
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

2-1-1989

Searching for Fixed-Length Patterns
R. W. Quong
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Quong, R. W., "Searching for Fixed-Length Patterns" (1989). Department of Electrical and Computer Engineering Technical Reports.
Paper 647.
https://docs.lib.purdue.edu/ecetr/647

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages

m m m
......... , | | i i l i t e :

IIliIlIiifcp

a m m m

Searchingfor
Fixed-Length Patterns

R. W. Quong

TR-EE 89-15
February, 1989

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

' . . • -
Searching for Fixed-L ength P attern s

Russell W. Quong
Dept. of Electrical Engineering

Purdue University

Abstract

We present an algorithm, RQ for finding all occurrences of a fixed-length pattern, Pi,J?2> * * * »Pp ,
in a text string, where each p,- can match an arbitrary set of characters. Our algorithm is optimal in
that it examines the minimum average number of text characters, which is not necessarily the same as
being optimal in running time. This paper answers the question of optimal string searching put forth in

 [KMP77].
Let a = the alphabet size, P= the length of the string matched by the pattern, T= the length of

the text, W= the word size in bits of the underlying machine, and $(i?Q) = the average number of
text characters examined RQvWe derive an asymptotic approximation for $(RQ) when P< a. We also
show that &(RQ) < (4 Ioga P/3)(T/P), when P > a. In the worst case, RQ examines T characters.
Our algorithm requires space 0(||II|| |P/W |). In addition, our method of analysis is applicable to other
algorithms modeled by a finite automaton.

We present an efficient implementation of our algorithm when P < W . In practice, compared to the
Boyer-Moore algorithm, RQ requires slightly more space, accepts a more general range of patterns, and
runs in comparable time.

I Introduction

A fundamental problem is finding all occurrences of a pattern in a text string. This problem occurs in many
applications such as text editing, archival search, DNA-protein matching, and programming. For example,
a programmer might search source files for all instances of a procedure name to find where that procedure
is defined or called. In many cases, the text string is very long.

The number of text characters examined is a common metric for the running time of a pattern-matching
or string-searching algorithm [KMP77] [BM77] [Yao79]. This metric is valid as long as the rest of the
algorithm takes 0(1) time for each character examined. At one extreme, every character in the text must
be examined, if the text consists entirely of (possibly overlapping) concatenations of the pattern. At the
other extreme, only \T /P \ characters need to be examined, if the text consists entirely of characters not
occurring in the pattern, where P is the length of the pattern, and T is the length of the text. In this case,
examining every P th text character rules out all occurrences. The optimal algorithm minimizes the average
number of characters examined over all patterns and text strings.

In general, the pattern may match one or many possible text substrings. A simple “fixed-string” pattern,
such as bathroom, matches just one substring. A complex pattern, such as a regular expression, might
match a large, possibly infinite, set of substrings. For example, the regular expression a©*z matches all text
substrings of length two or greater, starting with an a and ending with a z. The “wildcard” character 0
matches any single text character; the kleene closure operator is *. Thus, 0* matches any sequence of zero
or more text characters.

I

k fixed-length pattern pi, p2 , • • r pp is similar to a fixed-string, except that eachp,- can match an arbitrary
set of characters. For example, the pattern [Bb][Aa][Tt][Hh]room matches all occurrences of “bathroom”
regardless of the case of the first four letters. Fixed-length patterns are a generalization of fixed-strings,
and can match constructs such as “the beginning of a word”. For example, if WS is the set of white space
characters and ALPHA is the set of alphanumeric characters, the pattern [WS][ALPHA] finds the first letter
of every word.

In this paper, we present the optimum algorithm for finding all occurrences of a fixed-length pattern in
a (longer) text string. Our algorithm, RQ, is optimal because for any fixed-length pattern, it examines the
minimum average number of text characters over all text strings. RQ improves upon previous algorithms
because RQ is not limited to fixed-string patterns. In practice, variations of our algorithm can be efficiently
implemented for differing pattern lengths.

The reminder of this paper gives definitions and then reviews previous string searching algorithms giving
their space and time requirements. Section 4 gives an informal description of our algorithm with examples
of its behavior. In Section 5 we present a general method for analyzing pattern-matching algorithms and we
derive ah asymptotic approximation for the running time of our algorithm when the pattern length is less
than the effective alphabet size. Section 6 proves that RQ is optimal Section 7 views other algorithms as
variants of RQ. Section 8 compares our approximations with measured results and compares RQ with the
Boyer-Moore algorithm.

2 Definitions
An alphabet is a finite, nonempty set of symbols or characters. The alphabet, II, is the set of possible text
characters. For standard English text, II consists of lower case letters, upper case letters, numerical digits,
punctuation characters, and whitespace. The size of the alphabet is ||II||. In this paper, c stands for a
character in II; prc is the probability that a random text char is c.

A string S of length 2 is a concatenation of / characters, CiC2 • • • cj. The length of S is |[5l|. If 5 is a string,
S[i] stands for the ith character of S where i is an index or position of S. The first character of S is S'[I]. A
string S t of length It is a substring of the string S with length / if V < I and S r = + 1] • • - S[i + V — 1]
for some i, I < i < I — V + I. S[i...y] denotes the substring + !]••• £[/]. Two strings are equal if they
are substrings of each other. If S = abcdefgh, then S[2] = b, 5[4...6] = def, and ||5|| = 8.

We use the notational convenience [C0C1C2] to represent the set {c0, Ci , C2} where c0, C1 , and c2 are single
characters. For example, the fixed-length pattern [hs][aio]t matches the six strings: hat, hit, hot, sat, sit, and
sot.

P att[i] represents the set of all characters that match the character of the pattern;. |jpott[i]|| is the size
of the set. If patt[i] includes or “matches” c then c ^ patt[i]; otherwise c ^ patt[i]. The length of a pattern
is the length of the strings it matches. The average size of patt[i] is patt[] = || patt[i] ||)/P . For a
fixed-string pattern patt[] = I. Thus, for pattern = [hs][aio]t, ||pattcrn[| = 3, pattjl] = {h.s}, ||part[2]|| == 3,
a ^ patt[2], e ^ patt[2], and patt[] = 2.

We set P= ||pattern||, and T= ||text||.
The probability that a random text char will match a random pattern position is q\ the probability that

they do not match is ? = I — q. Usually, the character distribution over all patterns is the same as that over

q = patt[] J 2 Prc2-
j ; cen

(The distributions would differ if we were to restrict our searches to patterns consisting of the first half of
the alphabet, as opposed to the whole alphabet).

The effective alphabet Size1 a, is l/q . If the pattern is a fixed-string and all characters in II have equal
probability, g= i/||Ti||= l/ot. With unequal character distributions, a can be much smaller than ||II||. For
example, when searching for fixed-strings in English text, a » 1 1 [BM77J. In this paper, we assume the
text is randomly distributed, so that for any n, all substrings of length n are equally likely. English is not
random, because for n = 3, ing is much more common than xqz.

A pattern-matching algorithm makes a decision at (index) r\ when it finds that text]??...77 -j- P — 1] either
matches or cannot match the pattern. In the former case, the pattern completely matches at r?; in the latter
case, the text fails to match at rj. If a decision has not been made at Tj1 there is a partial match at rj. Initially,
there is a partial match at everywhere.

We examine or probe text characters. Only the probes within text[t?...?? + P — 1] can decide at ??.
Examining a character looks at i if it might decide at t. Probing text[r?] looks at the undecided indices
between rj — P + 1, •••,??. A pattern matching algorithm must make decisions at Tj1 for I < r? < T-P+l. The
following example in Figure I shows a search for a@ba. Examining text[9] yields two decisions. Examined
text characters are underlined; an unexamined character is shown as an X.

all text strings, so that

p a tte rn « a Q b a , where Q matches any character
index I 2 3 4 5 6 7 8 9 10

te x t = X X X d c a a b a X X X X

(1) i t i i ̂ (decision— MATCH)

(2) Y a (decision — NO; fail)

(3) H @ b a (no decision yet -—partial match)
(4) a @ b a (mismatch from before; when “b” examined)

Figure I: Making a decision at 6, and 7.

The set of indices of text[] where decisions have been made is A. We also view A as a table indexed by
indices of text [] with

yes pattern completely matches at x
A[ic] = < 0 pattern fails at x

o no decision made at x yetV-... ■ • . •.
We limit our analysis to monotonic search algorithms which pick the smallest undecided text index rj

and examine characters until a decision at r\ is made. These algorithms monotonically increase ry from I to
T — P + 1. In the process of deciding"at Tj1 the algorithm may make other decisions. In Figure I, fy = 6, and
examining text[9] makes decisions at 6 and 7. A decision at 8 was made previously. A partial match exists

3

at 9, and thus, the algorithm continues with rj -- 9. Note that we have not specified which character in
text[17...97'+ P — 1] to examine when trying to decide at 17. In practice, all practical algorithms are monotonic.

In the rest of this paper, r\ = the smallest undecided index of text[], and text1 = text[?y...f7.+ P — I].
Thus, text' is a moving “window” into text[] of size P, which contains the next probe. As 17 increases, text*
moves to the right of text.

