Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
8-1-1989

Modeling, Simulation, and Analysis of Optical

Remote Sensing Systems

John P. Kerekes
Purdue University

David A. Landgrebe
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Kerekes, John P. and Landgrebe, David A., "Modeling, Simulation, and Analysis of Optical Remote Sensing Systems" (1989).
Department of Electrical and Computer Engineering Technical Reports. Paper 674.
https://docs.lib.purdue.edu/ecetr/674

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages

Modeling, Simulation, and
Analysis of Optical Remote
' Sensing Systems

J. P. Kerekes
D. A. Landgrebe

TR-EE 89-49
August, 1989

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907



MODELING, SIMULATION, AND ANALYSIS OF
OPTICAL REMOTE SENSING SYSTEMS

August 1989

John P. Kerekes
David A. Landgrebe

School of Electrical Engineering
Purdue University
- West Lafayette, Indiana 47907



.

TABLE OF CONTENTS

v Page
LIST OF TABLES ...ttt srassnscnses S——
LIST OF FIGURES...............‘.................; ................ et AT
LIST OF NOTATIONS ....................................................... SR
* ABSTRACT ..o S e s XV
CHAPTER 1- INTRODUCTION .................................................. 1
| 1. 1 Background and Objectlve of the Investigation.................. 1
1.2 'Remote Sensing System Description..........oocrveneneessesescnenesenn 2
1.3 REIALEA WOIK c..eceeveeirereeieecceiecetceecassisseessesssessessassessesssessasssaessneans eneeis 8
1.4 Report Organization ........ceeeneeecmeesseeieninsesnsisessseissenssesssnisinssinecnines 10
'CHAPTER 2 - REMOTE SENSING SYSTEM MODELING AND R
' . SIMULATION.....ccovereeretrrssercsnenentssesasesesissssessasssessssssssses weereeeseerenneense 1 1
2.1 Overview of System Model............... S
2.2 SCENEG MOULIS ....ccereeerereeeeriraeeeserssseresseeserssinssesssessessssensesenasssessessensessen 13
2.2.1 Surface Reflectance Modeling........cccovevnvrncncivncncnnnincnerenne. 14
2.2.2 Solar and Atmospheric Modeling.........ccuiicniienineens .25
2.3 Sensor Modeling .....ccvnemeneereneneenenennescenssseeseenenssnssenens PSUORRRRIY ¥ 4
2.3.1 Sampling Effects.....ccocvevevrrinrecrecccererree e wreereesnennenae 48
2.3.2 Electrical Noise MOdeling ........cccoeeeeeieerccrrenrennncsersessesnsasseseessiens .52
2.3.3 HIRIS Modei............ eeaeereseeresesisssanseresasratsesensaaressrasarresonesesesrsanannent 54
2.3.4 Radiometric Performance Measures........'............‘ ........... reivassnsier 61
2.4 PrOCESSING .ccounerienineeiiriinseseisesunsesensneesesesnsssssenssnsnsesssssisesessessessssasansssaases 63
2.4.1 Radiometric Processing.........ccoeceenuennenecn. et SRR 1)
2.4.2 Geometric Processing........c.ceeeeeerserennens ceravsrersersesansnseirsananses 88
2.4.3 Data REAUCHON. ......c.oeeeereerrurerecssnssssesssssessssssssesassassans veveieseensanans 66
2.4.4 Class Separability Measures...........ccovernnrennccnsensnnnencsierenss 67
2.4.5 Classification Algorithms.........coceeeevvnecnnicnnninionnnnnnnne cereeneninss: 08

2.5 Summary and DiSCUSSION.......oevvmrvrssressersesssseresnensess irreseassriensmapsrsastin 69



CHAPTER 3 ANALYTICAL SYSTEM MODEL ...... et neasesa s aa e se e na s enenes 71
~ . 3.1 Model Overvrew ...... SR S S Gepeeasinisiensrenenas 71
_ 3 2 ' Analytical Expressions........ siesieiisisisteisanieitesbasainnasientsensanseins R 4 I
- -3.2.1 Reflectance StatiStiCs.........cviiueemmisimrmmesssnssensesessssansssasssionionns 73
3.2.2 Atmospheric Effects.........c........ sessesssnsasasheniasasasan IR £ -
. 3.2.3 Spatial Effects.............. rerenes S VN TNy 4 -
-3.2.4 Spectral Effects ......cccouiuvciveercesneirersenenenns: erereasacensenanes RO & 4
-3.2.5 Noise Model...........ccccceue... rrereeernenteesnesreaes cverereeeesiateseenn Siaieadndngns 78
8.2.6 Feature Selection .........cueeevevenee. saarasacinansanss eeieanasseerinestenaraans 79
o 8.2.7 ENTOr ESHMELON. ......coveniurerersereesasssesssecsssinssessivssessesesesssessessenssesan 79
3.3 Companson Between the Analytical and Slmulatlon Models .......... 80
CHAPTER 4 APPLICATION TO IMAGING SPECTROMETER SYSTEM
o ANALYSIS ............................................................................................... 83
A 4.f1 Introductlon ..... wiiesetierenietenian s eren b e se s ssas b se s esinnasesnrsebnaberatesinasusasnenrisens 83
... 4.2 ' Radiometric Performance................. eereent et e sa e s et e st et e anasaenneene 84
4.3 Comparison of Simulation and Analytic Model Performance .......... 99
4.4 System Parameter STUAIES ... voeeeeeessrerioeisseseseesessssssssesesiossinss -.107
- -4.5 Interrelated Parameter Effects...,,...,......,........................; ....... o -k
4.6 Feature Selection Experiments............... i et 134
4. 7 Summary and Conclusrons ........ TR S —

CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FUTHER WORK 143

LisT OF REFERENCES b1 47
APPENDICES : Cee e =
" :Appendlx A | Expected Vanance of a Two DlmensronaI S ‘ v
~ Autoregressive ProCeSS. ...ccvlumeiivnnnesenransnnninns SERACE XN 155
. Appendlx B Interpolation Algorithm........c.ccccvverereemvivviiveniccrieeiesiinenrinnn 160
- Appendix C LOWTRAN 7 Input File.....c..c.c.ctievmnsmivnnrasernssreansessensenens 162
Appendix D - Sensor Descriptions.................... ceeeeneas SRR | - Y 4
. Appendix E

Analytlcal System Model Program Llstmg hansiinssinasasinenees 173‘}



Table . -

1.1
2.1
2.2
2.3
2.4
2.5
26
27

- 2.8

2.9
2.10
2.11
2.12
2.13

2.14
2.5
2.16
2.17

LIST OF TABLES

Page
SIMUIRHON SIUIES .ovvvveveereesesssesssssssesssssesesssssssssssssssssssessssssessessssssesssessesseseeieis 9
Typicél Spatial Model Parameters .........eeeeerieecensesissemsssssiessssenens 20
‘Spatial Correlation Coefficientsvfor Hand County, South Dakota............ 21
Sequence in Generating a Simulated Surface Reflectance Array........... 24
Example LOWTRAN 7 Parameters..........cvviviimcnmicncnnssinenniinnesesseseessnenns 3
Diffuse Iradiance Constant Values............civeeeiineenenene S 34
Default Values of Atmospheric Parameters...........cocoivreesesinnicniccnnnen. -.35
Data Set for Hand County, South Dakota, July 26, 1 978t 42
VDévscription Of TESE FIRIAS 11 veeveveevevereesesessssosseseseeeenenesessessessssssnsssssenes — 43
Conversion Constants Between Radiance and Digital Counts........ e 43
Scene Conditions at Time of Observations ..., crassaoresyis 44
LOWTRAN Settings for Experiment...........cco..evvvie. ereereensrnerans S 44
Atmospheric Components for the Hand County Test Site...........ccccuunee. 45
Comparison of Actual and Simulated Radiances (in mW/(cm2-sr)) for
Test Site in Hand County, SD ..................... deererersneseenenrse st esesenaesesssnsssnssesees 4D
Sources and Types of Radiometric Errors ............cooweruen.. | ceestosasasssansiaannsanns 53
HIRIS FUNCHONA! PAramMELErS .......vuveeeeessscrsessssesensssssssssiossesssessessensanssnsens 54
Parameters of Detector Arrays in Terms of Electrons (€7).....ccccevvvecrenenn. 59

Example Processing FUNCONS.........cocoininciccnccitnnvscnscsneenes 64



Table BT ,' Page
:'2 18 Summary of System Parameters Implemented in Slmulatron ..... 70
31 System Factors Not Included In Analytlcal Model....... - : ‘ .
4.1 vv Kansas Winter Wheat Data St S SE— s 84 |
‘ 42 Radrometnc Study Baselrne System Confrguratron ........ 85 ,
43 - 'Radrometrlc Performance Parameters Studred and Thelr Varlatlons..'.-.f...8'8 ‘
4.4, : System Confrguratlon for Comparison Test ........ .100
4.5 Optrmal Feature Set for Kansas Winter Wheat Data Set...' ...... SRR 102
4.,6‘ ‘ Classrflcatlon Accuracy of Base System Confrguratron .......... ...... 102
4.7 - Increments Used in Ground Size Expenment.......—...............".1.' ..... -...._...._..'....‘..’104
48 Classrfrcatlon Accuracres of Gaussran vs. Measured PSF........’.,....,.: ....... 106
) 49 | System Configuration for Parameter Studres......;-—;........Q ................ o108
. 4.10 - Parameters and Their Varlatron in Sectron 4.4.... ..... ......... 108
411 Summary Results for System Parameter Expenments....; .......... ..... 1 21
E 412 vParameter Interrelationship StUGIES .....c.uwwmervmcrvsciin, 123
413 Wavelength Bands Comblned for the Various Feature Sets..... ..... 134
| 4,.‘1,:4' .‘ Classes and Fields Used to Compute Statrstlcs for the Sprrng Wheat
: Test Scene. ......cecriinaiis SR O S phuseaseesaenirensennsen 138
, Append_ix L
~ Table | | L ol
: D1 ' MMS General Parameters...'tJ..-.‘.?.;._.'.V..r.}..;.,.,..’i;..7_.._...'...'...-.v.”....‘....' ...... ..... ..... 167
D2 MMS Band and Noise Parameters........'..'..’. ..... S 167 |
D3 _ MSS General Parameters...}...'....;’.4 ....... ....... — ..... ...... 169
D4 ,} MSS Band and Noise Parameters........;......'.; ...... ...... eiesiin 169
D.5'> TM Ge-neral Parameters........c..oc.couvene... R A ....... N 17’71.

D.6 TMBand and NOiSe PaBMELErS..........c.oowrrrssoios AT



Figure

1.1
1.2

1.3 )

2.1

22

2.3
2.4
25
2.6
2.7
2.8

2.9
- 2.10

2.11

2.12
2.13
2.14

Vi

LIST OF FIGURES

Remote Sensing System Pictorial Description............'......»...,, ........... areieenain i 3
_Noise SOUFCES....vvvves eeeereernean - ............... i B
_Slgnal SOUICES ..cvvorerrrersernns S S _ 7
" Remote Sensing System Model......,‘. .......... S verreresreneaies ..... Sy 12 |

Scene Mode! Block Diagram........urumsres R ceeraeeaeens oo 13
:Scene Geometry ............ SRR 1
Correlatuon Coefficients of Winter Wheat Field ............... S— ;..‘...:..22
Atmosphenc Effects on Spectral Radlance Received by Sensor..i.i.;; ..... 27
Optical Thickness T VS. VISIDIlIY ......cccoovuveresssrresmssiseseesssssssesssssenees N 30
Optical Thickness vs. Wavelength.........ccccninciniminnininne. .30
Ratio of Direct Irradiance to Total Irradiance vs. Total Optucal Path

- 1o | 4 o DU reeeneateaees revernene 33
Effect of Meteorological Range on Direct Solar Spectral Irradiance’ ....... 36
Effect of Solar Zenith Angle on Direct Solar Spectral Irradiance .......... ;36'
Efféct of Meteorological Range on Total Solar Spectral Irradiance 37
Effect of Solar Zenith Angle on Total Solar Spectfal Irradiance............ 37
Effect of Meteorologucal Range on Diffuse Solar Spectral Irradiance...... 38

' Effect of Solar Zenith Angle on Diffuse Solar Spectral Irradiance............38



‘Figure

2.15
2.16
2.17

218
219
220

2.21
- 2.22

2.23
2.04

2.25

2.26
228

81
4.1

4.2 !
43
44
45

4.6

4.7

48 N

il

Effect of'Meteorologfcal Range on Sp'eCt'ral‘Transmittance....;..»’.,...‘.7 ........ .39
'Effect of Sensor Zenith Angle on Spectral Transmittance .................. 39
Effect of Meteorological Range‘ on Path Spectral Radiance................... 40
'Effect of Solar Zenlth Angle on Path Spectral Radlance......'.V...;....t.;.a.-;;t..-...40
Effect of Sensor Zenlth Angle on Path Spectral Radlance....,.‘..v....-.’-...' ........ 41
Effect of Surface AIbedo on Path Spectral Radlance ............ 41
Plot of Landsat Vs. Slmulated Radlances .......... PR ..... TR
Sensor System Components....... .......... eeinienesasesenan ' ...... .47
:Nonse Model of Sensor.....‘..‘...;.....,......;..;.;'.‘......,......, ..... S— 52
HIRIS MOGel BIOCK DIBGIAM ...t 55
‘Spectral Transmittance of OpticS ... 56
'Normahzed Spatial Response ke ....... 57
Spectral Quantum Efficiency .............. S 58
Shot Noise vs. Slgnal N - )
,v Analytlcal System Model Block Diagram viinrsresasanians ..... 7...’..';..;i..'..,.;....-‘.’7,1,
Mean and Vanatlon of the Surface Reflectance of the Kansas Winter -
Wheat Data Set of Table 4. 1 ........................ .....85
Mean and Vanatlon of Image Vector as Recelved by HIRIS.....Q..._..’.‘ ......... 86 ‘
Voltage and Power SNR for Typlcal Reflectance ..... rerereesenns 87
NEAp for Typlcal Reflectance ............................................ iereeceep s ion e 8 7
SNR for Varying Meteorologlcal Ranges ...................................................... 89
NEAp for Varylng Meteorologlcal Ranges ....... - v.v. ...... S — 89
SNRfor Varymg Solar Angles.....t ................... .......... 90



Fugure '

viii

| Page

4.9 SNR for Varying View Ang|es ........ .91
4.10 ‘N‘EAp OF VaIYing VIEW ANGIES..ocorovvvrsvsnserissrssssinssssssssssessssesnes 91
4.1 SNR for Various Surface Albedoes............. S e snadiashentdecmmendenmss 92
412 NEAp fOr Varous AIDEAOES .........euureresesirersersese S 92
413 SNR for Varying Factors of Shot Noise............... . 93
214 :NiEAfp fOF Varying FACOrs Of SOt NOISE ....oeerrresererssssersesseseesssesiessssseen 93
415 SNR for Varying Factors of Read'Noisev.................;....,.......;..;..........7....f ...... 94
416 NEAp for Varyihg Factors of Read NOIS€ ......ccuurrrrseesrrssen 94
417 SNR for Varying Radiometric Resolution .......... R S 95
" 418 NEAp for Various Radlometrlc Resolutlons s saenes 95
4.19 SNR for Varlous IMC Gain Settings 96
420 NEAp for Various IMC Gain Settmgs ........ ......... 96
421 S‘NR for Various Levels of Relative Calibration Error ........... 97
422 NEAp foy Various Levels of ’R'elati}ve Calibration Error.........ceccovuunee Y
| 423 Simulated Image of Corhparison Test Scene at A=1 .70[ um101
4.24 Classification Accu;facy vs. Scene Spatial“Corre‘lation Co’éfﬁ_cie-nt...;...JOS
4.2-5 Classification Accuracy vs. Ground Size of Scene Cells......cccoeuuuueie. ...104
1 4.26 Classification Accuracy vs. Sensor View Angle..........c.cwmmerrsrsssrssinnie. 105
4.27 Classification Accuracy vs. Number of Training Samples............ 107
4&8E%md&MMCmmmmmprmmn%m@@ ................ eseesienienns 109
| 4','2.9, Effect of Spatial Correlation (p=py=p,) on Classification Accuracy..,.v..«.,:.'1 09
430 ‘_.Effect of Meteorological Range on SNR ................. 110



| ‘4.-3,1 Effect of Meteorologlcal Range on Classrflcatron Accuracy.........;.;;f“‘.".....;..1 10
432 Effect of Solar Zenuth Angle on SNR1 1"m
433 Effect of Solar Zenith Angle on Classrfrcatron Accuracy11 1 1‘ .
4.34 «‘Effect of Sensor Zenith Angle on SNR112
435 Effect of Sensor Zenlth Angle on CIassrflcatron Accuracy 1 12
, 4.36 Effect of Number of Scene Cells Within Sensor IFOV on SNR.............'.,1 f,3
: _4,3_7" | Effect of Number of Scene Cells Wrthln Sensor lFOV on CIassrflcatlon |
. Accuracy...................., .......................................... eemerens sueasaseiniarsaes eeresnensiaeeess 113
4.-33,‘ Effect of Shot Noise (Nomlnal =1.0)on SNR....'.‘.:...,...,..;;.ﬁ.,r..’.‘...'-.'..‘.,3.,..,..‘.’.;.., ..... 114
o 439 ; Effect of Shot Noise (Nomlnal =1.0) on CIassrflcatlon Accuracy...‘.‘.l..’..'..f,1'4'
4.;40’ ‘v Effect of Read Noise (Nominal = 1.0) on SNR....;;' ....... ‘ 1 15 |
: 4 ‘4‘15 ’1 Effect of Read Noise (Nomlnal =1 0) on CIassrflcatlon Accuracy.......".‘..lff 5
' ‘4 42 Effect of IMC Gain State on SNR i R _..._..;.~...;.,.,.;;.;,:;;; ........ 1: -1 6
| 4. 43,’:“ Effect of IMC Galn State on Classmcatlon Accuracy.....‘....A...v...y......;.":.".‘; ...... 1 1 6
4 4. 44:v Effect of Radlometnc Flesolutlon on SNR oo 1 17
4,45 ‘Effect of Radlometrlc Resolutlon on Classrflcatlon Accuracy....;.......;_r...‘..1_ 17
- 446 ., Effect of Relatlve Calibration Error on SNR ..... ‘ 1 18
447 Effect of Relatlve Callbratlon Error on Classrfrcatlon Accuracy ........... 118 o
- 448 Effect of Absolute Fladlometnc Error on SNR ..... 119
l 449 Effect of Absolute Fladlometnc Error on Classmcatlon Accuracy ............. 1 19
| 4.50 | Effect of Number of Processrng Features on SNR ...... 120 e

4.51 R Effect of Number of Processmg Features on Classuflcatlon Accuracy 120 |
o - 4.52. | Accuracy vs Voltage SNR for System Parameter Experlments Firsuienniin 1"22’

" 453 ‘Accuracy VS. Power SNR for System Parameter Expenments...'...., ....... 122 ) ,



v Fignre o - : | | Page
» 4 54 Effect of Meteorologlcal Range and View Angle for eso,a,_o 1 24
455 Effect of Meteorological Range and View Angle for 8¢, =30° ............ '1. 24
456 ,'.E,ff_ect of Meteorological Range and View Angle for 844,=60° 125 _
457 Effect of IFOV Size (in Scene Cells) and Spatlal Correlation |
: COBSHICIBNT ...ttt st st 125
458 Effect of Meteorological Range and Shot Noise........ 126
459 Effect of Meteorological Range and Read Noise e et e 126
460 Effect of Meteorological Range and IMC................. e 27
4.61 Effect of Meteorological Range on Radiometric Resolutron...; ..... ..... 127 '
462 Effect of Meteorological Range and Various Noise Sources AIone ....... 128
: 4:.63 Effect of Solar Angle and Shot Nonse .............. 1_;28 '
‘4.64 }Effect of View Angle and Shot Noise eereeeesesmmemnes et peciasenseasions ....... ~.1 29
465 Effect Solar Angle and IMC Gain St ........c.cuweeveveseesessssssserssssssssesses 129_
| 4.66 Effect of View Angle and IMC Gain State.................._‘. ................. ........... 130
4.67 Effect of Meteorological Range and Number of Features...........cc.c..ee..... 130
4.68 Effect of Solar Angle and Number of FOAMUIES...cvvenveeomsecersmiesenemnrseeresrnens 131

4.69 Effect of Atmosphere With/Without Noise for Path Radiance Model
. With No Surface Reflectance Dependence..........cumurreesens S < X

4.70 Voltage and Power SNR for the Various Feature Sets of Table 4.13....135

4.71 Classification Accuracy for the Vanous Feature Sets of Table 4. 13...,...13;5
4.72 Feature Set Performance vS. Meteorologrcal Range.......... rens 136
-4.73 Feature Set Performance vs. Solar Angle ............ et stesssiasennenien e L 2
4.74 Feature Set Performance vs. View Angle...........cccecervvuecnee ceseieeeens reseesnises 137

4.75 SNR for Various Feature Sets and SW Variety Scene................ I -.1_'3__9 _



xioo

= '}_:.Flgure S e : R ':,P-v»a‘g\e -
"4 76 Classufucatlon Accuracy for Vanous Feature Sets and SW Vanety 3 |
Scene ...... suminsrbiesasasnasadasamasesien sesiereiseinsensstones R N O RN < L
Appendlx
Figure .~ s “ LT
:A.1‘c  Quarter-Plane Image AR Model...;.;.‘...;;...; ...... et 7,..;_.'.‘...';.;;'...-.‘;..;..156 |
I D1 MMS Spectral Response for Bands 1 through 5168
| Dz . 'MMS Spectral Response for Bands 6 through 10........ , ...... 168_ '
'D‘.3 ”MSSSpectraI Response..;;..é.,.f.‘..'.“..,...,..-.;»...'..v...‘..‘,_k_.:,.;.,...}.'. ....... 170
| ‘D4 MSS Spatnal Response ..... 1 70
| DS 'b TM Spectral Response ..... '.;..'..'...;..f..;v..‘ ....... 172

; De _TM Spatlal Response...".':..:.’..;’ ......... = e o ..... 172



Xii

LIST OF NOTATIONS

‘Symbols used for the various variables and parameters are defmed '
vbelow along with the units where appropriate. '

d(i.j.h)
Eq

,E l,_Ditfu_se :

' E’).,’Direct‘ _

Symbol

Explanation (units)

Sum of hy(+) coefficients

Sum of hy(°) coefficients - |

Spatial model parameters for wavelengths mand n »
Sensor spectral response matrix used in analytical model

Bhattacharyya distance between classes k and |

- Conversion factor relating the incident spectral radlance to the

signal level in the sensor detectors

Product of the spectral radiance from a completely reflecting
surface and the conversion to the signal level in the detectors

AR model spatial parameters
Fractal dimension

Image level at pixel (i,j) for sensor band |

~ Absolute radiometric error level

Diffuse solar spectral irradiance mcldent on Earth's surface 2
(mW/cm?2-pm) ' :

 Direct solar spectral irradiance incident on Earth s surface
~ (mW/cm 2.um)



CBxEo

- - E]L.Total R

)

Ll%gu,r o

| Lk,slcéne‘(')‘ . v
 Lisemt)

- LX;F‘ath R

SO T IR
L

R Exoatmosphenc solar spectral lrradlance mcndent on Earth'
o -surface (mW/cm -pm) L LR

Total (dlrect plus dlffuse) solar spectral |rrad|ance mcndent on‘ Lo
 Earth's surface (mW/cm um) S

v' ‘Band selectlon matnx for spectral compressron o
P Full scale electron Ievel in HIRIS model :
e . :'i ! {i,)Ground size of scene cell across scene (meters)
Ground snze of scene cell down scene (meters) |
o Value of d|scnm|nant functlon for class k at plxel (I,j)
‘_':Ground size of PSF step across scene (meters)
| Ground slze of PSF step down scene (meters)
B ..”::.-}Altltude of sensor (meters) PR |
{ : 2-dnmensronal pomt spread functlon of sensor
Across tracklme spread functron B |
Down scene Ime spread functlon
o Multlclass dlstance measure B
: i_’fvtNumber of land cover classes |n scene’
B ‘}'Number of spectral bands in sensor '»

= Full scale radlance for sensor band l (mW/cm -sr) o

- Scene spectral radlance (mW/cm -sr)

'Spectral radrance mcrdent on sensor from scene locatlon ( X,y) :" |
*,_(mW/cm -um-sr) : S

‘Path spectral radlance 1nc1dent on sensor (mW/cm -um sr)

e 7'—' Path spectral radlance-wnh _albedo -_'-' 1 (mW/cm ;p‘mfsr) SRR



A,Path
1-0
i A,Path

N()

) ngl)

o

- Tth =

Xiv

Path spectral radiance with albedo =0 ,(mW/cmz-um,-sr)v

Path spectral radlance drfference for albedoes 0 and 1

_(mW/cm ~Lm-sr)

Dimension of high resolution spectral reflectance vectors _'
Spectral bandwidth normalizing factor for sensor band |

Zero mean unit variance Gaussian random numbers

- Number of coefficients in across scene spatral response .

Number of coeffrcrents in down scene spatlal response

Estimate of cl-assification accuracy

Apriori probability of class k -

- Number of radiometric bits of sensor
Surface scalar reflectance array

‘Radius of spatial response in analytical model o

Recerved signal in detectors

- Received signal plus dark current in detectors
' Flecelved signal plus noise and calrbratron error in detectors

L x L between class scatter matrix

L x L covariance matrix of i |mage for class k-

L x L within class scatter matrix

: 'Across track ground samplmg interval (meters)

~ Down scene ground sampling interval (meters)

Spectral response of sensor

Spectral transmissivity of atmosphere



AW

o

S ¢s‘olar__ N
"¢v’iew. S

- v "Aq'uantﬁ _
oAy

XV

: Atmosphenc surface rneteorologrcal range (Krlometers)
vf‘Spatlal welghtlng functlon in sensor model |
e ,i -Adjacent surface reflectance - |
Surface reﬁﬂectanceyectbrfor class k '
vvl',‘Mean:image'or feature vector for class k -
l’vZero mean unit varlance Gaussran random numbers o
‘ Volume extrnctlon coeffrcrent (Km 1) | |
. \'Spectral resolutlon of scene (p.m)
: Angular drstance between hx( ) coefflcrents (radlans)
Angular drstance between hy( ) coeffrcnents (radrans)

‘Across track samplrng lnterval (radlans)

Down scene sampllng mterval (radlans)

Mx M ergenvector matrlx of spectral reflectance covarlance

' matnx for class k

N _Azrmuthal angle of solar |llum|natron (degrees)

Azrmuthal angle of vrew (degrees)

. M x M dragonal ergenvalue matrix of spectral reflectance

covanance matnx for. class k

L x L diagonal matrix of relatiVe'calibration error variances

- L x L diagonal matrix of quantization noise variances

L x L diagonal matrix of read noise variances



. esolar

Bview

XVi

L x L diagonal matrix of shot noise variances

L x L diagonal matrix of thermal noise variances

Wavelength (um)

- Mx 1 mean vector of spectral reflectance for.class k

M x 1 vector of Spectral reflectance of surface at location (x,y)

‘Spatial autocorrelation coefficients

Covariance matrix of average spectral reflectance

Covariance matrix of spectral reflectance or image features for
class k - '

Calibration error standard deviation for sensor band |
Shot noise standard deviation for sensor band |
Thermal noise standard deviation for sensor band |

Standard deviation of driving process for'AR‘mo‘deI.

- Spectral optical thickness of atmosphere

Spectral optical path length
Zenith angl’é of solar illumination (degrees) |
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xvii

ABSTRACT

Kerekes, John Paul. Ph.D., Purdue University, August 1989. Modelnng,
Simulation, and Analysis of Optncal Remote Sensing Systems Major Professor-
David A. Landgrebe. .

, Remote Sensing of the Earth's resources from space-based sensors has
evolved in the past twenty years from a scientific experiment to a commonly |
used technological tool. The scientific applications and engineering aspects of
remote sensing systems have been studied extensively. However, most. of
these studies have been aimed at understanding individual aspects of the
remote sensing process while relatively few have studied their interrelations.

