.......... ................. .................................... .....................54
2.3.4 Radiometric Performance Measures.............................. ........... ..61

2.4 Processing......... ...... ..... ..........................................................................63
2.4.1 Radiometric Processing.................................................. ,.,,.,,,,,,„,..65
2.4.2 Geometric Processing...... ....................... ..................................,„..65
2.4.3 Data Reduction.................................................. ............. ............... ..66
2.4.4 Class Separability Measures................ ......................................67
2.4.5 Classification Algorithms........... ...................................................68

2.5 Summary and Discussion........................... ...........................................69



'7 ’ :7v ■ iii 7  •'

: v 7 :: Page ^

c h a p t e r  3 - An a l y t ic a l  s y s t e m  m o d e l .........;.... ... ..

3.1 Model Overview................. ....... ..............................,.,,...,,..,I....... 71
3-2 Analytical Expressions........................................... ..................... .......... ..73

3.2.1 Reflectance Statistics............. .......................73
:3.2;2AtmoSpheil6;Effebte   74
, 2. ^̂ P̂ t̂l̂ ll E lleds. ... ...,,.a*. a.-... s. a ...... .,.a,., a , ... a, ,a',.., ,'i, 7 5 •

^ |3̂ 3̂ t̂r̂ il Effects.....................,..'.....v..
3.2.5 Noise Model......................................................................................78
3.2.6 Feature Selection............................a..............................................79
3.2.7 Error Estimation.................... .......      79

3.3 Comparison Between the Analytical and Simulation Models..........80

CHAPTER 4 - APPLICATION TO IMAGING SPECTROMETER SYSTEM
ANALYSIS ,......................,,..i.,............................ . ......a.,,,;..,. .83

4.1 Introduction.............................................         ...83
4.2 RadiometricPerfOrmance........... ....:.........;...;..............:.y..,,.,M...;^....^':;;84
4.3 Comparison of Simulation and Analytic Model Performance......... 99
4.4 System Parameter Studies...................................................................107
4.5 Interrelated Parameter Effects..................... ........a........;........,.123
4.6 Feature Selection Experiments.................................................v....,.....134
4.7 Summary and Conclusions ............................... .   ............140

C h a p t e r  s - c o n c l u s io n s  a n d  s u g g e s t io n s  f o r  f u t h e r  v v o r k u s

LIST OF REFERENCES ■ BBBB BBSBBBBBBBOBB .147

APPENDICES

Appendix A Expected Variance of a Two Dimensional
Autoregressive Process................................................... ....155

Appendix B Interpolation Algorithm........................... . 160
Appendix C LOWTRAN 7 Input File.........................   ...........162
Appendix D Sensor Descriptions............................................................167
Appendix E Analytical System Model Program Listing ...................„.176



iv

LIST OF TABLES

Table Page

1.1 Simulation Studies........ ...................................... ..............................................9

2.1 Typical Spatial Model Parameters............... .................................................20

2.2 Spatial Correlation Coefficients for Hand County, South Dakota..... ......21

2.3 Sequence in Generating a Simulated Surface Reflectance Array...........24

2.4 Example LOWTRAN TParameters.... ..........................        31

2.5 Diffuse Irradiance Constant Values.......................       .34

2.6 Default Values of Atmospheric Parameters...........  — ............   ..35

2.7 Data Set for Hand County, South Dakota, July 26,1978.— ......................42

2.8 Description of Test Fields............................................... .................................43

2.9 Conversion Constants Between Radiance and Digital Counts................ .43

2.10 Scene Conditions at Time of Observations...............................  ..44

2.11 LOWTRAN Settings for Experiment.................       .44

2.12 Atmospheric Components for the Hand County Test S ite.............   .45

2.13 Comparison of Actual and Simulated Radiances (in mW/(cm2-sr)) for
Test Site in Hand County, S D .... ....................................................................45

2.14 Sources and Types of Radiometric Errors............     53

2.15 HIRIS Functional Parameters.... ..... ...........       ............54

2.16 Parameters of Detector Arrays in Terms of Electrons (e ').......   .........59

2.17 Example Processing Functions...... .......................................  ....64



Table Pag©

2.18 Summary of System Parameters Implemented in Simulation..... . .70

3.1 System Factors Not Included In Analytical Model  ............80

4.1 Kansas Winter Wheat Data Set............................... .84

4.2 Radiometric Study Baseline System Configuration..... ............................. 85

4.3 Radiometric Performance Parameters Studied and Their Variations......88

4.4 System Configuration for Comparison Test..........................................,.....i 00

4.5 Optimal Feature Set for Kansas Winter Wheat Datei 02

4.6 Classification Accuracy of Base System Configuration..............,..,.,.,,.....! 02

4.7 Increments Used in Ground Size Experiment..,......,,........ ..,.,,....„.,...,......104

4.8 Classification Accuracies of Gaussian vs. Measured P S F ^ . , . ,^ .^ ^ 4 0 6

4.9 System Configuration forParameter S t u d i e s . . ; . , 108

4. t0  Parameters and Their Variation in Section 4.4........................................108

4.11 Summary Results for System Parameter Experimerits..:..,;..'.\...,,,^„.j.;....,l 21

4.12 Parameter Interrelationship Studies.....

4.13 Wavelength Bands Combined for the Various Feature Sets...................134

4.14 Classes and Fields Used to Compute Statistics for the Spring Wheat
Test Scene.........__ __________________________ ....................................138

Appendix
Table.

D.1 MMS General Parameters .......... .167

D.2 MMS Bandand Noise Parameters.........................

D.3 MSS General Parameters.....................................

P 4 MSS Band and Noise Parameters.;..............,......

D.5 TM General Parameters........................ .

D.6 TM Band and Noise Parameters....... .......

■ m m m 1 7.

a • • o •  ■ a •  •  •  ■ • • •  ■ « * •  a as a ■ 1 6  9 , -

169



vi

LIST OF FIGURES

Figure Page

1.1 Remote Sensing System Pictoriel Description...... ................................. .,..;v3

1.2 Noise Sources........... .....................................................................i..,,............ 6

1.3 Signal Sources...................               7

2.1 Remote Sensing System Model---- --------- ------     .................12

2.2 Scene Model Block Diagram....... ......................          13

2.3 Scene Geometry.......................        15

2.4 Correlation Coefficients of Winter Wheat Field..... ...............     22

2.5 Atmospheric Effects on Spectral Radiance Received by Sensor............ 27

2.6 Optical Thickness t  vs. Visibility..... ................         ..30

2.7 Optical Thickness vs. Wavelength.......... ..............       ..30

2.8 Ratio of Direct Irradiance to Total Irradiance vs. Total Optical Path
Length........ ................................................................... ............. ........................33

2.9 Effect of Meteorological Range on Direct Solar Spectral Irradiance...... 36

2.10 Effect of Solar Zenith Angle on Direct Solar Spectral Irradiance.............36

2.11 Effect of Meteorological Range on Total Solar Spectral Irradiance........ 37

2.12 Effect of Solar Zenith Angle on Total Solar Spectral Irradiance...............37

2.13 Effect of Meteorological Range on Diffuse Solar Spectral Irradiance....38

2.14 Effect of Solar Zenith Angle on Diffuse Solar Spectral Irradiance.......... 38



Figure Page

2.15 Effect of Meteorological Range on Spectral Transmittance......../...,..........39

2.16 Effect of Sensor Zenith Angle on Spectral T ransmittance......................... 39

2.17 Effect of Meteorological Range on Path Spectral Radiance.....................40

2.18 Effect of Solar Zenith Angle on Path Spectral R a d ia n c e .....; ........,,„„.,40

2.19 Effect of Sensor Zenith Angle on Path Spectral Radiance .............. ........41

2.20 Effect of Surface Albedo on Path Spectral Radiance...............................41

2.21 Plot of Landsat vs. Simulated Radiances.................... . 46

2.22 Sensor System Components....

2.23 Noise Model of Sensor...............

2.24 HIRIS Model Block Diagram....... 55

2.25 Spectral Transmittance of Optics....

2.26 Normalized Spatial Response..........................................57

2;27 Spectral Quantum Efficiehcy .,............ ............................ ...... ..................... 58

2,28 Shot Noise vs. Signal Level ................................... .........

3.1 Analytical System Model Block D i a g r a m ..... ...71

4.1 Mean and Variation of the Surface Reflectance of the Kansas Winter
Wheat Data Set of Table 4 . 1   .... .......................85

4.2 Mean and Variation of Image Vector as Received by H IR IS ....................86

4.3 Voltage and Power SNR for Typical Reflectance........................... ...........87

4.4 NEAp for typical Reflectance............................. ............................. „... 87

4.5 SNR for Varying Meteorological R a n g e s ..... ... ... ...8 9

4.6 NEAp for Varying Meteorological Ranges,

4.7 SNR for Varying SoIar AngIes............... .

4.8 NEAp for Varying Solar Angles................... .

89

90

90



4.9 SNR for Varying View Angles.......................................................................... 91

4.10 NEApforVarying ViewAngIes...... ........       ............91

4.11 SNR for Various Surface Albedoes...... .......       9 |

4.12 NEAp for Various Albedoes....... .............. .......... ....................................... ...92

4.13 SNRforVarying Factors of Shot Noise.... ................. ..................................93

4.14 NEAp for Varying Factors of Shot Noise....................................................... 93

4.15 SNR for Varying Factors of Read Noise.............. ........................................94

4.16 NEAp for Varying Factors of Read Noise...............      94

4.17 SNR for Varying Radiometric Resolution..............  ....,...,.....,..„.95

4.18 NEAp for Various Radiometric Resolutions.....................   95

4.19 SNR for Various IMC Gain Settings..... ...................  96

4.20 NEAp for Various IMC Gain Settings.......... .... ...... .„„.„.„„,....,„....„„.......„96

4.21 SNR for Various Levels of Relative Calibration Error...... .... ..................... 97

4.22 NEAp for Various Levels of Relative Calibration Error .„„.„...„.„„„.„,,..„„97

4.23 Simulated Image of Comparison Test Scene at X= 1.70 pm......................101

4.24 Classification Accuracy vs. Scene Spatial Correlation Coefficient....... 103

4.25 Classification Accuracy vs. Ground Size of Scene Cells.........................104

4.26 Classification Accuracy vs. Sensor View Angle............____„...„.,.,.....,„„105

4.27 Classification Accuracy vs. Number of Training Samples.......................107

4.28 Effect of Spatial Correlation (p=px=py) on SNR......................................... 109

4.29 Effect of Spatial Correlation (p=px=py) on Classification Accuracy........ 109

4.30 Effect of Meteorological Range on SNR.... ....................    110

Figure Page



4.31 Effect of Meteorological Range on Classification Accuracy .....................110

Figure Page

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41
- r‘-

4.42

4.43

4.44

4.45

4.46

4.47

4.48
. .. V v V v

4.49 

4 50

4.51

4.52 

4 53

Effect of Solar Zenith Angle on SNR..........v^....

Effect of Solar Zenith Angle on Classification Accuracy.............

Effect of SensorZenith Angle on SNR I • ....... - . ....

Effect of Sensor Zenith Ang Ie on Classification Accu racy. . . . . . a . . . . . .

.112

..112

Effect of Number of Scene Cells Within Sensor IFOV on SNR. ....... I

Effect Of Number of Scene Cells Within Sensor IFOV on Classification 
Accuracy....... ........................................................................... ........ 113

Effect of Shot Noise (Nominal =1.0) on S N R . . . . . ; . . . . . ...v.l 14

Effect of Shot Noise (Nominal = 1.0) on Classification Accuracy..........114

Effectof Read Noise (Nominal- 1.0) on SNR....................... ................... ..115

Effect of Read Noise (Nominal = 1.0) on Classification Accuracy ..........115

Effect of IMC Gain State on SNR .........^

Effect of IMC Gain State oh Classification Accuracy .....................;....;..

Effect of Radiometric Resolution on SNR ... ............................

Effect of Radiometric Resolution on Classification A c c u r a c y : . . ; . . , 117

Effect Of Relative Calibration Error on SNR................ .8

EffectofRelative Calibration Error on Classification Accuracy..v.....;.;...118

Effect of Absolute Rddiometric Error on SNR . . . . . . . . . . j  ig

Effect Of Absolute Radiometric Error on Classification Accuracy........... 119

Effect of Number of Processing Features on SNR.......;;........„......„;;......;.120

Effect of Number of Processing Features on Classification Accuracy ...120

Accuracy vs. Voltage SNR for System Parameter Experiments.............122

Accuracy vs. Power SNR for System Parameter Experiments................122



4.54 Effect of Meteorological Range and View Angle forGSO|ar=0°................... 124

4.55 Effect of Meteorological Range and View Angle for0soiar^3G° ............. ,124

4.56 Effect of Meteorological Range and View Angle for 98O|ar̂ 60° ............... 125

Figure Page

4.57 Effect of IFOV Size (in Scene Cells) and Spatial Correlation
Coefficient........ ............................................................................ ...................125

4.58 Effect of Meteorological Range and Shot Noise........ ...........,................,..126

4.59 Effect of Meteorological Range and Read Noise....... ...............................126

4.60 Effeot of Meteorological Range and IMC.............................. 127

4.61 Effect of Meteorological Range on Radiometric Resolution.....................127

4.62 Effect of Meteorological Range and Various Noise Sources Alone.......128

4.63 Effect of Solar Angle and Shot Noise............... ..........................................128

4.64 Effect of View Angle and Shot Noise............. .............................................129

4.65 Effect Solar Angle and IMC Gain State....... .......... ....................................129

4.66 Effect of View Angle and IMC Gain State..... ........................................ .....130

4.67 Effect of Meteorological Range and Number of Features.......   ..........130

4.68 Effect of Solar Angle and Number of Features.............. ........    131

4.69 Effect of Atmosphere WitIVWithout Noise for Path Radiance Model
With No Surface Reflectance Dependence..................  ,,,.,,........133

4.70 Voltage and Power SNR for the Various Feature Sets of Table 4.13....135

4.71 Classification Accuracy for the Various Feature Sets of Table 4 .13 ..... 135

4.72 Feature Set Performance vs. Meteorological Range................................ 136

4.73 Feature Set Performance vs. SoIarAngle................ .................................137

4.74 Feature Set Performance vs. View Angle....... .........  .............................137

4.75 SNR for Various Feature Sets and SW Variety Scene.............................139



Figure Page

4.76 Classification Accuracy fbr Various Feature Sets and SW Variety
. . . . . . . . . O . .  • C ■•••■•■■■■•■••■■•••••«■•■•■••■ « • ■••■■■•••■■••■•■■••••••••• 1......

Appendix
.Figure':

A.I Quarter-Plane Image AI=I Model.. . ................ ......156

D.1 MMS Spectral Response for Bands 1 through 5 ..................................  168

D.2 MMS Spectral Response for Bands 6 through 10.............^....,....,...........168

D.3 MSS Spectfal ...................170

D.4 MSS Spatial Response 

D.5 TM Spectral Response. 

D.6 TM Spatial Response......

. . . . . . . . . . . a s  . . . . . . . . . . . . .  a s . . . ••• • ••■••••••••■••••••••••at 170

............................... ......................... 1̂ 7 4̂

• • » . ■ . ... . . .  . . .  a". . ....... ..................... .172

- !



xii

LIST OF NOTATIONS

Symbols used for the various variables and parameters are defined 
below, along with the units where appropriate.

Symbol Explanation (units)

Ax Sum of hx(») coefficients

Ay Sum of hy(*) coefficients

amn,bmn Spatial model parameters for wavelengths m and n

B Sensor spectral response matrix used in analytical model

Bkj Bhattacharyya distance between classes k and I

B(X) Conversion factor relating the incident spectral radiance to the
signal level in the sensor detectors

B+(X) Product of the spectral radiance from a completely reflecting
surface and the conversion to the signal level in the detectors

Ci AR model spatial parameters

D Fractal dimension

d(i,j,l) Image level at pixel (i,j) for sensor band I

Er Absolute radiometric error level

Diffuse Diffuse solar spectral irradiance incident on Earth's surface
(mW/cm2-|im)

Ex1Direct Direct solar spectral irradiance incident on Earth's surface
(mW/cm2-[i.m)



^XtExo

^X1TotaI

F

F

GX
■; . ..T- V

Gy

Qk('J)

9x

9y

H

h(u,v)

M*)
¥ * >

K

I i - ^ v

Exoatmospheric solar spectral irradiance incident on Earth's 
surface (mW/cm2-pm)

Total (direct plus diffuse) solar spectral irradiance incident on 
Earth’s surface (mW/cm2-pm)

Bandselectionmatrixforspectralcompression

Full scale electron level in HIRIS model

Ground size of scene cell across scene (meters)

Ground size of scene /cell" down scene (meters)

Value of discriminant function for class k at pixel (i,j)

Ground size of PSF step across scene (meters) ;

Ground size of PSF step down scene (meters)

Altitude of sensor (meters)

2-dimensional point spread function of sensor

Acrosstracklinespreadfunction

Downscenelinespreadfunction

Multiclass distance measure

!Slumber of land cover classes in scene

Numberofspectralbandsinserisor

lFuIU Full scale radiance for sensor band I (mW/cm2-sr)

Lx,sceno(#) Scene spectral radiance (mw/cm2-sr)

LX,sehsbr(x.y) Spectral radiance incident on sensor from scene location (x,y) 
(mW/cm2-ji.m-sr)

Lx1Path Path spectral radiance incident on sensor (mW/cm2-pnvsr)

^x1Path Path spectral radiance with albedo = 1 (mW/cm2-jj.m-sr)



xiv

L0
■ X, Path Path spectral radiance with albedo = 0 (mW/cm2-p.m-sr)

L 1-0
X1Path Path spectral radiance difference for albedoes 0 and I 

(mW/cm2-|im-sr)

M Dimension of high resolution spectral reflectance vectors

N(I) Spectral bandwidth normalizing factor for sensor band I

ni(*)> n2(‘ ) Zero mean, unit variance Gaussian random numbers

o

P '

Numberofcoefficientsinacrossscenespatialresponse 

Number of coefficients in down scene spatial response

Estimate of classification accuracy

pk Aprioriprobabilityofclassk

Q Numberofradiometricbitsofsensor

r(x,y) Surfacescalarreflectancearray

ro,x> ro,y Radiusofspatialresponseinanalyticalmodel

S

SV

Receivedsignalindetectors

Received signal plus dark current in detectors

S" Received signal plus noise and calibration error in detectors

Sb LxLbetweencIassscattermatrix

Sr L x L  covariance matrix of image for class k

Sw LxLwithincIassscattermatrix

Sx Across track ground sampling interval (meters)

OOy Down scene ground sampling interval (meters)

s,(m) Spectral response of sensor

T"x̂ tm Spectraltransmissivityofatmosphere



Atmospheric surface meteorological range (Kilometers) 

Spatial weighting function in sensor model 

Adjacentsurfacereflectahce 

Sudace reflectance vector for class k

Mean image or feature vector for class k

Zero mean, unit variance Gaussian random numbers

Volume extinction coefficient (Knr1)

Spectral resolution of scene (pm)

Angular distance between hx(*) coefficients (radians)? 

Angular distance between hy(») coefficients (radians) 

Across track Sampling interval (radians)

Down scene sampling interval (radians)

M x M eigenvector matrix of spectral reflectance covariance 
matrix for class k

Azimuthal angle of solar illumination (degrees)

Azimuthal angle of View (degrees)

M X M diagonal eigenvalue matrix of spectral reflectance 
covariance matrix foivclass k i ^

L x L diagonal niatrix of relative calibration error variances 

L x L diagonal matrix of quantization noise variances 

L x L diagonal matrix of read noise variances



XVI

A shot L x L  diagonal matrix of shot noise variances

A therm L x L  diagonal matrix of thermal noise variances

X Wavelength (jim)

Pk M xlm eanvectorofspectralreflectanceforclassk

P(x,y) M x 1 vector of spectral reflectance of surface at location (x,y)

px, Py Spatial autocorrelation coefficients

Z a  Covariancematrixofaveragespectralreflectance

Z k Covariance matrix of spectral reflectance or image features for
class k

cc(l) Calibration error standard deviation for sensor band I

Cs(I) Shot noise standard deviation for sensor band I

ct(l) Thermal noise standard deviation for sensor band I

cu Standard deviation of driving process for AR model

T3t Spectral optical thickness of atmosphere

Tpjt Spectralopticalpathlength

Qsoiar Zenith angle of solar illumination (degrees)

Qview Zenith viewing angle (degrees)



xvii

A B STR A C T

Kerekes, John Paul. Ph.D., Purdue University, August 1989. Modeling, 
Simulation, and Analysis of Optical Remote Sensing Systems. Major Professor: 
David A. Landg rebe.

Remote Sensing of the Earth's resources from space-based sensors has 

evolved in the past twenty years from a scientific experiment to a commonly 

used technological tool. The scientific applications and engineering aspects of 
remote sensing systems have been studied extensively. However, most of 
these studies have been aimed at understanding individual aspects of the 
remote sensing process while relatively few have studied their interrelations.

A motivation for studying these interrelationships has arisen with the 

advent of highly sophisticated configurable sensors as part of the Earth 
Observin System (EOS) proposed by NASA for the 1990's. These instruments 
represent a tremendous advance in sensor technology with data gathered In 

nearly 200 spectral bands, and with the ability for scientists to specify many 
observational parameters. It will be increasingly necessary for users of remote 
sensing systems to understand the tradeoffs and interrelationships of system 

parameters.

In this report, two approaches to investigating remote sensing systems 

are developed. In one approach, detailed models of the scene, the sensor, and 

the processing aspects of the system are implemented In a discrete simulation, 
This approach is useful in creating simulated images with desired 

characteristics for use in sensor or processing algorithm development.
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A less complete, but computationally simpler method based on a 
parametric model of the system is also developed. In this analytical model the 
various informational classes are parameterized by their spectral mean vector 
and covariance matrix. These Class statistics are modified by models for the 

atmosphere, the sensor, and processing algorithms and an estimate made of 
the resulting classification accuracy among the informational classes.

Application of these models is made to the study of the proposed High 
Resolution Imaging Spectrometer (HIRIS).; The interrelationships among 
observational conditions, sensor effects, and processing choices are 

investigated with several interesting results.

Reduced classification accuracy in hazy atmospheres is seen to be due 
not only tosensornoise, but also to the increased path radiance scattered from 
thesudace.' ■

The effect of the atmosphere is also seen in its relationship to view angle. 
In clear atmospheres, increasing the zenith view angle is seen to result in an 

increase in classification accuracy due to the reduced scene variation as the 
ground size of image pixels is increased. However, in hazy atmospheres the 
reduced transmittance and increased path radiance counter this effect and 

result in decreased accuracy with increasing view angle.

The relationship between the Signal-to: Noise Ratio (SNR) and 
plassification accuracy is seen to depend in a complex manner on spatial 
parameters and feature selection. Higher SNR values are seen to hot alw/ays 
result in higher accuracies, and even in cases of low SNR feature sets chosen 
appropriately can lead to high accuracies.



Chapter 1 - Introduction

CHAPTER 1 

INTRODUCTION

1.1 Background and Objective of the Investigation
Remote sensing is defined (Swain and Davis, 1978) as "...the science of 

deriving information about an object from measurements made at a distance 

from the object, i.e., without actually coming in contact with it." In the context of 
observing the Earth, the sensing instruments have evolved from cameras 
tethered to balloons, aerial multispectral scanners, to satellite-borne imaging 
arrays.. Applications have been many, and remote sensing of the Earth for fend 

resource analysis has developed into a common and useful technological tool.

Countless projects have used remotely sensed data to assess crop 

production (MacDonald and Hall, 1978), crop disease (MacDonald, et al., 
1972), urban growth (Jensen, 1981), and wetland acreage (Carter and 
Schubert, 1974) as a few examples. The technology of remote sensing has 
been studied extensively and is well documented in texts by Swain and Davis 

(1978), Colwell (1983), Richards (1986), and Asrar (1989).

While the various aspects of the remote sensing process have been well 
documented, the interrelationships among these process components have 
been studied comparatively little, especially in regard to sources of error or 
noise in the process. Landgrebe and Malaret (1986) looked at the effect of 
sensor noise on classification error in one of the few studies of this type, but 
therp ar@ many more parameters and effects that interrelate.

A motivation for studying these interrelationships has arisen with the 

forthcoming deployment of configurable sensors. As part of the Earth Observing 

System (EOS) program of the 1990's, several instruments will allow the
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capability for a scientist to specify the observational conditions under which 
data are to be collected. It will become increasingly important to develop an 
understanding of how various parameters affect the collection of data and the 
resulting ability to extract the desired information.

