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ABSTRACT

Steiner, James Patrick. Ph.D., Purdue University. May 1988. Digital Meas
urement of Partial Discharge. Major Professor: W. L. Weeks.

Various new measurement techniques have been developed for a high 

voltage phenomenon referred to as partial discharge. Partial discharge is a 

localized breakdown of the high voltage insulation system which is observed 

as low level, random emissions. Both electrical and acoustic emissions have 

been measured in underground power cables, solid cast power transformers 

and in lumped specimens. Typical problems complicating the measurements 

are the randomness of the emission, high levels of interference and extreme 

distortion of the signal by the propagation path.

Various signal processing techniques have been adapted to the measure- 

ment of partial discharge. The techniques investigated are capable of reduc- 

ing noise in the measurements and have provided orders of magnitude 

improvement in sensitivity over ordinary methods. Some of the techniques 

studied are capable of providing information about the location of the par- 

tial discharge site.
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C H A PT E R  O N E  

PA R TIA L D ISC H A R G E

1.1 In trodu ction

This study is concerned with the measurement of partial discharge in 
high voltage equipment. Partial discharge is a localized breakdown of the 
high voltage insulation system and is observed as extremely low level, 
random emissions that can be measured using electrical, acoustical, optical 
or thermal techniques. The most popular and, in most cases, the most 
sensitive methods are the electrical techniques. One common thread tying 
the different measurement methods together is that the observed signals are 
very low level, random emissions that are corrupted by. noise. The 
randomness of the emissions complicates measurements but the noise is the 
primary difficulty associated with partial discharge measurements.

Various types of signal processing techniques are used to improve the 
sensitivity of the measurements and in some cases provide additional 
information that was not previously obtainable. The techniques that will be 
discussed are, for the most part, standard approaches that have been used 
for many years in different applications and have been successfully adapted 
to partial discharge measurements in this study.

Successful adaptation requires that the observed signals be modeled so 
that the necessary changes can be made in the techniques. Modeling of 
partial discharge is an extremely difficult task from the point of view of the 
observed signal properties. The difficulties arise because partial discharge is 
a complex physical process that is not completely understood at this time. 
Rather than trying to derive signal properties based on first principles, a 
phenomenological approach is taken because of the difficulties associated 
with developing a satisfactory physical model. The measurement techniques 
will use models based on experimentally observed behavior and in some cases 
the models will not be completely accurate but will lead to tractable results.



In other cases the models will be chosen so that existing solutions to other 
problems can be utilized.

There are different problems that are encountered in the measurement 
of partial discharge and each situation has its own problems. A lumped 
specimen was studied in a test cell that provides high integrity signals with 
little attenuation and minimum interference. In general, the attribute of 
lumped specimens is that the signal is attenuated and requires that a large 
amount of gain be used in the measurement system. Large gains always 
cause problems with the thermal noise in the amplifier, however, this is the 
simplest noise to deal with. Also associated with high gain is susceptibility 
to external interference. External interference can take many forms and in 
some cases it is easily dealt with in the same manner as the thermal noise 
but there are situations where the interference is difficult to eliminate.

Distributed systems, such as cables, suffer from the same type of 
difficulties with noise as lumped specimens. The difference in the 
measurement is that the propagation of the signals must now be taken into
account. The presence of a well defined propagation path allows the use of 
estimafidn techniques so that the partial discharge site can be located. 
Various difficulties are encountered in estimating the position of the partial 
discharge site. These difficulties are associated with dispersion in the cable, 
reflections in the cable and the presence of multiple partial discharge sites.

Another type of distributed parameter system is the transformer and it 
is certainly the most difficult to measure and analyze. Transformer 
measurements suffer from the same type of noise and interference problems 
as mentioned above. The new element in the problem is that the 
propagation paths are more difficult to define and describe. From an 
electrical standpoint it has been possible to construct linear circuit models 
as discrete approximations to the distributed parameter system but these 
models appear to be valid only across narrow frequency bands and at lower 
frequencies. Acoustically, the propagation paths escape description except
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for very localized simple models. This difficulty can be traced to the highly 
nonhomogeneous nature of the materials though, which the acoustic signals 
must propagate. ... .

1.2 B ackground
•• Q-

In the manufacture, installation, or operation of high voltage equipment 
small occlusions may develop in the insulation. These occlusions enclose a 
different dielectric material than that used for insulation, and it is often a 
gas whose dielectric constant is much less than material around it. This 
causes an abnormally high electrical stress in the void and partial discharges 
may occur. Discharges in voids, enclosed by dielectric or conductor and 
dielectric, cause degradation of the insulation. Damage resulting from these 
discharges may lead to total failure of the insulation system. Studies on 
time to failure have been made for various types of defects [I ]. This study 
investigated the life time of dielectrics with cavities and Fig. 1.1 shows its 
results as a double logarithmic plot of field strength vs, life. Gonsider a 
typical cable system for which field strengths are on the order of 0.5 to 2 
kV/mm. As can be seen, for relatively minor defects, the lifetime of a cable, 
under normal operating conditions, can extend into thousands of hours.

To relate the measurements made to the discharge process certain 
fundamentals need to be discussed. In a void with dielectric or conductor- 
dielectric boundaries two basic mechanisms are believed to cause 
breakdown. The first is the Townsend mechanism and the second type, 
which is believed to start initially as a Townsend mechanism, is the streamer 
mechanism [24,25,2,3,4].

The Townsend mechanism is a release of an avalanche of electrons. 
When the surface of a material is highly stressed and an energetic particle 
or photon of sufficient energy strikes this surface an electron is emitted. 
This electron collides with molecules in the void and releases further 
electrons. These electrons in turn release further electrons thus creating an 
avalanche. The molecules that released the electrons are now positive ions. 
As the positive ions accumulate, a positive space charge develops which 
enhances the field and accelerates the electrons causing further electron 
release. As the discharge continues the space charge migrates h^vay from 
the surface. As the space charge migrates, the field, which % ail bn£ihally 
enhanced by the positive ion cloud, is reduced and this quenches the electron 
avalanche. 'J T :

• . • ' . . ■ cjiis r
5" ’- • k , .  . - ■ ' ' ’ -

'i*. ■ ' . , ' < U,i(: ;o.f
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Tbe scenario above is greatly simplified and two points need 
emphasizing. The initializing event that starts the avalanche is random. 
For example, it can in be generated by background radiation which has 
events that are often modeled as a Poisson process. In fact radioactive 
illumination of the void drastically alters the observed behavior of the 
partial discharge [67]. The second point is that the space charge eventually 
detracts from the field and most of the positive ions must be driven into the 
Opposite electrode before the probability for another discharge becomes 
appreciable. In other words there is a mechanism which inhibits further 
events from occurring. A point not brought but in the above discussion is 
that typical partial discharge pulses have random energies (amplitudes). It 
is not clear what mechanisms cause the randomness but this characteristic 
has been recognized for several decades.

The second type, the streamer mechanism, begins with the formation of 
electron avalanches, as in the Townsend mechanism. Essentially, the 
positive space charge causes auxiliary electron avalanches that leads to a 
conductive plasma channel that bridges the void. It is believed that 
streamer development is preceeded by a buildup of roughly IO6 avalanches
[3].

An elaborate and accurate analysis of partial discharges in voids has 
been developed in [24,25]. That work takes a rigorous mathematical 
approach using Maxwell’s equations along with the continuity equations for 
the various charged species in the void to describe the propagation of the 
avalanche across the void. There appears to be excellent agreement 
between the theoretically predicted shape and the experimentally measured 
shape. One signal type observed in this study was referred to as a slowly 
developing partial discharge (Townsend mechanism). An example of this 
type of discharge is shown in Fig. 1.2. Another type of discharge that was 
observed was referred to as a rapidly developing partial discharge (streamer 
mechanism). An example of this type of discharge is shown in Fig. 1.3. The 
figures depicting these two types of partial discharge were band limited to 20 
MHz and do not indicate the broad band nature of the signals. Typical 
pulse rise times can be less than I ns with pulse widths as short as a few 
nanoseconds. However, for large void dimensions the pulse width of the 
ionic component can be as large as thousands of nanoseconds.

In many typical measurement situations the the received signal is so 
distorted that the original pulse shape is inconsequential. For example in 
transformer measurements there are so many self resonances in the
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Figure 1.2. Slowly developing partial discharge.
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transformer that the observed signals bear no resemblance to the original 
pulse shape. Another example is given by URD cable which is so lossy that 
the maximum received bandwidth after propagation of only 500 meters will 
be a few MHz. In both of these cases the original waveform was Completely 
obscured. In these cases the only partially distinguishable characteristics of 
the original waveform are the time of occurrence and the energy. The most 
important factor influencing the observed signal is then the propagation 
path which in most cases will not be known.

1.3 P rev iou s W ork

The literature on partial discharge is extensive and it would be 
impractical to try to give an account of the various techniques that are 
available. However, there is an excellent reference th a t provides a 
comprehensive review of most of the currently accepted measurement 
techniques [3]. This reference provides a large variety of techniques covering 
measurements in both lumped parameter systems or distributed parameter 
systems that are either capacitive or inductive in nature. The difference 
between the work in this thesis and others is that most methods do, not take 
into account the randomness of the measurement; in previous literature the 
observed signals are treated as deterministic quantities. The noise Ts treated 
as an inevitable consequence of trying to measure low level signals and few 
attempts are made to minimize its effects. There are some exceptions but 
usually little effort is exerted in combating the noise and interference.

Harrold [3] has performed extensive investigations into the acoustic 
behavior of partial discharge. The references contained in [3] is not an 
exhaustive list of Harrold’s work but does provide a reasonably complete 
list of investigations made into the acoustic behavior of partial discharge.

The thesis is different from others because acoustic methods are used 
for locating partial discharge in solid cast transformers. These efforts are 
detailed in chapter four where a rigorous development of the measurement 
techniques is presented. A slightly different approach was taken and the 
main similarity between this study and others is that acoustic signals are 
utilized.

A most notable work is [21] in which the fundamental limitations of 
partial discharge measurements are discussed. This paper discusses the 
matched filtering approach to amplitude estimation in white noise for ultra
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wide band measurements. Results are given relating the sensitivity of the 
measurement to the bandwidth of the measuring system. Further results are 
given relating the minimum sensitivity of partial discharge measurements to 
the length of the cable through which the partial discharge is observed. 
This was derived using the bandwidth relationship and the measured 
transfer characteristics of a typical lossy power cable.

Another method, [9], by the same authors, describes a partial discharge 
location technique using a correlation based system. This method is intended 
for ultra wide band measurements and only uses one or two bits of 
amplitude information. As a consequence the results are highly nonlinear 
and it would appear that subsequent processing might be impeded by the 
presence of the nonlinearity. One of the attributes of correlation analysis as 
used in time delay estimation is that the correlation functions can be 
optimally filtered. This aspect of time delay estimation is discussed in 
chapter two.

Another method, [82], attempts to optimize the temporal resolution of 
the measurement using a Wiener filter. The formulation in [82] assumes 
that the signal is stationary which is not the case for transient pulses. 
Narrow band examples are used as illustrations of the technique and the 
estimate of the charge (amplitude) is provided by performing the integration

OO

Q =  /  U O ‘it
-OO

where i0(t) is the optimally filtered current waveform. The problem with this 
solution is that the original observed waveform does not appear to have a 
DC component and therefore the optimaly filtered version cannot have a DC 
component. The integral used to estimate the charge therefore evaluates to 
zero.

Another paper, [10], discusses the advantages of signal processing for 
making partial discharge measurements. The authors state that full wave 
rectification of the acoustic signals and electrical signals can be used to 
locate the source of acoustic emissions in transformers. The paper is 
extremely vague and it is difficult to see what methods they are using and 
how the signals are modeled and utilized in the subsequent processing.



Acoustic location methods are put on solid mathematical foundation in 
chapter four of this thesis in which a similar method is used for locating 
acoustic emission sites.

; A partial discharge location scheme is described in [8] but it is not 
completely clear how the location is determined. The method is described 
using a block diagram with the critical blocks stating what the block output 
is without any mention of the manner in which the output is determined. 
The critical element in the block diagram is the time of arrival section and 
it is never stated how the time of arrival is measured. The purported 
accuracy is described but there is no way of analytically verifying this.

An energy measurement scheme is described in [83] using a cross- 
correlator. This is a novel approach for partial discharge measurements 
that is closely related to some techniques described in this chapter. 
Unfortunately, the authors failed to recognize the tremendous power 
afforded using correlation techniques. Use of similar techniques can provide 
vast improvements in system sensitivity and experimental simulations have 
indicated that measurements sensitivities can be improved by at least three 
orders of magnitude.

An intriguing new approach to partial discharge measurements has been 
developed in [84]. This technique appears to have great promise if analytical 
methods can be found for interpreting the data. A short discussion 
concerning a mathematical framework for this technique is contained in 
chapter two. Measurements such as those found in [84] will probably lead to 
the next generation of partial discharge measurements techniques.

Another fascinating new method is contained in [13] in which X-rays are 
used to excite the partial discharge process. The technique involves 
illuminating the partial discharge site with a modulated X-ray source (via a 
chopper). The modulation waveform is then cross-correlated with the output 
of a standard partial discharge detection circuit using a lock-in amplifier. In 
essence the modulation source correlates with the changing statistics of the 
random point process describing the partial discharge. This technique is 
used to locate partial discharge site by sweeping the X-ray across the device 
under test. If no partial discharge site is encountered then the correlator 
does not respond. However, if the X-ray source illuminates a partial 
discharge site then the correlator responds which is the indication that there



11

is a site at that location. .

G ontributions

.-.This thesis applies the theory of digital signal processing to partial 
discharge metrology. As seen in section 1.3, which is a limited search of 
current literature, very little work has been done in formulating partial 
discharge measurements in terms of modern signal processing techniques. 
"!Phis thesis develops a signal processing framework by presenting a signal 
model and adapting a variety of signal processing techniques to partial 
discharge measurements.

The title of this thesis (Digital Measurement of Partial Discharge) was 
chosen because the techniques that are presented measure well defined 
parameters associated with the partial discharge, such as its location. These 
parameters are fundamental to any method aimed at interpreting partial 
discharge. The information presented in this thesis might be thought of as 
the front end processing of any technique aimed at interpreting partial 
discharge because it provides accurate methods for measuring the data. 
Analysis of data requires that a model be used so that inferences about the 
partial discharge can be made in terms of the model. Analysis and 
interpretation of partial discharge is a difficult task and is only briefly 
investigated in chapter two. The model presented in chapter two and 
similar models are believed to provide the proper mathematical tools for any 
such investigation.

' - ' . ' . . .  .-y}' '

Paramount to the development and analysis of a signal processing 
algorithm is the use of an accurate signal model. A signal model is 
presented in chapter two which is believed to be new to partial discharge 
measurements. The model is very natural for this application and is widely 
used in many disciplines. In essence this model takes into account the 
random variations of both the time of occurrence and the amplitude of the 
partial discharge. The models presented are only first order models and 
more elaborate and accurate models could be developed with further work. 
However, experimental work shows the consistency of the measurements 
With the simple, first order models.

Some fundamental measurement techniques are presented in chapter 
two which can be of use in practice. The techniques applied are standard 
methods in signal processing but have not been used in partial discharge
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measurements before. Also a more accurate lower bound on the 
measurability of partial discharge is discussed in terms of a well known 
result. Finally, a detection technique for measuring ultra low level partial 
discharge is discussed along with a technique which greatly reduces the 
amount of data processing required.

Chapter three discusses general techniques for estimating the locations 
of partial discharges. There are several contributions in this chapter related 
to the generalized cross-correlator. A detailed analysis of the bias of delay 
estimators is presented and this material is believed to be new. The bia,s 
expressions are developed from techniques that appeared recently in signal 
processing literature and are an extension of these results to practical 
measurement situations. Two new generalized cross-correlators are 
presented one of which is a minimax version. These generalized cross- 
correlators are used to enhance the resolution of the delay estimation 
measurements so that multiple partial discharge sites are more easily 
located.

Partial discharge measurements in cables are discussed in chapter four 
and several contributions are presented in this chapter. Several standard 
signal processing techniques are adapted to the partial discharge 
measurement in cables for the first time; system identification, equalization 
and generalized cross-correlation. Also a discrimination technique for 
eliminating impulsive interference in partial discharge measurements is used 
for the first time and is implemented using a generalized likelihood ratio 
test. A new application of the Gerchberg-Papoulis algorithm is presented 
which is capable of iteratively removing the effects of narrow band 
interference. Super-resolution is investigated using an ad hoc 
implementation of the MUSIC algorithm. The MUSIC algorithm is applied 
to the analysis of multiple partial discharge sites in short cables when data 
is collected with a low bandwidth system. Finally, the peculiarities of the 
signal model are exploited to provide a simple high resolution method for 
delay estimation in cables.

