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Searchmg for leed-Length Patterns
Russell W. Quong
‘Dept. of Electrical Engineering

* Purdue University

Abstract

' Wepresent an algorithm, RQ for ﬁnding all occurrences of a fixed-length pattern, pi,ps,-:-,pp,
in a text string, where each p; can match an arbitrary set of characters. Our algorlthm is optlmal in
that it examines the minimum avera.ge number of text characters, which is not necessarily the same as
bemg optimal in running time. This pa.per answers the questlon of optimal strmg searchmg put forth in
[KMP77] ’ :
Let a = the alphabet size, P= the length of the string matched by the pattern, T= the length of
the text, W= the word size in bits of the underlying machine, and Q(Tﬂ)- = the average number of -
-text characters examined RQ. ‘We derive an asymptotic approximation for Q(TQT when P< -a; Wealso - -
show that B(RQ) < (4logy P/3)(T/P), when P> a. In the worst case, RQ examines T characters.
Our algorithm reqnires space O(||IT}|[P/W1]). In addition, our method of analysis is applicable to other
' algorithms modeled by a finite automaton. » » .
' We present an efﬁcrent implementation of our algorlthm when P < W. In practlce compared to the k
‘ Boyer-Moore algorlthm, RQ requires shghtly more space, a.ccepts a more general range of patterns, and o

runs in comparable tlme

1 I'ntr'odnction

A fundamental problem is 'ﬁnding all occurrences of a patternin a tezt_'string.' This problem occurs in many
applications such as text editing, archival search, DNA-protein matching, and programming. For exa.niple,
a programmer rnight search source files for all instances of a procedure name to find where that proce&ure
is defined or called. In many cases, the text string is very ldng.

The number of text characters examined is a common metric for the running time of a pattern-matching
or string-searching algorithm [KMP77] [BM77] {Yao79]. This metric is valid as long as the Test of the
algorithm takes O(1) time for each character examined. At one extreme, every character in the text must
be exa.mined if the text censists entirely of (possibly overlapping) concatenations of the pattern. At the
other extreme, only |T/P] characters need to be examined, if the text consists entirely of characters not
occurring in the pattern, where P is the length of the pattern, and T is the length of the text. In this case,
_ 'exammmg every P‘h text character rules out all occurrences The optimal algonthm minimizes the average -
number of cha.racters examined over all patterns and text stnngs ,

In general, the pattern may match one or many possible text substrmgs A sunple “fixed-string” pa.ttern,
“such ‘as bathroom, ma.tches just ome substring. A complex pattern, such as a regular expression, mlght
match a la.rge, possibly infinite, set of substrings. For example, the regular expression a@*z matches all text
substrings of lengthitwo or greater, starting with an a and ending with a z. The “wildcard® character @
- matches any single text character; the kleene closure operator is. *. Thus, @* matches any sequence of zero

or more text characters.



A ﬁzed-length pattern P1, pz, -+, ppis srrmlar to a ﬁxed-strmg, except that each p, can match an arbltrary
: set of characters For example, the pattern [Bb][Aa][Tt][Hh]room matches all occurrences of “bathroom _
regardless of the case of the first four letters leed-length patterns are a generalu;atlon of ﬁxed—strmgs,

and can match constructs such as “the begmnmg of a word”. For example, if WS is the set of white space .

characters and ALPHA is the set of alphanumenc characters, the pattern [WS][ALPHA] ﬁnds the first. letter
of every. word.
- In this paper, we present the optimum algonthm for ﬁndmg all occurrences of a ﬁxed-length pattern i

a (longer) text string. Our algorxthm, RQ,is optlmal because for any ﬁxed-length pattern, it exammes the'
© minimum average number of text characters over all text strmgs RQ i unproves upon previous algonthms
o because RQ is not limited to ﬁxed-strmg patterns. In practlce, variations of our algonthm can be eﬂ‘icnently
' lmplemented for dnﬂ'ermg pattern lengths _ ' . o
The remmder of this paper gives deﬁmtlons and then reviews previous strmg searchmg algonthms gwmg
. thelr space and time requlrements Sectlon 4 gives an informal descnptlon of our a.lgonthm with examples
of its behavmr In Sectlon 5 we present a general method for analyzmg pattem-matchmg a.lgorlthms and we:
derive an ‘asymptotic approximation for the running time of our algorlthm when the pattern length is less
than ‘the effectrve alphabet size. Section 6 proves that RQ is optimal. Section 7 views other algorithms as
variants of RQ Section 8 compares our approxnnatrons wrth measured results and compares RQ thh the

Boyer-Moore algorithm.

2 Déﬁﬁii&ioﬁéi R

An alphabet 1s a ﬁmte, nonempty set of symbols or characters The alphabet I, is the set of pos81ble text’
characters For standard Enghsh text I consists of lower case letters, upper case letters, numerical dlglts,
punctuatxon characters, and whltespace The size of the alphabet is ||IIJj. .In thls paper, ¢ stands for a
character i m l'[ pr, is the probablhty that a random text char is c. :

A strmg S of length lis a concatenatlon of | characters, cicz - q. The length of S is]|S || hi§ S isa strmg,
S[z] stands for the st# character of § where i is an indez or position of S. The first character of § is S [1]. A
string S’ of length I is a substring of the string S with length 1if I’ <l and §' = S[i]SE+1}---SE+¥-1]
for some 4,1 < 4.< I— V' + 1. S[i...5] denotes the substring S[¢|S[: +1]--- S[j]. Two strings are equal if they
are substrings of each other. If S = abcdefgh, then S[2] = b, S[4...6] = def, and ||S|| = 8.

We use the: notational convemence [eociea] to represent the set {co, e1 ez} where co, ¢1, and ¢, are single
characters. For example, the fixed-length pattern [hs][aio]t matches the six strings: _hat hit, hot, sat sit, and
sot. o : : - ' ' : :

’ HPatt‘[‘i] represents the set of :allvcharacters' that match the ¢* character of the pattern, ||patt[z]|| is the size”
of the set. If pattfi] includes or “matches” ¢ then ¢ ~ patt[i]; otherwise ¢ # patt[l] The length of a pattern

s the length of the strings it matches The average size of patt[i] is patt[] = (2.—1 i patt[z] ||)/P For a

‘ﬁxed-strmg pattern Ppatt]] = 1. Thus, for pattern = [hs][aio]t, ||pattem|| =3, pa.tt[l] {h s}, ||patt[2]|| =3,
"a ~ pait[2], e # patt[2], and part]] = 2.
" We set P= ||pattern]|, and T= [ltext]. : :
The probablhty that a random text char will match a random pattern posltlon is g; the probablllty that
- they do not match is =1~ q_. Usually, the character dlstrlbutron_over all pattems is the same as that over



all text strian, so that
/ g="pait]] ) _ pr.”
v cell v
(The dlstnbutlons would dlﬂ'er if we were to restrict our searches to patterns consxstmg of the ﬁrst ha.lf of
the a.lpha.bet as opposed to the whole alphabet) .

The effective alphabet size, o, is 1/g. If the pattern is a fixed-string and all characters in I have equal
probability, g= 1/[|lI||= 1/a. With unequal character distributions, & can be much smaller than ||II||. For
example, when searching for fixed-strings in English text, o s 11 [BM77]. In this paper, we assume the
text is randomly distributed, so that for any n, all substrings of length n are equally likely. English is not
random, because for n = 3, ing is much more common than xqz.

A pattern-matching algorithm makes a decision at (indez) n when it finds that text[n...n + P — 1] either
matches or cannot match the pattern. In the former case, the pattern completely matches at n; in the latter
case; the text fails to match at 5. If a decision has not been made at 7, there is a partwl match at n. Initially,
there is a partial match at everywhere. : :

We ezamine or probe text characters. Only the probes within text[n...n + P — 1] can decnde at 7.
‘Examining a character looks at 7 if it might decide at 1. Probing text|n] looks at the undecided indices:
between n— P+1,---,n. A pattern matching algorithm must make decisions at », foi' 1< 5 < T-P+1. The
following example in Figure 1 shows a search for a@ba. Examining text[9] ylelds two decisions. Exa.nuned

text characters are underlined; an unexamined character is shown as an X.

pattezn = a @ b a, where @ matches any c‘ha.r'acter.
index 12345678910 :

text =X XXdceaabaXXXX.

@  Y8YY  (decision — MATCH)

(2)': : | | 4 é ba (decision — NO; fail)

(3) G X @ b a (no decision yet — partial ma.teh)

1) o a@ba (mismatch from before; when “b” examined)

Figure 1: Making a decision at 6, and 7.

