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A B S T R A C T

This paper addresses the mathematics for using monocular model-based vision to find 
the 3-D positions of circular and spherical model features, and, for the circular case, 
orientations as well. Monocular model-based vision here refers to the use of a single 
projective image of modeled objects to solve for the 3-D positions and orientations of 
the objects in the scene. The mathematics for solving 3-dimensional position and 
orientation of the object from matched model and image points/lines features are well 
known. However, no known paper addresses spherical features arid very few papers 
address the mathematics involving circular model features. This paper describes a 
novel closed-formed solution for the 3-D position and orientation of a circular features 
and the 3-D position of a spherical feature. The number of solutions for the circular 
case is found to be two in general, but there is only one solution when the surface nor
mal of the circular feature passes through the center of projection. There is only one 
solution for the circular case. Advantages of this method are: (1) Handles spherical
as well as circular features. (2) Closed-form solution. (3) Gives only the necessary 
number of solutions (no redundant solutions). (4) Simple mathematics involving 3-D 
analytic Geometry. (5) Geometrically intuitive.

INTRODUCTION
Monocular vision can be used to find 3-D position and orientation of an object if 

the object model is known. Most of the mathematics developed for recovering the 
object position from a monocular image is based on point features [Fischler, 
Ganapathy, Haraliek a,b, Shiu, Wolf]. If the correspondence between image point 
features and model point features are known, viewpoint recovery mathematics can be 
use to find the 3-D position and orientation of the object position. In model-based 
monocular applications, this correspondence is not known initially. However, heuris
tics are used to hypothesize the correspondence between the image features and the 
model features. The correspondence hypothesis can be used to calculate the object 
position. The hypothesis is verified by projecting the model at the calculated position 
onto the image plane and compare it with the input image. If it closely reseriible the 
image, the hypothesis is taken as the result. Otherwise. further hypotheses will be 
generated until one is verified to be true. The mathematics* based ori line features has 
also been developed [Lowe] and is similar to that of using point features.

Viewpointrecbverymathematicsforpointandliriefeaturescannotbeappliedto
objects dominated by circular and spherical features, because either there are no ver
tices or lines present in the image, or the vertices or lines in the image does not have 
corresponding vertices or lines in the 3-D object model. Example of the first case is 
the image of a ball; it does not have points or lines. Example of the second case is the 
image of a circular cylinder; it has four vertices and two straight lines but none of



them have any corresponding vertices or lines in the 3-D object model. Thus, special 
viewpoint recovery mathematics is needed to be developed for circular and spherical 
features. The availability of such mathematics allows the recognition and location of 
3-D objects dominated by circular and elliptical features from a single perspective 
image.

There is no previous work for the viewpoint determination of spherical features 
that the authors know of. However, there are some previous work related to the 
viewpoint determination for a circular feature. Haralick et. al. [Haralick a,b] 
developed viewpoint determination mathematics for second-degree curves. Although 
their method is more general in the sense that it handles second degree curves and not 
just xircles, it has the drawbacks that it is iterative, that an initial estimation is 
required, that the number of possible solutions are not given, and that no geometric 
interpretation is given. It is also not clear how the iterative solutions will perform 
when the method tries to find all the 6 degrees of freedom of the circular feature while 
the circle can only be fixed to 5 degrees of freedom because of its rotational sym
metry. Mulgaonkar [Mulgaonkar] gave an iterative solution to determine the 
viewpoint of a circular feature. Marimont [Marimont] presented a closed-form solu
tion for the circular feature. However, his method is mathematicallymore complex 
than this paper’s approach. His paper is based on linear algebra rather than 3-D ana
lytic geometry, resulting in solutions that are not geometrically intuitive. Marimont5S 
method gives 8 solutions: 4 of them are behind the camera and 4 of them are in front 
of the camera. The solutions are redundant because he stated that out of the 4 solu
tions in front of the camera, there are 2 distinct ones. (In fact, there may be I or 2 
distinct solutions. K the surface normal of the circular feature passes through the 
center of projection, there is only one solution. Otherwise there are two solutions.) 
Lastly, Marimont’s method does not allow spherical features.

We have developed a closed-form method for viewpoint determination for not 
only circular features, but also for spherical features. The method is based on the for
mation of a second degree cone having the center of projection (camera focal point) as 
vertex and passing through the ellipse on the image plane. Because 3-D analytic 
geometry is involved, the solution is geometrically intuitive. It also uses simpler 
mathematics compared to Marimont’s method [Marimont] and it does not give redun
dant solutions.

Section 2 discusses not only why the projection of 3-D circular and spherical 
features onto the image plane are ellipses, it gives the mathematics to find the image 
ellipse given the 3-D position of a circular or spherical feature. Section 3 discusses the 
mathematics for viewpoint determination given the ellipse on the image plane and the 
radius of the model circular or spherical feature.



2 PROJECTION OF CIRCULAR AND SPHERICAL FEATURES ONTO  
THE IMAGE PLANE

There are two reasons to study the projection of circular and spherical features 
onto the image plane: (I) To understand the formation of the image ellipse. (2) 'Fo 
find the equation of the image ellipse for simulation needs. We will first address the 
case of a circular feature. Then the spherical case will be discussed.

