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ABSTRACT

This report discusses the use of vision fcedback for autonomous navigation by a
‘mobile robot in mdoor environments. In particular, we have discussed in detail the issues
of camera cahbratlon and how binocular and monocular vision may be utilized for self-
location by the robot. A noteworthy feature of monocular vision is that the camera image
is compared with a CAD model of the interior of the hallways using the PSEIKI reason-
ing system; this rcasomng system allows the companson to take place at different levels
-of geomctrxc detall
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CHAPTER 1

INTRODUCTION

_ In;clligent mobile robots are exﬁccted to be useful for applications ranging from
factory-floor material handling and transfer to agricultural harvesting and planetary:
exploration. The problem of autonomous navigation in complex dynamic environments
by such robots presents substantial engineering challenges in the areas of plannmg, per-
ception, navigation and control.

‘One of the first mobile robots, named "Shakey", was the result of research con-
ducted from 1966 through 1972 at SRI [1]. It was capable of navigating through a set of
1ntcrconnected rooms in a contrived static environment and performing simple tasks such
as pushlng a box from one place to another. The focus of the research was on plannmg
the robot actions by means of a h1erarchy of computer programs that enabled it to per-
,fo.rm.the}tasks requested. Shakey’s sensory system used a black and white video camera,
a range finder and several "cat-whisker" touch-sensors. '

‘Moravec [2] built an autonomous cart that navigated among obstacles.exclusively
by vision, deducing its own motion erm the apparent 3D shift of the features around it.
To obtain three dimensional spatial information it implemented a slider stereo vision
algorithm. After each ‘motion step (the cart moved in one meter steps) the computer slid a
single camera on a track taking nine pictures at precise intervals and then used the 36
possible image pairings to estimate the 3D location of each feature. |

More recently, there has been much research on mobile robots that would be capa-
ble of operating in outdoor environments. Such robots, especially when they are expected
to operate at high speeds, place great demands on computational resources for the execu-
tion of perception-driven control algorithms. One example of such a robot is the Auto-
nomous Land Vehicle developed at FMC [3], a modified armored personnel carrier that
can be operated at speeds of up to 40 Km/h. Its sensor suite includes seven color cam-
eras, an inertial navigational system, a forward looking infrared sensor and a sonic-
imaging sensor. Most of the higher level cognitive processing, such as mission and route
planning, landmark recognition, obstacle detection and avoidance, etc., is carried out off
board by an array of workstations and other specialized hardware.
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Another autonomous vehicle for outdoor applications is the CMU NavLab [4]. The
NavLab is a van equipped with a color camera, a laser range finder and four general pur-
pose Sun-3 computers interconnected with an Ethernet. It is capable of traveling continu-
~ ously at a speed of roughly 1 Km/h over a mapped network of sidewalks, while recogniz-
ing landmarks and detecting and avoiding obstacles at the same time. Other research proQ
jects at 'CMU study the problems associated with smaller mobile robots in indoor
environments [5, 6] ' ‘

Brooks [7, 8] has proposed a layered control architecture for moblle robots the dif-
ferent layers constitute a hierarchy of behaviors, or levels of competence, instead of func-

tional modules. In this model, the behavior corresponding to each layer subsumes the

behavior corresponding to the layer below, hence the name subsumption architecture that

is used for this approach to robot control. This contribution by Brooks is a part of the

recent efforts at MIT [9] to scale down the Size_ of mobile robots in an at’_tempt' to create

cheaper and less complex platforms while attaining a reasonable level of intelligent:
behavior. ’ '

. Ayache et al. [10] have presented an approach to visual navigation using a trinocu-
lar stereo vision system. The system computes the parameters of robot. motion from 3D
: maps"of the surroundings obtained by a stereo vision algorithm. The third camera facili-
‘tates the solution of the stereo correspondence problem and adds redundancy to the input
1nformatlon which in turn leads to more robust and accurate results.

The work presented in thls report represents some of the early efforts at providing
our mobile robot PETER, named for Programmable Engine for Terrain Exploration
Research, with vision-based autonomous navigation capabilities. We have implemented
both binocular and monocular vision systems suitable for hallway navigation; the former
1mp1ementatlon is described in Chapter 5 and the latter in Chapter 6. Regardless of what
kind of a vision system is used, the cameras need to be properly calibrated if the meas-
urements performed in an image are to be translated into three dimensional measure-
ments for the purpose of determining the location of the robot. Chapter 3 presents our
work on camera calibration. In Chapter 2, the current configuration of PETER and the -
software developed to interface with it are described. A software architecture that can be
r used in conJunctlon with the stereo vision system is also presented.
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CHAPTER 2

HARDWARE AND SYSTEM ORGANIZATION

In th1s chapter the various components of PETER and thelr interfaces with the rest
of the system are described. An overview of the overall system architecture, that iricludes
- both PETER and off-board processors, is also presented.

2.1 HARDWARE CONFIGURATION

The mobile robot PETER is built on a Cybermation K2A platform. The platform
has a three-wheel drive system in which all the wheels are locked together for both steer-
' 1ng and driving. Thus, when the robot executes a turn, all three wheels turn in unison and
trace parallel paths with respect to one another. The result of this geometry is that the
platform itself does not rotate as the turn is executed A turret was built on top of the
platform for mounting the sensors and the on-board processmg hardware. Flgure 2.1
shows a p1cture of PETER.

I}t this time, all vision-related processing is carried out off-board on a SUN3 com-
- puter. This off-board processor will be referred to as the remote host. As illustrated in
Fig. 2.2 there are two communication channels between the remote host and PETER.
The data link, which connects the remote host with an onboard MC68000 based com-
puter, is used for controlling all the hardware on board. This link is an RF, full duplex,
asynchronous, serial link that allows commands to be sent to PETER and status reports to
be sent back to the remote host. The other link is the video channel, used for transmitting
camera images from the robot to the remote host. A video switch is used under computer
- control to select one of the cameras (there are two mounted on the robot) for RF
transmission. The output of the selected camera is broadcast by an on-board video
transmitter and received by a video monitor, whose output is in turn fed to the image

*We ar¢ currently building a more powerful VME bus based processing system which would
allow image digitization and much of vision processing to be carried out on-board. This system is
expected to be ready in early 1990.
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_video cameras — ]
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(b)

Figure 2.1: A picture of PETER.
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Figure 2.2: A block diagram of the equipment onboard PETER and the connections with
the remote host.
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digitizing hardware controlled by the remote host. There are two data links on board
PETER (Fig. 2.3); these are referred to as the supervisory and control links, respectively.
The supervisory link is an RS-232 asynchronous serial link that serves as a communica-
tion channel between the MC68000 and the Z80 based robot controller. The second serial
on-board link is internal to the Cybermation platform and serves as a communication
channel for the computers and hardware inside the platform. :

The on-board MC68000 based computer controls the video swnch the sonar sensor
interface and is the master of the supervisory link that communicates with the Z80 based
- robot controller. Upon request from the remote host, the MC68000 can select the camera
output to be transmitted, take sonar readlngs or send any motion command to the vehicle
platform. Therefore, from the standpoint of the remote host, the MC68000 processor
serves as an interface with all the hardware internal to PETER..

2.2 K2A PLATFORM INTERFACE

. As mentioned in the préceding section, the vehicle platform is controlled by a Z80
computer. The only interface between the robot controller and the outside world is the
supervisory link, with the MC68000 processor on-board PETER as its master. The com-
munication protocol on both the supervisory and control links is master/slave in nature,
and has only two message formats: a request for data from a slave computer and a
transmission of data to a slave. The transmission of data to a slave is in ASCII hex and it
is structured as shown in Fig. 2.4a. For example: ’

:020100030102F7<CR><LF> -

would transmit two bytes, 01 into address 0100 Hex and 02 into the address 0101 Hex of
the slave computer 03 Hex. If slave number 3 received this message properly and calcu-
lated the correct checksum (F7H), after the <CR> was received, it would place the two
bytes in memory and transmit the check sum back to the master as a single 8 bit byte (not
in ASCII hex). ‘

~The message format for a request for data from a slave computér is shown in Fig.
2.4b. During the reception of such a message the slave will calculate the checksum for
- the message as it is received. After the slave receives the message, it will immediately
transmit the requested data in raw 8 bit binary bytes, subtracting each from the checksum
of the received request. After the last bit of the requested data has been transmltted' the
~ slave will append the combined checksum in the form of an 8 bit binary byte. Note that
all transmissions are initiated by the master and that the messages from the master are in
the form of ASCII coded Hex, as opposed to the 8 bit binary bytes form of the transmis-
sions from a slave to the master.
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VIC68000

-Supervisory

Link

JReA L Oer o} DBOL
slavef | | onboard | - Docking | ‘;

( g ’ : :  bea - ; Key-pad
. master | ' computrs | beacon: ! ¥-P

Control Link

Figure 2.3: Supervisory and control links.
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‘NNAAAACCDD...DDSS<CR><LF>  where:

NN
AAAA
CC

DD... DD
SS

<CR>
<LF>

.NNAAAACC<CR><LF>

NN -
 AAAA
cC
<CR>
<LF>

Indicates a data transmission..

Number of data bytes (2 hex digits).
Beginning destination address (4 hex digits).
Slave computer number (2 hex digits).

Data (2 hex digits / byte).

Check sum for all digit pairs, calculated
by subtraction starting with zero. '
Terminator (required).

~ Optional for ease of monitoring.

(@)

- where:

Indlcates a data request. o

Number of data bytes requested (2 hex digits).
Beginning address of data (4 hex digits).
Slave computer number (2 hex d1g1ts)
Separator.

Display aid for monitoring.

(b)

Figure 2.4: K2A message formats.
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~ Using these two message protocols the master of the supervisory link (the
MC68000 processor) can read and write data in a 64K area of the slave Z80 robot con-
 troller. The actual effect of data transrmssron will be determined by the software running
in the slave. There are two general types of data: control and parametric. Control data
determines what algorithms the controller will execute. Parametric data is then used by
‘the operating algorithm to perform the desired function. For example, writing the MODE
value of the K2A platform is a control function. The following five modes are available:

MODE :

HALT Vehicle halted.

MANUAL :Torque commanded.
AUTOMATIC - Automatic program execution.
MAN/REV Torque commanded, reverse.

CLOSEDLOOP  Velocity commanded.

An example of parametrlc data is the value of the drive speed when the robot is operating
in CLOSED LOOP mode. :

In order to be able to command PETER to perform the desired motions, a program
was developed that allows the MC68000 computer to interpret a sequence of up to 100
motion commands sent by the remote comfiiiter. The program translates the motion com-
mands ‘into instructions executable by the K2A and writes all necessary control and
parametric data into the memory of the Z380 controller so that the motion sequence can be
executed. The prograrr) first places the robot in HALT mode and then, after successfully
loadlng all the instructions and parameters, it executes them in AUTOMATIC mode;

. ﬁnally the robot is left in HALT mode. Table 2 1 lists the motion commands that can be

1nterpreted by the program.

2.3 SOFTWARE ARCHITECTURE

The system organization, in form of the components or functional modules and their
interconnections, is shown in Fig. 2.5. In the remainder of this section, the function of
each module will be outlined; subsequently the interconnections between the modules
will be explained.

“The job of the Cartographer consists of maintaining the a-priori environment map
and passing the information to the modules that request it. Different map information
structures may be required by different modules or even by the same module. For exam- »
ple, the PSEIKI system described in Chapter 6 for CAD-driven interpretation of monocu-
lar vision data, needs a 3-D solid model of the hallways for generating a synthetie image
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'Ttabl'e 2.1: Commands understood by the K2A interface. In the conditional instructions
result is the value of the last READ, WRITE, ADD or SUB operation.

Command Description
END ; End of program
RUNspeed XY Move forward to (X,Y)
TURN azimuth . Tum to azimuth
- WAIT time v Wait for time
- BACK speed X Y Move backwards to (X,Y)
WRITEB address byte Write byte at address
“WRITEW address word Write word at address
READB address byte Read byte from address -
READW address word Read word from address
JUMP step ' Jump to program step
JUMPGT step value Jump if result > value
- JUMPLT step value Jump if result < value
JUMPEQ step value Jump if result = value
CALL step Call to program step =
CALLGT step value Call if result > value
CALLLT step value Call if result < value .
CALLEQ step value Call if result = value
RETURN return from call
ADD address value Add to variable
SUB address value Subtract from variable
HALT ' Halt-End of program - ;
DOCK n Drive into dockn
UNDOCK Clear dock statusn .

" SETXYXY Set X and Y position values
SETAZ azimuth Set azimuth value "
JOG speed distance Drive straight
ALIGN Turn turret to docking beacon
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Figure 2.5: Block diagram of the system architecture.
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of what the robot should see if it is where it thinks it is; the solid model of the hallways
for this purpose resides in the Cartographer. On the other hand, a much simpler graph
structure representing the hallway network is adequate for the Path Planner. In this graph
structure, which also res1des in the Cartographer, the vertices represent corners, intersec-
tions and landmarks, and the edges the straight segments of the hallways. The vertices in
the hallway graph have as attributes their location coordinates and a label that allows the
system to identify them by the name of the real object they represent, i.e.: Lab 180,
Potter Stairs, Classroom 171, etc. The edges in the graph have as their only attribute the
width of the section of hallways they represent.

The Path Planner receives from the user the mission objectives and defines a
sequence of actions that will achieve the goals. In the context of hallway navigation, a
realistic mission statement could be for example: "Go To Room 181." After obtaining the
necessary information about room names and hallway topology from the Cartographer,
an optimal path from the starting location of the robot to Room 181 is determined. The
format of the path that the Navigator can use is a sequence of straight line segments each
descnbed by the coordinates of its end points in a global or world coordmate frame

The Cartographer provides to the Path Plannera graph data structure an example of
which is shown, superimposed on the outlines of the hallways outside the lab area, in Fig.
2.6. The first task of the Path Planner is to augment the given graph with two more nodes
representing the present robot location and the destination location, producmg an
enlarged graph, such as the one shown in Fig. 2.7. In order to determine the vertices that
are the closest neighbors of the added nodes in the augmented graph, a search must be
carried out until a pair of adjacent vertices V; and V, is found that meet the followmg
conditions: ' -

- The perpendicular dlstance d from the location P, correspondmg to the new vertex
V. 1o the line L defined by the points P; and P,, these physical points correspond-
ing to the vertices V1 and V,, respectively, must be less than half the width W asso-
c1ated with the edge E incident at both V; and V,. T

- The perpendicular projection of P on line L must lie between ‘the locatlons P 1 and |
P, of the end- -points of the same line.

The first condition ensures that the point P is within half the hallway w1dth of the
centerline of the hallway segment represented by the edge E. The second condition
establishes that P is between P, and P, along the hallway segment. In order to test for
these conditions, the coordinates of P are computed in a local coordinate frame centered -
at Pl w1th the X axis passmg through P,:

g | cos® sin9v Py Py, | : |
’y -sin® cosO P, B Ply : , .(2'-1) -
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lassroom 171

vomst potier R T . msinbudding

{wr

stairs sechnology |
— O

optics lab

Figure 2.6: Represenfation of part of the EE annex as a graph.

Figure 2.7: Result of adding the initial and desired locations of the robot to the hallway
description. '



20 . lopez-abadia/kak

where (P,, P ) and (P ) are the coordinates of the point P in the world and local
coordinate frames respectlvely, and (P 1, P 1y) are the coordinates of the point P in the
‘world frame. Furthermore,

-cos® = I ’ 2.2)

P, =Py |
Pay—Piy
sinf = ———
1P~ P |

In the,leCal coordinate frame, the two conditions stated ahove for deternﬁning the nearest
neighbors of a new vertex can be expressed as (Figs. 2.8 and 2.9)

0<P,<|P-P| . (2.3)
1 W
-0 < P’ _
2 y =7

‘Once the start and the destination nodes have been added to the hallway vgrap'h the
shortest path between them is found using Dijkstra’s algonthm (see appendlx A).
Although not currently implemented in our path planner, some applications may require
that we use other than the shortest distance criterion for optimal path selection; such
alternative criteria could for example be the abundance of landmarks or the likelihood of
_the absence of obstacles. Inclusion of such criteria would, of course, improve the robust-
ness of the system but at the cost of a more sophisticated path planner.

After the shortest path is determined, each hnear segment of the path between the
} nodes of the graph is examined to make certain that it does not exceed a-certain pre-set
- threshold; if it does, new nodes are inserted so that the condition on maximum allowable
length of a path between any two neighboring nodes is satisfied. The basic reason for
inserting new nodes along straight segments is that it is at the locations corresponding to
the nodes that the robot is required to verify its position by using vision feedback. If the
length of a straight segment between the neighboring nodes is too great, excessive drift in
robot location due to odometry errors may jeopardize the ability of the 'syster'n to use,
vision for accurate self-location. The maximum allowable length of a straight line seg-
ment is a function of the vision algorithm used and the extent of the deviations from the
strajght line path for collision avoidance. The maximum such length for stereo-vision
based.Self-locatien is 4 m at this time. When the PSEIKI system is used, this length thres-
hold is increased to 6 m. An example of the output of the Path Planner is shown in Fig.
2.10, where again the graph data structure output by the planner 1s superimposed on an
outhne of the hallways.

The Sensory System must control the on-board sensors and analyze their output. At
this point the principal sensory input of PETER is vision. The use of the ultrasound range
sensors is prlmarlly limited to near obstacle av01dance
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to be computed.

Figure 2.8: To determine in what segment of the hallway network is a point P the
perpendicular and parallel distances, d and / respectively, with respect to each line L have

[P2 - P1]

P1

Figure 2.9: Graphical representation of the tests on a point P once it is expressed in a
more convenient coordinate system. '
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C .
* D
181
180
PR B » &
170 . B
machine room
(€ :
A optics lab

Path: A,B,B’,C,D

Figure 2.10: Output of the Path Planner for the request "go to room 175" when the
starting location is A. Note that the segment BC was broken into the two subsegments
BB’ and B’C to prevent excessive drift in the robot location during its traversal.
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We have implemented two approaches to the use of the visual 1nformatlon available
o PETER The one described in Chapters 4 and 5 uses the 1nformatlon of both on-board
cameras to prov1de a 3D description of the hallway scene using a passive Stereo- -algo-
‘ ,nthm The scene descnptlon provided by the stereo vision system is compared by -the

. Navxgator with map information from the Cartographer to determine the current locatlon
of the robot. Note that with stereo vision, the correspondence between the scene and map
features has to be determined i in the 3D. world domain. .The other approach, dCSCI‘led in
Chapter 6, uses the PSEIKI system 1,21 to interpret the image of a single camera for
olvmg the self-location problem In PSEIKI, an expected map of what the robot should
see is generated by rendering a CAD model of the hallways; this expected i 1mage is then
‘compared with the actual camera 1mage and; mferences drawn about the Aactual current
‘ _locatlon of the robot. ‘

¥ The Actuator executes the requlred motlon primitives received from the Nav1gator

_The Actuator understands a number of pnmmve motion commands such as (tum 0°) and
(move @speed to X, Y). The complete l1st of motion commands that the- Actuator can
execute is shown in Table 2.1. ‘ ‘

The Navigator orchestrates all tasks necessary to execute a g1ven plan Upon the
recelpt of a path from the Path Planner, the Navigator can start executing that path by
sending motion commands to the Actuator ‘and momtormg the progress by querymg the
Sensory System and the Cartographer Note that if the odometry were the only source of
-information about the location of the robot, the uncertainty in its posmon and orientation
‘would i increase steadily as the robot moved away from its initial location. ‘Without the -
~ aid of any sensory feedback this uncertainty would grow to the point where the robot
would be effectively lost -- lost in the sense that any subsequent sensor-based processing -
- might not allow the robot to ﬁgure out its true location. As was mentioned before, it is -
for this reason that the planned path is divided into short enough segments so that the
uncertainty at the end of each segment would not be too large to preclude a vision-based
exercise in self-location and the zeroing out of whatever uncertainty might be associated
with the robot at the time it used vision to locate itself. Vision-based updating of the
~ location of the robot takes place by comparing the vision data supplied by the Sensory
System with a map of the environment supplied by the Cartographer (Fig. 2.11). After
such an update, the Navigator commands the Actuator module to the. locauon
correspondmg to the next node in the planned path ' e ~

Although not 1mplemented at this time, it is hoped that in the future another 1mpor-
tant job of the Navigator would be to help the Cartographer update. its map of the
environment if the Sensory System reports the presence of Ob_]CCtS and/or features not in
the map supplied originally by the Cartographer. Of course, implementation of this idea
- is going to raise important questions regarding how to distinguish between transient
objeets/features in the environment -- such as humans -- especially whenvthey appear to
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Flgure 2.11: Sequence of actions performed by the Nav1gator in order to. execute a
segment of the path. :
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be stationary and those objects/features that are truly permanent.
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 CHAPTER 3

CAMERA CALIBRATION

Camera calibration is a fundamental pre- requisite to the use of vision, be it in
stereopuc mode or in monocular mode After camera calibration, for a given pixel in the
image plane we can compute the line- of-s1ght to the scene point to which that pixel
corresponds. The calibration parameters associated with a pair of cameras tell us how to
translate. the dlspanty field generated by fusmg the camera images into a dtstance map of
the world

Usually, calibration is carried out by assummg a model for the process of image for-
mation by the cameras. A number of models are available for this purpose, the two best
'known being the pinhole model, which i is much used for fixed focal-length cameras with
high quality lenses, and the two- -plarie model used when we cannot assume the passage
of all the rays through a single point. We will show that the pinhole model is approprlate
for our purposes, in the sense that the errors in depth values using this model are a small
enough fraction of the range values we are interested in.