Partial discharge measurements in solid cast transformers are presented 
in chapter five. One technique that is investigated is the acoustic method 
which has been used for several years by the transformer industry; however, 
this is the first time it has been applied to solid cast transformers. 
Furthermore* the technique has been refined in a manner which is believed 
to be new. Current literature on acoustic measurement techniques lack the 
mathematical details presented in chapter five and this development is also
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believed to be new. A new asymptotic maximum likelihood measurement of 
the attenuation of the acoustic energy is developed which provides a new 
method for locating partial discharge. A jnew, unique measurement 
technique, based on the rf magnetic fields in the transformer windings, is 
presented. Together with an asymptotic maximum likelihood algorithm, the 
magnetic measurements provide a new method to locate partial discharge in 
transformers. Finally, the same ad hoc formulation of MUSIC, used in 
chapter four, is applied to the signature analysis of partial discharge 
waveforms in transformers. This new technique provides another highly 
effective method for locating partial discharge in transformers.
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C H A PT E R  TW O

LU M PED  SPEC IM EN S A N D  M ODELS

2.1 In trod u ction

Good models make it possible for digital signal processing to improve 
measurements of partial discharge. In the past, when partial discharge has 
been modeled, the approach has been to develop expressions that describe 
the physical behavior of the individual partial djscharge pulse. While this is 
of great interest, it does not provide the information necessary for the signal 
analysis used in this thesis. In contrast, the work in this thesis requires 
statistical models of the entire observed signal process so that signal 
processing algorithms can be developed. Since tljie necessary physical models 
required to develop statistical descriptions of the observed signal process are 
not yet available the approach to modeling in this thesis is 
phenomenological.

The chief advantage of using signal models is that many results that 
are available in signal processing literature will be available for adaptation 
to partial discharge measurements. Depending upon the situation different 
types of models will be used. If the observed partial discharge is very active 
and the pulses are not easily separated then the appropriate model would be 
a stochastic process. In many cases there are only a few pulses and single 
events are easily observed. The appropriate model in this case is a 
nonstationary transient model in which only the single pulse is considered.

Individual partial discharges are random, time localized events. When 
random events are time localized they are often modeled as a stochastic 
point process. There are various forms which a point process can take and 
the general type which will be used for partial discharge can be called a shot 
noise process. To characterize this type of process the times of occurrence of 
the partial discharge and the amplitudes must be measured. Section 2.2 
considers various estimates of these quantities.



In general, mathematical analysis of point processes is difficult unless 
very special models are used. Section 2.3 describes, in detail, a special point 
process which is referred to as the Poisson' process. The reason for treating 
this case in detail is the amount of literature available for this model. Also, 
under suitable conditioiis or interpretation, the Poisson model appears to be 
a valid model for the analysis of partial discharge.

In more accurate analysis it may be desirable to employ more 
sophisticated models which use more of the available information. Section
2.4 will consider another special model referred to as the renewal model in 
which the memory of the process is restricted to the previous event and the 
intensity is homogeneousi The distribution of the inter-arrival times 
between partial discharge pulses will be the important parameter in this 
case.

Point process models can be of use when trying to estimate various 
quantities that may be of interest. Section 2.5 gives the details of some 
experimental work which Uses these models to estimate fundamental 
quantities associated with the geometry of the gap in which the partial 
discharge is occurring. Measurements are made which can be used to infer 
the size of the gap. Further measurements are made which estimate the 
conductivity of the surface of the gap for high conductivities. Similar types 
of arguments will be used in the analysis in later chapters when the 
locations of the partial discharge is inferred.

Techniques used to increase the signal to noise ratio are presented in 
section 2.6. One technique is similar to a detection technique in that a 
threshold is selected to provide the detection of an event. The mean number 
of level crossings o f the signal process are used to approximate the increase 
in SNR. This technique is capable 6f detecting pulses buried in thermal 
noise and has provided gains in the SNR of the measurements. The 
advantages that this technique has over a rigorous detection approach is 
that this method can be easily implemented with standard equipment and, 
more importantly, the data rate is slow which reduces the computational 
load. .

2.2 A m p litu d e and O ccurrence T im e E stim ation

One of the most fundamental quantities that is of interest in partial 
discharge measurements is the charge transferred by the discharge current.
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That charge is defined as
' ; "f ; '

Q =  I  W  dt

where i(t) is the current in the partial discharge. It is easy to see that this 
integral is equivalent, to evaluating I(w) at u> =  0 where I(oj) is the Fourier 
transform of the current pulse. Unfortunately, this equation is not of much 
use in practical situations because the measurement circuits used are almost 
neverrDC coupled to the partia,l discharge site. The usual manner, in which 
this problem is circumvented is through calibration of the system under test. 
In this nianner the voltage amplitude of the output from the detection 
circuit is compared with a calibrated reference value. The problem is then 
to estimate the amplitude of the voltage in the best manner possible and 
some solutions to this problem will be presented below.

Another fundamental quantity of interest is the occurrence time of the 
partial discharge pulse. If statistical analysis of the partial discharge 
process is desired then both the charge and time of occurrence are necessary 
pieces of information. If it is assumed that the pulse shape is known then 
the occurrence time is easily estimated using some very classical results. 
These results will be discussed in conjunction with the LMMSE estimator 
described below because the solutions are intimately related.

The signals to be discussed will be general in nature; they could be the 
output from either a narrow band or wide band partial discharge detector. 
The observed signal will be modeled as

x(t) =  a; s( t — Tj ) +  n(t)

where s(t) is the output of the particular partial discharge detector being 
used. The pulse shape, s(t), will be assumed known and is easily measured 
using the calibration signal. The amplitude, aj and the time of occurrence, Tj 
df the signal, s(t), will be considered to be random. The noise term, n(t), 
Will be assumed to be stationary and have a power spectral density N(f). 
The noise term, n(t), will model the thermal noise in the amplifiers of the 
detector and the quantization noise of the digitizer. Any external interfering 
signal that is from a stationary random process can also be modeled by the



17

noise term, n(t). A small amount of white Gaussian (thermal) noise will be 
assumed to be present at the input to the quantizer and as a consequence 
the noise from the quantizer will be assumed to be uniformly distributed 
white noise. Nonstationary interference such as intermittent or impulsive 
signals not related to the desired signal, s(t), will not be considered in the 
ensuing analysis. Other techniques, discussed in later chapters, will be used 
to discriminate between the desired signal and interference.

The first estimator to be discussed is the LMMSE filter, [42], and takes 
the form of a linear filter, H(cj), which is given by

H(w)
a S (w) exp( — j27rrj ) 

N(cj) .

where S (w) is the complex conjugate of the Fourier transform of s(t). 
constant a is given by

The

a  =
1 + A }

N(cj)

where A is the mean square value of a;. It should be noted that the filter 
attenuates the observed signal at those frequencies at which the noise level 
is high and passes those frequencies where the noise is low. This could be 
particularly useful when combating narrow band interference, for example 
the interference due to an AM broadcast. The estimate of the amplitude is 
then given by

a: 9  - ' (  X(W)H(W) }[_„

As can be seen, to implement this filter/ it is necessary to know the arrival 
time, T1, of the partial discharge pulse. Since the optimal linear filter is in 
essence a correlation operation the estimate of the arrival time is the time at 
which the output of the filter achieves its maximum. This estimate provides 
the second piece of information necessary to statistically characterize the 
partial discharge process. Other pieces of information that are required are
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the mean square value of the fandom amplitudes. It is impossible to know 
this quantity a priori but satisfactory results have been obtained by simply 
using the reference value from the calibration. It is also possible to 
adaptively adjust the mean square value as data becomes available, 
however, this aspect was not pursued.

There are other implementations of The LMMSE estimator which 
address different aspects of the amplitude estimation problem. One typical 
problem, encountered in practice, is the estimation of the amplitudes of 
closely spaced partial discharge pulses. When this occurs, superposition of 
the pulses can cause errors in the amplitude estimate. As mentioned in 
chapter one, a solution to, this problem was given in [82]. However, the
formulation was incorrect and the amplitude estimate for most cases (non-
DC coupied) is zero* The proper solution can be found in [42] and is given
by . ... . ••

H(C) =  = ■$ a2 S (c)
a2 X I S(c)|2 + N(c) ’ H(°) 0

where j3 is defined as

1 +  f  " f
—inf a

a2 |S*(cVl2 
X |S(c) p -|- N(c)

dc
-I

This solution assumes that the input signal process is a homogeneous 
Poisson shot process with intensity parameter X Uhd that the signal is not
D€ coupled. The estimate of the amplitude is given by

a ,=  $ x(c)H (c) } |t=ti

where t; is determined as the peak of the filter’s output. In essence, this 
filter performs a deconvolution of the input signal process. In some cases it 
will be necessary to constrain the solution to reduce the variance of the 
estimate. Some typical constraints for this type of problem are discussed in 
later chapters. In general, deconvolution schemes of this type provide 
increases in the pulse resolution on the order of 3 to 5 times before the
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variance of the estimate becomes excessive.
The second method, the autocorrelation (AC) estimator, is an ad hoc 

technique and is very simple to implement. This technique is based upon a 
maximum likelihood argument used in a different context in chapter 5 but it 
should be noted that this estimator is not a maximum likelihood estimator 
for this case. The estimate is formed by evaluating the autocorrelation 
function at zero delay, removing the bias due to the noise, and taking the 
square root of the result. The value of the time autocorrelation function at 
zero delay is defined by

'■ T/2 ;■
> y • /  Xi (I).!.

■ \ . ; —T/2 . ■; •

where the partial discharge pulse is assumed to be contained in the interval

(—-T/2 —T/2 ). It was more convenient in this analysis to offiit the

factor from the usual definition of the time autocorrelation function. The 
resulting value will be an estimate of the sum of the noise energy and the 
energy in the partial discharge pulse. Taking the expected value 6ne obtains

E{ y j JELi } =  a;2?  +  T o2;

where a2 is the variance of the noise and % is the energy in the signal pulse, 
s(t). The term, T d2, is an unwanted bias term and is removed from the 
calculation before further processing. The final step is to calculate the 
square root of the result after removal of the bias. The estimate of the 
amplitude is then

ai
V y - T o 2‘ ■ -r=-*: • ‘ .... .

a calib

where aca!ib is the reference level obtained through calibration.

One interesting sidelight is that the AC method can provide meaningful 
results when ^he partia,l discharge rate is too high to resolve the individual 
pulses. Consider the case in which the observed signal is

. I ; : - '



where there are now Nx pulses in the interval ( -T /2  , T/2 ). If the process
is a homogeneous Poisson process with intensity parameter X then the 
estimate of the the autocorrelation function at zero delay becomes

y = XA % + T o 2

where A is the mean square value of the amplitude defined above. The 
output of the estimator is slightly different because it now gives an estimate 
of the square root of \A. We no longer get an estimate of the magnitude of
the charge but an estimate of its average rms value.

Three estimators were compared experimentally; the peak value, 
LMMSE and AC estimators. Measurements were made using a Data 6000 
waveform analyzer which has an 8 bit A/D converter and a general purpose 
microprocessor. The measurements were made using a precision calibration 
source, calibrated attenuators and a noise generator. Two different signals 
types where investigated: a, broad band pulse and a narrow band pulse. 
These signals were chosen because they are representative of outputs from 
typical partial discharge detectors. The broad band pulse had a band width 
of 2 MHz while the narrow band pulse had a bandwidth of 10 KHz and a 
center frequency of 185 KHz. The signal was fed through an attenuator into 
one input of a summing amplifier and the noise source was fed through an 
attenuator into the other input of the summing amplifier. In this manner 
various input signal levels and noise levels could be measured.

The first measurement represents a typical calibration curve obtained 
by injecting a calibration pulse into the measurement system. The 
calibration signal was varied from 1% to 1000% of the full scale input level 
of the digitizer. The curve in Fig. 2.1 represents the nonlinear transfer 
function of the measurement system, with the noise bias removed, for 
various input levels using the AC estimator. The curve is linear until the 
full scale input level is reached and after this point the measurements begin 
being compressed. This calibration curve can be used to undo the 
nonlinearity by mapping the measured value into its actual value. The 
calibration curve will be unique to the measurement system, the calibrating
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Figure 2.1. Nonlinear transfer function of measurement system
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signal and noise level. The removal of the bias, Tcr, in the nonlinear region 
is an ad hoc approach which is not correct. The correct approach uses a 
measured calibration curve to perform the mapping, however, this requires a 
calibration curve for each noise level. An ad hoc approach of subtracting an 
equivalent noise bias for signals operating in the nonlinear region can be 
used if a calibration measurement is made. The calibration would measure 
a time, feq, which would be the time that the digitizer operated in its linear 
region for a given input level. The bias that is removed is then Te which 
still is not quite correct but leads to satisfactory results. This particular 
nonlinearity is referred to as a soft limiter and these results were incidental 
to the measurements that were made. There is an entire branch of signal 
processing devoted to optimal nonlinearities for use in nonlinear quantization 
schemes. These were not pursued but undoubtably would yield improved 
quantization schemes for partial discharge.

The second set of measurements illustrate the relative performance of 
the three different estimators obtained using an 8 bit quantizer. The 
measure of performance will be a signal to noise ratio which is defined as

SNR = 20 log [  ---- —■ meaD of estimate , ■
root mean square error of estimate ^ ^

For input signals less than the full scale input level of the digitizer the rms 
error is due to the variance of the estimator. When the signal exceeds the 
fuff scale input level of the digitizer the rms error for the peak value 
estimator includes both the bias due to the clipping of the signal and the 
variance of the estimate. This error term was included in the peak value 
estimator because there is not a method to compensate for measurements 
exceeding the full scale input level of the digitizer. However, since it is 
possible, corrections for the nonlinearity and noise bias were made for the 
LMMSE and AC estimators where appropriate. Fig. 2.2 illustrates the 
performance of the various estimators for different input levels to the 
digitizer. A sampling rate of 2.5 times the Nyquist rate was used and the 
waveforms contained 128 points. The rms input noise was approximately 
1/2 lsb of the quantizer. As can be seen, in the linear region of the digitizer 
both the LMMSE and AC estimator perform almost 20 dB better than the 
peak value estimator. In the nonlinear region, the peak measurement has 
large errors because there is not a method to compensate for the
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nonlinearity. However, the LMMSE and AC estimator maintain their 
performance because there is a technique to map the measurements into 
their correct values.

The final set of measurements show the relative performance of the 
three estimators under varying noise conditions. In these measurements the 
rms error is due only to the variance of the estimator because the digitizer 
was operated in its linear region. The input signal was maintained at a 
fixed level of about 10 % of the full scale input level of the digitizer. The 
input noise level was adjustable so that the input SNR could be varied 
between -10 dB and 30 dB. Fig. 2.3 illustrates the effectiveness of both the 
LMMSE and AC estimators in low level measurements while the peak value 
estimator tracks the input SNR. The AC estimate performed better than 
the LMMSE estimate at low SNR’s and it is believed that losses in the 
performance were observed because the arrival time also had to be 
estimated.

As was illustrated by the experimental measurements the LMMSE and 
AC estimators out perform the simple peak value estimator. However, 
implementation of the LMMSE technique requires relatively sophisticated 
computations that are time consuming. Special purpose hardware is 
available to accelerate the calculations, but is expensive. The AC method 
provides estimates, that in these measurements, were as good as the LMMSE 
estimate. However, the major advantage of the AC estimator is that it is 
much simpler to implement. The hardware implementation of the AC 
estimator is particularly simple and could easily operate in real time. The 
basic configuration could use an inexpensive 8 bit A/D flash converter. A 
pre-estimate could be calculated using a single chip multiplier-accumulator. 
After rapid collection, the data could then be properly rescaled by removing 
the bias due to the noise, correcting for the nonlinearity, if necessary, and 
taking the square root. This Could be easily performed on any general 
purpose microprocessor in an expedient fashion for display purposes.

One final variation that should be mentioned is that a modification of 
these techniques would be useful in narrow band partial discharge detectors 
that use a diode envelope detector. This technique was not pursued but the 
implementation would amount to simply integrating the output of the 
envelope detector to develop the estimate. From some preliminary results it 
appears that similar gains in performance can be obtained.
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The results discussed above provide, solutions to the amplitude 
estimation problem when the second order statistics of the noise are known. 
The LMMSE solution is the optimal solution when the noise is Gaussian 
(assuming the arrival time is known) and is the optimal linear solution when 
the noise is from a wide sense stationary random process (not necessarily 
Gaussian). The important question that needs to be answered is what is the 
performance of the best estimator. This question can be answered in terms 
of a bound on the variance of the estimate. The bound is the Crarner-Rao 
lower bound and gives the minimum variance of the amplitude estimate. To 
calculate the bound assumptions about the statistical nature of the noise 
must be made. If the noise is from a stationary Gaussian random process 
with power spectral density, N(w), then the bound on the variance of the 
amplitude estimate is given by [41]

var( a — a ) ^ ISMl2
N M

where it is assumed that the observation interval is infinite and that SM  is 
the Fourier transform of the unit amplitude pulse, s(t).

The actual quantity of interest is the charge and these results need to 
be stated in terms of bounds on estimating the charge. Following Boggs [21] 
the pulse will be assumed to have a Gaussian shape

_ j i
s(t) =  a e 2r°

where a is the amplitude to be estimated. The rms duration of the pulse is

— The noise will be
V 87r2rO

. . .  N0
assumed to be white Gaussian noise with the variance ---- . For purposes of

2
analysis and comparison to the charge, a DC coupled system will be used. 
Also, to simplify interpretation, a relatively simple case of a power cable will 
be considered. The charge measured from one end of the cable is

V 27rrO where Z0 is the characteristic impedance of the cable. The2 A0

given by —-j= and the rms bandwidth is 
v2



output SNR of the estimator is given by

: . 27

SNRout
a2&

where $ s is the energy of the unit amplitude pulse and is * \/tt Tq - The 
noise, Np, is defined as IcTeq where k is Boltzmann’s constant and Teq is the 
effective noise temperature of the entire system. The effective noise 
temperature includes the contributions to the thermal noise from cable, 
measurement impedance and amplifier. The minimum measurable charge, 
with the estimate having the (subjectively) chosen SNRout, is

N0 '

Qmin
( \
_8_ *' i

'SNRput- - :

TT .\ > B

N0 has thewhere B is the rms bandwidth of the Gaussian pulse and 
approximate value of 4 x IO-21 at the temperature 290°K . As an example 
consider a typical half kilometer cable with Z0 =  35 and having an rms

bandwidth of B = 5 MHz. 