, , A ‘motivation for studying these interrelationships has arisen with the
advent of highly sophisticated configurable sensors as part of the Earth
Observin System (EOS) proposed by NASA for the 1990's. These instruments -
represent a tremendous advance in sensor technology with data gathered in
~ nearly 200 spectral bands, and with the ability for scientists to specify many
observational parameters. It will be increasingly necessary for users of remote
sensing systems to understand the tradeoffs and interrelationships of system
parameters. '

In this report, two approaches to investigating remote sensing Systems
are developed. In one approach, detailed models of the scene, the sensor, and
‘the processing aspects of the system are implemented in a discrete simulation.
This approach is useful in creating simulated images with desired
characteristics for use in sensor or processing algorithm development.
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,' : A less complete but computatlonally srmpler method based on a
, parametrrc model of the system is also developed. In this analytrcal model the
| : varrous lnformatlonal classes are parameterized by their spectral mean vector
and covanance matrix. These class statlstrcs are modified by models for the

atmosphere the sensor, and processing algonthms and an estimate made of

~the resultmg classrfrcatlon accuracy among the rnformatronal,classes. e

: Applrcatron of these models is made to the study of the proposed Hrgh 4

" Resolution Imaglng Spectrometer (HIRIS). The rnterrelatronshrps among
observatronal condrtrons ‘sensor effects, and processrng chorces are,-'
5 mvestrgated wrth several rnterestrng results ' o

Reduced classrfrcatron accuracy in hazy atmospheres is seen to be due
' not only to sensor norse but also to the rncreased path radlance scattered from

the surface R

The effect of the atmosphere is also seen in its relatlonshrp to view angle

£ .In cIear atmospheres rncreasrng the zenith view angle is seen to result in an
. mcrease in classification accuracy due to the reduced scene variation as the

: }ground size of |mage plxels is increased. However in hazy atmospheres the
_reduced transmlttance and lncreased path radiance counter th|s effect and

o 'result rn decreased accuracy wrth mcreasrng view angle

o The relatlonshrp between the Srgnal to Norse Ratlo (SNR) ‘and
‘ classrfrcatron accuracy is 'seen to depend in-a complex manner on spatlal
,parameters and feature selection. Higher SNR values are seen to not always :

. resultin hlgher accuracies, and even in cases of low SNR feature sets chosen-
i ~approprrately can lead to hrgh accuracres ‘ e '
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CHAPTER 1

INTRODUCTION

1.1 Background and Objective of the Investigation S
' - Remote sensing is defined (Swain and Davis, 1978) as "...the scnence of
denvmg information about an object from measurements made at a distance
from the object, i.e., without actually coming in contact with it." In the context of
observing the Earth, the sensing instruments have evolved ‘f,rom'~c,ameras ‘
tethered to balloons, aerial multispectral scanners, to satellite-borne imaging
arrays.. Applications have been many, and remote sensing of the Earth, for land
res,our,cev'analysis has developed into a common and useful technological  tool.

" Countless projects have used remotely sensed data to assess crop
~ production (MacDonald and Hall, 1978), crop disease (MacDonald, et al.,
1972), "u_‘rban growth (Jensen, 1981), and wetland acreage (Carter and -
VSch.ubert, 1974) as a few examples. The technology of remote sensing has
been studied extensively and is well documented in texts by Swain and Davis
(1978), Colwell (1983), Richards (1986), and Asrar (1989).

While the various aspects of the remote sensing process have been well
“documented, the interrelationships among these process components have
been studied comparatively little, especially in regard to sources of error or
noise in the process. Landgrebe and Malaret (1986) looked at the effect of
sensor noise on classification error in one of the few studies of this type, but
there arg many more parameters and effects that mterrelate ’

A motivation for studying these interrelationships has arisen with the
forthcoming deployment of configurable sensors. As part of the Earth Observmg
System (EOS) program of the 1990's, several mstruments will aIIow the
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' capabil}ity for a scientist to specify the observational conditions under which
data are to be collected. It will become increasingly important to develop an -
- understanding of how various parameters affect the collection of data and the
: resultlng abrhty to extract the desired mformatron ' :

The objectlves of this report are to further this understandlng of the
remote sensmg process through the followrng efforts: ‘ o
.+ . Document and model the. remote sensing process from an overall
L : L systems perspective. A

3 Develop tools based on these models to allow the study of the '
’: 1; interrelationships of system parameters. :
- .{f»g;-}'Investlgate these interrelationships through the apphcatlon of these

, ftools toa varlety of system confrguratrons

| ln thls initial chapter, the concept of a remote sensing system is defrned
and described. Previous methods of studylng the remote sensing.process as a
system are reviewed and commented upon. A descrlptlon of the report"
orgamzatlo}nvthen concludes the chapter.

' ‘1 2 Remote Sensrng System Descriptron . : N

o In this research, the term remote sensing will be used in the context of
satelllte- or aircraft-based |mag|ng sensors that produce a dlgltal lmage of the
surface of the Earth below for land cover or Earth resource analysis. The
- imaging sensor will cover only the reflective portion of the optical spectrum with
wavelengths approximately from 0.4 um to 2.4 um. This context includes many
of the current and near future remote sensing instruments such as LandSat |
MSS and TM, SPOT, and HIRIS. The land use appllcatlon of the imagery
represents a significant application of the technology.

A pictorial description of a remote sensing system is glven in Figure 1.1.

~ This figure gives an overalll view of the remote sensing process starting with the

illumination provrded by the sun. This mcommg radiance passes through the

‘atmosphare before being reflected from the Earth's surface in a manner
- indicative of the surface material. The reflected light then passes again through
~ the atmosphere before entering the input aperture of the sensing instrument. .
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At the 'sensor, ‘the incoming optical ‘energy ‘is ‘sampled spatially &nd
spectrally in‘the ;process 'of being converted ‘to ‘an ‘electrical signal. This sighal
is then amplified and ‘quantized into discrete ‘levels ‘producing a ‘muliispectral
scene characterization that is then transmitted 1o the processing ff'aciility'. -

- At the processing stage, ‘geometric registration and ‘calibration - may be
performed -on the image ‘in ‘order to be able to compare the data 1o other data
sets. ‘Feature extraction may also be petformed to reduce the dimensionalit
‘the data ‘and to increase the separability of the various informational classes in
the image. <Lastly, the image undergoes a ‘classification ‘and interpretation
stage, - most often done with a computer under the supervrsron ‘of a trained
: analyst using -ancillary information about the scene. '

The entlre remote sensrng process can be viewéd as a system whose
mputs include a vast variety of sources and forms. Everything from the positior
of the sun in the sky, the quality of the atmosphere the spectral and spatllal
responses of the sensor, to the training fields selected by the analyst will
influence the state of the system. The output of such a system is |
spatial map assigning each discrete location in the scene to an appropriate
land information class. Other outputs may be the amount of area covered by
each class in the scene or the classification accuracy between the resultmg
classrfred map and the known ground truth of the scene.

In using this definition of a remote sensing system, it must be realizéd
that it is a representation of the real world, and as such cannot be compléete in
characterizing all the inputs, states, or outputs. In this research, the problem is
~ constrained by defining the system as well as one is able to do. It is an
accepted fact that the system description will be mcomplete and lacking:
however, the model developed will represent the best that can be done from the
current knowledge base and can be used as a starting point to increase system
understanding.

To more ful'ly describe a remote sensing system, it is helpful to begin to
break: the system down with natural boundaries between the various
~component systems. - In Figure 1.1 we can readily see the system as being
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‘compri‘sed of three major s’ubsystems“ the scene the sensor and the
_processing subsystems This division helps in providing structure to the system
_and facrlltates rdentlfrcatron of varrous components of the system '

' The scene consrsts of all spectral and spatlal sources and varratlons that
: contnbute to the spectral radiance present at the input to the sensor " The

-sensor includes: all spatlal spectral -and electrrcal effects of transformmg the

mcndent spectral radiance into a spatially and" spectrally sampled drscrete . |
' .|mage The processing subsystem conslsts of all possuble forms of processmg
- applled to the lmage to obtam the desrred mformatron '

W|th|n this scene, sensor, and processung structure it is possrble to further

- decompose these subsystems into major components and vanatlons Aswith
_aII systems ‘there are components that represent desured or srgnal -states or -
~variations, and there ‘are those that represent undesired, or noise, states orv

’ varlatlons Flgure 1.2 shows a taxonomy of components and effects that can
degrade the system. This structure is further descrlbed in Kerekes and

uLandgrebe (1987), and has grown out of the work reported by Anuta (1970) o ‘
) leewrse a comparable taxonomy may be developed for srgnal or desrred e

. variations and states that contribute to the’ output of the system Flgure 1 3 |s a -
srgnal taxonomy of such effects. [ LR

, * These taxonomies offer a framework in which remote sensmg system
| effects can be-‘grouped and located. The categories under the main
, fsubsystems dehneate sources of major contrlbutlons to the system state In

~ some cases, effects or sources are listed in both srgnal and norse structures

| These duaI llstlngs exemplrfy one of the major problems in understandmg]

' remote sensrng systems. Dependrng on what type of mformatlon |s deslred |

. ~sources or effects may indeed- represent both norse and. sxgnal effects S

‘ After the system has been broken down mto ldentlflable portlons one'

v‘ ~ can take these blocks and build them back up into an overall system model
Through the synergrsm possrble from this combmatlon of models and the|r

_ vapphcatlon the overall understanding of the entire’ process can be |mproved '
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1.3 Related Work - ,

- The systems. approach to the remote sensmg process has be K
, in‘terest for many years. 1n a ‘tutorial paper by Landgrebe (1971), the differences
‘between- lmage based (photogrammetry) and ‘numerically oriented fre “ote
.sens:ng systems were desctibed. The important factors to ¢on: ider from ai
mformatlon point of view were delineated and described. The work: descrrb‘ed :
there helped 1o shape the ideas that are lmplemented in this research

There have been many prewous optical system sumufatron studles'
reported in the literature, including those done ih the context of civiliz
sensing and those in a military context. Table 1.1 provides an ovetview of such ‘
studles mcludlng the reference and key charactenstfcs of each

| Those studies fall into one of three categories: L"“a‘hdsat T™ sensor
parameter studies, basic parameter studies, and military studies. The Landsat
TM sensor parameter studies were petformed in preparation and analy is of the
performance of Landsat-D Thematic Mapper. The basic parameter- studles are
ones that are most closely related to what the research in this report cOnsrders
They represent studies showing the tradeoffs of various system parameters
thelr effects on some output measure, usually ¢lassification error. A few military-
system studies are included to represent the unclassnfled I|terature |n optlcal
~ system simulation. ’ ' s ’

| The combination of several characteristics of the research presented in
this report distinguishes it from these previous studies. It presents a
sophisticated framework in which detailed models of the various ¢omponents of
the system may be implemented. Flexibility has beén built in to allow for
expansmn and growth. High spectral resolution has been used throughout the
: model in snmulatlng the next generation of imaging spectrometers Models from
' the soene, the sensor, and the processing poitions have been mtegrated to
create the ability to study cross system parameter interrélationship effects 6n the
Vclass_ification. and noise performance. All of these features together make it 4
~ unique contribution to remote sensing science. S

and
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1.4 Report Organization |

In this chapter, the objectives of the research were stated as being to
document, model, and investigate the effects of various remote sensing system
parameters on system performance. Also, the concept of a remote sensing
system was defined. Chapter two discusses models and algorithms useful in
simulating the remote sensing system process. Chapter three presents an
alternative system model based on a parametric description of the system state,
using analytical equations to describe the effect of the various system
components. Chapter four presents results of applying these models to various
system configurations based on an imaging spectrometer and studying the
effect of system parameters on noise and classification performance. Chapter
five concludes the report by discussing the results of these studies and possible |
future extensions of the work.
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CHAPTER 2

' REMOTE SENSING SYSTEM MODELING AND SIMULATION

2 1 Overview of System Model :

_In.the modeling of a complex process the goal is often to represent the
process faithfully while reducing the complexnty of the description. In the
development of a model, we observe the process, take data measurements
and formulate an abstraction from these observations and data. This model
then describes the process under varying conditions without having actually to
duplicate it. Thus, the model serves as a. documentation of our understanding
of. the process, as well as a tool useful in gaining insight into its operation. The
models presented in this chapter serve both of these purposes.

~The modeling of a system may be done at many levels of abstraction.
The_,-lewest level is the system itself. However this represents little knowledge of
the system and is often impractical to use in studying its operation. The next
level is with the use of detailed models of system components and simulation of
the system operation. This chapter discusses component models useful in such
a simulation. A still higher abstraction is a parametric and analytic description
- of the system. Chapter three presents a system model based on-this type of a
. description. :

The modeling of an optical remote sensing system is challenging
because of its complexity. However, through the use of the taxonomies
developgd in the previous chapter this can be reduced to a manageable task.
In chépter one the remote sevnsing process is described as a system and further
divided into three subsystems: the scene, the sensor, and the processing
subsystems. Figure 2.1 shows this division in the context of a system model that
is described in this chapter for the simulation of the remote sensing process. -
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. Modellng and Slmulatlon, o

The following sections detail the models used for th'e scene, the sensor,

~ and the processing subsystems ‘In each sectlon various approaches to

'modellng or descrlblng the processes involved are discussed. Section 2.2

. dlSGU$ses consuderatlons in modellng ‘the surface reflectance and the

o ,atmosphenc effects and presents the model used in this report for sumulatrng the

~'scene. Sectlon 2.3 describes the effects on the scene radiance mtroduced by

the sensor, in both the remote sensing process and the simulation. Sectlon 24
: dlscusses approaches to extractlng information from a multispectral image, as

- well as describing the. options’ avallable in the simulation. = Section 2.5

' summarizes the models presented in this chapter. | : SR

o 2.2 Scene Models

_ The scene subsystem is by far the most complex vaned and unknown ofﬁ '
‘the remote sensing process. It is understood that no model can accurately
represent all of the complex variations that make up the spectral radlancer
s present ‘at the input of the sensor. However through the use of various
~ slmplrfylng assumptlons developlng such a model becomes a reasonable task
| In thls sectlon approaches to modellng the scene are dlscussed '

From the taxonomles of chapter one, the scene is seen to consust of the -
solar |llumrnat|on and atmospheric effects, the surface reflectance and the
_gonlometrlc effects due to the angles of illumination and view. "In developrng a

model for the scene models for the solar |lIum|nat|on and atmosphere along
- with the surface reflectance are used, while the gomometrlc effects ‘are

'embedded within the relatlonshlps between these two components Flgure 2 2
‘ presents a block dlagram of the basnc scene- model structure. - o

Upward ’ Scene '

Solar | | Surface __gJAtmospheric P
llumination "] Reflectance [ Eﬁe%t X ~ Spectra

Radiance -

Figure 2.2 Scene Model Blo’ck-Diagram.p 1 e
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» To further describe the modeling of the scene, the rest of this section is
divided into two parts. Section 2.2.1 discusses modeling of the surface in
general terms, as well as describing in detail a model used to simulate the
surface reflectance. Section 2.2.2 then discusses the solar illumination and the
atmospheric effects present in optical remote sensing systems and their
simulation implementation.

2.2.1 Surface Reflectance Modeling , o

In this section various methods of representing the reflectance of the
surface are presented. The discussion begins with the most general way of
describing this reflectance, followed by approaches using deterministic c"ar{Opy
models, and then concludes with models developed from the statistics of field »
reflectances. The model chosen for implementation in the simulation is then
discussed.

The most general measurement of the reflectance of a surface is giveh by
the Spectral Bidirectional Reflectance Distribution Function (SBRDF). This
function is defined (chapter two of Swain and Davis, 1978) as in equation 2.1.

dL, (6
pl(esolar’q)solar’eview’¢view) = dEl(O

view’¢Viewf) Sr—t v , (2-1 )

solar’¢solar)

" Here, Ly (Bview-Oview) is the reflected spectral radiance observed at anglés‘
Bview Pviews and Ex(Osolar®solar) iS the incident spectral irradiance at angles
Bsolar Dsolar- The geometry used here and in the rest of the report is shown in
Figure 2.3.
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. solar’

" Figure 2.3 Scene Geometry.

The quantrtres eso,a, and ev,ew are the zenrth angles as measured from :
'local vertrcal whrle ¢so,a, and ¢v,ew are the azimuthal angles as measured from.
T North onamap ' R ' Y

The SBRDF grves the reflectance of an object from all’ angles of -
rncrdence and view and thus is the most complete representatron of the surface
= reflectance However ‘the. accurate measurement of the SBRDF is a drffrcult

task and few studres have been made. ‘

, A problem rn obtamrng the SBRDF anses due to spatral consrderatrons
Typrcally, in remote sensing applications the 'scene is sampled spatlally across:
two- drmensuons at some surface. cell size Gx by Gy. A rectangular coordrnate

}_.*system is overlald and an aggregate reflectance is obtalned over each

'vrndrvrdual cell at spatial locatlon (x,y). An aggregate SBRDF is then a function- X :

of not only the geometry involved, but aiso the surface resolution cell size, the
locatron in the scene, and the various matenals _contarned within the cell.
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Aggr egate SBRDF =P, ag(Gx»Gy’ansesolars¢solar;9yiew'¢view)‘ S (2 2)

‘ ff{ r Srnce the surface ceII size Gx by Gy may be a number of meters square
in typrcal remote sensing data sets, the measurement of the aggregate SBRDF
on the.surface is very inconvenient. Shibayma and Wiegand (1985) and Irons,
Ranson, and Daughtry (1988) have reported some measurements of thrs type
but for limited crop species and over few wavelength intervals. T

. Thus, while the use of the measured SBRDF |s the most complete way of
representing. the reflectance of the surface, it is impractical to use because of
_the drffrcultly in obtaining complete data for various cover types.

Strahler Woodcock and Smith (1986) dlscussed modelmg of the scene ,
' for land resource remote sensing applications and divided surface models into
’two types:. determlnrstrc canopy models and stochastic image processrng
models ‘The term canopy comes about because these models attempt to
‘ calculate the SBRDF of vegetation by using radiative transport theory. _
Drfferentral equatrons are used to compute the reflectance/transmittance of the B
several layers of leaves in a vegetative canopy. '

Sdme examples of canopy models are the AGR model (AIIen‘ Gayle and o
Ftrchardson 1970), the Suits model (Suits 1972a) with extensions for azrmuthal
(Surts 1972b) and row. effects (Suits 1982), the SAIL model (Verhoef 1984) and

the models by Park and Deering (1982), Cooper, Smith and Pitts (1982), and

Kimes and Kirchner (1982). All of these models are based upon havrng precrse
knowledge of the reflectance, transmittance, and orientation of the leaves in
each layer of the canopy. A model that used probability distributions in
descrrbrng the orientations of the layers was described in Smith and Olrver
(1974) '

‘All of these canopy models, however, only consider the reflectance within
a srngle surface cell, assuming the entire area covered by a partrcular surface
type is homogeneous and with no regard to the spatial variability typrcal of
almost all remotely sensed scenes. While they are capable of accurately
~ modeling the SBRDF of a particular surface material, their lack of spatial
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ey }infovrmation limits their appl'icability for the type of system’ study undertaken |n

~ this research. "However, it certainly would be conceivable, if one had the

: approprrate data, to extend a canopy model to be able to contaln spatlal

v’f-'i.'rnformatron and develop a very accurate surface reflectance model.
i ,;Unfortunately, thrs type of detailed database does not exnst at the present trme

. Image processnng models, on the other hand, are not concerned wrth the
. reflectance structure within a scene ‘resolution cell, but rather how the
, reflectances vary spatrally and spectraIIy from cell to cell. In these models the .
‘spectral reflectances of a surface area are taken to be multrdlmensronal (across
‘the spectral domaln) random vectors with spectral and spatial correlation.
Whule these models are usualily developed from imagery that. represent the
radlance over-an area, it can be assumed that the reflectances of the surface
cells vary srmllarly in the spatral sense as do the image pixels. Also, the
,reflectance within each cell is assumed to be mdependent of rIIumrnatlon or
viewing ‘angle. - Thrs is known as Lambertlan reflectance (Swaln and Davrs
'1978) SERTE ‘ . TR

' In the use of image proce‘ssing models for the surface reflectance two
assumptlons are generally made about the spectral and spatial variation in the
scene ~The multlspectral reflectance vectors are usually assumed to be _
R samples from an M- dimensional multlvarlate normal (or Gaussran) probabrlrty
- dlstrrbutron functron The form of this dlstrrbutlon is shown in equatlon 2. 3

P XpeenXy) = - eXP{‘—(X X)'E ( X)} @3

{M:* (fzil \/_)

“Hers, X..{x1,x2, xM)T data vector X is the mean vector and Z is the
covarrance matrrx

i The work that is often cited in Justlfymg thrs assumptlon is that of Crane,

- Malila, and Rlchardson (1972) They worked with 12 band MSS data that was

' transformed to its principle component space and reduced to three bands
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Srince the transformation produces uncorrelated variables;.'they rte‘sted’ each of
the three bands for goodness-of-fit to Gaussian random variables. While the
results showed a fairly good fit to the univariate Gaussian model, they ignored
the fact that just because these random variables were Gaussian, that did not.
mean that the original 12 dimensional random vectors were multlvarlate
‘Gaussian. This comes about because of the fact that combining Gaussian
7 random varlables into a vector does not necessarlly result in jointly Gaussian
_ random vectors. A much better test would be to use the procedures dlscussed
' ln Koziol (1983) or Smlth and Jain (1988) to check for multivariate normallty

. Some early work done at LARS found the Gaussnan assumptlon not to
hold under the Chi-Square goodness-of-fit test. Members of the LARS Staff
,(1969) found that the Gaussian -assumption did not hold for several
multlspectral data sets gathered from an airborne scanner. The results of this -
- study may have been affected by the partrcular data they consrdered or even”
the hlstogram cell interval used in the dlstrlbutlon test '

Nevertheless the Gaussian’ assumption results in much simpler
methods of generating and analyzing the data than those based upon more
,accurate yet computatlonal complex models B e

: -Remotely :se:nsed images have also been shown to have a pixel to pixel
spatial correlation. Kettig (1975) used this fact in development of the ECHO
' s'patia*l classifier.. Also, Mobasseri (1978) developed a multispectral spatial
model that was a separable (across and down scene) expcnential model. This

spatial model used by Mobasseri is specified by its spatlal autocorrelation o

functlon Rmm(r,n) for the scene reflectance Iy @s given in equation 2.4.

'E{’rm<x+r;y+n>rm<x'v>};Rmm<c;n>=é"""*” S ﬁ.<2.4>

- Here, a;, and b,, are the across scene and down scene correlation
parameters for wavelength m, and ¢ and n are the respectlve scene cell lag
values. The coordinates (x, y) are the scene cell location. o
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Equatlon 2.4 may aIso be written in terms of the autocorrelatlon"
C°°ff'°'ems Px= € a and py= e®, asin equatlon 2.5. SN

mlml p,':'xp.;‘y e

Thls form of autocorrelatron for a random freld is equrvalent to that of a
wude-sense Markov random field with the neighbor set consrstmg of the quarter- |
" :plane causal neighbors, {(0, 1) (-1 0) (-1,-1)} (chapter : seven of Rosenfeld and
 Kak, 1982). This is also equrvalent to a two-drmensronal autoregressrve (AR)

: "model (Delp, et al 1979) as glven by equation 2. 6 ot e

. r(x,y) C1 r(x- ,y) +Co r(x y-1) +C3 r(x-1 ,y-1) + - Oy z(x,y) - (26)
“Here » : , o
‘x y hlgh resolutron spatlal column row mdex inscene . -
= Cy= =px ,
. C2 Py A
T%éwwf

ou - standard devratlon of Gaussran dnvrng process computed to retam‘
o . ’ unlt variance for r (See algorithm given in Appendix A)
T ,z(x y) - rndependent Gaussian random numbers with unit vanance and
'“vmmmm o o i

leen arbltrary rnltlal condltlons the AR’ model can easrly generate a
reflectance array with the desired. spatlal correlation. Other methods also exrst‘
to generate a random field with the spatral model of equation 2.4. Mobasserl
, (1978) used a Fourier-based technlque and Chellappa (1981) studied methods -
- . of generatmg spatlally correlated arrays usung arbltrary nerghborhoods

Usmg the Least Squared Error (LSE) estlmatron technlque for the AR"
coefﬂcrents as descnbed in Delp, et al,, (1979) some typical coefficients for the
AR model were calculated Table 2.1 shows these typical values of the spatral
: parameters for a vanety of scene types, computed from a Ilne scanner rmage of
~an lnfrared band. |
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Table 2.1 Typical Spatial Model Parameters.

- [Full cover vegetation C1=0.63  C,=055  Cg=-035]
- |Just emergent row crops - C4=0.63 C2=0.70 C3=-0.44]
- {Bare sail field B -Cy=0.57 = C»y=0.72 Cg=-0.41}

| A problem with using line scanner imagery to compute the spatial -
statistics, is that there is correlation introduced by the instrument itself, and as.a
result, computing the statistics from the image data does not truly represeht‘t'he
correl_a;tio'n of the original scene. This is difficult to prevent, as with any imaging
sensor this effect will be present. It is known, however, (Papoulis, 1984) that the

- output correlation is greater than the input correlation for a linear system with
the response similar to imaging systems. Thus one can reasonably assume
that the actual pixel to pixel correlation of the original scene was sllghtly less
than that which was computed from the imagery. '

: An alternatlve method of gathering data to estimate spatial correlatlon is
to use an mstrument such as the Field Spectrometer System (FSS) descnbed in
Hlxson et al., (1978) With this instrument, spectral reflectance measurements
were made with a spectral resolution of approximately 20 nm, and a ground
field of view of ‘approximately 25 meters. The instrument was mounted in a
hellcopter and flown over fields at a helght of approximately 60 meters. .The
instrument made spectral radiance measurements that were converted into
reflectance by comparison to the radiance measured over a known. calibration
panel. The report by Biehl, et al., (1982) describes the database of reflectance

‘ data measured by this and other instruments; | '

- A companson of the spatlal correlatlon of imagery and- spectrometer
samples was made for two fields from Hand County, South Dakota. Both
aircraft line scanner imagery and FSS reflectance data were obta,llned‘ over
fields 168 and 288 on July 26, 1978. Field 168 was mostly bare soil, while field
288 was ripe Millet with nearly 100% ground cover. The spatial correlation of
the imagery was done in the same direction and over the same area that the
FSS had 'acquired'data. The direction was along the flightline for both
‘instruments. Since the aircraft imagery had a ground field of view of.
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approxrmately eight meters, the correlation coeffrcrents for the arrcraft rmagery
were calculated at both one and three pixel lag values to be able to compare
- the coeffrcrevnts with those of the FSS at a similar intersample distances. The
. correlation coefficients are computed with the estimate given in equation 27.

N
(x, X) (Xppr = X)

N=1

p(t) = N
| (xR

(27)
n=1

Here T is the lag value, N is the number of data samples and X is. the
sample mean. Table 2.2 shows the spatlal correlation coeffrcrents for two
wavelengths in each field and two pixel distances of the aircraft scanner. .

'l'able‘2;2 Spatial Correlation Coefficients for Hand County, South"Dak'cta;

Field |Wavelength| Aircrait | Aircratt | FSS
Number -~ | 8 Meters |24 Meters |25 Meters
168 | 0.56 um 0.82 0.31 0.28

Bare Soil 1.00 um 0.87 | 0.53 - 0.48

- 288 0.56 um 0.61 - 0.44 0.25
| Ripe Millet | 1.00pum | 0.67 0.20 0.16

The results of Table. 2.2 show that as the distance between samplesv
mcrease the correlation coefficient decreases. Also, there seems to be a
srgnrfrcantly hlgher correlatlon among the imagery pixels as compared to those
of the spectrometer even when they are computed using samples a srmrlar
distance apart Thus, there does appear to be an increase in the correlation
coefficient due to the characteristics of the I|ne scanner.
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o To investigate the typical variation of the correlation across the spectrum,
the spatial correlation coefficient was computed from some FSS data of a winter -
wheat field (number 151) from Finney County, Kansas taken on May 3, 1977.
The wheat was beginning to ripen and there was approximately 30% ground
- cover. There were 58 samples across the field, each about 20 meters apaﬁ.'
The,'c;drrela'tion‘ coefficient for 1=1 as calculated in equation 2.7 for each
wavelength is shown in figure 2.4. ’ | ' |
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Figure 2.4 Correlation Coefﬁbients of Winter Wheat:Fieldﬁ.

» The large peak around 1.4 and 1.9 um is due to substituting 0.1% for the
reflectahc;e in the water absorption bands of the data. The other large peaks
are also due to atmospheric absorption bands. The flat segments are from
repeated values used in the plot due to the uneven spectral sambli‘ngﬂof the
FSS. For most of the wavelengths the correlation coefficient ranges around
0.85. This correlation among samples is significantly higher than those of Table
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2 2 Th|s is |nd|cat|ve of the hlgh varlabrlrty in correlatron among surface cover
types and condmons : 8 ,. |

, Whlle the exponentral model IS one way of modeling spatlal correlatuon |

‘ spatlal models based on fractal geometry (Mandlebrot 1977, 1982, Glelck 1987,

and Peltgen and Saupe 1988) ‘have emerged as a powerful method for

modeimg hatural phenomena This is partly because its- mathem_atlcat

_ constructlon is similar to what is obser\)ed in natural scenes. In two spatiai

.- dimensions, ‘the fractal random field r(x y) has the property shown rn equatlon
- 2. 8 where Dis the fractal dlmenslon (2<D<3) :

3'.D"‘ Ry

E{ [0, - r<xrv1>12} [t ey e

~ That is, the variance of the difference between pixel locations is
proportional to the distance raised to a fractional power. Several experiments -
‘were conducted to measure the fractal dimension of typical agricultural scenes.

- Values for D ranged around 2.610.1 for several cover types. See Dodd (1987)

A for an example in using fractal concepts to generate multispectral texture by
. computlng the fractal dlmenslon D from prmcrple component rmages e

Whlle several methods have been drscussed for generating scenes wnth
spatral correlatlon the autoregressrve model was chosen for- rmplementatron in
’ the srmulatlon This model is effrclent in generatlng a simulated reflectance

’ _array usmg computer-generated random ‘numbers. Table 2.3 presents an

- overvrew of the technique used to srmulate the surface reflectance whlle the
' ,paragraphs followmg describe these steps in detarl '
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' ~ Table 2.3 Sequence in Generating a Simulated Surface Reflectance Array.

