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ABSTRACT

Recent advances in VLSI/WSI technology have led to the design of processor 
arrays with a large number of processing elements confined in small areas. The 
use of redundancy to increase fault-tolerance has the effect of reducing the ratio 
of area dedicated to processing elements over the area occupied by other resources 
in the array. The assumption of fault-free hardware support (switches, buses, 
interconnection links, etc.,), leads at best to conservative reliability estimates. 
However, detailed modeling entails not only an explosive growth in the model 
state space but also a difficult model construction process. To address the latter 
problem, a systematic method to construct Markov models for the reliability 
evaluation of processor arrays is proposed. This method is based on the premise 
that the fault behavior of a processor array can be modeled by a Stochastic Petri 
Net (SPN). However, in order to obtain a more compact representation, a set of 
attributes is associated with each transition in the Petri net model. This 
representation is referred to as a Modified Stochastic Petri Net (MSPN) model. A 
MSPN allows the construction of the corresponding Markov model as the 
reachability graph is being generated. The Markov model generated can include 
the effect of failures of several different components of the array as well as the 
effect of a peculiar distribution of faults when the reconfiguration occurs. Specific 
reconfiguration schemes such as Successive Row Elimination (SRE), Alternate 
Row-Column Elimination (ARCE) and Direct Reconfiguration (DR), are analyzed

t This research was supported in part by the National Science Foundation under Grant DC1- 
8419745 and in part by the Innovative Science and Technology Office of the Strategic Defense 
Initiative Organization and was administered through the Office of Naval Research under 
contracts No. 00014-85-k-0588 and No. 00014-88-k-0723.
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in detail. Randomization techniques are used to solve the inherently large models 
that can be generated via a MSPN representation. A model reduction technique 
based on the discrimination of states with low mean holding times is discussed. 
Finally, an analysis of hierarchical structures formed with variations of the 
schemes analyzed, is presented. The results reported in this work were obtained 
using MGRE (Model Generation and Reliability Evaluator) which is a software 
package designed to analyze fault-tolerant processor arrays for which a MSPN 
representation is given.
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CHAPTER I 

INTRODUCTION

1.1. Objectives

Recent advances in YLSI/WSI technology have led to the design of processor 

arrays with a large number of processing elements (PE’s) confined in small areas. 

At wafer level, the elimination of interchip connections and faster signal 

propagation due to shorter interconnections between PE’s results in higher 

processing speed. However, large densities and hardware Complexity increase the 

likelihood of faults during the fabrication process. In addition, a large number of 

active elements involved in a single computation cycle, increases the possibility of 

failures at any time during the operational life of the array. Increased likelihood 

of faults during the fabrication process results in low production yield whereas 

large number of active elements involved in the functional operation of the array, 

decreases reliability. Research efforts have been directed not only to yield 

improvement but also to increase fault-tolerance [KoB84,KoP87]. To increase 

both yield and reliability, several reconfiguration algorithms which use the 

available redundancy in the array have been proposed. In addition, fault 

detection and recovery upon the occurrence of faults is required during the 

fabrication process or the functional operation of the array. Because of their 

susceptibility to faults and the added hardware complexity on the overall array, 

components other than processing elements become very important In the analysis
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of fault-tolerant processor arrays. However, there is a tendency to limit the 

reliability analysis of processor arrays to failures of processing elements only 

[RaA84]. The assumption of fault-free support hardware in the form of switches, 

buses, interconnection links, etc., for the analysis of fault-tolerant processor 

arrays leads at best to conservative reliability estimations. The need to construct 

more general models is recognized in the mathematical framework derived by 

Koren et al [KoB84,KoP87,KoP86] to evaluate yield improvement and 

performance-related measures of different array architectures.

A number of analytic models and methods for the reliability analysis of fault 

tolerant computer systems currently exists [Tri85,GeT83,HiE83]. Combinatorial 

analysis and Markov models are the most common methods used to deyelop 

analytical models for the reliability analysis of fault tolerant systems. In the case 

of combinatorial methods, if the system can be divided into several modules, they 

are assumed independent (i.e. no faults or repair dependencies exist) and 

reliability estimations can be derived using fault trees and series-parallel 

structures for which definite mathematical tools exist [Tri82]. Markov models on 

the other hand offer the alternative of analyzing systems with interdependent 

components. A fault-tolerant processor array can be considered a system with 

interdependent components in the sense that the failure of one component may or 

may not affect other components of the array. The manner in which the 

components of the array are interdependent varies with the topology implemented 

and the reconfiguration algorithm that takes place when a faulty component is 

detected.

In this work the problem of evaluating the reliability of processor arrays 

using Markov models is addressed. However, a detailed modeling that takes into 

consideration failure interdependencies of several components, entails not only an
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explosive growth in the model state space but also a difficult model construction 

process. To address the latter problem, a systematic method to construct Markov 

models for the reliability evaluation of processor arrays is proposed. This method 

is based on the premise that the fault behavior of a processor array can be 

modeled by a Stochastic Petri Net (SPN). In order to achieve a complete mapping 

from places and transitions in an SPN-like representation of small size to states 

and transition rates in the Markov model, a modified version of SPN’s is 

proposed. However a more compact representation is obtained by associating a set 

of attributes with each transition in the Petri net. This representation is referred 

to as a Modified Stochastic Petri Net (MSPN) model. The set of attributes 

includes a probability function such that the effect of faulty spares in the 

reconfiguration algorithm is captured each a time a configuration change occurs. 

This distribution includes the probabilities of survival given that a number of 

components required by the reconfiguration process is faulty. Depending on the 

type of component and the reconfiguration scheme, probabilities of survival can 

be determined using closed form expressions or via simulation. Reconfiguration 

schemes such as Successive Row Elimination (SRE) Alternate Row-Column 

Elimination (ARCE) [FoR85] and Direct Reconfiguration (DR) [SaS86a],[ SaS86b] 

are analyzed in detail using MSPN’s.

Once the Petri net model and the corresponding reachability graph have 

been obtained, all the information required to build the transition matrix of the 

corresponding Markov chain is available. At this stage, figures of merit such as 

reliability, performability, etc., can be readily addressed. Reliability evaluation 

tools such as ARIES [MaA82] and SHARPE [ShT86] can be used to evaluate the 

models developed here. However the use of these packages is limited to the 

evaluation of models with a relatively low number of states. To circumvent the 

problems involved in the numerical evaluation of large models, a software
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implementation based on the randomization procedure, has been used to generate 

the reliability results reported in this work. A software package (MGRE) has 

been developed [Lop89] to analyze fault-tolerant processor arrays based on the 

approach presented in this report. By the execution of appropriate commands, 

MGRE can generate Markov models, evaluate reliability and MTTF given the size 

of the processor array and a set of failure rates.

1.2. Overview

In the second chapter the main topic of this report is developed. A modified 

version of stochastic Petri nets is presented and its application is illustrated by 

the generation of a model corresponding to the SRE reconfiguration scheme. In 

the third chapter the ARCE and DR reconfiguration schemes are analyzed in 

detail. Also, expressions required to calculate probabilities of survival in the 

presence of faults, are derived. Results concerning the state space and reliability 

analysis of these schemes are also reported. The fourth chapter discusses software 

algorithms for the numerical evaluation of large Markov models. In chapter five, 

several hierarchical configurations are compared with respect to their MTTF and 

reliability performance.



CHAPTERH

MODIFIED STOCHASTIC PETRI NETS

2.1. Introduction

As is the case with many systems, Markov models can be used to evaluate 

the reliability of processor arrays. However, reliability estimations are mostly 

based only on the failures of processing elements [RaA84]. Components other 

than processing elements become very important in the analysis of fault-tolerant 

processor arrays because of their susceptibility to faults and the added hardware 

complexity of the overall array. This fact has played an important role in the 

derivation of a mathematical framework developed by Koren et al 

[KoB84,KoP86,KoP87] to evaluate yield improvement and performance-related 

measures of different array architectures. However, a detailed modeling of fault- 

tolerant processor arrays, which explicitly takes into consideration the failure 

statistics of each component as well as their possible interdependencies, entails 

not only an explosive growth in the model state space but also a difficult model 

construction process. Therefore, in this chapter the latter problem is emphasized 

and a systematic method to construct Markov models to evaluate the reliability of 

processor arrays is discussed. This method is based on the premise that the fault 

behavior of a processor array can be modeled by a Stochastic Petri Net (SPN) 

However, in order to obtain a more compact representation, a set of attributes is 

associated with each transition in the Petri net model. The resulting model is
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referred to as a Modified Stochastic Petri Net (MSPN) representation. An MSPN 

representation allows the construction of the corresponding Markov model as the 

generation of the reachability graph takes place. Included in the set of attributes 

associated with each transition in a MSPN, is a discrete probability distribution 

such that the effect of faulty spares in the reconfiguration algorithm is captured 

each time a configuration change occurs. This distribution includes the 

probabilities of survival given that a number of components required by the 

reconfiguration process are faulty. Depending on the type of component and the 

reconfiguration scheme, probabilities of survival are determined using simulation 

or closed form expressions.

Once the Petri net model and the corresponding reachability graph have 

been obtained, all the information required to build the transition matrix of the 

corresponding Markov chain is available. At this stage, figures of merit such as 

reliability, performability, etc., can be readily addressed. Reliability evaluation 

tools such as ARIES [MaA82] and SHARPE [ShT86] can be used to evaluate the 

models developed here.

The second section of this chapter discusses some basic notation and 

concepts related to array configurations. An SPN representation is derived using 

as an example the SRE reconfiguration scheme. The third section of this chapter 

discusses Modified Stochastic ij’etri Nets (MSPN’s) and an MSPN representation 

for the SRE scheme is derived;j also a procedure to construct MSPN’s is outlined. 

In the fourth section, the correspondence between markings in an MSPN 

representation and the states in a Markov chain is described; a procedure to 

construct the reachability graph of a given MSPN is outlined.

i



9

2.2. Concepts and Notation

In this section a representation of array configurations using a SPN is 

discussed. For illustration, examples using the SRE reconfiguration scheme are 

presented.

2.2,1. Array Configurations

To analyze a fault-tolerant array architecture with k types of components, 

the configuration of an array is represented as a k-tuple:

C» = (*7it> %«> ,Vki) * = 0,1, * * * ,

where ?//,• denotes the number of elements of component type / and C is the set of 

all possible configurations of the array. Examples of component types include 

processing elements, links, switches, spare links and spare processing elements. 

The occurrence of faults and the application of the reconfiguration algorithm 

define a sequence of configurations that begins with C0 as the initial 

configuration; any other configuration can correspond to the failure state or an 

operational state of the array. The latter will be referred to as an operational 

configuration.

Upon detection of a faulty component, the reconfiguration algorithm may 

not send the array to an operational configuration if any of the following 

happens:

1) The reconfiguration circuitry failed. This possibility can be considered 

through a coverage factor (denoted by c) defined as the probability of 

successful reconfiguration given that a fault has occurred [BoC69|. This is a 

measure of the probability of successful operation of all circuitry related to 

fault detection, isolation and reconfiguration. The coverage factor is assumed 

constant and it will be associated with failures of active components only.
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2) Redundancy is exhausted. This information can be inferred from (7,-.

3) The presence of faults in non-active components (redundancy) hinders a 

successful reconfiguration. Redundant components are present in C*,- as spare 

processing elements, spare switches, spare links, spare buses, etc. Some of 

these components become active in the new configuration.

In a given configuration with a number of faulty components, successful 

reconfiguration will depend not only on the type of faults but also on their 

distribution in the array. Thus, the probability of correct reconfiguration in the 

presence of faults is referred to as the probability of survival [SaS86b]. Because 

the reconfiguration algorithm may choose one of several new configurations 

(including a non-operational one), a probability is assigned to each possible new 

configuration. The probability of survival corresponds to the sum of probabilities 

assigned to new operational configurations.

2.2.2. SPN Representation

While Markov models provide an analytical basis to derive reliability 

estimations of complex systems, their inherently large state space is difficult to 

construct and cannot be directly described in a convenient manner. On the other 

hand, SPN’s provide a succinct representation of the system and support a 

mechanized construction of the Markov model, because markings in an SPN 

correspond- bijectively to states in the Markov chain [Mol82]. In the case of 

fault-tolerant processor arrays, an operational configuration corresponds to an 

operational state in the Markov chain; thus, to derive all possible operational 

configurations of the array, a marking in the SPN must correspond to an 

operational configuration of the array. Each place p,- identifies components of type 

i and, at a given marking Mg, the number of tokens m,9 corresponds to which
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is the number of components of type ». Two or more distinct component types 

may identify the same physical component; for example, a physical spare is a 

component of the type "active spare" when it is used to replace a faulty part and 

it is a component of the type "non-active spare" otherwise.

Consider for example an »Xn array that supports the Successive-Row- 

Elimination (SRE) reconfiguration scheme with a layout as in Figure 2.1. The 

SRE scheme as presented in [FoR85], is based on the successive elimination of 

rows. Row elimination is done by using switches (S’s) and redundant links to 

bypass all processing elements (PE’s) of any row containing at least one faulty PE 

or at least one faulty horizontal link (HL) or at least one faulty input/output link 

(IOL); spare bypass links (SBL’s) become active bypass links (BL’s) which are used 

to bypass faulty rows; the array fails when rows are exhausted or if either one 

active bypass link or a switch fails. A marking q is described as:

Mq = (#PE,#IOL,#S,#BL,#HL,#SBL) = (mlq,m2q,m3q, . . . , m6f) 

where the symbol n=^M is used to denote "number of".