16 x IO^2v then Qmin

If the system has a NF =  4 so that 

0.014 pC for an output SNR of 20 dB.

is

This
particular number represents the theoretical minimum measurable charge if 
the optimal estimator were used. Since an optimal estimator is not available 
an additional loss will be incurred from the estimator used but will be small 
(on the order of a few dB).

2.3 P oisson  Shot N oise P rocess

Observed partial discharge signals are random in nature and difficult to 
characterize. Current technology in partial discharge measurements tacitly 
assumes a deterministic model for.' .-parti-al" discharge. However, to take full 
advantage of signal processing techniques a stochastic model should be used 
when modeling a signal that has random qualities. Uflfortunately, present 
lack of understanding of the mechanisms of partial discharge makes a
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stochastic model developed from first principles still beyond reach. Models  
for partial discharge signals can, however, be constructed based on 
experimental observations. The goal of this section will be to develop a first 
order theoretical model for partial discharge that will allow easy application 
of the theory to practical measurement situations. This development is 
taken directly from Snyder [61] but only the salient points are mentioned.

Typically, individual partial discharges are time localized and are 
randomly spaced in time with respect to each other which suggests modeling 
partial discharge in terms of a stochastic point process. The simplest 
example of a point process is the time homogeneous Poisson process for 
which each localized event is statistically independent of the others. There 
are several methods for deriving the Poisson process. The most informative 
approach is the constructive method in which the time intervals between 
partial discharges are considered to be exponentially distributed with mean 
l /A  ? The resultant process is then, by definition, a time homogeneous 
Poisson process with the intensity function equal to a constant, X. The 
intensity function X has the interpretation of being the mean number of 
partial discharges per unit time. For small At the probability of having a 
single partial discharge in the interval (t, t + At) is then

h>Tt, t+At =  I ) =  X At +  o(At)

where o(At)
approaches zero as At approaches zero.

Work by Devins, [12], showed that a model for the statistical time lag 
associated with the epochs of the individual discharges under DC conditions 
is exponential. If the probability density of the time between partial 
discharges is truly exponential, then by definition, it must be a Poisson 
process.

Most of the experimental results that will be discussed were made under 
AC conditions and the voltage across the defect is therefore a function of 
time. Consequently, the epochs of the partial discharges will be related to 
the phase of the high voltage excitation (e.g., 60 Hz). If the process is still 
modeled as Poisson, this variation can be taken into account by introducing 
a time varying intensity function, Xt, which is how a function of the 
excitation voltage. The introduction of a time varying intensity function 
means that the process is now nonstationary. The interpretation of this



nonstationarity is that the statistical quantities describing the process are 
now functions of time. For example, the average number of partial 
discharges occurring in the time interval (tj, tj +  At) will not be the same 
as the average number of partial discharges occurring in a different time 
interval (t2, t 2 +  At) because these averages are functions of the times tj 
and t2. For small At the probability of having a single partial discharge in 
the interval (t, t +  At) is

•P-r( Ntf t+zit —' I ) — \  At +  o(At)

where o(At) is defined above. This nonstationarity will complicate the 
analysis if a further simplification cannot be found.

To simplify the problems associated with the above nonstationarity, 
further assumptions about the nature of the nonstationarity will be made. 
The excitation voltage is a sinusoid and therefore it will be expected that 
tlie intensity function, Xt, will also be periodic with the same period as the 
excitation voltage. Based on the assumption of a periodically varying 
intensity function, the process is now called periodic nonstationary. This 
interpretation is appropriate if observations are made during a short time 
interval, T, located at a particular phase of the excitation voltage. If the 
process is observed for many cycles of the excitation voltage and the process 
is periodic nonstationary, then it is expected that on the average there will 
be N = X1̂T partial discharges per cycle, where X̂  =  Xt is now 
approximately a constant. The intensity function will be approximately a 
constant for any chosen, small interval at a given fixed phase, however, if 
the positioning of the measurement interval is moved to another phase of 
the excitation voltage this constant can be expected to change.

To complicate the m atter further, the partial discharge process
undergoes a slow metamorphosis. For example, Luczynski [25] observed that 
in his specimens the process initially consisted mainly of partial discharge 
pulses with very short durations and large energies. These high energy 
partial discharges are referred to as rapidly developing partial discharges. 
Rapidly developing partial discharges occurred relatively infrequently with 
only a few partial discharges p e r  cycle of excitation voltage and therefore 
having relatively small values of Xt . Luczynski [25] also observed that after 
a period of many hours the process changed to one with a high incidence of 
slowly developing partial discharges. Slowly developing partial discharges
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have longer durations and low energy. The number of slowly developing 
partial discharges per cycle of excitation voltage was large implying a large 
Xt . This change represents another type of nonstationarity and is referred 
to as a slowly varying nonstationarity. If the measurement interval is 
confined to a small enough time period in the entire history of the process, 
then it can still be considered to be periodic nonstationary. In the following 
description the measurements intervals will be assumed to be sufficiently 
short so that the slowly varying nonstationarity can be ignored.

To develop the model further, some measure of the energy must be 
associated with the occurrence times of the partial discharges. The manner 
in which this is included is to use a marked point process [61 j. Now each 
epoch has associated with it a mark, Ui, indicating its energy, which also 
can be described statistically. The assumptions about the stationarity of the 
process with intensity function Xt can also be made about the time varying 
nature of the parameter(s) describing the mark distribution. For the Poisson 
model the mark process will be considered to be independent of the 
occurrence times and that the individual marks, Ui, will be independent of 
each other.

The reason for discussing the Poisson process in detail is that this 
model is the easiest to manipulate mathematically. Literature abounds with 
results concerning the Poisson process and several results will be presented 
which apply to the partial discharge measurements made in this thesis. The 
assumptions required for the partial discharge process to be a Poisson 
process are very restrictive and this model may not apply in all cases. 
However, when a more complete model is developed for partial discharge a 
limit theorem will be presented. Using this limit theorem, a method to 
sample the partial discharge process will be discussed which allows one to 
interpret it as a Poisson process.

There are various assumptions which can be used to define a marked 
Poisson process and the following conditions are an example of one set of 
conditions which have the advantage that they can be easily modified to 
admit non-Poisson models. The first assumption that is made is that the 
process is conditionally orderly which means that multiple events can not 
occur simultaneously. ■ This is a reasonable assumption because it is highly 
unlikely that two partial discharges can occur simultaneously (the pulses 
could be separated by a pico-second or femto-second) The second 
assumption that is made is that the process develops without aftereffects
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which means that the past history of the partial discharges is independent of 
the future behavior of the partial discharges. In other words all previous 
partial discharges will not influence the behavior of any partial discharges in 
the future. Also a finite, integrable function, X1, called the intensity of the 
process, is assumed to exist. The third assumption that is made is that 
Pr( bJt(i =  0 )•== I where t0 is the beginning of the interval on which the 
Poisson process is defined. This simply means that the number of partial 
discharge pulses counted at the beginning instance of observation is zero. 
The final assumption is that the marks are mutually independent and 
independent of the Poisson process.

As mentioned these conditions are restrictive and it is informa,tive to 
consider the appropriateness of the assumptions. The conditional orderliness 
restriction can be removed by treating multiple occurrences as a mark. This 
might be useful if a single discharge were considered to be a multiplicity of 
simultaneous events, for example the number of electrons in the partial 
discharge. Evolution without aftereffects is an assumption that could be 
difficult to justify in some situations. In various cases there appears to be 
an influence of previous partial discharge behavior of future behavior. The 
independence of the marks is also an assumption that may not-always be 
accurate. In some cases there appears to be a dependency between the 
counting process and the marks. If these cases are considered then highly 
complex models are required.

The simplest model that can be used is the time homogeneous Poisson 
shot hpise process [61]. In the case of a time homogeneous Poisson model 
the time between the occurrences of the partial discharges will be 
exponentially distributed with density

P( O  =  Y e X u( r )

where the average number of events per second is X. Each of these events 
can be considered to be delta functions occurring at random times, with 
randpm areas passing through a linear filter, h(t), as depicted in Fig. 2.4. In
this case the observed signal, s(t), is given by

" . . V t  -
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Figure 2.4. Generation of signal using the model, a) Marked point process, 
b) Linear filter, c) Resulting filtered process.
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where A1 is the random area of the delta function (the mark) and * is the 
convolution operator. The linear filter, for most practical purposes, can be 
coiisidered to be the cascade of the impulse responses of the propagation 
path and the detection circuit. In general this will not be true because the 
physical behavior of the partial discharge itself determines the shape of the 
pulse. An excellent example of such a case is provided by the slowly 
developing partial discharge whose shape is determined by the physical and
geometrical properties of the void. However, in most cases the true shape 
will be masked by the impulse response of the filters (medium) through 
which it is observed. A more complete model could include the random 
variation of the impulse response. This random variation could arise In a 
number of ways, for example, the randomness of the individual discharge 
itself could cause fluctuations in the the pulse shape. Another manner in 
which the impulse shape could become random is if the partial discharges 
are emanating from different positions in the device under test. In this case 
the random variation will be due to the impulse response of the different 
propagation paths.

As mentioned above a further complication can be included by assigning 
a mark to each random event. /These marks need not be restricted to just 
the random amplitude, charge or energy of the individual partial discharge 
pulse. In general, a mark is any auxiliary random variable associated with 
the epoch of the partial discharge. Suppose that there are two separate 
partial discharge sites then the mark could be the position of the observed 
partial discharge interior to the device under test. Both of the amplitude 
and position marks can be combined into a single vector mark. Another 
example would be td use the partial discharge type as the mark, it could be 
either a slowly or rapidly developing partial discharge. The signature of a 
particular partial discharge might be used if extremely complex structures 
are being measured (e.g., a transformer). This case would also correspond to 
partial discharges located at different positions.

There are various quantities that are of interest which can be obtained 
from the modeling. For complex (non-Poisson) models it is sometimes only 
possible to calculate some of the moments but for the Poisson shot noise 
model it is possible to derive a complete statistical description. This
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description is in terms of the characteristic function of a marked, filtered 
Poisson process and is given by [61]

Mt(j w) exp
t
f \  E
t<)

exp( j wh( t, r : u )) I ] dr

where u is the mark vector and h is the pulse shape. A similar expression 
for the joint characteristic function for yt at times t lr and t2 is given by

Mt,,1,0 coV J aV)

exp -
to
J \  E exp[ j W1 h( t 1( T : u ) +  j W2 h( t 2, r : u )] — I dr

These expressions are useful for calculating the moments of the process for 
example the average charge is given by

OO

Qavg = /  E{ aM) Mt ) Mt ) dt
-OO

where both the amplitude and intensity are considered to be periodic 
functions of time.

In  la t e r  c h a p t e r s  h ig h e r  o r d e r  m o m e n t s  of t h e  f i l t e r e d  p r o c e s s  will b e  

used in the analysis of different techniques. Second order moments are the 
basis of many signal processing algorithms because these moments are easily 
utilized in the analysis. Furthermore, second order moments are easily 
measured using standard (highly developed) spectral estimation techniques. 
The autocorrelation function of the shot noise is given by
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R( t1( t2 ) = J K E I h( t 1? T : u ) h( t 2, r : u ) J dr

11 ' . - to
+  /  Xr E [ h( t l5 T : u ) ] dr J X. E [ h( t 2, r : u ) j dr
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where the expectation is taken with respect to the mark. The case that is of 
most interest in the following chapters is the cross-correlation function of 
the shot noise passing through two dissimilar, time-invariant, linear filters. 
Typical observation windows are short with respect to the period of the 
process (5 /is vs. 16.66 ms). In this respect the intensity function will be 
considered to be a constant. For two different filters, h^t) and h2(t) the 
cross-correlation function is

R# )  =  (a,)2 X| /  hj(t) dt /  h2(t) dt
' — OC —oo

+  \  I  h 1( ')) h 2( '  +  o )  d'y

where it is assumed that the statistics of the amplitude are functions of 4> 
but constant in the observed window. The subscript <f> is used to indicate 
that these results apply only to the small window located at phase <jh The 
power spectral density of the partial discharge is then easily found by letting 
hj =  h2 and taking the Fourier transform of Rt̂ r) yielding S^(w).

Other disciplines have found the Poisson model to be of great use in 
statistical inference of the underlying nature of the mechanisms generating 
the process. One application of the Poisson model is for making a 
statistically based decision about the type of process being observed. For 
example a hypothesis testing procedure could be used to determine what 
type of partial discharge process is being observed. Something similar to 
this is presently being performed on a regular basis by operators of 
commercial partial discharge detection equipment. A GIGRE report, [87], 
gives list of expected detector outputs for different partial discharge types. 
Two papers, [88,89], were recently presented which describe the use of expert 
systems, based on the CIGRE report, for determining the type of partial
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discharge being observed. Using a hypothesis testing procedure, based on 
the Poisson model, could lead to a similar system. Another prominent 
application in statistical inference is the estimation of various parameters 
associated with factors influencing the behavior of the point process. This 
particular application could be used for investigating the influence of 
physical changes on the partial discharge process. If the situation had 'been 
catalogued then the reverse problem is possible; determine the values of the 
variables controlling the partial discharge. Some work, other than that 
contained in this thesis, has been performed on this problem. In the past 
few years a new measurement technique has been developed, [84] which in 
essence makes the measurements of partial discharge in the manner to be 
presented below. However, the measurements are not analyzed using this 
framework.

Both of the applications, discussed above, require the use of a likelihood 
ratio for the observed process. The few results presented thus far were 
concerned with the integrated response observed through a linear filter. In 
some cases this is the desired approach for analyzing partial discharge. Now 
suppose that the estimation procedures discussed in section 2.2 are used to 
estimate both the occurrence time and mark of each event. The result is a 
sequence of points, ( tj, U; ) which can be used in the analysis of the point 
process via the likelihood function. In the analysis that follows it will be 
assumed that only the sequence of points is available for use.

An important function associated with the analysis of the Poisson 
process is a function referred to as the sample function density [61]. The 
sample function density can be roughly described as the probability of 
observing a particular realization of the point process. For a univariate 
Poisson process (without marks) the sample function density is given by

P [ { N„; t0 ^  <7 <  t } I a  J =
/

exp
t t
I  M a ) + I
to t()

where the second integral has the evaluation
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J  In[Xf7(O)] XiNf7 =  V  In [XtJ
■ ' ' t() " . ‘ - i=l
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The variable, o, is a non-random parameter that is associated with (and 
may control in some sense) the particular process being observed. In the 
estimation problem o will be the variable that is under study and will be 
estimated. In the hypothesis testing problem o can be thought of as an 
index to the process being observed and will be an integer; in the binary 
problem o =  0, I.

For a marked Poisson process the sample function density is given by

Xjt; .to ^  Cr <  t } I a

exp  ̂ -  J  Xjt(Q) do -k J : In [Xjt(O)] dN* + £  In[ P( Ui J a ) JNt(Ui)
t,, t0 : i = l

For a marked Poisson process the sample function density can be also be 
written as

=  i l  P f {  Nj7(Ui); t0 ^  cr <  t } I o
i=1 L -

where the process has been quantized and split along the level Ui so that 
there are now sub-processes each having it’s own sample function density 
given by

P [{ X fj ; t 0 ^  a  <  t  I

p [ ( N jr(U i); t0 ;<  } = IW-J-

exp
t • \  t

- J  P M  I a)X„(a) d<r + J  ln[P( Ui I a  )X„(a)| JN17(Ui)
to to
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This representation follows from an extremely important theorem discussed 
in [61 ] in which a marked PbiSson process can be represented as a 
Superposition of sub-processes. Each of these sub-processes is a Poisson 
process with it’s intensity function given by

'  ̂ ' . ... X„ ( r t ; i ) _P (U,  :

where there are now M sub-processes for ( i =  I, 2, .A4 ) for M quantization 
Ieyels. This characterization can also be extended to the continuous case, 
however, measurements by nature are quantized so it seems that the 
denumerable case is the most practical to discuss. The factorization of the 
marked Poisson process into M separate processes is an extremely important 
and valuable tool for analysis.

