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 ABSTRACT

Sparks, Robert. M.S.E.E., Purdue"University. Aug'ust;l989. Propagation of

Nonsinusoidal Waveforms:in Power Systems. Major Prbfessor:' G. T. Heydt.

"‘Several computationallv efficient an-d. innovative_methods for the‘c‘alcula-_ .
tion of power system voltages due to nonsinusoidal demand ourrents are stu—b
‘died 'The ‘method is ‘useful for power ‘quality caleulatlons} Tb‘e method‘ is
1ntroduced by using Laplace transform analysis to’ slmphfy the convolutlon of

the transfer 1mpedances and the - dema.nd currents An iterative numerlcal- ,

: ‘mverse Laplace transform method is briefly examlned However, the problem

_characterlstxcs allow Fourier transform analysis to be used Furthermore, the

fast Founer transform ‘is used to approxrmate the contmuous Fourrer;

'transform This discrete transform analysrs method proves to be convenrently

vsultable to the problem deﬁnrtlon More 1mportantly the discrete transform -

method proves to be superiorto’ well known trme domarn methods. A reall
transform, the Hartley transform, which is computatronally more efﬁclent than -

the complex Fourrer transform is also used to solve the problem The methods ‘

‘are tested on an exght bus example power system The maxn contrlbutlon of
this thesrs is the presentatron of computatronally efﬁcrent methodologles whlch
- are useful for the accurate analysxs of the propagatlon of nonsrnusordal

’_'waveforms in power systems.



" CHAPTERI
INTRODUCTION

1 1 Motlvatlon

“The introduction of reliable and cost effective thyrlstors and other sohd
state power converters ‘has caused an increase in the number of power system
 loads whose demand -currents are nonsinusoidal. The presence of these
nonsinusoidal currents in power systems causes distortion of the 60 Hz
- fundamental voltage and current waves. Many power system components are .
designed to operate with pure 60 Hz sinusoidal waveforms, and if this
waveform is sufficiently distorted, the components may operate improperly or
experience decreased life. Therefore, it is essential that ‘the power system
engineer be able to analyze how these nonsinusoidal currents propagate in a
power system so that potentlal problems can be corrected.

Many of the waveforms produced by power electronic loads contam rapld
decays and impulse-like characteristics. These phenomena usually result in
high frequency components in the current spectrum. If the current switching
occurs such that the resulting waveform is periodic, the frequency spectrum is
discrete. If the current is nonperiodic, such waveforms geherate a continuous
frequency spectrum. In any case, the power system must be analyzed over a
range of frequencies. In addition the power system contains transmission lines,
transformers, and other components which contain frequency. dependent
parameters and nonlinearities. - With these comments in mind, one qulcklyb
realizes that the analysis of nonsinusoidal waveforms in power systems is a
nontr1v1al problem. »

There are numerous techmques in cireuit analys1s whlch can be used to,
solve this problem. The problem could be solved in the. tlme domain by
- writing the differential equations and numerxcally solvxng ‘them. These
methods have the advantage of convemence in modelhng (especxally

nonlinearities). Also, there are several well known numerical methods for

- digital 1mplementatlon and solution. The main disadvantages of time solutlons :
are long execution times, poor insight into the problem solution, and
inconvenience in certain types of modelling (e.g., frequency dependent



parameters). Alternatively, the problem could be solved in the frequency
domain. For linear circuits, the problem may be transformed to the frequency
domain by the use of the Fourier transform or the Laplace transform. Then
since the system can be modeled as a linear system, time convolution which is
- simple multiplication in the frequency domain can be used to solve the
problem. Advantages of transform methodologies usually include high speed
and potentially useful insight into the problem. Disadvantages often include
inability to handle nonlinearities, and certain numerical problems relating to
convergence.

The purpose of this research is to compare these different techniques.
However, the emphasis of this work is on the formulation of frequency domain
methods of solution which employ the use the fast Fourier transform. In
addition, an alternative transform, the Hartley transform, is introduced and
included in the comparison. '

1.2 Literature Summary of Some Transforms and Transform
Properties Used In Circuit Analysis '

Fourier transform

Given f(t) a real or complex function of real variable t, the Fourier
transform of f(t) is then [1] '

Ff(t)) = F(w) = ofo f(t) e7“ dt 1)

-0

where w is a real parameter. Similarly the inverse Fourier transform of F(w) is
0 .
FURW)} =) = o= [ Flw) e dw. (1.2)
; T o , .

This transform may be written differently then that in (1.1)-(1.2): the
coefficients 1.0 and 1/27 which multiply the integrals shown are not unique.
However, the product of these two coefficients must be 1/27. The Fourier
transform will not converge for a wide range of functions such as the positive
exponential. Also, since the Fourier transform is a two sided transform, initial
values are not readily recovered. However, [5] shows a method of modifying
- the Fourier transform so that it will converge for initial value problems, and as
a result, they obtain the definition of the Laplace transform. Unfortunately,
this modified Fourier transform or Laplace transform no longer has the simple
inverse (1.2). References [1,2,3,9,10] contain rigorous theoretical development
and general applications of the Fourier transform.



' Laplace transfo rm

- Given f(t) a real or complex function of real varlable %, the ‘one’ srded_
, Laplace transform of f(t) is, (5]

££{ft)} Fs) fe-st O dt ',(1;.3‘)

.»where sisa complex parameter Note that it -is assumed that f(t)'—-O for
t < 0 to ensure a one-to-one relationship between the Laplace domain and the
time domain. Also, the region of convergence of f(t) is generally to the rlght of
the line Re( ) =k where k is finite. .

‘The use “of the Laplace transform in solvrng 1n1t1al—value problems
assocrated with ordinary linear differential equations is very common since
‘ dlfferentlatlon in the time domain is converted into algebraic forms in the:
Laplace domain. Another desirable result of Laplace transformatlon is that
convolutron in the time domain is rendered as a product under the Laplace |
domain. Unfortunately the Laplace transform does- not lend itself well to -
»numerxcal operations. ~This point is further considered . below. References
(1,2,3,4 5] contain detailed information on the propertres and the" many' ,
apphcatrons of_ the Laplace transform. . '

Inverse Laplace transform , , ‘ - _
I F(s) is the Laplace transform of f(t) then the 1nverse transform 1s gwen

byl L | o
v ' o ’ 1‘ _]oo +o » - . » .

fe—l{F s)} =ft)=— | F(s) eStdt IR (1.4) B

2T oo R

’ Where c hes 1n the region of convergence In contrast to the 1nverse Fourler

. transform the inverse Laplace transform is an integral in the complex plane.

