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1. Introduction

In this report, the remote sensing system simulation is used to study a 
proposed sensor concept. An overview of the instrument and its parameters is 
presented, along with the model of the instrument as implemented in the 
simulation. Signal-to-noise levels of the instrument under a variety of system 
configurations are presented and discussed. Classification performance under 
these varying configurations is also shown, along with relationships between 
signal-to-noise ratios, feature selection, and classification performance.

2. Instrument Description

Driven by the recent advances in optical detector array technology and 
the opportunities for a permanent polar orbiting platform provided by the 
upcoming space station program, research and development has been 
progressing on a High Resolution Imaging Spectrometer (HIRIS) [1]. This 
instrument is planned to be a part of a cluster of scientific instruments forming 
the Earth Observing System (EOS) to be launched in the mid 1990's. This 
international group of instruments will provide many new forms of scientific data 
of the Earth's surface & atmosphere.

The HIRIS instrument will provide high spectral resolution samples 
across the visible and near infrared portions of the optical spectrum by the use 
of large CCD infrared detector arrays. The incoming radiance will be spectrally 
dispersed onto the arrays to provide one line of spatial data in each of the 
spectral bands simultaneously, as shown in Figure 1. The two dimensional 
image is then formed by the forward motion of the instrument platform.

In the proposed instrument there will be two separate detector arrays to 
cover the entire spectral range. The Very Near InfraRed (VNIR) array will 
provide 64 bands between 0.4 and 1.0 pm, while the Short Wave InfraRed 
(SWIR) array will contain 128 bands from 1.0 to 2.5 pm.

Functional parameters of the instrument are summarized in Table 1. One 
particular item of note is that the maximum output data rate is smaller than the 
internal data rate, thereby necessitating data editing or compression be 
performed on board the instrument.
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Direction

Figure 1. Imaging Spectrometer Configuration

Design Altitude 705 Km
Ground IFOV 30 m
SwathWidth 20 Km
Spectral Coverage

Average Spectral Sample Interval

0.4 - 2.5 pm 
192 Bands

0.4 -1.0 pm 9.4 nm
1.0 -2.5 pm

Pointing
11.7 nm

Down-track +60°/-30°
Cross-track +20°/-20°

Data Encoding 12 bits/pixel
Maximum Internal Data Rate 512 MBPS
Maximum Output Data Rate 300 MBPS
Image Motion Compensation Gain 1,2,4, or 8

Table 1. HIRIS Functional Parameters
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This instrument will be operated in an on-demand mode by gathering 
data only at the request of a scientific investigator. As part of that request, the 
investigator will need to specify several mission parameters. A typical list is 
given in Table 2. The goal of this report is to investigate sensor performance 
under a variety of mission parameter settings.

LocationofObservationSiteonEarth 
Time of Day/Year or

Zenith Angle of Sun
Relative Azimuth between Sun and HIRIS 

Look Angle of HIRIS 
Acceptable Atmospheric Quality 
IMC Gain State 
Radiometric Resolution 
Spatial Data Editing/Compression 
Spectral Data Editing/Compression ______ .

Table 2. Example HlRlS MissionParameters

3. Instrument Model

For this investigation the model shown in Figure 2 is used for the HIRIS 
instrument. This model version has 201 equally spaced (10 nm intervals) 
bands from 0.4 to 2.4 pm and includes most major spectral, spatial, and 
radiometric effects of the instrument. The model was implemented in the system 
simulation program described in reference [2].

Instrument parameters have been obtained from a progress report by 
JPL (reference [3]). These parameter levels are based upon preliminary 
specifications and prototype testing.

The following paragraphs and figures detail the blocks in the overall 
diagram.

3.1 Optics. The spectral transmissivity of the instrument optics is shown 
in Figure 3. Note the low response at the spectral gap between the VNIR and
the SWIR arrays at 1.0 pm.

The normalized spatial response of the optics and field stop is assumed 
to be similar to the that of the Landsat Thematic Mapper instrument, as they both 
have a GIFOV of 30 meters. Figure 4 shows the measured down scene and 
across scene normalized responses as a function of angular distance, taken 
from reference [4]. The data points shown are the discrete values used in the 
simulation. At the nominal altitude of the instrument, the distance on the ground 
between these data points is approximately 7 meters.
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Figure 2. HIRIS Model Block Diagram
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The radiometric conversion from the incoming spectral radiance 
(mW/cm2-sr-pm) is accomplished by dividing by 1000 mVWW, and multiplying by
the AQ, the product of the detector area and the solid angle of view, of the 
optics. The output of the optics model Px, the incident spectral power, is then in
units of watts/pm. The AQ used in the model is

AQ = 1.44 x 10‘6 cm2-sr.