Another type of analysis can be performed if a count rate histogram is 
utilized. The above formulations assume that all information is available; 
the exact time of occurrence of each point in order of occurrence. Collecting 
data can be difficult in situations where the data rate is high and the 
observation interval long. However, there are instrumentation techniques 
available that allow high data rates and long observation intervals while 
remaining cost effective. Using these techniques, only the number of counts 
in a particular quantization segment, (^i, Ui) would be recorded in terms of a 
histogram using a histograming memory (which are commercially available). 
The data collection system would collect the number of counts in each bin 
where each bin would be assigned to a small phase window and charge 
window. Analysis of the measurements would then proceed in terms of the 
number of counts in each bin. The histogram will be at least a two 
dimensional histogram with the number of dimensions being equal to p+1 
where p is the dimension of the mark space. For a one dimensional mark 
space the probability of observing a particular histogram contour ( a contour 
along Ui) is given by

Pr{ NtjJ1, t/Uj) =  Oj; j -  I, k I , a  } .=?.
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w here it is assu m ed  th a t  the cou n ts nj w ere co llected  in k sub-in terva ls of 

th e  in terva l ( t0, T ). T h e in terva l, ( t0, T ) w ould be an in tegral num ber of 

periods o f th e  ex c ita tio n  v o lta g e  and th e su b -in terva ls, (tj_ 1, tj), would be 

th e  p h ase  in terv a ls  </>j) observed  over th e  in tegral num ber of periods

used . Since th e  m arks are assum ed to  be in d ep en d en t o f th e  counting  
process and in d ep en d en t from  each  o ther th e prob ab ility  o f observing the  
num ber of cou n ts  in th e su b -in terva ls (IjJ1, tj) (the phase bin) becom es

P r{ N t j 1Ztj ”  nj! J =  U k j O' } =

M Pr{ Ntj „ t /u i) -  nj; i  =  i, -r k I « } ■
i = l

U sing th ese  eq u ation s th e  log likelihood  fu n ction  is easily  seen  to  be

- M
■ * »  = E  ^i(a)

i= I

where

T k tj
e | ( « )  -  -  /  p ( U j  I « ) V ( « )  d<7 +  ■ 2  7  H  p ( u i I « ) M “ )  <•" I

to J = I tj_,

It is interesting to note that this likelihood function is the sum of the 
likelihood functions for each charge bin.

Now that the basic formulas have been presented their use will be 
described for different situations. The sample function density is the more 
useful of the two characterizations because it uses all of the information 
available. The likelihood function for the count rate data is more restrictive 
because it ignores potentially useful data (the occurrence times). However,
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as pointed out, data collection requirements are greatly reduced using the 
count rate approach. Furthermore, the amount of numerical analysis is 
reduced because of the compression in data. For these reasons, emphasis 
will be placed on the count rate analysis but the techniques are completely 
analogous for the sample function density analysis. In the following, 
reference will be made to the likelihpod function which can be either the 
count rate likelihood function or the sample function density because the 
sample function density is the likelihood function for the time data.

The first case to be discussed is the estimation problem in which a 
variable, a, influencing the partial discharge process, is estimated. The 
value of cx which maximizes the likelihood function is the value of d which 
maximizes the probability of observing the recorded data. In other words 
maximization of the likelihood function (or it’s logarithm) with respect to a 
gives the maximum likelihood estimate, a ml, of cx. Solution of the likelihood 
equation will yield an estimate of a

d C ( a)
d cx "=S-ml

The solution can easily be extended to a parameter vector a. As an 
example, consider the estimation of the intensity of the process in terms of 
the count rate data.

d € jX( > Ui )] 
d X( (Pj , Ui )

=  0

T h e m axim um  likelihood estim a te  is then

I ; ; • ■

* .v . njK ) ■ .K A  cPi, Ui ) =

where it is assumed that each phase bin was observed an equal amount of 
time and t0 =  0 •; :

Estimation of parameters influencing the partial discharge process 
requires a priori knowledge of the functional form of X(a). These functional 
forms could be theoretically predicted but as already mentioned sufficient



understanding of the physics of the process is lacking for this approach to be
fruitful. The alternative procedure is the phenomenological approach in 
which particular situations are measured while carefully controlling the 
variable to be examined. The desired end result is a functional form for the 
dependence of the intensity on the Variable in question. Two examples of 
this procedure are investigated in section 2.5. Once this parameterization 
has been accomplished, then the next time that this situation is 
encountered, the variable can be estimated based upon the previously 
measured functional form. The measurements made in [84] attempt to 
parameterize the behavior of partial discharge histograms similar to the type 
developed here for voids with different geometries.

The proposed procedure presents an insurmountable task in attempting 
to parameterize all partial discharge types for all possible variables. The 
results from this impossible task would certainly be a desirable data base, 
however, the purpose of this exposition is not to propose the developihent of 
such a data base. Rather, it is to present a mathematical framework, under 
which partial discharge can be studied. Study of partial discharge in this 
manner may lead to a greater understanding of the mechanisms that 
influence it’s behavior.

2.4 H igher Order M odels

The Poisson model contained in the previous section assumes that all of 
the events are statistically independent of each other with exponentially 
distributed inter-ocCurrence times and in certain situations this may be a 
reasonable assumption. There are instances in which the inter-occurrence 
times are clearly not exponentially distributed and the Poisson model will be 
incorrect. Furthermore, there are situations where there appears to be a 
dependence between events and in these case it is more appropriate to 
describe the partial discharge process with more elaborate models. Use of 
more elaborate models for statistical inference will give better results 
(assuming the models are accurate) because the information is being used 
correctly. However, when the models for a point process become more 
elaborate the analysis soon becomes intractable. There are some models and 
special cases in which results can be obtained. One point process which 
models the dependence between the events and is somewhat tractable is the 
self exciting point process. Self exciting processes model dependencies



42

b etw een  ev en ts in the process and th is m odel seem s w ell su ited  for m odeling  
p artia l d ischarge. R eferring back  to  the conditions for th e p artia l d isch arge  
process to  be P oisson the cond ition  th a t  is relaxed for th is  case  is ev o lu tio n  
w ith o u t aftereffects.

A se lf-exc itin g  point process is one in which th e in ten sity  of th e process  
is now allow ed to be a function  o f the p ast even ts. T h e in ten sity  fu n ction  
for th e process is given by

\  U;

P (U i) t O <  t  =  W 1

■ P ( U i) Mt( N t; W1, r .wNr), w Nt <  t ^  w Ntm

w here th e  m arks are assum ed to  be independent o f th e cou n tin g  process and  
of each  other. T he variab les, Wj, are the occurrence tim es o f th e p a rtia l 

discharge pu lses. T he equation  s ta te s  th a t the presen t in ten sity  a t tim e , t, 
is a fu n ction  of the num ber o f previous even ts as w ell as th e tim es a t w h ich  
th ey  occurred. In other words th e probab ility  o f observing  a p a rtia l 
discharge in ( t, t +  A t ) is

p ( N t,t+A t =  I I N t; W1, , . .W ^ i-Ui ) =  Xt u . A t  +  o (A t)

for sm all A t. T he sam ple fu n ction  d en sity  can be w ritten  dow n for th is  case  
and can be found in [61]. In general th is process is still d ifficult to  a n a ly ze  
and further sim plifications can  be used.

A  w id ely  used m odel w h ich  is sim ilar to  th e P o isson  m odel is th e  
renew al m odel. In th is case th e  in terarrival tim es are still considered  to  be 
in d ep en d en t, id en tica lly  d istr ib u ted  random  variab les but th ey  no longer  
h ave an exp on en tia l d istribution . T he renew al process has in ter-occu rren ce  
tim es th a t  can have an arb itrary d istribution . T h e renew al process is a 
sp ecia l case o f the se lf excitin g  p o in t process in w hich  th e in ten sity  fu n ctio n  
is hom ogeneous and dependent on on ly  th e previous ev en t: In th is  case  th e  
th e  process is described as a hom ogeneous, m em ory one, se lf  ex c itin g  p o in t  
process w ith

-j



for some function h(t) which is referred to as the hazard function.
To use this model for delay estimation it will be necessary to investigate 

the second order moments of the integrated process. For a point process 
with independent marks the correlation function can be written as

R(ti>t2) =  ̂ 2 /  d r , /  dr2g (tj-T 1) g(t2- r 2) ̂ r 11T2)
■ 0 ■ /  ' 0

■■ _____ min(t,,to)

.+ a2 J  drg(tj — 7’)g(t2 — r)fj(r)

' > t (  n U w L r-WN,.) =  h ( t ~  WN |. )

where the functions T1 (r) and I 2(TljT2) are referred to as the first and second 
order product densities, respectively [62]. The function g(t) is the transfer 
characteristic of the linear filter through which the process is observed. 
First order product densities have the interpretation that T1 (t) At is the 
probability of observing an event in the infinitesimal interval (t, t +  At) 
regardless of the points occurring elsewhere. Second order product densities 
have the interpretation that f2(t1( t 2) A t1 At2 is the probability of 
simultaneously observing events in the infinitesimal intervals (t1? tj + A t1) 
and (t2, t 2 +  At2) regardless of the points Occurring elsewhere. These 
product densities are usually difficult to determine but there are a few cases 
for which: they are easily found. For a stationary Poisson process the 
product densities are

and

“ A2

so the correlation function becomes those presented in the previous section.
It is also possible to write down the correlation functions for a renewal 

process and the form depends on the actual description of the time between



events. The second ; order product density for a renewal process takes the
form / V1 .' :

^ ( rLr2) =  fl(rlKl('2 -  Tl)

so if the first order product density can be found the second order product- 
density can be easily calculated. The first order product density is found 
from the solution of the integral equation

fi(t) =  p(t) +  J  fj(u)p(t -  a) da
0

where p(t) is the probability density function of the interarrival times of the 
events. This integral equation is easily solved using the Laplace transform 
and the solution is the inverse Laplace transform of

FlW PM
i -  PM

This transform is particularly easy to calculate for the gamma density 
fuhdtioji; This solution will apply for the memory one self exciting point 
process (non-homogeneous renewal process) if the periodic nonstationarity 
assumption is made. In this case the observations would be made in a small 
phase window for which the inter-occurrence times would be homogeneous.

There is a further assumption that can be made in many cases when 
the intensity function is small enough, The correlation function for a 
renewal process takes into account the correlation existing between 
subsequent events, (e.g., partial discharges). Typically, the small time 
intervals, in which the measurement is made, contain either one partial 
discharge or none. Therefore, when calculating the correlation function from 
the data, there are no subsequent partial discharge events entering into the 
calculation. Since there are not any subsequent events, the correlation 
function is the same as for a Poisson process, justifying the Poisson 
assumption for the case in which the intensity is small enough. This 
particular case is actually very common considering the small observation 
windows used in the implementation of the delay estimation schemes to be
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discussed.
There is a more general model which encompasses all the cases 

discussed and is referred to as the general marked point process. In this 
case the intensity of the process can now be a function of the marks and 
dependencies between the counting process and the marks is allowed. The 
form of the intensity will be

lh ,  U;(0 )> t 0 <  t  g  Wj

I'l, u,( N t; w i> V-WN, ,  Uj, ,..UN t) WN.r <  t ^  Wn tm

Consideration of a complex model such as this leads to intractable equations 
which are of little use in the analysis. There is method by which such a 
process can be analyzed using a very simple approach. The approach 
throws out a tremendous amount of information that could be potentially 
useful but the resulting simplicity justifies the method to be proposed. The 
method is a technique by which the general point process is sampled so that 
the resulting point process can be interpreted as a Poisson process. Current 
statistical research on point processes is concerned with an operation on 
point processes referred to as pooling. Pooling of point processes means that 
individual processes are overlaid one on top of another and the statistics of 
the resulting process are considered. Under the proper conditions the pooled 
process converges to a Poisson process [61]. This result can be shown to 
hold for univariate point processes as well as marked point processes. The 
drawback of using the pooling operation to simplify data collection and 
analysis is that this technique ignores potentially useful information 
contained in the unppoled sequence of events.

The method for sampling partial discharge involves pooling the point 
processes from small phase windows on different cycles of the excitation. 
The assumption of periodic nonstationarity is still used and each component 
of the pooled process comes from a phase window located at the same phase 
but from a different cycle. The phase windows are of an extent such that 
each component process pooled into the result contributes no more than one 
point. The basic assumption that is made for this technique to work is that 
the partial discharges occurring at sufficiently separated times are 
statistically independent. It is presently not clear if separation of the
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processes by only a single cycle is sufficient for independence. The resulting 
pooled process in each window will be approximately a marked Poisson 
process with intensity X̂ . While there is no mathematical proof that true 
partial discharge sampled in this manner converges to a marked Poisson 
process, if the assumptions made about the process are true then it will be 
approximately a marked Poisson process. Using this sampling method and 
assuming that the resultant pooled process is Poisson then the analysis in 
the previous section applies. Questions about the residual dependencies 
between adjacent phase bins are still unanswered. If statistical analysis 
indicates the existence of these dependencies then the sampling method can 
be modified. The modification would involve sampling in a manner which 
would make the constituent point processes to be pooled more sparse. This 
could be accomplished, for example, by sampling only a few phase bins per 
cycle which would make the (per cycle) point processes more sparse.

In actual practice when partial discharge with large intensities are 
observed it is likely that the large intensities are due to multiple discharge 
sites that are simultaneously active. When this is the case then these 
multiple sites will be independent if they are sufficiently separated. 
Sufficient separation means that there is little physical communication of 
charged species and photons between the sites. In this case the process is 
already pooled and it is likely that a Poisson model may be accurate.

2.5 E xp erim en ta l S tudy

The following experiments demonstrate the consistency of the point 
process model discussed In the previous sections. The results are not 
definitive in the sense that they prove that the model is correct but rather 
the results demonstrate that the model is consistent with the observations. 
Only a limited number of experiments were performed for this particular 
aspect of the thesis.

High voltage systems, by necessity, are large to prevent unwanted 
discharge and breakdown. Typical high voltage systems also have complex 
structures, in which the signals of interest may propagate through many 
poorly defined paths. Subtle details of the signals may then be masked. 
The structures considered in the following sections, concerned with 
estimating the location of the partial discharge site, are too large for a 
controlled study of the characteristics of the partial discharge process. To



47

properly study the partial discharge process with as many variables as 
possible under control, some type of test cell must be used.

The test cell used in this work is a slight modification of the test cell 
used by Luczynski [25]. The principle modification was the inclusion of an 
acoustic transducer to permit the acoustic emission to be measured 
simultaneously with the electric signal. The test cell, depicted in Fig, 2.5, 
provides high fidelity signals with high sensitivity and allows the Control of 
parameters influencing the discharge process. In particular the variables of 
interest are the materials surrounding the discharge gap and the actual 
discharge gap geometry. When a high voltage is applied to the high voltage 
electrode a discharge occurs in the region labeled E in Fig. 2.5. The acoustic 
transducer is a Physical Acoustics integral preamp transducer with a center 
frequency of 150 KHz. The insulating material used on both faces of the 
discharge gap was Plexiglas.

The test cell is small compared to the electrical wavelengths studied, 
(bandwidth of 20 MHz), however, it is still large with respect to the acoustic 
wavelengths. Unwanted multipath effects will be present for the acoustic 
signals and therefore a characterization of the typical acoustic signal will be 
necessary in order to extract information about the waveforms. The 
acoustic signature of the test cell was studied by fracturing a pencil lead in 
the center of the test cell. A typical response to this impulsive force is 
shown in Fig. 2.6. The peaks in the envelope of the response are due to 
reverberations in the test cell. The first peak is the desired signal, the 
second is due to a reflection from the outer edge of the central measuring 
electrode and the third peak is from a reflection from, the outer edge of the 
guard electrode.

The signal model discussed above makes assumptions about the time 
varying-nature of the process and the type of stationarity that will be used. 
The relative energy vs. the phase of the excitation voltage is shown in Fig. 
2.7. The relationship of the energy to the phase of the excitation voltage 
was developed by averaging over many cycles of the excitation voltage a 
quantity referred to as the mark accumulator process [61] which for this 
application will be defined as ,

V; '"’V/l/ *■? 'A,' 'J'

* .(4 )  =
i=l
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re 2.5. Test cell. A: acoustic transducer; B: central measuring 
electrode; C: coaxial connection; D: guard electrode; Er 
discharge region; F: high voltage electrode; G: isolation resistor; 
H: micrometer adjustment.
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Figure 2,6;. Acoustic response of test cell.
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Figure 2.7 R elative energy versus excitation voltage phase.
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which is defined slig h tly  different th an  in [61]. In th is case the m ark is the  
energy and th e m ark accu m u lator fu n ctio n  is defined for each  phase bin. As 
can be seen  from  F ig . 2.7 th e  energy is d istr ib u ted  across the ex c ita tio n  

v o ltage  in a cyclic  m anner.

A  m odel w as d evelop ed  in w hich  a ssu m p tion s ab ou t th e s ta t io n a r ity  of 
the process w ere m ade. T o verify  th e  assu m p tio n s ab ou t th e s ta t io n a r ity  of 
th e process, it is n ecessary  to  te s t  th e s ta t io n a r ity  of th e com p on en ts o f the  
m odel. It w as s ta te d  above in the sectio n  a b o u t th e signal m odel th a t  if the  
m easurem en ts w ere confined to  a sm all period ic in terval, (w ith  the sam e  
period as th e  ex c ita tio n  vo lta g e), th en  th e  p aram eters describing th e  process 

w ould be co n sta n t. In p articu lar it is n ecessary  to  te s t  the s ta t io n a r ity  of 
th e tim es b etw een  p a rtia l d isch arges and  th eir  energies. T he m ethod  th a t  
w as used to  te s t  th e  hyp oth esis  o f s ta t io n a r ity  w as a non p aram etric  te s t  
called  th e  run te s t , w h ich  can be used  to  te s t  for trends in tim e, [15]. T he  
te s t  used th e m ean  and varian ce o f th e sam p les over 20 second  in terva ls and  
checked the s ta t io n a r ity  over a h a lf  hour period a t a sign ificance level o f 
0.05. T he run te s t  w as applied  to  sim ilar sam p le  p a th s to te s t  for trends in 
tim e. R esu lts o f th e te s t  in d ica te  w h eth er  or not th e sam p le p a th s cam e  
from  a sta tio n a ry  process; u sua lly , th e  d a ta  w as accep ted  as s ta tio n a ry .

