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ABSTRACT

An infrared photoconductor, designated as the Periodic Extrinsic InfraRed 

(PEIR) photoconductor, is proposed. A PEIR photoconductor will be useful for 

detecting wavelengths from 7 μm (1400 cm-1) to longer than 100 μm (100 

cm-1). Through epitaxial growth, a PEIR photoconductor is made up of 

heavily doped layers separated by lightly doped layers. The heavily doped 

layers are doped such that an impurity band forms but are not doped high 

enough to cause the impurity band to merge with the conduction or valence 

band. The lightly doped layers are used to confine the carriers in the impurity 

bands and consequently, conduction can only occur due to carriers excited to the 

conduction (n-type device) or valence (p-type device) band. Radiation excites 

the carriers from the impurity band to the conduction or valence band. The 

impurity band layers are thin enough that even if the electric field in the impur­

ity band layers is small, there is a high probability the excited carrier will 

scatter into the lightly doped layer and be swept away by the electric field in the 

lightly doped layer,

A PEIR photoconductor will have two major advantages. First, the 

absorption coefficient will be high because of the high impurity concentration in 

the impurity band layers. The absorption coefficient will be from 103cm-1 to as 

high as 104cm-1. Additionally, a method has been found to approximately 

determine the highest absorption coefficient attainable in specific host



xix ,

semiconductor:impurity dopant materials systems. Consequently, one can deter­

mine the optimum host semiconductor:impurity dopant system to be used in a 

PEIR photoconductor designed to detect a certain wavelength. Second, some 

host semiconductors that are being considered are Si and GaAs, which are much 

easier to work with than HgCdTe (the material of choice for intrinsic photocon­

ductors at wavelengths longer than 7 μm).



1. OPERATION OF A PERIODIC EXTRINSIC INFRARED (PEIR)
PHOTOCONDUCTOR

1.1 Introduction.
Three types of photodetectors are predominant today - pin photodiodes, 

avalanche photodiodes (APDs) and photoconductors (PCs) [Forrest 1986; Elliott 
1981; Long 1977]. For wavelengths longer than 7 /an though, conventional 
photodetectors degrade in performance because of serious device materials 
problems (See sec. 1.2). The Periodic Extrinsic InfraRed (PEIR) 
photoconductor, described in sec. 1.3, is proposed as an alternative for the 
detection of wavelengths greater than 7 {im.

Section 1.2 describes the problems encountered by conventional detectors at 
long wavelengths. Section 1.3 describes how a PEIR photoconductor operates. 
Section 1.4 presents the important physical relationships in the PEIR 
photoconductor. Section 1.5 presents the advantages and disadvantages of the 
PEIR photoconductor as compared to conventional photodetectors. Section 1.6 
describes the remaining chapters in the report.

1.2 Problems encountered by conventional photodetectors at long wavelengths

The pin photodiode, the APD and the intrinsic photoconductor operate
through band to band absorption. When a photon is absorbed, an electron is 
excited to the conduction band, leaving a hole in the valence band. Two 
carriers (an electron and a hole) participate in this process. In the extrinsic 
photoconductor, on the other hand, the radiation excites the electron in an n- 
type PC (or hole in a p-type PC) from a donor (acceptor) site into the 
conduction (valence) band. This is a one carrier process.

The major problem for two carrier photodetectors at long wavelengths is 
finding a suitable semiconductor with a small band gap. For two carrier 
detectors, the band gap must be small enough for a long wavelength photon to 
cause a valence band to conduction band transition. For wavelengths longer 
than 7 {Mi, there are only three materials that are seriously considered for two 
carrier photodetectors - Hgj_xCdxTe, Pbi_xSnxSe, and Pbi_xSnxTe [Elliott 
1981; Dennis 1986]. The lead salts, Pb1_xSnxSe and Pbi_xSnxTe, have serious



high frequency limits [Elliott 1981; Dennis 1986] and are only considered because 
Hg!_xCdxTe has undesirable materials properties [Elliott 1981; Dennis 1986].

Due to these serious materials problems, the extrinsic photoconductor is the 
device most commonly used at wavelengths "beyond a few microns" [Sze 1981] 
or at this time, approximately 15 fJm ( [Walter ft Dereniak 1986a; Walter ft 
Dereniak 1986b; Stillman, Wolfe, ft Dimmock 1977] - The exact value of this 
wavelength depends on the geometry of the device, whether the device is used 
by itself or in an array, and what is acceptable as a yield [Walter & Dereniak 
1986a; Welter ft Dereniak 1986b]). The one carrier characteristic of the 
extrinsic photoconductor means that the troublesome narrow gap semiconductor 
of the two carrier detector is replaced with a wider gap semiconductor with 
more desirable materials parameters. Unfortunately, the impurity dopant 
concentration in extrinsic photoconductor ffiust be less than the amount that 
will induce conduction in the impurity band [Bratt 1977]. Consequently, the 
absorption coefficient in extrinsic photoconductors is inevitably low (See sec. 
A.. 2).

The PEIR photoconductor, described in the next section, and the other 
novel photoconductors in sec. A. 2 have been proposed as alternative 
photoconductors that attempt to avoid the narrow band gap problems of two 
carrier photodetectors and the low absorption coefficient problems of the 
extrinsic phptocphductor. 1; i

1.3 Description of the Peripdic Extrinsic InfraRed (PEIR) photoconductor

An infrared photoconductor, the Periodic Extrinsic InfraRed (PEIR) 
photoconductor is proposed which will have the capability of detecting infrared 
radiation in the wavelength range from 7 /im (1400 cm-1) to longer than 100 
/im (100 cm-1). Below 7 /um, intrinsic photoconductors with good materials 
properties can be fabricated. The long wavelength limit is determined by the 
quality of the growth of the material used in a PEIR photoconductor. As the 
impurity band dopant concentration becomes more uniform throughout each 
impurity band layer, more uniform from impurity band layer to impurity band 
layer, and easier to calibrate, the long wavelength limit will increase.

A geometrical model of a PEIR photoconductor is shown in Fig. 1.1. It is 
made up of two contact layers with accompanying metalization and an active 
(or photoconductive) region. The active region which is the most important 
part of the device, is shown with ideal metal contacts in Fig. 1.2 (unbiased) and 
Fig. 1.3 (biased). A worst case configuration is shown in Fig. 1.4 and will be 
considered in more depth when discussing the possible accumulation of electrons



Figure 1.1 Geometrical model of a PEIR photoconductor



4

impurity band layer
blocking layer

Figure 1.2 A PEIR photoconductor - unbiased
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Figure 1.3 A PEIR photoconductor - biased
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Figure 1.4 A PEIR photoconductor - worst case



at one end of the impurity band layers. A PEIR photoconductor is made up of 
heavily doped layers, labeled as impurity band layers, separated by lightly 
doped layers, labeled as blocking layers. The impurity band layers are doped 
enough to form an impurity band but not enough to cause the donor level 
energy states and conduction band energy states to overlap (for an n-type 
device). One impurity band layer with an impurity band energy width of Bj is 
shown in Fig. 1.5 where (Ee~Eremin is the separation between the top of the 
donor level energy states and the conduction band energy states. Ej is the 
ionization energy of an isolated donor state. The blocking layers prevent 
impurity band conduction, leaving only conduction in the conduction band. 
The blocking layers are doped less than is needed to form an impurity band 
[Petroff & Stapelbroek 1986; Walter & Dereniak 1986a; Bratt 1977].

The radiation propagates perpendicular to the layers and excites electrons 
out of the impurity bands. The impurity band layers are thin enough (on the 
order of 100 A) that even if the electric field is small in the impurity band layers 
(See Fig. 1.4), the electron can scatter into an adjacent blocking layer and be 
swept away by the electric field in the blocking layer. In the impurity band, the 
impurity baud dopant atoms are spaced close enough together that electrons can 
flow from one impurity site to another [Bratt 1977]. In a donor impurity band, 
the empty sites can be labeled as impurity band holes . These impurity band 
"holes" in the donor impurity band, which are actually ionized donors, flow to 
one end (the left side in Fig. 1.3) of the impurity band layers, decreasing the 
electric field in the impurity band layers. In the same way as in extrinsic
photoconductors, electrons in the conduction band recombine with the impurity 
band "holes". This discussion describes the situation with n-type impurity band 
dopants, but an analogous argument can be used for p-type impurity band 
dopants with similar results.

The concentration of impurity dopants in impurity band layers can be 100 
times larger than the concentration of impurity dopants allowed in an extrinsic 
photoconductor because the blocking layers prevent conduction in the impurity 
band. Consequently, a PEIR photoconductor will have a much higher 
absorption coefficient than a extrinsic photoconductor (See chap. 4). Due to this 
higher absorption coefficient, the temperature of operation in a PEIR 
photoconductor can be higher than in a extrinsic photoconductor (See app. B) 
and if one can adjust the carrier capture cross section (See app. C), the 
operating temperature can be higher than in a intrinsic photoconductor (See
app. B). In addition, the radiation absorption process that excites the carriers 
from the dopant levels to the conduction band peaks at a certain energy (See
chap. 4), which means that much of the background radiation can be filtered
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Figure 1.5 Heavy doping parameters in the impurity hand layer



(See chap. 5). Consequently, a PEIR photoconductor can be more sensitive than 
a conventional photoconductor in background limited conditions (higher DBLIP) 

(See chap. 5). ,
The ohmic contacts will most likely be a heavily doped substrate and a 

heavily doped transparent layer on top of the epitaxial layers (See Fig. 1.6a). 
This is the contact configuration used in the Blocked Impurity Band (BIB) 
detector (See sec. A.2.3). For a blocking contact configuration (See Fig. 1.6b), 
an insulator blocks the passage of the carriers. Although impact ionization must 
be avoided in the ohmic contact configuration [Bratt 1977], it can possibly be an 
advantage in the blocking contact configuration [Levine, Choi, Bethea, Walker, 
& Malik 1987a]. With the transparent contact, a PEIR photoconductor will be 
ideally suited for an array using either of these contact configurations [Wang, 
Richards, Beeman, Haegel, & Haller 1986].

A PEIR photoconductor can be fabricated with a variety of different host 
semiconductortimpurity atom combinations. There are two designs being 
actively pursued at this time. One possible design is to build a Si:P PEIR 
photoconductor. The absorption coefficient in this n-type PEIR photoconductor 
can approach 3xl03cm-1 for an impurity band dopant concentration of 
2xl018cm-3. The other design choice is a GaAs:Be photoconductor. The 
absorption coefficient in this p-type PEIR photoconductor can approach 
1.5xl03cm_1 for an impurity band dopant concentration of lxl018cm~3. These 
absorption coefficients are two to four times larger than those obtained in some 
SitAs BIB detectors [Petroff & Stapelbroek 1984]. Moreover, even better host 
semiconductor:impurity atom alternatives exist. One better alternative can be 
Si:Bi (n-type) which can exceed 5xl03cm-1 for an impurity band dopant 
concentration of 7xl018cm-3. The precise absorption coefficient is difficult to 
predict because it depends upon the width of the impurity band (Bj). A 
procedure to determine the best host semiconductonimpurity atom 
combinations to detect a predetermined wavelength is described in sec. 4.6 and 
sec. 4.7.

1.4 Important physical phenomena in a PEIR photoconductor
The operation of a PEIR, as described in sec. 1.3, is straightforward. The 

more difficult problem is to determine the capability of the device. There are 
several basic physical parameters that determine this capability. Most of these 
parameters and how they affect the operation of the device are presented in app. 

■ C. ' v"
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transparent layer substrate

Figure 1.6 Contact configuration in equilibrium, (a) Ohmic contacts, 
(b) Blocking contacts.



There are five physical phenomena that greatly influence the operation of a 
PEIR photoconductor. These are 1) space charge formation (See chap. 2) , 2) 
heavy doping parameters - AEc, ^dos> ®l (®ee chap. 3), 3) infrared radiation 
absorption (See chap. 4), 4) generation and ionization processes (See app. B and 
app. D), and 5) carrier lifetime. Each of these phenomena is now described in 

more detail.

1.4.1 Space charge formation
Space charge formation determines the electric field distribution in the 

active region and the performance of a PEIR photoconductor depends directly 
upon this electric field distribution. Four space charge components cause the 
electric field, £, to vary with position in a PEIR photoconductor: l) 
compensation dopants [Bratt 1977], 2) carriers in the conduction band, 3) excess 
carriers in the impurity band (negatively charged donor impurities), and 4) 
ionized impurities (positively charged donor impurities). The effect of these 
components on the electric field distribution is discussed in chap. 2.

As shown in chap. 2, the space charge formation determines the 
distribution of the electric field in a PEIR photoconductor. First, as the 
compensation dopant concentration and the carrier concentration in the 
conduction band increases, the electric field in the impurity band layers 
decreases slightly (See Fig. 1.3). Second, if electrons can accumulate at one end 
of the impurity band layers, the electric field in the impurity band layers 
decreases significantly. At first, this electron accumulation may appear to be a 
serious problem because the electrons excited into the conduction band may 
immediately recombine into the impurity band but since the layers are so thin 
(on the order of 100 A), the electrons excited into the conduction band could 
very likely escape from the impurity band layer into an adjacent blocking layer 
and be swept away by the electric field.

1.4.2 Heavy doping parameters - AEc, tfdos> Bj
The heavy doping parameters are defined as [Lee & McGill 1975]: AEc 

the reduction of the energy difference between the donor level ground states and 
the bottom of the conduction band produced by the average distribution of 
ionized majority impurities [Lee & McGill 1975]. <7dos is the standard deviation 
of the Gaussian potential distribution where the Gaussian potential distribution 
is produced by the random distribution of ionized impurities. Bj is the energy 
Width of the impurity band produced by the distribution of majority impurities.
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The heavy doping parameter effects on a PEIR photoconductor are 
described in more depth in chap. 3. The conclusion in chapter 3 is that AEc 
and Ojog are small enough to be negligible because the compensation doping is 
small and the carrier concentration (produced by the background photon flux or 
thermal generation) is small. Bj is not negligible because Np (the majority 
dopant concentration) is necessarily large to obtain a high absorption coefficient.

1.4.3 Infrared radiation absorption

This section is divided into two parts. The first part describes the problems 
of theoretically calculating an i absorption coefficient as the impurity band 
widens. The second part shows the requirements needed for the semiconductor 
and the dopant impurity that will be incorporated into a PEIR photoconductor.

For an infrared signal to 'be detected in a, PEIR photoconductor, the
infrared radiation must excite an electron from the impurity band to the 
conduction band (n-type device). In an extrinsic photoconductor, the absorption 
coefficient equals the number of neutral impurities times the absorption cross 
section. This absorption cross section is a function of energy [Bratt 1977] and is 
assumed to be the same for all the impurities in an extrinsic photoconductor. 
This assumption is reasonable because the ground state energy level is at the 
same energy for all the impurities. As an impurity band forms in a PEIR
photoconductor, the ground state energy levels begin to take on a range of 
values and the absorption cross section as a function of energy (defined herein as 
the absorption spectrum) may begin to depend upon the energy of ground state
energy level of an impurity. Consequently, the precise absorption coefficient is 
difficult to predict because it depends upon the width of the impurity band. 
The major concern is that the peak absorption coefficient may not be as large as 
predicted. There are three arguments that alleviate this concern. 1) The 
absorption coefficient needs to be only 2xl03cm_1 to get reasonable operation of 
a PEIR photoconductor and for this case, Bj can be reasonably small. 2) The 
absorption spectrum has a half energy width about equal to the ionization 
energy. 3) The peak absorption coefficient may be smaller, but will not lower 
drastically because the absorption spectrum also broadens. If the impurity band 
width is less than the ionization energy, the peak absorption coefficient may still 
be close to the peak values shown in chap. 4.

There are two major requirements for any host semiconductorrimpurity 
atom system used in a PEIR photoconductor. 1) The absorption coefficient 
needs to be high. 2) The impurity band must be separated from the conduction 
band (in an n-type device) which places a limit on the absorption coefficient.



This separation equals .(Ec~Ei))min (See Fig. 1.5).

As shown in chap. 3, the impurity band is formed by the impurity ground 
state .energy levels, not the impurity excited state energy levels. Two 
assumptions are made .herein when analyzing a PEIR photoconductor. 1) The 
impurity band remains centered about Ej as the impurity dopant concentration 
is increased. When considering that the value of AEc defined in the previous 
section is very small in a PEIR photoconductor (See chap. 3), this assumption 
should be acceptable. 2) The impurity band is symmetric about Ej. This 
assumption is not necessarily correct but (Ec_Ep)m;n is more important than 
the symmetry. Using those assumptions,

•(Eg-—ED)mm ;b=El—(Bi/2) .

Four special host semiconductonimpurity atom combinations are described 
in sec. 4.6 where the absorption coefficient is necessarily large while 
simultaneously having (Ec—Ed )min greater than zero meV.

For example, Si:P with a impurity dopant concentration of 2xl018cm-3 will 
have a— 3.xl03cm_1 (See chap, 4) and Bj — 50meV (See chap. 3). Considering 
Ej =45meV, (Ec—ED)min— 20meV. Hence, the absorption coefficient can be 
large while retaining an effective gap.

1.4.4 Generation and ionization processes

In a PEIR photoconductor, the carriers in the conduction band are 
produced by several generation or ionization effects that cause the carriers to be 
excited out of the impurity band into the conduction band. These are:
1) thermal generation, 2) generation due to the background or signal radiation,
3) thermal-field emission ionization (the Poole-Frenkel effect - See app. C), 4) 
tunneling-field emission ionization (this is analogous to Zener tunneling - See 
app. C), and 5) impact ionization. The relative importance of these generation 
or ionization effects on the carrier concentration and their dependence upon the 
electric field are now discussed.

The two most important effects are thermal generation and radiation 
generation. If a PEIR photoconductor is operated in the background limited 
condition, only the radiation generation process (process 2) in sec. 1.4.4 is 
important. Thermal generation will become more important as the temperature 
of operation is increased or the background radiation is lowered (See app. B).



Thermal-field emission ionization, tunneling-field emission ionization, and 
impact ionization (See sec. 1.4.4) can be neglected because if they exist at a 
certain electric field, the electric field throughput a PEIR photoconductor (with 
ohmic contacts) will decrease until these ionization processes are negligible. Of 
course, thermal-field emission ionization, tunneling-field emission ionization, and 
impact ionization can degrade the device because the detector might have to be 
biased to a less desirable operating point [Bratt 1977]. On the other hand, 
impact ionization can be used as an advantage if the contacts are blocking 
instead of ohmic. ■''-c.,..:

The background photon flux is very important because when the noise is
due mainly to the background radiation (BLIP operation), the photon flux 
determines the number of carriers in the photoconductor. The number of 
carriers helps determine 1) the value of the heavy doping parameters and 2) the 
resistance in the active area of a PEIR photoconductor.

In the testing procedure that will be used to test the device, this 
assumption that the carriers are predominantly produced by the background 
radiation is a reasonable assumption (In a low background condition, the 
carriers will be generated thermally or by the signal and noise sources other than
background noise become important). The condition when some other noise
becomes important is not considered an ideal condition and will not be 
considered except to show the limits on ideal operation (See chap. 5).

It appears that the heavy doping parameters are not greatly influenced by 
the photon flux (See chap. 3). The value of the resistance of the active area is 
very important though because there are parasitic resistances that can hinder 
the operation of the device (See app. D). As the background flux decreases, 
these parasitic resistances become less important (See app. D).

1.4.5 Carrier lifetime

Carrier lifetime (rcap) in a PEIR photoconductor has not been extensively 
considered. Considering [Rose 1963] ?

i /(^cap -^cap Y av) y

the carrier lifetime depends upon the carrier capture cross section, <xcap, the 
number of recombination centers, Ncap, and the average velocity of the carrier, 
vav. In an extrinsic photoconductor, Ncap usually equals the compensation 
dopant concentration.
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Two ^^mplions are made at this time about the value of the carrier 
lifetime. First, it is assumed that the carrier capture cross section in the 
impurity band is not much different from a carrier capture cross section in a 
conventional extrinsic. photoconductor. The actual value may change because as 
the impurity bands begin to form, the excited state energy levels broaden into a 
band. The carrier capture cross section depends upon these excited state energy 
levels [Lax 1960], and it is unknown at this time whether this broadening will 
increase or decrease the carrier capture cross section. Second, it is assumed that 
the number of recombination centers remains the same. This assumption will be 
correct as long as electrons cannot accumulate at one end of the impurity band 
layer (See sec. 1.4.1). If electrons can accumulate, the number of recombination 
centers can increase (See sec. 2.2). This increase in recombination centers will 
most likely be negligible unless electrons can accumulate in the impurity bands 
with a concentration higher than the compensation dopant concentration (See 
sec. 2.1

1.5 Advantages and disadvantages of a PEIR photoconductor

A PEIR photoconductor will have several advantages over conventional 
infrared photodetectors.

1) The device has a simple design and uses materials with desirable, well known 
materials properties. There are many semiconductor - impurity dopant systems 
from which to choose. The semiconductors most likely to be used are Si, Ge and 
AlxGai_xAs. There are a wide variety of dopants with different ionization 
energies that cover most wavelengths of interest. Additionally, as the 
composition of A1 is varied in AlxGai_xAs, the ionization energy changes. As 
the ionization energy changes, the wavelength response will change.
2) The absorption coefficient can be as high as l.xl04cm_1 in a PEIR 

photoconductor. Most likely, the absorption coefficient will be around 
2.xl03cm”1 which will be high enough if the active region is around 10 jttrn 
thick.

3) The front to back contact configuration is much more advantageous than 
the side to side contact configuration when the elements are placed in an array.

4) Since the contacts are only separated by a few microns, the gain-bandwidth 
product can be larger than those available in conventional photoconductors

5) Due to the absorption process, Dblip of a PEIR photoconductor can exceed 
that of a conventional extrinsic photoconductor (See chap. 5).

6) By choosing the proper host semiconductor, the impurity atom, and the 
dopant concentration, a PEIR photoconductor can be built to detect any



wavelength from 7 jum to more than 100 /um.
7) The temperature of operation will be higher in a PEIR photoconductor than 

in an extrinsic photoconductor designed to detect the same wavelength,
8) If one assumes that the carrier capture cross sections in a PEIR 

photoconductor are about the same as in a extrinsic photoconductor, the 
response time of a PEIR photoconductor will he as fast as the response time of a 
extrinsic photoconductor.
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9) It may be possible that an electric field can be applied across a PEIR 
photoconductor that exceeds the field needed to induce impact ionization. 
Impact ionization can be an asset in an array of PEIR photoconductors because
most arrays use a charge collection process (charge-coupled devices (CCD), 
charge injection devices(CID), direct voltage readout (DYR) [Sibille 1986]) where
the elements have blocking contacts. Impact ionization will amplify the 
radiation signal, which is subsequently collected at the blocking contact.
Additionally, there is a possibility that the excess noise due to impact ionization
in a PEIR photoconductor may be as small as a photomultiplier [Teich, Matsuo, 
and Saleh 1986], On the other hand, to prevent saturation of charge at the 
blocking contact, the background radiation generation and thermal generation 
are smaller in photoconductors with blocking contacts (PEIR or conventional) 
incorporating impact ionization than in photoconductors with ohmic contacts.

10) Phonon absorption can filter out some of the background noise. In Si and 
Ge [Moss 1959], the phonon absorption is too small to seriously filter out any 
radiation, but the phonon absorption in A^Ga^As exceeds 104cm-1 and will
filter out the radiation around the phonon energy (known as the reststrahlen 
range [Blakemore 1982]). Additionallyj this phonon energy varies as the A1 
composition varies and consequently, one can tailor the AlxGa1_xAs to filter out 
a specific energy.

11) One big advantage of a PEIR photoconductor over compositional 
superlattice photoconductors [Levine, Choi, Bethea, Walker, & Malik 1987a; 
Leyine,' Ghpi, Bethea, Walker, & Malik 1987b; Smith, Chiu, Margalit, Yariv, & 
Cho 1983] is the avoidance of a discontinuous conduction (n-type device) or 
valence (p-type device) band at the heterojunction. Since the semiconductor in 
the heavily doped layer and the blocking layer is the same, there will be no 
barrier hindering the escape of the electron. Hence, the gain and efficiency will 
be larger in a PEIR photoconductor than in a super lattice detector.

There are several disadvantages for a PEIR photoconductor,
l) The device is a photoconductor, which is more noisy than a photodiode. 

This is not a serious problem because the narrow gap materials needed for 
photodiodes have undesirable materials properties.



2) The low field limited by impact ionization may be a problem. This problem 
also exists in conventional extrinsic photoconductors. If used in an array with 
blocking contacts, this impact ionization might be advantageous.

3) A PEIR photoconductor may be difficult to fabricate but will be less difficult 
than an IS-PC or a tunneling IS-PC (See sec. A.2), which incorporate active 
regions with heterojunctions having band gap discontinuities.

4) Phonon absorption can be larger than radiation absorption. This will only 
be true for certain wavelengths and can be avoided by using a different 
composition of A1 in AlxGaj_xAs. In Si and Ge, the phonon absorption can be 

considered negligible.
5) Parasitic resistances may be a problem but there are ways to minimize their 

effect (See app. D and app. E).
6) It becomes more difficult to make a transparent contact as the wavelength to 

be detected increases.
7) For this type of device, an accumulation mode charge-coupled device (CCD) 

[Nelson 1987] will have to be used instead of a depletion mode CCD. There is 
some criticism of the accumulation-mode CCD [Nelson 1987]. Qne major 
problem is the low temperature of operation, but the operating temperature in a 
PEIR photoconductor is necessarily low due to thermal ionization and the long 
wavelengths detected. In any case, it has been stated that GaAs will not have 
the temperature problems that occur in Si [Nelson 1987], Another problem is 
relatively low transfer efficiencies [Nelson 1987^ Milton 1977] - CIDs can be used 
if this problem cannot be surmounted [Milton 1977].

1.6 Description of the remaining chapters
Chapter 2 discusses the effect of the space charge components on the 

performance of a PEIR photoconductor. Chapter 3 describes the heavy doping 
parameters that will exist in the impurity band layers, the excited state energy 
levels of the impurity band, and the dependence of the PEIR photoconductor 
performance on these impurity band effects. Chapter 4 discusses the absorption 
of radiation that will excite the electrons from the impurity band to the 
conduction band (n-type device) and presents one method to determine the 
potential absorption coefficients that can exist in some host 
semiconductor:impurity atom systems. Chapter 5 describes the noise and D in 
a PEIR photoconductor. Chapter 6 presents the design considerations for the 
device. Chapter 7 presents the conclusions of the work and recommendations 
for future work.



2. SPACE CHARGE FORMATION

2.1 Introduction --V.'.-' "■

The electric field, £, varies with position in a PEIR photoconductor. Four 
space charge components cause this spatial dependence of the electric field. 
Section 2.2 describes these four components and how they are formed. Section

2.2 Space charge components

The four space charge components are (See Fig. 2.1): l) compensation
dopants [Bratt 1977], 2) carriers in the conduction band, 3) excess carriers in the 
impurity band (negatively charged donor impurities), and 4) ionized impurities 

:';::;y^itiVely..vcharged-donor-. ihiip'urities)v-;

2.2.1. Compensation dopants <

Compensation dopants are defined herein as the impurity dopant of the 
opposite type of the impurity band dopant. In an n-type (p-type) device, the 
compensation dopants are acceptors (donors). Usually, these compensation 
dopants are unavoidable and degrade the performance of the device.

Due to the low operating temperature, the compensation dopants are 
always ionized and are filled by electrons from the impurity bands (in an n-type 
device), leaving behind an equal concentration of ionized impurities.

2.2.2. Carriers in the conduction band

vV;'P.-Iir- a PEIR photoconductor, the carriers in the conduction band are 
produced by several generation or ionization effects that cause the carriers to be 
excited out of the impurity band into the conduction band. These are: 1) 
thermal generation, 2) generation due to the background or signal radiation, 3) 
thermal-field emission ionization (the Poole-Frenkel effect), 4) tunneling-field 
emission ionization (this is analogous to Zener tunneling), and 5) impact
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Space charge components

1) Compensation dopants

2) Conduction band carriers

3) Electron accumulation in the impurity band

4) Ionized impurities

Figure 2.1 The space charge components in a PEIR photoconductor



20 ' : .V: V:;.; : j.V'v. ;--

ionization. '

If a PEIR photoconductor is operated in background limited conditions, the 
radiation generation process (process 2) in sec. 1.4.4 is most important. In this 
background limited condition* thermal generation will be smaller than 
background radiation generation (See app. B). The major noise source will be 
due to the background radiation. - V;:

As the temperature of operation increases, there will come a point when the 
thermal generation exceeds the generation due to background radiation. If this 
occurs in an extrinsic photoconductor with compensation dopants (See app. B) 
(and approximately in a PEIR photoconductor - because the carrier 
concentration may exceed the compensation dopant concentration), the major 
noise source will be due to the thermal generation [NI.M. Blouke, C.B. Burgett, 
and R.L. Williams (1973)]. Consequently, thermal generation is important in a 
PEIR phOtoconductor because 1) it can be a factor in determining the carrier 
concentration in the active region (and the noise in the device) if it is 
comparable to the radiation generation and 2) the thermal generation places an 
upper limit on the temperature of operation.

Thermal-field emission ionization, tunneling-field emission ionization, and 
impact ionization can be neglected because if they exist at a certain electric field, 
the electric field throughout a PEIR photoconductor with ohmic contacts will 
decrease until these ionization processes are negligible. Of course, thermal-field 
emission ionization, tunneling-field emission ionization, and impact ionization 
can degrade the device because the detector might have to be biased to a less 
desirable operating point [Bratt 1977].

Finally, if the contacts are blocking and it is desired to collect charge and 
read oUt this charge (the normal mode in a detector array), impact ionization 
can amplify the signal. The field will still be smaller than that needed to 
prevent the other ionization processes from saturating the charge collection.

2.2.3. Excess carriers in the impurity band ^

The energy levels of the impurity band can be separated into two groups - 
the ground state energy levels and the excited state energy levels [Norton 1976]. 
As the doping concentration increases, the excited state energy levels broaden 
into an energy band (known as the upper Hubbard band [Thomas, Capizzi, 
DeRosa, Bhatt, & Rice 1981]) [Norton 1976, Dhariwal, Ojha, & Srivastava 1985]. 
If the doping is large enough, some of the excited states merge with the ground 
states (this is the Mott transition [Dhariwal, Ojha, & Srivastava 1985]).



There is an interesting effect that can occur if the temperature is low 
enough and the excited states are deep enough. The excited donor states can 
trap an extra electron [Norton 1976]. This has been labeled the D 2 state 
[Nortoh 1976]. If clusters of 3, 4 or more impurity atoms form, D3* or Df
states may form [Norton 1976, Thomas, Capizzi, DeRosa, Bhatt, Be Rice 1981]. 
In an impurity band, many of these states could possibly form. If Dj states can 
form, it may be possible that electrons can accumulate at one end of the 
impurity band layer.

If electrons can accumulate, the impurity band layers will begin to resemble 
metals where electrons and holes will separate to opposite ends of the impurity 
band layer. The electric field in the impurity band layer will subsequently 
approach zero V/cm as this charge separation becomes more prevalent.

In addition to the field approaching zero V/cm in the impurity band layers, 
there is another problem with the Df states. The Df states will act like 
recombination centers [Rose 1963]. These centers will either be the extra ionized 
dopants caused by electron accumulation or the unoccupied Dj states. This 
increase in recombination centers will degrade the device, but if the 
concentration is less than 1014cm~3, the device will still operate as well as an 
extrinsic photoconductor.; This concentration is chosen because many extrinsic 
photoconductors operate with a compensation dopant concentration of 1014 cm 3 
[Bratt 1977] and the recombination center concentration usually equals the 
compensation dopant concentration in an extrinsic photoconductor (See app. B).

2.2.4. Ionized impurities
The ionized impurities or "holes" will reside in the impurity band layers. 

Although some ionized impurities may be in the donor states that are located in 
the blocking layers, it will be assumed that their effect is negligible.

Since the "holes" in the impurity band can easily migrate from one 
impurity atom to another impurity atom, they will accumulate at one end of the 
impurity band layer. Consequently, the electric field will be larger in the 
blocking layers than in the impurity band layers (see Fig. 1.3).

2.3. Effect of the space charge formation on the performance of a PEIR 
photoconductor

Due to overall charge neutrality, the ionized impurity concentration equals 
the sum of the other three charge concentrations in a PEIR photoconductor. 
There are three possible cases to be considered for space charge formation in a
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PEIR photoconductor. l) If there is low compensation and the generation and 
ionization rates are small, there will be a small number of "holes" which equals 
the number of electrons in the conduction band. In this case, the band diagram 
looks like the one in Fig. 2.2 where there is hardly any space charge in a PE1R 
photoconductor. 2) As the compensation concentration, the generation rate or 
the ionization rate increases, the number of "holes" increases. The band 
diagram in this case will resemble the one in Fig. 1.3. Since the impurity band 
layers are so thin, an electric field will most probably exist throughout the 
impurity band layer which is better than what is shown in Fig. 1.3. 3) If the 
electrons begin to accumulate at one end of the impurity band layers, the band 
diajgrani will resemble the one in Fig. .1.4._,/■■■

Consequently: l) As the compensation dopant concentration and the
carrier concentration in the conduction band increases, the electric field in the 
impurity band layers decreases slightly. 2) If electrons can accumulate at one 
end of the impurity band layers, the electric field in the impurity band layers 
decreases significantly. At first, this electron accumulation may appear to be a 
serious problem, but since the layers are so thin (on the order of 100 A), the 
electrons excited into the conduction band can very likely escape from the 
impurity band layer into an adjacent blocking layer and be swept away by the 
electric field.

The performance of a PEIR photoconductor will depend upon the space 
charge formation in the deyice. It appears that the electric field distribution will 
not effect the performance near as much as the corresponding recombination 
centers produced by the space charge formation.
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Figure 2.2 A PEIR photoconductor - low compensation or generation

i-



g 3. DENSITY OF STATES IN THE PEIR PHOTOCONDUCTOR 

• 3.1 Introduction

The density of states between the bottom of the impurity band and the 
conduction band influence the operation of the device. The density of states 
arises from three sources: l) the conduction band energy levels, 2) the ground 
state energy levels of the impurity band, and 3) the excited state energy levels of 
the impurity band.

