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ABSTRACT

Recent advances in VLSI/WSI technology have led to the design of processor
arrays with a large number of processing elements confined in small areas. _'The
use of redundancy to increase fault-tolerance has the effect of i‘ed_ucing the ratio

- of area dedicated to processing elements over the area occupied by other resources
in the array. The assumption of fault-free hardware support (switches, buses,
interconnection links, etc.,), leads at best to conservative reliability estimates.
However, detailed ‘modeling entails not only an explosive growth in the model
state space but also a difficult model construction process. To address the latter
problem, a systematic method to construct Markov models for the reliability
evaluation of processor arrays is proposed. This method is based on the premise
that the fault behavior of a processor array can be modeled by a Stochastic Petri
Net (SPN). However, in order to obtain a more compact representation, a set of
attributes is associated with each transition in the Petri net model. - This
representation is referred to as a Modified Stochastic Petri Net (MSPN) model. A
MSPN allows the construction of the ‘corresponding Markov model as the
reachability graph is being generated. The Markov model generated can include
the effect of failures of several different components of the array as well as the
effect of a peculiar distribution of faults when the reconfiguration occurs. Specific
reconfiguration schemes such as Successive Row Elimination (SRE), Alternate
Row-Column Elimination (ARCE) and Direct Reconfiguration (DR), are analyzed

t This research was supported in part by the National Science Foundation under Grant DC1-
8419745 and in part by the Innovative Science and Technology Office of"the'Strategity:’ Defense
Initiative Organization and was administered through the Office of Naval Research under
contracts No. 00014-85-k-0588 and No. 00014-88-k-0723. ' : :



in detail. Randomization techniques are used to solve the inherently large models
that can be generated via a MSPN representation: A model reduction technique
based on the discrimination of states with low mean holding times is discussed.
Finally, an analysis of hierarchical structures formed with variations of the
schemes analyzed, is presented. The results reported in this work were obtained
using MGRE (Model Generation and Reliability Evaluator) which is a software
package designed to analyze fault-tolerant processor arrays for which a MSPN
repreSentation is given.



CHAPTER I
INTRODUCTION

1.1. V.O‘bjectives
Recent advances in VLSI/WSI technology have led to the des1gn of processor: k

' arrays with a large number of processing elements (PE s) conﬁned in small areas. _
v At Wafer level, the ellmlnatlon of interchip connectlons and - faster s1gnal
propagatlon due to. shorter interconnections between PE’s results 1n hlgher
processmg speed. However, large densities and hardware complexrty increase the
hkehhood of faults during the fabrication process. In addition, a large number of v
actlve elements involved in a single computation cycle, increases the possrblllty of
o fallures at any time during the operational life of the array. Increased hkehhood |
i' of faults durlng ‘the fabrlcatlon process results in low productlon y1eld Whereas‘

) large number of active elements 1nvolved in the functlonal operatlon of the array,
decre‘ases reliability. Research efforts have been d1rected} not only to yield
: fmprovement but also to increase fault-tolerance [KoB84,KoP87]. To increase
iboth yleld and rellablhty, several reconﬁguratlon algorlthms which use the
avallable redundancy in the array have been proposed. In addltlon, fault
. detectlon and recovery upon the occurrence of faults ‘is .requlred _durmg the
'f5b£i¢Ation process or the functional operation of the array. Because of ‘their
susceptlblhty to faults and the added hardware complexxty on the overall array,

components other than processmg elements become very 1mportant in the analy31s



"of fault-tolerant processorv arrays. vHowever, there is a tendency t‘o li‘mit the
reliability ‘analysis of processor arrays to failures of processing’elements only
; [RaA84] The assumption of fault- free support hardware in the form of sw1tches,
buses, interconnection l1nks, etc, for the analys1s of fault-tolerant processor
arrays leads at best to conservative rehablhty estlmatlons The need to construct
more general models is recognlzed in the mathematical framework derlved by
‘vKoren et al [KoB84, KoP87 ,KoP86] to evaluate - yield 1mprovement and

performance-related measures of different array archltectures

A number of analyt1c models and methods for the rel1ab1hty analysrs of fault '
tolerant computer systems currently exists [Tri85, GeT83 H1E83] Comblnatorlal
analys1s and Markov models are the most common methods used to developi
analyt1ca1 models for the reliability analys1s of fault tolerant systems. In the case
of comblnatorlal methods, if the system can be divided into several modules, they
~are ‘assumed 1ndependent (i.e. no faults or repair Vdependencles exrst) -and
: rel‘iability' estimations can be derived using fault trees and series;parallel
structUres for which definite mathematical tools exist [Tri82|. ‘Markov models on
the o‘th‘er hand offer the alternative of analyzing systems with ‘interdependent,
components. A fault-tolerant processor array can be considered a system with
1nterdependent components in the sense that the failure of one component may or
may not affect other components of the array The manner in which the
, components of the array are interdependent varies with the topology 1mplemented
" and the reconfiguration algorithm that takes place when a faulty component is
detec_ted.

In this Work the problem of evaluating the reliability of processor ar.rays'
uslng Markov models is addressed. However, a detailed modelmg that takes 1nto

conS1deratlon failure 1nterdependenc1es of several components, entails not only an



explosiv'e growth in the model state spaee but also a difficult model construction
‘process. To address the latter problem, a systematic method to oonstrllot Markov>
: models for the reliability evaluation of processor arrays is proposed Th1s method
. rs based on the premlse that the fault behavmr of a processor array can. be
vvmodeled by a Stochastic Petrl Net (SPN). In order to achieve a complete mapping ‘
from places and tra.ns1tlons in an SPN-like representatlon of small s_1z_e to states
'and‘ transition rates in the Markov model, a modified version .Aof SPl\I’s is

proposed However a more compact representation is obtamed by assoclatmg a set

of attributes with each trans1tlon in the Petri net. This representat1on is referred

to as a Modified Stochastic Petri Net (MSPN) model. The set of‘ attributes

includes a probability function such that the effect of faulty spares in the

reconfiguration algorithm iscaptured each a time a conﬁguratiori ,change oecurs.

T‘his"distribution includes the probabilities of survival given that v'a number of

eompohents required by the reconfiguration process is faulty. Dependin'g on the

type of component and the reconfiguration scheme, probabilities of s1'1rv‘iv‘al.canb
be determined using closed form expressions or via simulation. Reconfiguration

schemes such as Successive Row Elimination (SRE) | Alternate Row-Column

Elimination (ARCE) [FoR85] and Direct Reconfiguration (DR) [SaS86a],[ SaS86b]

are analyzed in detail using MSPN’s. | | o

Once the Petr1 net model and the corresponding reachab111ty graph have

been obtained, all the information required to build the transition matrix of the

:‘ corresponding Markov chain is available. At this stage, ﬁgures of rnerit such as ‘v
| reliability, performability, etc., can be re‘a.dily addressed. -Reliabllity evaluation
tools such as ARIES [MaA82] and SHARPE [ShT86] can be used to evaluate the
models developed here. However the use of these packages is limited to the
'eValuation of models with a relatively low number of states. To circurnvent the

problems involved in the numerical evaluation of large models, a software



".implementathn based on the randomization “procedure, has been used‘. to generate
the ‘-:reliabpility results reported in thisvtvorlc. A 'sol'tware package (MGRE) -vvhas
,B‘een:‘de'veloped [Lop89] to analyze fault-tolerant processor arrays based on the
approach presented in this report. By the executlon of approprlate commands, ‘
’MGRE can generate Markov models, evaluate rehablhty and MTTF glven the srze’

- vof the processor array and a set of fallure rates.

‘ 1.2. Overvrew '

I_n the second chapter the main toplc of this report is developed A modlﬁed
version of stochastlc Petri nets. is presented and its appllcatlon is 1llustrated by
| the generatlon of a model corresponding to the SRE reconﬁguratlon scheme. In
the th1rd chapter the ARCE and DR reconﬁgurat1on schemes are analyzed in.
v detail" Also, expressmns requ1red to calculate probabilities of survrval in the
: ,presence of faults, are der1ved Results concernlng the state space and rel1ab1hty_’
analysis of these schemes are also reported. The fourth chapter dlscusses software
'algor1thms for the numerical evaluatlon of large Markov models In chapter five,
several hierarchical configurations are compared with respect to their MTTF and v

reliability performance.



CHAPTER II
' MODIFIED STOCHASTIC PETRI NETS

2.1. Introduction

As is the case with many systems, Markov models can be used to' evaluate
the -reliabllity of processor arrays. However, rehablhty estlmatlons are mostly
based‘ only on the failures of processing elements [RaA84] Components other :
than processmg elements become very important in the analysis of fault- tolerant
processor arrays because of their susceptibility to faults and the added hardware
complex1ty of the overall array This fact has played an 1mportant role in the.

d_erlvatlon of ‘a mathematical framework developed by Koren et al

o ,[KoB84,KoP86,KoP87] to evaluate yield improvement and perforrnance-related

rneasures of different array architectures. However, a detailed modelinlg of fault-
tolerant ‘processor arrays; which explicitly takes into consider:at.‘ion the failure
statistics of each component as well as their possible interdependencies, entails
not only an 'explosi\"e» growth in the model state space but also a difﬁcult model
construction process. Therefore, in this chapter the latter problern is emphasized
and avsystematic method to construct Marlcov models to evaluate the reliabllity of
Vprocessor arrays is discussed. This method is based on the premise thatﬂthe fault '
behav1or of a processor array can be modeled by a Stochastlc Petr1 Net (SPN)
However, in order to obtaln a more compact representation, a set of attributes is

assoclated with each transition in the Petri net model. The resulting model- is



» referred to as a. Modlﬁed Stochastlc Petr1 Net (MSPN) representat1on An MSPN

representat1on allows the constructlon of the correspondmg Markov- model as the_

- ,v generat1on of the reachablllty graph takes place. Included in the set of attrlbutes

'vvassoclated with each trans1tlon in a MSPN is a dlscrete probab1l1ty dlstrlbutlon
such that the eifect of faulty spares in the reconfiguration algor1thm is captured '
each tlme a conﬁguratlon change occurs. ThIS distribution - 1ncludes the '
‘probabll1t1es of surv1val glven that a number of components requlred by the
reconﬁguratmn process are faulty Depending on the type of component ‘and the
reconﬁguratlon scheme, probab111t1es of surv1val are determmed usrng s1mulatlon _

or closed form expressions.

Once the Petri net model and the correspondmg reachablhty graph have
been ‘obtained, all the. 1nformatlon required to build the trans1tlon matnx of the
corresponding Markov chain is avallable At this stage, ﬁgures of merlt such as
rel1ab1hty, performability, etc., can be readily addressed Rehablhty evaluatlon
tools such as ARTES [MaA82] and SHARPE [ShT86] can be used to evaluate the

models developed here.

. The second section of this chapter discusses - some basic ‘notation and
concepts related to array conﬁéurations. An SPN representation is derived using
as an example the SRE reconﬁguration scheme. The third section of this chapter
discusses Modified Stochastic IE’etri‘ Nets (MSPN’S) and an MSPN representation
for theb SRE scheme is derived;i also a procedure to construct MSPN's is outlined.
In the fourth 'section, the dorrespondence l)etween markings in anv MSPN

’representatlon and the states iin a Markov chaln is descrlbed a procedure to

construct the reachab1hty graph of a given MSPN is outlined.



2.2. Concepts and Notation
“In this section a representation of array configurations using a SPN is
' _d_isvétiSsed. For villustration, examples using the SRE reconfiguration scheme are

_ p‘resernted.v o

'2.2—..1.,V:Arra.y Conﬁguratioﬁs
. To analyze a fault-tolerant array aréhitecture with ‘lci types of _c_omponénts,
thé,conﬁguration of an array is répresented as a k-tuple: | |
Ci = (ir Tair " ki) i=0,1, - ’I,CI‘

where 7;; denotes the number of elements of component fype land C'is t"he'set of

all possible configurations of the array. Examples of component types_inclﬁdé

proceséing elements, links, switches, spare links and spare ‘processing ‘e'l"eme‘x.lt_s.

The occurrence of faults and the appiication of the reconfiguration. AIVgorithm'

define a sequence of ‘configurations that. begins with Cp as the - im'tz;dl
configuration; any other configuration can correspond to the failu}re'st:a_t‘e or an

operational state of the array. The latter will be referred to as an operational

conﬁguratioﬁ. |
Upon dete}ction of a faulty componént, the reconfiguration algoriﬁhnﬁ ‘may‘“
‘not send the array to an operatioﬁal configuration if any of the 'fqllowixig
happens:» |

| 1) The reco‘nﬁguration circuitry failed. This .poss.ibilityvcan' be éoﬁsidered
through» a coverage factor (denoted by c¢) defined as the probability of
_successful reconﬁgurétion given that a fault has occurred [B0C69]. This is a
measure of the prdbabivlity of successfﬁl operation of all circuitry related to
fault defection, isolation and reconfiguration. The coverage factor is assumed

constant and it will be associated with failures of active components only. -
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2) Redundancy is exhausted ThlS 1nformat10n can be 1nferred from C '

3) The presence of faults in non-actlve components (redundancy) h1nders a
y ':successful reconﬁguratlon Redundant components are present in C; as spare
processmg elements, spare switches, spare hnks, spare buses, etc Some of
' these components become act1ve in the new conﬁguratron : |

':;.In a glven conﬁguratlon' Wlth a nu'mber of faulty ' components, '»‘successful' .
| reconﬁguratlon will depend not only on the type of faults but also on the1r‘

'f'd1str1but10n in the array. Thus, he probabrhty of correct reconﬁguratlon in the
:presence of faults is referred to as the probabzlzty of survwal [Sa386b] Because '
the reconﬁguratlon algorlthm may choose one of several neW conﬁguratlons
(1nclud1ng a non-operatlonal one), a probablhty is a551gned to each p0551ble new
' "conﬁguratlon The probability of survival corresponds to the sum of probab1ht1es

. as51gned to new operational conﬁguratlons

2. 2 2. SPN Representatlon

Whlle Markov models provide. an analytlcal basrs to derlver rehablhty
est1matlons of complex systems, therr inherently large state space is dlfﬁcult to
construct and: cannot be directly described in a convenient manner On the other
| “hand, SPN’s prov1de a succinct representat1on of the system and support a

mechanlzed constructlon of the Markov model because markrngs 1n an SPN ,

- correspond b13ect1vely to states in the’ Markov chain [M0182] In the case of

fault-tolerant processor arrays, an operational conﬁguratlon corresponds to an

operatlonal state in the Markov chain; thus, to derive all p0851ble operatlonal o

conﬁguratlons of the array, a marklng in the 'SPN must correspond to an
operatlonal conﬁguratlon of the array Each place i 1dent1ﬁes components of type =

1 and at a glven marklng M, the number of tokens m,q corresponds to n,q Whlch -
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is the number of components of type ¢. Two or more dlstmct component types :

'may identify the same phys1cal component; for example, a physmal spare is a E
component of the type ' 'active spare” when it is used to replace a faulty‘ part and
| 1tls a component of the type "non-active spare” otherwise. |
‘_'_C‘onsi‘der for eXample an nXn array that supports. the | Successive-Row—'_
iElimin’ation (SRE) reconfiguration scheme with a layout as in Flgure 2.1. Th_e
vaRE,;scheme as presented in [FoR85]? is basedo_n the successive. elimin.atiOn of
E roWs.‘,Row el'imination is done by using switches (S’s) and redundant linksv to
bypass all processing elements (PE’s) of any row containing at least one faulty PE
or at least one faulty horlzontal link (HL) or at least one faulty 1nput/ output hnk
’(IOL), spare bypass links (SBL’s) become active bypass links (BL’s) Wh1ch are used
tobypass faulty rows; the array fails when rows are exhausted or 1f e1ther one
active bypass link or a switch fails. A marking q is described as: " |
M, =“(‘#I>’E,#IAOL,#S, #BL,#HL,#SBL)’ = (Mg Mog, M3gs - - -y Mpg) -
| where the symbol "#" is»used_todenote "number vof".

