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ABSTRACT

This report discusses the use of vision feedback for autonomous navigation by a 
mobile robot in indoor environments. In particular, we have discussed in detail the issues 
of camera calibration and how binocular and monocular vision may be utilized for self
location by the robot. A noteworthy feature of monocular vision is that the camera image 
is compared with a CAD model of the interior of the hallways using the PSEIKI reason
ing system; this reasoning system allows the comparison to take place at different levels 
of geometric detail.
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CHAPTER 1 

INTRODUCTION

Intelligent mobile robots are expected to be useful for applications ranging from 
factory-floor material handling and transfer to agricultural harvesting and planetary 
exploration. The problem of autonomous navigation in complex dynamic environments 
by such robots presents substantial engineering challenges in the areas of planning, per
ception, navigation and control.

One of the first mobile robots, named "Shakey", was the result of research con
ducted from 1966 through 1972 at SRI [1]. It was capable of navigating through a set of 
interconnected rooms in a contrived static environment and performing simple tasks such 
as pushing a box from one place to another. The focus of the research was on planning 
the robot actions by means of a hierarchy of computer programs that enabled it to per
form the tasks requested, Shakey’s sensory system used a black and white video camera, 
a range finder and several "cat-whisker" touch-sensors.

Moravec [2] built an autonomous cart that navigated among obstacles exclusively 
by vision, deducing its own motion from the apparent 3D shift of the features around it. 
To obtain three dimensional spatial information it implemented a slider stereo vision 
algorithm. After each motion step (the cart moved in one meter steps) the computer slid a 
single camera on a track taking nine pictures at precise intervals and then used the 36 
possible image pairings to estimate the 3D location of each feature.

More recently, there has been much research on mobile robots that would be capa
ble of operating in outdoor environments. Such robots, especially when they are expected 
to operate at high speeds, place great demands on computational resources for the execu
tion of perception-driven control algorithms. One example of such a robot is the Auto
nomous Land Vehicle developed at FMC [3], a modified armored personnel carrier that 
can be operated at speeds of up to 40 Km/h. Its sensor suite includes seven color cam
eras, an inertial navigational system, a forward looking infrared sensor and a sonic- 
imaging sensor. Most of the higher level cognitive processing, such as mission and route 
planning, landmark recognition, obstacle detection and avoidance, etc., is carried out off 
board by an array of workstations and other specialized hardware.



Another autonomous vehicle for outdoor applications is the CMU NavLab |4|. The 
NavLab is a van equipped with a color camera, a laser range finder and four general pur
pose Sun-3 computers interconnected with an Ethernet. It is capable of traveling continu
ously at a speed Of roughly 1 Km/h over a mapped network of sidewalks, while recogniz
ing landmarks and detecting and avoiding obstacles at the same time. Other research pro
jects at CMU study the problems associated with smaller mobile robots in indoor 
environments [5, 6].

Brooks [7, 8] has proposed a layered control architecture for mobile robots; the dif
ferent layers constitute a hierarchy of behaviors, or levels of competence, instead of func
tional modules. In this model, the behavior corresponding to each layer subsumes the 
behavior corresponding to the layer below, hence the name subsumption architecture that 
is used for this approach to robot control. This contribution by Brooks is a part of the 
recent efforts at MIT [9] to scale down the size of mobile robots in an attempt to create 
cheaper and less complex platforms while attaining a reasonable level of intelligent 
behavior.

Ayache et al. [10] have presented an approach to visual navigation using a trinocu- 
lar stereo vision system. The system computes the parameters of robot motion from 3D 
maps of the surroundings obtained by a stereo vision algorithm. The third camera facili
tates the solution of the stereo correspondence problem and adds redundancy to the input 
information which in turn leads to more robust and accurate results.

The work presented in this report represents some of the early efforts at providing 
our mobile robot PETER, named for Programmable Engine for Terrain Exploration 
Research, with vision-based autonomous navigation capabilities. We have implemented 
both binocular and monocular vision systems suitable for hallway navigation; the former 
implementation is described in Chapter 5 and the latter in Chapter 6. Regardless of what 
kind of a vision system is used, the cameras need to be properly calibrated if the meas
urements performed in an image are to be translated into three dimensional measure
ments for the purpose of determining the location of the robot. Chapter 3 presents our 
work on camera calibration. In Chapter 2, the current configuration of PETER and the 
software developed to interface with it are described. A software architecture that can be 
used in conjunction with the stereo vision system is also presented.

7 lopez-abadia/kak
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CHAPTER 2

HARDWARE AM) SYSTEM ORGANIZATION

In this chapter, the various components of PETER and their interfaces with the rest 
of the system are described. An overview of the overall system architecture, that includes 
both PETER and off-board processors, is also presented.

2,1 HARDWARE CONFIGURATION

The mobile robot PETER is built on a Cybermation K2A platform. The platform 
has a three-wheel drive system in which all the wheels are locked together for both steer
ing and driving. Thus, when the robot executes a turn, all three wheels turn in unison and 
trace parallel paths with respect to one another. The result of this geometry is that the 
platform itself does not rotate as the turn is executed. A turret was built on top of the 
platform for mounting the sensors and the on-board processing hardware. Figure 2,1 
shows a picture of PETER.

At this time, all vision-related processing is carried out off-board on a SUN3 com
puter. This off-board processor will be referred to as the remote host. As illustrated in 
Fig. 2.2 there are two communication channels between the remote host and PETER. 
The data link, which connects the remote host with an onboard MC68000 based com
puter, is used for controlling all the hardware on board. This link is an RF, full duplex, 
asynchronous, serial link that allows commands to be sent to PETER and status reports to 
be sent back to the remote host. The other link is the video channel, used for transmitting 
camera images from the robot to the remote host. A video switch is used under computer 
control to select one of the cameras (there are two mounted on the robot) for RF 
transmission. The output of the selected camera is broadcast by an on-board video 
transmitter and received by a video monitor, whose output is in turn fed to the image

We are currently building a more powerful VME bus based processing system which would 
allow image digitization and much of vision processing to be carried out on-board. This system is 
expected to be ready in early 1990.
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(a)

video cameras

sonar
transducer
ring

drive + steering 
motors, gearing, 
control hardware

(b)

Figure 2.1: A picture of PETER.
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PETER

Camera 1
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Video

Z80 Robot
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Transmitter

Video
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RFmodem

MC68K

RF Modem

TV Monitor
Digitizer

RVL2

Sun 3

Figure 2.2: A block diagram of the equipment onboard PETER and the connections with 
the remote host.



digitizing hardware controlled by the remote host. There are two data links on board 
PETER (Fig. 2.3); these are referred to as the supervisory and control links, respectively. 
The supervisory link is an RS 232 asynchronous serial link that serves as a communica
tion channel between the MC68000 and the Z80 based robot controller. The second serial 
on-board link is internal to the Cybermation platform and serves as a communication 
channel for the computers and hardware inside the platform.

The on-board MC68000 based computer controls the video switch, the sonar sensor 
interface and is the master of the supervisory link that communicates with the Z80 based 
robot controller. Upon request from the remote host, the MC68000 can select the camera 
output to be transmitted, take sonar readings or send any motion command to the vehicle 
platform. Therefore, from the standpoint of the remote host, the MC68000 processor 
serves as an interface with all the hardware internal to PETER.

2.2 K2A PLATFORM INTERFACE

As mentioned in the preceding section, the vehicle platform is controlled by a Z80 
computer. The only interface between the robot controller and the outside world is the 
supervisory link, with the MC68000 processor on-board PETER as its master. The com
munication protocol on both the supervisory and control links is master/slave in nature, 
and has only two message formats; a request for data from a slave computer and a 
transmission of data to a slave. The transmission of data to a slave is in ASCII hex and it 
is structured as shown in Fig. 2.4a. For example:

:020100030102F7<CRxLF>

would transmit two bytes, 01 into address 0100 Hex and 02 into the address 0101 Hex of 
the slave computer 03 Hex. If slave number 3 received this message properly and calcu
lated the correct checksum (F7H), after the <CR> was received, it would place the two 
bytes in memory and transmit the check sum back to the master as a single 8 bit byte (not 
in ASCII hex).

The message format for a request for data from a slave computer is shown in Fig. 
2.4b. During the reception of such a message the slave will calculate the checksum for 
the message as it is received. After the slave receives the message, it will immediately 
transmit the requested data in raw 8 bit binary bytes, subtracting each from the checksum 
of the received request. After the last bit of the requested data has been transmitted, the 
slave will append the combined checksum in the form of an 8 bit binary byte. Note-that 
all transmissions are initiated by the master and that the messages from the master are in 
the form of ASCII coded Hex, as opposed to the 8 bit binary bytes form of the transmis
sions from a slave to the master.

12 lopez-abadia/kak
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:NNA AA ACCDD....DDSS<CRxLF> where:

NN
AAAA
CC
DD....DD
SS

Indicates a data transmission.
Number of data bytes (2 hex digits).
Beginning destination address (4 hex digits). 
Slave computer number (2 hex digits).
Data (2 hex digits / byte),
Check sum for all digit pairs, calculated

<CR>
<LF>

by subtraction starting with zero.
Terminator (required).
Optional for ease of monitoring.

(a)

;NNAAAACC<CRxLF> where:

NN
AAAA
CC
<CR>
<LF>

Indicates a data request.
Number of data bytes requested (2 hex digits). 
Beginning address of data (4 hex digits).
Slave computer number (2 hex digits). 
Separator.
Display aid for monitoring.

(b)

Figure 2.4: K2A message formats.
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Using these two message protocols, the master of the supervisory link (the 
MC68000 processor) can read and write data in a 64K area of the slave Z80 robot con
troller. The actual effect of data transmission will be determined by the software running 
in the slave. There are two general types of data: control and parametric. Control data 
determines what algorithms the controller will execute. Parametric data is then used by 
the operating algorithm to perform the desired function. For example, writing the MODE 
value of the K2A platform is a control function. The following five modes are available:

An example of parametric data is the value of the drive speed when the robot is operating 
in CLOSED LOOP mode.

In order to be able to command PETER to perform the desired motions, a program 
was developed that allows the MC68000 computer to interpret a sequence of up to TOO 
motion commands sent by the remote computer. The program translates the motion com
mands into instructions executable by the K2A and writes all necessary control and 
parametric data into the memory of the Z80 controller so that the motion sequence can be 
executed; The program first places the robot in HALT mode and then, after successfully 
loading all the instructions and parameters, it executes them in AUTOMATIC mode; 
finally die robot is left in HALT mode. Table 2.1 lists the motion commands that can be 
interpreted by the program.

The system organization, in form of the components or functional modules and their 
interconnections, is shown in Fig. 2.5. In the remainder of this section, the function of 
each module will be outlined; subsequently the interconnections between the modules 
will be explained.

The job of the Cartographer consists of maintaining the a-priori environment map 
and passing the information to the modules that request it. Different map information 
structures may be required by different modules or even by the same module. For exam
ple, the PSEIKI system described in Chapter 6 for CAD-driven interpretation of monocu
lar vision data, needs a 3-D solid model of the hallways for generating a synthetic image

MODE
HALT
MANUAL
AUTOMATIC
MAN/REV
CLOSED LOOP

Vehicle halted.
Torque commanded. 
Automatic program execution. 
Torque commanded, reverse. 
Velocity commanded.

2.3 SOFTWARE ARCHITECTURE
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Table 2.1: Commands understood by the K2A interface. In the conditional instructions 
result is the value of the last READ, WRITE, ADD or SUB operation.

Command
END
RUN speed X Y 
TURN azimuth 
WAIT time 
BACK speed XY 
WRITEB address byte 
WRITEW address word 
READB address byte 
READW address word 
JUMP step 
JUMPGT step value 
JUMPLT step value 
JUMPEQ step value 
CALL step 
CALLGT step value 
CALLLT step value 
CALLEQ step value 
RETURN 
ADD address value 
SUB address value 
HALT 
DOCK n 
UNDOCK 
SETXYXY 
SETAZ azimuth 
JOG speed distance 
ALIGN

Description 
End of program 
Move forward to (X,Y)
Turn to azimuth 
Wait for time 
Move backwards to (X,Y) 
Write byte at address 
Write word at address 
Read byte from address 
Read word from address 
Jump to program step 
Jump if result > value 
Jump if result < value 
Jump if result = value 
Call to program step 
Call if result > value 
Call if result < value 
Call if result = value 
return from call 
Add to variable 
Subtract from variable 
Halt-End of program ■ (
Drive into dock n 
Clear dock status n 
Set X and Y position values 
Set azimuth value 
Drive straight
Turn turret to docking beacon
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Mission
Specification

Cartographer

Actuator

Planner

Navigator
Sensory

System

Figure 2.5: Block diagram of the system architecture.



of what the robot should see if it is where it thinks it is; the solid model of the hallways 
for this purpose resides in the Cartographer. On the other hand, a much simpler graph 
structure representing the hallway network is adequate for the Path Planner. In this graph 
structure, which also resides in the Cartographer, the vertices represent comers, intersec
tions and landmarks, and the edges the straight segments of the hallways. The vertices in 
the hallway graph have as attributes their location coordinates and a label that allows the 
system to identify them by the name of the real object they represent, i.e.: Lab 180, 
Potter Stairs, Classroom 171, etc. The edges in the graph have as their only attribute the 
width of the section of hallways they represent.

The Path Planner receives from the user the mission objectives and defines a 
sequence of actions that will achieve the goals. In the context of hallway navigation, a 
realistic mission statement could be for example: "Go To Room 181." After obtaining the 
necessary information about room names and hallway topology from the Cartographer, 
an optimal path from the starting location of the robot to Room 181 is determined. The 
format of the path that the Navigator can use is a sequence of straight line segments, each 
described by the coordinates of its end points in a global or world coordinate frame

The Cartographer provides to the Path Planner a graph data structure, an example of 
which is shown, superimposed on the outlines of the hallways outside the lab area, in Fig. 
2.6. The first task of the Path Planner is to augment the given graph with two more nodes 
representing the present robot location and the destination location, producing an 
enlarged graph, such as the one shown in Fig. 2.7. In order to determine the vertices that 
are the closest neighbors of the added nodes in the augmented graph, a search must be 
carried out until a pair of adjacent vertices Vx and V2 is found that meet the following 
conditions:

18 lopez-abadia/kak

The perpendicular distance d from the location P, corresponding to the new vertex 
V, to the line L defined by the points P i and P2, these physical points correspond
ing to the vertices and V2, respectively, must be less than half the width W asso
ciated with the edge E incident at both Vx sndV2.

The perpendicular projection of P on line L must lie between the locations P x and 
P 2 of the end-points of the same line.

The first condition ensures that the point P is within half the hallway width of the 
centerline of the hallway segment represented by the edge E. The second condition 
establishes that P is between Px and P2 along the hallway segment. In order to test for 
these conditions, the coordinates of P are computed in a local coordinate frame centered 
at P! with the x axis passing through P2:

(2.1)

>'" r X cos0 sinG >x
P'1 y] -sinQ cos0 py. Ply
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stain po tter

cornier potter

op tics lab

annex as a

Figure 2.7: Result of adding the initial and desired locations of the robot to the hallway 
description.
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where (Px, Py) and (P'x,P'y) are the coordinates of the point P in the world and local 
coordinate frames, respectively, and (P ix, P i-y) are the coordinates of the point P i in the
world frame. Furthermore,

cosG
P lx ~ P\x 

| P2-Pi I

sinG =
Ply-Ply 

IP2-P1 I

(2.2)

In the. local coordinate frame, the two conditions stated above for determining the nearest 
neighbors of a new vertex can be expressed as (Figs. 2.8 and 2.9)

0<P'X < |P2-Pi I
w_
2

< P\

(2.3)

Once the start and the destination nodes have been added to the hallway graph, the 
shortest path between them is found using Dijkstra’s algorithm (see appendix A). 
Although not currently implemented in our path planner, some applications may require 
that we use other than the shortest distance criterion for optimal path selection; such 
alternative criteria could for example be the abundance of landmarks or the likelihood of 
the absence of obstacles. Inclusion of such criteria would, of course, improve the robust
ness of the system but at the cost of a more sophisticated path planner.

After the shortest path is determined, each linear segment of the path between the 
nodes of the graph is examined to make certain that it does not exceed a certain pre-set 
threshold; if it does, new nodes are inserted so that the condition on maximum allowable 
length of a path between any two neighboring nodes is satisfied. The basic reason for 
inserting new nodes along straight segments is that it is at the locations corresponding to 
the nodes that the robot is required to verify its position by using vision feedback. If the 
length of a straight segment between the neighboring nodes is too great, excessive drift in 
robot location due to odometry errors may jeopardize the ability of the system to use. 
vision for accurate self-location. The maximum allowable length of a straight line seg
ment is a function of the vision algorithm used and the extent of the deviations from the 
straight line path for collision avoidance. The maximum such length for stereo-vision 
based self location is 4 m at this time. When the PSEIKI system is used, this length thres
hold is increased to 6 m. An example of the output of the Path Planner is shown in Fig. 
2.10, where again the graph data structure output by the planner is superimposed on an 
outline of the hallways.

The Sensory System must control the on-board sensors and analyze their output. At 
this point the principal sensory input of PETER is vision. The use of the ultrasound range 
sensors is primarily limited to near obstacle avoidance.
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Figure 2.8: To determine in what segment of the hallway network is a point P the 
perpendicular and parallel distances, d and / respectively, with respect to each line L have 
to be computed.

|P2 - Pl|

P •

X

Figure 2.9: Graphical representation of the tests on a point P once it is expressed in a 
more convenient coordinate system.
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D

181

180

machine room

optics lab

Path: A, B, B', C, D

Figure 2.10: Output of the Path Planner for the request "go to room 175" when the 
starting location is A. Note that the segment BC was broken into the two subsegments 
BB' and B'C to prevent excessive drift in the robot location during its traversal.
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We have implemented two approaches to the use of the visual information available 
to PETER. The one described in Chapters 4 and 5 uses the information of both on-board 
cameras to provide a 3D description of the hallway scene using a passive stereo algo
rithm. the scene description provided by the stereo vision system is compared by the 
Navigator with map information from the Cartographer to determine the current location 
of the robot. Note that with stereo vision, the correspondence between the scene and map 
features has to be determined in the 3D world domain. The other approach, described in 
Chapter 6, uses the PSEIKI system [1,2] to interpret the image of a single camera for 
solving the self-location problem. In PSEIKI, an expected map of what the robot should 
see is generated by rendering a CAD model of the hallways; this expected image is then 
compared with the actual camera image and inferences drawn about the actual current 
location of the robot.

" The Actuator executes the required motion primitives received from the Navigator. 
The Actuator understands a number of primitive motion commands such as (turn 0°) and 
(move @speed to X, Y). The complete list of motion commands that the Actuator can 
execute is shown in Table 2.1.

The Navigator orchestrates all tasks necessary to execute a given plan. Upon the 
receipt of a path from the Path Planner, the Navigator can start executing that path by 
sending motion commands to the Actuator and monitoring the progress by querying the 
Sensory System and the Cartographer. Note that if the odometry were the only source of 
information about the location of the robot, the uncertainty in its position and orientation 
would increase steadily as the robot moved away from its initial location. Without the 
aid of any sensory feedback this uncertainty would grow to the point where the robot 
would be effectively lost — lost in the sense that any subsequent sensor-based processing 
might not allow the robot to figure out its true location. As was mentioned before, it is 
fof this reason that the planned path is divided into short enough segments so that the 
uncertainty at the end of each segment would not be too large to preclude a vision-based 
exercise in self-location and the zeroing out of whatever uncertainty might be associated 
with the robot at the time it used vision to locate itself. Vision-based updating of the 
location of the robot takes place by comparing the vision data supplied by the Sensory 
System with a map of the environment supplied by the Cartographer (Fig. 2.11). After 
such an update, the Navigator commands the Actuator module to the location 
corresponding to the next node in the planned path.

Although not implemented at this time, it is hoped that in the future another impor
tant job of the Navigator would be to help the Cartographer update its map of the 
environment if the Sensory System reports the presence of objects and/or features not in 
the map supplied originally by the Cartographer. Of course, implementation of this idea 
is going to raise important questions regarding how to distinguish between transient 
objects/features in the environment — such as humans - especially when they appear to
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Execute 
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A+ AA to B
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Request environment

description from 
Sensory System
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A —► A+ AA

Request environment

Cartographer

next step

Figure 2.11: Sequence of actions performed by the Navigator in order to execute a 
segment of the path.
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be stationary and those objects/features that are truly permanent
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CHAPTER 3

CAMERA CALIBRATION

Camera calibration is a fundamental pre-requisite to the use of vision, be it in 
stereoptic mode or in monocular mode. After camera calibration, for a given pixel in the 
image plane we can compute the line-of-sight to the scene point to which that pixel 
corresponds. The calibration parameters associated with a pair of cameras tell us how to 
translate the disparity field generated by fusing the camera images into a distance map of 
the world.

Usually, calibration is carried out by assuming a model for the process of image for
mation by the cameras. A number of models are available for this purpose, the two best 
known being the pinhole model, which is tnuch used for fixed focal-length cameras with 
high quality lenses, and the two-plane model, used when we cannot assume the passage 
of all the rays through a single point. We will show that the pinhole model is appropriate 
for our purposes, in the sense that the errors in depth values using this model are a small 
enough fraction of the range values we are interested in.

3.1 CALIBRATION METHODS: AN OVERVIEW

The process of image formation can be seen as a projection of a three dimensional 
space into a plane, which is only two dimensional. By assuming a suitable model for this 
process and computing the parameters of the model via calibration, it is possible to at 
least determine the line-of-sight to a point in the 3D space from its image coordinates. 
Given such lines of sight from more than one vantage point, it is even possible to com
pute the location of a scene point. Modeling captures the physics of image formation and 
a calibration procedure then tells us how to compute the various parameters of the model. 
Evidently, the model used must be applicable to the cameras and lenses used in a given 
system. Of course, for any given model, it is possible to devise various calibration stra
tegies of varying degrees of accuracy.
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3.1.1 Pinhole Models

This is an appropriate model to use for fixed focal length cameras with high quality 
lenses. In this model, the image of a scene point is located at the intersection of the 
image plane with a line from the scene point which passes through a point on the optic 
axis located one focal length away from the image plane, as shown in Fig. 3.1. In other 
words, all the lines of sight that form the image pass through a common point on the 
optic axis; this point is called either the camera lens center or the center of projection. 
Usually, the pinhole model is only applicable when the thin lens approximation holds. 
With thick lenses and when distortions are present, -the pinhole model breaks down and 
must be supplemented with corrections terms, as, for example, has been done by Tsai [8], 
[9]. The pinhole model is well documented in the texts [1], [2], |3J.

Yakimovsky and Cunningham [4] describe their calibration procedure using the 
pinhole model of a pair of cameras on board the JPL Robotics Research Vehicle. They 
used cameras with narrow fields of view and their lenses were highly linear, meaning that 
their lenses did not require radial and/or tangential correction terms.