The set of indices of text[] where decisions have been made is A. We also view A as a table indexed by}
indices of text[] with
yes pattern completely matches at =
Al=z] ={ pattern fails at z -~ -

o no decision made at = yet

We limit our analysis to monotomc search algorithms which pick the smallest undec1ded text index n
and exa.mme characters until a decision at 7 is made. These algorithms. monotomca.lly increase from 1to
T- P + 1. In the process of decxdmg ‘at n, the algorlthm may make other decisions. In Figure- 1 n = 6, and

examining text[Q] makes decisions at 6 and 7. A decision at 8 was made p_revmusly. A partla.l match ex;sts



at' 9, and thus, the aigorithm continues with n = 9. Note that we have not specified which character in '
text [7...n + P —1] to examine when trying to decide at n. In practice, all pra.ctiea.l algorithms are monotonic.
"In the rest of this paper, n = the smallest undecided index of text[], and text’ = text[n..; + P — 1].
Thus, text’ is a moving “window” into text|] of size P, which contains the next probe. As 1 increases, text'
moves to the right of text. o ‘ : T
For an a.lgonthm, A the average number of text probes is <I>(A), the worst case number of probes is
wc(A). The average case running time of an algorithm A is not necessarily the same as mj, because each
prohe may require more than 0(1) time to process. Howeirer, except for RQ, ‘the running time for every
algorlthm descnbed in thls paper is proportional to <I>(), and the two measures are interchangeable. The
total runnmg time of an algorlthm is the sum of the preprocessing time and the search time. Most of the
a.lgonthms discussed in this pa.per preprocess the pattern crea.tmg auxiliary tables to speed the search. For
long text strmgs, the search time domlna.tes the total runn1ng time. In the rest of this pa.per, the running

time refers to search time a.lone

3 Previous leed Strmg Algorlthms

" In the spring of 1974, R. Boyer and J Moore [BM77] a.nd (1ndependently) R.W. Gosper developed a break-
through algorithm, BM, with an a.vera.ge case search time significantly faster than previously known tech-
niques. The key to thenr‘a.lgorlthm is checking for the pattern‘backwards In the typical case, each text
character examined makes several decisions. Their algorithm runs in _' “sublinear” time with respect to P,
because signiﬁcantly fewer than T characters are examined on the average. The average case running time
of BM depends on ¢ and Pj'interestmgly, it decreases as P increases. In particular, when the length of
the pattern is short compared to o, W is roughly T/P. For example, searching for bath in standard
English would require examining a.pproxlma.tely one fourth of the text characters BM preprocesses the
pattern creating tables of length P and ||| '

Ana.lysls of ®(BM) and ®,.(BM) is not simple. Guibas and Odlysko [GO80] proved the worst case
running time of BM is 4T, if the pattern is not found. Apostolico and Giancarlo [AG86] proved a bound
of 2T for a Boyer-Moore variant that partially remembers which characters have been examined. Schaback
[Sch8s| numeriea.lly examined the average case running time of a simplified algorithm. Later in this paper,
we show that (BM) ~ Tq/(3(1 — 37)), when P < a. \

_ Knuth, Morris, and Pratt [KMP77] describe a string search a.lgonthm, KMP, that examines each text
 character once. Unlike the BM and RQ, their algorithm does not “backtrack”. - Both <I>.,,C(BM ) and
@y (KMP) are linear O(T), because of auxiliary tables which gulde the algorithms when a. mismatch
occurs.  However, these ta.bles cannot be used in the presence of a wildcard cha.racter (@) or character sets
‘such as [abc]. , o
The brute force approach tests whether the pattern matches the text substrmg starting at. text[r)] for
1< 5 < T - P+1. The test compares patt{l] with text[r/], and then pa.tt[2] with text[n + 1], and so on
until it makes a declslon at 1. Next, nis mcremented by 1, and the process repeats itself. In the worst case,
the mrsmatch does not occur until the last pattern character is checked giving a running time of PT. For
”exa.mple, the worst case occurs when pattern = “aaab” and text = “aaaa-:-aaaa.” However, this case is
unlikely and the average case running time is T/(1—g). This algorithm works for fixed-length patterns, toc.



In ;'Sr_actice; Sh_lit [ani82] found that KMP does not run significantly faster than the brute force a.lgbi-ithm, :
because for large ||IIfj, the mismatch usually occurs at patt[1]. Horspool [Hor80] found BM faster tha.n '
specla.hzed strmg sea.rchmg mstructlons in hardware for P > 5 when searching Engllsh text.

Like KMP, Aho and Corasick [AC75] also used a failure table in their algorithm (AC) to find if any of
. a set of keywords exists in the text. The failure table i is constructed from a trie, which detects_common.
prefixes in the keywords. Compared to KMP, the AC algorithm can search for more than one pé.ttex_'n “in
parallel” ivitli no loss vin'vefﬁciéncy. V : '

Harrison [Har71] first suggested the use of hashing as a probabilistic method of speeding string search.
Every substring of length L in the pattern is hashed into a bit table formmg a “key mgna.ture Another
signature is formed by ha.shmg each line of the text similarly. If the text line contains the pattem, the
signature for the line will “bit-wise” contain the key signature. If this condition succeeds, the pattern and
text are compared to check if pattern actually does occur. Otherwise, the line does not cohtain the pattern.
This method assume the text is broken into discrete partitions such as lines, ruling it out for general data
searching. . ‘ ‘

Rabin and Karp [KR81] give another a.lgonthm using hashmg with an average case running time of
O(T). Their method consists of calculating a hash value, h(j), for every text substring text[j..j+P-1] where -
1 <5< T-P-1. Each hash va.lﬁe is compared with the hashed value of the pattern. If the va.lu_és
match, the chances are good that patterh i8 to be found at that point, and the actual strings are compared.
Rabin and Karp found hash functions such that calculating h(j+1) re_qui'res O(1) time given h(j). Thus,
their average case running timé is O(T) with an extremély unlikely fvorst running time of O(TP.)‘. TaBlé 1

summarizes the running time and space reqﬁirements of these algorithms.

Algorithm | -Space Running Time

- I Preprocessing | Worst Avg | Best
brute force 0 _ o TP | T/(1q) | T
KMP 41 e | P | T | T T.
Aho-Corasick P o(pP) . T T T
Boyer-Moore | [|TI}|+ P o(T) - O(T) * T/P
Rabin-Karp 0(1) P O(PT) T T

* = no known simple form.

Table 1: Space & time requirements for ﬁxed-string searching algorithmé.v

~ Knuth, Morns, and Pratt [KMP77] also pose the question of optlma.l string searching, and give an answer ..
when P= 2. We call their algorithm OPT2. They state that “the analysns (of OPT?2) is not completely trivial

even for this case”, and show that

.____;T"_Z ;_12__,2 ‘ __T‘ ' -
"D(OPTz):}‘(laia)q)__(l q}gjq)g q)'*'(liqq)(zl)_q)z' R

For large T, the ﬁrst term dominates Equation 1. In Section 5.2, we sha.ll redenve the first term an

a.symptotlc approximation to the running time of OPT2. Finally, Yao [Yao79] proved that for most fixed-
string patterns, the minimum average number of characters examined is O(T[logq P|/P), when T > 2P.



However, there are “worst-case” patterns that requn'e more characters to be exammed rega.rdless of the text
string, ! v ) :
Abra.hamson [Abr87] explores the lower bound of the time-space requlrements when sea.rchmg for ﬁxed-"
length patterns. His work differs from ours because he consider alphabets of mﬁnlte sizge, where each character
is represented as a string from a finite alphabet. S -
‘ After discussing OPT2, Knuth, Morris, and Pratt pose the question of finding the optlmum sea.rchmg
‘ stra.tegy for patterns of length greater tha.n 2. This paper answers that question. 1

4 The RQ algOrithm' |

In this section, we describe oiir algorithm informally by giving an example of its execution. Next, we give
a formal description of the a.lgorlthm We also describe how to unplement our algorithm efficiently lf the
pattem is short. '

4.1 Informal Description
First, we describe our algorithm by exa.rnple Consider the search for abca in the text string abcbaca"bcaabb

As before, underlined chara.cters have been examined, and the current probe has an arrow over it. We pnnt

out the current value of n and underline the indices of text’.

index 12345678910 n=1

text abe b a“c abcaabhb decision at
pattern a beca 1 fail
 abca 2 fail
a g ca 3 partial match
abca 4 fail

Examing text[4] shows tha.t pattern matches neither text[1...4], text[2...5] nor text[4...7], thus we have
made decisions at 1, 2 and 4. We have a partial match at 3. We examine text(6] next '

index 12345 78910 12 ‘ '17=3

6
 text a,bcl_:atl:abcaabb o decisionat
Ca¥eX ' 3 fail |
abca _ 4 fail from before
abca B fail
abca 6 fail

* We find that pattern fails to match text[3...6], text[5...8] or text[6...9]. We already know text[4...7] f:z'_iled; :

" go that we have made decisions at {1,2,3,4,5,6}. We try to decide at 7, examining the rightmost unexamined



character in text(7...10], namely text[10].

index 12345678910 12 n=7T

text abcl_:-agab'c}labb decision at
abe { o 7 partial match
abéa 8 fail
’»a.l>;‘ca 9 fail
¥beca 10 partial match

_Text[7...10] has a partial match, so we examine text[9] and then text[8] and still have a partial match a
7. Examining text[7] decides at 7 — a complete match. A total of 6 characters have been examined.

index 12345678910 12 n="1

text abcbacét_;c_:gabﬁ decision at
{ { l( { _ 7 COMPLETE match

4.2 Formal description

The RQ algonthm is simple: examine the rightmost unexamined character in text’, where text’ = text[n...n+
P- 1] and 7 is the leftmost undecided index of text[] Figure 2 describes RQ. In the worst case, RQ examines

T characters, because it examines each character once.

Cp=1
Afl. T-P+1] = o; (* partial match initially %)
_ Ex|1...T] := false; (* array of examined characters *)
‘while (n <T - P+ 1) do begin '
e := index of rightmost unexamined cha.r in text(n..n + P —1J;
examine text[e];
record dec1sxons in A[]; . .(;ti)
Exle] i= true; |
if text[n..n+ P~1] ~ patt[l P] then
match found at 17, :
-~ end; ‘
- :=leftmost undecided position;

end;.

Flgure 2 A high level description of the RQ a.lgonthm.

Unfortunately, this a.lgonthm requires three arrays of size O(T): text[], A[], and Ex[] Let A’ [1 P]



A[r] r] + P — 1] and Ex'[l P] Ex[r] n+P- 1] For all 5, all access are to the shorter arrays, A', Ex',
and text'. o : |
The “hardest” step is (11) However, a precomputed table can tell us what dec1s10ns are made upon
examining character c. ForceTand 1< j < P, dvec[c][j] indicates whether a dec1sxon at _7 is made when
¢ is found. Thus, -
vl - { o copuP—il.
@ c# patt[P—g].

Define the binary Opera.tor @ as follows

A’ | dvec|c] | A'e dvec|c]
3 ° o
@ | o 2
© %] @
o %] Q.