3 2 Detector. The spectral quantum efficiency of the detectors is shown 
in Figure 5. The incident spectral power Px at wavelength V is converted to a 
number of electrons S at the detector by the integration of the incident photon 
level over the pixel integration time, as in equation (1).

S = P1 •AX*  t O')A, he
where,

AX =  10 nm, wavelength interval of spectral samples
X = wavelength of interest (pm) 
h = 6.62 x 10’34 Joule-sec, Planck's constant 
c = 3 x 108 meters/sec, the speed of light 
t = 4.5 millisec, pixel integration time

Since the noise level data and full scale specifications were obtained in 
terms of number of electrons, the signal level is stated in these same terms and 
is unitless.

The Image Motion Compensation (IMC) is implemented through 
movement of the down-track pointing mirror to offset the platform speed and 
effectively multiply the pixel integration time by the gain state selected: 2, 4, or 8.
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Figure 5. SpectraIQuantumEfficiency

3.3 Noise. The noise in this model consists of a deterministic dark signal 
level, and random shot and read noise. Thermal noise has been found to be 
insignificant. All noise is considered to be stochastically independent between 
noise types and spectral bands. While calibration errors are expected to be 
significant, data have not been obtained to develop an appropriate model. 
Thus, this type of error has not been included as of yet.

The dark current level is given in Table 3. This level is added to the total 
received signal.

VNIR 0 e-
SWIR 2.7 x 104 e*

Table 3. Darkcurrentlevelsintermsof electrons

The shot noise in the model consists of zero mean Gaussian random 
numbers with a standard deviation equal to a function of the total signal level in 
the detectors. This total signal is comprised of the incoming radiance, and the 
dark current level mentioned above. Figure 6 shows several points relating 
total signal and shot noise levels, along with a best fit curve and its equation.
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600

y = - 1061.1 + 278.05*LOG(x) RA2 = 0.931

Signal Level (electrons)

Figure 6. Shot Noise vs. Signal Level

Thus, the standard deviation of the shot noise process is given by 
equation (2).

a Shot = ' 1 0 6 0  +278logio S' (2)

S' is the total detector signal level in electrons. Note, this relationship is 
assumed to be independent of wavelength.

Read noise is added in as a zero mean Gaussian random number with a 
standard deviation as in Table 4. Within each detector array, the read noise 
level is assumed to be constant over wavelength.

VNIR 300 e-
SWIR 1000 e-

Table 4. ReadNoiseLeveIs

3.4 Signal Conditioning. Table 5 gives the full scale e- values F for each 
detector array. These are values obtained from the JPL report, and as with all of 
the data values presented, should be considered to be subject to change.
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VNIR 577,395 e-
SWIR 1,441,440 e-

Table 5. Full Scale Electron Levels F

The conversion from the e* levels S" (received signal plus noise) to a 
digital number (DN) occurs as in equation (3).

DN = nintI l iw ^ F  * ' 2°  (3)
where

IMC = IMCGain State
F = Full Scale Electron Level
Q = Number of radiometric bits (nominally 12)

The division by the IMC gain state is included to preserve the dynamic 
range of the detectors over the various gain states.

4. Signal to Noise Variations

This section presents the results of the effect of varying system 
parameters on the signal-to-noise ratio (SNR) of the HIRIS model.

In many Earth resource analysis remote sensing applications, the output 
product is some form of classification map of the observed area. The 
classification is usually obtained by a computer algorithm that uses the mean 
and covariances of the multispectral image data to distinguish between the 
classes. Thus, in this application, not only are signal levels important, but so 
are signal power variations.

To gain a more realistic sense of how the system parameters affect HIRIS 
performance, two versions of SNR are defined: Voltage SNR, and Power SNR. 
These are defined for each spectral wavelength band m as in equations (4) and
(5).