Moravec [5] also used a pinhole model in the calibration of the CMU rover’s cam
era. He corrected the lens distortion in his system by using two two-dimensional polyno
mials; one Of the polynomials was used to relate the positions of the points in the image 
to their corresponding locations for an ideal pinhole camera of unit focal-length — this 
polynomial could then be used to compute lines of sight to scene points from their image 
coordinates. The other polynomial represented the reverse transformation, from the ideal 
pinhole case to the actual image coordinates. The latter polynomial could be used for 
synthesizing the images of expected scenes.

Tsai [8, 9] proposed a two stage calibration procedure for computing the parameters 
of a pinhole model augmented with radial distortion terms. In the first stage he solves for 
a subset of the parameters using only linear equations and constraints among the parame
ters. Then in the second stage the pinhole projective equations are used to find an approx
imation for the second group of parameters. This approximation is used as an initial 
guess in a non-linear search that is required to compute their final values using the full 
model equations (pinhole plus distortion). A nice feature of this method is that it allows 
for co-planar scene points to be used for calibration, which is unlike in most pinhole 
based procedures.

Wong [7] described a formulation suitable for calibration of the pinhole model. It 
includes terms representing radial and tangential distortion. He suggested two possible 
procedures for calibration using this model. The very high requirements on accuracy in 
photogrammetry necessitate that both radial and tangential corrections be taken into 
account in augmenting a pinhole model; however, in computer vision applications such is
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Figure 3.1: Image formation in the pinhole model.



rarely necessary and often it is sufficient to consider only the radial corrections, if needed 
at all.

Ganapathy [6] derived a non-iterative procedure to compute the camera parameters 
corresponding to a pinhole model from a given homogeneous perspective transform 
matrix; note that the transformation from the scene coordinates to the image coordinates 
in a pinhole model corresponds to a perspective transform. In the procedure advanced by 
Ganapathy, it is assumed that the camera has already been calibrated and the procedure is 
to be used to compute the physical parameters of the camera, such as the position of the 
camera, the orientation in terms of pan, tilt and swing angles, the location of the center of 
the image plane, etc.

3.1.2 Two Plane Model

In the two plane model the imaging process itself is not represented. Instead it 
models the back-projection process, or image to world transformation, as a mapping 
from pixels to lines of sight. This mapping is not explicitly related to any underlying 
physical process. Unlike in the pinhole model, in the two plane model the lines of sight 
are not forced to intersect at the same point. Each line of sight ray is described by its 
intersection with two calibration planes (Fig. 3.2) therefore the name of the model. The 
Calibration procedure consists Of the process of determining the parameters of the image 
to calibration planes mapping.

Different mapping schemes can be used. Perhaps the simplest conceptually and 
most accurate could be a look-up table with an entry for each pixel in the image. Each 
entry would indicate the corresponding line of sight. In the calibration process the inter
section of these lines with the calibration planes would be measured and the entries in the 
table filled. This approach however could be prohibitively expensive. A more reasonable 
scheme is to measure the lines of sight for a number of pixels and interpolate for other 
points between them. The calibration process consists then of finding out? the parameters 
of the interpolating functions.

The two-plane method is described in detail in Martins et al. [11]; they have pro
posed three types of interpolation. In their linear and quadratic interpolation methods, 
they globally fit an interpolation function to all the calibration points on each calibration 
plane. The functions are then used for any pixel across the entire image. The third inter
polation method presented consists of tesselating each calibration plane with triangles 
and performing linear interpolation within each triangle. The calibration points are the 
vertices; of each triangle. Izaguirre et al. [12] have employed the two-plane model with 
global polynomial interpolation in the calibration of a pair of mobile cameras. Gremban 
et al. [13] compared the accuracy of the method using local and global interpolation.
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Figure 3.2: Image formation in the two plane model.
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One of the advantages of the two-plane model is that it accommodates some lens 
distortion without the need for augmenting terms. In particular when local splines inter
polation is used, the imaging system can be modeled to arbitrary accuracy by increasing 
the density of calibration points. On the other hand, one of its drawbacks is that it is 
designed to work only from image coordinates to world coordinates, making it impracti
cal to predict the view of the world that the robot will have at a given location.

To determine the appropriateness for our application, we implemented some of the 
calibration methods mentioned in this section. In the next section, these methods are 
described in greater detail and their relative merits discussed.

lopez-abadia/kak

3.2 CALIBRATION METHOD BASED ON IDEAL PINHOLE MODEL

In this section, a calibration procedure based on the ideal pinhole model is 
presented. The perspective transform equations, that is the equations that describe the 
imaging process using this model, are derived and a method for their solution is 
described.

3.2.1 Camera Model

In this subsection, we derive the perspective transform and inverse perspective 
transform equations in a form suitable for computer implementation. The perspective 
transform allows us to compute the image coordinates corresponding to an object point 
whose world coordinates are given. The inverse perspective maps each image point to the 
line of sight on which the corresponding object point must lie.

The physical location of the camera can be defined by the position of its focal
—>

center. If the world coordinate system is centered at O, let vector C define the location of 
the camera focal center with respect to O. We can define another coordinate system cen- 
tered at C with base unit vectors h, v, a. We will refer to this system as the camera coor
dinate system. Both the camera and the world coordinate systems are assumed to be 
orthonormal. The camera system is oriented such that a is perpendicular to the image 
plane and h lies along the direction of the picture scan. The image plane intersects the a 
axis at a distance/from C (see Fig. 3.3).

Any point on the image plane can now be referred to by its coordinates (u,v) in the 
image plane. The world coordinates of such an image point are given by the vector
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Figure 3.3: Some of the parameters of the pinhole model.
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To obtain the image coordinates of a given object point P we can compare similar trian
gles in Fig. 3.3 and find

u_ _ D-h
f ~

(3.2a)

v
7

D-a
—> A

Dv
D-a

(3.2b)

with D = P-C. Observe that the numerators and the denominators in (3.2) are nothing 
but the coordinates of vector D in the (h, v, a) frame.

In practice, the coordinates of an image point are not measured in terms of the ana
log entities (m, v), but by using their discrete counterparts, represented here by the 

indices (i, j). The analog and the discrete versions are related by
li 1 O
 ’ I> (3.3a)

V = 0‘-;'o) Av (3.3b)

where (id, jo) are the discrete coordinates of the center of the image (u = 0, v = 0) and
AM and Av stand for the sampling intervals along the h and v directions, respectively.
Substituting Eq. (3.3) in Eq. (3.2) results in

—> A
/ D-h . 

i = A -» + * 0
Am D a

(3.4a)

. f ■ Dv .
J - A -^ + Jo

Av D a
(3.4b)

These equations can be rewritten in a more compact form as

. _ D-H
Da

(3.5a)

—> —>
D-V

J = ■-**
Da

(3.5b)

with

H = 4-h + i0d (3.6a)

f * ^
V = -f- V + jo a

Av (3.6b)

-^ ^ A

Although the system defined by H, V, a no longer represents an orthogonal coordi
nate frame, these vectors are still linearly independent and they form a three-dimensional
basis. Therefore, the numerators and the denominators in Eq. (3.5) represent the



35 lopez-abadia/kak

coordinates of the vector D in the (//, V, ~a) frame, multiplied by the quantities 
\H\, 11/1 and 1,respectively.

lihe equations in (3.5) can be recast in a more convenient matrix form with the use 
®f homogeneous coordinates. A three dimensional point with coordinates x, v, z, is 
represented by its homogeneous coordinates wx, wy, wz, w where w is an arbitrary 

i scalar. The coordinates are recovered by dividing the first three components by the last. 
Similarly, a two-dimensional point of coordinates u, v has wu, wv, w as homogeneous 
coordinates.

Using homogeneous coordinates, we can rewrite equations (3.5) as

xr jtj lj n Dx'
i W :
jw l = - :

rix Iiy fiz U ?
VX Vy Vz 0 | Dy

w i ax ay az 0 J D2

1 ■

Since D = P — C we have

Dr " Pr ' CY
n

X
P rUy ry L,y

Dz Wz\ Cz ;
(3.8)

or, in a more compact form

D = P-C

Combining (3.7) and (3.8), we can write

iw 
jw 
w

which may be expressed more compactly as

Hx Hy H2 -C'x \
Vx Vy V* ~C'y \

MX Oy 0,2 C 2

(3.9)

(3.10)

P, = TPW (3.11)

where Pw is the homogeneous coordinate representation of the world point P, and Pj the 
homogeneous coordinate representation of the corresponding image point. The matrix 
^relating (the two is designated as T. The fourth column of T can fee written in terms of C

C' = RC

where R stands for the 3x3 submatrix of T:

R

Hx Hy Hz 
Vx Vy V2

&X ^2

(3.12)

(3.13)
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Matrix T is frequently referred to in the literature as camera calibration matrix or 
perspective transform matrix. This matrix contains all the necessary information to com
pute both the perspective and the inverse perspective transformations. Eq. (3.10) is used 
to obtain the image coordinates corresponding to an object point. To compute the line of 
sight corresponding to an image point, first C is calculated. From Eq. (3.12)

C = R~' C' (3.14)

Inverting matrix R presents no problem since it is nonsingular if the focal length / is 
non-zero. This can be demonstrated by noting that

or from (3.6)

which leads to

\R I = H-(Vx a)

\R I = H • {4— vxa + j o ax a) 
Av

f ~ f2
\R I = H • -7— h = / — 

Av Am Av

(3.15)

(3.16)

(3.17)

Therefore the determinant of R is non-zero if/is non-zero.

The direction of the line-of-sight can be obtained from (3.7) by setting w — Da. — 1. 
We can always do this since we are only interested in a direction not in the magnitude of

■—)

D. We have

Pi = = RD

and since we know that R is invertible

D — R~lPi

(3.18)

(3.19)

Note that this D does not have the correct magnitude since we artificially set Da - 1, but 
then we are not interested in the magnitude of D. With the D obtained from the above 
equation, the correct value of D, the one that would satisfy, say, Eq. (3.9), is given by 
|ID for some value of the parameter (I. Eq. (3.9) may now be used to establish an equa
tion for the line-of-sight to the object point corresponding to the given image point:

P\y — \lD + C OK Py/ = (i./? ^ Pj + C 

This represents a parametric form for the equation of the Hne-of-sight.

(3.20)
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3.2.2. Calibration Procedure

Tlie purpose of the camera calibration procedure is to obtain the values of the ele
ments of the calibration matrix from a set of points of known image and world coordi
nates. In this subsection we describe a calibration procedure using the model described in 
the previous subsection.

The calibration matrix T is a real 3x4 matrix which represents 12 unknowns. In 
principle, knowledge of the image and world coordinates of 6 non-coplanar points should 
suffice to accomplish the calibration since each point generates two equations. In practice 
xriore than 6 points are used and a least squares optimal solution is obtained.

We should be aware that not all the twelve elements in T are independent. All 
the are functions of the parameters C, h, v, a, /, Am, Av, i0, and /0, and there are con
straints on how these parameters appear in the expressions for T^m’s. For example, /, Am

and Av can only appear as the scaling factors -/- and in the equations; as a conse-
A u Av

quence, the three parameters result in only two independent unknowns ku=-^— and
I j . Am ..

^t should also be noted that the nine components in the vectors h, v and a are not

independent, since the orthonormal coordinate system for which the vectors h, v and a 
constitute a basis has only three degrees of freedom with regard to its orientation. The 
orientation of the coordinate system they define can instead be described by three angles 
0, tyMd.y for describing the pan tilt and swing of the camera. These angles measure the 
consecutive rotations about the camera system axes necessary to bring it into coincidence 
with the world system orientation.

Therefore the 12 entries in T are combination of the following 10 independent 
parameters: the three components of C, and 9, <)>, \j/, ku, kv, io, jo- We could rewrite 
(3.10) in terms of these independent parameters and find the optimal solution of the 
resulting non-linear equations or keep (3.13) and calculate the optimal 12 elements of T 
under the non-linear constraints imposed by the underlying 10 independent parameters.

Neither approach is practical and the usual compromise is to look for the optimal 
solution for the T^’s neglecting the constraints among them. To accomplish this, let’s 
assume that we are using the scene points Pi, l = 1 ,...,7V, with coordinates in the world 
frame (X[, yi, z/), for camera calibration. Let their corresponding image points be denoted 
by the pairs (fi, ji). For each pair of the corresponding scene point and the image point, 
we can write the following two equations derived from (3.10):

T^iiXi + Ti2yi + T13 z/ + T14
H =

T31 X{ + T32 y/ + T33 Z/ + T34
(3.21a)
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T 21 Xj + T 22 y/ + Tzs Z/ + ^24
Tsixi+ Tiiyi + T?,?, zi +T34

(3.21b)

Since the equations will not be altered if all the are scaled by an arbitrary fac
tor, we scale them by T34 implicitly by setting T34 to 1. These two equations can be 
written as

X[ + T12yi + Ti3 z/ + Ti4 — T3i iiXi — T 32 iiyi Tysh-^i k (3.22a)

T2i Xi + T22yi + T23 zi + T24 ~ T$\ j[Xi — T^jiyi ~ T33 ji Z[ = ji (3.22b)

for 7=1,2, ...,1V. For all 7 collectively, these equations can be expressed in a matrix form if 
we define a vector U of unknowns and a right-hand-side vector B as

U =

Tn

Tn
Tl4

T21

T22

T23

T 24 

Tyi 

T32

T 33

B =
in

j\

J2

Jn

Then the equations (3.22) for 7 = 1,...,7V can be expressed as

AU = B

(3.23)

(3.24)

where A is the matrix of coefficients; the elements of A consist of the world coordinates 
of the scene points used for calibration.

This is an overdetermined system of linear equations for N greater than 5, since for 
N equal to 6 we will have 12 equations for only 11 unknowns. The system of equations 
will have a solution only if the columns of A are linearly independent. It can be seen from 
Eq. (3.22) that linear independence implies that the points Pi should not be coplanar for 
otherwise any of the columns of A involving one of the world coordinates could be writ
ten as a linear combination of the other two.

Due to inconsistencies among the equations caused by measurement and digitiza
tion errors, round-off, etc., there is no exact solution for (3.24) with N greater than 5. 
Consequently we will find a best possible solution in the least squares sense. This is a
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solution that minimizes the expre

(3.25)

which is the solution of the normal equations:

A1'A U = ArB (3.26)

A commonly used solution to Eqs. (3.25) and (3.26) is the pseudo-inverse solution and is 
given by

U = (AtA)~1AtB (3.27)

Note that, at least theoretically, this solution is guaranteed to exist since when the 
columns of A are linearly independent the inverse of A ^A will always exist. Such 
pseudo-inverse solutions are frequently used to solve overdetermined sets of equations 
and the solutions produced are generally acceptable whenever the data are not exces
sively corrupted by noise. We have chosen to use the following method which we believe 
yields superior results in the presence of noise and errors in the elements of the matrix A. 
In the method we use, the solution to Eq. (3.24) is found by first computing the QR 
decomposition of A obtained by using Housholder transformations and then solving, by 
using the pseudo-inverse method, the equivalent system R PT U = Q r B, where P is a 
permutation matrix, Q an orthogonal matrix, and R an upper triangular matrix. The solu
tion so obtained is then used as an initial guess for a routine that computes the least 
squares optimal solution of the set of equations (3.21) with / = 1,...,/V, using a modified 
Levenger-Marquardt method. This procedure is summarized in Fig. 3.4.

3.3 CALIBRATION METHOD BASED ON PINHOLE MODEL INCORPORATING
RADIAL DISTORTION

If one must use the pinhole model, the calibration methods that take into account 
radial lens distortion are capable of producing higher accuracy results. To study the 
potential of this approach for our application, we implemented a procedure first advanced 
by Tsai for this augmentation of the pinhole method. We chose his method for imple
mentation for the reason that it allows the world points used for calibration to be coplanar 
-- a great convenience for calibrating the cameras mounted on a mobile robot, since all 
the calibration points can be marked on a wall or some other flat plane. As was men
tioned in the preceding section, the previous calibration method docs not admit coplanar 
points.
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Input: PWl = (X[, yh z,); Pi, = (ii,ji) / = 1, ■ ■ ■, N 

Output: Tmn i = 1,2,3; ;' = 1,2,3,4 

1: Solve the normal equation:
A1’A U = AtB

2: Solve the non linear equations for an optimal solution using U as an initial guess:
. _ TnX[ + Ti2yi + Tii zi + Tl4 

7^31 + ^32 y/ + ^33 z/ + ^34
. _ T2\Xi + T22yi+T23Zl+T24

^ 7’31 xl + 7^32 y/ + 7*33 Z/ + T34

Figure 3.4: Summary Of the procedure used to compute the calibration matrix.
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3.3.1 Camera Model

This subsection describes the camera model, defines the calibration parameters and 
shows the derivation of the equations that represent the imaging process. Fig. 3.5 illus
trates the basic geometry of the camera model. O represents the center of projection or 
the focal point, O' is the image center or point where the optic axis (in our case the Z 
axis) pierces the image plane and Pu is the image of a scene point P for a perfect pinhole 
camera. Pd is the actual image of the scene point P that differs from Pu due to lens dis
tortion, The distance from the image plane to the center of projection (length of the seg
ment 00') is /. The system centered at Ow represents the world coordinate frame and the 
one centered at O is the camera coordinate frame.

The transformation from the world coordinates (xw, yw, zw) of a scene point P to the 
coordinates (Xft yj) of the corresponding image point can be obtained by performing the 
following steps. First, we compute the coordinates of P in the camera frame centered at 
O'. We will represent these coordinates by (x, y, z).

X

y = R yw

z zw

where R is the 3x3 rotation matrix

R

and T is the translation vector

ri r1 r3 

r4f5 r 6 

r7 Z8 >9

(3.28)

(3.29)

T =

T1 X

TAy
T1 z

(3.30)

Note that not all rt* are independent since a rotation can be uniquely specified by three 
independent parameters, such as Euler angles (these are the pan, tilt and swing angles).

The next step is to relate the coordinates (jc, y, z) of P in the camera coordinate sys
tem to the coordinates (xUf yu) of its ideal pinhole image at Pu. By comparing similar tri
angles in Fig. 3.5 we can obtain

(3.31a) 

(3.31b)

*u = f- z

y, = fy-z
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Image plane

Figure 3.5: Illustration of the radial alignment constraint. Pu and P<i represent 
respectively the pinhole image and the distorted (actual) image of the object point.P. 
Observe that OPuWOPjWO'P.
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The third step is to compute the coordinates (xd, yd) of the actual image point Pd which 
takes into account the lens distortion. There are two types of distortions, radial and 
tangential. Each of them can modeled by an infinite series [3] but for computer vision 
applications; only the first terms of the radial series need to be considered. The distortion 
in the location of Pd accounts for only the radial component. Therefore we can write

with

xd+Dx = xu (3.32a)

yd +Dy = yu (3.32b)

Dx = xd (*! r2 + k2r4+...)

Dy = yd r2 + k2 r4+...) (3.33)

r = ^l*d + y\
If we combine equations (3.28), (3.31) and (3.32) we can write

n j. r i Xw +1"2 yw + r 3 zw + Tx
xd + Dx = f —----------------------------

r 7 xw + r g yw + r9 zw + Tz

r4xw+r5yw+r6zw + Tx
yd + Dy = f----- ----------------------------

rjXyv^-rsyw + r9zw + Tz

(3.34a)

(3.34b)

Following Tsai, for the distortion terms Dx and Dy we have only shown two terms in the 
series for each. The terms contain lens-specific coefficients k\ and jfc2. The calibration 
procedure presented by Tsai and reimplemented by us computes these coefficients.

But, of course, (xdt yd) are not the final image coordinates. The image coordinates 
(Xf, yf) are obtained after digitizing the image, and, also, the origin for the digitized 
representation will usually be at a corner of the image, as opposed to being at the center. 
If we assume that the x direction in the digitized image corresponds to the scan line 
direction,, the equations that relate (xdf yd) and (xyy yf) are:

Xf — sxdx xd + Cx (3.35a)

yf = dy-1 yd + Cy (3.35b)

Hexd'x = dx-^~ (3.36)
Nfx

where Cx and Cy are the row and column indices of the center of the digitized frame in 
relation to the center of the analog image, and dx and dy are the distances between the 
centers of the adjacent pixels in the x and y directions, respectively. Ncx is the number of 
sensors, each sensor corresponding to a pixel, in the x direction and NfX is the number of 
scan lines, or, equivalently, the number of pixels in the y direction. (The x direction is 
assumed to be the scan line direction.) The quantity sx is the so-called uncertainity
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image scale factor, which accounts for possible timing mismatches between the camera 
scanning hardware and the image acquisition hardware or the errors in timing of the TV 
scanning itself. Tsai has reported that even an one percent difference between the timings 
can cause up to five pixel error in the image resolution.

When a CCD camera is used, the parameters dx, dy, Ncx and Np can be obtained 
from the information supplied by the manufacturer. If a vidicon camera is used instead, 
some of these parameters are not known a priori and this calibration technique can not be 
used. However, in this case one may use a multi-plane calibration method introduced by 
Tsai; this method exploits the fact that all the missing information can be grouped into 
only one additional unknown. Note that the product sxd'x~^ can be treated as a single 
parameter and that dy can be set to one since the focal length scales the image in both the 
x and y directions; If we do this the computed focal length / will be a product of the 
actual focal length and the scale factor in y.

The process of obtaining the image coordinates from world coordinates is summar
ized in Fig. 3.6.

The parameters used in the camera model discussed so far in this subsection can be 
categorized into two classes: intrinsic parameters and extrinsic parameters. The extrin
sic parameters describe the position and orientation of the camera in the world coordinate 
system and the intrinsic parameters determine the image forming process. Extrinsic 
parameters are the elements of the rotation matrix R and the components of the transla
tion vector T. The other parameters, Ncx, Np, dx, dy, /, k\, k^, sx, Cx and Cy, are the 
intrinsic parameters.

The procedure we describe in the following subsection is sufficient to determine all 
the extrinsic parameters and only /, k\ and k'l of the intrinsic parameters. N^, Np, dx 
and dy are assumed to be known at the time of calibration and Cx, Cy and sx are not cali
brated, meaning no information is calculated on these parameters. Tsai has suggested 
that (Cx, Cy) be set to the center pixel of the digitized image and has proposed several 
techniques for computing sx.

