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ABSTRACT

We present an integral equation derived under the simplifying assumption that the inelastic 

scattering is caused by uncorrelated point scatterers, such as magnetic impurities or impurities 

with internal degrees of freedom. While this assumption is not always realistic, we believe that 

the model can be used to describe much of the essential physics of quantum transport in mesos- 

copic systems. This assumption allows us to write a transport equation that involves only the 

electron density and not the spatial correlations of the wave function. The kernel of this integral 

equation is calculated from the Schrodinger equation and contains all quantum interference 

effects. We show that at equilibrium the electron density relaxes to the expected equilibrium 

value with a constant chemical potential everywhere in the structure. Assuming local thermo- 

dynamic equilibrium we then derive a linear-response transport equation which resembles the 

Landauer-Buttiker formula extended to include a continuous distribution of probes. An alterna- 

tive derivation is provided in the appendix for the kernel of the linear-response transport equa- 

tion, starting from the Kubo formula for the conductivity. We discuss the conditions under 

which this transport equation reduces to the well-known drift-diffusion equations describing 

classical Brownian motion. In the present work we restrict ourselves to steady state transport 

and neglect many-body effects beyond the Hartree term.



L INTKbDU€TK>PI

Much of our understanding of electron transport in solids is based on the Boltzmann tran

sport equation (BTE).

J U ( r ;k ; t )  + V-Vrf(f ;k ;t)  + • Vkf(r ; k ; t) = S ^ f C r ^ t )  (LI)

Here f ( r ; k ; t) is the distribution function in phase space that tells us the number Of particles at r 

with wavevector k at time t. Sop is the scattering operator which is local in space.

S ^ f ( t ; k ; 0  = £  [s(k ,k')f(k')[l-f(k)] -  S(fc^k>f(k)[l-f(k')]l (1-2)
J atr.t

The scattering function S(k,kO is commonly obtained from Fermi’s golden rule. The BTE is 

based on a simple semiclassical picture of transport: Electrons are particles that obey Newton’s 

law in an external electric field (i)  and are scattered occasionally by phonons and impurities. 

Despite its impressive successes* it suffers from an important limitation; it cannot describe tran

sport phenomena in which the wave nature of electrons plays a crucial role. A variety of such 

quantum effects have been discovered over the years, such as tunneling [1], resonant tunneling 

[2], weak and strong localization [3], the quantum Hall effect [4], etc. Since 1985, experiments 

on mesoscopic structures have revealed a wealth of new effects such as the Aharonov-Bohm 

effect, conductance fluctuations, non-local effects and the quantized conductance of point con

tacts [5-12]. For ultrasmall structures at low temperature, these phenomena have clearly 

revealed that electron transport is dominated by wave interference effects not unlike those 

well-knOwrt ih microwave networks. It has also become Clear that in mesoscopic Structures, 

whose dimensions are comparable to the phase-breaking length, it is necessary to distinguish 

between sample-specific properties and ensemble-averaged properties; solid-state physics in the

past had been almost exclusively concerned with the latter.
’ ' • ■ ■ ’ .

An important topic Of current theoretical research is to develop a quantum transport for

malism that can be used to describe the sample-specific properties of mesostructures. A satis

factory theory must not only include qtiahtutii interference effects, but also the effects Of phase
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breaking processes (arising from scattering processes in which the scatterer changes its state) 

that are inevitably present. This is in general a very difficult problem, for it involves one of the 

fundamental questions of physics: How do irreversibility and dissipation creep into a system 

that is governed by reversible mechanics (i.e., the Schrodinger equation or Newton’s law)? 

There have been a number of different approaches to quantum transport theory, each with its 

own subtle technique for introducing irreversibility.

I. In the Kubo formalism, linear transport coefficients such as conductivity are 

expressed in terms of correlation functions evaluated at equilibrium [13,14]. The 

conductivity tensor a  at a frequency co is related to the current-current correlation 

function.

ico[CT0(r,r';co)]ap = [Cjj(r,r';co)]ap -  S ( r - r ')  Sap (1.3)

where n is the electron density, m is the effective mass, 8ap is the Kronecker delta 

and the subscripts a, P run over x, y and z. The current-current correlation function 

C jj is defined as

OO

CuCr.r':®) -  - I  J d t e tol (J(r,t) J(r',0) -J (r ',0) J(r.t); (1.4)

where J(r,t) is the current density operator in the Heisenberg picture and { • )

denotes the expectation value. Eqs. (1,3), (1.4) and relations derived from it have 

been the starting point for much theoretical work on localization [15-19]. Recently 

Lee and co-workers and Maekawa e t al. have used this approach to study quantum 

transport in mesostructures [20-24]. Inelasticprocesses areincluded in thisapproach 

(also known as linear response theory) by replacing (-ico) in the final result with 

(1/Xi), where Ti is the inelastic scattering time.



- 4 -

In the Landauer formalism, linear transport coefficients are expressed in terms of the 

scattering properties of the structure [25-28]. Usually it is assumed that inelastic 

scattering is negligible within the structure and occurs primarily in the contacts. 

Under these conditions, fire current Ii at lead / is related to the chemical potential p,j 

at lead /b y  the Landauer-Buttiker formula (Fig. 1.1) [29,30]

2
Ii -  ^ Z U T o & fc -T O ijM j}  ■ (1.5)

where

(T0)ij = JdE

Tij(E) = Tr{ t |  (E) tij (E)J (1.6)

ty(E) is the transmission matrix from lead j  to lead i for electrons with energy E and 

f0 is the Fermi-Dirac distribution function. It has been shown that the coefficients 

(T0)ij are related to the conductivity tensor (<J0)<xp by the following relation [31,32].

^ - (T0)ij = Jd(Si)a Jd(Sj)P [tfoCivr'Xlap (1.7)

where the vector Si is normal to the cross-section of the lead i. Eq. (1.5) has been the 

starting point for much of the recent work on quantum transport in mesostructures 

[33-43]. Although the Landauer approach, in principle, can be applied more gen

erally [44], eqs. (1.6) can be used to compute the coefficients (T0)ij only if inelastic 

scattering is significant in the contacts and not within the structure. Dissipation and 

irreversibility in this approach arise from the coupling to the contacts which act as 

reservoirs, as often pointed out by Landauer [25,44]. Biittiker simulated the effects of 

inelastic scattering within the main structure by connecting it to a contact reservoir 

through a side probe and setting the current at this fictitious probe to zero [45]. The 

Landauer approach has so far been applied only to problems involving linear
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response though, in principle, it should be applicable to non-linear response as well.

3. Finally, a variety of quantum kinetic equations have been used to describe quantum 

transport. The quantum Boltzmann equation (QBE) uses the Wigner distribution 

function W (r;k ;E ;t)  in place of the semiclassical Boltzmann distribution function 

f ( r ; k ; t) used in the BTE [46-53]. The Wigner distribution function is obtained from 

the Green function

GCrljT2 ;ti,t2) = i(V+(r1,ti)\|/(r2,t2)) (1.8)

(\|/(r,t) being the electron field operator) by transforming to center-of-mass 

r =  y ( r i + r 2)> t = ~2 (tI + *2)

and relative coordinates, and then Fourier transforming with respect to the relative 

coordinate.

ri -  r2 -» k , ti - 12 E

The QBE is derived starting from the Dyson equation, and dissipation is introduced 

through the self-energy function. Alternatively, several authors have used the density 

matrix p(rl5r2 ; t) which is proportional to the equal-time Green function

G(ri,r2 ;ti,t2) —1~2 Dissipation has been introduced through an influence func

tional in the path integral technique [54], and through a boundary condition on the 

Wigner function corresponding to Landauer-type contact reservoirs [52]. Quantum 

kinetic equations provide a powerful approach to quantum transport theory, including 

non-linear response. The main difficulty seems to be their complexity as well as the 

fact that quantum distribution functions, being complex quantities, often have 

counter-intuitive properties, so that it is difficult to make approximations.
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In this paper we present a simple quantum kinetic equation that can be solved to compute 

the electron density per unit energy n (r; E), under steady state conditions, neglecting many- 

body effects beyond the Hartree approximation. At equilibrium, n(r;E) is the product of the 

density of states No(r;E) and the Fermi-Dirac function f0(E). As the system is driven away 

from equilibrium by external sources, the distribution of electrons is perturbed. We assume that 

any external current is injected incoherently from the contacts. Our objective in this paper is to 

present a transport equation that can be solved to obtain this non-equilibrium distribution 

n (r; E). We emphasize that n(r;E) is not a semiclassical concept, but a well-defined quantum 

mechanical quantity, proportional to the Wigner distribution function W (r; k ; E ; t) integrated 

over all k (t is absent because we have restricted ourselves to steady state). The kernel of this 

integral transport equation is computed from the Schrodinger equation and contains all quantum 

interference effects due to elastic scatterers. Space-charge effects are taken into account by 

including in the Schrbdinger equation the electrostatic Hartree potential obtained self- 

consistently from the Poisson equation.

In general it is not possible to write an integral equation involving only the electron den

sity; spatial correlations of the wavefunction must also be taken into account. The transport 

equation presented in this paper represents a major simplification for two reasons. Firstly, the 

number of independent variables is reduced from Cr1; r2 ;E) (or equivalently, (r ;k ;E )) to 

(r;E). Secondly, the transport equation involves only positive quantities, so that it is easy to 

make intuitive approximations. Monte Carlo analysis based on a probabilistic interpretation 

should also be possible. In order to achieve this simplification, we assume that inelastic scatter

ing is caused by a distribution of independent oscillators, each of which interacts with the elec

trons through a delta potential We also assume that inelastic scattering processes are weak and 

infrequent, just as one does in deriving Fermi’s golden rule; however, the elastic processes are 

treated exactly. This model closely approximates a laboratory sample with magnetic impurities, 

or impurities with internal degrees of freedom. For other types of inelastic scattering the model 

may not be realistic; however, we believe that it should still be possible to describe much of the
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Hc

Structure with 
no inelastic scattering

llcontact I S contact M

Fig. 1.1: The Landauer-Biittiker formula relates Ij to |ij assuming that all inelastic

scattering processes are confined to the contact reservoirs.
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essential physics of dissipation in quantum transport.