Voltage SNRm
PmGm m

20 Iog10I / o 2 +O2 +O2V  shot.m read.m quant y
(4)

where,

Power SNRm = 10 Iog1 <
ofL Gm m m

O2 +O2 +G2shot.m read,m quant J

Pm = Mean surface reflectance at wavelength band m

9 4/20/89



<4 = Variance of surface reflectance at wavelength band m
G = Conversion factor with units of number of electrons due to the m .

solar irradiance at the surface, atmospheric transmittance, and 
the sensor response for wavelength band m

°shot,m =VarianceofshotnoiseinwaveIengthbandm

°fead,m = Variance of read noise in wavelength band m

°quant = Variance of quantization noise

The quantization noise is assumed to be uniform with a standard 
deviation of

quant
A_
12

where A is the number of electrons per digitization interval.

For 12 bit radiometric resolution and the full scale values in Table 5, the 
standard deviation of the quantization error is given in Table 6.

VNIR 41 e-
SWIR 102 e-

Table 6. Standard Deviations of Quantization Error

For the SNR results included in this report, the system configuration 
shown in Table 7 was used as a baseline. The solar illumination and 
atmospheric effects were obtained using the LOWTRAN 7 [5] computer code. 
The 1976 U.S. Standard Atmosphere with rural extinction was used.

Meteorological Range 16 Km
Solar Zenith Angle 30°
Solar Azimuth Angle 180°
View Zenith Angle 0°
View Azimuth Angle O0
IMC Gain State 1
Sensor Noise Levels Nominal
Radiometric Resolution 12 bits

Table 7. Baseline System Configuration for SNR Study

Figure 7 shows the voltage SNR for three surface albedos and the 
baseline system configuration of Table 7.
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LOWTRAN 7

Albedo *  1.00 

Albedo = 0.10 

Albedo = 0.01

Wavelength

Figure 7. SNR of HIRIS for various albedos using LOWTRAN 7 and the 
baseline system configuration given in Table 7.

For the study of parameter effects on SNR, it was decided to use typical 
surface reflectance statistics rather than a deterministic albedo. The surface 
reflectance statistics used were obtained from a site in Finney County, KS on 
May 3, 1977 [6]. 1551 observations were combined from three classes: winter 
wheat, summer fallow, and an unknown class. The mean reflectance and 
variation of this data ensemble are plotted in Figure 8.

To obtain an idea of how this reflectance is modified by the atmosphere 
and sensor response, a simulated image was created using the baseline 
system configuration and the reflectance of Figure 8. The resulting mean digital 
counts and their variation are shown in Figure 9. Several effects are 
immediately noticeable. The absorption bands of the atmosphere are present, 
as well as a reversal in the relative values of the visible and infrared responses 
due to the solar illumination and gain settings of the sensor. Also, an apparent 
reduction in relative variation is seen due to the additive constant path radiance 
and dark current in the instrument. No correction for these effects was made.
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Figure 8. Mean and variation of the surface reflectance of the combined 
dataset.
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Figure 9. Mean and variation of image vector as received by HIRIS.
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The following Figures 10 through 21 show the Voltage and Power SNR 
variations as a function of the parameters shown in Table 8.

2,4,8,16,32 Km 
0°, 15°, 30°, 45°, 60° 
0°, 15°, 30°, 45°, 60° 
1 ,2 ,4 ,8  
1/4,172,1,2,4 
8,10,12,14,16 bits

Meteorological Range 
Solar Zenith Angle 
View Zenith Angle 
IMC Gain State 
Sensor Noise Levels 
Radiometric Resolution

Table 8. Parameters Studied and Their Variations
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Figure 11. Power SNR for varying Meteorological ranges.
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Figure 12. Voltage SNR for varying solar zenith angles.
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Figure 14. Voltage SNR for varying view zenith angles.
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Figure 15. Power SNR for varying view zenith angles.

16 4/20/89



Po
w

er
 S

N
R

 (
dB

) 
Vo

lta
ge

 S
N

R
 

(d
B)

0 .4  0 .6  0 .8  1.0 1.2 1.4 1.6 1.8 2 .0  2 .2

Wavelength

Figure 16. Voltage SNR for various IMC gain states.
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Figure 17. Power SNR for various IMC gain states.
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Figure 19. Power SNR for varying factors of shot and read noise.
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Several common features of all the graphs are immediately noticeable. 
The wide water absorption bands are present at 1.4 and 1.9 pm, while several 
narrow absorption bands due to other atmospheric constituents are also 
present. The relatively low SNR's around 1.0 pm are due to the instrument 
optics and detector response fall off at the spectral gap between the VNIR and 
the SWIR arrays.

Looking at the effect of the meteorological range, one observes a more 
pronounced effect on the SNR in the visible and near infrared portions of the 
spectrum, than those at longer wavelengths.