2.1 PRO JECTION OF CIRCULAR FEATURE
In Figure 2.1.1, we have shown two coordinate frames. The camera frame x-y-z 

is a 3 dimensibnal frame with the origin as the projection center and has its .;z-axis 
pbintihg to the direction it is pointed. The image frame u-v is a 2 dimensional frame 
with the u and v axes parallel to the x and y axes of the camera frame, respectively. 
F r o m  similar triangles shown in Figure 2.1.1, we can relate the 3-D coordinates (x,y,z) 
to the image coordinate (u,v) as follows:

U
fpx

Z

v = ^ p , '

where f0 is the focal length of the camera. In reality, image coordinates are given in 
pixels instead of units used in the 3-D world. Moreover, the origin used by the vision 
system may not lie on the z-axis. The raw image coordinate in pixels must be scaled 
in both the x and y directions and translated. This problem is addressed by papers 
dealing with camera calibration. See [Tsai, Ganapathy, Shiu]. For the rest of this 
paper, without loss of generality, we assume that camera calibration has already been 
performed and the image coordinate is already converted to the correct form.

The position and orientation of a circular feature in 3D is completely specified by 
the coordinates of its center and the surface normal vector. We will adopt a conven
tion that points the surfaces normal from the circle towards the direction where the
circle is visible. Examples are shown in Figure 2.1.2.

The method is briefly outlined as follows: We form a cone having the projection 
center as vertex and which joins the vertex to every point on the circle whose center 
position and surface normal is given. Then we intersect the cone with the image 
plane by solving two simultaneous equations given by the cone and the plane.

In order to find the equation of the cone easily, we will use a new coordinate 
frame x'—y'—z' having its origin the same as the camera frame x-y-z and its z'—axis 
parallel to the surface normal of the circle, see Figure 2.1.3. We will first find the 
equation of the cone with respect to x'-y — z', from which we can find the equation 
with respect to x-y-z by simple coordinate transformation. Given the above 
specification for x'-y'-z' frame, the orientation of the frame is not unique but has a 
degree of freedom about the z'—axis.



We will present a method to find an X1- J 1-Z i frame that satisfies the given con
straints and which works for all possible orientation of the circular feature. Let the 
direction of the circular curvature be (vx,vy,vz)T. Let the following homogeneous 
transformation matrix represent the x'—y'—z' relative to the x-y-z frame.

nX °x aX
0

aZ 0<V
O O

(2.1.3)

aX
ay = . vy
az V2

Since (ax,ay,az)T can be interpreted as the direction of the z5-axis with respect to x-y-z 
frame [Paul] and since it has to be parallel to the normal vector of the circle,

(2.1.4)

The X 5 and y } axes can be arbitrarily picked as long as they are orthogonal to z’-axis 
and orthogonal to each other. We will select first the y ’ direction. The x'-axis can 
then be found by taking the cross product of the vectors representing the y \  and 
axes. The orthogonality constraint between the z’ and y ’ axes results in

axox+ayoy+azoz=0- (2.1.5)

From this equation, we can express (ox,oy,oz)T as a linear combination of two known 
vectors. For example, from Equation 2.1.5, ox = (oyay—ozaz)/ax. Thus,

; “ az ■
0X aX aX

; V-r.. ■■ °y =* °y I +Oz O
■ • . O2 O I

(2.1.6)

Here, we can arbitrarily choose oy and oz, and ox is fixed from the equation in terms of 
oy and Oz- Similarly, we can fix oy or oz, resulting in the following two equations:

(2.1.7)
0 X

° y =  °X
“ a x

+ ° z

O

- a Z

• a y

■■■■■;' ■■■ ■ : : -  "
° z

O . I

a n d
"■

' ' .. \ •' ■■ ■■; \  . . ' . ,  . ; . r .-I

■ : V ' ~ :■
o x I O

■■ . ; . '■■■ ■■.; ‘ ■ ■ Oy =  Ox O + ° y T

. ; . . ' - : • ' . . ■ • Oz —aX ~ a y

. aZ ;

(2. 1.8)

We will use the following rule to assign values to (ox,oy,oz) to avoid dividing by zero or



near zero.
If I ax I >  I ^  I >  | a, | , we will use Equation 2.1.6 and set o2 to zero, resulting in

~ H

Ox
I '

ax
I°y --. •

0 Z
\ / ^

0
(24-9)

If I ay I >  I a X I >  I az I, we will use Equation 2.1.7 and set o2 to zero, resulting in
. V • > Y  ■ ’ I

°x
I “ ax

v;:;->Y -  V^Y ^ Y - .  . : °y
H

Oz
\ / >  V 0

(2.1.10)

If I az I >  I ax I >  I ay | , we will use Equation 2.1.8 and set oy to zero, resulting in

; ■■ . . Ox
I ■

I
G■ \ • . °y

■Y.. ; :. • °z \ / i + 4
“ ax

Y-Y' Y V  V aZ

(2.1.11)

To find (nx,ny,nz), we take a cross product of the y ’ and z’ axis, resulting in:

11X Oya2-EyO2

ny = aX0Z-0XaZ
 ̂ : v: ; ; ■■ . nz Oxay— ExOy

(2.1.12)

Now we will find the equation of the cone based on x'~y'—z' axis: We must first 
find the new coordinate of the circle center. If the circle center is (x0,y0,z0)T relative to 
x-y-z, theii its position (x'0,y'0,z'0)T relative to x'-y'-ztis

(2.143)

The geometry of the problem is shown in Figure 2.1.4. Since the z' axis is parallel to 
the normal ^vector of the circle, the plane of the circle must Jbe parallel to the 3c'—y' 
plane. Let us set up a new coordinate frame x"—y"—z" having the same orientation as 
x'—y'—z' but whose original is at (0,0,z'0) relative to x'—y'—z'. This frame of reference is 
shown in Figure 2.1.4. The equation of the circle with respect to x',-y"-z" is

■" (x"-x'0)2+(y"-y'0)2=R2- (2-1.14)

x O X0
-

n xx O + n y y o + n zz O

. . y 'o — T -1 yo = OxXo+Oj-yo+OzZo

z O Zo a x X o + E y y o + a zZo



The desired cone consists of infinite number of lines each pass through a point on the 
circle. The two point form of a line passing through the origin and a point (x",y V 0) 
on the circle has the formula