For an algorithm, A, the average number of text probes is $(A); the worst case number of probes is
$ wc(A). The average case running time of an algorithm A is not necessarily the same as # (A), because each
probe may require more than O(I) time to process. However, except for RQ, the running time for every
algorithm described in this paper is proportional to $(), and the two measures are interchangeable. The
total running time of an algorithm is the sum of the preprocessing time and the search time. Most of the
algorithms discussed in this paper preprotess the pattern creating auxiliary tables to speed the search. For
long text strings, the search time dominates the total running time. In the rest of this paper, the running
time refers to search time alone.

3 P revious F ixed-String A lgorithm s

In the spring of 1974, R. Boyer and J. Moore [BM77] and (independently) R.W. Gosper developed a break
through algorithm, BM, with an average case search time significantly faster than previously known tech
niques. The key to their algorithm is checking for the pattern backwards. In the typical case, each text
character examined makes several decisions. Their algorithm runs in “sublinear” time with respect to P,
because significantly fewer than T characters are examined on the average. The average case running time
of BM depends on q and P; interestingly, it decreases as P increases. In particular, when the length of
the pattern is short compared to a, is roughly T /P . For example, searching for bath in standard
English would require examining approximately one fourth of the text characters. BM preprocesses the
pattern creating tables of length P and I) II Il.

Analysis of $(BM) and Qwc(BM) is not simple. Guibas and Odlyzko [0080] proved the worst case
running time of BM is ATi if the pattern is not found. Apostolico and Giancarlo [AG86] proved a bound
of 2T for a Boyer-Moore variant that partially remembers which characters have been examined. Schaback
[Sch88] numerically examined the average case running time of a simplified algorithm. Later in this paper,
we show that Q(BM) « Tq/(q(l — ?p)), when P < a.

Knuth, Morris, and Pratt [KMP77] describe a string search algorithm, KMP, that examines each text
character once. Unlike the BM and RQ, their algorithm does not “backtrack”. Both Qwc(BM) and
Qwc(KM P) are linear O(T)r because of auxiliary tables which guide the algorithms when a mismatch
occurs. However, these tables cannot be used in the presence of a wildcard character (®J or character sets
such as [a be].

The brute force approach tests whether the pattern matches the text substring starting at text[ry] for
I < rj < T - P + 1 . The test compares patt[l] with text[fj], and then patt[2] with text[17 + 1], and so on
until it makes a decision at 17. Next, rj is incremented by I, and the process repeats itself. In the worst case,
the mismatch does not occur until the last pattern character is checked giving a running time of PT. For
example, the worst case occurs when pattern = “aaab” and text = “aaaa•/ aaaa.” However, this case is
unlikely and the average case running time is T /(l — q). This algorithm works for fixed-length patterns, top.

In practice, Smit [Smi82] found that KMP does not run significantly faster than the brute force algorithm,
because for large ||II||, the mismatch usually occurs at pattjl]. Horspool [Hor80] found BM faster than
specialized string searching instructions in hardware for P > 5 when searching English text.

Like KMP, Aho and Gorasick [AC75] also used a failure table in their algorithm (AC) to find if any of
a set of keywords exists in the text. The failure table is constructed from a trie, which detects common
prefixes in the keywords. Compared to KMP, the AC algorithm can search for more than one pattern “in
paraUeP with no loss in efficiency.

Harrison [HarTl] first suggested the use of hashing as a probabilistic method of speeding string search.
Every substring of length L in the pattern is hashed into a bit table forming a “key signature”. Another
signature is formed by hashing each line of the text similarly. If the text line contains the pattern, the
signature for the line will “bit-wise” contain the key signature. If this condition succeeds, the pattern and
text are compared to check if pattern actually does occur. Otherwise, the line does not contain the pattern.
This method assume the text is broken into discrete partitions such as lines, ruling it out for general data
searching.

Rabin and Karp [KR81] give another algorithm using hashing with an average case running time of
O(T). Their method consists of calculating a hash value, h(j), for every text substring text [j..j-f P-1] where
I < j < T — P — I. Each hash value is compared with the hashed value of the pattern. If the values
match, the chances are good that pattern is to be found at that point, and the actual strings are compared.
Rabin and Karp found hash functions such that calculating h(jH-l) requires 0(1) time given h(j). Thus,
their average case running time is O(T) with an extremely unlikely worst running time of O(TP). Table I
summarizes the running time and space requirements of these algorithms.

Algorithm Space Running Time
Preprocessing Worst Avg Best

brute force O O TP T/(l-q) T ;
KMP p p ; T T T
Aho-Corasick p O(P) T T T
Boyer-Moore unit+ P O(T) O(T) ' * ■ T /P
Rabin-Karp 0 (1) p O(PT) T T

* = no known simple form.

Table I: Space & time requirements for fixed-string searching algorithms.

Knuth, Morris, and Pratt [KMP77] also pose the question of optimal string searching, and give an answer
when P= 2. We call their algorithm 0PT2. They state that “the analysis (of 0PT2) is not completely trivial
even for this case”, and show that

*(O PT2) T (I + g — q2)
2 (1 - f)

(l - g)(l + 2g -<72) , (g ~ l) T
(2 - q f + { l - 9)(2 - ?) 2 (I)

For large T, the first term dominates Equation I. In Section 5.2, we shall rederive the first term an
asymptotic approximation to the running time of 0PT2. Finally, Yao [Yao79] proved that for most fixed-
string patterns, the minimum average number of characters examined is 0(T[logfl P]/P), when T > 2P.

5

However, there are “worst-case” patterns that require more characters to be examined regardless of the text
string.

Abrahamson [Abr$7] explores the lower bound of the time-space requirements when searching for fixed-
length patterns. His work differs from ours because he consider alphabets of infinite size, where each character
is represented as a string from a finite alphabet.

After discussing OPT2, Knuth, Morris, and Pratt pose the question of finding the optimum searching
strategy for patterns of length greater than 2. This paper answers that question.

4 T h e R Q a lg o r ith m

In this section, we describe oiir algorithm informally by giving an example of its execution. Next, we give
a formal description of the algorithm. We also describe how to implement our algorithm efficiently if the
pattern is short.

4.1 Informal Description

First, we describe our algorithm by example. Consider the search for abca in the text string abcbacabcaabb.
As before, underlined characters have been examined, and the current probe has an arrow over it. We print
out the current value of tf and underline the indices of text'.

index 1 2 3 4 5 6 7 8 9 10 iy = I

te x t a b c b a c a b c a a b b d ec is io n a t
x

p attern a b c a I f a i l

a b c a 2 f a i l

a lb c a 3 p a r t ia l match

a b c a 4 f a i l

Examing text[4] shows that pattern matches neither text[1...4], text[2...5] nor text[4...7], thus we have
made decisions at I, 2 and 4. We have a partial match at 3. We examine text[6] next.

index I 2 3 4 5 6 7 8 9 10 12 rj = S
te x t a b c b a c a b c a a b b decision a t

■■■• s/ X :a b c a 3 f a i l
a b c a 4 f a i l from before

■ . a b c a Y 5 f a i l
a b c a 6 f a i l

We find that pattern fails to match text[3...6], text[5...8] or text[6...9]. We already know text[4...7] failed,
so that we have made decisions at {1,2,3,4,5,6}. We try to decide at 7, examining the rightmost unexamined

6

character in text[7...10], namely text[10].

index 1 2 3 4 5 6 7 8 9 10 12

te x t a b e b a c a b c a a b b

a b c ia
a b c a

xa b' c. a. -

^ b c a

I7 - T

decision a t

7 p a r t ia l match
8 f a i l

9 f a i l

10 p a r t ia l match

Text[7...l0] has a partial match, so we examine text[9] and then text[8] and still have a partial match at
7. Exaihining text[7] decides at 7 — a complete match. A total of 6 characters have been examined.

index I 2 3 4 5 6 7 8 9 10 12
I

te x t a b c b a c a b c a a b b

’ ' i U ' i

n - 7
decision a t

7 COMPLETE match

4.2 Eormaldescription

The RQ algorithm is simple: examine the rightmost unexamined character in text', where text' = text [i?... I7 4-
P - l] and I7 is the leftmost undecided index of text[]« Figure 2 describes RQ. In the worst case, RQ examines
T characters, because it examines each character once.

\ *! •= i;
A [1...T-P+1] := o; (* partial match initially *)
Ex[l...T] := false; (* array of examined characters *)
while (I7 < T - P + I) do begin

e := index of rightmost unexamined char in text^...I7 4-P — I];
examine text [e];
record decisions in A []; (f$)
Ex[e]:=true;

-.if text [i/...I7-4- P — 1] ~ patt[l...P] then
match found at I7;

■ end;-
I7 I=Ieftmostundecidedposition;

: end;.

Figure 2: A high level description of the RQ algorithm.

Unfortunately, this algorithm requires three arrays of size O(T): text[], A[], and Ex[]. Let A ;[1...P]

7

A[i]...ri -f P — 1] and Ex-[I..-.P] = Ex[i]...rj + P — I]. For all77, all access are to the shorter airays, A', Ex',
and text'.

The “hardest” step is (JJ). However, a precomputed table can tell us what decisions are made upon
examining character c. For c € n and I < j < P i dvec[c][j] indicates whether a decision at / is made when
c is found. Thus,

dv«c|c)[j] = (*■ ' - pallIp - J'|
[0 C patt[P - }].

Define the binary operator ® as follows

A ' dvec[c] A;® dvecfc]
> 0 0

0 0 0
O 0 0
0 0 0.

A' ® dvec[c] gives the new value of A ', because dvec[c] is an array of decisions of length R In practice,
o= l, 0 = 0, and thus, ® is the logical AND operation. Figure 3 shows the algorithm for RQ.

