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ABSTRACT

Sparks, Robert. M.S.E.E., Purdue University. August 1989. Propagation of 
Nonsinusoidal Waveforms in Power Systems. Major Professor: G. T. Heydt.

Several computationally efficient and innovative methods for the calcula

tion of power system voltages due to nonsinusoidal demand currents are stu

died. The method is useful for power quality calculations. The method is 

introduced by using Laplace transform analysis to simplify the convolution of 

the transfer impedances and the demand currents. An iterative numerical 

inverse Laplace transform method is briefly examined. However, the problem 

characteristics allow Fourier transform analysis to be used. Furthermore, the 

fast Fourier transform is used to approximate the continuous Fourier 

transform. This discrete transform analysis method proves to be conveniently 

suitable to the problem definition. More importantly the discrete transform 

method proves to be superior to well known time domain methods. A real 

transform, the Hartley transform, which is computationally more efficient than 

the complex Fourier transform is also used to solve the problem. The methods 

are tested on an eight bus example power system. The main contribution of 

this thesis is the presentation of computationally efficient methodologies which 

are useful for the accurate analysis of the propagation of nonsinusoidal 

waveforms in power systems.



CHAPTER I
INTRODUCTION

1.1 Motivation
The introduction of reliable and cost effective thyristors and other solid 

state power converters has caused an increase in the number of power system 
loads whose demand currents are nonsinusoidal. The presence of these 
nonsinusoidal currents in power systems causes distortion of the 60 Hz 
fundamental voltage and current waves. Many power system components are 
designed to operate with pure 60 Hz sinusoidal waveforms, and if this 
waveform is sufficiently distorted, the components may operate improperly or 
experience decreased life. Therefore, it is essential that the power system 
engineer be able to analyze how these nonsinusoidal currents propagate in a 
power system so that potential problems can be corrected.

Many of the waveforms produced by power electronic loads contain rapid 
decays and impulse-like characteristics. These phenomena usually result in 
high frequency components in the current spectrum. If the current switching 
occurs such that the resulting waveform is periodic, the frequency spectrum is 
discrete. If the current is nonperiodic, such waveforms generate a continuous 
frequency spectrum. In any case, the power system must be analyzed over a 
range of frequencies. In addition the power system contains transmission lines, 
transformers, and other components which contain frequency dependent 
parameters and nonlinearities. With these comments in mind, one quickly 
realizes that the analysis of nonsinusoidal waveforms in power systems is a 
nontrivial problem.

There are numerous techniques in circuit analysis which can be used to 
solve this problem. The problem could be solved in the time domain by 
writing the differential equations and numerically solving them. These 
methods have the advantage of convenience in modelling (especially 
nonlinearities). Also, there are several, well known numerical methods for 
digital implementation and solution. The main disadvantages of time solutions 
are long execution times, poor insight into the problem solution, and 
inconvenience in certain types of modelling (e.g., frequency dependent
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parameters). Alternatively, the problem could be solved in the frequency 
domain. For linear circuits, the problem may be transformed to the frequency 
domain by the use of the Fourier transform or the Laplace transform. Then 
since the system can be modeled as a linear system, time convolution which is 
simple multiplication in the frequency domain can be used to solve the 
problem. Advantages of transform methodologies usually include high speed 
and potentially useful insight into the problem. Disadvantages often include 
inability to handle nonlinearities, and certain numerical problems relating to 
convergence.

The purpose of this research is to compare these different techniques. 
However, the emphasis of this work is on the formulation of frequency domain 
methods of solution which employ the use the fast Fourier transform. In 
addition, an alternative transform, the Hartley transform, is introduced and 
included in the comparison.

1.2 Literature Summary of Some Transforms and Transform 
Properties Used In Circuit Analysis

Fourier transform
Given f(t) a real or complex function of real variable t, the Fourier 

transform of f(t) is then [l]
OO

- FM = / f(t) e-i“l dt (1.1)
—OO

where oj is a real parameter. Similarly the inverse Fourier transform of F(o;) is 

r‘{FH}=((t)=i- / F(w)ei"*d«. (1.2)
Z7r -OO

This transform may be written differently then that in (l.l)-(1.2): the
coefficients 1.0 and l/27r which multiply the integrals shown are not unique. 
However, the product of these two coefficients must be \/2%. The Fourier 
transform will not converge for a wide range of functions such as the positive 
exponential. Also, since the Fourier transform is a two sided transform, initial 
values are not readily recovered. However, [5] shows a method of modifying 
the Fourier transform so that it will converge for initial value problems, and as 
a result, they obtain the definition of the Laplace transform. Unfortunately, 
this modified Fourier transform or Laplace transform no longer has the simple 
inverse (1.2). References [1,2,3,9,10] contain rigorous theoretical development 
and general applications of the Fourier transform.
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Laplace transform
Given f(t) a real or complex function of real variable t, the one sided 

Laplace transform of f(t) is, [5]
' - OO

>{f(t)}=F(s) = /e-stf(t)dt (1-3)

where s is a complex parameter. Note that it is assumed that f(t) — 0 for 
t < 0 to ensure a one-to-one relationship between the Laplace domain and the 
time domain. Also, the region of convergence of f(t) is generally to the right of 
the line Re(s) = k where k is finite.

The use of the Laplace transform in solving initial-value problems 
associated with ordinary linear differential equations is very common since 
differentiation in the time domain is converted into algebraic forms in the 
Laplace domain. Another desirable result of Laplace transformation is that 
convolution in the time domain is rendered as a product under the Laplace 
domain. Unfortunately the Laplace transform does not lend itself well to 
numerical operations. This point is further considered below. References 
[1,2,3,4,5] contain detailed information on the properties and the many 
applications of the Laplace transform.

Inverse Laplace transform
If F(s) is the Laplace transform of f(t) then the inverse transform is given

by [5] . >V
joo + cr

iT1 (F(s)} =f(t) = — / F(s) estdt (1.4)
—joo 4" a

where cr lies in the region of convergence. In contrast to the inverse Fourier 
transform the inverse Laplace transform is an integral in the complex plane. 
Evaluation by direct integration is almost always a complicated task. 
However, for functions of most interest in systems theory, the evaluation can 
be done by the determination of coefficients in the partial fraction expansion 
and using a Laplace transform table.

There are a number of Fortran subroutines that can be used to find the 
inverse Laplace transform of F(s). The routines in [6,7] use F(s) to 
approximate the Fourier series coefficients of f(t). The method in [6] has been 
implemented as an IMSL subroutine (IMSL is a commercially available library 
of Fortran subroutines). Unfortunately, the methods in [6,7] are not suitable 
for transforming F(s) to f(t) for large ranges of t. However, the method in [8] 
uses Laguerre polynomials to estimate f(t) and the authors claim that this
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method is faster than the methods used in [6,7] and is well suited for 
transforming F(s) into f(t) over a large range of t.

