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ABSTRACT

David J. Kish. M.S.E.E., Purdue University. August 1089. The DQ Analysis 
of a Variable Reluctance Stepper'. Motor. Major Professor: Paul Krause

Variable reluctance stepper motors are commonly used in applications 

where incremental motion is desired. Recently, these motors have been Used in 

situations which call for a large stepping rate; so large in fact, that the motor 

hums continuously. Although the equations which describe the stepper motor 

in this mode are decoupled, they are not time invariant. In order to eliminate 

the time varying terms, Park’s transformation is applied to the motor equa

tions. It is found that this transformation does not render the system equa

tions time invariant, so an averaging technique is employed which does provide 

the desired time invariance. The averaged model is evaluated by comparing its 

dynamic response with that of a derailed simulation of the motor in a variety 

of operating modes. It is found that the averaged model does not adequately 

represent the motor dynamics under most operating conditions.



CHAPTER 1 .
;; ■ '• INTRODUCTION'..;

This thesis deals with Stepper motors. In general, there are two types of 
stepper motors, the permanent magnet motor and the variable reluctance 
motor. The latter type is ths subject of this thesis.

The name "stepper motor" is appropriate since there are a discrete 
number of locations at which the rotor will come to rest when the windings of 
the motor are supplied by a dc source. When the dc source is applied to the; 
different windings successively, the motor steps from position to position. 
Stepper motors have often been used in conjunction with digital control 
systems. If each discrete rotor position is represented by a binary number, 
interfacing the digital output of the controller with the motor is not difficult.

Positioning systems Which use stepper motors can be quite precise, in 
fact, these motors have been used to position radar antennas to within 30 
seconds of arc of a desired location. Another application which takes 
advantage of both the positioning capabilities of the motor as well as its 
inherent digital system compatibility is a computer disc drive. Here, the disc 
head is accurately moved from sector to sector in order to read the 
information stored on the disc.

Stepper motors have certain practical features which make them 
particularly attractive to industry in terms of both manufacturing and 
applications. First, stepper motors are relatively easy to assemble. Because 
these motors are designed with "teeth" on the stator, it is not difficult to wind 
the stator. From an economic standpoint, step motor drivesystems can be 
designed which use only one power semiconductor per machine phase. Also, 
control systems can be quite simple, as the motor’s positioning capabilities do 
not require a closed-loop controller. Like induction motors, stepper motors d.o 
not have slips rings or brushes which are features of dc and synchronous 
machines. For this reason, stepper motors can be used in hostile, possibly 
explosive environments where the use of a motor with brushes is not advisable.



For the most part, these motors have been used in the positioning 
applications for which they are particularly suited. Recently, stepper motors 
have been used in both open and closed loop systems for continuous speed 
operation. In this mode, stepper motors can produce more power per given 
volume than Can an induction motor with about the same power factor. 
Rotor heating is reduced in the stepper motor since the machine is not 
designed to have rotor currents flowing.

The familiar torque speed curve of an induction machine is quite useful in 
the design of systems using this motor. This curve can be predicted 
analytically [1],[2]; however, in the case of the stepper motor, such curves are 
often obtained experimentally. Transfer function formulations are helpful in 
system design; in fact, the transfer function of a dc motor is often used as a 
practical example of a transfer function in control systems texts [3]. A 
corresponding simple transfer function for the stepper motor does not exist. 
When stepper motors are operated in the continuous mode (also referred to as 
high frequency operation),- a velocity oscillation is superimposed on the 
synchronous speed of the motor. These oscillations can reduce the torque 
produced by the motor and cause a loss of synchronism. This loss of 
synchronism is referred to as parametric instability.

A means of analysis which would provide an expression for a torque speed 
curve while also showing the parametric instability of the motor would be 
useful. Perhaps equally useful is a technique by which the machine equations 
can be couched to permit linearization and a transfer function formulation. 
Reference frame theory has been used for such purposes with both induction 
and synchronous machines, and it will be applied in the analysis which 
follows. This thesis is divided into five additional chapters. Chapter 2 
discusses the operation of a variable reluctance stepper motor and presents the 
basic equations which are used in its analysis. In Chapter 3, the equations 
which were derived in Chapter 2 are transformed to the dq reference frame, 
and certain simplifying assumptions are made. Chapter 4 and Chapter 5 
present simulation results for the complete and simplified models of the motor. 
Finally in Chapter 6, simulation results are summarized, and 
recommendations on the use of the simplified model are made.



CHAPTER 2
DESCRIPTION OF A VARIABLE RELUCTANCE 

STEPPER MOTOR ^

'.'/;'2.1vIntroduction.-'V-
The machine to be analyzed is a two pole, three stack, variable reluctance 

stepper motor. This particular device has two rotor teeth and two stator 
teeth. Fig - 2.1 shows a cross section of a three stack variable reluctance 
machine. While this figure shows the physical construction of a variable 
reluctance stepper motor, it is more complicated than the one under analysis 
due to a greater number of stator and rotor teeth. In this chapter, a general 
explanation of motor Operation will be provided, and an expression for step 
length is obtained. Next, an electrical model of the motor will be developed 
by examining one phase (stack) of the motor. The mechanical equations 
which describe the motor will be explained, and a state variable representation 
of the motor will be obtained.