The objectives of this report are to further this understanding of the 

remote sensing process through the following efforts:
• Document and model the remote sensing process from an overall 

systems perspective.
• Develop tools based on these models to allow the study of the 

interrelationships of system parameters.
• Investigate these interrelationships through the application of these 

tools to a variety of system configurations.

In this initial chapter, the concept of a remote sensing system is defined 

and described. Previous methods of studying the remote sensing process as a 
system are reviewed and commented upon. A description of the report 
organization then concludes the chapter.

1.2 Remote Sensing System Description
In this research, the term remote sensing will be used in the context of 

satellite- or aircraft-based imaging sensors that produce a digital image of the 
surface of the Earth below for land cover or Earth resource analysis. The 
imaging sensor will cover only the reflective portion of the optical spectrum with 
wavelengths approximately from 0.4 pm to 2.4 pm. This context includes many 

of the current and near future remote sensing instruments such as Landsat 
MSS and TM, SPOT, and HIRIS. The land use application of the imagery 
represents a significant application of the technology.

A pictorial description of a remote sensing system is given in Figure 1.1. 
This figure gives an overall view of the remote sensing process starting with the 
illumination provided by the sun. This incoming radiance passes through the 

atmosphere before being reflected from the Earth's surface in a manner 

indicative of the surface material. The reflected light then passes again through 

the atmosphere before entering the input aperture of the sensing instrument.
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At the sensor, the incoming optical energy is sampled spatially and 
spectrally in the ,process of Peing converted to an electrical signal. This signal 
is then amplified and quantized into discrete levels producing a muItispectral 
scene characterization that is then transmitted to the processing facility.

At the processing stage, geometric registration and calibration may be 
performed on the image in order to be able to compare the data to other data 
sets. Fjeature extraction may also be performed to reduce the dimensionality Cf 
the data and to increase the separability of the various informational classes in 
the image. Lastly, the image undergoes a classification and interpretation 
stage, most often done with a computer ohdbr the supervision of a  trained 
analyst using ancillary information about the scene.

The entire remote sensing process can be viewed as a system whose 

inputs include a vast variety of sources and forms. Everything from the position 
of the sun in the sky, the quality of the atmosphere, the spectral and spatial 
responses of the sensor, to the training fields selected by the analyst, etc., will 
influence the state of the system. The output of such a system is generally a 
spatial map assigning each discrete location in the scene to an appropriate 

land information class. Other outputs may be the amount of area covered by 

each class in the scene or the classification accuracy between the resulting 
classified map and the known ground truth of the scene.

In using this definition of a remote sensing system, it must be realized 
that it is a representation of the real world, and as such cannot be complete in 
characterizing all the inputs, states, or outputs* In this research* the pfOblOrn is 
constrained by defining the system as well as one is able to do. It is an 
accepted fact that the system description will be incomplete ahd Iacki h§; 
however, the model developed will represent the best that can be done from the 
current knowledge base and can be used as a starting point to increase system 
understanding.

To more fully describe a remote sensing system, it is helpful to begin to 

break the system down with natural boundaries between the various 

component systems. In Figure 1.1 we can readily see the system as being



comprised of three major subsystems: the scene, the sensor, and the 
processing subsystems. This division helps in providing structure to the system 

and facilitates identification of various components of the system.

The ppehe consists of all spectral and spatial sources and variations that 
contribute to the spectral radiance present at the input to the sensor. The 

sensor includes all Spatiali spectral, and electrical effects of transforming the 
incident spectral radiance into a spatially and spectrally sampled discrete 
image. The processing subsystem consists of all possible forms of processing 
applied to the image to obtain the desired information.

5  Chapter 1 - Introduction

Within this scene, sensor, and processing structure it is possible to further 
decompose these subsystems into major components and variations. As with
all systems, there are components that represent desired, or Signali states or 
variations, and there are those that represent undesired, or noise, Ctates Pr 

variations. Figure 1.2 shows a taxonomy of components and effects that can 

degrade the system. This structure is further described in Kerekes and 

Lahdgrebe (1987), and has grown out of the work reported by Anuta (1970). 
Likewise^ a comparable taxonomy may be developed for signal, or desired, 
yafiatioh$ and states that contribute to the output of the system. Figure 1.3 is a 
signal taxonomy of such effects.

These taxonomies offer a framework in which remote sensing system 
effects can be grouped and located. The categories under the main 
subsystems delineate sources of majpr contributions to the system state. In 
some cases, effects or sources are listed in both signal and noise structures 
These dual listings exemplify one of the major problems in understanding 
remote sensing systems. Depending on what type of information is desired, 
sources or effects may indeed represent both noise and signal effects.

After the system has been broken down into identifiable portions, Phe 
Can take these blocks and build them back up into an overall system model 
Through the synergism possible from this Combination of models and their 
application the overall understanding of the entire process can be improved.
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i.3  Related Work
The systems approach to the remote sensing process has been of 

interest for many years. In a tutorial paper by Landgrebe (1971), the differences 

between image based (photogramrhetry) and numerically oriented remote 

sensing systems were described. The important factors to consider from an 
information point of view were delineated and described. The work described 
there helped to shape the ideas that are implemented in this research.

There have been many previous optical system simulation studies 
reported in the literature, including those done in the context of civilian remote 
sensing and those in a military context. Table 1.1 provides an overview of such 

studies including the reference and key characteristics of each.

Those studies fall into one of three categories: Landsat TM sensor 
parameter studies, basic parameter studies, and military Studies. The Landsat 
TM sensor parameter studies were performed in preparation and analysis of the 
performance of Landsat-D Thematic Mapper. The basic parameter studies are 
ones that are most closely related to what the research in this report considers. 
They represent studies showing the tradeoffs of various system parameters and 
their effects on some output measure, usually classification error. A few military 

system studies are included to represent the unclassified literature in optical 
system simulation.

The combination of several characteristics Of the research presented in 

this report distinguishes it from these previous studies. It presents a 
sophisticated framework in which detailed models of the various components of 
the system may be implemented. Flexibility has been built in to allow for 
expansion and growth. High spectral resolution has been used throughout the 
model in simulating the next generation of imaging spectrometers. Models from 
the scene, the sensor, and the processing portions have been integrated to 

create the ability to study cross system parameter interrelationship effects on the 

classification and noise performance. All of these features together make it an 

unique contribution to remote sensing scienoe.
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Table 1.I . Simulation Studies.
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1.4 Report Organization
In this chapter, the objectives of the research were stated as being to 

document, model, and investigate the effects of various remote sensing system 

parameters on system performance. Also, the concept of a remote sensing 
system was defined. Chapter two discusses models and algorithms useful in 
simulating the remote sensing system process. Chapter three presents an 
alternative system model based on a parametric description of the system state, 
using analytical equations to describe the effect of the various system 
components. Chapter four presents results of applying these models to various 
system configurations based on an imaging spectrometer and studying the 

effect of system parameters on noise and classification performance. Chapter 
five concludes the report by discussing the results of these studies and possible 
future extensions of the work.
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CHAPTER 2

REMOTE SENSING SYSTEM MODELING AND SIMULATION

2.1 Overview of System Model
Jn the modeling of a complex process, the goal is often to represent the 

process faithfully while reducing the complexity of the description. In the 

development of a model, we observe the process, take data measurements, 
and formulate an abstraction from these observations and data. This model 
then describes the process under varying conditions without having actually to 
duplicate it. Thus, the model serves as a documentation of our understanding 
of the process, as well as a tool useful in gaining insight into its operation. The 
models presented in this chapter serve both of these purposes.

The modeling of a system may be done at many levels of abstraction. 
The lowest level is the system itself. However this represents little knowledge of 
the system and is often impractical to use in studying its operation. The next 
level is with the use of detailed models of system components and simulation of 
the system operation. This chapter discusses component models useful in such 
a simulation. A still higher abstraction is a parametric and analytic description 

of the system. Chapter three presents a system model based on this type of a 
description.

The modeling of an optical remote sensing system is challenging 
because of its complexity. However, through the use of the taxonomies 
developed in the previous chapter this can be reduced to a manageable task. 
In chapter one the remote sensing process is described as a system and further 

divided into three subsystems; the scene, the sensor, and the processing 

subsystems. Figure 2.1 shows this division in the context of a system model that 
is described in this chapter for the simulation of the remote sensing process,
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The following sections detail the models used for the scene, the sensor, 
and the processing subsystems. In each section various approaches to 

modeling or describing the processes involved are discussed. Section 2.2 

discusses considerations in modeling the surface reflectance and the 
atmospheric effects and presents the model used in this report for simulating the 
scene. Section 2.3 describes the effects on the scene radiance introduced by 
the sensor, in both the remote sensing process and the simulation. Section 2.4 

discusses approaches to extracting information from a multispectral image, as 
well as describing the options available in the simulation. Section 2.5 

summarizes the models presented in this chapter.

2.2 Scene Models
The scene subsystem is by far the most complex, varied, and unknown of 

the remote sensing process. It is understood that no model can accurately 
represent all of the complex variations that make up the spectral radiance 
present at the input of the sensor. However, through the use of various 
simplifying assumptions, developing Such a model becomes a reasohable task. 
In this Section, approaches to modeling the scene are discussed.

From the taxonomies of chapter one, the scene is seen to consist of the 

solar illumination and atmospheric effects, the surface reflectance; and the 

goniometric effects due to the angles of illumination and view. In developing a 
model for the scene, models for the solar illumination and atmosphere, along 
with the surface reflectance are used, while the goniometric effects are 
embedded within the relationships between these two components. Figure 2.2 
presents a block diagram of the basic scene model structure.
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To further describe the modeling of the scene, the rest of this section is 
divided into two parts. Section 2.2.1 discusses modeling of the surface in 
general terms, as well as describing in detail a model used to simulate the 

surface reflectance. Section 2.2.2 then discusses the solar illumination and the 
atmospheric effects present in optical remote sensing systems and their 
simulation implementation.

2.2.1 Surface Reflectance Modeling
In this section various methods of representing the reflectance of the 

surface are presented. The discussion begins with the most general way of 
describing this reflectance, followed by approaches using deterministic canopy 
models, and then concludes with models developed from the statistics of field 
reflectances. The model chosen for implementation in the simulation is then 
discussed.
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The most general measurement of the reflectance of a surface is given by 
the Spectral Bidirectional Reflectance Distribution Function (SBRDF). This 
function is defined (chapter two of Swain and Davis, 1978) as in equation 2.1.

Px^solar’^solar’^view’^view^
^X^view’̂ vieŵ  ^ -1  

^ ̂ ^solar’̂ solar̂
(2 .1)

Here, L^eview,<t>view) is the reflected spectral radiance observed at angles 

0View- <l>view> and Ej^soiar-^soiar) *s th® incident spectral irradiance at angles 
0Soiar- <l>soiar- The geometry used here and in the rest of the report is shown in 
Figure 2.3.
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'X

<t>Y solar

Figure 2.3 Scene Geometry.

The quantities 9Soiar and 6View are the zenith angles as measured from 
local vertical, while <t>SO|ar and <J>view are the azimuthal angles as measured from 

Northonam ap-

The SBRDF gives the reflectance of an object from a ll angles of 
incidence and view and thus is the most complete representation of the surface 
reflectance. However, the accurate measurement of the SBRDF is a difficult 
task and few studies have been made.

A problem in obtaining the SBRDF arises due to spatial considerations. 
Typically, in remote sensing applications the scene is sampled spatially across 
two dimensions at some surface cell size Gx by Gy. A rectangular coordinate 

system is overlaid and an aggregate reflectance is obtained over each 

individual cell at spatial location (x,y). An aggregate SBRDF is then a  function 

of not only the geometry involved, but also the surface resolution cell size, the 

location in the scene, and the various materials contained within the cell.



A g g re g a te  SBRDF — Px,ag(^x>^y>x >y>^solar><l>solar>^view><i>view) (2 -2 )

Since the surface cell size Gx by Gy may be a number of meters square 

in typical remote sensing data sets, the measurement of the aggregate SBRDF 

on the surface is very inconvenient. Shibayma and Wiegand (1985) and Irons, 
Ranson, and Daughtry (1988) have reported some measurements of this type, 
but for limited crop species and over few wavelength intervals.

Thus, while the use of the measured SBRDF is the most complete way of 
representing the reflectance of the surface, it is impractical to use because of 
the difficultly in obtaining complete data for various cover types.

Strahler, Woodcock, and Smith (1986) discussed modeling of the scene 

for land resource remote sensing applications and divided surface models into 
two types; deterministic canopy models and stochastic image processing 

models. The term canopy comes about because these models attempt to 
calculate the SBRDF of vegetation by using radiative transport theory. 
Differential equations are used to compute the reflectance/transmittance of the 
several layers of leaves in a vegetative canopy.

Some examples of canopy models are the AGR model (Allen, Gayle, and 
Richardson 1970), the Suits model (Suits 1972a) with extensions for azimuthal 
(Suits 1972b) and row effects (Suits 1982), the SAIL model (Verhoef 1984), and 

the models by Park and Deering (1982), Cooper, Smith and Pitts (1982), and 

Kimes and Kirchner (1982). All of these models are based upon having precise 
knowledge of the reflectance, transmittance, and orientation of the leaves in 
each layer of the canopy. A model that used probability distributions in 
describing the orientations of the layers was described in Smith and Oliver 
(1974).

All of these canopy models, however, only consider the reflectance within 

a single surface cell, assuming the entire area covered by a particular surface 

type is homogeneous and with no regard to the spatial variability typical of 
almost all remotely sensed scenes. While they are capable of accurately 

modeling the SBRDF of a particular surface material, their lack of spatial
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information limits their applicability for the type of system study undertaken in 

this research: However, it certainly would be conceivable, if one had the 
appropriate data, to extend a canopy model to be able to contain spatial 
information and develop a very accurate surface reflectance rrtodel. 
Unfortunately, this type of detailed database does not exist at the present time.
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Image processing models, on the other hand, are not concerned with the 

reflectance structure within a scene resolution cell, but rather how the 
reflectances vary spatially and spectrally from cell to cell. In these models, the 
spectral reflectances of a surface area are taken to be multidimensional (across 
the spectral domain) random vectors with spectral and spatial correlation. 
While these models are usually developed from imagery that represent the 

radiance over an area, it can be assumed that the reflectances of the surface 
cells vary similarly in the spatial sense as do the image pixels. Also, the 

reflectance within each cell is assumed to be independent of illumination or 
viewing angle. This is known as Lambertian reflectance (Swain and Davis, 

; 1978).

,the use of image processing models for the surface reflectance two 
assumptions are generally made about the spectral and spatial variation in the 
scene. The multispectral reflectance vectors are usually assumed to be 
samples from an M-dimensional multivariate normal (or Gaussian) probability 

distribution function. The form of this distribution is shown in equation 2.3.

P<*1'*2 . , X j
T expi-!(X -X )t S  '(X-X)

-1 _

m  Jm ( T I I )
(2,3)

Herev X ^ X i,X2,...,xM)T data vector, X is the mean vector, and E  is the 

covariance matrix.

The work that is often cited in justifying this assumption is that of Crane, 
Malila, and Richardson (1972). They worked with 12 band MSS data that was 

transformed to its principle component space and reduced to three bands.



Since the transformation produces uncorrelated variables, they tested each of 
the three bands for goodness-of-fit to Gaussian random variables. While the 
results showed a fairly good fit to the univariate Gaussian model, they ignored 
the fact that just because these random variables were Gaussian, that did not 
mean that the original 12 dimensional random vectors were multivariate 
Gaussian. This comes about because of the fact that combining Gaussian 

random variables into a vector does not necessarily result in jointly Gaussian 

random vectors. A much better test would be to use the procedures discussed 
in Koziol (1983) or Smith and Jain (1988) to check for muitivariate normality.

Sorne early work done at LARS found the Gaussian assumption not to 

hold under the Chi-Square goodness-of-fit test. Members of the LARS Staff 
(1969) found that the Gaussian assumption did not hold for several 
rnultispectral data sets gathered from an airborne scanner. The results of this 

study may have been affected by the particular data they considered, or even 

the histogram cell interval used in the distribution test.
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Nevertheless, the Gaussian assumption results in much simpler 
methods of generating and analyzing the data than those based upon more 
accurate, yet computational complex models.

Remotely sensed images have also been shown to have a pixel to pixel 
spatial correlation. Kettig (1975) used this fact in development of the ECHO 

spatial classifier. Also, Mobasseri (1978) developed a multispectral spatial 
model that was a separable (across and down scene) exponential model. This 

spatial model used by Mobasseri is specified by its spatial autocorrelation 
function RmmK rj) for the scene reflectance rm as given in equation 2.4.

e { W } : RmmM) = e
a.W -bmN  

e

Here, am and bm are the across scene and down scene correlation 

parameters for wavelength m, and % and tj are the respective scene cell lag 

values. The coordinates (x,y) are the scene cell location.
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Equation 2.4 may also be written in terms of the autocorrelation 
coefficients, px = e*a and py = e"b, as in equation 2.5.

Rmm(^rI) = PmIx PmIy (2.5)

This form of autocorrelation for a random field is equivalent tb that of a 

wide-sense Markov random field with the neighbor set consisting of the quarter- 
plane causal neighbors, {(0,-1), (-1.0), (-1,-1)} (chapter seven of Rosenfeld and 
Kak, 1982). This is also equivalent to a two-dimensional autoregressive (AR) 
model (Delp, et al., 1979) as given by equation 2.6.

r(x,y) = Ci r(x-1,y) + C2 r(x,y-1) +C3 r(x-1,y-1) + au z(x,y) (2.6)

Here,
x,y - high resolution spatial column, row index in scene 

Ct = Px 

C2 = Py 
C3 = -PxPy
a u - standard deviation of Gaussian driving process, computed to retain 

unit variance for r (See algorithm given in Appendix A) 
z(x,y) - independent Gaussian random numbers with unit variance and 

zero mean.

Given arbitrary initial conditions, the AR model can easily generate a 
reflectance array with the desired spatial correlation. Other methods also exist 
to generate a random field with the spatial model of equation 2.4. Mobasseri 
(1978) used a Fourier-based technique, and Chellappa (1981) studied methods 

of generating spatially correlated arrays using arbitrary neighborhoods.

Using the Least Squared Error (LSE) estimation technique for the AR 

coefficients as described in Delp, et al., (1979) some typical coefficients for the 

AR model were calculated. Table 2.1 shows these typical values of the spatial 
parameters for a variety of scene types, computed from a line scanner image of 
an infrared band.
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Table 2.1 Typical Spatial Model Parameters.

Fullcovervegetation C1 =0.63 Cg==O. 55 C3= -0.35
Just emergent row crops C-) =0.63 Gg=O.70 C3= -0.44
Safe soil field 0-1=0.57 Cg=O,72 C3-  *0.41

:-.r ^ jt to b le m  with using Iihe scanner imagery to compute the spatial 
statistics is that there is correlation introduced by the instrument itself, and as a 
result, computing the statistics from the image data does not truly represent the 
correlation of the original scene. This is difficult to prevent, as with any imaging 
sensor this effect will be present. It is known, however, (Papoulis, 1984) that the 
output correlation is greater than the input correlation for a linear system with 
the response similar to imaging systems. Thus, one can reasonably assume 

that the actual pixel to pixel correlation of the original scene was slightly less 
than that which was computed from the imagery.

■ • • - ' : • ■ ■ - /"■. ‘ ■

An alternative method of gathering data to estimate spatial correlation is 
to use an instrument such as the Field Spectrometer System (FSS) described in 
Hixson, et al., (1978). With this instrument, spectral reflectance measurements 
were made with a spectral resolution of approximately 20 nm, and a ground 

field of view of approximately 25 meters. The instrument was mounted in a 
helicopter and flown over fields at a height of approximately 60 meters. The 
instrument made spectral radiance measurements that were converted into 
reflectance by comparison to the radiance measured over a known calibration 

panel. The report by Biehl, et al., (1982) describes the database of reflectance 
data measured by this and other instruments.

A comparison of the spatial correlation of imagery and spectrometer 
samples was made for two fields from Hand County, South Dakota. Both 
aircraft line scanner imagery and FSS reflectance data were obtained over 
fields 168 and 288 on July 26, 1978. Field 168 was mostly bare soil, while field 
288 was ripe Millet with nearly 100% ground cover. The spatial correlation of 
the imagery was done in the same direction and over the same area that the 

FSS had acquired data. The direction was along the flightline for both 

instruments. Since the aircraft imagery had a ground field of view of



approximately eight meters, the correlation coefficients for the aircraft imagery 

were calculated at both one and three pixel lag values to be able to compare 
the coefficients with those of the FSS at a similar intersample distances. The 
correlation coefficients are computed with the estimate given in equation 2,7.
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N-1
V  (Xn -X) ( xn+T -x ) 

n«1_____
_N
/  ,(Xn-X)2

(2.7)

Here, % is the lag value, N is the number of data samples and x is the 

sample mean. Table 2.2 shows the spatial correlation coefficients for two 

wavelengths in each field and two pixel distances of the aircraft Scanner-

Table 2.2 Spatial Correlation Coefficients for Hand County, South Dakota.

Field
Number

Wavelength Aircraft 
8 Meters

Aircraft 
24 Meters

FSS
25 Meters

168 0.56 pm 0.82 0.31 0.28
Bare Soil 1.00 pm 0.87 0.53 0.48

288 0.56 pm 0.61 0.44 0.25
Ripe Millet 1.00 pm 0.67 0.20 0.16

The results of Table 2.2 show that as the distance between samples 
increase, the correlation coefficient decreases. Also, there seems to be a 
significantly higher correlation among the imagery pixels as compared to those 

of the spectrometer, even when they are computed using samples a  similar 
distance apart. Thus, there does appear to be an increase in the correlation 
coefficient due to the characteristics of the line scanner.



To investigate the typical variation of the correlation across the spectrum, 
the spatial correlation coefficient was computed from some FSS data of a winter 
wheat field (number 151) from Finney County, Kansas taken on May 3, 1977. 
The wheat was beginning to ripen and there was approximately 30% ground 
cover. There were 58 samples across the field, each about 20 meters apart. 
The correlation coefficient for t= 1 as calculated in equation 2.7 for each 

wavelength is shown in figure 2.4.
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Figure 2.4 Correlation Coefficients of Winter Wheat Field.

The large peak around 1.4 and 1.9 pm is due to substituting 0.1% for the 

reflectance in the water absorption bands of the data. The other large peaks 
are also due to atmospheric absorption bands. The flat segments are from 

repeated values used in the plot due to the uneven spectral sampling of the 

FSS. For most of the wavelengths the correlation coefficient ranges around 

0.85. This correlation among samples is significantly higher than those of Table



2.2. This is indicative of the high variability in correlation among surface cover 
types and conditions.

While the exponential model is one way of modeling spatial correlation, 
spatial models based on fractal geometry (Mandlebrot 1977, 1982, Gleick 1987, 
and Peitgen and Saupe 1988) have emerged as a powerful method for 
modeling natural phenomena. This is partly because its m ilhefh itical 
construction is similar to what is observed in natural scenes. In two spatial
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dimensions, the fractal random field r(x,y) has the property shown in equation 

2.8, where D is the fractal dimension (2<D<3).

r(x2,y2) - r(x1-Vl>|2} (X2 -X 1) + (y  ̂ y 1)'
3 -D

(2.8)

That is, the variance of the difference between pixel locations is
proportional to the distance raised to a fractional power. Several experiments 
were conducted to measure the fractal dimension of typical agricultural scenes. 
Values for P ranged around 2.6±0.1 for several cover types. See Dodd (1987) 
for bn example in using fractal concepts to generate multispectra! texture by 

computing the fractal dimension D from principle component images.

While several discussed for generating scenes with
spatial correlation, the autoregressive model was chosen for implementation in 
the Simulation. This model is efficient in generating a simulated reflectance 
array using computer-generated random numbers. Table 2.3 pre^ent|>an.' 
overview of the technique used to simulate the surface reflectance, while the 
paragraphs following describe these steps in detail.



Table 2.3 Sequence in Generating a Simulated Surface Reflectance Array.
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Step I.  Define scene size and class boundaries.

Step 2. Obtain spatial and spectral statistics of 
reflectance data for each class.

Step 3. Generate spatial correlated reflectance
arrays for each wavelength, with each array 
being spectrally uncorrelated.

Step 4. Transform each reflectance vector to have 
the proper mean and covariance for the 
appropriate class.

Step 5. Interpolate resulting spectral reflectance 
vector to the desired spectral resolution of 
scene.