Impulse response and convolution
Using equation (l.l), the Fourier transform of simple functions such as 

sin(t) and the step function u(t) does not exist in a strict mathematical sense. 
Therefore it is necessary to define the impulse function so that these and other 
functions can be included in the Fourier transform technique. The two 
defining properties of the impulse function 5(t) are [5]

5(t) = 0 for t # 0

/ ^(t) dt = 1 .
. —OO

Then, by definition, the Fourier transform of £(t) is
OO

= / 5(t) e-jwt dt = l

(1.5)

(1.6)

and one deduces the value of the inversion integral as

(1.7)

Given a linear time invariant system with zero initial conditions, let y(t) 
be the response function resulting from a unit impulse function being applied 
as an input at t =0. The function y(t) is called the impulse response of the 
system. If x(t) is an input function to the same system and v(t) is the resulting 
output function then [9]

CO

v(t) = f x(X) y(t — X) dX . (1.8)

This integral is known as the convolution integral and is abbreviated as

v(t) = x(t) * y(t) (1.9)

It can be shown that the Fourier transform of v(t) can be obtained from the 
product of the Fourier transform of the input function X(co») and the Fourier 
transform of the impulse response Y(w) [9],

Y(w) 4 ^{x(t) * y(t)} = X(cj) Y(cJ) (1.10)

This property makes the Fourier transform very useful in circuit analysis. The 
same property, that is the rendering of convolution to a simple product, also 
occurs under Laplace transformation and certain other transforms.



5

Discrete Fourier transform (DFT)
The Fourier transform of a periodic function is a sequence of equidistant 

impulses. Likewise, the inverse Fourier transform of a periodic function is a 
sequence of equidistant impulses. Thus, with both the time function and its 
transform being periodic, all the information about both is limited to two finite 
sets of coefficients: the strengths of the impulse functions [l]. By definition, 
the discrete Fourier transform and inverse discrete Fourier transform are, [10]

F(kft) = V f(nAt) e~jnAtnk k = 0,1,...,N-1 (l.ll)
■ n=0

f(nAt) = i N£ F(kfl) ejnAtkn n = 0,1,...,N-1 (1.12)
N k=0 '

where F(kfl) is the DFT of f(nAT), and f(nAt) is the inverse DFT of F(kD). 
Also, f! = 27r/NAt is the separation of impulses in the frequency domain and 
At is the separation of impulses in the time domain. The ambiguity of the 
coefficient of the forward and reverse Fourier transform integrals also applies 
to (l.ll) and (1.12). The DFT may be defined with other coefficients of the 
sum shown provided that their product is 1/N.

Convolution under the DFT
Similar to equation (1.10), convolution when using the DFT is

N-l
x(nAt) * y(nAt) = x(iAt) y[(n—i)At] (1.13)

i-0

ZFj) {x(nAt) * y(nAt)} = X(kH) Y(kfl) (1.14)

where X(kfl) and Y(kfl) are the DFT of x(nAt) and y(nAt) respectively [10].

Hartley transform
Given a real waveform v(t) we define the Hartley transform pair

o°

H(w) = f v(t) cas O/t dt
—OO

i 00 ■:■■■; ;
v(t) = f H(w) cas Out dt

where cas refers to the cosine-and-sine function, cas oA = cos wt + sin oA. 
Note that the Hartley transform of v(t) is H(oj) and that H(w) is a real function 
[11,12]. The same ambiguity of coefficients noted earlier applies to the Hartley
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transform.
The relationship between the Fourier transform and the Hartley is shown 

by first defining the even E(w) and odd 0(oj) parts of the Hartley transform of
v(t)

_ , . Hv(^) + Hy( w) /-l 17A

„ ,; hvh-hy(-w)Ov(w) = _—__----------.

Then the Fourier transform of v(t) is V(w) where
V(w) ==Ev(w) - j Ov(w) . (1.18)

Also '
H(w) = real (V(w)) — imag (V(w)) (1.19)

where real(‘) and imag(‘) are the real and imaginary parts of the complex 
quantity.

Perhaps the most important difference between the Hartley transform and 
the Fourier transform is that the Hartley transform of v(t) is always a real 
function, and the Fourier transform of v(t) is in general, a complex function

[8j.. :

Convolution under the Hartley transform
Using (1.10) and (1.18), convolution in the Hartley domain is found as 

follows
V(0J) = [Ex - jOx] [Ey - jOy]

from (1.19),
Hv(o;) = [ExEy - OxOy] + [OxEy +ExOy]

thus, from (1.17)
Hv(w) = y Jhx(w) (Hy(w) + Hy(—w)) + Hx (—w)(Hy (w) — Hy(—w))j (l,20)

where Hv(w), Hx(w), and Hy(w) are the Hartley transforms of the output, 
input, and impulse response functions respectively, as defined in equation (1.8).
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Discrete Hartley transform (DHT)
Analogous to the DFT, the discrete Hartley transform (DHT) and its 

inverse are given by [5],

H(kO) = 5} v(nAt) cas (knQAT) k = 0,1,...,N—1 (1-21)
• n=0

v(nAt) = — *£ H(kH) cas (knOAt) . n = 0,1,...N-l (1.22)
N k=0 .

The even and odd parts of H(kfl) are,
E(ktl) = H(kn) + HKN ~ kM (1.23)

2

o(kn}=H^- fN-K)nl ■ ■■■..

One can find the DFT from the DHT by

F(kn) = E(kn) - j o(kn). (1.2.4)

Conversely
H(kfl) = real(F(kn)) - imag(F(kD)) . (1-25)

Finally, convolution with the DHT is given by

Hv(kO) = J [Hx(Hy + Hy(-)) + Hx(—)(Hy - Hy(-)]

where the subscripts are analogous to the subscripts is equation (1.20), 
Hq(-) = Hq [(N - k)n] with q = v, x,y, and Hq = Hq(ND).

Fast Fourier transform (FFT)
Perhaps the most significant advance in signal processing theory in the

last 40 years is the formulation of the fast Fourier transform (FFT). The FFT
is a time and memory efficient algorithm used to calculate the DFT. It is
important to note that the success of the DFT in the solution of circuits
problems is largely due to the FFT. The FFT is an exact evaluation of the

- . 2^nk

DFT. The FFT algorithms employ symmetry of e N in order to reduce 
the number of computations. The algorithms are grouped into two basic 
types: decimation in time and decimation in frequency. The difference
between the two is the method in which the data sequences are divided into 
single point DFT’s which require no multiplications. Most FFT algorithms 
require the number of data points N to be a power of 2 in order to simplify the



8

algorithm. This is called a radix-2 FFT algorithm. Radix-4, radix-8 and other 
radices are also used [13].

The relationship between the DFT and the DHT suggests that an analog 
may exist for the rapid calculation of the DHT. This is indeed the case. 
Reference [14] shows that the philosophy used in the FFT can be used in 
computing the DHT.