2.2 Motor Operation
As its name implies, the operation of this motor depends upon the 

variable reluctance path the device provides to the flux developed by current 
in each phase winding. In a coupledelectro-mechanical system, a force is 
developed in order to minimize the reluctance path seen by the flux linkages. 
A familiar application of this principle is an ordinary electromagnet. When 
current flows in the magnet windings, a force is developed which "picks up" a, 
piece of metal. Originally, there was a high reluctance air-gap between the 
electromagnet and the metal. When the metal and magnet are touching, there 
is very little air gap, rather, a low reluctance path through the metal exists for 
the flux linkages. The force generated by the magnet acted to minimize the 
reluctance in the system.

Examination of the geometry of the stepper motor shows there is a 
minimum and maximum reluctance position. Fig - 2.2 shows the minimum





reluctance rotor position for the motor, while the maximum reluctance 
position is shown in Fig - 2.3. When the windings are energized, the flux must
crossi a large air gap in the maximum reluctance position. In the minimum 
reluctance position, the flux is for the most part contained within the stator 
back iron and the rotor. Since a force (torque) is developed to minimize the 
reluctance path, it is expected that a torque to move the rotor from the 
position shown in Fig - 2.3 to that of Fig - 2.2 exists. If the rotor is positioned 
in the minimum reluctance position, such a torque should not exist. This is 
what occurs in practice.

Assume the windings iu stack A have a current flowing in them. The 
rotor will move to the minimum reluctance position and remain there. Now 
the minimum reluctance position for stack A is not the minimum reluctance 
position for stack B or stack C. If the current flowing in stack A is shut off, 
and at the same time, a current is made to flow in the windings of stack B, 

-the rotor will move to the minimum reluctance position of stack B. The rotor 
has just "stepped" from one minimum reluctance ppsition to another.

An expression for the distance between these minimum reluctance 
positions is desired. The tooth pitch (TP), i.e., the angular distance between 
two rotor teeth, is defined as

TP
27T (2.2-1)

where RT represents the number of rotor teeth. If each stack is excited in 
turn, e.g., as, bs, cs, as the rotor will move one tooth pitch. The step length 
(SL) then is given by

SL =
27T

rt" n
(2.2-2)

The symbol N in EQ (2.2-2) represents the number of stacks in the machine.
So far, step operation has been discussed for a no-load condition on the 

machine. A. brief explanation of motor operation with a load torque follows. 
If a mechanical load is attached to the rotor while a set of windings is 
energized, the motor will develop a torque to try to move the rotor to the 
minimum reluctance position. The load will oppose this motion, and the rotor 
will come to rest at a position 8, where

When the next winding in the excitation sequence is energized, the rotor will 
move to a position displaced from the new minimum reluctance position by
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Figure 2.2 Minimum reluctance rotor position.

Figure 2.3 Maximum reluctance rotor position.



the same angle 5. Of course, if the load torque exceeds the electrical torque, 
the step motion will not occur. Instead, the rotor will rotate in the direction 
specified by the load torque.

■ v';:;' ■^ ■ ’ ■■ "■ -y 1 'y ■ y ■' y ; : ’ .;".;:V

The motor will be driven by a bipolar, square wave voltage. Fig - 2.4 
shows the voltage applied to phase A of the motor; The first term in the 
Fourier Series for this voltage waveform is also shown in Fig - 2.4; this term 
will be used to model the voltage applied to motor throughout the work which 
follows. Additional explanation of motor operation with such a voltage 
waveform is required before proceeding. In the previous section, it was 
established that the rotor will move to position itself in a minimum reluctance 
configuration. This position does not depend upon the polarity of the applied 
voltage. There are two implications which result from this property. First, 
thebe will be two phase A minimum reluctance positions in each period of the 
phase A voltage. Secondly, the motor will operate in the so-called reverse 
double speed mode, i.e., the rotor will turn at twice the speed it would with 
unipolar excitation and will rotate in a direction opposite that which would be 
expected if the voltage phase sequencing were considered alone.

2.4 Electrical Model for the Motor
The electrical model of the variable reluctance stepper motor will be 

derived by examining one stack of the machine. Once the model for one stack 
is obtained, the equations for the remaining stacks are obtained by a simple 
change of variables.