+* Evaluation by  direct integration is almost always a complicated task. -
- However, for functions of most interest in systems theory, the evaluation can )
" be done by the determination of coefficients in the partral fractlon expa,nsron", '
" and using a Laplace transform table. : : '

There are a number of Fortran subroutlnes that can. be used to find the ‘

inverse Laplace transform of F(s). The routines in ‘[6,7] use F(s) to
approxrmate the Fourler series coefficients of f(t). The method in. [6] has been E

: implemented as an IMSL subroutine (IMSL is a commerclally available library

- of Fortran subroutlnes) Unfortunately, the methods in 6,7] are not suitable
for transforming F(s) to f(t) for large ranges of t. However, the method in (8]

‘uses Laguerre polynomlals to estlmate f(t) and the authors claim that this =



method is faster than the methods used in [6,7] and is well suited for
transforming F(s) into f(t) over a large range of t.

Impulse response and convolution . »

;Using'equa.tion‘ (1.1), the Fourier transform of simple functions such as
~ sin(t) and the step function u{t) does not exist in a strict mathematical sense.
Therefore it is necessary to define the impulse function so that these and other
- functions can be included in the Fourier transform technique. The two
deﬁnlng propertles of the impulse function o(t) are [5] '

5(t) =0 for t?éO o 5)

| f §t)dt=1.
Then, by definition, the Fourier transform of ot) is
{ t)} = j § t) e-J“" dt =1 o - (1.8)
and one deduces the value of the inversion 1ntegra.l as

-0

Given a linear time invariant system Wxth Zero 1mt1al condltlons, let y(t)
be the response function resultlng from a unit impulse function being applied
as an input at t = 0. The function y(t) is called the impulse response of the °
~ system. If x(t) is an input function to the same system and v(t) is the resulting
output function then [9)

v(t) = f x(N\) y(t =X d\ . . (1.8)
oo o v , A

This integral is known as the convolution integral and is abbreviated as

v(t) =x(t) £ y(t) T X))
It can be shown that the Fourler transform of v(t) can | be obtained from the

product of the Fourier transform of the 1nput function X(w) and the Fourier
' transform of the unpulse response Y(w) [9],

VW) & F() « 70} =X() Y(&) - (110)
This property ma.kes the Fourier tra.nsform very useful in circuit analysis. The

same property, that is the rendenng of convolution to a simple product, also
~occurs under Laplace transformation and certain other transforms.



Dzscrete Founer transform, (DFT)

“The Fourier transform of a periodic function is a sequence of equldlstant o
impulses. Likewise, the inverse Fourier transform of a penodlc function is a
~ sequence of equidistant impulses. Thus, with both the time function and its
transform being periodic, all the information about both is limited to two finite

- sets of coefficients: the strengths of the impulse functions [1]. By definition, -

the discrete Fourier transform and inverse discrete Fourier transform are, [10]

F(kQ) = Y f(nAt) e~I0AEE g = 0,1,..,N—1 L @a)
n=0 S S SRR R S
f(nAt) ;ﬁ f; F(k0) %% n=0,1,.,N-1 (112

where F(kQ2) is the DFT of f(nAT), and f(nAt) is the inverse DFT of F(k@)..

Also, Q1 = 2m/NAt is the separation of impulses in the frequency domain and

" At is the separation of impulses in the time domain. The ambiguity of the
~ coefficient of the forward and reverse Fourier transform integrals also applieS‘
to (1.11) and (1.12). The DFT may be defined with other coefficients of the -
‘ sum shown provided that thelr product is 1 / N o . ~

Convolutzon under the DFT

* Similar to equation (1. 10), convolutlon when usmg the DFT s

(nAt) . y(nAt) ~ % x(iat) [ -—1)At] )
1==O ' ’ .
Fp {x( nAt) « y(nAL)} = X(k0) Y(kﬂ) . ¢ 14)

" where X(kQ) and Y(kﬂ) are the DFT of x(nAt) and y(nAt) respectrvely [10]

Hartley transform

Given a real waveform v(t) we define the Hartley transform pair

H(w) ;ofo v(t) cas wh dt
(t)—-2—7;_— | Hw)caswtdt

where cas. refers to the cosme-and-sme functlon, ‘cas wt = cos wt + sin wt.
. Note that the Hartley transform of v(t) is H(w) and that H(w) is a real function
[11 12]. The same amblgulty of coefficients noted earher applies to the Hartley



transform.

The relationship between the Fourier transform and the Hartley is shown
by first defining the even E(w) and odd O(w) parts of the Hartley transform of
v(t) ] | | - o ~
' . Hy(w) + H,(—w)

Eo(w) = e (1.17)
o) = BB
Then the Fourier transform of v(t) ié V(w) where ,
B V@) =Ev@) =i (.  (L18)
Also - ’ - . : ,
| H(w) = real (V(w)) — imag (V(w)) o (1.19)

‘where real(~) and imag(*) are the real and imaginary parts of the complex
quantity. - . . ' ' . |

Perhapé the most important difference between the Hartley transform and
the Fourier transform is that the Hartley transform of v(t) is always a real
function, and the Fourier transform of v(t) is in general, a complex function

8.

Convolution undef the Hartiey transform
Using (1.10) and (1.18), convolution in the Hartley domain is found as
follows - : ' :

V(w) = [Ex —jOx] [Ey "»—joy] -
from (1.19), 7 o o
Hy(w) = [EEy — 0xOy] + [O4Ey + E;Oy]
thus, from (1.17) o S o

H() = z [Hx(w) (1) Hy () + By () = H,(fw))] (1.20)

where Hy(w), Hy(w), and Hy(w) are the Hartley transforms of the output,
input, and impulse response functions respectively, as defined in equation (1.8).



Dzscrete Hartley transform (DHT)

A_na.logous to the DFT the discrete Hartley transform (DHT) and its
inverse are given by [5 ] S .

H(kQ) = 2 v(nAt) cas (anAT) 0,1,.,N=1 (1.21)
v(nAt) = _1\_1 H(kQ) cas (knﬂAt) n=0,1,.N-1  (1.22)
k=0 ' B

The eveh and odd parts of H(k2) are,

7 (1.23)

E(kn) _ H(kﬂ‘)‘ + 1-12[(N k)]
ofen) - Hk0) —HN-10
One can find the_DFT from the DHT by o
F(kQ) =E(kQ) —j O(kQ). (L24)
,Conversely | | o -
 H(kD) = real(F (kﬂ))—lmag( (k) . . (Les)

Fmally, convolutlon with the DHT is given by

1

H (kﬂ) ry [Hx(Hy + Hy () + E () (Hy — Hy(-)]

where the subscrlpts ‘are analogous to the subscripts is eqﬁation (1.20),
Hy(—) = Hg[(N = k)] with q =7, x,y, and Hy = Hy(NQQ). L o

Fast Fourier transform (FFT)

‘ Perha.ps the most significant advance in signal processmg theory in the
last 40 years is the formulation of the fast Fourier transform (FFT). The FFT
is a time and memory efficient algorithm used to calculate the DFT. It is
important to note that the success of the DFT in the solution of circuits

: problems is largely due to the FFT. The FFT is an exact evaluation of the.
270k

DFT. The FFT algorithms employ symmetry of e J_ N in order to reduce
the number of computations. The algorithms are grouped into two basic
types: decimation in time and decimation in frequency. The difference
" between the two is the method in which the data sequences are divided into -
single point DFT’s which require no multiplications. Most FFT algorithms
require the number of data points N to be a power of 2'in order to sunphfy the




algorithm. This is called a rad1x-2 FFT algorlthm Radix-4, radix-8 and other
radices are also used [13].