1.3 Literature Summary of Some Methods for Calculating the
Propagation of Non-Sinusoidal Waveforms in Power Systems

The solution to the well known second order linear differential equations 
obtained for a transmission line can be decomposed into two components which 
can be interpreted as reflected and incident traveling waves. There are 
numerous digital programs that use traveling wave methods to solve 
electromagnetic transient problems on power systems. The most widely used is 
the electromagnetic transient program EMTP developed by Bonneville Power 
administration. The method entails writing a system of linear algebraic 
equations for networks containing inductances, resistances, capacitances, and 
transmission lines. This is accomplished by replacing each element of the 
network with its equivalent conductance model and then writing the nodal 
equations for the new network. The nodal voltages are then calculated using 
the trapezoidal rule of integration in the time domain. Transmission lines are 
handled using Bergeron’s characteristic impedance method. The time delays 
imposed by the traveling waves on the transmission lines using Bergeron’s 
method require that information from previous integration steps be stored and 
Used in later integration steps. References [15,16] contain detailed descriptions 
of the techniques used in EMTP. The main advantages of EMTP are: •

• It can handle large scale systems
• It can include: nonlinearities, switches, and initial conditions
• It can include a wide variety of current and voltage excitation waveforms.
Unfortunately, EMTP is a numerically cumbersome program. The program 
employs a simple numerical integration routine so small time steps must be 
taken. In addition a constant time step must be used since the traveling waves 
require the program to use previous integration data. If three phase circuits 
are analyzed, the method uses constant transformation matrices to decouple 
the phases. Problems arise in dealing with frequency dependent parameters 
and constant transformation matrices [17].
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Transform methods for faulted transmission lines
The problems encountered with frequency dependent parameters in the 

traveling wave methods can be solved by working in the frequency domain. 
Sources in the literature [17-19] show how both the distributed and frequency 
dependent parameters of a single transmission line can be considered when
working in the frequency domain. In general the methods entail working in 
the Laplace domain and then computing the inverse Laplace transform by 
truncating the frequency range of the system and using the FFT. The 
frequency range of the Laplace function is truncated by multiplying it by

,= sin(Wni (1.27)
0J7T/CI

where w is the frequency variable and fi is the cutoff frequency. Then 
frequency samples of the truncated function are taken and an FFT algorithm 
is used to find the corresponding time samples. However, [17-19] concentrate 
on faulted systems and switching operations only.

For short line distribution systems and low frequencies (i.e. below 10 kHz) 
lumped parameter models of the power system are sufficient [20]. Therefore, 
basic circuit analysis techniques can be used to analyze these models.

State equations and numerical integration
The state equations for a lumped parameter model of a distribution 

system can be written as

■^•=Ax(t)+Br(t) (1.28)

where r(t) is the input vector, x(t) is the state vector, and A and B are constant 
matrices. A time step solution such as Euler’s method or the Runge-Kutta 
method can be used to solve for x(t). Unfortunately, for a system with n 
energy storage elements dx/dt will be an n-vector and n differential equations 
must be solved even if all that is needed is one node voltage [21]. Other 
problems with time step solutions to differential equations are numerical 
roundoff error and numerical instability. In addition, in order to recover all of 
the high frequency detail of the actual solution the time-step must be very 
small making computation times very long.
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Improved time solution methods
By employing some approximations and efficient algorithms time-step 

solutions can be made more feasible. One method of reducing the number of 
points to be computed is to predict the time step for the next point by looking 
at the changes between the previous points. This.way during relatively smooth 
regions of the function, the computer can move along quickly and when rapid 
changes occur in the function, the computer can reduce the time step so it can 
still closely estimate the function. Relative accuracies can be obtained by 
checking such parameters as loop equations at each point calculated, and if the 
specified accuracy is not met at a specific point the step can be reduced and 
that point can be recalculated. Another improvement is to linearize the circuit 
at each point. For example, at each iteration each capacitor and inductor can 
be modeled as a voltage and current source respectively, with a resistance. By 
doing this modeling the network can be represented as a set of linear equations 
to be solved at each point. The most well known program that uses techniques 
like those discussed above is the SPICE program [22].

1.4 Organization of This Thesis

Time domain solution methods for determining transients in power 
systems are well known. The research done in this thesis concentrates on 
frequency domain methods. Chapter II discusses the theory used to formulate 
solution methods using the Laplace transform, the Fourier transform, and the 
Hartley transform. The Laplace transform method relies on using a numerical 
inverse Laplace transform routine. The performance of the routine for this 
application is evaluated. The Fourier and Hartley transform techniques rely 
on the existence of fast discrete Fourier, and Hartley transforms respectively. 
Chapter III contains the solution of an eight bus system which is representative 
of a power system. The node voltages due to a nonsinusoidal current injection 
are calculated. The problem is solved using the Laplace transform, the Fourier 
transform, and the Hartley transform. The results are verified by solving the 
problem using the commercial time domain simulation routine SPICE.

Chapter IV starts with a discussion on the modeling of a power system for 
the analysis of the propagation of nonsinusoidal waveforms. This chapter also 
demonstrates the sensitivity of the circuit solution to the model parameters 
and the injection current characteristics.

In Chapter V the advantages and disadvantages of the different methods 
are discussed. Also, some recommendations are made on further required 

research.
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CHAPTER H
PROBLEM FORMULATION AND SOLUTION

2.1 Calculation of Transfer Impedances

The problem to be solved is the following: given a power system with 
nonsinsoidal current injections, find the bus voltages resulting from this 
injected current. It is assumed that the power system is approximately linear. 
Under this assumption the 60 Hz component is omitted and can be 
superimposed on the final solution. More importantly the linearity allows this 
problem to be solved by convolving the injected current i(t) with an impulse 
response of the power system z(t) using (1.8). The impulse response required is 
the voltage response at the node of interest due to a current impulse applied at 
the bus where the injected current is applied. However, convolution is 
simplified by transforming to the frequency domain and using (1.10). The 
three methods of transforming to the frequency domain that are discussed here 
are the Laplace transform, the Fourier transform, and the Hartley transform.

When an impulse response z(t) is transformed to the frequency domain it 
is called a transfer function. The transfer function needed for this problem is 
the transfer function between the current applied at one bus and the voltage 
response at another bus. This is called the transfer impedance Z(cu).

Given an n bus system the bus impedance matrix used in power systems, 
Zbus, is defined in [23] as

. .... ■ dVi .
(Zbus)ij 1 — 1,2,...,n j — 1,2,...,n . (2.1)

An important property of Z],us is that its off diagonal entries are the transfer 
impedances and its diagonal entries are the driving point impedances of the 
system. Therefore the bus voltages due to the injection currents can be 
calculated by-

^bus = 2bus ^bus (2*2)

where Vbus is a vector containing the n bus voltages, It,us is a vector containing 
the n current injections, and Zbus is the nxn impedance matrix. The 
impedance matrix Ztus can be found by inverting the admittance matrix Ybus.
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Alternatively, Zbus can be found by using the Zv,us building algorithm discussed 
in [23]. An approximation of Zbus that can be rapidly calculated will be 
discussed later.