Physically, it is easy to see why the above assumption leads to a simple transport equation 

that does not involve spatial correlations of the wavefunction. In the ‘ ‘golden rule”  approxima

tion, each scatterer acts independently. Since we have assumed a tielta interaction pOtetitiMl, tin 

inelastic scattering event only involves the wavefunction at a particular point and is insensitive 

to spatial correlations. In fact, inelastic scattering events in our model may be viewed as quan

tum measurements of the position and energy of the electron. Every time an electron is indlasti- 

cally scattered it leaves one of these oscillators in an excited state, and energy is dissipated into 

the surroundings as the oscillator relaxes back to its state of thermodynamic equilibrium. An 

observer who monitors the states of the oscillators will see a series of flashes with different 

energies from different spatial locations and can, in principle, deduce the election density 

n (r; E) from the observations. Our transport equation is thus formulated in terms of a variable 

that is actually measured rather than a conceptual quantity from which observable quantities can 

be deduced. We believe that it is for this reason that the transport equation involves only real 

positive quantities.

In this paper we adopt a microscopic approach starting from a model Hatiiiltonian for the 

inelastic seatterers; however, our model is closely related to the Landauef picture; Since the 

inelastic scattering process is purely local, it can be viewed as an exit into a reservoir followed 

by reinjection into the main structure. From this point of view it would seem that distributed 

inelastic scattering processes can be simulated by connecting a continuous distribution of reser

voirs throughout a structure (Fig 1.2). Indeed, when we simplify our transport equation to linear 

response we obtain what looks like the Landauer-Biittiker formula (eq. (1.5)) generalized to 

include a continuous distribution of probes. Moreover, the kernel of this linear-response tran

sport equation can be derived directly from the Kubo formula for the conductivity (eq. (1.3)) 

using the Lee-Fisher formula (eq. (1.7)); this is shown in the appendix. Therefore, our transport 

equation reduces to well-known results in the limit of linear response. We believe that even the 

full (non-linear response) transport equation can also be derived from a Landauer picture if we
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Kjfijij contact 3*$
Inelastic
Scatterer

contact ;jfi

Landauer-type
Reservoir

M cp Htactji)

Fig. 1.2: In the limit of linear response at zero-temperature, the transport equation can be

viewed as a generalization of the Landauer-Biittiker formula to a continuous 

distribution of reservoirs. Each reservoir simulates the action of an inelastic

scatterer.
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assume an appropriate relationship between the energy spectra of carriers entering and leaving 

the reservoirs. A direct generalization of the Landauer-Biittiker formula, however, would 

appear to be a phenomenological approach to simulating inelastic scattering. Our paper pro

vides the rigorous justification for such an approach, by deriving the transport equation men

tioned above directly from a model Hamiltonian making certain well-defined assumptions.

This paper also serves to clarify the meaning of the chemical potential ji(r) in quantum 

transport theory. As we mentioned earlier, die transport equation derived in this paper is formu

lated in terms of the electron density per unit energy n (r; E). We emphasize that this is a well- 

defined quantum mechanical quantity. The energy variable E is derived from the temporal 

correlations of the wavefunction at a point r, and bears no relationship to k; there is thus no vio

lation of the uncertainty principle since conjugate variables (like r and k or E and t) are never
vvf/- : ■

invoked simultaneously. In order to derive the linear-response transport equation, we assume 

local thermodynamic equilibrium so that we can write the electron density n (r ; E) in terms of a 

local chemical potential |i(r)

; "(■•;£) = No(r;E) (E_ ^ /t, ,  <>.9>
C T I

where No(r ; E) is the electronic density of states. It is with this assumption that our transport

equation simplifies to a form resembling the Landauer-Biittiker formula generalized to a con- 
■ ‘ ' ' ' ' . ■ ■ / 

tinuous distribution of probes. On the other hand, if the driving forces are large enough (or the

inelastic scattering weak enough) then local thermodynamic equilibrium may not be main

tained. It is then not appropriate to talk in terms of a local chemical potential; we should solve 

for the actual distribution n (r ; E) using the more general transport equation.

The outline of the paper is as follows. In Section II we describe the model that we use and 

provide an overview of the main results. In Section III we show that, in our model, the inelastic 

scattering rate at any point is proportional to the local electron density and does not involve spa

tial correlations of the wavefunction. The transport equation is then derived in Section IV, 

using a one-electron picture. An extra factor in the kernel arising from the exclusion principle
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is added in Section V, using thermodynamic arguments for the equilibrium state; the linear- 

response transport equation is also derived in this section, assuming local thermodynamic 

equilibrium. Ih Section VI we discuss the conditions under which the linear-response transport 

equation reduces to the drift-diffusion equation that is widely used to describe classical 

Browhian thotibh. The diffusion coefficient is computed for a few simple exathples (analyti

cally as well as numerically). Finally in Section VII we conclude by summarizing our impor

tant results.

JL- OVERVIEW

We Consider any arbitrary structure in which the propagation of electrons is described by 

the following one-electron effective-mass Hamiltonian.

Ho = ~ "~2m<r>l2 + eV(r) (2.1)

The vector and scalar potentials A(r) and V(r) include the Hartree potential obtained from a 

self-consistent solution with the Poisson equation, as well as externally imposed potentials, and 

all sources of elastic scattering such as impurities, defects, boundaries, etc. For the inelastic 

scattering we assume a reservoir of independent oscillators labeled by the index m,

Hp = S f iw m (a^ a m + I )  (2.2)
m ^

where Ul1 and am are the creation and annihilation operators for oscillator m. We assume that 

each oscillator interacts with the electrons through a delta-potential, so that the interaction 

Hamiltonian H' can be written as

H '= 2 U 8 ( r - r m)(a tl + am) (2.3)
m

Note that we have assumed the interaction strength U to be constant. There is no loss of gen

erality since the strength of inelastic scattering can be adjusted through the density of scatterers 

per unit volume per unit energy, described by some function Jo( r ; Ho)). The summation over m
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is eventually replaced by an integral.

X  => Jd r Jd(Kco) J0( r ;Kco) (2.4)

We will show in Section HI that, with the assumption of a delta interaction potential, the self

energy function £(ri >r2 5 E) in the simplest approximation reduces to a point function in space,

K r : . r - : E) = -  f  8(r, -  r .)  (2.5)
2Xi Cr1 ,E)

where Ti (r ; E) is defined as the inelastic scattering time. Physically, this simplification arises 

from the fact that an individual inelastic scatterer sees only the electron wavefunction at a point. 

In general, the scattering rate would depend riot only on the local electron density 

n(r) -  {\|^(r)\|/(r)) but also on the spatial correlations of the wavefunction -  {\|/i’(r) \jr(r') ). As 

a consequence of eq. (2.5), however, the inelastic scattering rate per unit volume per unit (ini

tial) energy at a point can be written solely in terms of local quantities.

is (r;E )/e  = (2.6)
*i(r;E)

where i§(r;E) is defined as the inelastic scattering current per unit volume per unit energy. We 

will show in Section IV that in the absence of external sources, the scattering current must 

satisfy an integral equation of the form

is (r;E ) = J dr' J dE' K(r, r ' ; E,E0 is ( r '; E') (2.7)

where the kernel K (r,r';E ,E ') is proportional to the square of the Green function of the 

Schrddinger equation, and thus contains all quantum interference effects due to elastic scatter

ed, boundaries, etc. It is interesting to note that the BTE (eq. (1.1)) without the diffusion and 

field terms,

+ ZSfck’ O-fkHk- (2.8)
dt Xil

can also be written in a form similar to eq. (2.7) above, assuming steady state (dfk /d t = 0) and 

defining a scattering current (is)k /e  = fk /x k.



(is)k -  £Kk,k' (is)k' (2.9)
k'

where

Kk,k' = Sk,k' (l~ fk ) %  (2.10)

Eq. (2.8) is derived assuming that the momentum eigenstates lk> are energy eigenstates with 

definite energies Ejl. For this reason, the energy variable does not appear explicitly in eq. (2.8). 

The fact that the position eigenstates I r  > are not energy eigenstates makes the derivation of eq.

(2.7) somewhat more complicated than that of eq. (2.8). Indeed, were it not for our assumption 

of point-size inelastic scatterers, it would not be possible to write down an equation such as eq.

(2.7) solely in terms of the electron density; in general, such an equation would also involve 

spatial correlations of the wavefunction.

We assume that any external current I ( r ; E) flowing in and out of the contacts is com

pletely incoherent and can simply be added to eq. (2.7).

iS(r;E ) = I ( r ; E) + J dr' J dE' K(r, r ' ; E,E') is ( r '; E') (2.11)

In general, the externally injected current may have spatial correlations, which we are neglect

ing in this treatment. This is the transport equation that must be solved to determine the inelas-
.. ' ■ ... ■ ■ ' ' . , ' ■ VA:';- Av A V

tic scattering current ig(r ;E), or equivalently, the electron density n(r;E). Given the static 

potentials V(r) and A(r) (eq. (2.1)), and a distribution of inelastic scatterers J0(r;lTco), the ker

nel K (r,r';E ,E ') can be computed. We can then proceed to solve eq. (2.11). At any node 

(r;E ) we have two variables: the external current I(r ; E) and the electron density n(r;E) (or 

equivalently, is =en/Xi). At all nodes which are not connected to some external source, 

I ( r ; E) = 0, and we must solve for n (r ; E). At contact nodes, we can assume n (r ; E) to be given 

by a thermodynamic distribution characterized by a local chemical potential, and solve instead 

for I(r ;E). It should be noted that I is the current flowing into the structure and not the current 

density J within the structure; the two are related by I = -V  • J.