The scene is first defined by determining its size, X columns by Y rows, 
where each location (x,y) is a square scene cell with the distance on one side 
specified in meters. Each of these scene cells are assigned to one of the K 
classes. Class boundaries are specified by the upper left index and lower right 
index of the rectangular area containing the class.

Reflectance data for each class used in the simulation is obtained from 

the database of FSS measurements. Over the wavelength range considered in 

this report there are 60 wavelength samples in the FSS data. Thus, the spectral 
statistics are 60 dimensional. The across scene and down scene spatial 
coefficients are estimated from imagery over scenes similar to the one being 
simulated. Typically, the same spatial correlation is assumed for each 
wavelength, while no wavelength-to-wavelength spatial crosscorrelation is 
specified.

The AR model is used to generate the spatially correlated reflectance 

cells within the area defined for each class k, and for each wavelength band m 

as shown in equation 2.9,



I’m(x.y) = Px U x - I  ,y) + Py rm(x,y-1) - pxpy rm(x-1 ,y-1) + au z(x,y) (2.9)

where the symbols are defined as in equation 2.6.

The individual arrays {rra(x,y)} are arranged as a spectral vector array, 

{R(x,y)}. Reflectance data of each class k are used to compute the mean vectors

Pk and covariance matrices X k. The eigenvalues and eigenvectdrs df tHese 

covariance matrices are then computed and arranged as diagonal matrices A k 

and column matrices .O k,. respectively. The surface reflectance array (P(x,y)} is 

then obtained by using equation 2.10, where for each scene cell location (x,y) 
the appropriate class transformation is applied.
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P(x,y) m Pk + O k A k R(x,y) (2.10)

The resultant reflectance array will be multivariate Gaussian with the 
mean and covariance of the original class statistics, and be spatially correlated 

according to the exponential model of equation 2.4.

While the FSS reflectance data covers the entire range from 0.4 to 2.4 
pm, the wavelength sampling is uneven, ranging from 20 nm to 50 nm. In order 
to have a uniform spectral resolution for the scene model, an interpolation is 

performed on each spectral reflectance vector to yield 201 wavelengths spaced 
at 10 nm intervals. The algorithm used to perform this interpolation is given in 

iAppendixB.'

2.2.2 Solar and Atmospheric Modeling
In this section, the modeling of the solar illumination and the atmospheric 

effects present in optical remote sensing systems is discussed. Following a 

preliminary list of references to work in this area, a general model of the 

atmosphere is presented. This is followed by a discussion of measures of 
atmospheric quality. The model used in the simulation is then presented, along



with several curves showing the effect of various parameters on the 
atmospheric model. The section concludes with a comparison of the model 
atmosphere with real measurements for a particular test site.

The solar extraterrestrial flux and the atmosphere have been studied 
extensively over the years. Accurate measurements of the solar curve have 
been made and are well documented in the literature. For example, 
publications by Thekaekara (1974) and Bird (1982) contain solar standard 
curves. Discussions of the atmosphere may be found in chapter twp of Swain 
and Davis (1978), Chahine (1983), and chapters five and six of Wolfe and Zissis 
(1978). Atmospheric simulation models have been reported in Kneizys, et al., 
(1983, 1988), Turner (1983), Diner and Martonchik (1984), and Herman and 

Browning (1975) among others.

The atmospheric effect on spectral radiance consists of two main 

mechanisms, scattering and absorption. Scattering is mainly due to the 

presence of particles in the atmosphere, while absorption comes about due to 
the energy transfer from the optical radiation to molecular motion of atmospheric 
gases. Both of these effects are wavelength dependent.

Figure 2.5 gives a pictorial view of the various atmospheric effects on the 
spectral radiance received by the sensor.
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Figure 2.5 Atmospheric Effects on Spectral Radiance Received by Sensor.

From this figure, several main factors are seen to contribute to the 

radiance received by the sensor. The exoatmospheric spectral irradiance, 
Ex,Exo> is attenuated and scattered by the atmosphere before reaching the 

surface as the direct spectral irradiance ExiDiroct- Some of this scattered 

radiation also reaches the surface as ExiDiffuse- the diffuse spectral irradiance (or 
skylight irradiance.) The reflected spectral radiance LxiSurface passes through 
the atmosphere and is attenuated by the spectral transmittance Tx1Atm of the

atmosphere. Also, some of the solar irradiance that is scattered by the 
atmosphere finds its way into the sensor field of view as LxiPath- the path

spectral radiance. This path radiance also includes that which may have been 
reflected off of the nearby surface (adjacency effect) before being scattered into 

the sensor field of view, as well as the background radiation of the atmosphere.

These factors contribute to the spectral radiance of the scene, as 
received by the sensor, in a manner described by equation 2.11.
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1_[cos(6
(2.11)

Here, Rjl is the spectral reflectance of the surface. In the most general 

sense it is the Spectral Bidirectional Reflectance Factor (SBRF) that gives the 
reflectance for all angles of incidence and viewing. The other factors also 
depend upon the angles of illumination and viewing as well as the quality of the 

atmosphere.

Several other important aspects of the real atmosphere also influence 
the values in equation 2.11. One is the spatial dependence of the atmospheric 
scattering and absorption effects. The make-up of the atmosphere is not 
constant over a scene; however, it is unclear how the atmosphere changes from 
pixel to pixel over typical pixel sizes (20-30 meters), and is usually assumed to 
be constant. Another spatial effect of the atmosphere is the blurring that can be 

introduced by the scattering in the atmosphere. Kaufman (1985) has studied 
the atmosphere from this point of view, suggesting that the atmosphere be 
modeled with a spatial modulation transfer function (Goodman, 1978) similar to 
those used in the modeling of sensors. This could be implemented in the model 
in a spatial convolution with the scene radiance. Yet another effect that is often 
ignored is the time dependence of the atmospheric effects. Fast moving gases 
exist in the upper atmosphere and cause a changing effect on the scattering 
and absorption over the field of view of the sensor. The movement of clouds is 

an example of this time dependence.

The quality of the atmosphere may be represented by several different 
measures. The fundamental parameter for atmospheric quality is the spectral 
optical thickness T j l - The spectral transmittance Tjl Atm ° f the atmosphere 

between two points X 1 and x2 is defined by equation 2.12 where P(^,z) is the 

VQlume extinction-coefficient with units of Km*1.
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\A « n  = eXP

2

J P(X,z) dz
(2.12)

The integral inside the exponent of this equation is known as the spectral 
optical thickness %x and is defined in equation 2.13.

Visibility is also often used as a measure of the clarity of the atmosphere 
and is defined (Kneizys, et al., 1983) by "the greatest distance at which it is just 
possible to see and identify with the unaided eye in the daytime a dark object 
against the horizon sky." The surface meteorological range V n is related to

visibility (usually by a factor of 1±0.3), but defined numerically, rather than by 
subjective judgement. For the typical atmospheres used in this report, it is 

assumed that the two terms can be used interchangeably. Surface
meteorological range is related to the volume extinction-coefficient at X=O.55 
pm through equation 2.14.

w 3.912

h X=0.55
Km (2.14)

Surface meteorological range (or visibility) is the measure commonly 
used in remote sensing for atmospheric quality. However, some experiments 
specify the optical thickness (also called optical depth for a vertical path). Data 

from EIterman (1970) was used to find an empirical relationship between optical 
thickness and visibility. Figure 2.6 shows points from Elterman's data along 
with a best fit Curve. These data points are for X = 0.55 pm. Optical thickness is 

also dependent upon wavelength. Data from Elterman (1968) was plotted in 

Figure2 .7 along with a best fit curve for the empirical data. This relationship is 
for asuffade meteorological range of 25 Km.
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Optical Thickness vs. Visibility
from Elterman (1970)
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Figure 2.6 Optical Thickness x vs. Visibility.
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Figure 2.7 Optical Thickness vs. Wavelength.
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These empirical relationships were used to derive equation 2.15 relating 
spectral optical thickness to meteorological range and wavelength.

V v„) = O S X 1-328V r 56 (2.15)

Thisequation is assumed to be valid only over optical wavelengths arid 
meteorological ranges from 2 to 50 Km.

In this research the solar and atmospheric model is implemented with the 
use of the computer code LOWTRAN 7 (Kneizys, et al., 1988). The program 
LOWTRAN has evolved over the years from simply an atmospheric 
transmittance code to one that is now capable of computing direct solar 
irradiance and multiply scattered atmospheric radiance.

LOWTRAN uses radiative transfer theory to compute the transmittance 
and radiance in each of 32 layers of the atmosphere. Well documented data 

tables embedded within the program give accurate spectral transmittance and 
radiance values at minimum wavenumber intervals of 20 cm-1. This model 
compares favorably to ones developed by Diner and Martonchik (1984), and 

Herman and Browning (1975), because of its continuous spectral coverage and 
its inclusion of narrow absorption bands due to the various constituents of the 
atmosphere. A partial list of controllable parameters for LOWTRAN 7 is 
contained in Table 2.4.

Table 2.4 Example LOWTRAN 7 Parameters

Solar position 
Meteorological range 
Surface albedo 
Atmospheric haze 
Altitude of observer 
Zenithangleofobserver 
Wavele ngth range and increment
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LOWTRAN 7 is used along with the models discussed below for the 
diffuse irradiance and path radiance to compute the radiance received by the 
sensor. Appendix C contains the input file format used in the calls to 
LOWTRAN.

The spectral radiance present at the input to the sensor model in the 
simulation program is computed as in equation 2.16.

*~X,Sensor X̂,y  ̂ = tF EX,Total P(X’^  TAtm + hi,Path (2.16)

The generation of the three atmospheric components Of this equation is 
discussed below, while the spectral reflectance array P(x,y) is as calculated in 

section 2.2.1.

■ ' . -

1. Total Spectral Irradiance. This is the total downwelling spectral 
irradiance EjllTotai that is incident at the surface, and is equal to the sum of the

direct and diffuse irradiances as shown in equation 2.17.

^X1TotaI — ^®® ŝolar  ̂ ^X1Direct + ^X1Diffuse (2.17)

Since LOWTRAN does not have an option to generate the diffuse 
component, a model was obtained from Chahine (1983). There, the total 
surface spectral irradiance ExfT0taI is shown to be related to the direct spectral

irradiance through the curve given in Figure 2.8. Also shown in the figure is an 
exponential model derived from the data.
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Figure 2.8 Ratio of Direct to Total Irradiance vs. Total Optical Path Length.

The total optical path length xp X is related to the optical thickness by 

multiplying by sec(0SO|ar) as in equation 2.18.

xp, (̂^Tl’®solar) ~ t X(^)Sec(Qsoiar) (2.18)

This relationship between direct and total irradiance is given as a 
function of the total optical thickness of the atmosphere in equation 2.19. Thus, 
equation 2.19 can be used in conjunction with equation 2.15 to obtain the total 
surface spectral irradiance from the direct spectral irradiance, the surface 
meteorological range, the diffuse irradiance constant, and the solar zenith 
angle.

EXJotal (Vt1’ 9SOlar)

cQS(Qsolar) (V,, SsoJ

e*p[ ' k D W  secI05o j ]
(2.19)



The diffuse irradiance constant K0 is dependent upon the type of 
atmosphere and the overall surface reflectance. In the discussion by Chahine 
(1983) from which Figure 2.8 was taken, the author stated that the curve was for 
a nonabsorbing atmosphere and surface albedo < 15%. It was also indicated 
that for absorbing atmospheres and higher albedoes the curve would be 
steeper. While no specific values were given in the reference, Table 2.5 shows 
some estimates of K0 for different conditions. The model shown in Figure 2.8 
was with Kd = 0.73.
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Table 2.5 Diffuse irradiance Constant Values.

Kd Type of Atmosphere Surface Reflectance
0.73
0.84
1.00
1.26

nonabsorbing
absorbing
absorbing
absorbing

low ( < 15%) 
low ( < 15%) 

medium (15 - 30 %) 
high (>  30%)

2. Atmospheric Spectral Transmittance. This is directly computed using 

LOWTRAN for a path from the surface to the sensor. This may be a vertical or 
slant path through the atmosphere, depending on the zenith angle of the 
sensor. It represents the path loss due to scattering and absorption.

3. Path Spectral Radiance. This is computed by using two calls to 
LOWTFtAN. If is called once for a surface albedo of O and once for an albedo of 
1. The total path radiance received by the sensor is then computed by 
interpolating between these extremes as in equation 2.20, where (x,y,m) 
specifies the spatial location x,y arid wavelength m. Pmiave(x>y) Is the average 

surface reflectance for wavelength m in the neighborhood of x,y. In 
implementing this model in the simulation the entire scene is used in computing 

Pm,ave(x>y)‘

1 X . Path<X-y-m>
. alb=0 . . 
L X,Path +  Pm.ave (x.y) •

I a|b-1 / \
K,Path(m)

,a lb -0  . .
L*,Path(m) (2.20)



This formulation of path radiance allows for its dependence on the 
surface reflectance. This does not truly represent the situation in the real 
system, as the path radiance there is dependent upon the reflectance of the 
SUitacs for each particular path the illumination follows before arriving at the 

sensor, and there are many paths the illumination may take. However, this 
simple linear model offers good compromise between accuracy and 

computational complexity.
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On the following pages, examples of how various scene parameters 
affect these atmospheric model components. For these examples the default 
parameters of Table 2.6 were used.

Table 2.6 Default Values of Atmospheric Parameters.

Parameter Default
Model 1976 U.S. Standard
Atmospheric Haze Rural Extinction
Surface Meteorological Range 16 Km
DiffuseIrradianceConstant 0.73
Solar Zenith Angle 300
View Zenith Angle OO
SurfaceAIbedo 0.10

The following figures 2.9 through 2.14 show the direct, diffuse, and total 
spectral irradiance for several meteorological ranges and solar zenith angles. 
The curves for the diffuse irradiance were computed as the difference between 
the total and direct spectral irradiances. Figures 2.15 and 2.16 show how 
atmospheric transmittance varies for several meteorological ranges and view 
angles. Figures 2.17 through 2.20 show how the path radiance component is 

affected by meteorological range, solar angle, view angle and surface albedo.
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Figure 2.9 Effect of Meteorological Range on Direct Solar Spectral lrradiance.
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Figure 2.10 Effect of Solar Zenith Angle on Direct Solar Spectral lrradiance.
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Figure 2.11 Effect of Meteorological Range on Total Solar Spectral lrradiance.
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Figure 2.12 Effect of Solar Zenith Angle on Total Solar Spectral lrradiance.
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Figure 2.13 Effect of Meteorological Range on Diffuse Solar Spectral lrradiance.
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Figure 2.15 Effect of Meteorological Range on Spectral Transmittance.
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Figure 2.16 Effect of Sensor Zenith Angle on Spectral Transmittance.
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Figure 2.17 Effect of Meteorological Range on Path Spectral Radiance.
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Figure 2.18 Effect of Solar Zenith Angle on Path Spectral Radiance.
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Figure 2.19 Effect of Sensor Zenith Angle on Path Spectral Radiance.
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Figure 2.20 Effect of Surface Albedo on Path Spectral Radiance.
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These curves give an indication how the components of the atmospheric 
model vary under different conditions. In general, they show how a  hazier 
atmosphere will allow less radiance to be received by the sensor from the 
surface, yet increases the path radiance, and how the angle of illumination or 
view can decrease the signal radiance as well as increase the path radiance. 
The path radiance is also seen to increase with surface albedo.

An experiment was performed to test the suitability of the atmospheric 
mode! by comparing the radiance received by a satellite to that simulated by the 
model from a description of the scene conditions and the reflectance of the 
surface. A test site in Hand County, South Dakota was chosen from data 
gathered as part of the LACIE program (Hixson, et al., 1978). On July 26,1978, 
reflectance data was gathered at approximately the same time as the Landsat 2 
MSS passed over the area. The parameters of these sensors are shown in 

Table 2.7.

Table 2.7 Data Set for Hand County, South Dakota, July 26,1978.

Landsat 2 Multispectral Scanner
Spectral Channels 4 bands, 0.4 -1.1 pm
Scene 21281-16232
Altitude 918 Km
Ground Size of IFOV 80 Meters
Time 1623 GMT

Helicopter Field Spectrometer System
Spectral Channels 60 bands, 0.4 - 2.4 pm
Altitude 60 Meters
Ground Size of FOV 25 Meters
Time 1505- 1601 GMT

A particular area having four large nearly square fields was selected for 
test. Table 2.8 contains the field numbers from the LACIE experiment and the 

crop types.
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Table 2.8 Description of Test Fields.

Field Number Crop Type Ground Cover
Field 290 
Field 168 
Field 289 
Field 288

Spring Wheat 
Millet

SpringWheat
Millet

30 Percent 
TO Percent 
30 Percent 
90 Percent

In order to compute the radiances received by the MSS, a table of 
conversion constants was obtained from the work by Richardson, et al., (1980). 
Table 2.9 shows the Ai and Bj used to compute from the digital counts DCi the 

radiance present at the input of Landsat 2 MSS in band i. Equation 2.21 shows 
how these constants are used to compute the radiance. The units of A are 
mW/(cm2'Sr-digital count) and for B are mW/(cm2-sr).

Table 2.9 Conversion Constants Between Radiance and Digital Counts.

Band A B
1 0.0201 0.08
2 0.0134 0.06
3 0.0115 0.06
4 0.0603 0.11

L  = A. DC. + Bj (2.21)

In generating the simulated radiance, the atmospheric model described 
earlier in this chapter was used with the radiances integrated over the nominal 
wavelength intervals of each band of the MSS sensor. Thus, the radiance in 
each band i was generated as in equation 2.22.

— F T R + 
TC !,Total IlAtm i

V '  -L 0 ■'
!,Path u I1Path R i +  L i,Path (2.22)
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Here, Ri is the average reflectance in band i. Table 2.10 gives the 

atmospheric and goniometric conditions present at the time of observations.

Table 2.10 Scene Conditions at Time of Observations.
r- ■ 
;; Meteorological Range (Vti) 31 Km

Solar Zenith Angle (0 Soiar) 390
■ " Solar Azimuth Angle (<J>soiar) 1190

Diffuse Irradiance Constant (K0) 1.26

Table 2.11 cohtaihs the LOWTRAN settings used in generating the 

simulated atmospheric effects.

Table 2.11 LOWTRAN Settings for Experiment.

Atmospheric Model 1976 U. S. Standard
AtmosphericHaze RuraIExtinction
Atmospheric Scattering Multiple
Aerosol Phase Functions Mie-generated
Aerosol Profile ______  Background Stratospheric

AU other LOWTRAN parameters were set to zero, or the default. Table 

2.12 shows the atmospheric components generated by LOWTRAN for each of 
the spectral bands, while Table 2.13 compares the simulated to the actual 
radiances received by the satellite.
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Table 2.12 Atmospheric Components for the Hand County Test Site.

Band E Total
mW^

^atm L Path,1
f  mW 'I

^cm2 ^cm2 -S^

■v 1 16.296 0.684 1.131
2 14.036 0.746 6.735
3 10.843 0.764 0.434
4 19.329 0.774 0.524

-PathfO
mW

cm2 -s r j

0.248
0.128
0.068
0.071

Table 2.13 Comparison of Actual and Simulated Radiances (in mW/(cm2-sr)) for 
Test Site in Hand County, SD.

FSS
Reflectance

MSS Average 
Digital Count

Landsat
Radiance

Simulated
Radiance

Percent
Error

Field 290 
Band 1 
Band 2 
Band 3 
Band 4

0.063
0.083
0.166
0.240

21.5
26.9
44.2
20.7

0.512
0.421
0.568
1.358

0.527
0.455
0.566
1.323

+2.9
+8.1
-0.4
-2.6

Field 168 
Band 1 
Band 2 
BahdS 
Band 4

0.068
0.088
0.121
0.182

23.7 
31.0
36.8  
16.6

0.556
0.475
0.483
1.111

0.549
0.475
0.431
1.020

-1.3
0.0

-10.8
-8.2

Field 289 
Band 1 
Band 2 
Band 3 
Band 4

0.058
0.078
0.143
0.208

22.1
27.6
43.2
20.1

0.524
0.430
0.557
1.322

0.505
0.435
0.497
1.156

-3.6
+1.2
-10.8
-12.6

Field 288 
Band 1 
Band 2 
Band 3 
Band 4

0.043
0.031
0.252
0.388

18.3
14.8
66.1
36.6

0.448
0.258
0.820
2.317

0.439
0.250
0.825
2.094

-2.0 
-3.1 ■.
+0.6 
-9.6

A scatter plot of the simulated radiances versus the measured Ones is 

shown in Figure 2.21 . The solid line is a best linear fit to the points with a 

regression coefficient of 0.99, while the dashed line represents the ideal of 
equal radiances.
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Landsat Radiances

Figure 2.21. Plot of Landsat vs. Simulated Radiances.

The error between the Landsat and the simulated radiances seems to be
equally distributed (+ and -) for bands 1 and 2, while the radiances in bands 3 
and 4 seem to be consistently underestimated by the model. The greater error 
at the longer wavelengths may be due to several factors. The diffuse irradiance 

component may be on the low side because of the high reflectances of the 

surrounding area. Also, LOWTRAN may be underestimating the path radiance 
calculation.

Overall, there seems to be a close match between the Landsat radiance 

and the simulated radiance. It would seem then, that this atmospheric model is 

reasonably satisfactory.



2.3 Sensor Modeling
The sensor portion of optical remote sensing systems performs the task 

of sampling the continuous spectral radiance of the scene in the spectral, 
spatial, radiometric, and temporal domains. This results in a digital 
multispectral image of a scene at a certain moment in time, with a discrete 
number for the radiance at each spot in the scene and for each spectral region.

The modeling of imaging sensors can be quite complex indeed. One 
may consider the propagation of the optical waves through the sensor optics 
(including aberrations), the conversion from light to electrons in the detector 
material, and the effects in the signal conditioning electronics. Goodman (1968) 
provides a good discussion of the propagation of optical waves in imaging 

systems from a linear systems point of view. Texts by Hudson (1969), Pinson 

(1985), and Wyatt (1987), and chapter eight of Colwell (1983) cover the entire 
detection process from the optical system through the detector electronics.

In this research, the modeling of sensors is approached from a lumped 
systems perspective. Figure 2.22 shows a block diagram of the major 
components of a multispectral sensor.
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Figure 2.22 Sensor System Components.
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The scene is sampled spatially by its being imaged onto a detector array 
that is either scanned sequentially down the scene, or consists of a focal plane 
array that gathers the two-dimensional image in a small but finite time interval. 
These sampled pixels are also dispersed onto separate detectors for each 
spectral band to the perform the spectral sampling.

The signals from these detectors are then amplified (electrical noise 
effects occur here) and calibrated before being quantized into discrete values.

The model shown here is very general and could be enhanced to include 
very detailed effects such as the aberrations in the optical propagation in the 
optical system, spatial misalignment of the detectors, or electrical bandwidth of 
the amplifiers. But in this report, the model will be relatively simple within this 
generality. The model will be limited to a simple point spread function for the 
spatial response, a simple multiplication of the sensor response for the spectral 
response, and a noise model containing electrical noise, calibration error, and 

quantization effects.

In the following subsections 2.3.1 and 2.3.2, models are presented for the 
sampling and noise processes. In subsection 2.3.3, a detailed model is 
presented for a future remote sensing imaging spectrometer. Appendix D 
contains complete descriptions of several multispectral scanners. In subsection 

2.3.4, the computation of radiometric performance measures is discussed.

2.3.1 Sampling Effects
In the creation of the digital image the continuous spectral radiance of the 

scene is sampled spatially, spectrally, and radiometrically (ie., A/D conversion). 
The following paragraphs describe these forms of sampling.

I .  Spatial Sampling. The optical Point Spread Function (PSF) is the two- 
dimensional analog of the system impulse response in linear system theory 
(Goodman, 1968). It is the response of the optical system to an infinitely bright 
point source, usually represented by the Dirac delta function 5(x,y).



In the simulation model, no parametric form for the PSF is assumed. 
Rather, a table of values derived from measurements of the real devices is used 

to define the PSF. Thus, this form includes many of the aberrations present in 
the instrument optics.

The discrete representation of the response of the optical system is given 
by equation 2.23. The PSF h(u,v) is represented as the product of separable 
line spread functions hx(«), and hy(»), across the two spatial dimensions. The 

response is normalized to unit area by dividing by the area under it.