A possible SPN representation is given in Figure 2.2. The firing of t\, 

represents the occurrence of a fault in a PE, a fault in an IOL is represented by 

the firing of t2 and so on. In general, the firing of f,- represents a fault occurrence 

in a component of type i where 1<* <A; and k is the number of places and 

transitions. In SRE, component types 1 through 6 correspond to PE, IOL, S, BL, 

HL, SBL and A:—6, respectively.
A

Input and output places with respect to represent the effect of a fault on 

the corresponding components; i.e., each transition involves a set of I/O 

functions A,- — {/(£,), 0(i,)} and a set V,- of multiplicities fj, such that when A; 

fires in Mqr the number of tokens m/? in each place p/eA,- is modified as follows:

mij = miq-ix\ + nf
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Figure 2.1. Schematic Layout of the SRE Structure

where m/y is the modified number of tokens in pi in a new marking My. If p,f = 0, 

Pi is only an input place and if A = 0, pi is only an output place. For example in 

Fig. 2.2, the failure of a PE (ti), affects the following components: PE’s, IOL’s, 

HL’s, SBL’s and BL’s; therefore, a set of input and output places with respect to 

i 1 is given as:
|

Al ={{pi,P2,P5,P&},{P4}}

Assuming an nXn processor array, the set of multiplicities associated with Ai is 

given as:

Vi— {A = n; A = 2n; A = » - 1; A — n; = n}.

If less than the number of spares required for reconfiguration are available, then 

the array fails to reconfigure and the resulting marking is characterized by the



fact that mg < 0. The negative value of m& can be used to identify a failure 

marking reached due to exhaustion of spares. Some schemes require that specific 

transitions be enabled or disabled depending on the current configuration and the 

reconfiguration algorithm. Assume for example, that not only rows but also 

columns are eliminated during the reconfiguration process. In these cases, each pi 

becomes a function of the current marking; e.g., //{ equals the number of columns 

in the current configuration. Hence, in order to include all possible cases, p/ must 

be regarded as a variable multiplicity (this concept is an extension of the usual 

notion of "multiplicities" in Petri Net theory).

Although the SPN in Fig. 2.2, might provide the number of operational 

configurations required, it fails to consider the cases when enough spares are 

available but reconfiguration cannot take place (due for example to a peculiar 

distribution of faults). As a consequence, this approach might provide overly 

optimistic reliability estimates. Conceivably, a different SPN model can be used to 

accurately represent the dependency of successful reconfiguration on fault 

distributions. However, such an SPN would itself consist of a very large number 

of places and transitions which increases with the size of the array. One of the 

intents in this chapter is to provide an extension of the SPN concept so that 

dependence on fault-distribution can be accounted for in a model with a 

complexity comparable to that of Figure 2.2 regardless of the size of the array 

and reconfiguration scheme used.

13

2.3. MSPN Representation

The fact that several types of faults affect the array in the same manner, 

suggests the possibility of a more compact SPN-like representation, which is 

referred to as Modified SPN (MSPN). A MSPN takes into account different fault
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Figure 2.2. SPN of the SRE Scheme

distributions by associating with each transition i,-, a set of attributes described as 

follows:

t{: <P{x | Mq, £,•), Si(Mq), B{t c{>

where:

P(x | Mq, tf) defines a discrete probability function where x represents a 

random marking My in a set R directly reachable from a particular marking 

Mq; the notation Pr'qj is used to denote the probability of reconfiguration 

P(x — Mj | Mq, ti), i.e., the probability that the net is in marking My after f,- 

fires when the net is in marking Mq. The advantage of assigning a 

probability function to each transition f,-, is the ability to determine correct 

transition rates between states in the corresponding Markov model as the 

reachability graph is being generated. Thus, when fires, one value of the 

probability function is assigned to the marking generated, another value is
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assigned to another marking that can be generated by the immediate firing 

of a possibly different transition and so on. This sequence of firings is 

dictated by the current marking and the reconfiguration scheme modeled. 

Notice that the markings generated could have been generated previously 

and the probabilities of reconfiguration are only used to modify the 

transition rates;

Si(Mq) is a sequence of transitions that will fire immediately after i,- fires. If 

no immediate firing is required then Si(Mq) is a null sequence. Depending on 

the reconfiguration scheme, 5,- can be unique for all markings or is 

determined in terms of Mq;

Bi is a Binary Transition Vector with k elements 6/ such that, 6/ = 1 if the 

failure of the Ith component triggers the transition ft* and 6/ = 0 otherwise. 

This vector is used to identify those components that can trigger the 

corresponding transition £t-; it facilitates the merging of non-distinct 

markings, the derivation of probability transition vectors (defined in section 

2.4) and the derivation of flags (i.e., failure rate conditions) that signal a 

^possible non-occurrence of a transition;

The term is a coverage factor associated with £,*, such that if £t- is triggered 

by the failure of a spare (inactive) component then c,- = 1; thus, the 

possibility of array failure at the time that one of these components fails is 

non-existent; if £,• is triggered by the failure of an active component then ct* 

corresponds to the probability of detection given that a fault occurs (i.e.,

c, < !).

To illustrate the set of transition attributes just discussed, consider the SRE
A A A

scheme in Fig. 2.1 and the SPN of Fig. 2.2. Since and £5, have the same
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effect on the array, a single transition ty is defined in a MSPN with a vector 

By — [110 0 1 0] to indicate that either the failure of a PE, IOL or a HL, can
A A

cause ty to fire. Likewise, t3 and f4 become t2 with a vector B2 = [00 1 1 0 0]. 

The firing of t2 represents the failure of a BL or a S either of which is fatal. 

Transition fg becomes t2 and represents the failure of a SBL with a vector 

#3 =[00000 1].

Consider now the case when a given operational configuration contains faulty 

SBL’s. The probability that none of them lies in the row that is eliminated when 

ty fires, corresponds to the probability of reconfiguration Pr\j. If at least one 

SBL is faulty in the row deleted, the array fails to reconfigure with a probability 

PrXgj = 1—Prlqj (the failure marking is denoted as Mf). In general, probabilities of 

reconfiguration are complicated functions of the characteristics of each 

reconfiguration scheme (e.g., replacement rules, hardware requirements, 

dependencies on fault distributions, etc.) and the size and shape of the array. 

They must be derived for each scheme and in some cases extensive simulation is 

required due to the complexity of the combinatorial analysis involved. Examples 

where suitable expressions can be derived include SRE, ARCE and DR. Since 

different markings may correspond to different number of SBL’s, Pr\j is a 

function of the current marking (i.e., Mq). Let Ps denote the probability of 

survival, then for SRE, Ps = Prjy and can be estimated via equation (3.8) or (3.9) 

which are derived in chapter 3 in terms of the number AT of faulty SBL’s, present 

in the current marking Mq. Some transitions in a MSPN will exhibit a dual 

nature: they can be fired exponentially or immediatedly; once a transition fires 

exponentially, a sequence of immediate firings (specified by 5,) of possibly 

different transitions may follow. Therefore, in SRE, when ty fires exponentially, 

t2 will fire immediately to generate a failure marking and Sy = (t2). This follows 

from the fact that when ty fires, the required SBL’s become BL’s and if one of
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them is faulty 12 fires immediately. When i2 or ^3 fire exponentially no 

immediate sequence is required and 52 and £3 are null sequences. It will be seen 

that in some applications such as ARCE, the sequence of immediate firings is not 

unique as it is selected depending on the current marking.

Bl = [110010], B2 = [001100], j93 = [000001] 
Pr2qj =Pr\j=l,c<A,Pr\j=Ps as given in Ch. 3

Figure 2.3. MSPN of the SRE scheme

Considering the coverage factors, the sets of attributes associated with the 

transitions in the MSPN of the SRE scheme, are summarized in Figure 2.3.

2.3.1. I/O Places and Variable Multiplicities

Associated with each tj in the MSPN there is a set of I/O places 

Aj = 0(£,)} and a set of multiplicities:

V*i={ri,njl\pie{l{ti)},pke{0(ti)}}

Two transitions in the SPN, can have the same set of I/O places and 

different set of multiplicities; i.e. two distinct faults may affect the same 

components in different ways. In order for distinct transitions in the SPN to be
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merged in a single transition in the MSPN, they must have the same set of I/O 

places and the same set of multiplicities. Because a coverage factor is associated 

with each transition in the MSPN, components whose failures fire a given 

transition must all correspond to either active or non-active components only (i.e., 

components of both types can not be present).

Example 2.1: Consider the SPN in Fig. 2.2. The failure of a PE (<i), the 

failure of a IOL (£2) or the failure of an HL (£5) affect the same components of 

the array and the set of multiplicities for each set of arcs is the same; therefore 

transitions £1} £2 and £5 can be merged into a single transition such that

^1= { 0(^)1 = Ax = A2 = As = {{pi,p2,P5,P&}, {P4}}

and

V[ = Vx = V2 = V5 = {/if = n; i4 = 2n; [x{ = n- 1; A = n; A = n}. 

Likewise, A3 = A4; i.e., the failure of either a S or a BL (£3 or £4) causes the 

array to fail affecting all components in the same way; i.e., transitions £3 and £4 

can be merged into a single transition t2 such that

A2 = {/(i2), 0(t2)} = {{p 1 j P 2 > P 3 >P 45P5>P6}> 0} 

and a set of multiplicities

Vg=V3 = V4= {/if = H=PEq; A = #JO/g; A =.#5g; /if = #BLq] A =

/4 = #S£L9};

Finally, we have that the failure of a SBL (ig) affects only SBL’s; i.e.,

A3 - {/(i3)» 0(^)} = ^6 = {{Pe}, {0}} with V3 = V6 = {/i6 = 1} 

where £3 in the MSPN replaces Iq. □.

In summary, an MSPN model is an extension of a SPN with the purpose of 

representing fault-tolerant processor arrays and can be defined as follows:



MSPN = (P, T, A, M, Pr, Sq, B, Cv)

where Pr is a set of probability functions P(x \Mq,t{) associated to transitions 

T; Sq is a set of sequences 5t- of of transitions that fire immediately after an 

exponential firing of t^T; B is the set of binary transition vectors Bi defined for 

each ij-eT; Cv is the set of coverage constants c,- associated with each t,eT.

19

2.3.2. MSPN Construction

Given a processor array and a reconfiguration scheme, an informal procedure 

to construct the corresponding MSPN is as follows:

Procedure MSPN 
Inputs:

Array size;

Initial configuration Cq = (??i % * ' ' Vk)i
Set of rules that determine the actions of the reconfiguration algorithm in 
response to faults; i.e., a rule r,-; specifies the type and number of components 
added or subtracted if a component type i fails in an operational 
configuration Cp,
Coverage factors for the failures of both active and non-active components;
Tables of probabilities of reconfiguration for each non-active component 
type. (For each different non-active component type, a probability of 
successful reconfiguration is conditioned by the number of faults of each 
type; the probability of configuration is then the product of these conditional 
probabilities).

Output: MSPN representation: (P, T, A, M, Pr, Sq, B, Cv)
Begin

Step 1:

Assign a place p,- and a transition i,- to component type i.

Step 2:
for each rule r,-; do
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Group the component types affected by the failure of component type i 
into a set A* as the set of I/O places with respect to transition
Determine the multiplicity of each peA,- and let V,- be the set of 
multiplicities associated with A,-.

end for 
Step 8:

A

Group those transition t,- that: a) are fired by components which are all of 
type active or all of type non-active b) have the same set of input and output 
places c) have the same set of multiplicities and d) have same coverage 
factor.
For each group i do

Define transition tj, sets At- and F,-.
Specify
Form the binary transition vector B{ such that a component b\ of J3t- is 
one if the failure of a component type 1 can fire and zero otherwise.

end for 
end procedure

As pointed out previously a discrete probability distribution is associated 

with each transition such that a number of faulty spare components present in 

the current configuration is taken into account when the firing occurs. These 

probabilities are estimated using simulation or by closed form expressions.

2.4. Reachability Graph

In this section the generation of the reachability graph is discussed. A 

mapping from the transitions in the MSPN to the transitions between states in 

the corresponding Markov model is established. An implementation procedure to 

generate the reachability graph is also described.
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2.4.1. Probability Transition Vectors

For each marking MqjtR generated when i,- fires (as stated previously R is 

the set of markings that can be directly generated from the same marking Mq), Bt- 

and the distribution function P(x \ Mq,ti) defined previously can be used to 

generate vectors of the form:

Pr'qjBi = [prx • • • prk\

where pn — Prqj if 6/ = 1 and pr\ = 0 if 6/ = 0. These vectors are referred to as 

the Probability Transition Vectors (PTV’s). The use of PTV’s is illustrated in

Fig. 2.4; assuming y=l,2,..., | R \ identifies the markings that can be directly

\R\ ■
generated from the same marking Mq, then Prq}- — 1. In the event that two

1=1

or more non-distinct new markings are generated from the same marking, a 

merging to a single new marking is carried out by a vector addition of the 

corresponding probability transition vectors.

Figure 2.4.- Marking Generation with Pr‘qj

Example 2.2: Analyzing a particular marking (in a 4X4 array with a MSPN 

as in Figure 2.3) say M18 r- [12 24 20 4 9 11], then if tl fires (i.e. either a PE, a
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IOL or a HL failed) the marking M^o = [8 16 20 8 6 7] results with

Pr}8)3o = 0.667. Thus, a PTV is given by Pr}8)30JBi = [0.667 0.667 0 0 0.667 0].

However the array may fail with Pr\Q j = 0.333 due to the existence of one faulty

SBL (#PE’s - #SBL’s — 12 - 11 — 1). Thus, a PTV is given by

PrlsjBi = [0-333 0.333 0 0 0.333 0]

When t2 fires (i.e a S' or a BL failed), the array fails with probability Prfgy = 1, 

the corresponding PTV is given by: Prl8jB2 =[00 1 1 0 0]. Therefore, the 

overall PTV associated with the transition to the failure marking when t\ or t2 

fires is obtained as follows: Pr\8jBi + Pr\&jB2 = [0.333 0.333 1 1 0.333 0]. The 

probability of survival is obtained by applying equation (3.9) derived in chapter 3. 

□.

2.4.2. Failure Rate Condition

Any transition in the MSPN can fire on every possible marking that 

represents an operational configuration. However, if all components whose failures 

fire a particular transition never fail, that transition will never fire. In the process 

of generating the reachability graph, a flag st- signals this condition for each 

transition i,-. Let a be a vector with components a; where each cq is the failure 

rate of the component type l and a;,- = B^. The flag s,- is set to one if a,- > 0 and 

zero otherwise.