Sections 3.2 to 3.5 consider one method used [Lee & McGill 1975] to 
calculate the density of states of the first two sources (conduction band and 
ground state energy levels). These authors considered three parameters of 
interest: 1) The width of the impurity band (See sec. 3.2), 2) the density of 
states distribution and how it relates to the standard deviation <Jdos of the 
Gaussian potential distribution (See sec. 3.3), and 3) the relationship of the 
impurity level with respect to the conduction band edge (See sec. 3.4). Section 

; 3.5 presents some numerical examples for a PEER, photoconductor when most of
the carriers are produced by the background radiation and accompanying 
commentary on the results.

The most prominent unknown at this time is the excited state energy levels 
j of the impurity band and how they will influence the operation of the device. A

complete range of situations and their corresponding outcomes are presented in 
sec. .5.6.'^' ,’ v '■.

3,2 Calculation of the impurity hand width

To get an approximation of the width of the impurity band, the tight 
binding method can be used. The wavefunction (^) used equals the 
wavefunction of the orbital ( <^a) which is assumed to be localized, times a phase 
constant (ek’1 which is a function of the central point of the orbital (not the 
distance r) or, mathematically [Ziman 1964],



</>k(T) = 5>k'Va(r-l) •
1
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To find the total energy of the wavefunction 0k (r), one first assumes that 
the nearest neighbor atom orbitals overlap very little and that the potential of 
one locale is almost zero at the nearest neighbor locale. Then [Ziman 1964; Lee 
& McGill 1975]

i;(k) +V(r)]^(r)dr=E0 +J(|Ri-Rj |)eik<E'-E‘>
2m

where J( | Rj—Rj |) is presented in [Lee & McGill 1975] (In Ziman, when 
comparing equations (3.27), (3.28), and (3.29), /</>a(r)0a(r)dr = vc - so vc is a 
normalization factor).

To calculate the overall effect, one must calculate E(k) at all points. This 
can be represented as

' E(k) = '\T.i(k) K„ I >;J( | Ri-Rj l)elt(El K!
iN R; iN Ri

where N is the number of impurity atoms in the material.

The width of the impurity band is approximated by merely replacing 
ik*(R—R)e 1 1 iJ with 2z where z is the number of nearest neighbors [Lee & McGill 

1975]. It is speculated herein that the 2 factor comes about because e1^ can vary 
from -1 to 1. Since there is only one nearest neighbor in a Poisson distribution, 
z equals one. Considering that the spacing between impurities follows a Poisson 
distribution if the impurities are absolutely randomly distributed [Lee & McGill 
1975],

Ri-Rj |) =/J^ttNdR^ (V^NdR3^
nr, .

where R = | R, —Rj |, Rj is the location of the nearest neighbor of Rj, and
2p 'v.';

J(R) = ■ ■ (l-f-|R)e~^R [Lee & McGill 1975]. The width of the impurity band,

Bb is [Lee & McGill 1975]



Bi — 2 j’j(R)47rNI)R2e_4/37rNDR3(iR .

Bl depends upon £ and ND where £ = l/r^ [Lee & McGill 1975]. can be 
thought of as related to the radius of the absorption cross section and is defined 
in sec. 4.4. Values of BI/2 for various values ofr^and ND areshown in table
3.1. The static dielectric constant of the material is es = e0esr, where e0 is the 
dielectric constant of air. The Values shown in table 3.1 are; Calculated using an 
integration program on a computer.

Table 3.1 
Bj/2 for esr=10.

Nj 10A
Bi/2 (m 

15A
ieV)

20A 50A 100A
1017cm~3 .360 1.39 i 2.88 4.53 10.2 9.63

2xl017cm-3 .716 2.68 5.25 7.74 13.3 10.8
5xl017cm-3 1.76 6.11 10.7 14.2 17.4 12.1

1018cm-3 3.44 10.8 17.1 20.7 20.1 12.8
2xl018cm-3 6.58 18.1 25.4 28.2 22.4 13.2
5xl018cm-3 :: 14.8 32.3 38.5 38.6 24.7 13.7

1019cm 3 25.8 46.2 48.9 45.9 25.9 14.0
2xl019cm-3 42.2 61.5 59.0 52.4
3xl019cm-3 54-7 70.8 64.3 55.6

3.3 Dependence of the density of states upon the Gaussian distribution of the 
potential '

This section deals with the local variation of the density of states. This 
l°cal variation arises because the impurities are randomly distributed and 
consequently, the impurities may have a high concentration in some places and a 
low concentration in other places. Section 3.3.1 describes how this local 
variation, which is a microscopic effect, is transformed into a macroscopic 
potential Gaussian distribution. Section 3.3.2 describes how the variance of the 
Gaussian will take on a different value depending upon whether the impurity

or it is separate from the conduction band (semiconductor with an impurity



band). Section 3.3.3 describes how the local variation will influence the 
operation of a PEIR photoconductor.

3.3.1 Density of states distribution
The simplest, most straightforward method of considering the effect of the 

changing potential on the density of states, is to simply assume that the 
distribution of potential due to the ionized impurities (p(E)) has a Gaussian
distribution [Kane 1963; Lee & McGill 1975] or

P(E) =
1

(27T

-E2
2^dos2

This distribution of potential depends upon the compensating dopant 
concentration, the impurity band dopant concentration (both the total 
concentration and the ionized concentration), the dielectric constant, the carrier 
concentration, and the temperature.

The density of states are recalculated as the density of states at one 
location convoluted with the Gaussian distribution above [Lee & McGill 1975]. 
This will be used for the valence, conduction and impurity density of states [Lee 
& McGill 1975; Lee & Fossum 1983].

This method is known as the Thomas-Fermi method [Kane 1963; Kane 
1985]. It has its limitations [Kane 1985], but is used here to determine the 
possible effects of the dopant impurities in a PEIR photocondu ctor.

3.3.2 Variation of the local electrostatic potential in degenerately doped 
semiconductors and semiconductors with impurity bands

Most authors consider the case where the impurity band has already 
merged with the conduction band. Consequently, the semiconductor becomes 
degenerately doped. In this case, the impurities can all be considered ionized 
and <7{jos is large.

In a degenerately doped semiconductor, it is assumed that the dopants are 
ionized because the impurity states are in the conduction band. Since the 
impurities are all ionized, the variation of impurity concentration remains the 
same as an electric field is applied in the semiconductor. Consequently, <x<ios will 
remain approximately the same as an electric field is applied.



In the impurity band layers of a PEIR photoconductor, the impurity band 
isseparate from the conduction band. At the temperature of operation, only a 
small portion of the impurities are ionized. The remainder of the impurity 
ground state energy levels are occupied with electrons (n-type) and can be 
considered neutral. crdos is much smaller in this impurity band case.

As an electric field is applied in the impurity band layer of a PEIR 
photoconductor, electrons (holes) can move from one impurity atom to another. 
Consequently, the ionized impurities can reposition themselves in the impurity 
band. The movement of ionized impurities will also lower <rdos throughout the 
impurity layer because the ionized dopants will accumulate at one end of the 
impurity band layer. Hence, <xdos will be almost zero meV everywhere except at 
the end of the impurity band layer where the ionized dopants accumulate. As 
shown in sec. 2.2, it may be possible that the electric field in the impurity band 
layer approaches zero V/cm. In this case of electron accumulation, the electron 
need not be in its ground state (which is the same situation as degenerately 
doped semiconductors) but as shown in sec. 3.5, crdos will be reasonably small 
anyway. . -

3.3.3 The effect of bandtailing on the operation of a PEER, photoconductor

The conduction band and impurity band can form tails due to the value of 
^dos- The bandtailing effect can increase recombination, generation, and 
trapping. The bandtailing effect appears to be very small in a PEIR 
photoconductor, no matter what the situation (See sec. 3.5). As the 
performance of a PEIR photoconductor improves, the compensation dopant 
concentration and the accumulation of electrons will become negligible and 
subsequently the number of ionized impurities will become smaller (see sec. 2.3). 
Consequently, the bandtailing effect will decrease even further.

3.4 Energy separation between the donor level and the energy band edge

Ec —Ed (Ej) is the energy difference between the conduction band and the 
donor level. There has been speculation that as the donor concentration 
increases, on one hand, the conduction band energy level is lowered toward the 
donor energy level [Mahan 1980] and on the other hand, the donor energy level 
is raised towards the conduction band energy level [Dhariwal, Ojha, & 
Srivastava 1985]. Whatever the case, the energy difference does appear to 
decrease and assuming the most recent analysis is the most accurate [Dhariwal, 
Ojha, & Srivastava 1985], the assumption will be that the donor level energy



increases towards the conduction band. This is actually the most ideal case for 
the PEIR photoconductor because there are no abrupt heterojunctions that 

cause reflection.
A rather straightforward description of the effect of ionized impurities upon 

the separation of the dopant level and the edge of the energy band has been 
presented by Lee and McGill [Lee & McGill 1975]. There are three effects that 
produce this shift: l) The value of the dielectric constant will vary due to the 
absorption and must be calculated, 2) the shift of the impurity level due to 
screening, and 3) the average shift of the conduction band edge. These three 
effects are described in the next three subsections.

3.4.1 Determination of the dielectric constant
The dielectric constant to be considered is the relative static dielectric 

constant, (it is assumed that the dielectric constant at the frequency of 
operation equals the static dielectric constant). The absorption coefficient 
(impurity band to conduction band) will most likely be ~104cm-1 only in a 
restricted energy range. Due to the Kramers-Kroenig relationship (See app. C) 
and n| = esr, the static dielectric constant (esrec) won’t increase too much. The 
importance of the increase in the dielectric constant is that the donor ionization 
energy will decrease because the effective mass energy is proportional to the 
inverse of the dielectric constant squared.

One way to approximate the increase in the dielectric constant is to 
consider that the index of refraction increases by 2 for GaAs due to phonons 
(esr =12.85 and c*,,. =10.88 [Blakemore 1982]). The peak absorption coefficient is 
5xl04cm"1 [Blakemore 1982]. If one assumes that the peak absorption 
coefficient due to impurity bands is lxl04cm_1 esr increases by 2/5 from 11.7 to
12.1. The effect of this increase upon the ionization energy is to decrease it from 
45 meV to 42 meV. Since the dielectric constant increase is small for a peak 
absorption coefficient of 104cm_1 and most peak absorption coefficients are less 
than this value, it will be assumed that the dielectric constant is approximately 
equal to the dielectric constant of an undoped material.
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3.4.2 Shift due to screening

The impurity band can shift towards the conduction band due to the fact 
that the electrons in the conduction band can screen an electron attached to the 
donor. Lee and McGill have calculated the effect and stated it is negligible for 
low conduction band electron concentrations [Lee & McGill 1975].

The overlap of ionized impurities will lower the Conduction band. The shift 
is made up of two parts. One shift in potential is due to the overlap in 
potentials. In mathematical terms [Lee & McGill 1975],

2q2e~d/2XD q2e~d/Xp

47resr(d/2) 47resrd

where the potential of the ionized impurity at its nearest neighbor ionized 

impurity equals -5—------- . d = (Nj)-1/3 and Np is the number of ionized
yyyV Y.-yY'''Y . 4™^; y^Y YY"V'"'Y Y.\Y;: • y.yyYy;_-'Y^ "-'V;';

impurities. The equation to calculate Xj>, the screening length, is shown in sec.
^.S.y^Y/YY^'-Y.Y.y. y YY:y/Yy.Y: :.Y^:y;.vY-YY'YyY •:' y'-';;> j'y

The other shift (AEc2) is due to the fact that a bound excited state can 
propagate from ionized impurity to ionized impurity. Hence, it is conducting.

AEc2
2h2 

m d2

The total shift, AEc, simply equals the sum of AEci and AEc2* From sec. 
3.5, it appears that AEq is small enough such that its effect is minimal.

3.5 Numerical examples ; y V

This section now presents the heavy doping parameters that will normally 
be encountered in a PEIR photoconductor. An n-type photoconductor will be 
considered where is the compensation dopant concentration (See sec. 2.2). 
In the analyses presented in this section, it is assumed that Na and n are 
uniform throughout the active region. It is also assumed that the carriers are 
generated by radiation from the background (BLIP operation). For uniform



carrier concentration, the generation and recombination rates are approximated 
as uniform throughout the active layer (In reality, the generation occurs only in 
the impurity band layers).

The equations of interest are presented below. The generation rate (g) is 

calculated as

g = <f>r)/dz2

where <p is the photon flux, rj is the quantum efficiency (assumed to be 100 %) 
and dz2 is the thickness of the active region.

For uniform generation and recombination, n can be approximated as (n-type)

n =-------- ------------—....
^cap^avl11 d” -^a)

In the equation above, it is assumed that there is a uniform concentration 
throughout the active region.

The ionized dopant concentration in the impurity band layers is

Ni»n. ,n'a • .

where djjj, is the thickness of the blocking layer and djj, is the thickness of the 
impurity band layer.

The other equations of interest are [Lee and McGill 1975]

a ^VslliHND+NA)]-1/3 ,

%Dio ^ V» + (Na + n)(l——— }



XDi ~ XDio + a >
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XDe =
eskT

q2n

1/2

1 1 + 1
\ 2 \ 2 1 \ 2 ’ Aj) Aj)e Apj

d = (NJil) 1//3 ,

AEo
0 2 -d/2XD 2 -d/XD2q e q e '
47res(d/2) 47resd

AEC2
2h2

mV ’

and

^dos
NgiL+Nl .
—tt-*—q xd

1/2

Let

<1bl = dIL ,

dz2 5/xm ,

^cap = 1° 12 cin2
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*
me 5 nig ,

Some constants used are

esk/q2 = 5.72xl02 (Kcm)"1 ,. 

2
——— = 1,190. meVA , 
47T6s ■■■

4
———= 2.87xl0_16cm2eV2 .
87T2 es .

Some examples are shown below that reveal how much the impurity band 
shifts towards the conduction band (n-type), how wide the impurity band 
becomes and the value of the standard deviation of the Gaussian distribution of 
potential. In addition, other important parameters are shown. In these 
examples, it is assumed that the radiation generation is much larger than the 
thermal generation, Four parameters are varied in these examples: 1) the
majority dopant concentration, 2) the compensation dopant concentration, 3) 
the photon flux, and 4) the temperature of operation.

3.5.1 Influence of the majority dopant concentration on the heavy doping 
parameters

Tables 3.2 and 3.3 present several different parameters as the majority 
dopant concentration is varied. As can be seen in tables 3.2 and 3.3, Bj depends 
upon the majority dopant concentration.' AEc and cr<ios are essentially 
unchanged. ■
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.. \'V; ■; Table 3.2 ' '
Debye length parameters as the majority dopant concentration 
is varied. T=10 K, NA = 1012(cm"3), <^ph = 5xl017(cm-2sec-1)

ND
(cm"3)

n
(cm"3)

NDIL :
(cm"3)

a
(A)

^Dio
(A)

XDi
(A)

^De
(A)

5xl017 1013 2xl013 105. 1,650. 1,760. 2,390.
IO18 1013 2xl013 1,650. 1,730. 2,390.

2xl018 1013 2xl013 67. 1,650. 1,720. 2,390.

Table 3.3 : r f.
Density of states parameters as the majority dopant concentration 

is varied. T= 10 K, NA = 1012(cm""3), <pph = 5xl017 (cm"2 Sec"1)

(cm-3) (A)
d

(A)
^Ec

(meV)
Bi

(meV)
C’dos

(meV)
5xl017 1,420. 3,690. .415 10.7 .292

1018 1,400. 3,690. .412 17.1 .291
2xl018 1,390. 3,690. .409 25.4 .290

.Table 3.4
Debye length parameters as the compensation dopant concentration 

is varied. T=10 K, ND = 1018(cm“3), ci>ph = 5xl017(cm_2sec_1)

■■■'■'"■NAv'.:
(cm-3)

n
(cm"3)

Ndjl

(cm-3)
a

(A)
Aoio
(A)

^Di
(A)

ADe
(A)

1012 1013 2xl013 84. 1,650. 1,730. 2,390.
TO13 <1013 >2xl013 84. 1,380. 1,460. 2,390.
io14 1012 2xl014 84. 749. ^833. 7,600.
1015 io11 2xl015 84. 239. 323. 23,900.
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3.5.2 Influence of the compensation dopant concentration on the heavy doping 
parameters

Tables 3.4 and 3.5 present several different parameters as the compensation 
dopant concentration is varied. From tables 3.4 and 3.5, Bj does not change 
when the dopant compensation concentration changes. AEc smd <T(jos increase 
as the dopant compensation concentration increases.

3.5.3 Influence of the photon flux on the heavy doping parameters

Tables 3.6 and 3.7 present several different parameters as the photon flux is 
varied. Bj is independent of the photon flux. As the photon flux decreases from 
1015cm-2sec-1, AF,c and <Tdos increase because of the increase in the screening 
length. As the photon flux increases from 1015cm-2sec 1, AEc increases 
because of the decrease in the distance between ionized majority impurities and 
<7dog increases because of the increase of the ionized majority impurities.

3.5.4 Influence of the temperature on the heavy doping parameters

Tables 3.8 and 3.9 present several different parameters as the temperature 
is varied, n and N^il remain the same as the temperature is varied because it is 
assumed that the radiation generation is much larger than the thermal 
generation. Bj does not change when the temperature changes. AEc and <rdos 
increase as the temperature increases because the screening length increases.

3.6 Comparison of ground dopant states to excited dopant states
As stated in chap. 2, the energy levels of the impurity band can be 

separated into two groups - the ground state energy levels and the excited state 
energy levels. In addition to the space charge problems described in chap, 2, the 
wavelength response can increase because electrons can be excited by the 
radiation into the excited state and subsequently excited into the conduction 
band by another excitation process. This section describes how-the wavelength 
response can increase and compares this result to the band diagrams shown in 
Figs. 1.3, 1.4, and 2.2. It is assumed in this section that the compensation 
dopant concentration is small enough such that the band diagram will resemble 
Fig, 2.2 and will begin to resemble Fig. 1.3 if the generation rate or ionization 
rate increases (See sec. 2.2) or will resemble Fig. 1.4 if the electrons can 
accumulate (See sec. 2.2).



Table 3.5
Density of states parameters as the compensation dopant concentration 

is varied. T=10 K, ND = 1018(cm-3), <^ph = 5xl017(cm-2sec-1)

36 v- : ■

(cm 3) (A)
d

(A)
AEc

(meV)
Bi

(meV)
^dos

(meV)
1012 1,400. 3,690. .412 17.1 .291
1013 1,250. 3,690. .366 : 17.1 .328
1014 830. 1,710. 1.31 .V;Si7.:lv.':;. .844
1015 323. 795. 3.52 17.1 1.67

Table 3.6
Debye length parameters as the photon flux is varied. 

T=10 K, Nd = 1018(cm-3), Na = 1012(cm-3)

^ph
(cm-2 sec-1) (cm-3)

S Nbil 
(m~3)

a
(A)

^Dio
(A)

^Di
(A)

‘i>,.
(A)

1013 2xl09 2xl012 84. 7,550. 7,630. 169,000.
2xlOn 2xl012 84. 6,390. 6,480. 16,900.

1017 <4xl012 ~8xl012 84. 2,520. 2,610. 3,780.
5xl017 <lxl013 2xl013 84. 1,650. 1,730. 2,390.
io18 <1.4xl013 3xl013 84. 1,490. 1,460. 2,020.

Table 3.7 '
Density of states parameters as the photon flux is varied. 

T—10 K, ND = 1018(cm-3), Na = 1012(cm-3)

r ^Ph ■
(cm-2 sec-1)

XD :
(A)

d -
(A)

AEc
(meV) (meV)

^dos
(meV)

io13 7,620. 7,940. .322 17.1 . .256
1015 6,050. 7,940. .289 17.1 / .228
1017 2,150. 5,000. .321 17.1 .235

5xl017 1,400. 3,690. .412 17.1 .291
io18 1,200. 3,220. .476 17.1 .327

\



37

Table 3.8
Debye length parameters as the temperature is varied.

Nd = 1018(cm-3), Na = 1012(cm-3) </>ph = 5xl017(cm-2sec-1)

T
(K) (cm-3)

ndil
(cm-3)

a
(A)

^Dio
(A)

Aoi
(A)

^De
(A)

5 1013 2xl013 84. 1,170. 1,250. 1,690.

10 1013 2xl013 84. 1,650. 1,730. 2,390.

20 1013 2xl013 84. 2,330. 2,420. 3,380.

40 1013 2xl013 84. 3,300. 3,380. 4,780.

Table 3.9
Density of states parameters as the temperature is varied.

Nd = 1018(cm-3), Na = 1012(cm-3) </>ph. = 5xl017(cm-2sec-1)

T
(K) , (A)

d
(A)

AEc
(meV)

Br
(meV)

*^dos
(meV)

5 1,010. 3,690. .286 17.1 .246
10 1,400. 3,690. .412 17.1 .291
20 1,970. 3,690. .544 17.1 .344
40 2,760. 3,690. .666 17.1 .409
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There are three possible effects on the wavelength response that can arise 
because of these excited states. For the first effect, there may be no change in 
the wavelength response because l) the excited state, concentration in the energy 
gap between the impurity band and the conduction band is negligible or 2) the 
electrons excited into an excited state recombine into the ground state before 
they can escape from the impurity potential. The excited state energy level 
concentration may become negligible because the excited states may spread out 
into the conduction or impurity band effectively lowering the concentration. 
The escape from the impurity potential is prevented because a) an electron 
cannot travel down the excited state band (no Df states (n-type device, see sec. 
2.2)) and b) the electrons are more likely to recombine than be excited into the 
conduction band by thermal generation, radiation generation, tunneling-field 
emission ionization, or thermal-field emission ionization. In this case, the 
wavelength response should not lengthen due to the excited states. The band 
diagram in the device should resemble the band diagram of Fig. 2.2 because 
there will be few carriers in the conduction band.

For the second effect, electrons in the excited states may be 1) more likely 
to be excited into the conduction band by thermal generation, radiation 
generation, tunneling-field emission ionization, or thermal-field emission
ionization than recombine into the ground state energy levels or 2) swept away 
through the excited state energy level band and subsequently emitted into the 
conduction band. This effect will lengthen the wavelength response. This effect 
can improve, maintain or degrade the performance of the device depending upon 
whether the absorption cutoff is more sharp or more broad. The band diagram 
in the device will resemble the band diagram of Fig. 1.3 because the electron 
concentration will be much larger than for the first effect (See sec. 2.2).

The third possible effect may be that electrons can simultaneously occupy 
the ground state and the excited state at the same site (accumulation of 
electrons, see sec. 2.2). At this time, it is not verified whether this occurs. This 
third effect means that electrons can accumulate at one end of the impurity 
band layer. This process could seriously degrade the device because the electric 
field in the impurity band layers could be zero, as is shown in Fig. 1.4. The size 
of the decrease depends upon the thickness of the impurity band layer. The 
wavelength response will remain the same as a PEER, photoconductor with
negligible excited states or increase only a portion of what is possible due to the 
second effect. This result is due to the fact that an electron in an excited state
energy level can be excited into the conduction band only through thermal or 
radiation generation and not by thermal-field emission ionization or tunneling- 
field emission ionization since the electric field in the impurity band layer is



much smaller than the electric field in the impurity band layer for the second 

effect.
These several possibilities that can arise in a PEIR photoconductor depend 

upon the actual physics of the impurity band excited states. These possibilities 

are shown in table 3.10.

3.7 Conclusions
This chapter has considered the density of states in the conduction band 

and in the impurity band (both ground and excited states).

Sections 3.2 to 3.5 presented some important results for the conduction 
band states and the ground states in the impurity band. The important 
conclusions are that Bj is an unavoidable parameter that must be considered. 
AEC and <rdos can be neglected if the compensation doping concentration or the 
temperature is low. Since this is the desirable condition, it will be assumed that 
AEC and Odos can be neglected for a PEIR photoconductor.

As for the excited states in the impurity band (See sec. 3.6), the major 
conclusion is that if electrons can accumulate in the impurity band, the band 
diagram will look like Fig. 1.4 while the wavelength response can increase very 
slightly. If electrons cannot accumulate, the band diagram will look like Fig. 1.3 
and the wavelength response can increase.



Table 3.10
Various situations for the excited 

states of the impurities

Situation Wavelength

response

Fig.

L Density of states are negligible in the gap between the 

impurity band and conduction band - due to the 

o broadening of the states no change 2.2

II. Density of states are not negligible in the gap between 

the impurity band and conduction band

a. Electrons excited to a state and then excited to

a band ";v '-.vO'. increase 1.3

b. Electrons excited to a state and then fall back into

the ground state no change 2.2

c. Electrons excited to a state and then travel down

a band

1, Electrons excited into the conduction band increase 1.3

2. Electrons trapped in the band at interface 

between the impurity band layers and 

the blocking layers- r no change 1.4

3. Electrons prevented from traveling down the 

band and fall back into the ground state 

because electrons are not likely to exist

in an excited state and a ground state

at the same site no change 2.2



4. ABSORPTION IN A PEIR PHOTOCONDUCTOR

4.1 Introduction
There are five types of absorption in a semiconductor: 1) valence band to 

conduction band absorption (electron), 2) impurity band to conduction band 
absorption (electron) for heavily doped semiconductors or dopant level to 
conduction band absorption (electron) for lightly doped semiconductors, 3) 
intraband or free carrier absorption (electron), 4) ground state of dopant level to 
excited state of dopant level (electron), and 5) phonon absorption (lattice). The 
electron in parentheses means that the electron absorbs most or all of the 
radiation energy and the lattice in parentheses means the lattice absorbs most or 
all of the radiation energy.

There are two possible beneficial absorption processes in a PEIR 
photoconductor. Absorption process 2 is considered in this chapter. Absorption 
process 4 is the other possible beneficial process in a PEER photoconductor and 
has already been considered in depth [Thomas, Capizzi, DeRosa, Bhatt, & Rice 

1981]. ;
Section 4.2 presents the relative importance of the five absorption processes 

in a PEIR photoconductor. Section 4.3 relates the absorption coefficient to the 
absorption cross section. Section 4.4 describes a simple calculation for a 
theoretical absorption cross section and relates some of these values to some 
experimental absorption cross sections. Section 4.5 describes an approximate 
method used to calculate the absorption from the impurity band to the 
conduction band. Section 4.6 presents four host semiconduetortimpurity atom 
systems suited for use in a PEIR photoconductor. Section 4.7 presents a method 
to determine the dopant concentration in the impurity band layers. Section 4.8
presents conclusions drawn from this chapter.

4.2 Absorption processes in a PEIR photoconductor
In a PEIR photoconductor: Absorption process 1 is not of interest because 

the energy of radiation producing this transition is in the optical range which is 
much larger than the infrared range of interest. Absorption process 2 produces 
the photoconductivity and is the most important absorption process in a PEIR



photoconductor. Absorption process 3 can be neglected because there are only a 
few free carriers in the conduction hand. Absorption process 4 has been stated 
to be of importance [Thomas, Capizzi, DeRosa, Bhatt, & Rice 1981]. Depending 
upon which physical situation presented in sec. 3.6 actually occurs, this 
absorption process can have a range of effects on a PEIR photoconductor. 
Absorption process 4 can: a) produce photoconductivity (for situations Ha and 
IIcl in table 3,10), or b) be of little effect (for situations I, lib, IIc2 and IIc3 in 
table 3.10), Absorption process 5 is important in this device. For GaAs, this 
absorption occurs at 38 meV and will have to be taken into account when 
considering the design of a PEIR photoconductor. This absorption can be used 
as a filter and hence can be advantageous but it will also mean that the 
radiation energy at the optical phonon frequencies can not be detected. Since Si 
has a phonon energy at 62 meV, absorption process 5 can be neglected in Si 
because the phonon energy is too large. In any case, the phonon absorption in 
Si is too small to be important.
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4.3 Relationship of the absorption coefficient to the absorption cross section

The rate of absorption, designated as • ^ , is related to the absorption 

cross section <rabs by

Tabs,
^absNl Vc

where vc is the velocity of radiation in the medium and Nf is the concentration 
of neutral dopants.

' ' ' ’............. "" ' '' l 'V-T . : .
Now it can be seen that for an absorption rate of

Tabs

<t> = <f>Qe = <A>e

-Vet
:Vc^"abs

=4e

—X
^c^abs



- 4>oe-ax

where ot is the absorption coefficient. Considering this last equation [Bratt

1
a =------------ —

vc^"abs

^absNiYc
Vc

^absN?...

As an example, consider the BIB detector (See sec. A.2.3). The cross 
section in Si:P is about 10-15cm2 and N?=6.5xl017cnT3. The absorption 

coefficient is calculated as

a = 650cm 1

which is close to the actual absorption coefficient [Walter & Dereniak 1986a].

4.4. Simple theoretical calculation of the absorption cross section and a 
comparison with experimental results

To calculate a theoretical cross section, one can look at the hydrogenic 
wave function [Kohn 1957]

oc e

—r 
aH

where a^ is the effective Bohr radius,

_* _ h 247res _ a| ^ ;
3-H ---------- * 5 — ‘ ~^sr >

me-: mr ■

and a| is the Bohr radius (.529 A). esr is the static dielectric constant.

This wave function is correct if the actual ionization energy Ei equals the 
ionization energy using the effective mass theory, Ejef [Kohn 1957],
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EIeff
me4

(47res)22/z 2 87resaH

where Ejjy is the ground state energy of the hydrogen atom and equals 13.6 eV. 

If Ej doesn’t equal Ejeff, the wave function can be corrected as [Kohn 1957]

^L(_5L)1/2
F(r);ocea» Efeff >. .

Table 4.1 shows values for ag and Ejeff for GaAs, Ge, and Si. m is 
calculated from [Sze 1981]. esr is found in [Sze 1981, Stillman, Wolfe, & 
Dimmock 1977, or Adachi 1985].

Table 4.2 shows ag and Ejeff for different compositions of AlxGa1_xAs. For 
AlxGa1_xAs, the electron density of states mass [Adachi 1985] is calculated from 
the r valley for A1 compositions from 0 to .4 and from the X valley for A1 
compositions from .5 to 1.0 [Casey & Panish 1978]. The dielectric constant is 
assumed to vary linearly from GaAs to AlAs [Adachi 1985]. The hole density of 
states is calculated from the heavy and light hole T bands [Adachi 1985].

To calculate the theoretical cross section, consider

r*abs = aH
Eleff 1/2 _ aH

( \
EHy

Ej\ / 'S/ m* El\ /

1/2

Where it can be noted that the relative dielectric constant, esr, cancels out of 
this equation. The theoretical cross section will be approximated as

^absth =

where K is a unitless empirical constant and

K =
^abs'ex(GetSb)

7IT crabsex(Ge:Sb)

16xlO~15cm2
7r(42.5xl0_8cm)2

= 2.82xl0_z .

Various values for and (JabSpy (the experimental cross section) are5 ex



Table 4.1
ajj and Ejeff for GaAs, Ge, and Si

,*
m

(unitless)
^sr

(unitless)

*
an
(A)

Eleff
(meV)

n - GaAs .067 13.2 104. 5.83
p - GaAs .45 13.2 15.5 39.2

n - Ge .22 - 16.0 38.5 11.7
P- Ge .29 16.0 29.1 15.4

.■■n;-'S:i .33 11.8 18.9 32.2
p - Si v .55 11.8 11.3 53.7



Table 4.2
3|C ■

ajj and Ejeff for AlxGa!_xAs

m
(unitless)

^sr
(unitless)

- '*■ ■
aH
(A)

EIeff
(meV)

n - GaAs .067 13.18 104. 5.25
n - A1! Ga g As .075 12.87 90.8 6.16
n - A12Ga.8As .084 12.56 79.1 7.24

n- Ai3Ga 7As .092 12.24 70.4 8.35
n - A14Ga 6As .100 11.93 1 63.1 9.56
n - A1 sGa 5AS .290 11.62 21.2 : 29.2

n - Al ^ Ga^As .284 11.31 21.1 30.2
n - A17Ga3As .278 ~v’ 11.00 20.9 31.2
n - Al-8Ga 2As .272 10.68 20.8 32.4

n - Al.gGa 4As .266 10.37 20.6 33.6
n - AlAs .260 10.06 20.5 34.9

p - GaAs .642 13.18 10.9 50.3
p - Al i Ga g As .658 12.87 10.3 54.0
p - A12Ga 8As .674 12.56 9.86 58.2

p - A13Ga7As .690 12.24 9.38 62.6
p..> Al4 Ga.6As .706 11.93 8.94 67.5
p - A1 5Ga 5As .722 11.62 8.51 72.7

p - A16Ga 4As .739 11.31 8.10 78.6
p - A17Ga 3As 11.00 7.71 84.9
p - A18Ga 2As .771 10.68 7.33 91.9

p - A1 gGa 4As .787 10.37 6.97 99.5
p - AlAs .804 10.06 6.62 108.
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compared in table 4.3. The experimental cross sections for the Si and Ge 
samples are from Bratt. Ej is also shown in table 4.3 [Sze 1981].

Table 4.4 presents some cross sections for AlxGai_xAs. Ej for n-type 
dopant Si [Lifshitz, Jayaraman, Logan, & Card 1980] and p-type dopant Be 
[Yang 1982; Yao 1985] are also presented in table 4.4. The experimental cross 
section for the GaAs sample is calculated as [Bosomworth, Crandall, & Enstrom

^absex
75 cm 1 

lxl015cm~3
= 75x10

where lxl015cm 1 is the neutral impurity concentration.

For deep and medium levels [Kohn 1957; Bebb and Chapman 1969; Bebb 
and Chapman 1967; Bebb 1969], the wave functions are not the hydrogenic 
wave functions. Consequently, the cross section will be smaller for larger Ej.

The results of table 4.3 are surprisingly consistent. Even for p-type 
materials, <7absth and ^abs^ compare favorably, which indicates that the simple 

calculation of rCTa|s may be a reasonable approximation.

Tables 4.5 and 4.6 present some approximate values of (Ec—ED)min or
(EA—Ev)min for certain absorption coefficients. The semiconductor materials 
used are the same ones as in tables 4.3 and 4.4 respectively. When examining 
these tables, it must be remembered that as the impurity band widens, the
absorption spectrum also broadens. Hence, the absorption coefficients in tables
4.5 and 4.6 are optimum values. This effect is considered in the next section.