V The voltage equation for a single stack of the motor is

v = r i + X (2.4-1)

where •

■ X = L i. . (2.4-2)

An expression for the inductance, L, in EQ (2.4-2) is needed in order to 
continue our work. It is known th$,t inductance is inversely proportional to 
reluctance; also, from the previous discussion, the reluctance varies between a 
maximum and minimum value. In fact, from examination of Fig - 2.2 and Fig
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- 2.3, it is clear that there are two maximums and two minimums of 
reluctance in every rotation of the rotor. Therefore, the machine’s inductance 
will be modeled as

L — A — Bcos(2#r), (2.4^3)

where dT is defined in Fig - 2.2. Substituting EQ (2.4-2) and EQ (2,4-3) into 
EQ(2.4-1), the voltage equation is found to be

v = r i + (A — Bcos(20r))-j-i + wr(2Bsin(2#r)) i (2.4-4)
dt

■ where .

(2-1-6)
at

For an n-phase machine, the axis of each phase is displaced from the
Q rjY

previous avia by —. Therefore, the time varying inductance of the ith stack

L = A — Bcos(2(0r — ““■))• (2.4-6)

Replacing the "L" terms in EQ (2.4-1) and EQ (2.4-2) with EQ (2.4-6), a 
general voltage equation for each phase is obtained. Each voltage equation is 
combined and written as the single matrix equation

1
Va r 0 o' ia
yb Or 0 ib + 2Bwr
vc 0 0 r icL J L J

sin(20r)

0

0

0
sin(2(0r - -y))

0

0
0

sin(2(^r 4- -y))

ia
i'b
ic

A-Bcos(2^ 0 0

0 A-Bcos(2(0r - y-)) 0
o7r "

0 0 A-Bcos(2(0r + y-))

(2.4-7)

2.5 Electrical Torque
The electrical torque that the variable reluctance stepper motor is 

capable of developing can be obtained from the partial derivative of the so 
called coenergy with respect to 0r. In a linear magnetic system, the coenergy 
is equal to the energy stored in the magnetic field. From the study of circuit 
theory, it is known that the energy stored in a system of inductors is
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E (2.5-1)

If we take the partial derivative of EQ (2.5-1) with respect to 6Tf we find the 
electrical torque is given by

1it 5 Li (2.5-2)

Substituting the a, b, and c phase currents, as well as the expressions for the 
inductances in each phase into EQ (2.5-2) yields

, = B [ia. 4 ic]

sin(2^r)

0 sin(2(0r - -y-)) (2.5-3)

2.6 Shaft Dynamics
If the motor is to turn, a net torque must act to accelerate the rotor, i.e.,

V j
Te — Tj — J ——4- B£4 (2.6-1)

dt ■ '
In EQ (2.6-1), J is the combined inertia of the rotor and load, and B is a 
viscous damping coefficient. The torque generated by the motor for a specific 
operating condition is given by EQ (2.5-3)

2.7 State Variable Model
The goal of this section is to build a state variable model of the variable 

reluctance motor. The required state variables are the motor currents, rotor 
angular position and the rotor’s angular velocity. EQs (2.4-5), (2.4-7) and 
(2.6-1) must be solved for the derivatives of the state variables, EQ (2.5-3) is 
the necessary expression for electrical torque. The matrix differential equation 
which describes the motor is



m

_d_
dt

A—Bcos(20r) 
vb

A-Bcos(2(0r - -y-))

A—Bcos(2(#r + -|4) 

0
Tj-Te

r + 2BWpSin(20r)
A — Bcos(20r)

r + 2BWpSin(2(^r — O
A - Bcos(2(tfr -

0*r
r + 2Bwrsin(2(0r + -y ))

A - Bcos(2(0r + y))

0
0

0 0

0 0

0 0

0 1



CHAPTER 3
THE DQ TRANSFORMATION APPLIED TO A 
VARIABLE RELUCTANCE STEPPER MOTOR

for DQ Analysis
The equation which describes the electrical characteristics of the stepper 

motor, EQ (2.4-7), is decoupled, i.e., a phase current depends only upon the 
voltage applied to the phase and the electrical parameters of the phase. 
Notice however, the inductances in EQ (2.4-7) are time varying. If possible, 
the time varying terms should be eliminated from this equation and the state 
equation (2.7-1). The approach taken is to apply the ubiquitous dq 
transformation developed by RH Park [4]. This change of variables, when 
applied to synchronous machines, produces a system of differential equations 
in which the time varying inductances become constants. The similarity 
between the self-inductance matrix of the variable reluctance motor and the 
synchronous machine suggests that the transformation may prove useful in 
this application. In fact, VD Hair [5] has applied the dq transformation to a 
single stack variable reluctance motor where the coefficients of both the self 
and mutual inductance are equal.

