
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

3-1-1989

Adding SLIP Support to UNIX System V
K. B. Sheets
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Sheets, K. B., "Adding SLIP Support to UNIX System V" (1989). Department of Electrical and Computer Engineering Technical Reports.
Paper 652.
https://docs.lib.purdue.edu/ecetr/652

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages

HHHHHMNI

I l l l l l I I l lI l i f
■ ■ ■ ■ ■ ■ ■ I

m M m m m m M m m m

wmmmmmmmmm. . y . . v r . j . j . j . j .

Adding SLIP Support to
UNIX* System V

K. B. Sheets

TR-EE 89-20
March, 1989

School of Electrical Engineering
PurdueUniversity
West Lafayette, Indiana 47907

♦UNIX is a registered trademark of AT&T.

Adding SLIP Support to UNIX* System V

by
Kitrick Sheets

Agriculture Com puter Network
Purdue University

W est Lafayette, Indiana 47907

TR-EE89-20

March, 1989

* UNIX is a registered trademark of AT&T.

ACKNOW LEDGEM ENTS

I would like to thank the other members of ACN for their patience and support during

the testing of this package.

ii

TABLE OF CONTENTS

CHAPTER

1. Introduction

2. Agriculture Computer Network Configuration

3. Software Overview ..
3.1. System V STREAMS
3.2. Structure of WIN3B
3.3. Streams != Clists

4. SLIP Implementation
4.1. /etc/slipdaemon
4.2. SLIP Service Provider
4.3. SLIP Line Discipline

5. SLIP Configuration

6. Closing Remarks •...........
6.1. Future Directions
6.2. Conclusion ..

REFERENCES ..

I

I

2
4
4
5

6
6
7
9

10

14
14
14

15

iii

ABSTRACT

SLIP (Serial Line Internet Protocal)[ROMK88][KARE86] is a means by which a serial

line may be used as the data link interface for TCP/IP communication [POST80]. This

document describes software which can be used to enable a computer running UNIX* System

V Release 3 and equipped with the WIN3B [TWG86] software to utilize SLIP. This software

is necessary to our organization since we have several UNIX machines for which no ethernet

interfaces are available and from which we would like to be able to access the campus net­

work.

* UNIX is a registered trademark of AT&T.

I. Introduction

Serial Line Internet Protocal (SLIP)[ROMK88][KARE86] is a means by which a serial

line may be used as a data link interface for TCP/IP communication [POST80]. This docu­

ment describes software which enables a computer running UNIXt System V Release 3 and

equipped with the WIN3B [TWG86] software to utilize SLIP. Since the WIN3B package has

no provision for utilizing a serial line as a network interface, software had to be developed

which would accomplish this task. This software is necessary to our organization since we

utilize several UNIX machines for which no ethernet [METC76] interfaces are available and

from which we would like to be able to access the campus network. By connecting these

machines via SLIP to a 3B2 with an ethernet interface, we are able to gateway through the

3B2 onto the ethernet and thus have access to the entire campus network.

What follows is a discussion of the SLIP implementation for System V and how it is

used in our environment. As background for this information, however, I will first begin with

an overview of our network configuration at ACN. I will then discuss briefly the other

software packages involved (WIN3B and ka9q). Finally I will describe our SLIP implementa­

tion and how it fits together with the other packages to provide cohesive network solution. ;

2. A griculture Gomputer Network Configuration

The Agriculture Computer Network (ACN) consists of several AT&T 3B2/310 comput­

ers and one 3B2/500 computer all of which are connected to the campus network via an eth­

ernet interface. In addition to these, we also maintain several AT&T 3bls and UNLXPCs

t UNIX is a registered trademark of AT&T.

which are used as single user workstations. Finally there is one NCR Tower XP which is used

for software development and testing. The 3bIs, UNIXPCs, and the NCR are all connected to

the 3B2s via UUCP over RS232 connections.

In addition to supporting these machines on campus, ACN also maintains computers in

each of the counties throughout the state which consist of a smattering of the above systems.