3.3.2 Calibration Procedure

The method consists of two stages. In the first stage of the procedure, some of the 
parameters are found using linear equations. These linear equations represent physical 
constraints on the locations of the object points and their images, each constraint saying 
that, if only radial distortion is present, the image of an object point must lie on a line 
that is the projection on the image plane of a line joining the object point to the focal 
center, as shown in Fig. 3.5; such constraints are referred to as radial alignment
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(Xw, Yw, Zw) 3D world coordinate

Step 1

Rigid body transformation from (Xw, Yw, Zw) to (X, Y, Z) 

Parameters to be calibrated: R, T

(X, Y, Z) 3D camera coordinate system

Step 2

Perspective projection with pin-hole geometry 

Parameter to be calibrated: f

(Xu, Yu) Ideal undistorted image coordinates

Step 3

Radial lens distortion 

Parameters to be calibrated: kl, k2

(Xd, Yd) Distorted image coordinates

Step 4

TV scanning, sampling, computer aquisition 

Parameters to be calibrated: sx, Cx, Cy

(Xf, Yf) Computer image coordinates in frame memory

Figure 3.6: The four steps in the transformation from 3D world coordinates to computer 
image coordinates and the parameters involved.
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constraints. These constraints allow us to easily compute some of the elements of the 
rotation matrix and a product of two of the components of the translation vector. Subse
quently, during the first phase computations, the rest of the elements of the rotation 
matrix and two of the components of the translation vector are computed by enforcing 
the orthonormality property of the rotation matrix.

In the second stage, we start out by first estimating approximations to the remaining 
parameters by using the pinhole projective equations (with distortion terms set to zero). 
The exact solution for these parameters is then computed using the full equations and any 
standard optimization scheme. We will now elaborate on the two stages.

a) First Stage In the first stage, we write a direct relationship between the actual 
image coordinates (Xd, yd) and the world coordinates {xw, yw, zw). We do so by recog
nizing that under the radial alignment constraint, the direction of the vector 0"P is radi
ally aligned with the vector O'Pd (Fig. 3.5). Therefore, if the vector 0"P is expressed in 
the camera coordinate frame centered at O', we can write

However, (0"PX , 0"Py), both measured in the camera coordinate frame, are related to 
the (xw, yw, zw) measured in the world frame through equations (3.28). Therefore,

(3.38a)

(3.38b)

(3.39)

(3.40)

Equation (3.40) corresponds to a single scene point. Since we have seven 
unknowns, if the number of scene points, N, is greater than 7, we can establish an
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overdetermined set of linear equations of the form AT = X, where A is an Nxl matrix of 
coefficients, X is composed of xds appearing on the right hand side of equations like
(3.40), and T is the vector of the unknowns shown as a column vector in equation (3.40). 
However, note that if the scene points are coplanar, some of the columns in A will 
become linearly dependent and the set of equations will have no unique solution.

If the world coordinate system is selected such that the plane zw = 0 coincides with 
the calibration plane and the origin of the world system is not close to the camera y-axes 
then equation (3.40) can be rewritten in terms of five unknowns as

Ty-lrx

ydxw ydyw yd -xdxw -xdyw

Ty~lr2

r1'
'*i,

T “AT1 y 1 x

Ty~ r4 
Ty~lr5

= xd (3.41)

and the resulting system of equations can now be solved for the five unknowns 
Ty lr \, Ty Vi, Ty~*Tx, Ty~lrd and Ty~]r$, assuming that the calibration points are not 

collinear. A complete discussion on the existence and uniqueness of this solution can be 
found in |9]. The reason for selecting the origin of the world frame far from the camera 
y-axes is to avoid having Ty = 0. Note that the origin and orientation of the world coordi
nate frame can be chosen as desired since they are under user control.

With the procedure outlined so far, we now have the means to compute the quanti
ties Tyr. Vi, Ty V2, Ty~lTx, Ty~lr4 and Ty V5. In the next step in the first stage, all 
the elements of the rotation matrix R, and Tx and Ty will be determined using the ortho
normality constraints that must be satisfied by the rows and columns of R. To see how 
this can be done, let’s first define a 2x2 matrix C as

C =
r\ r2 

r\ r's

r\ r 2
Tly T

r 4 r5

Ty T1y

(3.42)

C is the upper 2x2 submatrix of R scaled by the factor T^. The following lemma puts a 
restriction on how one can scale the 2x2 submatrix of a 3x3 orthonormal matrix.

Lemma I: There do not exist two 3x3 orthonormal matrices that differ in their 2x2 

submatrix by a scale factor other than ±1.

The lemma implies that if a 2x2 submatrix of an orthonormal 3x3 matrix is given 
except for a scale factor, then the scale factor is unique except for its sign. Using this
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property, if an entire row or column of C does not vanish, the square of the scale factor 
(in our case Ty) can be determined by using

5. [s?-4(ryy-rV'2)2]1/2

'2(r\rfs -rV'2)2
(3.43)

where Sr = r'j + r'\ + r'f + r'\. Clearly, this equation can not be used when the denomi
nator on the right hand side vanishes. In that case, Ty can be computed from

T2 = (r'f + r/2)-1 ■ (3.44)

where r'(- and r'^ are the elements of C that do not vanish. A detailed proof of Lemma I 
and derivation of Eqs. (3.43) and (3.44) can be found in |9J.

So, now we have the means to also compute the magnitude \Ty\; the next step natur
ally is to determine its sign. In order to do this, we start out by assuming that Ty is posi
tive. Using this positive value, we can determine all the unknowns (r1; r2, r4, r$, Tx 
and Ty) from equations like (3.39). Now if we select an object point whose image coordi
nates (X, Y) are away from the image center and substitute its world coordinates in Eq. 
(3.39), then the result we obtain for X may or may not agree in its sign with the actual 
sign of X. In the first case Ty was indeed positive, however, in the second case, we have 
to reverse its sign.

Now we can compute r j, r2, r$, r$, Tx and Ty. Subsequently, during the first stage 
computations, we again use the orthonormal and right handed property of R to determine 
r3, r6> r7> r8 and r9 as follows. First, r3 is calculated from r7 and r2 by using 
>3 =+(l-ri -r2)1/2. Similarly, we have rg =s{\-r\-r|)1/2, with 
s = -sgn {r\r4 + r2r$). And, finally, r-j, r$ and r9 are determined by using the vector 
product of the first two rows of R. However, this is not the only possible solution for R, 
since we could have chosen r2 negative and that would cause a sign change for rg, r7 
and>8. We can arbitrarily^ select one of the two solutions of R. We will see that if the 
Wrong choice is made then in the second stage when the focal length /is determined it 
will be negative, indicating that the signs of r3, rg, r7 and rg should be reversed.

b) Second Stage. In this stage, we first estimate approximations to the parameters / 
and Ti ignoring lens distortion, then a more accurate solution is found taking into 
account the radial lens distortion and using a nonlinear optimization method. The latter 
step, involving nonlinear optimization, also yields values for the parameters k\ and &2 of 
the radial lens distortion (see Eqs. (3.33)).

Initially ignoring the radial lens distortion implies that we can set Dx and Dy to zero 
in equations (3.32). Therefore, equations (3.34) reduce to the following simpler forms 
involving the unknowns/and Tz:
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- f 1 Xw + y*v "k f"3 "k 
Xrf = /--------- ----------------------------~

• r?Xw + rgyw + r9zw +TZ 

■ r4xw+r5yw + r6zw+Ty
= f——7------- -Vrixw + r%yw+r9zw + TZ

(3.45a)

(3.45b)

These two equations can be recast into the following forms for computer implementation:

where

(3.46a)

(3.46b)

* = r\Xw + r2yw + r3zw + TX

y = r4xw + r5yw +r6zw + Ty ' (3.47)

w = r7 xw + r8 yw + r9 zw + Tz

Since we are using a coplanar set (but they cannot be colinear) of calibration points lying 
on the plane zw = 0, equations (3.47) reduce to

x = rxxw + r2yw + Tx

y = r4xw + r5yw + Ty (3.48)

w = r9xw + r%yw + Tz

With several calibration points, either equation (3.46b) or (3.46b) (or both combined) 
yield an overdetermined system of linear equations that can be used to solve for / and Tz. 
This can be accomplished by using the same procedure as outlined in Section 3.2.2 if the 
calibration plane has not been chosen exactly parallel to the image plane, otherwise the 
system formed becomes linearly dependent.

Note that from the set of elements of R whose sign we had to guess in the first stage, 
only r7 and rg appear in w in equations (3.46) and that a wrong choice for their signs 
will result in a negative focal length. Therefore, it is at this point that we can reverse their 
signs if necessary.

The only step left is to revise our estimates for / and Tz taking the radial distortion 
into account and to determine the values for the parameters k i and £2 • The final solutions 
for / and Tz and the values for k\ and k% are found simultaneously from the complete 
model equations (3.34) via a nonlinear optimization that is started with the estimates for / 
and Tz and with k\ = 0 and it2 - 0. The complete calibration procedure is summarized in 
Fig. 3.7.
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Stage 1

1: Convert from computer coordinates (Xf, yf) to distorted image coordinates (xj, y4).

2: Compute Ty~lr \, Ty~l r2, Ty~x Tx, Ty~l r4 from the radial alingment constraint equa
tions.

3:; Compute (rl5 r2, r4, r5, Tx, Ty) from r j, Ty~1r1, Tf1TX, Tflr4) using the 
orthonormal property of R.

Stage 2

4: Compute a first approximation to Tz and / using the perspective projection equa
tions ignoring lens distortion.

5: Compute the final value oiTz,f,k\ and ki using the full model equations.

Figure 3.7: The two stage calibration procedure.



3.4 THE TWO-PLANE METHOD FOR CAMERA CALIBRATION

In general, the purpose of camera calibration is to solve one or both of the following 
two problems:

The projection problem: given the location of a point in space, predict the location
of its image on the image plane.

* <• The back-projection problem: given location on the image plane of the image of a 
'■ v,;r point, compute the line of sight on which the point being imaged must lie.

■ Martins et al. [11] presented the two-plane calibration technique for solving the 
back-projection problem. This technique provides exactly the information needed, this is 
the line in space that corresponds to the line of sight of a given pixel, without any explicit 
camera model.

3.4.1 Camera Model

In this method, instead of describing a camera model by the usual parameters such 
as the focal length, location and orientation of the imaging plane, etc., and attempting to 
determine these parameters through calibration, relationships are established between the 
coordinates of scene points and the coordinates of the corresponding image points for 
scene points in two different planes, called the calibration planes. Once these relation
ships are determined, then for an image point / corresponding to an arbitrary scene point 
P, we can find, using the inverse of the relationships, the points on each of the calibration 
planes that would give rise to the image point /. A line joining the two points on the two 
calibration planes then defines a line-of-sight to the scene point P.
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3.4.2 Calibration Procedure

Martins et al. have proposed using three different types of relationship between the 
scene points on the calibration planes and their corresponding image points: linear, qua
dratic, and linear spline. Although we implemented the quadratic approach only, we will 
briefly describe all three of them.

The Case of Linear Relationship:

The camera is shown a set of illuminated scene points located on what is called the 
calibration plane #1 and their corresponding image points are recorded. A linear rela
tionship is expressed between the scene points and their corresponding image points.



This process is repeated for the second calibration plane. Let P, = (Xi,Yi,Zi) denote a 
typical point on the itfl calibration plane and let L,- = (row, col, 1) denote its image point. 
Let a 3x3 matrix A,- express the linear relationship between F, and L, :

Pi = A(L; i = 1,2, (3.49)

Note that each calibration plane is characterized by a single matrix A,•.

Clearly, with more than three points per plane a set of overdetermined linear equa
tions can be established and solved for the elements of At using the method described in 
Section 3.2.2. As a result, we can compute A\ and A2 for the calibration planes #1 and 
#2, respectively. That is the end of camera calibration. Now when an arbitrary scene 
point is shown to the camera, from its image point we can compute, by using A j and A 2, 
two points - let’s call them P\ and P\ -- which would be the intersection of the line- 
of-sight to the arbitrary scene point with the two calibration planes. Thus we can find the 
line-of-sight corresponding to a given scene point after the calibration phase.

The Case of Quadratic Relationship:

The quadratic interpolation is similar to the linear case except that, for each calibra
tion plane, the relationship between a scene point F; and its corresponding image point L; 
is expressed by

Pi = Ai Qr, i = 1, 2, (3.50)

where, as before, F; = (X;, T), Z,), but where the vector Qt is given by 
Qi = (row2, col2, row col, row, col, 1). In other words, we now have nonlinear relation
ship between a scene point and its image; this is an attempt at capturing the nonlinearities 
on a lens. Note that for each calibration plane, A,- is now a 6x6 matrix. Also note that 
each calibration plane is characterized by a single matrix A;.

Calibration consists of showing to the camera a set of illuminated scene points, at 
least six, in each calibration plane, each illuminated scene point and its image being 
related by (3.50). Given a sufficient number of points in each plane, we can find the 
matrix A,- for that plane. Thus we can find A j and A 2 for the two calibration planes. That 
completes the calibration of the camera. Now if we show an arbitrary scene point to the 
camera and record its image point. Then, using A1 and A 2, we can find the two points - 
let’s call them P\ and P'2 -- where the line-of-sight to the scene point intersects the two 
calibration planes. The points P\ and P'2 thus obtained then define the line-of-sight.
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Using Linear Splines:

to both the linear and the quadratic interpolation, the approach is to globally fit, for 
each calibration plane separately, a function describing the relationship between the 
scene points and their image locations. In other words, the calibration plane #i was 
characterized by a single matrix Ah meaning that, for the calibration plane #i, the rela
tionship everywhere between the coordinates of a scene point and its image point was 
described by the same matrix A,-. Such global characterization has the effect of averaging 
the errors over all the: pixels corresponding to a calibration plane so the resultant line-of- 
sight may not be exact for any pixel but Close for all. For some cases, depending on the 
nature and extent of lens distortion, such global characterization may not be appropriate.

, to some; cases, a better approach may be to use separate functions, each valid only 
over a small and localized region of the image plane, for describing the relationships 
between to© scene points on a calibration plane and the corresponding image points. One 
easy way to accomplish this is by the use of linear splines; these are linear functions, 
each valid over a small approximately triangular region of the image plane, for describ
ing the relationship between the scene points on a calibration plane and the correspond
ing image points. Each calibration plane is divided into triangular tessellations, the ver
tices of the triangles form the illuminated scene points that are shown to the camera for 
calibration. The coordinates of the vertices of each triangle and the corresponding image 
coordinates are used to compute a linear relationship, as in the "Linear Case" discussed 
above, between the scene points that would lie within the triangle and their correspond
ing image points. Therefore, for the jth triangle in the ith calibration plane, the relation
ship between the’coordinates Pi of a scene point and its image L,- are given by

Pi = Aij L; / = 1, 2; j = 1, •••,1V, (3.51)

where L, P and Atj are as in (3.49), the difference being that now there is one matrix Atj 
for each of the N triangles. An exact solution is now obtained for each triangle.

3.5 DETERMINATION OF THE PHYSICAL PARAMETERS OF THE CAMERA

to Section 3.2, we discussed a calibration method that was based on the ideal 
pinhole assumption. The processing discussed in Section 3.2.2 yields a 3x4 calibration 
matrix T whose elements are displayed in Eq. (3.10). After the matrix T is computed, one 
is still faced with the problem of having to compute the actual camera parameters. In this 
section, we will describe a procedure, which was originally proposed by Ganapathy [6], 
for computing the parameters of the camera from the elements of the T matrix.
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Of course, the reader could ask: Is it really necessary to compute the physical 
parameters of the camera, such as its focal length; could we not directly use the matrix T? 
It is, of course, true that the elements of T can be used directly to compute the line-of- 
sight corresponding to any pixel in the image by using Eq. (3.20). It is also true that 
given, say, a CAD representation of the hallways, from the elements of T one could write 
a routine to construct an image that a camera, at a given position and with a given view- 
vector would see. However, many CAD rendering programs, especially Of the ray-tracing 
variety, explicitly require parameters such as the focal length, the direction of the view- 
vector, etc. As will be discussed in Chapter 6, a rendering program is used to generate 
scene expectation maps from CAD models for vision-guided navigation using the 
PSEIKI system [15].

From Eqs. (3.10), (3.6a) and (3.6b), we can show that the elements of T are related 
to the physical parameters of a camera by the following relationships:
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f
-7— hx + io ax
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A U (3.52a)1 11 -
-C-a
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-C-a
f - -> /V

— C'h + / o C-aAu (3.52d)14 -
-Cd

T,2l =

f-j-vx + Joax
Av (3.52e)

-Cd

T22 = ■ (3.52f)
-Cd

A ray tracing program for rendering an image from a CAD representation ‘shoots’ rays from the 
center of projection and through the image plane. By computing the intersection of a given ray 
with the surfaces of the scene, the ray-tracing program figures out how to render the scene and 
how to carry out hidden surface removal. Clearly then, in order to ‘shoot’ the rays, the program 
needs to know the distance from the center of projection to the image plane, which is the focal 
length of the camera, the view-vector associated with the camera, etc.
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^23 =

T 24 = -

~toVz +Joaz 

-C-a

-C-d

T31 =
ux

-Ca

Too =
Uy "

1 32
-Cd

^33 =
az

-Cd

/ (3.52g)

(3.52h)

(3.521) 

(3.52J)

' (3.52k)

(3.521)
In these expressions, we have scaled all the 7^’s by 734, which is consistent with the 
assumption made in Section 3.2.2. From Eq. (3.10), 7Z = —C'z. However, from Eq. (3.12) 
and (3.13), C'z = RC = -Ca.

We will now describe Ganapathy’s procedure for processing the above equations

for computing the parameters C, h, v, a, iq, jo, and We will use the symbols
Am Av

T1»T2 and 73 to denote the first, second and third rows of the leftmost 3x3 submatrix of 
the calibration matrix 7, respectively, We obtain from Eqs. (3.52a), (3.52b) and (3.52c):

- 2 f . ^ 2
>Ji   rj?2 , rr.2 , rrO. / /AM 10 _ T\ T\ - T\\ + Tn +7i3 = —, _» (3,53)

-C-a-^ J K. J
/V A A

by using the fact that A, v and a are a mutually orthogonal set of unit vectors. Similarly,

t = 1

r2 _ //Av
r z —C -a

Tz'T 2 — T21 + T22 + T23

T3T2 = +T22 +T32 =

+

1

Jo

-C-d

-Cd

Ti’T.3'- T\\ T31 + 712 732 +713 733 = *0
fo,-]

(3.54)

(3.55)

(3.56)

and

T2 T3 - 721 ^31 +722T32 +723 733 = )o

-C-a
(3.57)
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These equations are suggestive of a solution strategy for the parameters. From Eq.
—^ yv 2

(3.55), we can directly compute -C-a . Subsequently, from Eqs. (3,56) and (3.57), we 
can compute i’o and jq. Following that, Eqs. (3.53) and (3.54) yield the magnitudes of

A u Av

Note that the signs of -C-a, -f- and are closely related. We can arbitrarily
Am Av

choose —C-a and -X- to be positive and then determine the sign of X~. The signs of -Jj— 
Am Av Am

f
and depend on the polarity of the axes of the camera coordinate frame, meaning the

directions in which the row and column numbers of the pixels (i, j) increase. The quan-
f ftity -f— can always be assumed positive. Then the sign of depends on the on the 

Am Av
polarity of the l—J axes. Note that the m-v axes of the camera coordinate system were
defined in Section 3.2.1 as right-handed and parallel to the directions of the rows and
columns of the computer image respectively. However, if the columns are counted from
left to right and the rows from the upper to the lower border of the picture, then this is

equivalent to inverting the direction of the vector v or to have the quantity negative.

The sign of —C-a can be reversed if necessary by changing the direction of the view 
vector, a, by 180°. Then in order to keep the coordinate system defined by (h, v, a) 
right-handed, we need to also reverse the direction of v, which amounts to changing the

sign of -7—.
: Av

Once we have assumed the signs of and -C-a to be positive, the sign of —
Am Av

f . : ■ ■
can be determined as follows. Assume for a moment that is positive. Since at this

Av
point the values of -C-a, t'o, o.x, ax, ay and az and a are known, ux, uy, uz, can be

obtained from equations (3.52a), (3.52b) and (3.52c), respectively. Similarly, from the 
expressions for T21, T22 and 7^3 we can determine the values for vx, vy and vz respec
tively, giving us the vector v. The vector v can also be obtained from v = axh. If both the

• - fsolutions for v coincide, the choice of sign for -f- was correct otherwise it must be
Av

reversed.

With the implementation described so far, the only quantities left to be computed 
are the components of the vector C f, Am and Av. The components of C can be recovered 
from equations (3.52d) and (3.52h). The focal length / can be obtained if we have 
knowledge of the size of an image pixel, that is Am and Av; usually, this information is



available from the manufacturer of the camera.

If the procedure described in Section 3.2.2 is used to compute the calibration 
matrix, T, the assumption of orthonormality of the vectors h, v and a may not be satisfied 
strictly since the calibration procedure does not enforce this constraint explicitly. 
Ganapathy has proposed inclusion of an additional parameter 5 to measure the extent to 
Which the calibration matrix approximates the true perspective projection matrix.

Let us define three mutually orthogonal unit vectors h', v' and a'. Let us assume that 
h and v are not exactly perpendicular to each other but slightly off by an angle 5 (see Fig. 
3.8). If we assume h' and a' coincide, with h and a, respectively, as in Fig. 3.8, then the

. w . r‘-': \./-t y ...

coordinates of v in the h', v', a' system are given by

Vi = sinS,
v 2 = cosS, (3.57)

v3 = 0
In order to compute 5, we can use the fact that 
Ti T2=Tii T2i + T\2T22 + T\^T= sinS. The parameter 8 is useful in measuring 
how much the calibration matrix deviates from a true perspective projection matrix. It is 
a convenient way of lumping into a single parameter this deviation.

A brief summary of the procedure described in this section is shown in Fig. 3.9.
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3.6 A COMPARISON OF THE CALIBRATION METHODS

The ideal pinhole method of Section 3.2 requires that the calibration points be non- 
coplanar in the world frame. As discussed there, with a coplanar set of points it may not 
be possible to obtain a solution at all, especially if the procedure of Section 3.2.2 is used 
for computation.

The procedure proposed by Tsai, described in Section 3.3, has the advantage of 
allowing for coplanar calibration points in the world frame. Using coplanar calibration 
points simplifies the physical set up required for the calibration process since fabricating 
a coplanar set of points is much easier than a set of non-coplanar points, especially so 
because the world coordinates of these points must be known accurately.

The main reason Tsai’s method does not require that co-planarity constraint be 
satisfied by the calibration points is due to the additional constraints that are invoked, 
such as the orthonormality of the rotation matrix. Therefore the perspective equations 
need be solved for only a smaller number of unknowns, the rest of the unknowns are then 
computed using the orthonormality constraint. But note that in order to use this pro
cedure, in accordance with the first step in Fig. 3.7, we must first convert the the discrete
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h’ h

Figure 3.8: The skew angle 8.
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3: Compute —— and —— from the T\ -T\ and T2'T2 respectively.

• • -> ^ f f
4: Assuming the sign of -C a, —— and positive compute h, v and d from T\ , T2

: ' . Aw Av
and T3 respectively.
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5: If h, v and a do not form a right hand base then reverse the sign of the three com
ponents of v.

6: Compute sinS from Ti-T2.