4.5 Iiripurity band to conduction band absorption
The theoretical absorption cross section as a function of energy has been 

considered for an electron excited out of a single discrete dopant level [Bebb and 
Chapman 1969; Bebb and Chapman 1967; Bebb 1969; Bratt 1977]. As long as 
these electron states remain spatially separated from one another, the absorption 
is simply the absorption cross section times the number of neutral dopant states.

When the electron states in the impurity atoms begin to overlap, two 
processes begin to occur: l) The k states in the dopant levels may be altered by 
this overlap and 2) an impurity band begins to form and the ground state 
energy levels of the impurity atoms begin to take on a range of energies. For 1),



Table 4.3
Comparison of <xabstll and <TabSex

dopant

type

y!^y;

(meV)
abs

(A)
^abstb

(10“15cm2)
^abs g-jj’

(10_i5cm2)

Si:P n 45. 16.0 2.3 1.7
; Si:As ; ;; n 54. 14.5 1.8 ■ ?

Si:Bi ; n 69. 12.9 1.5 .70
Si:S y.. v- n ■>' 260. 6.65 .39 .06

Si:B r p , ?:y 45. 12.3 ;:.y ; 'T.3;-v:''y'"' i.4 .y
■v: Si:AI> y yjfyy. 67. 10.1 .90 :. ".8 y.

Si:Ga A'y;'£:l:yy 72. 9.8 :y^y.85yy' .5
Si:In P y;v 160; 6.5 yy;r-:,.3?yyy ■y^y ,i6

Ge:Sb ; : --y-'v n 9.6 42.5 16. 16.
Ge:P ;y n rV 12. y 38.0 y, y.- yy; y 13.
Ge:Bi n ' 12. 38.0 15. 13.

v' ’Ge:As: 13. 36.5 14. 12. y‘y.

Ge:Tl : P : & 10; 36.1 12. ■ .. . ' 8.7
Ge:Cu P \ 40.: y 18.1 ; 2.9 1.0
Ge:Hg ; p - 87. 12.2 .39

GaAs:Si :-;ly:;ii' .':yv 5.8 99.0 J-:y 87v- -• 75. .
GaAs:Te ..y';’- n 30. 43.5 Vv-T7. - ?

GaAs:Be p 26. 18.0 2.9 :
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Table 4.4
Comparison of crabsth and <Tabsex

dopant
type

Er
(meV)

^^abs
(A)

°absth
(10-15cm2)

^abs
(10-15cm2)

GaAs:Si n 5.8 99.0 87. 75.

Ali Ga 9 As:Si n 5.8 94.0 78.
Al2Ga 8As:Si n 8.0 75.3 50. ■ : ■ ? ■ ■ . ‘ ■

A1.3Ga7As:Si n 40.0 32.2 9.2 ?

A1 4Ga 6As:Si n 120. 17.8 2.8 ■ ? :

A1 5Ga 5As:Si n 105. 11.2 1.1 ?

A1 6Ga 4As:Si n 101. 11.5 1.2 ’ ■ ? ■■ ■ ■

A1:7Ga 3 As:Si n 101. 11.6 1.2 V ?

AlgGa 2As:Si n 101. 11.8 1.2 ?

Al gGa j As:Si n 101. 11.9 1.3 ?

■ AlAsiSi n 101. 12.0 1.3 ;; ? .

GaAs:Be p 28. 14.6 1.9
A1 j Ga gAs:Be p 30. 13.9 1.7 ?

; A1 2Ga 8As:Be p 32. " 13.3 1.6 ■ ?

A13Ga7As:Be p ■ 36. 12.4 • ■ 1.4' : ^ ? .

Al4Ga6As:Be : P 39. 11.8 1.2 \ ?

A1 sGa 5As:Be ^ P 42. 11.2 ; 1.1 ?

; A1 6Ga 4As:Be P " 50. 10.1 .90 ■ ? ;

Al.7Ga3As:Be P ' 66. 8.7 .67
A1 8Ga 2As:Be P 90. 7.4 .49 ? '■ .

AlgGa xAs:Be P 110. 6.6 .39 ?

AlAs:Be P 140. 5.8 .30



Table 4.5
Calculation of (Ec -ED)min or (EA-Ey)min 
for various semiconductors and impurities

E, ^absex (Ec—ED)minor (Ea—Ev)min (meV)

(meV) (I0~'5cm2) (or—)2.5x10s (cm-1) 5xlb?(cm *) 104 (cm-1)

Si:P 45. j : 1.7 , 22.4 13.4 ' 3.6
Si:As 54. '-^1.2;. 28.5 ■ J. 18,5 7.7
Si:Bi 69. .7b 37.4 25,8 13.6
Si:S 260. .06 184. 160. 137.

Si:B 45. 1.4 24.3 ■ 14.2 2.3
ShAl 67. ; .8 42.5 30.4 16.0
Si:Ga 72. .5 V:;; 40.1 26.2 10.6
Si:In 160. .16 114. • 93.2 69.8

Ge:Sb 9.6 16. <0. <0. <0.
Ge:P 12. 13. <°. 1 ; ■ <0. <0.
Ge:Bi ~12. '• 13. <0. <Q. <0.

Ge:As 13. : 12 .2 / ■ <0. <0.

Ge:Tl 10. ■V: ■ 8.7 <0. ■ : <0. <0.
Ge:Cu 40. 1.0 \ 9.7 ' <0.
Ge.-Iig 87. .39 47. ■■ 33.7 21.
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Table 4.6
Calculation of (Ec—Ed)^ or (EA—Ev)min 

for AlxGai_xAs:Si and AlxGai_xAs:Be

e, :: ^absgx (Ec-ED)min or (EA—Ev)min (meV)

(meV) (10_15cm2) (a=)2.5xl03(cm \) 5xl03 (cm *) 104 (cm-1)

GaAsiSi 5.8 ; ; 75. <0. <0. <0.

A1 rGa 9As:Si 5.8 ■“72. <0. <0. <0.

Al^'GagAscSi- 8.0 “45. <0. <0. <0.

AI3Ga7As:Si 40.0 ~3.0 18.6 13.8 9.5

Al4Ga 6As:Si 120. ~.5 81.0 72.4 64.7

Al5Ga6As:Si 105. ~.3 60.8 46.9 33.0

Al;6Qa4As:Si 101. “-.2 48. 34. 22.

Al7Ga-3As:Si 101. ~.2 48. 34. 22.

Al8Ga2As:Si 101. ~.2 48. 34. 22.

A19Ga jAsiSi 101. ~.2 48. • 34. 22.

AlAs:Si 101. ' .2 48. 34. —22.

GaAs:Be 28. 1.7 6.7 <0. ~<o. T
A1 i Ga 9 A^:Be 30. ~1.5 7.9 <0. <0.

AT 2Gai8As:Be 32. ~1.4 9.9 <0. <0.

Al3Ga7As:Be 36. ~1.2 13.1 2.5 <0.

Al4Ga>6As:Be 39. '*'1,0 14.5 3.4 <0. .

Al5Ga6As:Be 42. ~.8 15.3 3.4 <0.

Al6Ga:4As:Be 50. 6 20.5 7.3 <0.

Ar7Ga3As:Be 66. “.’3 26,9 10.7 <0.

A18Ga 2As;Be 90. —15 38.0 18.2 <0.

AIgGa j As:Be 110. “.10 50.4 28.0 4,2

AlAsiBe 140. MO 85.0 61.3 34.9



it is assumed that the k states in the dopant levels are hardly altered by the 
formation of an impurity band. This is justified in sec. 4.5.1. For 2), it is 
assumed that the absorption cross section has the same shape as a function of 
energy, no matter what the ground state energy level of the electron in the 
impurity band. The overall absorption then depends upon the density of states 
in the impurity band. This is explained more clearly in secs. 4.5.2 and 4.5.3.

4.5.1 Crystal momentum value for an electron in a dopant level «

The crystal momentum in dopant states has been considered [Serre & 
Ghazali 1983; Gold, Serre, & Ghazali 1988; Ghazali & Serre 1982]. It has been 
stated that the k values for dopant states are spread but over a rather large 
range of values of k [Serre & Ghazali 1983; Gold, Serre, & Ghazali 1988; Ghazali 
& Serre 1982]. The argument is that the dopant states are localized in space 
and due to the Heisenberg principle, must be non-loealized in k-space.

One could make an argument that when the impurity bands form that the 
electron wave function can be more compact in k-space. Yet even when the 
impurity band begins to form, the dopant states are non-localized in k-space 
[Serre & Ghazali 1983; Gold, Serre, & Ghazali 1988; Ghazali & Serre 1982]. The 
argument is that since the impurity atoms are randomly distributed in real 
space, the band formed by the impurities will be random in k-space. In 
addition, due to this random distribution, there is no periodic potential and the 
electrons in the impurity band energy levels should essentially maintain the 
same k-space spectral density. If the dopant atoms were precisely periodicly 
located, it seems reasonable to assume that the wave function would become 
more compact in k-space.

Impurity band to conduction band absorption is very similar to free carrier 
absorption because of the spread in k-space of the dopant electron state.

4.5.2 Absorption cross section as a function of energy

An example of the absorption cross section from a discrete dopant level is 
shown in Fig. 4.1 [Bratt 1977]. The absorption cross section increases at the 
ionization energy because of the increase in the density of states. It begins to 
decrease because of the decrease in the oscillator strength [Lax 1956].

The real unknown is the alteration of the absorption cross section as a 
function of energy as an impurity band is formed. Consider one electron and 
vary its dopant energy level. As the ionization energy changes, the absorption
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norm,

Figure 4.1 Schematic shape of a normalized absorption cross section vs.
normalized energy curve -



will correspondingly shift with the ionization energy. As is shown in sec. 4.5.3, 
this can be taken into account by integrating the impurity band density of 
states over the cross section.

If the shape of the absorption cross section as a function of energy also 
changes, the overall absorption will be difficult to calculate exactly. Yet the 
shape of the absorption cross section as a function of energy should change only 
slightly and the procedure shown in sec. 4.5.3 should still be a reasonable 
approximation.

4.5.3 Absorption as a function of energy

The absorption as a function of energy is assumed to be

«(Ex) = / orabs(E)DBl(E—E\)dE .
• . —GO ' • . :r -

where Db,(E) is the density of states of the ground state energy levels in the 
impurity band. The assumption used for this equation is that <rabs(E) is 
independent of the doping concentration (ie., see sec. 4.5.2). If this assumption 
is reasonable, this equation can in theory be used to calculate the density of 
states in an impurity band.

For instance, one can consider a constant density of states in the impurity 
band. The absorption calculated using this density of states reveals an 
interesting result. The peak of the absorption increases in energy (See Fig. 4.2 
and Fig. 4.3).

It appears that the density of states skews towards the conduction band 
[Serre & Ghazali 1983; Gold, Serre, & Ghazali 1988; Ghazali & Serre 1982]. In 
other words, there are more states in the upper part of the impurity band than 
the lower part (See Figs. 4.4 and 4.5). For this density of states, the peak of the 
absorption could stay approximately at the same energy and may actually shift 
downward.

In conclusion, one can get an idea of how the density of states changes in 
the impurity band as the dopant concentration is varied by looking at the 
location of the absorption peak. Of course, one must also take into account the 
radiation absorption corresponding to electrons being excited from the ground 
states of the impurity band to the excited impurity states [Thomas, Capizzi, 
DeRosa, Bhatt, & Rice 1981].
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norm.

Figure 4.2 Schematic shape of a normalized absorption cross section vs.
normalized energy curve - Bi—.5Ej



norm.

Figure 4.3 Schematic shape of a normalized absorption cross section vs.
normalized energy curve - Bi=1.0Ei



Figure 4.4 Density of states (D(E)) for a symmetric impurity band



Figure 4.5 Density of states (D(E)) for a skewed impurity band



4.6 Four host semiconductor:impurity atom systems suited for use in a PEIR 
photoconductor

From this chapter and the calculation of Bj in sec. 3.2, it can be 
determined which semiconductor can have a large absorption and a reasonably 
large (Ec-ED)min or (EA-Ev)min (See Fig. 1.5 and tables 4.5 and 4.6). The 
host semiconductor:impurity atom system needs to have an ionization energy 
greater than the ionization energy using the effective mass theory. Comparing 
two dopant types with different ionization energies in the same semiconductor 
the argument is that the absorption cross section will be smaller in the deeper 
level but for the same absorption, (Ec—Ej))min or (E^.—Ey)min will be larger in 

the deeper level.
Another interesting result appears when looking at sec. 3.2 and Bj. In table

3.1, Bj for a specific impurity concentration peaks for a certain r„ahs and 
decreases as r. increases or decreases in value from this peak value. It is 
questionable whether this phenomenon actually occurs, but it doesn’t seem too 
unreasonable and consequently, a very promising type of semiconductor can be 
considered with a very large r^. This will be the fourth host 

semiconductor:impurity atom system in this section.
The first host semiconductor:iinpurity atom system results when the actual 

ionization energy is much greater than the ionization energy using the effective 
mass theory. For instance, Si:P fits this category. On the other hand, GaAstBe 
doesn’t fit into this category, but there’s still a possibility that even GaAsrBe can 
work. Hence, Si:P and similar semiconductor:dopant combinations will be very 
good materials to be incorporated into the impurity band layers.

The second host semiconductonimpurity atom system is one which has a 
very deep level and is doped extremely high. Due to the high doping problems 
in GaAs MBE processes, the high doping at this time is not be attainable. This 
host semiconductonimpurity atom system will be Useful for detecting relatively 
short wavelengths (ie. around 10 /im). One possible reason to pursue this 
situation will be to consider absorption processes out of the extremely large arid 
deep impurity band.

The third host semiconductonimpurity atom system can be seen when 
looking at the Si:P entry in table 4.3 and the Al.4Ga6As:Si entry in table 4.4. 
Er in Si:P is 45 meV and in Al.4Ga6As:Si is 120 meV. Yet crabsth is larger for 

the Al.4Ga6As entry. This appears to be a very promising development but 
there are four notable considerations, l) The absorption cross section may be 
much smaller because absorption out of a DX level may have a different cross 
section. 2) It may be very difficult to control the ionization energy because it



rapidly varies for different compositions around the A14Ga 6As:Si composition. 
3) The DX center and the persistent photoconductivity could also be a problem, 
even at the high dopant concentrations that would be needed in a PEIR 
photpconductor. 4) The ionization energy using the effective mass theory is 
computed from the T valley while the valley the DX center is situated in is the 
X valley [Watanabe & Maeda 1984].

To detect longer wavelengths, the fourth host semiconductor:impurity atom 
system will utilize semiconductors with extremely small effective masses. : In 
these semiconductors, rff becomes very large and considering table 3.1, it may 
be possible to find a high absorption coefficient with a small ionization energy 
(but larger than the ionization energy using the effective mass theory). The 
most likely materials will be InSb or InAs [Borrello, Roberts, Breazeale, & 
Pruett 1971] with impurity levels deeper than Ejeff. A major problem is doping 
these narrow band gap materials.

4.7 Design of the active layer and the corresponding absorption coefficient

This section will briefly describe a procedure to determine what 
semiconductor:dopant combination will best be used in the active layers for a 
specific X. Ideally, one will want Bi to be as small as possible to obtain a high 
absorption coefficient (See sec. 4.5). However, even if Bj — Ei, the peak 
absorption coefficient can still be around 90% of the calculated peak value if Bi 
was assumed to be zero meV (Compare Figs. 4.1 and 4.3).

Considering these results, using Figs. 4.1, 4.2, and 4.3, and setting Bi = Ei, 
one can design the active layer to obtain a reasonably large absorption 
coefficient. \

There are two design parameters in the impurity band layer needed to 
obtain an absorption coefficient - and the dopant concentration. X<j is the 
wavelength that the detector is designed to detect and can be set equal to

he

where Ei is the theoretical ionization energy needed in the active layer to 
detect photons with a wavelength of X^. ln is an empirical number that relates 
the radiation energy at the peak of the absorption cross section to the ionization 
energy. Based upon Fig. 4.1, n will be assumed herein to be 1.5.
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The dopant concentration needs to be less than or equal to the amount that 
makes Bi = Ej. As shown in sec. 4.4, each semiconductondopant system has an 
r_ value which can be used to find Bj =Ej. Some examples of Bj are shown 
in table 3.1. Consequently, the dopant concentration is found and in turn, the 
absorption coefficient.

As an example, table 4.7 shows three wavelengths to be detected, possible 
semiconductondopant systems, the associated dopant concentration and 
absorption coefficients.

4.8 Conclusions
Three major conclusions have arisen in this chapter. 1) The best

semiconductor for incorporation in a PEER, photoconductor will be one in which 
the ionization energy is larger than the ionization energy using the effective mass 
theory 2) The absorption processes out of the impurity level can give some idea 
as to the distribution of the ground and excited states in the impurity band. 3) 
The absorption coefficients are reasonably large for certain host
semiconductonimpurity atom combinations in a PEIR photoconductor.



Table 4.7
Design parameter examples in the active layer

(^m)
/El,

(meV)
System

(unitless)
Er

(meV)
TV*.bs
(A)

N] : 
(cm-3)

' . ■ O'
(cm-1)

10 82 Si:Ga 72 9.8 6.0xl018 5.1xl03

20 41 Si:P 45 16.0 1.5xl018 3.5xl03

30 27 GaAs:Te 30 43.5 3.0xl017 5.0xl03
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5. NOISE AND D*

5.1 Introduction
In this chapter, the determination of D for a PEIR photoconductor is 

discussed. D* is a figure of merit in photodetectors and is defined in sec. 5.3. 
Since a PEIR photoconductor is operated in the infrared region, one of the most 
important noise sources will be due to the radiation produced by the 
background. This and other noise sources of interest are listed in sec. 5.2. 
Section 5.3 describes the Noise Equivalent Power (NEP) and D of a 
photodetector. One of the advantages of a PEIR photoconductor is the inherent 
filtering mechanisms in the device. These mechanisms are presented in sec. 5.4. 
Section 5.5 describes the D* of a PEIR photoconductor.

5.2 Noise
Section 5.2.1 describes the noise terms and sec. 5.2.2 shows when the 

background noise is considered to be larger than the RG noise and the thermal 
noise[Seib & Aukerman 1973; Putley 1964; van Vliet 1967].

5.2.1 Noise terms
There are six noise terms of interest in an infrared photodetector - 

Recombination-generation (RG) noise, background noise, signal noise, shot noise, 
thermal noise, and amplifier noise [Putley 1964; Seib & Aukerman 1973]. Putley 
[Putley 1964] considers three more (for extrinsic photoconductors), but these will 

be neglected at this time.
RG noise is due to the randomness of recombination and generation. 

Conventionally, this generation is considered to be thermal generation [Kruse, 
McGlauchlin & McQuistan 1962; Kruse 1977] while the noise due to generation 
by photons is placed under signal or background noise. However, all these noise 
terms can be placed under RG noise because the noise depends on the generation 
itself, not on the type of generation [van Vliet 1967]. The rms current source for 
RG noise due only to thermal generation is (in an extrinsic photoconductor - See

app. B)



where 1^ is the dark current if the gain equals one and G is the gain.

Background noise is due to the radiation emitted from the background 
surrounding the object to be detected. The background noise can be 
represented by a background current [Long 1977] and can be placed with the 
Other current terms in the RG noise factor. The rms current source for RG 
noise due only to background radiation generation is

0rg)1/2 = (4eIdGAf)1/2

(i|y72 - (4eGiBGAf)i/2

where jg is the current produced by the background radiation if the gain was 
equal to 1.

Signal noise is the noise produced by the random generation due to the 
signal. This noise is usually much smaller than the background or the other 
noise terms. The rms current source for RG noise due only to signal radiation 
generation is

where Ipp is the current produced by the signal radiation if the gain was equal to
X'^.v:: ■ : :: 'V-;,';': \ .. -

Shot noise is due to the randomness of generation but not recombination. 
Shot noise is a special case of RG noise [Kruse, McGlauehlin & McQuistan 1962]. 
In a PEIR photoconductor with ohmic contacts, as in conventional 
photoconductors with ohmic contacts, there is no shot noise because the excited 
carriers have recombination processes in addition to generation processes. If one 
wanted to incorporate a PEIR photoconductor with a blocking contact in an 
array, shot noise will become more important than RG noise.

Thermal noise is due to the randomness of the collisions in a resistor. The 
rms current source for thermal noise is

0^),/2 = (4 £ . - i;

The thermal noise may be a factor in a PEIR photoconductor for the same



reason it is a factor in the intrinsic photoconductor - the device resistance is low 
[Blouke, Burgett, & Williams 1973]. Section 5.2.2 presents the equation that 
determines when the thermal noise is larger than the background noise.

5.2.2 Comparison of the background, RG due to thermal generation, and 

thermal noise
Ideally, an infrared detector will operate such that the the dominant noise 

term is the background noise. The optimum temperature of operation equals 
the point when the RG noise due to thermal generation, which increases with 
temperature, almost equals the background noise, which is independent of device 
temperature. The temperature will be low enough that the background noise is 
larger than the RG noise due to thermal generation.

Thermal and background noise can be compared in an extrinsic 
photoconductor [Long 1977] (and approximately in a PEER photoconductor 
because the compensation dopant concentration is not necessarily greater than 
the carrier concentration (See app. B)). Using the proper relationships for GIB 

and R [Long 1977],

;2

Af
= 4e2/iniiAc(G£)

: 2
tTh

"Af
4 e2/innAc(-^-)

Where £ is the electric field, A<. is the area of the contacts, and dc is the distance 
between the contacts.

Table 5.1 shows some values of kT/edc for various values of dc and T. 
Using the reasonable values of £ — lOOV/cm [Bratt 1977] and G — 1, it can be
seen that the value of £G is much larger than any of the kT/edc entries in table
5.1. Using this result and comparing the two previous equations, it can be seen 
that thermal noise will be smaller than the background noise for a PEIR 

photoconductor.



Table 5.1

Calculation of



Using these comparisons, it will be assumed that the thermal noise and the 
RG noise due to thermal generation are much smaller than the background 

noise.

5.3 Noise Equivalent Power (NEP) and D
The figure of merit D* depends on the wavelength, the frequency of 

modulation, and is defined to have a bandwidth of 1 Hz. The wavelength 
dependence of D* is discussed in sec. 5.5. The modulation frequency is related 

to the response time.
D* is calculated by finding the Noise Equivalent Power (NEP). NEP is 

defined as the minimum amount of radiation power incident on the detector 
needed to obtain a Signal to Noise ratio (S/N) equal to 1 [Sze 1981; Seib & 
Aukerman 1973; Kruse, McGlauchlin & McQuistan 1962; Kruse 1977].

To obtain NEP [Seib & Aukerman 1973],

;■ ; Is-IopG

and

4kTAf
4 e (Id + Iop G + IfiG) G Af + •——

where IopG is the current produced by the signal, hereafter known as the signal 
curreht or Is. Af is the bandwidth, and R is the resistance of the circuit. Using 
the results from Sec. 5.2.2 and assuming Af is small enough [Seib & Aukerman 
1973] (This prevents Is from getting too large),

T. - \/8e (IB)(G2) Af .

Considering that [Seib & Aukerman 1973]

I,op L



and
v'V , • ■: >

VAdAF
NEP

V4« (Ib)

where E\ is the energy of the photon and Ap is the area of the detector (See sec.
B.5). [Seib & Aukerman 1973]

5.4 Filtering of background radiation

There are two obvious inherent filtering mechanisms in a PEIR 
photoconductor. The first is due to impurity band to conduction band 
absorption while the second is due to phonon absorption.

As can be seen in sec. 4.5, impurity band to conduction band absorption 
peaks at a certain wavelength. Due to this peak, the background noise is 
collected only over a wavelength range about this peak. The importance of this 
phenomenon can be revealed when it is remembered that the background noise 
for a conventional photoconductor is calculated for all photons with energy less 
than the bandgap energy and that most of the blackbody radiation at 300 K 
occurs at wavelengths around 10 /mi. If one designed a PEIR photoconductor 
for wavelengths around 30 /ma or longer, some of the background noise around 
10 /im will be effectively filtered out. For a description of how this phenomenon 
influences D , see sec. 5.5.

The other filtering mechanism is the absorption and reflection of radiation 
due to phonon emission alone. For GaAs, the phonon absorption exceeds 
5xl04cm~1 [Blakemore 1982]. In the wavelength range this phonon absorption 
occurs, the photons can be effectively filtered out. Since the phonon energy 
changes as the composition in AlxGaj_xAs changes, there will be some freedom 
In filtering specific wavelengths. This filtering can take place in AlxGai_xAs 
from .0354 eV (35 /on, 285 cm-1 - for GaAs) to .05 eY (24.8 /un, 403 cm-1 - for 
AlAs) [Adachi 1985]. Other compositions, such as InGaAs, can filter different 
wavelength ranges.
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5.5 D of a PEIR photoconductor

D blip (Background Limited Infrared Photodetector) is defined as the D 
value when the main source of noise is the background noise. For a background 
temperature of 300 K, a sufficiently low operating temperature, and a 
photodetector operating in the wavelength range greater than 3 fim., background 
noise becomes a major source of noise. In general (See sec. 5.3),

X
f'BLIP ^ ----7==-

Vh

where it is assumed that the quantum efficiency is one at the wavelength that 
the detector is designed to collect. This wavelength will be labeled Xd.

In a conventional detector, the noise is due to all the photons with energies 
greater than the bandgap (for 2 carrier detectors). Since most of the 
background noise is in the 10 [xm range for a background temperature of 300 K,5|c
the slope downward of Dblip as Xd increases is due to the increase in noise (See 
Fig. 5.1). Dblip begins to increase when Xd is greater than 20 /on because the 
photon wavelength is increasing. In this radiation wavelength range, the 
increase in the Xd term in D blip is larger than the increase in the Ib term (See 
sec. 5.3).

In a PEIR photoconductor, only radiation over a limited Wavelength range 
is collected (See sec. 5.3). If wavelength to be detected is long enough (ie. 
greater than 30 /an),, the major portion of background noise at 10 /im can be 
filtered out. Some examples of this filtering phenomenon is shown in table 5.2 
and Fig. 5.1. It is assumed in table 5.2 that all the background radiation is 
collected if the wavelength range is between Xmjn and Xmax and that none of the 
background radiation is not collected outside of this range. Fig. 5.1 contains the 
corresponding graphical description of table 5.2.



Table 5.2
Some parameters needed to calculate 
D for some PEIR photoconductors

(cm-3)
Bl/2 

( meV )
: ■ Ej. .;-:;

(meV)
\nin

(^m) \ (^m)
Jb

(amps/cm2)
Si:P 2xl018 ; 25. ; 45. 17.7 29.5 .179

GaAs:Te 2xl017 13. 30. 28.8 38.8 .0754
GaAs:Te 5xl017 30. 26.4 44.3 .128

:f, ;,v-.
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Figure 5.1 D for three theoretical PEIR photoconductors



6. DESIGN CONSIDERATIONS FOR THE FABRICATION

6.1 Introduction ■'

This chapter presents the design considerations when fabricating a PEIR 
photoconductor. As in most devices, the microscopic parameters can only be 
controlled by choosing certain macroscopic parameters. In a PEIR 
photoconductor, the macroscopic parameters are: 1) the semiconductor, 2) the 
types of impurity atoms, 3) the amount of impurity concentration, 4) the 
thickness of the layers, 5) the number of layers in the active region, 6) the 
arrangement of the layers, and 7) the temperature of the substrate when 
growing the epitaxial layers. The two PEIR photoconductor configurations 
being fabricated in this project are shown in Fig. 6.1 and Fig. 6.2. As can be 
seen in these figures, all the macroscopic parameters, except temperature, have 
been presented.

As a reference, the layers can be divided up into four parts: 1) the
transparent contact layer, 2) the active region layers (both the impurity band 
layers and the blocking layers), 3) the epitaxial layer (otherwise known as the 
epilayer), and 4) the substrate-contact layer. All the layers are considered in the

The optimization of macroscopic parameters and the corresponding 
experimental limitations in attaining the ideal parameters are presented in the 
remaining sections. Section 6.2 presents the ionization energy in the layers. 
Section 6.3 presents the doping concentration in the layers. Section 6.4 presents 
the design of the layers. Section 6.5 presents the temperature considerations 
when fabricating this device. Section 6.6 presents the conclusion of this chapter.

6.2^ Ionization energy

The ionization energy needs to be considered in l) the transparent contact 
layer, 2) the active region layers, 3) the epilayer, and 4) the substrate-contact 
layer.
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should be as low as possible

Transparent contact layer: 
GaAs:Be

dz3TC = 200 Ang.
Na = 1019 cm-3

p-GaAs transparent contact

intrinsic GaAs blocking layer

p-GaAs impurity band layer

p-GaAs impurity band layer

intrinsic GaAs blocking layer

\
\\

/

Impurity band layers 
20 or 40 layers 

GaAs:Be 
dm = 500 Ang. 

Na = 1018 cm"3

Blocking layers: 
21 or 41 layers 

GaAs:Be 
dBL = 500 Ang. 
Na < 1015 cm"3

p-GaAs epilayer 
Na > 1019cm"3 

dep can be any value

£
V

p-GaAs substrate 
Na > 1019cm"3 

ds can be any value

\
\\

Figure 6.1 A GaAstBe PEIR photoconductor
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should be as low as possible

Transparent contact layer: 
Si:P

“ dz3TC = 500 Ang.
Nn = 1019 cm-3

n- Si transparent contact

intrinsic Si blocking layer

n-Si impurity band layer

n-Si impurity band layer

intrinsic Si blocking layer

Impurity band layers:
20 layers 

Si:P
1 djL = 500 Ang.
' Nd = 2xl018 cm"3

Blocking layers:
21 layers 

Si:P
dBL = 500 Ang.
Nd < 1015 cm"3

viv
n-Si epilayer 

Nd > 1019cm-3 
dep can be any value

\
\ n-Si substrate 

Nd > 1019cm'"3 
ds can be any value

N

.s:

Figure 6.2 A Si:P PEIR photoconductor
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6.2.1 Transparent contact layer
For the transparent contact layer, the ionization energy should be as small 

as possible. As the ionization energy becomes smaller, the dopant concentration 
needed to move the impurity band up into the conduction band (n-type device) 
decreases (When the impurity band merges with the conduction band, the 
semiconductor becomes degenerate). The smaller dopant concentration means 
that the free carrier concentration in the transparent contact layer becomes 
smaller, and as shown in app. E, the smaller the free carrier concentration, the 
more transparent the; contact becomes. This problem of free carrier absorption 
in a transparent contact is briefly described. Infrared radiation in the 
wavelength range of interest can easily be absorbed due to free carrier 
absorption. This absorption is detrimental because the radiation can be 
absorbed in the contact before it reaches the active region and/or reflected due 
to the high imaginary part of the index of refraction (See app. E). Moreover, 
free carrier absorption is proportional to the free carrier concentration and the 
square of the wavelength. Consequently, transparent contacts become harder to 
make as the free carrier concentration increases or the wavelength increases.

It may be possible that the impurity band doesn’t need to merge with the 
conduction band to make the contact ohmic. There will be two problems with 
this type of contact. First, the mobility in the impurity band may be too small. 
Of course, the mobility in a degenerately doped semiconductor is not that high 
so this may not be a problem. Second, there is the problem of freeze out of the 
carriers. It’s reasonable to assume that the carriers will not freeze out if the 
depth of the impurity band is less than kT (This is a result for ohmic contacts). 
When considering the temperature of operation of a photoconductor (See app. 
B), it appears that the impurity band will not have to merge in a 300 K 
background source because a reasonable amount of carriers will be thermally 
generated into the conduction band. For a low background situation, however, 
the contact will most likely have to be degenerate. In any case, to be on the safe 
side, the contact is now designed to be degenerate.

One experimental consideration for the transparent contact layer is whether 
there can be two different impurity sources. An example of this would be to 
make a PE1R photoconductor using Si:As in the active region. The problem 
with Si:As is that a conservative estimate of the dopant concentration needed to 
make Si:As degenerate is around 2xl019cm 3. For Si:P the concentration would 
be around lxl019cm"3. Hence, it would be better to make the contacts with 
Si:P than Si:As. The problem with this suggestion is that an epitaxial growth 
chamber may only have either a P source or a As source, but not both sources.



One important aside to this previous example is that even Si:P is not a 
good material to make a transparent contact layer. For n-type Si, though, Si:P 
is the most shallow dopant that one can realistically use and hence poses a 
problem in a PEIR photoconductor made with Si.
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6.2.2 Active region layers

'^■■'■■^.'':'As-sh6%n in chap. 4, the besh type of dopant to be used in the active region 
will be one where the actual ionization energy is larger than the effective mass 
ionization energy. The major consideration when choosing an ionization energy 
is that the diffusion of the impurity atom must be kept to a minimum.

6.2.3 Epilayer

The epilayer is grown on the substrate. The purpose of the epilayer is to 
grow a thin buffer film on the substrate to "cover up" the defects which may 
exist in the substrate. The active layer is then grown on the epilayer.

The epilayer can be grown two different ways - either degenerately doped 
or lightly doped. Degenerately doped would be the more preferable case, as then 
the interface between the substrate and the epilayer is not of much concern and 
the epilayer may be considered part of the contact. Unlike the transparent 
contact layer, it’s not essential that the epilayer be transparent. In fact, this 
back contact will be reflecting. Hence, the ionization energy needs to only be 
shallow enough to fabricate a degenerate semiconductor at the highest 
attainable dopant concentration in the epitaxial growth system.

If the epilayer is lightly doped, the epilayer is considered part of the active

be carefully studied. The ionization energy will be of no importance in a lightly 
doped-epilayer.. ,

6.2.4 Substrate-contact layer

The ionization energy in the substrate-contact layer can be considered a 
secondary requirement. The primary requirement in this layer is that the 
substrate be degenerately doped. Most likely, this means that the impurity used 
in the substrate is shallow.



6.3 Doping concentration
The doping concentration in a PEIR photoconductor is far and away the 

most important macroscopic parameter. Doping concentration is a general term 
that has three particular terms: 1) the majority dopant concentration, 2) the 
compensation (minority) dopant concentration, and 3) the ability of the 
epitaxial system to change the dopant concentration. The doping concentration 
needs to be considered in 1) the transparent contact layer, 2) the active region 
layers, 3) the epilayer, and 4) the substrate-contact layer.