(2.1.15)
x"—0 yH—0 Zf0-O

from which we have

x" =
z'rix' z'0y'

and y" (2.1.16)

V X nxx+nyy+nzz

y' _ ^ p -I y oxx+oyy+ozz
y . Z axx+ayy+azz

Substituting Equation 2.1.16 into Equation 2.1.14 and grouping the x'2, y'2, z'2, xy, yz, 
xz terms, we have

z'o2x'2+z'o2y'2+(x'o2+y'o2)*'2-2x '0z'0x'z'-2y'0z'0y'z' = 0. (2.1..17)

This is an equation of the cone specified according to the xl—y'—z1 coordinate frame. 
The lack of a constant term indicates that the cone passes through the origin. Next 
we need to find the equation of the same cone with respect to the x-y-z frame. This is 
achieved by the following substitution into Equation 2.1.17,

(2.1.18)

resulting in a second order equation in terms of x, y, and z. To find the equation of 
ellipse projected on the image plane (z — f0), we intersect the cone equation with the 
projection plane z=f0, which is equivalent to setting z to f0 in the cone equation. The 
resulting second degree equation is obtained by the aid of SMP .[SMPj.: . ; ■

ax2-f-by2+cxy+dx+ey+f = 0, (2.1.19)

where

a =■— ax2R2+ Ex2X02+ ax2yQ2+ n x2Zo2+ o x2Zo2—2axilxXQZq—2axoxyoZo,

: b = —ay2R2H-ay2Xo2+ay2Xo24-ny2Zo2+Oy2ZQ2—2ayiiyXoZo—2ayOyyoZo 

C = 2(—axayR2+axayXo2+axayyo2+oxoyz02—axnyx0Zo—ax6yy0z0—EyIixXoZ0- ayOxy 0z0) —

d = 2f0(—axazR2+axazx02+axazy02+nxnzz02+oxozz02—axnzx0z0—axozy0z0—aznxx0Zo—a2oxy0z0)

e =  2fo(-ayazR2+ ayazx02+ ayazyo2+ n ynzz02+ oyozZo2- a ynzXoZ0- a yozyoZo-aznyx0Zo-azoyyoZo)

:f =: f02(—az?R24-az2xQ2-faz2yQ2+nz2zQ2+oz2z02—2aznzx0z0—2azozy0z0)

2,2 PROJECTION OF SPHERICAL FEATURE

In the spherical case, we also have to find the equation of the cone and then 
intersect it to the image plane. In this case, the cone is always a right circular cone



because of the symmetry of the sphere.
We are given the radius of the sphere and the coordinate of its center (x0,y0,z0) 

relative to the camera frame x—y—z. The objective is to find the equation of the 
ellipse projected on the image plane z=f0.

We first define a convenient coordinate axis x'-y'-z' which has the same Origin as 
x_y_z but its z-axis points towards (x0,y0,z0). Using the same notation as the circular 
case for the homogeneous transform representing x'-y'-z', we have

' V x o 2-Hy o2+ z o2
xo>yo>zo]•

(2.2. 1)

Once (ax,ayja,) is found, (ox,oy,oz) can be found by Equations 2.1.9-2.1.11. The cross- 
product of y' and z' axes will give (nx,ny,nz), which is given in Equation 2.1.12.

Next we will find the equation of the cone relative to the x'-y'-z' axis. Since the 
axis of the cone lines up with z’ axis, A cone has equation of the form [Salmon]:

* ! 1 + ^ - 4  = o, : (2-2-2)
V 2 V 2 V2. - - K x- Ky K z.

w ;h e r e  the intersection of the cone with the y'z' plane has equations y' = ±(ky/kz)z', and 
the intersection with the xV plane has equations x' = ±(kx/kz)z'. For the case of a right 
circular cone, kx = ky. Equation 2.2.2 becomes

x'2+ —  y'2—z'2 = 0. (2.2.3)
Yk ^2

*n )

We can find the ratio —  by simple geometry as shown in Figure 2.2.1. By equaling
v: . -Jv'. k -

the ratios of corresponding sides of the similar triangles, - 1 is found to be

^ D° R2 where Dn is the distance from the origin to the center of the sphere. Equa-
R  ’ -  ; ■ .. N-  /.-,■■■

tion 2.2.3 becomes

Xo2Fyo2-Hz02 ^  - V j T g W  y(2,_ ^ _ 9 _  n ;
R 2 ' R2

(2.2.4)

The above cone equation is specified with respect to x'-y'-z'. We need to find the 
equation of the same cone with respect to the camera frame (x-y-z) by substituting 
Equation 2.1.18 into Equation 2,2.4. To find the equation of the ellipse projected on 
the image plane, we intersect the cone with the plane z=f0 and resulting in the ellipse 
equation after simplification:

ax2+by2+cxy+dx-t-ey+f =  0. (2.2.5)



where

a;= ( V + ^ i W )  i , 

b = W + y | W l (1_ V )  _  i ;

C ■ (xo2+yo2+ zo2)>R2

d = —
2f0axaz

(xo2+y02+ zo2)»
K“

O2+ -.2).

f = ^ ( (x°2+y{ + *“8)( l - ^ ) - l ) .

3 DETERM INATION OF OBJECT POSITION FROM IMAGE ELLIPSE

We have seen from the last section that both an ellipse and a circle projects an 
ellipse onto the image plane. In this section, wte will discuss the mathematics to 
recover the 3D object position, given the equation of the projected ellipse, the feature 
identity (circular or spherical feature), and the radius of the feature.