Figure 3.9: The steps involved in obtaining the camera characteristics from the entries in 
the calibration matrix. Observe that the procedure only involves the solution of linear 
equations.



coordinates of an image point corresponding to a scene calibration point into what were 
referred to as the distorted image coordinates — these are the actual analog coordinates of 
an image point, taking into account the lens distortion, etc. This conversion requires that 
we know a priori the coordinates of the image center, the sampling intervals in the image 
plane, etc. Although the sampling-interval information can be gleaned from the product 
information supplied by the manufacturer, one still has to figure out the location of the 
image center before the method can be used. Also needed is what was called the uncer
tainty image scale factor.

In [9], Tsai did show that by using some calibration points that are non-coplanar 
with the points used in the procedure described in Section 3.3, it is possible to compute 
the uncertainty image scale factor. This modification to the calibration procedure also 
had the advantage that the image center could now be anywhere in the image plane 
without affecting the accuracy of calibration. We found, however, that this claim is true 
only if the objects points in the scene stay close to the plane used originally for calibra
tion. In a later paper [10], Tsai recognized this problem and proposed another technique 
to determine the remaining uncalibrated parameters, such as the coordinates of the image 
center and the uncertainty image scale factor.

The last column in Table 3.1 summarizes the various features of the Tsai method as 
discussed in Section 3.3. The topmost entry in the column shows the parameters that 
must be known a priori before the calibration method can be used. The other entries are 
self-explanatory.

We chose not to use the Tsai method for calibrating the cameras on the mobile robot 
because of the need to know the location of the intersection of the image plane and the 
optic axis (this intersection defines the center of the image plane) and because the advan
tage of the coplanarity of the calibration points was really not an issue in our work. Non- 
coplanar points whose world coordinates are precisely known are easy to come by in 
scenes recorded by the cameras on the mobile robot.

In the case of the two-plane method discussed in Section 3.4, we encountered two 
major drawbacks. One disadvantage that was mentioned before is that while the method 
gives us a procedure for predicting lines of sight corresponding to the pixels in an image, 
it does not tell us how to render an image from a 3D model of the world. In other words, 
the two-plane method does not tell us which pixel corresponds to a given object point in 
a scene, but only which line-of-sight corresponds to a given pixel in the image. The 
second drawback has to do with the locations of the two calibration planes in relationship 
to the camera. We found that for best results with this method, the two calibration planes 
should be located in such a manner that all the object points of interest will lie between 
the two planes. For mobile robotics that presents a problem because of the large depths 
associated with the scenes. Large depths mean that the farther calibration plane must be 
at a large distance from the camera. Even if we could arrange for a calibration plane at a
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Table 3.1: Comparison of the characteristics of three camera calibration methods.

Method Perspective
Transform

Two Planes Tsai

Parameters
Uncalibrated

None None C C
^*5 dy

Coplanar Cali
bration Points

No No Yes

Accounts for 
distortion

No Yes (Linear splines) Radial only

Involves Nonlinear 
Search

Yes No Yes



large distance, say at a distance of 20 meters from the camera, there would still be 
another difficulty to resolve. For best results, it is desirable that the scene points used for 
calibration be uniformly distributed over each of the calibration planes. The extent of 
each calibration plane covered by such a distribution of points depends on the view angle 
of the camera. The cameras we use on the mobile robot have a field of view of 26 . At a 
distance of 20 meters, this angle results in a rather large area and arranging for a uni
formly distributed set of points over this area with accurately known world coordinates 
seemed too difficult a task.

For our mobile robotics work we therefore chose to use the method which is 
described in Section 3,2 and which is based on the assumption of an ideal pinhole for the 
camera lens. Experimentation showed that the lens distortion was not a problem; the 
solid-state cameras usually tend to use high-quality lenses.
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3.7 CALIBRATION PROCEDURE USED FOR NAVIGATION EXPERIMENTS

As mentioned in the preceding section, we use the method of Section 3.2 for cali
brating the cameras on the mobile robot. To supply this method with non-eoplanar scene 
points whose world coordinates are known, we initially used a flat board with a pattern of 
large circular black dots, the board would then be placed at various distances from the 
robot. At each location of the board, the circular dots were first detected and their cen
troids found, these centroids were then used as scene points for calibration. This pro
cedure was completely automated, all the operator had to do was to key in the coordi
nates of the comers of the board at each of its positions. The output of the calibration 
program was the transformation matrix T of Eq. (3.11).

A disadvantage of this procedure was that the board with the black dots had to be 
positioned at precisely known locations in relation to the position of the robot. To the 
extent that could not be done, errors tended to corrupt the calibration procedure. Of 
course, instead of moving the board, one could move the robot in relation to the board (in 
fact, that’s what we did in most of our experiments). However, moving the robot did not 
alleviate the problem due to the errors in the odometry of the robot; these errors are a 
function of the slippage between the wheels and the floor. Another disadvantage of this 
procedure was the rather poor accuracy with which the image processing routines tended 
to locate the centroids of the black dots; usually the accuracy was not better than two or 
three pixels.

For these reasons, we have now switched to an interactive approach in which the 
robot is placed at a fixed position. The image recorded by the camera is displayed on a 
SUN window and the operator, who has available to him/her precise coordinates of many 
scene points such as the corners of walls, door frames, panels, etc., uses mouse clicks to
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select a set of non-coplanar scene points from the image and to enter the world coordi
nates of the selected points. Actually, the operator selects more points than needed for 

calibration, the extra points are then used for testing the accuracy of the calibration 
matrix by predicting the image coordinates of these extra points and comparing the pred
ictions with the actual image coordinates.:

For this interactive calibration procedure, we choose a point on the floor and desig
nate it as the origin of the world frame. All the coordinate measurements to the candi
date scene points such as the comers of walls, door frames, panels, etc., are then made 
with respect to this origin and recorded. The robot is subsequently placed such that the 
center of its base is right over the origin. For calibration purposes, with the robot located 
as described, the axes of the world frame are defined such that the Z axis is vertical with 
the positive direction being the up direction; the positive direction of the Y axis coincides 
with the forward direction of motion of the robot and the X axis is chosen so the resulting 
frame is right handed. The world frame defined in this manner for the purpose of calibra
tion becomes eventually the robot frame during navigation; in other words, it becomes 
the frame that always stays with the robot. All the lines of sight computed via the cali
bration matrix are with respect to this frame.

To help the operator with the task of entering the world coordinates of the selected 
scene points, a SUNVIEW based program called suncal was written. This program 
allows the use of a mouse button to bring up a text window for the entry or the erasure of 
the selected scene points. By selecting appropriate menu items, it is also possible to read 
the coordinates of the already selected points from a unix file. If the show mode is 
selected from the menu, the world and the image coordinates of a point are displayed and 
the corresponding point highlighted in the image to check for possible mistakes. Fig. 
3.10 shows a typical image used during this calibration procedure and some of the pop
up menus, however they might have become invisible through duplication.

3.8 TEST RESULTS

Table 3.2 shows a set of 14 scene points used for the calibration of the two cameras 
on the robot. The world coordinates of the points are shown in the left half of the table, 
and the corresponding image coordinates shown in the right half for each of the two cam
eras. These points were selected from the hallway pictures of Fig. 3.11. In Table 3.2, the 
image coordinates under ‘Left’ were extracted from the left camera image shown at the 
top in Fig. 3.11, and those under ‘Right’ from the right camera image shown at the bot
tom in Fig. 3.11.
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Figure 3.10: The suncal tool in execution.
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Table 3.2: Coordinates of the calibration points used.

Calibration Points

World Coord, (m)

X Y Z

Image Coord.
Left

U V
Right

U V
-1.34 8.69 2.19 62 55 38 81
-1.34 8.69 0.10 63 339 37 367
-1.34 9.71 2.19 80 67 57 94
-1.34 9.71 0.10 80 321 57 347
-1.34 14.50 0.10 126 273 108 300
-0.81 18.26 2.19 172 115 158 142
-0.81 18.26 0.10 172 250 157 279
0.97 18.26 2.19 265 114 251 143
0.97 18.26 0.10 264 251 252 280
1.48 5.96 0.67 430 304 397 334
1.48 8.79 2.19 366 59 343 87
1.48 8.79 0.10 365 338 340 368
1.48 9.97 2.19 350 71 329 100
1.48 9.97 0.10 348 317 326 349

Table 3.3: Coordinates of the test points used.

Test Points

World PoorH /trO Image Coord.Tf UllU C«UU1U. L1I11
Left Right

X Y Z U v u V
-1.34 10.08 2.19 84 70 61 97
-1.34 10.08 0.10 85 316 61 343
-1.34 11.10 2.19 97 79 77 107
-1.34 11.10 0.10 98 302 77 328
-1.34 14.50 2.19 125 100 108 129
1.48 15.79 0.10 304 264 288 294
1.48 10.65 2.14 342 83 322 112
1.48 4.20 2.08 - - 470 3
1.48 4.20 0.67 . - 467 391
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(a) Left Image

(b) Right Image

Figure 3.11: Stereo hallway images.
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The procedure described in Section 3.2 was used for the computation of the calibra
tion matrices T for each of the two cameras. For each camera, first the system of equa
tions in (3.24) was solved for an optimal U in the least squares sense; this solution was 
then used as an initial guess for a nonlinear optimization procedure that solves equations
(3.21) . The residuals at each step during the computation of the calibration matrix from
the data of Table 3.2 are shown in Table 3.4. The first column is the residual 
(A U —B )T (A U —B ) corresponding to the linear least squares solution (LSS) to the 
linear system (LS) of equation in (3.24). The second column was obtained using this 
solution for computing the residual of the non-linear system (NLS) of equations (3.21) 
for / = The third column represents the residual for the nonlinear equations of
(3.21) after an optimum solution is found via nonlinear optimization (NLSS). The cali
bration matrices, T, obtained for the two cameras are shown in Fig. 3.12.

After obtaining the calibration matrices, the physical parameters for each of the 
cameras are computed following the procedure described in Section 3.5. By comparison 
with the parameters used in setting up the cameras, some of these computed physical 
parameters can then be used to verify the calibration procedure. The values found for the 
physical parameters from the calibration matrices of Fig. 3.12 are shown in Table 3.5. 
The coordinates of the lens center may be computed either by using Eq. (3.14) — this is 
labeled as the ‘Direct’ method in Table 3.5 or by using the Ganapathy procedure of 
Section 3.5 which is based on the Eqs. (3.52d) and (3.52h). The results of both computa
tions are shown in the table for comparison. As was mentioned before, the angle 8 is a 
measure of the appropriateness of the lens model used for calibration. A large value of 8 
would indicate that the results might not be meaningful. The column labels ‘Left’ and 
‘Right’ refer to the left and the right cameras on the robot.

■ l " The accuracy of the calibration was checked using three different tests. The first test 
was to compute the image coordinates of a number of scene points given their world 
coordinates. The results shown in Table 3.6 correspond to the test points of Table 3.3. 
Note that an error smaller than 0.5 pixels is equivalent to no error at all for all practical 
purposes.

For the second test, we computed the line-of-sight corresponding to each test point 
given its; image coordinates. Results for the test points of Table 3.3 are presented in Table 
3.7. Clearly, before a line-of-sight corresponding to a given image pixel can be com
puted, we must get a fix on the camera lens center, since all lines of sight emanate from 
the lens center. As with the results in Table 3.5, we used two separate methods for com
puting tfie coordinates of the lens center for each of the cameras: the direct method using 
Eq. (3.14) and the Ganapathy method using Eqs. (3.52d) and (3.52h) were employed. 
Table 3.7 presents the minimum, the maximum, and the average errors over all the test 
point of Table 3.3 using lens center locations derived from the two separate methods. To 
calculate the error in the line-of-sight, we first compute the angle of the ray associated
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Table 3.4: Residuals for different solutions of the calibration matrix.

Sum of Squares of Residuals
Image LSS in LS LSS in NLS NLSS in NLS
Left 2542.9 7.6 2.5
Right 1329.7 5.5 2.5

3.503841e+03 7.993313c+02 -2.075188c-K)l -1.910881c+02 
2.820852c+01 6.104280c+02 -4.404421c+03 6.153614c+03 
8.101512c-02 3.626108c+00 -1.363650c-01 1.0

(Left)

'2.970296c+03 6:625147e+02 3.098967e-KX) -7.379562e+02’ 
4.269193c+01 6.026127c+02 -3.751580c+03 5.265578c+03 
8.539027c-03 3.055924c+00 -9.756639e-02 1.0

(Right)

Figure 3.12: Left and right calibration matrices.
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Table 3.5: Physical parameters obtained from the calibration matrices of fig. 3.11.

Camera physical parameters
Parameter Method Left Right

0 pan Ganapathy -1.28° -0.16°
<t> tilt Ganapathy 92.15° 91.8°

\|/ swing Ganapathy 179.80 0 179.5°
cx Ganapathy -11.40 cm. 7.82 cm.
cx Direct -11.42 cm. 8.19 cm.
Cy Ganapathy 0.16 cm. -5.61 cm.
Cy Direct 0.17 cm. -5.60 cm.
cz Ganapathy 1.36 m. 1.36 m.
cz Direct 1.36m. 1.36 m.
Ku ' Ganapathy 960.2 pix/m. 970.9 pix/m.
Kv Ganapathy 1206.3 pix/m. 1220.2 pix/m.
*0 Ganapathy 241.8 pixels 219.2 pixels
Jo Ganapathy 213.8 pixels 236.2 pixels
8 Ganapathy i o o >

—
* o o 0.157°
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with an image point corresponding to a test scene point, as given by Eq. (3.20). We then 
compute angle of the ray to the test scene point as given by the world coordinates of the 
test point and the calculated location of the camera lens center. The difference between 
the two angles is the error in the line-of-sight.

For the third test, we used stereo triangulation on the two lines of sight from the left 
and the right cameras to calculate the 3D coordinates of a scene test point. A comparison 
of the 3D coordinates thus obtained and the actual 3D coordinates of the test point 
yielded a measure of the error. The results are shown in Table 3.8. The two rows refer to 
the different procedures used for computing the location of the camera lens centers. The 
camera baseline used in these results was 19.6 cm.

lopez-abadia/kak
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Table 3.6: Radius of error for the points in table 3.3.

Radius of error (in pixels)
Image min max mean

? Left 1 0.0 i 2.1 0.6
Right O'O 3.0 1.0

Table 3.7: Line of sight angular error for the points in table 3.3.

Line of sight errors (degrees)

j Left 
s Left

Lens center 
Direct 

Ganapathy 
Direct 

Ganapathy

min
0.0139
0.0130
0.0393
0.0306

max mean
0.1309
0.1318
0.1471
0.1858

0.0495
0.0501
0.0898
0.0973

Table 3.8: Stereo triangulation error for the points in table 3.3.

Stereo radial errors

. Lens center
Absolute error Relative error

min: max mean min max : mean
i ■ Direct ( 0.097 m. 1.086 m. 0.471 m. : 0.9% 6.9% 3.8%

Ganapathy J 0.070 m. 1.387 m. 0.630 m. 0.6% : 8.7% r 5.0 %
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Qitf3®K4

FEATURE EXTRACTION

■First of all, a couple of words on why vision feedback is needed for our work in 
mobile robot navigation. If the odometry on the robot were perfect, the robot would be 
able to navigate in the blind from its start position to the destination just as an airplane 
can be flown in the blind on instruments. However — and fortunately for researchers such 
as ourselves — the odometry on most mobile robots is very poor. To give the reader an 
idea of the poor quality of odometry on our robot, in many instances a commanded turn 
*df 45 introduces an orientation uncertainty of 2° and a commanded straight-line motion 
has associated with it about 10% uncertainty in the location of the robot at the end of the 
motion. What’s worse, due to uneven weight distribution in the base of the robot where a 
heavy battery is housed, a command to travel straight in a certain direction usually results 
in motion along a line that could be up to 15° off from the commanded direction. It is not 
possible to construct a usable model of this uncertainty as the uncertainties depended 
strongly on factors such as the starting orientation of the robot, how recently the floors 
have been waxed, etc.

To compensate for poor odometry, the robot needs some other sensory feedback; in 
our m°bile robot, vision from one or both cameras is used. Due to the time it takes to 
process a frame of vision data, this compensation in our current system takes place in a 
discrete mode, meaning that the robot travels in the blind (except for .the use of ultrasonic 
sensors for collision avoidance) and every so often (currently this distance is 6 meters), 
fhe rob°t stops, analyzes the images from one or both the cameras, and figures out where 
exactly it is in the world. This periodic exercise by the mobile robot is called self- 
MmArni. When both cameras are used for self-location, the images from the two cameras 
are fused by binocular stereopsis and, through this fusion, a distance map to some of the 
“prominent" features of the scene created. If the geometry of the prominent features 
matches that of what the robot expected to see — within of course the scope of uncertain
ties «the odometry - the distance map generated is then used to figure out the precise 
location of the robot in relation to the world model. More on this in Chapter 5.

When only a single camera is used for self-location, the image from the camera is 
compared with an expectation map that is rendered from a CAD model of the hallways.



The PSEIKI reasoning system is used for this comparison. This method is described in 
Chapter 6.

In this chapter, we will only be concerned with how to extract vertical straight edges 
from an image so that they can be used in the first of the two methods described above - 
the method of binocular stereopsis discussed in Chapter 5.

The approach we discuss consists of the following steps: First the local edges in the 
images are detected and thinned, this step is called edge detection. Then the local edges 
are grouped into lines and the parameters of the lines, such as their locations and orienta
tions, estimated; this process is called line detection. The estimated line parameters are 
improved by using a Hough transform based algorithm.
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4.1 LOCAL EDGE DETECTION

An ideal edge in one dimension may be viewed as a step change in intensity. In real 
images the change of intensity is likely to occur over a finite length and also to be cor
rupted by noise (Fig. 4.1). Since edges are high-spatial-frequency phenomena, edge 
finders must of necessity be sensitive to high frequency noise. While the detection of 
ideal edges uncorrupted by noise would be simple, in practice a compromise must be 
achieved between maximizing the detection of the desired image edges and minimizing 
the detection of undesired noise edges.

To perform the task of detecting local edges a wide variety of edge operators have 
been developed. An edge operator is a mathematical function of small spatial extent 
designed to detect the presence of a local edge in an image via convolutional processing. 
Edge operators may be classified into three main classes:

- Operators that approximate the mathematical gradient or Laplacian. We will
refer to such operators by the name difference operators. ’

- Template matching operators that use multiple templates at differerit orienta- 
tions.
Operators that fit local intensities with parametric edge models.

In the next subsection, we will briefly review some operators in each of these 
classes. For a more complete discussion, the reader is referred to |1], |2], [3|.
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(a)

(c)

cross sections: gray level changes across the edge (a) Perfect step edge.
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4.1.1 Difference Operators

The most common edge-detection operators in this category are discrete approxima
tions to the mathematical gradient and Laplacian.

a. The Gradient

The gradient of a function / indicates the direction in which the rate of change of / 
is the largest and the magnitude of this rate of change. For a two-dimensional function 
such as an image the direction and the magnitude of the gradient are given by

0 = tan 1 dy
df
dx

I gradf I

(4.1)

(4.2)

where x and y are two perpendicular directions and the angle 0 is measured from the pr
axis. For a digital picture, the continuous derivatives are approximated as differences. 
Therefore, we may write

0 tan"
A2
aT (4.3)

I gradf I = ^Ai2 + A22 (4.4)

where A] and A2 are the finite differences approximations to the derivatives along two 
perpendicular directions. One possibility could be

A'i = f(x,y)-f{x-\,y) 
A2 = f(x,y)-f(x,y- 1)

From the standpoint of implementation, Aj and A2 Can be construed to be convolutional 
operators, meaning that the value of Aj and A2 at each pixel may be computed by con
volving the digital image with the patterns:

-1 and (4.6)

The approximations to the continuous derivatives, as represented by Eqs. (4.5), suffer 
from the fact that if we had to assign locations to the points at which the x and the y- 
components of the rates of change of the function / are computed, these locations would 
not be coincident with the point (x,y); what’s worse, the location for the x-component is



1501 ^ same as that for tlie y-component. To explain, from the constructions of the 

right-hand-sides in Eqs. (4.5), one may say that A, is centered at (.* - —,y), whereas A:
. ' 1 _ 2 ' 

its centered at (x, y — —), making questionable any attempt at combining the two com

ponents via Eqs. (4.3) and (4.4). Such problems do not exist with other more symmetri
cal approximations to the derivatives as represented by the operators displayed in (b) and 
(c), the latter called the Roberts operator, of Fig. 4.2, the (a) operator shown there is the 
same as in Bq. (4;6) above.

The adverse effect of noise can be reduced by locally averaging the picture before 
the application of the operators shown in Fig. 4.2. From a computational standpoint, one 
can equivalently compute the differences of local averages with the application of opera
tes such as those shown in Fig. 4.3. The Prewitt and the Sobel operators shown in this 
figure, especially the latter one, are probably the most commonly used operators for edge 
detection in digital image processing. Note that in both the operators, when we compute 
x-eomponent of the rate of change, we also do averaging along the y-direetion; and when 
we compute the y-component of the rate of change, we do averaging in the x-direction.
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b. The Laplacian ”
The Laplacian is an orientation invariant derivative operator given by

V2

One discrete approximation to the Laplacian is

L(x> y) = f (x + \, y) + f{x-\,y) + f (x, y +1) +/<*, y - 1) + Afix, y|4.8) 

which may be implemented by carrying out a digital convolution of/with

0 1 0 
1 -4 1 
0 1 0

Hie Laplacian, being a second-difference operator, has a "double spike" response to a 
perfect step edge, as illustrated by Fig. 4.4a for the one-dimensional case. For a perfect 
ramp, the output spikes are located at the "shoulders" at the top and the bottom of the 
tramp, as shown in Fig. 4.4b. For a more realistic edge, as in Fig. 4.4c, the output exhibits 
a zero-crossing at a point half way between the high and the low associated with the 
edge. For this reason, Laplacian processing must be followed by a zero-crossing detector, 
since the points where the zero-crossings do occur are presumed to be the locations of
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Figure 4.2: Gradient operators.
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Figure 4.3: Prewitt (a) and Sobel (b) operators.
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(a) (b).

Figure 4.4: Digital Laplacian response to different types of edges, (a) perfect step, (b) 
perfect ramp, (c) blurred edge.
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The Laplacian has three disadvantages as an edge detector: 1) It does not provide 
edge directional information explicitly, although it must be said that the directional infor
mation can be inferred from the orientations of the zero-crossing contours. 2) Since the 
second derivatives are involved, we get a double enhancement of noise in the image. 
And, 3) digital Laplacian responds more strongly to comers, lines, line ends, and isolated 
Poims than it does to edges; this point has been discussed in [1]. To reduce the effects of 
noise and also to somewhat reduce the sensitivity of the Laplacian operator to corners, 
lines and line ends, it is common to first smooth an image with a Gaussian function 
described by

Ga(x,y) = o2e (*2+?2)/2°2 (4.10)

In practice, both the Laplacian and the smoothing can be packaged into a single operator 
that is a convolution of the two operators. As a continuous function, the single operator 
that embodies both smoothing and the second-derivative operation is given by

where

V2GG*/(;c,y) =
r2 - 2c2 -r2

O4
k. J

exp
2c2

k. >

(4.11)

r = • a/x 2 +y2 ' (4.12)

This is a rotationally symmetric function with one free parameter, ct, which determines 
the spatial size of the function — the spatial size of the function controls the amount of 
smoothing. The choice of a is a compromise between the resolution we wish to achieve 
for edge detection and the amount of noise we need to filter out. Marr and Hildreth [4] 
have Suggested the use of different values of o to correspond to the different bandpass 
channels of the human visual system. Further discussion on this approach to edge detec
tion, also called the Laplacian-of-Gaussian approach, can be found in [4] and [5]. In Fig. 
4.5, we have shown a plot of the Laplacian-of-Gaussian operator of Eq. (4.11).