A  ty p ica l h istogram  of th e tim e b etw een  d isch arges is show n in F ig . 2.8. 
T he h istogram  is not exp on en tia l, ruling o u t a P o isson  process. T he next 
order ap proxim ation  w ould  be a renew al process w here the tim es b etw een  
p artia l d ischarges can  assum e an arb itrary  d istr ib u tion . A  ty p ica l h istogram  
of the energies for th e acou stic  em ission  is d ep icted  in F ig. 2.9 for a fixed  
phase w indow . A n in terestin g  rela tion  b e tw een  the gap size, x , and the  
energy em erged from  th ese  m easu rem en ts. F ig . 2.10 show s the rela tion sh ip  
b etw een  th e  m ean  en ergy  o f th e  d isch arge and  th e  gap size for a fixed phase  
w indow . W hen p lo tted  on a sem ilog sca le  th e  resu ltin g  curve su g g ests using

b(x) =  k e x p (m x ) ; k >  0, m  >  0, x >  0

as a m odel for th e  en erg y /g a p  re la tion sh ip , w here b(x) is th e p aram eter  
controlling the en ergy  d istr ib u tion . T h e co n sta n ts  k and m  can  be 
determ ined  by perform ing a sim ple lea st squares fit on th e d a ta  in F ig . 2.10. 
C om bining th is  w ith  th e h istogram s o f th e  energy, a sim ple m odel can  be 

con stru cted  by assum ing  th e  h istogram s can  be m odeled  as gam m a d en sity  
fu n ction s. T h is y ield s a m odel for th e  m ark d istr ib u tion  as a fu n ction  o f gap
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Figure 2.8. Histogram of time between partial discharges.
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Figure 2.9. Histogram of acoustic energy from partial discharges.
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Figure 2.10. M ean energy versus gap size.
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Kih1M
P(u;x) — un exp(— b(x) u)

n!

This particular representation has a mean value of

m(x): n + 1

b(x)

and a variance of

O2(X)
n+1
b2(x)

It should be remarked that the constants k and m are actually time varying 
quantities, As mentioned above, the parameters controlling the mark 
distribution will be assumed to be periodic nonstationary. Therefore, for 
any small time interval located at a fixed phase of the excitation voltage, 
the quantities k and m will be constants, (which will change as the time 
interval is moved to another phase of the excitation voltage).

Another experiment which was performed involved the study of partial 
discharge when the surface conductivity, ps, is changed. The same type of 
electrode configuration was used as in the energy/gap experiment except 
that the surface conductivity of the discharge region was controlled. The 
gap separation was held constant and the surface conductivity was 
controlled by coating the faces of the partial discharge region with resistive 
paint. The results of the experiment are illustrated in Fig. 2.11 where the 
mean partial discharge energy versus surface conductivity is plotted. Only a 
few points are plotted because of the difficulty of obtaining controlled 
surface conductivities on the samples. On a log-log scale there appears to be 
a linear relationship between the mean energy and the surface conductivity. 
Further study of the energy relation to the surface conductivity is needed to 
validate this model.

A classic example of partial discharge with non-exponential occurrences 
times and a complex dependency structure is the DC point to plane process

'4
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Figure 2.11. M ean partial discharge energy vs. surface conductivity.
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referred to as Trichel pulses. Fig. 2.12 illustrates a typical sample function 
from a DC point to plane partial discharge in which the events seem to form 
a periodic sequence. Trichel pulses seem very regular but there is a small 
randomness in the behavior of discharge processes like these. Referring to 
Fig. 2.13 a histogram of the time between events and a histogram of the 
relative charge in the events clearly show that even a seemingly stable 
partial discharge process like DC Trichel pulses have random characteristics.

There are several reasons for considering DC Trichel pulses as an 
experimental beginning for detailed statistical analysis under a point process 
framework. The most important reason is that this partial discharge has 
been extensively studied and is probably the best understood partial 
discharge type. Also, the experimental conditions are relatively simple to 
reproduce without having to resort to exotic sample preparation techniques. 
Another reason is that the excitation voltage is constant removing one 
source of nonstationarity in the process. There are similar types of partial 
discharge that can occur under AC conditions and this beginning point 
would lend understanding to the AC case. Finally, Trichel pulses appear to 
be so regular that if a reasonable model can be found for this, situation, 
which appears to have a highly complex dependency structure, then 
modeling of other more random appearing partial discharges would seem, 
intuitively, a more tractable task.

A single model for the simple case of Trichel pulses is difficult to 
develop because the statistical characteristics change as the applied 
potential is changed. At lower potentials for which the repetition rate 
remains below several hundred KHz a renewal model appears to be an 
accurate model for the occurrence times. At higher repetition rates a 
complex dependency structure begins to become apparent with the memory 
of the process extending over large numbers of events in the'series. The 
following analysis used observation times that ranged from 300 /rs to 15 ms. 
Slowly varying nonstationarities from changes in the materials due to aging 
were observed; the measurements changed slightly when repeated with a gap 
that had been allowed to age.

A simple experiment was performed using the same test cell as used in 
the other experiments except that the high voltage electrode was replaced by 
a phonograph needle. The experiments were performed at 766 mm Hg, 22° 
C and 60% relative humidity. The spacing of the point to plane was 16 mm 
and the applied voltage was varied between 5 KV and 8.5 KV with the point 
being kept at the most negative potential. A single recording provided the
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Figure 2.13. Statistical description of Trichel pulses, a) Histogram of time 
between partial discharges, b) Histogram of partial discharge 
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data (30,000 points) and the techniques in section 2.2 were used to measure 
the data points for the sequence. Two sequences were formed; an inter- 
occurrence time sequence and an amplitude sequence. Typical sequences 
contained between 100 and 400 data points. The sampling rate was varied 
between 2 MHz and 100 MHz so that an adequate number of data points 
could be collected for different repetition rates. The input bandwidth to the 
recorder was varied between 500 KHz and 10 MHz depending upon the 
sampling rate.

Statis analysis of the series of events is difficult without a specific 
model to use. Since the inter-occurrence time histogram is not exponential 
the Poisson process is ruled out. The next easiest model is the renewal 
model where the inter-occurrence times can have an arbitrary distribution. 
T h e‘general characteristic of renewal processes is that the inter-occurrence 
times form an independent series of events. Since the series forms an iid 
sequence of events the serial correlation coefficient should be be zero 
(ideally) for lags other than zero. A natural first step is to check the serial 
correlation coefficient to ensure thht there is not correlation between the 
events; a typical example of the correlation coefficient for different lags is 
depicted in Fig. 2.14. A hypothesis test was performed which tests for serial 
correlation in the sequence [85]. This test was performed at a significance 
level of 0.05 and the data always passed; this test if the repetition rate was 
low enough. As can be seen from Fig. 2.14 the amplitude data has a serial 
correlation which is similar to the inter-occurrence time’s. Another aspect 
that is apparent is that there is a strong correlation between the inter
occurrence times and the amplitudes. The assumption that the counting 
process and the mark process are independent is ruled out by this result. 
More sophisticated models need to be considered to handle this type of 
dependence for example a mutually self exciting process. It is interesting to 
examine similar sample serial correlation functions obtained from high 
repetition rate Trichel pulses. Fig. 2.15 and 2.16 illustrate two different 
situations; one in which the serial correlation is just beginning to become 
apparent and the other in which there is clearly a significant memory 
reaching far into the past of the process. It is interesting to note the highly 
structured form of the serial correlation coefficient for the highest repetition 
rate data. It seems that this serial correlation function might be easily 
described with a simple parametric model. Also note the similarity between 
the correlation functions for the data set; even the cross-correlation has the 
same form.
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Figure 2.14. Serial correlation functions, X =  5.7xl03. a) Autocorrelation of 
time sequence, b) Autocorrelation of energy sequence, c) 
Cross-correlation of time and energy sequences.



Figure 2.15. Serial correlation functions, X = 8.0x10s a) Autocorrelation of 
time sequence, b) Autocorrelation of energy sequence, c) 
Gross-correlation of time and energy sequences.



Figure 2.16. Serial correlation functions, X = 1.43xl06 a) Autocorrelation of 
time sequence, b) Autocorrelation of energy sequence, c) 
Cross-correlation of time and energy sequences.
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Checking for serial correlation is important as a first step but this does 
not guarantee independence. More powerful tests which test for serial 
independence must be used on the sequence. The preferable manner for 
testing a series of events for the general renewal hypothesis would be to use 
a nonparametric test for serial independence in the sequence. The run test 
[l5] is a nonparametric test which can be used for testing the hypothesis of 
serial independence. There are other tests which can also be used and can 
be found in [85]. The results from applying the run test to the data, which 
did not exhibit serial correlation, were that the sequences consist of serially 
independent events at the 0.05 significance level. These results are not as 
definitive as would be desired because the run test has a low power.

The concept of pooling the data to form a Poisson process was also 
investigated using a Trichel pulse process. In this experiment multiple 
records were superposed to form the pooled process. Figure 2.17 illustrates 
the results of pooling pulses from a Trichel pulse process which had a 
repetition rate of 28130 pulses per second. The pooled record length was 
20.44 /is and contained the superposition of sixteen records. On the average, 
the pooled records contain about 9 pulses each. There are several different 
tests that can be used to test the data to see if it was generated by a 
Poisson process [85]. The statistical test that was used is called a dispersion 
test [85] and uses a test statistic, d, which is given by

k (Hi - S ) 2 
Z j  —

where there are k observation intervals of equal length with m events 
contained in the itn observation interval. The term, n is the mean number 
of ev en ts  and is given by

For large enough k a chi-squared distribution with k-1 degrees of freedom is 
a good approximation to the distribution of d under the null hypothesis. 
Data similar to that shown in Fig. 2.17 was tested using 40 pooled records 
and the Poisson hypothesis was accepted at the 0.05 significance level. A
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Figure 2.17. Typical pooled records for Trichel pulses.
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ty p ica l h istogram  for the tim es betw een  even ts in a pooled process is show n  

in F ig . 2 .18.

2.6 U ltra  Low Level M easurem ents

It is of great interest to measure partial discharge signals with 
extremely low levels of charge. This section will deal with a technique which 
can aid in the measurement of low level pulses buried in noise with small 
repetition rates. The basic approach will use cross-correlation and averaging 
to reduce the noise level in the estimate. Cross-correlation will be used to 
provide a coherent averaging method. To increase the output signal to noise 
ratio an ad hoc detection technique based on the level crossings of a 
Gaussian random process will be used. The Gaussian noise assumption will 
be used because it is an excellent model for the thermal noise in the 
amplifiers and is the dominant source of noise in the application: to be 
discussed. The final estimate will not be the charge in a single pulse but will 
be an average value that is difficult to interpret. This technique applies to 
partial discharge pulses that have peak values either greater than or less 
than the standard deviation of the Gaussian noise. The most interesting 
case is that in which the peak value of the pulse is on the order of the 
standard deviation of the noise. In this case the SNR is too low and the 
individual partial discharge pulse is not directly observable.

The most desirable approach would be to setup up a detection 
procedure to test the hypothesis that the signal is present. However, there 
are several unwanted parameters in the formulation for which the a priori 
probability densities are unknown. Implementation of such a scheme is 
difficult in this case and approximate procedures are needed, Another 
reason for using the method to be discussed is that is provides a simple, real 
time alternative to a true detection algorithm which can become numerically 
intensive. If a digitally implemented detection scheme were used and the 
signals were observed for a one minute interval using an eight bit quantizer 
with a 100 MHz sampling rate then over 10 giga-bytes of data would have 
to be processed. This would translate into an excessive amount of data 
processing for even a super-mini computer to perform. However, once the 
preprocessing has been performed by the algorithm to be presented then it is 
desirable to perform a hypothesis test using, for example, the generalized 
likelihood ratio test discussed in chapter four. Follow up processing by more 
exact tests will further increase the output SNR of the measurements.
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Figure 2.18. T ypical histogram  of tim es betw een events for pooled records.
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The measuring system will consist of two inputs; these two inputs can 
be at physically separated locations or at a single location (two amplifiers 
connected to the same point). The input signals are modeled as

, . , ' Nt
x(i ) = v; ajs( t -  Ii ) +  H1(I) 

i = l

and

: Ny
y ( 0 = > ]  a is( i ~  t S

i=l
D ) +  n2(t)

where D is the delay between the signal s(t) at the two input points and is 
zero if the amplifiers are connected to the same point. The number of 
events in the interval, T, is N<p and will be assumed to be Poisson 
distributed. The noise terms P1,(t)l and n2(t) 'will be assumed to be Gaussian 
and independent from each other and from the signal s(t). The input SNR 
for either channel is easily shown to be

Xa2 JF |S(cj)|2 dw
SNR;, - O O

OO

J  N(oj) dw
- O O

where S(gj) is the Fourier transform of the partial discharge pulse, N(a,’) is 
the noise power spectral density, the partial discharge process is assumed to 
be homogeneous with intensity parameter X, the pulse is not DC coupled and 
the mean square value of a, is a2. The Poisson process is assumed to be 
homogeneous because no a priori knowledge is available about the intensity 
function Xt. The homogeneous intensity, X, will have the interpretation that 
it is the average number of partial discharge pulses per second even though 
the true process will not be homogeneous.

One approach to the problem of measuring low level partial discharge 
would be brute force averaging of the cross-correlation function. This 
approach has limitations for low repetition rate (small X) partial discharge
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because the output SNR is still low when X is small. There are tremendous 
difficulties associated with retrieving these pulses from the noise if there are 
only a few pulses per cycle of the excitation voltage because the variance of 
the estimate will be large compared to the partial discharge energy. An 
obvious modification would be to limit the processing to a small phase 
window, of extent </>, to a region where the probability of measuring a partial 
discharge is the highest. The intensity, X was assumed to be constant 
because there is not a method for knowing the true function Xt before 
measuring it. In actual practice some information is known; the discharges 
are most likely to occur near the voltage peaks. If the correct phase window 
is chosen which contains all of the partial discharge pulses then the 
equivalent homogeneous intensity will be

'eq
360
<P

X

That is to say that the intensity parameter increases giving a higher input 
SNR which yields an improved output SNR. Furthermore, if an accurate 
trigger is available so that the processing can be limited to regions in the 
near vicinity of the pulse then the output SNR increases dramatically. The 
problem with using only the regions in the near vicinity of the pulse is that 
these regions are difficult to determine unless the pulse has sufficient 
amplitude. In this case the pulse itself would be required to provide the 
trigger.

There is an alternative which can provide increased performance by 
locating the regions (on the average) in the vicinity of the partial discharge 
pulse. The algorithm locates data segments that have a significant 
probability of containing a partial discharge pulse and then processes only 
those segments. This approach yields better results because the data has an 
effective higher input SNR. This technique is not perfect because it will miss 
pulses and indicate that a pulse is present when it is not. These deficiencies 
amount to a loss in the output SNR but the improvement of the output SNR 
can be almost as great as if the region in the vicinity of the pulse were 
actually known. This technique relies on the level crossings of a random 
process and works by using the trigger on the digital recorder as the 
detection level. If the noise level is high then a trigger set at a proper level 
will initiate recording a few times per second (when the noise crosses the
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trigger th resh o ld ). T h e basic  idea lies in th e fa ct th a t  when a sm all signal is 
add ed  to  th e  noise th en  th e  recorder will trigger m ore often  than  if th e noise  
alone w ere p resen t. P roper se lection  o f the trigger level will im prove the  
o u tp u t SN R  b ecau se  there is an increased  p robab ility  th a t there is a partial 
discharge and not noise a lone.

T o a n a ly ze  th e  a lgorith m  consider w h a t h app en s w hen noise a lone is 
p resen t a t th e  in p u t to  th e  recorder. T he noise will be G aussian  w ith  zero 
m ean and h av in g  a pow er sp ectra l d en sity , N (cj). T he trigger level will be set  
at a level u so th a t  a n y  upcrossing o f th e level u by the noise will in it ia te  
recording. T he m ean  num ber o f triggers (upcrossings) in the in terval T is 
given  by ,[86]

E { C u(OjT ) }
Vz __h1  

e 2n"

w here th e  orj term s are the sp ectra l m om ents o f the noise and are given  by

aO = Rn(O)

«2 = - R n (O)

w here R n is th e  a u tocorre la tion  fu n ction  o f th e noise and the prim e refers to  

d ifferen tia tion . T h e secon d  sp ectra l m om ent, a 2, is required to  be finite; 

w h ite  noise is n o t a llow ed . W hen  a signal is added  to  th e noise then  th e  
m ean  num ber o f triggers is g iven  by  [86]



I
E { C m(t)(0 ,T ) } I

V ^ o  o
</> m (t)

V « o
2 ^

V «2

+  m (t)

w here <f> and  <}> refer to  th e  G a u ssian  p rob ab ility  d en sity  and error function  
resp ectiv e ly . T h e expression  ab ove  gives th e  crossings o f a curve m (t) b y  th e  
G a u ssian  n o ise. T h e p articu lar  curve th a t  is o f in terest is th e  level sh ifted  
sign a l m (t) =  a s (t) — u w here s (t)  is th e  p a rtia l d isch arge pulse w ith  
a m p litu d e  a and u is th e  trigger level o f  th e  tra n sien t recorder. T he  
in tegra ls  defin ing th e exp ected  num ber o f triggers, for rea listic  sign a ls, are 
difficult to  ca lcu la te  and  further sim p lifica tion s need  to  be found. 
F urtherm ore, th e  signal is not d eterm in istic  and is a c tu a lly  a random  
process w h ich  further co m p lica tes  th e  an a ly sis .