4 “  Chapter2 -Rem ote Sensing System
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h(u,v) = 1
0+1 P+1

(AX 9 X)(Ay 9y)
0=1 pj=1
/ ,  Y  hx (° )hy(p) 5(u - gx , V - gy) (2.23)

Where,

(u,v)- spatial domain locations (meters)
Ax - Sum of across scene line spread function coefficients 
Ay - sum of down scene line spread function coefficients 

gx = AUH - ground interval between hx coefficients (meters)
9y = AVH - ground interval between hy coefficients (meters)
AU - angular distance between hx coefficients (radians)

A V - angular distance between hy coefficients (radians)
H - height of sensor (meters).

Also, 0+1 and P+1 represent the number of coefficients in the across 
scan and down track line spread functions, respectively, and hx(P/2) and 
hy(0/2) contain the maximum response.

Equation 2.23 gives the response for a vertical viewing sensor. For 
sensor zenith angles > 0°, the distance on the ground between the Coefficients 
must be rotated by the azimuthal angle $view, and scaled by the zenith angle 
0View This is shown in equation 2.24.
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9x" - COS(Oview) Sin(Oview) - ■ Ax-

fly.
=

/  s ln W1V i J  o o s W1V i J .
Ay

L oosW W
(2.24)

In applying this spatial response to the scene spectral radiance function 

derived in section 2.2.3, equation 2.25 is used. This equation is repeated for all 
Imaga pixel locations (i.j) and scene wavelengths m.

><7

; GxGy
Lx,sens0r(l’j ’m) = (Axg’x )(Avg’ )

0+1 P+1

X » x /v y » y /  Q=1

.

X i is V -M y  J
A.,Scene . GX ’ Gy ’ m

V , y J

f°9x
Y ■ ■:

hX G* hy Gu ..., '■"'r _j ■ .
V I  y J .

(2.25)

Sx and Sy are the across scene and down track sampling intervals for the 

image pixels. In the case pf off-nadir viewing these also must be scaled and 

rotated as the ground coefficient intervals were in equation 2.24. Note that 
since the scene radiance array has discrete pixel locations all index quotients 
are rounded to the nearest integer. Also, at the edges, the extreme row or 
column is repeated as necessary to allow for the complete application of the 

spatial response.

The PSF is often approximated by a truncated Gaussian curve. 
Measured PSFs often are nonsymmetrical and can include ringing at the tails 
of the response; thus the Gaussian shape does not truly represent the actual 
PSF. Although in some cases, it can be close enough to justify its use in 
theoretical modeling.

2, Spectral Sampling. The spectral response of a multispectral sensor 
consists of the continuous response of each channel to the spectral radiance 

received by the sensor. In the simulation, the application of the discrete 
response to the incoming spectral radiance L̂ Sensor('.j>m) is as shown in

equation 2.26.
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M e (m\

(2.26)

Where,
AX - scene wavelength increment in pm 

S|(m) - normalized response of band I to spectral wavelength m 

Limage(' j>0 ‘ radiance received by band I at pixel location (i,j) 
Lx,sensor(U.m) - incoming spectral radiance from pixel location (i,j) 

at wavelength m
N(I) - normalizing factor for nominal bandwidth variations.

The normalizing factor N(I) is the ratio between the actual bandwidth as 
measured by the area under the normalized response curve and the nominal 
bandwidth of the channel. This factor is often necessary to match the published 
gain setting between the real instrument and a modeled version. Price (1987) 
discusses calibration problems of this sort and presents tables of the actual 
bandwidth for several multispectral scanners.

For the imaging spectrometers modeled in this report, the spectral 
resolution of the sensor is the same as the scene. Thus, for these sensors there 
is only one term present in equation 2.26,

3. Radiometric Sampling. After the continuous spectral radiance across 

the scene has been sampled spectrally, and spatially, and the noise (discussed 
in the following subsection) has been added in, the received value is converted 
to a discrete level by equation 2.27.

Here, Q is the number of radiometric bits of the sensor, and LFuj);| is the 

published full scale equivalent radiance for sensor band I. This introduces

(2.27)
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quantization noise uniformly distributed with an equivalent radiance variance 
shown in equation 2.28 for each sensor band.

o2 = J-
quant.l 1 2

FoIItI

* ° -  V

2.3.2 Electrical Noise Modeling
Malaret (1982) performed a study of the general noise effects in 

multispectral sensor systems and their impact on data analysis. In this 
research, his model for the electrical noise present in these types of sensors will 
be used, augmented by models for radiometric and calibration errors. Figure 
2.23 contains a block diagram of this noise model showing the signal 
dependent shot noise, thermal noise, radiometric error, and calibration error.

. ■. ;■ V ■ ■■ ■ Absolute -
r> Radiometric Shot Thermal

Error Noise Noise

Incoming I m
Radiance

A S
* 1  + ■ \  ^  r +  )

Relative 
Calibration 

Error

Detector
Output

Figure 2.23 Noise Model of Sensor,

In his work, Malaret showed how the shot noise in a multispectral sensor
can be modeled as a zero mean Gaussian process with its variance 

proportional to the signal level (assuming the typical signal levels associated 
with Landsat sensors.) In this research, the shot noise signal dependence is 

implemented by having the variance of a Gaussian random number generator 
proportiona! to the signal level. These random numbers are then added to the 

signal level.
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Thermal noise has been shown to have a Gaussian distribution also with 
zero mean and a variance proportional to the product of detector temperature, 
bandwidth, and resistance. These factors are assumed to be relatively 

constant, and thus the level of the thermal noise is fixed. It is implemented as a 
Gaussianly distributed random number added in to the signal level received by 
the sensor.

Two types of radiometric error are found in the sensor system, absolute 
and relative calibration error. Absolute errors imply a deterministic change in 

output level, while relative errors are manifested as stochastic noise. Table 
2.14 shows several causes for these errors and the type of error produced.

Table 2.14 Sources and Types of Radiometric Errors.

Error Source ErrorType
Change in transmittance of optics 
Changeingainofdetectoramplifiers  
Change in characteristics of calibration standard 
Change in detector quantum efficiency

absolute
absolute
absolute
relative

Absolute errors are introduced in the model through additive offset The 

level of error is constant across the detectors, but is signal and wavelength 
dependent. The model for the relative calibration error has been developed 
under the assumption that each detector channel in the imaging array may 

undergo a random and independent change in its response over time. Thus, 
the radiance level required for a given output may differ from detector to 
detector.

From the statistics given in Castle, et al. (1984) it was determined that the 

actual output of detectors may vary as much as 1% from the calibrated output 
given the same input. Assuming an uniform distribution for this error; then the 
multiplier for the uniform random number generator would be chosen to be ±1%  

of the signal level. The standard deviation of this error is given in equation 2.29.
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2 * P PI  {signal level}
/Ta ' (2.29)

Depending on the spatial arrangement of the detectors, the relative 
calibration error may be constant in one spatial direction. For example, a linear 
array of detectors may cause relative errors across the image, but since the rest 
of the image is formed by the motion of the sensor platform, the relative error is 
constant down the columns of the image. This may cause a vertical striping 
effect. Of, for a line scanning detector array, the striping may be horizontal as 
was found in early Landsat MSS sensors. Thus, in implementing the calibration 

error model, the type and arrangement of detectors must be considered.

2.3.3 HIRIS Model
In this subsection, a model for the High Resolution Imaging Spectrometer 

(HIRIS) is presented. The instrument is described in Goetz and Herring (1989). 
HIRIS is meant to be used in an on-demand mode of operation, gathering data 
at the request of a science investigator. Kerekes and Landgrebe (1989a) 
present a full description of this instrument and its performance. Table 2.15 
contains a brief overview of the instrument and its general design parameters.

Table 2.15 HIRIS Functional Parameters.

DesignAItitude 705 Km
Ground IFOV 30 m
Swath Width 20 Km
Spectral Coverage 0 .4 -2 .5  pm

192 Bands
Average Spectral Sample Interval

0 .4 -1 .0  pm 9.4 nm
1.0 - 2.5 pm 11.7 nm

Pointing
Down-track +60°/-30°
Cross-track +20°/-20°

Data Encoding 12 bits/pixel
Maximum Internal Data Rate 512 MBPS
MaximumOutputDataRate 300 MBPS
Image Motion Compensation Gain 1,2, 4, or 8
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For this research the model shown in Figure 2.24 is used for the HIRIS 
instrument. This model version has 201 equally spaced (10 nm intervals) 
spectral bands from 0.4 to 2.4 pm and includes most major spectral, spatial, and 

radiometric effects of the instrument.
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Figure 2.24 HIRIS Model Block Diagram.
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Instrument parameters have been obtained from a progress report by 
JPL (1987). These parameter levels are based upon preliminary specifications 
and prototype testing. The following paragraphs and figures detail the blocks in 

the overall diagram and present relevant parameter values.

The sensor has two detector arrays to cover the entire spectral response. 
The Very Nedr Infrared (VNIR) array covers 0.4 -1 .0  pm, while the Short Wave 
Infrared (SWIR) array covers 1.0 - 2.5 pm. The scene is imaged line by line as 

the sensor passes over. Each scene line is sampled spectrally by being 

dispersed across the detector arrays.

The spectral transmittance of the instrument optics is shown in Figure
2.25. Note the low response at the spectral gap between the VNIR and the 
SWIR arrays at 1.0 pm.

0.4 0.6 0.8 i.O  1.2 1.4 1.6 1.8 2.0 2.2 2.4

Wavelength (micrometers) 

Figure 2.25 Spectral Transmittance of Optics.

The normalized spatial response of the optics and field stop is assumed 

to be similar to the that of the Landsat Thematic Mapper instrument, as they both



have a Ground Instantaneous Field of View (GIFOV) of 30 meters. Figure 2.26 

shows the measured down scene and across scene normalized responses as a 

function of angular distance for the TM, taken from Markham (1985). The data 

points shown are the discrete values used in the simulation. At the nominal 
altitude of the HIRIS instrument, the distance on the ground between these 
points is approximately seven meters.
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Figure 2,26 Normalized Spatial Response.
I

The radiometric conversion from the incoming spectral radiance 
(mW/cm2-sr-pm) is accomplished by dividing by 1000 mW/W, multiplying by the 
transmittance of the optics and by the AQ (the product of the detector area and 
the solid angle of view) of the optics. The output of the optics model Px, the 

incident spectral power, is then in units of watts/jim. The AQ used in the model 
is 1.44 x 10’6 cm2-sr.

The spectral quantum efficiency r| of the detectors is shown in Figure 
2.27. The incident spectral power Px at wavelength X is converted to a number

of electrons S at the detector by the integration of the incident photon level over
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the pixel integration time. Thus, the overall radiometric conversion is shown in 
equation (2.30).

A,,ocene
(2.30)

Where,
AX = 0.01 pm, wavelength interval of spectral samples 
X = wavelength of interest (pm) 

h = 6.62 x 10'34 Joule-sec, Planck’s constant 
c = 3 x 108 meters/sec, the speed of light 
t = 0.0045 seconds, pixel integration time 
r| = detector quantum efficiency.

Since the noise level data and full scale specifications were obtained in 
terms of number of electrons, the signal level is stated in these same terms and 
is unitless.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Wavelength (micrometers) 

Figure 2.27 Spectral Quantum Efficiency.



The Image Motion Gompensation (IMC) is implemented through 
movement of the down-track pointing mirror to offset the platform speed and 
effectively multiply the pixel integration time by the gain state selected: 2, 4, or 8.

The noise in this model consists of a deterministic dark signal level and 

absolute radiometric error, and random shot noise, read noise, and relative 

calibration error. Thermal noise has been found to be insignificant. All noise is 

considered to be stochasticly independent between noise types and spectral 
bands. Table 2,16 contains several parameters of the detector arrays.
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Table 2.16 Parameters of Detector Arrays in Terms of Electrons (e ).

S W IR
Dark Current O e- 27000 e-
Read Noise Standard Deviation 300 e* 1000 e-
FulIScaIeLeveI 577,395 e- 1,441,440 e-

The dark current is simply added to the received signal level in the 

model. The absolute radiometric error is included in the detector portion of the 
model by multiplying the total signal by (1 + Er ), where Er is the decimal level of 
error. Read noise is added in as a zero mean Gaussian random number with a 

standard deviation as in Table 2.16. Within each detector array, the read noise 
level is assumed to be constant over wavelength.

The shot noise in the model consists of zero mean Gaussian random 
numbers with a standard deviation equal to a function of the total signal level in 
the detectors. This total signal is comprised of the incoming radiance, and the 
dark current level mentioned above. Figure 2.28 shows several points relating 

total signal and shot noise levels taken from the JPL report, along with a curve 

showing the square root of the total signal. It can be seen that the shot noise 

level is almost exactly the square root of the total signal level.
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Figure 2.28 Shot Noise vs. Signal Level,

Thus, the standard deviation of the shot noise process is given by 

equation 2.31.

L o. =Ts7shot (2.31)

S' is the! total (sum of received signal and dark current) detector signal 
level in electrons. Note that this relationship is assumed to be independent of 
wavelength, j

Tfie relative calibration error is implemented by adding in uniform 
random numbers with zero mean and a standard deviation as was given in
equation 2.29.
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The conversion from the e* levels S" (received signal plus noise and 
calibration error) to a digital number (DN) occurs as in equation 2.32.

where,

DN = ninf

IMC = IMC Gain State
F = Full Scale Electron Level (shown in Table 2.16) 
Q = Number of radiometric bits (nominally 12)

(2.32)

The division by the IMC gain state is included to preserve the dynamic 
range of the detectors over the various gain states.

2.3.4 Radiometric Performance Measures
Several measures of the radiometric performance of remote sensing 

instruments are commonly used. All of these measures are a function of 
wavelength, atmospheric conditions, sensor response, and sensor electrical 
noise. In this subsection, two common ones are described and defined as they 
are used in this research.

Noise Equivalent change in Reflectance (NEAp) is used in identifying the 

smallest differences in the surface reflectance that are detectable by the sensor. 
It is defined as being the equivalent change in the reflectance of the surface to 
match the total noise level in the sensor. In terms of the parameters used in this 
report, this is given in equation 2.33. Note that these parameters are dependent 
upon the sensor spectral band for which the calculation is being made.

NEAp s f  ̂ shot *  ^fherm +  °fead  +  °quant +  ^cal 

¥  ^ X tTotaI T X ,A t m i^

(2.33)

B(X) is the conversion from incident spectral radiance to the signal level 

in the detector for the appropriate band. For general multispectral scanners,
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this is the sunimation given in equation 2.26, while for the HIRIS model it is the 
right side of equation 2.30. The resulting signal level is then scaled by the 
absolute radiometric error (1 +Er ).

The SignaMo-Noise Ratio (SNR) is another common measure of 
performance Of a remote sensing instrument. It is commonly expressed as the 

log of the ratio of the signal level of interest to the total noise level.

In many Earth resource analysis remote sensing applications, the output 
product is some form of classification map of the observed area. The 
classification is usually obtained by a computer algorithm that uses the mean 
and covariances of the multispectral image data to distinguish between the 
classes. Thusl in this application not only are signal levels important, but so are 
signal power Variations.

In this report, two types of SNR are defined. One based on the mean 
signal level, while the other is based on the covariance of the received signal. 
The voltage SNR is useful for determining the dynamic range required of the 

sensor, while the power SNR is useful for studying the sensitivity of the sensor 
in discriminatihg among surface class types.

The voltage SNR is defined for a sensor band by dividing the mean 
signal level in that band by the square root of the sum of the noise levels for that 
band, as in equation 2.34.

Voltage SNR = 20 Iog10
_________ TC E X,TotalT Atm P

/  C 2  . +  o f  +  O 2  . +  G ?  t  +  O 2  shot therm read quant cal J

(2.34)

Here, P !is the mean reflectance of the surface, and B(X) is defined as 

above. The power SNR is defined for one wavelength m in the HIRIS model to 

be as in equation 2.35.
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Power SNR = 10 Iog1 °m [ It  E X,Total ^X 1Atm

O2. + O 2 H +  0 IiJant +  o 2 Ishot read quant cal J

(2.35)

Herej <4 is the variance of the surface reflectance fpr wavelength m. In 

calculating the SNR for a particular scene, the mean and variance of the surface 
reflectance are usually calculated from the combined data set of all classes 
represented in the scene.

In computing the power SNR for the multispectral scanners, or for 
features derived from the HIRIS sensor by combining bands, the signal levels 

cannot be simply added because of the band-to-band correlation present in the 
reflectance data; In these cases, the signal variance is the sum of the individual 
variances, plus terms due to the covariance between each pair of wavelengths 
m and n, combined in the feature as in equation 2.36.

Combined Power SNR = 10 Iog1

Ml Ml

X X o-"  B*<*=n>
m=1n=1 >

C2 . +  O2h +  O2 H +  0 O iia n t +  O2 Ishot therm read quant cal J
(2.36)

Ml is the number of wavelengths combined for the band or feature, while 
B+(X) is the product of the radiance received from a completely reflecting 

surface and the conversion to the signal level in the sensor for the appropriate 
wavelength. The m,n entry in the reflectance spectral covariance matrix is 
denoted here as amn. Also, the noise variances as used here are the sum of the 

individual wavelength variances combined appropriately.

2.4. Processing
Processing plays the most important role in remote sensing systems as it 

is the part that provides the information that the system is designed to acquire. 
Aspects of processing in remote sensing are discussed in chapters 17 through
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24 of Colwell (1983), chapters three through six of Swain and Davis (1978), and 
in the text by Richards (1986). Numerous other texts and articles have been 
published dealing with the processing of remotely sensed images.

Table 2.17 shows a list of typical functions used in the processing of 
remotely sensed images. The task of the processing portion of the system is to 
take the multispectral image from the sensor, and any other input data or 
algorithms, and then compute an output information product. This product may 

be a classification map showing to which of the informational classes each pixel 
belongs, or it may be a summary of the total area within the image that belongs 
to each of the classes. The processing functions shown in Table 2.17 aid in 
this task by allowing the information to be obtained efficiently and accurately.

Table 2.17 Example Processing Functions.

ProcessinaTvpe Example

-  Radiometric Calibration
Scaling
Compression/

Decompression
Geometric Registration

Resampling
Data Reduction FeatureExtraction 

Feature Compression
Class Separability Training Field Selection 

IntercIassDistance 
Intraclass Distance

Classification Unsupervised (Clustering)
Supervised
CIassAreaMeasures

In the rest of this section these processing functions are discussed, ancl 
where appropriate, models are presented for use in the simulation of remote 
sensing systems.
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2.4.1 Radiometric Processing
The goal of radiometric processing is to allow accurate and repeatable 

calibration of the radiance levels represented by the digital numbers in the 

multispectral image. This is important when comparing images over the same 

area from different dates or sensors. Price (1987) discusses the accurate 
calibration of several sensors for comparative purposes. Papers by Fischel 
(1984), Murphy, et al., (1984), and Castle, et al., (1984) discuss the calibration 
of the Landsat Thematic Mapper sensor.

For modeling purposes, the calibration models presented in section 2.3.2 
are useful in studying the effect of these radiometric errors.

2*4.2 Geometric Processing
Cepmetric processing is generally concerned with correcting spatial 

distortions in the multispectral image due to scanning variations, detector 
misalignment, or view angle effects. The aim of such processing is again to 

allow comparison of images, or to match images to other forms of spatial data 

such as topographical or land use maps.

Spatial distortions are often corrected by developing a mapping function 

from the image to the control map by using identifiable features (control points) 
in the scene. Pixels in between these points are often resampled to give a 
desired spatial resolution. The papers by Park, et al., (1982 and 1984), and 
Schowengerdt, et al., (1984) discuss the effects of these corrections.

Another form of geometric distortion is known as misregistration, and is 
due to the effective misalignment of detectors of the various spectral bands. 
This may occur due to distortion in the imaging optics, or to the physical location 

of the detectors. It effectively causes the pixels of different bands to be i maged 

from a slightly different part of the scene. Misregistration has been studied by 

Cicone, et al., (1976), Billingsley (1982), and Swain, et al., (1982). In the study 

by Swain, et al., it was found that misregistration by as little as 0.3 pixels pan 
affect classification accuracy.
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Although they would be relatively straightforward to implement in the 
sensor spatial model, these forms of geometric distortion were not studied in 

this research.

2.4.3 Data Reduction
In most cases it is either necessary, or at least advantageous, to reduce 

the amount of data in a multispectral image without diminishing the 
informational content. In the case of the upcoming HIRIS instrument the normal 
operating mode produces data at a rate exceeding the capabilities of the 
satellite's communication channel, thus necessitating some form of on-board 

editing. For lower dimensional sensors such as Landsat TM or aircraft 
scanners, it has been shown that under conditions of limited training samples, 
classification accuracy decreases as more spectral bands are used in the 

classification (see Hughes, 1968, and Chandrasekaran, 1975.)

This data reduction may be accomplished spatially, spectrally, or by 
reducing the radiometric resolution of the data. The spatial reduction may be as 

simple as deleting every other pixel or reducing the swath width of the sensor, 
or as complex as a scheme described in Ghassemian (1988) which retains 

much of the spatial detail in the image while reducing the data to a set of 
features. Reducing the radiometric resolution may be used and usually will not 
increase the noise level significantly, unless the quantization error becomes the 

dominant source of noise in the image.

Spectral reduction through the Karhunen-Loeve (or principal component) 
transformation was studied in Ready and Wintz (1974). This method has proved 
to be useful in reducing dimensionality while retaining class separability, even 
in cases of limited training samples (Kalayeh, et al., 1983, and Muasher and 
Landgrebe, 1983). However, it requires computation of the eigenstructure of 
the covariance matrix and thus is not easily implemented at high data rates.

With the advent of imaging spectrometers such as HIRIS, on-board 

feature selection algorithms that can be implemented through simple 

programmable operations, such as summations, have been studied. Gheri and 

Landgrebe (1988) have extended a method first proposed by Wiersma and



Landgrebe (1980) to select spectral regions to be combined. The algorithm 
uses training samples from similar data, or ground reflectance, and selects 
wavelengths to be combined based upon the eigenfunctions of the spectral 
covariance matrix. A simple set of summation coefficients may then be 

transmitted to the satellite and used to reduce the data rate. Factors of data 

reduction of 10 or more have been found to be possible with little loss in the 

class recognition accuracy (Chen, 1988).

In the simulation program developed in this report, data reduction may be 
accomplished for the HlRIS model through the combination or weighted 
summation of spectral bands.

2.4.4 Class Separability Measures
Class separability measures are computed from the statistics of known 

class samples, and are used to obtain an idea of the statistical distance 
between informational classes. These measures have been studied both as a 
feature selection technique (Swain and King, 1973), as well as an estimate of 
error probability (Kailath, 1967, and Whitsitt and Landgrebe, 1977.)

Many of these separability measures are for two classes, and are 
computed from the mean vectors and covariance matrices. As an example, the 
Bhattacharyya distance Bw is given in equation 2.37 between class k and class

Iwith mean vectors Zk and Zj , and covariance matrices X k and X j.
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Multiclass separability measures can be obtained from apriori class 
probability weighted pairwise summations of such two class separability 

measures. Whitsitt and Landgrebe (1977) discuss this and other ways of 
measuring multiclass separability.
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Fukanaga (1972) also presents a multiclass separability measure that is 
used in canonical analysis to reduce the dimensionality of data through a linear 
transformation (Merembeck and Turner, 1980). This measure Jp is described

by equation 2.38.

j F =  t r S WS b (2.38)

where,

s W = I pA
k=1

k=1

_  A  
2O = I pK2 k

In these equations, Pk is the apriori probability of class k, and the mean 

vectors and covariance matrices are noted above.

In the simulation program, both a pairwise summation of the 

Bhattacheryya distance and the Fukanaga multiclass measure are
. . - ' ■ ■ ■ ' , ■  V--. - • ... > ‘ . . ■

implemented. The class statistics are computed from designated areas within 

the known class areas.

2.4.5 Classification Algorithms
The classification of a multispectral image into informational classes may 

be done in an unsupervised manner by a computer algorithm, or in a 
supervised approach by an analyst working interactively with the computer. In 
either case, the accuracy of such a classification can then be computed by 
comparing the resulting class map to a known class map of the area. 
Classifioqtion accuracy has also been estimated from the class statistics. 
Fukanaga and Krile (1969) present an analytical method for estimating 

accuracy in the two class Gaussian case, while Whitsitt and Landgrebe (1977) 
discuss several considerations in multiclass error estimation.



In unsupervised classification, the data vectors are grouped into 
separable classes through clustering algorithms (Duda and Hart, 1976.) These 

algorithms group data vectors that are "similar" in a statistical sense into 

spectral classes. These spectral classes are then either subdivided or 
combined to form the desired informational classes.