4.1.2 Template Matching

Another approach to detecting edges consists of convolving an image with various 
templates, each corresponding to an ideal edge at a particular orientation. At each pixel, 
we then take for edge orientation that value which corresponds to the template yielding 
the largest value, the magnitude of the edge strength being the local value of the convolu
tion with the template. Frequently in the literature, such templates are also referred to as 
edge detection masks.

An important parameter to select in this approach to edge detection is the size to use 
for the masks; larger masks offer greater immunity to noise but reduced resolution. That
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(a)

Figure 4.5: Laplacian of a Gaussian, (a) 3D profile, (b) intersection with a plane 
containing the z axis.



edge detection resolution is diminished with larger masks is owing to the fact that the 
convolved output is non-zero over an extent whose size depends directly on the size of 
the mask, If the convolved output is simply threshold, the result is usually a thick 

etCCte^ edge’ the thickness being proportional to the size of the mask, as illustrated in 
‘ Ustitlly, it is possible to improve the resolution by thinning the output of the 

edge detector by a number of techniques such as the one described by Eberlein [6|.

Nevada and Babu |7] have used the templates shown in Fig. 4.7 in a system used to 
extract linear features suitable for detecting roads and aiiport runways from aerial photo
graphs. A method for thinning the output of the edge detector and another to link broken 
segments are also presented.

■ lopez-abadia/kak

4.1.3 Edge Fitting

Another approach to edge detection is to have parametric models of ideal edges and 
to determine how close these models fit the neighborhood of a given image point. One of
the best known procedures based on this parametric model approach is due to Hueckel 
[8], [9],

A simplified model of a general edge that is used to derive the Hueckel’s operator is 
show® in Fig. 4,8, It represents an edge at a distance r from the center of a circular 
region that: is being analyzed for the presence or absence of an edge; the edge is assumed 
to be at an orientation of angle 0 and, further, it is assumed that the edge separates the 
circular region into two areas of uniform brightness, of values b and b+h. We want to 
compute the parameters b, h, r and 0 of the ideal step function that best matches the
given image region.

We will let N2 denote the sum of the pixel-by-pixel squared differences between 
the actual gray level distribution in a circular region R of an image and an ideal step 
$dge, as depicted in Fig. 4.8, in the same region:

(4.13)
xeR

where A (x) is the gray value of the image at point x and S(x, |), is the gray value of the 
Ideal step corresponding to a given set of parameters |, also at x. The vector of parame- 
ters, has to be chosen such that N2 is minimized. An edge is declared present in R if 
N - is sufficiently small and the step height, h, is sufficiently large.

Hueckel proposed a procedure for minimizing N2 in which both A (x) and S (x, %) 
are expressed in terms of an orthogonal set of functions that are particularly appropriate 
for capturing different types of gray level transitions in R. In terms of the coefficients of 
such orthogonal expansions, the error measure N2 can be expressed as
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(a)

(b)

(c)

Figure 4.6: Edge detector output profile, (a) perfect step edge, (b) output of a "wide" 
mask, (c) desired output after thinning. j
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Figure 4.7: Edge masks in six directions: (a) 0°, (b) 30°, (c) 60°, (d) 90°, (e) 120°, (f)
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N'2 8 2
£(fli- si(xi)r
i=0

(4.14)

where a, and .v, are given by

(H = XHi(x)-A(x) (4,15)
xeR

Si = X«/(*)'■■•-S(*> (4-16)
xeR

the functions //,• being the orthogonal basis functions. Fig. 4.9 shows the nine "Hi's used 
by Hueckel.

Note that in this procedure, the quantity N2 directly gives us a measure of a quality 
of an edge. So, it is possible to use edge-acceptance criteria in which we require the step

rs
height h to be larger the greater the value of N .

4.1.4 Edge Detection Procedure Used in This Research

We have used Sobel operator shown in Fig. 4.3b for the research reported here. As 
was mentioned before, applying this operator leads to two output images that represent, 
respectively, the magnitudes and the orientations of the rate of change in brightness at 
each point in the image. The results for the image of Fig. 3.11a are shown in Figs. 4.10a 
and b. Note that the orientation image is extremely noisy. Also, note however that it is 
the magnitude value that determines whether or not an edge will be declared to be 
present at a pixel. So, the orientation values at a majority of the pixels shown in Fig. 
4.10b will be of no consequence.

In general, higher level edge-based processing, such as might be needed for binocu
lar fusion, becomes easier if the edges are only one pixel wide. In particular, the compu
tational effort required by the Hough transform-based lipe detection algorithm of the next 
section is reduced if the edges are one-pixel wide. Therefore it is necessary that the pro
cess of thinning be applied to the edge magnitude images like the one shown in Fig. 
4.10a. In our processing, we first apply Eberlein’s algorithm [6] to thin the non-binary 
edge-magnitude images like Fig. 4.10a — this algorithm, which is particularly well suited 
to the thinning of patterns that have continuously varying gray levels, accomplishes thin
ning by ‘gathering’ up the gray values towards their ridges. Thinned continuous gray- 
level edge images obtained in this manner are then thresholded to yield binary edge 
images, whose edges in general will not be one pixel wide. Subsequently, a binary thin
ning algorithm [1] is applied to yield one-pixel wide edges. An example of the output is 
shown in Fig. 4.11a; this edge output corresponds to the edge magnitude image of Fig. 
4.10a.



88 lopcz-abadia/kak

Figure 4.8: An ideal edge in a circular neighborhood.

Figure 4.9: Basis functions for approximation in the Hueckel operator.
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(a) Magnitude

(b) Orientation

ig. 3.10a.
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(a) Magnitude

(b) Orientation

Figure 4.11: Output of the edge detecting process for the image of Fig. 3.10a



The edge orientation image of Fig. 4.10b plays a useful role in the characterization 
of the thinned edges of Fig. 4.11a. For example, in Fig. 4.11b we have shown a result of 
one such characterization, obtained by using a three level quantization on the orienta
tions. In Fig. 4.11b, we can distinguish between the edges that correspond to bright-to- 
dark transitions, shown as black edges, and the edges that correspond tp dark-to-bright 
transitions, shown as white edges. Such edge characterization is important for stereo 
matching.

In Fig. 4.12, we have summarized the edge detection process used in this research.

4.2 LINE DETECTION

In low-level processing, ultimately our goal is to produce a symbolic map of a 
scene, the symbols corresponding to significant features that have been isolated and 
characterized by the values of their various attributes. The edge maps discussed in the 
previous section are still a numerical representation of a scene, in the sense that to use an 
edge map we must examine the value of the map at each pixel: if the value is high, the 
edge is present at that pixel, otherwise it is absent. Our next task is to group nearly- 
parallel and nearly-collinear edges into single entities called lines and then to represent 
each line as an individual entity, in other words as a symbol with its associated attributes 
and their values.

The line detection method that we implemented starts out with the edge image of 
Fig. 4.11a and groups the edges into lines using a Hough transform-based approach. Note 
that the Hough transform is a versatile tool for the detection and parameter estimation of 
general shapes. The main advantages of the Hough transform are its low sensitivity to 
noise and its ability to group shapes even when there are gaps present in the contour 
representing the shape. Unfortunately, there is a price to be paid for all this — the com
putational effort required, especially if the intent is to also use the tool for estimating to 
high precision the various parameters associated with the detected shape. To reduce the 
computational effort and at the same time to maintain the desired accuracies in the 
estimated parameters of the lines, we use a two stage approach. Since we are only 
interested in the detection of vertical lines, corresponding to the vertical features of the 
hallways, we first use a fast projection technique to obtain approximate values for the 
locations of the vertical lines; subsequently the Hough transform is used in the vicinity of 
the lines so detected for a more precise fix on their locations. Approaches to line detec
tion based on methods other than the Hough transform are reviewed [ 1) and |2].

In the rest of this section, we will briefly review the Hough transform approach to 
grouping pixels into linear features. For the purpose of this review we will assume that 
we wish to to apply the Hough transform to images like the one in Fig. 4.1 la for the
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1: Obtain the magnitude and orientation of the 1 ocal edges from the outnut of a
Sobel operator applied to the image / and store the information in images M 
and 0 respectively.

2: Thin the edges in the magnitude image M tc• make them at most one pixel
wide. Select as local edges only the pixels a 
them in image M'.

3: Quantize the values of the pixels in the orien

bove a given threshold storing

tation image 0 to three values
corresponding to the edge orientations up, d 
image O'.

own and horizontal, obtaining

Figure 4.12: The local edge detection process summarized



purpose of grouping approximately collinear edge pixels into the longest possible lines 
even when there are gaps between the edges.

Using the slope-intercept parameterization, a straight line in the image plane may be 
represented by the following form

y = mx + c (4.17)

where m is the slope of the line and c the intercept of the line with the y-axis. Consider a 
point Po (Fig. 4.13a) of coordinates {xq, yo) in the image space. We will assume that the 
point is located on a line L described by L =y = mox + Cq. Now an arbitrary line, of 
parameters m and c, which may not necessarily be the same line as shown in Fig. 4.13a, 
passing through the point Po must satisfy

yo = mxo + c. (4.18)

In the absence of any a priori knowledge about what line (or lines) the pixel Po might
belong to, we may take the position that this pixel should contribute a ‘vote’ to all the 
lines, each described by a pair (m,c), that satisfy Eq. (4.18). Computationally, this notion 
can be expressed by constructing an m,c space and depositing ‘a unit vote’ at all those 
points in the m,c space which satisfy Eq. (4.18). It is interesting to note that these points 
in the m,c space constitute also a straight line described by c = -x^m + y0. Fig. 4.13b 
shows the parameter-space line, labeled L\ corresponding to the single point Po of Fig. 
4.13a. We may thus say that the line V is the Hough transform of the point Po- At the 
risk of sounding repetitious, we may also say that the point Pq votes for all the straight 
lines in the image space whose parameters fall on the line L' in the parameter space.

If we thus transform every non-zero pixel in Fig. 4.13a into the parameter space, we 
will obtain a collection of lines, all intersecting at a single point whose coordinates are 
(mo,Co). Stated equivalently, the maximum number of votes would be cast for the 
parameter pair mo,Co- A most important point to note here is that this outcome would 
not change significantly even the line L in Fig. 4.13a were broken. We therefore have a 
procedure for grouping pixels into lines even when the pixels themselves do not form a 
continuous line.

In practice, both the image space and the parameter space will be discretized. 
Therefore, the line L of Fig. 4.13a will consist of a finite number pixels whose coordi
nates will be close to but may not be exactly on the analytic line shown in the figure. 
This quantization effect will exhibit itself in the parameter space lines of Fig. 4.13c not 
intersecting at one point exactly. What’s worse, there may not be a single unique max
imum corresponding to the true maximum in the parameter space. Before we describe 
how to cope with this difficulty, we need to discuss the quantization of the parameter 
space.
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(a)

(b) (c)

Figure 4.13: Mapping of a line into Hough space: (a)’ line in image space, (b) mapping of 
a single point in Hough space, (c) accumulation of mappings of collinear points in Hough 
space.
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A nice intuitive interpretation can be given to the discrete version of the parameter 
space: We may view the quantized cells of the m,c space as buckets or accumulators. 
Then, when point P0 of Fig. 4.13a is under consideration, we compute the addresses of 
all the buckets which should receive a vote from P0 and then increment the count for 
each of these buckets. After all the non-zero pixels in the image space have been pro
cessed in this manner, we find local maxima of the bucket counts; the buckets 
corresponding to the local maxima yield the lines in the image space. This procedure is 
summarized in Fig. 4.14.

To deal with the deleterious effects of quantization of both the image and the 
parameter spaces, after the local maxima have been found, the parameters of the associ
ated lines in the image space are computed by examining all the accumulated counts in 
the vicinity of each local maximum. The following formulas can be used to compute the 
tn,c parameters of a line in the image space that gives rise to a local maximum in the
parameter space:

9
2>W

m =

M
where wj stands for the count in cell j of the 3x3 neighborhood of where a local max
imum has been located; mj and Cj represent the value of the parameters assigned to cell j. 
This approach finds the center of mass of the neighborhood using the vote count in each 
cell as the mass of that cell. When this procedure is used for estimating the parameters of 
a straight line, step 4 of the algorithm of Fig. 4.14 can be expanded as shown in Fig. 4.15.

9
I<wjcj 
M____

9

j=1

(4.19)

The slope-intercept parameterization described above, first introduced in [10], 
presents two problems: an unbounded accumulator size and nonuniform quantization 
errors for the slope parameter. The accumulator size in unlimited, at least theoretically, 
because there are no upper bounds on the slope m and the intercept c. Since the value of 
the slope becomes large at an accelerated pace as a line in the image space approaches 
the vertical, in computer implementations it becomes necessary to discretize the m-axis 
nonuniformly; with uniform quantization a disproportionaly large number of the m- 
buckets would correspond to image space lines that are nearly vertical - an unacceptable 
situation. To get around these two difficulties, Duda and Hart [11] have used for Hough 
transformation the parameterization of a straight line in terms of its shortest distance 
from the origin and the angle 0 shown in Fig. 4.16. With this parameterization, the equa
tion of a straight line in the image space is best expressed using polar coordinates. If we 
assume that the polar coordinates of an arbitrary point in the image space are (p, 6), then 
all the points lying on the straight line of Fig. 4.16a are described by the equation 
pcos(<|> - 0) = r. From this description, it should be clear that the Hough transform of a
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1: Quantize tile parameter space between appropriate maximum and minimum
values for c and m.

2: Form an accumulator array A (c, m) whose elements are initially zero.

3: For each point (x,y) in the feature image increment all points in the accumu
lator array along the line c = -m x +y.

4v The values of the accumulator array now provide a measure of the number 
of collinear points along a line of given slope and intercept. The highest 
local maxima correspond to the longest lines in the image.

Figure 4.14: Procedure to compute the Hough transform in the slope-intercept parametri- 
zation.
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1: For each cell A (c, m) in the the accumulator array compute the sum of its
eight neighbors plus itself S (c, m).

2: Find the local maxima in the array S (c, m) that are above a given threshold.

3: Compute the parameters of the lines corresponding to the maxima of
S (c, m) as

£ A (c, m) m ^ A (c, m) c
m,ce R m,ce RVY) • —   _______________ ...________ C • Z= -------------------------------------------

X A(c,m) 1 ZA(c,m)
myce R m,cE R

where R is the 9-neighborhood in A (c, m) of maxima i.

Figure 4.15: Procedure to compute the parameters of the lines in the image from the 
Hough transform accumulator array in the slope-intercept parametrization.
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(a)

(b)

Figure 4.16: (a) The (r, 0) representation of a line, (b) Hough transform of a point under 
the 0) parametrization: x,-cos 0 + jj sin 0 = r.



single point in the image space is given by the sinusoidal curve shown in Fig. 4.16b. In 
other words, a single point in the image space votes for all the straight lines whose>, 0 
parameters lie on a sinusoidal curve like the one shown in Fig. 4.16b. Yet another 
approach was presented by Jain and Krig [12]. In their technique, a straight line in the 
image space is parameterized by its angle with the lower boundary of the image and the 
intercept made with any of the three sides shown in Fig. 4.17. Note that for measuring the 
intercept, a running index is established that starts at the upper left hand comer, goes 
clockwise around the image, to the lower left hand comer.

Due to the computationally intensive nature of straightforward implementations of 
Hough transformation, much effort in the past has focussed on discovering efficient 
implementations. Li, Lavin and LeMaster [13] have presented an algorithm which uses a 
hierarchical accumulator structure in the parameter space. Illingworth and Kittler [ 14] 
have introduced an approach that they call the Adaptive Hough Transform; this is an 
iterative algorithm in which a small sized accumulator is used and its parameter range 
redefined at each iteration to progressively focus on the correct parameters with increas
ing accuracy.
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4.3 A VERTICAL LINE EXTRACTION PROCEDURE

We will now describe our procedure for grouping the edges in images like the one 
in Fig. 4.1 la into vertical lines.

Note that a full-blown implementation of the Hough transform, especially when the 
images are of size 512x480, is too time consuming. For that reason we have adopted a 
two step procedure. In the first step, the subject of Section 4.3.1, approximate locations of 
the vertical lines are determined by a fast algorithm that carries out a column-wise sum
mation of the pixels of the edge image. Subsequently, by using the procedure of Section
4.3.2, the Hough transform is applied separately to thin strips of the edge image, each 
strip consisting of a few columns of the image matrix around the vertical lines detected 
during the first step, for a more accurate calculation of the locations and the orientations 
of the vertical lines. In this fashion, the Hough transform calculations are speeded up not 
only because the number of pixels in an image strip is relatively small, but also because 
the geometry of an image-strip implies a reduced range of values in the parameter space.

4.3.1 Initial Line Location

The orientations of the cameras mounted on PETER is such that the scene vertical 
lines are approximately vertical in the images also. This allows us to make initial
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Figure 4.17: The (t|,0) representation of a line. The sides are numbered as in the figure, 
1, 2 and 3 and the pixels on these sides are labeled with numbers from 0 to 3n. The 
orientation 0 is measured from side 3 and T| is the image border intersection with smallest
label.



detection of the vertical lines by simply summing the image pixels in a column-wise 
fashion and looking for peaks in the projections thus obtained. In other words, we form a 
one-dimensional function I(x) by summing an edge image f (x, y) with respect to the 
index y: of the local edges image/ (x, y) as

480
/(*■) = 'Lf(*>y) (4.20)

Performing this operation on the local edge magnitude and orientation images separately 
results in two one-dimensional functions, Im(x) and I0(x), respectively, for the projec
tions of the magnitudes and of the orientations. Fig. 4.18a,b show these functions for the 
edge images Of Fig. 4.1 la,b.

In the plot of Fig. 4.18a, it can be observed that a number of very strong peaks stand 
out against a noisy background. They correspond to the main vertical lines of the local 
edge image of Fig. 4.11a. For each of the strongest peaks in the projection-of- 
magnitudes plot of Fig. 4.18a, there is a corresponding positive or negative peak in the 
projection-of-orientations plot of Fig. 4.18b. The polarity of a peak in the orientation 
projection depends on whether the corresponding line in the edge image represents a 
bright-to-dark or dark-to-bright transition.

In order to detect the longest lines in the image from the magnitude projection, 
the first step taken is to filter Im(x) in order to accentuate the largest of the peaks 

and to eliminate the uninteresting "low-frequency" variations. The filtering operation 
yields Fm(x) via

. w | n
2 + 0 —

Fm(x) = lm(x) - ^------ - (4.21)
2 w - n + 1

for all j = !,...,« and for all x; xj,xe [x-w , x+w.] and I^jy^l^x)
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That is, Fm(x) is the difference between the function Im(x) and its local average com
puted over a window of size 2w + 1 once the n highest values of lm(x) are removed. 
Note that within each window (x - w , x + w), the variable n is equal to the number of 
values of Im which equal or exceed the value Im(x). Since the second term on the right 
hand side is the average of all the Im values within the window that are strictly less than 

we make sure that the process of suppressing low-frequency variations does not 
lead to the peaks distorting one another. A plot of Fm(x) for the function Im(x) of Fig. 
4-18a is shown in Fig. 4.19a. After computing Fm(x), its local maxima are determined 
and their average height computed. The peaks selected as corresponding to the longest 
vertical lines in the edge image are the ones whose heights exceed a certain threshold 
times the average local maxima height. Using this procedure, the peaks detected are
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shown in Fig. 4.19b for the Fm(x) of Fig. 4.19a.

If the lines were perfectly vertical in the edge image, the peaks detected in Fm(x) 
would have one-pixel widths and the location of a line would be exactly the x coordinate 
of its corresponding peak. But if the cameras are not exactly horizontal, the direction of 
the columns in the image plane will not coincide precisely with the world vertical direc
tion. As a result, in general, a vertical line in the scene will give rise to an image line that 
spans several columns. Consequently, the peaks in Fm(x) will, in general, be "thick" 
peaks whose middle points may be taken as rough estimates of the locations of the verti
cal lines — these locations to be refined later by the Hough transform technique, where 
the actual slopes of the lines would also be computed.

Each peak selected in Fm(x) is assigned a polarity which is equal to the polarity of 
I0(x) at the middle point of the peak. This polarity value is subsequently used the stereo 
matching algorithm.

The procedure described in this subsection for detecting lines is summarized in Fig.
4.20.
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4.3.2 Improving the Estimates of Line Parameters

The final parameter estimation is obtained using a Hough transform technique that 
considers one line at a time as detected by using the technique of the preceding subsec
tion. To avoid problems with the unbounded slopes of lines that are perfectly vertical, 
lines are represented by equations of the form x = my + c, instead of the more familiar 
y = m'x + c'. Therefore, in the discussion to follow, the parameter m will represent the 
tangent of the angle that a line forms with the y-axes and c the x-intercept.

In accordance with our earlier discussion, each line detected from the peaks of 
Fm(x) is surrounded by a rectangular strip and a Hough transform computed of all the 
pixels in this strip. Since we are only interested in long lines and since for long lines the 
slopes and intercepts can only take a small range of values, the parameter space is con
structed to reflect this fact and divided into cells. Delimiting the parameter values in this 
manner contributes significantly to the speedup of Hough transformation.

After the Hough transform is performed over a given strip of the edge image, the 
cells of the parameter space are searched for the most significant peak and the 
corresponding parameters computed by using the procedure outlined in Fig. 4.15.

A problem arises when there is an overlap between the rectangular strips 
corresponding to two or more lines detected by the projection procedure of Section 4.3.1. 
In this case, prior to Hough transformation, we take the union of all such overlapping
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(a) Fm(x)

(b) Peaks detected

Figure 4.19: Final projection function (a) and peaks selected (b).
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1: Compute the local edges magnitude and orientation images M' and O' fol
lowing the steps of the algorithm in Fig. 4.12.

2: Add the values in each column of M' and O' obtaining the functions /,„ and
l0 respectively.

3: Filter lm obtaining Fm as

Fm(x) Im(x) -

W
2 ./«(*'+*)

i=-w

n
2/m(*,)

7=1
2 w — n + 1

for all j = l,...,n and for all x; Xj,xe [jc-w , jt + w] and 
Im(Xj ) > Im(x)

4: Compute all the local maxima in Fm and find the average value of Fm at
those maxima a.