F o r tu n a te ly , som e a ssu m p tion s can lead  to  a usab le  im p lem en ta tion  o f  
th is  tech n iq u e. O ne a ssu m p tion  is th a t  th e p o in t process has a sm all 
in ten s ity  so th a t  th e  p rob ab ility  o f tw o  p artia l d ischarge pu lses having  
sig n ifica n t overlap  is sm all. T h e n ex t assu m p tion  is th a t  th e  p artia l 
disch arge pu lse  w ill be m odeled  as a rectan gu lar  pulse w ith  th e  pulse w id th  
being  equal to  th e  d uration  o f th e  true pu lse. T h ese tw o  assu m p tion s lead  
to  a sim ple ap p roxim ate  so lu tion  in w h ich  th e  level crossings o f th e noise can  
be used . It shou ld  be n o ted  th a t  ev en  if th e  tw o  a ssu m p tion s w ere true then  
th e  so lu tio n  to  be p resen ted  w ou ld  still be ap p roxim ate. T h e so lu tion  to  be  
p resen ted  is b ased  on a re la tive  frequ en cy approach  to  th e  p rob ab ilities and  
is a very sim ple  approach  to  an ex trem ely  com plex problem . H ow ever, the  
approach  w orks and provides a sim p le  tech n iq u e  to  m easure low level p artia l 
disch arge.

Several defin itions need  to  be s ta te d  before th e  so lu tio n  can be given . 
T h ese  defin ition s are

A T  ^  recorded  ob servation  in terv a l for a sin gle  trigger



72

N pd =  num ber o f  triggers due p a rtia l d ischarge plus noise

N n =  num ber o f triggers due noise only  

D =  duration  of a single p artia l discharge pulse 

T = -total ob servation  in terval 

N t =  to ta l num ber o f triggers  

X =  average num ber o f p artia l d ischarge pulses per second

B y assu m p tio n  th e process is a hom ogeneous P o isson  process so th e  
p ro b a b ility  th a t  an ev en t is observed  in (t, t +  A t) is ap p rox im ately  XAt. 
Since it w as assum ed  th a t  th e p artia l d ischarge pu lses do not overlap  th e  
coverage o f th e  in terva l, (0 ,T ), by th e square pulses is X T D  w here D is th e  
w id th  o f th e square pulse. A lso , the coverage o f (0 ,T ) by noise on ly  is 
T — X T D .  T he m ean num ber o f triggers in the in terval (0 ,T ) due to  th e  
noise on ly  is ap p rox im ate ly  given by

E{ C„(0, T -  XTD) } = (T ^ TD)
a 2

ao

%
e

u~
2o o

T he m ean  num ber o f triggers in th e  interval (0 ,T ) due to  p artia l d isch arge  

pulses p lus noise is ap p rox im ate ly  g iven  by

E { Cu_ a(0, X T D ) }  =
XTD

27T

a“ — 2au

0 p(a) da

where p(a) is the probability density of the partial discharge amplitude. 
The amplitude, a, is assumed to be of one polarity and if the discharge has a 
negative polarity then the same expression applies if a negative trigger is 
used (downcrossing). The integral in the above expression is easily 
evaluated for special probability densities such as the gamma density. If the 
amplitudes are gamma distributed with density given by



then the mean number of triggers is approximately given by

E{ Cu_.a((), XTB) }

I
(XTD) a 2 2 n IO77rv I1X

- 2  n „e
2tt a O Mn I 277 aO ] |'(n+1) ( U -  nu-i )- 

2 n  ()e

The constant, //„, is found from evaluating the expression

f t ,  =  I
0 V 27raO

[ a -  ( u -  O o B ) f  
2 o0

Using these formula, Nn, Npd and Nt are approximately given by

Nn = E{Cu(0, T — XT AT } 

Npd = E{Cu_a(0, XTAT }

Nt =  Nn +  Nr

The input SNR can also be written as

SNR;in,I
X T ^ p

T on2

where ^  pd and T o2 are the average partial discharge pulse energy and noise 
energy respectively. The level, u, is chosen so that Nt AT <  T which means 
that no more than one trigger due to noise occurs in AT. If this condition is 
not met then the following approximations for the increase in SNR will be 
pessimistic. Also the noise bandwidth is assumed to be comparable to the 
pulse bandwidth so that Cn_a(0, D) <  I. This means that each partial
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discharge pulse will provide only one trigger rather than multiple triggers. 
As a practical matter, this choice of bandwidth is preferred because it 
provides the best input SNR. In fact, to achieve better performance, an 
analog matched filter should be used on the incoming data which Would 
force; the signal and noise to have comparable band widths. Provided that 
the$e conditions are met then the input SNR for the reduced data set is

SNRin,2
Npd % pd 

Nt: AT 4

The gain in the input SNR is
r-

SNRill2
SNRjJljl

Npd T I ‘ 
Nt AT XT

In the noiseless case where Npd =  Nt =  XT the gain in the SNR is for

which it is assumed that the only triggers generated are generated by the 
partial discharge pulses themselves. The SNR gain can be put into a more 
suggestive form using the definitions Xpci T =  Npd and XnT =  N11 which gives

C X ' . : 5 ; ' s :■■■ .

G SNR
i

XAT
X.

n̂d +  \ i

where the first term represents the ideal gain and the term in brackets 
represents the loss in gain due to the nonideal behavior of the algorithm.

The above formulas represent the gain in the input SNR using the 
algorithm and it is of interest to find a similar expression for the Output 
SNR. The estimate being used is the cross-corfelation between the "two 
inputs and expressions for the variance of a cross-correlation estimate can be 
found in [15]. Ignoring the contribution to the variance from the 
randomness of the partial discharge amplitude and considering only the 
contribution from the noise gives the output SNR for direct averaging



75

SNRoutj j
( X T  % pd ) 2

T &

The T e r m , i s  defined by

§>
OO

I  K lUlIr) K , n i r) dr

where RniUt(r) and Rno „.,(7) are the autocorrelation functions of the noise in 
the two channels. Using the level crossing algorithm gives an output SNR 
given by

SNR,out,2
(Npjgy)2

Nt AT 9?

The gain in the output SNR is given by

g SNR
I

XAT

L \
\>d ^pd

X ; \ d  +  Xn

where the first term is the ideal gain in the SNR and the term in brackets is 
the loss due to the algorithm.

It should be pointed out that this analysis is only approximate and 
gives a simple closed form expression for a highly complex problem. These 
expressions might best be treated as upper bounds on the possible increase 
in the SNR. Even though these expressions are approximate and the 
technique ad hoc, the results of using this technique are excellent. The 
following experimental simulation illustrates the effectiveness of the 
algorithm for measuring partial discharge buried in noise. The rms level of 
the noise was 97 mv with a peak pulse height of 200mv. Fig. 2.19 illustrates 
a typical data record with a pulse buried in noise. The noise had a 
bandwidth of 2MHz, the pulse had a duration of 500 ns and X was 60 . The 
observation time, T, was 600 seconds, the sampling rate was 10 MHz and
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Figure 2.19. Low level partial discharge pulse, a) Pulse buried in noise, b) 
Actual pulse shown to scale of a), c) Magnified (XlO) pulse.
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AT was 6.4 /rs. The input SNR for a single data segment containing a pulse 
was about -6 dB while the input SNR for the entire process was about -74 
dB. The trigger level was 500 mv and the residual mean at the digitizer 
input was 1.8 mv giving an effective trigger level of 498.2 mv. The measured 
value of Nn was 2230 while the theoretical value was 2244. The measured 
Value of Npd was 335 while the theoretical value was 319. The results of the 
processing are shown in Fig. 2.20. The theoretical gain in the input SNR 
was 25 dB, the theoretical gain in the output SNR was 5 dB and the 
theoretical output SNR was 15 dB. The average energy in the partial 
discharge pulses is calculated from

Nt
g Dd = -------- 1Tr— R(O)AT

Nt -  Nntheor • '

where R is the estimated cross-correlation function. The estimate for the 
partial discharge was 16.9 nv2 and the actual value was 17.5 nv , which is 
within the expected accuracy based on the theoretical output SNR. This 
result corresponds to measuring partial pulses with a charge of about 0.0045 
pC that occurs only once per cycle at 60 Hz. The output had a modest gain 
in SNR as compared to direct averaging but this figure does not reflect the 
true performance of the algorithm. To accurately assess the algorithm both 
the gain in output SNR and compression of the data need to be examined. 
For direct averaging 12 giga-bytes of data would need to have been collected 
and processed. Using the level crossing algorithm only 328 kilo-bytes were 
processed which is a compression factor of 36550. One final comment is in 
Order about the algorithm. The trigger level is in the exponent of the 
formulas and consequently the algorithm is very sensitive to small changes in 
this level. r

To improve the output SNR of the measurement further, more 
sophisticated processing could be performed. The generalized likelihood 
ratio test could be used as a second screening algorithm before the data is 
included in the estimate. This test is discussed in chapter four where an 
approximation is presented for the tests implementation. Using some 
definitions, the performance gain from the second test can be stated in terms 
of the previous results. These definitions are
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Figure 2.20. Results of level crossing algorithm, a) Ideal output of 
algorithm, b) Output of algorithm for experimental data.
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P0 == Pr(deciding a pulse is present | pulse is present)

Pf =  Pr(deciding a pulse is present j pulse is not present)

When a hypothesis test is performed on the reduced data set containing a 
total of N1 records then new values for the counts of detected and falsely 
detected partial discharge pulses must be used. These new numbers arc 
given by

Mt =  Nt ( P0 + P f )

Mpd = Nt Pd

Replacing Nt, Npd and Nn with Mt, Mpd and Mn in the above expressions 
then gives the performance of the the two algorithms used in conjunction. 
The only motivation for using these algorithms in conjunction is to reduce 
the amount of data that needs to be processed. If the processing resources 
were available then only a detection algorithm would be necessary (and 
desirable). An ad hoc detection scheme, based on the cross-correlation 
function, can be used and will respond to any correlated input (both partial 
discharge or interference). The test would be ,

Hu

I  xItM t) d t  ^  T -

where 'y would be the threshold of the test. Histograms under the two 
alternatives using this cross-correlation based test are shown in Fig. 2.21 for 
the same data discussed above. The H0 alternative is signal plus noise and 
the H1 alternative is noise only. It is easy to see from Fig. 2.21 that a 
decision region can be chosen such that Pf is small which will improve the 
output SNR if the detection algorithm is used.
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Figure 2.21. Histograms of the processor output under the two hypothesis.
H0 is to the right of the threshold and H1 is to the left of the 
threshold.
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C H A PTER  TH REE  

DELA Y  ESTIM A TIO N

3.1 In troduction

This chapter discusses techniques for locating partial discharge sites in 
high voltage equipment using digital signal processing techniques to estimate 
the time of arrival of the signals. There is a vast body of literature 
pertinent to delay estimation including passive delay estimation techniques 
[16]. Passive delay estimation is required to locate a signal source, (signal 
emitter), when the measuring device has no knowledge about the absolute 
temporal characteristics of the signal, (ie; its absolute time origin). For 
example, passive sonar systems use the sound emitted by enemy submarines 
to deduce their locations without any information about the absolute time 
at which the sound was produced. The time delay information is deduced 
using the relative time delays between the signals, (multiple receiver 
approach), or the signal and its reflection, (single receiver approach). There 
are so many delay estimation techniques that it would be impractical to 
discuss each in detail so several will be outlined but only a few specific 
approaches will be consider in detail.

Cross-correlation techniques have several advantages over other 
techniques that are used to determine delay differences. The primary 
advantage that cross-correlation has is that it maps a signal with a random 
time variation into a time (time delay) stable function. This allows the use 
of a 100% coherent averaging. In other words by averaging cross-correlation 
functions one is assured that each element of the average is perfectly lined 
up with the others. Direct averaging of the signals can never provide this 
perfect alignment. The next advantage is that uncorrelated noise averages 
to zero so that signals buried in thermal noise can be easily extracted. The 
filial advantage that cross-correlation has for this application is that 
physically separated partial discharge sites are uncorrelated with each other.
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This says that a cross-correlation function for a device with multiple 
discharge sites will simply be the superposition of the individual cross
correlation functions of each site.

A non-correlation based technique for locating the partial discharge 
sites is discussed in section 3.2. This method seems to predominate the 
current techniques for locating partial discharge even though this method 
has been abandoned by other disciplines because of its inaccuracies; This 
method is included for comparison and an error analysis is performed later 
in the chapter.

The generalized cross-correlation (GCC) method for locating a passive 
emitter is discussed in section 3.3. This technique is the preferred method 
for source localization because of the accuracy that it provides. This 
technique uses prefilters that are optimal in some prescribed sense. The 
different variations that will be discussed are useful in solving some of the 
problems encountered in measuring time delay in high voltage systems. High 
accuracy results are possible using the maximum likelihood (ML) weighting 
function and this method is the preferred method for small data records. If 
the measurements are made in a system with narrow band interference the 
Wiener processor (WP) implementation seems to provide the best results.

Bias errors that can occur when making delay estimates are discussed 
in section 3.4. In the ideal case many delay estimators are unbiased, 
however, in the general measurement situation various types of bias errors 
can corrupt the estimate. These errors can arise because of the lack of 
temporal resolution when overlapping pulses are encountered. Other errors 
occur when the channel contains a phase distortion which distorts the 
correlation function causing a shift in it’s maximum. Bias errors can occur 
through the processing methods that are chosen to estimate the delay. For 
example, in certain situations autocorrelation estimates can be highly 
biased. Section 3.5 discusses the variance of delay estimates and illustrates 
the advantage of correlation based estimators over time of arrival 
estimators. The Cramer-Rao lower bound is discussed along with a local 
analysis of the variance for wide sense stationary processes and transient 
nonstationary processes.

The methods that are used to reduce the delay bias due to overlapping 
correlation functions are referred to as deconvolution. Section 3.6 discusses 
an ad hoc generalized cross-correlator, referred to as the modified PHAT 
(PHAse Transform) processor, which provides greater range resolution in the
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measurements. The filter is a combination of the PHAT GCC and the ML 
GCC which uses a naive approach to deconvolution for the frequencies with 
high signal to noise ratios and uses the optimal ML solution for the 
frequency regions with a low signal to noise ratio. Section 3.7 discusses a 
new GCC based on a minimax equalizer that recently appeared in literature. 
This particular implementation provides improved range resolution at the 
cost of a greater variance of the estimate. The unusual aspect of this 
processor is that the necessary signal spectral characteristics are estimated 
and the estimation error is incorporated into the solution.

3.2 A  N on-correlation B ased L ocation T echnique

The, first method uses only the estimated arrival times at a single 
receiver and there are several approaches to estimate the time of arrival of a 
signal. The simplest method is to use the time at which the signal crosses 
some predetermined threshold (the threshold is often chosen to be the 
signal’s maximum). This approach is used in TDR systems and has limited 
application because of the difficulty in determining the appropriate threshold 
for distorted, noisy or unknown waveforms. Furthermore, if the discharge 
site is extremely active or there are multiple discharge sites, active at nearly 
the same time, the number of discharges present on the TDR screen 
prevents a correct delay estimate from being made. This technique has been 
used in factory testing in attempts to locate partial discharge sites. 
Typically, a wide band coupling device is placed at one end of the cable and 
the pulses are observed on an oscilloscope. The observed pattern consists of 
a directly arriving pulse and a pulse reflected back from the opposite end of 
the cable. There are other terms due to further reflections as the pulse rings 
back and forth on the cable but these are of little interest. The location is 
deduced from an estimate of the time difference between the first two pulses 
appearing on the screen. The time difference will be T = T +  b — a, where 
T is the total electrical length of the cable, a is the propagation time from 
the site to the cable end with the coupler and b is the propagation time 
from the site to the other end of the cable. The position of the site, € , is 
then given by

e =  y2 [L -  ( r -  T ) u \

where L is the length of the cable and v the propagation velocity.
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As mentioned above, there are several difficulties with this approach. 
The cable is dispersive and consequently neither the front edge of the pulse 
or the pulse shape is preserved. The second pulse is less in amplitude than 
the first. The amplitudes are random, causing a jitter on the screen. All 
these factors contribute to the difficulty of obtaining a delay estimate using 
either the peak or some predetermined amplitude threshold as a reference on 
the two pulse. These problems can easily cause large errors in cables of 
substantial length. Another problem occurs when the discharge is low level, 
or if there is a large amount of interference because it is very difficult to 
obtain a stable enough display in order to make a measurement. A further 
problem occurs when there is a large amount of discharge activity present in 
the cable. In the case where there is only one site, which is very active, 
confusing results can be obtained. The problem occurs when the reciprocal 
of the count rate intensity function is on the order of the electrical length of 
the cable. In this case the second pulse on the screen is not necessarily due 
to the reflection from the opposite end of the cable but may be due to a 
second discharge occurring. The same phenomena happens when the 
reciprocal of the combined count rate intensity function for multiple partial 
discharge sites is on the order of the electrical length of the cable.