Step 1. Define scene size and class boundarnies.

Step 2. Obtain spatial and spectral statistics of
reflectance data for each class.

} Step 3. Generate spatial correlated reflectance
| arrays for each wavelength, with each array
being spectrally uncorrelated.

Step 4. Transform each reflectance vector to have
the proper mean and covariance for the
appropriate class. .

Step 5. Interpolate resulting spectral reflectance
vector to the desired spectral resolution of
scene.

| The scene is first defined by determining its size, X columns by Y rows,

where each location (x,y) is a square scene cell with the distance on one side
specified in meters. Each of these scene cells are assigned to one of the K
classes. Class boundanes are specified by the upper left index and lower nght
mdex of the rectangular area containing the class. :

Reflectance data for each class used in the simulation is obtained from
the database of FSS measurements. Over the wavelength range considered‘ in
this re’pOr't there are 60 wavelength samples in the FSS data. Thus, the spectral
statistics are 60 dimensional. The across scene and down scene spatial
coefficients are estimated from imagery over scenes similar to the one being
simulated. Typically, the same spatial correlation is assumed for each
wavelength, while no wavelength-to- wavelength spatial crosscorrelatlon is
specnfled '

| ,The AR model is used to generate the spatially correlated reflectance
cells within the area defined for each class k, and for each wavelength band m
as shown in equation 2.9, '
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rm(x.y) px rm(x 1-Y)+Py rm(x.y 1) Pxpy rm(x 1:V'1)+0u Z(x y) .(_2-.9)

o 'where the symbols are defmed as ln equatuon 2 6

The mdrvrdual arrays {rm(x y)} are arranged as a spectral vector array,

: {R(x,y)} Reflectance data of each class k are used to compute the mean vectors— - :

S '_'P and covanance matnces Zk The elgenvalues and ergenvectors of these -

L covanance matnces are then computed and arranged as dlagonal matnces Ak

: and column matnces (Dk, respectlvely The surface reflectance array {P(x y)} is

: then obtarned by usrng equatlon 2. 10, where for each scene cell locatlon”(x,y) o
“the appropnate class transformatlon lS applled ‘ :

P(x,y) P +<I> A R(x,y) | S (210)
The resultant reflectance array will be multlvarlate Gaussran wnth the

mean and covarlance of the ongmal class statlstlcs and be spatlally correlated
accordmg to the exponentlal model of equatlon 2. 4 B T

Whlle the FSS reflectance data covers the entlre range from 0. 4 to 24

C »"pm the wavelength sampllng is uneven ranglng from 20 nm to 50 | nm An order '
. to have a unlform spectral resolutlon for the scene model an. mterpolatlon is - |
' ’_-performed on each spectral reflectance vector to yleld 201 wavelengths spaced ‘

at 10 nm mtervals The algorrthm used to perform thrs mterpolatron rs grven in
,"Appendle EIE S : ‘ v

222 Solar and Atmospheric Modelmg

- effects present rn optlcal remote sensrng systems is drscussed Followmg a

T '7 'prellmrnary list of references to work in this area, a general model of the
-‘; atmosphere is presented. This is followed by a dlscusswn of measures of

- »atmospherlc qualrty The model used ln the sumulatlon lS then presented along
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with several curves showing the effect of various parameters on the
atmospheric model. The section concludes with a comparison of the model
atmosphere with real measurements for a particular test site. ’

The solar extraterrestrial flux and the atmosphere have been studied
extensivély over the years. Accurate measurements of the solar curve have
been made and are well documented in the literature. For example,
publications by Thekaekara (1974) and Bird (1982) contain,solari ste.ndavrd
curves. Discussions of the atmosphere may be found in chapter two of Swain
- and Davis (1978), Chahine (1983), and chapters five and six of Wolfe and Zissis
(1978). Atmospheric simulation models have been reported in Kneizy‘s et al.,
(1983, 1988), Turner (1983), Diner and Martonchik (1984), and Herman and
Browning (1975) among others. : :

- The. atmospheric effect on spectral radiance consists of two main
mechanisms, scattering and absorption. Scattering is mainly due to the
presence of particles in the atmosphere, while absorption comes about due to

the energy transfer from the optical radiation to molecular motion of atmosphenc

gases. Both of these effects are wavelength dependent

Flgure 2.5 gives a pnctonal view of the various atmosphenc effects on the
',spectral radiance received by the sensor.



- 27 " Chapter 2 - Remote Sensing System-
Modeling and Simulation

Atmospheric

7 1\

A Transmittance
Path
Radiance.

Adjacency -
Effect

. Direct

_ Diffuse

lrradiance

Surface

Figure 2.5 Atmospheric Effects on Spectral Radiahce Received by Sensor.

~‘Frdm this ﬁgu‘re, several main factors are seen to contribute to the

‘radiance received by the sensor. The exoatmospheric spectral irradiance,
Ea exos IS attenuated and scattered by the atmosphere before reaching the

~surface as the direct spectral irradiance E) Direct- Some of this scattered
 radiation also reaches the surface as Ej piyse, the diffuse spectral irradiance (or
skylight irradiance.) The reflected spectral radiance L gy ace ‘Passes. through
the atmosphere and is attenuated by the spectral transmittance Ty am Of the
atmosphere. Also, some of the solar irradiance that is scattered by the
atmosphere finds its way into the sensor field of view as L pap, the path
spectral radiance. This path radiance also includes that which may’; have been
reflected off of the nearby surface (adjacency effect) before being scattered into

the sensor field of view, as well as the background radiation of the atmosphere.

These factors contnbute to the spectral radiance of the scene, as
“received by the sensor, in a manner described by equation 2.11.
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solar) E}A,Direct"'.-El.DiffuseJ’ R T +L (2.11)

1 rcos(e
l A “AAtm ~ “APath

l Sensor T

» Here, Ry is the spectral reflectance of the surface. In the most -general
sense it is the Spectral Bidirectional Reflectance Factor (SBRF)- that gives the
reflectance for all angles of incidence and viewing. The other factors also
depend. upon the angles of illumination and vuewmg as well as the quallty of the
:atmosphere

Several other rmportant aspects of the real atmosphere also rnfluence
| ‘vthe values in equatlon 2.11. One is the spatial dependence of the atmospheric
scatterlng and absorptlon effects. The make-up of the atmosphere is not
constant over a scene; however, it is unclear how the atmosphere changes from
j.plxel to plxel over typlcal pixel.sizes (20-30 meters), and is usually assumed. to
be constant Another spatial effect of the. atmosphere is the qurrlng that can be
‘ mtroduced by the scattering in the atmosphere. Kaufman (1985) has studled
the atmosphere from this pornt of vuew suggestlng that the atmosphere be -
modeled with a spatial modulation transfer function (Goodman, 1978) sumrlar to
those used in the modeling of sensors. This could be |mplemented in the model
ina spatral convolution with the scene radlance Yet another effect that i is often
ignored is the time dependence of the atmosphenc effects. Fast movrng gases
- exist in the upper atmosphere ‘and cause a changlng effect on the scattermg
‘and absorptron over the field of view of the sensor. The movement of clouds is
-an example of thls t|me dependence

, | The quahty of the atmosphere may be represented by several drfferent
measures. The fundamental parameter for atmospheric quality is the spectral
optical thickness t;.: The spectral transmittance Ty atm Of the atmosphere

- between two points x1 and Xo is defined by equation 2.12 where B(?& z) is the
volume extrnctron—coeffncnent with units of Km 1,



29 - K Chapferz - Remote Sensmg System:

ModehngandSlmulatlon L

The lntegral msrde the exponent of thls equatron is known as the spectral
optrcal thlckness T and is defrned in equatron 2.13.

R VlSlblllty is aIso often used as a measure: of the clarity, of the atmosphere
‘andis defined (Knerzys et al 1983) by "the greatest dlstance at which it is just
possible to see and ldentlfy with the unaided eye in the daytime a dark object |
agarnst the horlzon sky The surface meteorologlcal range Vy is related to
. 'V|srb|lrty (usuaIIy by a factor of 110. 3) but defrned numencally, rather than- by‘
: ‘subjectlve judgement For the typlcal atmospheres used in this report it is

o jassumed that the two terms can be used interchangeably. Surface

- meteorologlcal range is related to the vqume extrnctron coeffncnent at A=0. 55
pm through equatlon 2. 14 : ~

v 8912 o
Vy=5— Km L (214)
Surface meteorologlcal range (or VISlblllty) is the measure commonly

used in‘remote. sensing for atmosphenc quality. However some experrments
: specrfy the optical thickness (also called optical depth for a vertical path) Data'

- from Elterman (1970) was used 1o find an emplncal relatlonshrp between optlcal E
o thlckness and VlSlblllty “Figure 2.6 shows pomts from: Eltermans data along :

: f.-r-wrth a best f|t curve. These data pomts are for A = 0.55 um. Optlcal thlckness is
--also dependent upon wavelength Data from Elterman (1968) was: plotted |n

. Frgure 2 7 along wrth a best fit curve for the empmcal data ThIS relatlonshrp is o

'for a surface meteorologlcal range of 25 Km
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“Extinction Optical Thickness

Optical Thickness

©0.34
. 0.2

Optical Thickness vs. Visibility
from Elterman (1970)

y = 2.7534 * xA-0.65576 R*2 = 0.997
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- Figure 2.7 Optical Thickness vs. Wavelength.
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These emprncal relatronshlps were used to denve equatron 2 15 relatmg .

- : ‘;spectral optlcal thlckness to meteorologrcal range and wavelength
| 1328 0656 - _ o Lo

'c,‘(Vn) -1 357l. Vo IR PRGN ;'___’(g.‘-ts)
_ Thrs equatlon is assumed to be valld only over optlcal wavelengths and} |
_meteorologrcal ranges from 2 to 50 Krn R : '

e In thrs research the solar and atmosphenc model is lmplemented wrth the .
use of the computer code LOWTRAN 7 (Knerzys et al., 1988) _The program

. LOWTRAN has_evolved over - the years from simply an. atmosphenc g

‘g l."'transmrttance code to one that is now capable of computlng dlrect solar
»:‘_-»,,'{lrradlance and multlply scattered atmosphenc radlance e e RO

LOWTRAN uses rad|at|ve transfer theory to compute the transmrttance

e and radlance in each of 32 layers of the atmosphere Well documented data

ol ; tables embedded within the program glve ‘accurate spectral transmittance and"‘; R :

radiance values at. mlnlmum wavenumber intervals of 20 cm-1. This modelv' ot
g 'compares favorably to ones developed by Dlner and Martonchlk (1984) and. 0

"jcontalned in Table 2 4

Herrnan and Brownmg (1975) because of its contlnuous spectral coverage and

" its‘inclusion’ of narrow absorption bands due to the various constituents of the S

| ;'_atmosphere A partlal lrst of controllable parameters for LOWTRAN 7 |s

Table 2 4 Example LOWTRAN 7 Parameters

Solar posrtlon , ,
=" IMeteorological range
. }Surface albedo .
- - |Atmospheric haze
- JAltitude of observer: -
. | Zenith angle of observer o
ERTERASS Waveleng;rh range and mcrement
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LOWTRAN 7 is used along with the models discussed below for the
diffuse irradiance and path radiance to compute the radiance received. by the
. sensor." Appendrx .C contains the input frle format used in- the. calls to

LOWTRAN -

The spectral radlance present at the mput to the sensor model in the
snmulatron program is computed as in equation 2. 16 B

LA.,Sensor (xy) = &-ELTotal P(x,y) TAtm + L)l,Path - '(2-16)

The generatlon of the three atmosphenc components of this equatlon is
' 'dlscussed below whlle the spectral’ reflectance array P(x,y) is' as calculated in

sectlon 2 2 1

1. MLLL@Q@D.Q& ThIS is the total downwellmg spectral_ :

_irradiance’ Emmal that is incident at the surface, and is equal to the sum of the
' dlrect and dlffuse |rrad|ances as shown in equatlon 2.17. '

E, Cos(esolar ADirect * Ex,oiffuse' o B (2',1 7)

l.Ttl

Since' LOWTRAN does not have an option. to generate the diffuse
component, a model was obtained from Chahine (1983). There, the total
surface spectral irradiance Ex Total IS Shown to be related to the direct spectral
irradiance through the. curve given in- Flgure 2.8. Also shown in the flgure is. an;

exponentlal model derlved from the data ‘ : ‘
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Figure 2.8 Ratio of Direct to Total Irradiance vs. Total Optical Path Length.

The total optical path Iength T IS related to the optlcal thickness by
multiplying by sec(eso,a,) as in equation 2.18.

"p.x(vnvesolar) = Ty(Vn)sec(Bsolar) - (2.18)

This relationship between direct and total irradiance is given as a
function of the total optical thickness of the atmosphere in equation 2.19. Thus,
equation 2.19 can be used in conjunction with equation 2.15 to obtain the total
surface spectral irradiance from the direct spectral irradiance, the surface
. meteorologlcal range, the diffuse irradiance constant, and the solar zenith
angle.

COS(esolar> Ek,Direct (V‘l' esolar)

E, 1ot (Vo Ogga) =
A Total | " “solar exp[v KD Tx(v'fl) sec(esolar)]

(2.19)
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Thé diffuse irradiance constant Kp is dependent upon the type of
atmosphere and the overall surface reflectance. In the discussion by Chahine
(1983) from which Figure 2.8 was taken, the author stated that the curve was for
a nonabsorbing atmosphere and surface albedo < 15%. It was also indicated
that for absorbing atmospheres and higher albedoes the curve would be

steeper. While no specific values were given in the reference, Table 2.5 shows
some estimates of Ky, for different conditions. The model shown in Flgure 2.8

was wnth KD =0.73.

Table 2.5 Diffuse 'lrradiance Constant Values.

Kp Type of Atmosphere - Surface Reflectance
0.73 nonabsorbing = | ~ low (< 15%)

- 0.84 ~ absorbing | low(<15%)

- 1.00 absorbing medium (15 - 30 %) -
1 26 absorbing high ( > 30%)

2. Atmospheric Spectral Transmittance. This is directly computed using
LOWTRAN for a path from the surface to the sensor. This may be a vertical or
slant path through the atmosphere, depending on' the z'en‘ith'v‘angle of the
sensor. It represents the path loss due to scatterin‘g and absorption.

3. Ealh_&peg_tr_aj_ﬁad_r_ange_ This is computed by using two calls to

LOWTRAN It is called once for a surface albedo of 0 and once for an albedo of
1. The total path radiance received by the sensor is then computed by
interpolating between these extremes as in equation 2.20, where (x,y,m)
specifies the spatial location x,y and wavelength m. pg, ave(Xy) is the average
surface reflectance for wavelength' m in the nei'ghborhoodz of xy. In’
implementing this model in the srmulatlon the entlre scene is. used in computrng

Prm,ave(X.Y)-

|b=o alb=1 alb=0 ’
Ly pan(®Y:m) = Lip ath (M) + Pm.ave(X,Y) ® [ Ly pan(™ ) L Path(m)] (2.20)
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, This formulation of path radiance allows for its depehdence- on the
surface reflecfa_nce. This does not truly represent the situation in the real
'system, as the path radiance there is dependent upon the reflectance of the
surtace for each particular path the illumination follows before arriving at the .
sensor, and there are many paths the illumination may take. However, this
simple linear model offers good compromise between accuracy and
computational complexity. |

On the following pages, examples of how various scene param‘eters

. affect these atmospheric model components. For these examples the default
parameters of Table 2.6 were used.

Table 2.6 Default Values of Atmospheric Parameters.

Parameter | Default
. |Model ’ 1976 U.S. Standard
- JAtmospheric Haze Rural Extinction

Surface Meteorological Range 16 Km

Diffuse Irradiance Constant 0.73

Solar Zenith Angle 300

View Zenith Angle oo

Surface Albedo 0.10

The following figures 2.9 through 2.14 show the direct, diffuse, and total
spectral irradiance for several meteorological ranges and solar zenith angles.
The curves for the diffuse irradiance were computed as the difference between
‘the total and direct spectral irradiances. Figures 2.15 and 2.16 show how
: atmdspheric- transmittance varies for several meteorological ranges and view
angles. Figures 2.17 through 2.20 show how the path radiance component is
‘affected by meteorological range, solar angle, view angle and surface albedo.
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These curves give an indicati'on how the components of the atmospheric
model vary under different conditions. In general, they show how a hazier
atmosphere will allow less radiance to be received by the ‘sensor from the
surface, yet increases the path radiance, and how the angle of illumination or
view can decrease the signal radiance as well as increase the path radiance.
The path-radiance is also seen to increase with surface albedo. ‘

- An eXperiment was performed to test the suitability of the atmOspheric
model by companng the radiance received by a satellite to that simulated by the
model from a description of the scene conditions and the reflectance of the
surface. A test site in Hand County, South Dakota was chosen from data
gathered as part of the LACIE program (Hixson, et al., 1978). On July 26, 1978,
reflectance data was gathered at approximately the same time as the Landsat 2
‘MSS passed over the area. The parameters of these sensors are shown in
Table 2.7. :

Table 2 7 Data Set for Hand County, South Dakota July 26, 1978

Landsat 2 Multlspectral Scanner

-Spectral Channels : R 4 bands, 0.4 - 1.1 um
- Scene S - 21281-16232
Altitude 918 Km
Ground Size of IFOV ’ 80 Meters
- Time , y 1623 GMT

" |Helicopter Field Spectrometer System

' Spectral Channels o : 60 bands 04-24 um ,

Altitude . ' 60 Meters »
Ground Size of FOV - 25 Meters
Time 1505 - 1601 GMT

A partlcular area having four large nearly square fields was selected for
test. Table 2.8 contains the field numbers from the LACIE experiment and the

crop types.
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Table 2.8 Description of Test Fields.

[ Field Number | Crop Type Ground Cover |
Field 290 | Spring Wheat 30 Percent
~ Field 168 - Millet 10 Percent
Field 289 Spring Wheat 30 Percent
Field 288 Millet 90 Percent

In order to compute the radiances received by the MSS, a table of
conversion constants was obtained from the work by Richardson, et al., (1980).
Table 2.9 shows the Ai_and B; used to compute from the digital counts DC; the
radiance present at the input of Landsat 2 MSS in band i. Equation2.21 shows
‘how these constants are used to compute the radiance. The units of A are
mW/(cmz2-sr-digital count) and for B are mW/(cm?2-sr).

~Table 2.9 Conversion Constants Between Radiance and Digital Counts.

|-—Band A B
‘ 1 0.0201 . 0.08
2 0.0134 0.06
"3 0.0115 0.06
4 0.0603 0.11
Li=ADC+B oo (221

Cln generating the simulated radiance, the atmospheric model described
earlier in this chapter was used with the radiances integrated over,the nominal
‘wavelehgth intervals of each band of the MSS sensor. Thus, the radiance in
each band i was generated as in equation 2.22. s ‘

LelE_ T Ra|Lpy-L R+L° | »
i~ T TiTotal i,Atm i*| TiPath  TiPath [Pyt Loy (2.22)
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Here, R; is the average reflectance in band i. Table 2.10 gives the
atmospheric and goniometric conditions present at the time of observations.

" Table 2.10 Scene Conditions at Time of Observations.

- [Meteorological Range (Vo) — 31 Km
|Solar Zenith Angle (8go1ar) 390
Solar Azimuth Angle (0soia)  ~  119°
Diffuse Irradiance Constant (Kp) — 1.26

Table 2.11 contal‘ns the LOWTRAN settmgs used in generatlng the-
snmulated atmosphenc effects :

Table 2.11 LOWTRAN Settings for Experiment.

'Atmospheric Model . 1976 U. S. Standard
Atmospheric Haze . Rural Extinction
Atmospheric Scattering. =~ . Multiple

Aerosol Phase Functions "~ Mie- generated

Aerosol Profile o Background Stratosphenc

All other LOWTRAN parameters were set to zero, or the default. Table
2. 12 shows the atmospheric components generated by LOWTRAN for each of
the spectral bands while Table 2.13 compares the snmulated to the actual
radlances received by the satellite. :
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Table 2 12 Atmosphenc Components for the Hand County Test Srte f:', B

_____ | Band| ETotaI(cm] Tam LPath1[ s,} LPatho( s_,‘) |

T 16.206 | 0684 |  1.431 | 0.248
14,036 | 0746 | 0735 0.128
- 10.843 | 0.764 | 01434 | - 0.068
-19.329 |  0.774 0524 | 0071

) m—‘

| Table 213 Comparlson of Actual and Slmulated Radlances (m mW/(cm2-sr)) for ot
Test Slte in Hand County, SD B R e

FSS MSS Average Landsat §|mulated Percent
Reﬂectance Djrtal Count Rad,iance Radlance Errorj_ =R

Field 290 | . o b
~ Band1::| 0063 | 215 | 0512 _;~0527.v g oos29 )
~Band2 | 0.083 | 269 0421 | 0.455 | . +81 |
‘Band3 | 0166 | 442 | 0568 | 0566 | . -04 |
o | Band4 "l 0240 | - 207 | 1.358 |- 1323, S Y- A
':F|eId168,- T R e
| Band1 | 0068 | 237 | 0556 | -go 549 18
‘Band2 | 0.088 | 31.0 1 0.475 | 0475 | .00
"Band3 |- 0121 " 368 - | 0483 | 0.431 | -10.
- Band4 | 0182 | 166 | 1111 | 1.020 | -8
Fleld,289 1 b 1 SRR
| 'Band1 | 0.058 | 221 0524 | 0505 | - 3.
| Band2 | 0078 | 276 | 0430 | 0435 | .+
| Band3 | 0143 | - 432 | 0.557 | 0.497 |
| Band4 | 0.208 | 201 | 1322 ] 1.156
F'eld 288 - R I
| Band1- | 0043 | 183 - | 0.448 .| 0.439"
| Band2. | 0.031 148 | 0258 | .0.250 |
1 Band3 | 0252 | 661 | 0.820 | 0.825 | 40
= Band 4| o038 | 366 | 2317 ] 2094 | -9

e A scatter plot of the srmulated radlances versus the measured ones is
o :‘shown in Flgure 2. 21 " The solid line is a best linear fit to the pomts with a - -
o fregressron coeffrcuent of 0 99 whrle the dashed Irne represents the 1deal of r'
equal radlances : R -
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V,Fi‘gulre 2.21. Plot of Landsat vs, Simulated Radian_ces.; fv. |

- - The error between the Landsat and the simulated radiances see-m_s to be
~equally distributed: (+ and -) for bands 1 and 2, while the radiances in bands 3
~and 4 seem to be consistently underestimated by the model. The greater error
at the |onger wavelengths may be due to several factors. The diffuse |rrad|ance'
»component may be on the low side because of the hlgh reflectances of the
. surroundlng area Also, LOWTRAN may be underestlmatlng the path radlance
calculatlon : ' ~

Overall ‘there seems to be a close match between the Landsat radiance
and the simulated radiance. It would seem then, that. thls atmospherlc model is-
“reasonably satisfactory. -
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- 2.3 Sensor Modeling
The sensor portion of optical remote sensing systems performs the task
of sampling the continuous spectral radiance of the scene in the spectral,
spatial, radiometric, and temporal domains. - This results in a digital
- multispectral image of a scene at a certain moment in time, with a discrete
~ number for the radiance at each spot in the scene and for each spectral region.

The modeling of imaging sensors can be quite complex indeed. One
~ may consider the propagation of the optical waves through the sensor optics
~ (including aberrations), the conversion from light to electrons in the detector
material, and the effects in the signal conditioning electronics. Goodman (1968) |
provndes a good discussion of the propagation of optical waves in imaging
systems from a linear systems point of view. Texts by Hudson (1969), Pinson
(1985), and Wyatt (1987), and chapter eight of Colwell (1983) cover the entire
detection process from the optical system through the detector electronics. |

- in this research, the modéling of sensors is approached from a 'lumped )
systems. perspective. Figure 2.22 shows a block diagram of the major
components of a multispectral sensor.

7 SCENE
SPECTRAL
RADIANCE

SPATIAL | | SPECTRAL |
' RESPONSE RESPONSE |~

DIGITAL
IMAGE

'ELECTRICAL| A/D
NOISE ~ CONVERSION

Figure 2.22 Sensor System Components.
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‘ The scene is sampled spatially by its being imaged onto a detector array
that is either 'scanned sequentially down the scene, or consists of a -focal plane
array. that gathers the two-dimensional image in a small but finite time interval.
These sampled pixels are also dispersed onto separate detectors for each
spectral band to the perform the spectral samphng

, - ,The vsignals from these detectors are then ampli‘fied (eleCtricaI noise
effects occur here) and calibrated before being quantized into discrete values.

, The model shown here is very general and couId be enhanced to mcIude :
very detalled effects such as the aberrations in the ‘optical propagation in the
optlcal system, spatial misalignment of the detectors, or electrical bandwidth of
the. amphflers But in this report, the model will be: relatively simple within this
generahty ‘The model will be limited to a simple point spread function for the'
spatial response, a simple multiplication of the sensor response for the spectral
response, and a noise model contammg eIectncal noise, cahbratlon error and N
quantlzatlon effects - = 5

- ;<|‘n th-efollowing subsections 2.3.1"and 2.3:2, models are presented for the
sampling. and noise processes. In subsection 2.3.3, a detailed model is
'presentedvfor a future remote sensing imaging spectrometer. Appendix D
contains complete descriptions of several multispectral scanners.. In subsection
2.3.4, the computation of radiometric performance measures is discussed.

2.3.1 Sampling Effects

In the creation of the digital image the continuous spectral radiance of the
scene is sampled spatially, spectrally, and radiometrically (ie., A/D conversuon)
The foIIowmg paragraphs describe these forms of sampling. :

1 mnajﬁamp_& The optical Point Spread Function (PSF) is the two-
dimensional analog of the system impulse response in linear system theory
(Goodman 1968). It is the response of the optical system to an infinitely bright
point source, usually represented by the Dirac delta function d(xy).
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~In the simulation model, no parametric form for the PSF is-assumed.
Rather, a table of values derived from measurements of the real devices is used
o define the PSF. Thus, this form includes many of the aberrations present in
the instrument optics. | | o |

The discrete representation of the response of the optical system is given
by equation 2.23. The PSF h(u,v) is represented as the product of sepafable
line spread functions h,(), and hy(+), across the two spatial dimens‘i'ons. The
respdnse is normalized to unit area by dividing by the area under it.

: . O+1 - P+1 S o
, M) = (A Qx)(Ay g,) §1 r 1 hx(o)hy(p) S(U "9, V-9 (2.23)
) O= p= e

- Where,
(u,v) - spatiai domain locations (meters) )
Ay - sum of across scene line spread function coefficients
Ay - sum of down scene line spread function coefficients .
Ox = AUH - ground interval between h, coefficients (meters) -
- gy = AVH - ground interval between hy coefficients (metérs)
- AU - angular distance between h, coefficients (radians)
AV - angular distance between h, coefficients (radians) |
H - height of sensor (meters).

- Also, O+1 and P+1 represent the number of coefficients in thé across
scan and down track line spread functions, respectively, and hy,(P/2) and
~ hy(0r2) contain the maximum response. -

» Equation 2.23 gives the response for a vertical viewing sensor.  For
sensor zenith angles > 0°, the distance on the ground between the coefficients
must be rotated by the azimuthal angle ¢y, and scaled by the zenith angle
- Byiw- This is shown in equation 2.24. | | R
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; [ 9&] | cos(¢,...) Si"(d’va;w) gy |
lo]= Oy S |
9y -Sln(¢v,9w) COS(¢vigw) m | ‘(2_24)

In applying this spatial response to the scene spectral radiance function
derived in section 2.2.3, equation 2.25 is used. This equation is repeated for all
'|mage plxel locations (i,j) and scene wavelengths m. : .

R TR GxGQ sl Pl iS, - og, iS, - Pgy .
iim=s———— : ] ) m ®
L_kSensor("’J’m) T (Ag)(Ag,) Z; ; L1 scend| G, | ,GV )
og;) (P8} L n
= (2.25)
hl(Gthy(Gy) : v S

Sy and S, are the across scene and down track sampling intervals for the
image prxels In the case of off-nadir viewing these also must be. scaled and
rotated as the ground coefficient intervals were in equatlon 2.24. Note that
since the scene radiance array has discrete pixel locations all index quotients
are rounded to the nearest integer. Also, at the edges, the extreme. row or
column is repeated as necessary to allow for the complete apphcatron of the
spatlal response ' :

The PSF is often approximated by a truncated Gaussran curve.
Measured PSF's often are nonsymmetrical and can include ringing at the tails
of the response; thus the Gaussian shape does not truly represent the actual
PSF. Although in some cases, it can be close enough to justify its use rn
theoretical modeling.

2, Spgcl ral Sampling. The spectral response of a multlspectral sensor
consrsts of the continuous response of each channel to the spectral radiance
recelved ‘by the sensor In the simulation, the applrcatuon of the duscretev ’
response to the incoming spectral radiance L, gensor(ij;m) is as shown in

equation 2.26.
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s(m) -
lmage ("J l) Akz Lh Sensor ("j m) N(]) - ' o (226)

© m=1

: ’Where :
- AM - scene wavelength mcrement inpm
si(m) - normalized response of band | to spectral wavelength m
Limage(i.J:!) - radiance received by band | at pixel location (i,j)
Ly sensor(i»j;m) - incoming spectral radiance from pixel location (i,j)
at wavelength m :
N(I) - normahzmg factor for nominal bandwudth variations.