Supervised classification is done by developing training statistibs, either 
through locating known class areas in the image, or by applying a clustering 
algorithm to help identify possible classes. Various classification algorithms 
can then be applied to all of the pixels in the image and assign them to an 
informational class,

Forthe simulation program, a supervised classification technique using 
the Maximum Likelihood (ML) classification algorithm has been implemented, 
The ML classifier uses the standard Gaussian assumption with class apriori 
probabilities dependent on the numbers of pixels in each class. Since the 
scene is defined in the simulation, the class boundaries are known in the image 
and a classification accuracy can be computed directly. Class statistics are 
computed from designated training areas. The classification can be done on the 

original image, or on the compressed image if the sensor was an imaging 
spectrometer type.
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The classifier works by assigning each pixel the class IabeIthat provides 
the maximum value of probability as coming from that class. That is, a pixel 
Z(i,j) is assigned to class k' if gk-(i,j) > gk(i,j) for all classes k in the scene, where 
gk is defined in equation 2.39. L is the dimension of the class statistics.

(2.39)

2,5 Sum m ary and Discussion

In this chapter, the modeling of optical remote sensing systems has been 

discussed from a general viewpoint as well as one of simulation. The models



discussed represent an understanding of the system. Obviously, these models 

cannot describe all of the effects and processes in the real system, but they 
represent a level of understanding of duplicating the real world in the computer 
laboratory.

Table 2.18 presents a summary of the various aspects of the remote 
sensing system that have had models described in this chapter and 

‘ implemented in the system simulation program RSSIM (Kerekes and 
Landg rebe, 1989b).
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Table 2.18 Summary of System Parameters Implemented in Simulation.

Scene Sensor Processing
Spectral Means Spatial Response Training Field Selection

Spectral Covariance Spectral Response Feature Selection

Spatial Correlation Electrical Noise 
(Shot, Thermal, and Read)

Class Separability

Spatial Layout Absolute Radiometric Erroi Class Accuracy

Direct Solar Irradiance Relative Calibration Error Classification Map

Diffuse Solar Irradiance Radiometric Resolution ’■ ;

Atmospheric Transmittance Detector Gain V- • ■■

Scattered Path Radiance - .. ■

Zenith Angle of Sun

Zenith Angle of Sensor

Meteorological Range ' • ' " : '
■ ■ ■' ' ‘ Y ;- ,Y - -YY

While there are many effects not described in this table, it represents a 

comprehensive framework from which to study their interrelated effects on 
system performance.
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CHAPTER 3

ANALYTICAL SYSTEM MODEL

3.1 Model Overview
Th f system model described in chapter two gave a tool to allow accurate 

modeling and simulation of a remote sensing system. However, because of the 

flexibility and completeness, it may represent too much detail for some system 

studies. A simpler approach may be obtained by using some of the component 
models described in chapter two, and the work of several previous researchers, 
to develop a purely analytical system model.

Figure 3.1 shows a block diagram of the analytical model presented in 
this chapter- At each stage in the system model, the mean vector and  
covariance matrix of each class are modified by the function in that block.

Reflectance
Statistics Spatial

Effects
Atmospheric

Effects
Spectral
Effects

Classification
AccuracyFeature

Selection
(Optional)

Error
Estimation

Noise
Model

Figure 3.1 Analytical System Model Block Diagram.
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A brief description of these blocks and their assumptions is given in the 

following paragraphs.

RfiflfiCtance Statistics - Each surface cover class is assumed to be 

multivariate Gaussian described by the mean vector and covariance matrix of 
the reflectance. The surface reflectance is also assumed to have a separable 
exponential spatial correlation.

Solar Illumination and Atmosphere - The linear atmospheric effects 

model described in chapter two is used here. j

Spatial Effects - The Spatial response of the sensor is assumed to have 

the shape of a Gaussian probability distribution function and be circularly 

symmetric. j

Spectral Effects - This is a linear transformation to convert the scene 

spectral radiance to the received signal in the spectral bands of the sensor. In 

the case of the HIRIS model, the spectral resolutions are equal and this matrix is 

diagonal.

Noise Model - The various types of noise described in chapter two are 

added in here. They are assumed to be zero mean, and uncorrelated between 

noise type and spectral band.

Feature Selection - This is another linear transformation, and is used to 
combine sensor bands together for spectral compression.

Error Estimation - The pairwise Bhattacharvva distance is calculated from 

the modified class statistics, and used to estimate the error. Equal apriori 
probabilities are assumed and the multiclass error is the sum of the pairwise 

errors.

A listing of the FORTRAN program implementing the model discussed in 

this chapter for the model HIRIS sensor is included in Appendix E.
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3.2 Analytical Expressions
This section presents the equations that form the analytical model. The 

model first applies the system functions to the statistics of each of the K classes, 
then computes the pairwise error estimates.

3.2.1 ReflectanceStatistics
The surface reflectance is assumed to be spectrally multivariate 

Gaussian with a spatial correlation described by a separable exponential 
model.

The spectral reflectance statistics are computed from the database of 
FSS field spectra. To take full advantage of the spectral resolution considered 
in this research, the data is first interpolated to 10 nm wavelength spacing by 
using the algorithm presented in Appendix B. Thus, for each class k the mean

vector \  and the covariance matrix E r will have M -  201 dimensions.

The spatial model has a crosscorrelation function for wavelengths m and 
n as shown in equation 3.1.

- " J " 1e (3.1)

This form yields spatial crosscorrelation coefficients pmn,x for across the 
scene, and pmn y for down scene as shown in equations 3.2 and 3.3.

" amnPmn,x “ ®
* m̂nPmn,y = e

(3-2)

(3.3)

For the model implemented in this chapter, the spatial correlation 
coefficients have been assumed to be constant across all spectral wavelengths.



3.2.2 Atmospheric Effects
The atmospheric effects model converts the scene reflectance to the 

spectral radiance received by the sensor. Equaticm 3.4 shows the spectral 
radiance Lx received by the sensor.
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LX,S X  +  LX,Path +

1 o 
L -L

XfPath X1Path (3.4)

X is the surface reflectance in the sensor IFOV1 while Xa is the average 

reflectance around this area and represents the source of the adjacency effect 
discussed in chapter two. For this model, the adjacent reflectance Xa is 
considered to be the average reflectance of all K classes. It is also considered 
to be uncorrelated with the reflectance within the sensor IFOV.

L^path. and L° path are the path spectral radiance components for surface 

albedoes of 1 and 0, respectively. Lxs, the spectral radiance reflected from a

perfectly reflecting surface, is as shown in equation 3.5.

I ___L
x.s "  n COS(0go|ar) ^ X 1Direct +  ^ X 1Diffuse

l,Atm (3.5)

Thus after the application of the atmospheric effects function, the mean 

and covariance of the signal radiance is as follows. The mean spectral 
radiance is given by equation 3.6.

L _X + L° t. + L1/ °  X .X1S XlPath XlPath A (3.6)

I ~U
Lx path is the difference between the path radiances for a surface albedo

of 1 and 0. The spectral radiance covariance matrix E|_ is derived as follows 

for each row m, column n entry oL mn.



|Lm -L m) (Ln-L n)J

Chapter 3 - Analytical System Model

(3.7)

I . X . -L  X - L 0L X +L
m,S m m,PathT>"m,Path'vA,m ‘“m.Path ‘"m.Path^'A.m

1-0
,-L1 „ . .X.

1-0
+L :  alx . - L X„-L°^n,S^n+^n,Path+l"n,PathAA,n Ln,SAn S i1Path Si,PathAA,n-l ’ - ° . x . (3.8)

L I 11-° , 1-0
m,S^X,mnSi,S + SntPath ^A,mn S i1Path (3.9)

Here, ox>mn is the mn entry of the reflectance covariance matrix X k, while 

aA,mn's the mn entry of the covariance matrix X ^  of the averaged reflectance, 

which is given in equation 3.10.

/

(3.10)

In the derivation of X ^ , the reflectances averaged are considered to be 

uncorrelated with each other.

3.2.3 Spatial Effects
The spatial effects function uses the results of Mobasseri, et al., (1978) to 

modify the spectral radiance covariance matrix. The separable exponential 
spatial correlation model of equation 3.1 is assumed for the scene, along with a 
Gaussian PSF for the sensor as shown in equation 3.11.

/

h(u,v)
2nai

exp
u + v

2 ^
(3.11)

Since c0 is related to the size of the sensor IFOV in scene cells, as the 

sensor look angle changes it must be modified to reflect the change in ground



size of the IFOV. The spatial direction that this occurs is dependent upon the 
relative azimuthal angle of the sensor and the ground reference axis. For 
simplicity, the sensor azimuth is defined to be 0°. Thus, in terms of r0 x, and 
ro y, parameters used below in the weighting function, o0 is modified as in
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equations 3.12, and 3.13.

ro,x =  G0 (3.12)

1W cos(eviaili) (3-13)

Mobasseri defined a weighting matrix Ws that is a function of the spatial 

model and PSF parameters. Following his results, the sensor spatial response 

modifies each mn entry in E lx as in equation 3.14.

cs = W mnG0 Lmn s 0 L1Inn (3.14)

Where,

I A f m n  A <W = 4 exp

C r  ~  \ ' >,

< a C  +  b m„mn mn >
O 0 ,x o,y

<\  d  J
erfc(ar x) erfc(brQJ

(3.15)

and, erfc(*) is defined as in equation 3.16.

Since the spatial correlation coefficients have been assumed to be
; . : ■ ..... mn ■

constant across spectral wavelengths, the parameter Ws is constant for all 

mn. If one uses differing a and b, care must be taken to ensure the resulting 

covariance matrix remains nonsingular.
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Thus, equation 3.14 gives a new that represents the Spectral

radiance covariance matrix after application of the spatial effects. The mean 

spectral radiance vector is unchanged by the Spatial model as shown in 

equation 3.17.

(3.17)

3.2.4 Spectral Effects
The sensor spectral effects are applied by a linear transformation matrix 

B which converts the spectral radiance to the signal levels in each of the sensor 
image bands. For the line scanner sensors with L bands, this matrix is L rows 

by M columns, with each row consisting of the normalized response of that band 
to each of the M wavelengths of the spectral radiance. Also, each entry in the 
matrix is multiplied by AX1 the spectral resolution of the spectral radiance 

vectors. The resulting signals will be in terms of radiances. Thus, this matrix B is 

formed as in equation 3.18.

B = AX

Band i  Response" 

Band 2 Response

' • .

__ Band L Response_

(3.18)

L x M

For the HIRIS imaging spectrometer with the same spectral resolution as 
the scene, the matrix will be diagonal M by M with each entry bmm as shown in 

equation 3.19.

mm AQ * ,AX • t— •  t •  T .. •  nhe optics 1
(3.19)
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The various symbols are defined in section 2.3.3 of chapter two. The 
resulting signal will be in electrons.

For either sensor type, the mean received signal vector is thus obtained 
by

S  =  b l X (3.20)

while the signal covariance is as shown in equation 3,21.

i V ’ 'T l ■. T

s S = b 2 L b
(3.21)

3.2.5 Noise Model
The noise effects are modeled as zero mean random processes, except 

for the deterministic absolute radiometric error Er and detector dark current D. 

These deterministic effects are added directly to the mean signal vector to yield 
the noisy mean vector Y as in equation 3.22.

Y = S (1 + Er ) + D (3.22)

The fandom noise sources modeled include shot noise, thermal noise, 
read noise, quantization error, and relative calibration error. The form of these 

models was discussed in section 2.3.2 of chapter two. In his thesis, Malaret 
(1982) showed how these sources of noise affect the covariance matrix of the 
signals received by the sensor. The result used here is that while some of the 
noise may be dependent upon the signal (shot and calibration error), they are 
still uncorrelated with the signal and the variances add directly. Also, each 
noise source is assumed to be independent of the others and uncorrelated from 

spectral band to spectral band. Thus, the signal covariance is modified as in 
equation 3.23.



E v  = (U E q)2 Z 0 . A + A .  .+ A  . + A  t + A  (3.23)
Y  R S  therm shot read quant cal

Here, the A's are diagonal matrices of the variances in each sensor 

band of the various noise sources.
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3.16 Feature Selection
Feature selection is optionally applied by combining the sensor bands 

according a weighting matrix F to create the features Z as in equations 3.24 and
3.25.

Z = FY

F Z y F1

(3.24)

(3.25)

To transform the L-dimensional vectors Y to the N-dimensional feature 
space, F is N rows by L columns of weighting coefficients. For the spectral 
feature compression scheme described in section 2.4.3 of chapter two, these 
coefficients are just 0 and 1 to appropriately skip or combine the sensor bands.

As an example, consider a transformation for the output of the HIRIS 
model to two features. Let feature 1 be the combination of the first five 
wavelengths 0.40 - 0.44 pm, while feature 2 be the combination of the last five 
wavelengths 2.36 - 2.40 pm. The matrix F for this example is shown in equation
3.26.

1 1 1 1 1 0 0  

0 0 0 0 0 0 0
o o o o o o

0 11 1 1 1
2x201

(3.26)

3.2.7 Error Estimation
After the class statistics of each class has been modified by the above 

functions, an estimate of the probability of error is made. Whitsitt (1977) 
discussed a pairwise error estimate based upon the mean and covariance



statistics and found it to be closely related to the actual classification error. 
Equation 3.27 shows this estimate of probability of error Pe which uses the 
Bhattacharyya distance Bw between classes k and I defined in section 2.4.4 of 

chapter two.

Pke1 = eric i / K ’ <3 -27>

Whitsitt also discussed an upper bound on the probability of error in the 
multiclass case as being the sum of the pairwise error estimates. Thus, in the

model the following estimate for the classification accuracy (in percent) is 

used,
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^c = 100
K K

-X X*
_ k=1 I=Istk

(3.28)

Since the summation of the pairwise errors is an upper bound, tHis 
estimate of the classification accuracy will be pessimistic in multiclass 

experiments.

3.3 Comparison Between the Analytical and Simulation Models
While the analytical model offers the advantages of being Simpler, and 

computationally more efficient, it lacks in being able to accurately represent the 

real world as compared to the simulation model. Table 3.1 lists several factors 
that the analytical model is not able to represent at present.

Table 3.1 System Factors Not Included In Analytical Model.

Size and Spatial Arrangements of Fields 
Mixed Pixels at Field Borders 
Non Gaussian Sensor PSF 
Training Field Selection and Size



These factors can be significant. Section 4.3 of chapter four presents 
some results of comparing the accuracy estimate of the analytical and 

simulation models.

Another difference between the modeling approaches is that the 

analytical model works in a parametric space, while the simulation model 
produces multispectral images that can be displayed and processed like real 
ones. This advantage of the simulation approach is useful for the development 
of processing algorithms when "real" data is not available.
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CHAPTER 4 

APPLICATION TO

IMAGING SPECTROMETER SYSTEM ANALYSIS

4.1 Introduction
In this chapter, the system models presented in this report are applied to 

the study of system performance using a proposed imaging spectrometer. The 
HIRIS (Goetz and Herring, 1989) instrument is proposed as part of the Earth 
Observing System program that will drive the international remote sensing effort 
into the 1990's. It was chosen for study for the following reasons.

• It leads the next generation of sophisticated remote sensing 

instruments.
• Being in the design phase, its performance can only be predicted 

through modeling and simulation.
. Since it will be operated in an on-demand mode, it is important to

develop an understanding of the system performance under varying 

observational conditions.
• Because of its flexibility of parameters, it may be used to simulate 

other sophisticated sensors and study their performance.
• The complexity of the instrument puts it close to the fundamental limits 

of technology, and its study helps gain a basic understanding of the 

remote sensing process.

The following sections describe the performance of this instrument for a 

variety of system configurations and performance measures. The first part 
presents the radiometric performance of the sensor with curves showing the 

Signal-to-Noise Ratio (SNR) and Noise Equivalent Change in Reflectance 
(NEAp) under a variety of conditions. It is followed by a comparison of the



performance of the simulation and analytical modeling approaches to system 

analysis; This section is included to illustrate the limits of each approach. The 

rest of the chapter explores the effect on classification performance of several 
system parameters.

For many of the experiments performed in this chapter, the reflectance 
statistics used were from a test site in Finney County, Kansas. Table 4.1 
provides a description of this data set.
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Table 4.1 Kansas Winter Wheat Data Set.

Location RnneyCounty1Kansas
Date May 3 ,1977
LARS Experiment Number 77102207
LARS Data Tape Number _______ 4260
Spectral Classes Number of Fields Number of Samples

Winter Wheat 25 658
Summer Fallow 6 211

Unknown 39 682

4.2 Radiometric Performance
To gain an understanding of the radiometric performance of HIRIS under 

a variety of conditions, the model described in chapter two was used to examine 
their effect on SNR and NEAp.

For the results included in this section, the system configuration shown in 
Table 4.2 was used as a baseline. The solar illumination and atmospheric 
effects were obtained using the LOWTRAN 7 computer code.

Before presenting the results of these noise studies, it may be helpful to 

present an example of instrument performance for a typical vegetative scene. 
Reflectance data from all three classes from the data set of Table 4.1 were 
combined to form a new data ensemble. The mean reflectance and variation of 
this ensemble are plotted in Figure 4.1.



Table 4.2 Radiometric Study Baseline System Configuration.

8 5  Chapter 4 -AppIicationtci
Imaging Spectrometer System Analysis

Atmospheric Model 1976 US Standard
Haze Parameter Rural Extinction
Aerosols Mie-Generated
Diffuse Irradiance Constant 0.84
Surface Meteorological Range 16 Km
Solar Zenith Angle 30°
Solar Azimuth Angle 180°
View Zenith Angle O0
View Azimuth Angle 0°
Surface Albedo 0.10
IMC Gain State 1
ShotandReadNoise Nominal
Radiometric and Calibration Error 0%
Radiometric Resolution 12 bits

Mean + Std Dev 
Mean Reflectance 
Mean - Std Dev

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  2.2

Wavelength

Figure 4.1 Mean and Variation of the Surface Reflectance of the Kansas 
Winter Wheat Data Set of Table 4.1.



To obtain an idea of how this reflectance is modified by the atmosphere 
and sensor response, a simulated image was created using the baseline 
system configuration. The resulting mean digital counts and their variation are 
shown in Figure 4.2. Several effects are immediately noticeable. The 

absorption bands of the atmosphere are present, as well as a reversal in the 
relative values of the visible and infrared amplitudes. This reversal is due to the 
effects of the solar illumination and gain settings of the sensor.
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1400

Mean + Std Dev 
Mean
Mean-StdDev

1000

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Wavelength

Figure 4.2 Mean and Variation of the Image Vector as Received by HIRIS.

The voltage and power SNR for this configuration and typical surface 
reflectance are shown in Figure 4.3. The power SNR shown here and in the 

rest of the chapter was calculated with the signal covariances scaled by the

spatial weight function W™ discussed in chapter three. The NEAp is shown in 

Figure4.4.
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WdyeJength

Figure 4.3 Voltage and Power SNR for Typical Reflectance.

-----  VoltegeSNR
••••— Power SNR

Wavelength

Figure 4.4 NEAp for Typical Reflectance.
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The following Figures 4.5 through 4.22 show the Voltage SNR and NEAp 

variations as a function of the parameters shown in Table 4.3.

Table 4.3 Radiometric Performance Parameters Studied and Their Variations.

Meteorological Range 2 ,4 ,8 ,1 6 , 32 Km
Solar Zenith Angle 0°, 30°, 60°
ViewZenithAngIe OP,.30°, 60°
Surface Albedo 0.03, 0.10, 0.30
Shot Noise Level 0 .2 5 ,1 .0 ,4 .0
Read Noise Level 0.25, 1.0, 4.0
Radiometric Resolution 8 ,1 2 ,1 6  bits
IM CGainState 1,2, 4 ,8
Relative Calibration Error Level 0.0, 0.5,1.0, 2.0%
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32 Km 
16 Km 
8 Km 
4 Km 
2 Km

0,4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Wavelength

Figure 4.5 SNR forVarying Meteorological Ranges.

T 2 Km 
4 Km

- 8 Km
- 16 Km
■ 32 K m

£  1.0 -

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Wavelength

Figure 4.6 NEAp for Varying Meteorological Ranges.
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Figure 4.7 SNR for Varying Solar Angles.
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Figure 4.8 NEAp for Varying SoIarAngIes.
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Figure 4.9 SNR for Varying View Angies.

o
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Figure 4.10 NEAp for Varying View Angles.
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Figure 4.11 SNR for Various Surface Albedoes.
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Figure 4.12 NEAp for Various Albedoes.
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Figure 4.13 SNR for Varying Factors of Shot Noise.
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Figure 4.14 NEAp for Varying Factors of Shot Noise.
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Figure 4.15 SNR for Varying Factors of Read Noise.
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Figure 4.16 NEAp for Varying Factors of Read Noise.
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Figure 4.17 SNR for Varying Radiometric Resolution. The SNR 
for 12 and 16 Bits is Identical.
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16 Bits
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Figure 4.18 NEAp for Various Radiometric Resolutions. The 
NEAp for 12 and 16 Bits is Identical.
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Figure 4.19 SNR for Various IMC Gain Settings.
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Figure 4.20 NEAp for Various IMC Gain Settings.
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Figure 4.21 SNR for Various Levels of Relative Calibration Error.
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Figure 4.22 NEAp for Various Levels of Relative Calibration Error.



These figures show much about the radiometric performance of the 
HIRIS instrument for the various parameters studied. A common observation 
from all of these results is the presence of the many absorption bands in the 
atmosphere. The main water absorption bands around 1.4 and 1.9 pm make 

these wavelengths and those nearby useless, while the several other 
absorption bands present reduce the utility of those wavelengths for sensing of 
the Earth's surface. The following paragraphs discuss the effect of each of the 
parameters studied.

Meteorological Range (Figures 4.5 and 4.61. In general, a decreasing 
meteorological range results in a lower SNR and higher NEAp, but the effect is 

seen to be much more significant in the visible and near infrared spectral 
regions. This parameter's effect becomes significant at ranges less than 16 Km.

Solar Zenith Angle (Figures 4.7 and 4.8). This angle is seen to have little 
effect at zenith angles less than 30°. At angles greater than this, the effect on 
SNR is constant across the wavelength, while the effect on NEAp is seen to be 

greater at the longer wavelengths. This is due to the lower signal levels at 
these wavelengths which require a greater Ap to match the dominant read 

noise (see below).
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View Zenith Angle (Figures 4.9 and 4.10). The effect of this angle is also 
minimal for angles less than 30°. At angles higher than this, the effect is 

greatest in the visible region because the path radiance (which increases with 
zenith angle) is more significant at these wavelengths.

Surface Albedo (Figures 4.11 and 4.12). While this parameter has a 
significant effect on SNR, its effect on NEAp is minimal. In the calculation of 
NEAp, the only term that depends on albedo is the shot noise. Since shot noise 

is most significant in the visible wavelengths (see below), the effect of albedo on 
NEAp is only noticeable there.

Shot and Read Noise (Figures 4.13, 4.14, 4.15, and 4.16). Both the SNR 
and NEAp curves show that shot noise has a more significant effect over the



VNiR array wavelengths (0.4 - 1.0 |xm), while read noise is dominant in the 
SWIRarray (1 .0 -2 .4  pm).

99 Chapter 4  - Application to
Imaging Spectrometer System Analysis

Radiometric Resolution (Figures 4.17 and 4.18). The nominal 
radiometric resolution of 12 bits yields a quantization error that is not significant 
when compared to the other noise sources. However, at 8 bits of resolution, the 
quantization error becomes significant. Also, it can be seen from the NEAp 

Curyes that this error is more significant at the lower signal levels of the longer 
wavelengths.

Image Motion Compensation (Figures 4.19 and 4.20). At higher gain 

states of IMC the SNR curves show a constant improvement across all 
wavelengths. Looking at the NEAp curves, it can be seen that the improvement 
in detecting the Ap of the surface is greater for the lower signal levels of the long 

wavelengths.

Relative Calibration Error (Figures 4.21 and 4.22). Since the caIibratibn 

error is signal dependent, its effect is seen to be greater for the higher signal 
levels of the visible wavelengths. At these shorter wavelengths 1% error is 
significant, while at the longer wavelengths the error is not significant until 
levels of nearly 5%.

4.3 Comparison of Simulation and Analytic Model Performance
Several experiments were performed to be able to compare the results 

between the simulation and analytical models. The system configuration was 

matched as closely as possible for the comparison.

A test scene was defined to be 80 rows by 80 columns of scene cells and 
divided at the middle into two classes. The reflectance data used for these 
classes were the Summer Fallow, and Unknown class from the data set 
described in Table 4.1. These classes were chosen for their low separability. 
Table 4.4 gives the details of the system configuration used in the test.