3.1 CALIBRATION METHODS: AN OVERVIEW

The process of image formation can be seen as a projection of a three dimensional
space into a plane, which is only t'wo.‘ dimensional. By assuming a suitable model for this
process and computing the parameters of the model via calibration, it is possible to at
least determine the line-of-sight to a point in the 3D space from its image coordinates.
Given such lines of sight from more than one vantage point, it is even possible to com-
pute the: Iocation of a scene point. Modeling captures the physics of image formation and
a calibration procedure then tells us how to compute the various parameters of the model.
Evidently, the model used must be applicable to the cameras and lenses used in a givcn
system. Of course, for any given model, it is poss1ble to devise various callbratlon stra-
tegies of varying degrees of accuracy. '
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311 Pinhole Models -

This is an approp_riate model to use for fixed focal length cameras -withhigh’qUality

| “lenses. In this model, the image of a scene point is located at the intersection of the

image plane with a line from the scene point which passes through a point o,nthe optic
- axis located one focal length away from the image plane, as shown in Fig. 3.1. In other
" words, all the lines of sight that form the image pass through a common point on the
optic axis; this point is called either the camera'-lens center or the center of projection.
Usually, the pinhole model is only applicable when the thin lens approximation holds.
With thick lenses and when distortions are present,-the pinhole model breaks down and
must be supplemented with corrections terms, as, for. example, has been done by Tsai [8], -
: [9] The pinhole model is well documented in the texts [1], (2], [3]. v

Yaklmovsky and Cunnmg-ham [4] vdescrlbe their calibration procedure 'us‘in’g the
" pinhole model of a pair of cameras on board the JPL Robotics Research Vehicle They
used cameras with narrow fields of view and their lenses were hlghly lmear meaning that
’ the1r lenses did not require radial and/or tangential correctlon terms :

Moravec [5] also used a pinhole model in the ca11bratlon of the CMU rover’s cam-
era. He corrected the lens distortion in his system by using two two—d1mens1onal polyno-
‘mials; one of the polynomials was used to relate the positions of the pomts in the image

to their corresponding locations for an ideal pinhole camera of unit focal -length -- this
: polynom1a1 could then be used to compute lines of sight to scene pomts from thelr image
, coordinates. The other polynom1al represented the reverse transformation, from the 1deal
'pmhole case to the actual image coordinates. The latter polynom1al could be used for
synthesmng the images of expected scenes. -

. Tsai [8, 9] proposed a two stage calibration procedure for computlng the parameters
of a pinhole model augmented with radial distortion terms. In the first: stage he solves for
a subset of the parameters using only linear equations and constralnts among the ‘parame-
ters. Then in the second stage the pinhole projective equatlons are used to ﬁnd an approx-
1mat10n for the second group of parameters. This approximation-is’ used as an- initial
guess in a non-linear search that is required to compute their final values usmg the full -
model equations (pinhole plus d1stortlon) A nice feature of this method is that it allows
for co-planar scene points to be used for calibration, which is unhke m most plnhole
based procedures ' - s o

_ /' : Wong [7] descrlbed a formulauon suitable for calibration of the. pmhole model It

,mcludes terms representmg radial and tangential distortion. He suggested two pos51ble
procedures for calibration using this model. The very high requirements on accuracy in
: »photogrammetry necessitate that both radial and tangential corrections be taken into
account in augmentmg a pinhole model however in computer vision apphcatlons such is
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Figure 3.1: Image formation in the pinhole model.
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rarely necessary and often it is sufficient to consider only the radial corrections, if needed
atall. | |

Ganapathy [6] derived a non-iterative procedure to compute the camera parameters
corresponding to a pinhole model from a given homogeneous perspective transform
matrix; note that the transformation from the scene coordinates to the image coordinates
in a pinhole model corresponds to a perspective transform. In the procedure advanced by .
Ganapathy, it is assumed that the carnera has already been calibrated and the procedure is
'to be used to compute the physical parameters of the camera, such as the position of the
camera, the>orientation in terms of pan, tilt and swing angles, the location of the center of
the image plane, etc. '

3.1.2 Two Plane Model

In the two plane model the imaging process itself is not represented. Instead it
models the back-projection process, or image to world transformation, as a mapping
~ from pixels to lines of sight. This mapping is not explicitly related to any underlymg

phy51ca1 process. Unlike in the pinhole model, in the two plane model the lines of sight
are not forced to intersect at the same point. Each line of sight ray is descnbed by its
mtersecuon with two calibration planes (Fig. 3.2) therefore the name of the model. Th_e
_ 'calibration procedure consists of the process of determining the parameters of the image
to calibration planes mapping. - '

Different mapping schemes can be used. Perhaps the simplest conceptually and
most accurate could be a look-up table with an entry for each pixel in the image. Each
entry would indicate the corresponding line of sight. In the calibration process the inter-
section of these lines with the calibration planes would be measured and the entries in the
table filled. This approach_however could be prohibitively expensive. A more reasonable
scheme is to measure the lines of sight for a number of pixels and interpolate for other
points between them. The calibration process consists then of ﬁndmg out the parameters
of the interpolating functions. - o

The two-plane method is descrlbed in deta11 in Martlns et al. [1 1], they have pro-
posed three types of interpolation. In their linear and quadratic 1nterpolat10n methods,
they globally fit an interpolation function to all the calibration points on each calibration
plane. The functions are then used for any pixel across the entire image. The third inter-
polation method presented consists of tesselating each calibration plane with tr1anf,les
and performing linear interpolation within each triangle. The calibration points are the
vertices of each triangle. Izaguirre et al. [12] have employed the two-plane model with
global polynomial interpolation in the calibration of a pair of mobile cameras. Gremban
etal. [13] eompared the accuracy of the methed using local and global interpolation.
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Figure 3.2: Image formation in the two plane model.
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One of the advantages of the two-plane model is that it accommodates some lens
distortion without the need for augmenting terms. In particular when local sphnes inter-
polation is used, the imaging system can be modeled to arbitrary accuracy by increasing
the density of calibration points. On the other hand, one of its drawbacks is that it is
“designed to work only from image coordinates to world coordinates, making it impracti-
cal to predict the view of the world that the robot will have at a given location.

To determine the appropriateness for our application, we implemented some of the
calibration methods mentioned in this section. In the next section, these methods are
described in greater detail and their relative merits discussed. -

' 32 CALIBRATION METHOD BASED ON IDEAL PINHOLE MODEL

In this section, a calibration procedure based on the ideal pinhole model is
presented. The perspective transform equations, that is the equations that describe the
imaging process using this model, are derived and a method for their solution is
described. '

3.2.1 Camera Model

In this ‘subsection, we derive the perspective transform and inverse'perspective
transform equations in a form suitable for computer implementation. The perspective
transform allows us to compute the image coordinates corresponding to an object point
whose world coordinates are given. The inverse perspective maps each image point to the
line of sight on which the corresponding object point must lie.

The physical location of the camera can be defined by the position of its focal
_ center. If the world coordinate system is centered at O, let vector'é) define the location of
the camera focal center with respect to O. We can define another coordinate system cen-
tered at C with base unit vectors h v, a. We will refer to this system as the camera coor-
dinate ‘system. Both the camera and the world coordlnate systems are assumed to be
orthonormal. The camera system is oriented such that a is perpendicular to the image
plane and. h lies along the direction of the plcture scan. The image plane mtersects the a
axis ata dlstance f from C (see Fig. 3.3).

Any point on the image plane can now be referred to by its coordinates (4;v) in the
1mage plane. The world coordmates of such an image point are given by the vector:

C—fa+uh+v (3.1)
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Figure 3.3: Some of the parameters of the pinhole model.
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To obtain the i 1mage coordlnates of a given Ob]CCt pomt P we can compare similar trian-
gles in Fig. 3.3 and find

=)
=,

z=-=Zr o (B2a)
f D4 o _

= LTS
Yoo ¥ : (32w
f Da . .

' w1th D= P C Observe that the numerators and the denommators in (3 2) are nothmg
but the coordinates of vector D in the (h v, a) frame
In practlce the coordinates of an image pomt are not measured in terms of the ana-

log entities (u, v), but by using their discrete counterparts, represented here by the -
indices (i, j) ‘The analog and the dlscrete versions are related by

u=(-ig)hu - - (3.3a)
| =(-jo)Av S - (33b)
where (i, jo) are the discrete coordinates of the center of the irhage ‘(u =0, v=0) and

Au and Av stand for the sampling intervals along the h and v dlI‘CCthllS respectively.
Substituting Eq. (3. 3) in Eq.-(3: 2) results in -

- ~ : ' v
i= L Dh oy (4
Au p.g | '
f 5) n . . ;
2
= 2 —+ ] : 3.4b
J Av Ba Jo _ ( )
These equations can be rewritten in a more compact form as
DH
= == (3.5a)
D-a
DV
= = (3.5b)
‘ D-a
with
H=L f+ipa ~ 36
= —=—h+i 6
R toa ~ (3.69)
V=24 |
= Z;' v Joa (3.6b)

» o o,
o Although the system defined by H, V, a no longer represents an orthogonal coordi-
- nate frame, these vectors are still linearly independent and they form a three-dimensional
basis. There_fore, the numerators and the denominators in Eq. (3.5) represent the
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i . ‘ ' =, 7_ > > ) < qe v : . .

-c0_(3rdrnrates of the vector D in the (H, ’V,.Eb frame, multiplied by the quantities
1H1, 1¥1 and 1, respectively. ‘

- The equations in (3.5) can be recast in a more convenient matrix form with the use

of homogeneous .coordinates. A three dlmensmnal pomt with coordmates X, ¥, z, is
represented by its homogeneous coordinates wx, wy, wz, w where w is an arbitrary

. scalar. The coordinates are recovered by dividing the first three components by the last.

Similarly, a two- dlmen51onal point of coordinates u, v has wi, wv, w.as homogeneous
fcoordmates - '

Us-lfng ‘homogeneous coordinates, we can rewrite equations (3.5)as

(3.7)
i i T 5
Since D =P —C we have
‘0T, iIn’a more »com_,pacf form .
: D = P C 39
‘ Comblmng 3.7 and (3.8), we can write
lwl={vev,v,-C,| |7 (3.10)
t lax ay a, —C%, | |
“which may be expressed more compactly as
Py = TPy Q.11

where Py is the homogeneous -coordinate representation :of the world point P, and Py the

homogeneous coordinate representation of ‘the corresponding 1 image point. ‘The matrix
&

relating the two is designated as 7. The fourth column of T can be written in terms of C

as ' ’

C’'=RC | (3.12)

where R :sfands for the»=3>?3 submatrix-of T:

X

Hy, H, : : : |
R= |V, V, V' (3.13)

a, ay a;
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, ‘Matrix T is frequently referred to in the literature as camera calibration matrix or
perspective transform matrix. This matrix contains all the necessary information to com-
pute both the perspective and the inverse perspective transformations. Eq. (3.10) is used
to obtain the image coordinates corresponding to an object point. To compute the line of
sight corresponding to an image point, first C is calculated. From Eq. (3.12)

c=RrR1C" - o (3.14)

Inverting matrix R presents no problem since it is nonsmgular if the focal length fis
non-zero. This can be demonstrated by noting that

IR = H-(Vx d) 1 | - (3.15)
or from (3.6)
Rl = H- (L $xd +jo dxa) . (3.16)
Ay _ :
which leads to
| o> f o~ P o
‘IRl =H-“—h= ‘ @317
Av Au Av- . , ( ‘ )

Therefore the determinant of R is non-zero if fis non-zero.

The direction of the hne of-51ght can be obtained from (3 7) by settmg w= Da =1.
We can always do this since we are only mterested in a direction not in the magmtude of
D We have

P,=|j|=RD o (3.18)
1 .

and since we know that R is invertible ‘

| D=R'P (3.19)
Note that this D does not have the correct magnitude since we artificially set Da =1, but
then we are not interested in the magnitude of D. With the D obtained from the above
.equatlon the correct value of D, the one.that would satisfy, say, Eq. (3.9), is given by

D for some value of the parameter W Eq. (3.9) may now be used to establish an equa-
tion for the line- of-31ght to the object point corresponding to the given 1mage pomt

= uD+C “or Py = uRIP/+C .ﬁﬁ r@m)

- This represents a parame‘tric form for the equation of the line-of-sight.
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3.2.2. Calibration Procedure o

The purpose of the camera cahbratlon procedure is to obtain the values of the ele-
-ments of the calibration matrix from a set of points of known i image and world coordi-
nates. In this subsection we describe a calibration procedure using the model descnbed in
'the prev1ous subsection. Co ' ‘

The calibration matrix T is a real 3x4 matrix which represents 12 unknowns In
,pr1n01ple knowledge of the image and world coordinates of 6 non- coplanar points should
,sufﬁce to accomplish the calibration since each point generates two equations. In practice
more than 6 points are used and a least; squares optimal solution is obtained.

We should be aware that not all the twelve elements T,,, in T are mdependent All
“the Ty, are functions of the parameters C A, v, 4, f, Au, Av, iy, and j(), and there are con-
stramts on how these parameters appear in the expressions for T,,,’s. For example I, Au

and ‘Av.can only appear as the scahng factors Af and L in the equatlons as.a conse-
u Av

:quence, .t'he three parameters result in -only two independent -unknowns k =Ai and
u

k‘,—Ai B (; should also be noted that the nine components in the vectors h ¥ and a are not
v .

w

mdependent since the orthonormal coordmate system for which the VeCtors h v and 4
‘constltute a basis has only three degrees of freedom with regard to its onentatlon The
orientation of the coordinate system they define can instead be described by three angles
0, ¢ and ' for describing the pan tilt and swing of the camera. These angles measure the
consecutive rotations about the camera system axes necessary to bring it into coincidence
- with the world system orientation. ' '

Therefore the 12 entries in T are comblnatlon of the following 10 independent
| parameters the three components of C and 9, 0, y, k,, ky, ig, jo. We could rewrite
(3.10) in terms of these independent parameters and find the optimal ‘soluuon of the
 resulting non-linear equations or keep (3.13) and calculate the optimal 12 elements of T
under the non-linear constraints imposed by the underlying 10 independent parameters.

Neither approach is practical and the usual compromise is to look for the optimal
solution for the T,,’s neglecting the con'straints among them. To accomplish this, let’s
- assume that we are :u_‘sin-g the scene points Py, { = 1,...,N, with coordinates in the world
frame (x;, y;, z;), for camera calibration. Let their corresponding image points be denoted
by the pairs (i, j;). For each pair of the corresponding scene point and’ the 1mage point,
' we can wr1te the following two equations derived from (3.10):

Tux+Tyy+Ti3z+Ty

: 4 (3.21a)
Ty xi4+T3y+T33z+Tay
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Toyxy+T0y+Toaz+Toy
Ty x+T3y1+T3321+ T3

2w

.
N..
i

Since the equations will not be altered if all the T,,,, are scaled by an arbitrary fac-
tor, we scale them by T34 1mp1101tly by settmg T34 to 1. These two equatlons can be
written as . '

i

Tux+Tun+Tuz +'T14 —Taix-Tai yi-Taziiz i (3.223) |
Tax+Ton+Taz+ Toa =T j1xi—Txjiyi—T33 Ji 7= J'z - (3.22b)

for I=1,2,...,N. Forall [ collectively, these equations can be expressed in a matrix form if
we deﬁne a vector U of unknowns and a nght—hand—31de vector Bas - '

1Tu .
\ Tyl | i
Ti| i2
Tis
| T in R
U= |Tn =" 62
To 1"
Ty
T3 N
T33 -

Thenb tﬁeze‘qua_tivons' (3.22) forl = 1,...,N can be expressed as s }

' | ‘ ' A U=B8 S .(‘3 24)
where A is the matrix of coefficients; the elements of A consist of the world coordmates-
- of the scene: pomts used for cahbratlon

~ This is an overdetermlned system of linear equatlons for N greater than 5, since for
‘N equal to 6 we will have 12 equations for only 11 unknowns. The system of equatlons‘
will have a solution only if the columns of A are linearly mdependent It can be seen from
Eq. 3. 22) that linear 1ndependence implies that the points P; should not be coplanar for

otherw1se any of the columns of A- mvolvmg one of the world coordinates could be writ-

ten asa lmear combination of the other two '

Due to inconsistencies among the equations caused by measurement and digitiza-
tion errors, round-off, etc., there is no exact solution for (3.24) with N greater than 5.
Consequently we will find a best posszble solution in the least squares sense. ThlS is a
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solutlon that mlmmlzes the exurcssmn - _ |
| [AU BJ [AU»—B] 32
, Wthh is tjhe solution of the normal eq-uat;,,ons. '
 ATAU = 4"B " (326)

v_A commonly used solution to Egs. (3. 25) and (3. 26) is the pseudo inverse solutlon and is
, glven by - |

U= (A TAy1ATR 3.27)

Note that, at least theoretically, thlS solutlon is guaranteed to exist since when the
columns of A are linearly independent. the’ inverse of ATA will always exist. Such
pseudo-inverse ‘solutions are frequently used to solve overdetermined sets of equations
and. the solutions produced are generally acceptable whenever the data are not exces-
sively corrupted by noise. We have chosen to use the following method ‘which we believe _
~ yields superior results in the presence of n01se and errors in the elements of the matrix A.
In the method we use, the solution to Eq (3.24) is found by first computing the OR
decomposition of A obtained by using Housholder transformations and then solving, by
using the pseudo-inverse method, the equivalent system R PT U =Q7 B, where P is a
permutation matrix, Q an orthogonal matrix, and R an upper triangular matrix. The solu-
tion so obtained is then used as an ini‘ti_él guess for a routine that computes the least
squares optimal solution of the set of equations (3.21) with I = 1,...,N, using a modified
Levenger-Marquardt method. This procedure is summarized in Fig. 3.4.

3.3 .CALIBRAT-'ION METHOD BASED ON PINHOLE MODEL INC'ORP()RATING_
' RADIAL DISTORTION

If one must use the pinhole model the calibration methods that take into account
radial lens distortion are capable of producing higher accuracy results. To study the
potential of this approach for our application, we implemented a procedure first advanced
by Tsai for this augmentation of the pinhole method. We chose his method for imple-
mentation for the reason that it allows the world points used for calibration to be coplanar
-- a great convenience for calibrating the-cameras mounted on a mobile robot, since all
the calibfation points can be marked on a wall or some other flat plane. As was men-
tioned in the precedmg section, the prev1ous calibration method docs not admit coplanar
points. ’
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Input: Py, = (g, y, z1); Pp, =G, Jjp) 1=1,---, N
Output: T,, i=1,2,3; j=1,2,34

1:  Solve the normal equation: _
o ATAU = ATB
2:  Solve the non linear equations for an optimal solution using U as an initial guess:
' Tux+Typy+Tig+Tis
T3+ T3y +T332z+T34
Ty x+ Ty +Tz+Toy
T31x+T3y1+ T332+ T34
| = 1‘, e ,NI '

i =

Ji

Figure 3.4: Summary of the procedure used to compute ‘the calibration matrix.
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3.3.1 Camera Model

This subsection describes the camera model, defines the calibration parameters and
shows the derivation of the equatlons that represent the imaging process. ‘Fig. 3.5 illus-
trates the basic geometry of the camera model. O represents the center of projection or
the focal point, O’ is the image center or point where the optic axis (in our case the Z
axis) pierces the image plane and P, is the image of a scene point P for a perfect pinhole
camera. Py is the actual image of the scene point P that differs from P, due to lens dis-
tortion. The distance from the image plane to the center of projection (length of the seg-

ment OO0') is f. The system centered at O,, represents the world coordinate frame and the
one centered at O is the camera coordmate frame.

The transformation from the world coordmates (xw, Yo zw) of a scene point P to the
coordinates (xf, yp) of the corresponding image point can be obtained by performing the
following steps. First, we compute the coordinates of P in the camera frame centered at
0 We will represent these coordmates by (x, y, 2).

X [Xw C e
vyl = Rlyw| + T (3.28)
z]  wlz,

where R is the 3x3 rotation matrix

‘rl ry r3
R = |rqrsrg (3.29)

rq.rg rog

- and T is the translation vector -
T = |T, S (330)

Note that not all r; are independent since a rotation can be uniquely specified by three
independent parameters, such as Euler angles (these are the pan, tilt and swing angles).

The next step is to relate the coordinates (x, ¥, z) of P in the camera coordinate sys-
tem to the coordinates (x,, y,) of its ideal pinhole image at P,. By comparing similar tri-
angles in Fig. 3.5 we can obtain

néf% | (331

=r (3.31b)
Z
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O .
| Imag-e p'lane ' \\ : /
o o -
- \” ' A\ Pu
X » Pd
Zw
- O”
Xw Ow
Yw :
z" P

Figure 3.5: Illustration of the radial alignment constraint. P, and Py freprcsenl
respectively the pinhole image and the distorted (actual) image of the object point P.
Observe that OP,||OP4||O’P.
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The third step is to compute the coordinates (x4, y,) of the actual i image point P, which
takes into account the lens distortion. There are two types of distortions, radial and
tangential. Each of them can modeled byvanv infinite series [3] but for computer vision
applications: only the first terms of the radial series need to be considered. The distortion
in the location of P, accounts for only the radial component. Therefore we can write
X4+D; = x, ' . (3.32a)
- Ya+Dy =y, S 332y
with |
Dy = xgtkyria kyrt+)

Dy = yq (klrz“+ kpri+.) (333

If we combine equations (3.28), (3.31) and (3.32) we can write

rlx +ryy +r3z + T
Xg+D, = f—2 id r : (3.34a) -
r7xw+rgyw,+r92w+Tz

| rgXx, +rsy, +rez, +T. - :
Ya+Dy = Al TSI T 6 M T (3.34)
r7xw+r8yw+rgzw+T

Followmg Tsai, for the distortion terms D, and D, we have only shown two terms in the
series for each. The terms contain lens-specific coefﬁc1ents k1 and k2 The calibration
procedure presented by Tsai and reimplemented by us computes these coefﬁc1ents

But of course, (x4, y4) are not the final image coordinates. The image coordinates
(xf yf) are obtained after digitizing the image, and, also, the origin: for the digitized
representatlon will usually be at a corner of the image, as opposed to being at the center.
If we assume that the x direction in the digitized image corresponds to the scan line
drrectron the equations that relate (x; y;) and (xf, yy) are:

Xp = Sedd ' xa# Cx | ~ (3.353)
yr=d yg+ Cp v (3.35b)
ch ' . . /
d'y = de— (3.36)
X fo

Where: Cx and Cy are the row and column indices of the center of the digitized frame in.
relation to the center. of the analog image, and d, and d, are the distances between the
centers of the adjacent pixels in the x and y directions, respectively. N, is the number of
sensors, each sensor corresponding to a pixel, in the x direction and N x is the number of
scan lines, or, equivalently, the number of pixels in the y direction. (The x direction is
assumed to be the scan line direction.) The quantity s, is the so-called uncertainity
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image scale factor, which accounts for possible timing mismatches between the camera
scanning hardware and the image acquisition hardware or the errors in timing of the TV
scanning itself. Tsai has reported that even an one percent difference between the timings
can cause up to five pixel error in the image resolution.

When a CCD camera is used, the parameters dx, dy, N, and Np can be obtained

- from the information supplied by the manufacturer. If a vidicon camera is used instead,
some of these parameters are not known a priori and this calibration technique can not be
used. However, in this case one may use a multi-plane calibration method introduced by
Tsai; this method exploits the fact that all the missing information can be grouped into
only one additional unknown. Note that the product s, d’,”! can be treated as a single
parameter and that dy can be set to one since the focal length scales the i image in both the
x and y directions. If we do this the computed focal length f will be a product of the .
actual focal length and the scale factor in y. :

The process of obtaining the image coordinates from world coordmates is summar-
1zed in Flg 3.6.

The parameters used in the camera model discussed so far in this subsection can be
categorized into two classes: intrinsic parameters and extrinsic parameters. The extrin-
sic parameters describe the position and orientation of the camera in the world coordinate
system and the intrinsic parameters determine the image forming process. Extrinsic '
~ parameters are the elements of the rotation matrix R and the components of the transla-
tion vector T. The other parameters, N, Ng, dx, dy, f, k1, k2, 5¢, Cx and Cy; are the
intrinsic parameters.

The procedure we describe in the following subsection is sufficient to determine all
the extrinsic parameters and only f, kK, and k4 of the intrinsic parameters. Ng, N, dy
and d, are assumed to be known at the time of calibration and Cy, Cy and s, are not cali-
brated, meaning no information is calculated on these parameters. Tsai has suggested
- that (C,, Cy) be set to the center pixel of the dlgmzed image and has proposed several

techmques for computing s,. - :

3.3.2 C_a‘libration Procedure

The method consists of two stages. In the first stage of the procedure, some of the
parameters are found using linear equations. These linear equations represent physical
constralnts on the locations of the object points and their images, each constraint saying
that, 1f only radial distortion is present the image of an object point must lie on a. line
that is the projection on the image plane of a line joining the object point to the focal -
cenrer, as shown in Fig. 3.5; such constraints are referred to as radial alignment
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(Xw, Yw, Zw) 3D world coordinate

Step 1

Rigid body transformation from (Xw, Yw, Zw) to (X, Y, Z)
' Parameters. to be calibrated: R, T

(X, Y, Z) 3D camera coordinate system

Step:2.

Perspective projection with pin-hole: geometry

Parameter to be calibrated: £

(Xu, Yu) Ideal undistorted image coordinates.