~ The relationship between the DFT and the DHT suggests that an analog
may exist for the rapid calculation of the DHT. This is indeed the case.
Reference [14] shows that the philosophy used in the FFT can be used in
computing the DHT.

1.3 Literature Sﬁmmary of Some Methods for Calculating the
Propagation of Non-Sinusoidal Waveforms in Power Systems -

The solution to the well known second order linear differential equations
obtained for a transmission line can be decomposed into two components which
can be interpreted as reflected and incident traveling waves. There are
numerous digital programs that use traveling wave methods to solve
electromagnetic transient problems on power systems. The most widely used is
the electromagnetic transient program EMTP developed by Bonneville Power
administration. The method entails writing a system of linear algebraic
equations for networks containing inductances, resistances, capacitances, and
transmission lines. This is accomplished by replacing each element of the
network with its equivalent conductance model and then writing the nodal
equations for the new network. The nodal voltages are then calculated using
the trapezoidal rule of integratidn in the time domain. Transmission lines are
handled using Bergeron’s characteristic impedance method. The time delays
imposed by the traveling waves on the transmission lines using Bergeron's
method require that information from previous integration steps be stored and
used in later integration steps. References [15,16] contain detailed descriptions
of the techniques used in EMTP. The main advantages of EMTP are:

e It can handle large scale systems
o It can include: nonhnearmes, sw1tches, and mxtlal conditions
e It can include 2 wide variety of current and voltage excitation waveforms.

Unfortunately, EMTP is a numerically cumbersome program. The program
employs a simple numerical integration routine so small time steps must be
taken. In addition a constant time step must be used since the traveling waves
require the program to use previous integration data. If three phase circuits
are analyzed, the method uses constant transformation matrices to decouple
the phases. Problems arise in dealing with frequency dependent parameters
‘and constant transformation matrices 7). ' "



Transform methods for faulted transmzsszon lmes

- The problems encountered with frequency dependent parameters in the
) travehng wave methods can be solved by working in the frequency domain.
~ Sources in the literature {17-19] show how both the dlstrlbuted and frequency
dependent parameters of a single transmission line can be considered when
working in the frequency domain. In general the methods ‘entail working in
v'the Laplace domain and then computing the inverse Laplace transform by

5truncat1ng the frequency range of the system and using ‘the FFT. ~The

frequency range of the Laplace function is truncated by multxplylng it by

o) wm

 wr/Q

where w is the frequency variable and Q is the cutoﬁ' frequency Then

frequency samples of the truncated function are taken. and an FFT algorithm - -

" is used to find the corresponding time samples. However, [17- 19] concentrate"
on faulted systems and switching operations only

For short line distribution systems and low frequencies (i.e. below 10 kHz) ,
 lumped parameter models of the power system are sufficient [20] Therefore,.
basic c1rcu1t analy31s techniques can be used to analyze these models. -

: State equatzons and numerzcal mtegratzon

~The state equations for a lumped parameter model of a dlstnbutlon g
system can be written as ‘ ‘
' ‘ dx
. _ at
where r(t) is the input vector, x(t) is the state vector, and A and B are constant -
matrices. A time step solutlon such as Euler’s method or the Runge-Kutta :
- method can be used to solve for x(t). Unfortunately, for a ‘system with n
" energy storage elements dx/dt will be an n-vector and n differential equations’
_must be solved even if all that is needed is one node voltage [21]. Other-

AL U _'_‘(1.'28)-*'

problems with time step solutlons to differential equatlons are numerical

‘roundoff error and numerical instability. In addition, in order to recover all of .
the high frequency detail of the actual solution the tlme-step must be very'
small making computatlon times very long. ' :



10

Improved time solution methods

By employing ‘some approximations and efficient algorithms time-step
solutions can be made more feasible. _One method of reducing the number of
points to be computed is to 'pi'edict the time step for the next point by looking
at the changes between the previous points. This;,way during relatively smooth
regions of the function,‘ the computer can move along quickly and when rapid
changes occur in the function, the computer can reduce the time step so it can
still closely estimate the function. Relative accuracies can ‘be obtained by
" checking such parameters as loop equations at each point calculated, and if the
specified accuracy is not ‘met at a specific point the step can be reduced and
that point can be recalculated. Another improvement is to linearize the circuit
at each point. For example, at each iteration each capacitor and inductor can
be modeled as a voltage and current source respectively, with a resistance. By
doihg this modeling the network can be represented as a set of linear equations
to be solved at each point. The most well known program that uses techniques
" like those discussed above is the SPICE program {22]. '

1.4 Orghnizatio’n of This Thesis ‘
Time domain solution methods for determining transients in power -
‘systems are well known. The research done in this thesis concentrates on
frequency domain methods. Chapter II discusses the theory used to formulate
solution methods using the Laplace transform, the Fourier transform, and the
Hartley transform. The Laplace transform method relies on using a numerical
inverse Laplace transform routine. The performance of the routine for this
application is evaluated. The Fourier and ‘Ha.rtley transform techniques rely
on the existence of fast discrete Fourier, and Hartley transforms respeCf,ively.
" Chapter III contains the solution of an eight bus system which is representative
of a power system. The node voltages due to a nonsinusoidal current injection
are calculated. The probleni is solved using the Laplace transform, the Fourier
v transfbrm, and the Hartley transform. The results are verified by solving the
problem using the commercial time domain simulation routine SPICE.

‘ Chapter IV starts with a discussion on the modeling of a power system for
the analysis of the propagation of ‘nonsinusoidal waveforms. This chapter also
demonstrates the sensitivity of the circuit solution to the model parameters
and the injection current characteristics. -

In Chapter V the advantages and disadvantages of the: different methods
are discussed. Also, some recommendations are made on further required
research. . ‘ ‘ '



CHAPTERT
PROBLEM FORMULATION AND SOLUTION

2.1 Calculation of Transfer Impedances :

"The. problem to be solved is the followmg ‘given a power system w1th' :
nonsinsoidal current injections, find the bus voltages resulting from this
injected current. It is assumed that the power system is approximately linear.
Under this assumptlon the 60 Hz component is omitted and can  be-
,super1mposed on the final solution. More importantly the linearity allows. this
problem to be solved by convolving the mJected current i(t) with an impulse :
response of the power system z(t) using (1.8). The impulse response required is
the voltage response at the node of interest due to a current impulse applied at
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the bus where the mJected current is applied. However, convolution s

351mphﬁed by transforming to the frequency domain and using (1.10). The

" three methods of transforming to the frequency domain that are discussed here

o are the Laplace transform; the Fourier transform, and the Hartley -’transform

- When an impulse response 2(t) is transformed to ‘the frequency doma.m it
is- ca.lled a transfer function.: The transfer function needed for this problem is
the transfer function between the current applied at one bus and the voltage ‘
_response at another bus. This is called the transfer impedance Z(w)