6.3.1 Transparent contact layer
In the transparent contact layer, the majority dopant concentration should 

be high enough to cause the semiconductor to become degenerate. As discussed 
in sec. 6.2.1, it may be possible that the impurity band can be separated from 

the conduction band (n-type device).
The compensation dopant concentration is not of importance in the 

transparent contact. It should be the same as the dopant concentration in the 

active region, which will be very small.
The two potential problems in the epitaxial growth system are l) to change 

the dopant concentration from the value in the impurity band layer to the 
higher concentration in the transparent contact layer and 2) to attain a dopant 
concentration high enough to degenerately dope the contact (which shouldn’t be 
a problem when considering sec. 6.2). In the MBE system, assuming there is 
only one dopant source, the concentration is altered by heating up the source 
container (If one wants an intrinsic layer, this source container is closed). It 
takes time and careful tuning to properly adjust the oven temperature. This is 
not a serious problem because the intrinsic layer adjacent to the transparent 
contact layer can be made wide enough to equal the time needed to alter the 

temperature of the source.

6.3.2 Active region layers
The active region is separated into two portions - the impurity band 

and the blocking layers. The majority dopant concentration in the impurity 
band layers needs to be less than the amount that causes the impurity band to 
merge with the conduction band yet large enough to fabricate a reasonably large 
absorption coefficient. A reasonable estimate is that the dopant concentration 
be high enough such that the energy width of the impurity band (Bj) equals the
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ionization energy (Ej) (See sec; 4.7). It appears that the blocking layers can be 
doped with the limit being that an impurity band can’t be formed. The 
advantage of doping the blocking layers is that impurity scattering lowers the 
impact ionization [Bratt 1977] which causes avalanching. Unfortunately, the 
MBE system is not designed to adjust quickly to two different dopant 
concentrations so it’seasier to make the blocking layers lightly doped.

The problem with the epitaxial growth system is the only practical way to 
quickly change the doping concentration is to either have two sources at 
different temperatures or to use the shutter which when open dopes the layer 
and when closed doesn’t dope the layer.

The compensation dopant concentration will be as small as possible in both 
the impurity band layers and the blocking layers. The only possible exception 
will be that if one wants to make a high speed detector [Bratt 1977], the 
compensation concentration can be made higher.

6.3.3 Epilayer

The same considerations in the transparent contact layer also exist in the 
degenerately doped epilayer. The same considerations in the blocking layer also 
exist in the lightly doped epilayer.

6.3.4 Substrate-contact layer #

The substrate is degenerately doped when it is placed in the epitaxial 
growth chamber. Hence, the doping concentration in the substrate is already 
taken care of before fabrication.

6.4

The layer thickness needs to be considered in 1) the transparent contact 
layer, and 2) the active region layers.

In the transparent contact layer, the layer needs to be thin enough to allow 
the radiation to pass through. On the other hand, the layer needs to be thick 
enough for a low contact resistance. These tradeoffs are discussed in more depth 
in app. E. . ■ ■

In the active region layers, the sum of the impurity band layer thicknesses 
needs to be approximately equal to the inverse of the absorption coefficient. The 
experimental limit is that it may take a long time to grow the total thickness
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desired and hence, one may have to settle for an active region that doesn’t 

absorb all the possible radiation.
The most important requirement for the blocking layers is that they need 

to be wide enough to prevent the impurities from diffusing from one impurity 
band layer to another. If this were allowed to happen, an impurity band can 
form throughout the active layer, effectively transforming a PEER 
photoconductor into a poor conventional extrinsic photoconductor.

Ideally, the number of layers that can be grown can be as large as desired. 
The limit is 1) the amount of time for growth and 2) if the shutters have to be 
manually controlled, the ability of the operator to efficiently open and close the 

shutter over a certain time period.
The important thing to note about the arrangement of the layers is that a 

blocking layer is adjacent to both of the contacts. This configuration is used 
because most likely, an impurity band layer adjacent to the contacts would be 
rendered useless at the best and could produce a leakage current through the 

adjacent impurity band at the worst.

6.5 Temperature
The important consideration for the temperature of the substrate during 

epitaxial growth is that the temperature must be low enough to hinder diffusion 
of the impurity atoms into the blocking layers.

6.6 Conclusion
This chapter has presented the important design considerations for a PEIR 

photoconductor. These considerations are straightforward, most likely because a 
PETR photoconductor has a simple design.



7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions ; O'. "’-V--'

An infrared photoconductor, designated' as the Periodic Extrinsic InfraRed 
(PEIR) photoconductor, has been analyzed. It will most likely be designed to 
detect wavelengths in a range from 7 jum to longer than 100 pm.

It has been proposed in this wavelength range because
1) conventional intrinsic photoconductors usually incorporate IlgCdTe, which is 

very difficult to work with, in this wavelength range,
2) conventional extrinsic photoconductors have necessarily low absorption 

coefficients,
3) BIB detectors are limited by ionization problems and their relationship to

the active region, and ‘ ■’
4) superlattice photodetectors have serious problems with the gain, efficiency, 

and uniformity from layer to layer due to the necessary abrupt heterojunction.

Other important advantages in a PEIR photoconductor are:
1) The gain-bandwidth product will be large because the contacts are front to 

back and are closely spaced together because of the high absorption coefficient.
2) The response time in a PEIR photoconductor should be as fast as in an 

extrinsic photoconductor.
3) The temperature of operation in a PEER photoconductor should be higher 

than in an extrinsic photoconductor.
4) The front to back contact configuration is ideal for incorporation into an

array. Oo'-O..: ,00- \

The major disadvantages in a PEIR photoconductor are:
1) Parasitic resistances are going to be a problem when detecting in a 300 K 

blackbody background.
2) Transparent contacts will be very difficult to make for wavelengths greater

than 50/un. •
Possible disadvantages in a PEIR photoconductor are:

3) Electrons may accumulate in the impurity band layers (n-type device) and 
the recombination could substantially increase.
4) Absorption could be smaller than expected due to the widening of the 

impurity band energy width.



A scheme has been found to determine the best host 
semiconductonimpurity atom combination in the impurity band layer (See chap.
4). It appears that the deeper the actual ionization energy is relative to the 
ionization energy calculated using the effective mass theory, the higher the 
absorption can be. To detect longer wavelengths, one needs to consider host 

Semiconductors with smaller effective masse^.

7.2 Recommendations i
There are two recommendations. First, using the basic design procedures 

described in chap. 4, one can build and test the device. Some devices have 
already been built and are in the process of being tested. Unfortunately, the 
test procedure being used is for a large area detector operating in unfiltered 300 
K blackbody radiation. If one can make the detector area smaller and/or the 
background radiation smaller, the detector will more likely be operational. This 
improved test procedure will also need to be considered. Second, once some of 
the results begin to be obtained, then a model can be developed to have a better 
idea of: 1) the operation of the device, 2) absorption, recombination, and the 
effect of space charge in the device, and 3) a procedure to optimize the 

performance of a PEIR photoconductor.
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Survey of the competing photodetectors

A.l Introduction
This chapter surveys the literature on some of the devices which have been 

proposed to compete with conventional photodetectors. These novel devices are 
not described in depth. Only the basic physical processes are described. The 
pertinent experimental results are listed (if there are any) and possible problems 
and advantages are presented. A set of references accompanies each section.

These proposed photodetectors can be grouped under two different areas - 
1) photoconductors and pin photodiodes and 2) avalanche photodiodes. For 
simplicity photoconductors and pin photodiodes have been merged into one area 
because only one proposed detector resembles a photodiode.

The conventional pin photodiode has the best combination of low noise and 
a large bandwidth [Forrest 1986]. Due to these inherent advantages and its 
simple design, the pin photodiode is the most common of the three [Forrest 
1986]. At long wavelengths though, the pin photodiode has some serious limits 
because of the narrow gap materials problems. The strained-layer superlattice 
photodiode described in sec. A.2.13 can be considered in many ways a novel 
photodiode for infrared wavelengths.

There have been several novel one carrier photoconductors that, like the 
PEIR photoconductor, attempt to compete with the conventional 
photoconductors. These novel photoconductors, along with the conventional 
photoconductors, the submillimeter photoconductor, the two carrier effective 
mass filter intersubband photoconductor, and the strained-layer superlattice 
photodetectors, are described in sec. A.2.

Many publications have described novel devices designed to replace the 
APD. This is due to the avalanching and the associated problems of excess 
noise. The small band gap requirement for long wavelengths limits these new 
devices to wavelengths less than 7 microns unless there is an improvement in 
HgCdTe fabrication. The important problems, considerations and alternative 
devices are presented in sec. A.3.

Section A.4 lists; the novel devices which are most promising. The PEIR 
photoconductor is then compared directly with the blocked impurity band (BIB) 
photodetector, which appears to be one of the best (if not the best) of the novel 
photbdetectors which have been proposed.
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A.2 Conventional and novel photoconductors

ThePEIR photoconductoiythe submillimeter photoconductor and the novel 
photoconductors presented below are in essence extrinsic photoconductors 
(except the two carrier effective mass filter intersubband photoconductor). The 
main advantage of the proposed detectors is the same as the extrinsic 
photoconductor - they avoid using HgCdTe (See sec. 1.2). The main advantage 
bf the proposed detectors over the; extrinsic photoconductor is absorption. The 
absorption coefficients in these devices have been proposed to be from 104 cm-1 
to 106 cm-1. Hence, they could have a high absorption coefficient and use

Section A.2.1 briefly describes the conventional photoconductors. Section 
A.2.2 briefly describes the submillimeter photoconductor. The proposed 
photocbnductorS (and photodiode) are briefly described in secs. A.2.3 to A.2.13. 
The noise in all these devices is the same as in a conventional photoconductor 
except the strained-layer superlattice photodiode, which should have the same 
noise characteristics as in a conventions,! photodiode.

A.2.1 Conventional photoconductors

There are two conventional photoconductors. The first is the intrinsic 
photoconductor and is described in sec. A.2.1.1. The second is the extrinsic 
photoconductor and is described in sec. A.2.1.2. ; The advantages and 
disadvantages of both these photodetectors are described in sec. A.2.1.3.

A.2.1.1 Intrinsic photoconductor

The intrinsic photoconductor is shown in Fig. A.l. Intrinsic means that the 
absorption is valence band to conduction band absorption and doesn’t have 
anything to do with doping (most intrinsic photoconductors are doped). To 
operate the device, the radiation is directed into the photoconductor and excites 
an electron from the valence band to the conduction band. The change in the 

: carrier concentration changes the resistance which changes the output signal. 
The carriers either recombine through recombination centers or when the 
minority carriers reach the contact (this is known as the sweepout effect).
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Figure A. 1 Intrinsic photoconductor
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A.2.1.2 Extrinsic photoconductor

The extrinsic photoconductor is shown in Fig. A.2. Extrinsic means that 
the absorption is from a dopant level to the conduction (n-type) or valence (p- 
type) band. To operate the device, the radiation is directed into the
photoconductor and excites an electron (hole) from the donor (acceptor) level to 
the conduction (valence) band. The change in the carrier concentration changes 
the resistance which changes the output signal. The carriers recombine through 
the excited dopant states [Lax 1959; Lax I960].

A.2.1.3 Advantages and disadvantages of conventional photoconductors
The intrinsic photoconductor has a very large absorption coefficient 

(>104cm-1), which is the primary prerequisite for making a good 
photoconductor. The problem with the intrinsic photoconductor is that for 
wavelengths longer than 7 /mi, the band gap becomes very narrow. Hence, there 
are only two materials suitable for use as an intrinsic photoconductor - IlgCdTe 
and the lead salts. HgCdTe is undesirable because of the serious fabrication 
difficulties encountered when using Hg. The lead salts have a large dielectric 
relaxation time. Due to these materials problems, extrinsic photoconductors 
begin to compete favorably with intrinsic photoconductors when the wavelength 
to be detected is longer than 7 /un.

The major advantage of the extrinsic photoconductor is that the material is 
stable which means that an array with a uniform response can be fabricated 
much easier than an array with HgCdTe. The problem with the extrinsic 
photoconductor is the low absorption coefficient (— 102 cm-1 [Elliott 1981]).
The inherent problems associated with a low absorption coefficient are 1) lower 
operating temperatures [Blouke, Burgett, & Williams 1973; Elliott 1981; Long 
1977] (See app. B), 2) lower quantum efficiencies [Long 1977], and 3) optical 
crosstalk problems [Sibille, 1986].

A.2.2 Submillimeter photoconductor

The free carrier absorption photoconductor, otherwise known as the 
submillimeter photoconductive detector [Putley 1977], is shown in Fig. A.3. 
This device was first experimentally verified in 1960 [Putley I960]. To operate 
the device, radiation enters the device. Through free carrier absorption, the 
electron is excited into a higher part of the conduction band (n-type device). 
This excitation produces a change in the carrier distribution as a function of 
energy. Since mobility and in turn, conductivity are energy dependent, the
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Figure A.2 Extrinsic photoconductor
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Figure A.3 Submillimeter photoconductor



current depends upon the radiation intensity [Putley 1977]. The major problem 
with this device is that the free carrier concentration must be small to limit the 
dark current. Since free carrier absorption is proportional to the free carrier 
concentration times the wavelength squared, this device will work if the 
wavelength becomes long enough. Unfortunately, the wavelengths to be 
detected in a submillimeter photoconductor must be greater than 100 /im.

A.2.3 Blocked impurity band (BIB) detector

The blocked impurity band (BIB) detector [Petroff & Stapelbroek 1986; 
Petroff & Stapelbroek 1984; Walter & Dereniak 1986a; Szmulowicz & Madarsz 
1987; Hadek, Farhoomand, Beichman, Watson, & Jack 1985; Watson & 
Huffman 1988] is shown in Fig. A.4 (unbiased) and Fig. A.5 (biased). It was 
conceived in 1977 [Szmulowicz & Madarsz 1987; Petroff & Stapelbroek 1986] and 
experimentally verified in 1978 [Szmulowicz & Madarsz 1987; Petroff & 
Stapelbroek 1986]. It can be considered the best of the novel photodetectors and 
for this reason, it is compared with the PEIR photoconductor in sec. A.4.2.

A BIB detector is made up of two layers. The first layer is the impurity 
band layer. The second layer is a blocking layer which blocks conduction in the 
impurity band. Unlike an extrinsic photoconductor, where the dopant 
concentration must be less than the amount that will form an impurity band 
[Bratt 1977], the dopant concentration in the impurity band layer in a BIB 
detector is not similarly limited because of the blocking layer. The blocking 
layer has the same purpose as the blocking layer in a PEIR photoconductor.

For the device to operate, it is assumed that the radiation or thermal 
generation rate is small enough that the carrier concentration in the conduction 
band (in an n-type device) is smaller than the compensation dopant 
concentration (See chap. 2). Due to the low temperature of operation, the 
compensation dopants will be ionized. The impurity band layer will contain a 
concentration of ionized impurity band dopants that will be equal to this 
compensation dopant concentration.

Several possible modes of operation of a BIB detector have been considered 
but this discussion only considers the mode shown in Fig. A.5. As a potential is 
applied across the device, the ionized impurities in the impurity band will begin 
to drift towards the cathode. The impurities remain in the same location, but 
electrons can easily flow from one impurity atom to an ionized impurity atom, 
producing the effect of an ionized impurity moving towards the anode. The only 
space charge remaining in the device will be the ionized compensation dopants 
(excluding electron accumulation in an n-type impurity band (See chap. 2)).
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Figure A.5 The BIB detector - biased



These ionized compensation impurities produce a variation of the electric field 
throughout the device.

The operation of the device is straightforward. The radiation enters the 
device and excites an electron from the donor Sand to the conduction band. 
The electron drifts towards the anode (the right contact in Fig. A.5) while the 
ionized donor drifts towards the cathode. Since the temperature of operation is 
low enough to make the cathode a blocking contact to the electrons, electrons 
recombine with the ionized donors at the cathode.

The variation of the electric field in the impurity band layer is a detriment 
in a BIB detector. The electric field in the impurity band layer varies from 0 
V/cm at some point in the impurity band layer to a maximum value at the 
impurity band layer-blocking layer interface. This maximum value is defined as 
£d* The depletion region in a BIB detector is the region between the point 
where the electric field is almost 0 V/cm to the end of the impurity band layer 
where the electric field is This depletion region is the active region of the 
device and as the active region thickness decreases, the percentage of radiation 
collected can decrease substantially. Consequently, the depletion region should 
be as wide as possible.

Unfortunately, £d is limited by either thermal-field emission ionization or 
tunneling-field emission ionization (See sec. 1.4.4 and app. F). The important 
relationship in this limitation is that as (Eq—Ed)^ decreases (either through 
widening of the impurity band or through the band moving closer to the 
conduction band (n-type) (See Fig. 1.5)) £d and in turn, the depletion region 
width must decrease. Consequently, l) the longer the wavelength to be 
detected, the more difficult it is to build a BIB detector and 2) the absorption 
coefficient will be limited because of this limit on the energy width of the 
impurity band, Bj.
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A.2.4 SuperLattice Intraband-absorption Photodetector (SLIP)

The SuperLattice Intraband-absorption Photodetector (SLIP) was first 
proposed in 1988 [Welsh & Schwartz 1988]. The only experimental study 
published has been on the graded well SLIP discussed in the next section. As 
will be shown below, the graded well SLIP is a variation of one of the five 
possible modes in the SLIP.

The SLIP incorporates a superlattice made up of quantum wells and 
barriers (See Fig. A.6 and Fig. A.7). The wells contain a large amount of free 
carriers and the barriers have a minimal amount of free carriers. Consequently,
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Figure A.6 The SLIP, (a) Unbiased, (b) Biased.
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Figure A. 7
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the applied electric field will be much larger in the barriers than in the quantum 
wells Radiation enters the device and through intraband-absorption (free 
carrier absorption - FCA) excites the carriers in the wells to energies greater 
than the barrier height. These carriers have a probability (which equals the 
quantum efficiency) of surmounting the barrier height and being swept by the 
electric field through the barrier region (See Fig. A.8).

The SLIP operates like an extrinsic photoconductor, where the analog of 
the donor levels are the total free carrier energy levels less than the barrier 
height energy level (The carrier cannot escape out of the well without excitation) 
and the analog of the conduction band energy levels are the total free carrier 
energy levels above the barrier height energy level. Since it has been calculated 
to be rather easy for the carrier to get trapped in a well, the SLIP should be as 
fast as a conventional photoconductor.

The location of the Fermi level in the quantum well in the SLIP can be 
separated into two cases. One is the partly closed well case and the other is the 
open well case. For the partly closed well case (See Fig. A.9), ECb—EF (See Fig. 
A.8) is less than the optical and intervalley phonon energies. For the open well 
case (See Fig. A. 10), Ecb-EF is greater than the optical and intervalley phonon 

energies.
There are five modes of operation. The partly closed well case has three 

different modes (See Fig. A.9): 1) the radiation can be incident perpendicular to 
the device layers, 2) the radiation can be incident parallel to the device layers, 
and 3) the radiation can be incident at an oblique angle to the device layers. All 
should have high efficiencies. The temperature of operation will have to be 
around 10 K. The open well case has the other two modes (See Fig. A. 10): l) 
the radiation can be incident parallel to the device layers and 2) the radiation 
can be incident at an oblique angle to the device layers. The temperature of 
operation in the open well case can be higher than the partly closed well case 
(due to thermionic emission), but the efficiency will be lower.

The materials used in this system can be either a system like GaAs- 
AlxGal xAs or a super lattice that has alternating layers of a degenerately doped 
and a lightly doped semiconductor of the same material. This second possibility 
can occur if the conduction band in the degenerately doped semiconductor 
decreases faster than the Fermi level in the degenerately doped semiconductor 
increases with respect to the conduction band in the degenerately doped 
semiconductor [Mahan 1980]. If this were the case, the barrier will be the lightly 
doped semiconductor.
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Figure A.8 Trajectory of an electron excited by a photon with energy Ex
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top view of the SLIP

barriers

q - photon wave vector

Figure A.9 The three modes in the partly closed well case
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top view of the SLIP

barriers

q - photon wave vector 

£ - photon electric field

Figure A.10 The two modes in the open well case
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The problem with this detector and the other detectors incorporating 
quantum wells is the high recombination rates associated with the high 
concentration of empty States (recombination centers) in the quantum well. 
This will reduce the gain and the efficiency. The only detector that attempts to 
overcome this problem is the SLIP using the partially closed well case. The 
solution is to almost fill the well with occupied states, greatly reducing the 

concentration of empty states.

A.2.5 Graded well SLIP
The graded well SLIP [Kozyrev & Shik 1985; Smith, Chiu, Margalit, Yariv 

& Cho 1983; Shik 1986; Chiu, Smith, Margalit, Yariv, & Cho 1983; Chiu, Smith, 
Margalit, & Yariv 1983; Capasso, Allam, Cho, Mohammed, Malik, Hutchinson, 
& Sivco 1986] was first proposed and experimentally verified in 1983 [Smith, 
Chiu, Margalit, Yariv & Cho 1983; Chiu, Smith, Margalit, Yariv, & Cho 1983]. 
It is operated in the same manner as the parallel incidence-open well case mode 
in the SLIP. Important differences are: 1) The authors [Smith, Chiu, Margalit, 
Yariv & Cho 1983; Chiu, Smith, Margalit, Yariv, & Cho 1983] don’t consider 
the importance of the Fermi level position with respect to the barrier height 
energy. 2) They consider it imperative that the Well have a built-in electric field 
(See Fig. A. 11). Consequently, the quantum wells are graded because of this 
electric field. 3) The barriers and the wells are doped. Also, since Ep is much 
lower than Ecb, tunneling is not considered much of a problem.

The experimental results [Smith, -Chiu, Margalit, Yariv & Cho 1983; Chiu, 
Smith, Margalit, Yariv, & Cho 1983] are not very promising. The response time 
is 1 sec.. The blackbody source used in these experiments was at 2700 C, which 
is very large. The radiation from this source between 1 and 10 pm will produce 
a radiation current density of 14.8 A/cm2 assuming a quantum efficiency of 1. 
The actual radiation current density at 1.3 V [Chiu, Smith, Margalit, Yariv, & 
Cho 1983] is .0222 A/cm2. For the dark current to be this small at 77 K, the 
Fermi level will have to be at least .1 eV below ECb. If one assumes a gain of 
10,000 [Smith, Chiu, Margalit, Yariv & Cho 1983] and compares the current 
densities, the efficiency is 1.5 x 10_5%. For the experiment, the direction of 
propagation of radiation was parallel to the layers. The barrier is Al.3Ga.7As.

The authors assumed that the electrons were excited out of the well, but 
considering the long response time and the position of the Fermi level, the 
electrons might have been excited out of the deep dopant levels in the barrier 
layers [Lifshitz, Jayaraman, Logan, Be Card 1980] and subsequently trapped in 

the wells.
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Figure A.ll Graded well SLIP
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A.2.6 Intersubband pliotoconductor (IS-PC)

A.2.6.1 Intersubband absorption
Intersubband absorption [Kozyrev & Shik 1985; Shik 1986; Chiu, Smith, 

Margalit, & Yariv 1983; Rytova 1967; Shik 1969; Shik 1973; Shik 1975; Yuen 
1983] occurs without involving a phonon. It is a direct transition between two 
energy levels produced by the periodic potential of the superlattice. These 
energy levels are formed in the direction perpendicular to the superlattice layers 
and are analogous to the energy levels in a potential well. One requirement for 
this type of transition is that the radiation must be polarized in the same 
direction as these energy levels.

In a ID potential well along the z-direction, the electron can only exist at 
certain energies in the z-direction. The same is true for a superlattice or any 
variation of the quantum well. Ideally, these energy levels are discrete and only 
exist at a specific value of energy. Due to interactions with other particles 
though, these levels broaden. In turn, the density of states decreases as the 
width of the energy level increases.

A photon is absorbed by exciting an electron from an initial energy level to 
a final energy level. The absorption coefficient is related to the density of states 
in these levels. For all the variations of the IS-PC presented below, their 
proponents argue that there is little broadening of the energy levels, which 
produces a large density of states, which in turn causes a large absorption.

Consider a superlattice at flat band condition (No potential is applied 
across the super lattice). In the well, the energy level broadens due to interaction 
with carriers [Rytova 1967] and the fact that it can tunnel to other wells [Esaki 
& Tsu 1970]. Hence as the final energy level increases, the interaction between 
the wells increases and the width of the levels increases [Shik 1975; Esaki 8c Tsu 
1970]. The absorption decreases as the energy in the well is increased (See Fig. 3 
in [Shik 1975]).

As the energy level is raised above the wells, the energy width of the level 
increases. In turn, resonant absorption will decrease as the . energy increases 
[Shik 1975]. A special case occurs when the energy of the electron is just above 
the well and approaches the energy value of the conduction band of the barrier 
layers. If the width and the depth of the well are of the proper dimensions [Shik 
1986; Shik 1975], it is possible to have a level at that energy and only that 
energy. Hence, one would have a delta function for the density of states and the 
absorption will be infinite. Collisions broaden this level so it’s not infinite [Shik 
1986; Rytova 1967; Shik 1969; Shik 1973; Shik 1975; Yuen 1983] but the



absorption can, in theory, be very large.

This is the argument for resonant absorption. This argument is only 
correct for superlattices at the flat band condition. When an electric field is 
applied, the levels broaden [Shik 1986] and the absorption will decrease.

Some people have suggested this can work for a single quantum well (See 
secs. A.2.10 and A.2.11). For flat band conditions and infinitely wide barrier 
layers, this will be the same situation as the superlattice, but ai3 the field is 
applied or the barrier is made thinner, the levels will subsequently widen. The 
problem with an applied electric field will be the same as the superlattice at high 
electric fields because the superlattice becomes a set of noncoherent quantum 
wells. At low electric fields though, the levels should widen more for the 
qhahttim well device. ^

A.2.6.2 Intersubband photoconductor (IS-PC)

The IS-PC [Kozyrev & Sbik 1985; Shik 1986; CMu, Smith, Margalit, & 
Yariv 1983; Capasso, Ailam, Cho, Mohammed, Malik, Hutchinson, & Sivco 
1986; Sink 1973; Shik 1975; Yuen 1983] was first proposed in 1983 [Chiu, Smith, 
Margalit, & Yariv 1983]. The final energy level is just above the well for this 
device (See Fig. A. 12). The corresponding absorption process was introduced in 
1973 [Shik 1973]. No experimental results have been published. The direction 
of the propagation of radiation is very important for these intersubband
processes [ShikY986, ShikT.973;^Shik'1975; Yuen■l983]:V'';-';,'::'r

These transitions are largest when the radiation propagates parallel to the 
layers [Shik 1986]. The device is operated in the same way that a PEIR 
photoconductor is operated. There are two differences from a PEIR 
photoconductor. 1) The absorption is due to intersubband absorption. 2) The 
radiation must be partially polarized in the direction perpendicular to the layers 
to cause this intersubband absorption. In addition, unlike the SLIP (See sec. 
A.2.4), the location of the Fermi level with respect to the barrier height energy 
level is explicitly considered.

A.2.7 Tunneling IS-PC

The tunneling IS-PC [Levine, Choi, Bethea, Walker & Malik 1987b; West & 
Eglash 1985; Levine, Malik, Choi, Bethea, Kleinman & Vanderberg 1987; Choi, 
Levine, Malik, Walker, & Bethea 1987; Levine, Choi, Bethea, Walker & Malik 
1987a; Choi, Levine; Bethea, Walker & Malik 1987; Levine, Bethea, Choi,
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Figure A. 12 IS-PC
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Walker & Malik 1988; Levine, Bethea, Hasnain, Walker & Malik 1988; Ikonic, 
Milanovic & Tjapkin 1988; Yang & Pan 1988; Yang, Pan, & Somoano 1989] was 
first proposed and experimentally tested in 1987 [Levine, Choi, Bethea, Walker 
& Malik 1987a]. It operates under the same principle as the IS-PC except that 
the final energy level is still in the well. The excited electron tunnels through 
the barrier (See Fig. A. 13). The dopant 'concentration in the well is 1018 cm-3 
and the barriers are undoped [Levine, Choi, Bethea, Walker & Malik 1987b; 
Levine, Choi, Bethea, Walker & Malik 1987a; Choi, Levine, Bethea, Walker & 
Madik‘1987].) ■

The device was operated at 15 K. The radiation entered the detector at an 
oblique angle to the layers. The efficiency is about 25% [Levine, Choi, Bethea, 
Walker & Malik 1987b; Choi,Levme, Bethea, Walker & Malik 1987]. This 
efficiency demonstrates that there is promise for this type of device.

Impact ionization has been shown to occur in this type of device [Levine, 
Choi, Bethea, Walker & Malik 1987b]. The authors apparently believe this is an 
advantage because in this paper, the gain is incorporated into the quantum 
efficiency (The efficiency becomes 84% [Levine, Choi, Bethea, Walker & Malik 
1987b]). Impact ionization is only an advantage in this device for two reasons. 
First, the temperature is so low that the dark current, even with impact 
ionization, is not large. Second, there must be some type of blocking contact (as 
in a CCD array [Sibille 1986; Milton 1977; Barbe 1975]) that prevents injection 
of electrons from the cathode.

Another mode of operation is to consider the flat band condition and to use 
an asymmetric device [Kastalsky, Duffield, Allen, & Harbison 1988]. One 
Contact is connected to the superlattice and the other contact is separated from 
the superlattice. The radiation enters the device and excites the carriers, which 
then diffuse to the separated contact, producing a potential across the contacts. 
This device with no bias should be much slower than the tunneling IS-PC with
bias because of the fact that the transport of carriers is due to diffusion. It is 
stated that this mode of operation will be less noisy than the photoconductive 
mode, but the photbconductive mode should be faster and more efficient. In 
addition, the noise advantage disappears if one uses a blocking contact for the 
tunneling IS-PC because the hoise in both cases is shot noise (as compared to 
DQ noise). It is also stated that since there is no power source [Kastalsky, 
Duffield, Allen, & Harbison 1988], the noise problems will be much smaller than
in the tunneling IS-PC. The authors [Kastalsky, Duffield, Allen, & Harbison 
1988] present experimental results but there is no mention of efficiency. The 
responseis in arbitrary units. !
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Figure A.13 Tunneling IS-PC
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A.2.8 Resonant IS-PC

The resonant IS-PC [Capasso, Mohammed, & Cho 1986] was first described 
in 1Q86 [Capasso, Mphammed, & Cho 1986]. No experimental results have been 
published.

This device is similar to the tunneling IS-PC except instead of tunneling 
into the conduction band of the adjacent barrier, the electron in the resonant 
IS-PC tunnels from a quantum level in one well to another quantum level in the 
adjacent well (See Fig.A.14). There are two problems with this type of device. 
1) In, every well, the electron! must recombine from the third level into the
secorid level and tunnel before recombining into the lowest level. Since the 
lowest level has a larger number of states, this may lower the gain drastically. 
2) The electric field in the photoconductor depends upon the radiation intensity. 
This changing electric field appears to be a large obstacle in aligning the 
quantunl levels tp cause resoniant tunneling. V

A.2.9 Effective mess filter IS-PC

This effective mass filter IS-PC [Capasso, Mohammed, & Cho 1986; 
Capasso, Mohammed, Cho, Hull, & Hutchinson 1985a; Capasso, Mohammed, 
Cho, Hull, & Hutchinson 1985b; Capasso, Mohammed, & Cho 1985] was first 
proposed and experimentally tested in 1985 [Capasso, Mohammed, Cho, Hull, & 
Hutchinson 1985a]. It does appear to be a very viable photoconductor, except 
that the absorption is band to band. Which in turn means that one must deal 
with HgCdTe at sufficiently long wavelengths.

Thedevice is a superlattice with direct band to band absorption. The 
initial electron state is in the valence band well and the final electron state is in
the conduction band well. If the electron has a much smaller effective mass than
the hole, it is possible to choose a correct barrier width and electric field such 
that the electrons are not localized in the wells and easily pass through the 
barriers and the holes are localized in the wells and do not pass through the 
barriers. This is analogous to an intrinsic photoconductor with no sweepout 
effects.

A.2.10 Quantum well KLPC ;

The first variation of the quantum well IS-PC [Coon & Karunasiri 1984; 
Cpon, Karunasiri) fe Liu 1985; Coon, Karunasiri, & Liu 1986] was proposed in 
1984 [Coon & Karunasiri 1984]. The most recent variation was presented in



Figure A. 14 Resonant IS-PC



1986 [Coon, Karunasiri, 8c Liu 1986]. No experimental results have been 
published. This device operates in the same manner as the IS-PC except, 
instead of a superlattice, there is one quantum well. ^ v

The main assumptions in these papers is that the absorption is calculated 
using a flat band situation and is assumed to be very high. When a field is 
applied, the levels will widen. At wavelengths with a calculated high 
absorption, this will pose a problem because the levels are assumed to be very 
narrow. If one lowers these absorption peaks, the quantum efficiency will be 
approximately 20 % at best for concentrations of 1018 cncr8 [Coon, Karunasiri, 
8c Liu 1986]. Additionally, the high absorption is necessarily accompanied by 
high reflection (See app. E). One possible solution to this problem is to redirect 
the radiation such that it propagates in the plane of the quantum well. This 
process and the coupling procedure will be similar to what occurs in surface 
plasmon propagation [Otto 1968].

A.2.11 Grating IS-PC

The grating IS-PC [Goossen and Lyon 1985; Goossen and Lyon 1988; 
Goossen, Lyon, 8c Alavi 1988a; Goossen, Lyon, & Alavi 1988b] was first proposed 
in 1985 [Goossen and Lyon 1985]. The device was first experimentally tested in 
1988 [Goossen, Lyon, 8c Alavi 1988a]. The device is a variation of the quantum 
well IS-PC. The only difference is that in a quantum well IS-PC, the quantum 
well has barriers on both sides and the contacts are placed on the ends of these 
barriers. In the grating IS-PC, a grating is inserted at one of these contact- 
barrier interfaces, The experimental detector had one contact in the quantum 
well and the other contact was the grating (or in one paper, was a flat metal 
contact). The purpose of this grating is to redirect the radiation so that more of 
the electric field is directed perpendicular to the quantum well layers which will 
increase the probability of collisionless escape.