The normalizing factor,N(l) is the ratio between the actual ba,ndwidth as
measured by the area under the normalized response curve and the nominal
-bandwidth of the channel. This factor is often necessary to match the published
gain setting between the real instrument and a modeled version. ~ Price (1987)
discusses calibration problems of this sort and presents tables of the actual
bandwidth for several multispectral scanners.

For the imaging spectrometers modeled in this report, the "spectral
resolution of the sensor is the same as the scene. Thus, for these sensors there
. is only one term present in equation 2.26. ' '

3. Radiometric Sampling. After the continuous spectral radiance 'aeross
~ the scene has been sampled spectrally, and spatially, and the noisef(diScﬁSsed
in the following subsection) has been added in, the received value is converted

toa dlscrete level by equatuon 2.27. R ’

L (i) . : : .
d(i,j,l):nint{z—“'(zc'”} o (227)

Here, Q is the number of radiometric bits of the sensor, and Lg, is the
~ published full scale equivalent radiance for sensor band I. This introduces
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- quantization noise uniformly distributed with an equivalent radiance variance
shown in equation 2.28 for each sensor band. '

| 2 o
2 .1 beani ] - . (2.28)
quant.l 12 2‘ 1 SR e

2.3.2° Electrlcal Noise Modeling

© " Malaret (1982) performed a study of the general noise effects in
multispectral sensor systems and their impact on data analysus.. In this
research, his model for the electrical noise present in these types of sensors will
be used, augmented by models for radiometric and calibration errors. Figure
2.23 contains a block diagram of this noise model showing the signal
dependent shot noise, thermal noise, radiometric error, and calibration error. -

s Absolute - | SR - ‘Relative |
| Radiometric' ~ Shot |[|Thermal | (#{Calibration}| = -
Error | ™| Noise || Noise Error .

" Incoming Detector
- Radiance ‘Output

Figure 2.23 Noise Model of Sensor. -

In his work, Malaret showed how the shot noise in a multispectral sensor
can be ,modeled as a zero mean Gaussian process with its variance
proponiOnal to the signal level (assuming the typical signal levels associated
with Landsat sensors.) In this research, the shot noise signal dependence is
implem'ented“ by having the variance of a Gaussian random number generator
proportional to the signal level. These random numbers are then added to.the
signal level. | | |
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Thermal noise has been shown to have a Gaussian distribution also with
zero mean and a variance proportional to the product of detector temperature,
bandwidth, and resistance. These factors are assumed to be relatively
constant, and thus the level of the thermal noise is fixed. It is |mplemented asa
Gaussnanly distributed random number added in to the signal level receuved by
the sensor. - : ‘

Two types of radiometric error are found in the sensor system absolute
and relative calibration error. Absolute errors lmply a determunlstlc change in
"output level, while relative errors are manifested as stochastic noise. Table
- 2.14 shows several causes for these errors and the type of error produced.

- Table 2.14 Sources and Types of Radiometric Errors. - o

Error Source k Error Type
Change in transmittance of optics absolute .
Change in gain of detector amplifiers - absolute: - -
Change in characteristics of calibration standard absolute ., .
. Change in detector quantum efficiency : relative =

~ Absolute errors are lntroduced in the model through addmve offset The
level of error is constant across the detectors, but is signal and wavelength' ’
dependent The model for the relative calibration error has been developed
under the assumption that each detector channel in the imaging array may

- undergo a random and independent change in its response over time. Thus

the radiance level required for a given output may differ from detector to
detector :

From the statistics given in Castle, et al. (1984) it was determmed that the

| actual output of detectors may vary as much as 1% from the cahbrated output
given the same input. Assuming an uniform distribution for this error, - then the
multiplier for the uniform random number generator would be chosen to be 1%
of the signal level. The standard deviation of this error is given in equation 2.29.
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Depending on the spatial arrangement of the detectors, the relative
calibration error may be constant in one spatial direction. For example, a linear
array' of detectors may cause relative errors across the image, but since the rest
of the iim_age is formed by the motion of the sensor platform, the relative erroris
constant down the columns of the image. This may cause a vertical striping
effect. Or, for a line scanning detector'array, the striping may be horizontal as
was found in early Landsat MSS sensors. Thus, in implementing the callbratlon
error model the type and arrangement of detectors must be consrdered

,2.3.3? HIRIS Model | | |
In this subsection, a model for the High Resolution Imaging Spectrometer
(HIRIS) is presented.- The instrument is described in Goetz and Herring (1989).
HIRIS is meant to be used in an on- -demand mode of operatlon gathering data
at the request of a science: |nvest|gator Kerekes and Landgrebe (1989a)
present a full description of this instrument and its performance Table 2. 15,,
contains a bnef overvrew of the instrument and its general design parameters

Table 2.15 HIRIS Functional Parameters.

'Design Altitude o 705 Km

Ground IFOV " - 30m
Swath Width ' _ 20 Km
| Spectral Coverage 0.4-25um
: RS 192 Bands
Average Spectral Sample Interval ,
0.4-1.0 um o ©9.4nm
. - 1.0-25um ‘ ' 11.7 nm
Pointing ' ' : '
" Down-track ‘ . ~ +60%-30° .
Cross-track ' +20°/-20°
Data Encoding - , ’ 12 bits/pixel
Maximum Internal Data Rate 512 MBPS
‘|Maximum Output Data Rate ce 300 MBPS

Image Motion Compensation Gain , 1,2,4,0r8
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. For this research the model» shown in Figure 2.24 is used for the HIRIS

- ‘instrument.

This model version has 201 equally Spaced (10 nm intervalS)

'spectral bands from 0.4 to 2.4 pm and includes most major spectral, spatlal and
radlometnc effects of the instrument.

OPTICS
B Incbming , X
. ctral Optics Spatial
gzgg;%e“" Transmission "] Focusing
DETECTOR |
| Detector Shot Read
@"“ Response Noise [——® Noise

1T 1

IMC

Dark
Current

| | - Signal
@__"’ Scaling

SIGNAL CONDITIONING

| b

Figure 2.24 HIRIS Model Block Diagram.

pTCalibration

Relative

Error

A/D

_"“'b‘ Conversion

_ Output
Digital
Number



Chapter 2 - Remote Sensing System 56
Modelmg and Simulation ,

Instrument parameters have been obtained from a progress report by
JPL (1987). These parameter levels are based upon preliminary specifications
and prototype testing. The following paragraphs and figures detail the blocks in
the overall diagram and present relevant parameter values. '

The sensor has two detector arrays to cover the entire spectral response.
- The Very Nedr iInfrared (VNIR) array covers 0.4 - 1.0 um, while the Short Wave
Infrared (SWIR) array covers 1.0 - 2.5 um. The scene is imaged line by line as
the senSOr'passes over. Each scene line is sampled spectrally by ‘being
dispersed across the detector arrays.

The spectral'transrnittance~of the instrument optics is shown in Figure
- 2.25.. Note the low response at the spectral gap between the VNIR and the
SWIR arrays at 1.0 um.

0.5
0.44
0.3

0.2

- Spectral Transmission

0.14

0.0 +—r—y—v—T T T T T T T T T T T

0.4 ‘06 08 1.0 1.2 1.4 16 1.8 2.0 22 2.4 .

Wavelength (micrometers)

Figure 2.25 Spectral Transmittance of Optics.

B .'The normalized spatial response of the optics and field stop is assumed
to be’simila’r to the that of the Landsat Thematic Mapper instrument, as they both
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have a Ground Instantaneous Field of View (GIFOV) of 30 meters. Figure 2.26

shows the measured down scene and across scene normalized responses as a

function of angular distance for the TM, taken from Markham (1985). The data

- points shown are the discrete values used in the simulation. At the nommal

, altltude‘of the HIRIS instrument, the distance on the ground between these
points is approximately seven meters.

—1o— Across Scene
snsecnnngeesess - DOWN Scene -

Normalized Response

Angular Distance (microradians)

Figure 2.26 Normalized Spatial Response.

The radiometric conversion from the incoming spectral radiance
(mW/cm2-sr-um) is accomplished by dividing by 1000 mW/W, multlplymg by the
transmittance of the optics and by the AQ (the product of the detector area and
the solid angle of view) of the optics. The output of the optics model Py, the,
incident spectral power, is then in units of watts/um The AQ used in the model

'is 1.44 x 106 cm2-sr.

The spectral quantum efficiency n of the detectors is shown in Fig‘ure
2.27. The incident spectral power P, at wavelength A is converted to a number

of electrons S at the detector by the mtegratlon of the incident photon Ievel over
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~the pixel integration time. Thus, the overall radiometric conversion is shown in
'equatlon (2.30).
, 1000 mW e A (o
) S= Lk Scene . 1W  ° AQd Toptics cALeme hc ot ; (2.30)
Where,
- AA = 0.01 um, wavelength interval of spectral samples

A= wavelength of interest (um)

h = 6.62 x 10-34 Joule-sec, Planck’s constant

¢ = 3 x 108 meters/sec, the speed of light

t = 0.0045 seconds, pixel integration time
n= detector quantum efficiency.

Since the noise level data and full scale specifications were obtamed in

terms of number of electrons, the signal level is stated in these same terms and
is unitless. ’ SR - '

1.0

0.9+
08 -
0.7+
064
0.5-
0.4+

0.3 +4

‘Quantum Efficlency

0.21

0.14

0.0 +—r—TrT—rT T T T Tt
0.4 06.08 1.0 1.2 1.4 1.6 1.8 20 2.2 2.4

Wavelength (micrometers)

Figure 227 Spectral Quantum Efficiency.
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' The Image ‘Motion Compensatlon (IMC) is implemented through.
movement of the down-track pointing mirror to offset the platform speed and |

Eo ’:".eiffeo,tlve,ly mult_rply the plxel mtegratlon time by the gain state selected: 2, 4, or 8.

The norse in this model oonsnsts of a determlmstlc dark sugnal level and' -

o ) ,'absolute radrometnc error, and random shot noise, read noise, and relative
"jcahbratlon error. Thermal noise has been found to be msrgmfrcant AII noise is
s onsrdored to be. stoohastrcly independent between noise types and spectral'

s x _bands Table 2. 16 contarns several parameters of the detector arrays

” Table 2.16 Parameters of Detector Arrays in Terms of Electrons (¢°).

L Dark Current ‘ 0 e - 27000 e
- JRead Noise Standard Devratlon 300 e . 1000 e
Full Scale Level 577,395 e- 1,441,440 e-

- The dark current is simply added to the received signal level in the}

, model The absolute radiometric error is included in the detector portlon of the
model by multiplying the total sngnal by (1 + Eg), where ER is the decimal Ievel of
error. Read noise is added in as a zero mean Gaussian random number wrth a.

: standard deviation as in Table 2.16. Within each: detector array, the read nolse |
level is assumed to be constant over wavelength. »

: The shot noise in the model consists of zero mean Gaussuan random
' ‘numbers with a standard deviation equal to a function of the total srgnal level in
~ the detectors. This total signal is comprised of the incoming radranoe and the
-~ dark current level mentioned above. Figure 2.28 shows several pomts relatmg’

~ total signal and shot noise levels taken from the JPL report, along with-a curve
' showing the square root of the total signal. It can be seen that the shot nouse j
: level is almost exactly the square root of the total srgnal level - S
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Figure 2.28 Shot Noise vs. Signal Level.

t B
P
\

, Thus the standard devratlon of the shot noise process is glven by
equatlon 2. 31

shot

‘ .

S'is the total (sum of received signal and dark current) detector signal
level in electrons Note that this relatlonshrp is assumed to be mdependent of

: wavelength

The relative calibration error is implemented by'adding in- uniform
random numbers wrth .zero mean and a standard devnatlon as was glven in
equatlon229 : : : GRS
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B The conversnon from the e levels S” (recelved slgnal plus norse and |
callbratlon error) toa dlgltal number (DN) occurs as in equation 2.32.

| - DN = mm{"lMC .,Fo[2 -1)} s S (2.32) 5
'.'\'Nher'e,:“'j.- SR : _ ' : : o
= IMC = IMC Gain State

F = Full Scale Electron Level (shown in Table 2 16)
Q Number of radlometrlc bits (nomlnally 12) :

; The dlwslon by the IMC gain: state is mcluded to preserve the dynamlc -
o range of the detectors over the various, galn states. : :

234 Radlometrlc Performance Measures | , .
o Several measures of the radiometric performance of remote sensmg‘ :
instruments are commonly used All of these. measures are a functlon of
'wavelength atmospheric condltlons sensor response and sensor electrical
‘noise. In this subsection, two common ones are described and defuned as they
a are used in thls research '

, ; Norse Equnvalent change in Reflectance (NEAp) is used in |dent|fy|ng the ;
: smallest differences in the surface reflectance that are detectable by the sensor.
ltis deflned as being the equivalent change in the reflectance of the surface to
match the total noise level in the sensor. In terms of the parameters used in this
f»report this i |s given in equation 2.33. Note that these parameters are dependent
vupon the sensor spectral band for WhICh the calculatlon is being made

NEA \/ shot therm+ofead+°iuant+°?:al - o
— 1. " (2.33)
E, B(l) G

1t kTotaI AAtrn

B(x) lS the conversmn from |nC|dent spectral radiance to the sugnal level
' »ln the detector for the appropnate band For -general multlspectral scanners
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this is the surhmation given in equation 2.26, while for the HIRIS model it is the
right side of equatlon 2.30. The resulting signal level is then scaled by the

absolute radro'metnc error (1+ER).
1 ,

The Srgnal -to-Noise Ratio (SNR) is another common measure of
performance of a remote sensing instrument. It is commonly expressed as the
log of the ratro of the signal level of interest to the total noise level. '

\ .

In. many Earth: resource analysis remote sensing appllcatlons the output
product .is some form of classification . map of the observed area. The
classification rs vusually obtained by a computer algorithm that uses the mean
and covarianoes of the multispectral image data to distinguish between the
classes. Thus in this application not only are signal Ievels |mportant but SO are

~ signal power varlatrons

In this report two types of SNR are defined. One based on the mean
signal level, whule the other is based on the covariance of the received signal.
The voltage SNFt is useful for determining the dynamic range requrred of the
sensor, while the power SNR is useful for studying the sensmvrty of the sensor
in. dlscrrmrnatmg among surface class types ~ '

_ ‘The 'voltage SNR is defined for a,sen,Sor band by dividing the mean
signal level in that band by the square root of the sum of the noise levels for that
band, as in eqt:ration' 2.34. : '

o , 1 ' =
o l : 7 EL TotaITAtm pBQY
Voltage SNR =20 log, - (2.34)

R AR R+ R+

| shot therm read quant
'i |
Here p lrs the mean reflectance of the surface, and B(1) is deflned as

| above The power SNR is defined for one wavelength m in the HIRIS model to
be as in equatron 2.35. - '
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1 .

- | LE T B(k:m)]z '

POWGFSNR=10|091O 0271-]:75 }.Total k,Atm : (2.35) -
R R+ R+ R

shot read quant

Here, o2,
calculating the SNR for a particular scene, the mean and variance of the surface
reflectance are usually calculated from the combined data set of all classes

represented in the scene.

is the varivance of the surface reflectance for wavelength m. In

In computing the power SNR for the multispectral scanners, or for
features derived from the HIRIS sensor by combining bands, the signal levels
cannot be simply added because of the band-to-band correlation present in the
reflectance data. In these cases, the signal variance is the sum of the individual
variances, plus terms due to the covariance between each pair of wavelengths
m and n, combined in the feature as in equatlon 2.36. :

M M

. | ZZ"mn B*(A=m) B* (x_n)
Combined Power SNR = 10 log, , P v
| | Gihot + 0tzherm + ofead + quuant °2ca|

(2.'3‘6)

- M isthe number of wavelengths combined for the band or: feature whlle
' B*(?L) is the product of the radiance received from a completely reflectlng
surface and the conversion to the signal level in the sensor for the appropriate
wavelength ‘The m,n entry in the reflectance spectral covariance matrix is
denoted here as op,,. Also, the noise variances as used here are the sum of the

mduvndual wavelength variances combined appropriately.

2.4. Processing ,
Processing plays the most lmportant role in remote sensmg systems as it

is the part that provides the mformatlon that the system is designed to acqunre

Aspects of processing in remote sensing are discussed in chapters 1Z‘th|jough
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24 of Colwell (1983), chapters three through six of Swain and Davis (1978), and
in the text by Richards (1986). Numerous other texts and articles have been
publlshed dealing with the processing of remotely sensed images.

Tabl,e 2.17 shows a list of typical functions used in the processing of
remotely_'vs'ensed images. The task of the processing portion of the system is to
take the' multispectral image from the sensor, and any other input data or
algorithnjjs, and then compute an-output information product. This product may
be a ctasSiﬁcationmap showing to which of the informational classes each pixel
belongs, or it may be a summary of the total area within the image that belongs
to each of the classes. The processing functions shown in Table 2.17 aid in
this task by allowing the information to be obtained efficiently and accurately.

Table 2.17 Example Processing Functions.

Processing Type , Example

Radiometric L _ Calibration
Scaling

Compression/
Decompression

1 . Geometric - Registration
N ' __Resampling
Data Reduction | Feature Extraction
. o . |__Feature Compression
. Class Separability Training Field Selection

Interclass Distance
~ ‘ : - Intraclass Distance
Classification - Unsupervised (Clustermg)
' ‘ Supervised
Class Area Measures

]n‘ the rest of this section these processihg fUnctions are discussed: and |
where appropriate, models are presented for use in the sumulatlon of remote
sensing systems - -
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' 2 4.1 Radlometrlc Processing

The goal of radiometric processing is to allow accurate and repeatable
callbratlon of the radiance levels represented by the digital numbers in the
- multispectral image. This is important when comparing images over the same
area from different dates or sensors. Price (1987) discusses the accurate
calibration of several sensors for comparative purposes. Papers by Fischel
(1984), Murphy, et al., (1984), and Castle, et al (1984) dISCUSS the callbratlon
- of the Landsat Thematic Mapper sensor.

, For modeling purposes, the calibration models presented in sectlon 2.3.2
are useful in studying the effect of these radiometric errors. o

2.4.2 Geometric Processing
" Geometnc processmg is generally concerned with correctmg ‘spatial

- distortions in the multispectral image due to scanning variations, detector -
- m|sallgnment or view angle effects. The aim of such processmg is again to

allow comparlson of images, or to match images to.other forms of spatlal data
such as topographlcal or land use maps. o

o Spatial distortions are often corrected by developing a map’pi’n"g ‘function
“from the ima‘ge to the control map by using identifiable features (control points).
in the scene. Pixels in between these points are often resampled to give a
desired spatial resolution. The papers by Park, et al., (1982 and 1984), and
Schowengerdt, et al., (1984) discuss the effects of these corrections.

Another form of geometric distortion is known as misregistration and is
due to the effective misalignment of detectors of the various spectral bands.
This may occur due to distortion in the imaging optics, or to the physucal location
of_ the detectors. It effectively causes the pixels of different bands to be imaged
from-a slightly different part of the scene. Misregistration has been studied by
Cicone, et al., (1976), Billingsley (1982), and Swain, et al., (1982). In the study
by Swam et al., it was found that misregistration by as little as 0.3 plxels can
affect classification accuracy.
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.. . Although they would be relatiVely straightforward to implement in the
~ sensor ‘spatial model, these forms of geometric distortion were not studied |n
this research. ~ ‘ ‘

243 Data Reduction T

In.most cases it is either necessary, or at least advantageous to- reduce
the amount of data in a multispectral image without dlmrmshlng_the
informational content. In the case of the upcoming HIRIS instrument the normal
operating mode produces data at a rate exceeding the capabilities of the
satellite's: communication channel, thus necessitating some form of on- -board
editing. For lower dimensional sensors such as Landsat ™ or aircraft
scanners, it has been shown that under conditions of limited training s‘a‘mpl‘es,_
classification accuracy decreases as more spectral bands are used in the
classification (see Hughes, 1968, and Chandrasekaran, 1975.)

Th|s data reduction may be accomphshed spatlally, spectrally, or by“

reducmg the radiometric resolution of the data. The spatial reduction may be as |

simple as deleting every other pixel or reducing the swath width of the sensor

“or as complex as a scheme described in. Ghassemian (1988) which retains

much of the spatial detail in the image while reducing the data to-a set of
features. Reducing the radiometric resolution may be used and usually will not
increase the noise level significantly, unless the quantization error becomes the
dominant source of noise in the image. | LT

Spectral reduction through the Karhunen-Loeve (or principal component)
transformation was studied in Ready and Wintz (1974). This method has proved
to be useful in reducing dimensionality while retaining class separability, even
in cases of limited training samples (Kalayeh, et al., 1983, and Muasher and
Landgrebe, 1983).  However, it requires computation of the eigenstructure of
the oovariance matrix and thus is not easily implemented at high data rates.

Wlth the advent of imaging spectrometers such as HIRIS on- board .
feature selection algorithms that can be |mplemented through sumple
‘programmable operations, such as summations, have been studied. Chen and
Landgrebe (1988) have extended a method first proposed by W|ersma and
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Landg'febe (1980) to select spectral regions to be combined. The algorithm
uses training samples from similar data, or -ground reflectance, and selects
wavelengths to be combmed based upon the elgenfunctlons of the spectral
covariance matrix. A simple set of summation coefficients may then be

Ny ._transmltted to the satellite and used to reduce the data rate. Factors of data

: reductlon of 10 or more have been found to be possible with llttle loss m the'
class rectsgmtlon accuracy (Chen, 1988). o ‘

In the si‘mulation program: developed in-this report, data redUction may be
‘accompllshed for the HIRIS model through the comblnatlon or welghted
summation of spectral bands ' sl

'2 4. 4 Class Separablllty Measures , :
- Class separability measures are computed from the statlstlcs of. known
class samples and are used to obtain an idea of the statistical dlstance .
, between informational classes. These measures have been studled both as a
‘ feature selectlon technique (Swam and King, 1973), as well as an estlmate of
error probablllty (Kallath 1967 and Whitsitt and Landgrebe 1977) '

":Many»f of _.these ’sep'avrability measures are for two classes,t and are
- computed from the mean vectors and covariance matrices. As-an example, the
' Bhattacharyya distance By, is given in equatlon 2.37 between class k and class

[ wuth mean vectors Z, and Z , and covanance matnces )2 and Z,
k Zl |
42 1

[IZd ]

o-1l5 zl(z 2 (57)e

Multiclass separability measures can be obtained from apriori class
probability‘weighted pairwise summations of such two class separablllty
measures “Whitsitt and Landgrebe (1977) discuss thls and other ways of
B measunng multlclass separablllty
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| Fukanaga (1972) also presents a multiclass separability measure that is
used in canonical analysis to reduce the dimensionality of data through a linear
transformation (Merembeck and Turner, 1980). This measure Jg is. descrlbed

' by equatlon 2.38.
~JF=trSWSb o e (.2‘.3:8.).

. -where,

ln these equations, Py is the apnon probabrhty of class k, and the mean‘ ,
vectors and covariance matrices are noted above. :

In the simulation program, both a pairwise summatlon of the
Bhattacharyya distance . and -the ' Fukanaga multlclass ‘measure are
implemented. The class statistics are computed from desngnated areas wrthmf
the known class areas.

245 Classification Algorithms

" The classification of a multispectral image into informational classes may
be done in an unsupervnsed manner by a computer algorithm, or in a
supervised approach by an analyst working interactively with the computer. In
either case, the accuracy of such a classification can then be computed by
comparing the resulting class map to a known class map of the area.
, Classificatlon accuracy has also been estimated from the class statistics,
Fukanaga and Krile (1969) present an analytical method for estimating -
accuracy in the two class Gaussian case, while Whitsitt and Landgrebe (1977)
dnscuss several consnderatlons in multiclass error estimation. -
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~In unsupervised classification, the data vectors are grouped into
separable ‘classe's through clustering algorithms (Duda and Hart, 1973.) ‘These
algorithms group data vectors that are "similar" in a statistical sense into
spectral classes. These spectral classes are then either subdlwded or
comblned to form the desired informational classes.

SupeNiSed classification is done by developing training statiétf&é,éi‘ihéf
through locati‘ng. known class areas in the image, or by applying a clustering
algorithm to help identify possible classes. Various classification algorithms
can then be applied to all of the pixels in the image and assngn them to an
mformatlonal class. T

- For the simulation program, a supervised classification technique using
the Maximum Likelihood (ML) classification algorithm has been lmplemented
The ML classifier uses the standard Gaussian assumption with class apriori
probabllmes dependent on the numbers of pixels in each class. Since the
scene is defined in the simulation, the class boundaries are known in the i image
and a classification accuracy can be computed directly. Class statistics are
' computed from designated training areas. The classification can be done on the
original image, or on the compressed image if the sensor was an’ ‘imaging
spectrometer type.

‘The classifier works by -assigning each pixe! the class label that provides
the maximum value of probability as coming from that class. That is, a pixel
Z(i,j) is assigned to class K' if gi(i,j) > gi(i,j) for all classes k in the scene, where
g is defined i in equation 2.39. L is the dimension of the class statlstlcs \

‘ | P I _
gk(:,;)_ — exp{-%[Z(i,j)-Zk] Z;[Z(-i,j)-zk}}
s o

' '(2.39)_

2 5 Summary and Discussion
~In this chapter, the modeling of optical remote sensing systems has been
dlscussed from a general viewpoint as well as one of simulation. The models
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disCussed represent an understanding of the system. Obviously, these models
cannot describe all of the effects and processes in the real system, but they
represent a level of understandlng of duplicating the real world in the computer

Iaboratory

Table 2.18 presents a summary of the various, aspects of the remote
1} sensmg system that have had models described in this chapter and
:|mplemented in the system simulation program RSSIM (Kerekes and

‘Landgrebe, 1989b).

Tab_le_2.1“8 Summary of System Parameters Implemented in Sim‘ulation.,,

. -Scene

-Sensor

Processmg

Spectral Means
'SpeCtral Covariance
: “S‘patial Correlation

- Spatial Layout
Direct Solar Irradiance

- Diffuse Solar Irradiance

Atmospheric Transmittance |

Scattered Path Radiance |

Zenith Angle of Sun
Zenith Angle of Sensor

Meteorol%)ical Range '

- Radiometric Resolution

Spatial Response
Spectral Resp’o_nse;‘ |

Electrical Noise

(Shot, Thermal, and Read)|

Absolute Radiometric Error

Relative Calibration Error

Detector Gain

Training Fleld Selectlon
~ Feature ;Selectlon_, |

Class Separability -

Class Accuracy |

Classification Map

" Whlle there are many effects not described in this table, it represents a
comprehensuve framework from Wthh to study their lnterrelated effects on

system performance
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| 31 * Model Overview
' The system model described in chapter two gave a tool to allow accurate

: v,___modellng and simulation of a remote sensing system. However, because of the

. ‘flexrbllrty and completeness it may represent too much detail for some system
studies. A simpler approach may be obtained by using some of the component
, models described in chapter two, and the work of several previous researchers,

- to develop a purely analytical system model.

Frgure 3 1 shows a block diagram of the analytical model presented in.
“this chapter. At each stage in the system model, the mean vector and

- covariance matnx of each class are modified by the function in that block.

E Reflectance

Statistics |Atmospheric| Spatial | Spectral
| —® Effects [ Effects [—P| Effects

PR [ Feat Classification
~ Noise . szctt'i'fn Error Accuracy.
—®1 Model > —®| Estimation [

(Optional)

Figure 3.1 Analytical System Model Block Diagram.
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A brief descnptron of these blocks and their assumptlons is grven in the
following paragraphs '

Be_ﬂggta_ucgﬁ_t_an_s_tm Each surface cover class is assumed to be

vmultrvarrate Gaussian described by the mean vector and covariance matrlx of
the reflectance The surface reflectance is also assumed to have a separable
exponentlal spatral correlation.

- SQ_aultunut_o.n_and_Atmschm The linear atmosphenc effects
model descnbed in chapter two is used here. } .

. M The spatial response of the sensor is assumed to have
the shape of a Gaussran probablllty dlSti’IbUtlon function. and be crrcularly

symmetnc ‘ N |

S_p_@_t_[aj_fhfg&ts This is a Imear transformatron to convert the scene
.spectral radiance to the received signal in the spectral bands of the sensor. ,In
* the case of the HIRIS model, the spectral resolutions are equal and this matnx is

dlagonal :

e NQLEM - The various types of noise described in chapter twovare
added in here. They are assumed to be zero mean, and uncorrelated between
noise type and spectral band. '

Eeature Selection - This is another linear tran’sform}ation, and is used to
combine sensor bands together for spectral compression. ;

- Error Estimation - The pairwise Bhattacharyya distance is calculated from
the modified class statistics, and used to estimate the error. Equal apriori
probabilities are assumed and the multiclass error is the sum of the pairwise
errors. - | S | R

A l‘ifsting of the FORTRAN program implementing the model discussed in
this chapter for the model HIRIS sensor is included in Appendix E.
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3. 2 Analytical Expressions i
‘This section presents the equations that form the analytlcal model. The-'

, model first applies the system functions to the statistics of each of the K classes '

_then computes the pairwise error estimates. ' '

,3-2-1 Reflectance Statistics | -
The surface reflectance is assumed to be spectrally multlvanate .