Although we assume the feature identity is assumed to be given, it is useful to 
point out that the cone formed by the focal point and the projected ellipse gives a clue 
to whether it is projected from a circular or spherical feature. If the cone is non
right-circular, the image ellipse must be projected from a circular feature. If the cone 
is right-circular, the image ellipse can be projected from either the a sphere or a cir
cle. -

Due to the rotational symmetry of a circular feature, the 3D position and orien
tation of a circle is completely specified by 5 parameters: 3 for the position and 2 for 
the orientation. A spherical feature only requires 3 parameters for specifying its 3D 
position.

For a circular feature, There are generally two solutions but its has only one 
solution the cone is right circular. For the spherical case, there is only one solution.

3.1 CIRCULAR FEATURE
We are given the ellipse projected from a circular feature of known radiusand 

we want to find its 3D position and orientation. The procedure consists of the follow
ing parts:
(l) Find the equation of the cone which passes through the ellipse and which has the



focal point as vertex relative to the camera frame.
(2) Find a new frame of reference in which the cone has the standard form.
(3) Find the two planes that intersect the cone in circles having the same radius as the 
model feature. This will result in two sets of solutions for the position and noripal 

vector of the circle.
(4) Transform the solution back to the original (camera) frame.

3>1.1 FINDING THE EQUATION OF THE CQNE
We need to find the equation of the cone relative to the camera frame. Figure 

3.1.1.1 shows the cone passing through the image ellipse. The camera frame of refer
ence is x -y -z  and the image frame is u -v. Let the given equation of the image ellipse

be v ; v  \
au2+bv24-cuv-Kdu+ev+f == 0. (3.1.1.1)

Many methods have been developed to trace an image ellipse and to find its equation, 
see [Tsukune, Shirai]. We can thus assume the coefficient (a-f) of the ellipse is known. 
Each point (u,v) on the image ellipse becomes a line of the cone through (u,v,f0) and 
(0,0,0), where f0 is the focal length of the camera. The two point form of such a line is 
(x-0)/(u-0) = (y-0)/(v-0) -  (z—0)/(f0—0) which results in ;

(3.1.1.2)fx fy.
U =  —  ,V =  "j K  

Z Z

Substituting Equation 3.1.i-2 into Equation 3.1.1.1 and rearranging, we have the 
equation of the cone in terms of the coefficients of the image ellipse (a-f) and the focal 

length (f0):
Ax2+By2+Cxy-|-Dxz+Eyz+Fz2 = 0. (3.1,1.3)

where A = af02, B = bf02, G = cf02, D = df0, E = ef0, F = f.

3.1.2 FINDING THE NEW  REFERENCE FRAME AND CHARACTERI- 
ZATIQN OF THE CONE

Next we will find a new frame of reference x '-y -z ' in which the cone have a stan
dard form. Since the cone has its vertex at the origin of the camera frame x-y>z, the
new reference frame x -y ’-z’ have the same origin as the .eam«ra-;fr.ame^ .-the-
homogeneous transform representing the new frame is a pure rotational matrix, Let 
F(SXS) represents the rotational partsof the transform matrix. Then the first, second, 
and third columns of P must be the directions of the x', y', and z' axes relative to x-y- 
z, respectively [Paul]. The matrix P can also be viewed as a transformation matrix 
such that if (x,y,z)T is the coordinate of a point in space relative to x-y-z and (x',y',z')T 
is the coordinate of the same point relative to x'-y'-z', then (x,y,z)T = P(x',y',z')T. 
Equation 3.1.1.3 can be expressed in terms of a quadratic form Q [Noble]:

[x y z] Q 0, where Q

. C D
A I T

BC_
2
D E p 
2 2

(3.1.2.1)



We will now show (in a way similar to [Noble]) that if P  is a diagonalizing 
matrix for Q, or, P -1 QP== Diag(XuX2-xS)) then Equation 3.1.1.3 will be standardized 
by substituting (x,y,z)T by P(x',y',z')T, which is equivalent to a change of reference 
frame to the one represented by P. After the substitution, the dot product form of 
the original cone equation <[x,y,z]T,Q[x,y,z]T> = 0 becomes
<P[x',y',z']T,QP[x',y',z']T>  = 0. Since multipling vectors on both sides of the dot pro
duct by an orthogonal matrix does not change the value of the dot product, we can 
multiply both sides of the dot product by P ' !, resulting in
<  [xSy'.z'jTp-1 QP [x'.y'.z']'1̂  = 0, and <[x',y',z']T,A[x',y',z']T>  = 0. This can be written as

X,x,2-|-X2y,"-t-X8z'2 = 0. (3.1.2.2)

Compare this equation to that of an cone with its axis aligned with the z’-axis [Sal
mon];.

= 0. (3.1.2.3)— + ^ - ——  = 0.
V 2 Ir 2 k 2.. • / - Kx -y . .

From Equations 3.1.1.2-3, we can see that kx, ky, kz is related to X1, X2, and X8. Notice 
that Equation 3.1.1.2 is still valid if X1, X2, and X3 are replaced by ? X1, f X2, and ? X3, 
where >  is any constant; Similarly, Equation 3.1.1.3 is valid if Tc,, ky, and k, is 
replaced by »? kx, 77 ky, and t] kz, where rj is any constant. Thus, a multiplying constant 
is needed in the following equations relating kx, ky, kz and the eigenvalues of Q.

1 ' 1 1 (3.1.2.4)
y r a - ’

= P

where p is any real constant. The constant k is unimportant, it is the ratio kx:ky:kz 
that determines the shape of the cone. 4-s shown in Figure 3.1.2.1, if we intersect the 
cone of Equation 3.1.2.3 with a plane normal to the cone axis (z’-axis), the intersec
tion will be an ellipse on the intersecting plane and the major axis of the ellipse will 
line up with either the x ’ or the y ’ axis. It is also known from 3D analytic geometry 
[Salmon] that if the distance between the plane and the vertex of the cone is kz, then 
the lengths of the ellipses axes must be 2kx and 2ky.