2.2 Laplace Transform Method
An n bus power system can be converted to an n bus s-domain equivalent 

circuit. The equivalent circuit for each circuit element is developed by finding 
the relationship between the elements s-domain terminal voltage and current 
[24]. The rules for combining impedances and admittances in the s domain are 
the same as those for combining impedances and admittances in phasor 
domain circuits. Another important observation is that Kirchoffs laws still 
hold for the s-domain equivalent circuit. This is because the sum of the time 
domain functions is the sum of the transforms of the individual functions [24]. 
Therefore (2.2) can be written as

Vbus(s) — 2buS(s)IbUs(s) (2*3)

where
mS)

(ZbUs(s))ij = ~ l,2,...,n j = l,2,...,n (2-4)

and Vbus(s), Ibus(s) are vectors containing the s-domain node voltages and 
current injections.

The injected current although nonsinusoidaj will be periodic. The Laplace 
transform of the periodic time function can be found from

I(s)
i.w

1 - <rT* (2.5)

where Ii (s) is the Laplace transform of one period of i(t) and T is the length of 
one period in seconds. Ibus(s) is found by using (2.5) on the injection current at 
each bus. With Ibus(s) and ZbU3(s), VbuS(s) is determined from (2.3). Then v(t) 
at each bus is calculated by taking the inverse Laplace transform of each 
element in Vbus(s). Unfortunately, for reasonably complicated injection 
currents and multiple bus systems, finding Y(s) by hand calculation is not 
feasible. Furthermore, finding v(t) by partial fraction expansion is also not 
feasible for reasonably complicated systems. Alternatively, a solution by 
digital computer is used. This is done by evaluating Zbus(s) and Ibus(s) at 
different values of s. Then multiplying them to find Vbus(s) at these values of 
s. The Fourier series coefficients of v(t) can then be approximated by the 
routines discussed in section 1.2.



13

2.3 Fourier Transform Method

Given an s-domain function F(s) the corresponding Fourier transform 
function F(;*-j will exist if all the poles of F(s) lie in the left half of the s-piane. 
If f(t) the corresponding time function is zero for t. < 0", the Fourier 
transform of f(t) can be found by simply replacing s in F(s) by ju/. Therefore if 
f(t) is zero for negative-time and has no initial conditions, F(v) can be easily 
found from F(s). Since our n-bus power system is a causal system with zero 
initial conditions the impulse responses of the system are zero for t < 0-. 
Hence Zbus(u,j can be found by substituting jtu for s in Zbus(s) [24]. Note that 
when F(s) contains jcu axis poles, F(n') may also exist. Under such 
circumstances, F(cu) contains singularity functions of u/ — cup where cup is the 
pole location of F(s). In practical power systems, F(s) rarely contains axis 
poles, and this case will not be considered further.

In order to use the convenience and speed of the digital computer, 
attention is now turned to the discrete Fourier transform. Let i(nAt) contain 
N samples taken every At seconds of an injection current i(t). Let I(kH) 
contain the frequency samples obtained by taking the DFT of i(nAt). Note 
that f2 = 2rr/NAt is the separation of the frequency samples and 
Umax = (N/2)n is the highest frequency recovered from the function i(t). The 
reason for the (N/2)Q instead of Nfi is that the periodicity of the discrete 
Fourier function places the negative frequency samples in the .N/2 to N-l 
positions of I(kH). In order to insure an accurate solution for the node voltages 
the rate of sampling, At, must be small enough so that Qmax includes the 
significant part of the frequency spectrum of the injection current. Thus, the 
discrete Fourier transform of i(t) is found by first sampling i(t) and then 
transforming those samples to the frequency domain using the DFT. This 
process is performed on the injection currents of every bus to obtain Ibus(kU).

The process for finding the discrete Fourier transform of the transfer 
impedances is different from the process of finding the DFT of the injection 
currents. This is because the continuous Fourier transform of the transfer 
impedance is already known. Therefore the discrete Fourier transform of the 
transfer impedance Z(kf2) is found by sampling Z(cu) in the frequency domain. 
In order for Z(kfl) to be a discrete Fourier transform it must be a 
representative period of the periodic function obtained by replicating the 
samples of Z{cJ) every NCl rad/sec. This is done by placing the positive 
frequency samples in the 0 to N/2 — 1 positions and the negative frequency 
samples in the N/2 to N—1 positions in reverse order. The N/2 entry is an 
indeterminate value and can be set to zero for convenience. For an N point 
discrete Fourier transform, Z(cu) needs to be sampled only N/2 times. The



other N/2 samples or the negative frequency samples are simply the conjugate 
of the positive frequency samples. This fact produces a significant 
computational savings.

The frequency resolution 0 of the samples of Z(oj) is controlled by the 
number of samples N. The spectrum for each periodic, injected current will 
have nonzero samples only at their respective harmonic frequencies. Therefore 
samples of Z(u;) need to be taken only at these harmonic frequencies.

Another important consideration when choosing N and At is the length of 
time that i(t) the injection current is sampled. The order of magnitude of At 
is dictated by aliasing considerations of I(kfl). In order to use radix 2 
methodologies, the value of N must be a power of 2. The product tf = NAt is 
the length of time that i(t) is sampled. Moreover, the injection current i(t) is a 
periodic function, and a steady state value of the node voltages is the 
information that is required. Therefore tf must be equal to an integer multiple 
of the period T of the injection current function i(t). If tf is not an integer 
multiple of T, then the samples in the frequency domain, of the injection 
current will be from a time function of period tf, and this function is 
completely different than the periodic function i(t) of period T actually 
injected.

Finally, one must consider practical limits on the value of N so that 
computation is not excessive.

The process for finding the discrete Fourier transform of a transfer 
impedance is applied to every element in Zbus(w) to obtain Zbus(kO). For 
ZbuS(kn) and Ibus(kfl) to be convolved to find Vbus(kfl) it is essential that the 
number of frequency samples N and the spacing of the samples be the same for 
every element in Zbus(kft) and Ibus(kfi). With this requirement satisfied 
VbU3(kfi) can be found from

Vbus(kn) = Zbus(kn)Ibus(kfi) k = 0,1,...,N—1 . (2.6)

Then the time samples of each node voltage can be found by taking the inverse 
DFT of each element in Vbus(kft). A block diagram of the complete process is 
shown in Figure 2.1.

Errors introduced by the Fourier method "
The process of time domain sampling i(t) results in frequency domain 

aliasing. This is evidenced by the overlapping versions of I(w) which make up 
the discrete time Fourier transform Ip (e*~) of the sampled signal (see Figure 
2.2). Note that Ts in Figure 2.2 is the same as At. As stated before, this 
aliasing is reduced to a negligible problem by making Ts small thereby making
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Figure 2.2 Illustration, of the errors introduced by the Fourier transform 
method.



fimax large enough so that the overlapping region is relatively small.
Time domain aliasing is introduced when sampling Z(ed). If the impulse 

response time duration is long this time domain aliasing could be a problem. 
However, this problem can be reduced by increasing the number of samples N.

Frequency domain aliasing is not a problem when obtaining the samples 
of Z(cu), and the function can be bandlimited to nmax which is the value 
obtained when sampling i(t). This bandlimiting introduces what is known as 
time domain smoothing. This problem will be negligible because the 
convolution process of I(kfl) and Z(kfi) bandlimits Z anyway 25].