Gaussuan with a spatlal correlation described by a separable exponentlal

model ' L ‘ : : ‘

, , The spectral reflectance statistics are computed from the database of
FSS field spectra 'To take full advantage of the spectral resolution consldéred
“in this research, the data is first mterpolated to 10 nm wavelength spacmg by
using the algorithm presented in Appendlx B. Thus, for each class k the mean

vector Xk, and the covariance matrix Ek will have M = 201 dlmenSIons.,

The spatlal model has a crosscorrelatlon functlon for wavelengths m and
n as shown in equation 3. 1 : o
. an i S
R, (tm=e ™ e ™ A
‘This form yields spatral crosscorrelation coefflcrents Pmn,x for across the
scene and Pmn y for down scene as shown in equatlons 3.2 and 3. 3
apn : Sonee
=e ™ _ . ‘(3.2)
-b._ Co )
e . A (3.3)

pmn,x

Pmny =

~ For the model lmplemented in this chapter the spatlal correlataon'
. coeffrcrents have been assumed to be constant across all spectral wavelengths
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3.2. 2 Atmospherlc Effects -

The atmospheric effects model converts the scene reflectance to the
spectral radiance received by the sensor. Equation 3.4 shows the spectral
radiance L, received by the sensor. : SRR

1 o ! e s
L, —L X+Lthh [Lx,Path'Lx.PathJXA - G49)

, X is the surface reflectance in the sensor IFOV, while XA is the average -
reflectance around this area and represents the source of the adjacency effect
dlscussed in chapter two. For this model, the adjacent reflectance Xa is
consndered to be the average reflectance of all K classes. It is also consudered
to be uncorrelated with the reflectance wrthln the sensor IFOV

" ‘
Lx,Path’ and LxP g are the path spectral radiance components for surface

albedoes of 1 and 0, respectively. L, g, the spectral radiance reflected from a
perfectly reflecting surface, is as shown in equation 3.5. |

lcos(esolar) B, Direct * Ex,oiffuseJ T (3.5)

Ls= A, Atm

1
AS T

Thus after the application of the atmospheric effects function, the mean
~and covariance of the signal radiance is as follows The mean spectral
radiance is glven by. equatlon 3.6. - o
C=L X+L° 00 % .
AT s T Sapath T Sapath TA 38

L;'g h is the difference between the path radiances for a sUrface albedo

of 1 and 0. The spectral radlance covarlance matrix ZLkls denved as follows

for each row m, column n entry oL mn*
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- £f{tn- L) (b0 ) . en

10 . — .0 10 —o—)
(L X I'm Path Lm,PathXA.m L Sxm mPath m,Path Am)

7= E Y E -
1-0 = ,0 10 o— (3.8)
(L X I"n Path |'n.Patth.n i I"n.‘SX“-l'n,Path-Ln,Path A.n] :

1-0° 1-0 ‘ H :
= ' - (8.9

I'm S an nS I'm,Path 0-A,mn L'n,Path » ‘ ‘ ( ; )
Here Oy, mn is the mn entry of the reﬂectance covariance matrrx Zk, whrle

‘CaA,mn is the mn entry of the covariance matrrx 2z ‘A of the averaged reflectance,

~ which |s given in equation 3.10.

2

2A=-;~(2+2+ 5w

In the derivation of 2 A,‘the reflectanees averaged are considered to be

uncorrelated with each ‘other.

323 Spatial Effects el
The spatial effects function uses the results of Mobassen et al,, (1978) to
modify the spectral radiance covariance matrix. The separable exponential
spatial correlation model of equation 3.1 is assumed for the scene, along with a
: Gaussran PSF for the sensor as shown in equation 3.11.

h(u,v) = 1 exp(u +V J | (3.11)
S 2n X S ‘

Since o, is related to the size of the sensor IFOV in scene cells as the
' sensor Iook angle changes it must be modified to reflect the change in ground
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size of the IFOV. The spatial direction that this occurs is dependent upon the.
relative azimuthal angle of the sensor and the ground reference axis. For
simplicity, the sensor azimuth is defined to be 0°. Thus, in terms of 1o, and |
lo,y» parameters used below in the welghtlng function, Go is modrfled as.in

equatrons 3 12, and 3.13.
(3.12)

[3e,

r
o cos(ewew

Mobassern defrned a werghtlng matrlx W, that is a functron of the spatial |
model and PSF parameters. Follownng his results the sensor spatral response

| mOdlerS each mn entry in EL;‘ as in equatron 3.14.

Lmn

e
A 49""{(—2m] Fox © oy} e o) e Sic
and, erfc(+) is defined as in equation 3.16.

Srnce the spatral correlatlon coeffrcnents have been assumed to be
constant across spectral wavelengths the parameter W ' rs constant for aII
| I one uses differing a and b, care must be taken to ensure. the resultrng. |
covanance matnx remains nonsmgular ' ' '
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| s , o
Thus, equatlon 3.14 glves a new ZLx that represents the spectral‘ .
, radiance covariance matrix after apphcatlon of the spatial effects The mean :
o spectral radiance vector is unchanged by the spatlal model as shown |n.{
'equatlon 3.17. '
S — ‘ B 3.17)
L, =L, - (B17)

3.2.4 Spectral Effects
' The sensor spectral effects are applied by a linear transformation matrix
B which converts the spectral radiance to the signal levels in each of the sensor
image bands. For the line scanner sensors with L bands, this matrix is L rows
by M columns, with each row consisting of the normalized response of that band
~ to each of the M wavelengths of the spectral radiance. Also, each entry in the
'matrlx is ‘multiplied by A), the spectral resolution of the spectral radlance

| vectors The resulting signals will be in terms of radiances. Thus, this matnx B ls'
formed as in equa’uon 3.18. '

™ Band 1 Response ™|
Band 2 Response

B =A\ ° ,
S o ' L (3.18)

|__Band L Response_
LxM

For the HIRIS imaging spectrometer with the same spectral resolutlon as
the scene, the matrix will be dlagonal M by M with each entry b, as shown in

equatron 3.19.

o A, R '
bmm'zAQo:A}\,oF‘—EotoTopﬁcson_ (3.19)
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The various symbols are deflned in section 2.3.3 of chapter two. The
'resultlng SIgnal will be in electrons.

For'either sensor type, the mean received signal vector is thus obtained
by ‘ ,

— s v , v
S=BL, - @29

o while the signal coVariance is as shown in equation 3.21.

. S T
ZS=BZHB_ |
- (3.21)

- 3.2, 5 Norse Model S ,
B The noise effects are modeled as zero mean random processes except
for the deterministic absolute radiometric error Eg and detector dark current D.

"These determmlstlc effects are added directly to the mean signal vector to yield
’the nonsy mean vector Y as’in equation 3.22,

The random noise sources modeled include shot noise, thermal noise,
read noise, quantization error, and relative calibration error. The form of these
models was discussed in section 2.3.2 of chapter two. In his thesis, Malaret
(1982) showed how these sources of noise affect the covariance matrix of the
sngnals received by the sensor. The result used here is that while some of the
noise may be dependent upon the signal (shot and calibration error), they are
still uncorrelated with the signal and the variances add directly. Also, eachv'
noise source is assumed to be mdependent of the others and uncorrelated from
spectral band to spectral band. Thus, the signal covariance is modn‘led as in
equatlon 3.23..
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ZY=(1+_ER)2 ZS +AV +A s A+ A +>Acal_ (323)

therm shot read =~ “quant

Here, the A's are diagonal matrices of the variances in each 'sensor
band of the various noise sources. ‘

3.2.6 Feature Selection | | |

Feature selection is optionally applied by combining the sensor bands
according a weighting matrix F to create the features Z as in equations 3.24 and o
3.25. - |

Z=F¥Y (324

z (3.25)

To transform the L-dimensional vectors Y to the N-dimensional feéturé
space, F is N rows by L columns of weighting coefficients. For the spectral
feature compression scheme described in section 2.4.3 of chapter two, these
coefficients are just 0 and 1 to appropriately skip or combine the sensor bands.

As an e‘xample; consider a transformation for the output of the HIRIS

model td_ two features. Let feature 1 be the combination of the first five
wavelengths 0.40 - 0.44 um, while feature 2 be the combination of the last five

wavelengths 2.36 - 2:40 pm:. The matrix F for this example is shown in equation
3.26. | | - |

. r1111oomoooooﬂ

0000000..011111 - 828

2x201

' 3.2.7 Error Estimation ,

After the class statistics of each class has been modified by the above
functions, an estimate of the probability of error is made. Whitsitt (1977)
discussed a pairwise error estimate based upon the mean and covariance
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 statistics and found it to be closely -related to the actual classification error.
Equation 3.27 shows this estimate of probability of error Py which uses the
‘Bhattacharyya distance By between classes k and | defined in sectlon 2.4.4 of

_chapter two. | - |
Pt':erfc{ /—QBH}. - SR (327)

Whltsnt also dlscussed an upper bound on the probablllty of error in the
multiclass case as belng the sum of the pauwrse error estimates. Thus, in the

,' model the'following estimate for the classification accuracy ﬁc (in perc:ent) is

used.

” . N
_100[1-2 ZP :I (3.28)
k=11=12k | o ‘ L o
Since - the summation of the parrwrse érrors is an upper bound thls
estnmate of the classification accuracy will” be pessrmrstlc |n multlclass
experiments.

33 Comparison'Between the Anal’yticablb and Simulation Models

‘While the analytical model offers the advantages of being snmpler and‘
computationally more efficient, it lacks in being able to accurately represent the
real world as compared to the simulation model. Table 3.1 lists several factors
that the analytrcal model is not able to represent at present ‘

~_Table 3.1 System Factors Not Included In Analytical Model.

- |Size and Spatial Arrangements of Fields
|Mixed Pixels at Field Borders

Non Gaussian Sensor PSF

|Training Field Selection and Size -
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- These factors can be significant Section 4.3 of chapter four b‘fesénts
some results -of comparrng the accuracy estimate of the analytrcal and

- -.sumulatron models

: Another dlfference between the modelmg approaches rs that the
analytlcal model works ina parametrlc space, while. the srmulatlon model
.produces multlspectral images that can be drsplayed and processéd Irke teal
' ’ones ‘This advantage of the srmulatron approach is useful for the development‘«
f.of processmg algonthms when "real" data rs not avaulable
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"CHAPTER 4
APPLICATION TO
* IMAGING SPECTROMETER SYSTEM ANALYSIS

4. 1 lntroductlon ' . : :

~Inthis chapter, the system models presented.in-this report are applled to
the study of system performance using a proposed imaging spectrometer. _The .
" HIRIS -(Goetz and Herring, 1989) instrument is proposed as part of the Earth
Observing: System program that will drive the international remote sensnng effort
into the 1990's. It was chosen for study for the followrng reasons.

e It leads the next generatlon of sophustlcated remote sensung .
. instruments. » SR
B °.,‘.Be|ng in the desngn phase its performance can only be. predlcted -

- . through modeling and simulation. 2 -
« Since it will be operated in an on-demand mode, it is lmportant to
' develop an understanding of ‘the system performance under varylng
v - observational conditions. v
.« Because of its flexibility of parameters it may be used to sumulate
. other sophlstlcated sensors and study their performance
'« The complexity of the instrument puts it close to the fundamental l|m|ts
“of technology, and its study helps galn a basic understanding of the
~remote sensing process. '

The following sections describe the performance of this instrument for a
variety of system configurations and performance measures. The first "part- ,
presents the radiometric performance of the sensor with curves showing the
Signal-to-Noise Ratio (SNR) and Noise Equnvalent Change in Reflectance
(NEAp) under a variety of conditions. It is followed by a comparison of the
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; performance of the slmulatlon and analytlcal modehng approaches 1o system
_ ‘analysis. This section is included to illustrate the limits of each approach. The ;
" ~ rest of the chapter explores the effect on classification performance of -several
system parameters :

For many of the experiments performed in this chapter, the reflectance

statlstlcs used were from a test site in Finney County, Kansas T’able 41
provndes a descnptlon of this data set - ‘

Table 4 1 Kansas Wlnter Wheat Data Set.

" [Tocaton ~ Finney County, Kansas~

|Date - ‘ May 3, 1977
+ . JLARS Expenment Number ... 77102207 TR
- LARS Data Tape Number - 4260 .
. lasse Num_b_e_qf_&gs Mm_pﬁr f
| Winter Wheat ~ : 658
| Summer Fallow - 6 ' S 211
1 Unknown- -39 : . 682

‘4 2 Radlometrlc Performance
To gain an understandnng of the radiometric performance of HIRIS under

a variety of conditions, the model! described i in chapter two was used to examine
thelr effect on SNR and NEAp. -

For the results lncluded in this sectlon the system conflguratlon shown in
Table 4 2 was used as a basellne The solar lllummatlon and atmosphenc
effects were obtalned using the LOWTRAN 7 computer code. ' ' '

i Before presentmg the results of these noise studres it may be helpful to

' - present an example of mstrument performance for a typical vegetatnve scene.

. Reflectance data from all three classes from the data set of Table 4.1 were.

~ combined to form a new data ensemble. The mean reflectance and vanatlon of-
.thls ensemble are plotted in Flgure 41, '
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Table 4.2 Radiometric Study Baseline System Configuration.

Atmospheric Model 1976 US Standard
Haze Parameter ' Rural Extinction .
. {Aerosols o : Mie-Generated
‘| Diffuse Irradiance Constant 0.84
Surface Meteorological Range - 16 Km
Solar Zenith Angle - 300
Solar Azimuth Angle ‘ 1800 |
View Zenith Angle o 0°
View Azimuth Angle ' 00
Surface Albedo 0.10
IMC Gain State 1
1Shot and Read Noise Nominal
Radiometric and Calibration Error 0% 1§
Radiometric Resolution 12 bits |
50 1 ;
emsessesnsesses  Moan + Std Dev
Mean Reflectance
40 4 =mmecee- Mean - Std Dev
\Q - -,
< 30- Ve
8 / |
§ i , /\\‘
$ 20 4 /-\ )
] ] PN
0 T T T Ty T T.8 3 L | I } T

04 06 08 10 12 14 16 1.8 2.0 22 2.4

Wavelength

anure 4 1 Mean and Variation of the Surface Reflectance of the Kansas
Winter Wheat Data Set of Table 4.1.
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, To obtaln an idea of how this- reflectance is modrfled by the atmosphere :
| gand sensor response a simulated image was created using the baseline
system confrguratlon The resultlng mean digital counts and the|r varlatlon are

:.,shown in Frgure 42 ‘Several effects are |mmedlately notlceable The
;',absorptron bands of the atmosphere are present, as well as a reversal in the
- relative values of the visible and infrared amplrtudes This reversal is due to the ‘
. effects of the solar rllumlnatlon and gain settings of the sensor. ’

Digital Counts

LJNNEE S EEN | - e p——p e —y— = s B
0.4 0.6 0.'8 1 0 1 2 1. 4 1.6 1.8 .20 22 24
Wavelength

Figure 4.,2:2 Mean and Var_iatiovn_.of the Image Vector as Received 'by‘“l-_llBIS.

" The voltage and power SNFl for this conflguratlon and: typrcal surface.
- ,reflectance are shown in Figure 4. 3. The power SNR shown here and ln the' -
~rest of the chapter was calculated wrth the srgnal covariances scaled by the
, ‘f"spatlal welght functron W dlscussed in chapter three The NEAp is shown in

' ’»Frgure 4.4, B :
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o Figure 4.3 Voltage and Power‘.SNR fdr Typical Reflectah'ce."} -
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Figure 4.4 NEAp for Typical Reflectance.
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The following Figures 4.5 through 4.22 show the Voltage SNR and NEAp
variations as a function of the parameters shown in Table 4.3.

Table 4.3 Radiometric Performance Parameters Studied and Their Variations.

- [Meteorological Range 2,4,8,16,32 Km

Solar Zenith Angle 0°, 30°, 60°
- |View Zenith Angle 0°, 30°, 60°

- {Surface Albedo 0.03, 0.10, 0.30
Shot Noise Level 0.25,1.0, 4.0
Read Noise Level , 0.25,1.0, 4.0
Radiometric Resolution 8, 12, 16 bits
IMC Gain State 1,2,4,8
Relative Calibration Error Level 0.0,0.5,1.0, 2.0%
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Figure 4.5 SNR for Varying Meteorological Ranges.
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Figure 4.10 NEAp for Varying View Angles.
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Figure 4.12 NEAp for Various Albedoes.
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These figures show much about the radiometric performance of the
HIRIS instrument for the various parameters studied. A common observation
from all of these results is the presence of the many absorption bands in the
atmosphere. The main water absorption bands around 1.4 and 1.9 um make
these wavelengths and those nearby useless, while the several other
absorption bands present reduce the utility of those wavelengths for sensing of
the Earth's surface. The following paragraphs discuss the effect of each of the
parameters studied. :

Mg_teQ_LQ_Logml_B_angg_ (Figures 4.5 and 4.6). In general, a decreasmg

meteorologlcal range results in a lower SNR and higher NEAp, but the effect is
seen to be much more significant in the visible and near infrared spectral
regions. This parameter's effect becomes significant at ranges less than 16 Km.

‘ Sp_[ade_mm_Angjg (Figures 4.7 and 4.8). ThIS angle is seen to have little
effect at zenith angles less than 30°. At angles greater than this, the effect on
SNR is constant across the wavelength, while the effect on NEAp is seen to be

greéter at the longer wavelengths. This is due to the lower signal levels at
these wavelengths which require a greater Ap to match the dommant read

noise (see below)

yiew Zenith Angle (Figures 4.9 and 4.10). The effect of this angle is also
minimal for angles less than 30°. At angles higher than this, the effect is

greatest in the visible region because the path radiance (which increases with
zenith angle) is more significant at these wavelengths. ‘

- Surface Albedo (Figures 4.11 and 4.12). While this parameter has a-
significant effect on SNR, its effect on;NEAp is minimal. In the calculation of
NEAp, the only term that depends on albedo is the shot noise. Since shot noise
is most significant in the visible wavelengths (see below) the effect of albedo on
NEAp is only notlceable there.

Shot and Read Noise (Figures 4.13, 4.14, 4.15, and 4.16). Both the SNR

and NEAp curves show that shot noise has a more significant effect over the
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" VNIR array wavelengths (0.4 - 1.0 um), whlle read noise is dommant in the .
SWIR array (1 0 2.4 um). - ,

: ] (Figures 4.17 and 4.18). The nominal
radlometnc resolutlon of 12 bits yields a quantization error that is not significant
when compared to the other noise sources. However, at 8 bits of resolution, the

,quantlzatlon error becomes significant. Also, it can be seen from the NEAp

- curves that this error is more sngnmcant at the lower signal levels of the longer

wavelengths :

]_m_agg_MmLQ_n_QQ_mpg_n_s_an_Q_n (Figures 4.19 and 4.20). At hlgher gam
states of IMC the SNR curves show a constant improvement across all
wavelengths. Looking at the NEAp curves, it can be seen that the |mprovement
in detecting the Ap of the surface is greater for the lower signal levels of the long

’ wavelengths

Bﬂw[aﬂgnjﬂg[ (Figures 4.21 and 4.22). Smce the: calrbratlon_ :

error is signal dependent, its effect is seen to be greater for the hlgher signal
levels of the visible wavelengths. At these shorter wavelengths 1% error is
significant, while at the longer wavelengths the error is not sngnlflcant unt||
Ievels of nearly 5% :

43 Comparison of Simulation and Analytic Model Performance

o - Several experiments were performed to be able to compare 'the' results

* between the 'simulation and analytical models. The system conflguratron was
matched as closely as possible for the comparison. S

A test scene was defined to be 80 rows by 80 columns of scene cells and
dwuded at the mrddle into two classes. The reflectance data used for these
classes were the Summer Fallow, and Unknown -class from the data set
described in Table 4.1. These classes were chosen for their low separability.
~ Table 4.4 gives the details of the system configuration used in the test. |
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Table 4.4. System Confrguratlon for Companson Test

Surface Meteorologrcal Range ’ 16 Km‘ ’
. Atmospheric Model ' ' 1976 US Standard -
Haze Parameter , , * Rural Extinction - -
‘-« Diffuse Constant - S 084 ] -
- - Solar Zenith Angle . : S 30°.
_ View Zenith Angle . : RTINS ¢ L
. Across scene spatial correlation Px - 06 -
" Down scene spatial correlation py - 08
R Ground Size of Scene Cells 15 Meters . | -
' §g sor (HIRIS Model) o ‘
“1i Spatial Radius , ' : e e
' Analytical model r, . 1.4SceneCells, [ .
v Simulator PSFIFOV. -~ =~ 30Meters |
" Point Spread Function - o . Gaussian | .
. Read Noise Level , o , ‘ Nominal - |
-} -~ Shot Noise Level , : - Nominal
7 IMC Gain State o T 1
- Relative Calibration Error - L S - 0%
~ Absolute Radiometric Error - ' - 0%
R Radiometric Resoluton . . .12 Bits -
- |Processing S -
o - Training Fields L 100% of Class Area ,

Feature Selection = Flrst 6 Features of Table 4. 5 i

Frgure 4. 23 shows an image of this scene with the model HIRIS sensor at |

A=t 70 pum. ThIS image was created using a scene cell ground size of 30
meters resultmg in 80 columns and 80 rows. The dwrsuon between the classes g
is barely visible along a vertical ling in the center of the |mage However ‘the
two classes are well separable when several features are used in- the

3 classrflcatlon algorlthm
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In Chen's thesis (Chen and L'a‘ndgrebe -1988), he listed the feature set
that his algorithm designed for the data set of Table 4. 1. This feature set is

shown in- Table 4.5 following.

Table 4.5 Optimal Feature Set fo'r.Kansas Winter Wheat Data Set.

Feature

Wavelength (um)

O)U'IAOJN—*O(O_G)\JO)O'IA(DN—*

0.70 -0.92
1.98-2.20
2.20 - 2.40
0.66 - 0.84
1.48 - 1.64
0.52 - 0.66
1.64 -1.78

 For each of these teste the simulation model was run five'times and the
- resulting accuracres averaged together. "Also, the classification accuracy shown
is the average of the two individual class accuracies.

For"t:"he base system’conflguratlon shOwn in Table 4.4, the accuracies
obtalned ‘are shown in Table 4.6. The values are with 1% of each other, h
lndlcatlng that, at least for this configuration, the sumulatlon model and the
analytlc model predlct similar performance

Tab:le 4.6. Classification Accuracy of Base Systemk Configurati'on.v ’

Simulation Model
~ |Analytical Model

88.06%
87.78%
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B The first test was to compare the effect on accuracy of the spatral model
parameters Figure 4.24 shows the result of changmg the spatlal correlation p = =
Px py of the scene cells. ' o '

.96
S —ﬂ—- Simulation
9 94 4 sy Analylic’
>
)
(]
B
_ § 924
-
-9 90 -
=
[\
R
=
[7:]
- g 86 4
86 Y i 4 Y T T

0.0 .02 0.4 . 06 0.8
Spatial Correlation Coefficient

.*Figme 4.24 Classification Accuracy vs. Scene Spati'al Correlation Coefficient.

| As can be seen, the simulation model and analytical modeul trajck;th‘ej -

- ".change in accuracy due to the spatial correlation. This validates the

equivalence of the autoregressive and exponential spatial models; and
~supports the work by Mobasseri in analyzmg the effect of the spatral model on
~ class spectral statistics.

| ‘Another comparison test of the spatiai model was performed by allowing
the ground size of the scene cells to change and observing the effect on

- classification performance The change in scene cell size for the: simulation

model is equrvalent to changing the PSF radius of the analytical model. The
- IFOV of the sensor was.held constant at 30 meters in the s:mulatlon model.
 Table 4.7 presents the increments used: in this experlment
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~ Table 4.7. Increments Used in Ground Size Experiment.

found Size of Cell  Radius of Analyic PSE (). Besuling Image Size

30 Meters 0.7 cells - 80 rows by 80 columns.
15 Meters 1.4 cells 40 rows by 40 columns
7 Meters _ 2.8 cells 20 rows by 20 columns
4 Meters - b6cells . 10 rows by 10 columns
2 Meters ‘ 11.2 cells 5 rows by 5 columns

Figure 4.25 shows the results of this experiment.. Both models show an
increase in accuracy as the scene cell size decreases. However, while the
analytical model continues this trend at cell sizes less than 10 meters, the
simulation model shows the effects of mixed pixels at the border between the
classes and reduced training set size to dramatically reduce the accuracy.

100 =y

—o—  Analytic

. 951 —eo— Simulation

* Classification Accuracy (%)

75 L T T Ty T Y
o 10 T 20 30 40

Scene Cell Slze_‘(meters) ‘

- .. Figure 4.25 Classification Aécuracy vs. Ground Size of Scene C:ells.

The next test was to cdmpare the effect of sensor view avnglé on the
performance predicted by each model. The results are shown in Figure 4.26. -
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" 94

=== Simulation

92+ werges Analylic

. 8449

Classlification Accuracy (%)
s - 4

82 r . r . —

View Angle (degrees)

~Figure 4 26 Classlflcatlon Accuracy vs. Sensor View Angle

, The analytlcal model shows a shght continuous decrease in accuracy,
, _'whnle the snmulatlon model! seems to seesaw with a slightly decreasing trend.
There are two offsettmg effects on the system as the viewing angle increases..

There is the increase in path radiance which results in higher shot noise and |
.decreas:ng accuracy, while the ground size of the sensor IFOV. mcreases ‘
thereby decreasmg the variation in the scene and increasing accuracy

In the analytlcal model this change in ground size happens :

o contmuously, ‘while in the simulation' model it is a discrete change as scene

~cells are combined in mteger increments. In this case, for angles 0°, 15° and
o 30°, four scene celIs are within the sensor IFOV while at 45° six are combmed :
and at 60° eight fill the field of view. As the number of scene cells within the
R IFOV'increases the size of the resulting image decreases, and fewer pixels
- result for each class. ThIS can also affect the accuracy through mnxed plxel.‘
effects :
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It is important to point out that the surface model used in both the
simulation and analytic models does not account for variation in reflectance with
illumination and view angle. Thus, this experiment does not predict how actual

classification accuracy may be affected by the changing view angle in a general
sense, but it does serve to illustrate factors that may influence the result. -

* Another test was done to compare the accuracy obtained when using a

GaUss_ian versus the measured shape of the PSF of the sensor. -Table 4.8 -
shows the result of the simulation model using the two PSF types. N

" Table 4.8 Classification Accuracies of Gaussian vs. Measured PSF.

|Gaussian PSF ' ‘ - 90.15% .
{Tabulated PSF - 89.75% |

The assumption of a Gaussian shape is seen to give a slightly “higher
accuracy than when using the actual curve of the sensor. Thus, assuming a
Gaussian PSF is seen'to be in‘ghtIy' optimistic.

An experiment was also performed to illustrate the effect of reducing the
"number of training samples used for the classifier. Each of the two classes has
- 800 pixels in the |mage produced during the snmulation The result is shown in
| Figure 4.27. ’

»Obviously, the analytical model shoWs no effect, as it is only based on the
class'statistics and no "training” is involved. The simulation model shows the
decreased accuracy as fewer samples are used. This illustrates one of the
Iimitations of the analytical model in representlng the real system.
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—fe— Simulation
wereo= . Analytic

Classification _A‘ccdracﬁ* (%)

75 L 4 v L4 v L | b L] b
.0 - 200 . 400 600 800 1000

Number of Tralning Samples

E Figure 4.27'Classification Accuracy vs. Number of Training Samples.

In general the simulation and analytlcal models compare well, In some
’ cases the differences between the two are indicative of real world constraints,

while m others the difference is artificial due to limitations of the model. The

results concerning the scene cell sizes and the training samples show
~ limitations of the analytical model. The irregular shape of the simulation result
- for the view angle effects show the potential problems in using a discrete

.. -simulation. Both approaches have their advantages, however, and with the

P _' - proper interpretation can be used productively.

4.4 Sy‘stem'Parameter Studies

S ~In this: sectron results are presented showing the effect of system

' parameters on SNR and classmcatnon accuracy using the analytical model.

The scene reflectance was the Kansas Wmter Wheat data set of Table
4. Table 4.9 shows the baselme system conflguratlon used in this study
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Table _4.10 shows the parameters that were varied and the rarlge of their
variatien.' Figures 4.28 through 4.51 show the results of these experiments.