To summarize, the followings must be true for P=[C1C2C3]:
(1 ) P - 1QP=A=Diag(XuX2jX3).
(2) P represent a right-handed coordinated frame x’-y’-z’.
(3) The z’-axis (e3) is the same as the cone axis. Moreover, the positive direction is 
chosen such that the z’-axis points in the direction the camera is pointing to.
(4) We follow a convention for the assignment of X1 and X2 such that | X11 >  j X2 I - so 
that if we intersect the cone with a plane parallel to the x ’-y’ plane, the major axis of 
the resulting ellipse will be parallel to the y ’-axis.

To find P, we first find the eigenvalues and normalized eigenvectors of Q by a 
computer program (such as the devcsf subroutine from the IMSL mathematical



library [IMSLj-.). Let Mu M2, and Ms be the calculated eigenvalues and let f l5 f2j and f3 
be the corresponding normalized eigenvectors. The difference between the set 
{mum2,Ps} and the set (X1jX2jX3) is that they are not ordered in the same way. The 
differences between the set { f1(f2,f3) and the set IeljC2Je3) are both in the ordering 
(which is the same ordering as for the eigenvalues) and in the scaling factpr of ±1. 
We will discuss how to assign X1, X2, and X3 from the calculated eigenvalues Zfij ^2> aud 
Zi3 SO that criteria (3) and (4) are satisfied. Once the calculated eigenvalues {mi,M2,Ps} 
are ordered to form IX1jX2jX3), the same ordering can be applied to the calculated 
eigenvectors |  T1,^,fj) to form IeljC2jC3). The signs 'OfTljJf2, and f3 will also have to fie 
changed to satisfy criteria (2) and (3).

The method for finding P ( or [eie2e3] ) depends on whether the cone is right- 
circular or not. A right-circular cone is one that the intersection between the cone and 
a plane normal to its axis results in a circle. If a second degree cone is not right- 
circular, the intersection and the plane is an ellipse. A cone..is; right ciycu)ar;jpr^eji. 
Icx=Icy, which is equivalent to X1=X2 (see Equation 3.1.2.4). Because of the repetition of 
eigenvalues, the two corresponding eigenvectors C1 and e2 are not unique. This is 
expected because there are infinite number of coordinate frames ( Ie1C2C3] ) in which 
the right-circular cone has standard forms. Any frame whose z-axis (e3) is along the 
cone axis and whose origin is at the cone vertex will have the standard cone equation 
of Equation 3.I.2.3. If there are no repeated eigenvalues, or X1̂ X25A 3, the cone is not 
right circular. In this case, there is a unique set of real orthonormal eigenvectors { 

fiT2»f3 }> except the ±1 scaling factor.
Now we are ready to find X3 and e3. Comparing Equation 3.1.2.2 to Equation 

3.1.2.3, X1 and X2 must have the same signs and X3 must have a different sign. Tfiusj 
we can find X3 and e3 based on the polarities of the calculated eigenvalues Mu M2, and

Ms- - :: . ; - ' '  ■ -V"- ,  -- 'V- V . " . V v  :
I X3 = , . v|;. v (3.1 2.5)

where Md is chosen from the calculated eigenvalues Mu /*2 and / i 3, and z*d fias a different 
sign from the remaining two eigenvalues. The corresponding eigenvector fd must be 
along the z-axis of the cone. The positive direction of e3 is chosen to satisfy Criterion

- ' V v - . V ^ V V - . V r  )  v V f i  f i f i
If the dot product fd.(0,0Jl)T >  0, then

' e3 = fd . (^*12.6)

If fd.(OjOjI)1 <  0, then

e3 = —fd . (3.I.2.7)

Notice that the dot product cannot be zero. Otherwise only the side of the circular
feature can be seen. The circle will project a fine to the camera screen and this con
tradicts the assumption of an elliptical projection.



When finding X2 and e2, Criterion (4) must be satisfied. Let { W1, w2 } be the 
remaining eigenvalues from { /q, //2, /*3 } when /zj is deleted, We also let gj and g2 be 
the two eigenvectors corresponding to W1 and w2.

If I W11 <  I W2 I , then

■■■ ' ; V - V ' ■' - Xg = CJj j (3.1.2,8)

: ■ -v:, ■ v - v . v ■ ■ e2 = gl • (3.1.2.9)

If I W2 I <  I W1 I , then

. v j ; ; ; V v r ^ r vV ' ; Xg = 2̂ J (3.1.2.9)

M''
Il>°\ (3.ii2.10)

If I co21 = I W11 , the cone is right-circular and there are infinite choices for selecting e2. 
We can select any vector on the plane spanned by g, and g2. In our implementation, 
We arbitrarily select g2 and Equations 3.1.2.9-10 are used to find X2 and e2.

Finally, X1 must be the eigenvalue not yet chosen. ex must be the corresponding 
eigenvector. However, C1 will not be calculated from the remaining eigenvector, it 
will be calculated by taking the cross-product of e2 and e3, to ensure the right- 
handedness requirement of Criterion (2).

C1 =  C2Xe3 . (3.1.2.11)

Now that C1, e2, e3 are found, the transformation matrix P is found. Also, since 
X1, X2, and X3 are found, kx, ky, and kz can be found by Equation 3.1.2.3 and the 
geometrical characteristics of the cone is now known. There are infinite possible 
choices for P is not unique if the cone is right-circular, because of one degree of rota
tional freedom. For the case of the non-right-circular cone, there are two possible 
choices, one having its x and y axes in the opposite directions as the those of the other 
choice. .