In Section V we will first show that in the absence of external sources (I = 0) eq. (2.11) 

does predict the expected equilibrium electron density Ueq (r;E)

n«q(r;.E) = N0(r;E )f0(E) (2.12)

Here fo (E) is the Fermi-Dirac function

fO ^  -  ^B- J / t.T+1 (2.13)

with a constant chemical potential Po. No(r; E) is the electronic density of states given by

N0(r;E ) = X  ^ mOO*2 5(E -eM) (2.14)
M

where <()M(r) are the eigenfunctions of Ho (eq. (2.1)) with eigenvalues 6m - In writing eq. (2.14)

we assume weak inelastic scattering, so that level broadening effects may be neglected.
' ■*; " "

The remainder of Section V is devoted to simplifying the transport equation (eq. (2.11)) 

assuming a small perturbation from equilibrium. Below we state briefly the main results in 

order to show the resemblance between the simplified transport equation and the Landauer- 

Biittiker formula. In this linear response regime* we assume local thermodynamic equilibrium; 

the electron density n (r ; E) can be described by a spatially varying chemical potential fx(r) (cf. 

eqs. (2.12), (2.13)).

n(r;E) = N„(r;E)-igr^ Ê  (2.15)

For linear response at low temperatures, only electrons within a narrow range of energies near 

the Fermi surface (E = Ep) contribute to the transport process. Consequently, the linear- 

response ttepipoiS equation at zero-temperature looks much like eq. (2.11), but with the energy 

argument dropped:

is (r) = I(r) + Jd r'P (r,r ')  is (rO (2.16)

W hereitisunderstoodthatallquantitiesareevaluatedatE = EFand

- 14 -
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P (r,r ';E ') = JdE K(r,r';E,EO (2.17)

We have changed nothing by writing eq. (2.16) in the form

I(r) = J d r ' (P(r',r) is (r) -  P(r,r') is (rO} (2.18)

because J dr' P(r',r) =1, as we will see in Section IV. Noting that is = e n /t i  and n = N0 M> we 

may write eq. (2.18) in terms of the chemical potential as follows.

e2
I(r) = — J d r '{T0(r',r)ii(r) -  To(r.r') p(rO) (2.19)

where we have defined

T0(r,r')

This form of the transport equation bears a 

repeated here for convenience

hN0(r') „
E - ^ P(r-r ) (2 .20)

striking similarity to the Landauer-Biittiker formula,

2
1I = I  ((T0)ji Mi -  (To)ijMjJ (2.21)

n j

Eq. (2.19) can be viewed as an extension of the Landauer-Biittiker formula to include a continu

ous distribution of reservoirs, connected through perfectly conducting probes with 

infinitesimally small cross-sections to the main structure (Fig. 1.2). A single reservoir whose 

coupling can be varied has been used in the past to simulate the effect of inelastic scattering 

[45,55]. A better model for distributed inelastic scattering processes is a continuous distribution 

of reservoirs that repeatedly absorb and reinject electrons. From this point of view eq. (2.19) 

would seem to be an obvious extension of the Landauer-Biittiker formula. It is not obvious, 

however, how the kernel T0(r,r') is to be calculated for a given structure. Furthermore, the 

assumptions implicit in such an approach are not readily apparent. Indeed, critics would argue 

that this means of incorporating dissipation is purely phenomenological. This paper serves to 

rigorously justify such an approach, by deriving an integral equation starting directly from the 

Hamiltonian and making certain well-defined assumptions. Moreover, it extends the approach



to include non-linear response as well.

HL INELASTIC SCATTERING RATE

Our objective in this section is to show, starting from the Hamiltonian stated in Section II 

(eqs. (2.1)-(2.3)), that the inelastic scattering rate depends only on local properties, as expressed 

by eq. (2.6). To accomplish this, we first relate the inelastic scattering rate to the self-energy. It 

will be evident from this relationship that the inelastic scattering rate depends only on local pro

perties if the self-energy is a delta function in space. We Will then show that in our model, with 

point inelastic scatterers, the self-energy is indeed a delta function.

Out approach is to use a one-electron Hamiltonian Hq , coupled to a bath of oscillators Hp 

through the interaction Hamiltonian H' (eqs. (2.1)-(2.3)). A correction factor due to the exclu- 

sion principle will be inserted later in Section V. The state vector xP for the entire many- 

particle system comprising the electron and the oscillators obeys the equation

i f i - |^  = (H0 +H p + H ')'i' (3.1)

We expand the state vector ¥  using the position representation I f > for the electron and the 

eigenstates I a  > for the oscillators.

xP £Ya(*0 la >  lr> e _iErt/!i (3.2)
a

where Ef is the total energy of the system (electron plus oscillators). The ket la >  represents 

an eigenstate of the oscillator Hamiltonian Hp (eq. (2.2)), which can be expressed as a direct 

product of the individual oscillator eigenstates.

Ia>  = n  1 Nm >m (3.3)

Here, the subscript m indexes each of the oscillators, and Nm is the number of “ phonons” in 

oscillator m. The corresponding energy eigenvalue ea is given by
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6a = ZIK M N n, + y )  (3.4)
m

Substituting eq. (3.2) into eq. (3.1) and taking the projection onto I a  > we obtain

(ET - e a -H o)\|/a (r) = S H aa'(r)V a'(r) (3.5)
a'

Eq. (3.5) is a system of spatial differential equations coupled by the matrix elements of the 

interaction Hamiltonian. The probability amplitude \|/a (r) can be written as the product of two 

terms: the amplitude Oa for the oscillators to be in state la> , and the amplitude \|/(r) for the 

electron to be at lr>: \|/a (r) = Oa \|/(r). Irreversibility is later introduced into the model by 

assuming that the phonon bath is maintained in thermal equilibrium, so that the phonon density 

matrix is always diagonal,

O a O p = O  for a *  p (3.6)

The electron density matrix p(r,r') is obtained by tracing over the oscillator eigenstates.

P(r,r0 = EVa(r)Va(**') (3.7a)
a

Our transport equation will only involve the diagonal element of the density matrix, which can 

be identified as the electron density n(r),

n(r) = p(r,r) = X  l¥ a (r) l2 (3.7b)
■ ■■ a

We define the electron density per unit energy n (r ; E) to be

n(r;E ) = X  IVa(r)l2 S(E -E a) (3.8a)
a

where the electron energy Ea is obtained by subtracting the oscillator energy ea from the total 

energy E j.

Ea = E j - E a (3.8b)

Note that we obtain the total electron density n(r) (eq. (3.7b)) if we integrate eq. (3.8a) over all 

energy.



A. RELATIONSHIP BETWEEN INELASTIC SCATTERING 

RATE AND SELF-ENERGY

We could rewrite eq. (3.5) in terms of the Green function, rather than the wavefunction, as 

follows.

(Ea -H o)G ap(r,r') -  I H W ( r ) G 4 (r ,f )  = 8ap 8 ( r - r ')  (3.9)
■ a'

Note that eq. (3.9), like its counterpart eq. (3.5), is a coupled system of differential equations 

indexed by the oscillator states a  and p. Gap (r,r') represents the wavefunction Ya (r) due to a 

delta excitation at (J3,r'). It is well-known that the Green function Gaa (r,r') obeys the Dyson 

equation [46],

Gaa (r,r') = G0(r ,r^ E a) + Jdr1 Jdr2 Go(r,r2 ;Ea )£ a (r2 , r 1)Gaa(r1,r') (3.10)
■ . .  .. ■' •• ' . . . ■ . ■ . ■

where Ea (r i ,r2) is the self-energy function, and G0(r ,r ';E a ) is the undamped propagator 

defined by

(Ea -  Ho) G0( r ,r '; Ea ) = 8(r -  r') (3.11)

Operating on eq. (3.10) with (Ea — Ho), and using eq. (3.11) we have,

(Ea - H 0)Gaa^ r ' )  = S (r - r ')  + Jdr1 Za (r,r1)Gaa(r1,r') (3.12)

This equation can alternatively be written in terms of the quasi particle wavefunction as,

(Ea - H 0) Ya(r) -  Jdr1Za (^ r 1) Yd(F1) = 0 (3.13)

The non-local “ optical potential” in eq. (3.13) is well-known in scattering theory [56]. It is 

easy to show that eq. (3.13) leads to a continuity equation of the following form for the proba

bility current density Ja,

- V - J a = - 4 f d r 'R e { iZ a(r,r')Ya(r)Ya(r')} (3.14)

Current is not conserved because eq. (3.13) describes damped quasi particles. It includes out- 

scattering but no in-scattering. The term on the right represents the rate at which electrons are
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inelastically scattered out.

isaOO/e = Jdr'Re{i Za (r,r') Va(F)VaCr')} (3.15)

It is apparent from eq. (3.15) that the inelastic scattering rate, in general, depends on the spatial 

correlations of the wavefunction. However, we will now show that in our model the self-energy 

is a point function in space as stated earlier (eq. (2.5)), so that the inelastic scattering rate 

depends on purely local factors.