Given an 1 bus system the bus impedance ma.trlx used in power systems’ -
Zbus ; is deﬁned in [23] ' .
i

. (Zbus)u = 1= L,2,.,n . j=L2,.,0. . {2.1)

 An important property of Zpys is that its off diagonal entries are the transfer
impedances and its: diagonal entries are the driving point impedances - of the
- system., Therefore the bus voltages due to the 1njectlon currents can be‘

calculated by‘ ' SR

: Vhus ;‘ Zous Tous = (2 2)‘ '
‘Where Vbus isa vector containing the n bus voltages, Ibus is a vector contalnmg -

the n current injections, and Zy,s is the nxn impedance matrix. The
impedance matrix Zjy can be found by inverting the a.dmlttance matrlx_ Yous-
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Alternatively, Zy,s can be found by uéing the Zy,s building algorithm discussed
in [23]. An approximation of Zp, that can be rapidly calculated will be
- discussed later. '

2.2 Laplace Transform Method

An n bus power system can be converted to an n bus s-domain equivalent
circuit. The equivalent circuit for each circuit element is developed by finding
the relationship between the elements s-domain terminal voltage and current
(24]. The rules for combining impedances and admittances in the s domain are
the same as those for combining impedances and admittances in phasor
domain circuits. Another important observation is that Kirchoffs laws still
hold for the s-domain equivalent circuit. This is because the sum of the time
domain functions is the sum of the transforms of the individual functions [24].
Therefore (2.2) can be written as '

Vius(s) = Zbus(s)Ibus(s) ' (2'3)
where -
(Zpus(s))ij. = -all(—sl i=1,2..0 j’=‘1 2,00 (2.4)
us 1) aIJ (S) " P&y 14y .

“and Vipye(s), Ipes(S) are vectors containing the s-domain node voltages and
current injections.

‘The injected current although nonsinusoidal will be periodic. The Laplace
transform of the periodic time function can be found from

I(s) = - Il(s)v

—w (2.5)

where I;(s) is the Laplace transform of one period of i(t) and T is the length of
one period in seconds. Iyys(s) is found by using (2.5) on the injection current at
each bus. With Ipys(s) and Zpys(s), Vius(s) is determined from (2.3). Then v(t)
at each bus is calculated by taking the inverse Laplace transform of each
element in Vyu(s): Unfortunately, for reasonably complicated injection
~currents and multiple bus systems, finding V(s) by hand calculation is not
feasible. Furthermore, finding v(t) by partial fraction expansion is also not
feasible for reasonably complicated systems. Alternatively, a solution by
digital computer is used. This is done by evaluating Zpys(s) and Iyye(s) at
different values of s. Then multiplying them to find Vpus(s) at these values of
s. The Fourier series coefficients of v(t) can then be approximated by the
routines discussed in section 1.2.
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23 Fourier Transform Method

, Given an s-domain function F(s) the correspondlncr Fourier transform
}:function F(w) will exist if all the poles of F(s) lie in. ‘the left half of the s-plane.

I f(t ) the corresponding time function is zero for t = 07, the Fourier

- transform of f(t) can be found by simply replacing s in F(s ) by j«. Therefore if

f(t) is zero for negatiVeetime and has no initial conditions, F(«) can be easily

~ found from F(s). - Since our n-bus power system is a causal system with zero. .

initial conditions the impulse responses of the system are 7€ero for t < 0.
Hence Zpys (i ) can be found by substituting jw for s.in Zbus( ) [24]. Note that
" when F (s) contains jw axis poles, F(«) may also exist. Under such
c1rcumstances, F(w) contalns singularity functions of w — Wy where Wy is the
pole location of F(s). In practical power systems, F(s) rarely conta.rns axis
' poles, and this case will not be considered further. S | '
In order to use the convenience and speed of the dlgltal computer,
_attention is now turned to the discrete Fourier transform. Let i(nAt) contain
N samples taken every At seconds of an injection currenb i(t). Let I(kQ)
contain the frequency samples obtained by taklng the DFT of (nAt) Note
 that - Q =27/NAt is the separatlon of the frequency samples and
Omax = (N/2)0 is the highest frequency recovered from the function i(t). The
reason for the" \1/2 (1 instead of NQ is that the periodicity of the discrete -
Fourier funcmon places the negative frequency samples in the N/2 to N-1
positions of I(k2). In order to insure an accurate solution for the node voltages
‘the rate of sampling, Aft, must be 'small enough sothat Qmax' includes- the
sxvnlﬁcant part of the frequencv spectrum of the injection current. Thus, the .

vfdrscrete Fourier transform of i(t) is found by first sampling i(t) and then

’cransformmtar those samples to the frequency domain using the DFT. This .
process is performed on ‘the injection currents of every bus to obtain Ibus(kﬂ)

The process for ﬁndrng the dlscrete Fourier transform of the. transfer"
impedances is different from the process of finding the DFT of ‘the- injection
~currents. This is because the continuous Fourier transform of the tra.nsfer '
_impedance is a.lready known. Therefore the discrete Fourrer transform of the
transfer impedance Z(kQ2) is found by sampling Z(w) in the frequency domain.
In order for Z(k1) to be a discrete Fourier transform it must be a ‘
representative period of the periodic function obtained by replicating the . -
samples of Z{w) every NQ rad/sec. This is done by placing the positive
frequency samples in the 0 to N/2 —1 positions and the negétive- frequency |
samples in the N/2 to N—1 positions in reverse order. The N/2 ‘entry is an’
“indeterminate value and can be set to zero for convenience. For an N pomt,
‘discrete Fourier transform, Z(w) needs to be sampled only N/2 times. The
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~

other N/2 samples or Dhe negative frequencv samples are simply the conjugate
of the positive frequency samples. This fact produces a significant
computational savings. " ' '

The frequency resolution (2 of the samples of Z(w) is controlled by the
number of samples N. The spectrum for each periodic, injected current will
have nonzero samples only at their respective harmonic frequencies. Therefore
samples of Z(w) need to be taken only at these harmonic frequencies. ‘

Another important consideration when choosing N and At is the length of
time that i(t) the injection current is sampled. The order of magnitude of At
is dictated by aliasing considerations of I(kl). In order to use radix 2
me'thodologies', the value of N must be a power of 2. The product t; = NAt is
the length of time that i(t) is sampled. Moreover, the injection current i(t) is a
periodic  function, and a steady state value of the node voltages is the
information that is required. Therefore t; must be equal to an integer multiple
of the period T of the injection current function i(t). If t; is not an integer
multiple of T, then the samples in the frequency domain, of the injection
“current will be from a time function of period t;, and this function is
completely different than the perxodlc functlon i(t) of period T actually
injected. ' ‘

Fmally, one must consider pra.ctlcal hmnts -on the value of N so that
computation is not excessive. ‘

- The process for finding the discrete Fourier transform of a transfer
impedance is applied to every element in Zpys(w) to obtain Zpy(kQ). For
Zpus(kQ) and Tus(kQ) to be convolved to find Viys(kf2) it is essential that the
number of frequency samples N and the spacing of the samples be the same for
every element in Zyus(kQ) and Iyus(k). With this requirement satisfied
Vius (k) can be found from ' ' |

Vbus(kn) = Zbus(kQ)Ibus(kQ) k= 0 1 N—l (2 6)
: Then the time samples of each node voltage can be found by ta.klng the inverse

DFT of each element in Vi (k). A block diagram of the complete process is
shown in Figure 2.1. - ‘

Errors introduced by the Fourier method .