Table 4.9 System Conﬂguratron for Parameter Studres '

. Surface, Meteorological Range ! 16 Km
Atmospheric Model . 1976 US Standard -
Haze Parameter * L Rural Extinction
Diffuse Constant . . 084 )
-+ Solar Zenith Angle S - 80° )
1. 7 View Zenith Angle ' “ 00
o “Across ‘and Down Scene Spatral Correlatron o 0.6
o Sens,_o_L_(HIRIS Model) 5 -
o Spatial Radius (analytical model o) 1 4 Scene Cells
< -Read Noise Level = = = . - Nominal
- . Shot Noise Level = : ~ . Nominal
IMC Gain State S ' 1
. Relative Calibration Error -+ - - 0.5%
. Absolute Radiometric Error =~ = 0%
- 1>~ Radiometric Resolution -~ - - AU 12 Bits
 |Processing _ ' ‘
- .- Feature Selection - . First 6 Features of Table 4.5

Table 4.10 Parameters Studied and Their Variatiori' in Section 4.4. |

=~ | Spatial Correlation 0, 0.15, 0.30, 0.45, 0.60, 075 090 1
- ‘|Meteorological Range 2,4,8,16,32Km . =
. '|Solar Zenith Angle .0°,15°, 30°, 45°,60° ‘
‘| View Zenith Angle” 0°, 16°, 30°,45°,60° .~ = .|
. |SensoriiFOvVOn aside  1,2,4, 8 16 Scene Cells '
|Shot Noise Factor . 0,05,1.0,20,40 .
Read Noise Factor 0,0.5,1.0, 2 0,40 .
IMC Gain State 1,2,4,8 ‘
Number of Bits 6; 8; 10; 12, 14,16 - -
‘{Relative Calibration Error - 0,0.5, 1.0, 2.0, 4.0 %_ .
Absolute Radiometric Error ~ -10,-5, -2,0, 2, 5, 10 %
‘INumber of Features' 1 thro gh 16 - -
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Figure 4.28 Effect of Spatial Correlation (p=px= py) on SNR.
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Figure 4.32 Effect of Solar Zenith Angle on SNR.
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Figure 4.41 Effect of Read Noise (Nominal = 1.0) on Classification Accuracy.
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in computing the SNR values, the method described in section 2.3.4 of
chapter two for a feature was extended for combining all of the features and
computing one value. Also, in computing the power SNR, the weighting
function W, described in chapter three was used to modify the class variances.

The reflectance statistics used in these computations were for the combined
data set. The results of these experiments are summarized in Table 4.11.

- Table 4.11 Surhrhary Results for System Parameter Experiments.

§ystem Parameter Figures | Voltage Power Accuracy
(Increasing) SNR SNR SR
Scene ' c
Spatial Correlation 14.28, 4.29 |No Change | Increase |Decrease
- ‘Meteorological Range 4.30,4.31} Increase Increase | Increase
Solar Zenith Angle 4.32, 4.33| Decrease | Decrease |Decrease
View Zenith Angle 4.34,4.35] Decrease | Decrease | Increase
Sensor c
Sensor Radius 4.36, 4.37 |No Change | Decrease | Increase
Shot ‘Noise 4,38, 4.39| Decrease | Decrease |Decrease
Read Noise 4.40, 4.41 | Decrease | Decrease |Decrease
IMC Gain 4.42,4.43| Increase Increase Increase
Radiometric Resolution 4.44, 4.45| Increase Increase | Increase
Relative Calibration Error |4.46, 4.47 | Decrease | Decrease |Decrease
| Absolute Radiometric Error 4.48, 4.49| Increase Increase Increase
Processing ,
Number of Features '4.50, 4.51| Increase Increase Increase

- In Figures 4.52 and 4.53, the results of this section are displayed.in.a
scatter plot to show the relationships between classification accpra"cy'_ and .
' signal-to-noise ratio. As can be seen, there is no direct relationship “While v_:
there appears a significant trend of higher classification accuracy resultlng from
‘hlgher SNR, it is not always the case. ~

The spatial correlation and sensor IFOV radius are cases in point.
While their variation had a significant effect on both classification accuracy and '_
power SNR, the effect was opposite. These spatial parameters come into the
noise model only through the modification of the signal covariance matrix thus
- there is no effect on voltage SNR. ’ |
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These results are mostly rnturtrvely appeahng, except for the sensor view

angle Frgure 4.35 contained two curves. The one labelled "with scaling” was
- obtalned using the 1/cos(8y;e,) scaling of the ground size of the sensor IFOV as

.e,,,e,,, was changed. The other curve labelled "without scaling" did not. It shows
the effects due. solely to the decreased atmospheric transmrttance and
|ncreased path radrance Thus, it seems the increase in accuracy due to the

"~ IFOV scaling overrides the decrease due to the atmospheric effects. Of course ﬂ

' '-'vthrs expenment assumes a Lambertran surface reflectance and no effects due to
field srze and mixed prxels Also, the atmosphere chosen was relatively clear.

In the next section results are presented to show that in hazier atmospheres, the
i '_,effect of the atmosphere on view angle is much more pronounced.

" '4 5 lnterrelated Parameter Effects - : :
B In this section results- showrng the rnterrelated effects of parameters are
presented The analytical model is again utilized and the system confrguratron
_is as defined in section 4. 4. The parameters studied and their vanatron are
grven in Table 4.12 below.. SRS

Table 4.12 Parameter lnterrelationéhip"Studies.v -

| Meteorologrcal Range and Sensor View Angle (044 = 0° )
E Meteorologrcal Range and Sensor View Angle (851 = 30°)

- IMeteorological Range and Sensor View Angle (045, = 60° )
Spatial Correlation and Sensor IFOV Size o
- IMeteorological Range and Shot Noise
- {Meteorological Range and Read Noise
- {Meteorological Range and IMC
- [Meteorological Range and Number of Bits
- ]Meteorological Range and Noise Sources Alone
- -]Solar Zenith Angle and Shot Noise
Sensor View Angle and Shot Noise
Solar Zenith Angle and IMC - '
Sensor View Angle and IMC
- [Meteorological Range and Number of Features
Solar Zenith Angle and Number of Features
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The results of these experiments are discussed in the following |
paragraphs.

Figures 4.54 through 4.56 help understand the relationships between
meteorological range, sensor view angle, and solar zenith angle. In clear
atmOsph‘eres, the increase in accuracy due to the geometry of higher view
~angles is evident. However, as the atmosphere becomes hazy, the decreased
~ signal levels and increased path radiance become dominant and accuracy is
then decreased for hngher view angles. The effects due to the atmosphere are
seen to be more sngnmcant for hlgher solar zenlth angles.

S o Figure 4.57 shows a coﬁmplex relationship between the spatial correlation
of scene cells, and the number of cells in a sensor IFOV side. With increasing
correlation the accuracy for small cells (many cells per IFOV side) falls Sharply

| -f ‘before decreasmg at a constant rate, while the accuracy for large scene cells
o (few cells per IFOV side) remains constant before falling sharply at high
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correlations. While this result shows the tradeoffs on classification accuracy of
scene cell size and spatial correlation for constant sensor IFOV, it is interesting
to consider this in the light of the results of Table 2.2. There it was shown that
spatial correlation decreases with increasing scene cell size. Thus, for:typical
remote sensing data sets large scene cells have low spatial correlation, while
small cells have high correlation. These tradeoffs form an imaginary horizontal
line across Figure 4.57 and indicate that classification accuracy is relatively |
independent of scene cell size.

Figures 4.58 and 4.59 show that the effects due to increased noise are
more significant in hazy atmospheres, while Figure 4.60 shows the
improvement by using IMC to be greater in hazy atrnospheres ~Figure 4.61
demonstrates how the increase in quantization error of fewer radlometnc bits
can be more significant in hazy atmospheres. '

In Figure 4.62, it can be seen that the read noise and relative calibration
efrors are more significant for all meteorological ranges, while the effect of shotv
noise is greater at low ranges due to the increase in path radiance. It is
»|nterest|ng to compare the effect of the atmosphere with no noise sources
present shown here with that of Landgrebe and Malaret (1986).  Their result
showed the atmosphere had no effect when no sensor noise was present, while
Figure 4.62 shows a significant effect. The difference in these results is due to
the path radlance model used in this report. Malaret's model considered path
'radlance as a constant additive source, while the model used here is
dependent upon the surface reflectance. Figure 4.69 shows the effect of the
atmosphere with and without sensor noise for the system model modified to
remove the surface reflectance dependence on path radiance. As can be
seen, the atmosphere has little effect on accuracy when this dependence is
removed. It is known that path radiance is dependent upon SUrface reflectance
in the real world, thus the results shown |n Figure 4.62 are Judged to be more
realastuc
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Figures 4.63 and 4.64 contain some interesting results. In Figure 4.63,

. the effect of shot noise is seen to be greater at high solar zenith angles, while in

Figure 4.64, just the opposite is seen for high view angles. In both cases, the

effect due to the shot noise alone is to decrease accuracy more at higher

angles, but for the view angle case the increase in accuracy due to the
geometry overrides the shot noise effect. |

Figure 4.65 shows how the IMC can be used to overcome the
combination of low signal levels and high read noise to actually increase
accuracy at high solar zenith angles. In Figure 4.66, a similar effect is seen as
the IMC increases accuracy by a greater amount at high view angles.

Figures 4.67 and 4.68 show how, up to a point, more features can be
used in classification to overcome the effects of the atmosphere or solar angle.
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However, it can be seen that the accuracy increases level out after a certain
number of features and increases beyond that level are not significant.

‘Overall, the results of these experiments show the complex interaCtioh of
system parameters in determining their effect on classification accuracy This
demonstrates the |mportance of considering the interdependence of parameters
‘when considering their specification in the design of a remote sensmg N
. expenment , - : .

4.6 Feature Selection Experlments

: - Several sets of six features (shown in Table 4.13) were used to evaluate

' therr. classification performance for a variety of system parameter variations and
scenes. This section presents the results of these experiments._ |

Table 4. 13 Wavelength Bands Combined for the Various Feature Sets The'
Various Feature Sets are Defined as SFD = Spectral Feature Design Algorithm,
TM = Landsat Thematic Mapper, WSNR = Wide Signal-to-Noise Ratio, NSNR= -
Narrow Signal-to-Noise Ratio, SSFD = Single Band Spectral Feature SSNR._‘ ,
Single Band Signal-to-Noise Ratio. T o

=<
T

Feature | SFD. TM__| WSNR__| NSNR_| SSFD]SSH
"1 | 0.52-0.66 | 0.45-0.52 | 0.40-0.70 |0.51-0.56 | 0.59 | 0.54
2. | 0.66-0.84 | 0.52-0.60 | 0.77-0.90 [0.81-0.86 | 0.75 | 0.84
3 0.70-0.92 | 0.63-0.69 | 1.00-1.10 {1.02-1.07 | 0.81 | 1.04
4 1.48-1.64 | 0.76-0.90 [ 1.15-1.30 [1.20-1.25 | 1.56 | 1.11
5 | 1.98-2.20 | 1.45-1.75[1.50-1.74 [1.59-1.64 | 2.10 | 1.61
6 2.20-2.40 | 2.08-2.35]1.97-2.40 [2.16-2.21 ] 2.30 | 2.19

The SNR features wer_e chosen based upon spectral regions of high
SNR. These various sets were chosen to see how classification accuracy and
co'mbined signal-to-noise ratios compared. Figure 4.70 shows the voltage and
power SNR for the various feature sets’and the combined reflectance statistics
of the data set in Table 4.1, while Figure 4.71 shows the resultant classification
accuracy for the baseline system of Table 4.9. |
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“In this case, the SFD features performed the best for this data set‘ even
-though they did not have hlghest SNR. . However, since they were denved from
the data used to generate the scene, it |s expected that they perform well. o

} Several expernments were run to compare the performance of the varlous '
7 feature sets over varying scene conditions. Figures 4.72, 4. 73 and 4. 74 show
-~ the classification performance of the feature sets for varlous meteorologlcal .

ranges, solar zenith’ angles and view. angles ' o ~
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Flgure 4 72 Feature Set Performance vS. Meteorologlcal Range

, From these curves |t can be seen that the features derlved from h|gh
SNR reglons are less susceptible to changes in the scene parameters
Howgyer, they give overall less accuracy than the features obtained from the
VSFD algorithm. Also, the features that are obtained from only one spectral band
perform poorly under all condmons '
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The robustness of the spectral feature desrgn algorrthm was then studred }' o

' 'by comparrng the accuracy of the various. feature sets in classrfymg a scene
created. from a different data set than that from whrch the features were denved
: A scene was created from reflectance data of three varieties of sprmg wheat
. Table 4. 14 grves the specific fields from the LARS field data base EE

Table 4 14 Classes and frelds used to compute statrstrcs for the Spnng Wheat '
test scene The data |s from Hand County, South Dakota on July 26, 1978 .

Classes Freld ) Number of Observatlons
o Sprlng Wheat [ e |- 13
- S 154 1 - .29
+ 199 |- . -28
o201 o 28
A I NI S Tota|—114 ’
. ASW 1809 296 L 28
BT 303 | - .. 58
oo Total=86
S ISWMix 75 13
S i ~Total =68

| ' The ‘Sy'stem configuration was as shown inTable 4.9. 'Figu're 4. 75"shows; o
' 'the voltage and power SNR of the Spring: Wheat test scene for the vanous" o

‘_feature sets whrle anure 4.76 presents the resultlng classmcatron accuracy

"’In" ali cases, the"feat'ures’ formed from the. wave’lengths used in”’th'e

- Landsat ™ and the ' ones from- high SNR reglons performed the: best o .

L 'Compared to these feature sets, the SFI feature set did not perform as. well
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These results imply that over varying scenes the features denved from
the reflectance of a different crop type perform less well at classufrcatron than
features derrved from signal-to-noise regions of the instrument, or even the
vwavelength bands used in the Thematic Mapper. ThIS is not surpnslng since

the. SFD procedure is intended to be case-specific; it |s lntended to provrde e

- features: optlmal for its design case, as compared to belng opttmal in: the' :
general case. :

,47 Summary and Conclusions S RN
n: this chapter the system models presented in. chapters two and three '
' have been applled to the study of a remote sensmg system based on the
proposed rmagrng spectrometer HIRIS System performance measured by
signal-to- norse ratios and classification accuracy has been: studled under a
~variety of system parameter conflguratlons While the results. of these
-experiments have been discussed at the end of each of the. sectlons the'_

= _ ;follownng paragraphs brlefly summanze the main conclusrons

. , In sectlon 4.2 the Slgnal-to Nouse Ratio - (SNR) and Nouse Equnvalent

Change in Reflectance (NEAp) of HIRIS was studied. The results |llustrated
how the’ atmosphere affects each of the spectral bands, and what noise sources
-are the most domlnant under a variety of conditions. Hazier- atmospheres were |

o seen to have more significant effects on the shorter wavelength bands than the
, longer wavelengths Shot noise was seen to be more significant at the htgh_._ .

- signal levels at the wavelengths of the VNIR detector array, while read nouse .‘
was the domlnant noise source in the |onger wavelengths of the SWIR array

Sectlon 4.3 mvestigated the' similarities‘and differences betWeen the
: simulation model of chapter two and the analytlcal model of chapter three Thev
: 'vresults |nd|cated that the approaches gave srmllar results, except |n cases
~where mlxed prxels or the tralmng of a classifier were rnvolved : |

Sectlon 4.4 presented the-‘results of applying the analytical model ,to‘ the
study of the individual effect of several parameters on SNR and classification
accuracy ‘The results generally showed a trend of mcreased SNR resulting in
increased accuracy, except for parameters mvolved wnth spatral vanatnon Here
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. the‘s‘patiabl parameters resulting in lower power SNR gave an increase in
- CIaSSifiCation by increasing the separability of the classes. B B

"~ In section 4.5 the interdependence of system param"'e'ters ‘was

- _inVe's'tig_ate,d. - Significant relationships were seen between system parameters,
- especially those involving pixel size variations and signal dependent noise.

Sec"t"ion 4.6 présented several re’sults comparing various meth'ods of

‘choosmg spectral feature sets under a vanety of system conditions. The results

|nd|cated that feature sets based on hlgh SNR were the most robust under

- system. parameter variations, but feature sets derived from the ongmal :

reflectance data were optimum for scenes created from that data.

‘These results have been presented to show the relative importance of
the system parameters. In no way are these results intended to be used to
predlct the actual performance of the system. Rather, they are useful in

»dlscovermg the relatnve effects and tradeoffs in specnfylng the various

paramete rs.
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 CHAPTER 5
CONCLUSIONS AND

. SUGGESTIONS FOR FURTHER WORK =

ln pursurng this research the goals were to: 1) document and model the
.remote sensmg process from an overall systems perspective; 2) develop a tool,
to allow the study of the interrelationships of identifiable system parameters 3) :
: apply this tool to the study of optlcal remote sensing systems B

o Chapters one and two -d‘escribed the rem‘ote*sensing "':prOCessfrom'a
'systems perspectrve It was seen to be comprlsed of three major components '

the scene the ‘sensor, and the processing algorithms. Modellng of these; :

- components was discussed from a general point of view, and a framework was ' _
descrrbed for |mplement|ng a subset of these models in a srmulatlon of the
entrre__,sys_tem. ‘The simulation used the scene models to ‘produce a spectral:
radiance function over a defined scene consisting of various informational

- classes arranged spatially. The sensor models then converted this functi’on into . |

a digital multispectral lmage similar to that produced by real sensors. Various

~ processing algorithms were then applied to thls lmage to extract a performance;

measure of the system

Chapter three presented an alternative to the srmulatlon approach wrth -
‘ A the development of a parametric model to describe the remote sensrng process o
J Thrs mgdel used analytical equatlons to descrlbe the effects of the v/ ious
system parameters o ' . L

Each of these approaches are useful as a tool to study remote sensmg}),
systems ‘and the choice of thelr use is dependent upon the goal of the study "
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The simulation method is useful in the followmg example cases.

-« The spatial layout of the various classes i is of mterest
e A partlcular scene or image is desired to be srmulated under a vanety'
of conditions.
- An image with desired characteristics is needed for the study of
-various processing algonthms | '
. " One scene needs to have’ several different sensors applled to rt to
- compare the resulting images.
» It is desired to use a very accurate and detailed model for the sensor
. ... Spatial, spectral and noise effects. . : :
.« ltis desired to introduce spatial effects in the scene such as clouds, |
-shadows, or in the sensor such as geometrlc dlstomon or
mlsreglstratlon '

f , 'The parametric model is useful for the following examples.

« Parameter tradeoff studies where detail of models can be sacrlflced
for speed of results. .
. The scene has a large number of classes with no partlcular,
constramts on spatial layout.

These are only a few of the possible uses of both approaches, but they
are listed to illustrate some of the kinds of studles that are possrble under the
modellng framework developed in this report. S

o Chapter-four presented a detailed study of the system perforrriance of a
future imaging spectrometer. The goals were to evaluate the noise and
clasSifieation performance of the ‘instrument under a variefy of System_
, configurations., " For the majority of the results, the analytical model was
- implemented. This allowed the tradeoff study of several parameters to heip:'
determine the interrelationships among them. Altho’ugh:*the results were for the -
particular instrument and scene defined, the general trends were observed and
are beheved to hold for similar systems. -
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Some of the significant results of this study of HIRIS include the following.

. Atrhospheric visibility and scattered path radiance influence the
‘sensitivity of the instrument to ground reflectance changes much more
. ~in the visible wavelengths than in the lnfrared , Lo R
- 'While classification accuracy is usually related drrectly to SNR it is
- not always the case. , R L
» The effect:of the atmosphere on sensor viewing angle varies
- significantly with visibility.
. Lower classification accuracies in hazy atmospheres are not only
because of noise sources in the sensor, but also the rncreased path
' radiance scattered from the surface. o
* While feature sets chosen from spectral regions of 'hi'gh SNR are
~..robust across system parameter variations, feature sets derived using
analytical approaches from field databases perform optrmally for
- scenes created from the data.

The work presented here has been but one step on the road to modeling
and understanding optical remote sensing systems. It has built upon the work
‘of many previous researchers, and hopefully, will stand as a foundatron for
future efforts. ‘ '

While almost every component of the system model could be improved,
several particular areas deserve to be pointed out. The surface reflectance
model assumption of Lambertian reflectance could be replaced by a description
of the bidirectional reflectance. Embedded within this function should be the
spectral and spatial variation of the reflectance. Another assumption used in
the. scene spatial model that needs work is the spatial crosscorrelation between
hrgh spectral resolution reflectance data.

Two aspects of the atmospheric model could be extended. The
relationship between the total surface irradiance and the direct irradiance
needs to be more adequately defined. Also, spatial blurring and spatial
variability of the atmosphere could be implemented.
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: Geometnc distortion and spectral band mlsregnstratlon could be
-mplemented in the sensor model. ' '

This s:mulatlon approach could be used today to generate realistic hlgh

} 'dlmensmnal multlspectral images for use in processing algorithm study. These

- may be studles of hyperspectral image display or classmcatlon algonthm
'development : ,

‘ These are but a few of the possible extensions and uses of the modeling
'approaches Indeed, it would seem to be an axiom of modeling that one can
’always improve one's model, especnally when pant of the subject is the natural

: world



147 ~ List of References

LIST OF REFERENCES

AIlen WA TV Gayle, and AJ. Rnchardson "Plant -Canopy lrradlance Specmed By Duntley'
Equatlons," Journal Optical Society of America, vol. 60, pp. 372-376, 1970 - '

Anuta P. E : "LARS/University of Michigan Aircraft Scanner Data System Parameter ldentmcatlon
Study, LARS Information Note 091470, Laboratory for Applications of Remote Sensrng,
Purdue University, West Lafayette, IN 47907, September 1970. . _

Asrar G ‘Editor, Theory and Applications of Optlcal Remote Senslng, erey- '
Interscrence New York, NY, 1989.

Badhwar G. D K.E. Henderson, D.E. Pitts, W.R.:Johnson, M.L. Sestak TWooltord J. Carnes
"A Companson of Simulated Thematic Mapper Data and Multispectral Scanner Data for
. Kingsbury County, South Dakota," Proceedings of 1982 Machine Processmg of
Remotely Sensed Data Symposrum West Lafayette IN, 1982 : v

Badhwar G D W. Verhoef, and N. J J. Bunnlk "Comparatnve Study of Suits and SAIL Canopy
’ Reflectance Models," Remote Sensing of Enwronment vol. 17, pp 179 195, 1985

Bartlett DS R.W. Johnson, M.A. Hardisky, and V Klemas, "Assess:ng Impact of Off Nadrr _'
Observatlon on Remote Sensing of Vegetation: Use of the Suits Model," ‘Int J. Remote‘
Sensmg, vol. 7, no. 2, pp. 247-264, February. 1986

Brehl LL M.E. Bauer, B.F. Robinson, C.S.T. Daughtry, L.F. Silva, and D.E. Pitts, "A Crops and

Sorls Data Base for Scene Radiation Research,” Proceedings of the 8th International - "

Symposium on Machine Processing of Remotely Sensed Data, pp. 169 177, Purdue
University, West Lafayette, lN 1982 :

Brllmgsley, F.C., "Modellrng Mrsreglstratlon and Related Effects on Multlspectral Classmcatlon "
Photogrammetnc Eng/neermg and Remote Sensing, vol. 48, pp. 421-430, 1982 '

Bird, Ft E *Terrestrial Solar Specitral Modelrng," Solar Cells, vol 7, no. 1 2 pp. 107 118
November 1982. - :

Carter V. and J. Schubert,"Coastal Wetlands Analys1s From ERTS MSS Digital Data and Field
. Spectral Measurements," Proceedings of the Ninth International Symposium on Remote '
Sens:ng of the Environment, Ann Arbor, Ml, pp. 1241-1260, 1974..

Castle KR., RG Holm, C.J. Kastner, J.M. Palmer P.N. Slater, M. Dmgunrard C.E. Ezra, R. D -
Jackson and R.K. Savage, "In-Flight Absolute Radiometric Calibration of the' Thematic:
‘Mapper," IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-22, No. 3, pp
251 -255, May 1984.

Catanzarltl E., "Satellite Image Understandmg Through Synthetic. -Images,” in Plctorlal
Analysls, ed. R.M. Harallck pp. 369-383, Spnnger—Verlag, 1983. - -



List of References : 148

*Chahine, M.T. "Interaction Mechanlsms Within the Atmosphere,” Chapter 5 in Manual of
Remote Sensing, 2nd Edition, edited by R:N. Colwell, Amencan Socrety of .
Photogrammetry, Falls Church, VA, 1983.

: Chance, J. E and W.E. LeMaster, "Suits Reflectance Models for Wheat and Cotton Theoretlcal
‘ and Expenmental Tests Applled Optics, vol. 16, no. 2, pp. 407-412, February 1977.

Chandrasekaran B. and AK Jain, "Independence, Measurement Complexity, and Classification
. Performance,” IEEE Transactions on Systems Man, and Cybernetics, vol. SMC-5 no. 2,
pp. 240-244, March 1975.

Chellappa R “Stochastic Models in Image Analysus and Processlng. Ph.D. Thesns Purdue
Umversuty, West Lafayette IN 47907, August 1981. S

Chen C. -C T., and D.A. Landgrebe, “Spectral Feature Deslgn in High Dimensional Multlspectral '
: Data,” TR-EE 88-35, School of Electrical Englneenng, Purdue Unlverslty. West Lafayette,
- IN, August 1988. , _ _

: Cicone_, Fl.C., W.A. Malila, J.M. Gleason, and R.F. Nalepka, "Effects of ‘Misregistration on
Multispectral Recognition," Proceedings of the Symposium on the Machine Processing
of Flemotely Sensed Data, Purdue University, West Lafayette, IN, pp. 4A-1 to 4A-8 1976

Clark Ji and N.A. Bryant, "LANDSAT-D Thematlc Mapper Simulation Using Alrcraft Multlspectral"
' Scanner Data,” Proceedings of the 15th Enwronmental Research Insmule of Mlchrgan
Symposrum 1982. , v

Colwell RN Edrtor Manual of Remote Sensing, 2nd Edition, Amencan Socnety of
Photogrammetry and Remote Sensing, Falls Church, VA, 1983.

Cooper K J. Smith, and D. Pltts "Reflectance of a Vegetation Canopy Usmg the Addrng
Method Applred Optics, vol. 21, pp. 4112—4118 1982.

-Craig, R.G., *The Spatial Structure of Terrain: A Process Sugnal in Satellite Digital' Images,”
Proceedmgs of the Ninth Pecora Remote Sensing Symposrum pp. 51-54, IEEE
~ Computer Society Press, October 1984.

Crane R:B., W.A. Malila, and W Rlchardson "Suntablllty of the Normal Densnty Assumptlon for
Processrng Multispectral Scanner Data," IEEE Transactions on Geosaence ‘Electronics,
Vol GE 10, No. 4, October 1972.

’Crutchfreld J P J.D. Farmer, N. H, Packard, R.S. Shaw, "Chaos," Science, December 1986

Dave J.V., "Extensnve Datasets of the Diffuse Radiation in Realistic Atmosphenc Models wrth
’ Aerosols and Common Absorbmg Gases,"” Solar Energy, vol. 21, pp. 361-369 1978

Delp, E. J R.L. Kashyap, and O.R. Mitchell, “Image Data Compression Uslng Autoregressnve
Tlme Senes Models,” Pattern Recognmon vol. 11, pp. 313-323, 1979.

- Diner, DJ and V.V. Martonchik, "Atmospheric Transfer of Radiation Above an Inhomogeneous
Non-Lambertian Reflective Ground 1. Theory, Journal Quant. Spectros. Rad Transfer
Vol 31 pp. 97-125, 1984. .

Dodd, N "Multrspectral Texture Synthesis Using Fractal Concepts,” /IEEE Transactions on
' Parlem Analysis and Machine Intelligence, Vol. PAMI-9, No. 5, pp. 703-707, September
1987. _



149 ‘ List of Reterences

‘Duda, R. O and P.E. Hart, Pattern Classification and Scene Analysls John Wlley and
Sons New York, NY, 1973. ,

Elterman, L., "UV, Visible, and IR Attenuation for Altitudes to 50 Km," AFCRL 68 0153, AFCR
ERP 285, Air Force Cambridge Research Laboratones Bedford MA, 1968.

Elterman L "Vertical Attenuation Model with Eight Surface Meteorologlcal Ranges, 2 to 13 km,"
Report 70-0200, Air Force Cambridge Research Laboratory, Bedford, MA, 1970.

Fischel, )., "Validation of the Thematic Mapper Radiometric and Geometric Correctlon
Algonthms " IEEE Transactions on Geoscience and Remote Sensing, vol. GE- 22 no. 3,
pp 237-242, May 1984 : .

Foley, D H. . "Considerations of Sample and Feature Size," IEEE Transactions on Informat/on
Theory, Vol. IT-18, No. 5, September 1972.

Fnedlander B "On the Computatlon of the Cramer-Rao Bound for ARMA Parameter Estlmatlon
IEEE Transactions on Acoustics, Speech, and Signal. Processmg, vol. ASSP-32, no. 4,
Pp- 721 -727,August 1984.

-Fukanaga, K. and T.F. Krile, "Calculation of Bayes' Recogpnition Error for Two Multlvanate Gaussnan
Distributions,"” IEEE Transactions on Computers, vol. C-18, no. 3, pp. 220-229, March
1969.

Fukanaga, K., Introduction to Statistical Pattern Recognition, Academich,ress,‘ 1972. -

Ghassemlan H. and D.A. Landgrebe, "An Unsupervised Feature Extraction Method for High
Dimensional Image Data Compaction," Proceedings of the Systems Man and
Cybernet/cs Conference, Alexandria, VA October 20-23, 1987. . *

Glenck J Chaos Maklng a New Sclence Vlkmg Pengum 1987.

Goelz, A. F H. and M. Herring, "The High Resolutlon Imaging Spectrometer (HIRIS) tor Eos, " IEEE
‘ ‘Transactions on Geoscience and Remote Sensing, Vol. GE-27, No , Pp. 136-144,
March, 1989. ‘

Goodman, J.W. Introduction to Fourier-Optics, McGraw Hill, 1968.

Harallck R.M., "Statistical and Structural Approaches to Texture," Proceed/ngs of the IEEE vol
67 no. 5, pp. 786-804, May 1979.