5: Select the maxima at which the value of Fm is higher than a given threshold
times the average a. Assign to these selected maxima a. polarity depending 
on whether the value of I0 at these points is over or under the background 
value.

Figure 4.20: Algorithm for computing the estimated location of vertical lines.



rectangular strips, and modify the parameter space to reflect the larger range of values 
that can now be taken by the slope and the intercept parameters corresponding to long 
lines in this larger piece of the image. Of course, now the parameter space is searched 
for not just one largest peak, but a number of largest peaks equal in number to the 
number of strips merged.

This approach to line parameter refinement is summarized in Fig. 4.21. Fig. 4.22 
presents the overall approach to the detection and extraction of vertical lines in a gray 
level image. In the table in Fig. 4.23, we have shown both the initial locations of the vert
ical lines and their final locations and slopes for the image of Fig. 3.11a. A composite 
formed by superimposing on the original image the ideal lines whose parameters were 
calculated is shown in the image in Fig. 4.23.
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1: Form a list L with lines found using the procedure of Fig. 4.20 ordered by
their horizontal intercept estimate.

2: For each line L, in list L select a vertical strip St in the image centered at the
estimated horizontal intercept of'L,- in which the line must be contained.

3: Until the list is empty perform steps 4-11.

4: Remove lines L, • • •, Lj from the head of list L until the strip Sj of the last
line removed L,- does not overlap with the strip Sj+i of the new head of the 
list, or until the list is empty.

5: Select the area of the image S corresponding to the intersection of the strips
Sit • • •, Sj of the lines removed in step 4 from L.

6: Compute the parameter range compatible with the new area S and the origi
nal areas of the individual lines S;, • • •, Sj as follows: the horizontal inter
cept range has to cover the horizontal extent of S and the slope range has to 
Cover the union of the ranges of each individual line.

7: Construct an accumulator A that covers the range of parameters determined
in step 6 to a given accuracy (the range covered by each cell in the accumu
lator).

8: Perform the Hough transform of the image area S into the range of parame
ters covered by the accumulator A.

9: Perform the steps 10 and 11 once for each line in S (J - i times).

10: Select the most prominent peak in the accumulator and compute the parame
ters associated with it using the method of Fig. 4.15. This are the final 
parameters of the corresponding line.

11: Set to zero all the cells associated with the peak found in step 10.

Figure 4.21: Procedure to obtain the parameters of the vertical lines in the image using a 
Hough transform technique.
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1: Compute the magnitude and orientation local edge images M' and O' using
the Sobel operator thinning and thresholding as described in the algorithm of 
Fig. 4.12.

2: Compute the approximated location of vertical lines and their polarity from
the projections Im andl0 of M' and O' respectively as described in the algo
rithm of Fig. 4.20.

3: For each line L found in step 2 perform steps 4 and 5.

4: Compute the local Hough transform around the estimated location of line L
as described in the algorithm of Fig. 4.21.

5: Search the accumulator obtained in step 5 for the most prominent peak and
compute the parameters of its corresponding line as described in the algo
rithm of Fig. 4.15. The polarity of the line is taken as the one found in step 
2.

Figure 4.22: Description of the feature extraction procedure.
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Table 4.1: Results of the line extraction.

Projection Hough
Intercept Intercept Slope

62 62.302862 -0.002427
80 80.303229 -0.002400
84 84.300000 -0.002225
97 98.099719 -0.002900
125 125.000909 -0.000307
132 ^131.918776

-0.000311
176 178.201304 ^ -0.007432
260 260.076140 -0.000168
349 346.801208 0.007309
366 364.798201 0.002714

Figure 4.23: Final lines detected in the image of Fig. 3.10a
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CHAPTER 5

STEREO MATCHING AND TRIANGULATION

As was mentioned at the beginning of Chapter 4, our mobile robot uses two 
methods for self-location: one based on a stereoptic fusion of the images from the two 
cameras on board the robot, and the other based on a comparison of a single image from 
one of the cameras with an expectation map derived from a CAD model of the hallways. 
In this chapter we will discuss the first of these two methods and relegate the second to 
the next chapter.

During the last several years a number of algorithms have been developed for depth 
perception via passive stereopsis. To be sure, even before the current surge of interest in 
the topic — driven primarily by a desire to endow robots with 3D perception — much 
research had been done on the subject in the context of photogrammetry. Interestingly, 
due to the nature of the problem domains, the stereopsis algorithms for robotic applica
tions have turned out to be different from those for photogrammetric applications. Due to 
the nearness of distances involved (compared to the camera-to-scene distances in photo
grammetry) and large variations in depth possible over these distances, robotic images 
tend to suffer more from occlusion and scale compression-expansion effects; this makes 
it virtually impossible to use in robotics the area-based methods of stereopsis developed 
for photogrammetry. Therefore, the algorithms developed for robotic applications have 
tended to depend more on the matching of features, such as the vertical lines discussed in 
the preceding chapter, for the calculation of depth.

In the rest of this chapter, we will first very briefly discuss the different approaches 
to stereopsis. Subsequently, we will present the algorithm we have used for pairing up 
the prominent vertical lines extracted from the two images. Finally, we will show how 
the equation of a 3D scene line can be obtained from the matched vertical lines extracted 
from the two images of a stereo pair.



5.1 A BRIEF REVIEW OF STEREOPSIS

The fundamental problem of stereopsis is the establishment of corresponding pixels 
from the two images of a stereo pair. Ideally, we would like for every pixel not subject to 
occlusion in the left image a corresponding pixel from the right image, corresponding in 
the sense that the two pixels belong to the same scene point. Despite its straightforward 

i Mture (and despite the apparent ease with which we humans exercise stereoptic vision), 
the correspondence problem has proved to be exceedingly difficult to solve. Of course, 
after the correspondences are established, the disparities can be calculated, the disparity 
at a pixel in the left image being equal to dx - d2, where d\ is the distance of the left- 
image pixel from the optic axis of the left camera and d2 the distance Of the correspond- 
ing right-image pixel from the optic axis of the right camera. By using triangulation for
mulas, disparities translate directly into depth information.

Broadly speaking, the algorithms that seek to solve the correspondence problem fall 
into two categories: the area-based algorithms, developed originally for photogrammetric 
applications, and the more-recent feature-based algorithms developed for robotic applica
tions. Kach of these categories will now be briefly reviewed.

5.1.1 Area-Based Stereo

The correspondence problem is solved by correlating a patch of the left image sur
rounding the pixel whose corresponding right-image pixel is sought with comparably 
sized patches from the right image. The location in the right image yielding the max- 
imum value for the correlation supposedly corresponds to the sought right-image pixel.

One of the major shortcomings of area-based stereo algorithms is their inability to 
cope with scale expansion and contraction effects common to imagery in robotics. To 
explain, consider an object surface that is slanted with respect to the optic axes of the two 
cameras, meaning the surface is not perpendicular to the optic axes. In general, the scale 
associated with the perspective projection of this surface on the two cameras will be dif
ferent, because the slant of the surface with respect to the two optic axes will be different. 
Such scale differences lead to noisy and erroneous correlations, making difficult the 
detection of correspondences.

Another problem with area-based methods is their excessive sensitivity to bright
ness variations. Since the peak of a correlation is proportional to the product of gray lev
els in the two image patches taken from the left and the right images, scene surfaces of 
the same texture quality will yield very different results depending on the extent of sha
dowing and illumination. Much more so than the feature-based methods, area-based 
methods also appear to be more susceptible to occlusions.

112 lopez-abadia/kak



113

Some area-based algorithms have been employed in automatic cartography applica
tions; however, all practical systems require the intervention of human operators to guide 
and correct them. Some area based systems are described in [2,3].

lopez-abadia/kak

5.1,2 Feature-Based Stereo

In feature-based stereo, we first extract features such as edges, intersection of lines, 
zero-crossing contours after the images are filtered with Laplacian-of-Gaussian operators, 
points with large gray-level variations in all directions, etc. Correspondence problem in 
this case consists of pairing up the features from the left and the right images.

Advantages of feature-based methods include their lower sensitivity to brightness 
variations in images and faster computation, since the number of features extracted from 
an image is usually not very large. In addition, when subpixel techniques are used for 
calculating the locations, feature-based techniques also tend to yield more accurate depth 
values compared to area-based algorithms. Feature-based methods do suffer from one 
disadvantage: the resulting depth maps tend to be sparse since depth values can only be 
computed at those pixels where the features are located.

Given a feature from, say, the left image, finding its corresponding feature from the 
right image evidently involves some search from among the candidate right-image 
features selected on the basis of their similarity to the left-image feature. Various con
straints can be invoked during this search (and also for the formation of the pool of can
didate features), the two commonly used being the epipolar constraint, and the 
smoothness-of-disparities constraint. While the latter constraint is obvious for what it 
implies, we will now say a few words about the former constraint.

The epipolar constraint says that given a pixel on a feature in, say, the left image, its 
corresponding pixel in the right image must lie on what’s called the epipolar line. To 
explain, recall that under the thin-lens approximation there exists a line-of-sight for each 
each pixel in an image, the line-of-sight passing through the pixel and the lens center. In 
Fig. 5.1, we have shown a pixel P\ and its corresponding line-of-sight. A perspective 
projection of this line-of-sight onto the image plane of the right camera is the epipolar 
line in the right image for pixel P \ of the left image. In other words, an epipolar line for 
a left-image pixel is the right-camera image of the line-of-sight corresponding to the 
left-image pixel. The epipolar constraint says that the right-image correspondent of the 
left-image pixel P j must lie on the epipolar line shown in the figure. By analyzing the 
geometry associated with epipolar lines, it can be shown that when the optic axes of the 
two cameras are parallel, the epipolar lines must also become parallel to the camera
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figure 5.1: Epipolar geometry.



baseline, which is the line joining the two lens centers. When this baseline is parallel to 
the horizontal scan lines of the cameras, given a pixel on a particular scan line of the left 
image, its right-image corresponding pixel must be located on the same scan line of the 
right image. The plane formed by the line-of-sight for P \ shown in Fig. 5.1 and the 
lens-center of the right camera is called the epipolar plane. Equivalently, the epipolar 
plane for a pixel from, say, the left image is defined as the plane containing the pixel and 
the two lens centers. The intersection of the epipolar plane and the right camera image 
plane defines the epipolar line for the left-image pixel in question.

Some feature-based systems are described in [1,4,5,6]. For a survey-type discussion, 
the reader is referred to [3,7].

5.2 A MATCHING ALGORITHM

Long vertical lines -- they do not have to be exactly vertical — as extracted by the 
method of Chapter 4 are used as features in a feature-based stereo we have implemented 
for our mobile robot. We have implemented a variation of the algorithm described in [4] 
for pairing up the lines in the two images.

The matching algorithm uses only two pieces of information about each line: the x- 
intercept and the polarity. The polarity indicates whether the line represents a dark-to- 
bright dr a bright-to-dark transition in the original image. The polarity, under normal cir
cumstances, is a viewpoint independent property and is therefore useful in disambiguat
ing different possible right-image matches for a given vertical line from the left image. 
The x-intercept used in the matching process is not the value found by the Hough 
transform step but the value estimated initially from column-wise projections (See 
Chapter 4). There is an interesting reason for that: The x-intercept value as generated by 
Hough transformation corresponds to the intersection of an infinite line, corresponding to 
the grouping of edges found in the edge image, with the x-axis. On the other hand, the x- 
intercept value provided by column-wise projections represents approximately an aver
age value of the x-coordinates associated with the pixels in the grouping. Given two dif
ferent lines of different slopes, the former x-intercept can reverse the left-to-right order of 
the appearance of the lines, whereas that’s less likely to happen with the latter type of x- 
intercept. To explain, assume we have two line segments, Si and S2, as shown in Fig.
5.2, one perfectly vertical and the other with some slope to it. If we had to associate a 
left-to-right order with these two lines, our answer would be erroneous if we used the x- 
intercepts generated by Hough transformation, as the transformation would yield XI and 
X2 for the intercepts. On the other hand, a left-to-right order inferred from a column
wise projection, which may look like Fig. 5.3, will be based on X1 and X2 and would be 
correct.
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/ L2

Xl

Figure 5.2: Apparent inversion in the order of the lines. The Hough transform will find 
X 1 and X 2' as intercepts.

LI L2

Figure 5.3: Lines of Fig. 5.2 as detected by the projection algorithm.



The matching algorithm consists of the following two steps:

1. For each line in each of the two images, construct a pool of candidate lines 
from the other image.

2. From the pool of candidate lines, construct a best possible match for each of 
the lines, best in the sense that the disparity associated with each line best 
agrees with the disparities associated with the neighboring lines.

The set of possible matches for a line Ai in the left image is the set of lines {Bj} in 
the right image Such that each Bj satisfies the following conditions:

y .

a. The Jt-intercept, xA., of the line A; in the left image and the Jt-intercept, xg., 
of the line Bj in the right image should satisfy Xg. ^ xAj, assuming that all 
the ^-intercepts are measured from the lower left hand comers of each of the 
image frames.

b. The disparity associated with a potential match is smaller than a threshold 
corresponding to the furthest distance at which scene points may exist. 
Mathematically, this translates into the condition: I xA. — xg. I < dmax.

c. The polarity of both lines, A-t and Bj, is the same.

The idea behind the first condition is shown graphically in Fig. 5.4. The image of a 
scene point in the left camera will appear to the left of the image of the same point in the 
right camera if the optic axes of the cameras cross or intersect beyond the location of the 
scene point. In our experiments, the camera optic axes are nearly parallel, hence condi
tion (a) above. Condition (b) is warranted by the fact that there will always be an upper 
bound on the distance to the objects in a scene. Condition (c) follows from the viewpoint 
invariance of line polarities.

In the second step of the algorithm, the lines from the left and the right images are 
paired up so that the resulting disparity field is the smoothest. There is psychophysical 
evidence that the human visual system does the same. Consider, for example, the case 
shown in Fig. 5.5, where the left and the right images contain three features each; each 
feature is represented symbolically by a square in the figure. If we pair up the leftmost 
feature in the left image with the leftmost feature in the right image, the center feature in 
the left image with the center feature in the right image, and the rightmost feature in the 
left image with the rightmost feature in the right image, we get a flat interpretation of the 
scene, as marked by the small circles. On the other hand, if the leftmost feature in the left 
image is matched with the rightmost image in the right image, the center feature in the 
left image with the leftmost feature in the right image, the rightmost feature in the left
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left camera right camera

Figure 5.4: Relative location of the images of the same point.
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Figure 5.5: Example of ambiguity.
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image with the center feature in the right image, we get an interpretation shown by the 
crosses in the figure. Other ways of pairing up the lines from the two images yield other 
interpretations in the scene. Everything else being equal - such as all the features being 
visually identical — out of all such interpretations, the human visual system selects the 
flattest interpretation, the one marked by the small circles in Fig. 5.5.

In accordance with die procedure advanced in [4], a smoothness constraint for com
puter implementation can be derived from the rationale that at each vertical line we want 
the disparity to take a minimum value provided such a minimum value is consistent, 
from the standpoint of smoothness, with the disparities at the neighboring vertical lines. 
In other words, we want to pair up the. vertical lines in such a manner that for each match 
the resulting disparity is minimum under the condition that the difference in disparity for 
•the match and the disparities at all the neighboring matches is a minimum. Let d^B be the 
disparity associated with matching line A from the left image with line B from the right 
image. For the purpose of imposing the smoothness constraint, let’s define the vicinity of 
line A as consisting of all the ^-intercepts that Ml within a 2dmax interval 
(xa - dmax, xa + dmax). We will denote this interval by the symbol W(A). The symbol 
W(B) will denote a similar interval around the line B in the right image. Now let C be 
another vertical line in the W(A) vicinity of A in the left image and let D be a potential 
match for C — D can be any line from the pool of candidate line matches for C. Let 4cd 
be the disparity associated with matching C with D. Out of all the possible D’s, let’s 
select that D which yields a minimum value for dcD- Clearly then the difference 
dAB ~ dcD is a measure of the smoothness implied by the match (A,B) vis-a-vis the 
match (C,D), the latter being the smallest possible disparity match for C. Such a measure 
of smoothness needs to be integrated over all possible C’s in the W(A) neighborhood of 
the line A. The following expression shows this integrated measure together with a sym
metrical component generated by applying similar arguments to line B in the right image:

v(A,B) = £
€ in W(A)

min
D

-d,CD1

card (W (A)) + £
C in W(B)

min
D

I dAB — dcD 1 

card(W(B))
(5.1)

where card(W(A)) represents the number of matches over which the sum is defined.

A computer program is easily written to select final matches for the vertical lines 
such that the measure in Eq. (5.1) is minimized for each match. For each final pairing 
(A,B) selected by the program, the following conditions must be satisfied:

for every other possible match D for A, v (A,B) < v (A,D), 
and

for every other possible match C forB, v (A,B) < v (C,B).

This algorithm does not guarantee 100% success in the matching process but in 
most of the hallway scenes we have analyzed, we did attain 100% success.



To illustrate the sort of results obtained, the vertical lines detected in the stereo pair 
of Fig. 3.11 are shown in Fig. 5.6. There were 10 vertical lines detected in the left image 
and 15 in the right image, the different numbers owing to the differences in the 
viewpoints and photometric variations in the two images of the stereo pair. Clearly, any 
matching process must not form more than 10 pairs. Our algorithm did exactly that and 
formed a verifiably correct match for each of the lines shown in Fig. 5.7.

5.3 RECONSTRUCTING 3D SCENE LINES

From the pairs of vertical lines matched from the left and the right images, the next 
task is to generate the equations of the scene vertical lines that gave rise to the image 
vertical lines. In this section, we will show how that can be done.

First, in Section 5.3.1, we will show that in a fashion analogous to the association of 
a line of sight with each pixel in an image, we can associate a plane of sight with each 
line extracted from an image. Given the coordinates of a pixel, Eq. (3.20) gives us an 
equation for the line of sight that goes with that pixel. In a spirit similar to that of Eq. 
(3.20), given the equation of a line extracted from an image, we want to derive the equa
tion of a plane which contains that line and the lens center — by definition the plane of 
sight. Note that a plane of sight contains the lines of sight for all the pixels on an image 
line.
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Then in Section 5.3.2, we will show how by intersecting the planes of sight 
corresponding to the two image lines of a matched pair, we can derive the equation of a 
scene line that gave rise to the image lines in the left and the right images.

5.3.1 Planes of Sight

In order to derive the equation of the plane of sight associated with a line extracted 
from an image, we start with the slope-intercept equation of the line

u = m v +c (5.2)

where m is the slope and c the x-intercept. Note that we have reverted back to image 
coordinate frame used prior to the Hough transformation step of Chapter 4, meaning the 
x-axis is directed along the scan lines of the image plane and the y-axis along the perpen
dicular to the scan lines. We will use (u,v) to denote the coordinates of a point in the 
image frame, as opposed to the indices i and j of Chapter 3, the reason being that we now 
allow the coordinates of an image point to be real numbers; note that an arbitrary point 
on a line corresponding to the estimated values of m and c may not fall on one of the
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:ya) Left

’,(b) Right

Figure 5.6: Lines detected in the left and right images.
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sampled pixels in the image. The world coordinates will continue to be designated by 
(x,y,z). ' ■

In contrast with Eq. (5.2), a line in an image may also be described by the following 
vector equation
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P] — Xk + Uq (5.3)

where Pj is a vector in the image coordinate frame to a particular point on the line, k a 
vector along the direction of the line, and Uq a vector to a reference point on the line. 
The parameter X is needed so that the length of the vector Xk is equal to the distance from 
the reference point Uq to the point Pj on the line. Clearly, the same line in the image

" —4 —^
frame can be described by many different values for k and Uq. In particular, we may 
express them in terms of the known m and c as follows:

k = (m, 1) Uq = (c, 0) (5.4)

In other words, we use the intercept with the x-axis as the reference point for the vector. _ . . . ' ' -^4
equation, and define the line direction vector k directly in terms of the slope m. Eq. (5.3) 
may also be written in the following form:

u
- 1 t

Mu
4-

Uq

V kv
T (5.5)

' —' .
where (h,v) are the two components of the vector Pj to the image point, as they appear in 
Eq. (5.2), (ku, ky) the two components of the line-direction vector k — of course, in our 
case, ku equals m and kv 1 — and, (no, Vq) the two components of the vector to the refer
ence point, with uq equal to c and v0 equal to 0 in our case.

As mentioned before, Eq. (3.20) gives us the parametric equation, Pw = \iD + C, of 
the line of sight that corresponds to the pixel at location Pj in the image plane, with 
D = R~x Pj\ note that vector C corresponds to the location of the camera lens center (see 
Fig. 3.3). The matrix R is the upper left 3x3 submatrix of the calibration matrix T whose
components are computed by the method described in Chapter 3. The vector C can be 
computed from the last column of the calibration matrix from Eq. (3.14). To derive the 
equation of a plane of sight, we need to combine Eq. (3.20) with Eq. (5.5). However, 
before we can do so, Eq. (5.5) must be expressed in homogeneous coordinates:

u ku Uq

V = X kv vo

_1_ 0 1

(5.6)

or, equivalently, as

Pj = XK + Uq (5.7)



125

Combining Eqs. (3.20) and (5.7), we get the following equation for the plane of sight

Pw = \lXR-1K+\iR-1U0+C (5.8)
—> _1 —^ ^ _i —>

If we use the substitutions P j = 7? 1 K,P 2= R U 0 and A = |i A, we can write

= A'P, + [iP2+C (5.9)

which represents the parametric equations of a plane in 3D space, To present this equa
tion in a more familiar form we could multiply both sides by

n=PxxP2 (5.10)

obtaining

n-Pw = ri'C = p'q (5.11)

If we normalize by dividing both sides by I n\, we get

n-Pw = Po (5.12)

which is a succinct representation of a plane of sight. Eq. (5.11) tells us that the plane of
sight contains the camera lens center, since C is the vector to the lens center in the world 
frame.

5.3.2 From Planes of Sight to 3D Scene Lines

Given a matched pair of vertical lines, one from the left image and the other from 
the right image, we can construct planes of sight for each image line by the procedure 
just described. By intersecting the two planes of sight, we can then derive the scene line 
that gave rise to the image lines in the two cameras.