3.1.3 CIRCULAR SEC TIO N S OF THE C O N E
After the transformation of frame of reference using P, we have the standard 

equation of a cone in the form of Eqqation 3.1.2.3. The cone is shown in Figure 
31.2.1, with respect to the P frame (x'—y'—z' frame). The goal is to find all the ways 
to cut the cone such that a circle with the desired model diairieter will result. Since 
the intersection curves are similar if the sectioning planes are parallel [Salmon], we 
can divide the task into two parts. First we will find the orientations (surface nor
mals) of the planes that intersect the cone in circles. Then we will translate the planes 
along the cone axis to find the circles with the desired diameter.

From [Salmon], there are only 2 plane orientations (surface normals) that will 
result in circular sections, see Figure 3.I.3.I. Furthermore, when ky>kx, the two 
planes of circular section which also passes through the origin can be derived from the



following equation:

x'2
k /  ky2 ) ky2 k22

(3.1.3.1)

Factorizing the above equation and using Equation 3.1.2.4, we have the following two 
sectioning planes:

X1 I -  | X2 | ,
| x 2 | +  | x 3 | x '

(3.1.3.2)

Notice that both sectioning planes passes through the y-axis, and that the projections 
of the planes to the x ’-y’ plane are two lines. These two planes only gives the plane 
orientations for circular sections; they do not section the cone in circles with the 
model radius. In fact, they intersect the cone at one point - the origin of the x ’-y’-z’ 
reference frame.

We will noTV translate the planes to obtain circular sections with the correct 
model radius. Figure 3.1.3.2 shows the cone and the sectioning planes projected onto 
the x ’-z’ plane. The equations of the lines representing the cone can be found by sub
stituting 0 into y' in Equation 3.1.2.2 and knowing that X1 and X3 have Opposite signs.

If we translate the planes of Equation 3.1.3.2 along the z-axis by I, we can easily cal
culate the radius f of the resulting circle. The translated planes have the equations

v=±;V I X11 — IX2 I
I X2 I + 1X3 I

x' + I (3.1.3.4)

By similar triangles shown in Figure 3.1.3.2, we can then find out how much we have 
to translate the plane in order to obtain circular sections of the required model radius.

Let s be the translation in the z’ direction so that the planes of Equation 
(3.1.3.4) will have circular sections of model radius R after the translation. We can 
calculate s by

(3.1.3.5)

The symbolic form of r is half of the distance between p i and p2 or between ql and 
q2 in Figure 3.I.3.2. The points p i, p2, ql and q2 can be calculated by intersecting 
the lines represented by Equation (3.1.3.3) and Equation (3.1.3.4). The algebraic 
manipulation is simpler if it is carried out using kx, ky, kz, instead of X1, X2, and X3vIn 
the final answer, ky, ky, kz is converted back to X1, X2, and X3. The conversion between 
kx, ky, k2 and Xi,;X2, X3 is made by using Equation (3.1.2.4).



r I
IX2I

I Xi I IX3 1 ( IX2 I + 1X3 I) 
I X11 + 1X3 I

(3 1.3.6)

To find the center points of the two model circles, we first find the center points 
of the smaller circles with radius r, which are the midpoint of p i and p2 and the mid
point of ql and q2. In general, these midpoints are different from p3 and q3. The 
only exception is when the cone is right-circular, in which case the sectioning planes in 
Figure 3.1.3.2 becomes one horizontal line. If the center of a sectioned circle of radius 
r is (u,v,w), it is easy to show by similar triangles that the center of the corresponding 
model circle with radius R is (s u,s v,s w). We will first find the centers of the two sec
tioning circle with radius r, which are the midpoints of p i and p2, and of ql and q2. 
Again, the 'symbolic manipulation is simplier if it is done using kx, ky, and kz and then 
converting it back to X1, X2, and X3. Gnce they are calculated in terms of X1, X2, and 
X3, a scalar multiplication by s yields the centers of the sectioned circle of the model 
radius. Finally, we substitute Equations (3.1.3.5) and (3.1.3.6) into the results to find 
the centers of the two circles with radius R. One solution for the circle center is:

I X3I ( I x 1I - I x 2I ) :  
IX11 ( IX11 + 1X3 I)

(3.1.3.7)

y'oi = 0 >

, a  /  I x1 1(1 x2 | + 1 X3 1)V I xj I ( I x 1I ^ i x j I ) -
The second solutions for the circle center is:

x'02 = -R  

y'o2 -  0 > 

Z*02 = R

I X11 ( I X1 1 + 1 x3 | )
(3.1 3.8)

I X1 I ( I X2 + 1X3 I )
IX31 ( IX11 + 1X3 I)

Notice that the two solutions are the same when X1=X2, i.e., when the cone is right- 

circular.
The surface normals of the two circular features can easily be found using the 

constraints that it is perpendicular to the circles, it is a unit vector, and that the z - 
component must be negative. The later constraint ensures that the convention that 
the visible side of the circle is the one indicated by the positive direction of the surface 
normal. The surface normal corresponding to (x'oDy'oi^oi) is The surface normal

corresponding to (x'o2,y'o2>z,o2) is \

V11
^  I  IX11 — IX2 I

I x 1J - I - I x 3 I
(3.1 3.9)



Ax

I X2 | + I X3J 
I X1 1 + 1A i

I Ni I ~ ~  I X2I 
I X1 I + 1 X3 1

(3.1.3.10)

Ay = 0 »