2.4 Hartley Transform Method
By sampling the injection currents at the buses the same, way they were 

sampled in the Fourier transform case and taking the discrete Hartley 
transform of these discrete functions, [H;(kQ)jbus is obtained. The purely real 
vector [Hj(kf2)]bus is the discrete Hartley transform representation ; of the 
injection currents. It is clear from the relationships between the Hartley 
transform and the Fourier transform that the requirements for minimizing 
aliasing and other errors are identical for both transforms. Thus the choice of 
At the sample spacing is the same in the Hartley transform method as in the 
Fourier transform method.

Given ZjjUS(kf2) obtained by the method described earlier, [Hz(kf2)jbus can 
be obtained by applying (1.25) to every element in Zblis(kfi). The purely real 
matrix [Hz (kn)]bus is Zbus in the discrete Hartley transform domain. The 
discrete Hartley transform of the node voltages [Hv (k 0) j bus -is now obtained by

HyUS = - [hJus(H|5US + H>us(—)) + H^us(-)(Hhs - H?us(—))} (2.7)
2

where H*25 = [Hq(kn)lbus, and H$us(-) = [Hq[(N—k)n]]bus, k = 1,2,..,N-1, 
q = v,z,i. Then the voltage at each bus can be found by taking the inverse 
DHT of each component in HvUS.
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CHAPTER m
DEMONSTRATION OF THE FREQUENCY DOMAIN METHODS

3.1 The Example System
In this chapter an example system which is representative of a power 

system is studied. The example will be studied using a numerical Laplace 
transform method, the FFT, and the fast Hartley transform. Also a time 
integration solution will be used to check and compare solution characteristics. 
Figure 3.1 shows the eight bus example system. General remarks on system 
component models appear in Chapter IV. However, the following remarks will 
help to introduce this example:

• Line charging is modelled as a lumped parameter at each system bus.

• Fixed R, L are used for transmission line models (i.e., the pi model is 
used).

• The connection from bus 1 to the remainder of the network is modelled as 
the equivalent negative sequence impedance O.l+jO.l. This is 
conveniently found from the short circuit study of the external network.

• Loads are modelled as fixed resistances in this example.

• Mutual coupling is included.

• The distribution transformer at bus 6 is modelled as a fixed R-L T- 
equivalent. Frequency dependence is not included in this example.

• Turn-to-turn and interwinding capacitance of the transformer are 
modeled by fixed lumped capacitors. •

• The 60 Hz sinusoidal supply at bus 1 is not included.
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jO.001
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Figure 3.1 The example power system.
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3.2 Laplace Transform Solution

In this section the bus voltages on the system in Figure 3.1 are calculated 
using the Laplace transform. Figure 3.2 depicts the nonsinusoidal current that 
is injected into bus 8. The matrix Zbus(s) is formed by building and inverting 
YbUs(s). The matrix Ybus(s) is easily constructed from the s-domain equivalent 
circuit of Figure 3.1. A method for incorporating the mutual inductance is 
covered in [26]. Using (2.5), the elements of Jbus(s) are,

lk(s)=0 k = 1,2,...7

I8 = [240(1 - e_t3s) + 2000(e~t2s - e-t5s)

- 2240(e"t4s - e-tls)j/s2(l - e~t&s) . (3.1)

The system node voltages which are contained in Vbus(s) are found from

Vbus(s) = Zbus(s) Ibus(s). (3*2)

Using the numerical inverse Laplace transform routine discussed in [3] v(t) 
at each bus is computed from Vbus(s). Figure 3.3 shows the voltage Vi(t) at 
bus 1. Note that the s-domain equivalent circuit contained zero initial 
conditions so Figure 3.3 is the zero state solution. The piecewise-linear 
property of the injection current allows the problem to be solved by SPICE. 
Figure 3.4 shows the SPICE solution. The largest discrepancy between the two 
solutions for the interval shown is about 2%.

3.3 Fourier Transform Solution

In this section the example system is analyzed using the Fourier 
transform. The Fourier transform of Ybus is found by setting s = joj in Ybus(s). 
The discrete Fourier transform of Ybus is found by substituting in values of oj 
every Q rad/sec. Then ZbU3(kfi) is found by inverting Ybus(kn). The current 
Ig(kn) is found by sampling the injection current and taking the DFT of the 
samples. The other elements of Ibus(kn) are zero. The DFT of the bus 
voltages are found from

Vbus(kn) = Zbus(kD)Ibus(kD). (3.3)

The bus voltages are then found by taking the inverse DFT of the elements of 
Vbus(kfl). Exactly two periods of the injection current are sampled so a steady 
state solution for the voltages is obtained. Figure 3.5 shows the voltage at bus 
1. The steady state SPICE solution is shown in Figure 3.6.

The zero state solution obtained by the Laplace transform method can 
also be obtained by the Fourier transform method. This is done by zero
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Figure 3.2 The nonsinusoidal current injected into bus 8.
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Figure 3.3 Laplace transform solution of the voltage at bus 1.
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packing the latter part of ig(nAt) long enough for vx(nAt) to settle to zero by 
the end of the sample range, figure 3.7 shows how V2 (nAt) settled out by zero 
packing ig(nAt) after 0.0167 seconds. Figure 3.8 shows the first 0.0167 seconds 
of Figure 3.7. Comparing Figure. 3.8 to the Laplace solution in Figure 3.3 
shows that they are the same. The largest discrepancy between the two is 
about 2%.

Any injection current waveform can be analyzed using the Fourier 
transform method. Figure 3.9 shows an injection current that is similar to the 
piecewise-linear current, but Figure 3.9 has a rise proportional to t3. The 
voltage at buses 1 and 8 due to the current in Figure 3.9 are shown in Figures 
3.10 and 3.11 respectively. The low impedance ties between buses 1-6 keep the 
voltages at these buses practically the same. Therefore the voltage waveforms 
on buses 2-6 are not shown.

3.4 Hartley Transform Solution

After the manipulation of Zt,us(kf2) to obtain [Hz(kn)]bus> the discrete 
Hartley transform of Z, the calculation of the bus voltages using the fast 
Hartley transform is accomplished using only real operations. The fast Fourier 
transform requires complex operations. Thus the Hartley transform is 
computationally more efficient than the Fourier transform. The procedure for 
the Hartley transform solution is analogous to the procedure for the Fourier 
transform solution, and the solution obtained was exactly the same for both 
methods. Figure 3.12 shows the Hartley transform representation of the 
transfer impedance between buses one and eight. Figures 3.13 and 3.14 show 
the magnitude and phase of the Fourier transform representation of the same 
transfer impedance. Note that it requires two graphs to represent the Fourier 
transform information and only one graph to depict Hartley transform 
information.

3.5 Choice of Sampling Parameters

The choice of the number of samples and the resolution of the samples is 
very important in discrete transform analysis. The following parameters must 
be specified before the discrete transform methods can be implemented:

tf — length of time the injection current is sampled

fimax — maximum frequency sampled on the transfer impedances
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At — resolution of the time samples 

0 - resolution of the frequency samples 

N — total number of samples.