A possible SPN representation is given in Figure 2.2. ‘The firing of fl,
rep'resents the occurrence of a fault in a PE, a fault in an IOL is represented by
the ﬁring of 52 and so on. bIn-general, the firing of i‘; represvents -a fault occurrence
in a component of type i Where 1<i<k and k is the number of places and
transitions. In SRE component types 1 through 6 correspond to PE, IOL, S, BL
HL SBL and k=6, respectlvely

Input and output places with respect to t,, represent the effect of a fault on
" the correspondmg components,v i.e., each transition t,~, involves a- set of I/O
l'unc'ti'ons. A; = {I f), O(i;)} and a set V; of mult1pl1c1t1es @ such that when i;

ﬁres in Mq, the number of tokens my, in each place p;cA; is modified as follows »

'mlj=mlq_UI+Ul



Figure 2.1. Schematic Layout of the SRE Structure

where my; is the modiﬁe_d number of tokens in p; in a new marking M;. If uf =0,
p; is only an input place and if ,LLII ='r0, p; is only an output place. For example in
Fig. 2.2, the failure of a PE (fl), affects the following components: PE’s, IOL’s,
HL’s, SBL’s and BL’s; therefore, a set of input and output places with respect to

t; is given as:

Ay = {{Plapzypsbape}, {P4}}

Assuining an nXn processor array, the set of multiplicities associated with A, is
givexi as:

{:u'l =" /1'2'_'275, US =n—1 Ns =mn ,U'4 _‘n}
If less than the number of spares requlred for reconfiguration are available, then

‘the a array fails to reconfigure and the resulting marking is characterized by the
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fact that mg < 0. The negative value of mg can be used to 1dentify a fallure

' markmg reached due to exhaustlon of spares. Some schemes requlre that spec1ﬁc

'trans1t10ns be enabled or dlsabled dependmg on the current conﬁguration and the

reconﬁguratlon algorithm. Assume for example, that not only rows but also.
columns are eliminated during the reconﬁguration process. In these cases, each u, :
becomes a function of the current marking; e.g., ul equals the number of columns
in the current configuration. Hence, in' order to include all poss1ble cases, ,u, must '
_ be regarded as a var{able multzplzczty (this concept is an extens1on of theusual |
notlon of "multiplicities” in Petri Net theorjr). |

vA’lthough the SPN in Fi%. 2.2, might provide the number‘ ol' operational v
conﬁgurations 'required, it fails to consider the cases when enough Sp"ar_es' are
a\failable but reconfiguration 'cannot take place (due for example to a peculiar
distribution of faults).  As a consequence, this approach might Iirovide overly
optimistic r_eliability estimates. Conceivably, a different SPN model can be used to

accurately represent the dependency of successful reconﬁguiation on fault'i

distributions. However, such an SPN would itself consist of a V‘ei'y large number =

of places and transitions which increases with the size of the array; One of the
intents in this chapter is to provide an extension of the SP,N concept so that
dependence on fault-distribution can be accounted for in a model with a
complexity comparable to that of Figure 2.2 regardless of the size of the array

and reconfiguration scheme used.

2.3. MSPN Representation
The fact that several types of faults affect the array in the vsamev manner,
suggests the possibility of a more compact SPN-like representation, which is

referred to as Modified SPN (MSPN). A MSPN takes into account different fault



.14

Figure 2.2. SPN of the SRE Scheme

distributions by asseciating with each transition t;, a set of attributes_des_er;l"l:ie‘d' as

follot.vs; | R

¢ <P | t), M,),B; ¢;>
“where:

(z IMq,t) defines a d1screte probablhty function Where z represents a
random markmg M; in a set R directly reachable from a partlcular markmg
. M,; the notation Prq is used to denote the probabzhty of reconﬁguratzon
R i (z =.Mj | Mq,t,-), i.e., the probability that the net is in marking Mj after t;
ﬁres when the net is in marking M,. The advanta.ge ‘of-' .assignihg' a
probablhty functlon to each transition ¢;, is the ability to determine correct
trans1t10n rates: between states in the corresponding Markov model as the

( reachablllty graph is belng generated. Thus, when ¢; ﬁres, one value of the

robablllty functlon is asmgned to the marking generated anothor value is-
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-as.signed to another marking that can be éenerated by the i'mme'diate. ﬁring
of a pos51bly dlfferent trans1t10n and so on. This sequence of ﬁrlngs is
o dlctated by the current marklng and the reconﬁguratlon scheme modeled
| _Notlce that the markings generated could have been generated prev1ously
and the probablhtles of reconﬁguratlon are only used to modlfy thet
‘j"trans1tlon rates; |
Si(M,) is a sequence of transitions that will fire immediateiy after 't,-j ﬁres.f_If
‘no immediate firing is requi‘red then S,-(Mq) is a null sequence. Depending on.
‘_the reconfiguration scheme, S; can be uni’que for all-. markings ~or is
deter'mined in'terms of M; |
" B; isa Bmary Transition Vector with k elements b; such that bz = 1 if the’

failure of the lth component triggers the transition #; and bl =0 otherw1se

 This vector is used to identify those components that ‘can trlgger the . -

: correspondlng trans1t10n t;; it facilitates the merging of non—dlstlnct :
:_marklngs, the derlvatlon of probability transition vectors (deﬁned in section
2. 4) and the derwatlon of flags (i.e., failure rate condltlons) that 81gnal

- :possible non-occurrence of a trans1tlon,
The term c, is a coverage factor associated with t;, such that if ¢; isitrﬁirggered
bby the _fa‘i’lure of a spare (inactive) component then c, =1; thus,ﬁ the
, poSsibility’ of array failure at the time that one of these»components-_'fails is
non-e)ristent; if ¢; is triggered by the failure of an active‘comnonent then ¢
| ._corresponds to the probability of detection given that a:fault occurs (i.e.,

C,'"S 1). .

To illustrate the set of trans1t10n attributes just dlscussed con31der the SRE

scheme i in Fig. 2 1 and the SPN of Fig. 2. 2. Smce tl, t2 and t5, have the same '
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eﬁ'ec_t on the array, a single transition. 1, is. deﬁned in a MSPN with a vector
=[110010] to indicate that either the failure of a PE “'IOL or aHL can
| cause ¢, to ﬁre Likewise, t; and ¢, become. t, with a vector B2 = [0 0 1 100].
The ﬁr1ng of t, represents the failure of a BL or a S either of whlch is fatal
7Trans1tlon t6 becomes t; and represents the failure of a SBL Wlth a vector
B3_m0000u |
Con31der now the case When a given operational conﬁguratlon contalns faulty
SBL’s The probablhty that none of them lies in the row that is ellmlnated when
t1 ﬁres, corresponds to the probablhty of reconﬁguratlon Prq] If at least one
SBL is faulty in the row deleted the array fails to reconﬁgure w1th a probablllty
Prgf =1— Prw (the failure marking is denoted as Mj). - In general, probab111t1es of
reconﬁguratlon are complicated functions of the characterlstlcs of each
| reconfiguration scheme (e.g., replacement rules, hardware reqnlrements,
dependencies on fault distributions, etc.) and the size and shape 'of the array.
‘They}j must be derived for each scherne‘and in some cases extensive‘sirnulati'on is
requlred due to the complexity of the combinatorial analysis 1nvolved Examples '
Where sultabIe expressions can be derived include SRE, ARCE and DR Since
dlfferent markmgs may correspond to different number of SBL’s, Prqj is a
function of the current marking (i.e., M,). Let Ps denote the probability of
survival, then for SRE, Ps = Pf,111~ and can be estirnated via equation (3.8) or (3.9)
which are derived in chapter 3 in terms of the number N of faulty SBL’s, present
in the current marking M,. Some transitions in a MSPN will exhibit', a dual
nature: they can be ﬁred exponentially . or 1mmed1ated1y, once a tran31t10n fires
exponentlally, a sequence of 1mmed1ate firings (speclﬁed by S;) of possibly
different transitions may follow. Therefore, in SRE,ﬁWhen .t>1 fires eXpone‘ntially,
t2b ,v\vill ﬁre immediately to generate a failure marking and S, - (t2). This foilows

from the fact that when il» fires, the required SBL’'s become BL’s and if one of
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them is faulty ¢, fires immediately. When %, or t; fire exponentially no
immediate sequence is required and S, and S; are null sequences. It will be seen
that in some applications such as ARCE, the sequence of immediate firings is not

unique as it is selected depending on the current marking.

t: <(Pr;j,Pr}),(t2),Bl,é>

ty: <Pr2“-,@,Bz,c>

ty: <Prd, ), Bs,1>

B, = [110010], B, = [001100], B; = [000001]
Pr; =Pr¥:=1,¢<1,Prl;=Ps as given in Ch. 3

Figure 2.3. MSPN of the SRE scheme

Considering the coverage factors, the sets of attributes associated with the

transitions in the MSPN of the SRE scheme, are summarized in Figure 2.3.

2.3.1. I/0O Places and Variable Multiplicities
Associated with each #; in the MSPN there is a set of I/O places
A; ={I(t;), O(t)} and a set of multiplicities:

Vi={ul,uf | pie{I(t;)}, pre{O(8:)}}

Two transitions in the SPN, can have the same set of I/O places and
different set of multiplicities; i.e. two distinct :faults may affect the same

components in different ways. In order for distinct transitions in the SPN to be
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merged in a single transition in the MSPN, they must have the same set of I/O
places and the same set of multiplicities. Because a coverage factor is associated
with each transition in the MSPN, components whose failures fire a given
vtransition must all correspond to either active or non-active components only (i.e.,

components of both types can not be present).

Ezample 2.1: Consider the SPN in Fig. 2.2. The failure of a PE (fl), the

failure of a IOL (f5) or the failure of an HL (t5) affect the same components of

the array and the set of multiplicities for each set of arcs is the same; therefore

transitions fl, 52 and 55 can be merged into a single transition #; such that

A= {I(ty), O(t1)} = A1 = Ay = A5 = {{p1,p2,P5,P6) {Pa}}

and
*
Likewise, A3 = Ay; i.e., the failure of either a S or a BL (l'?g or 54) causes the

array to fail affecting all components in the same way; i.e., transitions 1?3 and 54

can be merged into a single transition ¢, such that

Az = {I(ty), O(ty)} = {{P1,P2,P3,P4,P5,P6}, Oy

and a set of multiplicities

Vy = Vs = Vs = {ul = #PEy; pf = 410l; uk = 4S5 ni = #BLg; uf = #HLy;
ug = #SBLq};

Finally, we have that the failure of a SBL (tAB) affects only SBL’s; i.e.,

Az = {I(t3), O(t3)} = Ag = {{ps}, {0}} with V3 = Vg = {us =1}

where £3 in the MSPN replaces 1?6. O.

In summary, an MSPN model is an extension of a SPN with the purpose of

representing fault-tolerant processor arrays and can be defined as follows:
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where Pr is a set of probability functions P( (z | M, ) assoc1ated to transrtlons
t; eT Sq is a° set of sequences S; of of transitions that ﬁre 1mmed1ately after an

exponentlal firing of teT B is the set of binary transmon vectors B; deﬁned for

eachpt;e T, C_v is the set of coverage constants ¢ assocrated with each ;¢ T.

S 2. 3 2 MSPN Constructlon

leen a processor array and a reconﬁguratron scheme, an 1nformal procedure

to construct the correspondrng MSPN is as follows.

| Procedure MSPN ’
Inputs o
Array size; |
'Imtlal conﬁguratron Co = (mme " ni)

Set of rules that determine the actions of the reconﬁguratlon algorlthm in
response to faults; i.e., a rule r; specifies the type and number of components
‘added or subtracted if a component type ¢ fails in an operatlonal
: ,conﬁguratlon Cj;
- Coverage factors for the fallures of both actlve and non-actlve components,
‘Tables of probablhtles of - reconﬁguratlon for each. non-active component -
type. (For each different non-active component type, a probability of
successful reconfiguration is conditioned by the ‘number of faults of each
" type; the probability of conﬁguratron is then the product of these condltlonal
probablhtles)

Output MSPN representatlon (P T, A, M, Pr, Sq, B, Cv)
Begln -
Step 1 ‘ :
o Assign a'place p; and a transition t: to component typedz{'. -
Step 2 ’ ‘ '

- for each rule r;; do -
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Group the component types affected by the failure of component type 1
into a set A; as the set of I/O places with respect to transition t:~.

Determine the multiplicity of each peA; and let V; be the set of
multiplicities associated with A;.

end for
Step 3:

Group those transition tA,- that: a) are fired by components which are all of
type active or all of type non-active b) have the same set of input and output
places ¢) have the same set of multiplicities and d) have same coverage
factor. ‘

For each group i do
Define transition ¢;, sets A: and V:.
Specify S;(M,).
Form the binary transition vector B; such that a component &, of B; is
one if the failure of a component type | can fire ¢; and zero otherwise.

end for

end procedure

As pointed out previously a discrete probability distribution is associated
with each transition such that a number of faulty spare components present in
the current configuration is taken into account when the firing occurs. These

probabilities are estimated using simulation or by closed form expressions.

2.4. Reachability Graph

Iﬁ this section the generation of the reachability graph is discussed. A
mapping from the transitions in the MSPN to the transitions between states in
the corresponding Markov model is established. An implementation procedure to

generate the reachability graph is also described.
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) 2.4.1. Probability Transition Vectors

: For each marking M,;eR generated when i; fires (és’ stated-vprevirously_.R is
thé s‘et;of markings that can be directly generated from the same ‘markirng M?)’ B; |
and the distribution function P(z | M, t;) defined previously can be 'usréd:'t.o

generate vectors of the form:
PryiB; = [pry -+ * prg]

where pr; = Prf”- if b =1 and pr; =0 if b; = 0. These vectors are referred to és v
the Probability Transition Vectors (PTV’s). The use of PTV’s is :illu.stlv'ated in

Fig. 2.4; assuming j5=1,2,..., |R | identifies the markings that can be directly

' [RT- . . ,
‘generated from the same marking M, then 3 Pry; = 1. In the event that two
: 7=1 '

or more non-distinct new markings are generated from the same marking, a
merging to a single new marking is carried out by a vector addition of the

corresponding prbbability transition vectors.

Figure 2.4.- Marking Generation with Pri;

| _\Ezdmple 2.2 Analyzing a pafticular marking (in a 4X4 array with a MSPN

" as in Figure 2.3) say Myg = [12 24 20 4 9 11, then if #; fires (i.e. either a PE, a
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IOL or a HL falled) the marklng Mz, =816 2086 7] results Wlth

Prig s =0. 667 Thus, a PTV is glven by Prig 308, = [0. 667 0.667 0 0 0.667 O]
However the array may fail with Pr30 7 = 0.333 due to the ex1stence of one faulty_
SBL (#PE’s - #SBL’s = 12 - 11 = 1). Thus, a PTV is glven by

Prig /By = [0.3330.333 0 0 0.333 0]

When i, ﬁres (i.e a S or a BL failed), the array fails vw'i'th pfobability Pr%s; f - i,
the cerresponding PTV is given by: rPrfg By =[00110 0] Therefere, the |
7 overall PTYV associated with the transition to the failure markmg when ¢; or ¢,
ﬁres is obtained as follows: Prig By + Pr?g sBy =10.333 0. 333 1 1 0.333 0]. The

probablhty of survival is obtained by applying equation (3.9) derlved in chapter 3.

0.

2. 4 2 Failure Rate Condltlon

Any transition in the MSPN can fire on every p0551b]e marking that
represents an opera.tlonal configuration. However, if all eomponents whose failures
fire a particular transition never fail, that transition will neve‘r fire. In the process
of generating the reachability graph, a flag s,-. signals this eondition for each
transition #;. Let o be a vector with components ¢; where each ¢; is the failure
rate ef the component type l and &; = B;o}. The flag s; is set, to one if &; >0 and

zero otherwise.