Table 4.4. System Configuration for Comparison Test
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Scpn$
Surface Meteorological Range 16 Km
Atmospheric Model 1976 US Standard
Haze Parameter 1 Rural Extinction
Diffuse Constant 0.84
Solar Zenith Angle 30°
View Zenith Angle O0
Across scene spatial correlation px 0.6
Down scene spatial correlation py 0.6
Ground Size of Scene Cells 15 Meters

SSnsor (HIRIS ModeI)
Spatial Radius

Analytical model r0 1.4 Scene Cells
Simulator PSF IFOV 30 Meters

Point Spread Function Gaussian
Read Noise Level Nominal

NominalShot Noise Level
IMC Gain State - T  ■
Relative Calibration Error 0%
Absolute Radiometric Error 0%
Radiometric Resolution 12 Bits

Processino
Training Fields 100% of Ciass Area
Feature Selection First 6 Features of Table 4.5

Figure 4.23 shows an image of this scene with the model HIRiS sensor at 
A.=1.70 pm. This image was created using a scene cell ground size of 30 

meters, resulting in 80 columns and 80 rows. The division between the classes 
is barely visible along a vertical line in the center of the image. However, the 
two classes are well separable when several features are used in the 
classification algorithm.
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In Chen's thesis (Chen and Landgrebe1 1988), he listed the feature set 
that his algorithm designed for the data set of Table 4.1. This feature set is 
shown In Table 4.5 following.

Table 4.5 Optimal Feature Set for Kansas Winter Wheat Data Set.

/ ■ --V-" Feature Wavelength (pm)
1 0.70-0.92
2 1 .98 -2 .20

. . - ■■ 3 2.20 - 2.40
4 0.66 - 0.84
5 1 .48 -1 .64
6 0 .52 -0 .66

. ' 7 1.64 -1.78
■ ■ ■. ■ ... . •. 8 1.16 -1 .28

9 0 .96 -1 .06‘ ; ' ■ 'f . 10 1 .04 -1 .12
"/ - ■- 11 0 ,94 -1 .00
■' . ■ . ; ' , . ■ 12 0 .44 -0 .50
C: ' : . v 13 1 .12-1 .16

14 0 .92 -0 .96
■ 15 0 .40 -0 .44

16 1 .00 -1 .04

For each of these tests, the simulation model was run five times and the 

resulting accuracies averaged together. Also, the classification accuracy shown 
is the average of the two individual class accuracies.

For the base system configuration shown in Table 4.4, the accuracies 
obtained are shown in Table 4.6. The values are with 1% of each other,
indicating that, at least for this configuration, the simulation model and the 
analytic model predict similar performance.

Table 4.6. Classification Accuracy of Base System Configuration.

Simulation Model 88.06%
Analytical Model 87.78%



The first test was to compare the effect on accuracy of the spatial model 
parameters. Figure 4.24 shows the result of changing the spatial correlation p = 
Px = Py of the scene cells. '
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Spatial Correlation Coefficient

Figure 4.24 Classification Accuracy vs. Scene Spatial Correlation Coefficient.

As can be seen, the simulation model and analytical model track the 

change in accuracy due to the spatial correlation. This validates the 
equivalence of the autoregressive and exponential spatial models, and 
supports the work by Mobasseri in analyzing the effect of the spatial model on 
class spectral statistics.

Another comparison test of the spatial model was performed by allowing 

the ground size of the scene cells to change and observing the effect on 

classification performance. The change in scene cell size for the simulation 

model is equivalent to changing the PSF radius of the analytical model. The 

IFOV of the sensor was held constant at 30 meters in the simulation model. 
Table 4.7 presents the increments used in this experiment.



Table 4.7. Increments Used in Ground Size Experiment.
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Ground Size of Cell Radius of Analvtic PSFTrfl) Resulting Imaae Size
30 Meters 0.7 cells 80 rows by 80 columns
15 Meters 1.4 cells 40 rows by 40 columns
7 Meters 2.8 cells 20 rows by 20 columns
4 Meters 5.6 cells 10 rows by 10 columns
2 Meters 11.2 cells 5 rows by 5 columns

Figure 4.25 shows the results of this experiment. Both models show an 

increase in accuracy as the scene cell size decreases. However, while the 
analytical model continues this trend at cell sizes less than 10 meters, the 
simulation model shows the effects of mixed pixels at the border between the 
classes and reduced training set size to dramatically reduce the accuracy.

Analytic
Simulation

Scene Cell Size (meters)

Figure 4.25 Classification Accuracy vs. Ground Size of Scene Cells.

The next test was to compare the effect of sensor view angle on the
performance predicted by each model. The results are shown in Figure 4.26.
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Simulation
Analytic

View Angle (degrees)

Figure 4.26 Classification Accuracy vs. Sensor View Angle.

The analytical model shows a slight continuous decrease in accuracy, 
white the simulation model seems to seesaw with a slightly decreasing trend. 
There are two offsetting effects on the system as the viewing angle increases. 
There is the increase in path radiance which results in higher shot noise and 
decreasing accuracy, while the ground size of the sensor IFOV increases 
thereby decreasing the variation in the scene and increasing accuracy.

In the analytical model this change in ground size happens 
continuously, while in the simulation model it is a discrete change as scene 
cells are combined in integer increments. In this case, for angles 0°, 15°, and 

30°, four scene cells are within the sensor IFOV1.while at 45t> six are combined, 
and at 60° eight fill the field of view. As the number of scene cells within the 

IFOV increases, the size of the resulting image decreases, and fewer pixels 
result for each class. This can also affect the accuracy through mixed pixel 
effects.



Chapter 4 - Application to 1 0 6
Imaging Spectrometer System Analysis

It is important to point out that the surface model used in both the 
simulation and analytic models does not account for variation in reflectance with 
illumination and view angle. Thus, this experiment does not predict how actual 
classification accuracy may be affected by the changing view angle in a general 
sense, but it does serve to illustrate factors that may influence the result.

Another test was done to compare the accuracy obtained when using a 
Gaussian versus the measured shape of the PSF of the sensor. Table 4.8 
shows the result of the simulation model using the two PSF types.

fable 4.8 Classification Accuracies of Gaussian vs. Measured PSF.

- Gaussian PSF 90.15%
TabuIatbdPSF 89.75%

The assumption of a Gaussian shape is seen to give a slightly higher 
accuracy than when using the actual curve of the sensor. Thus, assuming a 

Gaussian PSF is seen to be slightly optimistic.

An experiment was also performed to illustrate the effect of reducing the 
number of training samples used for the classifier. Each of the two classes has 

800 pixels in the image produced during the simulation. The result is shown in 
Figure 4.27.

Obviously, the analytical model shows no effect, as it is only based on the 
class statistics and no "training" is involved. The simulation model shows the 
decreased accuracy as fewer samples are used. This illustrates one of the 
limitations of the analytical model in representing the real system.
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Simulation
Analytic

Number of Training Samples

Figure 4.27 Classification Accuracy vs. Number of Training Samples.

In general, the simulation and analytical models compare well. In some 
cases, the differences between the two are indicative of real world constraints, 
while in others the difference is artificial due to limitations of the model. The 

results Concerning the scene cell sizes and the training samples show 
limitations of the analytical model. The irregular shape of the simulation result
for the view angle effects show the potential problems in using a discrete 

Simulation. Both approaches have their advantages, however, and with the 
proper interpretation can be used productively.

4.4 System Parameter Studies
In this Section results are presented showing the effect of system 

parameters on SNR and classification accuracy using the analytical model.

The scene reflectance was the Kansas Winter Wheat data set of Table 

4.1. Table 4.9 shows the baseline system configuration used in this study.



Table 4.10 shows the parameters that were varied and the range of their 
variation. Figures 4.28 through 4.51 show the results of these experiments.
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Table 4.9 System Configuration for Parameter Studies.

$Q?rro
Surface Meteorological Range 16 Km
AtmosphericModeI 1976 US Standard
Haze Parameter Rural Extinction
Diffuse Constant 0.84
SoIarZenithAngIe 30°
View Zenith Angle 0°
Across and Down Scene Spatial Correlation 0.6

Sensor fHIRIS Model)
Spatial Radius (analytical model r0) 1.4 Scene Cells

 ̂ Read Noise Level Nominal
Shot Noise Level Nominal
IMCGainState 1
Relative Calibration Error 0.5%
Absolute Radiometric Erfor 0%
Radiometric Resolution 12 Bits

Processina
Feature Selection First 6 Features of Table 4.5

I. ' <:

Table 4.10 Parameters Studied and Their Variation in Section 4.4.

Spatial Correlation 0,0.15, 0.30, 0.45, 0.60, 0.75, 0.90
Meteorological Range 2 ,4 , 8 ,1 6 ,3 2  Km ^
SoIar ZenithAngIe 0°, 15°, 30°, 45°, 60°
View Zenith Angle O0115°, 30°, 45°, 60°
Sensdr IFOV O n a  Side 1 ,2 , 4, 8 ,16  Scene Cells 
Shot Noise Factor 0, 0.5 ,1 .0,2.0, 4.0
Read NoiseFactor 0 ,0 .5 ,1 .0 , 2.0, 4.0 ^
IMfCGainState 1 , 2 , 4 , 8
NumberofBitS 6 , 8 , 1 0 , 1 2 , 1 4 , 1 6
ReIativeCaIibrationError 0, 0.5,1.0, 2.0,4.0 %
Absolute Radiometric Error -10, -5, -2, 0,2,  5 ,10 %
NumberofFeatures 1 through 16
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— ■«—  VoltageSNR 
PoWerSNR

Spatial Correlation

Figure 4,28 Effect of Spatial Correlation (p= px= py) on SNR.

70

0.0

Spatial Correlation

Figure 4.29 Effect of Spatial Correlation (p= px= py) on Classification Accuracy
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50 -

----- n—  VoltageSNR
powerSNR

Meteorological Range (Km)

Figure 4.30 Effect of Meteorological Range on SNR.

CO

Meteorological Range (Km)

Figure 4.31 Effect of Meteorological Range on Classification Accuracy.
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o

I
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------B----- Voltage SNR
----- PowerSNR

Solar Zenith Angle (degrees)

Figure 4.32 Effect of Solar Zenith Angle on SNR.

o

Solar Zenith Angle (degrees)

Figure 4.33 Effect of SoIarZenith Angle on Classification Accuracy.
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1 1 2

VoltageSNR
PowerSNR

Sensor Zenith Angle (degrees)

Figure 4.34 Effect of Sensor Zenith Angle on SNR.
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Sensor Zenith Angle (degrees)

Figure 4.35 Effect of Sensor Zenith Angle on Classification Accuracy.
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VoltageSNR
PowerSNR

Sensor Radius

Figure 4.36 Effect of Number of Scene Cells Within Sensor IFOV on SNR

Number of Scene Pixels In Sensor IFOV

Figure 4.37 Effeet pf Number of Scene Cells Within Sensor IFOV on
Classification Accuracy.
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"z

Shot Noise Factor

' r! n 1 VoItageSNR 
PovifSf SNR

Figure 4.38 Effect of Shot Noise (Nominal = 1.0) on SNR.
' ' • ■ : ' " V

Shot Noise Factor

Figure 4.39 Effect of Shot Noise (Nominal = 1.0) on Classification Accuracy.
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Figure 4.40 Effect of Read Noise (Nominal = 1.0) on SNR.

Read Noise Factor

Rgure 4,41 Effect of Read Noise (Nominal = 1.0) on Classification Accuracy.
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----- n—  Voltage SNB
Power SNR;

Figure 4.42 Effect of IMC Gain State on SNR.

10

IMiC Gato Stata

Figure 4.43 Effect of IMC Gain State on Classification Accuracy.
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PowerSNR
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124

Number of Bits

Figure 4.44 Effect of Radiometric Resolution on SNR

Number of Bits

Figure 4.45 Effect of Radiometric Resolution on Classification Accuracy.
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50-

40-

Relative Calibration Error (%)

Figure 4.46 Effect of Relative Calibration Error on SNR.

VoltageSNR
PowerSNR

90 -

Relative Calibration Error (%)

Figure 4.47 Effect of Relative Calibration Error on Classification Accuracy.
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n — “ Voltage SNR 
PowerSNR

Number of Features

Figure 4.50 Effect of Number of Processing Features on SNR.

CO

Number of Features

Figure 4.51 Effect of Number of Processing Features on Classification Accuracy.



In computing the SNR values, the method described in section 2.3.4 of 
chapter two for a feature was extended for combining all of the features and 
computing one value. Also, in computing the power SNR, the weighting 
function W8 described in chapter three was used to modify the class variances. 

The reflectance statistics used in these computations were for the combined 

data set. The results of these experiments are summarized in Table 4.11.
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Table 4.11 Summary Results for System Parameter Experiments.

System Parameter 
(Increasing)

Figures Voltage
SNR

Power
SNR

Accuracy

Scene
Spatial Correlation 4.28,4.29 No Change Increase Decrease
Meteorological Range 4.30, 4.31 Increase Increase Increase
Solar Zenith Angle 4.32, 4.33 Decrease Decrease Decrease
View Zenith Angle 4.34, 4.35 Decrease Decrease Increase

Sensor
Sensor Radius 4.36, 4.37 No Change Decrease Increase
ShotNoise 4.38, 4.39 Decrease Decrease Decrease
Read Noise 4.40,4.41 Decrease Decrease Decrease
IMC Gain 4.42, 4.43 Increase Increase Increase
Radiometric Resolution 4.44, 4.45 Increase Increase Increase
Relative Calibration Error 4.46, 4.47 Decrease Decrease Decrease
Absolute Radiometric Error 4.48, 4.49 Increase Increase Increase

Processing 
Number of Features 4.50, 4.51 Increase Increase Increase

In Figures 4.52 and 4.53, the results of this section are displayed in a 
scatter plot to show the relationships between classification accuracy and 
signal-to-noise ratio. As can be seen, there is no direct relationship. While 
there appears a significant trend of higher classification accuracy resulting from 

higher SNR, it is not always the case.

The spatial correlation and sensor IFOV radius are cases in point. 
While their variation had a significant effect on both classification accuracy and 

power SNR, the effect was opposite. These spatial parameters come into the 
noise model only through the modification of the signal covariance matrix thus 

there is no effect on voltage SNR.
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Voltage SNR (dB)
V 1 ’■ • C ' ’ . •; •

Figure 4.52 Accuracy vs. Voltage SNR for System Parameter Experiments.

H B

70

60
O

Power SNB (dB)

Figure 4.53 Accuracy vs. Power SNR for System Parameter Experiments.



These results are mostly intuitively appealing, except for the sensor view 

angle. Figure 4.35 contained two curves. The one labelled "with scaling" was 
obtained using the 1/cos(0view) scaling of the ground size of the sensor IFOV as 

Gvidw was changed. The other curve labelled "without scaling" did not. It shows 

the effects due solely to the decreased atmospheric transmittance and 
increased path radiance. Thus, it seems the increase in accuracy due to the 

IFjOV scaling overrides the decrease due to the atmospheric effects. Of course, 
this experiment assumes a Lambertian surface reflectance and no effects due to 
field size and mixed pixels. Also, the atmosphere chosen was relatively clear. 
In the next section results are presented to show that in hazier atmospheres, the 

effect of the atmosphere on view angle is much more pronounced.

4.5 Interrelated Parameter Effects
In this section results showing the interrelated effects of parameters are 

presented. The analytical model is again utilized and the system configuration 
is as defined in section 4.4. The parameters studied and their variation are 
given in Table 4.12 below.
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Table 4.12 Parameter Interrelationship Studies.

Meteorological Range and Sensor View Angle (Gs0Iar = °°) 
Meteorological Range and Sensor View Angle (Gsoiar = 30°)
Meteorological Range and Sensor View Angle (Gs0Iar = 60°)
Spatial Correlation and Sensor IFOV Size
Meteorological Range and Shot Noise
Meteorological Range and Read Noise
Meteorological Range and IMC
MeteorologiCaIRangeandNumberofBits
Meteorological Range and Noise Sources Alone
SolarZenithAngIeandShotNoise
Sensor View Angle and Shot Noise
SoiarZenithAngIeandIM C
SensorView AngIeandIM C
MeteorologicaIRangeandNumberofFeatures
Solar Zenith Angle and Number of Features
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View Zenith Angle (degrees)

Figure 4.54 Effect of Meteorological Range; and View Angle for GspIar
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View Zenith Angle (degrees)

Figure 4.55 Effect of Meteorological Range and View Angle for 9S0|ar
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Figure 4.56 Effect of Meteorological Range and View Angle for 0so!ar = 60°.

Spatial Correlation Coefficient

Figure 4.57 Effect of IFOV Size (in Scene Cells) and Spatial Correlation
Coefficient.
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Figure 4.58 Effect of Meteorological Range and Shot Noise.

React Noise Factor
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Figure 4.59 Effect of Meteorological Range and Read Noise.
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Meteorological Range (Km)

Figure 4.60 Effect of Meteorological Range and IMC.

. 3  •OO
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Figure 4.61 Effect of Meteorological Range and Radiometric Resolution.
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Figure 4.62 Effect of Meteorological Range arid Various Noise Sources Alone.

Shot Noise Factor

Figure 4.63 Effect of Solar Angle and Shot Noise.
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View Angle

Shot Noise Factor

Figure 4.64 Effect of View Angle and Shot Noise
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Figure 4.65 Effect of Solar Angle and IMC Gain State.
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Figure 4.66 Effect of View Angle and IMC Gain State.

32 Km 
16 Km 
8 Km 
4 Km 
2 Km

/ .  /

Row Numbers

Figure 4.67 Effect of Meteorological Range and Number of Features.
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Figure 4.68 Effect of Solar Angle and Number of Features. V

■:s ' - ' A

The results of these experiments are discussed in the following 

paragraphs.

Figures 4.54 through 4.56 help understand the relationships between 
meteorological range, sensor view angle, and solar zenith angle. In clear 
atmospheres, the increase in accuracy due to the geometry of higher view 
angles is evident. However, as the atmosphere becomes hazy, the decreased 
signal levels and increased path radiance become dominant and accuracy is 
then decreased for higher view angles. The effects due to the atmosphere are 

Seen to be more significant for higher solar zenith angles.

Figure 4.57 shows a complex relationship between the spatial correlation 

of scene cells, and the number of cells in a sensor IFOV side. With increasing 

correlation, the accuracy for small cells (many cells per IFOV side) falls Sharply 

before decreasing at a constant rate, while the accuracy for large scene cells 

(few cells per IFOV side) remains constant before falling sharply at high
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correlations. While this result shows the tradeoffs on classification accuracy of 
scene cell size and spatial correlation for constant sensor IFOV1 it is interesting 
to consider this in the light of the results of Table 2.2. There it was shown that 
spatial correlation decreases with increasing scene cell size. Thus, for typical 
remote sensing data sets large scene cells have low spatial correlation, while 

small cells have high correlation. These tradeoffs form an imaginary horizontal 
line across Figure 4.57 and indicate that classification accuracy is relatively 

independent of scene cell size.

Figures 4.58 and 4.59 show that the effects due to increased noise are 
more significant in hazy atmospheres, while Figure 4.60 shows the 
improvement by using IMC to be greater in hazy atmospheres. Figure 4.61 
demonstrates how the increase in quantization error of fewer radiometric bits 

can be more significant in hazy atmospheres.

In Figure 4.62, it can be seen that the read noise and relative calibration 

errors are more significant for all meteorological ranges, while the effect of shot 
noise is greater at low ranges due to the increase in path radiance. It is 

interesting to compare the effect of the atmosphere with no noise sources 
present shown here with that of Landgrebe and Malaret (1986). Their result 
showed the atmosphere had no effect when no sensor noise was present, while 
Figure 4.62 shows a significant effect. The difference in these results is due to 

the path radiance model used in this report. Malaret's model considered path 

radiance as a constant additive source, while the model used here is 

dependent upon the surface reflectance. Figure 4.69 shows the effect of the 
atmosphere with and without sensor noise for the system model modified to 
remove the surface reflectance dependence on path radiance. As can be 
seen, the atmosphere has little effect on accuracy when this dependence is 
removed. It is known that path radiance is dependent upon surface reflectance 

in the real world, thus the results shown in Figure 4.62 are judged to be more 
realistic.
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Figure 4.69 Effect of Atmosphere With/Without Noise For Path Radiance Model 
With No Surface Reflectance Dependence.

Figures 4.63 and 4.64 contain some interesting results. In Figure 4.63, 
the effect of shot noise is seen to be greater at high solar zenith angles, while in 

Figure 4.64, just the opposite is seen for high view angles. In both cases, the 
effect due to the shot noise alone is to decrease accuracy more at higher 
angles, but for the view angle case the increase in accuracy due to the 
geometry overrides the shot noise effect.

Figure 4-65 shows how the IMC can be used to overcome the 
combination of low signal levels and high read noise to actually increase 

accuracy at high solar zenith angles. In Figure 4.66, a similar effect is seen as 

the IMC increases accuracy by a greater amount at high view angles.

Figures 4.67 and 4.68 show how, up to a point, more features can be 

used in classification to overcome the effects of the atmosphere or solar angle.



However, it can be seen that the accuracy increases Ievel out after a certain 
number of features and increases beyond that level are not significant,

Overall, the results of these experiments show the complex interaction of 
system parameters in determining their effect on classification accuracy. This 
demonstrates the importance of considering the interdependence of parameters 
when considering their specification in the design of a remote sensing 
experiment.

4.6 Feature Selection Experiments
; Several sets of six features (shown in Table 4.13) were used to evaluate 

their classification performance for a variety of system parameter variations and 
scenes. This section presents the results of these experiments.
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Table 4.13 Wavelength Bands Combined for the Various Feature Sets. The 
Various Feature Sets are Defined as SFD = Spectral Feature Design Algorithm, 
TM = Landsat Thematic Mapper, WSNR = Wide Signal-to-Noise Ratio, NSNR = 
Narrow Signal-to-Noise Ratio, SSFD = Single Band Spectral Feature, SSNR = 
Single Band Signal-to-Noise Ratio.

Feature SFD TM WSNR NSNR SSFD SSNR
. 1 0.52-0.66 0.45-0.52 0.40-0,70 0.51-0.56 0.59 0.54

2 0.66-0.84 0.52-0.60 0.77-0.90 0.81-0.86 0.75 0.84
3 0.70-0.92 0.63-0.69 1.00-1.10 1.02-1.07 0.81 1.04
4 1.48-1.64 0.76-0.90 1.15-1.30 1.20-1.25 1.56 1.11
5 1.98-2.20 1.45-1.75 1.50-1.74 1.59-1.64 2.10 1.61
6 2.20-2.40 2.08-2.35 1.97-2.40 2.16-2.21 2.30 2.19

The SNR features were chosen based upon spectral regions of high 

SNR. These various sets were chosen to see how classification accuracy and 
combined signal-to-noise ratios compared. Figure 4.70 shows the voltage and 
power SNR for the various feature sets and the combined reflectance statistics 
of the data set in Table 4.1, while Figure 4.71 shows the resultant classification 

accuracy for the baseline system of Table 4.9.
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Figure 4.70 Voltage and Power SNR for the Various Feature Sets of Table 4.13
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Figure 4.71 Classification Accuracy for the Various Feature Sets of Table 4.13.
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In this case, the SFD features performed the best for this data set, even 
though they did not have highest SNR. However, since they were derived from 
the data used to generate the scene, it is expected that they perform well.

Several experiments were run to compare the performance of the various 
feature sets over varying scene conditions. Figures 4.72, 4.73, and 4.74 show
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the classification performance of the feature sets for various meteorological 
ranges, solar zenith angles, and view angles.

----- B----- SFD ' .
----- ••—  TM

. ----- WSNR
NSNR
SSFD

- - D - -  SSNR

Meteorological Range (Km)

Figure 4.72 Feature Set Performance vs. Meteorological Range

From these curves, it can be seen that the features derived from high 

SNR regions are less susceptible to changes in the scene parameters. 
However, they give overall less accuracy than the features obtained from the 

SFD algorithm. Also, the features that are obtained from only one spectral band 

perform poorly under all conditions.
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Figure 4.73 Feature Set Performance vs. Solar Angle.
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Figure 4.74 Feature Set Performance vs. View Angle.
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The robustness of the spectral feature design algorithm was then studied 
by comparing the accuracy of the various feature sets in classifying a scene 
created from a different data set than that from which the features were derived. 
A scene was created from reflectance data of three varieties of spring wheat. 
Table 4.14 gives the specific fields from the LARS field data base.

Table 4.14. Classes and fields used to compute statistics for the Spring Wheat 
test scene. Thedataisfrom  Hand County, South Dakota, on July 26,1978.