The authors [Goossen and Lyon 1985] do not state an absorption coefficient. 
If it is large, the problem of the level widening as the electric field is applied 
would be a major problem. For instance, the efficiency they obtain is 1% 
[Goossen, Lyon, 8c Alavi 1988a], which means the absorption is reasonably small.
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A.2.12 Sampling IR detector
The sampling IR detector [Coon & Karunasiri 1983a; Coon, Gunapala, 

Karunasiri, & Muehlhoff 1983; Coon & Karunasiri 1983b; Coon, Gunapala, 
Karunasiri, & Muehlhoff 1984; Coon, Gunapala, Karunasiri, & Muehlhoff 1985; 
Coon & Perera 1986; Gunapala & Coon 1988] was first proposed in 1983 [Coon 
& Karunasiri 1983a] and experimentally verified in 1983 [Coon, Gunapala, 
Karunasiri, & Muehlhoff 1983]. The radiation enters the device and excites 
carriers from impurity potentials in the intrinsic region of a pin diode. This 
device acts as a integrating detector where the refresh is caused by forward 
biasing the device until the impurities in the intrinsic region are neutral. The 
thermal generation and background radiation generation must be very low to 
prevent saturation of the detector. This requirement signifies that this device 
will not be a serious contender when it comes to optical communications or 
detection with a normal amount of background radiation or signal radiation. In 
addition, the efficiency is only about 4.5% [Coon, Gunapala, Karunasiri, & 
Muehlhoff 1985] which is much less than the tunneling IS-PC [Levine, Choi, 
Bethea, Walker & Malik 1987b; Choi, Levine, Bethea, Walker & Malik 1987] It 
has been shown that the absorption cross section can be increased enough to 
cause the efficiency to rise to as high as 16% [Gunapala & Coon 1988].

A.2.13 InAsSb strained-layer superlattice infrared detectors

This detector incorporates a strained-layer superlattice for use as an 
infrared detector [Osbourn 1984; Osbourn, Dawson, Biefeld, Zipperian, Fritz, & 
Doyle 1987; Kurtz, Biefeld, Dawson, Fritz, & Zipperian 1988; Kurtz, Dawson, 
Zipperian, & Lee 1988; Kurtz, Osbourn, Biefeld, Dawson, & Stein 1988; Kurtz, 
Osbourn, Biefeld, & Lee 1988]. The concept was first proposed in 1984 [Osbourn 
1984]. Experimental results have been found in both a photodiode (See Fig. 
A. 15) [Kurtz, Dawson, Zipperian, & Lee 1988] and a photoconductor (See Fig. 
A. 16) [Kurtz, Biefeld, Dawson, Fritz, & Zipperian 1988]. The carriers in a 
photodiode tunnel from well to well while the carriers in a photoconductor are 
separated into different wells and subsequently drift towards opposite contacts. 
At this time, the wavelength response can go out to around 8 //m. These 
strained-layer superlattice detectors and the PEIR photoconductor appear to be 
the major competitors with HgCdTe for wavelengths out to 15 /ma. Strained- 
layer superlattice photodetectors could possibly be superior to the PEIR 
photoconductor in this wavelength range, depending upon the absorption as a 
function of energy in both devices. This superiority would be a moot point 
though if HgCdTe is shown to be superior to either of these. For longer



strained-layer superlattice 
— n type region

strained-layer superlattice 
— P type region

strained-layer superlattice 
— p type region

buffer layer

p ■ substrate contact

Figure A. 15



127

strained-layer
superlattice
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wavelengths, a PEIR photoconductor should be superior because the energy 
difference between the conduction band and the impurity band (n-type device) 
in a PEIR photoconductor should be much easier to control than the 
heterojunction barrier heights required in strained-layer superlattice 
photodetectors and the increasingly small band gap needed for HgCdTe.

A.3 Conventional and novel avalanche photodiodes (APDs)

There are four important physical requirements that should be met for an 
APD designed to detect radiation longer than 7 (Am. First, a narrow gap 
semiconductor must be fabricated. Second, one disadvantage with the 
conventional APD is that for long wavelengths, Zener tunneling [Kane 1959; 
Kane 1961] becomes a problem. As the band gap decreases, the tunneling 
current becomes too large and the conventional APD is no longer a viable 
device. The devices presented in this section represent attempts to overcome 
this obstacle. Third, to make the response time as fast as possible, the 
absorption should take place in a region that has an electric field. Diffusion 
makes the response time too sluggish [Sze 1981; Seib & Aukerman 1973]. 
Fourth, to make the noise as small as possible, the electron's rate of ionization 
& should be much larger or smaller than the hole’s rate of ionization /5h 
[McIntyre 1966; McIntyre 1972; Webb, McIntyre, & Conradi 1974]. For instance 
the ionization ratio, &/&, is approximately thirty five for silicon [Conradi 
1972]. All of the novel devices try to approach or better this ionization ratio.

The increase in the rms noise current caused by avalanching is always 
greater than the increase of the signal current. This extra increase in noise is 
related to the excess noise factor [McIntyre 1966; Teich, Matsuo, & Saleh 1986]. 
If other noise terms, which also includes any amplifier noise, are greater than 
this avalanching noise, the signal can be increased more rapidly than the overall 
noise [Forrest 1986; Seib & Aukerman 1973; Teich, Matsuo, & Saleh 1986]. This 
increase is beneficial until the avalanching noise becomes comparable to all other 
noise terms.

There has been a study [Teich, Matsuo, & Saleh 1966] that compares the 
excess noise factors of the photomultiplier, the APD and a group of novel 
photodiodes. The authors concur with a previous conclusion [Capasso, Tsang, & 
Williams 1983] that the novel photodiodes would always have lower excess noise 
factors than APDs with the same ionization ratios. If the ionization ratio is 
infinite and multiplication occurred at every stage, it would have a minimum 
excess noise factor of 1. It is pointed out though that as the ionization ratio 
approaches one and the number of multiplication stages increases, the excess
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noise factor increases accordingly.

A.3.1 Separate absorption and multiplication region APD (SAM-APD)

The SAM-APD [Nishida, Taguchi, & Matsumoto 1979; Susa, Nakagome, 
Mikami, Ando, & Kanbe 1980; Kim, Forrest, Bonner, & Smith 1981; Forrest, 
Kim, Smith, & Williams 1981; Forrest, Kim, & Smith 1982; Campbell, Dentai, 
Holden, & Kasper 1983; Capasso, Cho, & Foy 1984; Stillman, Robbins, & 
Tabatabaie 1984; Capasso, Cox, Hutchinson, Olsson, & Hummel 1984; Holden, 
Campbell, & Dentai 1985; Jhee, Campbell, Holden, Dentai, & Plourde 1985; 
Petroff, Stapelbroek, & Kleinhans 1987] was first proposed and experimentally 
tested in 1979 [Nishida, Taguchi, & Matsumoto 1979]. Of all the novel devices, 
this is the one that has been considered most seriously. As stated before, the 
main problem with an APD with a thin gap is that the Zener current is too 
large. The SAM-APD is divided into two regions. A narrow band gap 
absorption region that has an electric field small enough to prevent avalanching 
and a wide band gap multiplication (or avalanche) region where the electric field 
is large enough to cause avalanching. An idealized band diagram of this device 
is presented in Fig. A. 17. A more realistic band diagram is presented in 
[Stillman, Robbins, & Tabatabaie 1984] and the corresponding electric field is in 
[Holden, Campbell, & Dentai 1985]. The problem with the abrupt junction is 
that the notch (See Fig. A.17) traps electrons (holes in [Stillman, Robbins, & 

Tabatabaie 1984]) which lowers the bandwidth.
There have been several suggested improvements of the SAM-APD. One 

has been to grade the junction [Forrest, Kim, & Smith 1982]. An ideal graded 
SAM-APD is shown in Fig. A.18 (See [Forrest, Kim, & Smith 1982] for a more 
realistic band diagram). This will solve the electron (hole in [Forrest, Kim, & 
Smith 1982]) trapping problem. Other suggestions have been to use a doping 
spike to better control the electric fields in the absorption and multiplication 
regions [Capasso, Cho, & Foy 1984] and to grade the gap by using a superlattice 
[Capasso, Cox, Hutchinson, Olsson, & Hummel 1984].

Another new device with the same operating principles has been presented 
in [Petroff, Stapelbroek, & Kleinhans 1987]. Instead of holes, one considers the 
ionized donor states as being the holes. The time response is about a /isec. This 
detector is very promising for one simple reason. It is a wide band gap, two 

carrier detector for long wavelengths.
These devices are being seriously considered, but there are three problems 

at present. First, the slow response due to hole trapping at the abrupt junction 
[Forrest, Kim, & Smith 1982]. Second, it is hard to fabricate the graded
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Figure A. 18 Graded SAM-APD



junction SAM-APD without having large; leakage currents [Forrest 1986]. 
Thirds the ionization ratio in most of the III-V materials is about equal to 1 
Which causes noise problems (See sec. A.3 or [McIntyre 1966]). The devices 
presented in secs. A.3.2 to A.3.7 try to increase this ionization ratio. In fact, the 
devices presented in secs. A.3.2 to A.3.7 are SAM-APDs with more exotic
avalanche regions. ' ^

The noise in these devices will be the same as the conventional APDs with 
similar ionization ratios.
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A.3.2 Superlattice APD

The superlattice APD [Capasso, Tsang, & Williams 1983; Chin, Holonyak, 
Stillman, Tang, & Hess 1980; Capasso, Tsang, Hutchinson, Williams 1982; 
Capasso 1983; Brennan, Wang, & Hess 1985; Juang, Das, Nashimoto, & 
Bhattacharya 1985; Brennan 1985a; Chakrabarti & Pal ,1987; Brennan 1987a] 
was first proposed in 1980 [Chin, Holonyak, Stillman, Tang, & Hess 1980]. The 
first experimental results were presented in 1982 [Capasso, Tsang, Hutchinson, 
Williams 1982]. The first theoretical calculation of ionization rates was 
presented in 1985 [Brennan, Wang, & Hess 1985].

Most papers describing this device don’t discuss where the absorption is 
taking place. Some papers show absorption in a flat band region [Brennan, 
Wang, & Hess 1985; Brennan 1985a; Brennan 1987a]. This would greatly lower 
the response time due to diffusion and is avoided in conventional APDs (See sec. 
A.3 and ..[Sze 1981; Seib & Aukerman 1973]). This type of diffusion limited 
superlattice APD is shown in Fig. A.19.

A practical device will be something like the SAM-APD (See Fig. A. 17) 
with the multiplication region being the superlattice APD. A major problem 
occurs with this configuration though. To get impact ionization, an electric field 
larger than 100,000 V/cm is needed in the avalanche region [Capasso, Tsang, 
Hutchinson, Williams 1982].

; In [Capasso, Tsang, Hutchinson, Williams 1982], it is assumed that the 
electrons are not trapped in the well because the average electron energy in the 
electric field is greater than the conduction band height. One way to overcome 
this trapping problem is presented in [Capasso 1983]. The material must be of 
high quality because of the large number of heterointerfaces and the large 
electric field [Capasso, Tsang, Hutchinson, Williams 1982].

The excess noise factor of this device will be better than the conventional 
APDs [Teich, Matsuo, & Saleh 1986; Capasso, Tsang, & Williams 1983].
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not diffusion limited

diffusion limited

Figure A. 19 Superlattice APD



A.3.3 Staircase APD

The Staircase APD [Capasso, Tsang, & Williams 1983; Brennan 1985a; 
Brennan 1987a; Capasso & Tsang 1982; Williams, Capasso, & Tsang 1982] is an 
alternative to the superlattice APD. It was first proposed in 1982 [Capasso & 
Tsang 1982]. No experimental results have been presented at this time [Forrest 
1986].

The multiplication region of the device is shown in Fig. A.20. A 
modification of this design is shown in [Capasso, Tsang; & Williams 1983]. The 
ionization ratio should increase because the electron has a high kinetic energy 
when it enters the narrow band gap region. The electric field is much smaller 
than the superlattice API) r around 10,000 V/cm [Williams, Capasso, & Tsang 
1982].

The reason for no reported results may be the difficulty in grading the gap 
for stlch a large conduction band difference. One proposed material composition 
requires a conduction band change of .8 eV (the ionization energy) in a layer 
thickness of 3000 A [Williams, Capasso, & Tsang 1982]. These requirements 
may be too difficult to achieve. A similar problem occurs for the graded SAM- 
AP|) [Forrest 1986].

The excess noise factor is the same as the superlattice APD [Teich, Matsuo, 
& Saleh 1986; Capasso, Tsang, & Williams 1983].

A.3.4 Quantum well APD

The quantum well APD [Brennan 1987a; Blauvelt, Margalit, & Yariv 1982; 
Brennan 1986b; Brennan 1986a; Brennan 1987b; Brennan 1987c] was first 
proposed in 1982 [Blauvelt, Margalit, & Yariv 1982], No experimental results 
have been published. Other than the SAM-APD papers, this is the first paper 
[Blauvelt, Margalit, & Yariv 1982] that explicitly considers the separation of the 
absorption and avalanche regions.

This device is the same as the super lattice APD except that the doping 
profile is adjusted in the barriers to increase the electric field at certain points 
(See Fig. A.21).

The excess noise factor is the same as the superlattice APD [Teich, Matsuo, 
& Saleh 1986; Capasso, Tsang, & Williams 1983].



135

Figure A.20 Multiplication region of the staircase APD

/



Figure A. 21 Quantum well APD



: 137

A.3.5 Graded Gap APD
The graded gap APD [Capasso, Tsang, & Williams 1983; Capasso, Tsang, 

Hutchinson, & Foy 1982] was first proposed and experimentally tested in 1982 
[Capasso, Tsang, Hutchinson, & Foy 1982]. A representation of the graded gap 

APD is shown in Fig. A.22.
As can be seen in Fig. A.22, the effective electric field in the device is larger 

for the electron than the hole. If only one layer is used, the gain will be around 
5 at best [Capasso, Tsang, Hutchinson, & Foy 1982]. Matching this device to a 
compatible absorption region will be much more difficult than the SAM-APD 

(See Fig. A.22).
The excess noise factor is the same as the conventional APD [Teich, 

Matsuo, & Saleh 1986; Capasso, Tsang, & Williams 1983].

A.3.6 Resonant tunneling superlattice APD (RTS-APD)
The RTS-APD [Summers & Brennan 1987; Brennan & Summers 1987] was 

first proposed in 1987 [Summers & Brennan 1987]. It operates by aligning 
quantum levels in adjacent wells such that resonant tunneling can occur. This is 
a revision of another novel APD [Brennan & Summers 1987]. No experimental 
results have been published.

This paper [Summers & Brennan 1987] explicitly discusses absorption in the 
flat band region and diffusion currents. The band diagram is shown in 
[Summers & Brennan 1987]. For the device to be competitive, an electric field 

must exist in an absorbing region.
The RST-APD is proposed as an alternative to the SAM-APD. This is due 

to the slower response caused by the trapped charge at the notch of the abrupt 
junction. It seems that there can possibly be similar trapping problems in the 
valence band of the RST-APD. In addition, the voltage in conventional 
photodiodes and APDs changes when the radiation intensity varies. It seems 
reasonable to assume the voltage in the RTS-APD will also change. This change 
in voltage appears to be a large obstacle in aligning the quantum levels to cause 
resonant tunneling. These problems appear to be more difficult to solve than 
the grading problems of the SAM-APD.

The excess noise factor is the same as the superlattice APD [Teich, Matsuo, 
8c Saleh 1986; Capasso, Tsang, 8c Williams 1983].
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Figure A.22 Graded gap APD



A.3.7 Channeling APD
The channeling APD [Capasso, Tsang, & Williams 1983; Capasso 1982a; 

Capasso 1982b; Brennan 1985b] was first proposed in 1982 [Capasso 1982a]. No 
experimental results on the device have been published.

As shown in [Capasso 1982a], this device is very complicated. The major 
problem with this device is that for wavelengths of interest, one needs small 
band gap. With such a small band gap and a high electric field needed for 
ionization, Zener tunneling would be a serious obstacle.

The excess noise factor is the same as the conventional APD [Teich, 
Matsuo, & Saleh 1986; Capasso, Tsang, & Williams 1983].

A.4 Conclusion
Section A.4.1 lists the most promising detectors presented in this appendix. 

Section A.4.2 compares the PEIR photoconductor with the most promising 

detector to date - the BIB detector.

A.4.1 Promising novel detectors
Of the novel devices presented in this appendix, only a few are promising. 

The novel one carrier photoconductors are more promising at long wavelengths 
because of the small band gap problems in the novel APDs.

For one carrier detectors (the submillimeter photoconductor is not 
considered to be novel), the BIB detector, the SLIP, the IS-PC and the tunneling 

IS-PC are the most promising.
The most promising two carrier detectors are the strained-layer superlattice 

photodetectors described in sec. A.2.13. the SAM-APD, the superlattice APD, 
the staircase APD, the quantum well APD, the graded gap APD, and the 

effective mass filter PC in A.2.5.

A.4.2 Comparison of a BIB detector and a PEIR photoconductor
There are two disadvantages in a PEIR photoconductor compared to a BIB 

detector. First, it acts like a photoconductor, which is more noisy than the shot 
noise that exists in a BIB detector. Second, it is a more complex structure than 
a BIB detector. This will become less of a problem as the science of epitaxial 
growth matures. The biggest concerns are uniformity throughout the layers, 
uniformity from layer to layer, and the accuracy of calibrating the dopant
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concentration.

There are three advantages in a PEIR photoconductor compared to a BIB 
detector. First, the temperature of operation will be much higher because the 
contacts can be ohmic in a PEIR photoconductor while The cathode needs to be 
blocking in a BIB detector. This advantage is closely tied to the first 
disadvantage of the previous paragraph. Second, a BIB detector has ionization 
problems (thermalrfield emission ionization, tunneling-field emission ionization - 
see sec. 1.4.4) that the PEIR photoconductor does not have. In a PEIR 
photoconductor, the active region is from front contact to back contact 
regardless of the electric field while the active region in a BIB detector is only 
the depletion region. This depletion region depends upon the electric field in the 
impurity band layer of a BIB detector and the electric field is limited by the 
ionization effects. As the energy difference between the conduction band and the 
top of the impurity band ((EctE]>)min) gets smaller, these ionization problems 
become more severe (See app. F). Third, a PEIR photoconductor can be doped 
at a higher dopant concentration because (Ec—Ei>)nnn gets smaller as the 
dopant concentration in the impurity band layers increases.

In conclusion, less serious problems exist in a PEIR photoconductor than in 
a BIB detector because a depletion region must exist in a BIB detector. 
Consequently: 1) The impurity band dopant concentration (and the absorption 
coefficient) can be larger in a PEIR photoconductor. 2) It will be easier to build 
a PEER, photoconductor as the wavelength to be detected increases.

'I
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Appendix B.

Calculation of D* due to thermal 
generation in photoconductors

B.l Introduction
This appendix briefly describes how to obtain D from the fluctuations in 

the number of carriers in the photoconductors. In this appendix, D is
calculated due only to thermal generation (the dark current term in the RG

$
noise), not photon generation and will be defined as Drg*

One important point to be considered is that the terms equilibrium (See eqn 
(25) in [van Vliet 1958]) and steady state are intermixed [van Yliet 1958] when 
calculating the variance in the number of carriers (ie. An2(t) = (n(t)—<n(t)>)
). In the photoconductor, the case of interest is the steady state case. The way 
this discrepancy is reconciled is to realize that the statistical approach solves the 
steady state case [Burgess 1954] and if the generation and recombination rates (g 
and r, respectively) are known, the variance can be solved (This is discussed at 
the end of [Burgess 1954]). It appears to be assumed [van Vliet 1958] that the 
dependence of the generation and recombination rate on the number of carriers 
(at all energy levels) is the same in either the equilibrium or steady state case. 
For simplicity, the case throughout this appendix will be considered to be steady 
state but for a more rigorous approach, the reader is advised to consult the 
literature (van Vliet [van Vliet 1958] is a good beginning).

Section B.2 presents the variance of the number of carriers (<An2(t)>) and 
calculates the spectral noise density (Sj(f)) for a photoconductor in general. 
Section B.3 presents the recombination and generation rates and calculates S,(f) 
for four specific photoconductor cases. Section B.4 calculates the noise current 
due to thermal generation for two specific photoconductor cases. Section B.5 
calculates Drg due to thermal generation for two specific photoconductor cases 
and discusses the physical significance of Drg. Section B.6 presents how to 
obtain numerical values of Drg due to thermal generation (RG noise) for two 
specific photoconductor cases.



B.2 Spectral noise density (S; (f)) of a photoconductor in general 

The current is defined as [van Vliet 1958]

i(t)‘ *(/■,*(»)+ *«0)

where it is emphasized that n(t) and p(t) are numbers, not densities. L is the 
distance between the contacts and L=dx (See Fig. D.l).

The spectral density function Sk(f) is defined as [van Vliet 1958]

<Ak2(t)> = f Ak2(t)p(t)dt = /S]c(f)df

where Ak2(t) = (k(t)—<k(t)>)2 and p(t) is the probability density function. 
The brackets signify that the quantity in the brackets is the mean average over 
time. ■''"' ■ ■

Rearranging some of the terms in the current eqn.,

) /'j‘]f (bn(<) + p(t))=

+ 2l,iiit)p(l) • p2(t)) ■:
; • ' JL/ ' ■■ • -■ , '

where b = —. Defining

-.A- ;:,:V „ .
IDG ;= —-2^-(/^nno + Ah>Po)v

. = ^4-l4{h^o + Po)2 > V-

■■■■ J . /-VJu . • ' ; ; ■ ‘ .. ""

then [van Vliet 1958]



(b2Snn(f) + 2bSnp

The subscript o stands for the value at steady state [van Vliet 1958]. Snn(f), 

Snp(f), and Spp(f) are defined as

/ Snn(f)df = <Afi2(t)> ,

OO
/Snp(f)df = <An(t)Ap(t)>
O' \ '

r

and

> / Spp(f)df —. <Ap2 (t)> ,
. ?vie::.1 ' v- ■' / 1 V .i 0 - V

There are two specific cases of interest. First, if pQ = 0,

: ; ■ ■ :v-\A .• * - i Jlc :Si(f) - —£-Snil(f) .

This is the case for extrinsic photoconductors [van Vliet 1958]. Second, if

An(t) = Ap(t), . i

■v Si(f) = ifec( h •
bnG + p0.

This is the case for intrinsic photoconductors when recombination centers are 
neglected [van Vliet 1958].

Using the Langevin equation and the Wiener-Khintchine theorem [van Vliet 

1958],

Snn (f) = 4<( AnW)2



The subscript o stands for taking the derivative at steady state [van Vliet 1958; 
Burgess 1954]. It can be shown that [van Vliet 1958; Burgess 1954 Burgess 1956; 
van der Ziel 1976],

<(An(t))2> = gQr .

Combining these equations.

Si(f) = 4
Idc

(B.l)

for extrinsic photoconductors and

Si(f)°4lg,c( b + 1 )2go^T
bn0 + p0 1

(B.2)

for intrinsic photoconductors (with no recombination centers).

B.3 Calculation of the spectral noise density for specific photoconductor cases

The analysis for this section can be found in [van Vliet 1958; van der Ziel 
1976, van Vliet 1967, van Vliet & Fassett 1965].

B.3.1 Extrinsic photoconductor, no compensation doping

Assume an n-type photoconductor where po=0 and no compensation 
doping, then [van Vliet 1958]

g(n) = "y(ND—n)

where, keeping with convention, Np is the total number (not density) of donors.



where it has been assumed that the only levels of interest 
and the conduction band.

At steady state [van Yliet 1958],

go - 7(ND-n0) = = r0

and

1

26&o +1 8{ 2n0 +

Using the steady state values,

£(2h0 +
n.

ND-n0
-)

Defining 0 =
Un

and

1-0

8Nd0{2-0)

<An2(t)> = g0r = Nd

Consequently [van Vliet 1958],



I2
Si(f) = 4—Nd

2-9
T

1 + (j?T2

IpC 1— 9 T 
h0 2“^ 1 +

B.3.2 Extrinsic photoconductor, compensation doping

It is assumed all the compensated levels are ionized and that the two levels 
of interest are the donor levels and conduction band levels. In this situation 
[van Vliet 1958],

g(n) = 0'(Np -ni0 — n)

and

r(n) = <5n0 (m0 + n)

where m0 is the compensation doping value. If m0 » h,

and

g(n) =7(ND-m0) ,

r(n) = <$hm0 ,

1 = 1 

dn dn

<Ah (t)> = g0r =
r a a
0nomo

5mn
= nn
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B.3.3 Intrinsic and near intrinsic photoconductors, no recombination centers

There are only two levels, Ap(t) = Ah(t). Consequently [van Vliet & 
Fassett 1965],

n) = <r

and

r(h) == /?np

where

> .■■■■3 h-p=ND-NA . :

The thing to remember about g(h) is that f depends on the lifetime of the 
carrier.

r(h) = /?h(b-ND+NA) , i ■ 

So ,6*110 p0 ,

' '4;.■ __ ,,1- .

'ip.. 1
dn dn



for an n-type material. 

F rom these equations,

^.(0 1 I?M (
I'll. + Po fio + Po 1 ' -3rJ

B.3.4 Intrinsic and near intrinsic photoconductors, recombination centers

For this situation, r—>-rsR [van Vliet 1967; van Vliet & Fassett 1965] (where 
■Tgft is the Shockley-Read lifetime) and

Si(f) a f2 ( k “hi- \2 n°P° ^SR
4 *DC(--------- -------------) --------------------------------- 9 9

bh0 + Po n0 + Po 1 + ^rSR

B.3.5 Consolidation of this section’s results

The overall results are presented in a concise form in table B.l. The second 
way of looking at the noise spectral density is to incorporate the r into the gain - 
Gp, Gn, or G. In addition, in the extrinsic cases in the table, it is assumed to be 
n-type, but to get the p-type equations, simply change the notation from n to p 
wherever there is an n.

One of the interesting results of table B.l appears in the last row. In this 
row, it can be seen that for the worst case RG noise situation,

Si(f) = (4eG„IDC) .

Consequently, the thermal generation needs to exceed the background radiation 
generation to become the dominant noise factor. Although thermal generation 
can be less noisy than background radiation generation, it can never be more 
noisy and in its worst case, will be equally noisy.



Table B.l
S,(/) for some photoconchictors

extrinsic PC extrinsic PC intrinsic PC
(no compensation doping) (compensation doping) (no recombination centers)

.. g . 'l{ND-rh0-n)

6(n) 6n(m0+n) i^np
1-9 vT / '..'fc. : 1

. T
SND9{2-9) 6ro* /?(/>#+».)

<An2(*)>
:" ajo-n

2-9
»*

ft*P«

. ».+P.
e2£2 2 «2 C2$2 2 *a

jO A« »®
■ <i;

J /‘p(in® + P®)2

dt
Ap£t(1+6)

' G ; - ■ “
A ■

Si(f)
ipC 1—0 T T 4 72 .( i + ! )2 n»P» r

£ 2-9 1 + w2t2' n0,
n0 1 + wV 6ft* + p* »* + P«1 + wr

Si(f) (4eGaIDO) 4eG„/pcr
/tr V 6 + 1 v tt»P® (4eG/pC)( A ) a .

6n* + p* ft* + P*

(wr«l)

K
ftT
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B.4 Calculation of noise current

This section calculates the noise current for two specific photoconductors 
already considered [Blouke, Burgett, & Williams 1973]. There are two 
important equations in this section. First, the noise current is [Blouke, Burgett, 
& Williams 1973]

iRG = Sj(f)Af .

Second, the number of carriers (n0) is related to the density (nG) by

nc>dxdydz n0

where dxdydz is the volume of the photoconductor.

B.4.1 Extrinsic photoconductor (compensation doping)

Placing the result for Sj(f) in sec. B.3.2 into the noise current equation in 
sec. B.4,

• 2 _4 Idc*2 r Af
lRG° n0 1+aA2 dxdydz

qVnC2 no(dxdydz)2 T Af

L2 nc 1 + (Jr2 dxdydz

a2 2 C2
= 4——n0r(dxdydz)Af

J-J

=.4q2G^(dxdyds)&f

where it is assumed that u?t2 C 1 and that the detector is n-type.
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B.4.2
Placing the result for S| (f) in sec. B.3.4 into the noise current equation in 

sec. B.4,

•2,.2

iRG: —2 _ ^ „2 s ^ (b + l)2(dxdydz)2 noPo rSR

nQ + p0 1 + u? r|R dxdy dz

q2C° --'Sl1-(d,dv,i»)Af
rgR a0+p0 l+nrr§R

For n-tjpe material (po ^C n0),

iRG;2- 4 q2G?
rSR

•Po(dxdydz)Af

where <C 1. Since [Blouke, Burgett, & Williams 1973]

g0 = — = r0 = ^0Po = 0D.f. , 
. T

Irc" i<r<:r.O i i)2;'n?)(axdvd«)Af .

B.5 Calculation of DRg

The AC signal current produced by the radiation is (assuming 100% 
modulation) [Seib & Aukerman 1973],

t2 of <lr/pdGp(l+t>k2
s 1 hz/ } .; . . >: ■; '

where Gp(l+b) is the gain and Pd is the radiation power that enters the 
detector* ..

Considering when RG noise is the major noise term [Blouke, Burgett, & 
Williams 1973],

if = 2iRG
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NEP =
2iRG

= 1) =
he

Xq?;Gp(l+b)

Ex
qrjGJl+b)

Drq is defined as [Seib & Aukerman 1973]

Drg = NEP
q^Gp(l+b)

EX

where A4 is the area of the detector.

B.5.1 Extrinsic photoconductor (compensation doping) 

Combining the results of sec. B.4.1 and sec. B.5,

or

D
* . 

RGe
V

2EX
1

Po

(p-type)

where

Te - ——— •^

C7capevav^o

(Tcap is defined as the capture cross section, vav is the average velocity of the 
electron, and m0 is the compensation dopant density. This is a combination of



equations (13) and (16) in [Blouke, Burgett, & Williams 1973].
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B.5.2

Combining the results of sec. B.4.2 and sec. B.5,

D RG;
V

2E\

where

V..;

T\ ■=?=
i

^cap; vavno

1
jSk ‘

This is equation (22) in Blouke.

B.5.3 Important physical parameters in D
Looking at secs. B.5.1 and B.5.2, D* depends on three parameters. 1) D 

decreases as the product of the carrier concentrations in both levels increase.
2) D decreases as <Jcap increases. 3) D decreases as dz increases.

The carrier concentration in both levels depends upon Fermi-Dirac 
statistics. In other words, the thermal generation rate changes to maintain the 
carrier concentration Fermi-Dirac statistics. As the temperature increases, the 
product of the carrier concentrations increases. For a specific temperature and 
an excitation gap, the product of the carrier concentrations is approximately the 
same, whether the photoconductor is extrinsic or intrinsic.

<Tcap is the carrier cross section. As <rcap decreases, the thermal generation 
rate decreases. If there are less carriers generated over an amount of time, there 
is a smaller amount of noise.

dz is approximately equal to the inverse of the absorption constant. Hence, 
as the absorption increases, the RG noise will decrease. This relationship reveals 
that the background radiation generation depends upon the radiation flux. The 
detector is built to detect this fixed radiation flux and hence, as the absorption 
coefficient decreases, the volume of the detector increases. The noise due to
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radiation generation remains the same in both cases (the light generates the 
same number of carriers). On the other hand, the noise due to the thermal 
generation depends upon the volume of the detector and the larger the volume, 
the greater the thermal generation.

B.5.4 Comparison of D in extrinsic and intrinsic photoconductors

When comparing a p-type extrinsic PC and an n-type intrinsic PC, the 
product of the carrier concentrations at the same temperature are approximately 
the same while

^cap,. ^capi

; » dz..,

TV * T\ *

DiRG ^ f'eRG

if ijRG is the dominant noise mechanism.

Numerical analysis of Blouke’s results are presented in the next section.

B.6 Numerical analysis of extrinsic and intrinsic photoconductors

The analysis for this section can be found in [Blouke, Burgett, 8t Williams 
1973]. ,,

B.6.1 Ge:Hg and Ge:Cu extrinsic photoconductors

To calculate the generation rate, one must know the carrier concentration 
at steady state in the dark. It is assumed that the steady state distribution 
resembles a Fermi-Dirac distribution. In analogy with Smith [Smith 1978] (who 
looked at electrons),

# of holes=total # of acceptors—# of donors—# of neutral acceptors

or

and

Hence,
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P = Na—Nd—Na

3T-)Ea-Ef 
” kf~

where g equals 4 for acceptors (See [Sze 1981]) and keeping in mind that Ep 
depends upon NA and ND. Multiplying the previous equation by the 

denominator and p/p where

p = Nye
Ey—Ep

kT

then

«A

kT pkT
p24 — + p(l + 4——ND) ■— Na

. Ny Ny
= 0

where

6a = ea “ Ey

JA_
kT

Dividing by 4-

p2-f
Nye

-«A
kT

+ Np) + (Nd — Na)
' Nye kT

= 0

The Solution to this equation is

P = “(•
N' N'v + Nd)2 + 4(Na—

where
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Nve/ —

kT

N v =

.'If n't C Nd (ie. p0 <C Nd = xn0),

N'v(Na - Nd) (Na-Nd) "jpf
P “ ------—~1---------- = —7^T-------iNye

ND 4Nd

In Blouke, ND — N“ and if NA» ND, NA ^ N°. Consequently,

Na

4Nd

~<A

Nye kT ....

For an extrinsic, compensation doped PC,

^cape ^av^o

where nio = ND. Subsequently,

Po
r

N
-«A

A NvacaPevave kT

and

DeRG = V
2E\ V

Ni
■“€A
kT- Ny ^cape vav e d

The important parameters needed to solve this equation are listed in table B.2.

In table B.2, p0 in the Ge:Cu is too large for the assumption used when 
solving the quadratic equation.