B. SELF-ENERGY IN THE 

“ GOLDEN RULE”  APPROXIMATION

Our approach in this paper is to treat the elastic Hamiltonian H0 exactly, while treating the 

inelastic scattering in the “ golden rule” approximation. As such we consider only the simplest 

diagram fpr the self-energy shown in Fig. 3.1, This diagram yields for the self-energy [56],

(i*,r') = E H 'ap(r)G o(r,r';E p)H'pa (r') (3.16)

Our assumption of delta interaction potentials between the electron and the oscillators now 

leads to a simplification: The self-energy reduces to a point function. To show this, we note 

that (using eq. (2.3) for the electron-oscillator interaction H')

H'ap(r)H 'ap(r') = IUI2 £  8 ( r - r m) 8 ( r '- r n)
m »n

< a la ji  + am lp > < p la j-i-an la >  (3.17)

The factor < CcIaJ1 + am IP > is non-zero only if la >  and ip> represent states for which all 

oscillators are in identical states, except for the m* oscillator whose state differs by one. 

Clearly the product of this factor and the following factor < P I aJ + an I a  > cannot be non-zero 

unless m = n. Hence,
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Fig. 3.1: Diagrammatic representation of £a (r,r') in eq. (3.16).
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H'ap (r)H '^ (r ')  = Fap(r) 8 ( r - r ')  (3.18)

where

Fap(r) =  «<

IU 12 X 8(r- rm) (Nma + I) , if  Om If3>= ^Nma + l la >
m

IUI2 Z8<r - rm)Nma . if a t i p > = A ^ 7 l a >  a , 9 )

0 , otherwise

Using eq. (3.18) we write the self-energy from eq. (3.16) as

Sa(r,rO = 8 (r - r ')X G o (r ,r ';E p )F ap(r) 
P

(3.20)

Using eq. (3.19) and noting that G0(r,r ;Ep) = - i 7tN 0(r ;Ep) (neglecting the real part of the 

self-energy) we obtain

2a (r,r') = - iJc S (r-r ')  IUI2 £  8 ( r - r m) [(Nma + I )N0(FjEa -Iicom)
m

+ Nma N0 (r; Ea +5 (Om)] (3.21)

Replacing the sum over m by an integral (eq. (2.4)), we obtain

SttO-.r')= (3-22)2 Xi(r ,E a )

where

s  Y -  J de ' pO-: ■E '-E )  N0( r ; E') (3.23)

F (r ;E -E ')
IUI2 J0(r;K co)N(Hco) , if Kco = E - E '> 0

IUI2 J0(r;Kco) (N(Kco)+I) , i fK e o s E '-E > 0
(3.24)

Assuming that the oscillators are in thermal equilibrium, the average number of “ phonons” in 

each oscillator is related to its frequency eo by the Bose-Einstein factor.
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N(HO))^ - nSA _ 1 (3.25)

Now that we have computed the self-energy function, we substitute it into eq. (3.15) to 

obtain the inelastic scattering rate.

is<x(r)/e = IVa(r)l2/Xi(r;Ea) (3.26)

Theinelasticscatteiingcufrentperunitenergyisdefinedas

is(r ;E) = X  is«(r) S(E-Ea ) (3.27)
a

Using eqs. (3.26) and (3.8a) we obtain the desired relation (eq. (2.6)).

is(r;E) en(r;E )
Xi(r;E) (3.28)

This represents the total rate at which electrons are inelastically scattered from an energy E to 

some other energy. The rate at which electrons are inelastically scattered into a particular 

energy E' is given by e n (r; E) S (r; E',E), where S (r; E',E) is given by the integrand in eq. 

(3.23),

S (r; E',E) = - ^ F ( r ;  E '-E )  N0 ( r ; E') (3.29)

Eq. (3.29) may be viewed as a ‘‘golden rule” describing the inelastic scattering process; how

ever, it should be noted that unlike the usual golden rule we are using the position representa

tion and not the energy eigenstates. This simple result is made possible by our assumption of 

independent point-size inelastic scatterers.

It is Qohyenient to define a dimensionless factor Ps (r ; E',E) as the fraction of the total ine

lastic scattering current is(r;E) that acquires a final energy E' after inelastically scattering from 

an energy E.
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Ps (r;E ',E ) S(r;E ',E)
JdE 'S (r;E ',E )

S(r ;E',E) Ti(^ E ) (3.30)

Using eq. (3.29) we obtain

Ps (r;E ',E ) = F (r ;E '-E )  N0(r ;E') T^r ;E) (3.31)

IV. THE TRANSPORT EQUATION

We have shown in Section III that the inelastic scattering process in our model is a purely 

local one; at any point r ' the rate at which electrons are inelastically scattered from an in itia l 

energy E ' to a final energy E is given by is ( r ';E') PsOr'jE.E'), as illustrated in Fig. 4.1(a). 

Once the electron has been “ injected” at r ' with an energy E (by an inelastic scattering pro

cess) it propagates elastically in real space. We can define a function P (r,r '; E) as the probabil

ity that the electron will suffer its very next inelastic scattering event at position r. Later in this 

section we will evaluate this function. Assuming that we know this function, it is straightfor

ward to establish a transport equation simply by balancing the in-flow and out-flow at each

“ coordinate” (r;E), as shown in Fig. 4.1(b).

iS(r;E ) = I ( r ; E) + J d r 'JdE 'K (r,r';E ,E ') is (r ';E ')  (4.1)

where

K (r,r';E ,E ') = P (r ,r ';E )P s (r';E ,E ') (4.2)

The kernel K (r,r ';E ,E') is the product of two factors: The first factor P (r,r '; E), which will be 

evaluated later in this section, is proportional to the square of the Green function G (r,r';E ) and 

thus includes all quantum interference effects, while the second factor Ps (r';E ,E '), which was 

evaluated in Section in  (eq. (3.31)), contains all information regarding the spectrum of the ine

lastic scatterers. Our model thus provides an intuitive picture of quantum transport as a
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is (r';E')Ps (r';E,E/>.Energy
Elasticpropagation

■> Position

To other 
values of E

To other 
values of r

Ps(r';E,E0is(r';E')

P (r ,r^ E )P s ( r ';E 3 0 is ( r^ E 0

(a) Physical picture of the transport process, (b) Schematic diagram illustrating 

different terms in the transport equation (4.1).

Fig. 4.1



diffusion process in (r;E). The kernel K (r,r ';E ,E') can be viewed as a transfer function from 

one inelastic scattering event at ( r '; E') to the next one at ( r ; E).

Fof linear response at zero-temperature, the function Ps ( r '; E,E') does not appear Since all 

transport occurs in a narrow range of energies around E = Ep. We will show in Section V that 

the linear-response transport equation at zero-temperature acquires a simple form as follows:

is (r) = I(r) + Jdr'PCr.rOisfo') (4.3)

where all quantities are evaluated in a narrow energy slice around E = Ep. This linear-response 

equation is illustrated in Fig. 4.2.

It now remains to evaluate the factor P(r,r';E ). As we have stated, P (r,r';E ) represents 

the fraction of electrons injected at r ' with energy E (by inelastically scattering from some other 

energy) that suffer an inelastic scattering event at r  without inelastically scattering in the mean

time. If this restriction (in italics) were absent, we would basically be calculating the diffusion 

propagator from r ' to r, which includes the possibility that an electron inserted at r ' ends up at r  

after suffering any number of inelastic scattering events. However, because of this restriction, 

what we are calculating is merely the piece connecting successive rungs in a ladder series 

diagram for the diffusion propagator.

Inelastic scattering may be viewed as a two-step process involving a decay out of an initial 

energy E, followed by an injection into a final energy E'. In calculating P(r,r';E ), the second 

step is irrelevant. We are simply interested in the probability that an electron injected at r ' with 

energy E suffers its very next inelastic event at r; the reinjection at r  is a separate part of the 

problem that is already taken into account by the integral transport equation. Thus, for the pur

pose of calculating P (r,r ';E ) we can ignore the reinjection process and assume that we are 

dealing with decaying quasi particles. Such particles are described by the Schrodinger equation 

modified to include the optical potential (eq. (3.13)). In our model, the optical potential reduces 

to a purely local potential because the self-energy is a delta-function (eq. (3.22)).



Fig. 4.2:

To other 
values of r

>
s

.PCrfOisCrO'

A schematic diagram illustrating the different terms in the linearized transport 

equation at zero-temperature (eq. (4.3)).
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Ea - H q + 2 ti(r ; Ea ) Gaa(r,r') = 8(r-r') (4.4)

Since Gaa(i*,r') depends only on the energy Ea we can write it as

Gaa(r,r) = G(r,r ;Ea)

where the damped propagator G (r,r '; E) is computed from the equation

(4.5)

E -H 0 + 2Xi(r;E) G(r,r';E) = S(r-r') (4.6)

Since we have assumed point-size inelastic scatterers, an electron is injected as a point 

source by the inelastic scattering process. We can thus expect P (r,r ';E ) to be proportional to 

the squared magnitude of the Green function G (r,r';E ). Consider the continuity equation 

obeyed by the probability density

n = IG (r,r';E ) I2 (4.7)

and the probability current density

I j
e

(VG)* G -G * (VG) (4.8)

that we obtain from the solution to eq. (4.6). It can be shown from eqs. (4.6), (4.7) and (4.8) 

that

I T7 T n— V * J +  —
e Xj

i 8(r-r')[G -G *] (49)

Integrating over all volume, using the divergence theorem and assuming that the boundaries are 

far away so that no current flows out of the surface, we have

(4.10)

since No(r; E) = -Im {G(r,r; E) )/n [14]. The integrand on the left in eq. (4.10) is the steady- 

state current n /Xi due to electrons lost from the coherent state by inelastic scattering; the term 

on the right is the total steady-state current injected at r' (Fig. 4.3). The ratio of these two terms
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is equal to the probability function P(r,r';E ), which is the quantity we sought.