At the present time all of these systems are connected via UUCP to the 3B2/500.

Although users at remote county sites rarely need access to the campus network at the

present time, we see this changing in the near future and plan to expand the software

described in this document to support dial-up IP [LANZS9j. However, a more pressing need

was to connect the on-campus resources that we currently maintain more closely to the

campus network.

3. Software Overview

The software described in this paper interfaces with two other software packages which

are currently available to provide TCP/IP support in a System V environment. The first of

these which is available for the AT&T 3B2 computer is the WIN3B package from The

Wolongong Group. This package provides an implementation TC P/IP over ethernet. It is

this package which provides the upper layers of TCP/IP which will be used in our SLIP

implementation. The other package which is used is the ka9q internet software package

[KARN87] which is in the public domain. For our purposes, this package acts essentially as a

user level daemon which communicates using internet frames over a serial link; This package

is used on our. AT&T 3bls, AT&T UNIXPCs, the NCR Tower XP to provide telnet and ftp

access to/from these systems. This package was written primarily for use on PCs funning

M ath

Ag Administration Smith Hall

AT&T 3B2s

AT&T 3Bls

Campus Network

UUCP Network

Agriculture Computer Network

DOS but with very little effort was ported to our System V UNIX environment.

3

In order to understand our implementation of SLIP, some knowledge of the structure of

WIN3B, System V STREAMS [RITC84], and the UNIX tty subsystem [BACH86] is needed.

The following sections briefly describe each of these. For more background on these see the

referenced material.

3.1. System V STREAM S

STREAMS was first developed at Bell Labs as an alternative to the character I/O sub­

system of UNIX. The principle behind STREAMS is to allow layering of drivers and protocol

modules in such a way that a logical software organization can be achieved. Using this model,

a user could build a ’’stream” of successive modules which would each handle a logical chore

in the processing of data. TC P/IP is a good candidate for this since it has several layers each

of which need to manipulate the incoming and outgoing data. In ISO reference model terms

[TANE81], at the bottom of the stream would be the device driver, on top of that would be

the transport module, then the network module, etc. Each of these modules would be respon­

sible for manipulating data going both up and down the stream as required for that layer of

software. In STREAMS, each of these protocol modules is called a ’’service provider.

Figure I shows a logical representation of the STREAMS mechanism using TC P/IP as

an example.

3.2. Structure of W IN3B

The WIN3B package uses this layering mechanism in its TC P/IP implementation. At

the bottom of the stream is a network interface driver which controls the ethernet hardware.

Above that is an ARP module which is responsible for the TC P/IP address resolution proto­

col. Layered on top of this is an IP module and then a TCP module. Since STREAMS allows

4

Kernel

Bus Interface

Figure I. Example Streams Configuration

Device
Driver

Network Support Library

multiple connections to a module, a gateway can be formed by connecting two network inter-

faces at the bottom of the stream. It is also possible to connect users directly to the JP

module instead of the TCP module thus allowing UDP and TCP connections in the same

configuration.

3,3. Streams !— Clists

STREAMS modules pass ’’messages” up and down the stream in order to send or receive

data. At the bottom level, the device driver takes these messages arid transmits them onto

the device. It also takes input data and sends it up stream. The problem with this is that

serial devices in System V use clists (a linked list of small buffers of characters (cblocks)) to

communicate with the device. Therefore, some mechanism must be employed to convert the

messages coming down the stream into clists for transmission on the device. The opposite

must be done when input is received since all input characters are also stored in clists.

Although eventually all System V character device drivers will utilize STREAMS, they all

currently use clists. When this transition takes place, the conversion from STREAMS mes­

sages to clists will be unnecessary.

4. SLIP Im plem entation

This SLIP implementation consists of three parts: I) a STREAMS service provider, 2) a

SLIP tty line discipline, and 3) a daemon process which is used to configure the serial lines to

be used in SLIP communication. The following sections describe each of these in detail.