4.3 An efficient implementation when P< W

If P is less than the word size, W, of the computer, then we can maintain A'[], and Ex1J] in a single register.
Similarly, we can hold dvec[c] in a single register. A'[j] is the Jth bit of A '. We use the standard convention
that bit 0 (Isb) is the rightmost bit. Incrementing rj by rjsh shifts A* and Ex' by ijsh bits. Let ShiftLeft (Ex1,
Si fa lse) be the operation that shifts Ex' left by s bits, filling the vacated locations with fa lse . This
operation becomes an “arithmetic shift word right by s bits” instruction, which is supported in hardware
by most computers. We set text' as a pointer into text[] starting at text[fy]. Finally, we can update all of
A' with a single logical AND as shown in Figure 4, which presents a practical algorithm for RQ. On many
computers, each step in this algorithm takes 0 (1) time and thus, the running time is proportional to the
number of characters examined.

Finally, we cover other possible implementation choices.

1. Tighten the main loop, by not checking if a character has been previously examined. Instead, probe
text-[P], text'[P-l], . . . , text'f l] until a decision is made at I. Some characters may be examined more
than once, but the simpler main loop more than compensates for the redundant probes. This algorithm
is no longer RQ, and in the worse case might make O(PT) probes. To minimize this case, keep Ex' []
when ot< 3, which is when redundant probes are most likely.

2. To determine Ijshi use a “shift” tablem, Shifty, indexed by the lowest I bits of A. The table has size
2*, where I is between 8 to 20 depending the space available. (We have used I = W/2 = 16.)

3. If a dynamic right shift is expensive, sacrifice space for time by precomputing the table dvec', where
dvec'[c][e] = RightShift(dvec[c], P-e, 0).

4. To speed large shifts, use a shift table like the Boyer-Moore algorithm after examining text'[P].

8

Algorithm R Q .

v := i;
Af[l...P] := o;
Ex#[l.. T] :== false;
text1 = text[l...P];
while (ri < T — P + I) do begin

e := { t I max i, Ex'[i] = false,! < i < P }; (* rightmost unexamined char *)
c := text'je];
Ex'[e] := true;
for k := I to e do begin

A'[k] := A#'[k] © dvec[c][(P-e)-fk]; (* ttt*)
end;
if Bx;[l...P] == [true,... ,true] and A'[l] == o then

match found at
end;

Void := V\
ri := v — 1 + { j I minj, D'[j] = o, I < j < P} (* rightmost undecided index *)
Vsh := C ta^eta0Idi
if Vsh > 0- then

text'[I...P-Vsh] :=' text'fl+r^fc...P];
text,[P-f7a^H-l...P] := text[ry + patlen — Vsh—V + patlen — I];
A,[l...P-f7̂] := A '[l+ Vsh-P]'>
A ^ P -^ + l.- .P] := o;
Ex^l.-.P-r;^] := E x ^ l+ ^ - .P] ;
Ex#[P-^^-f 1...P] := false;

end;
end;.

Figure 3: The RQ algorithm

We have tested the first three ideas in an algorithm called RQ'. Our machine supports dynamic shifts, so
that option 3 gave no improvement. We show the main loop below, where I = the number of bits examined
by the Shifty table.

A practical RQ algorithm when P < W

■»r?= i;
A'[l...P] := o. ..o; (* O= I *)
Ex'[l...T] := false,false,... ,false;
text' = text[l...P];
while (rj < T — P + I) do begin

e:= P; (* find rightmost unexamined char *)
while Ex'[e] = true do begin

e := e-1;
, end;

c := text'[e];
Ex'[e] := true;
A' := A' A ShiftLeft(dvec[c],P-e,o); (* logical and *)
if Ex' = true,... ,true and A'[l] = o then

match found at yj;
end;
TJah := 0;
while A'[l] = 0 do begin (* find rightmost undecided index *)

TJah : = Vah + I ;

ShiftLeft(A', I, o);
end
V := *1 + TJahl
if TJah > 0 then

set text' pointing to textfy];
Shift Left(Ex',r?*fc,false);

end;
end;.

Figure 4: The RQ algorithm when P< W.

10

!¥ ' v

An efficient non-optim al algorithm when P < W

*1 := i;
A,[l...P] := o ...o ; (* ❖ = ! *)
e := P;
while (rj < T - P + I) do begin

c := textfy-he-l];
A ' := A ' A RightShift (dvec[c|, P-e, o);
while A'[l] = o do begin

if e = I then
match found at rj;
RightShift(AVlj^)I
n .:= ri + 1]
e := P;

else
e :== e - I;

end;
c :== text[r?+e-l];
A' := A' A RightShift(dvec[c], P-e, o);

end while;
do (* find rightmost undecided index *)

slide := Shift A [A'[l...l]];
RightShift(A', slide, o);
rj := rj -f slide;

while (A'jl] = 0);
e := P;

end while;.

Figure 5: RQ', an efficient variation of RQ.

11

5 The N um ber o f Probes w hen P < a
In this section, we present a technique for analyzing the behavior of a finite automaton given certain restric
tions. In particular, we show how to derive asymptotic approximations for the running time of a pattern
matching algorithm. When the number of probable states is large, the calculation may be intractable. For
RQ and BM, restricting P < a drastically reduces the number of states.

We model an algorithm as the actions of a finite automaton [ASU86]. Each probe causes a state transition.
As the search progress, the finite automaton reaches a probabilistic steady state, or “eigenstate”. The
probabilistic transition diagram can be written as a matrix with entry corresponding to the probability
of moving from state % to state j . The eigenvector of this matrix is the eigenstate of the finite automaton.
The entries in the eigenstate are the probabilities of each state. We also calculate the expected number of
decisions corresponding to each state. Throwing out states with low probabilities simplifies the analysis and
yields the approximation. First, we give definitions, and then we apply our method on three algorithms,
OPT2, BM, and RQ.

5.1 Definitions and Approach

We model a monotonic search algorithm as a finite automata, T, with states, £ | ^ . M and E are sets of
indices of text'. M is the set of positions in text' that have partial matches. E is the set of character indices
in text9 that have been examined. In Figure I before examining text[9], rj =■ 6 and we are in state
with text' = text[6...9] = aaba. There are partial matches at text[6,7,9] = text'[l,2,4], and we have examined
text'[l], text'[2], and text'[3]. After examining text[9], we are in state with 17 = 9.

More precisely,
M = { j I A [?7 + j — 1] = 0 and I < j < P},

and,
E = { j I text[#7 + j — 1] = examined and I < j < P}.

The starting state is - Forthe remainder of this paper, M = {mi = I, m2, • •, m n ^) , and E
= {ei,e2, * * * 1 eI(Îl)- If the rightmost character inE, ej|jg|| = 7 , then M = {rai, m2, • • •, m i,7 + l , 7 + 2,‘--- •, P},
because the potential matches starting at 7 + 1,7 + 2, • • • , P have not been looked at yet. We abbreviate the
above state either as with the * representing the unexamined patterns, or simply as ’’
with the * implied.

The probability of being in state ^ is Pr(£). The set of all possible states is S. Finally, £(A) is the
expected number of decisions to be made in state £ when the next text character is examined. For RQ
determining £(A) is trivial but determining Pr(£) is difficult. For BM, neither is trivial.

A transition occurs from one state to a second (possibly the same) state for every character examined.
For ^1, G Sj and c G II, if a transition is made from £x to £2 upon finding c, then the corresponding entry
in the transition table T , is T[£1][c] = £2. The probability of moving from state £x to £2 is

Pr(£i £2) E
'TIfiIftf=

The probabilistic transition table is gives the probability of moving from f,- to f .. We write the probabilistic
transition table as an NxN matrix, B, with entries 6,-y = Pr(^< fy), where N = ||H|| = thenumber of possible

12

states. The IxN vector Vr gives the probability distribution for each state after examining r characters. Vb
= [I,Q,Q,. . . ,Q] because we are in state £0 initially. We have Vr = VoBr9 because Vr = Vr^ 1B. To analyze
the finite automaton, T, we need to find its probabilistic steady state, V, which satisfies Vr = Vr_ i5 . Thus,
V is an eigenvector of B with eigenvalue I. Because every distinct eigenvalue has an eigenvector, V exists
if and only if B has an eigenvalue of one.

Lemma I Matrix B has an eigenvalue of one.

Proof. The sum of each column of B is ^yL i h i = !CyLi Pr (6 £y) which is the probability of moving
from Zi to any state G S which is I by definition. If A an eigenvector, then det(J3 — A I) = 0, where I is
the NxN identity matrix. Consider B-AJ when A = I. The sum of each column is 0. Adding all other rows
to the last row yields a new row of all zeroes, proving the lemma. □

Analyzing V gives the average behavior for long input text strings, because ^represents the probabilistic
steady state of IYWe surmise that the steady state is reached quickly, and that analyzing V gives an accurate
approximation to RQ and BM as long as T > IOP [Ioga P] . The factor of 10 discounts the effects of starting
up.

The nth entry in V is Pr(£n). Let d be the average number of decisions made per probe. Summing over
all states gives d == P r (£) £ (A) / P r (£) . The average number of characters examined is T jd or

z m) ' ■■■■:

^ = T Z P r(0 £(A) as T —* oo. (2)
fea ■ Y

In summary, our analysis of $(A) consists of the following steps.