The process of time domain sampling i(t) results in frequency domain
aliasing. This is evidenced by the overlapping versions of I(w) which make up
the discrete time Fourier transform. Ip(e/*) of the sampled signal (see Figure
2.2). \Iote that T, in Figure 2.2 is the same as At. .As stated before, this
| aliasing is reduced to a negligible problem by making T, small thereby making
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{1max large enough so that the overlapping region is relatively small.

Time domain aliasing is introduced when sampling Z(w). If the'impulse
response time duration is long this time domain aliasing could be a problem.
However, this problem can be reduced bV mcreasmc the number of samples N.

Frequency domain aliasing is.not a probl em when obtaining the samples
‘\of Z{w), and the function can be bandlimited to (Qmax which is the value
obtained when sampling i(t). This bandlimiting introduces what is known as
time - domain - smoothing. This problem will be negligible because the
‘convolution process of YI(kQ) and Z(kQ) bandlimits Z anyway [25].

2.4 Hartley Transform Method

By sampling the injection currents at the buses the same way they were
sampled in the Fourier transform case and taking the discrete Hartley
transform of these discrete functions, [H;j(kQ)]yys is obtained. The purely real
vector [H;(k()]pys is the discrete Hartley transform representation of the
injection currents. It is clear from the relavnionships between the Hartley
transform and the Fourier transform that the requirements for minimizing
aliasing and other errors are identical for both transforms. Thus the choice of
At the sample spacing is the same in ‘the Hartley transform method as in the
Fourier transform method. , . '

Given Zy,(kQ2) obtained by the method described earher, fHZ(kﬂ)]bus can
be obtained by applying (1.25) to every element in Zp,s(kQ): The purely real
matrix [Hz (kQ)]pgs iS Zpus in the discrete Hartley transform domain. The
discrete Hartley transform of the node voltages [H, (k2)]pys is now obtamed by

Hsus —_ [HbuS(Hbus H?uS(__))_{_HbuS( )(Hbus’ HbuS( ))] (2.7) :

“where H2® = [H (kﬂ)]bus, and HE%S(—) = [H (N —k)ﬂ]]bus, k=1,2,.,N— -1,
. @ =v,2,i. Then the voltage at each bus can be found by taking the inverse
DHT of each component in H2%. '
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CHAPTER ]I[

DEMONSTRATION OF THE FREQUENCY DOMAIN METHODS

3.1 The Example System

In this chapter an exa.niple system which is representative of a power

sYsteni,is studied. The example will be studied using a numerical Laplace
transform method, the FFT, and the fast Hartley transform. Also a time
integration solution will be used to check and compare solution characteristics.
Figure 3.1 shows the eight bus example system. General remarks on system
" component models appear in Chapter IV. However, the following remarks will

help to introduce this exa.mple

Line charging is modelled as a lumped parameter at each system bus.

Fixed R, L are used for transmission hne models (i. e, the p1 model is

~ used).

The connection from bus 1 to the remainder of the network is modelled as
the equivalent negative sequence impedance 0.1 +j0.1. This is
conveniently found from the short circuit study of the external network.

Loads are modelled as fixed resistances in this example.

| Mutual coupling is included.

The distribution transformer at bus‘ 6 is modelled as a 'ﬁxed‘ R-L T-

equivalent. Frequency dependence is not included in this example.

Turn-to-turn and interwinding capacitance of the ~transformer are.

modeled by fixed lumped capacitors.

The BO'Hz sinusoidal supply at bus 1 is not included.
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- 3.2 Laplace Transform Solution

In this section the bus \}oitages on the system in Figure 3.1 are calculated
using the Laplace transform. Figure 3.2 depicts the nonsinusoidal current that
is injected into bus 8. The matrix Zpys(s) is formed by building and inverting
Yhus(s). The matrix Yyys(s) is easily constructed from the s-domain equivalent
- circuit of Figure 3.1. A method for incorporating the mutual inductance is
covered in [26]. Using (2.5), the elements of I(s) are, '

I(s) =0 k=127

Ig = [240(1 — e—t.SS) + 2000(e—t2s _ e—.tss)

— 2240(e™™S — e7M5)] f52(1 — &765) | (3.1)

The system node voltages which are contained in Vpus(s) are found from
‘Vbuxs(s) = Zbus(s) Ib‘us(s)- ‘ (3.2)

Using the numerical inverse Laplace transform routine discussed in [3] v(t)
at each bus is computed from Vyu(s). Figure 3.3 shows the voltage v;(t) at
bus 1. Note that the s-domain equivalent circuit contained zero initial
conditions so Figure 3.3 is the zero state solution. The piecewise-linear
property of the injection current allows the problem to be solved by SPICE.
Figure 3.4 shows the SPICE solution. The largest dlscrepancy between the two
solutions for the interval shown is about 2%.

3.3 Fourier Transform Solution

In this section the example system is analyzed using the Fourier
- transform. The Fourier transform of Y} is found by setting s = jw in Yyus(s)-
The discrete Fourier transform of Yy, is found by substituting in values of w
every () rad/sec. Then Zpy(k?) is found by inverting Ypus(kf2). The current
Ig(kQ2) is found by sampling the injection current and taking the DFT of the
samples. The other elements of I (k?) are zero. The DFT of the bus
voltages are found from ' ‘ -

Vbus(kn) = Zbus(kﬂ)Ibus(kQ) | | (3 3)

The bus voltages are then found by taking the inverse DFT of the elements of
Vius(k2). Exactly two periods of the injection current are sampled so a steady -
‘state solution for the voltages is obtained. Figure 3.5 shows the voltage at bus
1. The steady state SPICE solution is shown in Figure 3.6. |

The zero state solution obtained by the Laplace transform method can ‘
also be obtained by the Fourier transform method. This is done by zero
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Figure 3.5 Fourier transform solution of steady state voltage at bus 1.
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packing the latter part of 18(nAt) long enough for v; (nAt) to settle to zero by
the end of the sample range. Figure 3.7 shows how vo(nAt) settled out by zero
packmg ig(nAt) after 0.0167 seconds. Figure 3.8 shows the first 0.0167 seconds
‘of Figure 3.7. Comparing Fi igure 3.8 to the Laplace solution in Figure 3.3
, shows that they are the same. The largest discrepancy between the two is
~ about 2%. , , | o

Any injection current waveform can be analyzed wusing "th'e Fourier
“transform method. Figure 3.9 shows an injection current that is similar to the
piecewise-linear current, but Figure 3.9 has a rise proportional to t2. The
‘voltage at buses 1 and 8 due to the current in Figure 3.9 are shown in Flgures'
3.10 and 3.11 respectively. The low impedance ties between buses 1-6 keep the
voltages at these buses practically the same. Therefore the voltage waveforms
on buses 2-6 are not shown.