4.1. /etc/slip d aem on

In order to give the administrator some control over the configuration of the serial lines

used, there is a daemon process which is used for this purpose. Its primary purpose is to set

baud rates for the lines which will be used for communication. When the process starts up, it

reads a configuration file which lists the lines which are to be used and the baud rate which

will be used for communication. It then configures each of the lines at the requested baud rate

and hangs thus keeping the configurations static for when the TC P/IP software utilizes the

device. An example configuration will be explained in more detail in the next section.

6

4.2. SLIP Service Provider

The SLIP service provider has three major functions; to associate a stream with a physi­

cal channel, to translate STREAMS messages to/from clist format so that they can be

transmitted on the device or moved up stream, and to add and remove the SLIP encoding

used to mark the end of incoming and outgoing frames.

The association of a stream with a physical tty device is done in the slipopenQ routine.

This open routine is accessed through a device entry which has a major number associated

with the SLIP module and which has encoded in the minor number the major/minor pair for

the target tty device. For example, if the major number for the SLIP module is 86 and we

want to use /dev/tty11 for a SLIP channel, the device entries would look like the following:

crw-r—r— I root

crw-r— r— I root

other I, 0 Mar 14 10:35 /dev/ttyll

other 86, 10 Mar 14 10:34 /dev/slipll

In this example, an open of /dev/slip ll would cause an association to be established

between the newly created stream and the device /d ev /tty ll. This is done by changing the

line discipline associated with the tty to the SLIP line discipline (discussed later). Therefore

any data received on this stream will be transmitted on the associated device. Also any data

received on /d e v /tty ll will be sent up the associated stream. This completes the logical link

between the stream and the device. This link will remain intact until the stream is closed at

which time all output pending to the device is flushed and the line discipline associated with

the tty is reset.

7

Once the association between the stream and the tty is established, data can flow

up/down stream as though a normal streams device were attached at the bottom.

As data enters the SLIP service provider from upstream, the message type is checked so

that the proper action can be taken. There are three main types of messages which can be

received by this module. They are control messages, protocol messages, and data messages.

Each of these messages has a different meaning in the STREAMS context and requires a dis­

tinct action.

Control messages are used to send control and status information to/from the module.

When this type of message is received, it is an indication that the stream has been assembled

and is ready for communication. The service provider can simply discard this message since it

is.essentially just notification that the stream is assembled.

Protocol messages are used by upper levels to find out specific information about a ser­

vice provider or device driver. It inquires about information such as the minimum and max­

imum packet sizes accepted by the device, the size of an address, type of network provided

(e.g. point-to-point, bus, token ring), the current state of the connection, etc. When a proto­

col message is received, a reply to the specific information requested is assembled and sent

back up stream. This information will be used by the upper layers of software to assemble

messages to be sent over this link.

In STREAMS there is the notion of immediate and deferred processing of messages.

Important messages such as control and protocol messages require immediate action and are

serviced when received. Data messages on the other hand are placed on a queue and serviced

at a lower priority. The processing of this data in STREAMS is done before a return to user

mode. The kernel will see if there are any queues which need serviced and call the appropriate

service routine for that queue. In STREAMS there is a read side and a write side of a module

and as such there is an associated read and write side service routine.

In this implementation the write side service routine slipwsrv() is responsible for most of

the data manipulation chores. It takes each queued message and performs two actions on it.

The first is to encode the incoming data in SLIP format. This involves placing a ’’frame end”

(FREND) character at the end of each message. It must also escape any FRENDs which are

contained within the data of the message so that when it is coalesced at the other end the

message will be received in one piece. The second job that slipwsrv() performs is to take the

translated data and place it onto the output clist for the device. This is done by allocating

cblocks (small buffers to hold characters) as needed, filling them with the data and linking

them onto the clist. This clist is then ’’drained” at interrupt level by the line discipline as

described in the next section.

As part of the SLIP service provider there is also a read side service routine sliprsrvQ.

This routine is responsible for passing the data received by the line discipline up stream to the

upper layers of software. It also provides a flow control mechanism by keeping data on its

queue until the upper layers of software can handle it.