Assumption: A random text string, text[].
Input: Algorithm A, alphabet II, character probabilities prc, and patt[]
Output: The asymptotic number of probes made by A, as T —► oo.

1. Calculate q = patt[] £ prc2.

2. For an algorithm A, create the transition table for all states £.

3. Create the probabilistic transition table and hence, B.

4. Determine £ (A) for all £g S.

5. Determine Pr(£) for all ^G 3.

6. Evaluate Equation 2.

In practice, RQ has greater than 0(2P) states, which is far too many for exact analysis. Instead, we
derive a simpler approximation for <&{RQ) by counting only the most probable states.

Furthermore, we assume P < a, which greatly reduces the number of probable states. Examining a text
character will eliminate all or aU-but-one match in M on the average. The most probable state will be £0.
In general, Pr(£{jSf}’*)̂ is because ||E|| text characters have each matched ||M-|| pattern

positions so far. In deriving our approximations, we restrict our interest to states with probabilities greater
than or equal to some threshold, pth9 and calculate probabilities to the same accuracy. For the RQ algorithm
we use pth =z OXq2). For BM, we use pth = 0(1). For the OPT2 algorithm, the analysis is simple enough to
do exactly.

5.2 The OPT2 algorithm

We now derive the leading term given previously for ${OPT2). 0PT2 is the optimal algorithm for searching
for patterns of length two. The OPT2 algorithm [KMPT7] is

. .■ k :> 2; (* *) .
while k < T do begin

e:= tex t[k] ;
if c * p a t t [2] then (* ■*)

if te x t [k - l] = patt [1] then
match found at (k-2)

while c «.pat-t[I]. do begin
k := k + 1; (* £ $ } *)
c t e x t [k] ;
if c = patt [2] then

match found at (k-2);
end;
k := k+2; : ̂ (* *)

,, end;.

OPT2 is simply KQ when P= 2. For this simple case, let q± be the probability that patt[l] matches a
random text character; define q2 similarly. In other words, g* = prc.

c~ patt[i\ ■ . I

Our model of 0PT2 uses four states. Let Co be the character just examined, and C1 be the next character
to be examined.

• no pending matches, as Co ^ patt[l] and Co ^ patt[2]. ^ is also the starting state. We could end
up in any of the four states after probing C1 .

• : C0 ~ patt[2] but Co ^ patt[l]. C1 is the text character to the left of Co, which will force a decision
at I (either a complete match or a failure). In either case, the next state is ^0,

• : c0 ~ pattjl] but C0 patt[2], giving state After shifting text' to the right by one, we
get the desired state C1 is the text character to the right of Co, which also forces a decision at
I. The next state is ^ if C1 ^ pattjl] and if C1 = patt[2].

• • co ^ patt[1] and Co ~ patt[2]. C1 is the character to the left of Co* which will decide at I. The
decision at 2 is unaffected, causing the next state to be

The probabilistic transition table for OPT2 is

Ai):-
M2}

■
Ml}
*{1.2 }
M2}

?i 92^0 + 9x92${2} + 92?l£{l}*^ + 9x92

?2{0 + 92t j ! f }

$ > }-

For simplicity, let P r(^) = I, because Equation 2 ignores constant factors in Pr(f). Rearranging terms
to collect the probabilities for each state yields

Pr(y

p'K&'l

Thus, Pr(£) and f(A) for each state are

9x92

9 2 9 i+ 9 iP i(4 Y }) + Pr(M{2 f})

9i 42-

State Pr(?) £(A)
U' I 9x + 92

Mt21! 9x92 I

9x/9x l + 9x

i ? } 9x92 I.

Applying Equation 2 gives

$(O PT 2) T (I + q2 — giflz)

Setting q =*' qi
! (i - ^)

q2 gives the leading term in Equation I.

5.3 A simple BM approximation
We give a very simple asymptotic approximation for the Boyer-Moore algorithm when P < a. For short
patterns* BM achieves its speed through the use of a “skip tabled Skip[x] (called in the original article),
which contains the distance from the rightmost occurrence of character x in patt[] to the end of the pattern.
If c is not contained in the pattern, Skip[c] = P. Let c = text'[e] be the last character examined. The amount
to increment y so that c aligns to its rightmost occurrence in the pattern is V9J1= Skip[c] - (P— e). The
number of decisions made is rish- In the common case, c = text'[P], and v9h= Skip[c]. As an example,
assume we are searching for aabc in abcdabcaace.

index I 2 3 4 5 6 7 8 9 10 11
: I

tex t a b e d a b c a a c e
pattern a a b c Skip[d] « 4, TishssA

t e x t a b e d a b C i a C ;■

p a t t e r n a a b C Skip [a] - 2
/ V .. .-.-V ; , ■■ ■ ; '

t e x t a b c d a b C § a i e ■ . v.-4
.V V-

p a t t e r n a ! b C : - S k ip lc] - 0
.. -;!

t e x t a b c d a . b C * i 9 e •

p a t t e r n a a b C■. j Skip [a] « 2

' . - I . ; . . " 1"';. ' .• ... ; V
. I

t e x t a b c d a b C 5 § S e ;
p a t t e r n ■ a a b C S kip[d] » 4

After aligning itself, BM examines the rightmost character in text'. If a pattern and text character match,
BM continues the comparison backwards through the pattern.

Our analysis here only considers the start state, £0, and the result of probing text'[P] = c. When Skip[cJ
== i for I < % < P — I, none of the i characters at the end of the pattern are c, but the i + Itlh character
from the end is c. Thus, the probability that Skipjc] = % is t f q. The probability that Skip[c] = P is 5F, as
the pattern does not contain c. Finally, c matches patt[P] with probability g, which we view as Skip[c] = 0.
The expected number of decisions is the weighted sum of the different shifts: J2f=o 2 Pr(5fctp[c] = i) ; '

Thus, £0(A) =
p -1 ■ '

. = 1

As before, setting P r ^) = I, means that <b{BM) is r / ^ (A) . Simplifying the above equations for ^ (A)
gives

(4)f(B M) » T- when P < a.
9(1- V T

(A detailed analysis of BM reveals that this model is too simple, but the approximation remains valid.)

5.4 The RQ algorithm
An exact analysis of RQ would have to consider 0(22P) states and simultaneous equations. Instead, we
derive an asymptotic approximation to <&(RQ) by considering Onlyi states with probabilities on the order of
q2 or greater, which gives us 0 (P 2) states. Setting pth = q3 would involve 0 (P 3) equations and would make
the following calculation much more difficult. As before we set Pr(C0) = I.

We use ^-notation to represent a collection of states in the obvious way. For example, £0 —► €{i]
means when in state £0 we go to each of the states ^ • • • £{p-i} probability q. The probabilistic
transition table for RQ is

*0 — 9% + 9p - x9(E £ $) + 9P- 292(E E + 0 (?3)terms
*=1 ' ‘ e=2 m=2 x /

ataiea with Pr(£) = O(q)

(5)

4 Y ’ -* p} + 9P" e" 19 (E i £{>}**) +-°(92) terms

Ve : (I < e < P — I)
•

4 V (6)

states with Pr(£) = 0(q2)

$r*}
A i’P)
> W -

?2£0 + 0 (5) terms

V m, e : (2 < m < e < P), excluding e = m == P

+ 0 (9) terms.

The first term in Equation 5 corresponds to deciding all indices in text'. In other words, c = text'[P]
is a character not contained anywhere in the pattern. The second term occurs when all but one decision is
made — c occurs only once in the pattern. The third term occurs when all but two decisions are made — c
occurs twice. We rearrange the terms to collect the probabilities, yielding the following table.

« P r() State p r^

I Pr(^0) I

9 P r (^ V j) 9P" 19Pr(f0) + E* 9P- y- 19 P r(4 Y >)* Ve : 2 < e < P

9 Pr(^fxYj) 9P" 19Prtf0) + E 19P- J- 19 P r(4 Y }) + 9Pr(*W >) (8)

92 P r (^ f j) 9P_292 Pr(£0), Vm, e : 2 < m < e < P

92 9Pr(^})* V e : l < e < P —I

293 p M ^ p}) 9 P r(^ r}_x}) + 9 P r (^ }}). (9)

In the leftmost column, we list the approximate probabilities of each state. In rightmost column, we use
the approximate probabilities, which simplifies the calculation and results in an error on the order of 0(q3).
The last term in Equation 8 is due to Equation 7; similarly the last term in Equation 9 is due to Equation 6.
The expected number of decisions in state £, £(A), is simply ? times the number of indices looked at by the
next probe.

State Pr(0 m condition

U I Pq

Me) l f - i q + (P -e)q2 (P - e + 1)5 2 < e < P

{!.}
Ml} f - ' q + Pq2 Pq

M«> q2 (P - e + 2)? 2 < e < m < P

AhP)
Mn q2 5

M*p} q2 q ; I < / < P - I

*{>-i.n
MM 2 q2 q ■■ :

Using qfq — q — kq2 + 0(q3) and applying Equation 2, we get

T l + P q + (P + l)q 2
*(RQ) « P (I + ^ l q - T,5P±2^2 2P ?2)

when P < a. (10)

5.5 The number of probes for large P

In this section, we derive an uppey- bound on the worst case running time of RQ, for arbitrarily large P, We
do so by examining blocks of 6 characters at a time, increasing the effective blocked alphabet size to aby as
suggested in [KMP77] and [Yao79]. Call this algorithm the blocking version of RQ. We show that in the
worse case, the number of characters examined is asymptotic to (4Ioga P /3)(T /P).