Herman S M. and S.R. Brownmg, "The Effect of Aerosols on the Earth Atmosphere Albedo "
Journal of Atmospheric Science, voI 32, pp. 1430-1445, 1975.

Hikson M.M., M.E. Bauer, and L.L. Blehl "Crop. Spectra From LACIE Field Measurements,"
: LARS CR 011578, Laboratory for Applications of. Remote Sensing, Purdue Umversrty,
West Lafayette IN, 1978.

. Horn B K. P and B.L. Bachman, "Using Synthetlc Images to Register Real Images wuth Surlace
Models ".. Communications of the ACM, vol. 21, no. 11, November 1978. - ..

Huck F.O., R.E. Davis, C.L. Fales, R.M. Aherron, R.F. Arduini, and R.W. Samms, "Study of
Remote ‘Sensor Spectral Responses and Data Processing Algorithms - for Feature
Classification,” Opt/cal Engineering, vol. 23, no. 5, pp. 650-666, September/October
1984.

Hudson, R.D., Jr., Infrared System Engineering, WiIeyQInterscience, New York, NY, 1969. '



List of References ' e 150

Hughes G.F., "On the Mean Accuracy of Statlstlcal Pattern Recognizers," IEEE Transactlons on
Informat/on Theory, vol. IT-14, no. 1, pp. 55-63, January 1968.

Irons, J.R., K.J. Ranson, and C.S.T. Daughtry, *Estimating B|g Bluestem Albedo From Dlrectlonal
Reflectance Measurements,” Flemofe Sensing of Environment, vol. 25, pp 185- 199,
- 1988.. . - v

JPL, "High-Resolution Imagmg Spectrometer (HlRIS) Phase A Final Report JPL D-4782 Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA, November
1987. Also, data was obtained from viewgraphs used in a presentation by V. Wright of -
JPL on October 6, 1987 to the Imaging Spectrometer Science Advisory Group (ISSAG) :

Jensen, J.R., "Urban Change Detection Mapplng Usrng Landsat Dlgltal Data The Amencan
Can‘ographer vol. 8, pp. 127-1 47 1981 ‘

o Johnson Space Center "Modular Multiband Scanner (MMS)" JSC Internal Note No 74-FM-47,
: Johnson Space Center Houston Texas, July, 1974. ,

' 'Kay, S., "Generation of the Autocorrelation Sequence of an ARMA Process," IEEE Transactlons
on Acoustlcs Speech and Signal Processing, vol ASSP-33 no. 3, pp 733 734 June.
' 1985

Kallath T., "The Dlvergence and Bhattacharyya Distance Measures in Sngnal Selection," IEEE
Transact/ons on Communication Technology, vol. COM 15, no. 1, pp. 52 60 February
1967 _ S

Kalayeh H M M.J. Muasher, and D.A. Landgrebe, "Feature Selection with lelted Trammg
' Samples * IEEE Transactions on Geoscience and Remote Senszng, vol. GE 21 no. 4,
pp. 434—438 October 1983 : :

.Kaufman 'Y.J. and R. S. Fraser, "Atmosphenc Effect on Classification of Finite Fnelds Remote :
Sensmg of Enwronment voI 15, no. 2, pp. 95-118, March 1984.

Kaufman, Y. J., "Atmospherrc Effect ‘on Spatial Resolution of Surface lmagery, Applzed Optics,
- Vol 23 No. 19, pp. 3400-3408 1 October 1984.

Kaufman, Y.J., "Atmosphenc Effect on the Separability of Field Classes M'easured from
Satellltes Flemofe Sens:ng of Environment, pp. 21-34, August 1985.

Kerekes, J.P. and D.A. Landgrebe "A Noise Taxonomy for Remote Sensing Systems " 'n
Proceedlngs of IGARSS '87 Symposium; pp. 903-908, Ann Arbor, MI, 18- 21 May, 1987

Kerekes J.P. and D.A. Landgrebe "HIRIS. Performance Study," TR-EE 89-23, School of }
Electncal Engineering, Purdue Unnversnty, West Lafayette, IN, April, 1989a o

Kerekes J.P..and D.A. Landgrebe "RSSIM: A Simulation Program for Optucal Remote Sensmg
" Systems,"” TR-EE 89-48, School of Electrical Enguneerung, Purdue- Unwersrty, West
Lafeyette lN August, 1989b.

Kettrg, R. L' "Computer Classification of Remotely Sensed Multispectral Image Data by Extractron |
o and Classification of Homogeneous Objects,” PhD Thesis, School of-Electrical

.. Engineering, Purdue Unrversrty, West Lafayette, IN, May 1975. Also avanlable as LARS '

TR 050975.

- Kimes, D S. and J.A. Kirchner, "Radiative Transfer Model for Heterogeneous 3- D Scenes,”
Applled Optics, vol. 21, no. 22, pp. 4119-4129, 15 November 1982.



151 List of References

Kneizys, F.X., et al., "Atmospheric Transmrttance/Radlance Computer Code LOWTRAN 6"
AFGL—TR 83 0187, ERP No. 846, Air Force Geophysics Laboratory, Hansoom Arr Force
- Base, MA, August 1983.

Kneizys; F X., E P. Shettle, LW. Abreu, J.H. Chetwynd, G.P. Anderson, W.O. Gallery, J.E.A.
Selby, and S.A. Clough, "Users' Guide to LOWTRAN 7, AFGL-TR-88-0177, ERP No
1010 Air Force Geophysics Laboratory, Hanscom Air Force Base, MA, August 1988

Koziol, J. A., "On Assessrng Multivariate Normality,” Journal of Royal Statlstlcal Socrety B, vol 45,
- no.:3, pp. 358-361, 1983. ;

'Land_grebe ‘D.A., "Systems Approach to the Use of Remote Sensing,” LARS' Informatron Note
041571, Laboratory for Applications ot Remote Sensmg, Purdue Unrversrty, West
Lafayette IN 47907, April 1971. ‘

‘Landgrebe D A, LL. Biehl, and W.R. Slmmons "An Empmcal Study of Scanner System
Parameters " JEEE Transactions on Geoscrence and Remote Sensing, v oI GE-15; no. 3,
pp. 120-'130, July 1977. . ,

Landgrebe D.A., and E.R. Malaret, "Noise in Remote Sensing Systems: The Effect on
Classrhcatron Error," IEEE Transactions on Geoscience and Remote Sensing, vol. GE 24,
no.- 2, March, 1986.

LARS Staff,"Testing the Gaussian Assumption on. Aircraft Data,” LARS Intormatlon Note 040469
Laboratory for Applications of Remote Sensmg, Purdue Umversrty, West Lafayette IN
47907, April 1969. _

Lewis, R. D -and C.H. Horgen, "Optlcal Sensor System Slmulatlon Opt/cal Engmeermg, vol 18
© " no.3, May-June 1979. . :

MacDonaId RB M.E. Bauer, RD Allen J.W. Clifton, J.D. Ericson, and D.A: Landgrebe
: "Results of the 1971 Corn Blight Watch Experiment, * in Proceedings of the Eighth
- International Symposium on Remote Sensing of Environment, Ann Arbor, MI, pp 157—

190 1972. t -

MacDonald R B., and F.G. Hall, "LACIE: An Expenment in Global Crop Forecastmg, in
Proceed/ngs of LACIE Symposium, JSC-14551, NASA, Johnson Space Center
~.Houston, TX, October 13-26, 1978.

Malaret, E. R "The Relationship.of Sensor Parameters to Appllcatlons Data Analysrs Master’s
: Thesrs Purdue University, August 1982. .

Malila, W. A J.M. Gleason, and R.C. Cicone, "Multispectral System Analysis Through Modelmg
‘ and Srmulatron " Proceeding of 11th Internatlonal Symposmm on Remote Sensing, Ann
Arbor, M), pp. 1319-1328, 1977

andelbrot B.B. Fractals: Form, Chance, and Dimension, W.H. Freeman and Company,
1977 .

Markham B. L. and J. R. G. Townshend, "Land Cover Classification as a Functron of Sensor,
.Spatial Resolution," Proceedings of the 15th Annual International Symposrum on
Remote Sensing, vol. 15, Ann Arbor ‘MI, 1981.

Markham B.L., and J.L. Barker, "Spectral Characterization-of the Landsat- 4 MSS Sensors "
Photogrammetnc Engineering and Remote Sensing, vol. 49, no. 6, pp 811-833, June
1983 L o



List of References , 152

'Markham B L., and J.L. Barker, "Spectral Characterization of the Landsat Thematic Mapper
‘ Sensors international Journal of Remote Sensing, vol. 6, no. 56, pp 697-716, 1985

Markham, B.L., "The Landsat Sensors' Spatial Responses," IEEE Transactions on Geoscience
and Remote Sensing, vol. GE-23, No. 6, pp. 864-875, November 1985.

“ Maxwell, E.L., "Multwanate System Analysis of Multispectral Imagery," Photogrammetric
Engmeenng and Remote Sensing, vol. 42, no. 9, pp. 1173-1186, September 1976.

McCiatchey, R.A., R.W. Fenn, J.E.A. Selby, J.S. Garing, F.E. Volz, * Optical Properties of the
Atmosphere," AFCRL-70-0527, Air Force Cambridge Research Laboratories, Bedford
MA, 1970. , . ‘

Merembeck, B.F. and B.J. Turner, "Directed Canonical Analysns and the bPerformance of
Classifiers Under its Associated Linear Transformation,” /EEE" Transactlons on
Geosc:ence and Remote Sensing, vol. GE-18, pp. 190-196, 1980.

Mobasseri, B.G., C.D. McGillem, and P.E. Anuta, "Parametnc Multiclass Bayes Error Estimator for
Multispectral Scanner Spatial Model Performance Evaluation,” LARS Technical Report
061578 Purdue University, West Lafayette, IN 47906, June 1978.

Muasher, M. J and P.H. Swain, "A Multispectral Data Simulation Technique," LARS TR 070980
Purdue Unwersny, West Lafayette IN 47907, 1980.

Muasher M J. and D.A. Landgrebe "A Binary Tree Feature Selection Technique for Limited
Training Sample Size," Remote Sensing of Environment, vol. 16, pp. 183-194, 1984.

Muasher, M.J. and D.A. Landgrebe, "The K-L Expansion as an Effective Feature Ordering
Technique for Limited Training Sample Size," IEEE Transactions on Geoscience and
Remote Sensmg. vol. GE-21, no. 4, pp. 438-441, October 1983. :

Murphy, J. M T. Butlin, P.F. Duff, and A.J. Fitzgerald, "Revised Radiometric Cahbratlon Technlque
for Landsat-4 Thematic Mapper Data," IEEE Transactions on Geoscience and Remote
Sensing, vol. GE-22, no. 3, pp. 243-250, May 1984.

Nagata Motoyasu "Image Processing for Boundary Extraction of Remotely Sensed Data "
Pattern Recognition, vol. 14, pp. 275-282, 1981.

.Papoulns A. Probability, Random Variables, and Stochastic Processes; 2nd Edmon
McGraw-Hill Book Company, 1984. : ,

Park J.K. and D.W. Deering, "Simple Radiative Transfer Model for Relationships Between
Canopy Biomass and Reflectance,", Applied Optics, Vol 21, No. 2, pp 303-309 -18
January 1982.

Park, S.K. and R.A. Schowengerdt, "Image Samplmg, Reconstruction, and the Effect of Sample-
- Scene Phasing," Applied Optics, vol. 21, no. 17, pp. 3142-3151, 1 September 1982.

Park,: s. K., R. Schowengerdt, and M.-A. Kaczynski, "Modulatlon Transfer-Function Analysis for
' Sampled Image Systems," Applied Optics, vol. 23 no. 15, pp. 2572-2582, 1 August
1984..

Pau, L.-F., and M.Y. El Nahas, An Introduction to Infrared Image Acqulslﬂon and
Classlﬁcatlon Systems, John Wiley & Sons, Inc., New York, NY, 1983. -

Peltgen H- O and D. Saupe, The Science of Fractal Images, Sprmger-Verlag, 1988



153 List of References

Peters P.J., "An Extension of Image Quality: Computer Modeling a Complete Electro- -Optical
system Opt/cal Engineering, vol. 21, no. 1, pp. 38-42, January/February 1982. -

Pinson, LJ Electro-OptIcs John Wiley & Sons, New York, NY, 1985

Pont, W.F. Jr., "Spatial and Spectral Simulation of Landsat Images of Agncultural Areas in
Proceedmgs of 1982 Machine Processing of Remotely Sensed Dala Sympos:um Pp.
- 149-153, July 1982.-

Price, J.C., "Calibration of Satellite Radiometers and the Comparison of Vegetatlon Indrces
X Remote Sensing of Environment, vol. 21, pp 15-27, 1987.

Ready, P J PA. Wintz, S.J. Whrtsrtt and D.A. Landgrebe, "Effects of Compressron and Random
‘ Norse on Multispectral Data,” in Proc. of Seventh Int. Symp. on Remote Sensmg of the
Enwronment Ann Arbor, Michigan, 1971.

Ready, P J and P.A. thtz *Information Extraction, SNR Improvement, and Data Compressnon in
Multlspectral Imagery," IEEE Transactions on Communications, vol. COM-21, no. 10 PPp-
»1123-1131, October 1974. -

Rlchards JA Remote Sensing Digital Image Analysts An Introductlon Sprlnger-
Verlag, 1986. ,

Richardson, A.J., D.E. Escobar, H.W. Gausman, J.H. Everitt, "Comparison of Landsat 2 and Fleld
Spectrometer Reflectance Signatures of South Texas Rangeland Plant Communities,”
Proceedings of 1980 Mach/ne Processing of Remotely Sensed Data Sympos:um pp 88-
97 1982 )

Rosenteld A and L. S Davis, "Image Segmentatlon and Image Models Proceed/ngs of the
’ " IEEE, vol. 67, no. 5, pp. 764-772, May 1979. .

Salomonson V.V., P.L. Smith, Jr., A.B. Park, W.C. Webb, and T.J. Lynch, "An Overvrew of
Progress in the Design and Implementation of Landsat-D Systems, " IEEE Transactions
on ‘Geoscience and Remote Sensing, Vol. GE-18, No. 2, April 1980. :

Schowengerdt R., S.K. Park, and R. Gray, "Topics in the Two-Dimensional Sampllng and
Reconstructlon of Images,” International Journal of Remote Sensing, voI 5, no. 2, pp.
333-347 1984. .

Shibayma, M and C.L. Wiegand, "View Azimuth and Zenith, and Solar Angle Effects on Wheat
‘ Canopy Reflectance, " Remote Sensmg of Environment, vol. 18, no. 1, pp. 91-103,
5. 19854 v

Smuth J.A. and R.E. Oliver, "Effects of Changmg Canopy Directional Reflectance on Feature
Selection," Applied Optics, vol. 13, no. 7, pp. 1599-1604, July 1974. ,

Smith, S P. and AK. Jain, "A Test to Determine the Multivariate Normality of a Data Set,” IEEE-
_Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 5 Pp. 757-761, .
September 1988. _

Strahler, A. H., C.E. Woodcock and J.A. Smuth "On the Nature of Models in Remote Sensing,”
Remote Sensing of Environment, vol. 20, no. 2, pp. 121-139, October 1986.

Surts G H., "The Calculation of the Directional Reflectance of a Vegetation Canopy. Ftemote _
Sens:ng of Environment, vol. 2, pp. 117-125, 1972a.



List of References 154

Suils, G.H., "The Cause of Azimuthal Variations in Directional Reflectance of Vegetatwe
‘ Canoples Remote Sensing of Environment, vol. 2 p. 175, 1972b.

' Sunls G.H., "The Extension of a Uniform Canopy Reflectance Model to Include Row Effects, " SR-'
E1-04065 NASA. Scientific and Technical Information Facility, P.O. Box 33, College Park,
MD 20740, 1982.

Summers R.A., "Systems Analysis Techniques in Earth Resources Satelllte Systemis Plannung,"
Proceedmgs of the 7th Symposium on Remote Sensing of the Environment, pp 237-
246, 1971. L

 Swain, P.H. and S.M. Davis, Eds., Remote Senslng: The Quantitative ':Approach,
McGraw-Hill , 1978. | | o

Swain, P.H., V.C. Vanderbilt, and C.D. Jobusch, "A Quantitative Applications-Oriented Evaluation -
of Thematlc Mapper Design Specifications,” IEEE Transactions on Geoscience and
Remote Sensing, vol. GE-20, no. 3, pp. 370-377, July 1982. L :

Thekaekara M.P., "Extraterrestrial Solar Spectrum 3000-61 00Aat1A Intervals " Applled Optics,
vol. 13, no. 3, pp. 518-522, March 1974.

Toll, D.L., "Effect of Landsat Thematic Mapper Sensor Parameters on Land Cover Classmcanon
Remote Sensmg of Environment, vol. 17, pp. 129- 140, 1985.

Turner, R.E.,, A Stochastic Atmospheric Model for Remote Sensing Appllcallons NASA-CR-
172181 pp. 1-33, August 1983. :

Vane, G., "Airborne Visible/Infrared lmaglng Spectrometer (AVIRIS)," JPL Publication 87- 38 Jet_ |
Propulsuon Laboratory, California Institute of Technology, Pasadena California,
November 1987.

Verhoef, W., "Light Scattering by Leaf Layers with Application to Canopy Reflectance Modelmg
the SAIL Model,” Remote Sensing of Environment, vol. 16, pp. 125-141, 1984.

Whitsitt, S.J., and D.A. Landgrebe,"Error Estimation and Separability Measures in Feature
Selection for Multiclass Paitern Recognition,” LARS Publication 082377, Laboratory for
Applications of Remote Sensing, Purdue University, West Lafayette, IN, August 1977.

Wierema. D.J. and D.A. Landgrebe, "Analytical Design of Multispectral Sensors,” IEEE
Transaclions of Geoscience and Remote Sensing, vol. 18, no. 2, pp. 180-189, 1980.

Wlswell E.R., "Analytic Technlques for the Study of Some Parameters of Multispectral Scanner
Systems for Remote Sensing,” Ph. D. Thesis, School of Electrical Engineering, Purdue
University, West Lafayette, IN, 1978. Also available as LARS TR 061778.

Wolfe, W.L., and G.J. Zissis, Editors, The Infrared Handbook, Office of Naval Research Dept.
of lhe Navy, Washington, DC. 1978.

Wyatt C. L Radiometric System Design, Macmillan Publishing Company, New York NY
o198 87.



155 Appendrx A- Expected Vanance ofa
' Two Dimensional Autoregresswe Process

: Appendlx A Expected Varlance of a Two Dlmenswnal :
-‘ Autoregressive Process :

, ThIS appendix provndes a stralghtforward method of computmg the
expected variance of a two dimensional autoregressive (AR) process. While the
‘method is similar to discussions presented in Friedlander (1984) and Kay -
(1985), it is developed here in the context of image modellng and presented in
an mtuntlvely simple manner =

The zero mean Mth order AR process y(k) is defined asin equation A.1. -

M R
- Zem ykem) + uk)  k=t,,N (A1)
v m=1 ' : B
. wh'ere : SR
' y(k)- - process data value at point k in sequence
"6, - model coefficient at lag m |
| ‘u‘f(yk)'-‘ - Gaussnan white noise sequence with zero mean and variance
o2 ’

: The process will be stationary if the zeros of F(z) lie outsnde of the unlt
crrcle in the complex plane, where F(z)'i |s defined as in equation A. 2 o

F(z)= 17}-/9"1 ;-92z - By M v' | . "(A.2)

, Autoregressive models have been applied to image modelling and
..compression (Delp, Kashyap, and Mitchell 1979) through-the use of a line
scanning formulatlon The two- dlmensmnal image is row concatenated to form
a one dimensional sequence. Figure A. 1 shows the arrangement for a quarter E
p!ane AR model applled to a P row x P column |mage
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y(i-1,-1) (1)

(1.1)

Y1) T )

| ‘(PP) |
Y('»J)—901Y(ll 1)+8,,y(-1)) +8 1y(l 1 1)+U(',J)+Ymean |

Figure A1 Quarter-Plane Image AR Model.

} Thns model may be reformulated as a one dimensional sequence by .
letting the index k = (i-1)P +j. This is shown in equation A. 3

Y(K) = 0,y(k-1) + Opy(P) + 8, YCP-1) 4 UK) #Ymoan for keP1,...P2 (A3)

The AR model is now of order M = P + 1, but with only coefficients 0, 6p, =
and 0p, 4 being nonzero. Also, the initial conditions of the model become the

first row and the first pixel of the second row. Usually these are set to the mean
of the i |mage asin equatlon A4,

V) =Ymean for k=1,2,..,Psl. (A4)

The Yule-Walker (YW) equations are obtained by multlplynng equatlon"
A.1 by y(k-l) and taking the expectation. Thls results in equation A. 5 ' ,

m=1i

E{yk yk} = {Ze y(k-m) y(k-D) + u(k) y(k- l)} @y
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- For 1> 0, this results in equation A.6,

29 ey (a8

where oy2(l) is the covariance between data points | lags apart. This
result comes about due to the stationarity of the process and the fact that u(k) is

an uncorrelated sequence.
ertmg equation A.5 for I=1 to M and normallzmg by the variance cy2 =

0,2(0), we obtain the YW relations as equation A.7.

p2= 0,p,+ 0, + 0,p, + - + 8, Py

’91 + 92 p, + o F GM Pit-1
(A7)
Py =8Py G, pM-2 ot O

Observe that in the above we have used the fact that Po = 1,and thatp4 =

Py Also note that
- ci-(m)

Pm = 02
Y

Eduation A.7 can be reformulated as in equation A.8.

P e,
I T I L
M -e -0l - ? R
'mxm T FA T Bl = A7 X
pM _GM—




Appendlx A- Expected Variance of a 158
) Two Dimensional Autoregresslve Process

Where | M x M is an M x M identity matrix, and @, and @B are deflned '

as follows

R | .9293'"'A'9M°', | o

| a6 ie00 | Foo....07
- . 6,00:---0

~A GMO .‘o‘ @B:. '92 610 ;.O”
6y 0 - - - - 0 - - B

=00 - 0d —eM-l 92.51_ O..'

The elements of @, and (")B can be filled by the follownng pseudo-code o )

For@ VRN
for|—1toM{
forj=1toM{ .
if (|+JsM)then @A(l,j) 0

l+]

else © (i) =0

}

For ©g, -
fori=1toM{
fOf]—1tOM[‘ :

if (I-j> 1) then @B(l,j) =
 else Ogij) =0
Yoo

Equatlon A8isin the form- of a system of Ilnear equatlons and the
autocorrelation coefficients P1, P2, - Pm» CaN then be obtained by usmg any
B standard linear algebra routine. |
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Two Dimensional Autoregressive Process

, Using the relationship between the coefficients, the autodbrrelétions, and
the process variance from Box and Jenkins (1970), we can solve for the
variance of the process as in equation A.9. '

0.2

u X
= M B .
1-) 6.0, (A-9)

m=1

o
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Appendix B Interpolation Algorithm

The following routine was used to convert the 60 dimensional FSS
reflectance into the 201 dimensional vectors used in the system models. The -
'FSS data covered 0.4 to 2.40 um, in spectral samples ranging from 20 nm to 50 ‘
nm. The system model uses a constant 10 nm wavelength spacing across this
range.

The conversion is accomplished by first placing samples that correspond
directly in wavelength, then performlng several levels of mterpolatlon to match
“the wavelength spacing as closely as possnble

The two arrays are defined as fssref(1 :60), the FSS reflectance, and
hiref(1:201), the resulting interpolated array. ‘

c Do direct placements first
c
hiref (1)=£fssref (1)
do 10 i=2,8
10 hiref (2*i)=fssref (i)
do 20 i=9,11
20 hiref (2*i+l)=fssref (i)
. . do 30 i=12,13
30 - _ hiref(2*i+2)=fs$ref(i)
. do 40 i=14,18
40 "hiref (2*i+3)=fssref (i)
. do 50 i=19,28
50 hiref (2*i+2)=fssref (i)

hiref (59)=fssref (29)
, do 60 i=30,34
60 hiref (2*i+3)=fssref (i)
hiref(75)=fssref(35)
hiref (80)=fssref (36)
do 62 i=37,60

62 hiref (5*(i-37)+84)=fssref (i)
c .
c Next interpolate simply
c
. do 70 i=1,7
70 ) hiref(2*i+1)=0.5*(fssref(i)+fssref(i+l))
do 80 i=8,11
‘80 hiref (2*i+2)=0.5* (£ssref (i)+fssref (i+1))

hiref (27)=0.5* (£ssref (12)+fssref (13))
do 90 i=13,17

90 . hiref (2*i+4)=0.5* (fssref (i)+fssref (i+1))
do 100 i=19,27 : ‘
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hiref (2*i+3)=0.5* (fssref (i)+fssref (i+1))
hiref (61)=0 5*(fssref(29)+fssref(30))
~do 110 i=30,33
hiref (2*xi+4)=0. 5*(fssref(1)+fssref(1+1)),
hiref(73)=0.5* (£ssref (34)+fssref(35))
hiref (77)=0.5* (f£ssref (35)+fssref (36))

~hiref (82)=0.5* (fssref (36)+fssref (37))
thref(87) =0.5*% (£ssref (37)+fssref(38))
'do. 115 i=38,59

hlref(5*(l 38)+91) 0 5*(fssref(1)+fssref(1+1))*
’,;Now 1nterpolate 1nterpolat10ns

hlref(2) =0.5*% (hiref (1)+hiref (3))

- hiref(17)=0.5* (hiref (16)+hiref(18))
‘hiref (25)=0.5% (hiref (24)+hiref (26))
hiref (29)=0.5* (hiref (28)+hiref (30))

:hiref (60)=0.5* (hiref (59)+hiref (61))
hiref (62)=0. 5*(h1ref(61)+h1ref(63))
do. 120 i=72,78,2

hiref(i)=0.5* (hiref(i-1)+hiref (i+l))

‘hiref (81)=0.5* (hiref (80)+hiref (82))
hiref (83)=0.5% (hiref (82)+hiref (84))
do 125 i=86,92,2
B hiref (i)=0 .5* (hiref (i- 1)+h1ref(1+1))

do 130 i=110,195,5 - _
~_hiref(i)=0.5*% (hiref (i-1)+hiref (i+1))

Now interpolate interpolations of the interpolations

hiref (79)=0.5* (hiref(78)+hiref (80))
hiref (85)=0.5*(hiref (84)+hiref (86))
hiref (93)=0.5* (hiref (92)+hiref(94))
do 135 i=112,197,5 .
h1ref(1)—0 5*(h1ref(1 1)+h1ref(1+2))
do 140 i=113,198,5
hlref(l) 0 5% (hiref (i~ 1)+h1ref(1+1){

Set water absorption bands to 0.001

‘do 143 i=96,106

hiref (i)=0.001
do 147 i=146,156
. hiref(i)=0.001
Set up repeated values

hiref (95)=hiref (94)

"hiref(107)=hiref (109)
‘hiref(108)=hiref (109)

hiref (145)=hiref (144)
hiref (157)=hiref (159)
hiref (158)=hiref (159)

hiref(200)=hiref (199)

hiref (201)=hiref (199)
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| A’pp-endix C LOWTRAN 7 Input File
, The atmospheric simulation program LOWTRAN 7 is implemented in the
' snmulat:on by setting up an input file, calling the program through a UNIX
system command, then reading the resultant output file created.

The following variables and defauit valwues were used in the
implementation of LOWTRAN 7. See Knenzys et al (1988) for a complete
‘description. : ' '

ANGLE - Angle parameter
DV - Incremental wavenumber
* GNDALT - Altitude of surface
H1 - Initial altitude
~ H2- Final altitude
ICL.D - Cirrus cloud parameter
'ICSTL - Ocean parameter
IEMSCT - Execution mode parameter
=0 program calculates transmittance
= 1 program calculates atmospheric radiance - ,
= 2 program calculates atmospheric and singly scattered solar/lunar rédiance ‘
= 3 program calculates directly transmmed solar irradiance '
IHAZE - Atmospheric haze parameter '
= 0 for a clear atmosphere
=1foramral atmosphere
_ = 5 for an urban atmosphere
" IM - Radiosonde parameter
IMULT - Mutltiple scattering control parameter
| =0 progfafn executed Without»multiple scattering
= 1 program executed with mUItiplé scattering
IPARM - Geometry specification controlling parameter
IPH - Aerosol phase function parameter
. IRPT - repetition parameter
= 0 no more input cards follow
=1 more input cards follow
~ ISEASN - season parameter (O=default)
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ISOURGC - Extraterrestrial source parameter
=0 source is sun
= 1 source is moon
ITYPE - Atmospheric path parameter ..
. =1forahorizontal path- -
: ~ = 2 for a vertical or slant path between two altitudes
= 3for a vertical or slant pathto space
IVSA - Veftical structure algorithm parameter
IVULCN:& Volcanic activity parameter
M1 through M6 - Altitude profile parameters
' MODEL - Atmoépheric model type parameter
’ = 1 selects Tropical Model Atmosphere
= 2 selects Midlatitude Summer |
= 3 selects Midlatitude Winter .
= 4 selects Subarctic Summer
= 5 selects Subarctic Winter ..
. =6selects 1976 U. S. Standard -
NOPRT- Normal operation parametér -
PARMT - Azimuthal angle between observer and sun
PARM2 - Solar zenith angle (=6g}¢)
RAINRT - Rain rate parameter
SALB - Surface albedo
V1 - Initial wavenumber

V2 - Final wavenumber
VIS - Surface meteorological range (=Vn)

The following default values were used for the experiments and
simulations used in this report. '

‘ VQNDALT=0 o /* Surface at sea level */

~ICLD=0 ' : : /‘“No'clouds‘/ » S
ICSTL=1" ' " No effect, only used over oceans */ |
IDAY=180 . rDayofyear® |
IHAZE=1 r Ruréi atmosphere */

IM=0 ' /* No radiosonde data */
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IMULT =1 o /* Multiple scattering */

ISEASN=0 , /* Season determined by MODEL */
ISOURC /* Source is Sun */ _
IVSA=0 o : I* Vert. Struéture Algorithm not used i ,
IVULCN=0 o /* No volcanic profile */
M1=0 S I* Normal operation */
M2=0 /* Normal operation */
, M3.=0' - ' /* Normal operation */
~ MODEL=6 - o r 1976 U. S Standardatmospheie */
- NOPRT=1 S ¢~ I* Normal operation */ b
RAINRT=0.0 /* No rain*/
v VlSéVn AR _

Four. calls to LOWTRAN are set up within the input file. The first call
calculates the direct solar spectral irradiance at the surface. The second
calculates the transmittance of the path from the surface to the sensor. The third
and fourth calls calculate the path radiance seen by the sensor for surface
albedoes of 0 and 1. LOWTRAN reads from an input file named TAPE5. The
~ lines below labelled CARD contain the actual variables in the file TAPES.