2.4.3. Derivation of Transition Rates

Let (X(t), f >0} denote a continuous time homogeneous Markov process on a 

finite state space S ^ {l,2, * • • ,s) and denote the state probability vector at 

time t by P(t) — [Pi(<), P2(0> ' ‘ * > Ps(t)], where Pi(t) = P{X{t)=i}, ieS. The 

process is characterized by the following set of Chapman-Kolmogorov differential
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equations:

dPAt) , , ■
I, " = XIaijPi{t) ~~ aj}Pj{t)

al i

where a,-y are the transition rates from previous states i and ayy = Yjajh "where ay*
k

are transitions rates from state j to states k. The solution for the set of 

differential equations is given in matrix form as follows:

P(t) = P(0)eAt

where A is the transition rate matrix with elements a,y and P(0) — (1,0, • * • ,0)f 

is the initial vector state. Assuming there is only one absorbing state (i.e., failure 

state) and indexing transient (operational) states by l,...,s—1, then the reliability
S

of the system is given by: R (t) — Pi{i)

The transition rates a,y can be expressed in terms of the attributes associated 

with the transitions in the MSPN, i.e., aqx = f (P{x \

Denote by a a diagonal transition rate matrix with elements ay,- = ay and
a

atj-y = 0 for i=£j (a,- is the failure rate of the ith component). Let Mq — Mqa where 

Mq = [mlg, m2g, * • • ra^q] denotes as before, a particular marking q, then

Qqi — fy^,CjPrq\bj) b,eBi,j=l,...,k]Mg (2.1)
i

defines the transition rate from state q to an operational state /. The summation

is defined over all transitions that fire exponentially and generate the same

marking l. It is interesting to notice the relationship of equation (2.1) with the
- T

firing rate of a particular transition <,• given by the vector product B(Mq . A 

transition to the failure state occurs for lack of support (i.e., enough spares) or 

lack of coverage. In the first case, lack of support occurs if the reconfiguration 

algorithm failed due to exhaustion of spare components or the fact that the array



24

fails to reconfigure if a given distribution of faults is not supported by tbe 

reconfiguration algorithm. Denote by the transition to the failure state (f) for 

lack of support, then

• 'A ' ' '
X<jf = fy)Prqfbji

Let \cqf be the transition to / for lack of coverage then:

/ »

The overall transition rate to the failure state is:

Kf = V + ^9/

The diagonal term of the matrix A is calculated as follows:

aqg=~( E aql + ^gf) = _(EV + V)

where:

i

Example 2.8: Consider a particular marking say Mjg = [12 24 20 4 9 11], then

with the following failure rates: aQ = 1, ax = a2 == * * * = .01, yield

M18 = [12 .24 .20 .04 .09 ,11]. As in example 2.2, the following probabilities are

used: Prig,30 = 0.667, Pr\8j = 0.333, Prf8j — 1. Let cx — c2 = c then, when tx

fires the following transition rates in the Markov chain are generated:
* T

ais,f = c[.667 .667 0 0 .667 0]M18 = 8.2241c. The transition to the failure state 

due to lack of support when t\ and i2 fire is

X18)/ = ([.333 .333 0 0 .333 0]+[0 0 11 0 0]J.M18 = 4.34589. For lack of coverage
A

X^ = (1—c)[.667 .667 0 0 .667 0]M4 = 8.2241(1—c). The overall transition rate 

to the failure state is given as X18y = 8.2241 *(1—c) + 4.34589. Considering that a



failure of a SBL (£0) yields a transition rate a18ig = [00000 1]M18 0.11 then

the diagonal term is calculated as: a j8 i8 = 8.2241+.11+4.34589 — 12.68. □

2.4.4. Implementation Procedure

The implementation procedure MODELGEN outlined below merges repeated 

markings as they are being generated and calculates or modifies the transition 

rates in the process. The new markings generated every iteration, are targets of 

the currently visited marking; they are inserted into a linked list of markings. As 

they are generated, markings are sorted with respect to the sum of those 

components indicated by the user through comparison flags previously set. An 

array of pointers to the newly created targets is updated. A pointer to the current 

marking is denoted by cm. A pointer to the next marking in the list is referred to 

by next A systematic indexing of markings is carried out such that the resulting 

transition rate matrix is always upper triangular; a marking number is assigned 

to every next marking fetched from the sorted list; a pointer nxtopr points to 

markings Which are candidates to be printed or saved in a file. If all its targets 

have been numbered, then a marking is saved or printed out; therefore, no 

significant amount of memory is required to generate large models. The 

procedure stops when all markings have been fetched from the sorted list. Notice 

that the linked list corresponds to the reachability graph and as it is forme(d, both 

the transition rate matrix representation of the Markov model and the 

reachability graph are printed out or saved as requested by the user.

Procedure MODELGEN -
Inputs: Set of failure rates (a,); File names (to save the matrix representation 
of the Markov model); An MSPN representation of the reconfiguration 
algorithm (Procedure MSPN outlined previously).
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Outputs: Reachability graph description; Matrix representation of the 
Markov model.

Begin
Set a coverage flag for each transition that it is fired by non-active 
components, (this allows the evaluation of a symbolic matrix for different 
coverage values).
Set comparison flags (to select those components by which the list of 
markings is sorted).
Load initial marking 
for each t,-let s,-=
Let cm point to initial marking 
nxtopr — cm 
while not end of list do 

fetch current marking 
assign a number to current marking 
for each £,• and if st- > 0 do 

get P(x | Mq,ti)
fire ti and those transitions fye5,- 
calculate transition rates 
store targets in temporary table 

end for
merge repeated targets 
insert new targets in sorted list 
insert pointers to new targets in current marking 
while all targets of nxtopr are numbered do 

output nxtopr marking 
let nxtopr = nxtopr^-next 

end while 
let cm = cm—>next 

end while 
end procedure

The execution time of MODELGEN is proportional to the number of states 

generated and therefore depends on the reconfiguration algorithm. For the cases



given in Table 3.2 in chapter 3 the execution time is 0(n3) for nXn processor 

arrays.
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2.5. Summary

A systematic procedure to construct Markov models was discussed in this 

chapter. Using an SPN-like representation, transition firing represents the 

occurrence of faults; A place contains a number of tokens tokens which 

correspond to the number of components of a single type; thus, the collection of 

different components is represented by a marking in an SPN-like representation 

and a marking corresponds to an operational configuration of the array. However 

an SPN-like representation fails to take into account the distribution of faulty 

spares that exist when reconfiguration takes place and may cause the array to 

fail. Also the fact that several component types causes the same effect in the 

array when it reconfigures, leads to a more compact representation of the array 

which is referred to as an MSP N representation.

A mapping from transitions and markings in an MSPN representation to 

transitions and states in the Markov model was derived. This mapping allows the 

construction of the corresponding Markov model as the generation of the 

reachability graph is taking place.

The more the detail (number of components or places in the MSPN 

representation) that is included in the model the larger is the state space in the 

resulting Markov model. In summary the application of this method entails two 

interrelated problems. In the first place a thorough analysis of the array is 

required such that all interdependencies of failures of different components are 

defined; this can be a difficult task for complex reconfiguration schemes; secondly, 

in some applications a detailed modeling may be limited to small size arrays
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because of the large number of states generated. Finally, considering the fact that 

reconfiguration algorithms are primarily designed to treat failures of PE’s 

elements only, an MSPN representation for a given reconfiguration scheme, will 

depend on the assumptions made as to how the algorithm treats failures on 

component types other than PE’s.
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CHAPTER m

MSPN APPLICATIONS

3.1. Introduction

In this chapter three reconfiguration schemes are analyzed in detail. 

Algorithms to calculate probabilities of reconfiguration are derived. As stated in 

the previous chapter, probability functions P(x | are associated with each

transition i,- in the MSPN; probabilities of reconfiguration are used to determine 

Probability Transition Vectors which are in turn used to calculate transition rates 

in the Markov model. The probability of survival corresponds to the sum of 

probabilities of reconfiguration if the new markings generated are all operational; 

i.e. if the new markings correspond to operational configurations. In the second 

section of this chapter two algorithms are derived to calculate probabilities of 

reconfiguration for the SRE scheme. The third and fourth sections deal in detail 

with the ARCE and DR reconfiguration schemes, respectively. Expressions to 

determine the number of states for each reconfiguration scheme are given in 

section five. Also, in this section, results of the reliability analysis of each scheme 

are reported.
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3.2. SRE Reconfiguration Scheme

In chapter 2, the basic concepts underlining MSPN’s representations of fault 

tolerant processor arrays were thoroughly discussed. Concurrently and for the 

purpose of illustration, the SRE reconfiguration scheme was analyzed. Hence, in 

this section, expressions to estimate probabilities of reconfiguration for this 

scheme are derived.

The process of generating the reachability graph which describes the 

corresponding Markov model of an SRE scheme, starts with an initial marking 

given as follows: 

p1:#PE = n2 

p2:#IOL=2n2 

P3: #S = n+n2 

Pa-. = 0 

p5: f-IIL = n(n-l) 

p6:#SBL = n2

A failure marking corresponds to the case when $PE=0 or $SBL<i0. 

Transition tl will take place if either alf a2 or a5 is greater than zero; t2 will 

take place if either a3 or a4 is greater than zero. Likewise, t3 takes place if 

a5>0.

3.2.1. Probability Transition Vectors in SRE

To derive PTV’s, estimations of probabilities of reconfiguration are required 

for each reconfiguration scheme. In the SRE case, its MSPN indicates (Fig. 3) 

that when tx fires, two transitions in the Markov model may occur (corresponding 

to a sequence of two firings in the MSPN: t\ followed by t2)] one with probability



Pr\j which corresponds to the probability of survival denoted by Ps. The other 

transition fires immediately and will lead the processor array to a failure state 

with probability Pr\f. The array will survive with probability Ps if the failure of a 

PE or an IOL that triggers the reconfiguration algorithm occurs in a row that 

contains no faulty SBL. Let N denote the number of faulty SBL in a marking Mq 

then N is determined by:

N = #PEq - #SBLq = mlq - m6f

where 0 < N < nX.ii.

To estimate Ps, it is necessary to find all the possible ways in which N faulty 

SBL’s can be mapped into a total of rXc SBL’s in the array with a current 

configuration containing r rows and c columns. To simplify this problem we count 

all the possible partitions of N into r parts with a value not greater than c 

columns. Because each row contains c SBL’s, up to c faulty SBL’s per row are 

possible.

Each partition of Nis a k-tuple (ai,o2, . . . , a*), such that:

N = Oij + "b ••• "b (3-1)

where: c>a,->c,+i>l for 1 and

In [Ber8l] it is shown that the number of partitions of N with k or less parts 

and AT>a,>a,+1>l, is given by the recurrence relations:

F(N-k,k)=F{N,l) + F(N,2)+ ... +F{N,k) (3.2)

F(N, 1) = F{N,N) = 1

The function F(N,k) is interpreted as the number of partitions of N with k
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Theorem 1: Let us denote by F(N) the number of wanted partitions of TV; 

i.e. those partitions with at least one part a,- > c are excluded. Then F(N) is 

given by:

F{N)=F{N,c,l)+ ... +F(N,c,r) (3.3)

where:

F{N,c,k)

0 if N>kc

■Jj F(N—l,l,k—l) otherwise
'-M

and

(3.4)

F{N, c, 1) = F{N,c,N) = 1 if JV < c (3.5)

F{N,c,k) =0 if k> N (3.6)

Proof: Let us consider first the case when N > kc. Each term in the summation 

is recursively decomposed until the functions generated satisfy equations (3.5) and 

(3.6). The value of / in each term of the summation corresponds to a part a,- in 

the ith iteration. The partitions generated will contain a part a,- such that

< a,i < c. Hence, if N/k > c implies all partitions will have at least the 

first part aj >c and F(N,c,k) = 0 follows.

Let us examine now the case when N < ck. F(N,c,k) is decomposed into 

+1) functions, which in turn are recursively decomposed until the

cases of equations (3.5) or (3.6) are reached. In the process those functions in 

which N > kc or k > N are eliminated.

The number of terms in the sum corresponds to all the possible values a part may 

take and since the minimum at every iteration is a, = jiV/kj, we let ax < c as an 

upper bound for the first iteration which gives the number of summands
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indicated previously. For the next iteration the process is repeated. At the ith 

iteration, N = N—a{ and k has been decremented to indicate that now the new

value of N is to be partitioned in A;—* parts such

Equations (3.3-S.6) can also be used to determine the value of each part in a 

particular partition since in the ith iteration the index l in equation (3.4) 

corresponds to the value of a,- whereas N—l c< >

be partitioned among the k— 1 remaining part

Example S.l: To illustrate the application of the above relations, let us find 

all the possible distributions of 8 faulty SBL’s in a 4X4 array (r=c=n).

Solution: With N = 8, n — 4 and r = 4 we have:

F(8) = F(8,4,l) + F(8,4,2) + F(8,4,3) + F(8,4,4)

F (8,4,1) = 0 since 8 >4 

F(8,4,2)=F(4,4,1) = 1 

F(8,4,3)=F(5,3,2)+F(4,4,2)

= F(2,3,l) +F(2,2,1) +F(1,3,1) + F (0,4,1) = 1 + 1 + 1 = 3 

F(8,4,4) = F(6,2,3) + F(5,3,3) + F(4,4,3)

=>(4,2,2).+ F (3,2,2) +> (2,3,2) + F(2,2,2) +F(l,3,2) +F(0,4,2) 

= F (2,2,1) + F (1,2,1) + F (1,1,1) +F (1,1,1) +0+0=4 

And F(8) = 0 + 1+3+ 4= 8

given by F(8,4,2); partitions 2-4 are given by F(8,4,3); and partitions 5-8 are given 

by F(8,4,4). □

Table 3.1, shows the order of the resulting partitions, where partition 1) is
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Table 3.1. Partitions of N = 8

Partition
No. av

Parts
CL 9 a, % 04.'