Considering the goniometric configurations, the effects on SNR of 
varying the solar or view angle seem to be similar, at least for the system 
configuration chosen. Note that these variations here are only due to the 
atmospheric effect, as angle dependent reflectance variations of the surface 
were not considered in this model.

The effect of the IMC and noise level parameters seem to be reasonable 
and consistent. The radiometric resolution has little effect on SNR at resolutions 
of 12 bits or more. This seems to indicate that the quantization error at 12 or 
more bits is insignificant compared to other noise sources, while at 8 or 10 bits 
quantization error becomes the dominant noise source.
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5. Parameter Effects on Classification Accuracy

The effects of the parameters in Table 8 were also studied on the 
classification performance of the HIRIS instrument. Simulated scenes were 
generated using the three classes of the Finney County data set of May 3,1977 
and the system simulation program [2]. Since the model HIRIS sensor 
generates images with 201 bands, a feature selection algorithm was applied 
that combines bands together to form each feature. For the following 
experiments, a set of 16 features were used with a maximum likelihood 
multivariate classifier (Gaussian assumption) to assess accuracy. Table 9 
shows the wavelength bands combined for each of the features. These features 
are based upon the algorithm described in reference [7]. Table 10 contains
relevant system parameters used in the simulation.

Feature Wavelength (pm)
1 0.70-0.92
2 1.98-2.20
3 2.20 - 2.40
4 0.66 - 0.84
5 1.48-1.64
6 0.52 - 0.66
7 1.64-1.78
8 1.16-1.28
9 0.96-1.06

10 1.04-1.12
11 0.94-1.00
12 0.44 - 0.50
13 1.12-1.16
14 0.92 - 0.96
15 0.40-0.44
16 1.00 -1.04

Table 9. Features used in classification experiments.

Scene Size 90 by 90 Pixels
Scene Pixel Size 15 meters
Image Size 45 by 45 Pixels
Number of Pixels per class 675
Numberoftrainingsamplesperclass 300

Table 10. System Simulation Parameters.

The following Figures 22 through 27 show the results of the various 
parameter changes on classification accuracy. The accuracies shown are the 
average of the three class accuracies, and represent the mean of 10 repetitions 
of the simulator.
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Figure 22. Classification accuracy vs. meteorological range.
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Most of these results are as one would expect. In hazier atmospheres, or 
with high noise levels the accuracy decreases. Figure 24 showing the effect of 
view angle is a little less intuitively satisfying. The sudden rise in classification 
accuracy at a view angle of 60° is surprising. This seemingly abnormal result is 
due to the complex interaction of the scene pixel size and the sensor spatial 
response. At this view angle the distance on the ground between samples of 
the discrete spatial response becomes approximately 15 meters, the same as 
the size of the scene pixels. At angles less than 60°, about 25 scene pixels 
were appropriately weighted to form one image pixel. Now, at 60°, about 45 
scene pixels are combined. This has the effect of reducing the within class 
variation and increasing the class separability and classification accuracy.

This result points out how complex interactions between components of 
the system can affect classification accuracy. It also points out some of the 
pitfalls in the use of a discrete simulation for the study of system effects. One 
must exercise caution in specifying system parameters and in interpretation of 
results.

One significant part of the real instrument not included in the model of 
Figure 2 is error in radiometric calibration. This omission is mainly due to the 
fact that adequate data does not exist to develop a model for this error. To test 
the significance of this omission, a model of the error based on percentage of 
value, and distributed uniformly with a mean of zero, was inserted before the 
signal conditioning. This error is distributed randomly across the image and 
represents a relative error. Figure 28 shows the effect of this error as it varies 
over the range of 0.0 to 4.0 percent.
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Figure 28. Accuracy vs. Relative Calibration Error

This model for calibration error shows a significant effect for errors on the 
order of one percent of value or greater, and shows the importance of accurate 
relative calibration.

Next, an experiment was run to evaluate the interrelationships of two 
parameters. The effect of the IMC gain state on classification accuracy vs. 
meteorological range was studied. Figure 29. shows the result. It appears that 
the IMC gain state has a greater effect on improving classification accuracy in 
hazy, or low meteorological range, atmospheres. But, even in clear 
atmospheres the higher gain state shows an improvement.
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Figure 29. Classification accuracy vs. meteorological range for several
IMC gain states.
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6. Relationships between SNR, Classification Accuracy,
Separability, and Feature Selection

In this section we discuss computing the SNR based on the combined 
features, and present results showing the relationships between this SNR, class 
separability and classification accuracy for several feature sets.