3.2 DQ Analysis
The equation which implements the dq transformation is

fqdo-Kf.be. (3-2-1)

In EQ (3.2-1), f can represent current, voltage or flux linkages. First, a word 
about notation. Throughout this work, variables subscripted as "abc" refer to 
machine quantities, i.e., non-transformed variables. Variables Which have 
been transformed to the dq reference frame are identified by the "qdO" 
subscript. This notation is developed by PC Krause [1]. The transformation 
is defined as



cos(0r) cos(0r--y) cos(«r + -y) 

sin(ffr) sih(er - -y) sin(^r + -y)

'•i- : i. ' l 
' 2 ' 2 0.\' 2

The inverse transformation is
cos(0r) : sin(0f) 1

1 = cos(0r - -y) m{9r - -y) 1

cos(0r + -y) sin(0r + -y) 1

13

(3.2-3)

In order to see how Ho apply the dq transformation, EQ (2.4-7) is 
rewritten symbolically as

+ l3-2-4)

Applying the transformation to EQ (3.2-4) and premultiplying by K gives
VqdO = RIqdO + ^r-^qO + ’^‘^0. (3.2-5)

Note that the flux linkages, A, have been transformed so that
" .V Aiw'. ::: <3-2-6)

^dqO
Xd
-Xq

0

It is not surprising that the torque expression is modified by the 
application of the dq transformation to our model, The modified torque 
expression is

X, - 'l'-doiK 1)t-y-LK"'1I<1do

or equivalently

xe=fB [iq i.l io]

0 y sin30r

A : - 0 —cos30r
2 '

sin30r —cos30r 0

Excluding the changes made to



EQ (2.6-1), the relation for shaft dynamics, is unaffected by the dq 
transformation. ^

3.3 Effect of the DQ Transformation on Flux Linkages
The stated goal of the previous section was to obtain a time-invariant 

matrix equation which would describe the electrical behavior of the variable 
reluctance motor. The new flux linkage matrix is

*-qdO :

Xq
X'd =
Xq

y(2A-B) —Bcos30r

y(2A + B) -Bsin30r

—l-Bcos3^r —1-Bsin3^r 
2 2

(3.3-1)

The desired result has not been obtained; the flux linkage matrix still contains 
time varying terms in the third row and third column.

Certain problems in electric machine analysis have been made more 
amenable to solution by averaging techniques. One example of the application 
of such techniques is in the analysis of Unbalanced stator voltages applied to a 
two phase induction motor. tM that analysis [6], positive and negative 
sequence currents are used to comphte positive and negative sequence torque. 
A so called "pulsating torque" alio exists under these operating conditions. 
The torque-speed curves for such a device are adequately represented by 
averaging the positive sequence, negative sequence and pulsating torque. .This 
average torque is expressed as

Te(ave) = Te+ - Tc_. / t3*3'2)

In the above expression, the pulsating torque is not included since it has an 
average value of zero.

An averaging technique will be applied to the flux linkage matrix of EQ 
(3.3-1). If it is assumed that iq, i^ and io are dc, the sinusoidal, off-diagonal 
terms will contribute an average value of zero, so the averaged flux linkages 
become

Aqdo Xd =
Xq

- (2A — B)

-(2A + B) 0

r ..

id
io

(3.3-3)

If the currents are not dc, the above formulation will not give the correct 
average flux linkages; however, inclusion of the necessary terms to give the



correct result would produce a non-diagonal flux linkage matrix. This is 
undesirable, so the above formulation will be used regardless of the form of 
the model currents. Notice that this is not the inductance matrix that would 
have been obtained had the abc flux linkages been averaged, nor is it the 
inductance matrix commonly found in dq analysis of synchronous machines.

15 : W;

The matrix differential equations describing the electrical circuits ol the 
motor will be presented in this section. When the inductance matrix is not 
averaged, the expressions for the derivatives of the qdO currents are quite 
involved. For this reason,
for these currents, rather, the equations will be shown as

Wt
2

-^(2A-B)

-Bwr
0 0 4sin30r
0 0 -4cos30r

3sin30r —3cos30r 0

2A—B 0 —2Bcos30r
0 2A+B —2Bsin30r 

--Bcos30r —Bsin30r 2A

In this form, the dq transformation has not brought about much 
computational simplicity.

The equations which make use of the averaged inductance matrix are 
considerably simplified. The voltage equation becomes

vq
(2A+B) 6 ’V

Vd
Vo

= --X(2A-B)
id
iq

'■ 0 • 0 r

2A-B o o 
0 2A+B 0 
0 0 2A

ja i'd:dt
io

Unlike EQ (3.4-1), it is easy to solve for the derivatives of current in EQ (3.4- 
2). The state equation for the case of averaged flux linkages is



*q
id

2 A-B 
2vd

2 A + B 
vq 
A 
0

Ti-Te
J

(3.4-3)

-2r
2A — B 

wr(2A — B) 
2A + B

0
0
0

—wr(2A + B) . _ '—JI—------L 0 0 0
2A-B

. ~2 r.— 0 0 0 
2 A + B

0 -4-0 0
A

0 0 0 1 

0 00 -T-

»d;
>o
6r
wr

The matrix differential equation has been simplified by the change of 
variables. Time varying elements in the electrical portion of the state model 
have been eliminated, however, the equation is still non-linear.