243 » Derivation of"Tranbsition Rates

Let {X t), ¢ >0} denote a continuous timebhomogeneous Markov ﬁrecese on a
| ﬁmte state space 8= {1 9, - - ,s} and denote the state probability vector at
. _tlme t by P( ) =[P1(t), Pa(t), - , Py(t)], where P = P{X(t)=1}, i€S. The

process is charactenzed.bvy the following set of Chapman-Kolmogorovvdlfferentlal
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' equations: -

hdﬂ@

- = aiPi(t) — ¢;Pi(t)
. t : :
- Where a;j -are the transition rates from previous states ¢ and a;; = Eajk, where a;;

'are trans1tlons rates from state J to states k. The solutlon for the set of

dlﬂ’erentlal equatlons is g1ven in matrlx form as follows '
P(t) = P(‘O)eAt

" where A is thetransition_ratematrix with elements a;; and P(0) -='»(v1,0, e L0)E

is the initial vector state. Assuming there is only one absorbing state (i.e., failure

 state) and indexing transient (operational) states by 1,...,s—1, then the reliability

of the‘_system is given by: R(t) = EP,‘(t)_

o The transition rates"aij can be expressed in terms of the attributes associated »
with the tran51tlons in the MSPN, i.e., a5, = f (P(z IMq,t-),Bi-,c#){
Denote by o a dlagonal transition rate matrix with elements oz,, =0y andv

i = 0 for i#7 (o is the failure rate of the ith component) Let M M o where_,

M [mlq,mzq, et M) denotes as before, a partlcular marking ¢, then

: v _ s »
aql = [ZiciP":ﬂbji bjeBt"]_:l""’k]Mq o oo @

- ;deﬁnes the transition rate from state ¢ to an operational state [ The summati'()n -
_1s deﬁned over all tranS1tlons that fire exponentially and generate the same

- 'markmg l. It is interesting to notlce the relationship of equatlon (2 1) Wlth the

) ﬁrlng rate of a partlcular trans1tlon t; given by'the vector product B-M A

- transition to the failure state occurs for lack of support (1 e., enough spares) or

‘lack of coverage In the first case, lack of support occurs if the reconﬁguratlon

algorlthm falled due to exhaustion of spare components or the fact that the array
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fails to reconfigure if a given distribution of faults is not supported by the
reconfiguratior. algorithm. Denote by \g the tramsition to the failure s‘.fat’e (/) for

lack of support, then

A

; : T
Ny = [ZPT’qf_b,-; bjeB;, j=1,...,k| M,

- Let A\g be the transition to f for lack of coverage then:

. R . ‘AT ._
o = S([S(1—e;)Prigbs; bjeBy, j=1,...,k|My)
7S R A
The overall transition rate to the failure state is:

Ag =N+ Ny

The dia’gpnal term of the matrix A is calculated as follows: "

age=—(Y ag + qu) = —(Equb'*' Agf)

I#q l#q
where:
Nt = [SPriabjs beBii=1,..., kM,
i ,
Ezample 2.3: Cénsider_ a particular marking say Mg = [12 24 20 4 9 11], tileri
- with the following failure rates: ap =1, 0q = 0 = *** ¢ = .01, yield o
Mg = [12 .24 .20 .04 .09 .11]. As in example 2.2, the fol’lowing prbbaﬁiiities are
used: Pﬂg,g‘o = 0.667, PT%SJ' = 0.333, Pr%&f =1. Let ¢; = ¢ = ¢ then, when %,
~ fires the following transition rates in the Markov chain are‘generated': ;
a8 5= ¢ 667 .667 0 0 .667 O]Mng = 8.2241c. The transitioﬁ to the f'ailure state
due to lack of support when %, and ty fire is | | o
A, f = ('[;333 33300.333 0400110 0[jMig = 4.34589. For lack of céverage X
Ngp = (1—c)|[.667 667 0 0 .667 o]M:f = 8.2241(1—c). The overall traﬁéition rate

to the failure state is given as Xls, 5 = 8.2241%(1—c) + 4.34589. Cons‘idering" that a
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fa1lure of a SBL (to) y1elds a trans1t10n rate 61519 = [0 000 0 1]M18 = 0 11 then ’

the d1agonal term is calculated as: ‘118 18 = 8 2241+ 11-+4.34589 = 12 68. O

o 2 4 4. Implementatlon Procedure

The 1mplementat10n procedure MODELGEN outllned below merges repeated
\marklngs as they are being generated and calculates or modlﬁes the trans1t10n
V v:rates in the process The new markings generated every 1terat10n, are targets of
‘the currently visited marking; they are 1nserted into a linked llst of markmgs Asv |
they are generated markings are sorted Wlth respect to the sum of those
components 1nd1cated by the user through compar1son flags prev1ously set An
v | array of pointers to the newly created targets i is updated A pomter to the current 8
' marklng is’ denoted by em. A p01nter to the next marklng in the llst is referred to
by next A systematlc indexing of marklngs is carr1ed out such that the resultlng' -_
trans1t10n rate matrlx is always upper trlangular, a marklng number is ass1gned
to eve‘ry next marklng fetched from the sorted list; a pointer nxtopr‘..polnts to
_mark"rngs which are candidates to be printed or saved in a file. If all jts ta-rgets
have been numbered then a markmg is saved or pr1nted out; therefore, no
-s1gn1ﬁcant amount of memory is required to generate large models - The ,
: procedure stops when all markings have been fetched from the sorted hst Not1ce N
that the linked list corresponds to the reachablhty graph and as it is ‘forme‘d, both
' the :.‘transition rate matrix representation of the l\/larkzov model‘ and . the

- reachability graph are printed-out or saved as requested by the user.

_Procedure MODELGEN

Inputs ‘Set of failure rates (¢;); File names (to save the matrlx representatlon
of the Markov model), An MSPN representatlon of the . reconﬁguratlon
algorlthm (Procedure MSPN outlined prev1ously) -
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LOlitputs: Reajchability graph desCription; Matrix representation of the’
Markov model. : o
 Begin ‘
’ Set a coverage flag for each transition that it is fired by .:non—ac:tive
~components. ‘ (this allows the evaluation of a symbolic matrix for different
‘coverage values). 7 o
- 'Set. comparison flags (to select ‘those ,combdnents by which the list of -
-~ markings is sorted). '
‘Load initial marking
~ for each t; let s; = ByaT
a j:Let em point to initial marking
nztobr =-cm ‘
while not end of list do
- fetch current marking
assign a number to current marking
for each t; and if 5; > 0 do
get P(z | M,,t;)
fire t; and those transitions ¢€S;
calculate transition rates
store targets in temporary table
end for
merge repeated targets
insert new targets in sorted list
insert pointers to new targets in current marking
- while all targets of nztopr are numbered do
' 6utput nztopr marking
let nztopr = nztopr—next
end while
» let em = em—next
end while

end procedure
* The execution time of MODELGEN is proportional to the number of states

generated and therefore depends on the reconﬁguré,_tion_ algorithm. For the _c_as'és’



27 -

‘ngen in Table 3 2 in chapter 3 the executlon time is O(n 3) for n><n processor,

arrays :

25 : isummary

A systematlc procedure to construct Markov ‘models vyas d1scussed in thls
chapter Usmg an _SPN—hke_‘ representatlon, transition firing represents the .
occurrence of faults;' VA place contains a ‘number of .- toltens tol{e‘ns | which‘
: correspond to the number of components of a s1ngle type; thus, the collectlon of
d1ﬁ‘erent components is represented by a marklng in an SPN—hke representatlon‘ .
and a ‘marklng corresponds to an operatxonal conﬁgu_ratlon of the array. However‘
an S“YPVN-like representation fails to_'take‘ into ‘account the distrlbution of faulty
| sp'ares that exist .bwhen reconﬁguration’takes place and may cause‘ the array to
j fail. : :‘v'Also the fact that several component types ‘causes the same eﬂ’ect ‘in the
' 'array when it reconﬁgures, leads to a more compact representa.tlon of the array

Whlch is referred to as an MSPN representatlon

A mapplng from trans1t10ns and marklngs in an MSPN representatlonv to
trans1tlons and states in the Markov model was derived. Th1s mapplng allows the
._constructlon of *_the correspond}lng Markov model as the _generatlon of the
_ reachahility graph is taking place.- |
_ The more the detail (numl)er ‘of ‘components or places in the MSPN 'b
' 'repreSentati,oD) that is included in the model the larger ‘is the state sp‘ace ln the
res'ultlng Markov model.v In summary the 'application of this me'thod entails two
| lnterrelated Vproblems In the vﬁrst place a thorough analysis of vthe» array is

requlred such that all mterdependencles of fallures of dnﬁ"erent components are
. defined;: this can be a difficult task for complex reconﬁguratlon schemes, secondly, '

. in some applications a detailed modeling may be limited to small size arrays
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becaﬁse of the 1arge number of states generated. Finally, considering the fact that
reconfiguration é,lgorithms are primarily designed to treat faijlures of PE’s
elements only, an MSPN representation for a given reconfiguration scheme, will
depend on the assumptions madé as to how the algorithm treats failures on

component types other than PE’s.
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CHAPTER I
. MSPN APPLICATIONS

3.1. 'Introduction

In this chapter three reconﬁguration schemes are analyzed in. detail.
Algorlthms to calculate probablhtles of reconfiguration are derived. As stated in v

the previous chapter, probablhty functions P(z | M, t) are associated with each :

tre,risition t; in the»MSPN; probabilities of reconﬁgurathn are used to determme

Prob’aib“ilii;y Transition Vectors which are in turn used to calculate transition rates

: in the Markov model. The probability of survival corresponds to the sum of
probabilities of reconﬁguratioﬁ if the new markings generated are all operational;

e if the new markings cerreSpond to operationel configurations. In the second
section of this chapter two algorithms are derived to calculate probabilities of

reconﬁguration for the SRE scheme. The third and fourth sections deal in detail

With the ARCE and DR reconﬁguratlon schemes, respectively Expressmns to

determlne the number of states for ea_ch reconfiguration scheme are given in

seetion five. Aiso,v in tiiis section, results of the reliability analysié of each scheme

are. repqrted. :
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3.2. SRE Reconﬁguration Scheme

In chapter 2, the basic concepts undeﬂining MSPN'’s representations of fault
tolerant processor arrays were: thoroughly discussed. Concurrently and for the
purpose of 1llustratlon, the SRE reconﬁguratlon scheme was analyzed. Hence, in
this section, expressions to estimate probabilities of reconfiguration for this
scheme are derived. |

The process of generating vtl‘le reachability graph which describes the
corrésponding Markov model of an SRE scheme, starts with an initial marking

given as follows:

p1. #PE = n®

po. #IOL = 2n‘2
ps. #S = n—l;nz

ps. #BL =0

ps: #HL = n(n—1)
pe; #SBL = n?

A failure marking corresponds to the case when #PE=0 or #SBL(O.
Transition t; will take place if either oy, oy or o5 is greater than zero; to will

take place if either ag or oy is greater than zero. Likewise, t3 takes place if

1073 >0.

'3.2.1. Probability Transition Vectors in SRE

To derive PTV s, estimations of probabilities of reconfiguration are requlred
for each reconﬁguratlon scheme. In the SRE case, 1ts MSPN indicates (Fig. 3)
that when t; fires, two transitions in the Markov model may occur (corresponding

to a sequence of two firings in the MSPN: ¢, followed by ts); one with probability
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Pqu which corresponds to the probabllity of survival denoted by Ps. The other
. tran51tlon fires immediately and w1ll lead the processor array to a. failure state |
.'w1th probability Prqf The array Wlll survive with probability Psvrf the failure of a _7 '
\’.PE or an IOL that trlggers the reconfiguration algorithm occurs in a row that _
contains no faulty SBL. Let N denote the number of faulty SBL in a markmg M o |

then Nis determmed by:
N #PE #SBL =My, — Mgq

where 0 < N < nXn.

To estimate Ps, it is necessary to find all the possrble ways in which N faulty

SBL’s can be mapped into a total of rXc SBL’s in the array Wrth.a‘current |
configuration containing r rows and ¢ columns, To simplify this problem we count
all the possible partitions of N into r parts with a value not, greatervthan‘ ¢
columns. Because each rovt' contains ¢ SBL’s, up to ¢ faulty SBL’s per row are

possible.
| :Each partition of N is a k-tuple (‘11:“2a “eos ak),_such that: |
| N=a; +ag+ ...+ ' R (3.1)
where: c>a,->a,-+1 >1 for 1<z'<k——1 and 1<k<r. e

In [Ber81] it is shown that the number of partitions of N with k or less parts

and N >a;>a;1>1, is given by the recurrence relations:
’ F(N——Ic,lc)=F(N,1)+F(N,2)+ e +F(NK) . (3.2)
F(N,1) = F(N,N) =1

. The function F(N,k) is interpreted as the number of partitions of N with k&

parts.'
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Theorem 1: Let us denote by F (N) the number of wanted parti_tio_n.s of N;
 ie. those partitions with at least one part ¢; > ¢ are excluded. Then F(N) is

~given by:

F(N)=F(N,c,1) + ... +F(Nye,r) (33) :
e ‘ R L
(0 EN>k b |
'F.(N,_‘c,k)= S F(N—LLk—1) otherwise | I 3 (39
R E - o e
and
F(Me1)= F(Ne,N) =13 N < | o ea)
F(N,,) =0 if k>N | o B e

' Pr»oof:I Let us consider first the case when N > ke. Each term in the summation
is recursively decomposed until the functions generated satisfy equations (3.5) and
~ (3.6). The value of [ in each term of the summation corresponds to a p:a'rt a; in

the ith iteration. The partitions generated will contain a part a; such tﬂat
[N/k] <g<lec Hence, if N [k > ¢ implies all partitions will have at “:lea‘st the -
~ first part a; >c and F(N,c, k) = 0 follows. | | |

Let ﬁs examine néw the case when N < ck. F(N,c,k) is decomposed‘ into
(c—[N /k] + 1) functions, which in turn are. recursively dechposed unfil the

cases of equations (3.5) or (3.6) are reached. In the process those functions in

which N > kc or k > N are eliminated.
The number of terms in the sum corresponds to all the possible values a part may
take and since the minimum at every iteration is a; = [N /Ic], we let a; < ¢ as an

upper - bound for the first iteration which gives the number of summands
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'indicated previously. For fhe next iteration the process is repeated. At the ith
iteraﬁibn, N = N?a; and k has ba_en decremented to indicate f,hat now the new
value of Nis to be partitioned in k——z barts such that [N /k] <a¢<ai .

' Eqﬁations (&.3—3.6) can also be uaed to ‘determine the ‘valuev of e‘ach'part.in ‘a-
particular parfition since in ‘the ith iﬁeration .the index ! in equation . (3.4)
_corresponds to the Value of a, Whereas N-I corresponds to the remammg value to

' be partltloned among the £k—1 remalnlng parts. El -

E:cample 3. 1 To 1llustrate the apphcatlon of the above relatlons, let us find

all the p0351ble dlstrlbutlons of 8 faulty SBL’s in a 4)(4 array (r-—c-—n)

 Solution: With N =8, n =4 and'r = 4 we , have:

Ny

F(8) = F@41y+F@42y+Fm43)+F@44)
F(8,4 1) =0 since 8 >4
F(8,4,2) = F(4,4,1) =1
F(8,4,3) = F63m+F@4w
,,—F@31yfmzzn+Fu31yhﬂo4n_1+1+1_3
F(8,4,4) = F@23y+Fw33)+F@43)
C=F(4,2,2) + F(3,2,2) + F(2,3,2) + F(2,2,2) + F(1,3,2) + F(0,4,2)
=F@%D+F@%U+F@LU+F@LD+0+0#4
And F(8)=0+143+4=38
“Table 3.1, shows the ‘order of the resultmg partltlons, where partltlon 1) is
gwen by F(8,4 2), partltlons 2- 4 are. glven by F(8 4 3) and partltlons 5-8 are glven

by F(8 4 4) O
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Table 3.»1, Partitiens of N=28

Partition .-+ Parts

No.. @1 Q9 Q3 Gy
1 4 4 0 0
2 3 3 2 0
3 4 2 -2 0|
4 4 3 1 0.
5 2 2 2 2
6 3 2 2.1
7 3 '3 1 1
8 4. 2 1 1

1 The probabxhty of survwal Ps can be found by two methods usmg in both
'cases the Total Probablhty Theorem [Tri82]. In the first method |

Ps=-Z P(3|1)P() L | (37) |

t=1

- The term P( | 1) is the probability of success given the ith partition -occurs‘an'd ’
P() is the probablhty that the ith partition occurs. These probablhtles are -

obtalned as follows A

where z; is the number of zeros in the ith partition, m; = [TlTé I " ]H ;
: ' o o ’ R )

'co‘rresponds to the number of mappings represented by the ith partition with m

F(N) .
dlstlnct parts repeated 7y (1<l <m) tlmes The term 7 = W= [ 1\(/:' is the total
» . i=1 ‘ '

: 'b_,vn'vi1mber of possible- mappings of N faulty SBL's into an array Wi_th rXce number of

PE’s. After some manipulations on equation. (3.7), ‘the following eﬁcpressieh
resﬁltsz' | |

P'é_ﬂfg, | I -_'(3..8)
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‘A drawback in thls procedure is that an enumeration of the pos31ble partltlons of

"N is requlred and this is. a lengthy task. for large processor arrays A second

method more attractive for large arrays is g1ven in the followmg.