Classes Field Number of Observations
Spring Wheat 118

154
199
291
292

13 ;•■■■■■

29
28

v - . -  " - V  28
16 - V V . - ;

Total = 114
SW 1809 296

303
H  ̂ . 28

. 58
Total = 86

SW Mix 75
281

13 v ,

55
Total = 68

;  .. : . . . . . : : \ .  . ;V V ;

The system configuration was as shown in Table 4.9. Figure 4.75 shows 

the voltage and power SNR of the Spring Wheat test scene for the various 

feature sets, while Figure 4.76 presents the resulting classification accuracy.

In all cases, the features formed from the wavelengths used in the 
Lahdsat TM and the ones from high SNR regions performed the best. 
Compared to these feature sets, the SFD feature set did not perform as well.
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Feature Set

Figure 4.75 SNR for Various Feature Sets and SW Variety Scene.

Feature Set

Figure 4.76 Classification Accuracy for Various Feature Sets and SW Variety
Scene.
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These results imply that over varying scenes the features derived from 
the reflectance of a different crop type perform less well at classification than 
features derived from signal-to-noise regions of the instrument, or even the 
wavelength bands used in the Thematic Mapper. This is not surprising since 

the SFD procedure is intended to be case-specific; it is intended to provide 

features optimal for its design case, as compared to being optimal in the 

general case.

4 .7  Sum m ary and Conclusions
. In this chapter the system models presented in chapters two and three 

have been applied to the study of a remote sensing system based on the 
proposed imaging spectrometer HIRIS. System performance measured by 
signal-to-noise ratios and classification accuracy has been studied under a 

variety of system parameter configurations. While the results of these 

experiments have been discussed at the end of each of the sections, the 

following paragraphs briefly summarize the main conclusions.

In section 4.2 the Signal-to-Noise Ratio (SNR) and Noise Equivalent 
Change in Reflectance (NEAp) of HIRIS was studied. The results illustrated 

how the atmosphere affects each of the spectral bands, and what noise sources 
are the most dominant under a variety of conditions. Hazier atmospheres were 
seen to have more significant effects on the shorter wavelength bands than the 

longer wavelengths. Shot noise was seen to be more significant at the high 

signal levels at the wavelengths of the VNIR detector array, while read noise 

was the dominant noise source in the longer wavelengths of the SWIR array.

Section 4.3 investigated the similarities and differences between the 
simulation model of chapter two and the analytical model of chapter three. The 
results indicated that the approaches gave similar results, except in cases 

whirs mixfd pixels or the training of a Classifier were involved.

Section 4.4 presented the results of applying the analytical model to the 

study of the individual effect of several parameters on SNR and classification 

accuracy. The results generally showed a trend of increased SNR resulting in 

increased accuracy, except for parameters involved with spatial variation. Here,
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the spatial parameters resulting in lower power SNR gave an increase in 

classification by increasing the separability of the classes.

In section 4.5 the interdependence of system parameters was 

investigated. Significant relationships were seen between system parameters, 
especially those involving pixel size variations and signal dependent noise.

Section 4.6 presented several results comparing various methods of 
choosing spectral feature sets under a variety of system conditions. The results 
indicated that feature sets based on high SNR were the most robust under 
system parameter variations, but feature sets derived from the original 
reflectance data were optimum for scenes created from that data.

These results have been presented to show the relative importance of 
the system parameters. In no way are these results intended to be used to 

predict the actual performance of the system. Rather, they are useful in 
discovering the relative effects and tradeoffs in specifying the various 

parameters.
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CHAPTER 5

CONCLUSIONS AND

SUGGESTIONS FOR FURTHER WORK

In pursuing this research, the goals were to: 1) document and model the 

remote sensing process from an overall systems perspective; 2) develop a tool 
to allow the study of the interrelationships of identifiable system parameters; 3) 
apply this tool to the study of optical remote sensing systems.

Chapters one and two described the remote sensing process from a 
systems perspective. It was seen to be comprised of three major components: 
the scene, the sensor, and the processing algorithms. Modeling of these 

components was discussed from a general point of view, and a framework was 
described for implementing a subset of these models in a simulation of the 
entire system. The simulation used the scene models to produce a spectral 
radiance function over a defined scene consisting of various informational 
classes arranged spatially. The sensor models then converted this function into 

a digital multispectral image, similar to that produced by real sensors. Various 

processing algorithms were then applied to this image to extract a performance 
measure of the system.

Chapter three presented an alternative to the simulation approach with 
the development of a parametric model to describe the remote sensing process. 
This model used analytical equations to describe the effects of the various 
system parameters.

Each of these approaches are useful as a tool to study remote sensing 

systems, and the choice of their use is dependent upon the goal of the study.
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The simulation method is useful in the following example cases.

• The spatial layout of the various classes is of interest.
• A particular scene or image is desired to be simulated under a variety 

of conditions.
• An image with desired characteristics is needed for the study of 

various processing algorithms.
• One scene needs to have several different sensors applied to it to 

compare the resulting images.
• It is desired to use a very accurate and detailed model for the sensor 

spatial, spectral, and noise effects.
• It is desired to introduce spatial effects in the scene such as clouds, 

shadows, or in the sensor such as geometric distortion or 
misregistration.

The parametric model is useful for the following examples.

• Parameter tradeoff studies where detail of models can be sacrificed 
for speed of results.

• The scene has a large number of classes with no particular 
constraints on spatial layout.

These are only a few of the possible uses of both approaches, but they 
are listed to illustrate some of the kinds of studies that are possible under the 
modeling framework developed in this report.

Chapter four presented a detailed study of the system performance of a 
future imaging spectrometer. The goals were to evaluate the noise end 
classification performance of the instrument under a variety of system 

configurations. For the majority of the results, the analytical model was 

implemented. This allowed the tradeoff study of several parameters to help 

determine the interrelationships among them. Althoughi the results were for the 

particular instrument and scene defined, the general trends were observed and 
are believed to hold for similar systems.
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Some of the significant results of this study of HIRIS include the following.

• Atmospheric visibility and scattered path radiance influence the 
sensitivity of the instrument to ground reflectance changes much more 
in the visible wavelengths than in the infrared.

• While classification accuracy is usually related directly to SNR, it is 
not always the case.

• The effect of the atmosphere on sensor viewing angle varies 
significantly with visibility.

• Lower classification accuracies in hazy atmospheres are not only 
because of noise sources in the sensor, but also the increased path 
radiance scattered from the surface.

• While feature sets chosen from spectral regions of high SNR are 
robust across system parameter variations, feature sets derived using 
analytical approaches from field databases perform optimally for 
scenes created from the data.

The work presented here has been but one step on the road to modeling 

and understanding optical remote sensing systems. It has built upon the work 

of many previous researchers, and hopefully, will stand as a foundation for 
future efforts.

While almost every component of the system model could be improved, 
several particular areas deserve to be pointed out. The surface reflectance 
model assumption of Lambertian reflectance could be replaced by a description 
of the bidirectional reflectance. Embedded within this function should be the 
spectral and spatial variation of the reflectance. Another assumption used in 

the scene spatial model that needs work is the spatial crosscorrelation between 
high spectral resolution reflectance data.

Two aspects of the atmospheric model could be extended. The 

relationship between the total surface irradiance and the direct irradiance 

needs to be more adequately defined. Also, spatial blurring and spatial 
variability of the atmosphere could be implemented.
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Geometric distortion and spectral band misregistration could be 

implemented in the sensor model.

This simulation approach could be used today to generate realistic high 
dimensional multispectral images for use in processing algorithm study. These 
may be studies of hyperspectral image display or classification algorithm 
development.

These are but a few of the possible extensions and uses of the modeling 

approaches. Indeed, it would seem to be an axiom of modeling that one can 

always improve one's model, especially when part of the subject is the natural 
world.
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Appendix A Expected Variance of a Two Dimensional 
Autoregressive Process

Thjs appendix provides a straightforward method of computing the 
expected variance of a two dimensional autoregressive (AR) process. While the 
method is similar to discussions presented in Friedlander (1984) and Kay 

(1985), it is developed here in the context of image modeling and presented in 

an intuitively simple manner.

The zero mean Mth order AR process y(k) is defined as in equation A.1.

'■ M .
y(k) = 2 ^  Gm y(k-m) + u(k) k=1....N (A.1)

1 5 5  Appendix A - Expected Variance of a
TwoDimensipnarAutoregressiveProcess

. . ’Y

Y

where y

y(k) - process data value at point k in sequence 
- model coefficient at lag m

u(k) - Gaussian white noise sequence with zero mean Ond variance

The process will be stationary if the zeros of F(z) lie outside of the unit 
circle in the complex plane, where F(z) is defined as in equation A.2.

F(Z) = I -0,  2 -6 . ,z2 --... -Bm Zm (A.2)

Autoregressive models have been applied to image modelling and 
compression (Delp, Kashyap, and Mitchell 1979) through the use of a line 
scanning formulation. The two-dimensional image is row concatenated to form 

a one dimensional sequence. Figure A.1 shows the arrangement for a quarter 
plane AR model applied to a P row x P column image.
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y(i-i.H) y(i-i.j)

y(i.i) = 0Or1 yO,j-1) + Qi1 o y(i-1 j)  + Ojlf1 y(i-1 j-1 ) + u(i,j) + ymeav 

Figure A.1 Quarter-Plane Image AR Model.

This model may be reformulated as a one dimensional sequence by 
letting the index k = (M )P + j. This is shown in equation A.3.

y(k) = e^Ck-1) + 0py(k-P) + ep+1y(k-P-1) + u(k) +ymean for (A.3)

The AR model is now of order M = P + 1, but with only coefficients 0r , 0P, 
and 0P+i being nonzero. Also, the initial conditions of the model become the 

first row and the first pixel of the second row. Usually these are set to the mean 
of the image as in equation A.4.

y(k) = ymean for k = 1,2,. .  ., P+1, (A.4)

TheYuIe-W aIker (YW) equations are obtained by multiplying equation 
A.1 by y(k-l) and taking the expectation. This results in equation A.5.

E{y(k) y(k-l)} = E X 0m y(k-m) y(k-l) + u(k) y(k-l)
,m=1

(A.5)
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For I > 0, this results in equation A.6,

M ■ . -

o}(l) -  <m-l) (A.6)
m=1 ■

where Gy2(I) is the covariance between data points I lags apart. This 

result comes about due to the stationarity of the process and the fact that u(k) is 

an uncorrelated sequence.
Writing equation A.5 for 1=1 to M and normalizing by the variance Gy2 = 

G y 2 ( 0 ) ,  we obtain the YW relations as equation A.7.

P1 = V+ V, + '• +  6 M Pm-I

P2 -  S1P1 + S2 + S3 P1 + —  + eM pM.2

(A l)

Pm -  6 , Pm-, + 6S Pm-2 + "  + 9»

Observe that in the above we have used the fact that Po = 1, and that p.r 

P1. Also, note that
oj (m)

pm=̂ r
Equation A.7 can be reformulated as in equation A.8.

M x M

“ P i " 0 I

P 2 e „2

•
= • ■

_  Pm — - 6M -

(A.8)
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Where x M is an M x M identity matrix, and 0A and © R are definedB
as follows,

0 A s=

B2 0 S-  9 M 0

CD CO CD CD O O “ o O • • • • 0 “

■ • • • • • V . ■ - B1 O O • • • O

V - - 9 M O -: ■ 0
0 B =

e2 Q1 o - • o

8 M • • - B

_ 0  O ..................0 _ - 8 M-, • • B2 6 ,  0 _

The elements of and © g  can be filled by the following pseudo-code.

For © A,

for i = 1 to M { 
for j = 1 to M {

if (i+j <. M) then G a (U ) -O h  

else © A(i,j) = 0

-  \ " ' ; v v
. ■ I - ; . r

For © B,

for i -  1 to M { 
for j = 1 to M {

if (i-j > 1) then © B(i,j) = eH

else ©g(i'j).o 0

'■--'.I- ;
}

Equation A.8 is in the form of a system of linear equations, and the 
autocorrelation coefficients P1, p2, . . . ,  p^, can then be obtained by using any 

standard linear algebra routine.
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Using the relationship between the coefficients, the autocorrelations, and 
the process variance from Box and Jenkins (1970), we can solve for the 
variance of the process as in equation A,9.



Appendix B interpolation Algorithm
The following routine was used to convert the 60 dimensional FSS 

reflectance into the 201 dimensional vectors used in the system models, The 
FSS data covered 0.4 to 2.40 pm, in spectral samples ranging from 20 nm to 50 

nm. The system model uses a constant 10 nm wavelength spacing across this 
range.
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The conversion is accomplished by first placing samples that correspond 
directly in wavelength, then performing several levels of interpolation to match 

the wavelength spacing as closely as possible.

The two arrays are defined as fssref(1:60), the FSS reflectance, and 
hiref(1:201), the resulting interpolated array.

C
c Do direct placements first
: c

hiref(I)=fssref(I) 
do 10 i=2,8

10 hiref(2*i)=fssref(i)
do 20 i=9,11

20 hiref(2*i+l)=fssref(i)
do 30 i=12,13

30 hiref(2*i+2)=fssref(i)
do 40 i=14,18

40 hiref(2*i+3)=fssref(i)
do 50 i=19,28

50 hiref(2*i+2)=fssref(i)
hiref(59)=fssref(29) 
do 60 i=30,34

60 hiref(2*i+3)=fssref(i)
hiref(75)=fssref(35) 
hiref(80)=fssref(36) 
do 62 i=37,60

62 hiref(5*(i-37)+84)=fssref(i)
c
c Next interpolate simply

: C-
do 70 i=l,7

70 hiref(2*i+l)=0.5*(fssref(i)+fssref(i+1))
do 80 i-8.,11

80 hiref(2*i+2)=0.5*(fssref(i)+fssref(i+1))
hiref(27)=0.5*(fssref(12)+fssref(13)) 
do 90 i=13,17

hiref(2*i+4)=0.5*(fssref(i)+fssref(i+1)) 
do 100 i=19,27

90
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100

HO

115
c

' C  •
C

120

125
130
c
c
C

135
140
c
c
c

143
147
c
c
c

hiref(2*i+3)=0.5*(fssref(i)+fssref(i+1)) 
hiref (61) =sO . 5* (fssref(29)+fssref(30) ) 
do H O  1=30,33

hiref (2*i+4)=0 . 5* (fssref (i) +fssref (i+1) ) 
hiref(73)=0.5*(fssref(34)+fssref(35)) 
hiref(77)=0.5*(fssref(35)+fssref(36)) 
hiref (82) =0.5* (fssref (36) +'fssref (37)) 
hiref(87)=0.5*(fssref(37)+fssref(38)) 
do 115 i=38f59

hiref(5* (i-38)+91)=0.5*(fssref(i)+fssref(i+1)) 
Now interpolate interpolations
hiref(2)=0. 
hiref(17)=0 
hiref(25)=0 
hiref(29)=0 
hiref(60)=0 
hiref(62)=0 
do 120 i=72 

hiref(i)= 
hiref(81)=0 
hiref(83)=0 
do 125 i=86 

hiref(i) = 
do 130 i=110, 

hiref(i)=

5*(hiref(I)+hiref(3))
.5*(hiref(16)+hiref(18))
.5*(hiref(24)+hiref(26))
.5*(hiref(28)+hiref(30))
.5*(hiref(59)+hiref(61))
.5*(hiref(61)+hiref(63)) 
,78,2
0.5*(hiref(i-l)+hiref(i+1)) 
.5*(hiref(80)+hiref(82))
.5*(hiref(82)+hiref(84)) 
,92,2
0.5*(hiref(i-l)+hiref(i+1)) 
195,5
0.5*(hiref(i-l)+hiref(i+1))

Now interpolate interpolations of the interpolations
hiref(79)=0.5*(hiref(78)+hiref(80)) 
hiref(85)=0.5*(hiref(84)+hiref(86)) 
hiref(93)=0.5*(hiref(92)+hiref(94)) 

do 135 i=112,197,5
hiref(i)=0.5*(hiref(i-l)+hiref(i+2)) 

do 140 i=113,198,5
hiref(i)=0.5*(hiref(i-l)+hiref (i+1))

Set water absorption bands to 0.001
do 143 i=96,106

hiref(i)=0.001 
do 147 i=146,156 

hiref(i)=0.001
Set up repeated values
hiref(95)-hiref(94) 
hiref(107)-hiref(109) 
hiref(108)-hiref(109) 

hiref(145)-hiref(144) 
hiref(157)-hiref(159) 
hiref(158)-hiref(159) 

hiref(200)-hiref(199) 
hiref(201)-hiref(199)

' !'
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Appendix C LOWTRAN 7 input File
The atmospheric simulation program LOWTRAN 7 is implemented in the 

simulation by setting up an input file, calling the program through a UNIX 
system command, then reading the resultant output file created.

The following variables and default values were used in the 
implementation of LOWTRAN 7. See Kneizys, et al., (1988) for a complete 
description.

ANGLE - Angle parameter

DV-IncrementaIwavenumber

GNDALT - Altitude of surface

Hl-Initialaltitude

Hz-Rnalaltitude

ICLD - Cirrus cloud parameter

ICSTL-Oceanparameter

IEMSCT - Execution mode parameter

= O program calculates transmittance 

s 1 program calculates atmospheric radiance

= 2 program calculates atmospheric and singly scattered solar/lunar radiance 

= SprogramcalculatesdirectIytransmittedsoIarirradiance 

IHAZE - Atmospheric haze parameter 

= O for a clear atmosphere 

= 1 for a rural atmosphere 

= Sforanurbanatmosphere 

IM - Radiosonde parameter 

IMULT -  Multiple scattering control parameter

= OprogramexecutedwithoutmuItipIescattering 

= IprogramexecutedwithmuItipIescattering 

IPARM - Geometry specification controlling parameter 

IPH - Aerosol phase function parameter 

IRPT - repetition parameter

= OnomoreinputcardsfoIIpw 

= ImoreinputcardsfoIIow 

ISEASN - season parameter (0=default)
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ISOURC - Extraterrestrial source parameter 

-Osourceissun  

= 1 source is moon 

ITYPE - Atmospheric path parameter 

; = 1 for a horizontal path

= 2 for a vertical or slant path between two altitudes 

= SforaverticailorsIantpathtospace 

IVSA - Vertical structure algorithm parameter 

IVULCN - Volcanic activity parameter 

M1 through M6 - Altitude profile parameters 

MODEL - Atmospheric model type parameter 

= IselectsTropicaIModeIAtmosphere 

= 2 selects Midlatitude Summer 

= 3 selects Midlatitude Winter 

= 4 selects Subarctic Summer 

= SselectsSubarcticWinter 

= 6 selects 1976 U. S. Standard 

NOPRT - Normal operation parameter 

PARM1 - Azimuthal angle between observer and sun 

PARM2 - Solar zenith angle (=0Solar)

RAINRT - Rain rate parameter

SALB - Surface albedo

V1 - Initial wavenumber

V2 - Final wavenumber
VIS - Surface meteorological range (=V11)

The following default values were used for the experiments and 

simulations used in this report.

GNDALT=O /* Surface at sea level V

ICLD=O r  No clouds V

ICSTL=I r  No effect, only used over oceans 7

IDAY=I 80 I* DayofyearV
' Ji- : ' . ■ ■.■ ■■■■■ '

r  Rural atmosphere 7IHAZE=I

IM=O /4 NoradiosondedataV
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IMULT= I r  Multiple scattering 7

ISEASN=O /* Season determined by MODEL 7

ISOURC P  Source is Sun 7

' /* Vert. Structure Algorithm not used 7

IVULCN=O r  No volcanic profile 7

M I =O /* Normal operation 7

M2=0 I* Normal operation 7

M3=0 I* Normal operation 7

M0DEL=6 /* 1976 U .S. Standard atmosphere 7

NOPRT=I ■ r  Normal operation 7

RAINRt =O O r  No rain 7

VIS=Vtj

Four calls to LOWTRAN are set up within the input file. The first call 
calculates the direct solar spectral irradiance at the surface. The second 

calculates the transmittance of the path from the surface to the sensor. The third 
and fourth calls calculate the path radiance seen by the sensor for surface 
albedoes of O and 1. LOWTRAN reads from an input file named TAPE5. The 
lines below labelled CARD contain the actual variables in the file TAPES.

The following lines set up the direct solar irradiance call.

ITYPE=3 

IEMSGT=3 

Hl=O O 

ANGLE=eSO|ar

IRPT=I

CARD 1 M0DELIITYPE,IEMSCT.IMULTIM1,M2IM3.M41M5.M61MDEF>IM,

 ̂ NOPRT.SALB -

c a r d  2 Ih a z e 1Is e a s n 1Iv u l c n 1Ic s t l 1Ic l d 1Iv s a 1V is iRa in r t iGn d a l t

CARD 3 H1 , ANGLE, ISOURC

CARD 4 V1.V2.DV

CARDS IRPT
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The following lines set up the transmittance call.

ITYPE=2

IEMSCT=O

H1=0.0

H2=H
ANGLE=Oview

IRPT=I

r  Altitude of sensor V

c a r d  6 Mo d e l 1It y p e 1Ie m s c t 1Im u l t 1MI im 2,m 31M41m 5 ,Ms1MDe f 1IM i 

NOPRT.SALB

c a r d ? Ih a z e 1Is e a s n 1Iv u l c n 1Ic s t l 1Ic l d 1Iv s a 1V is 1Ra in r t 1Gn d a l t

CARDS H1.H2, ANGLE

CARD 9 V1.V2.DV

CARD 10 IRPT

The following lines set up one path radiance call.

ITYP E=2

IEMSCT=S

H1=H
ANGLE=I80.0 - Oview

IPARM=2

IPH=2

P ARM 1=(<|>view-<!>solar)/2 

P ARM2=0soier

Sa l b =OO I* or = 1.0 V

CARD 11 M0DEL1ITYPE1IEMSCT1IMULT1M11M21M31M4,MS1MeiMDEF1IM1

NOPRT.SALB - . V i :

c a r d  12 Ih a z e 1Is e a s n 1Iv u l c n 1Ic s t l 1Ic l d 1Iv s a 1V is 1Ra in r t 1Gn o a l t

CARD 13 H1 ,ANGLE.LEN

CARD 14 IPARM.IPH.IDAY.ISOURC

CARD 15 PARM1.PARM2

CARD 16 ■ V1 ,VZ1Dv
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CARD 17 IRPT

The program generates a file named TAPE7 with the output data. Since 
LOWTRAN uses wavenumber increments across the spectrum, a conversion is 
done to put the result into wavelength units. Since the resolution of the call to 
LOWTRAN results in one or more wavenumber samples per wavelength 

interval, this conversion is accomplished by averaging over the appropriate 
wavenumbers to obtain the resulting wavelength value.



A ppendix D Sensor Descriptions
In the following descriptions the radiance levels are given in mW/(cm2- 

sr). The shot noise constants are computed from data and can be used to 

compute the standard deviation as in equation D.1.

0 Shot = K shotVSignaI Level (D.1)

D.1. M odular M ultispectra l Scanner
This is an airborne sensor flown for LARS in the early 1970s. The 

spectral response and noise levels were estimated from data given in the report 
by NASA's Johnson Space Center (1974). Details are given in Tables D.1 and 

D.2, and Figures D.1, and D.2, The noise values are estimated assuming 

equivalent shot and thermal noise for one-half full scale radiance signals.

Table D.1 MMS General Parameters.

1 6 7  A ppendixD -SensorD escriptions

Altitude 3030 Meters
Sampling Interval 2.3 millirads
Number of Bands 10
Number of Bits 8

Table D.2 MMS Band and Noise Parameters.

Band
Full Scale 
Radiance

Shot Noise 
Constant

Thermal Noise 
Equivalent Radiance

1 0.338 0.0151 0.00450
2 0.640 0.0042 0.00160
3 1.114 0.0039 0.00160
4 1.253 0.0037 0.00150
5 1.314 0.0035 0.00150
6 1.333 0.0028 0.00150
7 1.170 0.0024 0.00140
8 1.020 0.0018 0.00140
9 0.983 0.0034 0.00300

10 0.259 0.0061 0.00250
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Wavelength (microns)

Figure D.1 MMS Spectral Response for Bands 1 though 5.

O
Z

0.6 -

Wavelength (microns)

Figure D.2 MMS Spectral Response Bands 6 through 10.

Band I 
Band 2 
Band 3 
Band 4 
Band 5

Band 6 
Band 7 
Band 8 
Band 9 
Band 10
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The spatial response of the MMS is assumed to be Gaussian with a 
standard deviation of 1.25 miiliradians.