One particularly interesting property of the "averaged" state equation is 
apparent. For a constant speed solution in the steady state, the q, d and 0 
currents can be found without use of numerical integration. The steady state
assumption implies that the derivatives of the currents are zero, hence, the 
steady state currents in EQ (3.4-3) can be found using the relation

—wr(2A + B)—2r 
2A — B 

wr(2A - B)
2A 4- B 

0

2A — B
—2r 

2A + B

0

■-1

to < .o

2A-B
2vd

2A + B
v0
A

(3.4-4)



CHAPTER 4
COMPARISON OF RESULTS FOR DETAILED 

AND AVERAGE DQ SIMULATION

4.1 Introduction
In this chapter, continuous operation of a variable reluctance stepper 

motor will be examined. In particular, a motor will be simulated using the 
equations which were obtained from the dq analysis. The results of this 
simulation will be compared with those obtained using the "averaged" 
inductance matrix. Machine currents, represented in qdO variables will be 
shown, and plots of machine torque will be presented. These results were 
obtained via a numerical integration procedure. This procedure is the subject 
of the section to follow.

4.2 Numerical Integration
Essentially, the problem at hand deals with the solution of

X = F(X(t),t) (4.2-1)

via numerical techniques. One approach to solving such a problem uses what 
are termed predictor methods to evaluate the integral. The fourth order 
Runge-Kutta method is one such scheme. It is interesting to note that this 
scheme requires four functional evaluations to obtain an estimate for a new 
state. Alternatively, a so called predictor-corrector method can be employed. 
With such a method, previous state vectors are used to estimate the value of 
the new state vector. This new vector is used to re-evaluate the function. 
The estimate is then adjusted appropriately, and the process continues. While 
a predictor method may only require one new functional evaluation per 
integration step, the value of the function at several successive time instants 
must be known. The approach taken in the simulations employed in this 
thesis is to use the fourth order Runge-Kutta method to generate four state 
estimates. Once the state vectors at these initial time instants are known, the 
Adams-Bashforth predictor-corrector method is used to compute the
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remaining state estimates. A more detailed discussion of these topics can be 
found in [7] and [8]. ■ ' ' "

4.3 Device Parameters and Mode of Operation
The simulations in this thesis deal with constant speed operation. In 

other 'Words, it is desired to have the rotor turning continuously rather than 
moving in discrete steps. A need for this type of motion may arise in a line 
printer where a form feed is requested. Alternatively, the application could be 
a computer disc drive where it is necessary to move the head to a new, 
relatively distant, sector of the disc. In these applications, the accurate 
positioning capability of the motor is not heeded. What is needed is to move 
quickly to a new position where the stepping capabilities of the motor will be 
used. The motor will be studied in this mode. Except where noted, the 
system parameters found in Table 4.1 are those used throughout this work.

4.4 Currents at Constant Speed
In the studies which follow, the motor is supplied by a bipolar drive 

circuit of the type described in Chapter 2. The motor is assumed to be 
rotating at its base speed of 377 rad/s, and the rotor angle, 8, is held at 0°. 
Fig -4.1 shows the q, d, and 0 currents obtained from the machine simulation 
with the detailed inductance matrix. The motor has reached steady state, and
we see that there is a sinusoidal variation about an average value in each of 
the currents. This is to be compared with the currents shown in Fig - 4.2 
which were obtained by running a simulation which makes use of the average 
inductance matrix. The average values of iq, i^, and i0 obtained from the 
detailed qdO simulation are compared with the values from averaged 
simulation in Table 4-2. It is seen that the averaged model has predicted the 
average value of the machine currents quite accurately. The reason for the 
discrepancy in average currents will be explained in the section which follows.



Table 4.1 Motor parameters.

PARAMETER SYMBOL VALUE

Base Voltage
r\0 CiD l;il f

vB
' Ti-k >

24.0 V
A ft AjDdbv vurrciii/

Base Torque
Ifi

Tb

U*0 A

38.2 N*mm
Base Speed we 377 rad/s
Stator Resistance R 20 ft
Inertia J 12.7 g cm2
Inductance constant A A 0.050 H
Inductance Constant B B 0.019 H

Table 4.2 Comparison of machine currents.

CURRENT AVE. f:1G 4.1 AVE. FIG 4.2 M RIFF.

h 0.424
■ - -

0.412 2.8
h 0.307 0.314 -2.3
id 0.0 0.0 0.0

Table 4.3 Comparison of machine torques.

TORQLJE (N*cm) AVE. FIG 4.3 AVE. FIG 4.4 : % DIFF.