Step.3

Radial Iens distortion
Parameters to- be calibrated: k1, k2

(Xd, Yd) Distorted image coordinates

Step 4

TV scanning, sampling, computer aquisition

Parameters to be calibrated: sx, Cx, Cy

(Xf, Yf) Computer image coordinates in frame memory

Figure 3.6: The four steps in the transformation from 3D world coordina;es to computer
- image coordinates and the parameters involved.
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constraints. These constraints allow us to easily">Compute some of the elements of the
rotation matrix and a product of two of the components of the translation vector. Subse-
quently, during the first phase computations,' the rest of the elements of the rotation
* matrix and two of the components of the translation vector are computed by enforcing
the orthonormahty property of the rotation matrix.

‘In'the second stage, we start out by first estlmatmg approximations to the remalnmg
‘parameters by using the pinhole prOJectlve equations (with distortion terms set to Zero).
" The exact solution for these parameters is then computed using the full equations and any
- standard optlmlzatlon scheme We will now elaborate on the two stages.

a) First Stage In the first stage, we write a direct relatlonshlp between the actual
~ image coordmates (x4; ¥4) and the world coordinates (x,, Yw, 2w). We do so by recog-
nizing that under the radial alignment constraint, the direction of the vector O”P.is radi-
ally aligned: with the vector 0’Py (Fig. 3. 5). Therefore, if the vector O"P is expressed in
the camera coordlnate frame centered at 0’, we can write
. O"P, x4 (3 37)
| F, v ’
, However (0"Px , 0"P y), both measured in the camera coordinate frame, are related to
the Gows Yws Zw) measured in the world frame through equations (3.28). Therefore

O"Py = rixy+rayw+razm+Te @ 38a)
O"Py = ryx,+rsy, +rezy + T, o 1 l‘ 7 :f(3_.;38b)
Combmmg equatlons (3.37) and (3.38), we get - ‘
riXy +rayw +razz, +Tx b _ e
r:xw+r§§w+r22w+T - f R
Recastlng 3. 39) in a more convement form we obtam
' -Ty“lrl_
Ty“lrz
» o ns| o
o [ydx;v Yw Yatw Vd ~Kakw ~X4Yw -xdzw] T, ' T | = x4 0 - (3:40)
- . | o Ty“lr"_4. o il
\ |Ty7lrs |
y7re )

“Equation (3.40) corresponds to a single scene point. Since. we have seven
‘unknowns, if the number of scene points, N, is greater than 7, we can establish an
- . ‘ i . .
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overdetermmed set of linear equatlons of the form AT= X where A is an NX7 matrix of

coefficients, X is composed of x,;’s appearing on the right hand sxde of equations like

(3.40), and T is the vector of the unknowns shown as a column vector in: equation (3.40)).
However, note that if the scene points are coplanar, some of the ‘columns in A will
v become hnearly dependent and the set of equations will have no unique solutlon '

If the world coordinate system is selected such that the plane z, = 0 coincides with
the calibration plane and the origin of the world system is not close to the camera y-axes
i then equatlon (3.40) can be rewritten in terms of five unknowns as

. ;FTy—If 17
o .
[ydxw Yd¥w Vi ~Xaw _xd)’w] T, T [ = 20 (3.41)
» . ' iTy‘1r4 [ :

-1
Ty r5J

and the resulting system of equations can now be solved for the five ‘unknowns
T;'lr’] , T'y'lrz, T, -, , Ty ryand T ”]r5, assuming that the calibration points are not
collinear. A complete dlscussron on the ex1stence and uniqueness of this solution can be
found in [9]. The reason for selecting the origin of the world frame far from the camera
© y-axes is to avoid having T, = 0. Note that the origin and orientation of the world COOI‘dl-
nate frame can be chosen as desired since they are under user control '

, W1th the procedure outlmed so far, we now have the means to compute the quanti-
ties T~ Yri, I, Yo, T‘"IT T, Yry and T, 'rs. In the next step in the first stage, all
the elements of the rotation matrix R, and T and Ty will be determined using the ortho-
normahty constraints that must be satisfied by the rows and columns of R. To see how
this can be done, let’s first define a 2x2 matrix C as - ’

ry r2

r'y r’ T, T,
c=|, =77 (3.42)

rq rs rq rs

Ty T,

C is the upper 2x2 submatrix of R scaled by the factor T;l. The following lemma puts a
restrfiction on how one can scale the 2x2 submatrix of a 3x3 onhonOrmal matrix.

Lemma I: There do not exist two 3x3 orthonormal matrxces that d1ffer in their 2x2
submatrix by a scale factor other than +1.

~The lemma implies that if a 2x2 submatrix of an orthonormal 3"3.' matrix is given
except for a scale factor, then the scale factor is unique except for its sign. Using this
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_ property, if an entire row or column of C does not vanish, the square of the scale factor
- (in our casc Ty) can be determined by using ,
o ’ : ‘ 172 E
,  S— [S2-4(rirs—ra)' 1 |
T,” = — PRI B (3.43)
2ryr’s —riar’y) :

where S, =r'% +r’3 +r'Z + r’Z. Clearly, this equation can not be used when the denomi-
nator on the right hand side vamshes In that case, T2 can be computed from

T2 = 2+r/H T (349

where r’; and | r’; are the elements of C that do not vanish. A detailed proof of Lemma |
-and derlvauon of Egs. (3.43) and (3.44) can be found in [9].

So, now we have the means to also compute the magnitude IT,l; the next step natur-
ally is to determine its sign. In order to do this, we start out by assuming that T, is posi-
tive. Using this positive value, we can determine all the unknowns (rq, 72, 74, rs, Iy
and T}) from equations like (3.39). Now if we select an object point whose image coordi-
nates (X, Y) are away from the image center and substitute its world coordinates in Eq.

- (3.39), then the result we obtain for X may or may not agree in its sign with the actual
sign of X. In the first case T, was indeed positive, however, 1n the second case, we have
to reverse its sign. '

'Now we can compute 71, o, r4, r's, Ty and T,. Subsequently, during the first stage
computations, we again use the orthonormal and right handed property of R to determine
'r3, rg, 7, rg and rg as follows. First, r3 is calculated from rl and r, by using
r3 =+(1- r r2)1/2 Similarly, we - . have re =s(l— r4 -5 )1/2 w1th
s =—sgn(ryrq +rqrs). And, finally, r7, rg and rg are determined by usmg the vector
product of the first two rows of R. However, this is not the only possible solution for R,
since we could have chosen r; negative and that would cause a sign change for rg, r7
and rg. We can arbitrarily select one of the two solutions of R. We will see that if the
- wrong choice is made then in the second stage when the focal length fis determined it
will be negative, indicating that the signs of 3, r¢, 7 and rg should be reversed.

b) Second Stage. In this stage, we first estimate approximations to the parameters f
and Tz ignoring lens distortion, then a more accurate solution is found taking into
account the radial lens distortion and using a nonlinear optimization method. The latter
step, involving nonlinear optimization, also yields values for the parameters k; and k, of
~ the radial lens distortion (see Egs. (3.33)). |

Initially ignoring the radial lens distortion implies that we can set D, and D, to 7ero

in equations (3.32)." Therefore, equations (3.34) reduce to the following 51mpler forms
involving the unknowns fand T,: '
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X _frlrxw-_lv-rzyw+r3,zw+Txv .(2245)
(4 = | - — o 2,404
T orpx, +rgy, troz, +T, o B

: L TaXy ¥ 5y + 162z, + T, D
ygo= f—o—o 27w 2w ) | (3.45b)
r1Xw +rgYw +r9z, + T,

- These two equations can be recast into the following forms for computer implementation:

[x _x“] 7{ = wx; R ’:(}3~46a;)

[y —yd] 7{ o wy, ,:'(53‘;46‘b)

x = riXw +72Yw +‘”3_‘Z«wf +Tx:.
y = r4-xw +'r5yw+r6 z, +Ty S (3.47)

w = r7xw+r8yw+rgzw +T_

. .Smce we are using a coplanar set (but they cannot be colmear) of cahbratlon pomts lyin g
~onthe plane Zy = 0, equations (3.47) reduce to

x—rlxw+r2yw+T . : I
¥ = rax, +rsy +Ty S Gas)
' .w.__r7xw+r8yw+T o “ ‘

Y’Wrth several calibration points, either equation (3.46b) or (3.46b) (or both combmed)
vy1e1d,_ an overdetermined system of linear equations that can be used to solve for fand T,.
_This can be accomplished by using the same procedure as outlined in Section 3.2.2 if the
o ca;l_.ibrtttion plane has not been chosen exactly parallel to the image plane, otherwise the
' Systemformed becomes linearly dependent. : ’ :

‘ ‘Note that from the set of elements of R whose sign we had to guess in the first stage,
“only ry and rg appear in w in equations (3.46) and that a wrong choice for their signs
w1ll result in a negatlve focal length Therefore it is at thls pomt that we can reverse their
o srgns 1f necessary. ‘

» The only step left is to revise our estimates for f and T takmg the radlal dlstortlon
" into account and to determine the values for the parameters k1 and k,. The final solutions
for f and T and the values for ky and k are found simultaneously from the complete
model equations (3.34) via a nonlinear optimization that is started with the estimates for f
and T, and with k; =0 and k2 =0. The complete cahbratron procedure 1s summcmzed in

H»Flg37



50 ' lopez-abadia/kak

/Stage 1
Convert from édmp'uter codrdinates (s yf) to distorted image cbordi_natcs (X4, Ya)-

Compute »Ty r, Ty ra, Ty~ T, Ty_1 r4 from the radial.alingmenpcon‘straint equa-
tions. ' :

Compute (r1, 72,74, s, Ty, Ty) frOm‘(Ty_‘lrl,Ty r2,T T, T r4):using the

- orthonormal property of R.

 Stage 2

Compute a first approximation to T, and f usmg ‘the perspectlve pI'OJCCthﬂ equa-

~_tions ignoring lens dlstortxon

Compute the final value of T, £, k and k using the full model equations.

Figure 3.7: The two stage calibraﬁon procedure.
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. 3.4 THE TWO-PLANE METH()D FOR CAMERA CALIBRATION

In general, the purpose of camera cahbrauon is to solve one or both of the following
two problems: : .
'7 - The projection problem: glven the locanon of a point in space, predict the location
. of its image on the image plane. : v o
- . The back-projection problem: glven location on the image plane of the image of a
~ point, compute the line of sight on which the point being imaged must lie.

Martms et al. [11] presented the two-plane calibration technique for solvmg the-

~ back -projection problem. This techmque prov1des exactly the information needed, this is

the line in space that corresponds to the hne of sight of a given plxel without any explicit
camera model.: ' '

34.1 Cainera Model

In this method, instead of describing a camera model by the usual 'fﬁi'é{:méters such
“as the focal length, location and orientation of the imaging plane, etc., and attempting to
determine these parameters throu gh calibréiiion, relationships are established between the
coordinates of scene points and the coordinates of the corresponding image points for
scene points in two different planes, called the calibration planes. Once these relation-
ships are determined, then for an image point / corresponding to an arbitrary scene point
P, we can find, using the inverse of the relationships, the points on each of the calibration
planes that would give rise to the i image point /. A line j joining the two pomts on the two
callbrauon planes then defines a line- of-s1ght to the scene pomt P. :

3.4.2 Calibration Procedure

Martins et al. have proposed using three different types of relationship between the
scene points on the calibration planes and their corresponding image points: linear, qua-
dratic, and linear spline. Although we 1mplemented the quadratic approach only, we will
b' ’bncﬂy descnbe all three of them. :

The Case of Linear Relationship:

_ Thc camera is shown a set of illuminated scene points located on what is called the
ca11brat10n plane #1 and their corresponding image points are recorded. ‘A linear rela-
* tionship is expressed between the scene points and their corresponding image points.
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~ This “»prvocess is repeated for the second calibration'plnne. Let P; = (X;,Y;,Z;) denote a
: typ'i'cal:point on the i calibration plane and let L; = (row, col, 1) denote its image point.
Let a 3x3 matrix.A; express the linear relationship between P; and L;:

P; = A;L; i =1,2, : B (3.49)
" Note that each calibration plane is characterized by a single matrix A;.

Clearly, with more than three points per pl'ane a set of Qverdeterrnined linear equa-

tions can be established and solved for the elements of A; using the method described in

Section 3.2.2. As a result, we can compute A; and A, for the calibfatlon planes #1 and
#2, respectively. That is the end of camera calibration. Now when an arb1trary scene
point is shown to the camera, from its 1mage point we can compute, by using A, -and A,
two pomts -- let’s call them P’; and P’, -- which would be the intersection of the line-
of-sight to the arbitrary scene point with the two calibration planes. Thus we can find the
line-of-sight corresponding to a given scene point after the calibration phase.

Thé Case of Quadratic Relationship:

~ The quadratic interpolation is similar to the linear case except that, for each calibra-
tion plane, the relationship between a scene point P; and its corresponding image point L;
is expressed by

Pi=AQ; i =12 6.50)

where, as before, P;=(X;,Y;, Z;), but where the vector Q; g g1ven by
Q, = (row2 col?, row col, row, col,1). In other words, we now have nonlmear relation-
sh1p between a scene point and its image; this is an attempt at capturing the nonlinearities
on a lens. Note that for each calibration plane, A; is now a 6x6 mamx Also note that
each calibration plane is characterized by a s1ngle matrix A;. :

, Cahbranon consists of showing to the camera a set of illuminated scene pomts at
least six, in each calibration plane, each illuminated scene point and its image being
related by (3.50). Given a sufficient number of points in each plane, we can find the
matrix A; for that plane. Thus we can find A; and A, for the two calibration planes. That
completes the calibration of the camera. Now if we show an arbitrary scene point to the
camera and record its image point. Then, using A; and A5, we can ﬁnd the two points --
let’s call them P’ 1 and P’; -- where the line-of-sight to the scene pomt intersects the two
calibration planes The po1nts P’; and P’; thus obtained then deﬁne the 11ne of-sight.
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Using Linear Splines:

“Im both the linear and the quadratic interpolation, the approach is to globally fit, for
each calibration plane separately, a function describing the relationship between the
scene points and their image locations. In other words, the calibration: plane #1 was
characterized by a smgle matrix A;, meaning that, for the calibration plane #i, the rela-
tionship. everywhere between the coordinates of a scene point and its image point was
described by the same matrix A;. Such global characterization has the effect of : averaging
the errors over all the pixels corresponding to a calibration plane so the resultant line-of-
sight may not be exact for any pixel but close for all. For some cases, depending on the
‘nature and extent of lens distortion, such global characterization may not be approprlate

In some cases, a better approach may be to use separate functions, each vahd only
over a small and localized region of the image plane, for describing the relatlonshlps
between the scene points on a calibration plane and the corresponding image points. One
easy way to- accomplish this is by the use of linear splines; these are linear functions,
each valid over a small approximately triangular region of the image plane, for describ-
ing the relatlonshlp between the scene points on a calibration plane and the correspond-
ing image points. Each calibration plane is divided into triangular tessellations, the ver-
tices of the: triangles form the illuminated+scene points. that are shown to the camera for
calibration. The coordinates of the vertices of each triangle and the correspondmg image
- coordinates are used to compute a linear relationship, as in the "Linear Case" discussed
. above, hetween the scene points that would lie within the' triangle and their correspond-
ing 1mage points: Therefore, for the j triangle in the i calibration plane, the relation-
shlp between the coordinates P; of a scene point and its image L are given by

P = ALy i =1,2 j= 1,-‘--,N, ‘ .(3.51)

where L, P and A;; are as in (3.49), the difference being that now there is one matrix A ij
for e'aCh?' of the N triangles. An exact solution is now obtained for each triangle.

3.5 DETERMINATION OF THE PHYSICAL PARAMETERS OF THE ‘CAMERA

. In Section 3.2, we discussed a ‘calibration method that was based on the ideal

pin'hole;ass.umpti’on. The processing discussed in Section 3.2.2 yields a 3x4 calibration
matrix T whose elements are displayed in Eq. (3.10). After the matrix T is computed, one
is still faced with the problem of having to compute the actual camera parameters. In this
section, we will describe a procedure, which was originally proposed by Ganapathy [6],
- for computing the parameters of the camera from the elements of the T matrix.
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Of course, the reader could ask: Is it really necessary to compute the physical
parameters of the camera, such as its focal length; could we not directly use the matrix 77
It is, of course, true that the elements of T can be used directly to compute the line-of-
sight corresponding to any pixel in the image by using Eq. (3.20). It is also true that
given, say, a CAD representation of the hallways, from the elements of T one could write
a routine to construct an image that a camera at a given position and w1th a given view-
vector would see. However, many CAD rendering programs, especially of the ray-tracing
variety, exg‘hcltly require parameters such as the focal length, the dlrectlon of the view-
vector, etc. As will be discussed in Chapter 6, a rendering program is used to generate
scene expectation maps from CAD models for vision-guided navigation using the
PSEIKI system [15].

From Egs. (3.10), (3.6a) and (3.6b), we can show that the elements of T are related
to the physical parameters of a camera by the following relationships:
-—f-— hy +igay

T, =2 | " (3.520)

_) ~
—C:a

—fl-;hy+i()ay v R ;
Ty = — ——— e (3.52)

Ty =~ (3520

(3.524d)

Ty = o (3.52¢)

Vy +Jo ay ;
Ty = ——— S (3.52D)
—C-a '

A ray tracing program for rendering an image from a CAD representation ‘shoots’ rays from thc
center of projection and through the image plane. By computing the intersection of a given ray
with the surfaces of the scene, the ray-tracing program figures out how to render the scene and
how to carry out hidden surface removal. Clearly then, in order to ‘shoot’ the rays, the program
needs to know the distance from the center of projection to the image plane, which is the focal
length of the camera, the view-vector associated with the camera, etc.
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: Zf;vz""jO a, » e
Ty = —_— ‘ (3.52g)
. -C-a : .
% 5) ) + Jo 8(2 ‘
Ty = ——— r - (3.52h)
. a
Ty = —— (3.521)
—C-a
: a, '
T3y = —— (3.52j)
o -C-a
a
Ty3 = —— . (3.52K)
—-C-a
Ty = 1 - (3.521)

In these expressions, we have scaled all the T;;’s by T34, which is consistent with the
assumption made in Sectlon 32.2. From Eg. (3.10), T, = —C’,. However, from Eq. (3.12)

and (3.13),C’, =RC = —Ca
We will now describe Ganapathy s procedure for processing the above equations

for computing the parameters C h v a, iy, jo, Xf— and Af;; We will use the symbols
u

Ty, T2 and T3 to denote the first, second and third rows of the leftmost 3x3 submatrix of
the calibration matrix T, respectively, We obtain from Egs. (3.52a), (3.52b) and (3.52¢):

(f18u)? ( io )?
TyTy =THh +TH +T% = ! + |—=— (3.53)
' —C a J o —C ) J
by usmg the fact that h v and aare a mutually orthogonal set of unit vectors. ‘Similarly,
(f1Av) 2 ( Jo 12 . v
TyTy = Th +T5 +Th = vf—> |t =l (3.54)
Ca)  [Ca .
1
TyTy =T% +T35 +T% = T 532 (3.55)
-2
lg . :
TlfT3 = Tu T31 + T12 T3r2 + T13 T33 = [Tz— - (3.56)
' : : : —C'ﬁJ - AR

and

Ty T Ty Ty +Tp Ty + Ty3Ts3 = -[—]2— . (357
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These equations are suggestive of2 a solution strategy for the parameters. From Eq.
= .

(3.55), we can directly compute —C-a . Subsequently, from Eqs. (3.56) and (3.57), we
can compute io and jo. Following that, Eqs. (3.53) and (3.54) yield the magnitudes of
f f ' |
— and —
Au an

Note' that the signs of —C-d ‘a, —A]—;- and A{) are closely related. We can arbltrarlly
'~ choose —C a and _AL to be positive and then determine the sign of Af The 51gns of [{

u

and Af depend on the polarity of the axes of the camera coordinate frame, meamng the
v

directions in which the row and column numbers of the plxels (i, j) increase. The quan-

f

tity A S can always. be assumed positive. Then the sign of Aj:) depends on the on the

polarity of the /—J axes. Note that the u—v axes of the camera coordlnate system were
defined in Section 3.2.1 as right-handed and parallel to the directions of the rows and
" columns of the computer image respectively. However, if the columns are counted from
left to right and the rows from the upper to the lower border of the plcture then this is

f

* equivalent to inverting the direction of the vector v or to have the quantity s negative.

~ The sign of —C-4 can be reversed if necessary by changing the direction of the view
vector, @, by 180°. Then in order to keep the coordinate system defined by (4, v, @)
rlght-handed we need to also reverse the direction of v, which amounts ‘to changmg the

f
sign of =—
g Av’
Onee we have assumed the signs of Aiu and —C to be positive, the sign of —Af‘-;—

S

- can be determined as follows. Assume for a moment that A is positive. Since at this
, - v -

point the values of -C a, é, {0, Gx, Gy, ay and a, and a are known,ux,Auy, u,, can be
obtained from equations (3.52a), (3.52b) and (3.520), respectively. Similarl‘y;’9from the
expressions for T3, Ty, and Ty3 we can determine the values for vy, vy and v, respec-
tively, giving us the vector V. The vector ¥ can also be obtained from v'= @ xh. If both the

f

solutions for v coincide, the choice of sign for A, Was correct otherwise it must be

reversed

- With the 1mplementat10n descnbed so far, the only quantities left to be computed
are the ‘components of the vector C f» Au and Av. The components of € can be recovered
from equations (3.52d) and (3.52h). The focal length f can be obtained if we have
knowledge of the size of an image pixel, that is Au and Av; usually, this information is
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avallable from the manufacturer of the camera

1If the procedure descnbed in Section 3.2.2 is used to compute the cahbratlon
matrix; T, the assumption of orthonormahty of the vectors A, ¥ and 4 may not be satisfied
"stnctly since the calibration procedure does not enforce this constramt explicitly.
‘Ganapathy has proposed inclusion of an additional parameter d to measure the extent to
_ .iwhlch the calibration matrix approx1mates the true perspective projection matnx

_ A Let us define three mutually orthogonal unit vectors k’, v’ and 4’. Let us assume that
h and v are not exactly perpendicular to each other but slightly off by an. angle 3 (see Fig.

- 38).If ‘We assume h’ and &’ ~coincide With h and a, respectlvely, as in Fxg 3 8, then the

'coordrnates of v in the h' v,a’ system are grven by ' :

'vq = sind, _ A N
vy = COSO, - (3.57)
| 3 =0
‘In orderA " to compute 5, - we .can  use the * fact - that

' T, T, -T11 Ty +Ti13T3+T 13Ty = 'sin. The parameter 8 is useful in measuring
’ ‘how much the calibration matrix deviates from a true perspective pl'OJCCthH matrrx It is
a convenlent way of lumprng intoa s1ngle parameter this deviation. ’

A bnef summary of the procedure descnbed in this section is shown in F1g 3 9

" 3.6 A COMPARISON OF THE CALIBRATION METHODS "

The 1deal pinhole method of Secuon 3.2 requires that the callbratlon pomts be non-
coplanar in the world frame. As discussed there, with a coplanar set of points it may not
- be possible to obtain a solution at all, especially if the procedure of Section 3.2.2 is used

for computatron :

T The procedure proposed by Tsai, described in Section 3. 3, has the advantage of
allow1ng for coplanar calibration points in the world frame. Usmg coplanar calibration
_points simplifies the physwal set up requlred for the calibration process since fabrlcatm g

o a coplanar set of points is much easier than a set of non-coplanar pomts especlally SO

- because the world coordinates of these poirits must be known accurately.