Table B.2

parameters
■ ------------" 1 ' ——— r----- 1—-—

Ge:Hg Ge:Gu
eA = .089 eV eA = .044 eV

T - 40K 40K

:Wa . : ; 2.xl015cm-3 2.xl015cm‘3

nd 1013 cm 3 1013cm-3

°capt. i 10_13cm2 10-13cm2

V ■ io7Cm 107 —
* ay sec - sec

/ dz .55cm .55cm

Nv 2.9xl017cm”3 2.9xl017cm-3

Po 8.9xl07cm 3 4.2xl013cm-3

6 th. 8.9xl014cm_3sec_1 4.2xl020cin' 3sec_1

PeRCtj 1.5xl012cmIIz1/,2/W 4.7xl009 ciiiHz^2 /W
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B.6.2 HgCdTe intrinsic photoconductors

For HgCdTe [Reynolds, Brau, Kraus, & Bate 1969], the intrinsic carrier 
concentration is calculated as

. aeg

nj = 6.96xl013T3/2e 2kT

where one can multiply by 1.5 to take nonparabolicity into account [Reynolds, 
Brau, Kraus, & Bate 1969].

For Hg1._xCdxTe @ 40 K, x=.20, AEG=.089eV,

iij = 4.33xl010cm~3 .

For Hgl xCdxTe @ 40 K, x=.175, AEG= 044eV,

n} = 2.97xl013cm-3 .

From Blouke [Blouke, Burgett, & Williams 1973] and Van Vliet [van Vliet 1958] 
(n0» p0)

/?-
n 0r

^capi^av
no ^capiVav

where <Tcap. is the collision cross section and the thermal velocity is assumed to 
be

vav 107 cmi* -
sec

Using these results,

TV *
DiRG

T) 1
2EX V ^capiVavnfdz.

Table B.3 presents some important parameters and solutions to this equation.
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Table B.3

parameters x=.204 - | x= 1.75
AEG = .089 bV AEC = .044 eV

T 40K | 40K

^capi
1.2x10_17ci# 1.2xlO~17cm2

^av
. io7Cm f I07 cm

sec sec
Hi 4.3xl010cm-3 3.0xl313cmT3

:
10' 3 cm r 10_3cm

Sth. 2.3x1011 cm-3 sec 1 l.lxl017cm_3sec_1

DiRG : 2.3xl015emHz1/2/W 6.8xl012cmHz1/2/W



Appendix C.

Parameters of a PEIR photoconductor
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(Jabs - absorption cross section (cm 2)

The absorption coefficient, a, is related to the absorption cross section by 
the equation

& ^abs-N •

In a PEIR photoconductor, <xabs should be as large as possible (See chap. 4).

ol - absorption coefficient (cm 1)

To produce photoconductivity in a PEIR photoconductor, the electron will 
be excited from the donor impurity band into the conduction band (n-type 
device). Since the fl k value (crystal momentum) between the initial and final 
state is different, this absorption will be similar to free carrier absorption.

acap " Capture cross section (cm 2)
The capture cross section is related to the lifetime by

. 1 ■. T — -----------------  .
^capNrVay

In a PEIR photoconductor, crcap should be as small as possible. This will 
consequently lower the RG noise due to thermal generation and the Johnson 
noise. As shown in app. D though, the capture cross section may become small 
enough such that parasitic resistances become a serious problem.

It appears that the worst case scenario is that the capture cross section in a 
PEIR photoconductor equals the capture cross section in a corresponding 
extrinsic photoconductor. In addition, it may be possible to lower the capture 
cross section just due to the freedom one has when using the MBE machine.
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For instance, one could possibly construct a donor band such as that shown 
in Fig. C.l. Since the center is deeper at the upper end of the impurity band 
and since the "holes" will migrate to the upper end, it is possible to make the 
capture cross section smaller. This decrease in capture cross section is known to 
occur in DX centers in AlxGa!_xAs and produces what is defined as persistent 
photoconductivity [Lifshitz, Jayaraman, Logan, & Card 1980].

Of course, if one wants a very fast detector, a PEER. photoconductor can be 
compensated to increase the number of ' holes in the impurity band.

Ei - ionization energy (meV)
In the active region, Ej should be larger than the ionization energy 

calculated using the effective mass theory, Ejefj. This is discussed more in depth 

in chap. 4. ■ ;".</
In the transparent contact layer in a PEIR photoconductor, Ej should be as 

shallow as possible. The more shallow the doping level, the smaller the number 
of dopants needed to produce a degenerate semiconductor. This smaller number 
of dopants means that the number of free carriers is smaller and in turn, the 
free carrier absorption is smaller. Consequently, the transparent contact is more 
transparent as the dopant level in the contact is more shallow (See app. E).

;. es = csr e0 . \

To make the impurity band energy width as small as possible, esr should be as 
large as possible. Conversely, as esr increases, Ej decreases and the dielectric 
relaxation time increases.

rJr:



Figure C.l One procedure how deep levels can alter capture 
sections

cross
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nc - complex index of refraction
The complex index of refraction is related to the relative static dielectric 

constant by the equation

2 _ ,• He vgr •■■■■'/■

The complex index of refraction can be separated into a real part (nr) and 
an imaginary part (/c) where

■ nc = nr—j/c .

k is related to the absorption (a) by

\ . _ a\
47T

where X is the wavelength of radiation. Using the Kramers-Kroenig relation, nr 
is related to the absorption by [Moss 1959, Pankove 1971]

1 +
ch a\

27T2 J0 (E')2-E5
dE'

where E is the energy and P designates the Cauchy principal value of the 
integral [Pankove 1971].

H - mobility (cm2/Vsec)
In the contact layers, the mobility will approximately equal 50 (cm2/Vsec). 

In the active layers in a PEIR photoconductor, the mobility will approximately 
equal 105 (cm2/Vsec).
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nir - relative effective mass (unitless)

mr is the relative effective mass in the conduction band (n-type device). 
When looking at free carrier absorption, the absorption coefficient is fairly 
independent of the value of mr. This is due to the other terms that offset the 
effect of mr.

The ionization energy using the effective mass theory depends directly upon 
the relative effective mass. Ejeff becomes more shallow as mr decreases.

T - temperature (K)

The temperature of operation needs to be small enough such that the 
background noise is the maj or source of noise. It appears that the temperature 
of operation will be higher than the temperature of operation of an extrinsic 
photoconductor and lower than the temperature of operation of an intrinsic 
photoconductor.

When growing the epitaxial layers, the growth temperature needs to be 
small enough to prevent diffusion of the impurity dopants.

dxdy - area of the detector (cm2)

Unlike conventional photoconductors, all the resistances in a PEIR 
photoconductor are inversely proportional to dxdy. Hence, the resistance 
problem discussed in app. D always exists.

dz - depth of the photoconductor (cm)

dz is related to 1 f a.. The smaller d2 becomes, the better the operation of 
the device. Parasitic resistances limit this type of optimization in the PEIR 
photoconductor.
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^>3 - background photon flux (ph/(cm2sec) )

The smaller 0b (ie-> through filtering), the better the D becomes in a 
photodetector. However, as gets smaller, other noise terms increase in 

importance.

Nj) - majority dopant concentration (n-type device) (cm )

In an n-type device, ND is the majority dopant. ND must be large enough 

to produce a large ot,.

"Compensation dopant concentration (n-type device) (cm )
In an n-type device, is the compensation dopant. Usually will be as 

small as possible. An exception will be if one wants a faster response [Bratt

1977].

n - free carrier concentration (n-type) (cm 3)
n equals the number of carriers in the conduction band. In a background 

limited photodetector, the value of n depends mainly upon the background 

photon flux. '

Yav - average velocity of the electron (cm/sec)
At low temperatures, vav approximately equals the drift velocity of the 

electron. In most cases, vav is between 106cm/sec and 10 cra/sec.

r - lifetime (sec)
The lifetime is the amount of time an excess electron is in the conduction 

band before any electron in the conduction band recombines into its initial state 

before the excitation.
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g - generation rate

In a PEIR photoconductor, the generation rate is the rate that an electron 
will be excited from the impurity band to the conduction band. The major 
source of generation will most likely be the background photon flux, although if 
the temperature is high enough, thermal generation will become the major 
source. In a photodetector, the generation due to the signal is usually much 
smaller than these generation terms.

Np - ionized majority dopant concentration (n-type) (cm-3)
NJ should be as small as possible. The larger this-concentration, the larger 

<rdos and AEC.

Xpi - intrinsic Debye length (cm)
XDi becomes smaller as l) T decreases, 2) n increases (n-type), 3) NA 

increases (n-type), and 4) es decreases. In the case of interest, the physical 
explanation of Xj), is that it is the screening length when the acceptor impurities 
are taken into account.

XDe - extrinsic Debye length (cm)

X])e becomes smaller as 1) T decreases and 2) n increases, and 3) es 
decreases. XDe is the screening length due to the free carriers.



x© - overall screening length (cm) 

Xj) is defined by the equation

AEci is the lowering of the ionization energy due to the overlap of the 

ionized donor potentials.

AEC2 (meV)
AF.qo is the lowering of ionization energy due to the tunneling of a bound 

electron from one ionized donor to another.

AEc (meV)

ados - Gaussian standard deviation (meV)
<T(j0s is the standard deviation of the Gaussian potential distribution, ^dos 

increases as 1) compensation dopants increase, 2) ionized majority dopants 
increase, 3) the total Debye length increases, and 4) es decreases. .

Bi - energy width of the impurity band (meV)
Bi depends upon l) the majority dopant concentration, 2) the dielectric 

constant, 3) the effective mass, and 4) the ionization energy.
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aji - effective Bohr radius (cm)
- j|c

aH depends upon the dielectric constant and the inverse of the effective 
mass.

Eieff - Ionization energy due to the effective mass theory (meV)

Ejeff is only really correct for T valley n-type dopants but can be extended 
to other electron (not hole) valleys. Eieg increases as 1) me increases and 2) esr 
decreases. As a rough approximation, Eieff is also considered for p-type 
semiconductors in chap. 4.

impact ionization

Impact ionization is the ionization caused by free carriers colliding with 
carriers in the neutral dopants (carriers at the dopant levels) or carriers in other 
bands.

Zener tunneling

Zener tunneling can be thought of as field assisted tunneling. Zener 
tunneling can be labeled as tunneling-field emission ionization [Rideout 1975]. 
In reverse-biased diodes, the electron tunnels from the valence band to the 
conduction band. In a BIB detector or a PEIR photoconductor, the carrier 
would tunnel from the impurity band to the conduction band (n-type device). 
For an impurity potential, this type of ionization is shown in Fig. C.2. The 
electric field in the impurity band layer of the BIB detector or the PEIR 
photoconductor must be less than that needed to induce Zener tunneling.

Poole-Frenkel effect

In a BIB detector or a PEIR photoconductor, the Poole-Frenkel effect can 
be approximately labeled as thermal-field emission ionization [Rideout 1975]. Its 
effect is due to the lowering of the impurity potential and subsequent ionization 
because of thermal generation over the lowered barrier. For an impurity
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Figure C.2 Zener tunneling
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potential, this type of ionization is shown in Fig. C.3. The electric field in the 
impurity band layer of the BIB detector or the PEIR photoconductor must be

R- resistance (H)

The resistance is discussed extensively in app. D.

V - efficiency (unitless)

V should be as high as possible in a PEIR photoconductor.

__2
(In )l/2 - noise current (amps)

. '2 ,
(In. )1/f2 is the current due to the noise.

signal current (amps)

The signal current is the current produced by the signal radiation.

lop - optical current (amps)

The optical current is the current produced by the signal radiation if the
gain of the photoconductor was equal to one.



Figure C.3 Poole-Frenkel effect
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Ib - background current (amps)

The background current is the current produced by the background 
radiation if the gain of the photoconductor was equal to one.

G - gain (unitless)

The gain is defined as the ratio of the lifetime of the electron to the time it 
takes the electron to traverse the photoconductor.

£ - electric field (V/cm)

The electric field should be as large as possible in a photoconductor. The 
limiting factors on the electric field would be impact ionization, space charge 
limited current, or drift velocity saturation.

NEP -Noise equivalent power (watts) 1
The NEP is the amount of radiation power needed to produce a signal to 

noise ratio (S/N) equal to 1.

D - D-star (cmHz1/2 /watts)
*

D is a figure of merit that compares detectors that have different detector 
areas and bandwidths.
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Appendix D.

Calculation of the resistance in photoconductors

There are five resistance terms of interest in the photoconductor [Schroder 
& Meier 1984]. These resistances are shown in Fig. D.l for a conventional 
photoconductor and in Fig. D.2 for a PEIR photoconductor. Rx is the contact 
resistance at one of the contacts. For a conventional photoconductor, the 
contacts are symmetric and Rx should equal R4. For a PEIR photoconductor, 
R, is the contact resistance for the back contact. Another resistance in a PEIR 
photoconductor not considered by [Sender & Meier 1984] will be the resistance 
due to the substrate. This will be labeled the Rlsub and lumped with Rx. 
the resistance of the active area. This resistance depends upon how far the 
carriers travel to reach the contacts and the area these carriers flow through. R3 
is the lateral resistance of the transparent contact and is closely related to the 
sheet resistance, This resistance does not exist in conventional photoconductors. 
It is due to the transparent contact (TC) in a PEIR photoconductor. R4 is the 
contact resistance for the other contact. For a PEIR photoconductor the 
resistance depends upon the shape of the metal contact connected to the front 
transparent contact layer. Rs is the resistance of the metallic contacts. As 

shown in D.6.4, R5 is hot necessarily negligible in this device.
Rx is calculated in sec. D.l. R2 is calculated in sec. D.2. R3 is calculated in 

set. D.3. R4 is calculated in sec. D,4. Some numerical examples accompany 
each section. Section D.5 compares each resistance in conventional 
photoconductors and PEIR photoconductors. The conventional photoconductor 
resistances are calculated from actual cases. The PEIR photoconductor 
resistances are then calculated as certain parameters are varied. These 
parameters are l) detector area and contact area, 2) concentration 3) 
background photon flux, 4) layer thickness, and 5) efficiency. Section D.6 
presents a set of resistance equations based upon the results of the previous 
sections and the resistance values of a practical PEIR photoconductor that wi

be tested;
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Figure D.l Resistances in a conventional photoconductor
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transparent contact(TC) r3 ^

11 sub

metal

PEIR PHOTOCONDUCTOR RESISTANCES

Figure D.2 Resistances in a PEIR photoconductor



D.l. Rr - The contact resistance of the back contact

The calculation of the contact resistance, Rj, is straightforward if one 
knows the contact resistivity. The contact resistivity is defined as [Schroder & 
Meier 1984; Brauslau 1983; Piotrowska, Guivarc’h, & Pelous 1983]
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Tc
dJ

-l

dV v=o

where rc is in units of flcm2. Rj can then be approximated as

where rcj is the value of rc at the contact with the resistance label Rj and Acj is 
the metal contact area through which the current flows. It is assumed in this 
equation that the current is approximately the same over Acl [Piotrowska, 
Guivarc’h, & Pelous 1983].

D.1.1 Conventional photoconductor

Aci can have two possible values for a conventional photoconductor (See 
Fig. D.l). Acj will equal the smaller of the areas Ldy or Lfdy. [Schroder & Meier 
1984] where L is the actual width of the metal strip (See Fig. D.l) and [Schroder 
& Meier 1984]

Lti = (rci/Ro)1/2 •

Ra is known as the sheet resistance and is defined as [Green 1982]

where p is the resistivity and dT is the thickness of the layer through which the 
current is flowing. In Fig. D.l, dT equals dz. LT can be thought of as the 
distance under the metal the current in the semiconductor layer travels before 
the current is redirected into the metal [Schroder & Meier 1984].
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Representative values of RD for extrinsic and intrinsic photoconductors are 
shown in table D.l for a 300 K background. With the low temperature of 
operation, the free carrier concentration, n, will be due to the 300 K blackbody 
photon flux. The values of the mobility, fi, n and dj are taken from sec. D.2. 
The best way to make an ohmic contact is to degenerately dope the 
semiconductor directly under the metal. It will be assumed that the 
semiconductor is doped enough such that rcl = lO^Hcm2 [Schroder & Meier

1984]. .
Assuming the metal contact is wider than i

where dy = 100 pm for the representative intrinsic photoconductor and

Rj = 3.611

where dy = 100 pm for the representative extrinsic photoconductor.

D.l.2 PEIR photoconductor
The resistance due to the substrate can be calculated as

9hplsubnlsub dxdy
(n-

Rlsub <lhplsubPlsub ^dy
(P-1

The substrate is degenerately doped so that at low temperatures therels no 
freeze out of carriers. Assuming a p-type detector, Let hpisub = 50cm /v’^sec 
(The mobility is being limited by carrier-carrier scattering), dalsub = 300pm, 
dx = dy = 100/im and plsub = 1019cm-3,



Table D.l.
Some representative values of Rn and LTl

Mn2
(cm2/V—sec)

n2
(cm-3) (m)

Rn
(n/b)

LX1
(/xm)

extrinsic PC
intrinsic PG

105
105

5xl012
3xl015

500; 125.
10.4

2.8
9.8



Tile area for Rx will be assumed to be the detector area dxdy. Lettmg 

r<5l = 10-5iicm2, a representative value is

Rj = 10_1Q .

D.2. R2 - The resistance of the IR active area 

The resistance of the active layer is

V : - . : l ■ L
: L K* “ q(/'i!2l»S -I /‘p2P2> dTW

wher4 X is the length of the active layer that the electrons traverse. dTW is the
area through which the electrons travel.

If the background photon flux is large enough and depending upon the type 

of photoconductor,

, n2 .. =&r '

p2 =er

where r is the carrier lifetime and

da is the active area thickness in the direction of propagation and rj is the 
quantum efficiency. This thickness must be wide enough to collect most of the

radiation.



These three equations in this section are now defined for the conventional 
photoconductor shown in Fig. D.l and for the PEIR photoconductor shown in 
Fig. D.2.
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D.2.1 Conventional photoconductors

The resistance of the IR active layer is

Ro —
<1(A4h2i12 + Mp2 P2 ) dydz

For a 300 K blackbody background and an n-type extrinsic or a p-type intrinsic 
photoconductor,

n — gr

where

g =..
fhv

d,

Some representative values are now calculated for extrinsic and intrinsic 
photoconductors.

D.2.1.1 Intrinsic photoconductor

For Tg=300K, X< 13/im, and assuming ??=100%,

<f>n = 1018cm_2sec_1 .

Additionally, it will be assumed in this section that

rj = 100%
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„ _7 cmvav = 107 — ,
sec

Ocap; = 10 17 cm2 »

cm
Mn2 - Pp2 - 10 »

dx X dy X dz = 100//m X lOO^m X 10/xm

For these numbers, the generation rate becomes

g — ^ 1021cm 3sec 1

For an n-type intrinsic photoconductor with no Shockley-Hall-Read (SHR) 
recombination [Borrello, Roberts, Breazeale, & Pruett 1971],

P2 = V = ^capi

Similarly, for p-type,

n2 = V = ^cap-.^av P.2

Using the numbers shown above,

n2 - 3xl015cm 3

for FOV = 180° and
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n2 2x10*5 cm-3

for FOV = 60° where FOV is an abbreviation for field of view [Kruse 1977],
For simplicity, assume that ^2n2 = vup2p2, then for the case of interest, 

R2 = 10.4ft FOV-180°

and

R2 = 15.70 FOV - 60° .

D.2.1.2 Extrinsic photoconductor

For Tb=300K, X < 13/«m, and assuming ?7=100%,

<f>B = 1018cm' 2sec”1 .

In reality, 4>b is less than this value because the absorption cross section out of a 
dopant level peaks at a certain energy approximately equal to the ionization 
energy. Additionally, it will be assumed in this section that

n = 100%

107 cm 
sec 1

eap€ = 10-13cm2

-io5 cmPn2 = 10
V—sec (n-type) ,
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cm
V—sec

(p-type) ,

and

dx X dy X dz = 100/um X 100/mn X 500/un . 

For these numbers, the generation rate becomes

g =
4>bv

A
2xl019cm 3 sec

The concentration depends upon how much the material is compensated. For 

n-type,

n = gr =
^capvav(I12+NA2)

where Na is the compensation dopant concentration. For p-type,

_ . ' K g . '
P S Crcapvav(P2+^D2)

where Nj is the compensation dopant concentration. The resistance for an 

extrinsic detector is

Ro —
q/^n2-a2 dydz

(n-type)

or

Ro —
<i/%2P2 dydz

(P‘
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Carrier concentrations and resistances are shown in table D.2 as the 
compensation and field of view are varied for several extrinsic photoconductors.

D.2.2 PEIR photoconductors

The resistance of the IR active layer is

1 ^z2 ' ■ / ' j. \
k2-----------------—— (n—type)

q/hi2n2 <My '

or

R'2 =----------- •A %\ (p~type) .
q//p2p2 dxdy '

For a 300 K blackbody background,

n2 = gT (n—type)

or

P2 = ST (p—type)

where

(hv
g = -r- . 

dz2

When these sets of equations are compared with the equations in sec. D.2.1 and 
the geometries of the devices in Figs. D.l and D.2 are considered, it can be seen 
that the resistance in a PEIR photoconductor will be much smaller than the 
resistance in conventional extrinsic photoconductors. A representative value is 
now calculated for PEIR photoconductor to show how the resistance compares 
with the conventional photoconductors in sec. D.2.1.

For Tg=300K, X< 13/im, and assuming ^=100%,



Table D.2
R2(0) for some extrinsic photocondu ctors

(cm”3)
FOV n2

(cm-3)
R2
(0)

<1010 180° 4.5xl012 278.
<io10 60° ■3.2x10“ 391.

1013 180° 2xl012 625.
10“

O©© 1.4xl012 893.

1014 180° *■ 2xlOn 6,250.
1014 60° 1.4xlOn 8,930.



186

4>B = 1018cm 2sec 1 .

In a similar manner as extrinsic photoconductors, ^ is less than this value 
because the absorption cross section out of a dopant level peaks at a certain 
energy approximately equal to the ionization energy. Additionally, it will be 
assumed in this section that

vav = 10
7 cm 

sec

^ca.pe 10 cm2 ,

, »5 cm2 ,
“ 10 yZ^T (n—type) ,

Mp2 =1°5aS^ (p_type) >

dx X dy X dz2 = lOOyam X lOO^m X 2/nm .

For these numbers, the generation rate becomes

5xl021cm 3sec 1 .

Carrier concentrations and resistances are shown in table D.3 as the 
compensation and field of view are varied for several PEIR photoconductors.

D.3. R3 - The lateral resistance of the contact

R3 exists only in detectors which have a transparent contact. Hence, 
conventional photoconductors don’t have an R3 while a PEIR photoconductor 
does.



Table D.3
R2(ft) far some PEIR photoconductors

FOV % ' R2
(cm 3) (cm-3) m i

<10u 180° 7xl013 1.8;
< 1011

O©C
D 5xl013 : 2.5

1014
1014

180°
60°

[ <5xl013 
<3.5xl013

2.5
j ■ 3.6

1015 180° j$
5xl012

t, 1>.Oc
25.

; io15 60° " 3.5xl012 36.



., **! vepen*3 up°n 3 Pararaeters: 1) The shape and spacing of the metal 
grid that contacts to the transparent contact; 2) the dopant concentration of 
the degenerately doped transparent contact and 3) the thickness of the 
transparent contact.

The last two parameters are incorporated into the sheet resistance

Rq P
dz3TC

; i

9/hi ^3TC ^z3TC

for n-type transparent contacts and

fi/fiaPSTC ^z3TC

for p-type transparent contacts. For degenerately doped contacts, the carrier 
concentration is equal to the dopant concentration.

. The shape of the grid and the spacing between the metal strips affect R, 
There are two ways to calculate an effective resistance R3 for the transparent 
contact and a specific metal grid. One is to calculate an effective voltage

and the other is to calculate an effective power loss [Green 1982]

Peff = / I2 dR

R3 IS larger when the effective voltage method is used. In addition, it appears 
he effective voltage method more correctly compares R3 with R2 for a current. 

Consequently, the effective voltage method is presented.
The rectangular grid is considered first. This grid is made up of parallel 

contacts that can be connected at the ends by what are defined as busbars 
[ reen 1982]. The area of the transparent contact between the grids will be a 
rectangle (See Fig D.3). The length of the contact will be set equal to b and the
width will equal S. The current through the transparent contact can be 
calculated as
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dy

Figure D.3; Rectangular grid schematic
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I(y) = / J b dy' — Jby
o

where J is the current density flowing into the transparent contact and is
assumed to be constant, y = 0 at the midpoint between the metal grids and 
ificreases to S/2 at the metal grids.

V■■■'The effective voltage:is calculated .as:.'

Veff
S/2 S/2
/ I(y)dR = J J
o o

Rndy
b

This value presented for an effective voltage can now be used to calculate 
an effective resistance R3. To properly compare the voltages and subsequently, 
the resistances between the IR active layer and the transparent contact layer, 
the effective voltage should be multiplied by the area of the IR active layer 
through which the current flows. In the case of a PEIR photoconductor shown 
in Fig. D.2 this area equals dxdy and

Vefr ■ [jdxd bS
yj 2dxdy

RaS
;; 4b y-

From this equation.

%ff __ . RqS2 
Jdxdy ~ (8dxdy }

For the square grid with a spacing SxS (See Fig. D.4),

I(y) - / J y'dy' - J^- //
.■"0- 2-;
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T
S

i

Figure D.4 ’ Square grid schematic
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The effective voltage becomes

Veff
S/2 S/2 2
/ I(y),m =. / Jl
0 0 *

Rody
b

_ T S^_ Ro v
2 4 6 ’

Using the same procedure as for the rectangular grid,.

V°l]r [jdxdy]
8dxdy 6

F rom this equation,

R _ Veff , RoS2
3 JdXdy l48dXdyj '

Some R3 values for n-type and p-type transparent contacts are shown in 
table D.4 and table D.5, respectively. The grids will be assumed to be square. 
dZ3TC must be thin enough to let the radiation through, yet thick enough to 
produce a small resistance. The mobilities are found in [Sze 1981]. These are 
room temperature mobilities. For lower temperatures, the mobilities will be 
approximately the same. It is assumed that the material is degenerately doped. 
S=dx=dy=100/fm. In this case, R3 — Ro/48 and the area equals dxdy.

D.4. R4 - Contact resistance for contacts to the front contact

Most of the theory for this section has already been presented in sec. D.l. 
Section D.4.1 briefly discusses the second contact for a conventional 
photoconductor. Section D.4.2 discusses the contact to the transparent layer for 
a PEIR photoconductor.



Table D.4. 
R3(fl) for n-type

GaAs transparent contacts

Table D.5.
R3(n) for p-type 

GaAs transparent contacts

87. ;:
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D.4.1 Conventional photoconductors

Since the contacts are symmetric for the conventional photoconductor 
presented in Fig. D.l, Rj—R4. For different contacts, the theory presented in 
sec. D.l should be adequate.

D.4.2 PEIR photoconductors

Using the results of sec. D.l, R4 for a rectangular grid is (approximation 
assumes the metal width is negligible)

R4 ^ f c4 rc4 ®

("J~dx)(2LT4)
21'T4 (dxdy) (L>2LT4)

or

(L<2LT4)

where S is the distance between the fingers. 

R4 for a square grid is

R4 —- rc4 rc4 ®

( q ^ q dx)(2LT4)
4LT4(dx dy) (L>2Lt4)

(L<2Ln)

where S is the width of the square metal grid. If the metal strip thickness L is 
more thin than twice the thickness 'Lt4,-^T4- will be replaced by L. The factor 2 
is used assuming that photocurrent is generated on both sides of the metal strips 
causing the current to flow through both sides.



Tables D.6 and D.7 preseat R4 values for a PEIR photoconductor for metal 
contacts to n-type and p-type GaAs. The rc values can be found in [Schroder & 

Meier 1984]. S=dx=dy ==100//m.

0.5, Comparison of resistances for different situations
This section compares the resistances for different situations. Section 0.5.1 

presents the important equations for the conventional photoconductors (intrinsic 
and extrinsic) and several tables that compare the resistances for these 
equations. Section D.5.2 presents the important equations for a PEIR' 
photoconductor and several tables that compare the resistances for these

equations.

0.5.1 Conventional photoconductor

D.5.1.1 Intrinsic photoconductor

The important auxiliary equations are

g = <M/dz >

■■■ - g ’ (n-type) ,
^capvavIi2

n2 =------ ------- (p-type) .
^rcap^avP2

Assume most of the carriers are generated by background radiation, then

l ' ... ■ . . ' . '•
jUn2n2 = Mp202 V

/A2n2 + Mp2P2 — 2/A2% >



Table D.6.
R4(0) for metal contacts 

to n-type GaAs transparent contacts

ND3TC dz3TC Rq rc4 Lt4 R4
(cm-3)

v □ ' (f]cm2) (cm) (?)

IxlO18 100. 2,080. 1x10 5 6.9xl0“5 3.6
300. 694. IxlO5 1.2xl0“4 2.1
500. 416. 1x10 5 l,6xlp-4 1.6

1000. 208. 1x1O-5 2.2xl0-4 1.1
3xl018 100. 1,040. 3xl0-6 5.4xl0~5 1.4

300. 347. 3xl0~6 9.3xl0“5 .81
500. 208. 3x10“® 1.2xl0“4 .63

1000. 104. 3xl0“6 1.7x10-4 i .44

Table D.7.
R4(H) f°r metal contacts

Na3TC

(cm-3)

dz3TC

a :
Rn

(—)
■ □/

rc4

(Hem2)
LX4

(cm)

r4

(O)
7xl018 300. 3,700. 2x10 4 2.3x10 4 22.

500. 2,200. 2x10"4 3.0xl0“4 17.
1000. 1,100. 2x10 4 4.3xl0“4 12.

IxlO19 100. 12,500. IxlO-5 2.8xl0“5 8.9
300. 4,170. IxlO-5 4.9xl0“5 5.1
500. 2,500. IxlO'5 6.3xl0“5 4.0



Ro
1 ;;

2q/hi2^2^z
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Lti = 1<T4 — (rcl /Rq) ^

Tke resistance equations are (assuming dx =■= dy)

Ri = rci Ati4y rj

R?. — T"2q/42n2dz

R4 = Ri •

Tables D.8 and D.9 present the resistance values in some intrinsic 
photoconductors as d» and Xj {the wavelength the detector is designed to detect) 

is varied. The parameters used in tables D.8 and D.9 are as follows.

dx X dy - .1mm X .1mm 

dz — See tables D.8 8c D.9

See tables D.8 8c D.9 ■

' '

vav = 107 cm/sec 

p2 = n2 -‘t See tables D.8 & D.9 ■

Pp2 = 105 cm2/(V—sec)
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Table D.8
Resistance values for

several HgCdTe photoconductors where dz = 10/im

4.6x10 2.1x10 8.2
2.4x10

8.5x10 2.9x10
9.3x10
4.9x10 2.2x10

Table D.9
Resistance values for

several HgCdTe photoconductors where dz = 5/im

(cm-2 sec-1)
EL 2

(cm-3)
Rn

(«/□>
LT1

(/Wm)
Ri
(n)

R9
(0)

10.6 4.6xl017 3.0xl015 21. 6.9 1.4 21.
12.0 6.0xl017 3.5xl015 18. 7.5 1.3 18.
13.5 8.5xl017 4.1xl015 15. 8.1 1.2 15.
14.5 9.3xl017 4.3xl015 15. 8.3 1.2 15.
4.5 4.9xl015 3.1xl014 202. 2.2 4.5 202.
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.ft* = 105 cm2 /(V—sec)

*-Srci = rC4 = 1°

Rd - See tables D.8 & D.9 

LT1 = LT4 — See tables D.8 & D.9

^max
compare

rj = io

FOY = 60°

the wavelength at which D has its maximum 
•e well with the Santa Barbara Research Center

. These numbers 
catalog.

r.5.1.2 Extrinsic photoconductors

The important auxiliary equations are

g =

where a is the absorption coefficient and equals the absorption cross section 
[Bratt 1977] times the maximum impurity dopant that can be incorpora e 

without impurity conduction [Bratt 1977] or

a - Nj ^abs

112 CTcapvay(n2+NA)
(n-t;

P2 ^capvav(P2+ND)

Qi

qMn2n2
(n—1
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and

Ro
a

q^p2P2
(p-type) ,

LT1 = LT4 = (fd/Rn)1/2 .

The resistance equations are (assuming dx = dy)

Ri — rci /Lti ,

R2
a

(l/in2n2
(n-type) ,

and

r2
a

q/h>2P2
(p-type) ,

R4 — R4

Tables D.10 and D.ll present the resistance values in extrinsic 
photoconductors utilizing several host semiconductordmpurity dopant systems. 
The parameters used in tables D.10 and D.ll are as follows.

dx X dy — .1mm X .1mm

dz = —---- See tables D.10 & D.ll
a

(j>B — See table D.10

Nj$ = 1013cm~3 (p—type)

Na = 1013cm 3 (n—type)
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Table D.10
Parameter values for several extrinsic photoconductors

^cape a Nj(max) 4>b n2,P2

(fjm) (cm2) (cm-1) (cm-3) (cm-2 sec1) (cm-3)

Ge:Au 5.0 io-13 8. 1017 1.2xl016* 9.6xl09

Ge:Hg 10.6 3.6xl0-12 24. 6xl016 1.5xl017 IO10

Ge:Cu 21.0 5xl0-12 10. 1016 4.3xl017 8.6xl09

Ge:Zn 37.0 ~6xlQ-12 ~30. 3xl016 6.0xl017 3xlQ10

Si:Ga 15.5 ~5xlQ-12 ~20. 4xl016 4.1xl017 1.6xl010

Si: As 23.5 IQ-11 ~30. 3xl016 4.6xl017 1.4xl010

Si:Sb 27.0 h-
1 o 1 h-
4

h-
4

~20. 2xl016 5.1xl017 l.OxlO10

* - FOY =180°

Table D.ll 
Resistance values for 

several extrinsic photoconductors

n2)P2 Rd Lti Rx r2
(cm-3) (kO/D) (Mm) (fi) (kH)

Ge:Au 9.6xl09 52. .14 71. 52.

Ge:Hg IO10 150. .082 122. 150.

Ge:Cu 8.6xl09 73. .12 83. 73.

Ge:Zn 3xl010 63. .13 77. 63.

Si:Ga 1.6xl010 78. .11 91. 78.

Si:As 1.4xl010 134. .086 116. 134.