For text' = text[ry...i/-hP-l] we probe the characters text'[P-b-fl...P]* Choosing b = [Ioga P] assures that
a! = ab > P, so that we can apply Equation 10. There are P — 6 possible indices in M, namely [l.r.P-b+l].
For large P, P — b « P.

For our lower bound, we let P —► oo, throw out terms of order 0 (1 /P) or less, and set b = Ioga P, which
gives Pq = P ja b == I. Applying Equation 10, gives the desired upper bound to the average case running
time,

for P ^ a, T —+ bo. (ll)

Examining blocks of characters is suboptimal. In many instances, after examining n characters where
n < 6, we will have decided at I, so that examining the rest of the block is suboptimal, as will be shown in
Section 6. However, Yao [Yao79] showed that RQ is better by at most a constant factor than the blocking
version of RQ. We surmise that the upper bound of Equation 11 is close (within a factor of 2) to the actual
number of characters examined.

6 P ro o f o f O ptim ality o f RQ

The RQ algorithm is optimal in several simpler cases lending credence that it is optimal on the average for
all patterns.

• When P= 2, RQ is OPT2.

• When the text consists entirely of characters not in pattern, RQ examines every Pth character, thus
${RQ) = characters.

• When the text consists entirely of successive patterns, RQ examines exactly T characters.

Our proof that RQ is optimal consists of determining the best sequence of probes for any given state £.
We model a search algorithm as a finite automaton with an associated state, (£, r?, A). First, we define how
to compare two different probes. Second, we compare probing index i versus index j , and show that when
i > j' probing t is always better. Next, we compare sequences of one probe followed by another. We show
that for i > j , probing i first and then j if necessary is better than j first and t second. It follows that RQ is
the optimal monotonic search algorithm. Finally, we show that a non-monotonic algorithm can do no better
than RQ, proving that RQ is optimal.

6.1 Definitions

As before r\ = the smallest undecided index, and text' = text[ty... ̂+ P — I]. The process of examining or
probing the character at text'[i] is denoted <f>[i]. If <f>[i] might make a decision at x, then <f>[i] looks at x. We
assume that a probe makes a decision with probability 5 at all undecided indices looked at in text'. Note
that applying] to ^ c a n n o t make decisions at the indices in M greater than i. For example, if P= 6 and
the current state is </>[5] might make decisions at I, 2, or 5, but it cannot make a decision at 6.
[̂Oj is the null probe, which corresponds to do nothing. The probe sequence probes % first and then

probes j upon the resulting state.
In this section, % and / represent unexamined indices, with i > j . In all cases, we shall be proving that

<f>[i\ is better than <f>[j]. The capital letters I, J, I', J' denote sets of indices in text'.
For state we use the notation E = {e±9 «2» * * * S||£]|}= the set of examined indices. E = the set of

unexamined indices of text'; thus E U E = {1,2, • • •, P}. If we have examined every character but one in
text', then probing that character must make a decision at I (either a complete match or a mismatch).

The two-step algorithm ^[*i,t2.] means to examine z‘i and then to examine <2 if i* is still necessary to
decide at I. ^[h] might decide at I, rendering ^[1*2] unnecessary. The n-step algorithm [̂z’i , <2,- • • • ,in\ means
to examine <1, and then i2 if necessary, and then 1*3 if still necessary, and so on, down to in.

For each possible state Z jf9 a monotonic search algorithm specifies a sequence of probes * * Mn]*
where ii, - • 9in is some permutation of E . Thus, <f>[ii9i2, • • • }in] specifies what order to probe E until a
decision is made at I. If text'[] ~ patt[], all the indices in E will be probed.

We model the actions of the monotonic search algorithm Al by a finite automaton T i* 1. The current
state of Tax is £A1. The current value of r) for Al is The set of indices of text (not text') where
decisions have been made by Al is A^i- The current state of Al is denoted by the total Statei (£,»7, A)^i.
Algorithms Al and A2 are in the same state if (£, f?,A)^i = (£, »7, A)a 2 - For brevity, wesay algorithm Al

is in state whenT ^ i is in state Zi- Intuitively, if algorithm Al is better than algorithm A2, then on the
average A l increments 97 (and hence, shifts text' to the right of text[]) faster than a A2 does.

Definition I Let (£ ,97, and (Z,r?, A)a 2 be the states of two algorithms. I f A xi A a 2 and tjai > VA2,
then (£, ri, A)a i 'is better than (€ ,ti,A)a 2 , or (f, i]iA)A1 > (£, 97, A)A2.

Definition 2 Let A l and A2 be monotonic search algorithms starting in the same state, (£,»7, A)q, with C
= a fixed positive constant. I f on the average, after n probes, for all n > C, (£ ,97, A)^i > (£, 97, A j^2* then
A l is a better algorithm than A2.

The result of applying probe 4>\i] to total state (ZiTjiA) is shown as ^[*](£,97,A) = - (&, 9ft, At-) =
(£,97,A)^ ^[t](£ |f) = Zi is short for <f>[i](£, 97,A)o = .(£,97,4)», where At- and 97* are understood. For
^ [t] (^) , ^[i](M) denotes the resulting set of undecided indices after applying <f>[i]. Similarly, $[t](E) = E U
{ij, because probing i adds i to E.

Applying <f>[i] to £ |f increments 97 by T j8H i shifting text' to the right by T f9H - Shifting M and E by t j 8 h

corresponds to subtracting T f 8 H from all existing indices and discarding those that are less than I. The
discarded indices are the indices shifted out to the left of text'. In addition, the new, not-yet-looked-at
indices {P — tj8h + I , •••, P} are introduced into M.

A transformation Tr: maps a probe </>[z] to another (possibly the same) probe [̂z*] denoted by T r :^] =
$[*'). There are two types of transformations. The exchange transformation, Tr[x «-* y]: translates <f>[x] to
<f>[y] and <f>[y] to ^ [x]; all other probes are mapped unchanged. The nullify transformation Tr[x —► 0]: maps
probe <f>[x\ into “nothing” or the null probe <£[0], with all other probes mapped unchanged. That is, for a
probe z,

and

. ■ ■ ■ <t>[z\ 4>[z\ ^ 4>\x],x£<t>[y\
Tr[x <-♦ y]:<f>[z] = < 4>[x\ ^\z\-<t>\y]

. ; • ■ ‘ v • ■ .< <l>[y] <f>[z] = <t>[x)

<f>[z\ jL <f>[x]
4>\z] = 4>[x\

Applying a transformation Tr: to either a sequence of probes or an n-step algorithm applies to the
transformation to every probe individually; Tr:(^[xl], ^[x2], • • •, <f>[xn\) gives Tr:^[xl], Tr:^[x2], • • •, Tr:<f>[xn\.
The null probe is dropped from a sequence of probes. For example, Tr[3.-«-> 4]:<0[2,4,6 ,3] = ^[2,3,6,4], and
Tr[4 —+ 0]: ^[2, 4, 6, 3] = <̂[2, 6 , 3].

6.2 Preliminary Concepts

Lemma 2 Let A l and A2 be monotonic search algorithms. Both A l and A2 start in state (£, 97, A) * ta r t and
end up in state (Zyf), A)end. A l requires al probes; A2 requires a2 probes. I f at < a2, then A l is a better
algorithm than A2.

Proof. Let d — a2 — al, the difference in the number of probes executed by the two algorithms. On the
average, applying d more probes as prescribed by Al to (£ ,97, A)end increments rjend and adds decisions to
A end- Thus, after a2 probes, Al is a better algorithm than A2. □

In our model, we extract all possible information from each probe, in that we make every decisions
possible. Clearly, an algorithm that does use all the information from a probe cannot be optimal. For
example, the Bpyer-Moore algorithm is non-optimal in this respect. In practice, the set of states for non-
optimal algorithms is a subset of the set of all states 3.

We are concerned with choosing the right sequence of probes when in state when there is more than
one choice. If E has only one unexamined index, ky from the definition of a monotonic algorithm, we must
probe k next. For the remainder of this section, we assume that E contains at least two indices.

In comparing states £x and £2, we are really comparing total states (^ ,97, A)i and ($,»7, A)2* When
comparing probes, it is assumed that we start out in the same total state, (£,»7, A)q. We already know how
to compare total states and algorithms. The following definition allows us to compare single probes, <f>[k\
and In essence, if <f>[k] results in a better state, and if we can maintain (£ ,77; A)fc > (£,»7, A)**, then

m > w v
Definition 3 Given state (£,»7, A)q with unexamtned indices k and V, let $[&] (£,??, A)o = (£,77, A)* and
[̂jfc/](£, f7,A)0 = (£,*7, A)&. If for any subsequent series of n probes ^[K1] applied to (£,; ?7, A)*;, we can

find another series of n probes, such that ^[iir](£, >7, A)*' > ^[Jfl](£,>7, A)^/, then <f>[k] > <f>[k']. Similarly, if
(f>[K]{€>rji A)k := <t>[K,}(£lfii A)k’, then <f>[k] = <f\k9].

Condition I In comparing two probes we assume the following conditions.