An improvement in this technique can be made by using matched 
filtering. There are numerous articles on this subject, most of v/hich apply 
to active delay estimation schemes. This technique cross-correlates a known 
waveform with the incoming signal; the times of arrival are then the times 
at which the output correlation function attains its maximums. 
Mathematically this operation is represented by

R(r) -  /  x(t) s(t-f) dt

x(t) =  s(t) +  n(t)

where x(t) is the signal received at a single location on the cable , n(t) is a 
white noise process, and s(t) is the known partial discharge waveform. This 
approach would measure the times of arrival of the signal and its reflections. 
Matched filtering yields excellent delay estimates provided that the signal 
shape is accurately known before hand. The same approach used for the
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TDR would then be used to locate the site, the only difference being the 
method of choosing the arrival time.

This approach has fewer problems than the TDR approach but it also 
fails in certain situations. The problems associated with selecting a proper 
threshold are now eliminated and this technique performs very well in 
situations where there is high levels of noise. However, there is now the 
problem of selecting a proper known waveform to use for the matched filter. 
A calibration experiment can provide an adequate waveform for this 
purpose. However, because the signal will travel though an unknown 
amount of cable the shape will be slightly different than The calibrating 
signal potentially causing an error in the delay estimate. The major 
problem is due multiple discharge waveforms arriving in close temporal 
proximity to each other. In this case the matched filter will not provide any 
better result than the TDR did.

There are generalizations to the matched filter approach which take 
into account non-white noise case [42]. The resulting correlation function 
will then become ■

R (-)  =  &  -1 XM s*M 
: N M

whera X(cc’) and S ( c<j) are the Fourier transforms of the received data and 
known waveform respectively. The term, N(oj), is the power spectral density 
of the non-white wide sense stationary noise corrupting the measurement. 
This particular implementation is effective in eliminating narrow band 
interference from the measurements which is a particularly troublesome 
problem in these measurements. Another problem that can be addressed 
using this approaches the problem associated with closely spaced pulses. If 
the spacings are exponentially distributed random variables (a Poisson

process) with a mean value then the matched filter can be modified to

R (r) _1 x m s*M 
. X|SMI2 + n H  .
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This particular approach essentially deconvolves the input waveform, 
however, the variance rapidly increases and typical resolution performance 
can not be expected to exceed a factor of two if a reliable estimate is 
desired. '

3.3 G eneralized  C ross-correlation

Correlation methods are widely used in delay estimation problems and 
there is vast literature on various correlation techniques. In the past decade 
a new type of correlation scheme emerged and is referred to as generalized 
correlation, [18,39]. The basic idea is to prefilter the signals in some optimal 
manner and then cross-correlate. The optimization criteria is dictated by 
the needs and constraints of the particular problem a t hand.

Once a measurement model is developed the correlation techniques can 
be easily implemented on a computer using an FFT approach. The received 
signals are as

x(t) =  s(t) +  nx(t) + I1(I) 

y(t) =  s(t-D ) +  n2(t) +  i2(t)

where the signal s(t) and a delayed version, s(t-D), are the signals from the 
partial discharge site to be located. The parameter to be estimated is the 
relative delay, D, between the two signals. For simplicity, the distortion due 
to  th e  p rop agation  through differen t p a th  len gth s w ill n o t be included . The 
signals will be generated by either a wide sense stationary random process or 
by random transient events. The thermal noise from the amplifiers is 
modeled as. wide sense stationary noise with power spectral density N(cv’). 
The quantization noise from the digitizer, will be assumed to be zero mean, 
independent j identically distributed, (iid), random variables. The 
measurement noise, n^t) and n2(t), is a combination of both the thermal 
noise and quantization noise. The signals .ii;(t) and i2(t) are associated with 
signals from other sources not presently of interest and interfering with the 
signals from the current site under investigation. These signals can come 
from a number of different sources for example reflections of the signal from 
discontinuities in the device, other partial discharge sites, signal sources 
exterior to the device under test. With the exception of the reflected signals
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th e  in terfering  sign a ls, I1 (t) and i2(t), w ill be considered to  be in d ep en d en t of 

s(t) b u t correla ted  w ith  each  other.

T h e d elay  is d eterm in ed  from  the cross-correlation  function  w hich is 

estim a ted  as

I T/2R ( r ) =  Tf I Mt) y ( t + r ) d t
1 --T/2

T h e d e lay  e s tim a te , D , b etw een  th e  tw o  sign als is the va lu e o f r  a t w hich the  

fu n ctio n , R(r), has its m axim um

D =  arg m ax R(r)

C ross-correlation  is an effective m anner for determ in ing  th e delay  b etw een  
sign a ls and has b een  used  ex ten siv e ly  for th is purpose by m any d iscip lin es.

T h e perform ance o f th e cross-correlator can be im proved upon by  
o p tim a lly  prefiltering th e input sign als before cross-correlating . T his 
o p eration  is referred to  as generalized  cross-correlation  [18,37,38,39,59] and  
its  im p lem en ta tio n  is show n in F ig . 3.1. T he filters h x(t) and h 2(t), or 

eq u iv a len tly , a w eig h tin g  fu n ction , w (t), are chosen to  op tim ize the  
m easu rem en t of D in som e chosen  m anner. T he resu ltan t correlation  

fu n ctio n , is given  by

R(r) - 9  -■{ H1(W) Hj*(w) Sxy(W) }

=  S '  1 ( W(V) Sxy(w) }

T h e term  Sx y C w) is th e  cross-sp ectra l d en sity  o f the s ign a ls x (t) and y (t)  and  

can  be exp ressed  as

Sxy(w) =  Gpi(w) Gu(w) Gp2(w) Gt2(^) S(w)
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GENERALIZED CROSS CORRELATOR

x(t) = s(t) + I l 1 ( I )  

y(t) = s(t-D ) + n2(t)

K f f c M  = T 1(G ^If)W (O )

Figure 3.1, Block diagram of generalized cross-correlator.
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where S(oj) is the spectral density of the signal before being filtered. The 
filters acting on the signal will be the cascade of the filter, GD(w), describing 
the propagation paths through the device and the filter, Gt(o>), describing 
the transfer characteristics of the measuring circuits. Once the relative 
delay, D, between the two signals is determined, then along with the known 
length, L, between measuring points and a measured velocity of propagation, 

the partial discharge site can be located. The location, C , will be given
by ; ^

, V ’ I  = ( L -  z/D )

Some of the generalized cross-correlation techniques available can be 
adapted to autocorrelation processing. In this case the correlator would use 
the form of the generalized correlator that utilizes the weighting function, 
W(w). The inputs x(t) and y(t) would be the same signal and would come 
from a single receiver. In this case, the interfering signals, due to reflections, 
would be necessary to determine the relative delay. The correct delay would 
be the second largest peak in the correlation function, (since the 
autocorrelation function, by definition, always has its maximum at the 
origin). The location, (  , will be given by

e L uD
2

A few of the more useful approaches are mentioned below. The 
Hannan-Thompson processor, (HT), is the maximum likelihood 
implementation of the generalized cross-correlator [39], The HT processor 
attains the theoretically best performance of any .delay estimator, (it 
achieves the Cramer-Rao lower, bound on the variance). The constrained 
deconvolution processor, (CD), solves the deconvolution problem with the 
constraint that the output noise be held to a prescribed level or that the 
gain bandwidth of the weighting be held at a prescribed level. This filter is 
then used to prefilter the signals before correlating. This approach yields 
the best resolution of the correlation techniques for a given output SNR. 
This particular processor is developed in section 3.7 along with a minimax 
version. The Wiener processor, (WP), makes a best, (linearly constrained),



90

estimate of the input signals before correlating [38]. The WP approach can 
be useful in situations where there is a large amount of interference or 
distortion. There are other generalized cross-correlators but these are the 
most useful in the present study.

3.4 B ias o f D elay E stim ates

When processing signals to determine where the sources of the emissions 
are located one is naturally concerned about the validity of the estimate. 
For example, assume that the measurements will be made on a cable of 
length L and that the cable has matched impedances at both ends. A 
measurement is then made of a signal arriving at both ends of the cable. 
Furthermore, assume that a perfect parametric model of both the signal and 
noise are available. The question is how accurately, based on a record of 
length T, can the position of the signal be located. Typical measures of 
performance are the variance, bias and probability of error of the delay 
estimate. These calculations will depend on the parametric model of the 
signal and the noise and the technique used to determine the delay. Many 
times these calculations are intractable so certain assumptions and 
approximations may be necessary.

One factor affecting the accuracy is the error due to the bias of the 
estimate. Typically, estimates are sought which are either unbiased or 
asymptotically unbiased, (as the the record length increases the bias goes to 
zero). Fortunately, for two input delay estimators the bias of the delay 
estimate is zero in the ideal case. However, when a Situation develops in 
Which the peaks are not highly resolved there is the possibility that this lack 
of resolution will cause the estimate to be biased. The bias is due to the 
overlapping of adjacent individual correlation functions constituting the 
entire correlation function. Asymmetry in the differential channel will also 
contribute to the bias by skewing the correlation functions. : • • /

The following discussion on bias is an extension of an analysis given in 
[37] in which assumptions about the integration length are used as 
justification for some of the derivation. The purpose of the analysis in [37] 
was to show that the delay bias was zero but as will be seen below this only 
happens in special cases. To develop expressions for the bias it is necessary 
to consider a particular signal model. The measurements from two locations 
will be modeled as
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x (t) =  £  Si( I ) ^ n 1( I )  (3.4.1a)
i=l

y (t) =  E M t ) * si ( t—Di ) + n2( t )  (3.4.1b)
i—I

The signals, Si, will be considered to be either wide sense stationary or 
random transient events with relative delays, Di. If the signals are 
considered to be wide sense stationary then the expectation will be taken 
with respect to the appropriate random process. If random transient events 
are considered then the expectations will be taken with respect to the 
random amplitude. The transient events will be considered to be entirely 
contained within the observation interval. If necessary the pulse shapes of 
the transients could be considered random but this will not be done. The 
filter, hj, is a differential filter describing the difference in the channel 
characteristic due to factors other than the linear delay. These filters will 
describe the nonlinear phase distortion and the spectral shaping of the 
signals. The two noise terms, nj and n2 are zero mean, stationary random 
processes, (or wide sense stationary if desired). The noise terms are 
independent of each other and independent of the signals, Si . Depending 
upon the situation, the signal terms, Si , may or may not be independent of 
each other. To estimate the delays, Di , the function </>(r) is used

T/2

<Hr) = f  I S i M M t )] I E i t t ) * y (1 + r ) ] d t
- w .......

where the filters, gj(t) and g2(t), are the optimal filters used in the 
generalized cross-correlator. For simplicity, these filters will not be included 
in the following analysis, (it is a simple matter to include them if desired). 
The generalized cross-correlation prefilters are zero phase and it will be seen 
later that zero phase filters have no effect on the bias. The estimate of the 
delays, Di , are the values of r at which <j)(r) has its local maximums. This 
function consists of two terms

=  +  f3-4-2)
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The first term is comprised of the cross products of the signals and is given 
by

M T)
N ’ N ' Y

x :  Si( I )
i=l . H i

dt (3.4.3a)

The second term is comprised of cross products of the signals and and noises 
and is given by

M r ) n i ( t ) E  Si ( t  +  r )
i=l

d t (3.4.3b)

T/2

+  I  n 2(V)
-T /2

N
E -hi(t)'*  si( t -I-T--Di )
i=i

dt

. ! T/2 '
+ /  n1( t ) n 2( t  +  r )  dt

-T /2

D ifferent a ssu m p tion s ab ou t the sign a ls, Sj, w ill be m ade dep en d in g  on w h i c h  

effect is under con sid eration . H ow ever, for each  ca se  th e  b ias o f t h e  

estim a te  w ill be defined as

B(D) =  E{D -D  }

where D will refer to the estimate and D will refer to the true value and will 
not be subscripted unless necessary. To arrive at a form amenable to 
calculation of the bias it will be necessary to express j r —D] in terms of the 
functions in Eq. 3.4,2. To arrive at this form it is necessary to differentiate 
Eq. 3.4.2 which yields
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M ( T )
= M s ( T)

+
^ M t ) I

d r 7-D d r  ; r=D d r

(3.4.4)

O

Expanding 4>s{T) into a Taylor series about the true delay* D, yields

^sw (D)
M T)

OC

E
H==O

r - D (3.4.5)

where <f>s^X D ) refers to the n*̂  derivative of (j>§ with respect to T evaluated 
at the delay D. Taking the derivative of Eq'. 3.4.5 and inserting it into Eq.
3.4.4 yields

OC 1V D ) ,
< h ' ( T )  +  0 S (D ) =  -  S  V I ^ - D I

n=l

To arrive at the desired relation i t  is necessary to use a reversion of series 
[75] which yields

CO

V - D ]  =  V An [<%'(r) + ^ s(U )]"
- I l = = I  !

where the coefficients An are the standard coefficients in a reversion of series. 
Retaining only the terms in the Taylor series up to the second derivative 
and performing the reversion yields

(D -D )
4>s{ D ) +  <t>n( D ) 

<^s(D)
(3.4.6)

where t was evaluated at D. This analysis is a local analysis of the bias 
whose validity holds near the point of expansion. If the range of validity 
needs to be extended higher order terms in the Taylor expansion can be 
retained however the analysis is extremely tedious. Taking the expectation 
of Eq. 3.4.6 results in
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E { D  —D } = E
^s(D)
^s(D )

/

+  E
4 >  N ( D )

^s'(D)
(3.4.7)

w here th e  secon d  ex p ec ta tio n  ev a lu a te s  to  zero. T h is reduces the b ias to  the  
expression

B ( D )  =  E
^s(D)
t f s ' ( D )

T h is ex p ec ta tio n  is still d ifficu lt to  ev a lu a te  so  an oth er  T aylor  exp an sion  will 
be used . T he fu n ctio n s, ^ g ( D )  and  <̂>g ( D ) are both  random  variab les, 
defin ing th ese  as

V  =  ^s ( D )

and

Z = ^ ( D )

T h ese  random  variab les w ill h ave  m ean  va lu es

and

E { V  } Mv
dRSS{r)

d r

E { Z } =  ^ T ^2r ss( r ) 
d i 2

T-=D

E xp an d in g  the fu n ction

F ( V , Z ) V
Z

in to  a T aylor series ab ou t th e  m ean  va lu es /iv and / iz ,[6], reta in in g  on ly  the  

term s up to  and includ ing  th e  secon d  order p artia l d er iv a tiv es , y ields
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F(VfZ) - /̂ 'V I /̂ 'V 9 I
—  ■+ —  V  +  —  Z2 +  - lT V Z  
I1Z V z  K  v l

(3 .4 .8)

T a k in g  th e  ex p ected  va lu e of Eq. 3 .4 .8  and inserting the expressions in for V  
and Z gives

(3 .4 .9)

4 T / 2  T /2  -

+  ~ T  J  d x  J  dt E { s ( t ) s ( t+ r - D ) s ( x ) s ( x  + r - D )  }
Vz dr _ t /2  _ t /2

I T /2  T /2

+  — -  — r- J dx f  dt E{ s ( t) s ( t  +  r —D )s(x)s(x  + r —D) }
Vz - t /2 - T / 2

r=D

T=  D

To simplify these expressions any further will involve the calculation of the 
fourth order moments inside the integrals which can be calculated if specific 
models are considered.

The first case to be considered is the bias due to the measurement 
itself. To separate the individual effects the only signal that will be used in 
this case will be s ^ t) .  Furthermore, the filter, h ^ t )  will be assumed to be 
zero phase so that only the spectral magnitude is altered. In most analysis 
the first derivative of </>$ is approximately zero because </>s is assumed to be 
equal to Rss, the autocorrelation function, for large record lengths, T. The 
bias is also zero for the shorter record lengths due to the symmetry of the 
moments used in the calculations. In fact one can continue the Taylor 
expansion and the resulting terms will either have an odd number of 
derivatives with respect to r or be multiplied by /iv which evaluates to zero. 
Only taking an odd number of derivatives will give a result of zero provided 
that the higher order moments are symmetric about the true delay, D. The 
filter has no effect because it is a zero phase filter and will always be an 
even function.
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The second case to be considered is the b ias due to  nonlinear phase  
distortion  in th e  channel. T his d istortion  can com e from a v a riety  o f sources  
and in a p ra ctica l sense can never be e lim in ated . One exam p le is the  
nonlinear phase o f the m easuring devices; it is difficult to  ex a ctly  m atch  the  

tw o receivers w hich w ill give a sm all nonlinear d istortion . A n oth er exam p le  
is the dispersion in th e propagation  p ath  w hich in the case of a cable is a 
sm all effect. A n oth er exam ple is given  by reflected  w aves w hich  reflect from  
d iscon tin u ities th a t  have com plex im p ed an ces. To sep a ra te  the ind ividual 
affects the only signal th a t  w ill be used  in th is  case will  be s 2( t ). In m ost 

analysis the first d erivative  o f </>s is ap p rox im ately  zero. T h is is due to  the  

fa ct th a t ( J ) s  is an even function  ab ou t th e  d elay  D. H ow ever, in nonlinear  

phase sy stem s </>s is no longer sym m etric ab ou t D and con seq u en tly  th e  

d erivative  is no longer zero. It should  be noted  th a t the defin ition  o f the  
delay, D, for th is ana lysis  refers to  th e d e lay  due to  th e linear phase sh ift  
only. One o f th e  purposes o f includ ing h j ( t )  in the y( t ) channel w as to  

easily  include th e effect o f  a nonsym m etric correlation  fu n ction . T he filter, 
h ( t ) , i s  a filter describing the difference b etw een  the tw o channels and can be 
decom posed in to  its even and odd com p on en ts.