1 4 4 0 0
2 3 3 2 0
3 4 2 2 0
4 4 3 1 0
5 . 2 2 2 2
6 3 2 2 1
7 3 3 1 1
8 4 2 1 1

The probability of survival Ps can be found by two methods using in both 

cases the Total Probability Theorem [Tri82]. In the first method:

F(N)
P8 = ^P{s\t)P{t)

t=l
(3.7)

The term P(s | i) is the probability of success given the ith partition occurs and 

P(») is the probability that the ith partition occurs. These probabilities are 

obtained as follows:

p(5io = 4 >(o = f

where Z{ is the number of zeros in the ith partition, 7T,- = • * Tr
r—1n
t=0

corresponds to the number of mappings represented by the ith partition with m

F(N)
distinct parts repeated 77 (l</<ra) times. The term tt = 7Tf*' =

1=1
rc
N 

\ /
is the total

number of possible mappings of N faulty SBL’s into an array with rXc number of 

PE’s. After some manipulations on equation (3.7), the following expression 

results:

1 HP)PS = ---- £ Zi'Ki
■ r 7r

(3.S)
1=1
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A drawback in this procedure is that an enumeration of the possible partitions of 

N is required and this is a lengthy task for large processor arrays. A second 

method more attractive for large arrays is given in the following:

Theorem 8.2: Denote by k the number of rows (number of parts in the partition) 

with » faults (k parts with same value i), let 7r be defined as above and let #(&,*) 

be the total number of mappings with exactly k rows with i faults then the 

probability of survival is given by the following expression:

m
Ps = E

*=1
6(k, i)

7r
(3.9)

where

= £H0y+*
\

3
k

/ \ / \
r (r-j)c c
3 N-ij i

< ■>

where 0 < t < c and m is determined such that 0 < N—im < (r— m)c.

Proof: To find 9(k, i), denote by A* the number of mappings with at least k rows 

with * faults, then

Ak =
r 1

\
c

k
j

N-ik
< >

i
^ >

The first binomial corresponds to the number of ways k is combined in r rows; the 

second binomial gives the number of mappings of the remaining faults into the 

remaining spots (PE’s) in the array; the last binomial corresponds to the number 

of ways in which i faults are mapped into c PE’s in one column in each of the k

rows. Because counts also A/ for 4</<m by a factor of 6(k, i) can be

obtained subtracting all mappings with l rows; i.e.:

6{k,i)=Ak- S 
/=*+1

9(1,i)



'.36

By letting 6(m,i) = Am an expression of 8(k, *) is obtained recursively in terms of 

A*. After substituting A* the expression for 6{k, i) given above follows.

To obtain Ps, let a*jt- be the set of partitions with k rows with i faults then the 

probability of survival given a^i is k/r and using the Total Probability Theorem 

the probability of survival is given by:

m
Ps=P(s)=YlP(s\akii)P(akii) 

k=1

where P(a*t) = ^ —- and equation (3.9) follows. □

In the particular case of the SRE scheme, Ps is obtained by letting i=0 in 

equation (3.9).

3.3. ARCE Reconfiguration Scheme

In the ARCE scheme, a row elimination is followed by a column elimination 

[FoR85]. Figure 3.1, shows a section of an nXn array supporting ARCE. Since the 

number of rows and columns varies with each configuration, then at a given 

configuration, r denotes the number of rows and c the number of columns. The 

array is in a r-configuration (r=c) if the reconfiguration algorithm deletes a row; 

Likewise, it is in a c-configuration (r < c) if the reconfiguration algorithm deletes 

a column; In Figure 3.1, the following components are identified: PE’s; I/O 

Links, which are the interconnections between switches and PE’s; Column 

Switches (CS), which are the switches in the current c columns of the array; Row 

Switches (RS), these are the switches in the current r rows of the array. The spare 

bypass links (SBL) used to bypass a faulty row become active links and are 

referred to as Row Bypass Links (RBL’s). Likewise, the spare bypass links used 

to bypass a faulty column become active links and are referred to as Column 

Bypass Links (CBL’s).



In the case of ARCE, the following assumptions are made:

1) The failure of a PE or an IOL, causes the elimination of a row if the array is 

in a r-configuration; it causes the elimination of a column if it is in a c- 

configuration.

2) All switches in the current configuration are considered active.

3) The failure of a RS in a r-configuration, causes the elimination of that row; 

in a c-configuration, a column is eliminated followed by the affected row to 

comply with the alternate column-row deletion process.

4) The failure of a CS in a c-configuration, causes the deletion of the affected 

column; in a r-configuration a row and the affected column are eliminated.

5) The failure of a RBL, causes the same effect as the failure of a RS.

6) The failure of a CBL, causes the same effect as the failure of a CS.

7) If a row is deleted, the spare bypass links used to bypass that row must be 

fault free. Otherwise, the row is deleted followed by the column deletion with 

the faulty spare link; this sequence is referred to as a row-column deletion 

sequence. Likewise, if a column is deleted the spare bypass links used to 

bypass that column must be fault free; otherwise, the column is deleted 

followed by the row with the faulty spare link; this sequence is referred to as 

column-row deletion sequence.

3.3.1. MSPN Representation of the ARCE Scheme

Any operational configuration Ct- for the ARCE scheme is described as

follows:

Vi = (vu,V2i, V7i) - {#PE,#IOL,#C5,#RS,#RBL, f-CDL,#SBL)

An operational configuration Ct- corresponds to an operational marking M,-.
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(cs

Figure 3.1.- Schematic Layout of the ARCE Structure

An initial configuration C0 in terms of the size n of the array, is given by the 

following set of equations:

p1:#PE = n2, 

p2: #IOL = An2,

Pz‘ HRS = (n+l)w,

Pa' #<7S = (n+l)n, 

p5: #RBL = 0, 

p6: #CBL =0, 

p7: jjSBL = 2n2.

In any configuration <7,- described by a marking M,-, the number of rows r 

and columns c are calculated as follows:
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r (mi.)

The difference d = c — r — 0 identifies r-configurations and d — 1 identifies 

c-configurations.

'A transition to a failure marking occurs if the current marking contains not 

enough PE’s or not enough SBL’s. To identify this condition in each marking Mq, 

a flag x is set or reset accordingly:

1 if m{>m and m6>2m
x = i

0 otherwise

where m and 2m refer to the number of PE’s and SBL’s, respectively, eliminated 

by the reconfiguration scheme. Notice that m takes values depending on the type 

of the current configuration.

A place Pi and a transition £,• is assigned to each component type as listed 

above. For each f,- the corresponding set A,- of I/O places and set of multiplicities 

V{ are determined next.

According to assumption l), (failure of a PE) affects all the components in 

a column or a row; hence:

^1 = {/(<lj*0(|i)}. = {{Pl,P2»P3>P4,P5>P6,P7}>{P6>P7}}

The set Vi of variable multiplicities is given by the following set of 

equations:

a) n[ = rx+mlq(l— x)

b) jxl = 4rx+m2g(l— a:)

c) ni = {n+l)dx+mZq{l—x)

d) p,{ = (n+l)(l — d)x+m4g(l— x)
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e) p{ = (n—r)dx+m5q(l—x)

f) vl■— (»— c)(l — d)x+m6g(l— x)

g) p\ = 2rx+m7q(l-x)

h) p° = r(l-d)x-m5q(l-x)

i) P° = rdx—m6q(l—x)

This set of equations indicate that when fq fires then: a) r PE’s are deleted; 

b) 4 IOL’s for each PE eliminated are also eliminated; c) in a c-configuration, 

n+1 CS’s are deleted; d) in a r-configuration n+1 RS’s are deleted; e) n—r RBL’s 

are deleted in a r-configuration; this number corresponds to the RBL’s bypassing 

the PE’s in the rows already eliminated; however, no RBL’s are deleted if the 

current configuration is a c-configuration; f) no CBL’s are deleted in a c- 

configuration but in a r-configuration, n—c CBL’s need to be deleted which are 

those CBL’s bypassing PE’s in the columns already eliminated; g) since there are 

two SBL’s for each PE, 2r SBL’s are deleted in either configuration; h) the 

number of RBL added corresponds to the number of PE’s in a deleted row; i) the 

number of CBL’s added corresponds to the number of PE’s in a deleted column.

The failure of an IOL (f2)> as stated in assumption l) causes the same effect 

as fj. Therefore A % — A i and V2 — Flv

The failure of a CS (t3) as stated in assumption 4), will have the following 

set A3:

A3={l{i3),0(i3)} = {{p1,p2,P3,P4,P5,P6,P7},{P5,P<i}}

Let m=r+(c—l)(l—d) then the set V3 of variable multiplicities is given as 

follows:

a) p[ = mx+mlq(l—x)
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b) *4 — 4fnx+m2?(l-s)

c) Pz = (n+l)x+W3?(l—x\

d) pi = (n-t-l)(l—d)x+m4q(l-x)

e) P5 =" (n-r)i+m5!(l-i)

D pi = (n—c)(l—d)a:-|-m6?(l-x)

g) P'7 = 2mx-\-m-jq{l—x)

b) = (c —1)(1—d)x—m5g(l--x)

0 p6 — (r+d— l)x—m6q(l—x)

Thus when t3 fires, equation a) shows that in a c-configuration, only r PE’s 

are eliminated; however in a row configuration, to delete a column a row must be 

deleted first giving a total of r+(c—1) PE’s eliminated. In general given a r- 

configuration, to delete a column, the sequence row-column deletion applies and 

given a c-configuration, to delete a row, the sequence column-row deletion applies. 

In equation b), for every PE that is eliminated 4 IOL’s are also eliminated. In c) 

shows that in either configuration, all the OS’s in the affected column are

eliminated. Equation d) shows that in a r-configuration all the RS’s in the affected 

row are eliminated. Equation e) indicates that in either configuration (n — r) 

RBL’s are eliminated. Equation f) shows that in a c-configuration, n—c is the 

number of rows that have been eliminated, so the same number of active CBL’s is 

eliminated. However none are eliminated if a column is deleted. Equation g) 

deletes 2 SBL’s for each PE deleted. Equation h) shows that in a c-configuration 

the row-column sequence activates only c— 1 RBL’s; none is activated in a r- 

configuration. Equations) shows that r—1 CBL’s are activated corresponding to 

the column deleted in a row-column sequence that applies in a c-configuration; in 

a r-configuration only a column is eliminated and so are the r CBL’s in it.



The effect of the failure of a RS (t4), as stated in assumption 3), is described 

by the following set A4:

A4={l{i4),0(t4)} = {{p1,P2,P3,P4,P5,P6,P7},{PS’P&}}

with the following set of variable multiplicities V4 where m—r+(c—i)d:

a) ,u{ — mx+mlq(l— x)

b) (ii2 = 4mi+m2g(l-i)

c) (n+l)dx+m3q(l—x)

d) /4 — {n+l)x+m4q(l—x)

e) /4 = (n—r)dx+m5q(l—x)

f) (Ug = (n—c)x+meq(l—x)

g) fly = 2mx+m,Tq(l—x)

h) /if = mx—mSq(l—x)

i) P'6 = {r~ l)dx—m6?(l—x)

These equations are essentially the same as for t^, except that in case of a c- 

configuration, the failure of a RS, implies the deletion of the affected row 

therefore the sequence column-row deletion applies. Note that equation h) shows 

that the number of CBL’s activated corresponds to the number of PE’s 

eliminated in a c-configuration; i.e. c CBL’s; in the case of a r-configuration 

r=c— 1 CBL’s are activated. Likewise, the number of RBL’s activated by 

equation i), corresponds to the number of PE’s eliminated in a r-configuration; 

none in a c-configuration.

The failure of a RBL (t5) as stated in assumption 6), will have the same 

effect as the failure of CS; therefore A5 = A3 and V5 = V3.
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The failure of a CBL (i6), has the same effect as the failure of a RS; 

therefore Ag —A4 and Fg = F4.

The failure of a SBL (£7), will decrease the number of SBL’s by one and:

A7 = {/(<7),0(f7)} = {{p7 }> {0}}

With a set V7 of variable multiplicities as follows:

' Vi = 1

Transitions and i2 have same set of I/O places and same set of
$

multiplicities; therefore transition ti of the MSPN is defined with A1 = Aj = A2 

and V{ = F4 = F2.

Likewise tz and f5 define transition i2 °f the MSPN with A2 = A3 = A5 

and F2 — F3 — F5.

Transitions f4 and i6 define transition i3 of the MSPN with A3 = A4 = A6 

and F3 = F4 = F6.

Finally transition i7 define i4 with A4 = A7 and F4 = V7.

The set of transitions t thus obtained with the corresponding sets of I/O 

places and variable multiplicities describe the MSPN of the ARCE scheme shown 

in Figure 3.2.

The transition vectors associated with the transitions t are the following:

Bx = [1 1 0 0 0 0 0]

B2 = [0010 100]

Bz = [000 1 0 1 0]

£4 = [000000 1]



Notice that in ARCE, t7 will not occur if = a2 = 0, t2 will not occur if 

a3 == a5 = 0, t3 will not occur if pr4 — o;6 = 0 and t± will not occur if a7 = 0.

3.3.2. Probability Transition Vectors in ARCE

In ARCE, a successful reconfiguration takes place if 1) In a r-configuration 

(r=c), all r RBL’s in the row to be deleted are fault free and 2) in a c- 

configuration (r<c), all r CBL’s, in the column to be deleted are fault free.

In either case we are interested in the distribution of Nx faulty spare RBL’s 

and N2 faulty spare CBL’s, such that N = Nt + N2 is the total number of faulty 

spare links where 0 <ATX <rc, 0 <N2 < rc. In a marking q, the number N of 

faulty SBL’s is obtained as follows:

N = 2 mlq—m7q

where mlq = rc and 0 <N< 2rc. The number of SBL’s that must be fault free 

for a successful reconfiguration is always r. Let H(N) be the number of partitions 

of Ninto parts ATX and N2 such that 0<NuN2<rc, then

_fiV+l N<rc
II{N) — |2rc_(jv—1) N>rc

Assuming all possible partitions of N are equally likely, the probability that any 

nth partition will occur is pr(n) = l/H(N).

Let X be a random variable which denotes the number of faulty sbl s 

(column spares in case of a r-configuration and row spares bypass links in case of 

c-configuration). Then Pr{X=i \ h) is the probability that there are i faulty 

spare links in the row or column to be deleted given the nth partition occurs; this 

probability is given by equation (3.9).