. The main reason Tsai’s method does not require that co- plananty constramt be
satlsﬁed by the calibration points is:due to the addmonal constraints that are mvoked
such as the orthonormahty of the rotation matrix. Therefore the perspectlve equations
:need be solved for only a smaller number of unknowns, the rest of the unknowns are then
computed using the orthonormahty constralnt But note that in order to use this pro-.
' cedure in accordance with the first step in Fig. 3.7, we must first convert the the discrete '
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A4

h> h

Figure 3.8: The skew angle d.
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| RY;
1:  Compute [C-é] from T3-T5.

2:  Compute i¢ and j from T T3 and T-T'5 respectively.

f2

) :
3:  Compute A and Ai from the T'1-Ty and T,-T, respectively.
Coe ’ 4

; L 2. f f
4:  Assuming the sign of ~C-q, -~ and
v Au A

~— positive compute k, v and 4 from T, T4
v

and T3: respectively.

5: If k¥ and G do not form a right hand base then reverse the sign of the three com-
ponents of V.

6: Compute sind from T -T5.

Figure 3.9: The steps involved in obtaining the camera characteristics from the entries in
the calibration matrix. Observe that the procedure only involves the solution of linear
equations.
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coordinates of an image point corresponding to a scene calibration point into what were
referred to as the distorted image coordinates -- these are the actual analog coordinates of
an image point, taking into account the lens distortion, etc. This conversion requires that
we know a priori the coordinates of the image center, the sampling intervals in the image
plane, etc. Although the sampling-interval information can be gleaned from the product
information supplied by the manufacturer, one still has to figure out the location of the
image center before the method can be used. Also needed is what was called the uncer-
tainty image scale factor. L

_ In [9], Tsai did show that by using some. calibration points that are non-coplanar
with the points used in the procedure described in Section 3.3, it is possible to compute
the uncertainty image scale factor. This modification to the calibration procedure also
had the advantage- that the image center could now be anywhere in the image plane
without affecting the accuracy of calibration. We found, however, that this claim is true-
only if the objects points in the scene stay close to the plane used originally for calibra-
tion. In a later paper [10], Tsai recognized this problem and proposed ahdther‘technique
to determine the remaining uncalibrated parameters, such as the coordinates' of the image
center and the uncertainty image scale factor. o

The last column in Table 3.1 summarizes the various features of the Tsai method as
discussed in Section 3.3. The fopmost entry in the column shows the’ parameters that
must be known a przorl before the calibration method can be used. The other entries are
self—explanatory

_ 'We chose not to use the Tsai method for calibrating the cameras on the mobile robot
because of the need to know the location of the intersection of the image plane and the
optic axis (this intersection defines the center of the image plane) and because the advan-
tage of the coplanarity of the calibration points was really not an issue in our work. Non-
coplanar points whose world coordinates are precisely known are easy to come by. in

scenes recorded by the cameras on the mobile robot. :

In the case of the two-plane method discussed in Section 3.4, we encountered two
maJor drawbacks One disadvantage that was mentioned before is that while the method
gives us a procedure for predicting lines of sight corresponding to the plxels in an image,
it does not tell us how to render an image from a 3D model of the world. In other words,
the two -plane method does not tell us which pixel corresponds to a given obJect point in
a scene, but only which line-of-sight corresponds to a given pixel in the image. The
second drawback has to do with the locations of the two calibration planes in relationship
to the camera. We found that for best results with this method, the two calibration planes
should be located in such a manner that all the object points of interest will lie between
the _t_wo_pIanes. For mobile robotics that presents a problem because of the large depths
associated with the scenes. Large depths mean that the farther calibration p‘lanef must be
at a large distance from the camera. Even if we could arrange for a calibration plane at a
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Table 31 Comparison of the characteristics of three camera calibration 'met'hods.

Method | Perspective | ~ TwoPlanes | Tsai
| -~ Parameters ~ None | None 1 GGy, :
| Uncalibrated | - ] Sedsdy |
|- Coplanar Cali- | No - No - Yes
| bration Points | AR R
Accounts for | No | Yes (Linear splines) | Radial only|.
_ disortion | TR
~ - | Involves Nonlinear Yes | ’ No - Yes .
_Search | |
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large distance, say at a distance of 20 meters from the camera, there would still be
“another difficulty to resolve. For best results, it is desirable that the scene pomts used for
‘calibration be uniformly distributed over each of the calibration planes. The extent of
-.each calibration plane covered by such a distribution of points depends on the view angle
of the camera. The cameras we use on the mobile robot have a field of view of 26°. Ata
distance of 20 meters, this angle results in a rather large area and arranging for a uni--
~formly distributed set of points over this area wrth accurately known world coordlnates
seemed too difficult a task. : ‘

For our mobile robotics work we therefore chose to use the method which is
described i in Section 3.2 and which is based on the assumption of an ideal pinhole. for the
- camera lens. Experimentation showed that the lens d1stort10n was not a problem the A
-solid-state cameras usually tend to use high-quality lenses.

B 7 CALIBRATION PROCEDURE USED FOR NAVIGATION EXPERIMENTS

©As ment1oned in the preceding section, we use the method of Sectlon 3 2 for ca11-
brating the cameras on the mobile robot. To supply this method with non- coplanar scene
points whose world coordinates are known, we initially used a flat board w1th a pattern of
~large circular black dots, the board would then be placed at various d1stances from the
robot.. At each location of the board, the circular dots were first detected and their cen-
troids found, these centroids were then used as scene points for calibration.- This pro-
‘cedure was completely automated, all the operator had to do was to key in the coordi-
~ nates of the corners of the board at each of its positions. The output of the calibration -
program was the transformation matrix T of Eq. (3.11). ‘

A d1sadvantage of this procedure was that the board with the black dots had to be
positioned at precisely known locations in relation to ‘the position of the robot. To the
extent that could not be done, errors tended to corrupt the calibration procedure Of
course, instead of moving the board, one could move the robot in relation’ to the board (in
fact, that’s what we did in most of our experiments). However, moving the robot did not
~ alleviate the problem due to the errors in the odometry of the robot; these errors are a
function of the slippage between the wheels and the floor. Another d1sadvantage of this
procedure was the rather poor accuracy with which the image processmg routines tended
to-locate the centroids of the black dots “usually the accuraCy was not better than two or '
three plxels : '

" For these reasons, we have now switched to an interactive approach in Wthh the
| robot is placed at a fixed position. The image recorded by the camera is displayed on a-
SUN window and the operator, who has available to him/her precise coordinates of many '
~ scene points such as the corners of walls, door frames, panels, etc., uses mouse clicks to
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select a set of non- coplanar scene pomts from the 1mage and to enter the world coordi-
- nates of the selected points. Actually, the operator selects more points than needed for
calibration, the extra points are then used for testing the accuracy of the calibration
matrix by predicting the image coordmates of these extra points and comparing. the pred~

lCthﬂS w1th the actual image coordlnates ‘ : -

For thlS interactive calibration procedure ‘we choose a point on the ﬂoor and desrg-

o :nate it as the origin of the world frame. ' All the coordinate measurements- to the candi-

“date scene pomts such as the corners of walls, door frames, panels, etc.; are then made
'w1th respect to this origin and recorded. The robot is subsequently placed such that the
: center of its base is right over the origin, For callbratlon purposes, with the robot located
“as described, the axes of the world frame are defined such that the Z axis is vertical with
_the pos1t1ve direction being the up direction; the positive direction of the Y ax1s coincides
with the:forward direction of motion of the robot and the X axis is chosen so the resulting
frame is right handed. The world frame defined in this manner for the purpose of calibra-
~tion becomes eventually the robot frame during navigation; in other words, it becomes
- the frame that always stays with the robot. All the lines of sight computed via the cali-
.bratlon matrix are with respect to this frame SR ‘

~ To help the operator with the task of entermg the world coordinates of the selected
scene points, a SUNVIEW based program called suncal was written. This. program

‘, - allows the use of a mouse button to bring up a text window for the entry or the erasure of
- the selected scene points. By selectlng appropriate menu items, it is also. poss1ble to read

the coordlnates of the already selected points from a unix file. If the show mode is
selected from the menu, the world and the i image coordinates of a point are displayed and

the corresponding point highlighted in the image to check for possible mlstakes Fig.
3.10 shows a typical image used dunng this calibration procedure and some of the pop-
up menus, however they might have become invisible through duplication.

3.8 TEST RESULTS

Tal)le 3.2 shows a set of 14 scene points used for the calibration of the two cameras
~on the robot. The world coordinates of the points are shown in the left half of the table,
- and the correspondlng image coordinates shown in the right half for each of the two cam-

' »eras These points were selected from the hallway pictures of Fig. 3.11. In Table 3.2, the
.1mage ‘coordinates under ‘Left’ were extracted from the left camera image shown at the
. top in Fig. 3.11, and those under ‘nght from the right camera image shown at the bot-
~.tom1nF1g 3.11. ‘
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1n execution.

The suncal tool i

Figure 3.10
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Table 3.2: Coordinates of the calibration points used.

Calibration Points

. _ Image Coord.
World Coord. (m) okt Right
X Y Z U \% U \%
| -1.34 8.69 [ 2.19 62| 55 38 81
{ -1.34 869 0.10| 63 339 37 | 367
{ -1.34 971 | 2.19| 80 671 57{ 94
-1.34 971 | 0.10( :80{ 321 57 347
-1.34'[ 1450 | 0.10 | 126 | 273 | 108 | 300
-0.81 | 1826 2.19] 172 | 115| 158 | 142
-0.81 | 1826 | 0.10 | 172 | 250 157 | 279
097 | 1826 | 2.19| 265| 114 251 | 143
097 | 1826 | 0.10| 264 | 251 | 252 | 280
1.48 596 | 067 | 430 | 304 | 397 | 334
148 1 879 | 2.19| 366 59| 343 87
148 879 | 0.10| 365 338 | 340 | 368
| 148 997 | 219} 350 71| 329 | 100
1.48 997 | 0.107 348 | 317 | 326 | 349
Table 3.3: Coordinates of the test points used.
- Test Points ;
; L v Image Coord.
World Coord. (m) —Teh Right
1 X Y Z | U V| U \%
-1.34 | 10.08 | 2.19 84 70 61| 97
-1.34 | 10.08 | 0.10 85| 316 61 | 343|
-1.34 | 11.10} 2,19 | 97 79 77 | 107
-1.34| 11.10 | 0.10{ - 98 ( 302 | 77| 328
-1.34 ] 1450 | 2.194 125| 100| 108 | 129(
148 | 1579 | 0.10 | 304 | 264 | 288 | 294
148 [ 10.65 | 2.14| 342 83| 322 112}
| 148 420 | 2.08 - - 470 [ 3
| 1.48 420 0.67 - - 467 | 391
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(b) Right Image

Figure 3.11: Stereo hallwéy images.
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The procedure descnbed in Sectlon 3.2 was used for the computation of the Cdllbrd-
tion matrices T for each of the two cameras. For each camera, first the system of equa-
‘tions in (3.24) was solved for an optimal U in the least squares sense; this solution was
then used as an initial guess for a nonlinear optimization procedure that solves equations
/(3.21). The residuals at each step durmg the computation of the calibration matrix from
“the - data of Table 3.2 are shown in Table 3.4. The first column is the residual
(AU- B )T (A U - B) corresponding to the linear least squares solution (LSS) to the
linear system (LS) of equation in (3. 24) The second column was obtained usmg this
solutlon for computing the residual of the non-linear system (NLS) of equations (3.21)
for 1=1,..,N. The third column represents the residual for the nonlinear equations of
(3 21) after an optlmum solution is found via nonlinear optimization (NLSS). The ca11-
bration matrrces T, obtained for the two cameras are shown in Fig. 3.12.

After ‘obtaining the calibration matrices, the physical parameters for each of the
cameras are computed following the procedure described in Section 3.5. By comparison
with the parameters used in setting up the cameras, some of these computed physical
parameters can then be used to verify the calibration procedure. The values found for the
physical parameters from the cahbratlon matrices of Fig. 3.12 are shown in Table 3.5.
The coordmates of the lens center may be computed either by using Eq. (3.14) -- this is
labeled as the ‘Direct’ method in Table 3:5 -- or by using the Ganapathy procedure of
Section 3.5 which is based on the Egs. (3 52d) and (3.52h). The results of both computa-
tions are shown in the table for comparison. As was mentioned before, the angle § is a
measure of the appropriateness of the lens model used for calibration. A large value of &
would indicate that the results might not be meaningful. The column labels ‘Left and
‘nght refer to the left and the right cameras on the robot. - . ‘

. The accuracy of the calibration was checked using three different tests. The first test
was to compute the image coordinates of a number of scene points given their world
coordlnates The results shown in Table 3.6 correspond to the test points of Table 3.3.
Note: that an error smaller than 0.5 pixels is equ1valent to no error at all for all practical
purposes

For the second test, we computed the line-of-sight corresponding to each test point
given its image coordinates. Results for the test points of Table 3.3 are presented in Table
3.7. Clearly, before a line-of-sight corresponding to a given image pixel can be com-
puted, we"must get a fix on the camera lens center, since all lines of sight emanate from
the lens center. As with the results in Table 3.5, we used two separate methods for com-
putrng the coordmates of the lens center for each of the cameras: the direct method using
Eq. (3.14) and the Ganapathy method using Egs. (3.52d) and (3.52h) were employed.
Table 3 7 presents the minimum, the maximum, and the average errors over all the test
point of Table 3.3 using léns center locations derived from the two separate methods. To
calculate the error in the line-of-sight, we first compute the angle of the ray associated
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Table 3.4: Residuals for different solutions of the calibratioh matrix. .‘

Sum of Squares of Residuals o

Image | LSSinLS | LSSinNLS | NLSSinNLS|
Left | 25429 | 176 25
| Right 1329.7 55 25

3.503841e+03 7.993313e+02 —2.075188¢+01 -—1.910881e‘+02
2.820852¢+01 6.104280e+02 —4.404421e +03 6.1536146-}-03
8.101512¢-02 3.626108e-F00 —1.363650e —01 1.0 -

(Left)

2.970296¢+03 6:625147¢+02 3.098967¢+00 —1.379562¢402]
4.269193¢+01 6.026127¢+02 —3.751580e+03 5.265578¢ +03
8.539027¢-03 3.055924e+00 —9.756639¢—02 1.0

(Right)

' Figure 3.12: Left and right calibration matrices.
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Table 3.5: Physical parameters obtained from the calibration matrices of fig. 3.11.

Camera physical parameters _ -
Parameter | Method Left Right
Opan | Ganapathy -1.28° -0.16°
¢ tilt Ganapathy 92.15° 91.8°
-y swing | Ganapathy 179.80° 179.5°
Gy - Ganapathy -11.40 cm. 7.82 cm.
Cyx Direct - | -11.42cm. 8.19 cm.
Cy Ganapathy 0.16 cm. -5.61 cm.
Cy Direct 0.17 cm. -5.60 cm.
.G, ‘Ganapathy - 1.36 m. 1.36 m.
C, Direct 136 m. 1.36 m.
K, "Ganapathy | 960.2 pix/m. [ 970.9 pix/m.
K, Ganapathy | 1206.3 pix/m. | 1220.2 pix/m.
ig . | Ganapathy | - 241.8 pixels 219.2 pixels |.
~ jo | Ganapathy | 2138 pixels | 236.2 pixels
S -0.010° - 0.157°

Ganapathy
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“with an image point cbrrcsponding to a test scene point, as given by Eq. (3.20). We then
'compute angle of the ray to the test scene point as given by the world coordmates of the
“test point and the calculated location of the camera lens center. The dlfference between
- the two angles is the error in the llne-of-51ght

For the th1rd test, we used stereo trlangulatlon on the two hnes of sight from the left
and the right cameras to calculate the 3D coordmatcs of a scene test point.. A comparison
- of the 3D coordinates ‘thus obtained: and the actual 3D coordinates of the test point

~ yielded a measure of the error. The results are shown in Table 3.8. The two rows refer to
~the different proccdurcs used for computing the location of the camera lens centers. The
camera baseline used in these rcsults was 19 6 cm.
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Table 3.6: Radius of error for the peints in table 3.3.

- Radius of error (in pixels):

- Image | min | max | mean|
| Left [ 00 | 21 | 06 |
" Right | "0 [ 3.0 | 1.0 |

Table 3.7: Line of sight angular error for the points in: table 3.3.

‘ Line of sight errors (degrees)
- Tmage | Lenscenter | min | max | mean |
 Left | Direct | 0.0139| 01309 | 0:0495|
. Left | Ganapathy | 0:0130 [ 0.1318 [ 0.0501]
“Right | Direct | 0.0393 | 0.1471 | 0.0898]
- Right | Ganapathy | 0:0306: | 0:1858 | 0:0973|

Table 3.8: S‘tere,o;ﬁ'iangulation error for the points in table 3.3.

Stereo radial errors:

Absolute error : Relative error
min. | max mean min | max | mean

. Lens.center |

Direct | 0.097m. | 1.086m. | 0471m. | 09% | 69% | 38%

" Ganapathy | 0.070m. | 1.387m.| 0.630m.| 0.6% | 87% | 50%
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CHAPTER 4

FEATURE EXTRACTION

First «of all, a couple of words on *why vision feedback is needed for our ‘work in
mobile robot navigation. If the odometry on the Tobot were pperfect, the robot would be
able 10 : navigate ‘in ‘the blind from its start position to the destination just as an alrplane
«can be flown in the’ blind on instruments. However - and 1 fortunately for researchers such
asourselves -- the odometry on ‘most mobile robots is wvery ppoor. To ;give the reader an
idea of the poor quality of odometry on -our robot, in many instances a commanded ‘turn
-«of 45° introduces an orientation uncertainty .of 2° and a commanded straight-line ‘motion
has associated with it about 10% uncertainty in the location of the robot at the end of the
motion. What’s worse, due to uneven weight distribution in the base -of the robot where a
heavy-lbattery is housed, a command to travel straight in a certain direction: usually results
in motion along a line that could be: up 1o 15° off from the commanded dlrectlon It is not
possible to construct :a usable model of this uncertainty -as the uncertainties depended -
strongly -on factors such as the stamng orientation -of the robot, how recently the floors
have been waxed, etc.

- To compensate for poor odomctry, the robot meeds :some other sensory feedback; in

sour :mobile robot, vision from one or both cameras is used. Due to the time it takes to-
process a frame -of vision data, this compensation in -our current system takes place in a
discrete mode, meaning that the robot travels in the blind (except for the use of ultrasonic
sensors for collision : avoeidance) and every so often (currently this distance is 6 meters),
the Tobot stops, .analyzes the images from one or both the cameras, and figures out where
exactly it is in the world. This periodic -exercise by the mobile Tobot is called self-
focation. When both cameras are used for self-location, the images from the two cameras
are fused by binocular stereopsis and, through this fusion, a distance Map 10 Some of the

“‘prominent"” features of the scene created. If the geometry of the prominent features
matches that-of what the tobot expected to see -- within of course the scope of uncertain-
ties in the odometry -- the distance map generated is then used to figure out the precise
tocation of the robet in relation to the world model. More on this in Chapter 5.

- When only a single camera is used for self-location, the image from the camera is
cempared with an expectation map that is rendered from a CAD model of the hallways.
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The PSEIKI reasoning system is used for thls companson This method is described in
Chapter 6. ’

‘In this chapter, we will only be concerned with how to-extract vertical straight edges
from an image so that they can be used in the first of the two methods descnbed above --
the method of binocular stereopsrs dlSCUSSCd in Chapter 5. ' '

- The approach we discuss consists of the following steps: First the local edges in the '
images are detected and thinned, this step is called edge detection. Then the local edges
~ are grouped into lines and the parameters of the lines, such as their locations and orienta-
tions, estimated; this process is called line detection. The estimated line parameters are
improved by using a Hough transform based algorithm.

4.1 LOCAL EDGE DETECTION

" Anideal edge in one dimension may be viewed as a step change in "i:n'tensity. In real
- images the change of intensity is likely to occur over a finite length and also to be cor-
rupted by noise (Fig. 4.1). Since edges are high-spatial-frequency phenomena, edge
' finders must of necessity be sensitive to high frequency noise. While the detection of
ideal edges uncorrupted by noise would be simple, in practice a-compromise must be
achieved between maximizing the detection of the desired image edges and minimizing
the detect1on of undesired noise edges.

To perform the task of detecting local edges a wide variety of edge operators have

been developed. An edge operator is a mathematical function of small spatial extent

~designed to detect the presence of a local edge in an image via convolutlonal processing.
[Edge operators may be classified into three main classes:

-~ Operators that approximate the mathematical gradient or Laplacian. We w1ll
~ refer to such operators by the name difference operators. : o
- Template matching operators that use multlple templates at dlfferent orienta-
- tions. e

B Operators that fit local intensities with parametric edge models.

In the next subsection, we will briefly review some operators in’ each of these
classes For a more complete discussion, the reader is referred to [1], [2], [3]
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(a)

(b)

(©)

~ Figure 41 Edge cross sections: gray level changes across the edge (a) Perfect step edge.
(b) Noise free blurred edge. (c) Noisy blurred edge.
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4.1.1 Difference Operators

} The most common edge-detection operators in this category are discrete approxima-
tions to the mathematical gradient and Laplacian. ‘

a. The Gradient

The gradient of a function f indicates the direction in which the ;atc of change of f
is the largest and the magnitude of this rate of change. For a two-dimensional function
. such as an image the direction and the magnitude of the gradient are given by -

of
0 = tan! % | '» @0
ox

' — - '
A (2]
lgradf | = A\/[ax] + [ax] o (4.2)

where x and y are two perpendicular directions and the angle 9 is measured from the x-
axis. For a digital picture, the continuous derivatives are approximated as differences.
Therefore, we may write -

| (a) G
RN | o .
| 6 = tan [Al J R v(4-3)

lgradf | = A2 + A2 @

where A; and A are the finite differences approximations to the derivatives along two
perpendlcular directions. One possibility could be S
Ay =fOy)-fx-1Y) : 4.5)
. Ay =fuy)-fx,y=1) S
From the standpoint of implementation, A; and A, can be construed to be convolutional
operators, meaning that the value of A; and A; at each pixel may be computed by con-
volving the digital image with the patterns:

[-1 1] and {}IJ 46
The Vapproximatiovns to the continuous derivatives, as representéd by Egs. (4.5), suffer
from the fact that if we had to assign locations to the points at which the x- and the y-

components of the rates of change of the function f are computed, these locations would
not be coincident with the point (x,y); what’s worse, the location for the x-component is
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not the same as that for the y-component To explam, from the consnrucnons of the

nght~hand-31des in Egs. (4.5), one may say that A1 is centered at (x — %, ¥)y whereas As

is centered at(x, y — ~—) making - quesmnable any attempt at combining the two com-

ponents vaa Eqgs. (4.3) and (4.4). Such problems do not exist with other more symimetri-
cal approximations 1o the derivatives as represented by the operators dlsplayed in (b) and
(c), the laster called the Roberts operator, of Flg 4 2 the (@) operator shown there is the
, same asin Eq (4.6) above ‘

L The adverse effect of noise can be reduced by locally averagmg the picture before
the application of the operators shown in- Fig. 4.2. From a computational standpoint, one
can equivalently compute the differences of local averages with the application of opera-
tors such as those shewn in Fig. 4.3. The Prewitt and the Sobel operators shown in this
figure, especially the latter one, are probably the most commonly used operators for edge
detecrc‘%ion in digital image processing. Note that in both the operators, when we compute
X-component of the rate of change, wee also do averaging -aflon;g the y-direction; and when
we compute the y-component of the rate of change, we do averaging in the x-direction.

i b The Laplacmn :
“The Laplaman is anxonemanon mvanant derivative operator gwen by

2, ¥
v ox ox2 ¥ ay2
v,ne éd%’ifsérete approximation to the Laplacian ii‘s

L, y) = fx+1,y) +f(x—1 ») +f(x y+) + f@y-1) + 4f(x y¥4.8)

Wthh may be implemented by carrylng out a dlgltal convolutlon of fwith:

V2fix,y) = @D

49)

The Laplacmn being a second-difference operator, has a "double splke" response to a
perfect step edge, as illustrated by Fig. 4.4a for the one-dimensional case. For a perfect
ramp, the output spikes are located at the "shoulders” at the top and the bottom of the
ramp, as shown in Fig. 4.4b. For a more realistic edge, as in Fig. 4.4c, the output exhibits
a zero~cros51ng at a point half way between the high and the low associated with the
edge. For thls reason, Laplacian processing must be followed by a zero-crossing detector,
" since the points where the zero-crossmgs do occur are presumed to be the locatlons of .
edges . : L S _
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Figure 4.2: Gradient operators.
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-1 0 1 1 1 1

-1 0 1 0 0 0

-1 | 0 1 -1 -1 -1
(a)

-1 0 1 1 2 1

-2 0 2 0 0 0

-1 0 1 -1 -2 -1
(b)

Figure 4.3: Prewitt (a) and Sobel (b) operators.
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(a) (b)

S

©

Figure 4.4: Digital Laplacian response to different types of edges. (a) perfect step, (b)
perfect ramp, (c) blurred edge.
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The Laplacian has three disadvantages as an edge detector: 1) It does not provrdc
edge directional information explicitly, although it must be said that the directional infor-
mation can be inferred from the orientations of the zero-crossing contours. 2) Since the
second derivatives are involved, we get a double enhancement of noise in the image.
‘And, 3) digital Laplacian responds more strongly to corners, lines, line ends, and isolated
pomts than it does to edges; this point has been discussed in [1]. To reduce the effects of
nolse and also to somewhat reduce the sensitivity of the Laplacian operator to corners,
lines and line ends, it is common to first smooth an image with a- Gaussian function
descnbed by

» (x y) = G —(x +y2)/202 . - o (4 1()) !
In practlce both the Laplacian and the smoothmg can be packaged into a smgle operator

‘that i is a convolution of the two operators. As a continuous function, the smgle operator
that embodies both smoothing and the second-derivative operation is given by

2 _ a2 2 :
. - 20 -r '
V2Ge*fry) = |L ex @I
o *f (kY o P 202

where . , o '
= r=Nxeyr o (412)
Th1s is a rotatlonally symmetric functlon with one free parameter o, whrch determmes
the spatlal size of the function -- the spatial size of the function controls ‘the amount of
smoothlng The choice of ¢ is a compromise between the resolution we wish to achieve
for edge detection and the amount of noise we need to filter out. Marr and Hildreth 41
have suggested the use of different values of o to correspond to the different bandpass
channels of the human visual system. Further discussion on this approach to edge detec-

tion, also called the Laplacian-of-Gaussian approach, can be found in [4] and [5]. In Fig.
4.5, we have shown a plot of the Laplacian-of-Gaussian operator of Eq. (4.11).