1. a state (ZiYfi A)O,

2. E has at least two unexamined indices, i and j , with i > j , and

8. applying <f>[i] and <f>\j] to (£,??,A)0 gives resulting states (ZiyYHi A{) and (Z3 yTi3y A f) , respectively. In
particular, <f>\i]($lf) = ^ ' = and 4>\}\(Zi£ ') - £js’ = £/•

To analyze this situation, we divide the set of undecided indices M into three regions: Mj = indices
looked at by both <f>[i] and M n = the indices looked at only by z, and M jn = indices looked at by
neither z nor j. Note that M n may be empty, if we have previously decided these indices. Similarly, we
divide the set of probed indices, E, into three regions: Ej = indices to the left of j y Ejj = indices to the
right of j up to z, and E m = indices to the right of z. Note that z and j are elements of l?, not E.

M = { M i^ M n jM in .>
/ Ii i n

E = {25/* j\ E j jy z, Ej j i}

The following diagram illustrates these ideas fS r^ j^ j4’6 ,̂ z = Sy j — 2.

{ M j = 1,2 M jj = 4 M jjj = 6}

’{ £ /= [j] E11 = 3 0 E111 = 6}

6,3 A single probe

We now compare two single probes subject to Condition I. The resulting theorem is the heart of our proof.
We expand the resulting states and £y probabilistically and compare them term by term, showing that
£f is equally good in some cases, and better in the other cases. We break down our argument based on the
possible initial condition of Af//.

Probing a state £ gives a probabilistic distribution of resulting states. We break down the distribution
by the amount of resultant shift, nah- Remember that M = {mi - I, m2, • • •, m\\M\\ }• If we make decisions
at the first n indices in M, then rjsh= mn+i — I, because we shift text' so that mn+i is the first character
in the new text'. The resulting set of states when rjah = mn+i — I is denoted [£]n. [£|n contains all 2X
permutations for the remaining x indices of M beyond mn+i that were looked at. Pr([£]n) is the sum of the
probabilities of these states. For example, P= 5, M = {!,2,4,5}, E = {3} and we probe 5. Before shifting
text', the states for [.f]3 are { ^ 3 , ^{3,5}}; after shifting we get [f]2 - ,{ 4 (3}% £{2j}- All the states in a
given [£]„ have the same E.

The minimum shift is 0 when no decision is made at I. After <f>[k\9 Pr([£]o) = q, because text'[k] ~
pattpk]. In general, Pr([£]n) = g, because we make decisions at the first n elements of M and match on
the (fi + l)t/l element.

From a probabilistic standpoint, ^ [i] and <f>[j] act upon Af/ equally, and we can directly compare the
terms between <j>{i][Mj) and <f>[j](Mj). Conceptually, we expand out the result of <f>[i](Mi) into every possible
resulting state multiplied by its probability. For every term from <f>\i\ there is an identical term from 4{j].
We only compare identical terms. In other words, when we compare <j>[i] and we assume they make
exactly the same decisions in Af/. Because both probes do not affect Af///, <f>[i] differs from <f>[j] only at Af//.

M' is the new set of undecided indices of text' after the probing and shifting. We partition M' into three
regions similarly to M. <f>[i](Mj) = = Af}. Af/// is unaffected, thus M t111 is Af/// shifted by rjsh»
M tuew are the new indices shifted in.

The next lemma shows that when Af// is previously decided, <f>[i] = ^[/].

Lemma 3 aEqual case39 I f <t>\i\ and 4>[j\ are two probes satisfying Condition I, with M n = 0 (the empty
set) in state , then <f>[i\ and <f>[j] are equally good probes.

Proof. We break down £t- and £y by the amount of shift. Let n/ = ||Af/||.

£ = ?[f]o+ £ FqiZU + r ' t e U , - (12)
■ n = 2

^ = 9 [f)o+ ,5 c 9 ,i^] r , + r , ? [e k . (is)
■■ n = 2

The equations are identical. Thus, the resulting states, £f- and are identical except that Ei = E U z,
and E j = E U j . The last term in both equations represents the case where all indices in Af/ are decided by
the probe. Comparing the corresponding terms of Equations 12 and 13 gives the following cases.

• If part of Af/ remains undecided, we get either the first term or one of the summed terms in the above
equations, with i' = i - rj9h} and j f = j - Tja/*. The resulting states look as follows.

22

1 (£)

M U)

{M'i M iu K e w }

W i E’u w \ E iu)

{Mi M iu K e w)

Eii E iu }

For any subsequent series of probes <f[J\ applied to let <f>[I] = Tr[i Every decision that
<f>[J] makes is also made by $ /] , and vice versa. The sequence of probes <f>[I] and <j>[J] will eventually
decide all of Mj causing a shift past both t and / , resulting in identical states. (Because Mj j was
previously decided, when the last entry in M t1 is decided we shift past both i and j.) In this case, <f[i\
and <f>[j] have lead to the same future state, shown below as Scenario 14, so that <f>\i\ = $[/].

• K <f>[ij and <f>\j] decide all of M j9 we get the last term in Equations 12 and 13. Because M n is empty,
we shift past M j 9 j 9 and i to Mjjj.

m t) - z
{M'u j K e w)

W ill }

W m K ew
m u)— e f w ,

W in

Clearly, £ = Iji so that <̂ [i] = 4>{j\.

In all cases when M n is previously decided, we obtain identical future states, so that <f>[i\ = <f>[j], □
We now consider the case, where Mjj is not completely decided when we apply <f>[i\ and <f>[j\. Intuitively,

<f>[i] is better here than <f>[j]9 because <f>\i] might make decisions in M n 9 but <j>\j] cannot. To simplify the
proof, we show that in both the worst case and the best case that <f>[i\ > <f>[j\. For the remainder of the
cases, it suffices to demonstrate the easier proof that <f>[i] is no worse than <j>[j]. In the worst case, <f>[i] makes
no decisions in M jj; in the best case, decides all of M n.

Lemma 4 ttWorst Case.39 If <f>[i] and <f>[j] are two probes satisfying Condition I , with M jj ^ 0 in state ^ .
Assume that <f>[i] makes no decisions in M n . Then <j>[i\ > <f>[j].

Proof. As before, we expand the resulting states by the amount of shift with nj = |jAfj||. Here, [£]n/
means to shift past all of Mj up to Mjj.

-i ■
Zi = m o + ■ us)

n = 2

n j- l
£y=?U]o+ E r q i s u + r ' m n , . (ie)

n= 2

Again, we compare the resulting states term by term.

23

• In the first two terms in both Equations 15 and 16 some or all of M t1 remains undecided.

{ M l

{ S I

M j l

V f c

M ' n i

I E ' m

K e J

}

{ M l

Wife) - * € - ■ ■
M 'u M l 11 M L w)

{ ^ / 0 E h E ' m }

Again, for any subsequent series of probes [̂*7] applied to.fy, let <f>[I] = Tr[z>-» j]:<f>[J], Every decision
that <f>[J]makes is also made by <f>[I\} and vice versa. At this point one of two possibilities occurs.

— At some point <f>\J] and <f>[I] might decide all of M 11 with part of M n still undecided. Call these
states and £j, respectively. That is, we have shifted past j 9 but not i9. Let Vnt11 be the first
undecided in index in the original M n region. Ynt11 is now index I in the new state. We have
shifted a total of Ynt11 — I so far, and the old index z is ir = z — (rajj — I).

i mii — I f Mn M in M tneyf)

{ ^ / 0 E'lII >

ImII
i .

{E'n

(17)

At this point, for any sequence of probes .<f>[J9] applied to £j, let <f>[F] = Tr[z# —► 0]:<f>[Js]. 4>\I9]
makes a decision everywhere that ^[J'j does, but potentially does so in one less probe if
includes ^jz1]. We already know that <f>[i] yields no decisions in Mjj . In this case, by Lemma 2
and Definition 3, <f>\i\> <f>\j\.

— States £j and do not arise, because we decide all of M n before Mj is decided. We shift past
j and i in one fell swoop. We end up in identical states as illustrated by Scenario 14. Thus, <f>[i]

= <t>\j\-

• The probes 4>[i] and <f>[j\ decide all of Afj, giving us Scenario 17. We have already shown in this case
that <f>[i\ > <f>[j].

Ih all cases ^ [z] leads to a state as good as or better than the state for <f>[j\. Thus, on the average, <f>[i)
> <f>[j]. □

Lemma 5 aBest Case.* I f <j>\i\ and (j>[j\ are two probes satisfying Condition I, with M n ^ 0 in state ^ .
Assume that <f>\i] decides all of M u . Then [̂z] >

Proof. As before, we expand the resulting states by the amount of shift, only this time, <j>[i\ might shift
up to M m whereas <f>[j] can only shift up to Mn- nj — ||Af/||, so that [£]„, shifts up to m /j and [£]nj+i
shifts past M n to- Mjjj.

24

n/ -̂1
Cl — 9[f]o + E 5”?[£]» + ?n'?[?]nH

n - 2

nr- I
Cj= ?[e]o + E 9 "« ^« + 9n ,9[e]n/.

(18)

(19)

Again, we compare the resulting states term by term, only this time M n is decided completely by
but is undecided in £y .

• The first two terms in both EJquations 18 and 19 give the resulting states.

{M'j M 1i i i Kew>
m i c y ^ c

{E f * 7 / 0 E'n }

mcy--+ c{Mi M il M ia M L .)

{ ^ 0 Eii }

For any subsequent series of probes <f>[J] applied to £y, let <f>[I) = Tr[i «-► Every decision that
<f>[J] makes either is also made by <f>[I\ or was previously made by <f>[t]. Thus, Af D Ay remains true.