45

The total probability Pr(X=»), which corresponds to the probability that * spare 

row/column links are faulty in the row/column to be deleted out of a total of N 

faulty spare links is given by:

H(N) , i H(N) ,
Pr{X=t) = S Pr(X=i \ n)pr(n) = E Pr(X=i | n)

n=1
H[N) »=1

1 H(N) m
EE

k
r /

Q(k, 0
7T

(3.1°)

Since 0<? <r, expression (3.10) implies that there will be at most r+1

transitions from a given state to up to r+1 different new states. Each transition
r

is weighted by Pr(X—i) such that Pr(X=i) = 1. Every term in this
x=0

summation corresponds to a transition probability as stated previously. The size 

of the set R of states directly reachable from any given state is for this case up to 

r+1 and includes the failure state if X=r.

Because every possible value of X, may trigger a different reconfiguration the 

following cases are observed:

1) Case of transition t^.- If t=0, a row or column is deleted in a c or r- 

configuration respectively. However if *X), i sequences of rc-deletions are 

required: in a r-COnfiguration i faulty spare row bypass links become faulty active 

row bypass links so £2 is applied i times; In a c-configuration i faulty spare 

column bypass links become faulty active column bypass links so £3 is applied i 

times.

2) Case of transition t2- The application of t2 implies rc-deletions in a r- 

configuration for all i. In a c-configuration however, if *=0, only the column 

affected is deleted; if i>0, then i rc-deletions occur and since the column spare 

bypass links in the columns deleted become active column bypass links then £3 is
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applied i times.

3) Case of transition t3- In this case, t rc-deletions are required in a c- 

rnnfiguration. However in a r-configuration, if i=0, only the affected row is 

deleted, otherwise i rc-deletions are necessary and since the faulty spare row 

bypass links become active row bypass links, 12 is applied i times.

In summary, to capture these cases in an MSPN representation the sequences 

Si, $2 &nd S3 are defined as follows:

_ ((<2, * * * » *2)' if d = 0 
Si — S2 S3 • • • , t3) otherwise

i.e., whenever t2 or t3 fire exponentially, a sequence of r immediate firings of 

t2 or t3 will follow depending whether the current marking corresponds to a r- 

configuration or a c-configuration.

Finally, we adopt the following criteria to determine the number of faulty 

spares that are passed on to the new configuration. When a single row or column 

is eliminated, the number of faulty spares passed on to the new configuration is 

given by:

Ni = N0 - r

In general after k firings of a sequence 5,- have occurred, the following recursion 

can be applied:

Nk = - m

where

r for ti
r+(c—l)d for t2 

r+(c—l)(l—d) for t3

m — ■



47

These expressions assure that the spares that become active and make the 

new configuration possible must be fault-free. The number of faults in a current 

configuration are distributed in the array between the rows and columns deleted 

and the new configuration. Therefore the new configuration will contain non- 

faulty spares if Nk < 0 otherwise iV* faulty spares are passed on to the new 

configuration. To represent this condition every time t% or fires, let a flag y 

be set or reset as follows:

1 if Nk <0
y = i

0 otherwiseV

then the desired number of SBL’s (m7y) in a new marking j is obtained by

modifying the input multiplicities associated with SBL’s as follows:

/U7 = ((2m — Nk-i)y — m(l—y))x+m7(l—x)

3.4. Direct Reconfiguration Scheme

In this section an specific case of reconfigurable processor arrays that follow a 

systematic chained replacement of faulty cells [SaS86a,SaS86b] is analyzed. Figure 

3.3 shows a schematic layout of the hardware requirements for the Direct 

Reconfiguration in an nXn array where interconnections are implemented through 

multiplexers. For illustration, the Direct Reconfiguration (DR) algorithm is 

emphasized, since other schemes within this class (fixed fault-stealing, variable 

fault-stealing, complex fault-stealing, etc.,) [SaS86a,SaS86b] can be analyzed in a 

similar way.

Upon the application of the reconfiguration algorithm (which considers the 

total number of non-faulty cells), a faulty cell is replaced by a spare cell by 

simply reindexing non-faulty cells and bypassing the faulty one. Thus, a shift of



functional cells or chained replacement is carried out when a faulty cell is 

detected. For the case of a single spare row and a single spare column, the 

reconfiguration algorithm scans each column of the array upwards and marks the 

first faulty cell as a vertical fault. All other faults are classified as horizontal 

faults. If one row has more than one horizontal faulty, reconfiguration is not 

possible along that row and the reconfiguration fails.

To analyze the DR scheme, the following components are considered: active 

cells (PE’s); I/O links (IOL’s); for each cell there are two Input Multiplexers 

(IMX’s); for each cell there is one Output Multiplexer (OMX); Bypass Links (BL’s) 

are active links which are used to bypass faulty cells; the Interconnection Links 

(IL’s) are sets of links that define the interconnection network and it is assumed 

(to simplify the analysis) that there is one set per column and that the
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corresponding failure statistics can be provided; spare cells (SPE’s); Spare IOL’s 

(SIOL’s); Spare Multiplexers (SMX’s) which are the non-active multiplexers 

associated with spare cells; Spare Bypass Links (SBL’s) are non-active bypass 

links. ■

In the analysis of this scheme the following assumptions are made:

1) The reconfiguration algorithm is applied to replace either spare or nominal 

faulty cells. In this analysis only one spare row and one spare column are 

assumed.

2) A cell is bypassed by any one of the spare bypass links shown in the diagram 

depending weather the reconfiguration is vertical or horizontal [SaS86a]. 

Since the functions of the bypassed cell are replaced by another cell, a link in 

the IL is activated acting as a bypass. Therefore, it can be assumed that 

always two bypass links will be used to bypass a faulty cell. Also, for a 

successful reconfiguration both spare bypass links must be fault-free.

3) The failure of an IL or an OMX or a BL is fatal.

5) The failure of an SMX or an SIOL disables the spare cell to which they are 

attached.

4) The failure of an IMX or an IOL disables the cell to which they are attached.

3.4.1. MSPN of the DR Scheme

The following set of equations shows the initial configuration of an nXn 

array that supports the DR scheme with one spare row and one spare column. A 

place assigned to each component type is also indicated:

Pl: #PE = n2 . .



Figure 3.3.- Schematic Layout of the DR Structure

p2: ftlOL — 4n2 

p3:#IMX = 2n2 

p4: #OMr =:n2 '

Ps:#BL—2n 

p6: #IL = ra+1 

p7: #SPE = 2n+l 

p8: #SIOL — 4 *(2rc+l) 

p<,: #5MT — 3(2»-|-l)

Pio1 = 2ra2+2(n+l)

Note that in the initial configuration the number of BL’s is given by those 

active links required to bypass both the spare row and the spare column. The 

number of SMX’s correspond to those multiplexers attached to spare cells; since 

they are not active a single place is assigned to them assuming all have the same



failure rate; when a cell becomes active then its 3 SMX’s are separated into 2 

IMX’s and 1 OMX. The total number of SBL’s is given by those existing in the 

nominal array plus (n+1) in the spare row and (n+1) in the spare column.

To construct the MSPN, let us denote by the failure of an SBL (t10) with 

Ai — A10 = {{pio},0} and Vi = Fj0 which contains only the equation Hio — 1.

Next, according to assumption 5, the failure of SIOL (tg) or the failure of an 

SMX (tg), cause the same effect as the failure of an SPE (t7); therefore these 

three transitions define t2 with A2 = A7 = A8 = Ag — {{p7,Ps,p9,Pio}>{P5}}* 

The set of multiplicities associated with the set I/O arcs is defined as: 

V2 =V7 == F8 = Vg which contain the following equations:

M? =1 •

Ms =4

Mg =3 ... . ■ .

M10 = 1 ...

= 1

By assumption 3, the failure of an IL (t6) or the failure of an OMX (£4) or 

the failure of a BL (£5) will cause the array to fail. These transitions define t3 in 

the MSPN with a set of I/O places A3 = A6 A4 = A5 — {{ pj,p2, • • • >Pio 

}>0} and a set of multiplicities V3 = V& = V4 = V5 — • {{ 

Hi = mu,H2 = mi2i••vMio = m»'io}> 0 } any given ith marking.

Finally by assumption 4 the failure of a PE (t/), the failure of an IOL (t2) 

and the failure of an IMX (t3) have the same effect on a given current 

configuration of the array; therefore transition 14 of the MSPN with a set of I/O 

places A4 = Ax = A2 = A3 = {{p7>P8,P9>Pio>P5}>{P5,Pio}}- The corresponding 

set of multiplicities is V4 = V\ = V2 = V3 which contain the following

51
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equations:

(4 =l;f4 = 4;/4 = 3;/4o = 2;^[ = l;^f = 2;//100 = l;/4o = 2;

The Binary Transition Vectors associated with the transitions obtained are 

the following:

Bx =[0 00000000 1]

B2 = [0 0 0 0 0 0 1 1 1 0]

£3 = [0 0011100 0 0]

£4 =[1 1 1 0000000]

When fires because a PE or a IOL or an IMX failed, the the array 

reconfigures with a probability of survival Ps=Pljq or fails with probability 1—Ps. 

To capture the transition to the failure state, fires immediately after 14 fires 

exponentially. Hence S4 = (£3). The remaining transitions do not cause any 

immediate firing; therefore, Sx =S2=S3=0. The MSPN obtained for the DR 

scheme is shown in Figure 3.4.

Notice that tx will not occur if a10 =0, t2 will not occur if 

a7 = as = cxg — 0, t3 will not occur if a4 = a5 = o?6 = 0 and 't4 will not occur if 

&i = a2 = a3 = 0.

3.4.2. Probability Transition Vectors in DR

A successful reconfiguration in the DR scheme depends on the availability of 

spare cells upon the failure of an active cell and the fault-free condition of the 

spare bypass links which bypass the faulty cells. The number of faulty cells Ne 

and the number of faulty SBL’s Ns at an ith configuration of an nXn array are 

given by:



53

OMX SMX)SIOL)

BL V

■ H

Figure 3.4.- MSPN of the DR Scheme

Nc = 2nq+q2—nii7 

Ns =2n2+2(n+q)+2nq—mi5—mnQ

where q is the number of spare rows and columns, m,-7 = r]i7, m,-5 = rjis and 

m,io = ??,10 are the number of spare cells, the number of active bypass links 

(BL’s) and the number of spare bypass links (SBL’s) in any ith configuration 

respectively.

A probability of transition Pr is one when ti, t% or ts fire. However when t4 

fires the reconfiguration scheme is triggered and the array reconfigures with a 

probability Ps == Pr\j or fails with probability 1—Ps = Pr^. Let P(s \ Nc) 

denote the conditional probability of success given Ne number of faulty cells and 

let P(s | Ns) denote the conditional probability of success given Ns faulty SBL’s. 

The probability of succeiss is then given by:

Ps=P{s\Nc)P{s\Ns) (3.11)
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Thus, the presence of faulty SBL’s in the array affects the overall successful 

reconfiguration rate. The conditional probabilities of success are derived in the 

next paragraphs.

Estimation of P(s | iVc)

To derive the probability of successful reconfiguration given Ne faulty cells, 

the following recursive expression given in [JaR88] is used. Starting from the 

(<7+l)th row to the (»+?)th row of the array the probability that a fatal failure 

occurs in the first j rows is given by:

P/U) =
Pti-iW-Pti-WtU) for J>'r
0 otherwise

at the (n+g)th row the conditional probability is obtained by:

P{s \Nc) = l-Pf{n+q) (3.12)

n+q
i

\ j

S—(n+q)
Nc—i

s
Ne

where Pg{j) is the probability that a first fatal failure occurs in the jth row. 

Denote by Pa(i) the probability that a row has exactly i faulty cells then:

PM =

where 5=(n+^)2 is the total number of cells in the array.

Let Pb{j) den°te the probability that a column has at least q faulty cells in 

the first j —1 rows then this probability is obtained as follows:

p>U)=E-
k = q

J-1 s-Kj-i)
k

< >
N,-k

7---Ts
Nc
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Now let Pc(i,j) denote the probability that at least q-\-1 out of i columns 

have q faults or more in the first j—1 rows then:

Pc(hJ) = E 
l=q+1

mmi-PHii)i-i

The probability of first fatal failure in the jth row Pg(j) is obtained as 

follows:

n+q
i-gU) - £

i=q+l.

The probabilities of survival given Nc for several array sizes are shown in 

Figure 3.5. These results compare closely with those obtained using simulation as 

reported in [SaS86a].

Estimation of P(e\N,)

To estimate the probability of success given N, faulty SBL’s, let us assume 

that up to two SBL’s per active cell may be faulty. Denote by p a place where a 

cell may have either none, one or two faulty SBL’s then the number of possible 

faulty places denoted by JVp varies as follows:

N.
2 <NP<P

where /? = mm{N„2(n2-Ne)}. The probability of successful reconfiguration given 

N, is given by:

P(s | N,) =

P .
E

(3.13)
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=--V\

/
n2 'n2-N'
Nc , N> ,

the numerator of the above expression corresponds to the possible number of 

mappings of both faulty cells and faulty SBL’s in which both types of faults do 

not coincide in a single place. The numerator corresponds to the total possible 

number of mappings (fault distributions) given Np and Ne.
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Let P(Np) be the probability that Np faulty places exist. This probability is 

obtained as:

W) =
N.

k=
s

Nr
2

By the Total Probability Theorem, the conditional probability given N, is 

given by:

P{» I N.) = E P(s | Np)P(Np) (3.14)
N,

N>~ —

Finally, substituting and simplifying in the above expression yields (3.13).

3.5. Comparative Results

In this section expressions are derived to determine the state space of the 

three schemes analyzed. The state space size can be obtained through these 

expressions or through MODELGEN. Also some reliability results are reported 

for several sets of failure rates to compare the effect of detailed modeling with 

respect to an analysis in which only failure of PE’s are considered.