The relationships between the parameters allow only two of them to be chosen 
and the other three are calculated from the two chosen.

Additionally, the methods described here impose more constraints:

• tf = nT, where T = period of the injected current in seconds, and 
n = 0,1,2,...

• The number of samples of the transfer function and the injected current 
must be equal.

• The resolution of the frequency samples of the transfer function, and the 
injected current must be equal.

Figure 3.15 shows the discrete Fourier transform representation of the current 
which was injected into the eight bus system. Clearly, the choice of fimax ==
96.5 krad/sec introduces a negligible amount of aliasing error on the frequency 
samples of the injection current. In fact, in order to reduce the number of 
computations, flmax can be reduced significantly and the calculated bus 
voltages will still be accurate. The choice of fimax = 96.5 krad/sec corresponds 
to the sampling rate At = 32.5 /is. Table 3.1 shows some other choices of 
sampling parameters which were used to calculate the bus voltages. For 
comparison, the maximum voltage calculated at bus one is listed in the last 
column for each choice of parameters. Comparing the maximum voltage 
obtained when At = 32.5 /is, and At = 16.25 /is shows that the aliasing error 
for the slower sampling rate is very small. Depending oh the accuracy 
required, the calculation of only 64 points will provide a fairly accurate 
solution for the bus voltages. Note that Omax in Figure 3.15 can be reduced 
well below the 96.5 krad/sec shown in that graph. It appears that Omax can be 
reduced below the small lobe located at about 15.0 krad/sec. Table 3.1 bears 
out this remark, and one concludes that solutions with small N are indeed 
reasonably accurate.
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Table 3.1. Alternative choices of sampling parameters.

tf N ^max At n Max Voltage

J nlH 7tN _ 7T tf 2i^niax 2tT
60

& tf At ¥ N tf
J = 1,2,... m = 1,2,...

sec rad/secxlO3 fJS rad/sec (pu)

8/60 8190 193.0 16.25 47.12 0.27382

8/60 4096 96.5 32.5 47.12 0.27397

2/60 1024 96.5 32.5 188.5 0.27397

1/60 512 96.5 32.5 377 0.27397

2/60 512 48.25 65.1 188.5 0.27473

1/60 256 48.25 65.1 377 0.27473

1/60 128 24.12 130.2 377 0.27889

1/60 64 12.6 260.4 377 0.26717

1/60 32 6.3 520.8 377 0.35777
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CHAPTERIV
POWER SYSTEM REPRESENTATION

4.1 Modeling of the Network Components

Transmission lines
Under balanced conditions, a three phase transmission line can be 

represented by its single phase positive sequence nominal pi equivalent circuit. 
For long lines, a sequence of cascaded pi models can be used to approximate 
transmission line standing wave effects. Alternatively, long transmission lines 
can be represented by an equivalent pi model obtained from the solution of the 
well known second order differential equations obtained for transmission lines. 
The equivalent pi model is obtained by applying correction factors to the series 
impedance and shunt admittance [27], i.e.

sinh (xVzY7)

xVzY'
for the series impedance

tanh (xVW/2)-
xVZY'/2

for the shunt admittance (4.1)

where x is the length of the line, If — r + jcuL is the series impedance per unit 
length, and Y' = g .+ jwC is the shunt admittance per unit length. This model 
can be analyzed with the methods in Chapter II. Also, the frequency 
dependent skin effect phenomenon can be handled since the methods proposed 
here are discretized in the frequency domain. In short, calculations of 
frequency dependent parameters do not present difficulties.

Generators and transformers
Generators can be represented as a shunt impedance. Usually the 

subtransient reactance is used [27,28], The Thevenin equivalent voltage should 
not be represented. This is the case since the power frequency signals are 
typically much larger than the nonsinusoidal signals which are to be analyzed. 
Also, there are numerous computationally efficient methods for calculating the 
power frequency voltages and currents (e.g. load flow studies). The power
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frequency signals should be calculated separately and can be superimposed on 
the nonsinusoidal ■waveforms.

Assuming that the transformer is not operated in saturation, there are a 
number of frequency dependent linear models used. Some of these are 
described in [27-29]. When the transformer is saturated, the nonsinusoidal 
magnetizing current must be represented as a nonsinusoidal current injecting 
source.

Loads
For convenience, on a given feeder, individual loads are combined to form 

a composite equivalent. These equivalents can be as simple as a shunt 
impedance. There are also frequency dependent load models [27-30]. 
Nonlinear loads which produce nonsinusoidal demand currents are most 
commonly represented by ideal current sources. Reference [29] indicates that 
this method is adequate when the THD of the 60 Hz voltage is less than 10 
percent.

Compensating capacitors and inductors are assumed to be pure elements 
with constant parameters.

Distribution systems can be isolated by representing the transmission 
system by its short circuit equivalent [29].

4.2 Sensitivity of Circuit Solution to Model Parameters and Injection
Current Characteristics.

In this section the exemplary eight bus system in Figure 3.1 is revisited 
with the objective of illustrating the sensitivity of the solution to changes in 
the model parameters.

The voltage at bus 1 due to the original current injection in Figure 3.9 is 
shown in Figure 3.10. In order to illustrate the effects of varying the waveform 
i(t), the pulse current in Figure 4.1 is now injected. The voltage response is 
shown in Figure 4.2 Note that the maximum voltage 0.318 (pu) is larger than 
the maYiTrmm voltage of 0.274 (pu) in Figure 3.10. The resonant peak of the 
system is at 4900 rad/sec (see Figure 3.13). The frequency spectrums of the 
pulse current and the original current are shown if Figures 4.3 and 3.15 
respectively. Comparing the two frequency spectrums shows that the pulse 
current contains more high frequency content than the original current. More 
importantly the pulse contains more current at 4900 rad/sec than the original 
waveform. This is why the voltage response is largest for the pulse current.
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The line impedance for each of the transmission lines in Figure 3.1 is 
0.001 + j 0.01. (pu) Each line impedance has been increased by ten to the 
value of 0.01 + j 0.1 (pu). This change had the effect of shifting back the 
resonant frequency about 377 rad/sec to 4523 rad/sec on the transfer function 
between buses 1 and 8 (Figure 4.4). The magnitude of the resonant peak also 
decreased from 2.46 (pu) to 2.28 (pu). This decrease in the transfer function 
between buses 1 and 8 resulted in a slower frequency and smaller magnitude 
voltage at bus one. Figure 4.5 shows the voltage at bus 1 for the new system. 
Note that, the current in Figure 3.9 is used in this and the remaining studies. 
The peak voltage of 0.199 (pu) is considerably smaller than the value of 0.274 
(pu) for the original system. Another effect of the increased line impedances is 
an increased voltage difference between the buses. In the original system the 
voltage difference between buses 1 and 3 was 0.025 (pu). This modified system 
had a voltage difference between buses 1 and 3 of 0.046 (pu).