A’ e dvec[c] gives the new value of A’, because dvec|c| is an array of decisions of length P.In practlce,
o=l, 0-—0 and thus, ea is the loglcal AND operatlon Flgure 3 shows the algorlthm for RQ

4.3 An eﬂ'iclent 1mplementatlon when P< W

If P is less than the word size, W, of the computer, then we can maintain A’ [ ls a.nd Ex’ [] in a single register.
Similarly, we can hold dvec[c] in a single register. A’[j] is the 5*» bit of A’. We use the standard convention
that bit O (Isb) is the rightmost bit. Incrementing n by 1,4 shifts A’ and Ex' by 5,5 bits. Let ShiftLeft(Ex’,
s, false) be the operation that shifts Ex’ left by s bits, filling the vacated locations with false. This
operation becomes an “arithmetic shift word right by s bits” instruction, which is supported in hardware
- by most computers.. We set text’ as a pointer into text[] starting at text[n]. Finally, we can upda.i:e all of
A’ with a single logical AND a.s shown in Figure 4, which presents a practical algorithm for RQ. On many
computers, each step in this algorithm takes O(1) time and thus, the running time is proportional to the
- number of characters examined. ‘ ' ’
Finally, we cover other possible implementation choices.

1. Tighten the main loop, by not checking if a character has been previously examined. Instead, probe
text’[P], text’[P-1], ..., text’[1] until a decision is made at 1. Some characters may be examined more _
than once, but the simpler main loop more than compensates for the redundant probes. This a.lgorithrn

~ is no longer RQ, and in the worse case might make O(PT) probes. To minimize this ca.se, keep Ex’[]

when a< 3, whlch is when redundant probes are most likely.

2. To determine Neh, use a “shift” tablem, Shift A indexed by the lowest I bits of A. The table has size
2!, where 1 is between 8 to 20 depending the space available. (We have used | = W/2 = 16.) ‘

3.Ifa dynam1c right shlft is expensive, sacrifice space for time by precomputmg the table dvec’, where
dvec'[c][e] = nghtShlft(dvec[c], P-e, o).

4. To speed large shifts, use a shlft table like the Boyer-Moore algonthm a.fter exammmg text’ [P]



 Algorithm RQ.
n:=1;
A'[1. P] = 0;
Ex'[1.. T] := false;
text’ = text[1...P}; _
while (r] <T-P+1)do begin
e:={1|maxi, E.’L"[‘l] = false, 1 < i< P}; (* rightmost unexammed char *)
' text'[e], ‘
' Ex'[e] - true; o
for k := 1toedo begm _
A= AR o dedd(Phiky  (CHH1Y)
o énd; ‘v . .
il ifEx'[l...P] = [true,...,true] and A'[l]‘= o then
match found at %; ‘
end;
ﬂold = 'l: -
o ni=n-— 1+{ i | mm], D’[]] = o, 1<5< P} (* nghtmost undecxded mdex *)
[i_i_r],h 1= eta — etaga; ‘
bv"ifn,h>0then _
text’[1.. P-r],h] = text'[14+n,p...P]; :
 text [P-n.;.+1 P] text[n + patlen — n.p..n + patlen - 1],
A'[LPengp] == A1+ P],
. A'[P-gp+1..P =05
© Ex'[L..P-np) = Ex [1+7lah P],
Ex'[P-non+1.. P] := false; .
- _end;.
‘end;.

 Figure 3; The RQ algorithm

We have tested the first three ideas in an algorithm called RQ’. Our machine supports dynamic shifts, so
that option 8 gave no improvement. We show the main loop below, where I = the number of bits examined
_ by the Shiftp table. ‘ ' - '



A praética] RQ algorithm when P< W

n=1
A'[L.P]:=0...0; (* o= 1 %)
Ex' [1T] := false,false,. . . false;
text’ = text[l..P];
while (n < T — P + 1) do begin
e:= P; (* find rightmost unexamined char *)
while Ex'[e] = true do begin
e:=e-1; -
. end;
¢ = text! [e]j
Ex'[¢] := true;
A' := A’ A ShiftLeft(dvec|c],P-e,0); (* logical and *)
if Ex’ = true,...,true and A’[1] = ¢ then
match found at ; ' :
end; | ’
Neh = 0;
while A’[1] = @ do begin (* find rightmost undecided index *¥)
Nsh = Nsh + 1;
ShifeLeft(A’, 1, o);
end '
N =N + Non;
if nen > 0 then
set text' pointing to text[n];
ShiftLeft(Ex’,nsn,false);
end;
-end;.

Figure 4: The RQ algorithm when P< W,
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An efficient non-optimal algorithm when P < W

n=1 .
A'[L.P]i=0...0; (* o=1%)
e:=P; -

while (n <T-P+ l)do begin
o= text[n+é-1]; , '
A’ := A’ A RightShift(dvec|c], P-e, o);
while A’[1] = ¢ do begin
ife = 1then ,
‘ match found at #;
RightShift(A’, 1, 0);

mi=n+1
e:=P;
- else
ei=e-1;
' end; \

¢ := text[n+e-1];
A’ := A’ A RightShift(dvec[c], P-¢, ¢);

end while;

do . (* find rightmost undecided index *)
slide := Shift o [A'[1...1]];
RightShift(A’, slide, o);
n:=n + slide;

~ while (A[1] = @);
e:=DP;
end while;.

Figure 5: RQ’, an efficient variation of RQ.
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5 The Number of Probes when P < a

In this sectlon, we present a technique for ana.lyzmg the beha.v1or of a finite automa.ton glven certa.m restnc-
tions. -In partlcular, we show how to derive asymptotic a.pproxunatlons for the: runnmg time of a pa.ttern
matching a.lgonthm When the number of probable states is large, the calculation may be mtracta.ble For
RQ and BM, restnctmg P < a drastically reduces the number of states. e
- We model an algorithm as the actions of a finite automaton [ASU86]. Each probe causes a state transition.
As the search progress, the finite automaton reaches a probabilistic steady state, or “eigenstate”. The
probabilistic transition diagram can be written as a matrix with entry bi; corresponding to the probability
of moving from state ¢ to state j. The eigenvector of this matrix is the eigenstate of the finite automaton.
The entries in the eigenstate are the probabilities of each state. We also calculate the expected number of
decisions. corresponding to each state. Throwing out states with low probabilities simplifies the analysis and
' yields the approximation. First, we give deﬁnitions, and then we apply our method on three algorithms,

" OPT2, BM, and RQ.

5.1 Definitions and Approééh

We model ‘a monotomc gearch algorithm as a finite automa.ta., T, with states, & { E} M and E are sets of

indices of text’. M is the set of positions in text’ that have pa.rtwl matches. E is the set of character indices

{1,2,4} -

m text’ that have been ezamined. In Figure 1 before examining text[9], n = 6 and we are in state ¢ {123}
with text’ = text[6...9] = aaba. There are partial matches at text[6,7,9] = text’[1,2,4], and we have examined

{1,2,3,4}. with n = 9.

text/[1], text’[2], and text'[3]. After examining text[9], we are in state 3

More precisely, .. - , ’ ;
M={j|An+j-1]=0 and 1<j<P},
-and,

E={j]| text[n+3—1]—exa.mmed and 1<J<P}

The sta.rtmg state is £¢-—- 6{1’ P}, For the remainder of this paper, M= {m1 =1,mg,:", m”M"}, a.nd E_
= {e1, €2, -, ¢)g||}- I the nghtmost character in E, ¢g|| = 7, then M = {ml,mg, ,m.,'1+1,'7+2 P},
because the potential matches sta.rtmg at y+1,7+2,- -, P have not been looked at yet. We abbreviate the

{m" it} with the * representmg the unexa.mmed patterns, or simply as {{;; {"“’ ""'},

above state either as E
“with the * implied. . o
The probability of being in state £ is Pr(¢). The set of all possible states is E. Finally, £(A) is the
ezpected number of decisions to be made in state £ when the next text character is examined. For RQ -
determining £(A) is trivial but determining Pr(¢) is difficult. For BM, neither is trivial. -
‘A transition occurs from one state to a second (possibly the same) state for every cha.ra.cter exa.mmed
For €1, é,€EB, andce H if a transition is made from ¢, to §; upon finding ¢, then the correspondmg entry _

in the transttwn table T, is T[éll[c] ¢;. The probability of moving from state §; to &, is
o Pr(é &) = Z pr.

| e 1][01 -
The probabzhstu: transition table is gwes the probabxhty of moving from §; to ;. We write the probabnhstlc
transition table as an NxN matrix, B, with entries b;; = Pr(¢ ~ £;), where N = ||E[| = the numbel_' of poeub_le
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staﬁes’. The 'lxN vector V, gives the probability distribution for each state after examining 7 cha.iacters Vo
= [1,0,0,...,0] because we are in. state {, initially. We have V, = VoB", because V, = V,_,B. ‘To analyze

the finite a.utoma.ton, T, we need to find its probablllstlc steady state, v, ‘which satisfies V, = V,_, B. Thus,

V is an eigenvector of B with eigenvalue 1. ‘Because every distinct eigenvalue has an eigenvector, V exists

ifand only if B has an eigenvalue of one.
Lemma 1 Matriz B h.aa an eigenvalue of one.

Proof The sum of each column of B is 37 =1 b E;.v:l. Pr(&; ~+ &;) which is the probability of moving
from f to any state §; € E which is 1 by deﬁmtlon If X an eigenvector, then det(B — AI) = 0, where 1 is
the NxN identity matrix.  Consider B-AI when A = 1. The sum of each column is 0. Addmg all other rows

to the la.st row ylelds a new row of all zeroes, proving the lemma. o

Analyzmg V gives the average behavior for long mput text strings, because V. represents the probabilistic
steady state of I'.- We surmise that the steady state is reached qulokly, and that analyzing V gives an accurate
approximation to RQ and BM as long as T > 10P_[logd P). The factor of 10 discounts the effects of starting
w. v, : o _ v v
The n** entry in V is Pr(¢,,). Let d be the average number of decisions made per probe. Summing over
all states gives d=3 ¢em Pr(¢)é(D)/ Y ger Pr(¢). The average number of characters examined is T/z or

B ‘ 62 Pr(¢)
— €8
®(A) =T
W =T FEeaa
‘ fer

as T — oo. B @

In summary, our a.nalysis of .<I>(A) consists of the following steps.‘

Assumptlon A ra.ndom bext strmg, text(]. ,
Input: Algonthm A, alpha.bet H character proba.blhtles p , and patt[]
Output The asymptotlc number of probes made by A, as T — oo.