3.5.1. State Space

For the schemes analyzed, Table 3.2 shows the growth of the state space as 

function of the size of the array. In this table all failure rates are assumed greater 

than zero in order to generate in each case, the maximum number of states. The 

maximum; number of states tabulated, can be obtained using for each case closed 

form expressions.
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To derive the number of states for the SRE case, let £(n) denote the 

maximum number of states for an nxn array; then:

sSKB{n) = + 2n)

This expression is derived by observing that n states are generated with non- 

faulty SBL’s; for each state i with non-faulty SBL’s, »(»—»') additional states are 

generated. Hence, the total number of states is obtained by solving the
n—1

summationSSRE{n) = [»(»—i)+l] to yield the above expression.
" : , 1=0

For the ARCE case the number of states S(ti) can be derived by observing 

that (2n—1) states are generated with non-faulty SBL’s. Each of these states 

generates additional states with a total number expressed by the following 

summation:

2n—2
XJ.{[2(n-t)2+l] +• [2(n-0(n-i-l)+i]}'

• V i=o . '

from which the following recursion is derived:

Sarce{1) = 3 ^ARCBi71) — Sn-1 + 4n2 — 2 n + 2

with a closed form solution given by::

^ARCE{n) = + 7fl) + 4] + 3

The number of states in the case of DR, can be obtained by the

following expression:

2qn+q2 '
■ ' . :SDR(n)= Yj [(27i2+2(?n+g2)+l)-i] 

i=0

In this expression the summation is carried out over all states generated with i 

faulty SPE’s. Solving this summation the following closed form results:
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SDR(n) - {2qn+q2+l)[2n2+2(qn+q2)+l-(2qn+q2/2,)

simplifying for 5=1, then

Sj)s{n) — (w "1“1)(47i^-(-2ti -i~5)

Using either MODELGEN or the above equations the number of states 

generated in each case is shown in Table 3.2.

Table 3.2. State Space Size for three Reconfiguration Algorithms

n SRE ARCE DR
2 8 17 75
3 21 51 188
4 44 107 385
5 80 199 690
6 132 333 1127
7 203 517 1720
8 296 759 2493
9 414 1067 3470

10 560 1449 4675

3.5.2. Reliability Analysis

To illustrate the applicability of MODELGEN, several sets of failure rates 

(«'«) have been selected and described in Table 3.3. For each failure rate set, the 

Reliability (R), the MTTF and the Reliability Improvement Factors (RIF) have 

been computed for a 4x4 processor array. The results obtained are tabulated in 

Table 3.4 for both the SRE and the ARCE reconfiguration schemes.

In our analysis, we have used the PE failure rate as a reference normalized 

with respect to the time unit such that at = 1 and with a coverage factor of c = .99. 

The computations were carried out using the MGRE (Model Generator and 

Reliability Evaluator) software package described in [Lop89].



The main purpose of the tabulations in Table 3.4, is to show the 

interdependencies of the different components now contained in the model. Notice 

for example in column (e), the sensitivity to switch failures of the array with 

SRE; i.e. columns (d) and (e) show the results obtained under similar failure rate 

values except for switches; a reliability improvement factor (RIF) is calculated in 

each case with respect to the simplex (sx) case, which corresponds to the case of 

the failure of the array when a single processor fails; at t = .1 a RIF of 15.91 in 

column (d) decreases to a RIF of 3.87 in column (e) as the failure rate of the 

switches increases from 0.01 to 0.1. The same effect is less noticeable in the array 

with ARCE; Compared to SRE, ARCE is less sensitive to failures in switches and 

links. The Mean Time to Failure of the array with ARCE improves in each case 

considerably with respect to the array with SRE. In summary column (b) shows 

reliability results obtained considering PE’s failures only; on the other hand, 

columns (c-d) show the effect of detailed modeling obtained under different failure 

rate sets.

Table 3.3.- Failure Rates used for the results shown in Table 3.4.

Array col. _£i_ <*4 <X$ Of7 Explanation
a sx - - . (*i=pe f.rate
b 1 •0 .0 .0 .0 .0 - or2=101 f. rate
c 1 .01 .0 .0 .01 .0 - or3=Switch f.rate

SRE d 1 .01 ,01 .01 .01 .01 - Q'4=b.link f.rate
e 1 .01 .1 .01 .01 .01 ' - Of5=h.link f.rate
f 1 .01 .01 .1 .01 .1 - or6=sp.b.link f.rate
g 1 .01 .01 .0 .01 .0 - -
a sx - • - . - . - - ■ - cvg^c-switch f.rate
b 1 .0 .0 .0 .0 .0 .0 or4==r.switch f.rate

ARCE c 1 .01 ,0 .0 .01 .01 .0 Q'5=c.b.link f.rate
d 1 .01 .01 .01 .01 .01 .01 Qf6=r.b.link f.rate
e 1 .01 .1 .1 .01 .01 .01 a7=sp.b.l.f.rate
f 1 .01 .01 .01 .1 .1 .1 sx=simplex
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Table 3.4.- Reliability and RIF’s for SRE and ARCE with c = .99 and 
Failure Rates given in Table 3.3.

Array
R/RIF Time a b c a e f
SRE; .1 .201897 .97553 .974196 .949305 .792264 .901154

.2 .040762 .889824 .882997 .832308 .580682 .703244

. R ■- .3 .008230 .74327 .729796 .663918 .3869727 .489128
.4 .001662 .578714 .561119 .492554 .239752 .315416
.5 .000335 .428912 .410413 .347755 .141386 .194080
.1 32.62 3.93 15.91 3.86 8.50
.2 8.71 8.20 5.80 2.30 3.44

RIF .3 3.86 3.67 2.98 1.62 2.04
.4 — 2.37 2.27 1.98 1.32 1.51
.5 — 1.75 1.70 1.54 1.17 1.27

MTTF _ _ - .510087 .496435 .447789 .280379 .33785
ARCE .1 .201897 .986691 .986227 .985946 .983185 .985713

.2 .040762 .977126 .976359 .975787 .966740 .974176

R
;3 .008230 .969483 .968212 .966729 .939159 .959977
.4 .001662 .961962 .959513 .955845 .894073 .93758
.5 .000335 .95268 .947997 .940533 .831963 .903652
.1 59.97 57.95 55.75 46.78 47.29
.2 — 41.94 4.58 38.91 28.50 31.78

RIF .3 32.50 31.20 29.31 16.17 21.72
.4 — 26.25 24.66 ^2.27 9.38 14.47

V- .5 — 21.13 19.22 16.61 5.93 9.65
MTTF - • - - 2.07274 1.90644 1.74707 1.02882 1.28279

Some reliability results of a 4X4 array with a DR scheme are shown in Table

3.6. Each column corresponds to a set of failure rates tabulated in Table 3.5. 

Column a considers the reliability of the array when only PE’s (SPE’s) fail. The 

remaining columns consider failures in all components in the model; thus, while in 

column b a single failure rate is assumed for all components except PE’s column c 

shows the effect of an increased failure rate of IL's and column d shows the effect 

of an increased failure rate of multiplexers. The array shows increased sensitiyity 

to failures in multiplexers than to failures in the IL's as shown by the reliability 

and MTTF results shown in columns c and d. Because the DR scheme considers
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components of greater complexity (such as IL's and multiplexers) than those used 

in SRE and ARCE, suitable comparison between the three schemes is given by 

column b in Table 3.4 and column a in Table 3.6 in which only failures of PE’s 

are considered.

Table 3.5.- Failure Rates used for the results shown in Table 3.6

col. aP.E aIOL aIMX aOMX aBL aIL aSPE iySlOL aSMX aSBL
a 1 .0 .0 .0 .0 .0 1 .0 .0 .0
b 1 .01 .01 .01 .01 .01 1 .01 .01 .01
c 1 .01 .01 .01 .01 .1 1 .01 .01 .01
d 1 .01 .1 .1 .01 .01 1 .01 .1 .01

Table 3.6.- Reliability Results for DR with c = 0.99 and 
Failure Rates given in Table 3.5

time a b c a
.1 0.971744 0.935879 0.894698 0.795178
.2 0.832624 0.744162 0.680113 0.487772
.3 0.576951 0,461321 0.403064 0.212808
.4 0.326881 0.228668 0.191000 0.070372
.5 0.156860 0.094770 0.075675 0.018868

MTTF 0.346681 0.30104 0.2774 0.207435

Let us consider a simplified model such as the one proposed in [WaF88b] 

where the reliability of the array is expressed as R(t) = Rnr(t)XRr(t). The terms 

Rnr and Rr refer to the reliability of non-redundant and redundant hardware 

respectively. For the SRE case, let the number of PE’s in the array be the 

redundant hardware, then:

R,(t)
n—1 

1=0
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Consider the No. of IOL’s, HL’s and Switches as the non-redundant hardware, 

then:

^ _ c-(2n2a2 + (n+n2)as + n(n+l)a5)i

Table 3.7 shows the reliability and MTTF results obtained with a set of 

failure rates as shown in row g in Table 3.3 and with c —.99. The results given by 

the simplified model show an underestimation of the reliability of a 4X4 array 

with the SRE scheme as compared to the results obtained by solving the Markov 

model generated by MODELGEN.

Table 3.7.- Reliability Results of Simplified and Detailed Modeling

time simplified Detailed
.1 .915052 .954906
.2 .782915 .848375
.3 .613426 .687296
.4 <,448006 .51798
.5 .311454 .371557

MTTF .41571 .464996

3.6. Summary

In this chapter the application of MSPN’s to generate Markov models for the 

reliability analysis of processor arrays has been shown. Three examples of 

reconfiguration schemes were thoroughly analyzed using MGRE to generate the 

models and reliability results. The analysis covers various components of the 

array and their failure interdependencies. Comparative results show the state 

space generated in each case. Reliability results derived for SRE and ARCE 

compare these two schemes and their responses to different types of failures. A 

possible MSPN representation of the DR scheme has been derived in which dense 

areas are confined into a block (IL’s) to facilitate the analysis. It is assumed that



failure statistics for these blocks are available.

The use of MSPN’s as a modeling technique implies that the reliability 

estimation of any fault-tolerant processor array requires a complete 

understanding of the fault behavior of the array in the presence of any type of 

faults considered in the model. The influence of faulty components other than 

PE’s in a processor array becomes more important as the ratio of area occupied 

by PE’s decreases. In this case to predict the effect of faults in resources such as 

switches, buses, links, etc., on the reliability of the array, detailed modeling is 

justified. However, a complete characterization of the reconfiguration algorithm 

is clearly needed; i.e., specifications such as resource sharing and type of resources 

used to establish interconnections, etc.; particularly in cases of overlapping 

routing paths where conflicts are more likely to occur.

Another advantage of a detailed modeling of an specific array is the 

possibility of measuring the effect of redundant area increments in the overall 

reliability of the array. The problem here is to be able to evaluate the effect on 

the reliability of increased hardware complexity in terms of area requirements. 

However, a detailed modeling of the array, causes a rapid growth of the state 

space and traditional solution methods of reliability models require the 

summation of large number of terms with different signs which increases the effect 

of round-off errors as the system state space grows. Also, the generation of 

absolute large numbers increases the possibility of machine overflow. 

Fortunately, large state spaces can be solved Using randomization techniques 

[GrM84]. On the other hand, approximation and reduction methods can be 

applied for very large systems to derive lower and upper reliability bounds 

[SmG86] without having to solve the entire model. In the latter case, suitable 

criteria should be established to select those operational states whose

64
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performance-related measures are of interest.



66

CHAPTER IV

NUMERICAL RELIABILITY ESTIMATION

AND A MODEL REDUCTION TECHNIQUE

4.1. Introduction

A fault-tolerant system can be modeled as a continuous-time discrete state 

Markov process whose state space corresponds to the possible operational 

configurations of the system. To derive reliability estimations at a given time, the 

transient probabilities of the operational states of the Markov process are 

required. Traditional solution methods require the summation of large number of 

terms with different signs. Unfortunately, for large state spaces, the likelihood of 

unreliable results increases as round-off errors are introduced in the solution 

process. To overcome this problem the randomization technique has been used as 

an alternate approach to the transient solutions of queueing systems proposed in 

[Gra77a,Gra77b] and for the reliability calculation of fault tolerant systems 

[Mil83]. In this chapter, implementation algorithms to estimate both reliability 

and MTTF using the randomization technique are discussed. Furthermore, by 

eliminating those states with low mean holding times, a reduced model is 

obtained via equalization and lumping techniques [SmG86]. Once a reduced model 

is obtained, the randomization procedure is applied to derive lower and upper 

reliability bounds. The model reduction process requires an early knowledge of 

the MTTF of the original model; therefore, an implementation algorithm to
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obtain an exact evaluation of the MTTF is discussed. To optimize storage 

requirements and to speed up calculations these algorithms are based on a single 

vector representation of the transition rate matrix. This evaluation approach is 

applicable for large state space models which are represented by an upper 

triangular transition rate matrix. Applications are illustrated through examples of 

evaluation of models generated by MGRE.

The second section of this chapter introduces a brief background on the 

randomization algorithm. Implementation details and an algorithm for reliability 

estimation are presented in the third section, the fourth section discusses a model 

reduction technique using an exact estimation of the MTTF. Finally some 

applications are reported.

4.2, The Randomization Algorithm

Let {X(t), i>0) be a continuous time homogeneous Markov process on a 

finite state space S = {1,2, • • .* ,s}. The state probability vector at time t is 

denoted by P(t) = [P1(t), P2(0> * * * > ], where P{(t) = P{X(t)=^i}, ieS.

The Markov process X(i) can be characterized by a set of differential 

equations given in matrix form as follows:

p(t)-pm (-a)

with a solution:

P(t)=P( 0)eAt (4.2)

where P(0) corresponds to the initial probability vector and A is an riXri matrix 

with elements aty which are the transition rates from state i to state j and 

aU = Yjatj
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A useful method [Gra77a,Gra77b] to compute the exponential in equation 

(4.2) called uniformization or randomization is described next. Denote by Q the 

transformation of the matrix A as follows:

+ / (4.3)

where A = max a,-,- ieS.

The resulting matrix Q is a transition probability matrix of a discrete-time 

Markov chain (i.e. with entries 0<g,y<l). Substituting A = —hi + AQ in 

equation (4.2), we have:

P{t) = P{ 0)e~A<eA<<? (4.4)

A series expansion of the exponential ekt® yields:

P(t)= Y,P{0)Qne-At^f.
n—0 nl

= Y,^(n)e
n =0

-At mn 
n\

(4.5)

where $(n) = P(0)Qn is a probability vector of a discrete Markov process with a 

transition matrix Q.