Thcorcm 5’.2: Denote by k the number ofb rows (nﬁhlber of parts in the partitio_ri)
"with:i faults (k‘ parts with same value 1), let 7 be defined as above and let o(k, 1)
'he the total ‘mrmbver' of mappings with eﬁcactly k rows with ¢ faults then the
prbbability of survival ié given by the following exbreséion:

neSlt 5)

T

o Sl

where 0 < i < ¢ and m is determined such that 0 < N—im < (r—m)c.

where

Proof: To find 9(/9 t), denote by A; the number of mappmgs with at least k rows

Jiesly

The first binomial corresponds to the number of ways k is combined in r rows; the

Wlth i faults, then

A, =

second binomial gives the number of mappings of the remaining faults into the
remammg spots (PE’ s) in the array; the last binomial corresponds to the number

of ways in which ¢ faults are mapped into ¢ PE’s in one column in each of the k
rbwsi. Because A; counts also A; for k<l Sm by a factor of [,i], 9(Vk, t) can be

obtained subtracting all mappings with [/ rows; i.e.:

‘Q(k,i)=1‘4k - [,f:]e(z,i)
. I=k+1
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By letting 6(m,s) = A,; an expression of 6(k, ) is obtained recursively in terms of
Ap. After substituting A; the expression for (k1) given above follows.

To obtain Ps, let a; ; be the set of partitions with k rows with ¢ faults then the

probablhty of survival glven apiis k /r and using the Total Probability Theorem : |

the probablhty of survival is glven by
Ps = P(s)= 3 P(s | ay, ;)P (a, ;)
N r k=1

Ok, §)

T

where P(q ;) = and equation (3.9) follows. O

In the particular case of the SRE scheme, Ps is obtained by'letting’ 1=0 in

eqUatien (3.9).

. ARCE Reconﬁguratlon Scheme

In the ARCE scheme, a row elimination is followed by a column ehmrnatlon‘
'[FOR85] Flgure 3.1, shows a section of an nXn array supporting ARCE Slnce the
_number of rows and columns Varles with each conﬁguratlon, then at a given
cenﬁguratlon, r denotes the number of rows and ¢ the number of columns. The
array':.is in a ‘r-conﬁguration (r=c) if the reconfiguration algorithm deletes a row;
Likewise, it is in a c-configuration (r < ¢) if the reconfiguration algorithm deletes
a column; In Figure 3.1,> the following components are identiﬁed: PE’s; I/O
Links, | Which are the rnterconnections between switches and PE’s; Column
Switches (CS), Wh1ch are the switches in the current ¢ columns of the array; Row
’ Swrtches (RS), these are the switches i in the current r rows of the array. The spare

':bypass links (SBL) used to bypass a faulty row become act1ve links and are
..referred to as Row Bypass Llnks (RBL’s). Likewise, the spare bypass links' used
. to bypass a faulty column become active links and are referred to as Column

= Bypass Links (CBL’s).
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~In the case.of ARCE, the following aésumptions are made:

"The fallure of a PE or an IOL, causes the ehmmatlon of a.row if the array is

in a r—conﬁguratlon, it causes the ehmlnatlon of a column 1f it is in a c-

configuration.

'All switches in the rvcurrentvconﬁguration are considered active.

The failure of a RS in a r-conﬁguratlon, caﬁses the elimination of that row,
in a c-conﬁguratlon, a column is ehmlnated followed by the affected row to
comply with the alternate column—row deletion process.

The failure of a CS in a c-configuration, causes the deletion of ’ithei affected

column; in a r-configuration a row and the affected column are eliminated.

The féilﬁre of a RBL, causes the same effect as £he failure of a RS.

‘The failure of a CBL, causes the same effect as the failure of a CS.

If a row is deleted, the spare bypass links used to bypass that ~fow must be

" fault free. Otherwise,.the row is deleted followed by the column deletion with
- the faulty spare link; this sequence is referred to as a row-column deletion

‘sequence. Likewise, if a column is deleted the spare bypass links used to

prass ‘that column must be fault free; otherwise, the columh is' deleted
followed ‘by the row with the faulty spare link; this sequence is referred to as

column-row deletion sequence.

3.3.1. MSPN Representation of the ARCE Scheme

Any operational configuration C; for the ARCE vschén'lre is described as
follows: |
G = (s Mir s i) = (#PB,#IOL,#CS,#RS, #RBL, #CBL,#SBL)

'An operational configuration C; corresponds to an operational marking A{[, o
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Figure 3.1.- Schematic Layout of the ARCE Structure

An initial configuration Cy in terms of the size n of the array, is given by the

following set of equations:
py: #PE = nZ,
po: #IOL = 4n?,
p3: #RS = (n+1)n,
p4: #CS = (n+1)n,
ps: #:RBL =0,
bﬁz #CBL =0,
pr: #SBL = 2n?.
In any configuration C; described by a marking M;, the number of fows r

and columns ¢ are calculated as follows:
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p=|mt| e =|mt]
The diﬁ‘efence d=c—r=0 ‘identiﬁés r—conﬁgubrations and d =1 identifies
é-coﬁﬁgurations. ”
A transition to a failure marking occurs 1f the current markmg contains not

enough PE’s or not ‘enough SBL s. To 1dent1fy this condition in each markmg
a flag z is set or reset accordingly: '
1 if m;>m and mg>2m
“ |0 otherwise
where m and 2m refer to the number of PE’s and SBL’s, respectively, eliminated
by the reconfiguration Scheme. Notice that m takes values depending on the type

of the current configuration.

' A place p; and a transition f, is assigned to each component type as listed
above. For each f, the corresponding set A; of I/O places and set of multiplicities

V; are determined next.
~ According to assumption ‘1:), 1?1 (failure of a PE) aﬂ'ectsvéll the components in
a column or a fow; hence: |
Ay = {I(f;),0(£1)} =:{{P1sP2,P3,P4aP5aPs,P7},{PG,P7}}'
‘The set | ‘Vv'l of variable multiplicities is given by the fbl_lowing set of -
equ‘ailzions: 7
Ca) ul= rx+m1q(‘1‘_x) :
b) | ui = drztmg,(1—2)
¢) ui= (n+.‘1)d:c+m3q(1—x)

@) ph = (n41)(1 — dabmgy(1-2)
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e)  pf =(n—r)dz+ms,(1—z)
) uh = (n—e)(1 = d)rtme,(1—z)
:;”ig) | ud =,2rx+m;7q(1'—x)
“h) ='r(1—d):c—mf5vq(1—z)
1) ,deo ‘=:rdx—m6q(1—v—x)‘
‘This'set of equations indicate that when 51 fires fhen: a) r‘ PE’s” aré 7deleted;
b) 4 IOL’s for each PE elin.1inated are also’ eliminated; ¢) in a c;conﬁgﬁrétipn,
n+17"CS’s are deleted; d) in a r;conﬁguration n+1 RS’s are deleted; e) fz—fRBL’s\
are deleted in a r-configuration; this number corresponds to the RBL's bypassing
the 'PE’s in the rows already eliminated; however, - no RBL’s are deleted if the
Curfent configuration is a c-configuration; f) no CBL’s are deleted in # c-
‘éonﬁguration but in a r-configuration, n—¢ CBL’s need to be deleted whichb are
those CBL’s bypassing PE’s in the columns already eliminated; g) since there are ‘
two SBE’Q for each PE, 2r SBL’s are deleted vin either conﬁgﬁration; h) the
number of RBL added corresponds to the numbef of PE’s in a deleted row; i) the

number of CBL’s added corresponds to the number of PE’s in a deleted column.

The failure of an IOL (f,), as stated in assumption 1) causes the same effect
as fl. Therefore Ay = A, and Vo = V;.

The failure of a CS (£3) as stated in assumption 4), will have the following

set Aj:

Ay = {I(fs),0(i3)} = {{p1,p2,p3,P4,P5,P6, 7} {P5: Pe }}
Let m=r+(c—1)(1—d) then the set V3 of variable multiplicities is given as

follows: -

a) pf = matm,(1-2)
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‘b,) Uy = 4;nz+m2§(1—x)

o) 4 = (nt1)a+mgy(1—)

d) v: ul = (n-_|-.1)(.‘1v—¢.l.):c+m4q(1-_—’:c).
e) | “?{ = (n—r’”):c—l.-m5q(1—a:_)‘
) = (n—c)(1—d)o+megg(1—z)

g =2motmyg(1—2)
h) = (e—1)(1=d)r—ms,(1-2)
) wd= (r+d—1)x—m5q(1—z)

’ Thus tvhen t3 fires, equation a) shows that in a c-conﬁguratlon, only r PE’ sb
“are ellmlnated however in a row configuration, to delete a column a row must be
deleted first giving a total of r+( —1) PE’s eliminated. In general given a r-
conﬁguration, to delete a column, the sequenCe ‘row-column deletion applies and
‘giVen;a c-configuration, to delete a row, the sequence column-row deletion appilies.
In ednatien b), for every PE that is eliminated 4 TOL’s are also elirninated. In ¢)
shews: that in either configuration, all the C‘S’s in the aﬁected ‘column are
eliminated. Equation d) shows that in a r-configuration all the RS’s in the affected .
r_owi’ are eliminated. Equation e) indicates that in either conﬁgui'ation (n—71)
RBL’s are eliminated. Equation f) shov\is’that in a c-configuration, n—c is the
nurnber of rows that have been eliminated, so the same number of active CBL’sis
eliminated. However none are eliminated if a column is deleted. Equation g)
| deletes 2 SBL’s for each PE deleted. Equation h) shows that in a c-configuration
the row-column sequence activates only c¢—1 RBL’s; none is activated in a r-
conﬁguration Equation i) shows that r—1 CBL’s are activated correspondlng to v
~ the _column deleted in a row-column sequence that apphes in a c-configuration; in

a r-configuration only a column is eliminated and so are the r CBL’s in it. ”
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The effect of the failure of a RS (54), as stated in assumption 3), is described

by the following set A 4:

Ay= {1(7?4)10(54)} = {{Pl,Pz,Ps,P4,P5,P6,P7},{Ps,Ps}}

with the following set of variable multiplicities V4 where m=r+(c—1)d:

pi = mz+mq (1—z)

a)

b) rvu£=4mx+m2q(1—x)

o) = (nH)domay(1-2)
8 = (ntDatma(12)
e) pk =(n—r)dotmsy(1—z)

) ud =(n—c)ztme,(l—z)
g) uf =2mztmy(1—z)
- h). ,u,é) = mz—ms4(1—2)

) uf = (r—1)dz—mgg(1-2)

‘These equations are essentially the same as for t5, except that in case of a c-
configuration, the failure of a RS, implies the deletion of the affected row
therefore the sequence column-row deletion applies. Note that equation h) shows
that the number of CBL’s activated corresponds to the number of PE'’s
eliminated in a c-configuration; i.e. ¢ CBL’s; in the case of | a r-configuration
r=c—1 CBL’s are activated. Likewise, the number of RBL’s activated by
equation i), corresponds to the number of PE’s eliminated in a r-configuration;

none in a c-configuration.

The failure of a RBL (i5) as stated in assumption 6), will have the same

effect as the failure of CS; therefore Ag = Az vand Vg = V3.
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The fallure of a CBL (ts), has the same eﬂ'ect as the fallure of a RS :

o therefore A5~— A4 and Vs = V.

‘ The fallure of a SBL (t7), Wlll decrease the number of SBL’s by one and
' A7 { t7), t7)} {{P7}, {@}}

Wlth a set V7 of varlable multlphcltles as follows |
ui =1
Transmons tl and tg have same set of I/0 places and same set of

multlphcltles, therefore trans1tlon 1y of the MSPN is deﬁned Wlth Al = Al = A2 :
amm_n_n' ’

leeW1se fs and t5 deﬁne trans1t10n ty of the MSPN with A2 —A3 ‘— Asg
amw_n_n ' '}

Trans1t10ns t4 a.nd t6 define transrtlon t3 of the MSPN with A3 = A4 ;A;
and V3 = V4 = Vs '

Flnally transition t7 deﬁne t4 with A4 =Aq and V4 = V7

The set of transitions ¢ thus obtained with the correspondlng sets of I/ o

places and varlable multlpllcltles descrlbe the MSPN' of the ARCE scheme shown .

: 1n Flgure 3.2.
The ‘tranSitign_vectors associated with the transitions t are the .folloWing,:
—=[1100000]
B, =[0010100]
t33?W00101ﬂ5

B,=[0000001]
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Notice that in ARCE, ¢; will not occur if o = ay =0, té_Will not occur if

o3 = a5 =0, t3 will not occur 1f d4 = o = 0 and ¢4 will not occur if a7 =0.

3;3;-2. Probability Transition Vectors in ARCE

In ARGCE, a successful reconﬁguratien takes place if 1) In a ,r-conﬁgliration
(r=c), all r RBL's in the rOW‘ to be deleted are fault free an‘d 2) in a c-
configuration (r <c), all r CBL’s, in the column to be deleted are fault free.

In either rcase we are interested in the distribution of N 1 faulty spare RBL’s

and N, faulty spare CBL’s, such that N N, + N2 is the total number of faulty

spare links where 0 <N; <rc, 0 <N2 < re. In a marking ¢, the number N of

faulty SBL’s is obtained as follows:
N =2my;—myq

Where mig = re and 0 < N < 2re. The number of SBL’s that must be fault free
for a successful reconfiguration is always r. Let H(N) be the number of partltlons
“of N 1nto parts N; and N, such that 0<Ny, Ny<rc, then

H(N) ={;ji(1v]j1§) 8 N>re
Assuming all poSsible partitions of N are equally likely, the prpbability that aﬁy
fith partition will occur is pr(A) = 1/H(N).

Let X be a random variable which denotes the number of faulty sbl’
(column spares in case of a r-configuration and row spares bypass links in case of
c-configuration). Then Pr(X=i | n) is the probability that there are i faulty
spare links in the row or column to be deleted given the 7ith partit.ionb occurs; this

probability is given by equation (3.9).
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The total probablllty Pr (X ——z), which corresponds to the probablhty that ¢ spare
row/ column links are faulty in the row/ column to be deleted out of a total of N

faulty spare hnks is glven by

(X——z) = E Pr X—z | n)pr(n) (1N) Hg’)Pr X=i l n)
A=t LR e
=H_(11\7—1l2 Z_)[ ] (’:r)» D (3.10)

Slnce 0<z <r, expression (3 10) implies that there w1ll be at most r+1'

tran31t10ns from a given state to up to r+1 dlﬂ'erent new states Each trans1tlon

. is welghted by Pr(X—z) such that ZPr(X—z)——l Every ,term in this

summation corresponds to a transition probability as stated previously- ‘The size
of the set R of states directly reachable from any given state is for this case. up to

r+1 and 1ncludes the fallure state if X=r.

- v Because every poss1ble value of X, may trlgger a dlﬁerent reconﬁguratlon the .

‘ followlng cases are observed.