Si:Sb l.OxlO10 125. .089 112. 125.
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<xcaPe = See table D. 10 

vav = 107 cm/sec 

p2,n2 — See table D. 10 

/ip2 — 105 cm2/(V—sec)

— 105 cm2/(V—sec) 

rci = rc4 = 10-5 Hem2 

Rn —See table D. 11 

Lxi = Lt4 — See table D.ll 

V = 25% .

FOV = 60°

Vax is the wavelength at which D has its maximum value. Nj (max) is defined 
at the beginning of this section.

These numbers compare well with the SBRC catalog. Potential differences 
from the SBRC catalog are: 1) Probably the compensation can be made lower. 
2) For high speed devices, compensation is made higher. 3) rj could be higher. 
4) <f>Q is also affected by the fact that only the radiation with wavelengths 
around \max is efficiently collected.

D.5.2 PEIR photoconductor

The important auxiliary equations are

g = 9Wdz2 ,

n2 = ——-—2-------—
^cap Vav (n2 “H^a)

(n-type) ,
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P2 =
g______

*^cap Vav (P2 "h-^D )
(p-type) ,

Rq = P3Tc/dz3TC =
*l/hi3TC n3TC ^z3TC

(n-type) ,

Ra = P3Tc/dZ3TC =
Q/^pSTCPSTC^zSTC

(p-type) ,

and

LT4 — (rC4/Rn)1//2 •

The resistance equations are (assuming that AD = Ac)

Ri rcl /dxdy ?

RIsub
1

*1Mii 1 sub n Isub

^■zlsub

dxdy
(n-type) ,

Rlsub
^zlsub

hMplsubPlsub dxdy
(p-type) ,

R2 =----------  -t~T~ (n-type) ,
q/in2 n.2 d.x dy

R2 =----------  -7-7- (p-type) ,
*lMp2P2

R3 = Rd /48 (squaregrid) ,

and



X> _ rc4 IXa —■ -----------
■4LT4dx

where it is assumed dx = dy = S. S is the grid spacing (See Fig. DA).

D.5.2.1 Variation of the area

Table D. 12 presents the resistance values in a PEUt photoconductor as the 
area, dx X dy, is varied. The parameters used in table D. 12 are as follows.

dx X dy — See table D. 12 

^z3TC = 300A == 300x10“® cm 

dz2 = 5 /um 

dzisub = 400 jMn

= 5xl017 ph/(cm2sec)

P3TC = Na3tc = TO1® cm-3

Pi sub -^Alsub = 10 Cm

N£ < 1012 cm'3

g = 1021 cm-3 sec-1

^cap = 10-12 cm2

vav = 107 cm/sec

p2 ■= 1013 cm 3

/U2 = 105 cm2/(V—sec)

/-^p3TC = 50 cm2/(V—sec)

/^pisub = 50 cm2/(V—sec) 

rcl = rc4 — 10-5 Hem2

204
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Table D.12
The resistances as the area is varied

dX( dy)
(cm) im)

Ri
(U)

Rlsub
(H)

R.2

(H)
r3

"(ft)
R4

(ft)

.005 50 A 20. 125. 86.9 10.2

.01 100 .1 5. 31.3 86.9 5.1

.05 500 .004 .20 1.25 86.9 1.02

.1 1000 .001 .05 .313 86.9 .51
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Ro =4,170 U/n 

Lt4 = 4.9xl0-5 cm 

n=im%

The resistances depend upon the area as follows. Ry, Rlsub, and R2 are 
proportional to the inverse of the area. R3 is a constant of the area. R4 is 
proportional to the inverse of the square root of the area. If the grid size (SxS) 
stayed the same (ie., did not vary with the area), R3 and R4 will also be 
proportional to the inverse of the area (See sec. D.6)

D.5.2.2 Variation of the thicknesses

Table D.13 presents the resistance values in a PEIR photoconductor as the 
thicknesses throughout the device are varied. The parameters used in table 
D.13 are as follows.

dx X dy — 100/Um X 100/im 

dZ3TC — ®ee table D.13 

dz2 — See table D.13 

dzisub — See table D.13 

4>.B = 5xl017 ph/(cm2sec) 

P3TC = NA3TC = 1019 cm-3 

Pisub = NAlsub — 1019 cm-3 

Ng <1012 cm~3

2.5xlQ21 cm-3sec_1 when dz2 =2/im

5.xl020 cm-3sec-1 when dz2 =10^m

— 10-12 cm2
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Table D.13 
The resistances as 

the layer thicknesses are varied

dz3TC

(A)
<*z2

(Mm)
d-zlsub

(Mm)
Ri
P

Rlsub

P
R-2

P
r3
p

R4

P
300 2 400 .1 5. 7.9 86.9 5.1
500 . 2 . 400 .1 5. 7.9 52.1 4.0
300 10 400 .1 ' 5. 88. 86.9 5.1
300 2 600 .1 7.5 7.9 86.9 5.1
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vav = IQ7 cm/sec

P2 — 1.58xl013 cm-3 when dz2 = 2pm 

P2 ~ 7.1xl012 cm-3 when dz2=10ywm 

fip2 = 105 cm2/(V—sec)

/^P3TC = 50 cm2 /(V—sec)

Ah)lsub = 50 cm2/(V—sec)

rci = rc4 = 10-5 Hem2

Ro = 4,170 n/Q when dz3xc=300A

Ro 7 2,500 fl/f-1 when d^^^ =500A

Lf4 = 4.9xl0-5 cm when dz3TC=300A

Lt4 = 6.3xl0-5 cm when dZ3Tc=5O0A

v = 100%

The resistances depend upon the thicknesses as follows. Rj is independent of 
any of the layer thicknesses Rlsub is proportional to the substrate thickness. For 
no compensation, R2 is proportional to the active region thickness to the 3/2 
power. For compensation, R2 is proportional to the active region thickness 
squared. R3 is inversely proportional to the transparent contact thickness. R4 
is inversely proportional to the square root of the transparent contact thickness.

D.5.2.3 Variation of the photon flux

Tables D.14 and D.15 present the resistance values in a PFJR 
photoco'nductor as the photon flux is varied. The parameters used in tables 
D.14 and D.15 are as follows.

dx X dy = 100/um X 100/un
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dz3TC = 300A = 300x10"“® cm 

dz2 = 5 fjm

dzlsub = 400

(f>B — See tables D.14 & D.15

P3TC = Na3TC = 1019 cm

Plsub = -^Alsub = cm 

Nj — See tables D.14 & D.15

g — See tables D.14 & D.15

<Aap = 10-12 cm2 

vav = 107 cm/sec

p2 — See tables D.14 & D.15 

fj,p2 = 105 cm2/(V —sec)

MP3TC = 50 cm2/(V-sec)

A*plsub = 5° cm2/(V—sec)

rci = rc4 - 10-5 Hem2 

RD= 4,170 0/D 

Lt4 = 4.9xlO-5 cm

T) = 100%

As the background photon flux decreases, R2 increases. The other resistances
are independent of the photon flux.
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Table D.14
The resistances as the photon flux 

is varied for N52=1012cm-3

(cm-2sec-1)
g

(cm-3 sec-1)
P2

(cm-3)
Rx

(fi)
Ulsub
(«)'

r2

.(n)
R3

■(«)

r4

(«)
10u 2xl014 2xl07 .1 5. : 1.6x107 86.9 5.1
101S 2xl016 2xl09 .1 5. ■1.6x10® 86.9 5.1
1016 2xl018 >2xlOn .1 5. 1.6x10s 86.9 5.1
1017 2xl020 >4.5xl012 .1 5. 7.1x10' 86.9 5.1

5xl017 1021 >1013 .1 ■5. 3.2x10' 86.9 5.1

l—
i o 00 2xl021 >1.4xl0.13 .1 5. 2.3X101 86.9 5.1

Table D.15
The resistances as the photon flux

is varied for Nj2=1014cnr3

0B
(cm-2sec-1)

g
(cm-3 sec-1)

P2

(cm-3)
Ri

(n)
Rlsub

(«)
R2

(a)
r3

(fi)
r4

(Q)

10" 2xl014 2x10® .1 5. 1.6xl09 86.9 5.1
1013

2xl016 2x107 .1 5. 1.6xl07 86.9 5.1
1015

2xl018 2xl09 .1 5. 1.6x10® 86.9 5.1
1017

2x1020 2xlOn .1 5. 1.6x10s 86.9 5.1
5xl017 1021 1012 .1 5. 3.2xl02 86.9 5.1

1018
2xl021 2xl012 .1 5. 1.6xl02 86.9 5.1
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D.5.2.4 Variation of the dopant concentration in the contacts
Tables D.16 and D.17 present the resistance values in a PEER 

photoconductor as the dopant concentration is varied. The parameters used in 
tables D.16 and D.17 are as follows.

dx X dy = lOQ/tm X 100/an

dz3TC — 300A = 300xl0_8cm

dz2 = 5 jum

dzisub = 400 /mi

<j>B = 5xl017 ph/(cm2sec)

p3TC = N^3tc ~ See tables D.16 & D.17

Pisub = NAlsub - See tables D.16 & D.17

Nj < 1012cm“3

NX < 1012cm-3

g = 1021 cm-3 sec-1

*Vap = DR12 cm2

vav = IQ7 cm/sec '

p2 or n2 — 1013cm"3

/Xp2 = 105 cm2/(V—sec) (p-type)

/tn2 = 105 cm2/(V—sec) (n-type)

Mp3TC> Mpisub (cm2/(V-360)) ” See table D*16 

Ih13TC> Mnisub(cm2/(V—sec)) - See table D.16 

rci, rc4 — See table D.16 

Ra — See table D.16
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Table D.16
The parameters that depend upon the change 

in concentration in the substrate or transparent contact

type -^ilsub
(cm"3)

Nj3TC
(cm"3)

ilsub ^i3TC *cl
(Hem2)

^c4

(ncm2)
Rn

(n/D)

lX4

(^m)

P 1019 8x1018 50. 70. 10-6 5X10-4 3720. 3.7
P 1019 1019 50. 50. 10-5 10-5 4170. .49
P

1019 3X1019 50. 45. 10-r> 7x10“® 1540, .67
P 5xl019 1019 40. 50. 2x10-6 10“® 4170. .49

n

00©tHXC
O 8xl017 2000. 3000. 5x10-® 2X10-6 868. 1.5xl0~4

n C
P X © 00 lb18 2000. 2800. 5x10-® 8xl0-6 745. l.OxlO-4

n 3xl018 2xl018 2000. 2300. 5x10-® 2xl0_6 453. 6.6x10-®

n 8xl018 1018 1300. 2800. 6xl0-7 8xl0~® 745. l.OxlO-4

Table D.17
The resistances as the concentrations 

in the substrate and the transparent layer are varied

type Nilsub Ni3XC Ri ■Itlsub . r3 R* R4

(cm-3) (cm"3) (n) (a) (Q) (Cl) (n)

P 1019
8xl018 .1 5. 31. 77.5 34.

P 1019 1019 .1 5. 31. 86.9 5.1
P 1019 3x1019 .1 5. 31. 32.1 2.6

P 5xl019 1019 .02 1.25 31. 86.9 5.1

n 3xl018 8xl017 .05 .42 31. 18.1 3.3
n 3x1018 1018 .05 .42 31. 15.5 2.0

n 3xl018 to X t—
*■ © 00 .05 .42 31. 9.4 .76

n 8xl018 1018 .006 .24 31. 15.5 2.0
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Lt4 — See table D.16

rj = 100%

p-GaAs mobilities are from Wiley [Wiley 1976]. n-GaAs mobilities are from Sze 
[Sze 1981]. rc values are from Schroder [Schroder & Meier 1984].

D.5.2.5 Variation of the efficiency
Tables D.18 and D.19 present the resistance values in a PEIR 

photoconductor as the efficiency is varied. The parameters used in tables D.18 

and D.19 are as follows.

dx X dy = 100/zm X 100/im

dZ3Tc = 300a = 3Q0xl0_8cm

dZ2 = 5 £tm

dzisub = 400 pm

(j)B = 5xl017 ph/(cm2sec)

P3TC = NA3TC = !°19 cm 3

Plsub = NAlSUb = 1019 cm_3

Np — See tables D.18 & D.19

g — r/1021 cm-3sec-1 ■— See tables D.18 & D.19

^cap = 10”12 cm2

vav = 107 cm/sec

p2 — See tables D.18 & D.19

jUp2 = 105 cm2/(V-sec)

/^p3TC = 50 cm2/(V—sec)

Mpisub = 50 cm2/(V—sec)
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Table D.18
Tbe resistances as the efficiency is varied 

where Nj2=1012cm 3

<3.2x10
S.xlO <5.5x10
5.xl0 <7.1x10

7.5x10 <8.7x10

Table D.19
The resistances as the efficiency is varied 

where N^2 =1013cm-3

<3x10
5.xl0 <5x10

7.5x10 <7.5x10
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rci = rc4 = 10 5 Hem2

RD = 4,170 H/D

Lt4 = 4.9xl0-5 cm

rj = See tables D.18 & D.19

As the efficiency decreases, R.2 increases. The other resistances are independent 

of the frequency.

D.6. Resistance equations for a general PEIR photoconductor
Unlike the first five sections in which the grid spacing (SxS) equaled the 

detector area, this section will consider the case when SxS doesn’t equal dxxdy.

Assuming that the grid spacings (S) are uniform and that the widths of the 

metal are negligibly small,

R - Fcl 
1 dxdy

Rlsub
l dzlsub

(n-type) ,
9.Mnlsub^lsub dx dy

Rlsub
1 dzlsub

(p-type) ,
p 1 sub P1 sub dxdy

Ro —
lz2

q/in2n2 dxd^
(n-type)

R? —
h2

<!Mp2P2 dxdy
(p-type) ,
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, rds2
R3 =(8d^T) (rect. grid) ,

RoS2
Rs “(48d^r) (square grid); >>

R- =
rc4®

Sto) (rect. grid- L>2LT4)

JR. 4 L(d^y (rect-grid - L<^T4)

Ri= <° grid - L>2LT4)
rc4S

where

rc4S
R< = 2L(dxdy) P grid - L^Lt,) ,

g = ^j$r//dz2

n2 =
^cap Vav (n2 ""t7  ̂A )

(n—type) ,

P2
^cap^av(P2 )

(p-type) ,

Rr z3TC =
^/Ai3TC n3TC dZ3TC

(■n—type)



217

Rd ^3Tc/dz3TC q/^p3TC P3TC ^z3TC (p-type) ,

and

LT4 = (rc4/Ro)1/2 •

These equations are acceptable as a simple approximation but if one wants 
to get a more physically reliable set of equations, one must consider three 
factors: l) The distribution of potential in the device affects the resistances. 2) 
The finite width of the metal will necessarily cause a change in some of the 
resistances. 3) The non-uniformity in grid widths over the area of device will 
cause a change in some of the resistances. The next three subsections describe 
how the resistances will change due to these effects. Subsection D.6.4 presents 
the configuration and the corresponding resistances of a PEIR photoconductor 

that is being tested.

D.6.1 The effect of distribution of potential on the resistances
The potential in the IR active layer will not be uniform because the metal 

is not uniform over the transparent contact. This nonuniformity in potential 
will redirect the carriers in the direction parallel to the layers. Consequently, 
the carriers should flow towards the metal and away from the center part of the
grid. These effects on the resistances are now described.

For Rx and Rlsub, there should be no real change because the part of the 
device where these resistances exist are considered to be contacts and in contacts 
it can be assumed that the potential is necessarily uniform. For R2, it appears 
that the potential distribution will alter the concentration but since R2 depends 
upon the concentration times the area (dxdy), R2 should not change much for a 
change in potential distribution.

Rj -will decrease due to this variation in potential because more of the 
current will be directed away from the middle of the grid opening to the metal 
contact. Hence, the constant J assumed over the grid opening used to determine 
r3 in sec. D.3 is not correct and when considering the integration dependence, 
R3 will necessarily decrease. Physically, this can be explained by the fact that 
there are not, as many excess carriers attracted towards the surface under the 
grid opening. Since the space charge from the excess carriers determines the
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potential along the transparent layer, the potential will necessarily decrease due 
to the variation of the potential.

R4 will most likely decrease because the effective contact area in the metal 
will become larger. It becomes larger because electrons will more easily flow to 
the central portion of the metal strip. As stated in see. D.4, if the actual 
thickness is more than 2LT4 (The 2 is needed for current flow from grid 
openings on both sides of the metal strips), the effective area depends upon LT4. 
This assumes that the current is constant flowing toward the grid surface. For a 
redirection of the current towards the metal contacts, the effective area should 
increase because the effective thickness should be larger than L-p4.

If the actual thickness of the metal strips is less than 2LT4, R4 should not 
change that much from the equations above.

D.6.2 The effect of finite metal widths on the resistances

The metal strips must have a certain width. Assuming it is capable to 
make a strip any width, the requirement is that the width of the metal strips 
must be wide enough to make the resistance in the strips negligible. The first 
effect of this finite metal strip is to decrease the efficiency in the active region 
(See app. E). The second effect is that in some of the resistances, the actual area 
is not dxdy, but a smaller area. These effects on the resistances are now 
described.

Ri and Risub should not be effected by the metal strip thickness or how the 
metal is arranged. As in sec. D.6.1, these contacts are assumed to be of constant 
composition over the area and so the dxdy term in these resistances should stay 
the same.

R2 will increase because as the efficiency decreases the carrier concentration 
due to the background decreases. It is assumed that the carriers in the active 
layer are produced by the background radiation. If this is the case, R2 will 
increase. After considering sec. D.6.1, it appears that the dxdy term will stay 
about the same.

R3 will change because in the calculation in sec. D.3, it is assumed that all 
the current flows to the surface under the grid opening. When the metal obtains 
a finite thickness, the sum of the grid opening areas is actually smaller than the 
detector area. This effectively increases R3. In other words, when calculating 
R3, one cannot merely take dxdy to be the value of the denominator.

R4 will change because R4 calculated in sec. D.4 is really too simplified. It 
was assumed that the number of metal strips equaled dx/S in the x-direction



and dy/S in the y-direction. Let the actual number of strips in the x and y- 
direction be nxm and nym respectively (See sec. E.2 for a calculation of nxm and

nym)‘ ' 1
For the rectangular grid, -
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r = Tc4
4 (2LT4nyiI1)(dx)

(L>2Lx4)

R4
rc4

Lnym(dx)
(L<2LT4)

where is it assumed that the strips are directed along the x-direction.
For the square grid, the change is more complicated because one also needs 

to take the overlap of the metal strips into account. R4 then becomes

: ; • Tc4

(2nyIriLT4)(dx—nxm (L—2Lx4 ))+(2nxmLx4 X^y -nymL)
(L>2Lx4)

R4
^c4

(Lnym)dx+(Lnxm )(dy frymL)
(L<2Lx4) •

Since

nym — dy /S ,

R4 will remain the same or more likely increase for the rectangular grid. For 
the square grid, R4 will necessarily increase.

D.6.3 Non-uniformity of grid widths
If the grids are not uniform, the resistances can vary. The non-uniformity 

most likely encountered would be a finger that has been damaged, hence making 
the spacing bigger or a spacing that has been covered with metal. This section 
presents how the resistances would depend upon these two situations.
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Rx and Rlsub should remain the same.
R2 and R3 should increase due to the damaged finger. The enlarged area’s 

resistance increases, slightly increasing the overall resistance. The larger R2 is 
with respect to R3, the smaller the resistance will increase. The effect of this 
increased resistance is to make a dead space out of the enlarged area.

R2 and R3 should decrease due to the spacing covered with metal. The 
larger R2 is with respect to R3, the smaller the resistance will decrease. The 
reason behind the decrease is that the area under any metal should have a 
smaller resistance than R2 plus R3, effectively decreasing any resistance. The 
photodetector becomes less sensitive due to this added parallel resistance.

R4 should vary in a similar matter that R2 and R3 varies.
It is believed that although these resistances can vary due to these metal 

problems, that the overall effect will be reasonably small.

D.6.4 Example
A GaAs:Be PEIR detector has been built. The resistances are calculated in 

this section. It is assumed that the background radiation is produced by a 300 
K blackbody with no filtering. For a 5 mm. x 5 mm. detector, the following 
numbers are calculated for a 100 x 100 /nn grid, plsub=3xl019cm"1, dz2=1.3/nn, 
RD=4180n/D, pmeUi=10“6^cm, and R4 is found with the aid of table D.13. For 
R5, L/A = 1000 fim j (.5 /.tm 20 /im) and for R6, L — 300 cm and the radius of 
the wire is .051 cm. The resistance values are shown in table D.20. As can be 
seen in this table, the parasitic resistances can be much larger than R2.
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Table D.20
Resistances for a GaAs:Be PEIR photoconductor 

with an area of 5 x 5 mm

Resistance 
(m (T)

Ri ~0.
Rlsub 1.39

R2 2.5
r3 34.
R4 2.0
r5 100.
Re 3.7

Rtot 150.
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Appendix E,

Degradation of efficiency due to the transparent contact 
and the metal grid

The purpose of this section is to compare how the efficiency changes as the 
transparent layer thickness changes and as the amount of metal changes. 
Section E.l describes how the efficiency changes due to the change in the 
transparent layer. Section E.2 describes how the efficiency depends upon the 
amount of metal contacting to the transparent contact.

E.l. The dependence of efficiency upon the transparent contact - r;TC

The transparent contact must be doped enough to cause the impurity band 
in the semiconductor to merge with the conduction or valence band. This 
merging will effectively make the layer a conductor at low temperatures. 
Unfortunately, due to free carrier absorption, this degenerate doping does not 
make the transparent layer very transparent. In addition, the longer the 
wavelength, the less transparent the contact.

The transparent layer affects the efficiency in two ways. First, the 
absorption of radiation itself decreases the efficiency. The second and more 
serious problem is that the absorption times the wavelength is proportional to 
the imaginary part of the index of refraction - k. k is closely related to the 
amount of reflection of radiation at the interface of two materials - the larger k, 
the larger the reflection.

This section is split into three parts. The first part presents some 
calculations for the reflection from a thin epitaxial layer grown on a semi-infinite 
substrate of GaAs. The radiation is assumed to strike this structure normal to 
the surface with the incident material being air. The second part presents the 
efficiency for these values of reflection. The third part shows why a thicker 
transparent contact layer with a lower free carrier concentration is superior to a 
thinner transparent contact layer with a higher free carrier concentration.

Four types of transparent contact layers will be considered in this section: 
1) n-type GaAs with a concentration of 5xl017cm-3, 2) n-type GaAs with a 
concentration of 1018cm-3, 3) p-type GaAs with a concentration of 5xl018cm-3, 
and 4) p-type GaAs with a concentration of 1019cm~3. It is reasonable to 
assume that these concentrations are high enough to cause the impurity band to
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merge into the conduction or valence band (See chapter 3).

E.l.l Calculation of the reflection
This section will present four sets of two tables. The first table presents the 

complex index of refraction, the absorption and the reflectivity for two semi­
infinite layers as the energy of the incident radiation is varied. The absorption, 
a, is calculated from the classical equation for free carrier absorption, tz is 
related to a by the equation

k = a\/47T .

It is assumed that the index of refraction varies as it has been presented in 
[Jenson 1978]. This assumption appears to be acceptable since the absorption is 
approximately the same for either p-type or n-type GaAs and since n depends 
upon the absorption. R2i is the reflection coefficient for 2 semi-infinite layers 
where one of the layers is made up of the degenerately doped semiconductor and 

[Pankove 1971]

(n—l)2 +k2 
(n+1)2 + k2 ’

The second table presents the calculated reflection from the computer - 
| pem | ^ where pem is defined in app. G. The reflection is calculated for 

the radiation incident in air striking an epitaxial layer of thickness dz3xc which 
has been grown on a substrate of intrinsic GaAs. The substrate is assumed to be 
infinite in length Although this is not the exact situation as what will appear in 
the photoconduqior, it should be a good indicator as to the actual value of 

reflection.

E.1.1,1 Reflection values for n-GaAs, n=5x!017 cm 3
The reflection values for n-GaAs where n=5xl017 cm-3 are shown in tables 

E.l and E.2, One interesting entry to note is the 4 >m column where the 
reflection coefficients are almost equivalent to the reflection coefficient from two 
semi-infinite materials, R2i , where one of the materials is the transparent contact 
material and the other is air.
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Table E.l

n-GaAs n = 5xl017cm 3

EX
(meV)

nr2
(unitless)

a
(cm-1) (unitless)

R21
(%)

6. 3.9 1.7xl04 30.6 98.
12. 1.5 l.lxlO4 10.1 94.
18. .84 9.6xl03 . ' 5.3 . 89.
24. 56 7.6xl03 3.3 83.

Table E.2
Reflection coefficients for 
11-GaAs n = 5x1017 cm-3

Ex
(meV) dZ3TC =400A 800A

Re
I200A

m(%)
1600A 2000A 2400A 4/im

6. 38. 48. 57. 64. ,71. / 75. 98.
12. 33. 35. 37. 38. 40. 42. 94.
18. 33. 33. 34. 34. 35. ' / 36. 87.
24. 32. 33. 33. 33. 34. 34. 79.

Table E.3

n-GaAs n = 1018cm 3

Ex
(meV)

nr2
(unitless)

a
(cm-1)

k2
(unitless)

R21
(%)

6. 6.1 2.8xl04 48.1 99.
12. 2.1 2.xl04 17.8 97.
18. 1.1 1.8xl03 9.9 96.
24. • .7 1.5xl03 6.6 94.
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E.1.1.2 Reflection values for n-GaAs, n=1018cm 3
The reflection values for n-GaAs where n=1018cm-3 are shown in tables 

E.3 and E.4.

E.1.1.3 Reflection values for p-GaAs, p=5xlQ18cm 3

The reflection values for p-GaAs where p=5xl018cm~3 are shown in tables 

E.5 and E.6.

-j q _o
E.1.1.4 Reflection values for p-GaAs, p=10 cm

The reflection values for p-GaAs where p=1019cm 3 are shown in tables 

E.7 and E.8.

E.1.2 Calculation of the efficiency due to the transparent contact - r/TC

The efficiency due to the transparent contact is calculated using the 

equation

VTC — (1—Rem)e •

This equation is an optimum value because the light that enters the device is 
assumed to pass through the contact layer once. As the absorption (and k2) 
decreases, the equation above becomes very accurate. Tables E.9 to E.12 
present the values of for the parameters in tables E.l to E.8.

E.1.3 Comparison of r/TC f°r different transparent contacts
From section D. 3, one can see that R3 decreases as the product 

/An3TC dz3TC increases. The comparison made in this section is that as n3xc is 
varied while R3 is kept constant, what is the effect on r?xc • There is one 
simplification made in this comparison - fJ,n is kept independent of carrier 
concentration. In other words, as n3xc is varied while n3xcdz3TC ^ kept 
constant, what is the effect on ??tc* In reality, increases with decreasing 
carrier concentration, which means that R3 will be slightly lower (and more 
advantageous) as the carrier concentration increases.



Table E.4
Reflection coefficients for 
n-GaAs n = 1018cm_3

Ex
(meV) dz3TC =200A 400A

Rem
600A

d
800A 1000A 1200A

6, 40. 52. 62. 70. 76. 80.
12. 34. 36. 38. 42. 42. ■ 48.
18. 33. 34. 34. 36. 36. 38.
24. 33. 33. 33. 34. 34. 35.

Table E,5

p-GaAs p = 5xl018cm 3

Ex
(meV)

nr2
(unitless)

a
(cm-1)

■ k2 
(unitless)

R21
(%)

6. 14.9 7.2xl04 127. 100.
12. 10. 2 7xl04 23.7 94.
18. 4.3 3.0xl04 16.5 94.
24. 2.3 2.9xl04 12.7 95.

Table E.6
Reflection coefficients for 
p-GaAs p = 5xl018cm~3

Ex
(meV) dz3TC=200A 400A

Rem(9i
600A

5)
800A 1000A 1200A

6. 83. 93. 96. 97. 98. 98.
12. 39. 45. 51. 55. 60. 63.
18. 35. 39. 44. 48. 52. . 55.
24. 34. 37. 40. 43. 47. 50.
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Table E.7
Index and absorption parameters for 

p-GaAs p = 1019 cm-3

M.'; : ■

(meV)
nr2

(unitless)
a

(cm-1)
K2

(unitless)

^■21

(%)

6; ■■■■■■ 29. 1.2xl05 215. 100.

12. ; 12. 7.5xl04 66. 99.

18. 6. 7.1xl04 39. 98.

24. : 3.5 6.4xl04 28. 98.

Table E.8
Reflection coefficients for 
p-GaAs p = 1019cm-3

EX ; 

(meY) dz3TC—^100A 200A
Rm(%)
300i 400A 500A 600A

6. 89. 95. 97. 98. 98. 99.
12. ' 51. 68. 77. 83. 87. 89.

; is. 41. 52. 62. 70. 75. : 79.
24. 37. ' 45. 53. 60. 66. 71.

Table E.9 
Vtc for

n-GaAs n = 5xl017cm~3

Ex
(meV) dZ3T<3 r-400A 800A

Vl

1200A
'C(%)

1600A 2000A 2400A 4/im

6. 59. 48. 38. 30. 23. 19. .096

12. ■;:'64. 60. 55. 52. 48. 45. .287

18. 64. 62. 59. 57. 54. 51. .621

24. 66. 63. 61. 59. 57. 55. 1.00
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Table E. 10 
VTC for

n-GaAs n = 1018cm-3

Ex
(meV) dz3TC=200A 400A

Vtc{%
600A

5) :
800A lOOOA 1200A

6. 57. 43. 32. 24, r is. 14.
12. 63. 59. 55. 49. i 45. 41.
18. 65. 61. 59. 55. 53. 50.
24. 65. 63. 61. 59. 57. '■ 54.

Table E.ll 
Vtc for

p-GaAs p = 5xl018cm-3

: ea

(meV) d Z3TC =200A 400A
nTc{%

600A
5)

800A 1000A 1200A
6. 15. 5.2 2.6 - !-7 .97 . .84

12. 58. 49. 42. 36. 31. 27.
18. 61. 54. 47. 41. 36. 31.
24. 62. 56. 50. : 45. 40. 35.

Table E.12 
Vtc for

p-GaAs p = 1019cin '3

Ex
(meV) dz3TC =100A 200A

Vtc{%]

300A 400A 500A 600A
6. 9.8 3.9 2.1 1.2 1.1 .49

12. 45. 28. 18. 13. 8.9 7.0
18. 55. 42. 31. 23. 18. 14.
24. 59. 48. 39. 31. 25. 20.



There will be three comparisons between the results in tables E.9 to E.12. 
First, when comparing the results of tables E.9 and E.10, it can be seen that Vic 
for 5xl017cm-13 concentration is always greater than or equal to the values for 
lxl018cm-13 when the layer thickness is twice as much for the 5x10 cm 
entry Another interesting result of the first table is that if the transparent 
contact is made more thick than 1 /un, the contact is not very transparent.

Second, when comparing the fifth column entry of table E. 10 and the first 
column entry of table E.ll, it can be seen that for photon energies of 6 meV, the 
lower concentration case is the better choice, but for the higher photon energies, 
the higher concentration case is the superior case. This discrepancy arises 
because table E. 10 is for the n-type case while table E.ll is for the p-type case 
and that the free carrier absorption coefficient in the n-type case is assumed to 
be a little higher. If the absorption was the same, the lower carrier
concentration will be the superior choice.

Third, when comparing the proper entries in tables E.ll and E.12, the 
lower concentration, thicker transparent contact case is superior for all layer 

thicknesses and photon energies.
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E.2. The dependence of efficiency upon the amount of metal - f?metal
The efficiency of the metal is simply calculated as the percentage of metal 

that covers the front part of the photodetector. One other effect that might be 
considered but is not here is the effect of diffraction of radiation. Briefly, this 
second effect is minimized if the wavelength to be detected is less than twice the 
spacing between the metals. This diffraction problem is analogous to 
transmission in a waveguide where the cutoff wavelength is related to twice the 

spacing of the waveguide.
The number of contacts must be calculated to determine the percentage of 

metal used. The simplest way to approximate this is to take the ratio of the 
width of the area of the detector divided by the grid spacing or dy/S. For 
dy = 5mm and the six values of S considered in this section, these ratios are 
shown in table E. 13.

The actual number of metal strips, nym depends upon the width of the 
detector - dy, the grid spacing - S, and the width of the metal - Wm. The 
requirements to find nym is that the metal strips be placed upon the detector 
such that the grid spacing is S throughout the area and that the distance 
between the edge of the detector and the nearest parallel strip is less than S/2. 

With these requirements,
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Table E.13 
Ratio of dy /S

s dy/S
(mm) (unitless)

i.o 5
.5 10
.408 13

.25 20

.167 30

.1 50
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nynj = integer
dy-S/2
s+wm

where the integer operator means that the real number is converted to an 
integer and the fraction is neglected.

Section E.2.1 presents r/metai for rectangular grids and sec. E.2.2 presents 
77metai for square grids.

E.2.1 7?metai for a rectangular grid
The efficiency due to the metal for a rectangular grid is calculated as

^?metal j * ' .dx

Table E.14 presents the corresponding values for certain grid spacings and metal 

thicknesses.

E.2.2 ?/metai for a square grid
The efficiency due to the metal for a square grid is calculated as

dxdy—nXm(Wm)dy—nym(Wm)(dx—nxmWni)
' ^metal = A A V

uxuy --J..

Table E.15 presents the corresponding values for certain grid spacings and metal 
thicknesses. It is assumed that dx=dy.

E.3. Conclusions
There are five conclusions revealed during this study. 1) r/ is higher if one 

tries-to lower Rs by applying more metal. 2) As the wavelength gets shorter, 
the TC layer can be made thicker. 3) There will be a wavelength of radiation 
where applying more metal or making d^-pc thicker produces the same drop in 
efficiency. For the contacts presented, this wavelength will be shorter than 50 
fim. 4) The real effectiveness of widening dZ3p>c can best be determined by the



Table E.14
r/metal values for a rectangular grid

Wm = .1 5mm Wm = .05mm Wm = .02mm
s nf ^metal nf ^/metal Vmetal

(mm) (unitless) (%) (unitless) (%) (unitless) {%)
1. 4 88. 5 ■ 95. 5. : 98.

.5 8 : 76. 9 91. 10 96.

.408 ■ 9 73. 11 89. 12 95.

.25 13 61. 17 83. 19 92.

.167 16 52. 23 77. 27 89.