.. 0.32 0.37 -15.6
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Machine Currents

Current ^ 
(amperes)

0.300 0.307 0.315 
time (sec)

0.323 0.330

Figure 4.1 Machine currents (steady state, detailed inductance matrix).
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Machine Currents

Current ^ 
(ainperes)

0.3300.315 
time (sec)

0.3230,300

Figure 4.2 Machine currents (steady state, averaged inductance matrix).
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4.5 Machine Torques
The truly useful feature of any electric motor is its ability to produce a 

torque. Therefore, it is only natural that a comparison should be made 
between the torque obtained from a simulation which makes use of an 
averaged inductance matrix and one which does not. When the state model 
with the detailed inductance matrix is employed, the torque shown in Fig - 4.3 
is obtained. An average and sixth harmonic of torque are clearly seen. The 
torque obtained using the averaged model is shown in Fig - 4.4. As is 
expected, there are no oscillations present in the plot. Table 4 - 3 compares 
the average torques obtained through use of the two models. The difference in 
average torque is somewhat unexpected since the agreement between models 
for the machine currents was much closer. The source of this difference can be 
found in the expression for torque given in EQ (3.2-9). If this equation is 
expanded, the following result is obtained:

Te = —B(iqid + 2iqiosin30r — 2i<iiocos30r). (4.5-1)

Notice that EQ (4.5-1) contains terms in which i0 is modulated by terms 
involving sin30r and cos3$r. These products will produce components of 
torque which are at dc and sixth harmonic. Clearly, it is the third harmonic 
present primarily in io which in this case reduced the average value of the 
torque. Also, this same interaction gives the sixth harmonic fluctuation which 
is present in the torque obtained from the detailed state model. A similar 
interaction occurs with the machine currents expressed in qdO variables. The 
third harmonic current in i0 interacts with terms that vary sinusoidally with 
30T to produce an average value and a sixth harmonic variation.



Machine Torque

Torque

0.300 0.307 0.315 
time (sec)

0.323 0.330

Figure 4.3
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Machine Torque

5.0

Torque 
(N*m X 10-3)

0.3300.3230.315 
time (sec)

0.300

Figure 4.4 Machine torque from the averaged model.



CHAPTER 5
APPLICATIONS OF THE AVERAGE MODfeL

5.1 Introduction
In this chapter, certain applications are simulated and a comparison is 

made between the detailed and average dq model. First, however, the effect of 
a change in motor parameters, namely resistance, is investigated. Both models 
are then used to generate plots of torque as a function of rotor angle, 8. 
Finally, the motor is simulated running at base speed when a step change in 
load torque is applied.

5.2 Impact of a C4il.nge in Motor Resistance
on Average Torque

Model efficacy as electrical parameters are changed is to be studied. In 
particular, the impact of a change in resistance will be examined in the section 
which follows. The stator resistance of the motor was increased by a factor of 
10 to 200 fl, and the simulations were rerun. The results are shown in the 
following figures.

The average currents and torque obtained from the two state models are 
shown in Table 5.1.

Table 5.1 Comparison of state models.

FARM. DETAILED. SIM. AYE. SIM. % DIFF.

*q 75.69 mA 75.75 mA -0.07

id 5.76 mA 5.78 mA -0.46

lo 0.0 mA 0.0 mA 0.0
Txe 4.2 /iNm 12.5 juNm -200
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Machine Currents

40.0

Current

0.300 0.307 0.315 0.323 0.330
time (sec)

Figure 5.1 Machine currents (detailed model, R = 200 Cl).
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Machine Currents

Current

0.3300.307 0.315 
time (sec)

Figure 5.2 Machine currents (averaged model, R = 200 0 ).



Torque 
(N*m X 10~*

Figure 5.3
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Machine Torque

0.3300.3230.307 0.315 
time (sec)

0.300
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Torque 
(N*m X 10

Figure 5.4

Machine Torque

20.0

15.0-

10.0-

)
5.0-

0.0-

-5.0 -

-10.0--------------———|—

0.300 0.307 0.315 0.323 0.330
time (sec)

Machine torque from the averaged model ( R — 200 fi ).



Although the estimates of the machine currents have improved, the torque 
estimate has been made much worse. The magnitude of the torque oscillations 
in Fig - 5.3 is large enough to reduce the average value well below that 
predicted by the averaged model. This suggests that it may not be possible to 
obtain good results from the average model for all types of variable reluctance 
stepper motors.

30

5.3 Torque Delta Curves
The next step in model verification is to simulate both the electrical and 

mechanical operation of the system. Before this is done however, it is 
instructive to learn how the torque the motor can develop will change as the 
rotor angle, 8, changes. Additionally, an indication of the maximum torque 
the motor can produce will be obtained. Recall from Chapter 2 that a 180 
degree change in rotor position produces a magnetic circuit which is identical 
to that present before the rotation occurred. Accordingly, it is expected that 
torque will be periodic in 8 with period of tt. From the study of synchronous 
machines, one would expect' that the torque variation would in fact be 
sinusoidal. Fig - 5.5 shows the variation in torque as a function of delta for 
the detailed dq model, while Fig - 5.6 shows the same variation obtained from 
the average model. Each of these figures shows a torque vs. 8 curve for several 
different rotor speeds.