In the probabilistic sense the uniformization algorithm can be interpreted as 

follows [Mil83]: let n = 0,1,2, • * * } be a Markov chain on S with transition 

matrix Q and 0} be a Poisson process with rate A; assume both

processes are independent of'each other. Then the process t>0} is a

Markov process with a transition matrix Q with an initial probability state P (0) 

and therefore identical to X(t). Conditioning over the number of occurrences of 

the Poisson process in [0, i ] and using the law of total probability, we have that 

for a given state i:

/>,(<) = P{X(e)=i} (4.6)
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OO
= £ PiYN(t)=i I N(t)=n}P{N(t)=n}

n=0

oo-
- £P{r„=i}e

n= 0
Af (AQ»

n!

Defining $t(n) = -P{Tn == ■*} and $(n) = [^(n), $2(^)7 •••], then equation (4.5) 

results.

4.3. Implementation Details

The implementation of the uniformization procedure calls for the calculation 

of #(n) and P{N(t)—n}. Since Q is a stochastic matrix, converges and <f>(n) can 

be calculated recursively by:

$(0) =P(0)

$(n+l) = $(n)Q (4.7)

The Poisson probability of exactly n events in an interval of length t can be 

computed directly. An advantage of the uniformization procedure is that 

precision errors can be bounded by the user. The infinite series is truncated at 

some point n = m, such that the complementary cumulative value remains below 

a prescribed bound e; i.e., for every transient state in the system we must have:

1
m
Er*=0

(A tyen,—A t

nl, < 6

Let | 4>(n) | denote the norm of the vector <I>(n). Since f $(n) | <j $(m) [' 

for any n>rn, the following stopping rule can be used:

l*(n)l(i-£
ra=0

(A*)n „ —At

nl -)<e (4.8)



Other advantage of this algorithm is its numerical stability. Calculations 

involve only nonnegative numbers.

In [GrM84] an implementation algorithm of (4.7) for sparse matrices is 

presented. Sparse matrices are transformed to a vector representation to minimize 

storage requirements and speed up calculations.

The matrix representations of the models generated via an MSPN 

representation of fault-tolerant processor arrays, exhibit the following features: 

they are large, sparse and upper triangular. Therefore a vector representation is 

simplified and an algorithm similar to that of [GrM84] has been implemented to 

calculate 4>(n). An estimation of the MTTF is obtained using the following 

relations:

1 00
"i >j'f'.W

iLn= 0 .

. . MTTF . .
:: *=0

The summation to derive <J,- is truncated when e is reached.

4.3.1. Reliability Estimation Procedure

An algorithm to derive state probabilities for several time points is outlined 

below. The following parameters and notation are used; it — initial time; h — 

length of interval; ni = Number of intervals; E[j] stores the cumulative Poisson 

probability value ^[y] at a time t derived in terms of the index j; ]P {j} stores the 

state probabilities at a time t which it is derived in terms of the index f,

Procedure STATEJPROBS
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Inputs: it, h, ni
Outputs: Vectors P[j]; j=0,l, ..., ni 

Begin
n=0;
calculate $(0) and j $(0) j 
for j=0,l,2 ... ni, do 

E [j]. = bj 
P[j] =0;

end 
ok = 1 
while ok do 

ok = 0
for j=0,l,2 ... ni, do

t = it+hXj
e-M(W

nl
p[j] =p[j] + $(n)x£[y]
if | $(ra) j X(l—E\j])<e do

E{j}=E\j}+m
ok — T

end
end for
if ok do

n = n+1
calculate $(») and | $(n) |

end
end while 

end procedure

The norm of vector P[j] gives the reliability estimation at time t. Notice 

that the vector $(n) which is common for all intervals, is calculated only once. 

The algorithm stops when all intervals have reached the stopping rule contained 

in the if statement.
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4.4. Model Simplification

Given the Markov model, an exact derivation of the MTTF is possible which 

can give us an ’apriori’ knowledge of the stochastic behavior of the Markov chain 

with respect to different failure rates. This suggests a possible state space 

reduction based on the contribution of each state to the overall MTTF. The 

randomization algorithm can then be applied based on a reduced transition rate 

matrix. Leakage equalization techniques as presented in [SmG86] refer to the 

procedure by which all transitions to the failure state from all or a set of 

operational states, are modified to have a single value. The resulting model can be 

reduced by lumping those states with the same leakage value into a single state 

with a single transition to the failure state. Thus, equalization of transitions out 

of those states which exhibit very low mean holding times followed by a lumping 

procedure, reduces the state space of the model to yield a model whose solution 

accuracy depends on the number of states eliminated and the transition rates 

involved. To assess the accuracy of the solution, lower and upper bounds are 

estimated and MTTF results are compared with those of the original model.

4.4.1. MTTF Exact Derivation and Implementation Procedure

To compute the MTTF, we observe that the Laplace transform of equation 

(4.1) can be expressed as follows

AT p — — P{s)

The entries of the vector p correspond to the mean holding time of each state. 

Evaluating at s =0 and using the fact that A is an upper triangular matrix each 

entry of p can be obtained recursively as follows:

Pj = —TtPiaij (4.9)
a) ivy
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Hence, each py is calculated by observing each column of A. The MTTF is then 

calculated as follows:

MTTF = Y^Pj (4.10)
y-o .

Let u be a vector whose entries correspond to the non-zero entries of the 

transition matrix A. Define r,={s,- *,} as a tuple associated with the ith row 

(state) of A where s,- is an integer that indicates the number of transitions 

(targets) from state i; i,- is a set of indices corresponding to the targets of state i. 

An implementation algorithm to calculate the MTTF is outlined below.

Procedure MTTF
Inputs: T{ = u
Outputs: mttf 

Begin 
k = 0
for each row i, do 

'/>[*] =0

k^k + si + l

end

■ V p[0] - p[0] . -
k = 0

for each row i, do
for(j—0; j<s,-; j++) do

PfeUU =p[*;[i]] +p[^[i]]Xp[*]X«[A:+i+l]
: - end ’

k — k + S{ + 1

end
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end procedure

The complexity of this algorithm is 0(«2) where n corresponds to the 

number of operational states of the Markov model represented by A. The first 

loop initializes the vectors p and p. This initialization is needed to evaluate each 

element of p in the main loop as the rows of A are being fetched from the buffer 

ii. An advantage of this implementation results in the case of very large models 

in which on-line memory is restricted. In this case, the rows of A and all TV’s can 

be fetched directly from a file.

4.4.2. Model Reduction Process

A state *' is a highly probable state if p[ij>f, where f is a user-given constant. 

The model reduction process consists of lumping consecutive states that are non- 

highly probable. The remaining states are systematically reindexed defining a new 

reduced model. This method is well suited for large models that include failures of 

spare components or other components with low failure rates. The failure of a 

single spare component gives place to a new operational state in the Markov 

model; large blocks of states can be generated with low transition rates due to the 

failure of spare components; however other transitions to some of these states 

may or may not turn them into a highly probable states; thus, eliminating states 

based solely on the transition rates does not guarantee satisfactory results. By 

this approach, the elimination of non-highly probable states is controlled by the 

user via the selection of f, and the desired reliability bounds.
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4.4.3. Estimation of Reliability Bounds

It has been shown in [3mG86], that equalizing transitions to the failure state 

{leakage) from.-.states in the entire model or a subset, results in a new model with 

.conservative or optimistic reliability estimations depending whether the 

equalization 's performed with the maximum or the minimum transition to the 

failure state.

Let L be a subset of non-highly probable states; notice that there may be 

several subsets or blocks of consecutive states with a p[i}<$ (leL). For a lower 

bound a state A: is selected such that its leakage corresponds to the maximum 

leakage:

^max = max,£i I I

Likewise for an upper bound, a state keL is selected such that its leakage 

corresponds to the minimum leakage:

^min = mintej^ j YjO'ij I
3 ■ ■

The resulting model has a set L of states with the same leakage. All other 

transitions to states out of L are eliminated. Thus, the set L can be lumped into 

a single state keL with no change in the reliability estimation. The process is 

repeated for each subset L that can be formed in the original model. The resulting 

model is a reduced model with a reliability corresponding to a lower/upper bound 

with respect to the original model.
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4.5. Applications

In this section the reliability plots for 4X4 and 10X10 AR.CE arrays are 

shown to illustrate the lower and upper reliability bounds that result upon the 

selection of the constant £. Figures 4.1 and 4.2 show the case of a 4X4 array; 

Figure 4.1 corresponds to the case of f=.01 where the lower bound reliability 

curve is shown with a MTTF =.911763 and the upper bound reliability curve with 

a MTTF=2.95693; the exact reliability is also shown with a MTTF =1.28279. 

Figure 4.2 shows the case of f=.005; in this case the lower bound and upper 

bound reliability curves are closer to the exact reliability curve with 

MTTF=1.1854 for the lower bound and MTTF—1.72181 for the upper bound. 

While the original model contains 107 states, reduced models with f=.01 and 

$■=.005 are obtained with 19 and 21 states respectively.

exact rel.(mttf= 1.28279) 

ub. rel.(mttf=2.95693) 

lb. rel.(mttf= .911763)

Fig. 4.1. ARCE 4X4 Exact Reliability (107 states) and 
Lower and Upper Bounds (19 slates) with $ = .01
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exact rel,(mttf= 1.28279) 

ub. rel.(mttf—1.72181) 

lb. rel.(mttf=1.1854)

Figure 4.2. ARCE 4X4 Exact Reliability (107 states) and 
Lower and Upper Bounds (21 states) with £=.005

A 10X10 ARCE array will be represented by a more complex model with

1449 states with a MITF =1.53484. The plots in Figures 4.3-4.5 show the 

reliability approximations obtained upon the selection of three different constants 

£. Figure 4.3 shows the results obtained with £=.001 with a MTTF=1.23601 for 

the lower bound curve compared to a MTTF=1.67142 for the upper bound curve; 

these results correspond to a reduced model with 44 states. Figure 4.4 shows the 

results obtained with £=.0005 with a MTTF=1.28975 for the lower bound curve 

compared to a MTTF=1.55848 for the upper bound curve; the reduced model in 

this case contains 47 states. In Figure 4.5 £=.0001 with a MTTF=1.52796 for the 

lower bound curve compared to a MTTF=1.54118 for the upper bound curve; 

these results correspond to a reduced model with 47 states; As the lower and 

upper MTTF values come closer to the exact MTTF, the reliability curves 

coincide giving an indication of the real reliability values without having to solve
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the entire model.

......... ub. rel.(mttf= 1.67142)

------- lb. rel.(mttf= 1.23601)

exact rel.(mttf= 1.53484; 1449 states)

Fig. 4.3. ARCE 10X10 Lower and Upper Bounds (44 states)
with £ = .001

4.6. Summary

In summary, the general randomization procedure can be used to estimate 

the reliability of very large models. Using an early estimation of the MTTF of the 

entire model, fast reliability results can be obtained via the solution of a reduced 

model. By comparing the mean holding time of each state in the original model, 

every subset of consecutive states is lumped into a single state. The set of states 

created by this process is then aggregated with the remaining states to form a 

new reduced model. A systematic reindexing is carried out and the 

randomization procedure is applied to Obtain lower and upper reliability bounds.
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....... . ub. rel.(mttf= 1.55848)
------- lb. rel.(mttf= 1.28975)

exact rel.(mttf= 1.53484; 1449 states)

Fig. 4.4. ARCE 10X10 Lower and Upper Bounds (47
with <r = .0005

Thus, the model reduction process is straightforward and transparent to the user. 

The solution of the new model corresponds to a lower bound if the state 

replacement is based on the maximum leakage to the failure state; a minimum 

leakage replacement yields an upper bound solution. To illustrate the 

applicability of this method, solutions of small and large models were shown.

One contribution of the work outlined in this chapter consists of the 

implementation of an algorithm to evaluate reliability models. An additional 

contribution consists of the possibility of obtaining approximate reliability 

estimations of large processor arrays; i.e., using reduced models, lower and upper 

bounds can be obtained. However, a drawback in the reduction process is the 

fact that a matrix representation is required for an early estimation of the MTTF. 

Thus the need to reduce storage requirements through a vector-like representation 

is justified. However it seems reasonable to further explore (in future research) 

features such as upper triangularity and sparseness of the transition matrix to
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......... ub. rel.(mttf= 1.54118)

lb. rel.(mttf= 1.52796) 

exact rel.(mttf= 1.53484; 1449 states)

Fig. 4.5. AR.CE 10X10 Lower and Upper Bounds (57 states)
with f = .0001

calculate the MTTF and select the desired states during the construction of the 

reachability graph without the need to store the entire model. At this point the 

only advantage is reaching a solution in shorter time.



CHAPTER V

HIERARCHICAL ARRAYS

5.1; introduction

In this chapter, 2-level hierarchical structures are analyzed. The components 

of the hierarchy are fault-tolerant processor arrays that support any of the 

folio-wing reconfiguration algorithms: DR, RR and RCR. DR refers to the direct 

reconfiguration scheme; the RR (Row Replacement) scheme is a variation of the 

SRE Scheme such that the size of the array remains constant throughout its 

operational life and can tolerate only a number of faulty processing elements 

corresponding to the number of spare rows. The RCR (Row or Column 

Replacement) scheme is a variation of the ARCE scheme such that the size of the 

array remains constant throughout its operational life and it has a given number 

of spare rows and spare columns; the number of faults tolerated corresponds to 

the number of spare rows and columns. The choice of non-degradable processor 

arrays allows the analysis of several hierarchical schemes by using a given 

reconfiguration scheme in any place in the hierarchy. Although several measures 

can be used to compare several schemes, the use of the MTTF permits the 

comparison of a large number of schemes and helps in determining the effects of 

detailed modeling in a particular hierarchical scheme; for this purpose, the results 

obtained are grouped in two tables. One table describes a set of MTTF’s obtained 

when only PE’s fail. A second table describes results obtained when faults of
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several component types are considered. To observe a more detailed behavior in 

their reliability some hierarchical schemes are selected from the MTTF tables.