4.1.2 Template Matching

~ Another approach to detecting edges consists of convolving an image with various
templates, each corresponding to an ideal edge at a particular orientation. -At each pixel,
we then take for edge orientation that value which corresponds to the template yielding
the largest value, the magnitude of the edge strength being the local value of the convolu-
tion with the template. Frequently in. the literature, such templates are also referred to as
edge detection masks. '

An important parameter to select in this approach to edge detection is the size to use
for the masks; larger masks offer greater immunity to noise but reduced resolution. That
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()

. - Figure 4.5: Laplacian of a Gaussian. (a) 3D profile, (b) inte:sectibn with a plane.
containing the z axis. - ' L SRR
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edge detection resolution is diminished with larger masks is owing to the fact that the
Gonvqlved output is non-zero over an extent whose size depends dir,ectly on the size of
the mask. If the convolved output is simply thresholded, the result is usually a thick
detected edge, the thickness being proportional to the size of the mask, as illustrated in

~Fig. 4.6. Usually, it is possible to improve the resolution by thinning the output of the
edge detector by a number of techniques such as the one described by Eberlein [6].

Nevatia and Babu [7] have used the templates shown in Fig. 4.7 in a system used to
extract linear features suitable for detecting roads and airport runways from aerial photo-
graphs. A method for thinning the output of the edge detector and another to link broken
segments are also presented. - B

4.1.3 Edge Fitting

Another approach to edge detection is to have parametric models of ideal edges and
to determine how close these models fit the neighborhood of a given image point. One of
the best known procedures based on this parametric model approach is due to Hueckel

[81, 19].

- A simplified model of a general edge that is used to derive the Hueckel’s operator is
shown in Fig. 4.8. It represents an edge at a distance r from the center of a circular
region that is being analyzed for the presence or absence of an edge; the edge is assumed
to be at an orientation of angle 8 and, further, it is assumed that the edge separates the
circular region into two areas of uniform brightness, of values b and b+h. We want to
compute the parameters b, h, r and. 0 of the ideal step function that best matches the

given image region.

We will 1et N? denote the sum of the pixel-by-pixel squared differevnces between
the actual gray level distribution in a circular region R of an image and an ideal step
edge, as depicted in Fig. 4.8, in the same region:

N= TA®-5xE)? (4.13)
xeR .
where 4 (x) is the gray value of the image at point x and § (x, &) is the gray value of the
ideal step corresponding to a given set of parameters &, also at x. The vector of parame-
ters, &, has to be chosen such that N2 is minimized. An edge is declared present in R if
N%is sufficiently small and the step height, 4, is sufficiently large.

Hueckel proposed a procedure for minimizing N 2 in which both A (x) and S (x, &)
are expressed in terms of an orthogonal set of functions that are particularly appropriate
fer capturing different types of gray level transitions in R. In terms of the coefficients of
such erthogonal expansions, the error measure N2 can be expressed as
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(a)

(b) -

©

Flgure 4.6: Edge detector output profile. (a) perfect step edge, (b) output of a "wide"

mask, (c) desired output after thlnmng ~ i
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= Y@-s) (@414)
. i=0 ‘ o
- where g; and s; are given by _ o o
L a = zH(x) A @15)
xeR E
si= L Hx): s - BNCEUN
xeR

~ the functlons H; being the orthogonal basis funcuons Fig. 4.9 shows the nine H s uscd _
by Hueckel

Note that in this procedure, the quantity N2 directly gives us a measure of a quality
of an edge. So, it is possible to use edge-acceptance criteria in which we requrre the step
helght h to be larger the greater the value of N-. 2 - -

4.1.‘4 Edge Detection PrOcedure Usedvin ThisReSearch

. 'We have used Sobel operator shown in Fig. 4.3b for the research reported here. As
was mentloned before, applying this operator leads to two-output images that represent
' respectlvc]y, the magnitudes and the orientations of the rate of change in brightness at
each point in the image. The results for the image of Fig. 3.11a are shown in Figs. 4.10a
and b. Note that the orientation image is extremely noisy. Also, note however that it is
the magmtude value that determines whether or not an edge -will be- declared to be
- present at a pixel. So, the orientation values at a majonty of the plxels shown in Fig.
4.10b will be of no consequence. : SRR

In general, higher level edge-based processing, such as might be needed for b1nocu-
' lar fusion, becomes easier if the edges are only one p1xe1 wide. In part1cular the compu-
 tational effort required by the Hough transform-based line detection algorithm of the next

section is reduced if the edges are one-pixel wide. Therefore it is necessary that the pro-
. cess. of thinning be applied to the edge magnitude images like the one shown in Fig.
4.10a. In our processing, we first apply Eberlein’s algorxthm [6] to thin the non binary
edge- magmtude images like Fig. 4.10a -- this algorithm, which is partlcularly well suited
to the thinning of patterns that have contlnuously varying gray levels, accomphshcs thin-

ning by ‘gathering’ up the gray values towards their ridges. Thinned continuous gray- -

‘level edge images obtained in this manner are then thresholded to yield binary edge
images, whose edges in general will not be one pixel wide. Subsequently, a binary thin-
ning algorithm [1] is applied to yield one-pixel wide edges An example ‘of the:output is
shown:in Fig. 4.11a; this edge output corresponds to the edge magnitude i 1mage of Fig.
4.10a. :
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Figure 4.8: An ideal edge in a circular neighborhood.

Figure 4.9: Basis functions for approximation in the Hueckel operator.
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The edge orientation image of Fig. 4.10b plays a useful role in the characterization
of the thinned edges of Fig. 4.11a. For example, in Fig. 4.11b we have shown a result of
one such characterization, obtained by using a three level quantization on the orienta-
tions. In F1g 4.11b, we can distinguish between the edges that correspond to bright-to-
" dark transitions, shown as black edges, and the edges that correspond to dark-to-bright
transitions, shown as whlte edges. Such edge characterization is important for stereo
matching. I '

In Fig. 4.12, we haVe summarized the edge detection proeess used in this research.

4.2 LINE DETECTION

In low-level processing, ultimately our goal is to produce a symbolic map of a
scene, the symbols corresponding to significant features that have been isolated and
characterized by the values of their various attributes. The edge maps discussed in the
previous section are still a numerical representation of a scene, in the sense that to use an
edge map we must examine the value of the map at each pixel: if the value is high, the
edge is present at that pixel, otherwise it is absent. Our next task is to group nearly-
parallel and nearly-collinear edges into single entities called lines and then to represent
each line as an 1nd1v1dual entity, in other words as a symbol with its ass001ated attributes
and their values ’ '

The line detection method that we implemented starts out with the'edge image of
Fig. 4.11a and groups the edges into lines using a Hough transform-based approach. Note .
that the Hough transform is a versatile tool for the detection and parameter estimation of
“general shapes. The main advantages of the Hough transform are its low sensitivity to
noise and its ability to group shapes even when there are gaps present in the contour
representing the shape. Unfortunately, there is a price to be paid for all this -- the com-
putational effort required, especially if the intent is to also use the tool for estimating to
high precision the various parameters associated with the detected shape: To reduce the
computational effort and at the same time to maintain the desired ‘accuracics in the
estimated parameters of the lines, we use a two stage approach. Since we are only
interested in the detection of vertical lines, corresponding to the vertical features of the
hallways, we first use a fast projection technique to obtain approx1mate___values for the
locations of the vertical lines; subsequently the Hough transform is used in the vicinity of
the lines so detected for a more precise fix on their locations. Approaches to line detec-
tion based on methods other than the Hough transform are rev1ewed [1] and [2].

In the rest of this SCCthﬂ we will bneﬂy review the Hough transform approach to
grouping pixels into hnear features. For the purpose of this review we will assume that
we _w1sh to to apply the Hough transform to images like the one in Fig. 4.11a for the
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: . Obtain the magnltude and orientation of the local edges from the output of a

Sobel operator applied to the image / and store the information in images M
and O respectlvely

. Thin the edges in the magnitude image M to make them at most one pixel

wide. Select as local edges only the pixels above a glvcn threshold storing
them in image M’. :

Quantize the values of the pixels in the orientation image O to three values
correspondmg to the edge orientations up, down and horlzontal obtaining
image O’.

Figure 4.12; The local edge detection process summarized.
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purpose of grouplng approximately collinear edge plxels into the longest possrble lines
even when there are gaps between the edges.

Usmg the slope-intercept parameterization, a straight hne in the image plane may be
represented by the following form

: y—mx+c ' ' L (4.17)
where mis the slope of the line and ¢ the 1ntercept of the 11ne with the yuax1s Con51der a
pomt Py (Fig. 4.13a) of coordinates (x¢, o) in the i image space. We. wrll assume that the
- point islocated on a line L descrlbed by L=sy= mox +co. Now an arbltrary line, of

“parameters m and ¢, which may not nccessanly be the same line as shown in F1g 4.13a,

passmg through the point P() must satrsfy ‘ co .
’ Yo = mxg+c. - P C R £
In the absence of any a priori knowledge about what line (or lines) the pixel Py might
belong to, we may take the position that this pixel should contribute a ‘vote’ to all-the
lines, each described by a pair (m,c), that satisfy Eq. (4. 18). Computatronally, th1s notion
can ‘be expressed by constructing an m,c space and depositing ‘a unit vote’ at all those
points in the m,c space which satisfy Eq. (4.18). It is interesting to note that these points
in the m;c: space constitute also a straight line described by ¢ = —xgm + y,. Flg. 4.13b
- shows the parameter-space line, labeled L’, corresponding to the single point Py of Fig.
4.13a. We may thus say that the line L’ is the Hough transform of the. point Py. At the
nsk of soundlng repetitious, we may also say that the point P votes for all the stralght
hnes in the image space whose parameters fall on the line L’ in the parameter space

If we thus transform every non-zero pixel in F1g 4.13a into the parameter space we -
will obtam a collection of lines, all intersecting at a single point whose ‘coordinates are
(mo,co) Stated equivalently, the maximum number of votes would be cast for the
parameter pair mo,co. A most important point to note here is that this’ outcome would
not change significantly even the line L in Fig. 4.13a were broken. We therefore have a
_procedure for grouping p1xels into lines even when the p1xels themselves do not fom1 a-
contmuous lme ‘

In practlce both the image space and the parameter space w1ll be d1scretlzed
~ Therefore, the line L of Fig. 4.13a will consist of a finite number plxels whose COOl'dl-
nates will be close to but may not be exactly on the analytic line shown i in the figure.
Thls quantization effect will exhibit itself in the parameter space lines of Flg 4. l3c not
mtersectmg at one point exactly. What’s worse, there may not be a s1ngle umque max-
imum correspondlng to the true maximum in the parameter space. Before we descnbe

-how to ‘cope with this dlfﬁculty, we need to discuss the quantlzanon of the paramucr
space. '
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A 4

(a)

v

®) ©

Figure 4.13: Mapping of a line into Hough space: (ay line in image space, (b) mapping of
a single point in Hough space, (c) accumulation of mappings of collinear points in: Hough
space.. '
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A nice intuitive interpretation can be given to the discrete version of the parameter
space: We may view the quantized cells of the m,c space as buckets or accumulators.
Then, when point Py of Fig. 4.13a is under consideration, we compute the addresses of
all the buckets which should receive a vote from Py and then increment the count for
each of these buckets. After all the non-zero pixels in the image space have been pro- .
cessed in this manner, we find local maxima of ‘the bucket counts; the buckets
corresponding to the local maxima yield the lines in the image space. This procedure is
summarized in Fig. 4.14. ' ‘ :

~ To deal with the deleterious effects of quantization of both the image and the
parameter spaces, after the local maxima have been found, the parameters of the associ-
ated lines in the image space are computed by examining all the accumulated counts in
the vicinity of each local maximum. The following formulas can be used to compute the
m,c parameters of a line in the image space that gives rise to a local maximum in the
parameter space: -

9 |
2 Wim; Xwic; R
j=1. j=1 , o
mo=T— = | (4.19)
ij - _Ecj

' where w; stands for the count in cell j of the 3x3 neighborhood of where a local max-
imum has been located; m; and ¢ ; represent the value of the parameters a551gned to cell j.

This approach finds the center of mass of the neighborhood using the vote count in each
cell as the mass of that cell. When this procedure is used for estimating the parameters of
a straight line, step 4 of the algorithm of Fig. 4.14 can be expanded as shown in Fig. 4.15.

The slope—intercept parameterization described above, first introduced in [10],
presents' two problems: an unbounded accumulator size and nonuniform quantization
errors for the slope parameter. The accumulator size in unlimited, at least theoretically,
- because there are no upper bounds on the slope m and the intercept ¢. Since the value of
the slope becomes large at an accelerated pace as a line in the image space approaches
the vertical, in computer implementations it becomes necessary to discretize the m-axis
nonumformly, with uniform quantization a disproportionaly large number of the m-
buckets would correspond to image space lines that are nearly vertical -- an unacceptable
situation. To get around these two difficulties, Duda and Hart [11] have used for Hough
transformation the parameterization of a straight line in terms of its shortest distance
from the origin and the angle 6 shown in Fig. 4.16. With this parameterization, the equa-
tion-of a straight line in the image space is best expressed using polar coordinates. If we
~ assume that the polar coordinates of an arbitrary point in the image space are (P, 9), then
all the points lying on the straight line of Fig. 4.16a are described by the equation
peos(q) 8) = r. From this description, it should be clear that the Hough transform of a
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I Quantize the parameter space between appropriate maximunr and minimum
values for ¢ and m.

2:  Form an accumulator array A (c, m) whose elements. are initially zero.

3 For each point (x,y) in the feature image increment all points in the accumu-
lator array along the line ¢ =-mx + y.

4: The values of the accumulator array now provide a: measure of the number
of collinear points along a line of given slope and intercept. The highest
local maxima correspond to the longest lines in the i image.

Figure 4.14: Procedure to compute the Hough transform in the slope intercept parametri- -
zation.
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1: For each cell A (c, m) in the the accumulator array compute the sum of its
eight neighbors plus itself S (¢, m).

2: Find the local maxima in the array S (¢, m) that are above a given threshold.

3: Compute the parameters of the lines corresponding to the maxima. of

S(c, m)as
Y, Ac, m)m > A, m)c
— m,ceR c = m,ceR
T Y A, m) ‘ Y A, m)
m,ceR m,ceR

where R is the 9-neighborhood in A (¢, m) of maxima i.

Figure 4.15: Procedure to compute the parameters of the lines in the image from the
Hough transform accumulator array in the slope intercept parametrization.
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Y

(ay

(b)

Figure 4.16: (a) The (r, 6) representation of a line. (b) Hough transform of a point under
the (r, 0) parametrization: x;cos8®+ y;sinf=r.
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single point in the image space is given by the sinusoidal curve shown in Fig. 4.16b. In
other words, a single point in the image space votes for all the straight lines whose r, 0
parameters lie on a sinusoidal curve like the one shown in Fig. 4.16b. Yet another
| approach was presented by Jain and Krig [12]. In their technique, a stfaight line in the _
-image space is parameterized by its angle with the lower boundaxyy of the image and the
intercept made with'any of the three sides shown in Fig. 4.17. Note that for measuring the
intercept, a running index is established that starts at the upper left hand cotner, goes
clockw1se around the image, to the lower left hand corner.

Due to. the computationally intensive nature of straightforward implementations of
Hough transformation, much effort in the past has focussed on discovering efficient
implementations. Li, Lavin and LeMaster [13] have presented an algorithm which uses a
~ hierarchical accumulator structure in the parameter space. Illingworth.-_andt Kittler [14]
have introduced an approach that they call the Adaptive Hough Transform; this is an
iterative algorithm in which a small sized accumulator is used and its parameter range.
redefined at each iteration to progressively focus on the correct parameters w1th increas-
ing accuracy. )

4.3 A VERTICAL LINE EXTRACTION PROCEDU_RE

'We will now describe our procedure for grouping the edges in 1mages like the one
in Fig. 4.11a into vertical lines.

Note that a full-blown implementation of the Hough transform, especially when the
images are of size 512 x 480, is too time consuming. For that reason we have adopted a
two step procedure. In the first step, the subject of Section 4.3.1, approximate locations of
the vertical lines are determined by a fast algorithm that carries out a COI-urrinéwise sum-
mation of the pixels of the edge image. Subsequently, by using the procedure of Section
4.3.2, the Hough transform is applied separately to thin strips of the edge image, each
strip consisting of a few columns of the image matrix around the vertical lines detected
during the first step, for a more accurate calculation of the locations and the orientations '
of the vertical lines. In this fashion, the Hough transform calculations are speeded up not
only because the number of pixels in an image strip is relatively small, but also because
the geometry of an image-strip implies a reduced range of values in the parameter space.

4.3.1 TInitial Line Location

- The orientations of the cameras mounted on PETER is such that the scene vertical
lines‘ are approximately vertical in the images also. This allows us to make initial
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A

side2

2

3n i2 | 1
' side 3 ' | 2n

Figure '4.17: The (M,0) représcptation of a line. The sidés are numbered as in the figure,
1, 2 and 3 and the pixels on these sides are labeled with numbers from 0 to 3n. The
orientation 6 is measured from side 3 and M is the image border intersection with smallest
label.
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detection of the vertical lines by simply summing the image plxels in a column-wise
fashion and looking for peaks in the projections thus obtained. In other words, we form a
one-dimensional function 7 (x) by summing an edge image f (x, y) with respect to the
index y: -of the local edges image f (x, y) as : 7
: 480 ' o I
Ix) = Yf(xy) o (4.20)
- v y=1 ‘ ) ) .
Performing this operation on the local edge magnitude and orientation images separately
- results' in two one-dimensional functions, I,,(x) and I,(x), respectively, for the projec-
tions of the magnitudes and of the orlentatlons Fig. 4. 18a b show these’ functlons for the

edge images of Fig. 4.11a,b.

In the plot of Fig. 4.18a, it can be observed that a number of very strong peaks stand.
out against a noisy background. They correspond to the main vertical lines of the local
edge image of Fig. 4.11a. For each of the strongest peaks in the ,prbjccli_omof-
magnitudes plot of Fig. 4.18a, there is a corresponding positive or negative peak in the
projectibn-Of—oriéntations plot of Fig. 4.18b. The polarity of a peak in the orientation
projection depends on whether the corresponding line in the edge lmage represents a
brlght-to -dark or dark-to-bright transmon .

In order to detect the longest lines in the image from the inagnitude projection,
In(x), the first step taken is to filter 1,,(x) in order to accentuate the largest of the peaks
and to eliminate the uninteresting "low-frequency” variations. The filtering operation
yields F,,(x) via '

Zl (x+1) - Z[ (x;)

i=w j=1
2w—n+1

Fr(x) = Inkx) — (4.21)

for:all j=1,..n and forall x; xj,xe [x—w , x+w] and Ly (xj)21 (%)

“That is, F m(x) 1s the difference between the function I,,(x) and its local average com-
puted over a window of size 2w + 1 once the n highest values of ,,(x) are removed.
Note that within each window (x —w, x +w), the variable n is equal to the number of
values of I,, which equal or exceed the value /,,(x). Since the second term on the right
hand 31de is the average of all the /,, values within the window that are strictly less than
I'n(x), we make sure that the process of suppressing low-frequency variations does not

lead to the peaks distorting one another. A plot of F,,(x) for the function 1,,(x) -of Fig.
4.18a is shown in Fig. 4.19a. After computing F,,(x), its local maxima are determined
and their average height computed. The peaks selected as corresponding to the longest
vertical lines in the edge image are the ones whose heights exceed a certain threshold

- ‘tlmes the averagc local 1 maxima height. Using this procedure, the peaks detected are
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Figure 4.18: Projection functions for the ima ges of Fig. 4.11.
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shown in Fig. 4.19b for the F,,(x) of Fig. 4.19a.

If the lines were perfectly vertical in the edge image, the peaks detected in F,,(x)
would have one-pixel widths and the location of a line would be exactly the x coordinate
of its corresponding peak. But if the cameras are not exactly horizontal, the direction of

- the columns in the image plane will not coincide precisely with the world vertical direc-
tion. As a result, in general, a vertical line in the scene will give rise to an image line that
spans several columns. Consequently, the peaks in Fp,(x) will, in general, be "thick"

- peaks whose middle points may be taken as rough estimates of the locations of the verti-

cal lines -- these locations to be refined later by the Hough transform tech\nique, where
the actual slopes of the lines would also be computed

- Each peak selected in F,,(x) is assigned a polarity which is equal to the polarity of
1,(x) at the middle point of the peak. This polarity value is subsequently used the stereo
matching algorithm. ‘

The procedure described in this subsection for detecting lines is summarized in Fig.
4.20. ‘

4.3.2 Improving the Estimates of Line Parameters

The final parameter estimation is obtained using a Hough transform techmque that

» con51ders one line at a time as detected by using the technique of the precedmg subsec-

- tion. ‘To avoid problems with the unbounded slopes of lines that are perfectly vemcal

lines are represented by equations of the form x = my + ¢, instead of the more familiar

y = m’x + ¢’. Therefore, in the discussion to follow, the parameter m will represent the
tangent of the angle that a line forms with the y-axes and ¢ the x-intercept.