P (r,r ';E ) = —  I GCr, r'-; E> 12-
2ti NoCr'jEltiCrjE) (4.11)

Substituting for Ps from eq. (3.31), and for P from eq. (4.11), into eq. (4.2) we obtain an 

expression for the kernel.

„ Xi (r'; E')
IG(r,r';E)l2 'F(r';E-E/) , ^

Xi(r;E)

It will be noted from eq. (3.30) that the factor Ps is normalized to unity.

JdE Ps (r';E ,E ') = I

Again from eq (4.10) it is evident that the factor P is also normalized to unity.

(4.12)

(4.13)

Jdr P (r,r ';E ) = I

Eqs. (4.13) and (4.14) together imply that the kernel K is normalized to unity.

^ Jdr JdE K(r,r';E,E') = I

(4.14)

(4.15)

This normalization condition ensures that the particle current is conserved. The scattering 

current is ( r '; Er) out of a coordinate ( r '; E') is distributed amongst the other coordinates ( r ; E)

according to the kernel K (r,r'; E,E'). Eq. (4.15) ensures that no current is lost or gained in the 

process.

It should be noted that the assumption of point-size inelastic scatterers is crucial in arriving 

at such a simple description of non-linear quantum transport. Firstly, it allows us to write the

function Ps (r '; E,E0 in terms of purely local factors (eq. (3.31)). Secondly, it allows us to com

pute the probability function P (r,r ';E ) in a straightforward manner from the Green function. 

This is possible because each inelastic scattering event is assumed to reinject the electron 

incoherently with a new energy at a single point; the initial condition for each elastic propaga

tion process is thus always a delta function. An extended inelastic scatterer would reinject the 

electron over an extended region; it would then be necessary to know the spatial correlations of



Position

Sketch of the probability density IG (r,r ';E )l2 calculated from eq. (4.6). The 

index E has been dropped for convenience.

Fig. 4.3



the wavefunction -  (\|jr(r)\j/*(r') ) in order to obtain the initial condition for the elastic propaga- 

tionprocess.

We can rewrite the transport equation (eq. (4.1)) in terms of n(r;E) instead of 

is ( r ; E) = e n (r ; E) /  Xi (r; E).

I ( r ; E) Xi ( r ; E)
n(r; E) + Jd r ' JdE' Kn( r , r '; E,E') n(r';E ') (4.16)

where

Xi ( r ; E)
Kn(r,r ';E ,E ') = K (r,r';E ,E ')Xi (r ; E )

IG (r,r ';E )l2 F (r ';E -E ') (4.17)

Eq. (4.16) can alternatively be derived by considering the ladder diagrams for the particle-hole 

propagator, and setting up a Bethe-Salpeter equation. It can then be shown that the kernel 

Kn (r, r ' ; E,E ') is simply one unit of the ladder diagram.

V. EQUILIBRIUM AND LINEAR RESPONSE

In this section, we consider solutions of the transport equation at or near equilibrium. We 

verify that in the absence of external sources, solution of the transport equation yields the

correct distribution of electrons in energy (i.e., the Fermi-Dirac distribution). For small pertur

bations from equilibrium, we reformulate the equation, assuming that the distribution of elec

trons at any point can be characterized by a local chemical potential or quasi Fermi level. In 

this form, the equation bears a striking similarity to the Landauer-Buttiker foixnula. Each ine

lastic scatterer in our model acts as an independent reservoir in the Landauer model, so that our 

transport equation appears to be a simple extension of the Landauef-Biittiker formula to account 

for a continuous distribution of probes. A simple expression is 'd^ved:fG^;̂ e:^o-p^be-'Cptt-;; 

ductance of any structure.



A. Effect of the Exclusion Principle

In the previous section we derived an integral transport equation (eq. (4.1)) based upon a 

one-electron picture. We now consider the effect of the Pauli exclusion principle and insert a 

correction factor into the definition of the kernel. It will be shown in Section B that this factor 

is necessary in order to obtain the proper equilibrium solution.

At equilibrium, the electron density should be given by the product of the density-of-states 

No(r ; E) (eq. (2.14)) and the Fermi-Dirac factor fo(E),

neq(r;E) = No(r;E)f0(E) (5.1)

\ - 3 1 -

Extending this relationship to non-equilibrium situations, we define a convenient solution vari

able f ( r ; E) which we refer to as the distribution function:

n(r;E) h N0(r;E ) f(r ;E) (5.2)

Although the solution variables that we have introduced are all interchangeable, ;

e n ( r ; E )  eN0(r;E )f(r ;E )
is(r;E) (5.3)

Xi(r;E) Xi(r;E)

f(r;E ) is particularly well-suited to discussion of the exclusion principle. Using this newly 

defined distribution function, the transport equation (eq. (4.11)) can be expressed as

■ ^ ^ f ( r r E )  = I(r;E ) + |d r ' J d E 'K ( r , r ' ; E , E O - ^ ^ - f ( r ' ; E ' )  (5.4)

We emphasize that the distribution function f ( r ; E) as defined above is not a semiclasSical con

cept but a well-defined quantum mechanical quantity, There is no violation of the uncertainty 

principle, since a knowledge of the electron’s energy is conjugate to the time coordinate, not the 

position coordinate. This is in contrast to a semiclassical distribution such as f ( r ; k), used in the 

solution of the Boltzmann transport equation.

In Section IV we showed that the kernel K (r,r' ; E, EO is the product of two independent 

probabilities: Ps (r '; E,EO is the probability that an electron suffering an inelastic scattering 

event at ( r '; EO would be scattered to an energy E; and P (r,r';E ) is the probability that an



electron ‘‘injected” at position r ' with an energy E would suffer its next inelastic scattering 

event at r. The Pauli exclusion principle requires that an electron cannot be scattered into a 

state that is already filled. To account for this, we modify Ps by including a factor [I - f ( r '; E)] 

in the definition of S (r '; E,E').

r SCr'iEjEO -  ^ F ( r / ;E -E ')N o (r" ;E )[ l- f ( rA;E)J 
n

This modifies the expressions for both Ps and Ti as follows.

Ps (r, ;E,E') F (r'; E -EO  N0( ^ B )
n

(5.5)

(5.6)

JdE F(r'; E -E ')  N0(r' ;E) [ I - f ( r ' ; E)] (5.7)
tj(r';E') K

It is necessary to include this factor; without it, the distribution function f ( r ; E) would not relax 

to the proper equilibrium solution f0(E) in the absence of external sources. In principle, one 

could also modify P by using some form of exchange potential in eq. (4.6). However, we will 

not consider this further in our present treatment.

B, Equilibrium State

Close to equilibrium, the distribution function can be written in the form of a Fermi-Dirac 

function

If(r;E): e(E-en(r))/kBT +  j
(5.8)

where p(r) is the local chemical potential. At equilibrium, the chemical potential is constant 

everywhere in die structure. In this section we will show that the distribution function in eq. 

(5.8) with p(r) = Po (a constant) is indeed a solution to our transport equation (eq. (5.4)) with

the external current I(r ; E) set equal to zero; that is, we will show that



- 33 -

where

f0(E) : I
e(E-eHo)/kBT +  j (5.10)

|Xo being a constant. It is easily shown that

Ib(Er) [I — f0(E)] = f0(E) [I -  f0(EO] Cce- ^ 71cbt (5.11)

Using this fact, we can perform the energy integral in eq. (5.9) as follows. We obtain the kernel 

from eqs. (4.11) and (5.6),

s .K (r,r';E ,E ') -  Ps (rr ;E,Er)P (r,r ';E )

Xi(FrjEr)
Xi(r;E) IG (r ,r ';E) 12 F(rr ;E - E r) [I - f(rr; E)] (5.12)

This expression accounts for the exclusion principle, as described previously. Now, we substi

tutethis definition into eq. (5.9) and apply eq. (5.11),

JaE-K(r.r';E,E-) fo(E-)

= | |  ~ ~ | ( r  E ^ ‘2 1 N°(r' ;E'}F(r' ; E ~ E ) | l _ f ',(Ii)1 fO*1)

eff IG(r,rr ;E)l
fo(E)2k Xi(r,E)

J dEr N0(rr ; Er) F(rr ; E - Er) [I - ^ (E r)] e(E" E,)/kBT (5.13)

If  our system of oscillators is in equilibrium, then the number of “ phonons”  with an energy Kco 

is given by the Bose-Einstein function (eq. (3.25)). In conjunction with the definition of 

F(rr ;E - E r) stated in eq. (3.24), this implies that
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F (r ';E '-E )  = F(r/ ;E - E /)e (E-E)/kBT (5.14)

After substituting eq. (5.14) in eq. (5.13), the remaining integral is simply defined by eq. (5.7) to

be I /  t i ( r '; E). Therefore, we have simplified the integration over energy to

Jd rr JdEr K (r,r ';E ,Er)
eNo(r';E0

Ti(r';E') fo(E0
eh
2k

fo(E)
Xi(r;E) Jdrr IG(r; r/ j >)|2 (5.15) J Xj(r ;E)

We must now evaluate the integral over the position coordinate r'. It was shown in Section IV 

(cf. eq. (4.10)) that

IG(rr,r ;E ) l2 
 ̂ Xi(r';E)

^ N 0(r;E ) (5.16)

which is essentially the integral that We must perform, but with the coordinates interchanged in 

the Green function. A well-known symmetry property of the Green function is that

G (r,r';E ) H
G (r',r;E )

-H
(5.17)

where H —» —H implies a reversal of the magnetic field. From this property, we can evaluate the 

following integral,

r j _, IG (r,r ';E )l2 
I  Xi(r';E)

r , . ,  IG(rr,r ;E ) l2 
Xi(Fr-E) -H

Y -N 0(r;E ) -H

We have by definition (eq. (2.14))

N0(FjE) = X  I<I>m (**)12 S(E-Cm)
M

(5.18)

(5.19)

where ^ ( r )  are the eigenfunctions OfH0 (eq. (2.1)) with eigenvalues Cm - The reversal of the 

magnetic IeJd merely replaces each eigenfunction <t>M(r) by its complex conjugate, so that the

density of states N0 (r j E) remains unchanged.