3.4 Hartley Transform Solutlon

. After the mampula.tlon of Zpys(k) to obtaln [H, (kﬂ)]bus, the discrete
Hartley transform of Z, the calculation of the bus voltages using the fast
Hartley transform is accomplished using only real operations. The fast Fourier
transform requires complex operations. Thus the Hartley transform is
computatienally more efficient than the Fourier transform. The procedure for
the Hartley transform solution is analogous to the procedure for the Fourier .
transform solution, and the solution obtained was exactly the same for both
methods. - Figure 3.12 shows the Hartley transform representation of the
transfer impedance between buses one and eight. Figures 3.13 and 3.14 show
the magnitude and phase of the Fourier transform representation of the same
transfer impedaﬁce Note that it requires two graphs to represent the Fourier
transform information and only one graph to deplct Hartley transform
1nformat10n ‘

3.5 Choice of Sampling Parameters

The choice of the number of samples and the resolution of the samples is
very important in discrete transform analysis. The following parameters must
. be-specified before the discrete transform methods can be implemented:

| ty —  length of time the iﬁjection current is sampled

.y — maximum frequency sampled on the transfer impedances'
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At — resolution of the time samples
{1 —  resolution of the frequency samples

N —  total number of samples.

The relationships between the parameters allow only two of them to be chosen
and the other three are calculated from the two chosen. '

Additiona;lly,‘ the methods described here impose more constraints:

¢ t =nT, where T = period of the injected current ‘in seconds, and
n=0,1,2,..

o The number of samples of the transfer function and the injected current
must be equal.

~ o The resolution of the frequency samples of the transfer function and the
injected current must be equal.

Figure 3.15 shows the discrete Fourier transform representation of the current
which was injected into the eight bus system. Clearly, the choice of Qpax =
96.5 kfad/seé introduces a negligible amount of aliasing error on the frequency
samples of the injection current. In fact, in order to reduce the number of
computations, (,,, can be reduced significantly and the calculated bus
voltages will still be accurate. The choice of (1., = 96.5 krad/ sec corresponds
to the sampling rate At =32.5 us. Table 3.1 shows some other choices of
sampling parameters which were used to calculate the bus voltages. For
comparison, the maximum voltage calculated at bus one is listed in the last
column for each choice of parameters. Comparing the maximum voltage
obtained when At = 32.5 us, and At = 16.25 us shows that the aliasing error
for the slower sampling rate is very small. Depending on the accuracy
required, the calculation of only 64 points will provide a fairly accurate
solution for the bus voltages. Note that Q,,, in Figure 3.15 can be reduced
‘well below the 96.5 krad/sec shown in that graph. It appears that (0, can be
reduced below the small lobe located at about 15.0 krad/sec. Table 3.1 bears
out this remark, and one concludes that solutions with small N are indeed
reasonably accurate. ' -
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Table 3.1.  Alternative choices of sampling parameters.
t N pax At 1y Max Voltage
J m 7N ™ b 20max 2m :
- 2 KLLAR — L= 2D v
60 | ¢ At N N tg
J‘—"lrz"" m = 1,2, : : v )
. sec rad /secx10° Us rad/sec (pu)
8/60 8190 193.0 - 16.25 47.12 0.27382
8/60 4096 96.5 32.5 47.12 0.27397
- 2/60 1024 96.5 32.5 188.5 0.27397
1/60 512 96.5 32.5 377 0.27397
2/60 512 48.25 65.1 188.5 0.27473
1/60 256 48.25 65.1 377 .0.27473
1/60 ‘ - 128 24.12 130.2 377 . 0.27889
1/60 64 12.6 260.4 377 0.26717
1/60 32 6.3 520.8 377 0.35777
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~ CHAPTERIV
POWER SYSTEM REPRESENTATION

‘4.1 Modeling of the Network Components

Transmission ltnes

 Under balanced conditions, a three phase transmission line can be
represented by its single phase positive sequence nominal pi equivalent circuit.
For long lines, a sequence of cascaded pi models can be used to approximate
transmission line standing wave effects. Alternatively, long transmission lines o
can be represented by an equivalent pi model obtained from the solutlon of the
well known second order differential equations obtained for transmission lines.
- The equivalent pi model is obtained by applying correction factors to the series '
impedance and shunt admittance [27), i.e '
sinh (x'V 2Y")
VY

tanh (xV Z7Y' /2)
x\/Z'Y’ /2

where x is the length of the line, Z' = r + juL is the series impedance per unit

length, and Y' = g + jwC is the shunt admittance per unit length. ~This model
can be analyzed with the methods in Chapter II. Also, the frequency

dependent skin effect phenomenon can be handled since the methods proppsed
“here are discretized in the frequency domain. In short, calculations of
frequency dependent parameters do not p’reseﬁt difficulties. ' '

for the series impedance

- for the shunt admittanc‘e S (41)

Generators and transformers

Generators can  be represented as a shunt impedance. Usually the.
subtransient reactance is used [27,28]. The Thevenin equivalent voltage should
not be represented This is the case since the power frequency 51gnals are
typlca.lly much larger than the nonsinusoidal signals which are to be analyzed.
‘Also, there are numerous computationally efficient methods for calculating the
power frequency voltages and currents (e.g. load flow studies). The power
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frequency signals should be calculated separately and can be superimposed on
the nonsinusoidal waveforms. '

Assuming that the transformer is not operated in saturation, there are a
number of frequency dependent linear models used. Some of these are
described in [27-29]. When the transformer is saturated, the nonsinusoidal
magnetizing current must be represented as a nonsinusoidal current injecting
source.

Loads

For convenience, on a given feeder, individual loads are combined to form

a composite equivalent. These equivalents can be as simple as a shunt

impedance. There are also frequency dependent load models [27-30].

Nonlinear loads which produce nonsinusoidal demand currents are most

commonly represented by ideal current sources. Reference [29] indicates that

~ this method is a.dequate when the THD of the 60 Hz voltage is less than 10
percent. :

Compensating capacitors and 1nductors are assumed to be pure elements.
with constant parameters.

Distribution systems can be isolated by representing the transmxssxon
system by its short circuit equivalent [29].