In calculating the SNR of a feature, the signal and noise levels of the L 
component wavelength bands are combined. In the case of the voltage SNR, 
the signal levels are simply added together, as are the variances of the noise 
levels. This is shown in equation 6.

For the power SNR, the signal levels cannot be simply added because of 
the band-to-band correlation present in the reflectance data. Here, the signal 
variance is the sum of the individual variances, plus terms due to the covariance 
between each pair of bands I and m, combined in the feature as in equation (7).

An experiment was then carried out to determine if the SNR of a 
particular feature had any effect on its importance in classification. The 
combined voltage and power SNR's of the feature set shown in Table 9 were 
computed and the results shown in Figure 30.

Feature Power SNR 10 Ioi
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Figure 30. SNR's for features of Table 9.

These features were then ranked according to the measures of Table 11. 
Then the effect of these rankings were measured by computing accuracy vs, 
number of features ordered by each ranking measure. The results are shown in 
Figure 31.

Measure Ranking order
Bandwidth 
Voltage SNR 
Power SNR 
V-P SNR

Decreasing bandwidth of feature 
Decreasing Voltage SNR of feature 
Decreasing Power SNR of feature 
Decreasing difference between Voltage 

and Power SNR of the feature

Table 11. Various rankings of the feature set. The ranking order is for 
increasing feature number.
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Figure 31. Classification accuracy vs. number of features for several 
different orderings of the feature set.

The ranking by bandwidth, as in Table 9, appears to have the best 
performance for small numbers of features. For one feature, the feature with the 
highest power SNR performed the best, and above 9 or 10 features, all rankings 
performed similarly.

An observation of these results is that the SNR of any individual feature is 
a poor predictor of that feature's importance when included in a multi-feature 
classification algorithm.

To obtain an overall measure of the SNR for a set of features, the method 
behind equations (6) and (7) was extended to combining the signals and noise 
from all wavelength bands contributing to the feature set.

To relate these combined SNR's to classification accuracy, a scatter plot 
was made of the SNR's for the various configurations used to produce Figures

« ■ ■ B 1» ■

Bandwidth 

Voltage SNR 

Power SNR 

V - P SNR
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22 through 27, and the resultant classification accuracies. This is shown in 
Figure 32 for the voltage and power feature SNR’s.
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Figure 32. Classification accuracy vs. combined feature SNR.

Attempts to fit a linear or polynomial equation to these plots yielded a 
correlation coefficient of 0.71 for the best fit, that being a 3rd order polynomial. 
While there is a general relationship here between SNR and classification 
accuracy, they appear to be loosely correlated at best.

Also in this experiment, a multiclass implementation of the transformed 
Bhattacharyya separability measure was used to compute the effect of the 
parameters on separability. Equation (8) shows the two class transformed 
Bhattacharyya distance.

B.. = 1 - e u
-a

where,

“  = ̂ i  'M i)

/  V1Z. + Z.I J
V /

+ 1  log,
(£. + X.)/21

(I2JI2J)1

Here, Mj is the feature mean vector of class i, while Ej is the feature 
covariance matrix of class i. The multiclass separability is computed using the
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apriori probability weighted sum over all classes i, j of the two class distances, 
as in equation (9).

Separability itjs1 jas1

p(o).)p((o.)Br 'J
(9)

The plot of the classification accuracy vs. separability is shown in Figure 
33. The p2 value of the linear best fit line is 0.93. Thus, over this range of 
classification accuracy and separability there is a high correlation between the 
two.

Separability

Figure 33. Classification accuracy vs. transformed Bhattacharyya distance.

A plot of the separability vs. SNR is shown in Figure 34. The best fit line 
has an p2 = 0.62 for the voltage SNR and p2 = 0.63 for the power SNR.

A tentative conclusion from these results is that while separability and 
classification accuracy are highly correlated, much less correlation exists 
between either the voltage or the power SNR and classification 
accuracy/separability.
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Figure 34. Transformed Bhattacharyya separability vs. combined feature SNR.

Several sets of six features (shown in Table 12) were used to evaluate 
their classification performance.