4.3. SLIP Line D iscipline

The SLIP line discipline is the portion of the software which is responsible for transmis­

sion and reception of the data to/from the physical line. It is also responsible for decoding

incoming data into frames which can be sent up stream. There are two routines which make

up the line discipline portion of the module, slipinQ and slipoutQ.

9

The slipinQ routine (or any line discipline input routine for that matter) is called by the

device driver each time an input interrupt is received. It is the job of the line discipline to

process this data in some manner expected by the user. In our case this would be docoding

the data from SLIP format and reconstructing the frame which was sent from the remote

host. Since the data received on an interrupt is in a cblock buffer, it must be copied to a tem­

porary buffer which is used to collect an entire frame to be sent up stream. As soon as the end

of the frame is encountered, it is sent up stream and the frame building procedure starts all

over. This procedure continues until the device is closed.

The slipout() routine is also called at interrupt level. This time, however it is on the

receipt of an output interrupt. This signifies that the last cblock which was queued for output

has been transmitted and the hardware is ready for another one. Since the output clist has

already been built by the slipwsrvQ routine, all that needs to be done is to take a cblock off

this list and queue it for transmission by the hardware. This procedure also continues until

the output is exhausted or the device is closed.

Since there is no direct interaction with the user at this level, these two routines are all

that are necessary to complete the line discipline.

5. SLIP Configuration

There are several steps which must be performed in order to configure SLIP into a sys­

tem equipped with the WIN3B software. The first of these is to configure the SLIP service

provider/line discipline into the system. This requires that both the /etc/system file and

/etc/master.d/kernel files must be updated. The /etc/system file is a list of drivers and

modules which are to be configured when the system boots. A line must be added to this file

10

which tells the system to configure the SLIP module at boot time. This line will look like this:

INCLUDE: SLIP

The next step is to add the SLIP line discipline to the list of available line disciplines in

/etc/master.d/kernel. These are kept in the lineswf] table which appears as in Figure 2.

By adding slip as a valid line discipline, it is now possible for the driver to access it at

interrupt level by indexing through linesw[]. As soon as this file is updated we need to run

the command mkboot -k /boot/KERNEL in order to update the kernel data structures con­

tained in this module so that the change will be present after the next boot cycle.

The next thing that needs to be done is to modify the /usr/etc/inetinit.cf iile which con­

tains the streams configuration which is built for TCP/IP. By adding the following lines:

slO /dev/slipll /dev/ipO 2 remote local

sll /dev/slipl2 /dev/ipO 2 remotel Iocall

we are configuring two serial devices to be used for communication.

In this example, the device /dev/tty11 will be used to communicate between hosts

rem ote and local. According to the WIN3B documentation, local and locall need to be dis­

tinct aliases for the local host if more than one network interface is used. The 2 in the above

line specifies to WIN3B that this is a point-to-point network. The /dev/ipO in the above line

tells WIN3B which module to push on top of SLIP. Finally, the slO is used as an identifier

for WIN3B to keep track of distinct streams.

Next we need to create the /etc/slipconfig file which will give a description of how to

configure the SLIP channels we will be using. An example of this file is the following:

11

* Line Discipline Switch Table
* order: open close read write ioctl rxint txint modemint

Iinesw (% I %1 %1 %1 %1 %1 %1 %1 %1 %1 %1 %1 %1 % I %1 %1 % 1 %1 %1 % 1
={

* tty
Aittopen,
Aittclose,
Aittread,
Aittwritej
Aittioctl,
&ttin,
Aittout,
&nulldev,

Ainulldevj
Ainulldevj
Ainulldevj
Ainulldev,
Ainulldevj
&xtin,
Aixtout,
Ainulldev,

* sx t...........
&nulldev,
Ainulldev,
Ainulldev,
Ainulldev,
Ainulldev,
Aisxtin,
Aisxtout,
Ainulldev,

* slip -
Ainulldev,
&nulldev,
Ainulldev,
Ainulldev,
Ainulldev,
Aislipin,
Aislipout,
Ainulldev,
}

Iinecnt (%i) ={4}

Figure 2. Example lineswf] table from /etc/master.d/kernel.