In keeping with Eq. (5.12), let n{P =pi and n;P — pr be the equations of the planes 
of sight corresponding to the two vertical lines in a matched pair, the subscript l refers to 
the left image and the subscript r to the right image. The direction of the 3D scene line 
generated by the intersection of these planes of sight is given by

~r = ntxnr (5.13)

Now that we have the direction of the line, we need to constrain the location of the line. 
This we do by computing the intersection of the scene line with the floor defined by 
z = 0. This point on the floor, which will be designated by the symbol Pwo, can be com
puted as the intersection of three planes, the two planes of sight and the z = 0 plane. In 
general, the vector to the intersection point of three planes that are at arbitrary orienta- 
tions vis-a-vis one another is given by

5* Pl ($2 x ^3) + Pl («3 x «l) + P3 («l x n2)
p0 =  -----------------T——--------------— (5.14)

nv(n2xn3)
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where we have assumed that the equations of the three planes are

ni-P=Px
n2-P-P2 (5.15)
«3 P=P3

For our case, since one of the planes is given by z = 0, meaning that the plane passes 
through the world origin, we can set py — 0. Therefore, the expression for the intersection 
of the 3D scene line and the floor reduces to

£ Pi(nrxk) +Pr(kxni)
“wo = —------------------ ^----------- (5.16)

? «/• (nr x k)

where k is the unit vector in the direction of the z-axis. Eqs. (5.13) and (5.16) define the 
3D scene line with the help of the following parametric form

Pw = XT* + Pwo (5.17)
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5.4 EXPERIMENTAL RESULTS

Following the procedure described in the preceding sections, we computed the 
equations of the 3D scene lines corresponding to the matched pairs of vertical lines from 
the stereo pair in Fig. 5.6. The x and y coordinates of the intersections of these scene 
lines with the floor are shown in Tables 5.1 and 5.2. [The robot was placed at the origin 
of the world frame for these experiments so that the robot frame was coincident with the 
world frame.] The computed x and y coordinates were compared with their ground truth 
values and two different errors determined. Table 5.1 shows the radial error, this is the 
error in the distance to the scene vertical line from the world origin. On the other hand, 
Table 5.2 shows the errors in each of the two coordinates of the intersections of the verti
cal lines with the floor. Note for the segment of the hallway shown in Fig. 5.6, the world 
x-axis is perpendicular to the walls on the two sides of the robot and the world y-axis 
along the walls on the floor (the z-axis being the vertical). Given that the y-axis is nearly 
parallel to the optic axes of the cameras, it is not surprising that the y-coordinate errors 
are larger.

If the errors between where the robot actually is and where it thinks it is are small 
enough, the Computed intersections of the scene vertical lines with the floor can be used 
directly for self-location. In this case, the computed coordinates of such an intersection 
on the floor will be off somewhat from their true values, but small enough so that the true 
coordinates of such points can be used to eliminate the errors in the location of the robot. 
For this scheme to work, the robot must stop frequently for updating its location. When



longer hop lengths are desired, it becomes necessary to carry out a graph-theoretic com
parison of the shapes made by the intersections of the vertical lines with the floor with 
the shapes extracted from a model of the hallways. Procedures for carrying out such com
parisons have not yet been implemented are topics of current research in the lab.
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'table 5.1: Radial errors for the lines of Fig. 5.7.

True coordinates Radial errors
X(m.) ; Y(m.) Vr (m.) Vr / r % ;
-1.34 8.69 0.06 0.73
-1.34 9.71 0.15 1.52
-1.34 10.08 0.02 ; 0.25
-1.34 11.10 0.27 2.45 j
-1.34 . 15.53 0.48 3.07
-1.34 15.79 0.77 i 4.84 j
-0.81 18.62 0.73 3.94 j
0.97 18.62 2.03 : 10.90
1.48 : 9.97 0.42 4.23 ;
1.48 i 8.79 0.33 : 3.70 :

Table 5.2: Coordinate errors for the lines of Fig. 5.7.

True coordinates Coordinate errors
X (m.) ; Y(m.) Vjc (m.) Vy(m.) Vjc / r % ; Vy 1 r% ■
-1.34 8.69 0.00 0.06 : 0.04 0.73 |
-1.34 9.71 -0.02 0.15 -0.26 1.5
-1.34 ; 10.08 0.01 -0.02 . 0.10 -0.22 :

. -1.34 j 11.10 0.03 -0.27 : 0.30 -2.44 ;
-1.34 : 15.53 0.06 0.47 J 0.39 3.05 ;
-1.34 15.79 -0.05 0.76 -0.33 4.82 ;
-0.81 : 18.62 -0.02 -0.73 ; -0.11 -3.94 ;
0.97 18.62 ; 0.16 2.03 ; 0.84 10.89
1.48 ; 9.97 ; -0.07 -0.42 ; -0.68 -4.17 j
1.48 8.79 0.03 0.32 0.38 3.68 ;
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relationship between the lines of sight corresponding to the pixels of the image and the 
world frame. For our illustration, the rendered expectation map is shown (a) of Fig. 6.1. 
It is important to realize that the camera image in (b) and the expectation map in (a) are 
not in registration. Also important is the fact that the misregistration between the two is 
not a simple translation or rotation or any combination of the two. In the rest of this dis
cussion, the expectation image of (a) will also be referred to as the model image and the 
different geometric entities in a model image will sometimes be referred to as model 
labels. On the basis of the similarity between the model entities and the scene entities, 
the model labels can be given to the geometric entities extracted from (b) and a 
confidence value associated with the label assignment.

PSEIKI first applies a preprocessor to the image of Fig. 6.1b. The preprocessor 
extracts edges and regions from the image. Thick edges are thinned to make them one- 
pixel wide and any small breaks between the edges that are nearly collinear are repaired. 
The details on preprocessing can be found in [2], The output of the preprocessor for the 
image of (b) is shown in (c) in Fig. 6.1. PSEIKI’s main job is make a comparison of the 
image of (c) with the model image of (a) and, via such a comparison, associate the model 
labels with the entities in (c). As we will show in this chapter, such associations can then 
bp. used to figure out the exact location of the robot, in other words for zeroing out the 
uncertainties associated with the robot position and orientation.

As Was mentioned before, PSEIKI compares the images in (a) and (e) of Fig. 6.1 at 
different levels of geometric abstractions. The edge-level comparison yields the labeling 
Of tfesccnoedgcs in (c) with the model edge labels from (a), each such label assignment 
carrying a belief value. The face-level comparison yields face-level model labels for the 
regions formed by the closed edge contours in (c). Again, a belief value is associated 
with each model face label for a region from (c); however, this belief is now influenced 
by the model labels of the edges composing the region and the beliefs associated with the 
edge-level labels involved. If after PSEIKI has stopped processing the data, we identify 
the most-believed highest-level abstraction from (c), and then display the edges 
corresponding to this abstraction, we get the output shown in (d). In other words, we have 
the highest confidence in the model labels for the scene data edges shown in (d). These 
data edges and their model labels are then used for calculating a precise fix on the loca
tion of the robot by using the methods Of this chapter. But, first, a few words are in order 
on the overall reasoning architecture of PSEIKI.

PSElKI’s architecture is shown in Fig. 6.2. The system has been implemented in 
OPS83 as a two-panel five-level blackboard [4], The left panel, called the model panel, 
holds the abstraction hierarchy for the expected scene. The right panel, called the data 
panel, holds the abstraction hierarchies built from the scene data by taking cues from the 
supplied model abstractions in the left panel. As shown, each panel consists of different 
levels, each level corresponding to a different level of geometric abstraction. The lower



Figure 6.2: PSEIKI’s architecture.



levels of the data-panel are supplied with the symbolic output of the image preprocessor, 
such as represented by (c) of Fig. 6.1.
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As was mentioned before, PSEIKI associates model labels with scene entities at dif
ferent levels of abstraction; each such label assignment is given a belief value based on 
the geometric similarity of the model entity represented by the label and the scene entity. 
While a direct geometric comparison is sufficient for the calculation of belief values at 
the edge level, at the face and higher levels the process of belief value calculation is in 
actuality more complex since, in addition to the geometric similarity of, say, a data face 
with a model face, we must also consider the beliefs associated with their children, the 
edges. In other words, PSEIKI must use a calculus of beliefs for accumulating beliefs for 
abstractions at face and higher levels; PSEIKI uses the Dempster-Shafer theory of evi
dence [5] for that purpose. A particular advantage of this formalism is that it allows the 
system to express ignorance about assigning a model label to a data entity; this is useful 
when the data entity does not match any model element to a sufficiently high degree. To 
overcome the exponential complexity usually associated with the Dempster-Shafer for
malism, a computationally efficient variation of Dempster’s rule is used to combine evi
dence [4].

PSEIKI has four main knowledge sources (KSs) that it uses to establish correspon
dences between the model entities and the scene data entities: Labeler, Grouper, Splitter, 
and Merger. Basic to the operation of the blackboard is the notion of a model label for a 
scene data entity. Actually, there is a set of competing labels created for the scene entities 
— this set is called the frame of discernment (FOD) for the scene entity— but the most 
believed of the members of the FOD is called the label of the scene entity. As different 
geometrical and relational constraints are invoked at different levels of abstractions, 
beliefs are continually accumulated for all the members of the FOD; if through this accu
mulation the belief in the current label for a scene entity becomes less than the belief in 
some other member of the FOD, then the label of the scene entity gets changed to that 
member of the FOD.

The Grouper KS determines which scene entity at a given level of the hierarchy 
should be grouped together to form an entity at a higher level of abstraction. As an exam
ple, which edges should be grouped together to form a face, etc. Grouping proceeds in a 
data-driven fashion in response to goals that call for the establishment of nodes on the 
right panel corresponding to the model nodes in the left panel. The grouping goals are 
generated by the Scheduler initially, since one of the initial jobs given to the Scheduler is 
to scan the model panel top to bottom and generate goals for the creation of a certain 
minimum number of competing scene nodes corresponding to each model node. In 
response to a goal for the creation of, say, a scene face corresponding to a model face, the 
Scheduler looks for an edge that has the strongest attachment, on the basis of belief 
values, to any of the edges of the model face in question. This scene data edge then



serves as a seed for initiating a grouping by invoking geometrical considerations. The 
Labeler KS has three different functions assigned to it: 1) determination of initial model 
labels for the scene edges and faces based purely on spatial proximity and geometric 
similarity; 2) belief revision for face and higher level scene nodes on the basis of rela
tional considerations amongst the children nodes; and 3) propagation of beliefs up the 
hierarchy.

The Merger KS also groups elements; however, its job is to merge multiple ele
ments at a given level and retain the grouped information at the same level. As an exam
ple, if two scene faces have the same model label and there exists a long enough common 
boundary between the two faces, the Merger will merge the two faces into a single face 
and subsequent computations. The action of the Splitter KS is opposite to that of the 
Merger; it splits a single element on the blackboard into multiple smaller elements. For 
example, a T junction may be split up into two or three separate edges.

The overall flow of control is controlled by the Monitor and the Scheduler, acting in 
concert. The Monitor uses OPS demons to run in the background, its task being to watch 
out for the data conditions that are needed for triggering the various KS’s. For example, 
if there is a scene edge without a parent, it is the Monitor’s job to become aware of that 
fact and synthesize a knowledge source activation record (KSAR) that is a record of the 
identity of the edge element and the KS that can be triggered by that element, initially, 
when the KSAR’s are first created, they are marked as pending. When no KS is active, 
the Scheduler examines all the pending KSAR’s and selects one according to 
prespecified policies. For example, the status of a KSAR that tries to invoke the Merger 
or the Splitter KS is immediately changed to active. It seeks intuitively reasonable to fire 
these KS ’s first because they seek to correct any misformed groups.
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6.2 EXPECTED SCENE GENERATION *
. - . . ' : ' ' S

The TWIN boundary-representation (B-rep) solid modeling system is used to gen
erate PSEIKI s expected-scene data. TWIN is a library of C language subroutines; the 
library contains routines for generating a number of primitive objects including paral
lelepipeds, wedges, cylinders, cones, toruses, spheres, fillets, elliptical cones, and ellip
soids. The library also contains routines for performing regularized Boolean operations, 
such as the union, intersection, and difference operations, on solid objects. Complex 
solid objects are created by combining sub-objects with these operators. For our work, a 
solid model of the building’s corridors is generated off-line and is used to generate the 
robot’s expectation map, such as the one shown in Fig. 6.1a. The process of expected 
scene generation may be conceived of along the following lines: As the robot travels 
physically down a hallway, in the computer memory it travels down a solid [model -
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within of course the accuracy afforded by the odometry. Every once a while, the robot 
compares what its one eye is seeing with its ‘mental’ picture of what it should be seeing 
and this comparison leads to the robot becoming aware of its exact position.

The expected scene image of Fig. 6.1a is actually a result of a two step procedure. 
First, given the odometry-supplied position and orientation of the robot, a scan-line algo
rithm is used on the TWIN model of the hallways to render an expected scene image. 
The rendered image at this point is a gray level image, the gray level at each pixel 
corresponding not to any photometric information but to the ID number of the hallway 
surface visible at that pixel. Next, this image is processed with the same preprocessor 
that is used on the scene image, except that now we have a ‘perfect’ image in the sense 
that each region has an absolutely constant gray level. The preprocessor then produces 
the kind of image shown in Fig. 6.1a.
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6,3 COMPUTING POSITION AND ORIENTATION PARAMETERS

Corresponding to the most-believed overall scene interpretation, the output pro
vided by PSEIKI consists of a set of image-edge to hallway-line correspondences and the 
associated belief values. While the image edges and the corresponding hallway lines are 
all described by the coordinates of their vertices, there will almost never be a direct 
correspondence between the image vertices and the hallway vertices, the reason being the 
fragmentation of the image edges during segmentation.

Given these image-edge to hallway-line correspondences, the task faced by the 
Navigator is to determine the location and the orientation of the robot.

Since the floor is flat, the mobile robot has only three degrees of freedom in our 
experiments, namely, the location (X, Y) of the center of its base and its orientation (0). 
The calculation of these two items will now be addressed in the next two subsections.

6.3.1 Orientation Calculation

In this section, we will show that sufficient information for computing the orienta
tion of the robot consists of just one image edge together with its hallway correspondent, 
provided the hallway line is not exactly vertical.

Let (Vj,,, vy, vz) be the components, in the robot frame of reference, of a unit vector 
along the 3D scene edge whose image is being used for orientation calculation. Now, as 
was done in Section 5.3.1, we may associate a plane of sight with -the image edge under 
consideration; the plane of sight passes through the image edge and the camera lens



center. The equation of this plane of sight, derived from the slope-intercept parameters 
of the image edge and the camera calibration parameters, is given by Eq. (5.12) in the 
robot coordinate frame; in this equation n = (nx, ny, nz) is the normal to the plane of 
sight. It is clear that both the actual scene edge and its image must lie in the same plane 
of sight, since, by definition, the plane of sight contains the lines of sight for all the pixels 
on the image edge. From this observation follows that n must be perpendicular to the 
direction vector of the scene edge

nx vx + nyvy + nzvz = 0 (6.1)

Note again that v*, vy and vz are the three components of the direction of the actual 
scene edge but in the robot coordinate frame. In the world coordinate frame, let the com
ponents of the direction unit vector for the same scene edge be given by (Vx, Vy Vz). 
Since the robot is always on a flat floor, the z-axis of the robot coordinate frame is always 
parallel to the z-axis of the world coordinate frame and there is no z-direction displace
ment between the two origins. Therefore, it must be the case that vz and Vz are the same. 
This observation, when used in Eq. (6.1), leads to the first of the following two equations, 
the second equation follows from a similar substitution in the equation that says that the 
magnitude of the (vx, vy, vz) vector is unity.

tix V* "b tty vy nz Vz (6.2)

vx2 + vy2 = 1 — Vz2 (6.3)

So we have two equations for the two unknowns vx and vy, but only when the hallway 
line is not vertical; when the hallway line is vertical, Vz will equal unity and the second 
equation will become non-existent. As was mentioned before, the quantities nx, ny, and 
nz are known from Eq. (5.12) and are calculated by fitting a plane of sight, in the robot 
coordinate frame, to the image edge being used for orientation calculation.

The conditions under which the pair of equations, (6.2) and (6.3), has one or more 
solutions can be inferred by examining the equations in the (v*, vy) space. In this space, 
Eqs. (6.2) and (6.3) represent a line and a circle, respectively, as shown in Fig. 6.3. 
Whether there are two, one, or no solutions depends on whether the line intersects, is a 
tangent, or is exterior to the circle, respectively. In our hallways, practically all the lines 
are either entirely vertical or entirely horizontal; in other words, all the hallway lines 
corresponding to the edges that can be seen in (b) and (c) of Fig. 6.1 are either vertical or 
horizontal in the world coordinate frame (even though that may not appear to be the case 
from the scene expectation map of Fig. 6.1a). Since, for reasons given above, the vertical 
lines in the hallway can not be used for determining the orientation of the robot, we must 
use the horizontal lines. Therefore, for the scene edge that is being used for figuring out 
the orientation of the robot it must be the case that Vz=0. Note that VZ = Q condition 
means that in the (vx, vy) space space, the line represented by Eq. (6.2) passes through
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Figure 6.3: Equations 6.2 and 6.3 represented in (vx,

Figure 6.4: Equations 6.2 and 6.3 represented in (%, Vy) space 
lines in 3D space are possible.
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vy) space.

when only horizontal



the origin, as shown in Fig. 6.4. This guarantees that there will be two solutions for the 
unknowns vx and vy.

So we now know how to compute the projections vx and Vy of the hallway line 
being used for orientation calculation on the x and y axes of the robot coordinate frame. 
Since from the correspondence established by PSEIKI, we also know the actual model 
identity of the hallway line, the quantities Vx and Vy are also known, these being the pro
jection of the same hallway line on the world x and y axes. The orientation of the robot 
can now be easily computed from the relationship between (vx, vy) and (Vx, Vy). Recall 
that while the robot coordinate frame rotates and translates vis-a-vis the world coordinate 
frame, the x,y-planes of the two coordinate frames must always stay coplanar. It there- 
fore follows that the relationship between (vx, vy) and (Vx, Vy) is

vx = Vx cos 0 + Vy sin 0 (6.4)

Vy = - Vx sin 0 + Vy cos 0

where 0 is the angle between the y axes of the two coordinate frames. The reader might 
wonder about the validity of Eq. (6.4) since it represents the transformation between two 
2-D coordinate frames when one undergoes a rotation with respect to the other, without 
there being any translational displacement between the two; while in our case the robot 
coordinate frame would have undergone translation in addition to, of course, the rotation. 
The reason that Eq. (6.4) is valid notwithstanding the translation has to do with the fact 
that (vx, Vy, vz) and (Vx, Vy, Vz) both are direction vectors of unit magnitude, rooted at 
the origins of their respective coordinate frames. What’s being said is that while Eq. (6.4) 
would not, in general, be a valid transformation for computing the robot frame coordi
nates of a point whose position is specified in the world coordinate frame or vice versa, it 
is a perfectly valid transformation for the direction vectors.

Eqs. (6.2) and (6.3) give us two solutions, (vx, vy) and (-vx, -vy), that in turn result 
in two solutions for 0 that differ by 180°. Assuming that the robot orientation is approxi
mately known to start with, choosing the correct solution is not difficult, but if this infor
mation is not available an additional 2D to 3D correspondence can resolve the ambiguity.
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6.3.2 Calculating the World Location of the Origin of the Robot Coordinate 
Frame ;

We will start out by showing that from a single image edge corresponding to a hor
izontal line feature in the hallway, it is possible to calculate the perpendicular distance of 
the origin of the robot coordinate frame from the hallway line. However, knowing the 
perpendicular distance of the robot-base center from a hallway feature constrains only 
one of the two degrees of freedom that characterize the translation of the robot on the



floor. Therefore, if one were to use this procedure, such perpendicular distances would 
have to be found from at least two non-parallel horizontal lines of the hallway.

Next, we will derive a more easily implementable method that also uses two non
parallel hallway lines, and; their image edges as supplied by PSEIKI, to directly yield the 
world coordinates of the origin of the robot coordinate frame. This method is predicated 
on the assumption that the orientation of the robot has already been determined.

Finally, we will present yet another method for the computation of the displacement 
between the origin of the robot coordinate frame and the world coordinate frame; this 
method uses a single image point and its corresponding hallway point. Although straight
forward to implement, this method can only be used if two image edges can be found that 
either meet or intersect at a point under the condition that the hallway lines correspond
ing to the two image edges also meet or intersect at a hallway point that corresponds to 
the image point given rise to by the image edges. This requirement makes this method 
less useful.

Much discussion in this section will make frequent references to two coordinate 
frames: the world coordinate frame, which stays stationary and in which the 3D model of 
the hallways exists, and the robot coordinate frame, which always translates and rotates 
with the robot. Both of these are shown in Fig. 6.5, where the axes denoted by 
(*W> yw, zw) represent the world coordinate frame and those denoted by (xg, y/j, z«) 
represent the robot coordinate frame. As shown in the figure, the image edge ab presum
ably corresponds to the hallway line AB and this fact has supposedly been discovered by 
PSEIKI. The point C represents the camera lens center; it is defined by the vector (fin 
the robot coordinate frame. The vector btran denotes the translation of the robot coordi
nate frame with respect to the the world coordinate frame. Note that Dtran contains no 
information regarding the orientation of the robot — recall that the orientation is the angle 

, between the y-axis of the robot coordinate frame and the y-axis of the world coordinate 
frame. In this section, our goal is to calculate Dtran, assuming the orientation of the robot 
coordinate frame has already been calculated by the method of Section 6.3.1.

Note that for the image edge ab shown in Fig. 6.5, the plane of sight is formed by 
joining the camera lens center with any two points on the edge ab. This plane of sight, 
marked 7t, has normal n and its equation, derived by the method of Section 5.3.1 from the 
image edge parameters and the calibration matrix, is defined in the robot coordinate 
frame. In other words, the Eq, (5.12) for the plane of sight n exists in the robot coordi
nate frame. Our mission is to use the equation of n in the robot coordinate frame and the 
equation of the line AB in the world coordinate frame for the calculation of Dtran.
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Figure 6.5: Shown are the world coordinate frame and the robot coordinate frame. The 
hallway model exists in the world coordinate frame, whereas the equation of the plane of 
sight corresponding to the image edge ab is defined in the robot coordinate frame'
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We will now show how we might compute the perpendicular distance of the origin 
of the robot coordinate frame from a horizontal line feature in the hallway. For the sake 
of discussion, assume that we are using the image edge ab, shown in Fig. 6.5 for this pur
pose, and its hallway correspondent AB, the correspondence having been discovered by 
PSEIKI.

The applicable formula will be derived from Fig. 6.6; the plane of this figure is per
pendicular to the floor, perpendicular to the horizontal line AB of Fig. 6.5, and passes 
through the camera lens center, which is marked C in both Figs. 6.5 and 6.6. Since the 
plane of the figure in Fig. 6.6 is perpendicular to the hallway line, the line AB becomes a 
single point in the figure — this point is marked L. The line marked P is the intersection 
of the plane of sight 7t of Fig. 6.5, which corresponds to the image edge ab, with the 
plane of the figure. The parameter H is the height of the camera lens center above the 
floor and h the height of the horizontal line above the plane of the floor. Although h ~ 0 
in Fig. 6.5, we retain this parameter for the derivation here since our results can be used 
for a horizontal line at any height.