Feature SFD TM WSNR NSNR SSFD SSNR
1 0.42-0.66 0.45-0.52 0.40-0.70 0.51-0.56 0.59 0.54
2 0.66-0.84 0.52-0.60 0.77-0.90 0.81-0.86 0.75 0.84
3 0.70-0.92 0.63-0.69 1.00-1.10 1.02-1.07 0.81 1.04
4 1.48-1.64 0.76-0.90 1.15-1.30 1.20-1.25 1.56 1.11
5 1.98-2.20 1.45-1.75 1.50-1.74 1.59-1.64 2.10 1.61
6 2.20-2.40 2.08-2.35 1.97-2.40 2.16-2.21 2.30 2.19

Table 12. Wavelength bands combined for the various feature 
sets. The various feature sets are defined as SFD = Spectral 
Feature Design algorithm, TM = Landsat Thematic Mapper, WSNR 
= Wide Signal-to-Noise Ratio, NSNR = Narrow Signal-to-Noise 
Ratio, SSFD = Single band Spectral Feature, SSNR = Single 
band Signal-to-Noise Ratio.

The SNR features were chosen based upon regions of high SNR. These 
various sets were chosen to see how classification accuracy and combined 
signal-to-noise ratios compared. Figure 35 shows the combined SNR for the 
various feature sets, while Figure 36 shows the resultant classification accuracy 
for the baseline image used in this report.
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Figure 36. Classification accuracy for the various feature sets. 

Clearly, the SFD features performed the best for this data set.
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The robustness of the spectral feature design algorithm was then studied 
by comparing the accuracy of the various feature sets in classifying scenes 
created from other data sets than those from which the features were derived. 
Two other scenes were tested. One was created from reflectance data of three 
varieties of spring wheat. The second was from an artificial data set created 
from the covariance matrices of barley, pasture, and grain sorghum, with the 
same mean vector (that of barley). This was done to decrease the class 
separability and increase any difference in the classification accuracy due to the 
differing feature sets. When the original means were used all feature Sets gave 
99.9% accuracy. Tables 13 and 14 gives the specific fields from the LARS field 
data base combined for the two data sets.

Classes Field Number of Observations
Spring Wheat 118 13

154 29
199 28
291 28
292 16

Total = 114
SW 1809 296 28

303 58
Total = 86

SW Mix 75 13
281 55

Total = 68

Table 13. Classes and fields used to compute statistics for the Spring Wheat 
test scene. The data is from Hand County, South Dakota, on July 26,1978.

Classes Field Number of Observations
Barley 153 26

231 21
294 55

Total = 102
Pasture 109 43

194 45
198 24

■ Total = 112
Grain Sorghum 110 15

256 51
275 36

Total = 102

Table 14. Classes and fields used to compute statistics for the Crops 3 
test scene. The data is from Hand County, South Dakota, on July 26,1978. In 
simulating the scene, the mean vector of the Barley class was used for all three 
classes.
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Figure 37 shows the resulting accuracy for the various features and for 
the two test scenes. The crops 3 scene was tested for IMC = 1 and 8 to see the 
effect of increasing the SNR of the instrument on classification performance.
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Figure 37. Classification accuracy for the various feature sets over two test
scenes.

In all cases the features formed from the wavelengths used in the 
Landsat TM performed the best. The features derived from the high SNR 
regions also performed well. Compared to these two feature sets, the SFD 
feature set performed poorly.

This leads to a tentative conclusion that over varying scenes, the 
features derived from the reflectance of a different crop type, or scene, perform 
less well at classification than features derived from signai-to-noise regions of 
the instrument, or even the wavelength bands used in the Thematic Mapper. 
This is not surprising since the SFD procedure is intended to be case-specific; it 
is intended to provide features optimal for its design case, as compared to being 
optimal in the general case.
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7. Summary and Conclusions

This report summarizes the current status of research into predicting the 
performance of the HIRIS instrument under varying system parameters, signal- 
to-noise conditions, and feature extraction methods.

Several tentative conclusions can be made.

• The current noise levels of the HIRIS instrument are adequate for use 
in classification studies.

• The radiometric resolution of 12 bits is well matched to the other 
sources of noise. At 8 bits, the quantization error becomes the 
dominant source of noise.

• The SNR of a feature obtained by combining bands is a poor 
predictor of the effectiveness of that feature alone in multivariate 
classification algorithms.

• The combined SNR of a feature set is a "loose" predictor of 
classification performance.

• Classification and separability are highly correlated.

• The features derived from the spectral feature design algorithm work 
well for a scene created from the statistics used in their design. 
However, they are not broadly optimum, and can be outperformed by 
more simply chosen feature sets.

Further work is necessary before etching these conclusions in stone.
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