A * \  /  I x2 1 + 1 x3 i 
I V  I +  I X 3  I

The above solutions for the centers and the suface normals of the circles are 
given relative to the x ’-y’-z’ frame. The transformation matrix P will bring them 
back to the x-y-z frame: [x0i,yoi>zoi]T= P[*loi>y,oi>z,oi]T and [VixlViy,viz]T= F * ix, viy,viz] , 
where 1=1,2, and (x0i,yoi,zoi) and (x02,Y021Z02) are the two solutions for the circle centers 
and (vlx,vly,vl2) and (v2x,v2y,v2z) are the two corresponding surface normals, all relative 
to the x-y-z frame (camera frame). Recall that P is composed of the 3 eigenvectors of

Q:

©i e2 e3]
eIx e2x e3x 
eIy e2y e3y 
eIz e2z e3z

(3.1.3.11)

Expanding P into its elements, we have the solutions with respect to the camera
frame. One solution for the circle center is:

X0I =  ClxR ' ^
I  I X3 I ( I  X j I — I X2 | ) r » * \  f

J | X i l ( | X , l  +  | X 3 | )  ox V
I X1 K I x 2 l + 1 x 3 I T  ; ; ( 3 . 1 . 3 . 1 2 )
I X3 I ( I Xi I + 1 x3 1 )

O Il C rtf >

/  I X 3 K I X i  - I X 2 1)  ^  . R v /
/  I x ,  I ( I Xi  I + 1 X3 I ) +  V

I X1 K I X2 1 + 1 x 3 1 ) 
I ^3  I  ( I I +  I ^ 3 1 )

zoi  “  e i zR ^
/  I x 3 | (  Xj — X2 ] )  F

A I Xv I ( I  X1 1 + I X3 I ) “ V -I  I  ( I  ^ 2  I  +  I  I 
I x3 K I X1 1 + 1 x3 1 )

The second solution for the circle center is: ' v K v +  '

IX3 I ( IX11 — IX2 I)
I X11 ( | X11 + I X31)

Ix3Kr x1I - I X 2IT
I X1 I ( I X11 + I X3 I )

I X3K I X 1M X 2 I T  
I X11( I-Xil + 1 x3 1)

IX1 ( I X2 I + IX3 )
IX3 K IX11 + 1X31)

I X i  | (  I X 2 1 + 1 x 3 1 )  
I X 3 1 (  I X i  I + 1 x 3 | )

I X t | (  I x 2 1 + 1 x 3 1 )
I x 3 1 ( I X 1 1 -1- 1 X 3 - J- )

(3.1.3.13)
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The surface normal corresponding to [x01,yPi,z0i]T is:

Vlx

v Iy

Viz

I I ~  I 2̂ I 
I ^ l  I +  I ^ 3  I

I I ~  I X2 
I X 1  I +  I ^ 3  I

: I l̂ I ~  I X2 [ 
I X 1  |  +  |  X 3  |

I X 2  |  + .  I X 3  I
I X 1 |  +  |  ^ 3  I

I X 2  |  +  |  X 3  |
I ^ l  I +  I ^ 3  I

I X 2  |  - f  I X 3  |  
I X i  |  +  |  X 3  |

The surface normal corresponding to [x02,y02,z02]T is

(3.1.3.14)

v 2x

V2y

V2z

~ I X j  |  —  [ X 2  |  
I X i  |  +  |  X 3  |

I I ~  I X2 I 
I ^ l  I +  I ^ 3  I

I l̂ I ~  I X2 I 
I X 1  |  +  |  X 3  I

I X 2  |  +  [ X 3  | 
I X i  I +  I X 3  ]

I X 2  I +  I X 3  I 
I X 1 I + 1 X 3  I

I X2 1 + 1 x 3, 1 
I x  11 + 1X3 I

(3.1.3.15)

From the above equations for the centers and the surface normals for the solutions, 
we can see th a t there are two solutions in general. However, when X 1 = X 2 ,  there is only 
one solution because both solutions become the same. Geometrically, there is only 
one solution if the surface normal of the circle points to focal point exactly.

3.2 SPHERICAL FEATURE
If we are given the ellipse projected from a spherical feature of known radius R, 

we can find the 3D position of its center. This is shown in Figure 3.2.1 The pro
cedure involved is similar to the case of the circular feature. It consist of the following 
parts:
(1) Find the equation of the cone th a t passes through the ellipse and which has the 
origin as vertex. The resulting cone must be a right-circular cone.
(2) Find a new frame of reference in which the cone has the standard form.
(3) Find the position of the spherical feature in the new frame of reference.
(4) Transform the solution back to the original (camera) frame.

P arts  (I) and (2) are the done exactly the same way as the circular case and will 
not be repeated here. It is im portant to point out tha t the resulting cone will always 
be right-circular for the spherical case and therefore X 1 /  =  X 2  and kx=ky. We will 
denote X 1  and X 2  by X r ,  and kx and ky by kr.

P a rt (3) is considerably simpler compared to the equivalent part for the circular 
case. Given a right-circular cone, there is only one way tha t a sphere of radius R can



fit in. Figure 3.2.2 shows the geometry of the problem. We want to find out the posi
tion of the sphere center with respect to the x’-y’-z’ frame. Because of symmetry, 
both the X 5 and y J components are zero. The z5 component can easily be calculated by 
simple trigonometry.
Let D0 be the distance between the center of the sphere and the origin and let 9 be the 
angle between the zr-axis and the any line on the cone that passes through the vertex.