1) “Case. of transition t1- If i=0, a row or column is deleted‘in a ¢ or I-
configuration respectively. However: if >0, 1 sequences of rc-deletions are
required‘ in a r-conﬁguration ¢ faulty spare row 'bypass links become faulty active.
row bypass hnks S0 t2 is applied ¢ times; In a c-configuration ¢ faulty spare
column bypass hnks become faulty active column bypass links so ¢3 is apphed t

tlmes

2) Case of transztzon ty.- The application of ¢, implies rc—deletlons in a r-
kconﬁguratlon for all i. In a c-configuration however, if z=0 only the colurrm
, aﬁ"ected is deleted if : >0, then ¢ re-deletions oceur and since the column sparc

bypass hnks in the columns deleted- become active column bypass links then ¢ is
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applied ¢ times.
3) Cc“zse of transition t3.- In tﬁis case, i rc-deletions are required in a c
configuration. However in a r-configuration, if 1=0, only the affected row is
deleted, otherwise 7 rc—deletiéns are necessary vand' since the faulty spare row
bypass links beéome active r‘éw bypass links, ¢, is applied ¢ times.

In summary, to capture these cases in an MSPN representation the sequences
Sy, S and S3 are defined as follows:

(tg, "=+, t2) ifd=0

Sy =85 =83 =
! 2 3 {(tg, <+, t3) otherwise -

i.e., whenever t1, ty or tg fire exponentially, a sequence of r immediate firings of
t, or tg will follow depending whether the current marking corresponds to a r-
configuration or a c-configuration.

Finally, we adopt the following criteria to determine the number of faulty
spares that are passed on to the new configuration. When a single row or column
is eliminated, the number of faulty spares passed on to the new configuration is
given by:

N1 = NO - 7T
In general after k firings of a sequence S; have occurred, the following recursion
can be applied:
Nk = Nk_1 —m
where

r for t;
m =1r+(c—1)d for t,
r-+(c—1)(1—d) for t,
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" These expressions assure that t_he sparee that -_become active aud make the
ne'w ‘conﬁgur‘ation possible must be fault-free. The nunfbe’r of faults in a curreut
‘convﬁguration are distributed in the'array between the rows and columns deleted
and the new configuration. Therefore the new conﬁguratlon will contaln non-
faulty spares if N, <0 otherw1se N, faulty spares are passed on to the new
conﬁguratlon To represent thls condltlon every time t1, iz ort3 ﬁres, let aflagy |

be set or reset as follows

1 if Nk <0 ' '
= 0 otherwise
' theu the “desired number of SBL’s (m7;) in a new marking ] , ié obtained by

modlfylng the input multiplicities associated w1th SBL’s as follows:

b = (m = Nea)y = m{i=g))amr(s )

3.4. Direct Reconfiguration Scheme

In this section an specific case of reconfigurable processor afrays t_hat follow a
, syStematic chained replacement of faulty cells [SaS86a, SaSSGb] is analyze'-d. Figure
- 3. 3 shows a schematic layout of the hardware requlrements for the Dxrect :
Reconﬁguratlon in an n><n array where 1nterconnect10ns are 1mplemented through
Vmultlplexers For 1llustrat10n, the Direct Reconﬁguratlon (DR) algorithm is
emphas1zed since other schemes within this class (fixed fault-stealing, variable
fault—steahng, complex fau]t-steallng, ete. ,) [SaSS6a,SaS86b] can be analyzed in a
s1m1lar way

Upon the application of the reconfiguration algorithm (which considers the
total number of non-faulty cells), a faulty cell is replaced byva spare cell by

Simply reiudexing non-faulty cells and bypassing the faulty one. Thus, a shift of
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) :<Pr(z>|Mq7‘tl)’SI’Bl,c>.
: o <Pr(z | Mq,tg),,SQ,Bgyc>'

st <Pr(z | Mg,is):sssBa, c>
4t <Prii=1,(3,B;5 1>

o Ch ok

'Figure 3.2. MSPN of the ARCE Scheme

fﬁnétional cells or chained replacement is carried out when afaulty cell is
‘dete_cted. ‘For the case of a singie spare row and a single spare column, the‘
reconfiguration Falgorithm scans each column of the array upwar;ds and marks the
first faulty cell as a vertical fault. All other i_'aﬁlts are classified as h‘ox"i‘zontal
faults. If one fow_ has more than one horizontal faulty, reconfiguration is not

possible along that row and the reconfiguration fails.

o »To an@lyze fhe DR scheme, the following comﬁonen‘ts are ;:onsidéred; aﬁtivé

cells (PE’s); I/O links (IOL’s); for each cell there are two Input Multiplexers
(IPVD(’S); for each cell there is one Output Multiplexer (OMX); Bypasé Liﬁks v(BL’s)
are active links which are used vt.o bypass faulty éells; the Interconnection Links
(IL’s) are sets of links that define the interconnection network éndvit is assumed

(to ,simplify the analysis) that there is one set per column and thatv the
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correspond1ng fa1lure statlstms can be provided; spare cells (SPE’s); Spare-IOL’s ’

' (SIOL s); Spare Multiplexers (SMX’S) which are the non-actwe mult1plexers_

assoc1ated Wlth spare cells, Spare Bypass Links (SBL’ s) are non—actwe bypass

lmks

2) .

= In the analy51s of th1s scheme the following assumptlons are’ made

"The reconﬁguratmn algorlthm is apphed to replace elther spare or nomlnal
-faulty cells. In th1s analys1s only one spare row and one spare column arev ‘

. »assumed.- '

A cell is bypassed by any one of the spare bypass links shown in thediagrarn

depending weather the reconfiguration is vertical or horizontal [SaS86al.

':s_ihce the functions of the bypassed cell are replaced by another cell,b ali_nl( in

~ the IL is activated acting as a bypass. Therefore, it can be assumed that

B always two bypa‘ss‘ links will be used to bypass a faulty cell.. Also,v for a

El

| 4)‘

successfnl reconfiguration both spare bypass links must be fanlt—free.
The failure of an IL or an OMX or a BL is fatal.

- The failure of an SMX or an SIOL disables the spare cell to ~vivhi‘ch they lvare

attached.

The failure of an IMX or an IOL disables the cell to which they are attachec_l.

341 MSPN of the DR Scheme

‘The following set of equations shows ‘the initial configuration of an nXn

‘ array that supports the DR scheme with one spare row and one spare colnmn. A

place a‘ssig'ned to each component'type is also indicated:
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Figure 3._3.-‘-,.Schematic Layout of the DR Structure

Pz#IOL = 4n?

b #OME =n?

| PS#BL .= 2n

B Pe #IL —>n+1 )

- P} #SPE —2n+1 )
st #SIOL = 4*(2n+1)

- pe: #SMX-— 3(2n+1)

" p10 #SBL = 2n? +2(n+1)

Note that in the 1n1t1al conﬁguratlon the number of BL s'is glven by those
: ‘actlve lmks requlred to bypass ‘both the spare row and the spare column The,b
B pgmber of SMX’s -correspond to those 'multlple_xers attached to spare,cells, _smce .

they“‘_are‘ not acﬁti\}ea single place is assigned to them assuming all have the same
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s »:failure rate; when a cell becomes active then its 3 SMX’s are ‘separated into 2
M(’s and 1 OMX. ‘The total number of SBL’s is given by those existing in t.hel"
nominal array plus (n+1) in the spare row and (n+1) in the spare column.

 To construct the MSPN, let us denote by ¢; the failure of an SBL (tm) with

Al = AlO = {{Pm} 5} and Vi = Vio Whlch contains only the equat1on plo = - 1.

Next, accordmg to assumption 5, the failure of SIOL’ (tg) or the fallure of an
- | SMX (to), cause the same eﬁ'ect as the failure of an SPE (f); therefore these

‘ three trans1t1ons define t, with A2 =Ay =Ag = Ag = {{p7,p8,p9,p10} {p5}}
The set of multlphcltles associated with the set I/ O arcs is deﬁned as:

V2 = V7 Vg = Vg which contain the following equat1ons.

o By éssumptlon 3, the failure ol' an IL (1?6) or the fajlure of an OMX (£4) or
the fallure :of a BL (i5) will cause the array to fail. These trausiticns -deﬁne't3i in
the MSPN with a set of I/O places Az = Ag =Ay4 =A5 = {{ P1,P25 - - - P10 :
}@} a set of multlphcltres V3 Ve =V4 =V = 2 {{
ut = mip,u3 =>m’,-2,...,u{0 =m0}, & } at‘ any given ith marking.
Finally by 'yassumption 4 the failure of a PE (fl), the failure of an IOlJ ({2)
“and. the failure of an IMX (3) have the same effect on a given current
conﬁguratwn of the array, therefore tran51tlon t4 of the MSPN with a set, of I/O
» places A4 =A, =4, =A; = {{p—,,ps,pg,p‘m,p5v},{p5,plo}}. The co‘rrespondmg'

set of vmultiplicities is -V; =V, =V, =V; which contain the fcllowing
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equations'
ui =’1;/"'8 = 4aﬂ9 = 3#10 = 2,M5 = 1»#5 = 2:#10 = 1aN1o = 2
The Blnary Trans1t1on Vectors assoclated W1th the tranS1t10ns obtamed are

the follow1ng
B, =[0000000001]
B, =[0000001110]
B; =[0001110000]
By;,=[1110000000]

When ty 'vﬁres because a PE or a IOL or an IMX failed, the the ‘ar‘ray
r'ec'onﬁgures With a probability of survival Ps=P§q or fails with probability 1—Ps.
‘To:" c~apt'ure the transition to the failure state, {3 fires immediately after t4 ﬁresv ‘
exponent1ally Hence S4 = (t3). The remaining transitions do not.cause any
immediate firing; therefore, 81 =89=83=(. The MSPN obta1ned for the DRF
scheme is 'vshown ln Figure 3,4.'

Notlce that tl will not occur if a9 =0, tgb Will not ' occur if

' a7 = ozs =0 = 0 t; will not occur if a4 = oz5 =05 =0 and 4 w1ll not occur 1f

. O[]_ =012,=Ol3 =.0.

3.4.2. l?roba.b_ility Transition Vectors in DR

A successful reconﬁguration in the DR scheme depends on the'» aVailability of
. spare cells upon the failure of an active cell and the fault-free condltlon of the
spare bypass hnks Whlch bypass the faulty cells The number of faulty cells N,
and the number of faulty SBL’s N, at an ith. conﬁguratlon of an nXn array are

; ‘glven by:
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P, P, P P,

‘ ‘tl:<Pr§;,@,BAI,1>vPr}j=1’ -

s t2:<'Pr§,-,®,‘B_2,1>v Pri=1

t3:< Pri;, (0, Bs,1> Pry;=1 :
 tua<(Priy, Pry), (ta), Bay1> Pri=Ps;Pri=1—Ps

Figure 3.4.- MSPN of the DR Scheme

A N, = 277"I+q2_mi7
N, = 2n242(n+q)+2ng—m;s—m;1o

Whereq ié the nuﬁlber of spare rows and columns, m;7; = 77, Mmis = 17,;5 and
mi19 = Ni1p are the'num;ber of Spare 'cells, the number of active bypass links
(BL’s) and the number of spare bypass links (SBL"s‘)‘in' any itﬁ configuration ‘
reépécfively.' | ' | L

A probability of transition Pr is one when ¢y, ¢, or t3 ﬁre. However whﬁn t‘4‘ "
f.ires: the reconﬁgui‘ation scheme 'is triggered and the array reconﬁgures with a .
probablllty Ps —Prq, or fails with probablhty 1—-Ps —Prqf Let P(s |N )
| vdenote the condltlonal probablhty of success given N, number of faulty cells and

let P(s | N ;) denote the condltlonal probablhty of success glven N, faulty SBL S.

The probablhty of success is then glven by

Ps = IN)P I|N) | ) (3.11)
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Thus, the presence of faulty SBL’s in the array affects the overall successful

reconfiguration rate. The conditional probé.bilities of success are derived in the

next paragraphs.

Estimation of P(s | N;)

"I;‘o derive the probability of successful reconfiguration given N, faulty cells,
thé following recursiv'e‘expressiongiven in [JaR88| is used. Starting from tl_le
(g+1)th fow to the (n+4q)th row of the array the probability that s fatal failure

occurs in the first j rows is given by:

. P}( )= {: f(J;;f):u(;:P (I —1)Pg(s) for j>r

at the (n+q)th row the conditional probability is obtained by:
P(s | N,) = 1-P{(n+q) (3.12)

where Pg(s) is the probability that a first fatal failure occurs in the jth row.

Denote by P,(7) the probability that a row has exactly ¢ faulty cells then:

S—(n+q)

ol

where S=(n-+q)? is the total number of cells in the array:

n—4q
)

Po(i) =

 Let Py(j) denote the probability that a column has at least ¢ faulty cells in

‘the{ﬁArét 7—1 rows then this probability is obtained as follows:
i=|fs -
i1 [ k ] N.—k

k=gq S
N,
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. ..Now let P,(3, j). vdegote‘ the probvability that at least ¢+1 out of 7 columns

have ¢ faults or more in the first j—1 rows then:
f.

Pc(i;j) = 3

l=¢+1

]

1| (Po(2))'(1=PB (5))

The'probabilivty‘ of first fatal failure in the jth row Pg(g) is o‘btai‘n’ed as
“follows: |
n+q

P = 3 Pi)Pid)
: t=q+

The probabilities of survival given N, for several array sizes are shown in
Figure 3.5. These results compare closely with those obtained using simulation as

reported in [SaS86a).

Estimation of P‘(s | N,

- To estimate thé probability of success given N, faulty SBL’s, let ué assume
that up to two SBL’s per active cell may be faulty. Denote by p a place where a
cell may have either none, one or ﬂwo faulty SBL’s then the number of possible

faulty places denoted by N, varies as follows:

N,

SN,<B

where g = min{N,,2(n?-N,)}. The probability of successful reconﬁgurafion given

N, is given by:

P(s|N,) = : | . (3.13)
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10 5 20 . 25
No. of Faulty Cells (N,) =~

B Figure 3.5.- Prob. of Surv. for Different Array Dimensioﬁs (DR) ,

To obtam equatlon (3 13) let P(s | N,) denote the probablhty of successful

reconﬁguratlon glven N, faulty places, then: .

N|| N,
Pls | M) =~

)

~ the numerator of the above expressmn corresponds to the possible number of

mappings of both fa.ulty cells and faulty SBL’s in Whlch both types of faults do

not coincide in a single place. The numerator corresponds to the total possible

number of mappings (fault distributions) given N, and N,.

0.8
06
o PN
0.4 — . _ -
' 6 \8 \10\12 \ 15 20 -\ 25
024
0- T | l — T 1 — 1
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Let P(N,) be the probability that N, faulty places exist. This probability is

obtained as:

By the Total Probability Theorem, the conditional probability givén N, is

give_n by:

5 :
P(s|N)= X Pls|N)P(N,) o (3,'14) '

' Finally, substituting and simplifyin'g in the above expression yields (3.1.3).

3.5. Comparative Results

In this section expressions.are derived-tq determine the state Spa;:é Of the -
thrée schemes analeed. The state space size caﬁ be obtained through these
éXpressions or through MODELGEN. Also some reliability results are reported_
for several sets of failure rates to compare the effect_of detailed modeling With :

respect to an analysis in which only failure of PE’s are considered.

3.5.1. State Space

For the schemes analyzed, Table 3.2 shows >thé growth of thev state space as
function of the size of the array. In this table all failure rates:arebassumed greater
thzbnil.’zero in order to generate in each case, the maximum number Qf states. The
maﬁcimum; number of states tabulatéd, can be obtained ﬁsing for ezich case closed

. form expressions.”
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" To derive the number of states for the SRE case, let S(n) ‘denote the -

‘maximum number of states for an nxn array; then:
' Y5 o :
SSRE(”’) = E(n + n° + 2n)

This expression is derived by observing that n statesare generated With'non-
: fa.ulty SBL’s; for each state ¢ Wlth non-faulty SBL’s, n(n i) additional states are

_generated Hence, the total ‘number of states is obtained by solvmg the

summation Sspe(n) = E [n(n—1)+1] to yield the above expression.