In accordance with our earlier discussion, each line detected from the peaks of
F,(x) is surrounded by a rectangular strip and a Hough transform computed of all the
pixels in this strip. Since we are only interested in long lines and since for long lines the
slopes and intercepts can only take a small range of values, the parameter space is con-
structed to reflect this fact and divided into cells. Delimiting the parameter values in this
manner contributes significantly to the speedup of Hough transformation.

After the Hough transform is performed over a given strip of the edge image, the
cells of the parameter space are searched for the most significant peak and the
correspondmg parameters computed by using the procedure outlined in F1g 4.15.

A problem arises when there is an overlap between  the rectangular strips
corresponding to two or more lines detected by the projection procedure of Section 4.3.1.
In this case, prior to Hough transformation, we take the union of all such overlapping
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1: Compute the local edges magnitude and orientation images M’ and O’ fol-
lowing the steps of the algonthm in Fig. 4.12. : -

2:  Add the values in each column of M’ and O’ obtaining the funétions I,n and-
I, respectively.

3:  Filter /,, obtaining F,, as

Z L,x+1i) — Zlm(xj

—w Jj=1

Fn@) = In(x) - L

for all j = 1,..,n and for all x; xj,x€ [x—w , x+w] and
In(%; ) 2 Iy(x) |

4: Compute all the local maxima in F,, and find the average valué of F m at
those maxima a. ~

5:  Select the maxima at which the value of F m 18 higher than a given threshold
times the average a. Assign to these selected maxima a polarity depending
on whether the value of 1, at these points is over or under the background
value.

Figure 4.20: Algorithm for computing the estimated location of vertical lines.
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rectangular strips, and modify the parameter space to reflect the larger range of values
that can now be taken by the slope and the intercept parameters corresponding to long
lines in this larger piece of the image. Of course, now the parameter space is searched
for not just one largest peak, but a number of largest peaks equal in number to the
. number of strips merged. ' |

This approach to line parameter refinement is summarized in Fig. 4.21. Fig. 4.22
presents the overall approach to the detection and extraction of vertical lines in a gray
level image. In the table in Fig. 4.23, we have shown both the initial locations of the vert-
ical lines and their final locations and slopes for the image of Fig. 3.11a. A composite
formed by superimposing on the original image the ideal lines whose parameters were

calculated is shown in the image in Fig. 4.23.
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1: Form a list L with lines found using the procedure of Fig. 4. 20 ordered by
their horlzontal 1ntercept estimate. :

l 2: For each line L; in list L select a vertical strip S; in the i 1mage centered at the
estlmated horizontal intercept of L; in which the line must be contamed

~3: - Until the list is empty perform steps 4-11.

4: Remove lines L; . Lj from the head of list L until the strip S; of the last
line removed L; does not overlap with the strip §;,; of the new head of the
list, or until the list is empty. '

5: Select the area of the image S corresponding to the intersection of the strlps
S;, -, §; of the lines removed in step 4 from L.

6: Compute the parameter range compatlble with the new area S and the origi-

nal areas of the individual lines S; - - -, S; as follows: the horizontal inter-

~ cept range has to cover the horizontal extent of S and the slope range has to
cover the union of the ranges of each individual line.

7: - Construct an accumulator A that covers the range of parametersv determined
 in step 6 to a given accuracy (the range covered by each cell in the accumu-

e lator)

-8 Perform the Hough transform of the image area S into the range of parame-
ters covered by the accumulator A.

9: Perform the steps 10 and 11 once for each line in § (j — i times).
10: Select the most prominent peak in the accumulator and compute the parame-
ters associated with it using the method of Fig. 4.15. Thls are the final

parameters of the corresponding line.

11: Set to zero all the cells associated with the peak found in step 10 B

Flgure 4. 21 Procedure to obtain the parameters of the vertical hne% in the image using a
Hough transform technique.
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Computc the magnitude and orientation local edge images M’ and O’ using
the Sobel operator thlnnmg and thresholdmg as described in the algomhm of
Flg 4.12.

Comipute the approximated locaﬁon of vertical lines and their polarity from
the projections /,, and I, of M’ and O’ respectlvely as described in the algo-
rithm of F1g 4.20.

For each line L found in step 2 perform steps 4 and 5.

Compute the local Hough transform around the estimated location of line L

 as described in the algorithm of Fig. 4.21.

Search the accumulator obtained in ‘step 5 for the most pr‘ominent peak and
compute the parameters of its corresponding line as described in the algo-
rithm of Fig. 4.15. The polarity of the line is taken as the one found in step-
2. o ’

Figure 4.22: Description of the feature extraction procedure.



109

Table 4.1: Results of the line extraction.

,kl_f'lFigure 4.23: Final lines detécted in the image of Fig. 3.10a. ¢

Projection Hough

Intercept | Intercept Slope
62 62.302862 | -0.002427
80 80.303229 | -0.002400 |
84 84.300000. | -0.002225
97 98.099719 | -0.002900
125 125.000909 | -0.000307
132 - 131.918776 | -0.000311 |-
176 178.201304 | -0.007432
260 260.076140.| -0.000168 |
349 346.801208 | 0.007309
366 364.798201 | 0.002714

‘lopez-abadia/kak -
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CHAPTER 5

STEREO MATCHING AND TRIANGULATION -

As was mentioned at the beginhing of Chapter 4, our mobile robot uses two .
methods for self-location: one based on a stereoptic fusion of the images from the two
"cameras on board the robot, and the other based on a comparison of a single image from
one of the cameras with an expectation map derived from a CAD model of the hallways.
In this chapter we will discuss the first of these two methods and relegate the second to
the next chapter. ’

Duh'ng the last several years a number of algorithms have been developed for depth
perception via passive stereopsis. To be sure, even before the current surge of interest in
-the topic -- driven primarily by a desire to endow robots with 3D perception -- much
research had been done on the subject in the context of photogrammetry. Interestingly,
‘due to the nature of the problem domains, the stereopsis algorithms for ,r‘obotic applica-
tions have turned out to be different from those for photogrammetric applications. Due to
the nearness of distances involved (compared to the camera-to-scene distances in photo-
grammetry) and large variations in depth possible over these distances; robotic images
tend to suffer more from occlusion and scale compression-expansion effects; this makes
it virtually impossible to use in robotics the area-based methods of stereopsis developed
for photogrammetry. Therefore, the algorithms developed for robotic applications have
tended to depend more on the matching of features, such as the. vertlcal hnes dlscussed in
the preceding chapter, for the calculation of depth ' ’

“In the rest of this chapter, we will first very briefly discuss the different aﬁproaches
to stereopsis. Subsequently, we will present the algorithm we have used for pairing up
- the prominent vertical lines extracted from the two images. Finally, we will show how
the equation of a 3D scene line can be obtamed from the matched vertlcal lines extracted
from the two 1mages of a stereo pair. ‘ ‘ ‘
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5.1 ABRIEF REVIEW OF STEREOPSIS

The fundamental problem of stereopsis is the establishment of correspondmg pixels
from the two images of a stereo pair. Ideally, we would like for every pixel not subject to
occlusion i in the left image a corresponding pixel from the right image, corresponding in
the sense that the two pixels belong to the same scene point. Despite its straightforward
' nature (and desplte the apparent ease with which we hurhans exercise stereoptic vision),
the correspondence problem has proved to be exceedingly difficult to solve. Of course,
after the correspondences are established; the disparities can be calculated, the disparity
at a pixel in the left image being equal to dy —d,, where d; is the distance of the left-
image pixel from the optic axis of the left camera and d 2 the distance of the correspond-
ing right-image pixel from the optic axis of the right camera. By using tnangulatron for-
'mulas d1spar1tres translate directly into depth information.

Broadly speakmg, the algorithms that seek to solve the correspondence problem fall
inte two categories: the area-based algorithms, developed originally for photogrammetric
apphcatlons and the more-recent feature-based algorithms developed for robotic applica-
tions. Each of these categories will now be briefly reviewed. '

511 f'A“’.ﬁ-ea;Based Stereo

‘ The correspondence problem is solved by correlating a patch of the left 1mage sur-
roundmg the p1xe1 whose corresponding right-image pixel is sought with comparably
sized patches from the right image. The location in the right image y1eld1ng the max-
imum value for the correlation supposedly corresponds to the sought right-image pixel.

One of the major shortcomings of area-based stereo algorithms is their inability to
cope with scale expansion and contraction effects common to imagery in robotics. To
explain, consider an object surface that is slanted with respect to-the optic axes of the two
cameras, meaning the surface is not perpendicular to the optic axes. In general, the scale
~ associated with the perspective projection of this surface on the two cameras will be dif-
ferent, because the slant of the surface with respect to the two optic axes will be different.
'Such scale differences lead to noisy and erroneous correlations, making difficult the
' detectron of correspondences. ’

Another problem with area-based methods is their excessive sensitivity to bright-
ness varlatlons Since the peak of a correlation is proportional to the product of gray lev-
els in the two image patches taken from the left and the right images, scene surfaces of
the same texture quality will yield very different results depending on the extent of sha-
dQng and illumination. Much more so than the feature-based methods, area -based
methods also appear to be more susceptlble to occlusions. -
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Some area-based algorithms have been employed in automatic cartography applica-
‘tions; however, all practical systems require the intervention of human operators to guide
and correct them. Some area based systems are descnbed in [2,3].

~ 5.1.2 Feature-Based Stereo

‘In feature-based stereo, we first extract features such as edges, intersection of lines,
~zero-crossing contours after the images are filtered with Laplacian-of-Gaussian operators,
points with large gray-level variations in all directions, etc. Correspondence problem in
this case consists of pairing up the features from the left and the nght 1mages

Advantages of feature-based methods include their lower sensmvuy to brightness
variations in images and faster computation, since the number of features extracted from
an image is usually not very large. In addition, when subpixel techniques are used for
calculating the locations, feature-based techniques also tend to yield more aCcurate depth
values compared to area-based algorithms. Feature-based methods do suffer from one
disadvantage: the resulting depth maps tend to be sparse since depth values can only be
computed-at those pixels where the features are located.

Given a feature from, say, the left image, finding its corresponding feature from the
right image evidently involves some search from among the candidate right-image
 features selected on the basis of their similarity to the left-image feature. Various ‘con-
straints can be invoked during this search (and also for the formation of the pool of can-
didate features), the two commonly used being the epipolar constraint, and the
smoothness-of- dlsparmes constraint. While the latter constraint is obv1ous for what it
-implies, we will now say a few words about the former constraint.

Th_eepipolar constraint says that given a pixel on a feature in, say, the ‘l‘eft ir_nage, its
corresponding pixel in the right image must lie on what’s called the epipolar. line. To
explain, recall that under the thin-lens approx1matlon there exists a line- of-sight’ ‘for each
each p1xe1 in an image, the 11ne -of-sight passing through the pixel and the lens center. In
F1g 5.1, we have shown a p1xe1 Py and its correspondlng line- of-51ght A perspective
prOJectlon of this line-of-sight onto the image plane of the right camera is the epipolar
line in the right image for pixel P of the left image. In other words, an eplpolar line for
a left-image pixel is the right-camera image of the line- -of-sight corresponding to the
left-image pixel. The epipolar constraint says that the right-image correspondent of the
1eft-1mage pixel P; must lie on the epipolar line shown in the figure. By analyzing the
- geometry associated with epipolar lines, it can be shown that when the optic axes of the
two cameras are parallel, the eplpolar 11nes must also become parallel to the camera
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Figure 5.1: Epipolar geometry.
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baseline, which is the line joining the two lens centers. When this baseline is parallel to
the horizontal scan lines of the cameras, given a pixel on a particular scan line of the left
image, its right-image corresponding pixel must be located on the same scan line of the
right image. The plane formed by the line-of-sight for P; shown in Fig. 5.1 and the
lens-center of the right camera is called the epipolar plane. Equivalently, the epipolar
plane for a pixel from, say, the left image is defined as the plane containing the pixel and
the two lens centers. The intersection of the epipolar plane and the right camera image
plane defines the epipolar line for the left-image pixel in question. : '

‘Some feature based systems are descnbed in [1,4,5,6]. For a survey-type dlscussmn
the reader is referred to [3, 7].

- 5.2 AMATCHING ALGORITHM

- Long vertical lines -- they do not have to be exactly vertical -- as extracted by the
method of Chapter 4 are used as features in a feature-based stereo we have implemented
for our mobile robot. We have implemented a variation of the algorithm described in [4]
for pairing up the lines in the two images. ‘

~ The matching algorithm uses only two pieces of information about each line: the x-
infercept and the polarity. The polarity indicates whether the line represents-a dark-to-
bright or a bright-to-dark transition in the original image. The polal'ity, under normal cir-
cumstances, is a viewpoint independent property and is therefore useful in disambiguat-
ing different possible i‘ight-image matches for a given vertical line from the left image.
The x-intercept used in the matching process is not the value found by the Hough
transform step but the value estimated initially from column-wise projections (See
Chapter 4). There is an interesting reason for that: The x-intercept value as generated by
Hough transforrhation corresponds to the intersection of an infinite line, corresponding to
the grouping of edges found in the edge image, with the x-axis. On the other hand, the x-
intercept value provided by column-wise projections represents apprbximately an aver-
age value of the x-coordinates associated with the pixels in the grouping. Given two dif-
ferent lines of different slopes, the former x-intercept can reverse the left-to-right order of
the appearance of the lines, whereas that’s less likely to happen with the latter type of x-
intercept. To explain, assume we have two line segments, S, and § 2, as shown in Fig.
5.2, one perfectly vertical and the other with some slope to it. If we had to associate a
left-to- -right order with these two lines, our answer would be erroneous if we. used the x-
intercepts generated by Hough transformation, as the transformation would yield X 1 and
X 2’ for the intercepts. On the other hand, a left-to- -right order inferred from a column-

wise projection, Wthh may look like Fig. 5.3, will be based on X 1 and X2 and would be
correct
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Figure 5.2: Apparent inversion in the order of the lines. The Hough transform will find
X 1 and X 2’ as intercepts.

Xt X2

| Figure 5.3: Lines of Fig. 5.2 as detected by the projection algorithm.
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The‘matching algorithm consists of the following two steps:

1. For each line in each of the two images, construct a pool of candidate lines
~ from the other image. :

~2.  From the'podl of candidate lines, construct a best possible match for each of
the lines, best in the sense that the disparity associated with each line best
agrees with the disparities associated with the neighboring lines.

The set of possible matches for a line A; in the left image is the set of lines (B i} in
the right image such that each B; satisfies the following conditions:

a. The x-intercept, x4 , of the line A; in the left image and the x-intercept, Xg,,
of the line B; in the right image should satisfy xp. 2 x4,, a's'éu'r'ning'tl']at all
the x-intercepts are measured from the lower left hand corners of each of the
image frames.

b.  The disparity associated with a potential match is smaller than a threshold
corresponding to the furthest distance at which scene points may exist.
Mathematically, this translates into the condition: | xXp, — XB, | £ dmax- '

¢.  The polarity of both lines, A; and B;, is the same.

The idea behind the first condition is shown graphically in Fig. 5.4. The image of a

- scene point in the left camera will appear to the left of the image of the samcpoint in the

right camera if the optic axes of the cameras cross or intersect beyond the location of the

scene point. In our experiments, the camera optic axes are nearly parallel, hence condi-

tion (a) above. Condition (b) is warranted by the fact that there will always be an upper

bound on the distance to the obJects in a scene. Condition (c) follows from the viewpoint
invariance of line polarities.

In the second step of the algorithm, the lines from the left and the right images are
paired up so that the resulting disparity field is the smoothest. There is psychophysical
evidence that the human visual system does the same. Consider, for example, the case
shown in Fig. 5.5, where the left and the right images contain three features each; each
feature is represented symbohcally by a square in the figure. If we pair up the leftmost
feature in the left i image with the leftmost feature in the right image, the center feature in

- the left image with the center feature in the right image, and the rightmost feature in the

left image with the nghtmost feature in the right image, we get a flat interpretation of the
scene, as marked by the small circles. On the other hand, if the leftmost feature in the left
image is matched with the rightmost image in the right image, the center feature in the
Ieft image with the leftmost feature in the right image, the rightmost feature in-the left -
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left camera ~ right camera

Figure 5.4: Relative location of the images of the same point.
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A Figure 5.5: Example of ambiguity.
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image with the center feature in the right image, we get an interpretation shown by the

crosses in the figure. Other ways of pairing up the lines from the two images yield other
mterpretatlons in the scene. Everything else being equal -- such as all the features bemg

visually identical -- out of all such interpretations, the human visual system selects the

ﬂattest 1nterpretat1on the one marked. by the small circles in Fig. 5.5.

In accordance with the procedure advanced in [4), a smoothness constraint for com-
puter 1mplementat10n can be derived from the rationale that at each vertical line we want
the disparity to take a minimum value provided such a minimum value is consistent,
from ‘the standpoint of smoothness, with the disparities at the neighboring vertical lines. -
In other words, we want to pair up the vertical lines in such a manner that for each match
the resulting disparity is minimum under the condition that the difference in disparity for
the match and the disparities at all the neighboring matches is a minimum. Let dyp be the
disparity -associated with matching line A from the left image with line B from the right
image. For the purpose of imposing the smoothness constraint, let’s define the vicinity of
line: A as consisting of all the x-intercepts that fall within a 2d,, interval
g = raxs xA +d max). We will denote this interval by the symbol W(A). The symbol
W(B) will denote a similar interval around the line B in the right image. Now let C be
another vertical line in the W(A) vicinity of A in the left image and let D be a potential
match forC -- D can be any line from the‘pool of candidate line matches for C. Let dcp
be ;the,di'sparity associated with matching C with D. Out of all the possible D’s, let’s
select that D which yields a minimum value for dcp. Clearly ‘then the difference
dAB dcp s a measure of the smoothness 1mp11ed by the match (A B) vis-a-vis the
match (C,D), ‘the latter be1ng the smallest possible disparity match for C. Such a measure
of smoothness needs to be integrated over all possible C’s in the W(A) neighborhood of
the line A. The following expression shows this integrated measure together with a sym-
metrical component generated by applying similar arguments to line B in the right image:

ldap —dcp 1 ldap — dcp
VAB) = ¥ AB — GCD . AB — dcp 5.1)

. min ————— + . min ——————

: Cinw@y D cardW(@)) o ,.,,%(B, D card(W(B))
where card(W{A)) represents the number of matches over which the sum is defined.
A computer program iseasily written to select final matches for the vertical lines

such that the measure in Eq. (5.1) is minimized for each match. For each final pairing -
(A,B) selected by the program, the following conditions must be satisfied: '

for eve‘ry -other possible match D for A, v(A,B) < v(A,D),
and o
for every other possible match C for B, v(4,B) < v(C,B).

This algorithm does not guarantee 100% success in the matching process but in
most of the hallway scenes we have analyzed, we did attain 100% success.
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To illustrate the sort of results obtained, the vertical lines detected in the stereo pair

“of Fig. 3.11 are shown in Fig. 5.6. There were 10 vertical lines detected in the left image

and 15 in the right image, the different numbers owing to the differences in the

~ viewpoints and photometric variations in the two images of the stereo pair.  Clearly, any

matching process must not form more than 10 pairs. Our algorithm did exactly that and
. formed a verifiably correct match for each of the lines shown in Fig. 5.7.

5.3 RECONSTRUCTING 3D SCENE LINES

~ From the pairs of vertical lines matched from the left and the right imziges, the_ next
task is to generate the equations of the scene vertical lines that gave rise to the image
vertical lines. In this section, we will show how that can be done : S

~ First, in Section 5.3.1, we will show that in a fashion analogous to the association of
~a line of sight with each p1xe1 in an image, we can associate a plane of 51ght w1th each
line extracted from an image. Given the coordinates of a pixel, Eq. (3. 20) glves_us an
equation for the line of sight that goes with that pixel. In a spirit similar to that of Eq.
(3.20), given the equation of a line extracted from an image, we want to derive the: equa-
tion of a plane which contains that line and the lens center -- by definition the plane of
sight. Note that a plane of sight contains the lines of 51ght for all the pixels on an image
line.

_ Then in Sectlon 5.3.2, we will show how by intersecting the planes of sight
corresponding to the two image lines of a matched pair, we can derive the equation of a
scene line that gave rise to the image lines in the left and the right i images.

5.3.1 'Planes of Sight
In order to derive the equation of the plane of sight associated w1th a hne extracted
from an image, we start with the slope- intercept equation of the line

u=mv+c T 7(5~2)
where m is the slope and c the x-intercept. Note that we have reverted back to image
coordinate frame used prior to the Hough transformation step of Chapter 4, meaning the
x-axis is directed along the scan lines of the image plane and the y-axis a]ong the perpen-
dicular to the scan lines. We will use (4,v) to denote the coordinates of a point in the
image frame, as opposed to the indices i and j of Chapter 3, the reason being that we now

allow the coordinates of an image point to be real numbers; note that an arbltrary point
on a line correspondmg to the estlmated values of m and ¢ may not fall on one of the
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Figure 5.7: Lines correctly matched.
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sampled pixels in the image. The world coordmates w1ll continue to be designated by
(x,)’ VZ). )

In contrast with Eq. (5.2), a llne in an image may also be described by the following
vector equatlon :

Py = M+ Uy | (5.3)
Whe‘re"lg; is a vector in the image coordinate frame to a particular point on the line, Xa
-vector along the direction of the line, and Uy a vector to a reference point on the line.
‘The parameter A is needed so that the length of the vector Ak is equal to the distance from
‘the reference point U, o to the point P, on the line. Clearly, the same line in the image

frame can be described by many different values for kK and U, o- In particular, we may
express them in terms of the known m and ¢ as follows: '

=mD To=@0 6

In other Words we use the intercept with the * axis as the reference pomt for the vector |
equanon and deﬁne the line direction vector x directly in terms of the slope m. Eq. (5 3)
may also be written in the following form: . '
‘k k, | lug | . - i
kv Vo : AR

-

where (u,v) are the two components of the vector 13; to the image point, as they appear in
Eq. (5.2), (k,, &,) the two components of the line-direction vector k-- of course, in our
case, k,-equals m and k, 1 -- and, (4, vo,) the two components of the vector to the refer-
ence point, with #¢ equal to ¢ and v equal to 0 in our case.

As mentioned before, Eq. (3.20) gives us the parametrlc equation, PW uD + C of
the l1ne of sight that corresponds to the pixel at location P1 in the image plane, with
D=R" P,, note that vector C corresponds to the location of the camera lens center (see
Fig. 3. 3) The matrix R is the upper left 3x3 submatrix of the calibration matrix T whose
components are computed by the method described in Chapter 3. The vector C can be
computed from the last column of the calibration matrix from Eq. (3.14). To derive the
equation of a plane of sight, we need to combine Eq. (3.20) with Eq. (5.5). However,
before we can do so, Eq. (5.5) must be expressed in homogeneous coordinates: -

u »ku Uo | ) T B
V]l =Xk |+ |vo ‘ - (5.6)
1 10| 11

or, 'CQlliYalenﬂy,’ as

PI =‘ 7\.[?'!"(]0 3.
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Combmlng Egs. (3.20) and (5.7), we get the following equation for the plane of slght o
w = AR K+uR U0+C _ (58

Ifwe usethe Substitutions P 1 =R K Pz RIT o and A" = )L A, we can write

| = NP+ WP+ C | 59

which represents the parametric equatlons of a plane in 3D space. To present this equa-
tion’ 1n a more familiar form we could multiply both sides by o

R=P1xP) » (510

obtaining -
| wPy = 7C = p'y 6
If we normlize by dividing both sides by |71, we get S o
#-Pi = po .--_'-'(512)
which i 1s a succinct representation of a plane of sight. Eq. (5.11) tells us that the plane of

sight contains the camera lens center, since C'is the vector to the lens center in the world
frame. . ‘ ’

5.‘3.2:‘ From Planes of Sight to 3D Scene Lines

Given a matched pair of vertical lines, one from the left image and the other from
the right image, we can construct planes of sight for each image line by the procedure
just'deseribed., By intersecting the two planes of sight, we can then derive the scene line
that gave rise to the image lines in the two cameras. ' .