The following lines set up the direct solar irradiance call.

ITYPE=3

IEMSCT=3

H1=0.0

ANGLE=0501ar
~ IRPT=1

CARD1  MODELTYPE,IEMSCT,IMULTM1,M2M3M4, M5 M6MDEF,IM, -
'+ . NOPRT,SALB - :

CARD2 ~ * IHAZE,ISEASN,IVULCN,ICSTL ICLD,IVSA,VIS RAINRT,GNDALT
CARD3 ~ H1, ANGLE, ISOURC |

CARD4 V1,v2,0V |

CARDS - IRPT
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~

: »Théfmlo‘wmg lines ',Set’u‘p the tranémittance call. "~ '

S YIT‘YPE=2 ‘
- IEMSCT=0

L H1=00
R ;Hz_H '
L :f:ANGLE-ev,ew

©CARD®' .

© CARD7.
" CARDS -
'CARDY .

CARD10

Az Aliitude_;of éehéor‘/» S

kMODEL ITYPE, IEMSCT IMULT M1,M2, M3 M4 M5 M8, MDEF IM
NOPRT SALB

IHAZE ISEASN, IVULCN ICSTL ICLD IVSA VIS, RAINRT GNDALT
H1, H2,ANGLE

©VI,V2,0V
CIRPT

o The fdlipwing»lih,é’s set up one path radiance call. |

s »'IEMSCT—

UM=ML
"VANGLE-1800 ev,ew '
" IPARM=2-

" IPH=2
‘PARM1 (¢v.ew ¢solar)/2

PAFW'z"esolar ' ; o
'i“'SA,LB“O-O S ';/'or’=1.0:'/,';'.:.;“»:”,'“j' |

CCARD11

MODEL ITYPE, IEMSCT IMULT M1 M2 M3, M4 M5,M8, MDEF, IM

. NOPRT,SALB

cARD12

| CARD13  H1,ANGLELEN

AP
'CARD 15
‘CARD16

IHAZE ISEASN, IVULCN ICSTL ICLD IVSA VlS RAINRT GNDALT

IPARM,IPH,IDAY,ISOURC |

PARM1,PARM2

V1V2.0V
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CARD17  IRPT

~The program generates a file named TAPE7 with the output data.  Since
LOWTRAN uses wavenumber increments across the spectrum, a conversion is
done to put the result into wavelength units. Since the resolution of the call to
LOWTRAN results in one or more wavenumber samples per wavelength
interval, this conversion is accompllshed by averaging over the appropriate
wavenumbers to obtain the resulting wavelength value.
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Appendix D Sensor Descriptions

In the following descriptions the radiance levels are glven in mW/(cm2-
sr). The shot noise constants are computed from data and can be used to
compute the standard deviation as in equation D.1.

O = sht,/Slgnal LeveIA I (> B )

D.1. Modular Multlspectral Scanner
' This is an airborne sensor flown for LARS in the early 19703 The
spectral response and noise levels were estimated from data given in the report )
by NASA's Johnson Space Center (1974). Details are given in Tables D.1 and
D.2, and Figures D.1, and D.2. The noise values are estimated assuming

equivalent shot and thermal noise for one-half full scale radiance signals.

Table D.1 MMS General Parameters.

Altitude 3030 Meters
Sampling Interval 2.3 millirads
Number of Bands 10
Number of Bits _ 8

“Table D.2 MMVS Band and Noise Parameters.

Full Scale . Shot Noise Thermal Noise

Band - Radnance Constant Equivalent Radiance

1 : -0.338 0.0151 0.00450 =
2 - 0.640 0.0042 0.00160
3 1.114 ~0.0039 0.00160
4 1.253 0.0037 0.00150
5 1.314 0.0035 0.00150
6 1.333 - 0.0028 - .0.00150
7 1.170 0.0024 0.00140
8 1.020 0.0018 0.00140
9 0.983 ' 0.0034 - 0.00300
10 0.259 : 0.0061 , ~0.00250
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The spatral response of the’ MMS is assumed to be Gaussran wrth a
,standard devratron of 1 25 mllllradrans ‘

D.2. Landsat mMss , o LT
" The following data are for the Landsat MSS lnstrument The:spe’ctr'a’li‘ ‘
response was taken from Markham and Barker (1983), the spatral response ,

from Markham (1985), and the noise levels set similarto those of the. Thematrcz '

‘ Mapper mstrument The rest of the lnformatron is from Salomonson et al
. ‘(1980) : SR '

Table D.3 MSS. General Parameters o

- Altltude - 918 Kllometers

Sampling Interval 63 uradians across scan- |
1. - o 88 uradlans down scene |
~ [Number of Bands _4 :
NumberofBits  * (6 for band 4y

Table D. 4 MSS Band and Norse Parameters

TFulTScale T Shot Nolse | Thermal Noise

' Band | Radiance | Constant | Equivalent Radiance |-
1 2.48 0.008 ~0.006 N E
2 . 2.00 0.007 - | 0005

3 | 176 | 0.005 . 0.005 .

4 460 |  0.005 . 0,010 =
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" D.3. Landsat Thematic Mapper

o -The: data presented here are for the first six bands of the Landsat ™ : T
: ».mstrument The spectral response was taken from Markham and Barker (1985),
' _the spatlal response from Markham (1985) and the noise Ievels from Malaret ’

~ Appendix D - Seisor Descriptions

_-(1,,982) The rest of the mformatron is from Salomonson et aI (1980)

Table D 5 TM General Parameters

ey 95T -
i |Sampling Interval -

" INumber of Bands

~ [Number of Bits _

7» '705 Kllometers .
43 yradians across scan | . -
43 uradlans down scene j

6

Table D 6 TM Band and Norse Parameters

'3>T5anqd

FuII Scale
Radlance

fx , Shot Norse

Constant

Thermal Norse —

Equnvalent Radlance

looswn _.

"1.06
2,54
1.46
©3.26
. 0.64

- °0.0073
0.0079

0.0066

00049
0.0055 - |
0.0127

000752

- 0.00529 . -

©0.00448
- 0.00360
0.00333 -

000800 |
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Appendix _E}Avna‘lytical ‘System Model ‘Program Listing -

<C************v***‘********,—*‘*v**v**************'**_****'**I*****‘*A’é*‘*‘*’,******"**.‘****

CO000000A00000.00000000000000 dcaonoa0co0oao0ca0oadoe0a aGaadnoaa

. "lrrad"

RSANA  John Kerekes ~  ~ May 29, 1989 -

. This. program w1ll compute the performance. of a remote sensrng
,system based on scene reflectance and system parameters.
"It-is based on analytic models developed by Whitsitt (1977),

Mobasseri (1978),and Malaret .(1982). It uses reflectance

- statistics. obtained by the FSS and 1nterpolated to 201 dlmenslons
.to work with the model HIRIS sensor. Feature selection basedmon

combining bands is used to reduce the dimensionality. Tables

. ‘generated by LOWTRAN 7 provide the atmospheric data under 125"
-comblnatlons of surface meteorologlcal range, solar zenith' angle,'
_and view zenith angle. Classification accuracy is asséssed through

a function of the}Bhattacharyya distance between classes..

Thenprogram“uses several data“files as described beloﬁz

- "refstat"™ - ‘Mean and covarlance of reflectance for each class

"scdesc" - Parameter file describing scene : .

“irrad"™ - Table of total surface irradiance for- varylng
meteorological ranges and“sun angleés

"trans" - Table of atmospherlc ‘transmittance for varylng
metéorological ranges and’view angles .

“"prad0" - Table of path radlance for surface reflectance of 0, for

o varylng meteorological ranges, solar angles, and view angles

"pradl“ —-.Table of path radiance for surface reflectance of 1, for

" varying meteorological ranges, solar angles, ‘and 'view “anglés
"senstat" - Parameter file describing sensoér UM AT
;“feaset“ < Table of proce351ng features

The format for these flles is as follows.

"refstat" :
Repeated for each class are the follow1ng
(al0) Class Name
(201£8.4) Mean Reflectance -
201 rows of (201£8.4) Covariance Matrlx

'>i"scdesc"’

(i3) Number of classes o

{(£4.2) Across scene spatlal correlation: coeff1c1ent

(f4.2) Down scene spatlal correlation coeff1c1ent
©©(i3) Meteorological range table ‘index '

(i3) Solar zenith angle table index

(i4) view zenith angle table index

Repeated for 5 solar angles . (0° -15% 30° 45° and 60%
" Repeated- 201 times for spectral wavelengths ‘ ’ :
© 5(£7.2,al) Spectral irradiance for 5§ Met Ranges
separated by tabs (2 4,8, 16 and 32 Km)
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Program Listing

00 000GA000000060000A000000000000000C0Q0O0NN0NQO0OAO0NOQ conaao0a

- calstd

"trans" ‘ ‘ -
Repeated for 5 view angles (0° 15° 30° 45° and 60°)
Repeated 201 times for spectral wavelengths
5(f7 4,al) Atm. Transmittance for 5 Met Ranges
separated by tabs (2,4,8, 16, and 32 Km)'

pradO“ o » o
‘ Repeated for 5 view angles (0°, 15° 30°, 45° and 60°)
Repeated for 5 solar angles (0° . 15° 30° 45° and 60°)
Repeated 201 times for spectral wavelengths
" 5(£7.4,al) Path Radiance for 5 Met Ranges
separated by tabs (2,4, 8,16, and 32 Km)

"pradl"®
Repeated for 5 view angles (0° 15°, 30°, 45°, and 60°)
Repeated for 5 solar angles (0° 15° 30° 45° and 60°)
: Repeated 201 times for spectral ‘wavelengths '
5(£7.4,al) Path Radiance for 5 Met Ranges
separated by tabs (2,4,8,16,and 32 Km)

"senstat™
(a24,a6) Label, Sensor Name
(a24,£f4.1) Label, PSF Radius (ry)
(a24,i3) Label, IMC Gain State
(a24,£f11.1) Label, System Response Constant
(a24,2£8.1) Label, VNIR and SWIR Dark Current
- (a24,£8.1) Label, Shot Noise Factor ) }
(a24,2£8.1) Label, VNIR and SWIR Read Noise Std. Dev;ations
- '(a24,2£8.1) Label, VNIR and SWIR Quantization NOLse st. Dvs
(a24,£8.3) Label, Relative Calibration Error
(a24,£8.3) Label, Absolute Calibration Error
" Repeated for 201 Wavelengths .
(a24,£7.4) Label, Sensor Spectral Band Response

"feaset"
(a24,i4) Label, Number of Features to- Use
‘Repeated for each feature
(a24,2i4) Label, Feature Beglnnzng and Ending Band

Variables Used Include the Following:

absrad - level of absolute radiometric error (in decimal)

averef - average of class reflectances (in decimal)

avecov - covarlance of average of reflectances (in decimal)
level of relative callbratlon error vector (in decxmal)
dark - dark level current in detectors (in electrons)

feacov - covariance of feature set

feamat - feature selection matrix

feamean ~ mean of feature set

feaset - table of band edges for feature selection
gcon - conversion vector of received power to electrons
"~ (electrons/watt) v
irrad - table of total spectral irradiance at surface (mw/cmz—mm)
1rrad(wavelength met range, sun, angle)
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mu = Bhattacharyya distance : : : SR
' pcsum - overall average probablllty correct (1n percen,jr '
,prado - table of path radiance when albedo=0 (mW/c 2 -

Y

n program rsana . oo o SR ‘
’parameter(lrbrk 61, maxcls 4 m}zdlm—201 maxfea 16 maxopt 5) :
‘character*l tc- ; o Lot

‘character*10 covtype

_real feamat (maxfea,maxdim) ‘
‘real feacov(maxfea,maxfea, maxcls) feamean(maxfea maxcls)

" real .feacovk(maxfea, maxfea) feacovl(maxfea maxfea) '
real gcon(maxdlm) ‘ - N
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mr'—tlndex for meteorologlcal range

prad0 (wavelength, met range, sun. angle, vie

'pradl - table of path radlance when albedo=1 (mW/cm -mm-sr)'

pradl{wavelength, met range, sun - angle, ‘view angle)

-probcor - pa1rw1se probablllty of correct (in decimal)

quantstd - variance of. quantlzatlon noise (in’ electrons)
readstd - variance of read.noise vector (1n electrons)
refmean - mean reflectance array (1n percent) ‘ :
refcov - covariance of reflectance (in percent )

rhox - across scene spatial correlatlon coefficient’

' rhoy = down 'scene spatial correlation coefficient
ro -~ sqrt(2) times the PSF radius in. scene cells

senrsp - sensor response(product of optics transmlttance and .
quantum eff1c1ency) : : .

‘shtfac - shot noise factor

shotstd - standard deviation of shot noise vector(ln electrons)

31gcov-— covariance of received signal (in electronsz)
sigmean - mean of received signal (in electrons)

‘sigrad - signal radlance for 100% reflectlng surface (in electrons)f
'sysrsp - system response constant (product of AQ AK, and 1/hc)
. thsun .~ 1ndex of solar zenlth a‘gle , . o

“trans - table of atmospherlc transmlttance

trans(wavelength,'met range, view angle)

' s'— spat1a1 welght

.“IMSL ver31on 10 0 routlnes used 1nclude the follow;ng

,erfc(x) - .compute the error functlon complement of x
‘3_fdsf( ) - compute determlnant given matrix factorlzatlon
llnrg( ) - compute the inverse . of a real general matrlx

f() - matrlx factorlzatlon

character*G senname

character*24 label
integer feaset (maxfea,2)

fhlnteger imc, ipvt (maxfea) ,mr,numcls, numfea thsun thvew e
._real absrad, averef (maxdim) ‘ : SRR

gavecov(maxdlm,maxdlm)

real{calstd(maxdlm) ) ’
real dark(2),detl,det2, detave detl, detk
real fac(maxfea,maxfea)
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real irrad(maxdim,maxopt,maxopt),mu
“real mxdiff (maxfea), matave(maxfea,maxfea),matlnv(maxfea,maxfea)
real pcsum .
real prad0(maxdim,maxopt,maxopt,maxopt)
. real pradl (maxdim, maxopt,maxopt, maxopt)
real pthdif (maxdim)
" ‘real probcor (maxcls,maxcls)
real quantstd(2),readstd(2) :
real refcov (maxdim,maxdim,maxcls), refmean(maxdlm,maxcls)
real ro,roa, rob,rhox,rhoy,senrsp(maxdlm)
‘real shtfac,shotstd (maxdim) -
real sigrad(maxdim)
real sxgmean(maxdlm),31gcov(maxd1m,maxd1m)
real ws,sysrsp-
real temp,tmpmean(maxdlm) tmpcov(maxdlm,maxdlm)
real tmpvec (maxdim)
real trans(maxdlm,maxopt maxopt)

Qoo

c***********************************************************************

C .
(o} READ IN DATA PARAMETER FILES AND SET UP ARRAYS
g*********************************************tf************************
c
Te Read in scene description and reflectance data
c ' :
open (unit=3, f11e="scdesc")
rewind (3) : .
read (3, ' (i3) ')numcls
read(3, ' (£4.2) ") rhox
read(3,'(£f4.2) ") rhoy
read (3, " (i3) ')mr- _
read (3, '(i3) *)thsun
»read(3,'(13)')thvew
. close(3)
" open(unit=4, flle—"refstat“)
rewind(4) -
“wdo 10 k=1,numcls
read (4, ' (alo)" )covtype
read(4,'(201f8 4)* )(refmean(1 k),l—l maxd;m)
" do 20 j=1,maxdim
DERSE read (4, '(201£8. 4)')(refcov(1,3,k) 1=1 maxdlm)
20 continue

10 © . continue
» .close(4)

8. ,

- c Read 1n atmospherlc data flles
c

open(unlt-lo f11e="1rrad")» o
rewind(10).
do 30 1=1,maxopt
~do 30 i=1,maxdim - - ’ '
o _ read(lo,'(S(f7 2,a1))')irrad(1 1, l) tc,irrad(1,2 1),te,
S - irrad(4i,3,1), tc,mrrad(l 4,1), tc,lrrad(l 5,1)



30

40

50

60

70"

80 -
~¢lose(15)
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. ¢ontinue

¢close (10)

open(unlt =11, f11e="trans")
rewind(11) -

~.do 40 1=1,maxopt

do 40 1—1 maxdlm
read(ll,'(5(f7 4, al))')trans(l I,L), 66 trans(l 2 l) tc,
trans (i; 3 1), t¢, trans (1,4,1);tc,trans (1,5, l)
continue’

closée(11)

open (unit=12, flle—"pradO“)
rewind (12) -
do 50 1=1,maxopt

do .50 m=1,maxopt

“do 50 i= 1 maxdim

read(12,'(5(f7 4, al))')pradO(l 1; m,l) tc pradO(l 2,m,1) tc,
. prado0 (i, 3 M LY, 6 pradO(l 4 m,l) tc,pradO(l 5 m,l)
: contlnue
close(12), .
open(unlt =13, flle—"pradl")
rew1nd(13)
do. 60 1=1;maxopt
do 60 m=1,maxopt
do 60 i=1, maxdim
read(13 '(5(f7 4, al))')pradl(l 1 m,l) tc,prad1(1 2, m,l) tc,
pradi (i, 3 m,l) te; pradl(l 41, 1), te; pradl(l 5 m,l)
contlnue

closé (13)
Réad in séhsor parameter file

'open(unlt =14, flle-"senstat")

read 4,‘(a24 a6)')label senname

read(14,'(324 f4. 1)')labe1 ro

read(14 '(a24 13)')1abel ime

read(14, (a24,; fll 1)')label Sysrsp

read(i4,'(a24 2£8. 1)')labe1 dark (1), dark(2)

read (14, '(a24,2£8.1) ') label, shtfac

redd (14, ' (a24,2£8.1) ') label, feadstd (1), readstd(2)
read(14,'(a24 2f8 1)')label,quantstd(l),quantstd(2)
read (14, ' (a24, £8. 3)')label cdlval .
read(14,!(a24 £8.3) ') label, absrad

“do 70 i=1, maxdlm

read(14 '(a24 f7 4)')1abel senrsp( )
) quptlnue
élbse(14)

. Read 1n feature File and flll up feature matrlx ‘

open(unlt 15 flle="feaset")

rew1nd(15)

read(15,'(a24 14)‘)label numfea

do 80 m=1,numfea v
read(15,'(a24 i4; 14)')label feaset(m,l) feaset(m,2)'
contlnue . ’
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d6.90’m?l;numfea»»".
do 100" i=1,maxdim -
- feamat (m,i)=0.0" '
' 1f(1 ge feaset(m,l) and.i.le. feaset(m,Z))

- c -

-

B~

+ : v feamat(m,1)=1 0
100 - . .- continue :
.90 . continue .
e - RS
C e e e o Lo e L ‘
.C**********************************************************************?'
c. SET up CONVERSION AND SCALING vgcroas
. c***********************************************************************
,pié4 O*atan(l 0y
-do 110 'i=1,maxdim : ’ ' ‘
~geon(i)=0. 01*(0,4+(i-1)*0. 01)*$ysrsp*senrsp(1)*1mc :
slgzad(l)-(l O/pl)*irrad(l,mr,thsun)*trans(l,mr,thvew)
R pthdlf(i)=prad1(1,mr,thsun,thvew)-prad0(i'mr,thsun,thvew) )
110 contlnue :
e v
- 'Compute spatlal welghting funct;on
e (Note, assume all bands have same spatial correlatlon) .
-3 - (IMSL erfc function is 2 times erfc() - as defined in thesxs,
c: and also needs a dxvxsxon by sqrt(2) to normalize varlable)
. C ’,vNow implemented scal;ng of . PSF sxze by view angle in y dlrectlon
c :

a-om=l, O*alog(rhox)
b= -1, O*alog(:hoy) )
. roasro - - C e
‘.rob-ro/cos(((thvew-l)*ls 0*pi)/180 0)
- temp=4.0%*exp(((a*a+b*b)/2.0) *roa*rob) ' PO
S ws=temp*0 S*erfc((a*roa)/sqrt(Z 0))*0 S*erfc((b*rob)/sqrt(z 0))
c’ . v v

. c

c***********************************************************************'
e “COMPUTE AVERAGE REFLECTANCE FOR usz N PATH
‘ ?,"  RADIANCE MODEL
e v . :
"c***********************************************************************v
e
e “;xdo 120 1-1 maxdlm
o averef (1)=0.0
S .do 130 k=1,numcls
L - v averef(1)—averef(1)+xefmean(1,k)
130 0 continue: : A
;averef(l)-(averef(l)/float(numcls))/100 0 '

120 - - continue
S do 140 i=1,maxdim
" do'140~j-1,maxdim
avecovi(i, j)=0.0
-do -150 k=1,numcls
Sl '; avecov(l,J)=avecov(x,3)+refcov(1,J,k)
150 contlnue
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avecov(l,j)—(avecov(l,3)/float(numcls*numcls))/10000 0
140 . contlnue . S
c. . : ' : : . B
,c*************_*****»***************v**ﬂk*‘***,*************.*‘****************‘k

c «COMPQTE FEATURE SPACE. STATISTICS FOR EACH CLASS .
cf*****’*_***%**************,********************v**'*ﬂ*****V***v*‘***********,*ék*;
. » S o B - im.
¢ . Loop for all classes R _START CLASS LOOP. 1.
c o - RS e
~do 390 k=1,numcls
c CopY'reflectance stats to temp filés and convert fromf%~
c ) .
do 200 i= 1 maxdlm
_ tmpmean(l)—refmean(l k) /100.0
do 210 j=1,maxdim
‘ tmpcov(l,j)—refcov(l,j,k)/10000 0
210 continue
200 continue
c . :
c Compute signal. mean
c ‘ 4
do 220 i=1,maxdim : :
R Slgmean (i)=gcon (i) * (sigrad (1) *tmpmean (iy+ .
T+ : pthdlf(l)*averef(1)+prad0(1 mr,thsun thvew))
81gmean(1) =gsigmean(i)*(1. 0+absrad) , .
1f(1 le.irbrk) then
51gmean(1)—51gmean(1)+dark(1)
‘else: o
. 31gmean(1) 51gmean(1)+dark(2) i
: ;' endif
220 - ' continue
- C BRI s . :
e Compute signal covariance

do 230 i=1,maxdim
‘do 240 j=1,maxdim :
sigcov (i, J) tmpcov(l,j)*gcon(l)*gcon(j)*51grad(1)* ‘
+ . » 51grad(3)+pthd1f(1)*pthd1f(j)*avecov(1 3)*
S+ ‘ gcon (i) *gcon(3j)
_ 51gcov(1 3)—31gcov(1,j)*(1 0+absrad)*(1 0+absrad)
240 - continue .

230 . continue

c . i

c Apply spatial weighting function
c

do 250 i=1,maxdim .
" do 260 j=1,maxdim .
SlgCOV(l,j)—WS*SlgCOV(l,j)

260: L continue

250 continue

c Compute signal dependent noise standard deviations
c . . . :

"60‘270 i=1,maxdim
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Program Llsung L ST

: shotstd(;)-shtfac*sqrt(s;gmean(;))
calstd(z)=calval*s;gmean(1)*(2 Olsqrt(lz 0))

- 270 ~ continue
c
. e Add noise varlances to s;gnal var;ances

do 280 1=1,maxd1m » : C
s;gcov(l,1)-sigcov(1,1)+shotstd(1)*shotstd(i)
s;gcov(z,1)-31gcov(1,1)+calstd(i)*calstd(;)

- if(i.le.irbrk) then
sigcov(l,i)=sxgcov(1,1)+zeadstd(1)*readstd(l) .
o sigcov(x,;)-sigcov(l i)+quantstd(1)*quantstd(l)
o+ ‘ : *imc*lmc
©  else L
sxgcov(;,l)-sigcov(i,1)+readstd(2)*readstd(Z)
.sigecov (i, i)=31gcov(x,1)+quantstd(2)*quantstd(Z)

KX ) . . *1m¢*1mc
o endif :
280 cont;nue -
c -
- "Transform to feature space

do 290 mul numfea

feamean(m,k)=0 (]

do 300 i=1,maxdim
L feamean(m,k)=feamean(m,k)+feamat(m,;)*sxgmean(l)
300 ‘continue ' .
290 ‘continue
s “do: 310 i=1, maxdlm
: do 320 m=1,numfea

" tmpcov (i, m)=0.0
do 330 j=1, maxdlm
tmpcov (i, m)*tmpcov(z,m)+sigc¢v(i j)*feamat(m,j)

330"“ . continue:
320 ‘continue

.- 310 - - continue
- - do 340 m=l,numfea .
- do 350 n=1, numfea g
feacov(m,n k)=0.0
- do 360 i=1,maxdim :
- v feacov(m,n,k)=feacov(m,n,k)+feamat(m,x)*tmpcov(;,n)
360 . o cont;nue -

350 .- .. .continue i

.340 *.. continue:

390 ' continue

c o n o . v o v
e AP S END CLASS LOOP 1
o v , . S SRS

P L R T T

coaPuTs PAIRWISE BHATTACHARYYA DISTANCE

Scale feature statistlcs to prevent ovexflow

000000

temp-o l1*feamean(l, 1)
- do 393 k=1,numcl$ i :



396
395
393

410

420

440
430

450

400

o]

Cc

C
. C

[0]

(o]
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do. 395 m=1, numfea
feamean (m, k) =feamean (m, k) /temp
do 396 n=1,numfea
feacov(m,n k)=feacov (m,n, k)/(temp*temp)
continue
continue
continue

BEGIN CLASS LOOP 2

do 400 k=1, numcls

‘do 400 1=1,numcls

if(l.eq.k) goto 400
"do 410 m=1, numfea
-mxdiff (m)=feamean (m, k) feamean(m,l)
chtlnue
do 420 m=1,numfea
do 420 n=1,numfea
matave (m,n)=(feacov(m,n, k)+feacov(m,n l))/2 0
~ feacovk (m,n)=feacov (m,n, k)
feacovl (m,n)=feacov(m,n, 1)
- continue
call lftsf (numfea, feacovk,maxfea, fac,maxfea, 1pvt)
call 1lfdsf (numfea, fac,maxfea,ipvt, detl det2) ‘
detk=det1*10.0**det2 . B
call 1ftsf (numfea, feacovl, maxfea fac, maxfea 1pvt)
call 1fdsf (numfea, fac,maxfea,ipvt, detl det2)-
detl=detl1*10.0**det2 , -
call 1ftsf (numfea, matave,maxfea fac maxfea, 1pvt)
“call 1lfdsf(numfea, fac,maxfea,ipvt,detl,det2)
detave=det1l*10,0**det2
call linrg(numfea,matave,maxfea, matlnv maxfea)
do 430 m=1,numfea :
tmpvec (m) =
- do 440 n=1,numfea
‘ tmpvec (m)=tmpvec (m) +matinv (m, n )*mxdlff(n)
continue .
continue
mu=0.0
do 450 m=1,numfea
mu=pu+mxdiff (m) *tmpvec (m)
continue
mu=(mu/8.0)+0. S*alog(detave/(sqrt(detk)*sqrt(detl)))
’probcor(k 1)=1.0-0.5*erfc (sqrt (mu) )
continue

END CLASS LOOP 2 -

c***************************************************************t*******

_COMPUTE OVERALL PROBABILITY CORRECT =

C***********************************************************************

;Output'resﬁlts
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pcsum=0.0
-~do 500 k=1,numcls
do 500 1=1,numcls .
if(l.le.k) goto 500
probcor(k,l)=probcor(k,1)*100.0
, print*,"The Pc of class ",k," and class ",1," was ",
+ probcor (k, l) -
) pcsum—pcsum+probcor(k 1)
500 - continue
o pcsum=100.0-(100. 0*((numcls*(numcls 1))/2)—pcsum)
print*,"The overall Pc was “,pcsum
stop- :
end
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