Also, shown in Fig. 6.6 is the normal n to the plane of sight; this normal is same as 
n in Fig. 6.5. Therefore, n in Fig. 6.5 is a known quantity. From the figure, the angle <j> 
shown there is

; <|> = %-cos-\n-k) (6.5)
w •: '

where k is the unit vector along the z-axis. Therefore, from our knowledge of h we can 
calculate the angle <)>. From the figure, the perpendicular distance d to the line AB, the 
line being represented by the point L in Fig. 6.6, is given by

* " d = (H - h) tantp (6.6)

Practically all the horizontal lines in our hallways are parallel to either the world 
xw-axis or the world y^-axis. If one of these lines is used for the calculations, the perpen
dicular distance d will be parallel to the y^-axis, if the hallway line is parallel to the xw~ 
axis; d will be parallel to the riv-axis, if the hallway line is parallel to the yiy-axis. This 
fact can be expressed succinctly by

Qrobot ~ Qline id (6-7)

where Qrobot and (2/me stand, respectively, for the xw components of Dtran arid the line if 
the hallway line is parallel to the world y^-axis, since in that case the equation of the 
hallway line is (2/m* = constant. On the other hand, if the hallway line is parallel to the 
world rw-axis, (2robot and (2/me stand for the yw components of Dlran and the line, respec
tively. Whether there should be a plus or a minus sign in the right hand side of Eq. (6.7)
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C

Figure 6.6: Determination of the perpendicular distance to a horizontal line.
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can be inferred from the expected value of the coordinate Qrobot.

TWO LINE CORRESPONDENCES METHOD :

We will assume that the orientation of the robot has already been determined by the 
method of Section 6.3.1 and all that remains is to find the Xw and yw components of the 
translation vector Dtran shown in Fig. 6.5. Since the orientation is already known, we 
now rotate the robot coordinate frame, not physically but only in the computer program, 
so that all its axes become parallel to the world axes. In other words, we now create in 
the computer program the situation depicted in Fig. 6.7, where the robot is shown point
ing straight ahead. As a result of this rotation^ Dtran does not change.

Clearly, the equation of the plane of sight formed by the image edge ab will be dif
ferent in the robot coordinate frame of Fig. 6.7, compared to what it was for the robot 
coordinate frame of Fig. 6.5. We have used the symbol n' to represent the plane of sight 
in Fig. 6.7. The equation of n' can be obtained by the same technique that is given in Sec
tion 5.3.1 except that now we must apply a rotation transform to the vectors P\, Pi, and 
C of Eq. (5.9), the rotation corresponding to the angle 0 calculated in Section 6.3.1. For 
the derivation to follow, we only need to know the value of n, the normal to the plane k 
in Fig. 6.5, in the robot coordinate frame of Fig. 6.7. We will denote this transformed 
value of n by ft'. The value of n' can be easily obtained from n by applying to n a rota
tional transform matrix corresponding the angle 0. We may then write the following 
equation for it':
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n'-p = K (6.8)

where /ns the position vector to any arbitrary point with respect to the origin of the robot 
coordinate frame of Fig. 6.7. The constant K can be easily determined by realizing the 
plane 'll' must pass through the camera lens center whose location is given by the vector 
c! Therefore, it must be the case that

"V —> jyn -c = K

Note that c*is known through camera calibration. We can therefore write Eq. (6.8) as

n'p = «'•? (6.10)

Equivalently, we have for the equation of jt'

n x Px M y Py H z Pz ® X ’4" :ft y Cy + fl z Cz (6.11)

Now let’s consider an imaginary plane, denoted by rc", parallel to the plane iC but 
passing through the origin of the world coordinate frame. Let n" be the surface normal of 
this new plane. Since, in Fig. 6.7, the axes of the world and the robot coordinate frames
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Figure 6.7: Same as Fig. 6.5, except that the robot coordinate frame has now been 
rotated about its origin through the angle 6 calculated by the method of Section 6.3.1. 
Note that no physical rotation of the robot is called for, the rotation is carried out in 
software to facilitate the calculation of the translation vector Dtran.



are parallel, we have

146 lopez-abadia/kak

Since the plane it" passes through the origin, its equation is

n"xPx + n"yPy+n"zPz = 0 (6.13)

where (Px, Py, Pz) are the world coordinates of a point on it".

The distance d between the planes it' and 7t" can be computed by taking the projec
tion, along the direction of the normal vector n', of any vector from any point on it" to 
any point on it'. The origin of the world coordinate frame is on it", therefore for any vec
tor F0 from the origin of the world coordinate system to any point on it', we can write

| d = n'xPXQ + n'yPyo + n'zPzo (6.14)

where (Pxo, Pyo> Pzo) are the world coordinates of any point on it'. We are particularly 
interested in two such points: the camera lens center, whose location is given by cnn the 
robot coordinate frame and by C in the world frame, and any point (Px\, Py\, Pz\) on 
the hallway line AB in Fig. 6.7. Therefore we can write

n'xCx + n'yCy + n'zCz = d - n'xPxi +n'yPyl +n'zPzl (6.15)

Note that the coordinates (Cx, Cy, Cz) are defined in the world coordinate frame; these 
coordinates are unknown at this time, since camera calibration, being carried out in the 
robot coordinate frame, only yields (cx, cy, cz). On the other hand, the world coordinates 
(Pxi, Py\, Pz\) of any point on the hallway line are known. Since Cz = cz, we can 
rewrite (6.15) as

n'x Cx + n'y Cy = G (6.16)

with G * n'x Px\ + n'y Py j + n'z Pz \ - nz cz. So we have one equation in Eq. (6.16) for 
the two unknowns Cx and Cy. A similar equation may be obtained from a second 
PSElKI-supplied correspondence between some other image edge and a hallway line, 
giving us two equation for the two unknowns. We may now determine the components of 
the translation vector Dtran from

Dtran,x = Cx ~

Dtrdn,y=Cy-Cy (6.17)

Note that for a unique solution to exist for two equations of the form shown in Eq. (6.16), 
the two hallway lines must satisfy the conditions: 1) they must not be parallel to each 
other; and 2) the planes of sight must not be horizontal for either of the lines. If any of
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these conditions is violated, the following determinant

nxi ny i
det1>2 =

nx 2 nyi

would become zero and the two equations would cease to possess a solution.

(6.18)

POINT CORRESPONDENCE METHOD:

We will now present another method for the calculation of the displacement vector
—)
Dtran shown in Fig. 6.5. This method is based on the assumption that we can identify a 
single image point formed by the meeting or the intersection of two image edges such 
that the corresponding hallway lines also meet or intersect at a point that corresponds to 
the image point. Another assumption is that the orientation of the robot coordinate frame 
has already been computed by, for example, the method of Section 6.3.1. So, for the sake 
of computation, We may assume that the robot is turned around its origin through the 
rotation angle and its axes aligned with the world axes, as shown in Fig. 6.8.

Now, prior to the rotation of the robot coordinate frame, meaning in the robot coor
dinate frame shown in Fig. 6.5, let the equation of the line of sight to an image point 
corresponding to the world point P shown in Fig. 6.8 be p?=Xv + ct This equation, in 
principle the same as Eq. (3.20), is a parametric equation of the line of sight, the parame
ter being X, v is the direction of the line formed by joining the camera lens center and the 
pixel p shown in Fig. 6.8, and c the camera lens center. As discussed in Section 3.2.1, 
this equation may be obtained by employing the submatrix D of the calibration matrix T.

When the robot coordinate frame is aligned as shown in Fig. 6.8, the equation of the 
line of sight to the pixel corresponding to the hallway point P will change. Let the direc
tion of this new line of sight be v'; v' is easily obtained by multiplying v by a rotational 
transform matrix corresponding to the planar rotation through angle 0 calculated in Sec
tion 6.3.1. So, we can say that the equation of the line of sight to hallway point P in the 
robot coordinate frame of Fig. 6.8 can be written as ]j =\v' + 1?, where, for economy in 
notation, we have continued to use p*for an arbitrary point on the line of sight and X for 
the position parameter associated with this new line; the point c* is the same as before 
since the camera lens center does not move with respect to the robot coordinate frame.

Given that the origin of the robot coordinate frame must always be in the (xw, yw) 
plane of the world frame and from the fact that the z-axes of the two frames are always 
parallel, it follows that for any arbitrary point P in the hallway, its zw coordinate must be 
equal to its zR coordinate. Let pj> be the robot coordinate frame vector to the world frame 
point P shown in Fig. 6.8. Since pP must be a point on the line of sight, the zR -coordinate 
°f Pp must be given by Xv'z - cz, which is the same as Xv'z - Cz, where Cz is the height
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Figure 6.8: Same as Fig. 6.5, except that now the camera image contains a point 
corresponding to the intersection of two non-parallel hallway lines. Again, as in Fig. 6.7, 
for the sake of deriving a procedure for computing Dtran, we show the robot coordinate 
frame axes aligned with the world coordinate frame axes.



of the camera lens center in the world coordinate frame, for some particular value of X. 
If we assume that the z^-coordinate of the hallway point P is Pz, then it must follow 
from the equality of the two z-coordinates that

^ ~Cz ■ .
.. Xp ~ ~VT

where Xp is the value of the parameter X at the hallway point P on the line of sight. Now 
that we have fixed the value of the parameter X, we can write down the following expres
sions for the robot frame coordinates of the hallway point P:

Px ~ *Xp v x ■*" (-x (6-19)

Py Xp Vy + Cy

Pz ~ Pz

-^
Computing the two components of Dtran is now straightforward. They are given by

Dtran,x = Px~Px (6-20)

Dtran,y = Py ~ Py

where Px and Py are the Xw and yw coordinates of the hallway point P in the world 
frame.
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6.3.3 Computing Robot Orientation/Location from Multiple Correspondences

In general, PSEIKI will output many more image-edge to hallway-line correspon
dences than the minimum number needed by any of the approaches described in the 
preceding subsection for the calculation of orientation and location of the robot. Since it 
seems reasonable to assume that any estimates of robot orientation and location that use 
all the available data will be more robust compared to the estimates derived from just a 
couple of image edges, we need a method for combining the orientation/location results 
derived from the different possible subsets of the PSEIKI’s output. We use the following 
six-step approach for this purpose.

Step 1: Note that in the output produced by PSEIKI, we have a belief value associated
with each image-edge to hallway-line correspondence. Let’s denote the belief 
value associated with the ith image-edge by fy. We now weight these belief 
values by the length of the edges, since we want the system to give greater 
credence to the orientation/location results that are produced by longer edges. 
We therefore recompute the belief values by Combining the PSEIKI-supplied 
belief values with the lengths of the edges via the following formula:
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b l

bili_
< Lt li<Li (6.21)

bi otherwise

where bf,s are the new belief values, /’s the lengths of the image edges, and L 
a threshold length.

The image-edge to hallway-line correspondences whose associated b' values 
are below a threshold are then discarded.

The image-edge to hallway-line correspondences are then classified according 
to the direction of the hallway line involved.

For each of the image-edge to hallway-line correspondences involving hor
izontal hallway lines, the orientation 0, of the robot is computed by the 
method described in Section 6.3.1.

Step 5: We now select those image-edge to hallway-line correspondences that involve
hallway lines parallel to either the xiv-axis or the y^-axis of the world coordi
nate frame. By using the "SINGLE LINE CORRESPONDENCE METHOD" 
described in Section 6.3.2 on those PSEIKI-supplied correspondences which 
involve hallway lines parallel to the y^-axis, we obtain the Xw coordinate of
the the robot base center in the world frame, in other words the Xw component

—>
of Dtran shown in Fig. 6.5. Similarly, by applying the same method to those 
correspondences that involve hallway lines parallel to the x^-axis, we obtain 
the yiv component of the robot base center.

Step 6: Finally, the method described under "TWO LINE CORRESPONDENCES
METHOD" is used to again compute the xw and yjy coordinates of the origin 
of the robot coordinate frame using each pair of non-parallel hallway lines 
that satisfy the conditions of this method.

The final value of the orientation 0 of the robot coordinate frame with respect to the 
world frame is now computed by taking a weighted average of the orientations calculated 
by the method of Step 4 and the orientation as supplied by the odometry on the robot. 
With 0e denoting the odometry-supplied value for the orientation, the formula we use for 
computing the final value is

£0, wi + 0e
:B^ = dx^r- (6'22)

■ ;■ . - . i

where the index i refers to the image edge which yielded the orientation estimate 0,. The 
factors wi incorporate the altered beliefs b\, as calculated by Eq. (6.21), and, at the same



time, give greater weight to those edges which are closer to the robot:

Wi = b'i inx + ity) (6.23)

where nx and ny are the same quantities as in Eq. (6.2) — they are the Xr and y# com- 
porients of the unit normal to the plane of sight formed by the image edge i in the robot 
coordinate frame. The reason for this additional weighting is as follows: Note that the 
magnitude of the slope of the line passing through the origin in Fig. 6.4 is nxlny. As nx 
and ny get progressively smaller, any errors in their values will have a larger effect on 
their quotient, and therefore a larger effect on the solutions produced by the intersection 
of the line with the circle shown in Fig. 6.4. This implies that we must give greater 
weight to the orientation solutions that are produced by those image edges whose 
corresponding hallway lines on the floor are close to the robot, since for such edges nz 
will be small and, relatively speaking, either or both of nx and ny large.

The final values of the xw and the yw coordinates of the robot base center are 
obtained by taking a weighted average of the results calculated in Steps 5 and 6 above 
and the odometry-supplied values for these coordinates. In the following formulas, we 
have usedDtran x e and Dtran<y e for coordinates values as supplied by the odometry.

tran,x,iwi 4" tran,x,jk wjk 4" ^tran,x,e

= ~ 2^ + E^+l ;<6.24)
i jk

^Ptran,y,iWi + ^Ptran.jk^jk + Dtranty,e 
n — * ' ft

*^tran,y,final ~ TZ —  —:-----------------------Z^ + Z^+i
i jk

with w, ’s given by Eq.(6.23), and w^’s set to

wjk = b'jb'ltdetM (6.25)

where b'j and b'k stand for the belief values associated with the correspondences involv
ing the image edges j and ^ respectively, and detj>k is the value of the determinant in Eq. 
(6.18). The index i in the first term in the numerators and the denominators refers to each 
of the image edges used in Step 5 for the computation of one or the other coordinate 
values of the robot base center. The indices jk in the second terms in the numerators and 
the denominators refer to the pair of image edges used in Step 6 for an estimate. We 
weight the estimates produced in Step 5 by the factors w,-’s, since as the plane of sight 
associated with an image edge becomes more and more horizontal, the calculation of d in 
Eq. (6.6) becomes more sensitive to errors in the angle <J>; the factors w,’s give more 
weight to those estimates produced by Step 5 whose planes of sight bear a larger angle 
with the horizontal. Note that wJk factors include the value of the determinant since the
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smaller the value of det/*, the less trust we can place in the corresponding solution.

6.4 EXPERIMENTAL RESULTS ■

We will now show some experimental results obtained from the camera image of 
Pig- 6.9. The schematic of Fig, 6.10 should help the reader identify the edges in the 
image of Fig. 6.9 that were used for the estimation of the orientation and the translation 
of the robot. Table 6.1 presents the results obtained for each edge, or each pair of edges, 
marked in Fig. 6.10. The first row in the table shows the odometry-supplied information; 
when the robot is at the position and orientation from which the image of Fig. 6.9 was 
taken, then, according to the odometer, the robot was at the location (0.61m, 3.96m) with 
an orientation of 22.5°. As the last column of the first row shows, the weight given to this 
information is one in the averaging formulas of Section 6.3.3.

The hallway line corresponding to the image edge A is parallel to the yw axis of the 
world frame, so it should give an estimate for the xw coordinate of the robot base center 
by the "SINGLE LINE CORRESPONDENCE METHOD" of Section 6.3.2. This esti- 
mate comes out to 0.71 m, which 10 cm greater than the odometry supplied information. 
The weight associated with this estimate^ calculated by using Eq. (6.23), is 0.53. Note 
that since the hallway line corresponding to the image edge A is horizontal, this image 
edge can also be used for orientation calculation, which in this case yields 22.78°.

Along similar lines, using the pair of image edges B and D, the method "TWO 
LINE CORRESPONDENCE METHOD" of Section 6.3.2 yields the estimate 
(0.50m, 4.11/n) for the position of the robot, the weight to be associated with this esti
mate being 0.15; and

When all the estimates are averaged by using the formulas of Section 6.3.3, we get 
the final result shown in the last row of the table.
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Figure 6.9: The image used for obtaining the self-location results of Table 6.1.
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Table 6.1: Results of the self location program applied to the image of Fig. 6.9.

matches
expected 0.61 3.96 SJ::

0.71 0.53
B 0.69 22.33

A,C 0.55 3.83 0.23
A,D 0.55 3.96 0.16
A,E 0.55 3.88 0.19
B,C 0.50 3.94 0.23
B,D 0.50 4.11 0.15
B,E 0.50 4.01 0.19

Final 0.61 3.95 22.53
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appendix

DUKSTRA’S MINIMUM-COST PATH FINDING ALGORITHM

Let G be a graph and let there be associated with each edge e of G a real number 
w(e) called its weight. Then G together with these weights for the edges is called a 
weighted graph. If His a subgraph of a weighted graph, the weight W(H) of His the sum 
of the weights 2>(e) over its edges. We will now present Dijkstra’s algorithm that finds

e
all the minimum-weight paths from any given node in a graph to all the other nodes [1].

Let d(u, v) be the total weight associated with a minimum-weight path from a node 
u to a node v. Let’s now consider the following situation: We are given a set SaV of 
nodes, where V is the set of all nodes in G. Further, we are given a particular node uq e S 
and we are asked to find a minimum-weight path from «0 to S, where S = V -S. Let 
P - «o • • • iTv be a minimum-weight path from m0 to a node v in S, where if is the node 
that occurs just before v on the path; clearly if is one of the neighbors of v. If P is a 
minimum-weight path from uq to node v in 5, then it must be the case that there exists a
iieS, possible the same as w0, such that m0..... if is shortest path from u0 to if; note that
w e S must be a neighbor of v e S. This fact is represented by the following equation:

d(uQ, v) = d(uQ, if) + w(ifv) <A.l)

We may now write the following expression for a minimum-weight path from the node 
Mo to S:

d(u0, S) = min {d(u0, u) + w(mv)} (A.2)
ueS
veS

That the weight of an optimum path from the given node Uq to the set S’of nodes 
can be expressed in the manner shown in Eq. (A.2) can serve as a basis for the following 
algorithm for computing minimum-weight paths. Starting with the set S0 = {m0}, we 
construct a sequence S0, Si, • • •, Sn of subsets of V such that the subset Si+1 is gen
erated by opening all the nodes in S,- that are neighbors of the nodes in S^; the minimiza
tion of Eq. (A.2) then yields a node v e S',- for a minimum path from uq to Sj and 
Si+1 ~siKj{vJ- With this approach, at stage i of the computation, we have all the 
minimum-weight paths from m0 to all the nodes in S). Computation is terminated when
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Sn contains the destination node.

To elaborate, to construct the subset Si, we find the node U\sSq that is “nearest" 
to «o> in the sense that of all the edges meeting at node Uq the weight associated with the 
edge uqU\ is a minimum. We set now Si = {uq, U\}. Now to construct S2, we open 
both w0 u 1 and use Eq. (A.2) to look for a node from the set S1. The minimization in 
Eq. (A.2) will yield a node v e S\ such that the weight d(uQ,S) is minimum. S2 will 
now be set to {uq, u\,v). Note at this time, we know the minimum-weight paths from 
Mo to all the remaining nodes in S2. This computation continues until the entire graph is 
covered.

During the expansion of S(- into S,-+i by the discovery of the node v e S; via the 
minimization in Eq. (A.2), we deposit at the node v a back-pointer to v’s neighbor u e S,-. 
These backpointers define a tree rooted at uq such that the path between uq and any other 
node in the tree constitutes the minimum-weight path from u 0 to that node.

The above algorithm suffers from the following computational inefficiency: When 
Sj+i is computed from S,- via the minimization in Eq. (A.2), we must determine the 
weights associated with the minimum-weight paths from Mo to all those nodes in S;- 
whose neighbors are in S;. And, then when we compute S,-+2 from S,+i, we must do the 
same to all the ‘boundary’ nodes in S(+i, a computationally wasteful procedure since 
many of the boundary nodes in S,-+i will be the same as in S;. In Dijkstra’s algorithm, this 
duplication in computation is eliminated by associating a number /(m) with each node u 
in the graph; this number is computed in the following manner: Let’s say we have 
already computed S,- and that we know the weight d(uo, u) associated with a minimum- 
weight path from the node uq to each node u in S,-. Prior to the computation of S;+i, the 
value of l(u) at each node u in S,- is equal to d(u$,u). Now, for the computation of Si+i, 
we open each node of S,- that was not already opened during the construction of S,- -- 
these nodes will be characterized by the fact that some of their neighbors will be in S;. 
Let v e Si be a new node obtained by expanding a particular node u of S',-. Then we set 
/(v) to

/(v) = min[d(M0, m) + w(u, v)] v e S) (A.3)

where the minimization is with respect to all the possible neighbors, each denoted by u, 
in Si of the node v e Si. It is important to note that the value of /(v) thus obtained is 
NOT necessarily the value of d(u0, v); the reason for this will be clear shortly. After we 
have computed / (v) to all the node v in 5/ that are the neighbors of the nodes in Si, in 
keeping with Eq. (A.2), we then select that v that has associated with it the smallest /(v)
and add this node to 5) to form Si+l; this smallest value of /(v) then becomes d(u0,Si) in 
Eq. (A.2).
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Eq. (A.3) tells us that the value /(v) should be computed in an iterative manner, pri- 
mariIy ^3ecause the node v e % may have more than one neighbor in S',-. Any time we 
°Pen one of v’s neighbors in Sir we compare the new possible value for /(v) with the pre
viously computed /(v); the new value replaces the old if the former is smaller, this itera
tive approach to updating / (v)’s requires that initially the values of/(m) for all the nodes 
of the graph be set to some large number, larger than any that might result from the cal
culations, Here is a step-by-step description of the algorithm:

Dijkstra’s Algorithm:

1. Setf(M0)-0,/(v) = 6ofbrv *m0,*% = {«0} and/ =0.

2. For each v e 5- that satisfies Eq. (A.2), replace /(v) by min{/(v), l(u) + w(uv)}, 
Ui e S[. K/(v) is modified, mark M; as the predecessor of v. Compute min{/(v)J and

veSi
let v'be the vertex for which this minimum is attained. Set = 5,-\j (v'}.

3. If Sl+i = 0, stop. Otherwise replace i by i+l and go to step 2.

4. Find the shortest path between u0 and v0 by tracing back the predecessor of each
vertex from Vo to Mo-

Note that this algorithm assumes the weights of the edges to be positive. If negative 
weights are allowed, a negative weight cycle y might occur. If a path fromn0 to v0 uses 
any part of y then we can construct a shorter path by following it but going once more 
around y; thus there are infinitely many paths from uq to vp, none of which is the shor
test. In [3] some algorithms are presented that can cope with negative weights.

lopez-abadia/kak
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