“  N0(FjE) 
n

(5.20)

Substituting eq. (5.20) into eq. (5.15) we obtain eq. (5.9). This shows that in equilibrium (with 

source terms I(F j E) set to zero) the Fermi-Dirac function T0(E) is indeed the solution of our
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transport equation.

It is thus fairly straightforward to calculate the equilibrium density of electrons in any 

structure. We first calculate the eigenfunctions <J>M(r) and eigenenergies Em for the elastic part 

of the Hamiltonian Ho; these are then used to obtain the density of states No(r;E) from eq. 

(5.19). The chehiical potential |% appearing in the Fermi-Dirac function f0(E) (eq. (5.10)) is 

adjusted to obtain the correct average density of electrons, according to eq. (5.1). In general, 

any uncompensated space-charge must be accounted for by performing an iterative solution for 

the electron density and the electrostatic potential. The electron density n(r) should be inserted 

into the Poisson equation to obtain a corrected potential; the eigenfunctions (j>M(r) and the 

eigenenergies £m should then be recalculated including this potential, and iteration should con

tinue until the solution is self-consistent.

C. LinearResponse

To obtain a transport equation valid for linear response, we assume that inelastic scattering 

is sufficiently strong to maintain local thermodynamic equilibrium everywhere in the structure. 

If this is the case, the distribution function f(r;E ) can be written in the form of a FermTDirac 

function with a local chemical potential |J.(r).

« r -E> -  l5-2 "

Provided that this assumption is true, the following relationship is valid:

f(E ')[l —f(E)]
atr

f(E )[l-f(E ')] (E-E')/kBT
atr

(5.22)

Note that this is the same condition which allowed us to perform an integration over energy (eq. 

(5.11)) in the discussion above. Although the distribution f ( r ; E) is now a function of position, 

the arguments leading to eq. (5.15) are still valid. Therefore, we use this result to integrate eq. 

(5.4) over energy,



I(r) = Y  JdE
eN0(r;E ) 

TiCr ;E)
f( r ; E) ~ Jd r ' T (r ,r '; E) f(r' ;E) (5.23)

where

I(r) = JdE I ( r ; E)

T (r,r';E ) E2 IG(r,r';E) I2 
^i(r;E) tj(r';E)

(5.24)

(5.25)

From eq. (5.20),

Jd r 'T (r ',r ;E ) = Jd r 'T (r ,r ';E )
hNo(r;E)
Ti(r;E) (5.26)

We use this property tp write eq. (5.23) in a more symmetric form.

I(r) = ~  Jd r ' JdE {T(r',r;E) f ( r ;E) -  T (r,r ';E ) f(r';E)} (5.27)

In linear response theory we assume that the distribution function f(r;E ) deviates only 

slightly from the equilibrium distribution fo(E), so that we can expand f ( r ; E) in a Taylor series 

about p. = p-o. Noting that 9 /  3|x = -e  9 /9E, we obtain

9fo
f ( r ; E) = f0(H) H- e [p (r)-p o ] (5.28)

Substituting eq. (5.28) into eq. (5.27) and using eq. (5.26) we obtain

I(r) -  Jd r ' {T0(r',r) n(r) -  T0(r,r') p(r')} (5.29)

where

T0(r,r') = JdE T (r,r';E ) (5.30)

At low temperatures, -9fo /9 E = 8 (E -E F), so that
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T0Om O = TC ryjE=Ep) K2 I G(r,rQ 12 
ti(r) Xi(r') E —Ep

(5.31)

Eq. (5.29) can be viewed as a generalization of the Landauer-Biittiker formula,

Ii = -^ S ( T j iH i- T ijHj ) (5.32)
n j

to a continuous distribution of probes. The coefficients To(r,r') have the same symmetry pro

perties in a magnetic field H as the coefficients Ty [29,36]. Namely,

T (5.33a)

T0(r,r') T0(r',r)
-H

(5.33b)

This is apparent from the definitions of To(r,r') (eq. (5.30)), T (r ,r '; E) (eq. (5.25)) and the sym

metry property of the Green function (eq. (5.17)). It has also been shown that the coefficients 

Ty obey the following relationship [29],

X(Tji - T ij) = O  (5.34a)

Similarly, it can be shown that

J d rT r0( r ', r ) - T 0(r,r')} = 0 (5.34b)

This property follows directly from eqs. (5.26) and (5.30).

Space-charge effects: In deriving eq. (5.29) from eq. (5.27) we have implicitly assumed 

that when we drive the system slightly away from equilibrium, the distribution function f ( r ; E) 

deviates from the equilibrium value of f0(E), but the coefficients T(r',r; E) remain fixed. Actu

ally, the coefficients T(r',r; E) will change because corrections to the electrostatic potential will 

change the Green function G(r',r;E), as well as the inelastic scattering times Tj(r;E). In con

sidering the variation SI, we have accounted for one term,
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Jd r7 JdE Sf0(E) {T (r',r;E) — T(r,r7;E »

It would seem that we should also have a term of the form

Jd r7 JdEfb(E) { 6 T (r ',r ;E )-S r(r ,rA;E)}

where 8T is the change in the coefficient T. This term is zero, however, because of the relation 

(eq. (5.26)) that must be satisfied by T (r ',r ; E). Consequently, in linear response theory we can 

use the coefficients T(F7jTjE) obtained (self-consistently) under equilibrium conditions, and 

ignore corrections due to the modification of the electrostatic potential under an applied bias. 

This, however, may not be true if there are sharp resonances in T; second-order terms (~ 8T 8fo) 

may not be negligible in that ease.
. - •. . ■ ■ ■ %  / .  ■■ ; /  ’

D; Power Dissipation and Circulating Currents 

In general, we can solve eq. (5.29) for the potential distribution p(r) in any structure. At 

equilibrium, p(r) is equal to a constant Po, and I(r) is equal to zero. In the absence of magnetic 

fields (H = O in eq. (5.33b)), T0(r',r) = T0(r,r') so that at equilibrium the integrand in eq. 

(5.34b) is zero, and there is detailed balance between any two points r7 and r. But in the pres

ence of a magnetic field this is not true. There can be circulating currents, even at equilibrium. 

However, the net current out of any point is zero, as evident from eq. (5.34b). Any outflow in 

one direction is balanced by an inflow from another.

We can rewrite eq. (5.29) in the form

I(r) =  X  Jdr7 *Ts(r '»r) [K(r) -K(rO] + TA(r7,r) [p(r) + p(r7)]} (5.35)

where

Ts (r7,r) = j  [T0(r7,r) + T0(r,r7)] (5.36a)
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TaO-',r) = y [T o (r ',r )-T o (r ,r ') ] (5.36b)

The power P0 dissipated in the structure arises solely from the first term.

P° = ■|r J d r J d r 'T s (r ',r )m (r) -n ( r ') )3

The net power dissipation due to the second term is zero.

(5.37)

Jdr J dr' TA(r',r) [|i2(r) — |i2(r')] = 0 (5.38)

Eq. (5.38) follows readily if we note that from eqs. (5.34b) and (5.36b)

Jd r 'T A(r',r) = Jd rT A(r',r) = 0 (5.39)

The circulating currents that are present even under equilibrium conditions thus dissipate no 

power. From the point of view of power dissipation we can represent any structure by a con

tinuous network of conductors; any two volume elements d r' and dr are connected by a conduc

tance equal to (e2/h )T s(r',r)d r'd r (Fig. 5.1). If we have two external probes with a potential 

difference Aji between them, the conductance go seen from the terminals can be obtained by 

equating the total power dissipated in the network Pq to go (A|i)2. From eq. (5.37) we obtain the 

following expression for the two-probe conductance go.

So = I h  J d r J dr' Ts(r ' ’r )
M-(r) -  M-(r') (5.40)

One may adopt a variational approach to calculating fx(r): choose a trial function and then 

minimize the power dissipated.
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. inelastic scattering

Fig. 5.1: Neglecting the circulating currents due to magnetic fields, any structure can be

represented by a continuous network of conductors; any two volume elements 

dr/ and dr are connected by a conductance equal to (e2/h) Ts (r', r) d r' dr.
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VI. RELATIONSHIP TO CLASSICAL BROWNIAN MOTION

The transport equation discussed in this paper (eq. (2.11)) can be viewed as describing a 

random diffusion process in ( r ; E), where the kernel K (r,r';E ,E ') represents the probability of 

“ hopping” from ( r '; E') to (r;E). Thus, the transport process can be viewed as classical 

Brownian motion; the Only quantum mechanical input is in computing the kernel. Iii Specializ

ing to linear response (Section V), we have integrated over energy, so that we are left with a dif

fusion process in real space only. In this section, we will show that the linear-response transport 

equation (eq. (5.29)) reduces to a drift-diffusion equation, if we assume slowly varying 

ensemble-averaged quantities. Using this formulation, we evaluate the diffusion coefficient in a 

few simple cases. The purpose of these examples is not to derive any new results, but to show 

that our formulation reproduces well-known results. These examples involve ensemble- 

averaged properties of systems; this is in contrast to all previous discussion which has 

emphasized sample-specific solutions. The well-known expression for the semiclassical magne

toresistance is derived by determining the hopping distribution v(r,r') from semiclassical 

dynamics. We then present numerical results for the ensemble-averaged diffusivity in a disor

dered resistor which are in agreement with the work of Thouless et. al. [18]. When the inelastic 

scattering time is short, the semiclassical and quantum diffusivities agree well. But as the ine

lastic scattering time is increased, the quantum diffusivity approaches zero due to strong locali

zation, while the semiclassical diffusivity becomes constant.