~In keeplng with Eq. (5. 12) let an =p; and n,P =p, be the equatlons of the planes
of S1ght corresponding to the two vertical lines in a matched pair; the subscript lrefers to.
the left image and the subscript r to the right image. The direction of the 3D scene line
generated by the intersection of these planes of sight is given by c .

7= ny X ny, R _ (5‘..13)_

Now that we have the direction of the line, we need to constrain the location of the line.
This we do by computing the intersection of the scene line with the floor defined by
z =0. This point on the floor, which will be designated by the symbol ]—;WO, can be com-
puted as the intersection of three planes, the two planes of sight and the z=0 plane. In

general, the vector to the intersection point of three planes that are at arbltrary onenta-
tions vis-a-vis one another is given by : i
= P1(ﬁ2><'?3)+pz(ﬁ3><ﬁl)+l73.(ﬁ1Xﬁz) L
Py = ‘ : —— ’ o (5.14)
ny-(ny X n3) ' '
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where we have assumed that the equatioris of the three planes are

A -—)

n P =P . . o :

) P =p3 B CRE)
;i P =p3 -

For our case, since one of the planes is* given by z =0, meanmg that the plane passes
' through the world origin, we can set p4 = 0. Therefore, the expresswn for the 1ntersect10n ‘
of the 3D scene line and the floor reduces to -
| - (n Xk)+ ‘ ‘,\CX;I\ » S
Blo = {I‘,r pr (kX ny) o (5‘16)
Ay (A, x k) IR

where k 1s the unit vector in the d1rect1on of the z-axis. Eqgs. (5.13) and (5 16) deﬁne the
,3D scene l1ne with the help of the followmg parametnc form

PW = AT+ PWO : o (8.19)

5.4 EXPERIMENTAL RESULTS

Following the procedure described in the preceding sections, we computed the
equations of the 3D scene lines corresponding to the matched pairs of vertical lines from
the stereo pair in Fig. 5.6. The x and y coordinates of the intersections of these scene
“lines with the floor are shown in Tables 5.1 and 5.2. [The robot was placed at the origin
of the' ‘world frame for these experiments.so that the robot frame was coincident with the
world frame.] The computed x and y coordinates were compared with their ground truth
values and two different errors determined. Table 5.1 shows the radial error, this is the
- error in the distance to the scene vertical line from the world ongm On the other hand,
Table 5.2 shows the errors in each of the two coordinates of the intersections of the verti-
‘cal lines with the floor. Note for the segment of the hallway shown in Fig. 5.6, the world
- x-axis is perpend1cular to the walls on the two sides of the robot and the world y-axis
along the walls on the floor (the z-axis being the vertlcal) Given that the y-axis is nearly
~‘ parallel to the optic axes of the cameras, it 1s not surprising that the y- coordmate €ITOrS

are larger : ‘

If the errors between where the robot actually is and where it thinks it is are small
,enough the. computed intersections of the scene vertical lines with the floor ¢an be used
_ d1rectly for self-location. In this case, the computed coordinates of such an intersection
~ on the floor will be off somewhat from their true values, but small enough so that the true
coordinates of such points can be used to eliminate the errors in the location of the robot.
For this scheme to work, the robot must stop frequently for updating its location.- When
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longer hop lengths are desired, it becomes necessary to carry out a graph-theoretic com-
~parison of the shapes made by the intersections of the vertical lines with the floor with
the shapes extracted from a model of the hallways. Procedures for carrying out such com-
parisons have not yet been implemented are topics of current research in the lab.
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Table 5.1: Radial errors "fo;’r‘,‘the lines of Fig. 5.7

‘ True coordmates J Radlal eITors
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reIatlonshlp between the lines of sight correspondmg to the pixels of the image and the
world frame: For our illustration, the rendered expectation map'is shown (a) of Fig. 6.1.
Itis 1mportant to realize that the camera image in (b) and the expectation: map in (a) are
not in registration. Also imiportant is the fact that the misregistration. between the two is
net: 51mple translation or rotation or any combination of the two. In the rest of this dis-
- cussion; the expectation 1mage of (a) willalso be referred to- as the model 1mag,e and the
ent. geometric entmes in a model image will sometimes be referred to as model
On the basis of the similarity between the model entities and the scene entities,.
‘ 'el labels can be given to the geometnc entities extracted from (b) and a
L , rconﬁdence value assoc1ated w1th the label ass1gnment

, P KI ﬁrst applles a preprocessor to the image of Fig. 6.1b: The preprocessor
o extracts gdges’ and regions from the image. Thick edges are thinned to make them one-
»plxel wide: and any small breaks between the edges that are nearly collinear are repaired.
The: details on preprocessmg can be found in [2]. The output of the preprocessor for the
1mage of (b) is-shown in (¢) in-Fig. 6.1. PSEIKI’s main job is make a comparisen of the
image of (c) with the model i image of (a) and, via such a comparison, associate the:model.
labels with the entities ini (c): As we will show in' this chapter, such associations can then
be. used to figure out the exact location of the robot, in other words. for zeroing out the

uncertamtles associated with the robot posxﬁon and orientation.

As was mentioned before, PSEIKT compares the images in (a) and (c) of Fig. 6.1 at
dlfferent levels of geometric abstractions. The edge-level companson yields the labelmg
of the scene edges in (c) with the model edge labels from (a), each suck label assignment
carrymg a belief value. The face-level comparison yields face-level model labels for the
reglons formed by the closed edge contours in (c). Again, a belief value is- associated
w1th each model face label for a region from (c); however, this belief is now influenced
by the model labels of the edges composing the region and the beliefs associated with the
edge -level labels involved. If after PSEIKI has stopped processing the data, we identify
the most- beheved highest-level abstraction - from (c),  and then display the edges
correspondlng to this-abstraction, we get the output shown in (d). In other words, we have
the highest confidence in the model labels for the scene data edges shown in (d). These
data edges and- their model labels are then used for calculatmg a precise fix on the loca-
tion of the robot by using the methods of this chapter. But, first, a few words. are in order
on the overall reasoning architecture of PSEIKL.

PSEIKI s architecture is shown in Fig. 6.2. The system has been implemented in
OPSSB as a two-panel five-level blackboard [4]. The left panel, called the model panel,
- holds the abstraction hierarchy for the expected scene. The right panel, called the data
: p'anv'el"' h’olds the abstr’action hierarchies built from the scene data by taking cues. from the:

levelsp each level correspondmg to a dlfferent level of geometrlc abstractlon. The lower
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levels of the data-panel are supphed w1th the symbolic output of the i 1mage preprocessor
~such as represented by (c) of Fig. 6.1..

As was mentioned before, PSEIKI associates model labels with scene entities at dif-

} ferent levels of abstraction; each such label assignment is given a belief value based on
the geometric similarity of the model entity represented by the label and the scene entity.

While a direct geometric comparison is sufficient for the calculation of belief values at

the edge level at the face and higher levels the process of belief value calculation is in

actuality more complex since, in addition to the geometric similarity of, say, a data face

with a model face, we must also consider the beliefs associated with their children, the

edges. In other words, PSEIKI must use a calculus of beliefs for accumulating beliefs for

abstractions at face and higher levels; PSEIKI uses the Dempster-Shafer theory of evi-

dence [5] for that purpose. A particular advantage of this formalism is that it allows the

o system to express 1gnorance about assigning a model label to a data entity; this is useful

when the data entity does not match any model element to a sufficiently high degree. To
overcome the exponential complexity usually associated with the Dempster-Shafer for-
4 mallsm a computat1onally efficient varlatlon of Dempster’s rule is used to combme evi-
’dence [4]

; PSEIKI has four main knowledge sources (KSs) that it uses to estabhsh correspon-
dences between the model entities and the scene data entities: Labeler, Grouper, Splitter,
and Merger. Basic to the operation of the blackboard is the notion of a model label for a
scene data entity. Actually, there is a set of competing labels created for the scene entities
-- this set is called the frame of discernment (FOD) for the scene entity -- but the most

“believed of the members of the FOD is called the label of the scene entity. As different
geometrical and relational constraints are 1nvoked at different levels of abstractions,
beliefs are continually accumulated for all the members of the FOD; if through this accu-
mulation the belief in the current label for a scene entity becomes less than the belief in

~ some other member of the FOD, then the label of the scene entity gets changed to that

member of the FOD.

The Grouper KS determines which scene entity at a given level of the hierarchy
should be grouped together to form an entity at a higher level of abstraction. As an exam-
rpvle, which edges should be grouped together to form a face, etc. Grouping proceeds in a
data-driven fashion in response to goals that call for the establishment of nodes on the
right panel corresponding to the model nodes in the left panel. The grouping goals are
generated by the Scheduler initially, since one of the initial jobs given to the Scheduler is
~ to scan the model panel top to bottom and generate goals for the creation of a certain
' mlmmum number of competing scene nodes corresponding to each model node. In
response to a goal for the creation of, say, a scene face corresponding to a model face, the
Scheduler looks for an edge that has the strongest attachment, on the basis of belief
values, fo any of the edges of the model face in question. This scene data edge then
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serves as a seed for initiating a grouping by invoking geometrical considerations. The
Labeler KS has three different functions assigned to it: 1) determination of initial model
labels for the scene edges and faces based purely on spatial prox1m1ty and geometric
similarity; 2) belief revision for face and higher level scene nodes on the basis of rela-
- tional considerations amongst the children nodes and 3) propagatlon of behefs up the
hierarchy.

| - The Merger KS also groups elements; however, its job is to merge multiple ele-
‘ments at a given level and retain the grouped information at the same level. As an exam-
ple, if two scene faces have the same model label and there exists a long enough common
boundary between the two faces, the Merger will merge the two faces into a single face
and subsequent computations. The action of the Splitter KS is opposite to that of the
Merger; it splits a single element on the blackboard into multiple smaller elements. For
example, a T junction may be split up into two or three separate edges.

The overall flow of control is controlled by the Monitor and the Scheduler, acting in
concert. The Monitor uses OPS demons to run in the background, its task being to watch
out for the data conditions that are needed for triggering the various KS’s. For example
if there is a scene edge without a parent, it is the Monitor’s job to become aware of that
fact and synthesize a knowledge source activation record (KSAR) that is a record of the
identity of the edge element and the KS that can be triggered by that element. Initially,
when the KSAR’s are first created, they are marked as pending. When no KS is active,
the Scheduler examines all the pending KSAR’s and selects one’ accordmg to
prespecified policies. For example, the status of a KSAR that tries to invoke the Merger
~or the Splitter KS is immediately changed to active. It seeks intuitively reasonable to ﬁre _
these KS s first because they seek to correct any misformed groups. -

¢

6.2 EXPECTED SCENE GENERATION - :

' The TWIN boundary-representation (B-rep) solid modeling system is used to gen-
erate PSEIKT’s expected-scene data. TWIN is a library of C language subroutmes the
library contains routines for generating a number of primitive objects including paral- '
lelepipeds, wedges, cylinders, cones, toruses, spheres, fillets, elliptical cones, and ellip-
soids. The library also contains routines for performing regularized Boolean operations,
such as the union, intersection, and difference operations, on solid objects. Complex
solid’ ObjCCtS are created by combining sub-objects with these operators. For our work, a
solid model of the building’s corridors is generated off-line and is used to generate the
robot s expectation map, such as the one shown in Fig. 6.1a. The process of expected
scene generation may be conceived of along the following lines: As the robot travels
physically down a hallway, in the computer memory it travels down a solid ; model -
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w1th1n of course the accuracy afforded by the odometry Every once a while, the robot
compares what its one eye is seeing with its ‘mental’ picture of what it should be seeing
-and this comparison leads to the robot becomlng aware of its exact posmon

The expected scene image of Fig. 6.1a is actually a result of a two step procedure.

First, glven the odometry-supplied posmon and orientation of the robot, a scan-line algo-

rithm is used on the TWIN model of the hallways to render an expected scene image.

The rendered image at this point is a gray level 1mage the gray level at each pixel

‘corresponding not to any photometric 1nformat10n but to the ID number of the hallway

- surface visible at that pixel. Next, this 1mage is processed with the same preprocessor

) 'that is.used on the scene image, except: ‘that now we have a ‘perfect’ image in the sense

that éach region has an absolutely constant gray level. The preprocessor then produces
the kmd of i 1mage shown in F1g 6. la

6.3 COMPUTING POSITION AND ORIENTATION PARAMETERS

' 'Corresponding to the _most-believetl overall scene interpretation, the output pro-
vided by PSEIKI consists of a set of image-edge to hallway-line correspondences and the

- -assomated belief values. While the i image‘édges .and the corresponding hallway lines are

all descrlbed by the coordinates of their vertices, there will almost never be a direct
correspondence between the image vertices and the hallway vertices, the reason belng the
' ‘fragmentatlon of the image edges durlng segmentatlon -

leen these image-edge to hallway-line correspondences, the task faced by the
Nav1 gator is to determine the location and the orientation of the robot.

Since the floor is flat, the mobile robot has only three degrees of freedom in our
expenments namely, the location (X, Y) of the center of its base and its orientation ().
The calculation of these two items will now be addressed in the next two subsections.

6.3.1 'Orienta.tion Calculation

: In this sectlon we wrll show that sufficient information for computmg the orienta-
~ tion: of the Tobot consists of just one image edge together with its hallway correspondent
prov1ded the hallway line is not exactly vertical. :

Let (v, vy, v2) be the components, in the robot frame of reference of a unit vector
~ along the 3D scene edge whose image is be1ng used for orientation calculation. Now, as

was done in Section 5.3.1, we may associate a plane of sight with.the image edge under
" consideration; the plane of sight passes through the image edge and the camera lens
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center.- The equation of this plane of sight, derived from the slope-intércept parameters
of the image edge and the camera calibration parameters, is given by Eq. (5.12) in the
- robot coordinate frame; in this equation rn = (n,, ny, nz) is the normal to the plane of
v sight; It is clear that both the actual scene edge and its image must lie in the same plane
- of sight, since, by definition, the plane of sight contains the lines of sight for all the pixels
on the image edge. From this observation follows that 7 must be perpendicular to the
direction vector of the scene edge
' Ny Ve+nyvy+n,v, =0 R (3 )
Note again that v,, v, and v, are the three components of the direction of the actual
scene edge but in the robot coordinate frame. In the world coordinate frame, let the com-
ponents of the direction unit vector for the same scene edge be given by (V,, V, V,).
Since the robot is always on a flat floor, the z-axis of the robot coordinate frame is always
parallel to the z-axis of the world coordinate frame and there is no z-direction displace-
ment between the two origins. Therefore, it must be the case that v, and V, are the same.
This observation, when used in Eq. (6.1), leads to the first of the following two equations,
the second equation follows from a similar substitution in the equatlon that says that the
' magnitude of the (v, vy, v;) vector is unity.

Ny Ve +nyvy = —n,V, ' i (6.2)
vxﬁ"’+vy2 =1-V,2 o - (63)

So we have two equations for the two unknowns v, and vy, but only when the hallway
line is not vertical; when the hallway line is vertical, V, will equal unity and the second
equation will become non-existent. As was mentioned before, the quantities n,, ny, and
n, are known from Eq. (5.12) and are calculated by fitting a plane of sight, in the robot
coordmate frame, to the image edge bein g used for orientation calculatlon

The conditions under which the pair of equations, (6.2) and (6.3), has one or more - '
solutions can be inferred by examining the equations in the (v,, v y) space In this space,
Eqgs. (6.2) and (6.3) represent a line and a circle, respectively, as shown in: Fig.-6.3.

Whether there are two, one, or no solutions depends on whether the line 1ntersects is a
tangent, or is exterior to the circle, respectively. In our hallways, practically all the lines
are either entirely vertical or entirely horizontal; in other words, all the hallway lines
corresponding to the edges that can be seen in (b) and (c) of Fig. 6.1 are either vertical or

~ horizontal in the world coordinate frame (evcn though that may not appear to be the case
from the scene expectation map of Fig. 6.1a). Since, for reasons given above, the vertical
lines in the hallway can not be used for determining the orientation of the robot, we must
use the horizontal lines. Therefore, for the scene edge that is being used for figuring out-
the onentatlon of the robot it must be the case that V, =0. Note that V, =0 condition
means that in the (vx, vy) space space, the line represented by Eq. (6.2) passes through

&
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‘;n.z Vy q

: Flgure63 ‘Equations 6.2 and 6.3 represented in (v, ¥y) space.

iure 6.4 Equatlom 6.2 and 6.3 represented in (uy, vy) space when only horizontal
11 1es in 3D space are possible. ‘
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~ the ongm as shown in Fig. 6.4. ThlS guarantees. that thcrc will be two solutlons for the
" unknowns vx and vy. ' '

So wc now know how to compute the projections v, and v, of the hallway line
being used for orientation calculation on the x and 'y axes of the robot coordinate frame.

'~ Since from the correspondence established by PSEIKI, we also know the actual model

-identity of the hallway line, the quantities V, and V are also known, these being the pro-

‘ jectlon of the same hallway line on the world x and y axes. The orientation of the robot
" can now be easily computed from the relationship bctween (vx, vy) and (V,,Vy). Recall
that while the robot coordinate frame rotates and translates vis-a-vis the world coordinate

' framc the x,y-planes of the two coordmatc frames must always stay coplanar It there-
forc follows that the rclauonshlp bctween (vx, vy) and (Vy, V. ) is !

= V,f c_os(9+Vy sin® | I (6.4)
vy =~V sin(-)+Vy cos©

where 9 is the angle between the y axes of the two coordinate frames. The reader might

wonder about the validity of Eq. (6.4) since it represents the transformation between two

. 2-D coordinate frames. when one undergoes a rotation with respect to the other without

" there bemg any translational displacement between the two; while in our case the robot
coordmatc frame would have undergone translation in addition to, of course, thc rotation.

. The reason that Eq. (6.4) is valid notw1thstand1ng the translation has to do with the fact
that:(vy, vy, v;) and (Vy, V,, V,) both are direction vectors of unit magmtudc, rooted at
the origins of their respecuve coordmate frames. What'’s belng said is that while Eq.-(6.4)
would not, in general, be a valid transformauon for computing the robot frame coordi-
natcs of a point whose posmon is specified in the world coordinate framc or vice versa, it
isa perfcctly valid transformation for the direction vectors.

Eng (6.2) and (6.3) give us two solutions, (v, vy) and (—vy, —vy); that in turn result
in two solutions for 0 that differ by 180°. Assuming that the robot orientation is approxi-
mately known to start with, choosing the correct solution is not difficult, but if this infor-
mation is not available an additional 2D to 3D correspondence can resolve the ambiguity.

o 6.3.2 Calculatmg the World Locatlon of the Orlgm of the Robot (,oordmate.

» Frame '

- We will start out by showing that from a s1ngle 1mage edge correspondmg to a-hor-
1zontal line feature in the hallway, it is possible to calculate the pcrpendlcular distance of
the origin of the robot coordinate frame from the hallway line. However, knowmg the
perpendicular distance of the robot-base center from a hallway feature constrains only
“one of the two degrees of freedom that characterize the translation of the robot on the
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‘ ﬁoor Therefore if one were to use thls procedure such perpendicular dlstances would
~ have to be found from at least two non-parallel horizontal lines of the hallway :

' Next we w1ll derive a more eas1ly 1mplementable method that also uses two non-

: parallel hallway lines, and their image edges as supplied by PSEIK]I, to d1rectly y1eld the

world coordinates of the origin of the robot coordinate frame. This method is predicated
oon the assumpuon that the orlentatlon of the robot has already been deterrnlned

o 'F ally, we: W1ll present yet another method for the computat1on of the dlsplacement

' the ongm of the robot coordmate frame.and the world coordinate frame; this
met‘ od uses a single image point and its correspondmg hallway peint. Although straight-
rforward to immiplement, this method can’ only be used if two image edges can be found that
either meet or interseet at a point under the condition that the hallway lines correspond-
ing to: t he two i image edges. also meet or intersect at a hallway point that corresponds to
the 1 1mage point given rise to by the i 1mage edges. This requirement makes this method
;less usefuI

Mueh: discussion in this section w111 make frequent references to two coordinate
frames the world coordinate frame, Wthh stays stationary and in which the 3D model of
the halIways exists, and the: robot coordinate: -frame, which always translates and rotates.

.wlth the robot: Both of these are shown in Fig. 6.5, where the axes denoted by
-(fxu}, yw; 2w) represent the world coordinate frame and those denoted by (xg,Vg; Zr)
\ represent the robot coordinate frame. As shown in the figure, the image edge ab presum-
- ably corresponds to: the hallway line AB and this fact has supposedly been discovered by
- PSEIKL- The point C represents the camera lens center; it is defined by the vecetor cin
the robot coordinate frame. The vector D,,a,, denotes the translation of the robot coordi-
nate frame with respect to the the world coordinate frame. Note that .D,,a,, contains no
inforination regarding the orientation of the robot -- recall that the orientation is the angle
. between the y-axis of the robot coordinate: frame and the y-axis of the world coordinate
_ frame In this section; our goal is to calculate D,m,,, assuming the orientation of the robot .
coordmate frame has already been calculated by the:method of Section 6.3. 1

- Note that for the i image edge ab shown in Fig. 6.5, the plane of sight is formed by
' Jommg the camera lens center with any two points on the edge ab. This. plane of sight,
marked 7, has. nortnal 7 and its equation, derived by the method of Section 5.3. 1 from the
image edge parameters and the cahbratlon matrix, is defined in the robot coordinate
frame. In other words, the Eq. (5.12) for the plane of sight 7 exists in the robot coordi-
nate frame Our mission is to use the equatlon of m in the robot coordmate frame and the
o equat1on of the l1ne AB in the world coordmate frame for the calculation of D,,an
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Figure 6.5: Shown are the world coordinate frame and the robot coordinate frame. The
hallway model exists in the world coordinate frame, whereas the equation of the. plane of

sight corresponding to the image edge ab is defined in the robot coordinate frame.
. it
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SINGLE LINE CORRESPONDENCE METHOD:

‘ We will now show how we mlght compute the perpendicular distance of the or1g1n |
of the robet coordinate frame from a horizontal line feature in the hallway. For the sake
of: dlscussmn assume-that we are using the image edge ab, shown in Fig. 6.5 for this pur-

pose, and its hallway correspondent AB, the correspondence having been dlscovered by
PSEIKI.