4.2 Sensitivity of Circuit Solution to Model Parameters and Injection
Current Characteristics.

~ In this section the exemplary eight bus system in Figure 3.1 is revisited
with the objective of illustrating the sensitivity of the solution to changes in
the model parameters. ‘

The voltage at bus 1 due to the original current injection in Figure 3.9 is
shown in Figure 3.10. In order to illustrate the effects of varying the waveform
i(t), the pulse current in Figure 4.1 is now injected. The voltage response is
shown in Figure 4.2 Note that the maximum voltage 0.318 (pu) is larger than
the maximum voltage of 0.274 (pu) in Figure 3.10. The resonant peak of the
system is at 4900 rad/sec (see Figure 3.13). The frequency spectrums of the
pulse current and the original current are shown if Figures 4.3 and 3.15
respectlvely Comparing the two frequency spectrums shows that the pulse
current contains more high frequency content than the original current. More
importantly the pulse contains more current at 4900 rad/sec than the original
waveform. This is why the voltage response is largest for the pulse current.
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The line impedance for each of the transmission lines in vFigure 3.1 is
0.001 + j 0.01. ‘(pu) Each line impedance has been increased by ten to the
value of 0.01 + j 0.1 (pu). This change had the effect of shifting back the
‘resonant frequency about 377 rad/sec to 4523 rad/sec on the transfer function
_between buses 1 and 8 (Figure 4.4). The magnitude of the resonant peak also
~ decreased from 2.46 (pu) to 2.28 (pu). This decrease in the transfer function
‘between buses 1 and 8 resulted in a slower frequency and smaller magnitude
voltage at bus one. Figure 4.5 shows the voltage at bus 1 for the new system.
Note that, the current in Figure 3.9 is used in this and the remaining studies.
The peak voltage of 0.199 (pu) is considerably smaller than the value of 0.274
(pu) for the original system. Another effect of the increased line impedances is
. an increased voltage difference between the buses.” In the original system the
voltage difference between buses 1 and 3 was 0.025 (pu). This modified system
had a voltage difference between buses 1 and 3 of 0.046 (pu). -

The effect of decreasing the transformer impedance of the original system
~is now studied. The series impedance of the transformer was changed from
1 0.01 +j 0.1 (pu) to 0.005 + j 0.05 (pu). The effect of changing the transformer
impedance shifted the resonant frequency up 1074 rad/sec to 6974 rad/sec.
The magnitude of the resonant peak decreased from 2.46 (pu) to 1.94 (pu) for
the transfer function between buses 1 and 8 (Figure 4.6). The resulting voltage
at bus 1 for this modified system is shown in Figure 4.7. The peak value of the
voltage of 0.209 (pu) is lower than 0.274 (pu) for the original system.

‘The effect. of reducing the equivalent impedance of the external system is
now examined. The equlvalent impedance was reduced from 0.1 + j 0.1 (pu)
to 0.01 + j 0.01 (pu). This change shifted the resonant frequency back only
188 rad/sec. The transfer function in Figure 4.8 is for the modified system,
and Figure 3.13 is the transfer function for the original system. Note that the

transfer function of the modified system for frequencies below the resonant
\ frequency has been practically eliminated compared to the original system.-
Most of the injection current spectrum is below the resonant frequency.
. Therefore one would expect a significant drop in the voltage at bus 1 for this -
modified system compared to the original system. Figure 4.9 shows the voltage
at bus 1 for the modified system, and the peak voltage has been reduced to
almost a third of the orlgma.l system voltage.

Finally the effect of increasing the shunt capacitors in Figure 3.1 was
studied. All of the shunt capacitors in the system were increased by a factor of -
‘ten. Figure 4.10 shows the transfer function between buses 1 and 8 for this
modified system, The resonant peak has been reduced 3204 rad/sec to 1696
rad/sec. With the resonant frequency shifted to coincide with the largest part



44

of the injection current spectrum one would expect a large voltage response at
bus 1. Figure 4.11 shows the voltage at bus 1. However, the 0.192 (pu) peak
value is less than the 0.274 (pu) for the original system. This value is smaller
for two reasons. The magnitude of ‘the resonant peak is 0.838 (pu) which is
less than 2.46 (pu) for the original system. Also the modified system’s time
constants are slower and cannot follow the injection current waveform as
* closely as the original system. ‘ '
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Figure 4.6 Magnitude' of frequency spectrum of transfer impedance Zys.
Transformer series impedance has been changed to 0.005 + j 0.05

(pu). Resonant frequency is at 6974 rad/sec.
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Figure 4.7 Voltage at bus 1 due to current in Figure 3.9. Transformer series
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CHAPTER V o
CONCLUSIONS AND RECOMMENDATIONS

The node voltages of an example power system due to a. nonsinusoidal
demand current were calculated. Three different frequency domain methods
were used to solve the problem: Laplace transform, Fourier transform, and
' Hartley transform. The results were checked by solving the problem with the
time domain simulation routine SPICE. The Laplace transform solution
method used an iterative inverse Laplace transform routine and required 166
seconds on a Gould NP1 to calculate the 150 points plotted in Frgure 3.3. The -
Fourier and Hartley solution methods used fast algorithms: available to
calculate their respected discrete transforms The 1024 time samples of the bus
voltage calculated, for both methods, took less than 5 seconds to compute. -
Because the majority of that time was dedicated to operations other than
frequency transformations, the advantage of the Hartley transform over the
Fourier. transform was not well illustrated. For large systems, long simulation
times, and cases of significant high frequency phenomena, the Hartley
transform gains a computational advantage. As a eomparison'to 2 time
domain simulation routine the SPICE program required 131 seconds to E
calculate the 1700 points shown in Figure 3.6. Clearly, the fast Fourier
transform and fast Hartley transform were the superior methods. For CII'Clllt.
solutions with very large computational burden, one would continue to expect
to gain a computatlonal advantage of one to two orders of magmtude over a
SPICE solution using the fast Fourier and Hartley: transforms Also, for-'__
 problems with high computational burden, one would expect to approach the
theoretical computational advantage of two for the fast Hartley transform over |
" the FFT. This advantage occurs due to the use of real numbers in the Ha.rtley"."
domam as compared to complex numbers in the Fourier domam h

The majority of the computation time spent by the Fourier. and Ha.rtley :
transform methods is on the inversion of the matrix Yius to compute Zpys-
Reference [31] proposes a method of estimating Zpus which does not require
matrix inversions. Extensive work in developing this theory would greatly
improve the methods introduced in this thesis. In addition employing these
frequency domarn methods on power system data taken from existing power
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systems is recommended. This would allow further development of more
accurate system models. In addition, guidelines could be developed for initial
choices of sampling parameters.

A further recommendation is that alternative transforms should be
studied for applicability of honsinusoidal waveform propagation studies. Real
transforms offer computational advantages which should be investigated.