For the ARCE case the number of states §(n) ca‘n‘be derived by observing
that (2n—1) states are generated with non-faulty SBL’s. Eac‘hy" of these states
generates additional states with a total number expressed by“t'he following
summation: |

| 2n—2

% (2(n—f41] + R(n—i)(n—i-1)+1]

‘frpmzwnichrthe following recursion is derived:
Sarcr(1) =’3 ‘ SARCs(”) =8p +4n° —2n+2
with a closed form solution given by:: |
Sarcs(n) = (n—l)[%—@nz +7n) + 4]+ ‘3‘

The number of states sz(n) in the case of DR, can be obtalned by the v

followmg expression:
: . 2¢n+
Spe(n) = E [(2n +2(qn+92)+1) i]
In this expression the summation is carried out over all st’etes generated with 4

o f:tulty SPE’s. Solving this summation the following closed form results:
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Spr{n) = (2qn-Fq2+1)[2n2+;2(qn+q2)+1-(2qﬁ+q2/2)

simplifying for ¢=1, then

' Spa(n) = (n+1)(4n*+2n+5)

Using eithér MODELGEN or the ‘abo{re equé,t_ions the number of states -
generated in each case is shown in Table 3.2. v
o I ,
Table 3.2. State Space Size for three Recoﬁﬁgufation Algovrithms §

|n | SRE | ARCE | DR
1218 |17 75
3|21 51 188
4 | 44 107 385
5|8 | 199 690
6 | 132 333 1127
7 | 203 517 1720
8 | 296 759 12493
9 | 414 1067 3470
10 | 560 1449 4875

3.5.2. Reliability Analysis

To illustraté the »applicability of MODELGEN, several sets of failure rates
(o's) .ilave been selected and described in Table 3.3. For each failure rate iset, the
Reliability (R), the MTTF and the Reliability Improvement Factors (RIF) have
been computed .for a 4x4 pfocessor array. The results obﬁained are tabulated in
Table 3.4 for both the SRE and the ARCE reconfiguration schemes.

In our analysis, v_vev have ﬁsed the PE failufe rate as ia reference normalized
“with respeet to the time unit such that ot = 1 aﬁd with a coverage factor 6f ¢ =.99.
The- compufations were carried out using the MGRE (Model Generator and

~ Reliability Evaluator) software package deseribed in [Lop89]. -
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The main purpose of the tabulatlons in Table 3 4 s, to show the' B

' lnterdependencles of the different components now contalned in the model Notlce' -

_ rfor example in column (e), the sen31t1v1ty to sw1tch faxlures of’ the array ‘with -
j Y'SRE ie. columns (d) and (e) show the results obtamed under s1m11ar fallure rate '

values except for sw1tches, a rehablhty 1mprovement factor (RIF) is calculated in'

. each case with respect to the 31mplex (sx) case, which corresponds to the case. of

: sthe fallure of the ‘array’ when a s1ngle processor fails; at t= 1 a RIF of 15 91 in
column (d) decreases to a RIF of 3.87 in column (e) as the fallure rate of the'
swltches 1ncreasesfrom 0.01 to 0.1. The same effect is less notlceable in the’ array

W1th ARCE; Compared to_SREV‘, ARCE is less sensitive to fai_lures in 'switches and -

links. The-Mean Time to Failure of the array With ARCE improves in each case " =

'con31derably w1th respect to the array with SRE. In summary column (b) shows:' |
rehabllxty results obtalned cons1der1ng PE’s failures- only, on the other hand
columns (c-d) show the effect of detalled modehng obtalned under dlﬂ'erent fallure

. rate sets

o - Table 3.3.- Failure,Ra_tes used for the results shown in Tahle 3.4.

Qo a3 04 Op Qg @ Explanation

[«
S|
&

| Array
la |sx - - - - - - |a;==pefrate -
b 1.0 0 0 0 .0 - |a;=I0lf rate
R ¢ | 1.-01 .0 .0 .01:..0 - |ag=Switchf.rate
<+ | SRE d |1 .01 .01 .01 .01 .01 - |o;=b.link f.rate .
Sl 0 e 1 011 01 .01 .01 - |ag=hlink f.rate
(f {1 .01 .01 .1 .01 .1 . - |ag=sp.b.link f.rate
g 1. 01.01 0 01 .0 - |z co
a |sx. - - - . - . 0 | ag=cswitch f.rate
- |b 1 0 0 .0 0 0 .0 a4”=r.switch f.rate
Ao | € 1 061-.0. .0 .01 .01 .0 |ag=c.bh.linkfrate
ARCE d |1 .01 .01 .01°.01 .01 .01]|ag==r.b.link f.rate
~le |1 011 .. .01 .01 .01|a;=sp.b.lirate
f 1 .01 .00 01 .1. . .1 |sx=simplex |



61

Table 3. 4 Rehablllty and RIF’s for SRE and ARCE with ¢ = .99 and
Failure Rates given in Table 3 3.

Array : : S . f
R/RIF | Time a b . c d e f
SRE- .| . .1 | .201897 .97553 974196 - .949305 - .792264 = - .901154
1 | .2 | .040762  .889824  .882997 832308 . .580682 .703244
B .3 008230~ .74327 729796 - .663918. .3869727 - .489128
Pl 40 | .001662 578714 561119 .492554 239752 - .315416
.5 | .000335 - .428912 410413 347755 .141386. .194080
1 e 32.62° . 3.93 1591 ©3.86 850
. 2 8.71 8.20 5.80 2.30 . 3.44
RIF | 3 e 3.86 3.67 2.98 1.62 2.04
4 2.37 2.27 - 1.98 132 151
L .5 1.75 1.70 1.54 117 1.27
MTTF - . .510087 496435 447789 280379 .33785
ARCE | .1 | .201897 .986691 986227 .985946 983185 - 985713
: 2. | 040762 = .977126 976359 .975787 - . .966740 .974176
R 3 | .008230 - .969483 .968212 :966729 .939159 .959977
; 4 | .001662 961962 . .959513 .955845 894073 93758
5 .000335 .95268 .947997 .940533 831963 - ,903652
St 59.97 '57.95  55.75 46.78 . 4729
I 1 J — 41.94 - 4.58 © 3891 - 2850 . 3178 °
RIF 3 3250  31.20 29.31 © © 16.17 2172
1o A — . 26.25 24.66 92.27  °  9.38 1447
. .5 21.13 19.22 16.61 593 . - 9.65 -
MTTF - - 2.07274  1.90644 1.74707 1.02882  1.28279

Some reliability results of a 4X4 array with a DR scheme afé éhown_-in Table.
3.6. Each columh.correspoﬁds to a set of failure rates tabulated in Tablle 3.5.
Column'a considers the reliability of the array when only PE’s (SPE’s) fail. The
feﬁaining coiumns. coﬁsider failures in all components in the mo‘del;‘ thus, while in
'co:l'iimn ba singlé failure rate is assumed for all compOnents excebt PE’s column ¢
. shows the; e_ﬁ"ect of an incréased failure réte of IL's and column d shows the effect
of a'n increased ‘fa,ilure rate of 'multiplexer's. The array shows inéreased'sensitivity :

| . . . .

to failures in multiplexers than to failures in the IL's as shown by the reliability

_al_id MTTF results‘shown in columns ¢ and d. Because the DR sc‘herj‘ne‘c_on‘siders.



components of greater compiexity (such as IL's and multiplexers) than those used
in SRE and ARCE, suitable comparison between the three schemes is given by

column b in Table 3.4 and column a in Table 3.6 in which only failures of PE’s

are considered.
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Table 3.5.- Faiiure Rates used for the results shown in Table 3.6

col. | apg apor  Oqux
a 1 .0

b 1 .01

c 1 .01

d 1 .01

.0
.01
.01
1

.0
01
.01

d

.0

.01

.01
01

CoMx Qpp O Gg

.0
.01
1
.01

1

1
1
1

.0 0
01 .01
01 .01
01 1

__Ysion  YsMx. Xspr |
.0
.01
.01
.01

Table 3.6.- Reliability Results for DR with ¢ = 0.99 and
Failure Rates given in Table 3.5

time a b c d
1 0.971744 0.935879 0.894698 0.795178
.2 0.832624 0.744162 0.680113  0.487772
.3 0.576951 0.461321 0.403064 0.212808
4 0.326881  0.228668 0.191000 0.070372
.5 0.156860 0.094770 0.075675 0.018868
MTTF | 0.346681 0.30104 0.2774 0.207435

Let us consider a simplified model such as the one proposed in [WaF88b]
where the reliability of the array is expressed as R(t) = R,.(t)XR,(t). The terms
R,, and R,‘refer to the reliability of non-redundant and redundant hardware

respectively. For the SRE case, let the number of PE’s in the array be the

redundant hardware, then:

Rty =S¢
1=0

;L (efnalt)n_i(l—e‘na‘t)i»
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_ Consider the No. of IOL’s, HL’s and Switches as the non-redundant hardware, |
then: I o

() = e_(2"20‘2 + (n+n%)as + nin+1jas)t
nr - . .

“ Tah‘le 3.7 shows‘ the reliability and MTTF results obtained tvith ‘a set of
failure rates as shown in row ¢ in Table 3.3 and with ¢=.99. The results given by
the simpliﬁed ‘model show an underestimation of the reliability of a 4X4 array
Wlth ‘the SRE scheme as compared to the results obtamed by solvmg the Markov
7 model generated by MODELGEN. ' '

] Table‘3.7.-,Reliahility Results of Simplified and Detailed Modeling

time simplified | Detailed
. 915052 .954906
2 . 782915 .848375
3 | .613426 | .687296
4 448006 51798
5 311454 371557
MTTF 41571 | .464996

,.3 6. Summary
In thls chapter the application of MSPN’s to generate Markov models for the :
-reliability analysis of prOCessor arrays has been shown Three exa.mples of
' reconﬁguratlon schemes were thoroughly analyzed using MGRE to generate ‘the -
) models and reliability results. The analysis covers various components of the
array and thelr failure mterdependenmes Comparative results show the state
: space generated in each case. Rehablhty results derlved for SRE and- ARCE
compare these two schemes and thelr responses to different types of fallures Av '
pos51ble MSPN representation of the DR scheme has been derlved in whlch dense.

areas are confined into a block (IL’s) to facilitate the analysis. It is assumed that
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fallure statlstlcs for these blocks are avallable

The use of MSPN’s as a modellng techmque 1mphes that the . rehablhty

'estlmatlon of any fault—tolerant processor array requlresv ':a" complete o

understandmg of the fault’ behavior of the array in the presence of any type of -
_faults considered in the model The 1nﬂuence of faulty components other than
PE’s.in a processor. array becomes more 1mportant as the ratlo of area occupled
by PE’s decreases In this case to predlct the effect of faults in resources such as
‘ sw1tches, buses, hnks, ‘ete., on the rehablhty of the array, detalled modehng is
Justified. However, a complete characterlzatxon of the reconﬁguratlon algorlthm '
is clearIy needed; i.e., speclﬁcatlons such as resourcesharlng and type of resources
used to establish interConnections, ";fetc.; 'particularly in‘ cases of overlapping )
routlng paths Where conflicts are more likely to ioccur. | |

| Another advantage of a detailed model-ing of : ant : speclﬁc array is the B
poss1b111ty of measuring the effect of redundant area 1ncrements in the overall‘
rehablhty of the array. The problem here is to be able to evaluate the effect on ‘
the rehablhty of increased hardware complexrty in terms of area requ1rements .
However, a detailed modeling of thelarray, causes a rap1d growth of the state -
space and traditional solution methods of rehablllty models require the
summatlon of large number of terms Wlth dlfferent srgns whlch 1ncreases the effect
of round-off errors as the system state space grows A]so, the generatlon of B
absolute large numbers increases the pOSSlblllty of machme overﬂow :
: Fortunately, large state spaces . can be solved using randomxzatron technlques
- [GrM84] ‘On the other hand approxxmatlon and reduction methods can be
apphed for very large systems to derive lower and upper rehab1hty boundsv
[SmG86] without having to solve the entire model. In ~the latter case, sultable‘ )

criteria should, be established _to select those oper‘ational states whose
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performance-related measures are of interest.
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CHAPTER Iv
NUMERICAL RELIABILITY ESTIMATION
AND A MODEL REDUCTION TECHNIQUE :

41 'Invtro‘duction ,_

- ‘A fault—,tolerant SYstem can beb modeled asb a continuous-.-time‘discrete ,st‘ate
,Markov process whose state space corresponds to‘ the possible ‘operational
conﬁgurations of the system To derlve rehabillty est1mat10ns at a glven tlme, the
'transxent probabilities of the operatlonal states of the Markov process are
requlred Traditional solution methods requlre the summation of large number of
. terms W1th dlﬂ'erent signs.. Unfortunately, for large state spaces, the hkehhood of |
unrehable results increases as round-oﬂ' errors are 1ntroduced in the solution
process. To overcome this problem the randomization technique has been used as’
‘an alternate approach to the transient solutions ol' queueing systems prbposed in
[Gra77a,Gra77b] and for the reliability calculation of fault tolerant systems
[Mil83]. In this chapter, implementation algorithms to estirnate both reliability
and MTTF usin‘g- the randomization‘ technique are discussed.. Furthermore, by
ehminatmg those states with low mean holding times, a reduced model is
‘,obtained via equalization and lumplng techniques [SmG86). Once a reduced model
is obtained the randomization procedure is apphed to derrve lower and upper
reliabihty bounds The model reduction process req_uires an early knowledge of '

the MTTF‘ of the original model; therefore, an 1mplementatlon; algorithm to



67

ébfﬁin ank exact evaluétion of the M’i‘TF is d'i'scuss.ed. "To. ioptimize‘ storage -
fé(jﬁiremenfs and to 'spéed up. calculations these algorithms ar‘evbésed on ré. siilgle
vector representation of thé transition rate matrix. This evaluation approach is
‘abp‘licable for ‘large sfate 'space models which are-repres'entéd by arIl ‘UPper'
triangular transition rate matrix. Applications are illust;at‘ed through examples of
evaluation of models generated by MGRE. | | o
= -The éecond section of this chapter introduces a brief backgroﬁnd' on the =
rand_oinizatién algorithm. 1mp1e_mentation details and an. é.lgorithm for reliability
eStimatiog'aré presented in the third section. the fourth section discusses a model'
reduction teéhnitiue uéing' an exact estimation Qf the MTTF. Finally some

~ applications are reported.

4.2‘.  The Randomization Algorithm

- Let {X(t), >0} be a continuous time homogeneous 'Markov process on a

finite state space S = {12, --- ,5}. The state probability vector at time ¢ is

denoted by P(t) = [Py(t), P5(t), **+ , Py(t)], where P,-(t) = P{X(t)=1}, i€S.
The Markov process X(t) can be characterized by a set | of differential

" equations given in matrix form as follows:

P)=Pt)A C(4.1)

. ‘vwii‘;hb-a solution:

P(t)=P(0)e4 R C® )

Whéré P(0) corresponds to the initial probability vector and A'is an nXn matrix

~ with elements aij‘Which are the transition rates from state 7 to state ij ‘and.

4 = =3 G5
i#5
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A useful method [Gra77a,Gra77b] to compute the exponential in equation
(4.2) called uniformizatibn or randomization is described next. Denote by Q the

-transformation of the matrix A as follows:
=+ ] 4.3
Q A + , (4.3)

where A = max a;; 7€S.
- The vresulting matrix @ is a transition probability matrix of a discrete-time
Markov chain (i.e. with entries O’Sq,'j§1). Substituting A = —AI + AQ in

equation (4.2), we have:

P(t) = P(0)e~MeAtQ - (4.4)
A series expansion of the exponential e2€ yields:
‘ n
P() = 3 POo)Qre 2L
n=0 n!
[o] n ’
= 3 (et (4.5)
noo n! :

where ®(n) = P(0)Q" is a probability vector of a discrete Markov process with a
transition matrix Q.