As expected, the torque - 8 curve is sinusoidal. Also, the maximum 
torque produced by the average model is larger than that produced by the 
detailed model. This is not unexpected in light of the constant speed results 
of the previous chapter.

5.4 Dynamic Simulation - Steady State
The variable reluctance motor was next simulated with the mechanical 

dynamics included. In order to reduce speed oscillations, a damping term was 
introduced. The value of the damping coefficient used is 8//N*m*sec; at 377 
rad/sec, a torque of

T1=3.02X10_3N*m

is applied. Results from simulation of the detailed model are shown in Fig -
5.7 through Fig - 5.10; simulation results obtained using the averaged model 
are shown in Fig - 5.11 and Fig - 5.12.



Torque vs. d 
detailed simulation

6 (radians)

Figure 5.5 Machine torque vs. 8 (detailed model).
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Torque vs. 5 
averaged simulation

Torque

5 (radians)

Figure 5.6 Machine torque vs. 8 (averaged model).
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u

*o S (radians)

Figure 5.7 Machine currents and rotor angle vs. time (detailed model,
damping only).



Figure 5.8

Angular Velocity

380.0

378.0-

376.0

374.0

372.0

370.0

6.00

Machine Torque

Angular velocity and machine torque vs. time (detailed model,
damping only).
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tt u

"yAAA/WWWV

0.20-

-0.20
5.02

*0 5 (radians)

0.60

0.20-

time
(sec)

0.40

0.30-

0.20-

0.10-

5.00 5.01 5.02 5.03
time 
(sec)

Figure 5.9 Machine currents and rotor angle vs. time (detailed model,
expanded time scale, damping only).
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Angular Velocity

380.0

378.0-

376.0-

374.0 -

372.0 -

370.0------
5.00 5.01 5.02

time 
(sec)

I
5.03

Machine Torque

5.00

4.00

3.00
X 10

1.00-

time

Figure 5.10 Angular velocity and machine torque vs. time (detailed model,
expanded time scale, damping only).



5 (radians)

vs. time (averaged model,5.11 Machine currents 
damping only).

rotor



Figure 5.12

Angular Velocity

380.0

378.0

372.0

370.0

Machine Torque

vs. time (averaged model,
damping only)
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The steady state dynamic simulation using the average model gives 
results quite similar to those obtained in Chapter 4. When the detailed model 
is used for the steady state dynamic simulations some unexpected results are 
found:. Firsts notice that the rotor angle oscillates, at a frequency of 0.68Hz. 
In fact, an oscillation is observed in all the machine variables. It is interesting 
to notice that while the form of machine currents agrees with that of Chapter 
4, e.g., iq is primarily dc with a sixth harmonic oscillation, the magnitude of 
the dc portion of waveform is no longer accurately predicted by the average 
model. In general, the results of these simulations agree with those of the 
proceeding chapter. The average model gives constant currents and torques, 
while a sixth harmonic is present in iq, i<} and torque when they are obtained 
from the detailed model. I0 is found to be primarily third harmonic.

Since the results of the dynamic simulation are somewhat unexpected, a 
means of verifying that the simulation gives the correct results is needed. 
There are two methods which can be used to check the simulation. First, the 
torque vs. delta curves can be used to predict the rqtor angle which is, 
necessary to meet the load torque requirements. Second, it is expected that 
the currents and torque should be similar to those found in Chapter 4 when 
only the electrical system was simulated, Table 5.2 compares the rotor angles 
obtained from the two simulations with those predicted from; Fig - $.5 apd Fig 
- 5.6. Note that the average value of delta obtained from the dynamic 
simulation of the detailed model was used in Table 5.2.

Table 5.2 Rotor angle from simulations compared with rotor angle from
: v torque vs. 8 curves.

MODEL 8 - T vs. 8 8 - simulated % DIF'F

detailed model 0.222 0.202 9.2
average model 0.311 0.315 -1.3

The agreement shown in Table 5.2 is quite close, and may in fact be closer 
since linear interpolation was used to find 8 from Fig - 5.5 and Fig - 5.6. It 
has been shown that the currents and torques are indeed similar to those of 
Chapter 4. Furthermore, the rotor speed oscillations are not unexpected in 
light of the work presented by Russell and Fickup [9]. Therefore, it is 
concluded that the simulation is functioning properly.
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6.5 Dynamic Simulation - Step Change in Load 'Torque
Model response for a step change in load torque was simulated next. A 

load of 1 mN*m was applied to the shaft of the motor after it was operating 
in the steady state. In order not to exceed the maximum torque limitations of 
the motor, the the damping coefficient was reduced to l/iN*m*sec. The 
simulation results are shown in Fig - 5.13 through Fig - 5.16

There is a huge difference in the response of the models. The detailed 
simulation shows that the motor will lose synchronism and the rotor speed will / 
fall. On the other hand, theaveragemodel slows slightly, then pulls back into 
synchronism and operates with a new 6. The applied torque exceeded the 
transient stability limit for the detailed model but not the average model.