Finally, the examples shown in this thesis indicate that it is possible to
obtain reasonable solution occuracy with considerable speed by reducing the
number of points in FFT and fast Hartley solutions. Further reductions in the
number of points should be considered. Methods to retain accuracy with
reduced values of N should be studied.
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APPENDIX

A listing of the program that was used to calculate the bus voltages using
the fast Hartley transform follows. The program using the fast Fourier
transform is similar except that the transform subroutine, and convolution
formula used are different. In order to analyze a new system, new Laplace
domain equivalents for Yy, can be coded into the complex function F. In
order to analyze a different current injection, new expressions can be coded
into the function CURR. ' R
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c**********************************************************

- Main Program

non51nu501dal currents

**********************************************************

program fhtmeth
parameter (np = 1024)
complex a(np),omega,f,y(8,8) .
real hl(np), e(np) hv(np)
= 10
tf 2./60.°
dt = tf/np
np2 = np/2

c————" Calculate Zbus

c

c

c , _

¢ Calculates bus voltages due to
c

c

c

do 38 i=1,8

do 39 j=1,8

y(i,3j) = cmplx(0.,0.)
39 continue :
38 continue

do 10 ni = 1,np2
n=ni- 1 '
freq = n/tf o
= 8.*atan(l.) * freq
omega = cmplx(0.,w) :
‘a(ni) = f(omega,y)
10 . continue :

a(np2+1)=cmplx(0.,0.)
do 20 ni = np2 + 2,np
nc = np - ni + 2
a(ni) = conjg(a(nc))
- 20 continue
c : -
c—-————Calculate Injection Current Spectrum——-=
c o ) ‘ ,

do 40 i =1,np
= (i -1) * dt
e(i) = curr(t2)
40 continue
call fht2t(e, np,m)
c
. ¢ =———-Hartley Convolutlon
C .

do 130 i = 1 ,np

hl(i) = real(a(l)) - aimag(a(i))
130 continue

hv(l) = (hl(l)*e(l)),

do 132 1-2 np -
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hv(i) = .5*(hl(i)*e(i) - hl(np—1+2)*e(np—i+2) +
2hl(i)*e(np-i+2) + hl(np 1+2)*e(1)) .
132 continue

c
c————= Inverse Hartley Transform ——
c - R
call fht2t(hv,np,m)
c
open (9,file='time')
open (8,file='vl")
c
do 30 i =1,np
= (i-1) * dt
c , :
write(9,240)t
write(8,240)hv(i)/(np)
30 continue
c
240 format (£12.6)
stop
end :
c***************************************************************
c Complex Function F

khkkhkkhkkhhkkkkkkhhhkkkrkhkhkhhhkdhhhhkhhhhhhkhhhhhkhkhkhhhhhhhhhkhhkhhx

complex function f(s,y)
complex s,y(8,8),2z(8,8),d456,ym
y(1,4)=-1./(.001+26.5e~6*s)
y(4,1)=y(1,4)
y(1,6)=y(1,4)
y(6, l)—Y(l 4)
y(l 1)=1./(.1+265e~-6*s) + s/18.8e3 - y(1l,4) - y(l 4)

v(2,2)=s/18.8e3 + 1. - y(1,4) - y(1,4)
¥(2,3)=y(1,4)
¥(3,2)=y(1,4)
y(2,6)=y(1,4)
y(6,2)=y(1,4)

v(3,3)=s/37.7€3 + .5 - y(1,4)

4456 = (6.95228e-10)*(s**2) + (5.3e~8)*s + 1.e~6
ym = —(2.65e-6)*s/d456

y(4,5)==-(.001 + (26.5e-6)*s)/d456

y(5,4)=y(4,5) — ym
v(4,4)=s/18.8e3 + 1. - y(1,4) - y(4,5)

Y(5/6)=Y(5/4)
¥(6,5)=y(5,4) S
y(5,5)=s/37.7e3 + 1. - y(4,5) - y(4,5) + ym + ym

y(6,6)=-2.1*y(1,4) + s/12.6e3 ~ y(4 5)
y(6,7)= .1*y(1,4)



ﬂ76%ﬂ67)
 ¥(6,8)=—s/75.4e3"
Y(8,6)=y(6,8)

y(6,4)=ym -
,ﬂ46FWl

oy(7,7)= =37. 7e—6/s + 01 - y(6 7) - y(6 7)
- Y(7,8)=y(6,7)
¥(8,7)=y(6,7)

y(8,8)=s/12.6é3 4’y(6,7)
Y4, 5)=y(5,4)

c

aoocaaa

moe W N R

call llncg(a,y,B Z, 8)

>"= z(1,8)
‘return
end

c*************************************************************'
e . .
c*************************************************************»

Function CURR

function curr(t)
data tl1,t2,t3,t4,t5,t6/4.167e-03,4. 667e—03 8 33e—03,
2 12. 5e—03 13 0e—03 16. 67e—03/ '

= t/t6
p = aint(p)
tp = t - té*p

- oi=1

Cif(tp. ge tl.and. tp.1lt. t2)1 =2
if(tp.ge.t2.and.tp.1lt.t3)i=3"

- if(tp.ge.t3.and.tp.lt.t4)i=4
if(tp.ge.t4.and.tp.lt.t5)i=5

if(tp.ge.t5.and.tp.1t.t6)i=6

goto(1,2,3,4,5,3),1

curr=(tp**3)*13824e3

return

curr= -2000. *(tp—t2)

return

curr=0.

return

curr= —((tp—t3)**3)*13824e3

return:

curr= 2000. *(tp—tS)

- return

end

********************************************************
Subroutlne FHT2T : :

Radix-2 decimation ln time fast Hartley transform



Input - X Sequence to be transformed
N,M Length of sequence N = 2**M
Output X Hartley transform

Authors: D.L. Jones and H.V. Sorenson
Rice University, August 5, 1984

a0 an
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subroutine fht2t(x,n,m)
real x{1)

-———-Digit reverse counter

oNeNQ]

100 j =1
nl=n-1
do 104 i = 1,nl
if (i.ge.j) goto 101

xt = x(J)
X(3) = X(l)
xX(i) = _

101 k =n/2
102 if (k.ge.j) goto 103
j=3—k
= k/2
goto 102
103 j=3+k
104 continue
c
C-——--Main FHT loops
c

do 10 i = 1,n,2
xt = x(1)
x(i) = xt + x(i+l)
x(i+l) = xt - x(i+1)
10 continue

C
n2 =1 :
do 20k = 2,m
nd = n2
n2 = n4 + n4
nl = n2 + n2 -
e = (8. * atan(l.))/nl
C
do 30 j = 1,n,nl
12 = j + n2
13 = j + n4
14 = 12 + n4
xt = x(J)

x(j) = xt + x(12)
x(12) = xt - x(12)
Xt = x(13)

x(13) = xt + x(14)
x(1l4) = xt - x(14)



a = e

do 40 i = 2,n4

11 =3 +1i-1

12 =3 -1+ 1+ n2

13 = 11 + n2

14 = 12 + n2

ccl = cos(a)

ssl = sin(a)

tl x(1l3)*ccl + x(14)*ssl

t2 = x(13)*ssl - x(14)*ccl
a=1*e o

xt = x(11)
x(1ll) = xt + t1
xX(13) = xt - t1
xt = x(12)

x(12) = xt + t2
x(1l4) = xt - €2
40 . continue
30 continue
20 continue

return
end
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