A. DriftandDiffusion

Eq. (5.27) can be written in a slightly different form in terms of the electron density per 

unit energy n (r ; E) = N0( r ; E) f ( r ; E).

I ( r ; E) = e jd r ' {v(r',r ;E) n(r;E) -  v (r,r ';E ) n(r';E)} (6.1)

where
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v(r',r;E ) T (r',r;E )
hN0(r;E)

(6.2)

Eq. (6.1) has a simple physical interpretation. v ( r ',r ; E) d r' tells us the fraction of electrons per 

unit time that “ hop” from r  to r'. The first terni on the right-hand side of eq. (6.1) is the total 

number of electrons hopping per unit time out of the volume element dr while the second term 

is the number of electrons hopping per unit time into the volume element dr. The net hopping 

frequency Vo is equal to the inelastic scattering rate; using eqs. (6.2) and (5.26) we have

V0 = Jd r 'v (r ',r ;E ) = l/X j(r;E) (6.3)

Quantum transport is thus much like classical Brownian motion with a distribution of hopping 

lengths v (r ',r;E ) that is determined quantum mechanically. In the absence of any externally 

injected current I(r ; E) we can write eq. (6.1) in (he following form.

Jd r 'C (r,r ';E )n (r ';E ) = 0 (6.4)

where

C(r,r';E) = ^ g - -v ( r ,r i ;E )  (6.5)

The obvious question to ask is under what conditions does eq. (6.4) reduce to the drift-diffusion 

equation

-DjjViVj n + v,jj Vj n = 0 (6.6)

Here D is the diffusion coefficient (tensor), Vd is the drift velocity (vector) and summation over 

repeated indices is implied (x, y and z).

To get from eq. (6.4) to eq. (6.6) we first assume that we are dealing with ensemble- 

averaged quantities (denoted by a bar on top) so that the coefficient C (r,r'; E) depends only on 

the difference coordinate.
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C(r,r';E) = ^ 5 ( r - r ' )  -  v ( r - r ';E )  (6.7)
Xi

Next we assume that Cn = C h so that eq. (6.4) becomes a convolution integral.

J d r '£ ( r - r ')  n(r') = 0 (6.8)

We have suppressed the argument E for simplicity. Fotuier transforming eq. (6.8) we obtain

C(q)n(q) = O (6.9)

Now we expand C(q) in a Taylor series up to the quadratic term.

C(q) = C(O) -  i qj vdj -  qj qj Dij (6.10)

The coefficients in this expansion are obtained readily from the moments of the function 

£ ( r -  rO in real space.

C(O) = Jdp£(p) (6:11)

Vdj = J d p p j V(P) (6.12)

Dij = Y  Jdp Pi Pj v(p) (6.13)

where we have written p for r - r '.  Using eq. (6.3), (6.7) and (6.11) it is easy to show that 

C(O) = 0. Hence, inserting eq. (6.10) in eq. (6.9),
- - ■ . •

■ ■ .■ . : - ... . ■ . ' . ' ' - V. .
(i qj Vdj + qi qj Dy) n(q) = 0 (6.14)

Fourier transforming to real space we obtain the drift-diffusion equation (eq. (6.6)).

Eqs. (6.12) and (6.13) may be used to compute the drift velocity and diffusion coefficient 

from the ensemble-averaged hopping function v ( r - r ') .  In general we also need to average over 

the energy E, though at low temperatures we could let E equal the Fermi energy Ep. It should 

be noted that a number of approximations have been made in deriving eqs. (6.12) and (6.13). 

We feel that in general eq. (5.29) is a better starting point for the computation of sample- 

specific properties that vary rapidly in space. However, for slowly varying ensemble-averaged
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properties eqs/(6.12) and (6 J3 ) are more convenient.

We will consider two simple examples where the electron density varies slowly enough 

that we can use these results to calculate the drift velocity and diffusion coefficient. For simpli

city, the inelastic scattering time Ti is assumed to be constant. First, we consider the semiclassi- 

cal magnetoresistance of a free electron gas with isotropic scattering described by an inelastic 

scattering time Ti. In this case we compute the function v(p) directly from the classical trajec

tory and use it in eq. (6.12) or (6.13). The results obtained agree with the well-known semiclas- 

sical results. Next, we consider a disordered resistor with delta-function elastic scatterers distri

buted randomly. We compute the function v(p) numerically, ensemble-average it and obtain 

the diffusion coefficient D from eq. (6.13) for different values of the inelastic scattering time Ti 

(assumed constant everywhere). For small values of Ti, we find that the semiclassical and quan

tum values of the diffusion coefficient D agree very well, while at large values of Ti the two 

values differ significantly due to quantum localization,

B. Semiclassical Magnetoresistance

Consider an electron injected with energy E at r ' = 0 and following a certain classical tra

jectory ro(t). The probability P (r,0 ;E )dr that it will suffer its next inelastic scattering in the 

volume element dr is given by (Ti is the inelastic scattering time, assumed constant)

OO

P(r,0;E) = J —  8 ( r - r 0(t)) e-t/Ti (6.15)
6 Ti

This simply states that as an electron follows the classical trajectory, it decays from the coherent 

state with a lifetime of Ti. The factor I /Ti is included so that the function is properly pprmal- 

ized. We note from eqs. (5.26) and (6.2) that

Jd rv (r,0 ;E ) = 1/Ti (6.16)

Since v(r,0;E) is proportional to P(r,0;E), and the latter is normalized to one, we must have
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v (r ,0 ;E ) =  j 4 - 8 ( r - r o ( t ) ) e t/Ti (6.17)
o 'Cf

Using eqs. (6.12) and (6.13) we obtain

°o

Vdx =  J e-t/Ti Xo(t) (6.18)
o t f

Dxx =  y  J 4  e^ x g ( I )  (6.19)
2 o

where x0(t) is the x-component of the trajectory r0(t). The other components may be evaluated 

similarly.

Now we need the classical trajectory xo(t). To start with, we consider a classical electron 

moving without any influence from electric and magnetic fields. Assuming the particle has an 

initial velocity vx in the x-direction, the x-component of the trajectory is xo(t) = vxt. Because 

we are interested in the collective behavior for an ensemble of electrons, we must average over 

all possible initial states. We assume that the initial velocity of an electron is uniformly distri

buted over all directions in a sample, due to the action of scattering processes. With these 

assumptions, we evaluate eqs. (6.18) and (6.19):

(v<ix) = ( J v*1 e_t/Ti) = <vx> = °  (6.20)

(Dxx) = (J 4  Vxt2 e_t/Ti) = (V2 Ti ) * 0 (6.21)
0 'Ci

where we have used the angle brackets ( • • • ) to denote ensemble averaging. Without the 

influence of fields, the drift velocity of an ensemble of electrons is zero; the diffusion coefficient 

is not.

As a second example, we consider the effect of an electric field in the x-direction, causing 

an electron to accelerate: xo(t) = vxt + axt2 /2, where ax = e^/m  is the acceleration due to the 

field. We evaluate the drift velocity and obtain,
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aY t
(Vdx) = {J (vx t+  ) e t/Ti) = (vx) + (a* Tj)

6 xf
(6.22)

After averaging over all initial velocities, we again find that (vx) = 0. Because of the accelera

tion, however, the drift velocity is not zero,

(vdx) = -TT-4 (6.23)

Next, we consider die more complicated problem of semiclassical magnetoresistance. We 

assume a magnetic field along the z-axis, and an electric field in the x-y plane. Itcan be shown 

[57] that the x-component of the classical trajectory is:

xo (t)
’ a, vv ’ ’ ay Vx '

Q 
I

OK
>| I

S 
I

O 
I'

I .
.. ( I  -  COSCOct) +

.

COc 0jC

• "Uy. ■ ■■■■
sinooct -  t (6.24)

where we have introduced the cyclotron frequency for an electron COc = Ie IB/m. Subsfituting 

eq. (6.24) into eq. (6.18) and performing the necessary integrals, we obtain the drift velocity,

a x COc T i a y
V dx  = ----- “  Vy

COc  y I  +  c o f  T f
—  +  Vx  
COc

I _ *y_ 
!  +  COc T f

(6.25)

If we average over all initial velocities, (vx ) and (vy) vanish, leaving only the terms involving 

acceleration. By substituting in the acceleration due to the electric field, .

f?x COc Tj
(Vdx) = (6.26)

I  +  COc  T f  I  +  COc  T f

This velocity defines the x-component of the drift current, which we can use to determine con

ductivity:

C0 ' ■
0XX

envdx

envdx
T v

ŷ=O I + cof Tf

(0q T |
= -Co ~---  0 Te,=o I + cof Tf

(6.27 a)

(6.27b)

Following a similar derivation for the y-component of the drift velocity, we can define Oyx and



- 4 7 -

Oyy, and obtain the usual magnetoconductivity tensor [58],

I -COc Xi 

COc Xi II + coc x?
(6.28)

We have shown that some familiar results can be obtained by assuming a classical motion of 

electrons. We now proceed to demonstrate quantum mechanical effects in a numerical exam-

Ple- ■'

C. NumericalExampleofLocalization

In recent years, considerable attention has been given to the effects of disorder on electron 

transport. In particular, Anderson has shown that for a sufficiently high degree of disorder, and 

in the absence of inelastic scattering, conductance decreases exponentially with length [59]. 