.1 20 40. 34 66. 42 83.

Table E.15
??metai values for a square grid

wm=.i 5mm Wm = .05mm Wm = .02mm
.S' nf ^metal nf ^metal nf .. ^inetal

(mm) (unitless) {%) (unitless) {%) ■ (unitless) (%)
1. 4 - 77, 5 90. 5 96.

.5 8 58. 9 83. 10 92.

.408 9 53. 11 79. 12 91.

.25 13 37. 17 69. 19 85.
,167 16 27. 23 59. «/;■ 27 80.
.1 20 !6. . 1 1 : 34 44. 1 ■£. 42 - ^ 69.
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layer reflectivity

R21 =
(n—l)2 + k2 
(n+1)2 + k2

I ■

The lower this value is, the more likely widening dz3xc will be a proper option.
5) Another implicit physical result is that k = a\f4tt. The longer the 
wavelength, the higher R2i, the less effective it is to widen dz3Tc-

Because of these five results, detectors operating at 20 /im will most likely 
use a thick dz3xc while detectors designed to detect wavelengths greater than 
50/im will have a thin dz3xc an(l a large amount of metal.



■■■ 234

Appendix F.

Ionization effects in a Blocked Impurity Band (BIB) detector

This appendix presents some possible disadvantages due to compensation 
dopants in a BIB detector (See chap. 2). The four components of space charge 
that exist in a PEIR photoconductor also exist in a BIB detector. Ideally, it is 
assumed that the ionized impurities are swept out into the contact fast enough 
such that the ionized impurity concentration is much smaller than the 
compensation dopant concentration [Petroff & Stapelbroek 1984]. Consequently, 
the carrier concentration in the conduction band is also negligible, since they are 
swept out much faster than the ionized impurities [Petroff & Stapelbroek 1984]. 
This assumption will be true only if radiation and thermal generation are low 
enough. If one follows this assumption, the only space charge components that 
may exist are compensation dopants and electron accumulation. The effect of 
the compensation dopants is now discussed in detail.

Three ionization effects exist in a BIB detector: 1) impact ionization, 2) the 
Poole-Frenkel effect, and 3) tunneling-field emission ionization. The Poole- 
Frenkel effect is temperature dependent, while the other two effects are fairly 
independent of temperature and cannot be mitigated by lowering the 
temperature. All three are electric field dependent.

This appendix is separated into five sections: Section F.l presents the
electric field in an impurity band layer. Section F.2 presents the critical electric 
field for impact ionization to occur. Section F.3 calculates the current due to 
the Poole-Frenkel effect. Section F.4 calculates the tunneling current from 
electrons tunneling from an impurity band to the conduction band. Section F.5 
presents the conclusions of this appendix.

F.l Electric field in an impurity band layer

In a BIB detector (n-type), the impurity band is occupied, the electric field 
at one end of the impurity band is zero V/cm, and there are no carriers in the 
conduction band. For these requirements, the depletion region is due only to 
the compensation dopants and the maximum electric field in the impurity band 
layer is
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-qNAid
6

1,800 , NA
eSr l013cm-3

Id
1pm ) [V/cm]

where is the relative static dielectric constant, NA is the compensation 
charge, and Id is the width of the depletion region.

Table F I presents some £d values in Si and Ge for various values of NA 

and ld = 20/«n.
The importance of £d arises due to the field dependence of impact 

ionization, thermal-field emission ionization, and tunneling-field emission 

ionization.

F.2 Impact ionization and the associated critical electric field
Impact ionization has already been considered in depth in a BIB detector 

[Szmulowicz & Madarsz 1987] and only impact ionization with respect to the 
ionization energy is considered in this section [Bratt 1977].

Impact ionization in a n-type extrinsic photoconductor, BIB detector, or 
PEIR photoconductor is defined as the ionization of an electron out of a donor 
level into the conduction band after colliding with an energetic electron in the 
conduction band. After the collision, there are two carriers in the conduction 
band which then have the capability of impact ionizing other electrons in the 

donor levels.
The critical electric field is defined as the electric field where impact 

ionization noticeably increases the number of carriers in the conduction band (in 
n-type devices). In shallow extrinsic photoconductors, the electric field needed 
to cause impact ionization is very small (on the order of 100 V/cm).

The critical electric field can be increased by increasing the dopant 
concentration. The increase in dopant concentration increases impurity 
scattering which helps to prevent the electron from attaining an energy high 
enough to impact ionize.

As discussed at the beginning of this appendix, a BIB detector can be 
limited by impact ionization. The rest of this section presents the critical 
electric field which must be greater than or on the order of £d presented in sec,

F.i. . .
The critical elefetric field (^c) increases empirically 1:1 (approx.) as 

;Nd: -f Na increase [Bratt 1977]. Some breakdown fields are listed in table F.2 

below [Bratt 1977]
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Table F.l
6d f°r various values 
of Na and ld = 20/im

NA(cm-3) ?d(V/cmj

Si 2xl012 -616.
5x1012 -1540.
lxlO13 -3080.
lxlO14 -30,800.

Ge 2xl012 -442.
5xl012 -n°5.
lxlO13 -2210.
lxlO14 -22,100.
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Table F.2
Impact ionization critical fields

semi: dopant B,[eV] £c[V/cm dopant [cm 3]

Ge:In .01 100 1016

Ge:Zn .03 405 1016
; :Ge:Cu .042 630 2xl016

rGe:Cd .054 900 1016

: Si:P .045 ~200 3xl016

Si:As .054 ~300 3xl016

Table F.3
£c for various Ei [Bratt 1977] 

(Nj =5xl017 cm-3)

semi: dopant E,ieV] ?c[V/cm]

Ge:In .01 3300.
Ge:Zn .03 20,000.
Ge:Cu .042 30,000.
Ge:Cd .054 45,000.

Si:P .045 3200
SitAs .054 5000
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Using the 1:1 empirical relationship, table F.3 presents the extrapolated 
critical fields for the materials in table F.2. The number of impurities, Nj, is set 
at 5xl017cm~3. This high concentration can be attained in BIB detectors. To 

prevent the other ionization problems, the impurity concentration will have to 
be smaller for the more shallow dopant levels.

When comparing the results from tables F>1 and F.3, it appears that 
impact ionization will not occur for compensation dopant concentrations below 
5xl012cm 3 for a depletion region of 20 /im.

F.3 Poole-Frenkel effect and the associated thermionic emission current
The current due to the P oole-Frenkel effect depends on the lowering of the 

barrier height [Roy 1986] as an electric field is applied (See Fig. C.3). The 
barrier is due to the sum of the potential of the impurity atom and the potential 
due to the electric field [Roy 1986]. This potential can be written as [Roy 1986]

V(r) =
47rer - qfx

where the electric field is applied in the x-direction and

Vf(r) = -q£x .

This potential is a minimum when [Roy 1986]

ro = (

and

Vf(fo) y/2

Some values of r0 and the lowering of the potential are shown in table F.4.

If one assumes that the energy width of the barrier is very small (the lowest 
leakage current case), one can calculate the lowering of the barrier by 
subtracting the barrier lowering above from the ionization energy. This is



Table F.4
V(r0)/q for various £

-e ’ ro V«(r„)/q V(r„)A

(V / cm) (A)' (meV) (meV)

0 OO o 0

100 1095 -1.10 -1.10
200 774 -1.54 -3.14

500 489 -2.45 -4.85
1000 346 -3.46 -7.0

2000 245 -4.9 -9.7
5000 155 -7.8 -15.3

10000 110 -11. -22.

' Table F.5
Impurity potential barrier height due to an applied electric field

£
(V /cm) Ej = 45meV

• " AT 

35 meV
MmeV)

25 meV 15 meV 10 meV

100 44 34 24 14 9

200 ■ 42 32 22 12 . 7

500 40 30 20 10 ■' 5

1000 / 38 28 18 8
2000 35 25 15 ::5V.:;

5000 30 20 10
10,000 23 13



shown for several ionization energies in table F.5. The barrier height, AE^e, 
equals the ionization energy, EI} minus the lowering of the potential, V(rG)/q.

Considering this barrier lowering effect, the current can be calculated as 
[Sze 1981]

* —AEte
Jte = (A_)l20T2e kT [A/cm2]

where T is the temperature (K), A is the Richardson constant, A* is the effective 
Richardson constant, and AEte is the barrier height.

Figures F.l and F.2 show approximate Jte values for different values of £d 
in some BIB detectors (See sec. A.2.3) for ionization energies of 45 meV and 10 
meV respectively. In these figures, it is assumed that A*/A = .5

F.4 Zener tunneling and the associated tunnel current

The Zener tunneling effect is shown in Fig. C.2. The current due to 
tunneling-field emission ionization (Jtun) can be roughly approximated as [Kane
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•bun 9.ntun bun [A/cm2 ] .

bun is the length over which the field is applied and

2c2 1/2 , -^m?/2AE^2ntua = l-lj m/ e{~^r\ 

187rh 2 AEI/2
cm 3sec

where for simplicity, AEte as defined above is approximated as the energy gap 
[Kane 1959] from the impurity band to the conduction band (n-type). In a BIB 
detector, £ can be set approximately equal to £d. It is assumed herein that the 
mass is isotropic and the mass in the donor band equals the conduction band 
mass (Consequently, mr = me/2 [Kane 1959]). Figures F.l and F.2 present 
approximate tunnel currents in some BIB detectors for different electric fields 
and ionization energies. For the calculations shown in Figs. F.l and F.2, it is 
assumed that ltun = 1. (xm and me=.50.
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Ei =45 meV

10,000

Figure F.l Theoretical Jte and Jtun from the impurity band of a BIB 
detector. Ej =45meV.
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Jte(20K)

EI=10 meV

Figure F.2 Theoretical Jte and Jtun from the impurity band of a BIB 
detector. Ej = 10 meV.



Figures F.l and F.2 show that even though it may be possible to lower the 
Poole-Frenkel effect by lowering the temperature, tunneling-field emission 
ionization is an unavoidable problem because tunneling is fairly independent of 
temperature. More importantly, the value of £d in the impurity band layer must 
decrease as the ionization energy decreases.
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F.5 Conclusions
Two results arise from this limitation on the value of Cd in impurity 

band layer. First, as the wavelength which a BIB detector is designed to detect 
increases [Watson & Huffman 1988], the depletion region width and; 
consequently, the quantum efficiency must necessarily decrease (for the same 
compensation dopant concentration). Second, since (Ec-ED)min decreases as 
the impurity band dopant concentration is increased [Lee & McGill 1975], the 
depletion region width must also necessarily decrease as the impurity band 
dopant concentration is increased.
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Appendix G.

Reflection and transmission for radiation 
propagating normal to a set of layers

G.l Introduction

There are three methods of solving for reflection and transmission at a 
multiple layer sample. 1) Direct solution of Maxwell’s equations at the 
boundaries. 2) Solving for the n+1 layer sample using the results of the n layer 
sample. 3) The matrix analysis described in Born and Wolf appears to be the 
most versatile and the simplest to solve. It appears that the way to solve for 2 is 
just a special case of 3. 1 and 2 are described in detail in this section, 3 was not 
found until after these two previous methods. The first two methods are strictly 
for normal incidence but can be expanded to oblique incidence. Before this is 
done, Born and Wolf should be considered since the matrix analysis therein 
should be conceptually easier to solve. At this time Born and Wolf has not been 
considered because normal incidence is adequate enough for the case in interest.

G.2 Direct solution of Maxwell’s equations

This method was first attempted and determined to be too difficult for 
anything more than three layers (It will be considered that the number of layers 
includes the two semi-infinite layers.

Consider a three layer sample (See Fig G.l). The left layer is labeled the 
first layer, the middle layer is labeled the second layer and the right semi-infinite 
layer is labeled the third layer. Assuming normal incidence, select the x-axis 
such that the total component of the electric field is directed in the x-direction. 
The electric fields in the layers are then

Exl =(E+1e_jkz,z-t-E-je^V^ ,

Ex2 = (E+2e“jky2Z + E-2e+jka!Z)eja;t ,

and

E„3 = (E£e"ik-,’-|l)fJ"1
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where 1 is the second layer’s thickness.

The magnetic field necessarily points in the y-direction and using one of 
Maxwell’s equation

<9Exm <3Hyi
~lh~ =~JT = ~^11^ ’

Hyi = Eie~jkzlZ 4 jkzl E~x^z)^ ,

Hy2 = 3^7T(-j^2 E+2e“jk-z H- jkz2 E^e^')^ ,
J fJsUJ

and

Hys = •
J fJ,LU

These tangential electric and magnetic fields must be continuous across the 
boundaries. Using this result on the previous equations, @ z = 0, Exl = Ex2 
and

Exi .H- Exi = E J2 + Ex2 .;

@ z = 1, Ex2 = Ex3 and

E^e“jkz21 +E^e+jkz21 = E^ . J;

@ z — 0, Hyi — Hy2 and

Jkzi(-Exl +Exj) = jkz2(—Ex2 + Ex2) .

@ z.= 1, Hy2 = Hy3 and
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jkz2(—Ex2e jkzsl + Ex2e+'’ 22 — jkz3( Ex3) .

The wave number kzl is related to the complex index of refraction by the 

equation

kzl - J— = wVWi = <A/Voeo V^T
vi

where nci is the complex index of refraction, nri is the real part of the index of 
refraction and is the imaginary part of the index of refraction, also known as 

the extinction coefficient.

For the second and third layers,

kz2 = —(nr2-jK2) = —K2)
c c

and

kz3 = —(nr3-j«3) = -7K3) • 
c c

Reinserting this relationship into Maxwell’s equations at the boundaries,

h,:; 1 k„ i-:;, • i;r. , (A1)

::ff: ExvHk*' +Ex2e+ikJ =ej, , .(**)

rtci (—Exi +Exi) =nc2(—Ex2 + Ex2) (A3)

and
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nc2(—E^2e jkr"1 + Ex2e+jk221) = nc3(—E+3) . (A.4)

There are two ways to eliminate the constants (ie. E+2 , Ex2 of the
electric and magnetic fields. First, the electric fields are compared at all 
adjacent the boundaries and the magnetic fields are compared at all adjacent 
the boundaries. For a three layer sample, multiply (Al) by nc2 and add to (A3),

(nc2 nci) Exi 4- (nC2+nci) Exl = {2nc2)Ex2 (A5)

and multiply (A2) by nc2 and add to (A4),

(2nC2) Ex2e 22 = (nc2—nc3) Ej3 . (A6)

Second, the electric and magnetic fields are compared at the boundary of 
the semi-infinite layers. For a three layer sample, multiply (Al) by -e-jkz21 and 
add to (A2),

(E+i + Exl)-e_jk221 +E+3 =Ex22jsinkz2l (A7)

and multiply (A3) by —e_-ikr21 and add to (A4),

nci (~Exl + Exl)—e •’kz21 — nc3E+3 = nc2Ej22jsinkz2l . (A8)

Comparing equations (A5) and (A6),

[(nc2—nci) Exl + (nc2+ncl) Exl]e+jkJ = (nc2-nc3) E+3 . (A9)

Comparing equations (A7) and (A8),

[(nC2+ncl) E& + (nc2-ncl) Exl]e"jkz21 = (nc2+nc3) E+3 . (A10)

Eliminating Ex3 from eqns. (A9) and (A10),

Exi _ (nc2+nci)(nc2—nc3)e — (nc2—ncl)(nc2+nc3)ejkz21

E^i (nc2 +ncl )(nc2 +nc3)ejkz21 - (nc2 -ncl )(nc2 -nc3)e~jkr21
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(Dc2-ncl)(nc2+nc3)ejk^1 - (nC2+nci )(nc2—n^je j 22 ^

(nc2 +ncx )(nc2 +nc3)e* 82 — (nc2—nci)(nc2—nc3)e

(nc2nc3 —nc2 ncl )coskz2! + j (n c2 —nci nc3 )sinkz21
^ (nc2nc3 +nc2nci )coskz21 + j(nc2 +ncinc3)sinkz21

—Hcl (nc2 COskz2 l+jl1c3sln^cz2 0 + nc2(nc3CQS^z2l+jnc2‘
^ nci (nc2coskz2l-f-jnc3sinkz21) + nc2 (nc3coskz21+jnC2sinkz21)

is calculated by comparing (A9) and (A 10),
Ei

: E+3 (D-c2~l~ncl) (nc2 ucl) (A12)

Exi nc2 (nc3 "H&ci )2coskz21 + j(iic2+ncinc3)2sinkz2l

To compare this transmission coefficient with the transmission coefficient in 
P ankove [P ankove 1971], the equation needed to be considered is

Exf3 ^; ] > ■ ; (nc2+ncl)2-(nc2-nci)2 ■ : : ;

Exl (nc2 +X1 cl)(nc2 +11 c.3V 2’ — (oc2—ncl)(nc2—nc3)e

In Pankove’s book, nci — nc3 — 1., so
Ex3 (nC2+l-)2— (nC2~l-)2

(nc2+l.)2ejk^ - (nc2-l.)2e“jky-

In Pankove’s book, Rein is defined as

_ (nc2 —j)2

(nc2+l)2

so



. e^3 _ (i-Rem)e-jk^ t V

E+i 1-Reme~j2k-1

The transmission coefficient, Tem, is defined as

(l.-Rem)2e~2aEl 
(1-—Reme 2Q!e1(cos/$—jsin/?l))2

where kz2=^—jaE and aE is the absorption coefficient of the electric field (not 
the intensity). Rearranging the denominator,

The intensity absorption coefficient, a, is related to aE by
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E+-= IS?-!2-
E+xl

a = 2ctfg .

Subsequently,

Tem 7;li-C7 -•“‘l-H.v- ' TO-’I (A13)

while in Pankove’s book

Tem
(1.—Rem)2e 1
l.-RLe~2al (A14)

The difference between Pankove’s equation (A14) and equation (A13) is 
that Pankove uses Fresnel’s equations for intensities. Pankove’s procedure is an 
incorrect procedure, the correct procedure is to use Fresnel’s equations for 
electric fields and multiply the transmission coefficient of the electric field by its 
complex conjugate to get the transmission coefficient for the intensity. This is 
clearly shown in sec. 7.6 in Born and Wolf.
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In conclusion, the correct form of Tem is

(l.-Remfe2 — Oil
T'm l.+ltLe 2'"-2R„,e *'cOT.^

G.3 Solving for the n+1 layer sample using the results of the n layer sample.

Although the procedure in the previous section is straightforward, the 
mathematics become very tedious. To avoid this problem, another approach 

can be used. ,
Unlike the last section, the layer labeled 1 will be on the transmission side 

(the right side in Fig. G.2). The electric field equations in the layers are in the 

first layer

fi*xl — ^xle >

the second layer
■ .f'i;

Ei2 = (E+2e"ik"(,) +E^e+iU*>) ,

and the third layer

E„ ■- (E£e"ik‘*(,+'s) + E«e+iM'+*J)

In general, for the mth layer,

E
,/TT'+ ~ jkzm(z+zm-l) _1_P— +jk2m(z+zm *.) \

:m = l^xm*5 + ^xme )

The magnetic fields in the layers are

-1
Hyi -—; -( kzlExie

-jkzi(z)

for the first layer,
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Zls ZL4 Zl3 Zjj2

*5

k5

t4 t3

k4 k3

^2

k2

^c6 nc5 nc4 nc3 nc2 ncl

Figure G.2 Parameters needed to calculate the reflection coefficient (six 
layer sample) v
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Hy2 =
-1
j

(-kz2Ex2« -jk^W + kz2Ex2e+jk>2(*) )

for the second layer,

Hy3 =
-1
'MM

( kz3Ej3e—jkz3(z+z2) + kz3Ex3e- „+jk2g(z+z2) )

for the third layer, and in general,

IT —1 / 1. Tj'+ -jkj.n.lz+z.n-i) , 1_ •g - +jk2m(z+Zm-l) VHVm = ----KzmExme T KzmJixme )
y :

for the xnth layer.
Due to Maxwell’s equations, the boundary conditions are that the 

tangential magnetic and electric fields at an interface must be continuous. 
Assuming that there are no magnetic effects, k = w/c nc where nc is the complex 
index of refraction. Keeping this relationship in mind, the boundary conditions 
are for the first layer-second layer interface

E& =E+2 +Ex2 (Bl)

and .

—nclExl =nc2(—Ej2 +Ex2) , (B2)

for the second layer-third layer interface

; Ej2e+fei2 +Ex2e“jky2t'2 = E+3 + Ex3 (B3)

and

nc2(—Ex2e+jky“t2 +Ex2e jk*t2) = nc3(-E+3 +Ex3) , (B4)

for the third layer-fourth layer interface
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E^e+Jl-‘* +E^e_ik“'* =EJ4 +.E«
(B5)

and

^(-Eie^+E.le-^j-^f-Ei +Ei) . (B6)

In general for the mth layer-(m+l)th layer interface

R+ p+j^antm i Tp — __ pi + , pi
£,™e -T ^xme - ^x(m+1) + Ex(m+i) (B7)

and

ncm( Exme zm m + Exme } zm m) — nc(m+1)(—Ej(m+1),-|- Ex(m+1j) . (B8)

Comparing —xm to .. x(m+1)
E?m E+(m+1)

+ f+Jk*E+m( +
Exm )K
E +

) ®x(m+l) + Ex(m+i) (B9)

and

n™Ex+mH+i1"*" -f = nc(m+1)(-Ej,m+.) + E-(la+1)) . (BIO)
■ ^xm

Changing the exponentials to sines and cosines,

E ~ e ~
E£n((l + -^-)coskmtm + j(l - -^-)sinkzmtm) =E+(m+1) +Ex(m+1) (Bll)

“xm

and
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^im( nc
e; E

E +■..

xm
tm + j(l + •—-—)sinkzm tm) —■ ■

E

< nc(m+l)( Ex(m+1) "k Ex.

e;Eliminating E+(m+i) (except in the ratio j——)> 
v ' ETfWH(m+1)

e;
(-nCm)((l - T^)cosk l^m + j(l + ■ )sinkznit 

^xm
mA^xfmH

n,
E-+ —^-)coskzmtm + j(l — —^)sinkzmtm)(—Ex(m+i) + Ex(m+i)) (B1'3)

Ev~ E7J xm

®x(m+l) . o i
Rearranging the equation, the ratio ——-----is tound as

n,

E x(m+l)

Ex(m-f-l)

n,

(r+|HL)coskmtm+j(l-|^-)si
zm^m

xm

E_ E~(1------^-)coskzrntm~ + j(l + —^-)sinkzmtm
^xm ^

-) - hcm

(1 + T7'+ -)coskzmtm + j(l — +_ )sinkzmtm

• (B14)

E xm

(i - 2sL;vuoJVEm
E xm

4m + j (1 + . -)sinkzmti:
Eytti

nr

Zjm, which is defined as the normalized input impedance, is

(1 + ^f^-)coskzmtm + j(l - T^")si 

E,™ Exm
zm^m

(1 - -^-)coskzmtm + j(l + —^-)sinkzmtm
Eym E^Jxm Jxm
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then (B14) becomes

Pe m
E;
e;

ncm2l(m_ i) nc(m—1)
a ,

ncmZi(m—1) ~f" nc(m—1)
(B16)

where pem is defined as the reflection coefficient. To relate ZIm to Zi(m_o, place 
the results from (B16) into (B15),

(j _ ncmZI(m-1)COskzmtm + jlWm^sink^ntm
zim----------------—----------------• A. ■ . (B17)

nc(m-i)Coskzmtm + jncmZI(m_.1)sinkzmtm

This is related to the input impedance Zjm in Ramo, Whinnery, and van Duzer 
[Ramo, Whinnery, Sc van Duzer 1965] by

fi Zim

where ^ is known as the intrinsic impedance.

Now that one knows the reflection coefficient, the transmission coefficient is 
rather straightforward. One has to consider the boundary conditions equations 
of the electric field. For the first layer-second layer interface

®xl = Ex2 + Ex2 . (Bl)

For the second layer-third layer interface

E*e+jk-* + = Ej, + E,T3 . (B3)

For the third layer-fourth layer interface

ESe+ik“l*+E^e“il,“l!=E+1+E«; . (B5)

In general for the ith layer-(i-f-l)th layer interface
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®xme+jkz + E- -frz = E+'x(m+l) x(m:

(i + ————-)Ex2 • (B18)
nc2 + nci

(e**4 + nc2 .^Le-jkz2t2)E + 
nc2 + ncl

(1 +
nc3 ZI2 — nc2

A

nc3ZI2 + nc2

- ^_e-i^,)E& = (l . ——~)Ex4 • (B20)
nc3 Zj2 "H Dc2 Ilc4^I3 ,”h **c3

In general for the ith layer-(i+l)th layer interface

(e + ncm^l(m-l) -nC(m-l) .-jkz...V)F,^ =

^cm ^I(m—l) 4" nc(m—l)

/ nc(m+l)^Im ncm; (14- V \ —)E?(m+l)
nc(m+l) ^Im 4" nem

Using (B21), one can find the ratio,

Exm

V ^ ^ nc(m+l)^Im ncm ^

E-c(m-l-l) ^Im 4" ncm
_j_ ^

E x(m+l) / ^-t-jkzmtln + ncmZI(m-l) ~ nc(in-l) jkzmtm^

ncm^I(m—1) nc(m—l)

(B21)
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f ' fc g

(nc(m+l) ^Im + ncm)(I1cinZl(m-i)COskzmtln + jil^m-ijsinkjjmtjn) 

From (B18),

. (B22)

-^xi _ 2nc2
Ex2 nc2 + ncl (B23a)

Using (B22),

E^2 (nC3Zi2)(nC2 +ncl) ■ 

(nc3Zi2 + ^C2 )(^c2 coskZ2t2 + jnclsinkZ2t2)
(B23b)

E+-x3 K4Zl3)(nc3Zi2 + nc2)
E+x4 (nc4ZI3 + nC3)(^C3ZI2coskz3t3 + jnc2sinkz3t3)

(B23c)

and

E+x4 (nc5Zi4)(nc4Zi3 + nc3)

EX5 (nc5Zl4 + nc4)(nc4ZI3coskz4t4 + jnc3sinkz4t4)

E.+

(B23d)

Jlj i

Using equations (B22) and (B23), one can solve for ——. For 4 layers (2

semi-infinite layers),
Exm

E +xl E^i EJ2 EJ3

e+4 eJ2 EJ3 ex4
_ , 2nc2nc3nc4 

+ ~ ^ ~~Z ' /
nc4 Z13 + nc3

^12 ZI3
Kjcosk^t, + jnclsinks!t,] [nc3ZI2co8kl3t3 + ^1^1

In general,

(B24)
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b a

®x(m-f 1.)
-4

m+1

-(n nciXii
Zii

nc(m+l)Zlm+ncm i-2 ' i=2 [n^Z^-ijcoskaiti + jnc(i_1)Smk2.iti]
)

E+xl

E+^xm

m m—1
-(n^ciKn

Zii

ncmZl(m-l) +nc(m-l) i=2 >=2 [nciZi(i_i)coskzi+ jnc(i-i)smkziti]

where rem is known as the transmission coefficient. 

Using equation (B17),

E+;
7" omn

Xl
e;

m m—1

-(rM(nli *"•:= i-2 ; 2 [nc(i—l)cosk:zi*i + jnci^I(|—i)Brnk-ati.]

So in conclusion,

Um
^m^^in-ll^^zin^m jnc(m-l)sln^zm^in 

^■c(m^l) ^^zm “h j-^cm ^I(m—1 j

where ZIm is defined as the normalized input impedance* Combining (B14) and
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Pern
E,m ncm2l(ni—i) nc(m—1)

A

ncm2i(m—1) .4" nc(m—1)
(Bl#)

where pem is defined as the reflection coefficient.

E +
^em

xl
E +

m m—1■dinciX n
ncmzi(m-i)+nc(m-i) i-2 i=2 [n^.^coskzitj + jnei ZI(i_1)sinkziti

-) (B26)

where rem is defined as the transmission coefficient.

Zim and Pem are discussed in depth in Ramo, Whinnery and van Duzer 
[Ramo, Whinnery, & van Duzer 1965].

For these equations, it can be noticed that there are four variables - the 
wavelength, the mdex of refraction, the layer thicknesses and the number of 
layers.
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absorption
band to band 1,41,100-101,122,125-139 
free carrier 41,42,52,102,105,108-116,161,164,222-229 
from a dopant site 1-9,12-13,15,17,29,41-61,68,102,105-108,125,140,160 
infrared radiation 11-13*17 
intersubband 117-124
phonon 16,41,42,68 
region 129-139 

array 2,9,15,17,20,80 
CCD 16-17 
CID 16-17 
DVR 16

background radiation (See noise or generation, background) 
barrier height 108-128,132-139,238-240 
blocking layer (See layer) 
contacts (See layer) 
cross section

absorption 12,26,41-61,125,160 
carrier capture 7,14-16,31,32,152-159,160-162,181,182,186,197,201,204-221 

crosstalk (optical) 102 
current

background 64,69,172 
background noise 64 
dark 64,105,143,144,147-150 
leakage 132 
optical 64,170 
RG noise 64,150-152 
signal 64,151-152,170 
signal noise 64 

DX 60,115,161
D* 15,17,63,67-72,152-159,172,199,202 '
dielectric constant 26,29,43-46,161,163,167,168,222-229,235,244-260 
efficiency 16,31,69,80,102,124,125,170,173,179-221,222-233,243 
free carrier absorption (See absorption) 
gain 15-16,64,65,67,80,122,172
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generation 11,64
background 9,13-14,16,18,20,31,34-37,38,65-69,106,125yl65,166,173-221,234 
thermal 13-14,16,18,20,38,65,105,125,141-159,160,166j234

heavy doping parameters 14,17
7,8,11-12,24-26,30-37,39,59-61,77,80,167 

AEC 11-12,24,28-37,39,167 
<Tdos 11-12,24,26-28,30-37,39,167 

impurity band conduction 7,102
impurity band energy width - Bt (See heavy doping parameters) 
impurity band energy levels

excited state 13,15,17,20-21,24,35,38-40,41,54 
ground state 12-13,20,24-40,41,47,52,54 

impurity band layer (See layer) 
index of refraction (See dielectric constant)
ionization energy Er 8,13,15,43-51,52-61,72-76,81,161,164,167,168,235,240-243 
ionization processes 11

impact ionization 9,13-14,16,17,18,20,38,78,120,168,234-238 
thermal-field emission ionization (Poole-Frenkel effect) 13-14,18,20,38,108,

140.168- 169,234-235,238-240
tunneling-field emission ionization (Zener tunneling) 13-14,18,20,38,108,

140.168- 171,234-235,240-243 
ionization ratio 128
layer, contact, region

active region 2-4,10,72-79,80,163,173-221 
blocking contact 9-10,14,16,120 
blocking layer 4-7,19,22-23,72-79,105-108 
impurity band layer 2-7,9,18-23,72-79,105-108,140 
ohmic contact 9-10,14,16,173-179,186-221,222-233 
substrate contact 3-10,72-79,105-108,163,173-179 
transparent contact 3-10,17,72-79,80,105-108,161,163,173,186-195,222-233 

multiplication region 129-139 
narrow gap problems 1-2,16,99,125,128 

' noise 17
avalanche 99,128-139 
amplifier 63
background 7,9,14,16,20,63,65,67-69 

' dark 67,141' V
excess noise factor 128-139 
NEP 67-68,152,172 
RG 14,20,63,64,141,160



263

shot 63,64,139 
signal 63,64,67 
thermal 63,64,65,154,160 

photodetector 
APD 1,99
BIB detector 9,43,80,99,105-108,139-140,234-243
channeling APD 139
effective mass filter IS-PC 99,100,122,139
extrinsic photdconductor 1,7,16,21,80,99-103,141-159,164,173-177,179, 

182-184,194,199-202 
graded gap APD 137,138,139 
graded well SLIP 115-116 
grating IS-PC 124
intrinsic photoconductor 1,7,16,65,69,80,99-103,122,125,128,141-159,164, 

173-177,179-182,194,195-199 
IS-PC 17,118,119,139 
one carrier detectors 1,139 
photomultiplier 16,128 
pin photodiode 1,16,99 
quantum well APD 134,136,139 
quantum well IS-PC 122,124 
resonant IS-PC 122,123
RTS-APD 137 
sampling IR detector 125 
SAM-APD 129-132,139 #S
PEIR photoconductor 1-17,18-23,24-40,41-62,63,68-71,72-79,80-81,99,125, 

128,139-140,161-171,173,175,177-179,184-221 
SLIP 108-115,139
staircase APD 134,135,139 
strained-layer superlattice photodiode 99,100,125-128 
strained-layer superlattice photoconductor 99,125-128 
submillimeter photoconductor 99,100,102-105,139 
superlattice APD 132-133 
superlattice detectors 16,80,108-128,132-139 
tunneling IS-PC 17,118-121,122,139 
two carrier detectors 1,69,129,139 

plasmon 124
recombination (collection) 14-15,21-22,38-40,64,115,145-159 
reflection coefficient 124,222-233,244-260
resistance
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active region 14,173,179-187,195-221 
parasitic (contact) 14,17,80,160,164,170,173-221 

semiconductor
AlxGai_xAs 15,16,17,44-51,59,60,68,111
GaAs 17,44-51,59,68,111,193,195,196,213,222-229
GaAs:Be 9,44-51,59,73,220
Ge 15,16,17,44-51,201,235
Ge:Cu 154,156,157,201
Ge:Hg 154,157,201
Ge:Sb 44
Hgi-xCdxTe 1-2,100,102,122,125,128,158-159,198 
InGaAs 68 
InSb 60 
InAs 60
Pbx_xSnxSe 1,102 
Pb^S^Te 1,102 
Si 15,16,17,44-51,128,201,235 
Si:As 9,201 
Si:Bi 9
Si:P 9,13,43,59,74 

space charge components 17
compensation dopants 11,14-15,18-23,27-28,30-37,78,105,108,146-157,165, 

183,187,199-221,234-243
carriers 7,11,14,18-23,30-37,39,105,108,165,173-221,234 
electron accumulation 11,15,18-23,28,38,80,105,234 
ionized impurities 7,11,18-23,30-37,105,108,166,234 

temperature of operation 7,13,16,20,27-28,75,80,102,140,164,177,240-243
time

carrier lifetime 11,14-15,141-159,165,179-221 
dielectric relaxation time 161 
response 78,80
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