The effect of decreasing the transformer impedance of the original system 
is now studied. The series impedance of the transformer was changed from 
0.01 -f j 0.1 (pu) to 0.005 + j 0.05 (pu). The effect of changing the transformer 
impedance shifted the resonant frequency up 1074 rad/sec to 6974 rad/sec. 
The magnitude of the resonant peak decreased from 2.46 (pu) to 1.94 (pu) for 
the transfer function between buses 1 and 8 (Figure 4.6). The resulting voltage 
at bus 1 for this modified system is shown in Figure 4.7. The peak value of the 
voltage of 0.209 (pu) is lower than 0.274 (pu) for the original system.

The effect of reducing the equivalent impedance of the external system is 
now examined. The equivalent impedance was reduced from 0.1 + j 0.1 (pu) 
to 0.01 + j 0.01 (pu). This change shifted the resonant frequency back only 
188 rad/sec. The transfer function in Figure 4.8 is for the modified system, 
and Figure 3.13 is the transfer function for the original system. Note that the 
transfer function of the modified system for frequencies below the resonant 
frequency has been practically eliminated compared to the original system. 
Most of the injection current spectrum is below the resonant frequency. 
Therefore one would expect a significant drop in the voltage at bus 1 for this 
modified system compared to the original system. Figure 4.9 shows the voltage 
at bus 1 for the modified system, and the peak voltage has been reduced to 
almost a third of the original system voltage.

Finally the effect of increasing the shunt capacitors in Figure 3.1 was 
studied. All of the shunt capacitors in the system were increased by a factor of 
ten. Figure 4.10 shows the transfer function between buses 1 and 8 for this 
modified system. The resonant peak has been reduced 3204 rad/sec to 1696 
rad/sec. With the resonant frequency shifted to coincide with the largest part



44

of the injection current spectrum one would expect a large voltage response at 
bus 1. Figure 4.11 shows the voltage at bus 1. However, the 0.192 (pu) peak 
value is less than the 0.274 (pu) for the original system. This value is smaller 
for two reasons. The magnitude of the resonant peak is 0.838 (pu) which is 
less than 2.46 (pu) for the original system. Also the modified system’s time 
constants are slower and cannot follow the injection current waveform as 
closely as the original system.
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Line Impedance X102.2777 i

1.9930 -

1.7083 -

1.4236 -

1.1389 -

.28471 -

0.0000

Frequency <rad/sec) <X10°) 
N=102H, dt-32.5us

Figure 4.4 Magnitude of frequency spectrum of transfer impedance Z^8. All
transmission line impedances have been increased to 0.01 + j o.l
(pu). Resonant frequency is at 4523 rad/sec,
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Line Impedance XI0
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19910 4— 
0.00 033020 .025

Time (sec) 
N=1024, dt =32.5us

Figure 4.5 Voltage at bus 1 due to current in Figure 3.9. All transmission
line impedances have been increased to 0.01 + j 0.1 (pu).
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Transformer Impedance Xl/2
1.9442

1.7012*

1.2151 *

.97210 *

0.0000

Frequency Crad/sec) <X10°>
102H

Figure 4.6 Magnitude of frequency spectrum of transfer impedance Z18-
Transformer series impedance has been changed to 0.005 + j 0.05
(pu). Resonant frequency is at 6974 rad/sec.
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ormer ImpedanceTransf
.20910 n

.15683 -

.10453

.05227 -

0.0000 -

-.05227 -

-.20910

Time <sec> 
N=102H, dt=32.5us

Figure 4.7 Voltage at bus 1 due to current in Figure 3.9. Transformer series
impedance has been changed to 0.005 + j 0.05 (pu).
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1.8185 n

1.3639 -

1.1366 -
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Frequency <rad/sec) CX103) 
N=102H, dt=32.5us

Figure 4.8 Magnitude of frequency spectrum of transfer impedance Z18.
External system equivalent impedance has been changed to 0.01 +
j 0.01 (pu). Resonant frequency is at 4712 rad/sec.
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Time <sec> 
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Figure 4.9 Voltage at bus 1 due to current in Figure 3.9. External system
equivalent impedance has been changed to 0.01 + j 0.01 (pu).
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Figure 4.10 Magnitude of frequency spectrum of transfer impedance Z1(g. All
shunt capacitances have been increased by a factor of 10.
Resonant frequency is at 1696 rad/sec.
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Figure 4.11 Voltage at bus 1 due to current in Figure 3.9
capacitances have been increased by a iactor oi iu.

All shunt



CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

The node voltages of an example power system due to a nonsinusoidal 
demand current were calculated. Three different frequency domain methods 
were used to solve the problem: Laplace transform, Fourier transform, and 
Hartley transform. The results were checked by solving the problem with the 
time domain simulation routine SPICE. The Laplace transform solution 
method used an iterative inverse Laplace transform routine and required 166 
seconds on a Gould NP1 to calculate the 150 points plotted in Figure 3.3. The 
Fourier and Hartley solution methods used fast algorithms available to 
calculate their respected discrete transforms The 1024 time samples of the bus 
voltage calculated, for both methods, took less than 5 seconds to compute. 
Because the majority of that time was dedicated to operations other than 
frequency transformations, the advantage of the Hartley transform over the 
Fourier transform was not well illustrated. For large systems, long simulation 
times, and cases of significant high frequency phenomena, the Hartley 
transform gains a computational advantage. As a comparison to a time 
domain simulation routine the SPICE program required 131 seconds to 
calculate the 1700 points shown in Figure 3.6. Clearly, the fast Fourier 
transform and fast Hartley transform were the superior methods. For circuit 
solutions with very large computational burden, one would continue to expect 
to gain a computational advantage of one to two orders of magnitude over a 
SPICE solution using the fast Fourier and Hartley transforms. Also, for 
problems with high computational burden, one would expect to approach the 
theoretical computational advantage of two for the fast Hartley transform over 
the FFT. This advantage occurs due to the use of real numbers in the Hartley 
domain as compared to complex numbers in the Fourier domain.

The majority of the computation time spent by the Fourier and Hartley 
transform methods is on the inversion of the matrix YbUS to compute ZbU5. 
Reference [31] proposes a method of estimating Zbus which does not require 
matrix inversions. Extensive work in developing this theory would greatly 
improve the methods introduced in this thesis. In addition employing these 
frequency domain methods on power system data taken from existing power
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systems is recommended. This would allow further development of more 
accurate system models. In addition, guidelines could be developed for initial 
choices of sampling parameters.

A further recommendation is that alternative transforms should be 
studied for applicability of nonsinusoidal waveform propagation studies. Real 
transforms offer computational advantages which should be investigated.