5.2. Taxonomy of Hierarchical Schemes

Let H = <S,K> denote a given hierarchical scheme where S refers to a set 

whose elements identify the reconfiguration algorithms used at different levels in 

the hierarchy. The subarray size at each level is specified by K as follows:

K — (ft1, ft2 j • • • > ftfcj

i.e., at the fth level the subarray is of size ft,-. The subarray sizes satisfy the 

product:

k
II= »

/ - »=1

where n corresponds to the size of a single level processor array. Thus, in a given 

hierarchical structure, a subarray at the tth level is of size n,- and it is formed 

with subarrays of size ; the subarray at the fth level is implemented using the 

reconfiguration scheme in the fth position of the set S. For example, if ft =16, one 

possible representation of a 3-level structure implemented with only an x 

reconfiguration scheme is:

<(a;, z,x), (2,2,4 j>

which indicates that at each level the array supports the reconfiguration scheme x 

and that in the first level the size of the subarray is 2, in the second level the size 

is also 2 and in the third level the array is composed of 4 subarrays,

Note that if there are m different reconfiguration schemes and each can fit at 

any level in the hierarchical array, then with respect to S there are mk possible 

hierarchical configurations. Thus, the selection of an optimal configuration must
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correspond to an optimal value of a measure of interest such as MTTF, Mission 

Time, Performability, etc. An analytical determination of an optimal hierarchical 

configurations is addressed in [WaF88b].

To estimate the reliability and MTTF of a k-level hierarchical array, the 

following criteria are used:

1) The failure rate of a processing unit (subarray) at the ith level is estimated 

in terms of the MTTF of the subarray at the (i-l)th level, and denoted as:

_ 1 
~~ MTTF^i-i

(5.1)

where y denotes the name of the reconfiguration scheme used in the (i-l)th 

level.

2) The failure rate of component types other than processing units at the jth 

level is assumed to be proportional to the failure rate of the corresponding 

component type at the (i-l)th level such that:

<*i,i = (5*2)

the subindex i refers to the component type i at the jth and (j-l)th levels; as 

defined above, the term ny_i corresponds to the size of the subarray at the 

(j-l)th level. Hence, using this criteria the complexity of a component type is 

assumed to increase linearly with respect to the same component type in a 

single level array. Also, the increasing complexity of interconnections as the 

level of the hierarchy increases is taken into account.

5.3. Fault-Tolerant 2-level Hierarchical Arrays

The use of three different reconfiguration schemes gives a total of 32 = 9 

possible choices for a 2-level hierarchical Scheme. The schemes used are the DR 

scheme which was analyzed previously, the RR scheme and the RCR scheme. The



RR and the RCR schemes are a variation of the SRE and ARCE schemes 

respectively, in the sense that the size of the array remains constant throughout 

its operational life. Both schemes will tolerate a number of faulty PE’s equal to 

the number of spare rows and columns provided. Since the DR scheme analyzed 

in chapter 2 considers only one spare row and one spare column, for compatibility 

two spare rows are considered in the RR scheme and one spare row and one spare 

column in the RCR scheme.

All results in each table assume a coverage factor c — .99; each PE in the 

first level and in single-level arrays is assumed to fail at a rate otpg = .01; each 

component of every other type is assumed to fail at a rate 100 times less than 

that of a single PE.

The MTTF’s obtained for single-level arrays are shown in Table 5.1, for several 

array sizes. For each reconfiguration scheme, these results show the effect of the 

size of the array on the MTTF when only PE’s fail and with detailed modeling. 

High MTTF’s of the DR scheme with respect to RR and RCR, reflect the fact 

that a failure in the DR leads to a single PE substitution; in the RR scheme a 

single PE failure leads to the substitution of a complete row; in the RCR, a single 

PE failure causes a row or a column substitution. Notice that the RCR case 

contains one extra spare processing unit with respect to RR, however, this has the 

tendency to decrease the MTTF because while in the RR case the failure of any 

spare unit implies the elimination of n units, in the RCR case however, n-j-1 units 

are eliminated. Another conclusion that can be drawn from Table 5.1 is the fact 

that the MTTF of nXn processor arrays with a fixed structure decreases as the 

size n of the array increases.

Tables 5.2 and 5.3 show the results for every possible set 5; for n = 64, each 

entry displays the MTTF corresponding to a particular set K. Table 5.2

84
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tabulates the MTTF’s obtained when only PE’s fail and Table 5.3 considers 

detailed modeling in which other component types in the array can fail. For 

simplification SBL’s in every scheme are assumed fault-free. However SBL’s that 

become active can fail and their complexity increases in the second level according 

to the size of the subarray in the first level. An immediate advantage of a 2-level 

hierarchical structure can be seen by comparing the MTTF of a single-level 64 X 

64 processor array with any reconfiguration scheme (last row in Table 5.1) with 

any entry in Tables 5.2 and 5.3; he., except for some cases (single level 64X64 DR 

array), most 2-level choices yield and improvement in its MTTF with respect to 

the single-level structure. Hierarchical arrays implemented with the DR scheme 

in at least one level show an improvement in their MTTF with respect to those 

arrays implemented with RR and/or RCR. Examine, for example, the row 

corresponding to RR implemented with DR; it is interesting to note the MTTF 

improvement with the size of the processing units implemented with DR. Two 

factors influence this effect: 1) the loss in MTTF due to the size increments of the 

subarray (with DR) are compensated with the gain in MTTF with a lower 

dimension of the array in the second level implemented with RR; 2) the 

probability of survival of arrays with DR increases with the size of the array 

[SaS86a]. This factors also explain the case of (dr,dr) which shows the best MTTF 

of all the possibilities.

To observe the reliability behavior of hierarchical arrays with DR the 

following cases are plotted in the figures indicated.

In Figure 5.1 the reliabilities of the schemes ((dr,rr), (4,16)), ((dr,rr), (8,8)) and 

((dr,rr), (16,4)) are compared. In this set, the second level is implemented with 

RR with subarrays implemented with DR. The best structure on this set consists 

on 4X4 arrays with RCR with 16X16 DR subarrays.
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Figure 5.2 plots the reliabilities of the set: ((dr,rcr), (4,16)), ((dr,rcr), (8,8)) and 

((dr,rcr), (16,4)).

Figure 5.3 plots: ((rr,dr), (4,16)), ((rr,dr), (8,8)) and ((rr,dr), (16,4)).

Figure 5.4 plots: ((rcr,dr), (4,16)), ((rcr,dr), (8,8)) and ((rcr,dr), (16,4)).

Figure 5.5 plots the set ((dr,dr), (4,16)), ((dr,dr), (8,8)) and ((dr,dr), (16,4)) which 

correspond to the most reliable structures for the set of failure rates specified 

previously.

Table 5.1.-MTTF’s for Single-level Fault-tolerant Processor Arrays

n rr
PE fails only 

rcr dr rr
detailed modeling 

rcr dr
1 182.35 174.126 157.668 166.083 155.786 138.393
2 53.7925 52.4267 92.2377 49.9527 48.0654 81.1081
4 15.292 15.1283 34.6681 14.3604 14.0419 30.7144
8 4.164 4.14886 12.1023 3.93578 3.8755 10.7263

16 1.0951 1.09393 4.24583 1.03883 1.02526 3.72798
32 .28152 .281434 1.49453 .267567 .26422 : 1.28742
64 .071419 .071413 .525113 .067945 .0671025 .438697

Table 5.2.- MTTF Results for Several 2-level Hierarchical Arrays with »=64
where only Processing Units fail.

Reconf.
Schemes (1,64) (2,32) (4,16) (8,8) (16,4) (32,2) (64,1)
(rr,rr) .13022 .15144 .16746 .17339 16746 • . .15144 .13022
(rcr,rr) .12436 .14759 .16567 .172758 .167284 .15139 .13021
(dr,rr) .112604 .259664 .379654 .50394 .649272 .803946 .957464
(rr,dr) .957468 .803936 .649272 .503938 .379653 .259664 .112604
(rcr,dr) .914358 .783526 .642312 .502108 .379248 ■.259588, -.412596'
(dr, dr) .827933 1.37851 1.47195 1.46466 1.47195 1.12418 .827932
(rr,rcr) .130211 .15139 .167284 .172758 .165671 .14759 .12436
(rcr,rcr) .12435 .147546 .165493 .17213 .165493 .147546 .12436
(dr,rcr) .112596 .259588 .379246 .502108 .64323 .783532 .914359
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Table 5.3.- MTTF Results for Several 2-level Hierarchical Arrays with n-64
with Detailed Modeling.

Reconf.
Schemes 11,64) 12,32) 14,16) (8,8) 116,4) (32,2) (64,1)
(rr,rr) .109331 .13363 .152519 .160952 .157168 .142994 .123372
(rcr,rr) .103054 .128854 .149238 .158533 .15561 .141214 .121843
(dr,rr) .09231 .210512 .31536 .425479 .548872 ,671337 .778616
(rr,dr) .640056 .64319 ,564834 .457919 .352638 .243947 .106487
(rcr,dr) .634358 .622186 .553217 .451176 .348128 .240927 .105211
(dr,dr) .570113 .959717 1.11363 1.16951 1.20048 1.12418 .665665
(rr,rcr) .10717 .131991 .151273 .159744 .155163 .174985 ,117712
(rcr,rcr) .110113 .127298 .148039 .157351 .153161 .137465 .116255
(dr,rcr) .0907614 .206441 .310446 .419627 .539103 .650625 .739422

R(t)

0.8-

0 1 2 3 4

Fig. 5.1.- Reliability plots for (dr,rr) Arrays
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0.8-

0.6-

Fig. 5.2.- Reliability plots for (dr,rcr) Arrays

5.4. Summary

In this chapter, possible implementations of hierarchical arrays were 

analyzed and compared in terms of their MTTF. A brief taxonomy was 

introduced to relate the reconfiguration algorithms and sizes of the arrays at each 

level in the hierarchy. For compatibility this analysis was carried out using fixed- 

structure arrays capable of supporting reconfiguration algorithms such as the DR, 

RR and RCR. The last two being a variation of the SRE and ARCE 

reconfiguration algorithms analyzed previously using MSPN’s. '

Results were derived for cases in which only the processing unit fails and 

when other component types fail also. The failure rate of a subarray used as a 

processing unit in the immediately higher level was derived in terms of its MTTF. 

The failure rates of any other component types were determined in terms of the
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0.8-

0.6-

0.2-

Fig. 5.3.- Reliability plots for (rr,dr) Arrays

size of the processing units and the failure rates used in the immediately lower 

level. At the first level, the failure rates are chosen by the user. The results shown 

correspond to a failure rate of a processing element in the first level of .01 

failures per time unit; detailed modeling assumes failure rates for any other 

component type of .0001 failures per unit time. For the cases analyzed, the 

MTTF decreases as the size of the array increases. However any combination for a 

hierarchical implementation renders an improvement in its MTTF with respect to 

a single-level implementation with the same number of PE’s. Comparing all the 

possible hierarchical implementations the ones with DR as a component in the 

hierarchy render better results; particularly, for the failure rates chosen, the 

(dr,dr) structures show better MTTF results.
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CHAPTER VI 

CONCLUSIONS

In this report, a systematic method to construct Markov models to analyze 

fault-tolerant processor arrays was presented. Since the proposed method rests on 

the premise that a fault-tolerant processor array can be modeled by a Stochastic 

Petri Net, a modified version of Stochastic Petri Nets referred to as MSPN’s is 

proposed to model the fault behavior of processor arrays in the presence of 

failures of components of different types. An MSPN model contains all the 

information pertaining to the processor array structure and a specific 

reconfiguration scheme such that the derivation of a detailed Markov model is 

straightforward. Attributes associated with the transitions in an MSPN model 

include a probability distribution generated in terms of the number of faulty 

components in each operational marking. This probability distribution includes 

probabilities of reconfiguration which together with other attributes, establish a 

mapping from transitions in the MSPN to transition rates in the corresponding 

Markov model. Specific reconfiguration algorithms such as SRE, ARCE and DR 

were analyzed. Reliability results for these three schemes were derived. The 

analysis covers several components of the array and their failure 

interdependencies. Analytic expressions to evaluate probabilities of 

reconfiguration for each scheme were derived. These expressions involve complex 

combinatorial analysis and for some reconfiguration schemes, simulation has been 

used to obtain probabilities of reconfiguration. For the DR case, the results
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obtained via the analytical expressions derived, match those reported in the 

literature.

A software package, MGRE (Model Generator and Reliability Evaluator) 

which generates the Markov models and evaluates reliability, has been developed 

[Lop89]. However, the user is expected to provide files with the probabilities of 

reconfiguration. Since access to those files may be tailored according to particular 

applications, the user is also expected to provide subroutines to access the 

required values. Also, for complex reconfiguration schemes in which sequences of 

transitions that fire immediately cannot be predetermined for all markings, the 

user is required to provide subroutines that examine each marking in order to 

determine the type of reconfiguration or any other parameter used in the selection 

of a sequence. An extensive use of MGRE for different reconfiguration schemes 

can lead to a better design of a user interface.

The intrinsic large models generated for even moderate array sizes, cannot be 

easily solved using existing reliability evaluation packages due to numeric round­

off errors introduced during the evaluation process. Also, the large numbers 

involved in the solution process of large models may cause machine overflow. The 

Solution proposed in this work is based on the general randomization procedure. 

An algorithm was implemented using this procedure such that the solution of 

fairly large models is possible. Furthermore, it is shown that given an early 

estimation of the MTTF of the entire model, fast reliability results can be 

obtained via the solution of reduced models.

Hierarchical arrays were also discussed as an application of MGRE. Several 

2-level structures were compared using as processing units subarrays of different 

dimensions and with different reconfiguration schemes. For compatibility, this 

analysis includes processor arrays with a fixed-size structure; i.e., no performance
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degradation allowed. It was shown that hierarchical structures offer a good 

potential to increase reliability with respect to single-level arrays with the same 

number of processing elements.

The main contribution of this research consists of a procedure to analyze 

fault-tolerant processor arrays using a more general approach and with an 

optional modeling detail. Given the MSPN of a particular reconfiguration scheme, 

Markov models of an array of any size can be derived for selected sets of failure 

rates. Thus, several array architectures can be compared in terms of their 

reliability and MTTF.

Detailed modeling preserves all the information of the structure of the array 

in each operational state. Therefore, performability and other performance and 

area related measures can be derived in terms of each operational state. 

Furthermore, the approach presented in this thesis can be applied to analyze 

other hardware systems such as computer networks, interconnection networks, 

etc. '
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