D0 R
sin#

(3.2.1)

But 0 is determined by the cone parameters kx, ky, and kz. From the slope of the line
kx .p. .

in Figure 3.2.2 representing the cone, it can be determined that tan6 = —  • Drawing 

a right-angle triangle with one angle being 0 and the opposite and adjacent sides being
kx and kz, the hypotenuse must be V  kx2+kz2. Therefore,

sin 0 =  — = r ,  (3-2.2)
V w

where kr==kx=kr  To express the above equation in terms of X1, X2 and X3, we can use 
Equation 3.1.2.4 to replace the kx, ky and kz.

sin0 V 1 IX3I
I X r  I +  I X 3  I

where Xr=X^=X2- Substituting Equation 3.2.3 into Equation 3.2.1, we have

D0 = R1V Xi I + 1 K \
I x 3 I

(3.2.3)

(3.2.4)

But D0 is just the z’ component of the sphere center. The center of the sphere relative 
to the x ’-y’-z’ frame is:

x'0 = 0, y'0 0, z;0
I Xi I -f I Xr I 

I X3 I
(3.2.5)

To express the solution in terms of the camera frame x-y-z, we transform the the 
above results by P calculated in part (2): [x0,yo,zo]T=vF[x,o,y;o>z,o]T' Expanding it, we 
have ■'

x O

To
Z0

I Xj I + I Xr I 
[X3 I

I Xj l + I Xr
IX3I

I Xi I -t I Xr I
I X 3 I

(3.2.6)
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4 CO N CLU SIO N
We have written a program to find the 3D position and orientation of a circular 

feature from the elliptical projection of the feature. The results are correct for all the 
test cases, which includes both elliptical and right-circular cones. We have also 
extended this method to spherical features. The complete mathematics for both the 
circular case and the spherical case will be recorded in a technical report.

4 ACKNOW LEDGEM ENT
The authors Want to thank David Marimont for valuable discussions and for giv

ing usi his Ph.D. dissertation.



LIST OF REFERENCES

[Fischler] M.A. Fischler and R.C. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting 
with Applications to Image Analysis and Automated Cartography," Communications of the 
ACM, June 1981, vol. 24, no. 6, pp. 381-395.

[Ganapathy] S. Ganapathy, "Decomposition of Transformation Matrices for Robot Vision," in IEEE Proc. 
Int. Conf. Robotics and Automation, 1984.

[Haralick_a] R. M: Haralick, Y. H. Yu, L. T. Watson, L. G. Shapiro, "Matching Wire Frame Objects from 
Their Two Dimensional Perspective Projections," Pattern Recognition, Vol. 17, No. 6, 1984.

[Haralick_b] R. M. Haralick, "Solving Camera Parameters from the Perspective Projection of a Parameter
ized Curve,” Pattern Recognition, Vol. 17, No. 6, 1984.

[IMSL] IMSb Inc., IMSL Math/Library User’s Manual, IMSL Inc., Houston, Texas, 1987.
[Lowe] D. Lowe, "Perceptual Organization and Visual Recognition,” Ph.D. dissertation, Stanford

University, Stanford, CA, September 1984.
[Marimont] D.H. Marimont, "Inferring Spatial Structure from Feature Correspondences,” Ph.D. disserta

tion, Stanford University, Stanford, CA, March 1986.
[Mulgaonkar] P.G. Mulgaonkar, "Analysis of Perspective Line Drawings Using Hypothesis Based Reasoning," 

Ph.D. dissertation, Virginia Polytechnic Institute and State University, 1984.
[Noble] B. Noble, Applied Linear Algebra, Prentice Hall, Englewoods, N. J., 1969.
[Paul] R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT Press, Cam-

bridge, Massachusetts, 1981.
[Salmon] G. Salmon, A Treatise on the Analytic Geometry of S Dimensions, Vol. I, Longmans, Green & 

Co., London, 1912.
[Shirai] Y.Shirai, "Recognition of Real-World Objects Using Edge Cue, in Computer Vision System,

eds. A.R.Hanson and E.M.Riseman, Academic Press, New York, NY, 1978.
[Shiu] Y.C. Shiu, R.P. Paul, Shaheen Ahmad. "Using Visual Servoing in Robotic Tasks," TR-ERC

86-10 , Purdue University, West Lafayette, In. , 1986.
[SMP] Inference Corporation, SMP Reference Manual, Inference Corporation, Los Angeles, CA, 1983.
[TsaiI R Y. Tsai, "A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision

Metrology Using Off-the-Shelf TV Cameras and Lenses," IEEE Journal of Robotics and Auto- 
maiion, Vol. RA-3, No. 4, 1987.

[Tsukune] H. Tsukune and K. Goto, "Extracting Elliptical Figures from an Edge Vector Field," in Proc. 
IEEE Conf. Computer Vision and Pattern Recognition, Washington, D.C., June 1983.

[Wolf] P.R. Wolf, Elements of Photogrammetry, 2nd ed., McGraw-Hill, New York, 1983.



U

image plane or 
projection planecenter of 

projection _

camera frame x-y-z

Figure 2.1.1. The camera frame x-y-z.

Figure 2.1.2. The convention that the surface normal points outward from the invisi
ble side of the circle to the visible side.
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Figure 2.1.3. Thex'—/ —z' frame, where the z-axis lines up with the surface normal of
the circular feature.

z',zM

Figure 2.1.4. The center of te circular feature relative to the "Xl-Y1-Z 1 frame and the 
Xn-Y 11-Z tl frame.
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■̂ £ure Finding the ratio kz/ky in terms of R and D0
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Figure 3.2.1. Finding the position and orientation of a circular feature from its ellipti
cal projection.



plane parallel

top view

Figure 3.I.2.I. The elliptical cone

Figure 3.1.3.1. The two planes of circular section
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sectioning 
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in circles of radius R
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Figure 3.I.3.2. Finding the two sectioning planes that result in circles with radius R.



X

Figure 3.2.1. Finding the position of a spherical feature from its elliptical projection.

Figure 3.2.2. Solution for the spherical feature position.
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