The motor should be able to meet the required load torque. In fact, a 
larger load was on the machine for the studies of section 5.4. It was decided 
to re-run the simulation with the load present at startup. After the motor, 
reaches steady state, the load will be removed. Fig - 5.17 through Fig - 5.20 
display the results for this case.

As expected, the motor ran with the applied load. The dynamics of the 
detailed model are quite slow, however, it is clear that synchronism is 
retained. The response of the average model is practically a mirror image of 

- its response when the load was applied. Fig - 5.20 clearly shows that the 
machine torque decreases after the load is removed and it decays to the value 
needed to overcome the damping term. Notice that while in this case, both 
the detailed and average simulation show stable operation, the dynainics of 
the machine models are quite different. In particular, it is seen that the 
parameters of the average model exhibit approximately 13 Hz oscillations 
about a constant value which decay with a time constant of about 4.35 
Seconds. On the other hand, the parameters of the detailed model oscillate at 
about 1.2 Hz and have a time constant which was too large to be measured.

5.6 Explanation of Model Differences :
The factor which most influences the discrepancies in results between the 

average and detailed dq model is the third harmonic current. Because this 
current is not included in the average model, larger torques are produced by 
the machine for a given rotor angle. Therefore, in steady state, the average 
model operates with larger S than the detailed simulation; for this reason, the 
machine currents are not the same. It has also been demonstrated that the
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Figure 5.13 Machine currents and rotor angle vs. time (detailed model, load
applied).
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load applied).
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Figure 5.15 Machine currents and rotor angle vs. time (averaged model, load
applied). ^
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Figure 5.17 Machine currents and rotor angle vs. time (detailed model, load
removed).
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Figure 5.18 Angular velocity and machine torque ys. time (detailed model,
load removed).
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Figure 5.19 Machine currents and rotor angle vs. time (averaged model, load
removed).



Figure 5.20

48

Angular Velocity

400.0-n

390.0-

380.0-

370.0-

380.0 r I I 1
50.00 50.50 51.00 51.50 52.00

time
(sec)

Machine Torque

2.00 -,

1.00

X lO^O.OO

-1.00

.2.00---- -----j—
50.00 50.50

I l"~
51.00 51.50
time
(sec)

“1
52.00

Angular velocity and machine torque vs. time (averaged model, 
load removed).



49

mechanical portion of the two models does not behave in the same manner. 
The average model does not show the slow oscillations which are present in 
the detailed model, and the dynamic response of the models after a step 
change in load torque is different. This is best explained by transforming the 
averaged flux linkage matrix back to abc variables. The flux linkage matrix 
is:

'
y
Xb = ■
Xc

A —— cos2 9r 
3

-B

-B cos2(0r - —)

—=-cos2(0r - -5-) A - -|-cos2(<?r ■ 27T

—-§-COs2(0r + y) 

—^-cos2(flr + it) 

^-cos2(«r + -=pcos2(0r -Mr) A - 1-0032(0,. + -

lb (5.6-1)

This inductance matrix is of the form that would be expected for a reluctance 
machine with mutual coupling. Notice that the inductances have been 
changed from the values found in the original inductance matrix of Chapter 2. 
For this reason, it is not surprising that the two models exhibit a different 
transient response. In light of the discrepancies shown in this section, it is 
concluded that the average model does not adequately represent the operation
of a variable reluctance stepper motor.



CHAPTERS
SUMMARY AND CONCLUSIONS

In this thesis, a .method.of analysis for a variable reluctance stepper 
motor has been proposed and analyzed. First, the salient characteristics of 
stepper motors and particular applications which can benefit from these 
salient points Were discussed. Motivation for a new analysis technique came 
from difficulties previous methods had in predicting such things as parametric 
instability, pullout torque and torque speed curves.

A brief discussion of the principles of operation of a stepper motor 
contributed to the development of a mathematical model which would predict 
the electrical and mechanical characteristics of the motor. Park’s dq 
transformation was applied to the model in an attempt to eliminate the time 
varying terms present in the originail machine model. The time varying terms 
Were not eliminated by Park’s transformation, so, under the assumption that 
the transformed currents were dc, an expression for the average flux linkages 
was obtained. A time-invariant, diagonal flux linkage matrix was thus 
obtained; this formed the basis of the proposed new model.

Digital computer simulations of the motor were developed and used to 
compare the results obtained from the averaged model with those from the 
detailed model. The average model appeared to give good results when only 
electrical dynamics were considered, however, simulations which included the 
mechanical part of the model showed certain discrepancies between the 
models. It appears that the averaged model is more oscillatory than the 
detailed model, and the response of each model to a step change in load torque 
is different. It is therefore recomlaended that great care be exercised when 
using the averaged model for design or analysis of systems involving a variable 
reluctance stepper motor.

/
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