Finally, the examples shown in this thesis indicate that it is possible to 
obtain reasonable solution occuracy with considerable speed by reducing the 
number of points in FFT and fast Hartley solutions. Further reductions in the 
number of points should be considered. Methods to retain accuracy with 
reduced values of N should be studied.
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APPENDIX

A listing of the program that was used to calculate the bus voltages using 
the fast Hartley transform follows. The program using the fast Fourier 
transform is similar except that the transform subroutine, and convolution 
formula used are different. In order to analyze a new system, new Laplace 
domain equivalents for Ybus can be coded into the complex function F. In 
order to analyze a different current injection, new expressions can be coded 
into the function CURR.



c**************************************************** ****** 
c
c Main Program
c
c Calculates bus voltages due to
c nonsinusoidal currents
cc********************************************************** 

program fhtmeth 
parameter (np = 1024) 
complex a(np),omega,f, y (8,8) 
real hl(np),e(np),hv(np) 
m - 10
tf = 2./60. 
dt = tf/np 
np2 - np/2

c--------- Calculate Zbus-—--------
c

do 38 1-1/8 
do 39 j-1/8 
y(i,j) = cmplx(0.,0.) 

39 continue 
38 continue

do 10 ni - l,np2 
n - ni - 1 
freq = n/tf
w = 8.*atan(l.) * freq 
omega = cmplx(0.,w) 
a(ni) = f(omega,y)

10 continue 
c

a(np2+l)=cmplx(0.,0.) 
do 20 ni = np2 + 2,np 
nc = np - ni + 2 
a(ni) = conjg(a(nc))

20 continue

c——-Calculate Injection Current Spectrum- 
c

do 40 i = l,np 
t2 = (i - 1) * dt 
e(i) = curr(t2)

40 continue
call fht2t(e,np,m) 

c
c -—-Hartley Convolution—---------------- *
c

do 130 i = l,np
hl(i) = real(a(i)) - aimag(a(i))

130 continue
hv(l) = (hl(l)*e(l)) 
do 132 i=2,np
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hv(i) = .5*(hl(i)*e(i) - hl(np-i+2)*e(np-i+2)+ 
2hl(i)*e(np-i+2) + hl(np-i+2)*e(i))

132 continue
c
c------- “-Inverse' Hartley Transform-
c

call fht2t(hv,np,m) 
c

open (9, file=1 time') 
open (8,file='vl') 

c
do 30 i = l,np 
t = (i - 1) * dt 

c
write(9,240)t 
write(8,240)hv(i)/(np)

30 continue

240 format (fl2.6) 
stop 
end

Complex Function F
************** * *************** ******************************** * * 

complex function f(s,y) 
complex s,y(8,8),z(8,8),d456/ym
y(1,4)=-l./(-001+26.5e-6*s) 
y(4,l)=y(l,4) 
y(l,6)=y(l,4) 
y(6,l)-y(l/4)
y(l,l)-l./(.l+265e-6*s) + s/18.8e3 - y(l,4) - y(l,4) 

c
y(2,2)=s/18.8e3 + 1. - y(l,4) - y(l,4) 
y (2,3)=y(1,4) 
y(3,2)=y(l,4) 
y(2,6)=y(l,4) 
y(6,2)=y(l,4) 

c
y(3,3)=s/37.7e3 + .5 - y(l,4) 

c
d456 = (6.95228e-10)*(s**2) + (5.3e-8)*s + l.e-6 
ym = -(2.65e—6)*s/d456 

c
y(4,5)=-(.001 + (26.5e-6)*s)/d456 
y(5,4)-y(4,5) - ym
y(4,4)=s/18.8e3 + 1. - y(l,4) - y(4,5) 

c
y(5,6)=y(5,4)
y(6,5)=y(5,4)
y(5,5)=s/37.7e3 + 1. - y(4,5) - y(4,5) + ym + ym 

c
y(6,6)=-2.1*y(l,4) + s/12.6e3 - y(4,5) 
y(6,7)= .l*y(l,4)



oo
no

on

61

y(7,6)=y(6,7) 
y(6,8)=-s/75.4e3 
y(8,6)=y(6,8) 
y(6,4)=ym 
y(4,6)=ym

y(7,7)=37.7e-6/s + .01 - y(6,7) - y(6,7)
y(7/8)=y(6,7)
y(8,7)=y(6,7)

y(8,8)=s/12.6e3 - y(6,7)

y(4/5)=y(5,4)

call lincg(8,y,8,z,8) 
c

f = z(l,8)
c . I

return
end

c
c************************************************************* 
c Function CURRc*************************************************************

function curr(t)
data tl,t2,t3,t4,t5,t6/4.167e-03,4.667e-03,8.33e-03,

2. 12.5e-03,13.0e-03,16.67e-03/ 
p = t/t6 
P = aint(p) 
tp = t - t6*p 
i=l '
if(tp.ge.tl.and.tp.It.t2)i=2 
if(tp.ge.t2.and.tp.It.t3)i=3 
if(tp.ge.t3.and.tp.It.t4)i=4 
if(tp.ge.t4.and.tp.lt.t5)i=5 
if(tp.ge.t5.and.tp.lt.t6)i=6 
goto(l/2,3,4,5/3) ,i

1 curr=(tp**3)*l3824e3 
return

2 curr= -2000.*(tp-t2) 
return

3 curr=0. 
return

4 curr= -((tp-t3)**3)*13824e3 
return

5 curr= 2000.*(tp-t5) 
return

' ■' end

******************************************************** 
Subroutine FHT2T

Radix-2 decimation in time fast Hartley transform
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Input

Output

X
N,M
X

Sequence to be transformed 
Length of sequence N = 2**M 
Hartley transform

Authors: D.L. Jones and H.V. Sorenson
Rice University, August 5, 1984

ick'k'k'k’kic'k'k'k'kicit'k-k-k-k'k-k-k'k'k'k'k'k'k'k'k'k-kic’k'kic'kic'k'k'kic'kie-kic’k'ki'ic'k-k'klc'k'kieic

subroutine fht2t(x,n,m) 
real x(1)

------Digit reverse counter----- --------- --------- --------------------------- --------

100 j - 1
nl = n - 1 
do 104 i = l,nl

if (i.ge.j) goto 101 
xt = x(j) 
x(j) = x(i) 
x(i) = xt

101 k = n/2
102 if (k.ge.j) goto 103

j = j - k 
k = k/2 
goto 102

103 j = j + k
104 continue

———Main FHT loops----------------- —

do 10 i = l,n,2 
xt = x(i)
x(i) = xt + x(i+l)
x(i+l) * xt - x(i+l)

10 continue 
C

n2 = 1
do 20 k = 2,m 

n4 = n2 
n2 = n4 + n4
nl = n2 + n2
e = (8. * atan(l.))/nl 

C
do 30 j = l,n,nl

12 = j + n2
13 = j + n4
14 = 12 + n4 
xt = x(j)
x(j) = xt + X(12) 
x(12) = xt - x(12) 
xt * x(13) 
x(13) = xt + x(14)
x(14) * xt - x(14)
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do 40 i = 2,n4
11 = j + i - 1
12 = j - i + 1 + n2
13 = 11 + n2
14 = 12 + n2
ccl = cos(a)
ssl = sin(a)
tl = x(13)*ccl + x(14)*ssl 
t2 = x(13)*ssl - x(14)*ccl 
a = i * e 
xt = x(ll) 
x(ll) = xt + tl 
x(13)xt - tl 
xt = x(12) 
x(12) = xt + t2 
x(14) = xt - t2 

40 continue
30 continue 
20 continue 

C
return
end
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