At this point one of two possibilities occurs.

— At some point <f>[J] and <f>[I] decide all of M t1 with part of M 111 Still undecided by <f>[J]. Call these
states £j and fj, respectively. Let M fl = the undecided indices in M 911 in £j. Because M 911 has
already been decided by <f>[i], A * = Ay U M f1. We also shift £1 past M 91 j, thus, Yji > Yjy. By
Definition 2, <f>[1] leads to a better algorithm than

n - {Mia K e w)
‘Pl-'J

{E'ai >
. (20)

m - c
{M fj

I

M'ai

E ia

— States l-j and do not arise, because the probes in ^[Jr] decide all of M 111 by the time Mj is
decided, causing us to shift past j and i. Weend up in identical states as illustrated by Scenario 14.
Thus, <f>[i] = <f>\j].

• The probes ^jt] Jind <j>[j\ decide all of Mj producing Scenario 20. We have already shown that in this
case .f [*];>>[;]. ’

In all cases, [̂*] > <l>[j], so that on the average, □
Finally, we show that for any state fjjf, ^[i] is at least as good as

Lemma 6 “General Case." I f </>[i] and 4>\j\ are two probes satisfying Condition I , then <f>{i] > 4>\j\.

Proof. $[i] might have made decisions in Afjjs thus, A* 2 Ay. For any subsequent series of probes <j>\J\
applied to £y, let $[I\ = Tr[i j]:$[J], At some point, if iy/ > ru and J contains a probe j" < rjr, then
ignore probe j" in I, because we have shifted past j" already in Every decision that $[J] makes either is
also made by ^ [/] or was originally made by $[i\. Thus, A 1 D A j remains true and it follows directly that
VJ > VJ- Thus <f>[i] > $[j]. □

Theorem I For any state , with unexamined indices, j , i , with i > j , $[i\ > $[j\.

Proof. Lemmas 3, 4, 5, and 6 cover all possible cases. In every case, either ^jij = > $[j], or <f>\i\
> ${j]» Thus, on the average, $[i\ leads to the betteralgorithm. □

6.4 Main Proof

We now derive the optimum monotonic algorithm, by comparing n-step algorithms, as opposed to single
probes. Let oi, «2, • • •, an € E i that is they are potential probes.

Lemma 7 Let$[i\> $[j), then <f>[i,j] > $[j,i\.

Proof. Assume we are in state , with i > k. Consider the probabilities that $[i,j] results in only $\i\
or that ^[z,y] results in <̂ [z]̂ [y], Weget

■ -+ (?#'] + q<f>[i]<f>[j}) (£) (21)

>&*](£) (# [y]+ q ttiW]) (?)• (22)

Equation 21 indicates that only <j>[i] is done with probability g (because a decision is made at I) and
that both ^[t]^[y] are done with probability q. The last terms in Equations 21 and 22 are identical because,
^[i]^[y] = ^[y]^[i]« Thus, comparing $[i,j] with $[j,i] amounts to comparing $[i] with $[j). From Theorem I,
we get $[i,j] > ${j,i\. □

Leinma 8 For n > 2, if i > j, then the n-step algorithm $[1,3, 03, ••• ,an] > $[3, 1,0 3 ,***,an].

Proof. Expand each of the n-step algorithms. The probability that we reach probe 03 is q2, because both
$[i] and $[j] must match. Thus, the probability that the 2-step algorithms $[i,j] or $[3, i] suffice is (I — g2).

4vy ,fl3 ,*“ ,an] -> { l - q 2)$[i)j] + q2$[i\$[3]$[a3>'-'>*n\

<f>[3,h*3>:''>an] ■-* (I — q2)$hti] + ^2^[y]^K]^[a3» • • • ,

The last term in both equations are identical, because [̂»]<£[y] = ^[y]^[«]. From Lemma 7, we know that
$[iyj] > $[h *]i proving this lemma. □

Lemma 9 For n > 2 and I < k < n-2, if i > 3, then the n-step algorithm $[aj, • •, Qfe,2,y, • • <, an] >

^[a I } * * * 1 Qk} 3 rh * * *» an \ •

Proof. Expand each of the n-step algorithms as before. The probability that $[oi, • a*.] does not decide
at I is (1 — gfc). The difference between the equations is underlined.

26

4>\a U • • •» Of c+3 , • • • , <Jn]

4 \ a I » • • ' > ° f c i h *> Ofc+3(• • • » « »]

(I - <f)<f>\au ■ ■ -,-o*] + q k<t>[a1\ ■ ■ ■ 4>\ak\4>[i, j , - •, on]

(I - q*)<f>[ai, • ofc] + 9fĉ [ai] • • • ̂ [ofcj^jyji, • • -, on]

The first term in equations is identical, thus, the difference between the two equations amounts to
comparing *] versus </>[j}i, • ••]. From Lemma 8, we know that $[t,y, • • •] > • • •], thus proving
this lemma. O

We now show that if i is the best single probe among {*, a*, • • •, On J G E i then probing i first is optimal.
Actually, we show that probing any index other than z first is non-optimal.

Lemma 10 For n > I and I < k < n, i/m ax^, ai, C i 2 , • • •, an) = i, then </>[%, a*, • • •, an] >

^[^1> * * * j a A?I■*> i ’ ’*t an]»

Proof. We can “exchange* i to the front by applying Lemma 9 k times until i is the first probe. Each
application of the Lemma 9 yields an improved (n-f l)-step algorithm. For example, the first two applications
give - * •, Ofc-2)h Qfc- 1> > <*n] > 4>[aly ‘ • ‘ > ak-l>h aki - • > Qfi] > 4{au 'i • * »an]» D

Because the choice of {ai, • • •, an} was arbitrary, we have shown that an optimal algorithm must probe
t first. The final step shows that RQ is the optimal monotonic algorithm.

Theorem 2 R Q is the optimal monotonic algorithm.

Proof. We show that for any state with E = {au • ••, an\ and a± > a2 > ••• > on, the optimal
n-step algorithm is <f>[ai, O2, •• •, an\. By Lemma 10 the optimal algorithm probes ai first. Assume probing
ai does not decide at I. We are now in a new state with E' = {a2, • • •, an}. Again by Lemma 10, we
know that probing 02 next is optimal. Thus, the optimal algorithm looks like <£[ai, a2| ?, • • •, ?]. Repeating
this argument n-2 more times, we see that the optimal sequence n-step algorithm is 4>\ai> O2, • • •, a*]. That
is, for any state the optimal algorithm probes the rightmost undecided index in text'. This is precisely
RQ.. □ '

0.5 Nonmonotonic Algorithms
It is possible that a non-monotonic algorithm may be better than RQ. A non-monotonic algorithm is not
restricted to examining a character in text' and may examine characters anywhere. For example, such
an algorithm might look at text[P],"text[T-P] and then text[T/2]. We give two preliminary reasons why
non-monotonic algorithms are not likely to lead to a better approach. Then, we informally discuss the
shortcoming of non-monotonic algorithms. Finally we prove that RQ cannot be beaten.

First, a non-monptonic algorithm is not likely to be time or space effective. If the probe must be in
memory, we need T space to hold all of text[] in the worst case. When text[] is large* reading the next
examined character directly from a file minimizes the required memory, but in practice, it is inefficient to
read greatly differing indices of text[] from a file. Secondly, 0PT2, which is known to be optimal over all
algorithms, is monotonic.

Informally, RQ decides or “gobbles” text[] from left to right. One “non-monotonic” algorithm which
is equally good to RQ is the reverse algorithm, REV, which gobbles text[] from right to left. In fact, any
combination of RQ and REV which alternately gobbles “at the ends” and eventually finishes somewhere in
the middle is as good as RQ. Each “bite” (probe) of text[] gobbles (decides) a random amount between 0
and P of text. Gobbling from the ends assures that we continue where we left off. However, a non-monotonic
algorithm which gobbles a part of the middle, leaving a hole, cannot be optimal. The bite that connects the
hole and the end might have eaten more, “wasting” part of that bite,

We define r\REv — the rightmost (greatest) undecided index, and I e x t^ vr = text[tjrev —-P + 1—*1r e v }'
REV is the algorithm that probes the leftmost unexamined character in t e x t^ ^ . We define rj and text' as
before. A probe <f>[u\ is non-monotonic if u falls outside of both text' and textj^y-. We now prove that a
non-monotonic probe is suboptimal.

There are three types of probes. Non-monotonic probes are denoted $[u] or Probes within text'
are shown as <f>[f] or 4\U* Probes within textr EV are denoted ^[r] or $[r*]. The set of decisions made by
the non-monotonic probes $[ui], •, <f>[ui] is Att = {dtei, • • •, duj}, where du\ < du2 < • • • < dui. We define
A f and Ar similarly.

The entire probe sequence S for algorithm can be described as a combination of the three types. For RQ,
the probe sequence is <f>[fi], </>[f2], • • •, <j>[fn]; for REV, it is ^[ri], ^jr2], • ? • , <£[rn]. An example sequence for
a non-monotonic algorithm might be <̂ [/1], $[/2], ^[/3], ^[u2],. • • > 4>{un]- The next lemma shows that
shifting a set of probes, Ui by i positions merely shifts the set of decisions made by CTby i positions.