1. Calcula.te g = patt[] ¥ pr,?
2. For an aigorithm A, create the transition table for all states £
3. Create the probabilistic transition table and hence, B.

4. Determine G(A) for all ¢é€ E. |

5. lr)eytéin'nine'Pr({;') for ‘a.lilfé =
6. Evaluate Equation 2;

In practlce, RQ has greater than O(2F) states, whlch is far too ma.ny for exact analysis. Instea,d we
derive a sunpler a.pproxlma.tlon for m by counting only the most probable states. N

Furthermore, we assume P < a, which greatly reduces the number of probable states. Examining a text ’
character will eliminate all or all-but-one match in M on the average. The most probable state w1ll be 60
“In general, Pr(f{M *}) is O(q“E" 1M’ "), because || E|| text characters have each ma.tched ||M '|| pattern

13



pomtlons 80 fa.r In derlvmg our a.pproxnnatlons, we restrict our interest to states with probabilities greater ‘
than or equal to some threshold, pen, and calculate probablhtles to the same accuracy. For the RQ algorithm

we use DPeh = O(qz) For BM we use pip = O(1). For the OPT?2 algorithm, the analysis i is gimple enough to
do exactly.

5.2 The OVPV'.VI‘2 algorithm

We now derive the leading term given previou/ely for ‘I>(OPT2i. OPT?2 is the optimal algorithm for searching
for patterns of length two. The OPT?2 algorithm [KMP77] is

im 2 . ' RN *-»(*fo*)
_~while -k < T do begm ’
» c:= text[k]; : o R v

if c = - patt [2] them ’ SR (e gg}'}

if text[k-1] = patt[1] then
match found at (k-2) -
.. while ¢ = patt [i] do begin
ko=k + 1 : | : ORI
c := text[k]; R '
if ¢ = patt[2] then
. match found at (k-2);
" end; | R | A |
k= kt2; . L . (= & %)
_end;. ' - ' ' ’

OPT?2 is simply RQ ﬁhen P=2, Forthis simple case, let ¢; be the proba.hility that patt[1] matches a

. random text cha.racter, define g, similarly. In other words, ¢; = Y pr,.

. c~pat¢[t]
Our model of OPT2 uses four states. Let co be the character just exa.mmed and ¢y be the next character

to be exammed

° E‘, no pendmg matches, as co # patt[1] and co # patt[2] &y is also the sta.rtmg state. We could end
up in any of the four states after probing ¢;. : : B

. f {2} co ~ pa.tt[2] but ¢o # patt[l]. ¢ is the text character to the left of co, which will force a decision -
at 1 (elther a complete ma.tch ora fmlure) In elther case, the next state is fa '

° fﬁ}*} s cg ~ patt[l] but co ;é patt[2] giving state ¢ {2% After shlftlng text! to the right by one, we

- get the desired state E { 1} Yoo 1 is the text character to the right of co, which also forces a decision at -
1. The next state is § if c; ;é patt[l] and fﬁ'}*} if ey = patt[2]

. fg'}z} : co ~ patt[1] and co ~ patt[2]. c; is the character to the left of co, which w1ll decide at 1. Ther

decision at 2 is unaﬂ'ected causing the next state to be fg}*}.

~ The _pi'ebabilistic- transition table for OP_TZ is
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fg - 21326, + 7119258% + ?27158'}*} + qlqug'}z} _
& — &
€~ 1,6+ aely)

1, B yE
i~

For simplicity, let Pr(£;) = 1, because Equation 2 ignores constant factors in Pr(§). Rea.rrangingb terms

to collect the probabilities for each state yields

: Pr(gfl}) = ?1‘12
Pr(ffl}) = qqu + q1Pr(£§;}*}) + Pr (fgl 2})

“:‘Pr(f{{zl’}n) = qigz. ‘ /

Thus, Pr(¢) and £(A) for each state are

State | Pr(¢) | £(A)
&G |1 1 nu+,
Gﬁ{ %192 (1 -
& fa/m |1+,
, f}é}” ngz |1
Applying Equation 2 gives
S0Py = LUt —aa) | (3)
2 (1-%) ,

Setting ¢ = q1 = ¢2 gives ‘thg leading term in Equation 1.

5. 3 A 81mple BM approx1mat10n

We give a very simple asymptotic approximation for the Boyer-Moore algonthm when P < «. For short

patterns, BM achieves its speed through the use of a sklp table”, Skip[z] (called &, in the original article),

which contains the distance from the rightmost occurrence of character z in patt[] to the end of the pattern.
If e is not contained in the pattern, Skip[c] = P. Let ¢ = text/[e] be the last character examined. The amount
to mcrement n 80 that ¢ ahgns to its rightmost occurrence in the pattern is 5,,= Skiplc] - (P- e). The
number of decisions made is n,5. In the common case, ¢ = text|P], and Noh= Sklp[c] As an example,

assume we are sea.rchmg for aabc in abcdabcaace.
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‘index - 1 2 3 4 5 7 8 9 10 11
text a c ¢li a b c a a c e :

. pattern  ‘a c : 81$1p[d] =4, Nu= 4
text - a b 'c d a b ¢ i acoe | : , .
pattern -~ = a c Skip[a] = 2, n4=2 |

text  a b cdabocoa a & e SR
pattern ' o a a b ¢ » Skip[c] = 0 (partial match) -
text a b cdabc 2 & c e v

~ pattern ' a b ¢ Skiplal = 2, =1
text abcdabec a a z_:: ¢ :

a b c Skipld] = 4, n.s= 4

pattern ' , a

After aligning itself, BM examines the rightmost character in text’. If a pattefn and text cha'.recter match,'
BM continues the comparison backwards through the pattern. ‘ '

-Our ana.lysm here only considers the start state, £, and the result of probmg text'[P] = c. When Sklp[c] B
=1 for 1 <4< P—1, none of thes characters at the end of the pattern are ¢, but the ¢ + 1"‘ cha.racter
from the end is c. Thus, the probability- that Sklp[c] =1is 7'q. The proba.blhty that Skip[c] = P is g¥, as
the pattern does not contam ¢. Finally, ¢ matches pa.tt[P] with probability g, which we view as Sklp[c] =0.
The expected number of decisions is the wexghted sum of the dlﬂ'erent shifts: E.—o‘ Pr(S kzp[c] = z) '

Thus, §(4A) = e
1

0g+ Z ig'q+ Pgt
=1
As before, setting Pr(&;) = 1, means that &(BM) is T/ fﬂ(A) Simplifying the above equations for {;'¢ (a) _‘ '
gwes '

®(BM) ~ TT_;Q—P) ) whenP<a | IR (4)

(A detailed a.nalysns of BM reveals that this model is too simple, but the a.pproxlma.tlon remains valld )

5.4 TheRQ "algorithm
An exact analysis of RQ would have to consider O(227) states and simultaneous equations. Instead, we
derive an asymptotic approximation to m by considering only states with proba.bilities on the order of
g2 or greater, which gives us O(P?) states. Setting p;;, = ¢° would mvolve O(P?) equations and would make-j
the following ca.lculatlon much more difficult. As before we set Pr(§,) = 1. ' :
‘We use )_-notation to represent a collection of states in the. obv1ous way. For exa.mple, fg —gq E'=1 f.l}}'
means when in state £¢ we go to each of the states 5{{; }*}, fg; é‘ (P=1} w1t;h prqbablhty q. The probab;hs_tie
transition table for RQ is : : : ' '
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SR —» '_ P€¢+q‘° 1q(E f“’)+q ~3q 2(,2 z: efl""*})+0(q3)tems (5) |
K  states with Pr(s) 0(q) - Lo _ SRR
i - f:i,}+q"-°- q(z e{“})+0(q2) toms
| . VYeiu(lge<P-1) | |
&~ el ©
__ states w1th Pr(¢) = 0(q2)
A eg;"‘ *) _;__ :2€¢+0(q) terms |
| | Vm,e (2<m<e<P),exc1ud1nge;rﬁ P »
f&? :f.%&”+mﬂ“mw‘ : R ®m

The ﬁrst term in Equa.tlon 5 corresponds to. dec1dmg all indices in text' In other words, c= text'[P] o

- is a character not contamed anywhere in the pa.ttem The second term occurs when all but one decmon is

_made — ¢ occure. only once in the pattem The thu‘d term occurs when all but two decmons are made — e

'occurs twrce We rea.rra.nge the terms to collect the proba.blhtles, yleldmg the followmg ta.ble

: ” ?,’0

Bt

State .- B

Pr(&a)

[ty

Pr(f{l *})

Pr(eiy™)
[ Brtefey

Pr(g{{g-l;P}.

M

*jmmf

.

f qPr(f¢) + Z qP"J 1qPr(${1 '}), Ve 2<e< P

Pwmm+zfﬂwm$ﬂ+mwxw'mj

gF 2 2Pr(€ ) Vm,e:25ms_,eSP | B
qPr(f{e})» Ve=1v<e‘<lp‘1

qPr(e{P 1})+qPr(e(P}) ERC I

In the leftmost column, we list the a.pproxunate probabilities of each state. In ri;ght'rnost' column, we use

the approxuna.te proba.brhtles, which simplifies the calculation and results in an error on the order of O(qs) .

-The last term in Equa.tlon 8 is due to Equation 7; 31m11arly the last term in Equa.tlon 9 is due to Equa.txon 6.