12

/dev/ttyll 9600

/dev/ttyl2 19200

At the present time, this file contains only the device and baud rate. Howeveryit will be

expanded in the future to include another field which specifies whether the link is permanent

or temporary (i.e. if it is a hard link or if it is to be used for dial-up IP).

Finally, we need to add a script in /etc/rc2.d which will be used to start the slipdaemon

used to configure the serial lines which will be used. An example of this script is shown in

figure 3.

This script will only start a daemon if there is not one currently running.

PROC=slipdaemon

pid=‘ps -ef I grep ”${PR0C}” | sed -e ”/grep/d” | sed ’s /[]*["]*[]*]*) .* /!/’' I

case "Si" in
start)

if [! ”${pid}”]
then

/etc/slipdaemon > /dev/console 2>&1 &
■ fi

stop)
if [”${pid}”]
then

kill ${pid}
fi

esac

Figure 3. Example startup script for /etc/slipdaemon.

13

Now that we have all of this done, we are ready to reboot the system. We need to make

sure that /etc/system is booted since the kernel has been updated as well the addition of SLIP

to the desired configuration. This can be done by either executing shutdown -i6 or by execut­

ing shutdown ~i5 and booting /etc/system manually from firmware mode. Once the system is

rebooted, we should now be able to communicate over the newly configured serial link.

6. Closing Remarks

6.1. Future D irections

Work is currently under way to expand this software to support dial-up IP. This will

allow us to pull the rest of our systems (i.e. those which reside in counties throughout the

state) into the campus network.

6.2. Conclusion

By implementing SLIP on the AT&T 3B2 systems, we were able to organize our on-

campus resources in a much more cohesive fashion. We are now able to communicate with

any host on the campus network from our workstations without having to use multiple com­

munication protocols thus simplifying data transmission greatly.

1 4

REFERENCES

[BACH86]
Bach, M. J., The Design of the UNIX Operating System, Prentice-Hall, Englewood Cliffs,
NJ, 1986.

[KARE86]
Karels, M. J., "Changes to the Kernel in 4.3BSD,” Unix System Manager’s Manual
(SMM), April, 1986.

[KARN87]
Karn, P., "The ka9q Internet Software Package”

[LANZ89]
Lanzillo, L., Partridge, C., "Implementation of Dial-up IP for UNIX Systems,” Proceed­
ings of the 1989 Winter USENIX Technical Conference, San Diego, CA, Jan. 1989, pp.
201-207.

[METC76]
Metcalfe, R. and Boggs, D., "Ethernet: Distributed Packet Switching for Local Com­
puter Networks,” Communications of the ACM, 19(7), 395-404, July 1976.

[POST80]
Postel, J. (ed.), ”DOD Standard Transmission Control Protocol,” ACM Computer Com­
munication Review, VoL 10, No. 4, Oct. 1980, pp. 52-132.

[RITC84]
Ritchie, D. M., ”A Stream Input Output System,” AT& T Bell Laboratories Technical
Journal, Oct. 1984, Vol 63, No. 8, Part 2, pp. 1897-1910.

[ROMK88]
Romkey, J., A Nonstandard for Transmission of IP Datagrams Over Serial Lines: Slip;
RFC 1055, Internet Working Group, Requests for Comments, No. 1055, DDN Network
Information Center (NIC) at SRI International, Menlo Park, California, June 1988.

[TANE81]
Tanenbaum, A., Computer Networks, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[TWG86]
The Wolongong Group, Inc., Enhanced TCP/IP WIN/SB Administrator Guide for the
AT& T SB2 Computers, 1987.

15

	Purdue University
	Purdue e-Pubs
	3-1-1989

	Adding SLIP Support to UNIX System V
	K. B. Sheets

	tmp.1542052450.pdf.OYGmC