- The applicable formula will be derived from Fig. 6.6; the plane of this figure is per-
pendicular to the floor, perpendicular to the horizontal line AB of Fig. 6.5, and passes
threugh the camera lens center, which is marked C in both Figs. 6.5 and 6.6. Since the
plane of the figure in Fig. 6. 6 is perpendlcular to the hallway line, the line AB becomes a

single pomt in the figure -- this point is marked L. The line marked P is the intersection

of the plane of sight 7 of Fig. 6.5, which corresponds to the image edge ab, with the
plane of the figure.. The parameter H is. the height of the camera lens center above the
" floor and h the height of the horizontal line above the plane of the floor. Although h=0
in Fig. 6.5, we retain this parameter for the derivation here since our results can be used
for a horizontal line at any height. ’

. .Also, shown in F1g 6 6 is the normal n to the plane of sxght this normal is same as
Ain F1g 6.5. Therefore,; n in F1g 6.5 is a known quant1ty From the figure, the angle {0]
shown there is " .

| 0= n-{cos-'lm-/? ) . - (65)
where k is the unit vector along the z-axis. Therefore, ffom our knowledg‘e;o‘f 7'we can |
calculate the angle ¢. From the figure, the perpendicular distance d to the line AB, the
line being represented by the point L in Fig. 6.6, is given by '

d'= (H - h)tano (66)

Practically all the horizontal lines in our hallways are parallel to either the world

L 'xw -axis or the world yw-axis. If one of these lines is used for the caléulations  the perpen-

-dlcular distance d will be parallel to the yy-axis, if the hallway line is parallel to the xy-
ax1$, d will be parallel to the xy-axis, if the hallway line is parallel to the yy-axis. This
fact.can be expressed succinctly by

Qrobot = lee td | » 6.7)

where Orovor and Qjine stand respectively, for the xy components of D,,an and the line if
“the hallway line is parallel to the world yy-axis, since in that case the equation of the
hallway line'is Qline = constant. On the other hand, if the hallway line is parallel to the
world xy-axis, Qyobor and Qjine stand for the yy components of. .D—i,an and the line, respec-
 tively. Whether there should be a plus or a minus sign in the right hand side of Eq. (6.7)
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Figure 6.6: Determination of the perpendicular distance to a horizontal line.
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(;ah be ‘illfened from the expected value of the coordinate Q,,py-
| TW@ LINE CORRESPONDENCES .METHOD :

We w1ll assume that the orientation of the robot has already ‘been determmed by the
‘ method of Section 6 3.1 and all that remains is to find the xy and yy components of the
translation ‘vector D,,a,, shown in F1g 6 5. Since the -orientation is already known, we
:now rotate the robot coordinate frame not physically but only in the computer program
s0 that all its axes become parallel to the world axes. In other words, we now create in
the computer program the situation deplcted in Flg 6.7, where ithe robot is shown : pomt— ‘
1ng stra1ght ahead. As a result-of this rotatlon D,,a,, does not change.

' Clearly, the equation of the plane of sight formed by the image edge ab will be dif-
ferent in the robot coordinate frame of Fig. 6.7, compared to what it was for the robot
coordinate frame of Fig. 6.5. We have u"sed the symbol 1’ to represent the plane of sight
in Fig.:6.7. The equation of 1’ can be obtamed by the same technique that is ngen in Sec-
tion 5.3.1 except that now we must apply a rotation transform to the vectors P 1s P2, and
3C of Eq. (5.9), the rotation correspondmg to the angle 0 calculated in Section 6.3.1. For
the derivation to follow, we only need to know the value of #, the normal to the plane
in Fig. 6.5, in the robot coordmate frame of Fig. 6.7. We will denote this transformed -

value of 7 by n’. The value of n’ can be easily obtained from # by applying to 7 a rota-
tional transform matrix correspondmg the angle 0. 'We may then write the following
~equat1on forn”: __ S
AP =K v (68)
where p’is the position vector to any arbltrary point with respect to the origin of the robot
coordinate frame of Fig. 6.7. The constant K can be easily determined by realizing the
plane 1’ must pass through the camera lens center whose location is-given by the vector
€. Therefore, it must be the case that ,
| A=K 69)
Note that ¢’is known through camera icalijbratl_on. We can therefore write Eq. (6.8) as
- - @p=A 6.10)
Eqmvalently, we have for the equatlon of

J‘p,c-+rzypy+rz,p,«~n cxtn'ycy,+nsc, v (611)

- Now 1ét’s consider an 'imaginary plane denoted by =", parallel to the plane ©” but
) passmg through the origin of the world coordinate frame. Let n” be the surface normal of
thls new plane. Since, in Fig. 6.7, the axes “of the world and the robot coordinate frames
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0

“Figure 6.7: Same as Fig. 6.5, except that the robot coordinate frame has now been
‘rotated about its origin through the angle 6 calculated by the method of Section 6.3.1.
Note that no physical rotation of the robot.is called for, the rotation is carried out in
o softwarc to facxhtate the calculanon of the translation vector D,,a,,



146 lopez-abadia/kak

h X = nx

Y /P C
nly = ny - ®1
n.?‘/ﬁ = n,z :

Sinee the plane n” passes through the orlgm its equation is
R n” Py +n" Py +n”, P, =0 - (6.13)
_.«where (Px, Py, P 5) are the world coordmates of a point on "

. The distance d between the planes 7t and #” ¢an be computed by takmg the pro;ec-
t1on along the direction of the normal vector 7, of any vector from any point on t” to

any, pomt on #t’. The origin of the world coordinate frame is on t” , therefore for any vec-
tor Pg from the origin of the world coord1nate System to any pomt on 7', we can write

: d=n' Px0+nyPy0+n Pz() v »(6.14)
where (Pxo, y0s P;0) afe the world coordinates of any point on %'. We are parti’cul'a‘r’ly’
'mterested in two such points: the camerd lens center, whose location is given by ¢’in the

robot coordlnate frame and by C in the world frame, and any point (Pg;, Pyl, P,y) on
the hallway lirie AB in Fig. 6. 7 Therefore We can write”

#WyCy#n’ 5 Cy *n, C, —:d—n cPii+n’ Py1+n P,i (615

Note that the coordinates (Cy, Cy, C ) are defined in the world coordinate frame; these
~ ¢oordinates are unknown at this time, since camera calibration, being carried out in the
robot coordmate frame, only yields (cy, cy, ¢;). On the other hand, the world coordinates
(le, Pyl, P,,) of any point on the hallway line are known. Since C, = ¢;, we can
rewrite (6 15) as ‘

N Cy+n’yCy = G (6.16)
with G = n’s Px1 +n’y Py + n’, P31 = n’; c;. So we have one equation in Eq. (6.16) for
the two unknowns C, and Cy. A similar equation may be obtained from a second

PSEIKI-supphed conespondence between some other image edge and a hallway line,
giving us two equatlon for the two unknowns Weé may now determme the components of

the translauon vector D,m,, from
‘ Dkran,x = Cx = Cx ‘
Dtr’a’n,y = Cy - Cy . (617) »
" Noté that fot a unique solution to exist for two equations of the form shown in Eq. (6.16),
the two hallway lines must satisfy the conditions: 1) they must not be parallel to each
othet; and 2) the planes of sight must not be horizontal for either of the lines. If any of
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these conditions is violated, the following determinant

nxi Ryi

det, o = (6.18)

nx2 Ny2

_ wbu_ld become zero and the two equations would cease to possess a solution.
POINT CORRESPONDENCE METHOD:

‘We will now present another method for the calculation of the displacement vector
5;,,,,, shown in Fig. 6.5. This method is based on the assumption that we can identify a
single image point formed by the meeting or the intersection of two image edges such
that the corresponding hallway lines also meet or intersect at a point that corresponds to
the image point. Another assumption is that the orientation of the robot coordinate frame
has already been computed by, for example, the method of Section 6.3.1. So, for the sake

- of computation, we may assume that the robot is turned around its origin through the
rotation angle and its axes aligned with the world axes, as shown in Fig. 6.8.

Now, prior to the rotation of the robot coordinate frame, meaning in the robot coor-
dinate frame shown in Fig. 6.5, let the equation of the line of sight to an image point
corresponding to the world point P shown in Fig. 6.8 be p’=A+v + . This equation, in
- principle the same as Eq;ﬁ(3.20), isa p‘aramctric equation of the line of sight, the parame-
ter being A, v is the direction of the line formed by joining the camera lens center and the _
pixel p shown in Fig. 6.8, and c the camera lens center. As discussed in Section 3.2.1,
this equation may be obtained by employing the submatrix D of the calibration matrix 7.

When the robot coordinate frame is aligned as shown in Fig. 6.8, the equation of the
line of sight to the pixel corresponding to the hallway point P will change. Let the direc- '
tion of this new line of sight be v’; V" is easily obtained by multiplying v by a rotational
transform matrix corresponding to the planar rotation through angle 6 calculated in Sec-
~ tion 6.3.1. So, we can say that the equation of the line of sight to hallway point P in the
robot coordinate frame of Fig. 6.8 can be written as P =AV’+¢, where, for economy in
notatlon we have continued to use p’for an arbitrary pomt on the line of s1ght and A for
the posmon parameter assomated with this new line; the point ¢ is the same as before
since the camera lens center does not move with respect to the robot coordmate _frame.

~ Given that the origin of the robot 'coordin'ate frame must always be in the (xy, yw)
plane of the world frame and from the fact that the z-axes of the two frames are always
parallel, it follows that for any arbitrary point P in the hallway, its zy coordinate must be

- equal to its zp coordinate. Let Pp be the robot coordinate frame vector to the world frame
point P shown in Fig. 6.8. Since pp must be a point on the line of sight, the Zg- -coordinate
of py pp must be glven by Av’, — c,, which is the same as Av’, — C,, where C, is the height
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Figure 6.8: Same as Fig. 6.5, except that now the camera image contains a point

corresponding to the intersection of two non-parallel hallway lines. Again, as in Fig, 6.7,

~ for the sake of deriving a procedure for computing D,,a,,, we show the robot coordinate
frame axes aligned with the world coordinate frame axes.
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of the camera lens center in the world coordinate frame, for some particular value of A.
If we assume that the zy-coordinate of the hallway point P is P,, then it must follow
from the equality of the two z-coordinates that
P z2 - Cz
A, = -

Vg

where A, is the value of the parameter A at the hallway point P on the line of sight. Now
that we have fixed the value of the parameter A, we can write down the following expres-
sions for the robot frame coordinates of the hallway point P:

Py = ip v+ ey , ' 6.19)
Py = MpVyto |

p, = P,

Computmg the two components of Dtm,, is now straightforward. They are glven by |
| Dyanx = Px=px B (620
Dtran .y P —Dy ‘

where P, and P, ‘are the xw and yw coordinates of the hallway point P in the world
frame

633 Computing Robot Orientation/Location from Multiple Correspondences

‘In general, PSEIKI will output many more image-edge to hallway-line correspon-
dences than the minimum number needed by any of the approaches described in the
preceding subsection for the calculation of orientation and.location of the robot. Since it
seems reasonable to assume that any estimates of robot orientation and location that use
all the available data will be more robust compared to the estimates derived. from justa
couple of image edges, we need a method for combining the onentatlonllocatlon results
derived from the different possible subsets of the PSEIKI’s output. We use the fo]lowmg
six-step approach for this purpose.

Step 1. Note that in the output produced by PSEIKI, we have a belief value associated
‘ ~ with each image-edge to hallway-line correspondence. Let’s denote the belief
value associated with the i image-edge by b;. We now weight these belief
values by the length of the edges, since we want the system to give greater
credence to the orientation/location results that are produced by longer edges.
- We therefore recompute the belief values by combining the PSEIKI-supplied
belief values with the lengths of the edges via the fellowing formula:
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| il o :
< L <L B 6.21)

|b; . otherwise

where b"’s are the new belief values I’s the lengths of the i 1mage edges, and L
e threshold length. :

Step 2:  The image-edge to hallway-line correspondences whose assomated b’ values
‘ are below a threshold are then discarded. H

Step 3: ‘The image-edge to hallway- lme correspondences are then clasmﬁed accordmg
. - tothe direction of the hallway lme involved.

Step 4: . For each of the 1mage-edge to hallway-line correspondenceé involving hor-
- izontal hallway lines, the orientation 6; of the robot is computed by the
method described in Section 6.3. 1 :

Step 3: . We now select those 1mage-edge to hallway-line correspondences that involve
. ... . hallway lines parallel to either the xy-axis or the yy-axis of the world coordi-
. nate frame. By using the "SINGLE LINE CORRESPONDENCE METHOD"
~ described in Section 6.3.2-on‘those PSEIKI-supplied corresponderices which
. involve hallway lines parallel 10 the yw-axis, we obtain the xy coordinate of
‘ ~ the the robot base center in the world frame, in other words the xy component
of li:mn shown in Fig. 6.5. Similarly, by applying the same method to those
“correspondences that involve hallway lines parallel to the xy-axis, we obtain
the yw component of the robot base center. '

Step 6;'. Flnally, the method described under "TWO LINE CORRESPONDENCES

.- METHOD" is used to again compute the xy and yw coordinates of the origin
of the robot coordinate frame using each pair of non-parallel hallway lines
that satisfy the conditions of this method.

The final value of the orientation Glof the robot coordinate frame with respect to the

- world frame is now computed by taking a weighted average of the orientations calculated

by the method of Step 4 and the orientation as supplied by the odometry on the robot.

With 6, denotmg the odometry- supphed value for the orjentation, the formula we use for

computmg the final value is :

' 29 w;i+0,

Ot = ———— 6.22

J:ﬂn‘al‘ EW1+1 I S ( )

i .

" where the 1ndex i refers to the image edge whlch yielded the orientation estimate 9;. The

factors w, incorporate the altered beliefs b’;, as calculated by Eq. (6.21), and, at the same
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time, give greater weight to those edges which are closer to the robot:
w; = b’; (ne +ny) ' (6.23)

where n, and n, are the same quantltles as in Eq. (6.2) -- they are the xp and YR com-
pornents of the unit normal to the plane of sight formed by the image edge i in the robot
coordinate frame. The reason for this additional weighting is as follows: Note that the
magnitude of the slope of the line passing through the origin in Fig. 6.4 is n,/n,. As ny
and n, get progressively smaller, any errors in their values will have a larger effect on
their quotient, and therefore a larger effect on the solutions produced by the intersection
~of the line with the circle shown in Fig: 6.4. This implies that we must give greater
weight to the orientation solutions that are produced by those image edges whose
corresponding hallway lines on the floor are close to the robot, since for such edges 7,
will be small and, relatlvely speaking, elther or both of n, and ny large.

The final values of the xy and the Yw coordinates of the robot base center are
obtained by taking a weighted average of the results calculated in Steps 5 and 6 above
and the odometry-supplied values for these coordinates. In the following formulas, we -
- have used Dy, 4, 5 . and Dy, y,e for coordinates values as supplied by the odometry.

) ZDtran X, iwi + ZDtran,x jk wjk + Dtran X, e
i Jk I
Deran,x, final = - (629

ik
Dtran,y,ﬁnal = !
v ZW,‘ + ijk+1
; &
with w;’s given by Eq.(6.23), and w),’s set to ;
Wig = b’ b kdetjk ' ~ S B (6 25)

where b’; and b stand for the belief values associated with the correspondences involv-
ing the i 1mage edges j and , respectively, and det; ; is the value of the determinant in Eq.
(6. 18) The index i in the first term in the numerators and the denominators . refers to each
of the image edges used in Step 5 for the computation of one or the other coordinate
values of the robot base center. The indices jk in the second terms in the numerators and
the denominators refer to the pair of image edges used in Step 6 for an estimate. We
weight the estimates produced in Step 5 by the factors w;’s, since as the plane of sight
associated with an image edge becomes more and more horizontal, the calculation of d in
Eq. (6.6) becomes more sensitive to errors in the angle ¢; the factors w;’s give more
weight to those estimates produced by Step 5 whose planes of sight bear a larger angle
with the horizontal. ' Note that Wik factors include the value of the determinant since the
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smaller the value of det; , the less trust we can place in the corresponding solution:

64 EXPER:IMENT’AL RESULTS? |

We will now show some experimental results obtained from the: camera lmage of
«Flg 6.9. The schematlc of Fig. 6.10 should help the reader 1dent1fy the edges in the
image of Fig. 6.9 that were used for the estimation of the orientation and the translatlon
of the robot ‘Table 6.1 presents the results obtained for each edge, or each pa1r of edges,
“marked in Flg 6.10. The first row in the table shows the odometry- supplied 1nformat10n
when the robot is at the position and onentatlon from which the image of Fig. 6.9 was
taken, then, according to the odometer, the robot was at the location (0.61m, 3.96m) with
an orientation of 22.5°. As the last column of the first row shows, the weight g1ven to this
information. is one in the averaging formulas of Section 6.3.3.

The hallway line corresponding to the image edge A is parallel to the yy axis of the
i world frame, so it should give an estimate for the xy coordinate of the robot base center
by the "SINGLE LINE CORRESPONDENCE METHOD" of Section 6.3.2. This esti-
mate: comes out to 0.71 m, which 10 cm greater than the odometry supplied information.
- The: welght associated with this estimate}’calculated by using Eq. (6.23), is 0.53. Note
that since the hallway line corresponding to the image edge A is horizontal, this image
edge can also be used for onentatlon calculatlon which in this case yields 22.78°.

- Along 51m11ar lines, using the palr of image edges B and D, the method "TWO-
LINE CORRESPONDENCE METHOD" of Section 6.3.2 yields the estimate
(0.50m, 4.11m) for the position of the robot the weight to be associated w1th this esti--
mate being 0.15; and : : :

..~ . When all the estimates are averaged by using the formulas of Section 6. 3 3, we get -
the ﬁnal result shown in the last row of the table. ’
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Figufe 6.10: Segments used from the image of Fig. 6.9.
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Table 6.1: Results of the self location program applied to{ the image of Fig. 6.9.
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APPENDIX

DIJKSTRA'’S MINIMUM-COST PATH FINDING ALGORITHM

Let G be a graph and let there be associated with each edge e of G areal number
w(e) called its weight. Then G together ‘with these weights for the edges is called a
weighted graph. If H is a subgraph of a‘w‘ejighted graph, the weight W (H) of H is the sum
of ihe weights Y w (e) over its edges. We will now present Dijkstra’s algorithm that finds

~ € . :
all the minimum-weight paths from any given node in a graph to all the other nodes [1].

Let d(u, v) be the total weight associated with a minimum-weight path from a node
u to a node v. Let’s now consider the following situation: We are given a set SCV of
nodes, where V is the set of all nodes in G. Further, we are given a particular node ug € S
and we are asked to find a mmlmum-welght path from ug to S, where S=V - S. Let
P= up - v be a minimum-weight path from Uo to a node v in S, where i is the node
that occurs just before v on the path; clearly i is one of the neighbors of v. If Pisa
minimum-weight path from u to node v in S, then it must be the case that there exists a
ire S, possible the same as ug, such that u 0....... is shortest path from ug to iz; note that
u € S must be a neighbor of v € S. This fact is represented by the following equation:

d(uo, V) = d(ug, i) +w(v) (A

We may now write the following expression for a rmmmum -weight path from the node
uo to S: ‘ v
d(ug, S) = min {d (uo, u) +w (uv)} (A.2)
ue
ve§

That the weight of an optimum path from the given node u to the set S of nodes
can be expressed in the manner shown in Eq. (A.2) can serve as a basis for the following
algorithm for computing minimum-weight paths. Starting with the set Sq = {1y}, we
construct a sequence Sg, Sy, - **, S, of subsets of V such that the subset S;,; is gen-
erated by opening all the nodes in ; that are neighbors of the nodes in S;; the minimiza-
tion of Eq. (A.2) then yields a node v € §; for a minimum path from uq to S; and
Siv1 =S8j\Ufv). With this approach, at stage i of the computation, we have all the
minimum-weight paths from u to all the nodes in S;. Computation is terminated when
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S, contains the destination node.

To elaborate, to construct the subset S, we find the node ule.ST o that is ‘‘nearest"”
to U, in the sense that of all the edges meeting at node u the weight associated with the
edge uou; is a minimum. We set now S; = {ug, u1}. Now to construct' S,, we open
both u¢ and u; and use Eq. (A.2) to look for a node from the set 5 1. The mlmmlzauon in
Eq. (A2) will y1c1d a node v € S, such that the weight d(ug,S) is minimum. S will
now be set to {ug, 1, v}. Note at this time, we know the mmlmum-welght paths from
Uy to all the remaining nodes in 5. This computauon continues until the entlre graph is
covered. :

During the expansion of S; into S;4; by the discovery of the node v € S; via the
minimization in Eq. (A.2), we deposit at the node v a back-pointer to v’s neighbor i € S;.
These backpointers define a tree rooted at u such that the path between u and any other
node in the tree constitutes the minimum-weight path from ug to that node.

The above algorithm suffers from the following computational inefficiency: When

Si+1 is computed from S; via the minimization in Eq. (A.2), we must determine the
weights associated with the minimum-weight paths from ug to all those nodes in S;
whose neighbors are in S;. And, then when we compute ;42 from S;4;, we must do the
same to all the ‘boundary’ nodes in S;,;, a computationally wasteful procedure since
. many of the boundary nodes in S;,; will be the same as in ;. In Dijkstra’s algorithm, this
duplication in computation is eliminated by associating a number /(1) with each node u

‘in the graph; this number is computed in the following manner: Let’s say‘ we have
already computed S; and that we know the weight d(ug, u) associated with a minimum-

weight path from the node u¢ to each node u in S;. Prior to the computation of S;,1, the

value of 1(u) at each node u in S; is equal to d(ug,u). Now, for the computation of S;.;,

we open each node of S; that was not already opened during the construction of S; --

these nodes will be characterized by the fact that some of their neighbors will be in S;.

Let v.€ S; be a new node obtained by expanding a particular node u of S;. Theh we set

I(v) to

Iv) = minld(uo, u)+w(u, v)] veS; Al

where the minimization is with respect to all the possible neighbors, each denoted by u,
in S; of the node v e S;. It is important to note that the value of ! (v) thus obtained is
NOT necessarily the value of d(ug, v); the reason for this will be clear shortly. After we
have computed /(v) to all the node v in S; that are the neighbors of the nodes in Si, in
keeping with Eq. (A.2), we then select that v that has associated with it the smallest /(v)

- and.add this node to S; to form S;;; this smallest value of /(v) then becornes d(u 0,57 in
Eq. (A.2).
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Eq (A3) tells us that the value ! (v) should be computed in an iterative manner, pri-
manly because the node v € S; may have more than one neighbor in S;. Any time we
open one of v’s neighbors in S;, we compare the new possible value for I(v) with the pre-
viously computed /(v); the new value replaces the old if the former is smaller. This itera-
tive approach to updating /(v)’s requires that 1n1t1ally the values of /(u) for all the nodes
of the graph be set to some large number, larger than any that might result from the cal-
'culatlons Here is a step- by step descrlptlon of the algorithm: " : -

» Dljkstia*s.Algofitﬁm-.'

1. *-s'efvl(uo):o [()=coforv # ug,Se= (o) andi =0.

2. For each v e S; that satisfies Eq. (A 2), replace I(v) by min{! (v) ) +w@v)),

u, € S;. If l (v) is mod1ﬁed mark u; as the predecessor of v. Compute min{l/(v)} and
veS;

let v* be the wvertex for which this mmlmum is attamcd. Set S;p1 =S; U (V).

3. I8, =, stop. Otherw1se replace i by i+1 and go to step 2.

4. Find the shortest path between uo and Vo by tracing back the predecessor of each
: vertex from_ Vo to Ug. >

_ ‘Note that this algonthm assumes the welghts of the edges to be posmve If negative
_ elghts are allowed, a negative weight cycle y rmght occur. If a path from ug to v uses

~any part of y then we can construct a shorter path by following it but gomg once more
around V; thus there are infinitely many paths from u to v, none of which is the shor-
| test In [3] some algonthms are presented that can cope with negative weights.
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