~ ‘The expected number of decisions in state £, £(A), is simply q times the number of mdlces looked at by the - -

next probe



State | Pr(¢) £(a) condition

& 1 , Pg
Efi}*} | (PP | (P-e+1)7[2<e< P
& eﬁ'}*} ler-tq4pa | P
f&i‘m'*}‘ ¢ (P-e+2)g[2<e<m<P|
&n |2 | 7
| | e 1<j<P-1
¢y 7 |2 e

Using *q=q-— qu + 0(q%) and applying Equation 2, we get )
T 1+ Pqg+ (P+1)q®
Q('R.Q) 8‘ (1+ E_1, _ FLEPi3g)

when P < a. : ‘ (10):

5 5 The number of probes for large P ‘

In thls‘sectlon, we derive a.r;,uppe,r bound on the worst case runnin1g time of ‘RQ, for arbitrarily large P. 'We
do so by ‘exa.mining blocks of b. characters at a time, increasing the eﬁ'ei:tive blocked a.lpha.Bet size to a®, as
suggested in [KMP77] and [Yao79). Call this algorithm the blocking version of RQ. We show that in the-
worse case, the number of characters examined is asymptotic to (4logy P/3)(T/P)

For text’ = text[n .n+P-1] we probe the characters text'|P-b+1...P}. Choosing b = [log, P] assures that
o' = a® > P, so that we can apply Equatmn 10. There are P — b possible mdlces in M, namely [1.. P-b+1]
For large P, P-bw P. _

For our lower bound, we let P — o0, throw out terms of order 0(1/ P) or less, and set b = log,, P, which
glves Pq = P/ a’ = 1 Applymg Equa.tlon 10, gives the desired upper bound to the average case runnmg
tlme,

WS%(%) forP»a,T—»oo ; (11)'

Exa.mmmg blocks of characters is suboptimal. In many mstances, after exammmg n chara.cters where
n.< b, we will have decided at 1, so that examining the rest of the block is suboptlma.l as will be shown in
Section 6. However,: Yao [Yao79] showed that RQ is better by at most a constant factor than the blocking.
_versmn of RQ. We surmise that the upper bound of Equa.tlon 11is close (thhm a factor of 2) to the actual

number of cha.rax:ters exa.mmed
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6 Proof of Optlmahty of RQ

, The RQ algonthm is optlmal in severa.l sunpler cases lending credence tha.t it is optlmal on the a.vera.ge for o

, a.ll pa.tterns _ ‘
e When P= 2, RQmOPTZ

.:_ ° . When the text conslsts entlrely of cha.ra.cters not m pattern, RQ exammes every Pth cha.racter, thus

QlRQ) = [?J cha,racters

° When the text conslsts entlrely of successwe pa.tterns, RQ examines exa.ctly T characters

- Our proof that RQ is: optnna.l consists of determuung the best sequence of probes for any glven state’ €
We model a search algorithm as a finite a.utomaton with an associated state, (£,1, A) First, we define how ’
to compa.re two different: probes. Second; we compare probmg index % versus index j, and: show that when‘ .
t > j probing ¢ is always better. Next we compare sequences of one probe followed by another. We show
tha.t fori > 7, probing ¢ first and then j if necessary is better than j first and ¢ second It follows that. RQ is
the optimal monotomc search algorithm. Fmally, we show that a non-monotonlc algonthm can do no better: ,
. than RQ, proving tha.t RQis optlmal

6 1 Deﬁmtlons |

As before n= the smallest undeclded mdex, and text’ = text[r] n+ P - 1] The process of exa.mmmg or
probmg the chara,cter at text’ [1] is denoted ¢[‘l] I ¢fi) might make a decision at z, then $[¢] looks at z. We -
assume that a ‘probe makes a decxslon with proba.blhty 3 a.t all undeclded mdlces looked at in text' Note
. that applymg ¢[z] to ¢M cannot make declslons at the mdlces in M greater tha,n L1 For example, if P= 6 and
“the current state is 5{1 25, ,6}, #[5] mxght make decisions at i, 2, or 5, but it ca.nnot ‘make a declslon at 6.
[0] is the null probe, whlch corresponds to do nothmg The probe sequence ¢[t]¢[]] probes i ﬁrst and then‘
probes ] upon the resultmg state. , ‘ : 2
““In this sectlon, ¢ and j represent unexammed indices, w1th i> j. In all cases, we shall be provmg that
#[i] is better than ¢[5]. The capital letters I, J, I, J' denote sets of indices i in text', 7
- For state &M, we use the notation E = {el, ez, -+ ,e"E”} the set of examined mdxces E the set of
unezamined indices of text' thus FEUE = {1 2,---,P}. If we have exammed every chara,cter but one in .
text’ ‘then probing that cha.racter must make a declslon at 1 (either a complete match or a mlsmatch)
' The two -step algorsthm ¢[1,1,zg] means to examine 7, and then to examine 3o if it is Stlll necessary to ’
N declde at 1. ¢[z1] might declde at 1, rendering ¢[z2] unnecessary. The n-step algonthm ¢[z1,zg, . ,z,.]_mee.ns” '

o exa.mme 11, and then 1o if necessary, and then 13 if still necessary, and so on, down to %,,.

, For each posslble state f B ) 3 ‘monotonic search a.lgorlthm specifies a sequence ‘of probes ¢[21,1.2, 3y n),
v’;'where 1, 7,0 18 some permutatlon of E. Thus, $l81,82, - -+, 9] specifies what order to probe E until a -
’declslon is made at 1. I text! []~ patt[ ], all the indices in E will be probed. S

‘ We model the actlons of the monotonic search algorithm A1 by a ﬁnlte automa.ton P Al- The cu‘rrent
“state. of Py is €41- The current va.lue of n for Alis n41- The set of indices of text (not text') where ‘
decxslons have been made by Alis A Al The current state of Al i is denoted by the total state, (f »" A) Al
- Algonthms Al a.nd A2 are in the same sta.te if (¢,m, A) A1 = (f ) 7y A) A2 For brev1ty, we say. a.lgonthm Al
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_ is in state §; when I'4; is in state &;. Intuitively, if algorithm Albis'better,t_ha;n algorithm A2, then on the
average A1l increments v (and hence, shifts text' to the right of text[]) faster than a A2 does.

Deﬂmtion 1 Let (&',n,A)Al and (f,n,A)Ag be the states of two algorithms. IfA,u - AAg and r)Al > 142,
then (6) 7, A)Al 13 better than (Ea 7, A)AZ; or (6’ 7, A)Al > (f) 7, A)AZ

Definition 2 Let Al and A2 be monotomc search algorithms starting sn the same state, (é’, n,A)o, with C
=.a fized positive constant. If on the average, after n probes, for alln > C, (f,ﬂ,A)A1 > (&,1, A)Az, then.
A1 18 a better algorithm than AL. '

The result of applying probe ¢[] to total state (£,n,A) is shown as ¢[f](&,n,A) = (&i,m,A:) =
(&in,A). #[i](¢M) = ¢, is short for ¢[s](€,n,A)0 = (£,7n,A);, where A; and #; are understood. - For
¢[z]($g‘ ), #[5](M) denotes the resulting set of undecided indices after a.pplymg ¢[t] Similarly, ¢[:](E) =
{i}, because probing 7 adds 1 to E.

" Applying d:[z] to €M increments 5 by 1,5, shifting text’ to the right by Nsh. Shifting M and E by n,;
corresponds to subtra.ctmg Nsh from zll existing indices and dlsca.rdmg those that are less than 1. The
discarded mdlces are the mdlces shifted out to the left of text’. In a.dditiorl, the hew, not-yet-looked-ét
mdlces {P Mo + 1, P} are introduced into M. ‘ ,

A transformatwn Tr: maps a probe #[2] to another (posslbly the same) probe $[2'] denoted by Tr ¢[z]

- ¢[2']. There are two types of transformations. The ezchange transformatzon, Tr[z « y|: translates ¢[z] to
¢ly] and $[y] to ¢[z] all other probes are mapped unchanged. The nullify transformation Tr[z — @]: maps
probe ¢[z] into nothmg or the null probe (0], with all other probes ma.pped uncha.nged That i 1s, for a

probe g, o
o o) [é]#¢[z],z,¥¢[y] :
Tr[z o yl:g[z] = { ¢[z] 2] = 4[y]
R SR ]
and ' o
o aiugral - | 4] 411 12
Trlz = 041z] {¢I0] 812 = 8l

Applying a transformation. Tr: to either a sequence of probes or an n-step e.lgorithm applies to the
transformation to every probe individually; Tr:(¢(z1], ¢[22], - - -, §[2zn]) gives ’Dr:éS[zl], Tr:¢[z2], - - -, Tr:d[zn].
The null probe is dropped from a sequence of probes. For example, Tr(3 « 4]:4[2,4,6,3] = ¢[2,3,6,4], and
Tr[4 — 0]: $[2,4,6,3] = 4[2,6,3]. '

6.2 Preliminary Concepts
"Lemma 2 Let A1 and A2 be monotonic search algorithms. Both A1 and A2 start in atate'(E,n, A)start and
end up in state (€,1,A)ena. Al requires al probes, A2 requires a2 probes. If al < a2, then Al 1is a better

- algorsthm than A2.

Proof Let d = a2 — al, the difference in the number of probes executed by the two algonthms On the -
average, a.pplymg d more probes as prescrlbed by Alto (£,1,A)end mcrements n,,,,d and adds decisions to
Aenas Thus, a.fter a2 probes Al is a better a.lgonthm tha.n A2. O '
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In our model, we extract all possiBle information from each probe, in that we make every decisions ;
possible. - Clearly, an"algorithm that does use all the information from a probe cannot be optimal. For
example, the Boyer-Moore algorlthm is non-optlmal n’ thls respect In practlce, the set of states for non- -
optimal a.lgorlthms is a'subset of the set of all states E ‘ B ' , ,

We are concerned with choosing the right sequence of probes when in sta.te f B when there is more than
one choice. If E has only one ‘unexamined mdex, lc from the definition of a monotonic algorithm, we must /
‘probe k next. For the rema.mder of this sectlon, we assume that E contains at least two indices.