In thé probabilistic sense the uniformization algorithm can be interpreted as
follows [Mil83]: let {Y, n=0,1,2, -+ }beaMarkov chain on S with transition |
matrix @ and {N (t),tZO} be a Poisson process with rate A; assume both
processes are independent of ‘each other. Then the process ‘{YN(t)', té@} is a
Markov proceés with a transition matt"{ix @ with aﬁ ini‘tié.l pfobability state P(0)
and therefore identical to X(t). Conditioning over the number of occurrences of
the Poisson process in [0,¢] and using the law of total probability, we have that

for a giveﬁ state 1

P(t) = P{X(t)=i) - | o (4)
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= P{YN(t) =4 N(t) = n} ,
= 5 P{¥uy=i | N()=n) P(N(t)=n)

’ v‘n=0 :

o o —at (A"
= n{)ﬂ,P{Yn =1i}e ae (A2)" n!)
Deﬁning @,(n) = P{Y, =1} and <I>(n) = [CI)l(nj, Py(n), ...], thén jé}quation’ (45) :

results. »

4.3. Implementation Details

The implementation of the uniformization procedure calls for the calculation
~of @(n) and P{N(t)=n}. Since Q is a stochastic matrix, converges and ®(n) can
be calculated recursively by: | o v v |
$(0) = P(0)

P(n+1) = P(n)Q o 4

The Poisson probability of exactly n events in an interval of length ¢ can be
computed directly. An advantage of the uniformizétion procedure is that
precision errors can be bounded by the user. The infinite series is truncated at
.some point n = m, such that the complementary cumulative value remains Below

a presci‘ibed bound ¢; i.e., for every transient state in the system we must have: -

1 g (At)ne—At

n=0

<e

nd

Let | ®(n)] denote the norm of the vector ®(n). Since [ 9(n) | <] @(m)l
for any n>m, the following stopping rule can be used: : |

Bla- OV oy

n=0
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Other 'adv‘entage of this algorithm is its. numeri(:al stel;'ility;' Ca'lcli‘lat'i(“)nsv

involve only nenhegative numbers. | o |

v_ In [GrM84] an implementatio'n« algofithni of (4.7) for .spar.seirm"z'ttrices is
presexvlted." Sparee matrices are transformed to a vector reptesentatioh to miﬁimize
. storage rvequi:fements and si)eed up c_alcula.tio;is.’ | X v

" The matrix representations' .of the models generated’ via an MSPN
fepfeeentatio_n of fault-tolerant processor arrays, exhibit 'the following features:
they are: large; sparse and upper triangular. Therefore a vector ,r.eplv'esentatien is
sirhi)liﬁed‘ and an elgorithm similar to that of [GrM84] has been implemented to
ca.}lculate""(I).(n).b An eetimation of the MTTF is obtained using the fovllowing‘

relations:

‘I’ i(n)

o=

| X

nMS

]
MTTF = ZG{
‘ =0

" The summation to derive o; is truncated when ¢ is reached.

4.3.1. Reliability 'Estitna.tion Procedure

An algorlthm to derive state probabllltles for several time points is outhned
Below. The followmg parameters and notation are used: it = nmtml time; h =
length of‘ iﬁteryai; nt = Number of intervais;. E|[j] stores the cumulative Ponsson>
Fp‘robalﬁ)il‘ity value £[7] at a time t derived in terms of the index 7 Plj] stoyres the

" state prebabilities at a time ¢ Which it is derived in terms of the index, 5

Procedure STATE_PROBS
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Inputs it, h ni
Outputs Vectors Plj]; _]—0 i,
- Begin
- n=0;
 calculate (0 a.nd |<I> O)!
o vfor j=0,1,2 ... ni, do
Efj] = 0;

P[] =0
end
- ok ='1 7
~ while ok do
ok = 0
for j=0,1,2 ... ni, de
t= zt+h><]
gls) = e B0

 P[j] =P[5] + ®(n)xE[]
- if [ &(n) | X(1—E[j])<e do
Elj] = E[5] + €[]

ok =1
end
end for’
| if ok do
 n=n+l"
calculate d(n) and l o( n) |
end
end while.

_end procedure

" The norm of vector P[j] gives the reliability estimationi at time t. Notice
that the vector ®(n) which .is common for all inte'rvals; is calculated only once.
E The algonthm stops when all intervals have reached the stoppmg rule contained

in the if statement.
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,'4 4., Model Slmpllﬁcatlon

leen the Markov model an exact derivation of the MTTF is poss1ble Whrch
can glve us an ’apriori’ knowledge of the stochastic behav1or of the Markov chain
| w1th respect to different failure rates This suggests a pos51ble st‘ate space
‘reduction based on the contrlbutlon of each state to the overall MTTF The
randomlzatlon algorlthm can then be applied based on a reduced transrtlon rate
matrlx. Leakage equahzatlon techniques as presented in [SmGSG] refer to the
.procedure by'thich all transitions to the failure s‘tate from all or a set of
“ operatlonal states, are modlﬁed to have a s1ngle value The resultlng model can be
reduced by lumping those states w1th the same leakage value 1nto a s1ngle state

“WIth a single transition to the fallure state. Thus, equalization of transitions out

of. those states which exh1b1t Very ‘low mean holding times followed by a lumping .

procedure, reducesthe sta_te space of the model to yield a model Whose solution
accuracy depends on the number of states eliminated and the transition rates
, 1nvolved To assess the accuracy of the solutlon, lower and upper bounds are

estlmated and MTTF results are compared with those of the original model

4.4.1. ‘MTTF Exact Derivation a.nd Implementatlon Procedure

To compute the MTTF, we observe that the Laplace transform of equation ~

(4. 1) can be expressed as follows

‘ The entries of the vector p correspond to the mean holding time of each state.
Evaluating at s=0 and using the fact that A is an upper triangular matrix each

en,try‘ of p can be obtained recursively as follows:

Pj =57 2iPi%j e 49
: 7 i#£j b A
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Hence, each’ p.7 is calculated by observ1ng each column of A. The: MTTF 1s then

| calculated as follows

MTTF = %)p; . (410)
=S - o :

HLet u be a vector whose entries correspond to the non-zero entrles of the
'tran31t10n matrix A. Deﬁne Ti={s; t} as a tuple assoclated Wlth the 1th TOW
(state) of A Where s, is an integer that indicates the number of transﬂuons
: (targets) from state 3 t is a set of indices correspondlng to the targets of state 4.

" An 1rnplementat10n algorlthm to calculate the MTTF i is outlined below.

i‘ vProcedure MTTF
| Inputs T; = {s,,t} u
Outputs mttf
Begln ) '
k=0
- for each row i, :do ‘,
- opil=0
o are 1
G PRI
k=k+s+1
‘end .-
plo]=pl0] -
k=0 _
for each TOW ¢, do
for(_]— s §<sgs _]++) do
O] = el + ol k4]
end |
Tk=k+g+i

~end
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- end procedure 7

- The complexity'of "this algorithm is O(n 2) Where. n corresponds to the
number of operatlonal states of the Markov: model represented by A. The first
loop 1n1t1al1zes the vectors p and p. This 1n1t1ahzat1on is needed to evaluate each

element of p in the main loop as the rows of A are belng fetched from the buffer

| u. An advantage of this 1mplementatlon results in the case of very large models o

_ in Whlch on-l1ne memory is restrlcted In th1s case, the rows. of A and all Tys can_"

be fetched dlrectly from a file.

4.4.2. Model Re'duction Process
7 lA state i'is a highly probable state if p[i ]>§, where ¢ is a us,er-given constant.
_,The model reduct1on process consists of lumping consecutive states that are non-

hlghly probable The rema1n1ng states are systemat1cally remdexed deﬁnmg a new .

' reduced model This method is well suited for large models that include failures of =

Spare components or other components thh low failure rates The fa1lure of a
slngle spare component gives place to a new operatlonal state in the Markov
model large blocks of states can be generated with low tran51t1on rates due to the |
fa1lure of spare «components, however other transitions to some - of these states ) i
. may or may not turn them ‘into a hlghly probable states; thus, eliminating states' :
based solely on the transition rates does not guarantee satisfactory results By.'

this approach the elimination of non-highly probable states is controlled by the _

user via the selection of ¢, and the desired reliability bounds.
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443 Es,tima.tiorl of Reliabllity Bounds
It ﬁas been Shoufn. in [SmG86], that equalizing transitions to the-failure} state -
.(ledkdgc) from states in the entire model or a subset; results in aneu' model with
ccuserVative or optinlistic reliability estimations } depending whether the
‘ edualiZatiOn is performed with the nla)limum or the ‘minimum vtransition to : the
failure state.

l)et L" be 2 subset of non-highly probable states; notice vthat there may be |
several subsets or blocks of consecutive states with a ,0[ 1<¢ (zeL) For a lower
bound a state k is. selected such that its leakage corresponds to the maximum
leakage

Imax = max;y, | Zail’ l
j
L1kew1se for an upper bound, 2 state keL is selected such that its leakage
_corresponds to the minimum leakage |
i = ming, | Y »l
j

Thed'resultingmo’del has a set L of states with the same leakage. All other
’transiti’onsvto states out of L are eliminated. Thus, the set L can be lumped into
a siugle state kel with no change in the reliability estimation. The process is
,repeate_d for each subset L that can be formed in the criginal model. T‘he resultlug ‘
model is a reduced model with a reliability corresponding to a ,lewer/ upper bbeund‘

‘ wlth’ respect to the original model.
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4.5. .Applications,.

in this section the ‘re‘liability plots for 4X4 and 10X10 ARCE arrays are
shéWn to illustrate the lower and upper reliability bounds that result upon the
selection of the constant g.‘Figures 4.1 and 4.2 show the case of a 4X4 array;
Figure 4.1 cor_responds to the case of ¢=.01 where the lower bound reliability
curve is shown with a MTTF=.911763 and the upper béund reliability curve with
a MTTF=2.95693; the exact reliability is also shown with- a MTTF =1.28279.
Figure 4.2 shows the casé of ¢=.005; in this case the lower bound and upper
bound reliability curvés are closer to the exact reliability cﬁrve with
MTTF=1.1854 for the lower bound and MTTF=1.72181 for the upper bound.
While the original model contains 107 states, reduced models with ¢=.01 and

¢=.005 are obtained with 19 and 21 states respectively.

1- o ———  exact rel.(mttf=1.28279)
‘ . | oeeres ub. rel.(mbtf=2.95693)
0.8\ S Ib. rel.(mttf==.911763)
\ , |
\
\\
0.6 ~ N
R(t) - \
0.4 -
) 0.2 4 NN T
0 n — ] L
0 1 2 3 4

Fig. 4.1. ARCE 4 X 4 Exact Reliability (107 states) and
Lower and Upper Bounds (19 states) with ¢ = .01
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1o . o .'v s exact rel. (mttf—l 28279): :

& : : : STRRPREE ub. rel (mttf—l 72181)
0.8 - RN e 1b. rel_.(mttf;1,1854)
0.6
024 )
B e S € T 1 b

F igure 4.2. ARCE 4 X 4 Exact Reliability (107 states) and
Lower and Upper Bounds (21 states) Wlth g‘— 005 -

A 10X10 ARCE array will be represented by a more complex model Wlth
'1449 states with a MTT. F =1.53484. The plots in Figures 4 3-4.5 show the
rehabAlhty approximations obtained upon the selection of three dxﬁerent constants
X Figure 43 shows the results obtained with §=..001 With aM T»T‘F =1.23601 for’
. the loWer bound curve comp@red to a MTTF=1.67142 for the upper bound crlrve;
these results correSpoﬁd to a reduced model with 44 states. Figure»4.4_ shows the
' results“obtainedv with ¢=.0005 with a MTTF =i.28975 for the lower bound elrrve ,
compared to a M TTF=1.55848 for thevupper bound cufve; the reduced model in
this case contains 47 states. In Figure 4.5 ¢=.0001 with a MTTF=1.52796 for the
blbwerv‘bou‘nd ‘curve ‘_compared to a MTTF =_1.54v118‘ for the upper boun‘d curve; |
these resrllfs correspond to a reduced model with 47 states; As the lower and
‘lipper MTTF values come closerv to the exact MTTF , the reliability curves.

coiricide giving an indication of the real reliability values Withdut having to solve
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the entire model.

0.8\
0.6 — N
CR(t) | N

0.4 ~ ’ N\

0.2 —

ub. rel.(mttf=1.67142)
Ib. rel.(mttf=1.23601)

exact rel.(mttf=1.53484; 1449 states)

0 : B T
0 1 2

L
3 4

Fig. 4.3. ARCE 10X10 Lower and Upper Bounds (44 states)

with ¢ = .001

4.6. Summary

In summary, the general randomization procedure can be used to estimate

the reliability of very large models. Using an early estimation of the MTTF of the

entire model, fast reliability results can be obtained via the solution of a reduced

model. 'Bj comparing the mean hoiding time of each state in the original model, -

every subset of consecutive states is lumped into a single state. The set of states

created by this process is then aggregated with the remaining states to form a

new reduced model. A systematic reindexing is carried out and the

randomization procedure is applied to cbtain lower and upper reliability bounds.
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1 ub. rel(mttf——155848)

AR T Ib. rel. (mttf—-l 28975)
cosAN T exactrel. (mttf—*l 53484; 1449 states)
06-— o i \\ '.‘..'0"
| Rt | '
0.2
B E e Ay Da— pa—— B
o -1 2 34

F1g 4 4. ARCE 10><10 Lower and Upper- Bounds (47 states)
with ¢ = .0005 o

| Thus, the model reduction process is straightforward and transparent to the user;
The solution o‘f .the new model corresponds to a lower bound if the ‘stste
réplscsment is based on the maximum leakage to the fajlure ‘state‘; a vmi'ni‘m‘um
leakage 'replasement .‘yields an  upper bound _solution. To illustrate “the

ap-plicability of this method, solutions of small and large models were shown.

~ . One contri:bution of the work outlined in this chspter consists ’of the
implementation of an algorithm to evaluate reliability modsls. An additional
contrikbution consists of the possibility of obtaining rapproximate felisbility
estimations of large processor arrays; i.e., using reduced models, lowef and upper
bounds can be obtained. However, a drawback in the reduction progess is the
fact that a matrix representation is required for é,s early estimation of the MTTF.
Thus the need to reduce storage requirements through a vector-like .repfesentation
is justified. However it seems reasonable to further explore (in future research)

features such as upper triangularity and sparsencss of the transition matrix to
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1 — o e ub. rel.(mttf=1.54118)

| ‘\ | ——===  Ib. rel.(mttf=1.52796)
0.8 - \\ . exact rel.(mttf=1.53484; 1449 states)
N,
- %,
0.6 %,
_ N,
R(t) | %,
Y
04 Ay
\e : .
7 &%\\\
0 | ' | 1 ) b
0 1 2 3 .4

Fig. 4.5. ARCE 10X10 Lower and Upper Bounds (57 states)
~ with ¢ = .0001 »
calculate the MTTF and select the desired states during the construction of the
reachability graph without the need to store the entire model. At this point the

“only advantage is reaching a solution in shorter time.
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' CHAPTERYV
 HIERARCHICAL ARRAYS

5..1,‘ I‘ntroduction’ o

: ln this-chapter, 9-level hierarchical structures are analyzedz The components

of the hierarchy are fault-tolerant processor arrays that support any of the' o

: -followmg reconﬁguratlon algorithms: DR, RR and RCR DR refers to the d1rect
reconﬁguratlon scheme, the RR (Row Replacement) scheme is a Varlatlon of the
' SRE scheme such that the size of the array remains constant throughout its
roperatlonal life and can tolerate only a number of faulty process1ng elements
- correspondmg to the number of spare rows. The RCR (Row or Column'
Replacement) scheme is a varlatlon of the ARCE scheme such that the s1ze of the
' array remains constant throughout its operational llfe and it has a glven number o
of spare rows and spare columns; the number of faults tolerated corresponds to-
the number of spare rows and columns. The choice of non—degradable processor:...
,’arrays allows the analys1s of several h1erarch1cal schemes by us1ng a g1ven '
,reconﬁguratlon scheme in any place in the hierarchy. Although several measures-
can he used to compare several schemes, the use of the MTTF permlts the -.
compar1son of a large number of schemes and helps in. determlnrng the eﬁects of |
detalled modelmg ina partlcular hierarchical scheme; for this’ purpose, the results
‘ obtamed are- grouped in two tables. One table describes a set of MTTF s obtalned a

When only PE’s fail. A ‘second table describes results obtajned ‘when 'faults,_of
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several component types are considered. To observe a more detailed behavior in

* their reliability some hierar'chicalschemes are selected from the MTTF tables.