'M O  =  he( t ) +  h0( t )

_  h( t ) -f' h( — t ) h ( t )  — h( —t )
~  2 2

C onsidering on ly  th e  first term  o f Eq. 3 .4 .9  and  expressing it in term s o f its  
F o u r ie r tr a n s fo r m g iv e s

V1
V 1

OC

f  wH( o j )  Ss ( o j )  d u j

OC

J < & .  H( C d )  Sg( ( j ) d c j

— oo
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. CO ' '

j  —j caH0(w)S(cu)dw ■
. ■ _  0 -

CO • .

; J J t i e { u j ) S ( o j ) dco

It should be noted that H0 is purely imaginary and as a consequence the 
term — j cancels. The magnitude of this bias is a function of the degree of 
asymmetry of the correlation function about its true linear, phase delay, D.

The third case will develop the bias error due to overlapping correlation 
functions. In this case the signal will consist of the sum of two individual 
signals with relative delays, D^and D2- The true delay being sought will be 
D,. The correlation functions due to each individual signal will be assumed 
to be symmetric about its corresponding delay. This case is slightly different 
than the preceding cases and the change is incorporated by modifying Eq.
3.4.6 to be

(D -D )  =  -
,(D i) +  <j> s i D1) + <%( D1)

A similar equation can be developed that replaces Eq. 3.4.9 and it’s first 
terms are given by

^S1(Di) +  ^So(Di)

4',(D i )

„ I1V +  / iI 
— 2 ----------- -

M Z
(3.4.10)

where the terms /iy and /Uz are defined as above. The term /̂ 1 is the 
interfering term and is given by the expression

■ « s. ! '

Using Eq 3.4.10 the delay bias can be expressed as
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2 f — j W So( w) dw 
by +  /-tI o

I  S1( W) d

where S 2 ( c j )  is the odd portion of the power spectral density of s2(t) shifted 
by the delay term

exP[ - J ^ ( D 1- D 2)]

If the correlation function has a finite duration less than the delay 
difference, D1- D 2, then as the delay difference becomes larger the first and 
second derivatives of the correlation function at that point approach zero. 
In other words as the functions become more separated the bias due to the 
overlap goes to zero. This result can also be expressed in the time domain in 
terms of the autocorrelation functions R1 and R2 of the signals S1 and s2. 
The delay bias for overlapping correlation functions is given by

B(D1)
2 R2(D2 — D1)

Rr(O)

The interpretation of this bias is that the interfering correlation function 
tilts the desired correlation in such a manner that it’s maximum is shifted. 
The tilt is affected by the slope of the interfering term at the location of the 
desired peak. Other factors affecting the bias are the bandwidth and power 
of the desired correlation function. The term in the denominator is the rrns 
bandwidth squared (for low pass signals) times the power in the correlation 
function. If the correlation function has a large power or has a large 
bandwidth then the bias is reduced.

This bias expression has other practical implications other than giving 
the bias for overlapping correlation functions from adjacent (but desired) 
correlation functions. If a narrow band signal is interfering with the 
measurements then the resulting correlation function will be the 
superposition of the desired correlation functions and a damped sinusoid. 
Depending on the exact relationship between the phase of the sinusoid and
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the desired peaks there can be significant bias in the desired estimates due 
the superposition. Another problem can be caused by low frequency high 
energy impulsive interference. This is a common interfering signal in partial 
discharge measurements and is caused by SCR noise, switching surges and 
the like. The superposition of these pulses into the measurement has an 
adverse effect because the correlation time of this interference is typically in 
excess of the total propagation time of the device under test. In other words 
the presence of this interference will bias all the delay measurements.

The next case will be concerned with the inherent bias in 
autocorrelation processing. The above analysis assumed that the noise in 
the two channels was independent. In contrast now the noise terms, 
U1 and n2 will be assumed to be equal. Furthermore, the signal model has to 
be adjusted so that reflections of the signal are included. Making these 
changes gives the new model

x ( t )  =  £  S j f t - D i ) +  Di( t ) 
i=l

y (t)  =  E  Si( I - D i) - W t )
i = l

The new terms for the correlation output are

T/2 N- N I
M t ) =  I  ■ E  Si( I - P i ) • E  s j( t + r — D j )

- T / 2 i=l . j= i J J

and

M t )
.T/2

I  n ^ t )
- T / 2

S  si(t +  r - D )
i=l

dt
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T/2

+  /  n , ( t ) 
- T / 2

E  si( t +  t —Di )
i-l

T/2
+  /  n , ( t ) i i i ( t  +  r) dt 

T/2

To simplify the problem and make the effect clear consider the simple case 
in which the observed signal consists of only the direct signal and one 
reflection. Furthermore, assume that the channel is distortion free and that 
the reflected signal is delayed from the direct signal by a delay D. The 
signal model then becomes

x(t) = s ( t ) -f s(t—D) + n(t)

In this case the autocorrelation function R(f) is given by

R(r) — 2Rss(r) +  Rss(t — D) + Rss(r +  D) +  Rnn(7)

where Rss and R^n are autocorrelation function of the signal and noise. 
In essence this problem is identical to the problem of overlapping echos 
discussed above. Suppose that interest is focused on the peak located at D, 
then the other terms are overlapping pulses and comprise the interfering 
term 1(f) where

I(r) =  2RSs(f) +  Rss(r +  D) +  Rnn(7)

The same solution applies as for overlapping correlation functions and in 
this case the bias in the time domain is given by

: B(D) ^
Rss(O)

This bias can cause difficulties in the location of the partial discharge site if 
the delay, D, is small. Consider for example the case of an underground
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power cable. If the received signal has a bandwidth of 4 Mfiz then if D is 
less than 250 ns then the estimate can have significant bias. This 
correspond to a partial discharge site located within 125 feet of either end of 
a typical 1500 foot URD Cable. In fact, if located too Close to the end of the 
cable the desired secondary peak in the Cable may not be discernible.

The analysis given in this section was concerned with the bias errors 
associated with correlation analysis. A similar analysis can be carried out 
for time of arrival measurement schemes for determining the bias. The 
results are the same as given above except .that the autocorrelation 
functions (spectral densities) are replaced by the signal (magnitude 
spectrum). In other words the same errors associated with the time delay 
bias estimates obtained from correlation functions will affect time of arrival 
methods.

3.5 V ariance o f D elay  E stim ates

Another commonly used measure of the performance of an estimate is 
its. variance which is defined as

Var11 D ] = E { (D  - D  )2 } -  [e {D - D  } J 2

This is a difficult quantity to calculate so a similar approach will be used as 
for the bias fiowever, before calculating the variance, it is interesting to 
ask what is the best possible performance that could be attained. This 
question is answered in terms of a lower bound on the variance of all 
possible delay estimators. To obtain a bound it is necessary to consider 
specific signal and noise models and for this type of problem the only 
tractable model is the Gaussian model. The bound is referred to as the 
Cramer-Rao lower bound [41] and is given by

- I
d2 £ np(X I Q, t )

I **  J T =  D

where X is the observation vector containing both x(t) and y(t), Q is 
spectral density matrix containing all the spectral densities describing the
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Gaussian probability density function p(X | Q, r ). For Gaussian signals 
and noise this quantity is calculated in [39] and is given by

minimum var[ D T I  M 2
h ’i 2( f ) l 2

I -  I'Yi2CO I2
df

-I

where | "/12(f) P is the magnitude squared coherence function. This bound is 
achieved by the ML generalized cross-correlator discussed in [37]. In 
general, bounds like this simply state the best performance and give no 
indication of how to achieve them.

For the general wide sense stationary case or for random transient 
pulses contained within the observation interval the following analysis gives 
the local variance of the delay estimate, D. Only the unbiased case will be 
considered so using Eq. 3.4.6 as a starting point the variance is given by

var( D ) =  E ^s(D) + ^ (D )
2̂

4 (D )

This can be treated as function of two variables V and Z

F(V1Z)

where V and Z are given by

V =  </>s(D) +  4 (D )

Z-— 4  (D)

and
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F ollow in g  th e sam e line o f reason ing as in section  3.4 a T aylor series 
exp an sion  ab ou t the m ean  va lu es //v  and /Iz will  be used . R eta in in g  all 
term s up to  th e second p artia l d eriva tives and d eletin g  the term s whose  
ex p ec ta tio n s  ev a lu a te  to  zero y ields

F(V,Z) ~ y!.
/4

w here

I1Y  ~  0

and

f l z  — .E{</>s (D)}

T h is is th e  sam e result given in [37] excep t th a t  the random  v a r ia tion  of the  
sign a l term  w as not ignored in th is an a lysis. T he an a lysis  given in [37] 
assu m es a large ob servation  tim e, T , and argues th a t  the random  varia tion s  
o f th e  sign a l can be ignored; th is an a lysis does not m ake th a t  assu m p tion . 

T h e v a r ia n ce  can be show n to  be [37]

T CO

J  u ?  S(c<;) dcu
OO

2

OO' .. ■

I
- C O

S(oj) N 1(Cj) -f- S(gj) N 2(cj) -f- N 1(Cj) N 2( cj) dec

w here S (cj), N 1(Ctj) and  N 2(cj) are th e sp ectra l d en sities  o f th e  sign al and  

noise resp ectiv e ly . If th e  gen era lized  cross-correlator is used  th en  the  

v a r ia n ce  becom es
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var[ D ]
T

I

J J  W (w )S(a;) dw
- C O

.CC

J J  W2(w)
— oo

S(CJ)N1(CJ) +  S(GJ) N2(cj) +  N1(Cj)N2(Cj) dcj

where W(cj) is the optimal weighting function for the generalized cross
correlator’s implementation.

Since a popu lar m ethod  of lo ca tin g  p a rtia l d ischarge is to use the peak  
v a lu e  o f th e  received  w aveform s a sim ilar a n a lysis  w ill be carried out for th is  
case. C onsider th e  tw o  received  sign a ls th a t  are m odeled  as

x (t)  =  Sj(t -  D 1) +  ni(t)

and

y(t) =  s2(t -  D2) +  n2(t)

where it will be assumed that the delay estimate will be made from transient 
type signals that are corrupted by additive wide sense stationary noise. The 
signals may be different from each other because of frequency dependent 
attenuation but the phases will be assumed to be undistorted. The desired 
delay difference is D1 — D2 and the variance of the delay estimate is given 
by VarfD1 - D 2]. Using the same reasoning that resulted in Eq. 3.4.6 the 
delay difference D1 -  D1 is given by

— n,
D 1 - D 1 =  — ; i

S1

where the signal Sj(t - D 1) has it’s maximum at t = D 1. The variance is 
found by calculating the expected value of
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V a r p D 1 A2]. — E{(Dj D2)(D2 — D2)) 

Expanding this expression gives

VarjD1 — D 2] =  E
-  Hj(D1)

si ( 0 )

~ n2(Pl)
s 2 ( 0 )

w here the cross term s were ignored b ecause th e  noise term s n t (t) and n 2(t) 

are considered to  be in d ep en d en t. T he resu lting varian ce expression  is th en  
given by

VarjD1 -  D 2]
- R j f(Q) - R H 0) 
[sT(Q)]2 . [sT(o)]2

w here th e term s R 1 and R 2 refer to the au tocorrela tion  fu n ction s o f th e  noise  

n r(t) and n 2(t) resp ective ly . T he im p ortan t difference to  notice  b etw een  the  

correlation  based  d elay  estim ator  and the peak  loca tion  b ased  delay

estim a to r  is the sca lin g  factor . As the observation  in terval is increased

th e  varian ce of the correlation  based  estim ator d ecreases. T here is no 
m eth od  by w hich th e  peak  location  estim ator  can be im proved. In essen ce  
w h a t th is resu lt says is th a t  co llecting  ad d ition a l d a ta  w ill im prove th e  
cross-correlation  based  e stim a te  su b sta n tia lly . H ow ever, it should  be noted  
th a t  excellen t resu lts can be ob ta in ed  from  a single record w ith  one p a rtia l 
discharge pulse o f sufficient energy using cross-correlation . A  ty p ica l p a rtia l 
disch arge w ith  a received  ban d w id th  of 10 MHz and a charge o f 0 .025 pC  
w ill h ave an E N R  of 14 dB for a record len gth  o f 2.56 /is w h en  m easured  
w ith  an am plifier w ith  an 8 dB noise figure. In th is p articu lar case  th e  d elay  
estim a te  has a sta n d a rd  d ev ia tion  of ab ou t 7 ns.
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3.6 Modified PHAT Processor

In situations where multipath signals are present it is necessary to 
increase the resolution of the resulting correlation functions. The following 
GCC is an ad hoc type of filtering which increases the bandwidth of the 
measurement [51]. The following filter is based upon ML and PHAT [39] 
generalized cross-correlators. The maximum likelihood, ML, implementation 
[39,18] of the generalized cross-correlator uses a weighting function of the 
form

W(cu) =

K(w) 

C H  =

r a K(w)

= CM
i -  c m

I Sx y M  P
SxxM SyyM

where C(oJ) is the magnitude squared coherence function. As can be seen 
from the above equation, the first operation involved in the weighting is to 
set the cross-spectral magnitude equal to one. This is accomplished by 
dividing the cross-spectral density by its magnitude and if only this 
operation is performed then the GCC is referred to as the PHAT processor. 
If only this operation is performed, (assuming perfect knowledge of the 
cross-spectral density), the correlation function would have a single impulse 
at the delay D. In practice this leads to a correlation function which consists 
of a random collection of impulses with little relation to the true value D. 
The basic problem with this technique is that only estimates of the cross- 
spectral density are available. Furthermore, those frequencies where the 
cross-spectral estimates are poor have been given the same weight as those 
regions where the estimate is good. The ML weighting attenuates those 
frequencies at which the estimate of the phase of the cross-spectrum is poor 
while accentuating those frequencies where the estimate is good.

To interpret the ML weighting function, K(cj) will be rewritten as
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SNRxM  SNRy(QJ)
M  SNRX(,,') + SNRyM  + 1

The shaping of the cross-spectrum provided by K M  can be described by 
considering the cases where there is' large amount of signal energy at the 
frequencies of interest and where there is not. When there is a large amount 
of signal energy the SNR is high and K M  weights the cross-spectrum 
according to the combined SNR in both channels. If the noise in each 
channel has a constant spectral density across those frequencies then the 
cross-spectrum essentially retains its original shape. For frequencies where 
there is little signal energy and the SNR is low the weighting, K M , 
attenuates the cross spectrum as the product of the SNR in each channel.

The acoustic measurements that were made in this study used 
transducers that were narrow band and consequently the time resolution of 
the cross-correlation function is poor. The time resolution refers to the 
ability to unambiguously resolve individual peaks in the correlation function. 
In the structures studied, multiple propagation paths were present and 
consequently the correlation functions exhibit multiple peaks. It is therefore 
necessary to maintain an adequate time resolution in order to identify the 
individual peaks and measure the correct delay. Unfortunately, when using 
narrow band transducers, the resulting resolution of the measurements using 
a ML weighting are not adequate to separate the multiple peaks that are 
Usually present in these measurements. The reason for this problem is that 
as mentioned above the ML weighting essentially retains the spectral shape 
at those frequencies where the SNR is high.

Using only the phase information by setting the magnitude of the 
cross-spectrum equal to one would provide the greatest time resolution, but 
as mentioned above this approach has other deficiencies. However, if the 
frequency range where the magnitude is set equal to one is limited to those 
frequencies where the SNR is high enough, then there is a resulting increase 
in resolution without the noise problems that cause the spurious peaks. The 
question remains how to choose those frequencies where the signal energy is 
large enough to prevent the occurrence of the spurious peaks. Intuitively it 
makes sense to use some measure of the SNR at the various frequencies to 
decide which frequencies to include. The function, K(w), described above 
provides a convenient measure on which to base the decisions. So as a 
purely ad hoc method the weighting function, W(cu), is used to filter the
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waveforms [53] and is given by the expression

7  S N R x (w) S N R Y(w)

IS x y (CO) I S N R x (w) +  S N R t (W) +  I

W(W) =

K(w) SNRx(W) SNRy(w)
Is X y M I  SNRx(w) +  SNRy(w) +  I

This can also be written more compactly as

W (w ) V2 7 [Sgn(K (w ) -  7)4-1] + V2 K (w )[ S g n (7 — K (w )) +  l]

When this weighting is used there is a resulting increase in resolution 
without the spurious spikes in the time domain. This weighting replaces the 
portion of the spectrum having a high S N R  with a constant, 7 , and the low 
S N R  portion with the same weighting as used by the ML processor. A  

typical example of the cross-spectral shaping provided by the ML filter and 
the filter discussed above are shown in Fig. 3.2 and Fig. 3.3.

3.7 R obu st D econ volution  o f C orrelation  F u n ction s

A generalized cross-correlator is discussed in this section which can 
provide improved resolution in delay estimation measurements [52]. The 
prefilters for this GCC are robust (in the minimax sense) linear filters which 
have found use in linear equalization, [40]. The presence of the prefilters, in 
effect, deconvolves the cross-correlation function. This GCC is used 
primarily for locating acoustic emissions from partial discharge in high 
voltage, solid cast transformers. Both the electrical and acoustic emissions 
are used in the time delay estimation technique for locating the emission 
sites. Improved resolution is needed in power transformers because of the 
complicated multipath signals that are present in the transformer winding 
apd this GCC is effective in combating the problems associated with the
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F requency , KHz

Figure 3.2. Output ESD using the ML GCC weighting.
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Figure 3.3. O utput ESD using the m odified PH A T  GCC w eighting.
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