In comparing states ¢, and ¢&,, we are really comparing total states (£,7,A); and (¢ ,f],A)g When
comparing probes, it is assumed that we start out in the same total state, (¢,n,A)0. We already know how
 to compare total states and algorithms The following definition allows us to compare single probes, élk]

and ¢[k'] In' essence, if ¢[k| results in a better state, and if we can maintain (f,n,A)k > (&,m, A)k: then
¢[k) > ¢[k']

Deﬁnltlon 8 Given state (E,r',A)o unth unezamined tndices k and k’ let ¢[k](€,q,A)o = (E,n,A)k and
¢[k'](€,r),A)o = (&,n,A)xr. If for any subsequent series of n probca ¢|K'] applied to (&,n,A)x:, we can
find another series of n probes, such that $[K|(£,n,4)r > ¢[K'](E,r), )it, then ¢lk] > $[K']. Similarly, if
S(KNE,m, A) = SIK'N(E, 1, B)w, then $[k] = $[K]. o

Cdndition 1’ In comparing two probes we assume the _following conditions.
1. a state (f,r],A)o, .
2 E' has at least two unczammcd indices, ¢ and j, with ¢ > 7, and

3s. applymg #li] and ¢[_7] to (E,n,A)o gives rcsultmg atatca (&',,r/.,A.) and (f,,n,,A ) rcapcctwcly In
particular, ¢ [t](fgl) fE,' = ¢, and ¢[J](€g{) = €J o

To analyze this situation, we divide the set of undecided indices M into three regions: My = indices
looked at by both ¢[¢] and ¢[j]; Mrr = the. indices looked at only by ¢, and Mj;; = indices looked at by
neither 7 nor J. Note that M;; may be empty, if we have previously decided these indices. - Similarly, we
divide the set of probed indices, E, into three regions: E; = indices to the left of 7, E;; = indices to the
right of 5 up to 7, and Ery; = indices to the right of :. Note that i and j are elements of E,‘not k.

M = { My, Myr, My}
I, u _ uI
, , E= {EI:]:EII,3 E'ur}
_ The followmg dla.gra.m ﬂlustra.tes these ideas for* f{l 2,4.6) y 2= 5 _1 = 2.
- {My=12 Myp=4  Mp=6}

{EI— m E11—3E] Ezu—ﬁ}
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6.3 A 'singlev probe
We now compare two smgle probes subject to Condltlon 1. The resultmg theorem is the heart of our proof
We expand the resultmg states § and §; proba.blhstlcally and compare them term by term, s howmg that_
§ is equa.lly good in some cases, and better in the other cases. We break down our argument based on the
possible mltlal condltlon of M;r. . ,

Probing a state { glves a probablhstlc distribution of resulting states. We brea.k down the dlstnbutlon _
by the amount of resultant shift, 1,5 Remember that M = {m; = 1,m;,-.-,m M"} If we make declslons
at the first n 1nd1ces in M, then n,h-— m,.+1 -1, because we shift text’ so that Mpiq is the first cha.racter'_
in the new text’. The resulting set of states when 1, = Mp41 — 1 is denoted [€],. [€]n contains all 2%
‘permutations for the remaining z indices of M beyond my,+1 that were looked at. Pr([¢],) is the sum of the
probabilities of these states. For example, P= 5, M = {1,2,4,5}, E = {3} and we probe 5. Before shifting
text' the states for [£]; are {§{{§’:§, {2}5}}, after shlftmg we get [¢]; = {58}2}, fg;} All the states in a
given [{] have the same E.

The minimum shift is O when no decision is made at 1. After o[k, Pr([f]o) = q, because text' [k]
patt[k]. In general, Pr([¢],) = 7" 9 because we make decisions at the first n elements of M and match on

the (n + 1)** element. '

‘ From a probabilistic standpoint, ¢[i] and ¢[J] act upon M equally, and we can directly compare the
terms between ¢[¢](M;) and ¢[5](M;). Conceptually, we expand out the result of ¢[s](M;) into every possible
resulting state multiplied by its probability. For every term from §[¢] there is an identical term from él7]. -
We only compare identical terms. In other words, when we compare #[¢] and ¢[5], we assume they mdke
ezactly the same decisions i in M. Because both probes do not affect My, ¢[t] dlﬂ'ers from ¢[] only at Myr.

M’ is the new set of undecided indices of text' after the probing and shifting. We partition M’ into three
regions similarly to M. ¢[](M;) = ¢[J](M1) = Mj. Mjys is unaffected, thus M}, is Mir shlfted by 7.
M,

The next lemma shows that when My is previously decided, ¢[z] = ¢l7].

are the new indices shifted in.

Lemma 8 “Equal case® If ¢[i] and ¢[_7] are two probes satufymg Condttwn 1, wtth Mu = ¢ (the empty
© set) in state £M, then ¢[i] and #[7] are equally good probes.

Proof. We break down VE{ and §; by the amount of shift. Let ny = || M|

6—q[€]o+nf:q9[Eln+11"’9[€]m S

n=2

ny~-1

§ = = gl¢]o + > q"qlfln'HJ"’q[f],., < | o . (13j R

. n=2
The equatlons are identical. Thus, the resulting states, §; and ¢, are identical except tha.t E =FE U %,
and E; = EUjJ. The last term in both equations represents the case where all indices in M are dec1ded by
the probe. Comparing the correspondmg terms of Equations 12-and 13 gives the following cases.

o If part of M, 1 remains undecided, we get either the first term or one of the summed terms in the above

equations, with ¢’ = i - 7,5, and j’ = 7 - n,s. The resulting states look as follows.
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{M} : }II Mllnew}

#lil(e) — ¢
(7 Er] By }

(M My, Mi}
silE) — €
i B,  Eu, }

For any subsequent series of probes ¢[J] applied to £, let ¢[I | = Tx[s « J]: ¢[J ]. Every decision that
$[J] makes is also made by ¢[I], and vice versa. The sequence of probes ¢{I] and ¢{J] will eventually
decide all of M; causing a shift past both ¢ and j, resulting in identical states. (Because Mj; was
previously decided, when the last entry in M is decided we shift past both ¢ and 7.) In this case, ¢[z]

- and ¢[;] have lead to the same future state, shown below as Scenario 14, so that ¢v[z] = ¢[7].

e If ¢[s] and @[j] decide all of M;, we get the last term in Equations 12 and 13. Because M)  is empty,
we shlft past M, 7, and ¢ to Myfg. ‘
{Mir M}

Blil(¢) — ¢ |
| (B }

(14)

(Ml M}
#l71(¢) — ,
U&= g, }

Cle;'srly, ¢ = &, so that ¢[i] = 4[7].

In all cases when M;; is previously decided, we obtain identical future states, so that ¢[i] = ¢[5]. O
We now consider the case, where My is not completely decided when we apply ¢[f] and ¢[;]. Intuitively,
#[1] is better here than ¢[;], because ¢[i| might make decisions in My, but ¢[5] cannot. To simplify the
proof, we show that in both the worst case and the best case that ¢[i] > ¢[j]. For the remainder of the
cases, it suffices to demonstrate the easier proof ﬁhat #[7] is no worse than ¢[s]. In the worst case, ¢[i] makes

no decisions in My; in the best case, ¢[i] decides all of M;;.

Lemma 4 “Worst Case.” If $[i| and ¢[5] are two probes satisfying Condition 1, with Mr; # @ in state £ .
Assume that ¢[i] makes no decisions in My;. Then $[i| > ¢[7].

Proof. As before, we expand the resulting states by the amount of shift with n; = |M;]|. Here, [¢],,
means to shift past all of My up to My;. - ‘

ny—1

&=qlélo+ D aléla+ 7" ql€lns- (15)

n=2

ny—1

&=l + Y Palele+ Tl (16)

n=2

Again, we compare the resulting states term by term.
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o In the first t&)o terms in both Equations 15 and 16 some or all of M} remains undecided.

| My My Ml ML)
ghle)—¢ T

(g, B By }
- M My My, ML}
sy —e T

(Ef7] Br B }

Again, for any subsequent series of probes ¢[J] applied to £, let 4[I] = Tr[¢ « j]:¢[J]. Every decision

that ¢[J] makes is also made by ¢[I], and vice versa. At this point one of two possibilities occurs.

— At some point ¢[J] and ¢[I] might decide all of M} with part of Mjs still undecided. Call these
states &, and & 12 respectlvely That is, we have shifted past 5/ but not 7', . Let mi; be the first
undecided in index in the original My region. m}, is now index 1 in the new state. We have
shifted a total of m}; — 1 so far, and the old index ¢ is +' = ¢ — (mu -1).

{m'II =1, M;I ' M}II ‘Mnlxew}
SN, ) —§

e By o

¢[J](§ ) s{mu =1, Mj; }11 M.}
{ }I o ‘E;u ‘ }

At this point, for any sequence of probes $[J'] applied to &;, let ¢[I'] = Tx[s' — 8]:¢[J']. $[I']

makes a decision everywhere that ¢[J'] does, but potentlally does so in one less probe if ¢[J']

_includes ¢[i']. We already know that ¢[z] yields no declslons in Mj;. ‘In this case, by Lemma 2

and Definition 3, ¢[¢] > ¢[5].

- States & and €, do not arise, because we decide all of My béfore My is decided. Wé shift past
7 and.7 in one fell swoop. We end up in identical states as ﬂlustrated by Scenario 14. Thus, ¢[z]

=¢[7].