5.2-._ Taxonomy of Hierarchical Schemes
Let H=<8K> denote a glven hierarchical scheme where S refers to a set

v whose elements 1dent1fy the reconﬁguratlon algorlthms used at different levels in

the hlerarchy The subarray size at each level is speclﬁed by K as follows
K = (nl’nZ’ R a’?’k)
_i.‘e.',"'at‘the‘ fth level the subarray is of size ng. The 'Subarray sizes satisfy the

| .prod‘uct; v

lwh_ere n corres‘ponds to the size of a single level processor arlr_ay“.":'Thus, in a"g'iven‘
hierarchical structure, a subarray at the z'th'level is of size. n, and it is formed
W1th subarrays of size 13 the subarray at the ith level is 1mplemented usmg the
‘ reconﬁguratlon scheme in the sth p051t10n of the set S. For example, if n—16 one
1possrble representatlon of a 3- level structure 1mplemented with only an z

| ‘reconfiguration scheme is:
<(=, z,x),(2,2,4)>
“which lndicates .th'at at each level the array supimrts the reconﬁguration lscheme z
and_that' in the first level the size of the subarray is 2, in thevsecond‘ level the slze
is also 2 and in the third level the array is compOSe(l of 4 subarrays,-‘ |
' i ”l.\lotethat if there are m different reconfiguration schemes anvd each kcan‘ ﬁt at

_ any level in the hrerarchlcal array, then with respect to S there are m* poss1ble

: vhlerarchlcal conﬁguratlons Thus, the selectlon of an optimal conﬁguratlon must |
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corljespond to an optimal value of a measure of interest such as MTTF, Mission
Time, Performability, etc. An analytical determination of an optimal hierarchical

configurations is addressed in [WaF88b)].
To estimate the reliability and MTTF vo}f a k-level hiefarchical array, the
following criteria are used: ‘
1) The failure rate of a processing unit (subarray) at the ith level is estimated
| .iI.l‘terms of the MTTF of the subarray at the (i-1)th level, and denoted as:

| . |
_ - - 5.1
“i = MTTF, o (5-1)

where y denotes the name of the reconﬁguration scheme uSed in the (i-1)th
level. | |

2) | The failure rate of component types other than processing units at the jth
léVei is assumed to be proportional to the failure rate of the corresponding

component type at the (i-1)th level such that:
O = N1 51 : (5.2)

‘the subindex i refers to the component type ¢ at the jth and (3-1)th levels; as |

" defined above, the term n;_,; corresponds to the size of the subarray at the
| (-1)th level. Hence, using this criteria the complexity of a component type is
assumed to increase linearly with respect to the same component type in a
single level array. Also, the increasing complexity of interconﬁections as the

level of the hierarchy increases is-taken into account.

5.3. Fault-Tolerant 2-level Hierarchical Arrays

The use of three different reconfiguration schemes gives a total of 32 =9
 possible choices for a 2-level hierarchical scheme. The schemes used are the DR

scheme which was analyzed previously, the RR scheme and the RCR scheme. The



| RR and the RCR schemes are a var1at10n of the SRE and ARCE schemes
respectlvely, in the sense that the size of the array remains constant throughout'
1ts operatlonal-hfe Both schemes will tolerate a number of faulty PE s equal to
the number of spare rows and columns prov1ded Since the DR scheme analyzed
‘in chapter 2 cons1ders only one spare row and one spare column, for compatlblhty
f,two spare rows are considered in the RR scheme vand one _spare TOW and one spare
column in the RCR scheme. 7 o o

All results in each table- assume a coverage‘ factor rc = 99°”each PEi’inf'the
v' ﬁrst level and i in smgle-level arrays is assumed to fail at a rate Qapg = 01 each :
component of every other type is assumed to fail at a rate 100 tlmes less than

‘that of a single PE

. 'The MTTF 's obtained for srngle-level arrays are shown in Table 5.1, vfor seyeral
: array sizes. For each reconﬁguratlon scheme, these results show the eﬁ'ect of the |
v31ze of the array on the MTTF when only PE’s fail and with detalled modehng
ngh MTTF s of the DR scheme with respect to RR and RCR reﬁect the fact
that a failure i in the DR leads to a smgle PE substltutlon, in the RR scheme a
>~ . smgle PE fallure leads to the substitution of a complete row, in the RCR, a smgle
: :‘PE fallure causes a row or a column substltutlon Notice that the RCR case
: ‘contains one extra spare processing unit with- respect to RR, howeyer, thls has the
tendency.to decrease the MTTF because while in the RR case thefailure of any
bsp‘are .unit implies the elimination of n units, in the RCR case’hotyeyer, n-+1 units
- are eliminated AnOther conclusion that can be drawn from Table 5. 1 is the fact
. that the MTTF of an processor arrays with a fixed structure decreases as the

size n of the array increases.

Tables 5.2 and 5.3 show the results for every possible set S; for n = 64 each

‘entry.‘.‘dlsplays the MTTF correspondmg to a partlcular set K. Table 5.2
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ta‘bulates the MTTF’s obtained when only PE’s fail and Table 5.3 considers‘
detailed modeling in which other component types in the array can fail. For
simplification SBL’s in every scheme are assumed fault-free. Howeveri‘SBL’s that
become active can fail and their complexity increases in the second level acéording
to the size of the subarray in the first level. An immediate advantage of a 2-level
hierarchical structuré can be seen by comparing the MTTF of a single-level 64 X
64 processor array with any reconfiguration scheme (last row in Table 5.1) with
émy entry in Tables 5.2 and 5.3; i.e., except for some cases (single lével 6464 DR
array), most 2-level choices yield and improvement in its MTTF with respect to
the single-level structure. Hierarchical arrays implemented with the DR scheme
in at least one level show an improvement in their MTTF with respect to those
arrays implemented with RR and/or RCR. Examine, for example, the row
corresponding to RR implemented with DR; it is interesting to note the MTTF
imbrovement with the size of the processing units imblemented with DR. Two
factors influence this effect: 1) the loss in MTTF due to the size increments of the
subarray (with DR) are compensated with the gain in MTTF with a lower
dimension of the array in the second level implemented with RR; 2) the
probability of survival of arrays with DR increases with the size of the array
[SaS86a]. This factors also explain the case of (dr,dr) which shows the best MTTF

of all the possibilities.

To observe the reliability behavior of hierarchical arrays with DR the

following cases are plotted in the figures indicated.

In Figure 5.1 the reliabilities of the schemes ((dr,rr), (4,16)), ((dr,rr), (8,8)) and
((dr,rr), (16,4)) are compared. In this set, the second level is implemented with

RR with subarrays implemented with DR. The best structure on this set consists

on 4X4 arrays with RCR with 16XX16 DR subarrays.
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Flgure 5.2 plots the rehablhtres of the set: ((dr rcr), (4, 16)), ((dr rcr), (8 8)) and
v ((dr,rcr), (16,4))..

Figure 5.3 plots: ((rr dr), (4, 16)), ((rr,dr), (8, 8)) and ((rr dr), (16 4)).

'Flgure 5.4 plots: ((rer, dr), (4 16)), ((rcr dr), (8,8)) and ((rer,dr), (16 4))

' Flgure 5.5 plots the set ((dr dr), (4, 16)), ((dr,dr), (8, 8)) and ((dr dr), (16 4)) which

correspond to the most reliable structures for the set of fallure rates speclﬁed

previously.

| Table 5.1.- MTTF’s for Singlc—levél Fault-tolerant ProcessQr_Arrays

- PE fails only . detailed modeling -
. IT ] Icr dr TE S S

1 | 182.35 174.126 157.668 166.083 155.786 ©.138.393
-2 | 53.7925 52.4267 92.2377 49.9527 . - 48.0654 - . 81.1081
4 | 15.292 15.1283 . 34.6681 14.3604 . 14.0419 "~ 30.7144.
8 4164 4.14886 12.1023 3.93578 3.8755 . 10.7263
16 1.0951 1.09393 4.24583 1.03883 1.02526 .~ . 3.72798
|32 .28152 .281434 '1.49453 267567 26422 - 1.28742
64 .071419 - .071413 525113 067945 .0671025 438697

Table 5 2.- MTTF Results for Several 2-level Hierarchical Arrays Wlth n=64 |
where only Processing Units fail. .

‘Reconf.

(dr,rcr)

Schemes | (1,64) (2,32) (4,16) (8,8) (164)  (32,2) (64,1)
(erer) | 13022 15144 16746 17339 :16746 15144 13022
{rerer) | 12436 14759 16567 172758 167284 15139  .13021 "
(dr,rr) 112604  .259664  .379654  .50394 649272 803946 957464
(rr,dr) 957468 - .803936  .649272 503938  .379653  .259664  .112604 |
| {rer,dr) | .914358  .783526  .642312  .502108 . .379248  .259588  .112596 |
(dr,dr) | .827933  1.37851 1.47185  1.46466 ~ 1.47195 112418  .827932 | -
(rryeer) | 130211 15139 167284  .172758 165671  .14759 . .12436.
(reryrer) | .12435 147546  .165493  .17213 165493  .147546  .12436
112596 259588 .379246  .502108  .64323  .783532  .914359
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Ta.ble 5.3.- MTTF Results for Several 2-level Hierarchical Arrays Wlth n=64 .

Fig. 5.1.- Reliability plots for (dr,rr) Arrays ‘

with Detalled Modehng
= Reconf. _ : , » a ‘ '
Schemes {1,64) (2,32) - (4,16) . (8,8) (16,4) (32,2) (64,1)
(rr,ri‘) .109331 .13363 152519 160952  -.157168 1142994 123372
(rcr,rr)‘ .103054 .128854 .149238 .1568533 - 15561 - .141214 .121843
(dr,rr) 09231 = .210512 31536 425479 .548872 ..+671337 778616
(rrydr) .640056 64319 564834 .457919 .352638 ©.243947 .106487
(rcr,dr) - 634358 622186 553217 451176 .348128 .240927 - .105211 ,
(dr,dr) ~| 570113 .959717 . 1.11363 1.16951 1.20048 1.12418 - ..665665-
(rryrer) | 10717 131991 (151273 159744  .155163 . .174985  .117712
{rer,rer) 110113 127298 .148039 157351 153161 -.1374865 .116255
" (dr,rcr) .0907614 206441 .310446 419627 . .539103 .650625 . .739422
—_— (4,16)
..... oo (16,4)
"""" (8’8.)
“R(t)
....... I ﬁ t
2 3
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R

Fig. 5.2.- Reiiability plots for (dr,rer) Arrays

5.4, Summary
" In this chapter, possible 'implementations of hiérarchical arraLys were
: éﬁaleedfand cbmpared in terms of their MTTF. A brief taxonomy was
introduced to relate the reconfiguration algorithms and sizes of the arrays at each
level in the hieraréhy. For compatibility this analysis was carried out using fixed-
structure arrays capable of supporting reconﬁgﬁration algorithms such as the DR,
RR aild RCR. The last two being a variation of the SRE and ARCE
reconfiguration algorithms aﬁalyzed previously using MSPN’s. | |
Results were derived for cases in which only ‘the processing ﬁnit fails and
7 when other component types fail also. The failure rate of a subarray used as a
proéessing unit in the immediafely higher level was derived in terms .of its MTTF.

The ‘,failure rates of any other component types were determined in terms of the
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-0

2 3 4

Fig. 5.3.- Reliability plots for (rr,dr) Arrayé

size of the proceséing units and the failure rates used in the immédiately lower
levé‘l."‘At the first level, the failure rates are chosen by the user. The results shown
correspond to a failure rate of a processing element in the first level of .01
failures per time unit; detailed modeling assumes failure rates for any other
component type of .0001 failures per unit time. For the cases analyzed, the
MTTF decreases as the size of the array increases. However any combination for a
hierarchical implementation renders an improvement in its MTTF with respect to
a sin_gle—level implementation with the same number of PE’s. Comparing all the
possible hierarchical implementatio'ns the ones with DR as a component in the
| '.h.ié_raxz'chy render better resuits; particularly, for the failure rétes_ chosen, the

(dr,dr) structures show better MTTF results.
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CHAPTER VI
CONCLUSIONS

In this report, a systematic method to construct Markov models to analy'z'e'
fanlt-tolerant processor arrays was presented. Since the proposed method rests on
the 'premise that a fault-tolerant processor array can be modeled, by a Stochastic
Petr.i‘ Net, a modified version of Stochastic Petri Nets referred to as M.SPN.’S is
proposed to model the fault behavior of processor arrays in the presence of
failures of components of different types. An MSPN model contalns all the
.mformatlon pertaining to the processor  array structure and a speclﬁc'
reconﬁguration scheme such that the derivation of a detailed Markov model is
straightforward Attributes associated with the transitions in an MSPN model
mclude a probabihty distribution generated in terms of the number of faulty
' components in each operational marking. This probability dlstrlbutlon 1ncludes.
probablhtles of reconfiguration which together w1th other attributes, estabhsh a
mapping from transitions in the MSPN to transition rates in the correspondmg
Markov model. Specific reconfiguration algorithms such as SRE, ARCE and DR
were analyzed.‘ Reliability results for these three schemes were de.riyed. 'The k
analysis covers several components of the array and ‘their failure
interdependencies. | Analytic expressions. to evaluate probabilities Cof

reconfiguration for each scheme were derived. These expressions involve complex

combinatorial analysis and for some reconfiguration schemes, simulation has been E

used to obtain probabilities of reconfiguration. For the DR case, the results "
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obtained via the analyt1ca1 expressions derlved match those reported in the

llterature

A lsoftware package, MGRE (Model Generator and Reliability YEV‘aluator)'
.»Wh1ch generates the Markov models and evaluates reliability, has been developed
[Lop89] However, -the user is expected to provide files with the probab1ht1es of
reconfiguration. Since access to those ﬁles may be tailored according to particular
applications, the user is also expected to provide subroutines to access ‘the
required values. Also, for complex reconfiguration scher.nes in which seduences of .
transitions ‘that fire immediately cannot be predetermined for all rn’arki'ngs,» the
'uservlsv required to provide subroutines that examine each marking in order to
determine the type of reconfiguration or any other parameter used in the selection
of asequence. An extensive use of MGRE for different reconﬁgurat‘ion schemes

can lead to a better design of a user interface.

The intrinsic large models generated for even moderaté array sizes,‘ cannot be
“easily solved using existing reliability evaluation pacl<ages due to numeric round-
olf errors introduced during the evaluation process. Also, the large numbers
involrred in the solution process of large models may cause machine overflow. The
solution proposed in this work is based on ‘the general randomization procedure '
An. algorithm was implemented using this procedure such that the solution of
fairly large models is possible. Furthermore, it is shown that given an early
_estlmatlon of the MTTF of the entire model, fast rellablllty results can be

obtalned via the solution of reduced models.

Hierarchical arrays were also discussed as an application of MGRE. Several
2- level structures were compared using as processing umts subarrays of dlfferent
d1mens1ons and with different reconfiguration schemes. For compatlblhty, this

analysis includes processor arrays with a fixed-size structure; i.e., no performance
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degr;ada'tién allowed. It was shown that hierarchical structures offer a good
poféﬁfial to increase i‘eliability With. respect to single-level arrays with the sar.ne‘
number of processiné elements. | ‘ |

The main contribution of this research consiéts of a proéedl__lre to éﬁalyze-
| féﬁlﬁ-tblerant processor arrays using a more general appro'ach‘ and with an
6ptioﬁal modeling detail. Given the MSPN of a partiéular reconfiguration scheme,
Markov models of an array of any size can be derived fof selected sets of failure
rates. Thus, several array architectures can be _cofnpared ‘in. terms of their
reliability and MTTF.

Detailed modeling preserves all the information of thé structure of the array
in each ’oper,atiovnal state.v Therefore, perforinability and ;>ther performance :z;nd-
area related measures can be derived in terms of each operational state.
Furthermore, the}approach presented in this thesis can .be applied to analyze
other hardware systems‘ such as computer networks, interconnection networks, :

ete.
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