D.2. Landsat MSS
The following data are for the Landsat MSS instrument. The spectral 

response was taken from Markham and Barker (1983), the spatial response 
from Markham (1985), and the noise levels set similar to those of the Thematic 
Mapper instrumenL The rest of the information is from Salomonson, et al. 

(1980).

Table D.3 MSS General Parameters.

Altitude 918 Kilometers
Sampling Interval 63 pradians across scan

88 pradians down scene
NumberofBands
Number of Bits ■7-(6 for band 4)

Table D.4 MSS Band and Noise Parameters.

Band
Full Scale 
Radiance

Shot Noise 
Constant

Thermal Noise 
Equivalent Radiance

1 ; 2.48 0.008 0.006
2 2.00 0.007 0.005
3 1.76 0.005 0.005
4 4.60 0.005 0.010
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\  I

I l \

0.8

Wavelength (microns)

Figure P.3 MSS Spectral Response.

Band I  
Bsmd 2 
Band 3 
Band 4

Across Scan 
Down Scene

0.8 -

0.0 -

>0.2

Angular Distance (microradians)

Figure D.4 MSS Spatial Response.
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D.3. Landsat Thematic Mapper
The data presented here are for the first six bands of the Landsat TM 

instrument. The spectral response was taken from Markham and Barker (1985), 
the spatial response from Markham (1985), and the noise levels from Malaret 
(1982). The rest of the information is from Salomonson, et al., (1980).

Table D.5 TM General Parameters.

Altitude 705 Kilometers
Sampling Interval 43 pradians across scan
■ . . 43 pradians down scene
NumberofBands 6 ■
Number of Bits • 8 ■

Table D.6 TM Band and Noise Parameters.

Band
Full Scale 
Radiance

Shot Noise 
Constant

Thermal Noise 
Equivalent Radiance

1.06 0.0073 0.00752
v 2 • ■ 2.54 0.0079 0.00529

3 1.46 0.0066 0.00448
4 3.26 0.0049 0.00360

' / ' ; 5 ■ 0.64 0.0055 0.00333
6 0.48 0.0127 0.00600
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0.4

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Wavelength

Figure D.5 TM Spectral Response.

AcrossScan LSF 
Down Track LSF

XJ 0.5

JS
E 0.3

-150 -50-100
Angular Distance (microradians)

Figure D.6 TM Spatial Response.
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Appendix E Analytical System Model Program Listing
G*********************************************** * * * * ********************
C
C

C

C

C
C
C
C

G
G

C
G
C
G
Q
C
C
C
C

C
C
C
C
C
C
C

C
C

R S A N A  John Kerekes May 29, 1989
This program will compute the performance of a remote sensing 
system based on scene reflectance and system parameters.
It is based on analytic models developed by Whitsitt (1977), 
Mobasseri (1978),and Malaret (1982). It uses reflectance 
statistics obtained by the FSS and interpolated to 201 dimensions 
to work with the model HIRIS sensor. Feature selection based on 
combining bands is used to reduce the dimensionality. Tables 
generated by LOWTRAN 7 provide the atmospheric data under 125 
combinations of surface meteorological range, solar zenith angle, 
and view zenith angle. Classification accuracy is assessed through 
a function of the Bhattacharyya distance between classes.

The program uses several data files as described below.
"refstaf'-Mean and covariance of reflectance for each class 
"scdesc" - Parameter file describing scene 
''Lrrad" - Table of total surface irradiance for varying 

meteorological ranges andSsun angles 
"trans" - Table of atmospheric transmittance for varying 

meteorological ranges and view angles 
"pradO" - Table of path radiance for surface reflectance of 0, for 

varying meteorological ranges, solar angles, and view angles 
"pradl" - Table of path radiance for surface reflectance of I, for 

varying meteorological ranges, solar angles, and view angles 
''senstat" - Parameter file describing sensor 
"feaset" - Table of processing features
The format for these files is as follows.

C-

c
c
c
c
c
c
c
C
C
C
C

C
C
Q
C
C

C
C

"refstat"
Repeated for each class are the following 

(alO) Class Name 
(201f8.4) Mean Reflectance 
201 rows of (201f8.4) Covariance Matrix

"scdesc"
(i3) Number of classes
(f4.2) Across scene spatial correlation coefficient 
(f4.2) Down scene spatial correlation coefficient 
(13) Meteorological range table index
(13) Solar zenith angle table index
(14) View zenith angle table index

60° )
"irrad"

Repeated for 5 solar angles (0°, 15°, 30°, 45°, and 
Repeated 201 times for spectral wavelengths

5(f7.2,al) Spectral irradiance for 5 Wet Ranges 
separated by tabs (2,4,8,16, and 32 KmJ
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"trahs"
Repeated for 5 view angles (0°, 15°, 30% 45% and 60°) 

Repeated 201 times for spectral wavelengths
5(f7.4,al) Atm. Transmittance for 5 Met Ranges 

separated by tabs (2,4,8,16, and 32 Km)

"pradO"Repeated for 5 view angles (0% 15% 30°, 45°, and 60°) 
Repeated for 5 solar angles (0% 15°, 30°, 45% and 60°) 

Repeated 201 times for spectral wavelengths
5 (f7. 4,al) Path Radiance for 5 Met Ranges

separated by tabs (2,4,8,16, and 32 Km)

"pradlW
Repeated for 5 view angles (0°, 15°, 30% 45% and 60°) 
Repeated for 5 solar angles (0°, 15°, 30°, 45°, and 60°) 

Repeated 201 times for spectral wavelengths
5(f7.4,al) Path Radiance for 5 Met Ranges

separated by tabs (2,4,8,16,and 32 Km)
"senstat"

(a24,a6) Label, Sensor Name 
(a24,f4.I) Label, PSF Radius (r0)
<a24,i3) Label, IMC Gain State 
(a24,fll.I) Label, System Response Constant 
(a24,2f8.I) Label, VNIR and SWIR Dark Current 
(a24,f8.I) Label, Shot Noise Factor
(a24,2f8.I) Label, VNIR and SWIR Read Noise Std. Deviations 
(a24,2f8.1) Label, VNIR and SWIR Quantization Noise St.Dvs. 
(a24,f8.3) Label, Relative Calibration Error 
(a24,f8.3) Label, Absolute Calibration Error 
Repeated for 201 Wavelengths

(a24,f7.4) Label, Sensor Spectral Band Response
"feaset"

(a24,i4) Label, Number of Features to Use 
Repeated for each feature

(a24,2i4) Label, Feature Beginning and Endingf Band

Variables Used Include the Following:
absrad - level of absolute radiometric error (in decimal)
averef - average of class reflectances (in decimal)
avecov - covariance of average of reflectances (in decimal)
calstd - level of relative calibration error vector (in decimal)
dark - dark level current in detectors (in electrons)
feacov - covariance of feature set
feamat - feature selection matrix
feamean - mean of feature set
feaset - table of band edges for feature selection 
gcon - conversion vector of received power to electrons 

(electrons/watt)
irrad - table of total spectral irradiance at surface (mW/cm2-mm) 

irrad(wavelength,met range, sun, angle)
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c
c
G

e
c
c
c
c
c
C
G

C
C
C
G
C

C
C

' / C -

C

C
G

C
C
C

C

P
C

C

C '

c;
c
c
c
c
c
C
c

mr - index for meteorological range '" V
mu - Bhattacharyya distance
pcsum - overall average probability correct (in percent) 
pradO - table of path radiance when albedo-0 (rnW/cm2-mm»sr)
; pradO(wavelength, met range, sun angler view angle) 
pradl - table of path radiance when albedo^l (mW/cm2-mm-sr) 

pradl(wavelength, met range, sun angle, view angle) 
probeor - pairwise probability of correct (in decimal) 
quantstd - variance of quantization noise (in electrons) 
readstd - variance of read noise vector (in electrons) 
refmean - mean reflectance array (in percent) 
refcoV - covariance of reflectance (in percent?) 
rhox - across scene spatial correlation coefficient 
rhoy - down scene spatial correlation coefficient 
ro - sqrt(2) times the PSF radius in scene cells 
senrsp - sensor response(product of optics transmittance and 

quantum efficiency) 
shtfac - shot noise factor
S h o t S t d  -  s t a n d a r d  d e v i a t i o n  o f  s h o t  n o i s e  v e c t o r ( i n  e l e c t r o n s )  

s i g c o v  —  c o v a r i a n c e  o f  r e c e i v e d  s i g n a l  ( i n  e l e c t r o n s 2 ) 
s i g m e a n  -  m e a n  o f  r e c e i v e d  s i g n a l  ( i n  e l e c t r o n s )

s i g r a d  -  s i g n a l  r a d i a n c e  f o r  1 0 0 %  r e f l e c t i n g  s u r f a c e ( i n  e l e c t r o n s )
sysrsp - system response constant (product of AQ, and 1/hc)
thsun - index of solar zenith angle
thvew - index of view zenith angle
t r a n s  -  f a b l e  o f  a t m o s p h e r i c  t r a n s m i t t a n c e

trans(wavelength/ met range, view angle) 
ws - spatial weight

IMSL version 10.0 routines used include the following:
erfc (x) - compute the error function complement of x : 
lftsf (•) - matrix factorisation . ,r
lfdsf(•) r compute determinant given matrix factorization 
linrg(v) - compute the inverse of a real general matrix

program rsana :
pa rameter(irbrk= 6 1,maxcls=4,maxdim=201,maxfea=l6 ,maxopt=5)
character*l tc
C h a r a c t e r * 6  s e n n a m e

Character*10 covtype
character*24 label
integer feaset(maxfea,2)
integer imc,ipvt(maxfea),mr,numcls,numfea,thsunythve^
real absrad, averef (maxdim)
ifeal avecov (maxdim, maxdim)
real calval
real calstd(maxdim)
real dark(2),detI,det2,detave,detl,detk
real fac(maxfea,maxfea) , t
real feamat (maxfea,maxdim)
real feacov(maxfea, maxfea,maxcls),feamean(maxfea,maxcIs) 
real feacovk(maxfea,maxfea),feacQvl(maxfea,maxfea) 
real gcon(maxdim)
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real Ir rad (maxdim, maxopt,maxopt), mu
real mxdiff (maxfea),matave (maxfea,maxfea) ,matinv(maxfea/maxfea) 
real pcsum
real pradO (maxdim,maxopt,maxopt,maxopt) 
real pradl (maxdim, maxopt, maxopt, maxopt) 
real pthdif (maxdim) 
real probcor(makcls,maxcls) 
real quantstd(2),readstd(2)
real refcov (maxdim, maxdim, maxcls), refmean (maxdim,maxcls) 
real ro,roa,rob,rhox,rhoy,senrsp(maxdim) 
real shtfac,shotstd(maxdim) 
real sigrad (maxdim)
real sigmean (maxdim), sigcov (maxdim, maxdim) 
real ws,sysrsp
real temp, tmpmean (maxdim), tmpcov (maxdim, maxdim)
real tmpvec (maxdim)
real trans (maxdim,maxopt,maxopt)

c
c

■ q :c '
c* *********************************** ************************* * * ********
C ' ' '
C R E A D  I N  D A T A  P A R A M E T E R  F I L E S  A N D  S E T  U ?  A R R A Y S
CC***********************************************************************
C
C

20
10

c
c
c

Read in scene description and reflectance data
open (unit-3, f ile=3"scdesc”) 
rewind(3)
read(3, * (13) 1Jnumcls 
read(3,1 (f 4.2)1)rhox 
read(3,1(f4.2)1)rhoy 
read(3, 1 (i3) Mmr 
read(3,1 (i3)1)thsun 
read(3,1(i3)1Ithvew 
close(3) '
open(unit=4,file=Mrefstatw)
rewind(4J
do I0 k«l,numcls

read (4,1 (alO)1Jcovtype
read (4*1(20lf8.4) 1) (refmean(i,k),i»l,maxdim) 
do 20 j=I,maxdim

read(4,1(201f8.4) 1)(refcov(i,j,k),i«l,maxdim) 
continue '

continue 
close (4)
Read in atmospheric data files
open (unit-10, file^irrad") 
rewind(10) 
do 30 I3=I, maxopt 
do 30 i=l,maxdim

read(10,1(5(f7.2 , al))1)irrad(i,I,I),tc,irrad(i,2,I),tc, 
+ irrad(i,3,1),tc,irrad(i,4,1),tc, irrad(i,5,I)



60

c
c

70

c

c

80

continue 
c ipse(10)
opten (unit=11, file="trans") 
rewind(il) 
do 40 I=I^maxopt 
do 40 i=l,maxdim

read (11, 1 (5 (f 7.4/al)) *> trans (i> I,1) , tc/1 rante fi, 2,1) ,tc,
+ trans (1/ 3,1) ,tc,trans (I, 4,1) ,tc, trans (i,5,l)

continue
close (11) ■ ‘ "-;v, .
open (unit=12, file="pradO")

. rewind (12) -
do 50 l=l,maxopt 
do 50 m=l,maxopt 
do M  i“l frnax:dim

read (12,1(5(f7.4,al))')pradO(i,l,m,I),tc,pradO(i,2,m,I),tc,
+ p^adO (i/Svirivi^/tc/pfadO (i,4,m,l) ,tc,pradO (i,5,m,l)

continue 
close(12)
open(unit=13,file="pradl") 
rewind(13) 
d o 60 1=1/maxdpt 
do 60 m=l, maxopt 
do 60 i=l,maxdim

read(13, ' (5 (f7.4, al)) ')pradl (i, 1,-m, I), tc,pradl (i, 2,m, I), tc,
+ pradl (i, 3/m, I) , tc, J3radl (i,4,m,l), tc, pradl (i, 5,m,l)

. ■ continue , \ ■■
close(13)
Read in sensor parameter file
open(unit=14,file="senstat") 
rewind(14)
read(14,'(a24,a6)')label,senname
read(14,'(a24,f4.I)')label,ro
read(14,'(a24,i3)')label,imc
read(14,'(a24,fll.l)')label,sysrsp
read(14,■(a24>2f8.1)')label,dark(I),dark(2)
read(14,'(a24,2f8.1)')label,shtfac
read(14,•(a24,2f8.1)')label,readstd(l),readstd(2)
read(14,'(a24,2£8.1)')label,quantstd(l),quantstd(2)
read(14,'(a24,f8.3)')label,calval
read(14,'(a24,f8.3)')label,absrad
do 70 i=l,maxdim

read(14, • (a24,f7.4) ') label,senrsp(i) -
continue

close (14) ■ ' -
Read in feature file and fill up feature matrix
open(unit=15,file="feaset") 
rewind(15)
read(15,'(a24,i4)')label,numfea
do 80 m=l,numfea ,

read(15,'(a24,i4,i4)•)label,feaset(m,I),feaset(m,2) 
continue . 

close(15) ;
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100
90

do 90 m=lrnumfea
do 100 i=lfmaxdim 

feamat(mf i)-0.0
if(i,ge.feaset(mf I).and. i.Ie.feaset(mr 2)) 

K feamat (mf i)*1.0
continue 

continue

q *  ★  ■ * *  it it it i t  it it it it it it it it it it it it it it it it it it it it it it it it it it it i t Ir * * * * * *  it it it it it it it it it it it it it it it it it it it  it it it it it it it it it

C

C
C

SET UP CONVERSION AND SCALING VECTORS
Qitititit it it it * * * * * it it it it it it it it it it it it it it it it *******************************************

pi=4.0*atan(I.0) 
do H O  i=l,maxdim

gcon(i)=0.01*(0.4+(i-1)*0.01)*$ysrsp*senrsp(i)*imc 
sigrad(i)= (I.0/pi)*irrad(ifmrf thsun)*trans(if mrf thvew) 
pthdif(i)=pradl(ifmrf thsun, thvew) -pradO (if mrf thsunf thvew) 

H O  continue
C - .
c Compute spatial weighting function
c (Notef assume all bands have same spatial correlation)
c (IMSL erfc function is 2 times erfc<) as defined in thesis/
c and also needs a division by sqft(2) to normalize variable)
C Now implemented scaling of PSF size by view angle in y direction
c • * ■ •

a » -l>0*alog(rhox) 
b = -1.0*alog(rhoy) 
roa=ro
rob=ro/cos(((thvew-1)*15.0*pi)/180.0) 
temp=4.0*exp(((a*a+b*b)/2.0)*roa*rob)
ws=temp*0.5*erfc((a*roa)/sqrt(2.0))*0.5*erfq((b*rob)/sqrt(2.0))

c _ . • ' : ■ .
qit * * * * * * * * * * * * * * * * * * * * * * ******* * * * * * * * * ********* * * * * * * * * ***** ***** * * * * * *
c - V" ■ ■' .•
C COMPUTE AVERAGE REFLECTANCE FOR USE IN PATH
C RADIANCE MODEL
Qit * * ***** * * * * ************** * * * * * * * ************ * * * * * * * * * * * ***** * * ********
C

do 120 i=l,maxdirtv 
averef(i)=0.0 ■
do 130 Jc=If numcls

averef(i)=averef(i)+refmean (irJe)
130 continue

averef(i)= (averef(I)/float(numcls))/100.0 
120 continue

do 140 i?=lf maxdim 
do 140 j=l,maxdim 

avecov-Cif j) =0.0 
do 150 Jc=IrUumcls

avecov(i f j)=avecov(if j)+refcdv(i, j, Je) 
150 continue
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aveicov (i, j) - (avecov (i, j) /float (numcls*numelsi) /iOQO{). 0 
140 continue
c . \ ' . \ ' v " - ■ \-.\7 ■c* * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * *  ** * *

c COMPUTE FEATURE SPACE STATISTICS FOR EACH CLASS
c / ■' - ; , \  ■ • \
C * * * * *** * * * ̂ *** ** * ** ***  * *** ***  ** * * * * * * * * * * * *  * ** * ** * * * *** * * * * ** *  ****  ** * **
C

C

e

c
c
c

c
c
c

220
Q
c
c

240
230
c
C
c

260 
2 50 
c 
c 
c

' j START CLASS LOOP ILoop for all classes 
do 390 Jc=I^numcls
Copy reflectance stats to temp files and convert from %

210
200

do 200 i-l,maxdim.
tmpmean(i)=refmean(i,k)/100.0 
do 210 j=1,maxdim

tmpCov(i,j)=refcov(i,j, k ) /10000.0 
continue 

continue
. ' ;  .. . . . . • ■ .- - v .  .. : . i  .

Compute signal mean
d o  2 2 0  i = l f m a x d i m  ;;

sigmean(i)=gcon(i)* (sigrad (i) *tmpmean (i) +
+ pthdif(i)*averef(i)+prad0(i,mr,thsun,thvew))

sigmean(i)=Sigmean(i)*(I.0+absrad) 
if(i.le.irbrk) then

s i g m e a n ( i ) = S i g m e a n ( i ) + d a r k (I)
7 e l s ^  7 V v \ ' ,.7 '■

iigmean (i)=sigmean(i)+dark (2) ^
endif . ' / : ~ \ ,

• continue '
Compute signal covariance
do 230 i=l, maxdim ^

do 240 j=Irmaxdim
sigcov(i,j)=tmpcov(i, j)*gcon(i)*gcon(j)*sigrad(i)*

+ sigrad(j)+pthdif(i)*pthdif(j)*avecov(i, j)*
+ gcon(i)*gcon(j)

sigcov(ifj)=Sigcov(irj)*(I.0+absrad)* (I.0+absrad) continue ■
continue

Apply spatial weighting function
do 250 i=l,maxdim

do 260 J=zI fmaxdim
sigcov(iYj)=ws*sigcov(i7 j)
continue " v

continue
Compute signal dependent noise standard deviations
d o  270 i = I,m a x d i m  v
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Shotstd(I)asShtfac^sqrt (sigmean(i)) 
calstd(i)=calval*sigmean (i) * (2.O/sqrt(12.0))

270 continue
c
c Add noise variances to signal variances 
c -

do 280 IsaIrmaxdim
sigcov (ir i) asSigcov d r i)+shotstd(i) *shotstd(i) 
sigcov(I,i)-sigcov(i,i)+caistdd)*calstd(i) 
if(i.Ie.irbrk) then

sigcov(i,i)“sigcov(i,i)+readstd(I)*readstd(I) 
sigcov (i, i) ŝ sigcov (ir i)+quantstd (I) *quantstd(I)

+ *imc*imc
.else •

sigcov (Ir i) “sigcov (I, I)+readstd (2) *readstd(2) 
sigcov(I,i)-sigcovdri)+quantstd(2)*quantstd(2)

+ *imc*imc
endif

280 continue
c
c Transform to feature space 
c

do 290 m»lrnumfea 
feamean(m, k)»0.0 
do 300 i-l,maxdim

feamean (mr k)-feamean (m, k) +feamat (m, i) *sigmean d)
300 continue
290 continue

do 310 IsssI , maxdim
do 320 m*lfnumfea 

tmpcov dr m) «0*0 
do 330 j»lrmaxdim

tmpcov (I, m) ̂ tmpcov (irm)+sigcpv dr j)*feamat (Itirj)
330 continue
320 continue
310 continue

do 340 InasIr numfea
do 350 n«X,nymfea 

feacov(m, n, k)*0,0 
do 380 i-l,maxdim

feacov (mf Hr k) *feacov (mrUr k)+feamat (mr i) ̂ tmpcov dVn)
360 continue
350 continue
340 continue
390 continue 
c ■
c END CLASS LOOP I
c ':
q *  * * * * * * * * * * * ★  * * * * * * * * * * * * * * *  * * * * * * * * * * * * *  * * * * * * * * * * *  * * * * * * * * * * * * * *  * * * * * 
C
C COMPUTE PAIRWISE BHATTACHARYYA DISTANCE
C
C
c Scale feature statistics to prevent overflow
C ■ ' ■' ■

temp-0.I*feamean(I#I) 
do 393 k*5! r numcls
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396
395
393
c
c
C

410

420

440
430

450

400
c
C 

C

do 395 Iti=IvIiuirifea 
•.fe.ame.an-(m, k) “fê ijaeanX.myrHT/t.emp 
do 396 n=l,numfea

feacov (m, n, k) =feacov .(mr n, k) / (temp*temp) 
continue 

continue 
continue

BEGIN CLASS LOOP 2
do 400 k=l,numcls 
do 400 I=Ifnumcls

if(I.eg.k) goto 400 
; do 410 m=l,numfea

mxdiff(m)=feamean(mf k)-feamean(m,I) 
continue

do 420 m=lfnumfea 
do 420 n=lfnumfea
matave(m, n) = (feacov(mf nf k)+feacov(m, nfI))/2.0 
feacovk(mf n)=feacov(mf nf k) 
feacovl(mfn)=feacov(mf nfI) 
continue

call lftsf(numfeaf feacovk,maxf©a, fac/maxfeafipvt) 
call lfdsf(numfea,fac,maxfea,ipvt,deti,det2) 
detk=detl*10.0**det2
call lftsf(numfeaffeacovlf maxfeaf facf maxfeafipvt) 
call lfdsf(numfea,facfmaxfeafipvtfdetlfdet2) 
detl=detl*10.0^*det2 v
call lftsf(numfea,matave^maxfeaf facf maxfeafipvt) 
call lfdsf(numfea,fac,maxfea,ipvt,detl,det2) 
detave=detl*10.0**det2
call linrg(numfea,matave,maxfea,matinv,maxfea) 
do 430 m=l,numfea 
tmpvec(m)=0.0 

. do 44 0 n=l,numfea
tmpvec (m) =tmpvec (m) +matinv (m, n) *irpcdiif f (n) 
continue ’

continue 
mu=0.0
do 450 m=l,numfea V.
mu=mu+mxdif f (m) * tmpvec Cm)

: continue
mu=(mu/8.0)+0.5*alog(detave/(sgrt(detk)*sqrt(detl)))
profccor(k,I)=1.0-0.5*erfg(sqrt(mu))
continue

END CLASS LOOP 2
Q* * ★  ★  * * ic * * * * * * * * * * * * * * * * * * * * * * * * * * * *  is * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * ** **

C
C

COMPUTE OVERALL PROBABILITY CORRECT
c*********** * * ***************************************** **** * * * * * * * * * * * * *
c
C
C

C
Output results
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pcsum=0.0
do 500 k=l,numcls
do 500 l=?i, numcls

if(l.le.k) goto 500
probcor(k, I)=probcor(k, I)*100.0
print*,"The Pc of class ",k," and class ",I," was 

+ probcor(k,l)
pcsum=pcsum+probcor(k, I)

500 continue
pcsum=100.0-(100.0*((numcls*(numcls-1))/2)-pcsum)
print*,llThe overall Pc was ",pcsum
stop
end
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