' The probes ¢[i'] and #[7] decide all of Mj, giving us Scenario 17. We have already shown in this case
that ¢f] > ¢[5]. -

~ In all cases ¢|t] leads to a state as good as or better tha.n the state for ¢[]] Thus, on the average, ¢[z] ’
>l o - - -

Lemma 5 “Best Case.” If #[i] and $[5] are two probes satisfying Condstion 1, with My # § in state M.
Assume that §[i] decides all of Mir. Then $[s] > ¢[5]. S

~Proof. As before, we expand the resulting states by the amount of shift, only this time, ¢[i] might shift
up to Mz whereas §[5] can ouly shift up to Mir. np = | Mz]|, so that [, shifts up to mys and [f],,,+1
vshlfts past MII tO M]u
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nr~1

f—q[&]o+zi1q[€]n+a e )
-—q[tf]ofni:aq[&]n+7"'q[£]n, . | (19)

Again, we compére»the resulting states term by term, only this time Mj; is decided completely by ¢,
but is undecided in £;. g

"~ o The ﬁrsﬁ tw_b terms in both Equations 18 and 19 give the resulting states.

! My My ML)

O —¢ " -
' ) }JIE Elnr 1

RECRE (i Mip Mgy M)

B[] By B }

For any subsequent series of probes ¢[J] a.ppli‘ed to £, let ¢[I ] = Tx[i + j]:¢[J]. Every decision that |
- ¢|J] makes either is also made by ¢[J] or was prev1ously made by ¢[¢]. Thus, A; 2 A; remains true.

At this point one of two poss1b111t1es occurs.
— At some point ¢[J] and (1] decide all of M} with part of M}, still undecided by ¢[J]. Call t._lié_s'e’. :
states £; and &, respectively. Let M 7; = the undecided indices in M}, in ;. Because M}I‘h'a.s _
already been decided by #li], A; = A; U M. We also shift ¢; past Mu, thus, 7), > n;. By
Deﬁmtlon 2, ¢[i] leads to a better algorithm than ¢[_7] "
{MI'II ngw}

plI) €
d {E}'u' }

_ (éo)

¢[J] - SEMII M}II Mxlxew}

}1; -}

— States ¢, and ¢; do not arise, because the probes in $[J] decide all of M 11 by the time M T is
decided, causing us to shift past 5 a.nd 1. We end up in identical states as ﬂlustra.ted by Scenano 14
- Thus, $[i] = (7). ' ‘ :

o The probes #¢] and ¢>[_7] dec1de all of MI producing Scenario 20. We have already shown that in thls '
case, ¢[z] > ¢[7]. - , . _

In all cases,. ¢[z] > 47, so that on the average, oli] > ¢[J] O
Fma.lly, we show that for any state ¢M, 4[1] is at least as good as. ¢[]]

Lemma 8 “General Case.” If ¢[z] and $[j] are two probes sattsfymg Condztwn 1 then ¢[z] > qS[]]
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Proof. $[i] might have made decisions in M, 11, thus, A; 2 A;. For any subsequent series of probes éJ]
applied to §;, let $[I] = Tr[i « 5]:4[J). At some point, if n; > ns and J contains a probe j" < nr; then
ignore probe j” in I, because we have shifted past j” already in &;. Every decision that ¢[J] makes either is
also made by $[I] or was originally made by ¢[i]. Thus, A; D A 7 remains true and it follows directly that
nr 2 ny. Thus ¢[i] > ¢[5]. O

Theorem 1 For any state £, with unezamined indices, j,1, with i > j, ¢[i] > ¢[7]-

Proof. Lemmas 3, 4, 5, and 6 cover all possible cases. In every case, elther i) = ¢[7] ¢[t] > ¢[s], or i)
> ¢[]] -Thus, on the average, ¢li] leads to the better algorithm. O
6.4 Main Proof
We now denve the optimum monotonic a.lgorlthm, by comparing n-step algorlthms, as opposed to single
probes Let a1, az,--,0, €E, that is they are potential probes.
Lemma 7 Let ¢[z] > 45[]], then d)[ 3] > ¢[J,z]

Proof. Assume we are in state ¢M, with ¢ > k. Consider the proba.blhtles that ¢z, 7] results in only #lz]
or that ¢z, 7] results in ¢[z]¢[_7] We get '

Halle) - (asli] + aglilli) (€)  (21)
#iE) — (aglil+ adli6lD (6). 22

Equa.tlon 21 indicates that only ¢>[1.] is done with probability g (beca.use a declsmn is made at 1) and
that both ¢[1.]¢[J] are done with proba.blhty . The last terms in Equations 21 and 22 are identical because,
 ¢li]#[s] = #l4]¢[¢]. Thus, comparing ¢[z,]] with [, z] amounts to comparing ¢i] with ¢[5]. From Theorem 1,
we get ¢[ml > ¢lj,d]. O

Lemma 8 Forn >. 2, if { > j, then the n-step algorithm @[5, 7, as, - “+yan] > @l7,5,a3,+ -, an].

Proof. Expand each of the n-step algorithms. The probability that we reach probe as is g2, because both
¢[¢] and ¢[5] must match. Thus, the probability that the 2-step algorithms §[¢, ] or ¢[7, 1] suffice is (1 — ¢2).

¢[21.7! 63, try an] — (1 - q2)¢[i’ j] + q2¢[i]v¢[.ﬂ¢[a3: Tty an'] E
¢[].7i),a31 o " ) a'n»] - (1 - qz)‘ﬁ[].; "] + 1124’[]']4’[%']‘#[‘13, Tty an]

~ The last term in both equa.tlons are identical, because ¢[i|¢[s] = ¢[]]¢[z] From Lemma 7, we know that
‘ ¢le, 7] > ¢[_7,z] proving thls lemma. O

Lemma 9 Forn > 2 and 1 < lc < n- 2 zfz > 3, then the nstep algonthm ¢[a1, . ,ak,i,_i,---,a,,]'>

v¢[a1)b' ak;]:’: ‘ an]

Proof Expa.nd each of the n-step a.lgonthms as before. The probability that ¢[a1, : a.k] does)not deci&e
at 1is (1 7). The dlﬂ'erence between the equatlons is underlined.
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¢[a1$ cery Ak, 2', j; A3y, a(l] —" (1 - qk)¢[ﬁla Tty ak] + qk¢[all . ¢[akl¢[&l) ' . :an]
Blars 1k, Gvis @it an] = (1= ¢*)blar, -, an] + ¢ lar] - Blarldli, - an]

The first term in equations is identical, tllms,‘t.he difference between the two equations amounts to
comparing ¢[i; 7, -] versus ¢[7,3,---]. From Lemma 8, we know that ¢[z,_7, 1 > ¢l7,%,- ], thus proving
this lemma. O C ' S

We now show that if ¢ is the best single probe among {i, a1, +,an} € E, then probing ¢ first is optimal.

Actually, we show that probing any index other than ¢ first is hon-eptima.l.

Lemma 10 Forn >1 and 1 Sk<n, zfmax(z ay,az, - ,an) =1, then ¢[i,d1,-:--,en] >

[aIJ . sak)" ak+1x . a'n]

Proof. We can “excha.nge” 1 to the front by applying Lemma 9 k times until ¢ is the first probe. Each
application of the Lemma 9 yields an improved (n-1)-step algorithm. For example, the first two applications
give dlay, -+, 8p_2,% a1, ", 0] > $las, -+ ak_1,%,ak, - -, @n] > lag, -+, L) Q152 8p) O

Because the choice of {ay,:-+,a,} was arbitrary, we have shown that an optunal a.lgonthm must probe
t ﬁrst The final step shows that RQ is the optlmal monotonic a]gonthm

Theorem 2 RQ 18 the optzmal monotomc algonthm

Proof We show that for any state €E , w1th E = {a;,--:,a,} and a; > az > .-+ > a,, the optimal.
n-step algorithm is ¢[41, az,- -+, an]. By Lemma 10 the optimal algorithm probes a; first. Assume probing
a; does not decide at 1. We are now in'a new state fg‘,l with B’ = {a3,::,a,}. Again by Lenuha. 10, we
know that probing a; next is optimal. Thus, the optimal algorlthm looks like ¢[a1, az,?,- -+, 7). Repeating
this argument n-2 more times, we see that the optimal sequence n-step algorithm is ¢[ay,as, -, a,]. That
is, for any state £, the optimal :a,lgorithm probes the rightmost undecided index in text’. This is precisely
RQ. O ' ' ‘

6.5 Nonmonotonic Algorithms -
It is possible that a non-monotonic algorithm may be better than RQ. A non-monotonic a.lgorithin is not
restricted to examining a character in text' and rha.y examine characters anywhere. For example, such
an algorithm might look at text[P], text|T-P] and then text[T/2]. 'We give two prelimina.ry reasons why
non-monotonic algorithms are not likely to lead to a better approach. Then, we informally dlscuss the
" shortcoming of non-monotonic algorithms. Finally we prove that RQ cannot be beaten.

Flrst a non-monotonic algorithm is not likely to be time or space effective. If the probe must be in
memory, we need T space to hold all of text[] in the worst case. When text[] is large; reading the next
“examined character directly from a file minimizes the required memory, but in pra,ctlce, it is inefficient to
- read greatly dﬂfermg indices of text[] from a file. Secondly, OPT?, whlch is known to be optuna.l overall -

a.lgonthms, is monotonlc
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Hformfal]y, RQ decides or “gobbles” text|] from left to right. One “non-monotonic” algorithm which
is equally good to RQ is the reverse algorithm, REV, which gobbles text| ] from right to left. In fact, any
combination of RQ and REV which alternately gobbles “at the ends” and evéntuallyvﬁnishes somewhere in
the middle is as good as RQ. Each “bite” (probe) of text|] gobbles (decides) a random amount between 0
~ and P of text. Gobbling from the ends assures that we continue where we left off. However, a non-monotonic
algorithm which gobbles a part of the middle, leaving a hole, cannot be optimal. The bite that connects the
hole and the end might hé.ve eaten more,b“wasting” part of that bite. :

We define npgy = the rightmost (greatest) undecided index, and texth oy = text[np EV —P+ 1..nrev ]
REV is the a.lgorithm‘thva,t probes the leftmost unexamined character in texty 5, . We define 7 and text' as
before. A probe ¢[u] is non-monotonic if u falls outside of both text’ and texty EV- We now prove tha.t a
non-monotonic probe is suboptuna.l ' '

There are three types of probes. Non-monotonic probes are denoted ¢[u] or ¢[u;|. Probes within text’
are shown as @] flor #|fi]. Probes w1thm texty oy, are denoted ¢[r] or #[r;]. The set of decisions made by
the non-monotonic probes 4>[u.1] - ¢[u.] is Ay = {dul, -, du}, where du; < dug < --- < du;. We define
Ay and A, similarly. :

The entire probe sequence S for a.lgonthm can be described as a combma.tlon of the three types For RQ,
the probe sequence is ¢[f1], d[fz],- -, 4[fn]; for REV, it is ¢[r1], $[rz], -, @[ra]. An example sequence for
a non-monotonic algorithm might be ¢[f1], ¢(fz2], #[u1], 4(/3], #[u2],...,é[un]. The next lemma shows that
shifting a set of probes, ‘,U , by ¢ positions’ merely shifts the set of decisions made by U by ¢ positions.