Lemma 11 Let U = {^[ui], • * • = a series of “u” probes. For a given pattern, over all text
strings, the probabilistic set of decisions made by U is A u = {dui, • • • , dui}, For integer i, let U -ft- =
{0[ui + 1], • • • , <f>[un -f i]}, then A u^ i = {dux + i, • •, dut H- »}.

Proof. Adding t corresponds to shifting the set of probes U either left (i < 0) or right (i > 0). Because
the text strings are random, U and U -f % encounter identical strings from a probabilistic standpoint. The
only difference is the shift of i . Thus, for a given pattern, the set of decisions is merely shifted by i . □

Theorem 3 Any sequence of probes S that contains “u” probes is suboptimal.

Proof. Eventually, A/ , Au, and Ar must cover all of I, • • •, T — P H-' I, because we must decide all of
text. At some point in time, we join A/ = {1,2, •••-,dfn} and Att, when dfn = du\ — I. Without loss of
generality, assume that (I) the probe that joins A j and Att is ^[/') and (2) Att and Ar have not been joined
yet. Let U be the set of “u” probes prior to $[/']. Before probing $[/'], the situation looks as follows, where
X’s represents an undecided region. X' is the set of indices that will be decided by <f>[fr) and X r is the set
of undecided indices between Au and Ar .

text[] • •• A f I X' I Att/XXX Att/XXX | X r | Ar
text' = I I

’ T
- ‘ ■■ ■ r . ■■■

28

If U contains probes that have jumped around text[], then A uJXXX may consist of many disconnected
regions where decisions have been made. In this case, <£[/'] joins the first (leftmost) region in Au with Ajr.
In any case, text1 spans X', because <0[/'] decides all of X'.

As before, <f>[fr] probes text[f'], the rightmost unexamined character in text'. We might have f > du±f so
that <j>[f'] might have decided at du± had the probes in U not already decided du\. In general, let dui, • • •, du{
be the indices that <f>[ff] would have decided, were they not already decided. In this case, it follows that
(FyU'+i) is a better set of probes than (/, J7). By Lemma 11, Au+% is A u shifted right by i positions, and
hence, Au+i decides part (or all) of X r , but is otherwise identical to Au. Thus, in the same number of
probes, (Ff U + i) decides “everywhere” that (F f U) does, and (Ff U + i) decides part of X r . By Lemma 2,
[Ff U) cannot be optimal. For other combinations of the assumptions (I) and (2) the reasoning is identical.
If follows directly that a non-monotonic algorithm cannot be better than RQ. □

Thus, RQ is optimal over all algorithms.

7 M odeling Other A lgorithm s

The KMP algorithm is the monotonic algorithm that probes the leftmost unexamined character in text'.
When a decision is made at I, rj is incremented as usual. If probing text'[e] decides at I, we know that
text'[I...e-1] matches the pattern. For fixed-string patterns, text'[l...e-1] = patt[l...e-l], which is known
precisely. We can precompute the decisions that have been made so far in a table, Jump]], of length P.
When probing text'[e] decides at I, ^ is incremented by Jumpje]. Note that KMP probes textfl], text[2],
. . . , text[T] in order regardless of the pattern or the text.

The Boyer-Moore algorithm is similar to RQ', except that it does not make decisions past the first partial
match in M, so that M = {1, 2, • • • , P} = {*} all the time. In other words, probing text'[e] makes decisions at
1,2,... ,i, % > 0, which results in a shift of i, and a new M = {*}. BM is suboptimal because it does not make
decisions past i. For fixed-string patterns, if examining text'[e] decides at I, we know that text'[e-f 1...P] =
patt[e+'l,.;P], and we can precompute the other decisions that have been made in table, Jump[] of length
P. In addition, BM uses the Skip table described in Section 5.3, which takes into decisions made by text'[e].
BM uses the maximum shift of the two tables.

8 R esu lts

To test our various approximations, we measured <&(OPT2)f <b[BM)f and $(RQ) for different P and a. We
also compared the actual running time of BM and RQ'. We made all our measurements on a SUN-3/60
workstation running the Unix operating system.-

To test the feasibility of RQ, we implemented a version of it for patterns with P < 32 = W (the wordsize
of our machine). We generated random text files of length 50,000 for alphabets of size 10 and 26. We
varied P from 2 to j|II||. For each value of P, we searched for at least 30 random fixed-string patterns and
averaged the results. In all cases, the predicted running time from Equation 10 was in error by less than
1.3% compared to the measured data.

We also measured RQ when P a. For each value of P, we searched for 128 or more random patterns
on a text file of at least 50,0000 characters. We have normalized the data for a 10,000 character text file.

29

The rightmost column of the table shows that the upper bound set by Equation 11 is 20-30% too high.

Pt p X = Ioi a (P)T fP Measured Measured / X
2 16 2500 2757 1.10
2 31 1598 1632 1.02
3 27 1111 1196 1.07

To test our OPT2 approximation, we ran RQ on a variety of patterns, using an alphabet size of 10. We
ran 2000 fixed-string searches on a 50,000 character text file. The measured number of probes was 0.8%
greater than Equation 3 predicted. In an informal survey using fixed-length patterns such as [ab][acdfgij]
or [cde][ac], the predicted number of probes was consistently 1.3%-2.5% below the measured data. In the
survey, we tried 4 forms of patterns with an average of 5 runs per pattern type,

We checked the validity of the BM approximation in Equation 4 for different ot and P. For searched for
at least 100 patterns of each length in a 50,00Q character text file, for a = 10, and a = 26. For P < a , our
approximation was in error less than 1.9% (a = 26, P = 24, not shown); for P < 2a, the maximum error
was 3.6%. Our results are summarized below.

Ot P Predicted Measured (M e a s - P red)
P red

10 6 11856 11824 -0.27%
io 8 9754 9631 -1.27%

10 10 8529 8401 -1.53%
10 20 6324 6107 -3.55%
10 30 5801 5670 -2.31%
26 6 9538 9516 -0.23%
26 8 7426 7391 -0.47%
26 12 5327 5286 -0.77%
26 16 4291 4244 -1.10%
26 26 3128 3115 -0.42%
26 36 2644 2616 -1.08%

26 42 2477 2444 -1.35%
26 52 2299 2252 -2.06%

Finally, we compared the running time of RQ' described in Figure 5 with the BM algorithm. Although
RQ' is not optimal, when the pattern is a fixed-string, it probes no more characters than BM, so Qwc[RQt) is
O(T), We obtained a BM implementation that had a very tight loop as prescribed in [BM77]. We compared
the CPU time required for each of the algorithms. For “typical” searches through a list of Internet hosts,
BM was from 1.3 to 2 times faster than RQ'. BM was faster than RQ' on short patterns of length 2-4.
Finally, for “long” patterns when P > a, RQ' was typically two to three times faster than BM.

9 Conclusion

We have presented an algorithm for finding all occurrences of a fixed-length patterns in a text string. Our
algorithm examines the minimum average number of text characters over all patterns and text strmgs and is

30

optimal in this respect. We have also presented a general method for approximating the number of probes,
and hence the running time, of many pattern-matching algorithms. As an application of our method, we
have derived the asymptotic behavior of $(OPT2)y Q(BM)9 and #(RQ). Our approximations correlate
well with measured data. We have presented an efficient variant of RQ for short patterns. Finally, we have
proven that RQ is optimal over all algorithms.

One area merits future work. Our analysis uses the average q value. For certain alphabets and patterns,
RQ is not optimal. For example, when searching for buzzQ in standard English, RQ examines a minimum
of 2T/5 characters, because examining text'[5] never makes a decision at I due to the wildcard character.
Thus, in the best case 2 probes make 5 decisions. A better algorithm for this particular pattern is ^[4,3,2, 1],
which most likely probes T/4 characters. The problem is to determine the optimal algorithm given each of
the character probabilities and the pattern.

References

[Abr87] Karl Abrahamson. Generalized string matching. SIAM Journal of Computing9 16:1039-1048,
December 1987.

[AC75] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search. Commu-
nications of the ACM9 18 (6):333-340, June 1975.

[AG86] Alberto Apostolico and RafFaele Giancarlo. The Boyer-Moore-Galil string searching strategies
revisited. SIAM Journal of Computing9 15(1):98-105, February 1986.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

[BM77] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Communications of
the ACM, 20(10):762-772; October 1977.

[GQ80] Leo J. Guibas and A. M. Odly zko. A new proof of the linearity of the Boyer-Moore string search
algorithm. SIAM Journal of Computing9 9:672-682, 1980.

[Har71] Malcolm C. Harrison. Implementation of the substring test by hashing. Communications of the
ACM9 14:777-779, 1971.

[Hor80] R. Nigel Horspoo!. Practical fast searching in strings. Software Practice and Experience, 10(6) :501-
506, June 1980.

[KMP77] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching in strings.
SIAM Journal of Computing9 6(2):323-350, June 1977.

[KR81] R. M. Karp and M. 0. Rabin. Efficient Randomized Pattern-Matching Algorithms. Technical
Report TR-31-81, Aiken Computer Lab., Harvard tlniy., Cambridge, MA, 1981.

[Sch88] R. Schaback. On the expected sublinearity of the Boyer-Moore algorithm. SIAM Journal of
Computing9 17(4) :648—658, August 1988.

	Purdue University
	Purdue e-Pubs
	2-1-1989

	Searching for Fixed-Length Patterns
	R. W. Quong

	tmp.1542052450.pdf.BVmKX