Lemma 11 Let U = {$[uy], -, d[un]} = a series of “u® probes. For a giuen' pattern, over all tezt
strings, the probabilistic set of decisions made by Uis Ay = {duy,---,dw}, For integer ¢, let U +1¢ =
{#lur +5], -+, 8lun +i]}, then Auys = {duy +3,- -, dug +3}. |

Proof. Adding ¢ correspdnds to shifting the set of probes U either left (i < 0) or right (i > 0). Because
the text strings are random, U and U + ¢ encounter identical strings from a probabilistic standpoint. The

only difference is the shift of i. Thus, for a given pattern, the set of decisions is merely shifted by 1. a
Theorem 8 Any sequence of probes S that contains “u” probes is suboptimal.

Proof. Eventually, Ay, A,, and A, must cover all of 1,---,T — P + 1, because we must decide all of
text. At some point in time, we join Ay = {1,2,.--,df,} and A,, when df, = du; — 1. Without loss of
generality, assume that (1) the probe that joins A, and A, is ¢[f'] and (2) A, and A, have not been joined
yet. Let U be the set of “u” probes prior to ¢[f']. Before probing #[f'], the 31tuat10n looks as follows, where
X's represent.s an undecided region. X' is the set of indices that will be decided by ¢[f'] and XR is-the set

of undecided indices between A, a,nd A,

text[] Ay | X | Ag/XXX - A/XXX | XE | A,
text! = | | L
Sy

! o fl» »
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: If U conta.ms probes that have Jumped around text[], then Ay /XXX ma.y consist of ma.ny dlsconnected
reglons where decmons have been made In thls case, ¢[ 'l Joms the ﬁrst (leftmost) reglon in A, w1th A - ’
In any case, ‘text’ spans X' because ¢| f’] decides all of X' S

As before, é| f’ ] probes text[f’ ], the nghtmost unexammed cha.racter in text'. We mlght ha.ve £ > dul, 20
tha.t ¢[ f’ ] nught have decided at du; ha.d the probes in U not a.lready decided dui;. In genera.l let duy, - ,d u;
'be the mdlces that ¢[ f'] ‘would ha.ve dec1ded were they not already declded In this case, it follows tha.t'
(RU +z) isa better set of probes than (F,U). By Lemma 11, Ayy; is AU shlfted right by ¢ positions, and -
hence, AU+: decides part (or all) of XE, but is otherw1se identical to A,,. Thus, in the same. number of
' probes, (F, U+ t) decides “everywhere” that (F U ) does, and (F, U +1) decides part of XE, By Lemma 2, -
(F,U) cannot be optunal For other combmatlons of the assumptlons (1) and (2) the reasonmg is 1dent1ca.l
v If follows dlrectly that a non-monotomc a.lgorxthm cannot be better than RQ El
’ Thus, RQ is optlma.l over all a.lgorxthms

| 7 - Modellng (:)"t»her‘ Algorithms ‘

The KMP algorithm is the monotonic algorithm that probes the Ieftmoat:unexammed character in text'.
When a decision is made at 1, n is incremented as usual If probing text’ [e] decides at 1, we know that
text’ (1...e-1) matches the pattern. For fixed-string patterns, text'[l el] = pa.tt[l se-1], ‘which is known:‘
preclsely We can precompute the decisions that have been made so far in a ta.ble, Jump[], of length P -
When probmg ‘text'[e] decides at 1, n is mcremented by Jump[e] Note that KMP probes text[l], text[2],
text[T] in order regardless of the pattern or the text ) o - ~ :
- The Boyer-Moore algorithm is sxmllar to RQ' except that it does not make decmons past the first pa.rtlal
match in M, so that M = {1,2,---,P} = {*} all the time. In other words, probmg text'[e] makes declslons at
'1,2,...4i, 4 > 0, which results in a shift of i, and a new M = {*}. BM is suboptimal because it does not make
. decisions past i. For ﬁxed-strmg patterns, if examining text’[e] decides at 1, we know that text'{e+1..P] =
'patt[e+1 .P|, and we can precompute the other decisions that have been made i in table, Jump[] of length‘
P. In addition, BM uses the Skip table described in Sectlon 5.3, whxch takes into declslons made by text' [e] »

BM uses the maxlmum sh1ft of the two tables.

8 »Results

To test our various a.pproxima.tions, we measured ®(OPT2), ®(BM ), and 3(RQ) for different P and o. We -

~ also compa.red the actual runnmg time of BM and RQ’ We made all our measurements on a SUN-3/60 B

worksta.tlon runnmg the Umx operating system i : : C
To test the fea.81b1hty of RQ, we unplemented a version of it for pa.tterns w1th P <32= W (the wordsxze
of our machme) We generated random text files of length 50,000 for alphabets of size 10 and 26. We
varied P from 2 to |ITI||. For each value of P, we searched for at least 30 random fixed-string pa.tterns and
averaged the results. In all cases, the predlcted runnmg time from Equa.tlon 10 was in error by less tha.n .
1.3% compa.red to the measured data. ' S -
" We also measured RQ when P > a.. For each value of P ‘we searched for 128 or more random pa.tternsv
-on a text ﬁle of at least ‘50, 0000 characters We have normalized the data. for a 10, 000 character text file.
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The rightmost column of the table shows that the upper bound set by Equation 11 is 20-30% too high.

P | X =logya(P)T/P | Measured | Measured / X

Q

2|16 2500 2757 1.10
2 |31 1598 1632 | 1.02
3|27 1111 1196 |- 107

To test our OPT2 approximation, we ran RQ on a variety of patterns, using an alphabet size of 10. We
ran 2000 ﬁzed-striﬁg searches on a 50;000 character text file.n The measured number of probes was 0.8%
greater than Equation 3 predicted. In an informal survey using fized-length patterns such as [ab][acdfgij]
or [cde][ac], the predicted number of probes was consistently 1.3%-2.5% below the measured data. In the
survey, we tried 4 forms of patterns with an average of 5 runs per pattern type.

We checked the validity of the BM approximation in Equation 4 for different « and P. For searched for
at least 100 patterns of each length in a 50,000 character text file, for & = 10, and a = 26. For P < a, our
approximation was in error less than 1.9% (a = 26, P = 24, not shown); for P < 2a, the maximum error

was 3.6%. Our results are summarized below.

a | P | Predicied | Measured ‘Mea‘;ﬁ"?d |-
10 6| 11856 | 11824 -0.27% |
10| 8 9754 o631 |  -1.27% |
1010 82| 8401 = -1.53%
10 20|  6324| 6107 -3.55%
10|30} 5801 5670 - -2.31%
2 | 6 9538 9516 -0.23%
26| 8| 7426 7391 -0.47%
26 | 12 5327 5286 -0.77%
26|16 | 4201 4244 -1.10%
2 | 26| 3128 3115 -0.42%
26 | 36 2644 - 2616 -1.08%
26 | 42 2477 | 2444 | -1.35%
26 | 52 2209 | 2252 -2.06%

Finally, we compared the running time of RQ' described in Figure 5 w1th the BM algonthm Although
RQ' is not optimal, when the pattern is a fixed-string, it probes no more characters than BM, so ®,,.(RQ’) is
O(T). We obtained a BM implementation that had a very tight loop as prescribed in [BM77]. We compared
the CPU time reQﬁired for each of the algorithms. For “tYpieal” searches tlii‘ough a list of Internet hosts,

.BM was from 1.3 to 2 times fast}er’tha,.n RQ'. BM was faster than RQ'i on short patterns of length 2-4.
Finally, for “long” petterns when P > a, RQ' was typically two to three times faster than BM.

_9 Conclusmn

'We have presented an algorlthm for- ﬁndmg all occurrences of a fixed-length patterns in a text string. Our

> algorlthm examines the minimum average number of text characters over all patterns and text strings and is
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‘opti'mva.l in thisb respect. We have also presented a general method for a.pproxima.tingthe number of probes,
and hence the running time, of many pattern-matching algorithms. As an application of our method, we
have derived the asymptotic behavior of ®(OPT2), ®(BM), and ®(RQ). Our approximations correlate

well with measured data. We have presented an efficient variant of RQ for short patterns. Fmally, we have -

proven that RQ is optlma.l over all a.lgonthms

One area merits future work. Our analysis uses the average q value. For certain alphabets and patterns,
RQ is not optimal. For example, when searching for buzz@ in standard Enghsh RQ examines a minimum
of 2T'/5 characters, because examining text'[5] never makes a decision at 1 due to the wildcard character.
Thns in the best case 2 probes make 5 decisions. A better algorithm for this particular pattern is ¢[4,3,2,1],
which most likely probe~ T/4 characters. The problem is to determine the optlmal algorithm glven each of
the character probabLhtles a.nd the pattern ‘ '
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