Electron wavefunctions become spatially localized, having envelope functions that decay 

exponentially with distance. As the overlap between localized states decreases* the conductance 

vanishes. In the presence of inelastic scattering, however, electrons can “ hop” between local

ized states so that inelastic scattering actually improves the conductance.

An illustration of this effect is well suited to our model. In principle, we can calculate the 

diffusion coefficient D for any chain of randomly spaced impurities. We consider the average 

diffusion coefficient of many such chains, as a function of the inelastic scattering time Xi . We 

will show that as Xi increases, D rapidly approaches zero. Furthermore, if we treat electrons 

semiclassically (i.e., work with probabilities rather than probability amplitudes), localization 

behavior is destroyed, and D is limited by impurity scattering for large Xi . Our numerical solu

tion has been described in detail elsewhere [37,57,60]. In the following discussion, we focus 

more on the physical assumptions in our model, rather than on the details of computing a 

numerical solution.

To this point we have worked in the position representation, using the basis lr> . A 

change of basis is convenient for modeling narrow wires, in which a confining potential in the 

transverse direction gives rise to a set of sub-bands or modes. From this standpoint, transport is
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analogous to electromagnetic waves traveling in a waveguide, and is conveniently described 

using the basis lx, ky.m>, where m enumerates modes in the transverse (y) direction. Using 

this basis, the hopping distribution v (r,r ';E ) becomes

v (r , r ' ; E) ->• Vmn (x, x '; E)

and is interpreted as the fraction of electrons per unit time that “ hop” from position x' and 

mode n to position x and mode m. Strictly speaking, such a change of basis is not straightfor

ward. The transport equation takes on a simple form in the position representation because each 

inelastic scattering event in our model measures the position of the electron. In principle, one 

could conceive of an inelastic scattering potential (possibly non-local) that measures the “ coor

dinate”  in some other basis. The transport equation would then take on a simple form in that 

basis. Although this necessitates a change in our assumptions regarding the inelastic scatterers, 

we believe that the essential physics of dissipative transport is still described. In the following 

example, Ti should be viewed more as a phenomenological parameter than as a well-defined 

microscopic quantity.

We can evaluate the ensemble-averaged diffusion coefficient by determining the second 

moment of the distribution v(p)

Dxx n = — 2} T jdpx px Vmn(Px) j (6.29)
m

where DXX)n represents diffusion due to electrons injected into mode n. We average the contri

butions of all possible injected modes to obtain

2  ^mn(Px) 
m, n (6.30)

where M  is the total number of propagating modes. In general, the function Vmn(Px) falls off 

exponentially away from px = 0, due to the imaginary potential iH/2Tj(r;E) in the Schrodinger 

equation (eq. (4.6)). For each configuration of impurities, however, Vmn(Px) will have a charac

teristic “ noise” superimposed on the exponential decay. In an ensemble-averaged sense, the
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“ noise” components average to zero, and the remaining exponential decay can be characterized 

by a decay length Ld ,

( £  W p , ) )  s  v(, e" (6.31)
m, n

The constant Vp is determined so that the function is properly normalized:

Z jdP xV mn(Px) = (6.32)

where Xi>n is the inelastic scattering time for mode n. We assume for simplicity that the inelas

tic scattering time is a constant, independent of both position and mode number. In this case, 

the normalization condition for Vo becomes

Jdpx( Z  Vmn(Px)) = —  (6.33)
m,n • i

After determining Vo, we evaluate eq. (6.30) with the functional form stated in eq. (6.31).

D„  = 7 - i — J d p ,p |e ‘ lp' l/L” = ^ 2 . (6.34)
4XjLD Joo X1

Our solution hinges upon determining the ensemble-averaged decay length Ld for the hopping 

distribution within a long wire. We expect that, for small X1, the decay length should increase as 

Ld -  vp Xi for both semiclassical and quantum mechanical analyses. This is because in this 

limit, inelastic scattering events are so frequent that transport between successive events is 

essentially ballistic. On the other hand, for long X1, the electron will elastically scatter many

times between two inelastic scattering events. Consequently, the semiclassical Ld -  ^ D eI X1, 

where Dei is the diffusivity due to the elastic scatterers. The quantum mechanical Ld , however, 

tends to a constant equal to the localization length Lc. It is apparent from eq. (6.34), therefore, 

that Dxx will initially increase with X1. The semiclassical result will then level off to Dei, while 

the quantum mechanical result will decrease as Lc Ax1, due to localization. This is precisely 

what we obtain from our numerical solution (Fig. 6.3), which is described below.
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For each random configuration of impurities, we must determine the Green function of the 

Schrodinger equation, as shown schematically in Fig. 6.1. GnmCpx) represents the amplitude in 

mode m  at position px for an electron injected in mode n at position px=0. Solutions for the 

wavefunction on either side of px =O can be determined by ordinary means—for example, with 

the use of scattering matrices, as described in Ref. [37]. Each impurity is represented by a

scattering matrix, which specifies the coupling between various modes introduced by a particu

lar scattering potential. Regions between scatterefs are represented by diagonal matrices, which 

account for the phase shift (and attenuation) acquired by each mode while propagating through 

a given region. These individual scattering matrices can be combined to determine an overall 

scattering matrix, representing transmission through a given region. To connect the two solu

tions on either side of px = 0, we introduce the following boundary conditions:

Gmn(Px = O+) GmnCpx = (T) (6.35a)

^Gmn ClGmn
dpx Px=̂ + dpx

A semiclassical result can also be obtained using this method, if the elements of all scattering 

matrices are replaced with their squared magnitudes. In this case, the solution vector GmnCpx) 

is comprised of (real) probabilities rather than (complex) probability amplitudes. In any event, 

the solution of GmnCpx) for a particular impurity configuration determines the hopping distribu

tion, which is fit to a decaying exponential (eq. (6.31)) to determine the decay length L0 . 

Decay lengths for a large number of random samples are then averaged, to determine the 

ensemble-averaged diffusion coefficient D s  Ld /T i . A final concern is the averaging process

used to determine Ld . In the localized regime, fluctuations in Ld from sample to sample can be
—1quite large; however, Anderson et. al. [61] have shown that the inverse localization length Ld 

has a well behaved distribution. For this reason, we determine the average of Ld and invert it, 

to determine the ensemble-averaged Ld .

Px=O
2m ~
W dma

(6.35b)
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EIastic scatterers

XX X

Px =O

Px = O

Gmn(Px — 0 ) — am + am 
Gnrn (Px = 0"*") =

Fig. 6.1: A narrow wire with randomly spaced impurities is represented by two scattering 

matrices, one on either side of the injection point (px = 0).
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We have applied this model to samples with five propagating modes and 400 impurities 

with an average spacing of 1.5 |im; the injection point (px = 0) was immediately left of the 200* 

impurity. All impurities were characterized by the same scattering matrix, and the impurity 

strength was chosen so that the elastic scattering length Aei was 4 impurities, corresponding to 

an elastic scattering time of X0 = 2.87x10-11 s [37]. An estimate of the localization length is 

Ajoc -  MAel [62], where M is the number of propagating modes. For the present example, 

samples should exhibit localization when the inelastic scattering length Ai exceeds 20 impuri

ties. Inelastic scattering times were chosen between IO-12 s and 10-8 s, corresponding to Ai 

between 0.2 and 95 impurities. All results were verified against longer chains, to ensure that 

edge effects due to the finite length of the chain were negligible.

To provide some insight into the arguments concerning the decay length Ld , we have plot- 

ted the hopping distribution for two arbitrary samples with different scattering times Xi. These 

results are presented in Fig. 6.2 on identical logarithmic scales. For Xi = IO-10 s (Ai = 9 impuri

ties), the sample is in the so-called weak localization regime. The distribution is predominantly 

characterized by its exponential decay, although small fluctuations are clearly visible, As the 

inelastic scattering time is increased, the fluctuations become larger. For Xi = 10-8 s (Ai =95 

impurities), the general character of exponential decay remains, but the fluctuations have added 

considerable scatter to the decay length Lj>.

In Fig. 6.3 we present the ensemble-averaged diffusion coefficient D for both semiclassical 

and quantum analyses. For small Xi, inelastic scattering dominates, and both solutions are in 

close agreement. As Xi increases, however, the quantum mechanical solution rapidly 

approaches zero, while the semiclassical result levels off to the value dictated by impurity 

scatterers. This clearly demonstrates that localization must be understood in the context of 

quantum mechanics. Both semiclassical and quantum solution methods are identical, except 

that elements of the semiclassical scattering matrices are replaced by their squared magnitudes. 

By neglecting interference of the electronic wavefunction between successive scatterers, the 

semiclassical analysis cannot account for localization.
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(px) (arbitrary units)

149.1 298.1 447.2 596.3
Position (jxm)

Fig. 6.2: The hopping distribution £  VmnCpx) for two arbitrary samples with different
m, n

inelastic scattering times %(. Both functions exhibit the general character of 

exponential decay.
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Diffusion Coefficient (cm 2/s)

-— Quantum Mechanical 
-  -  Semiclassical

IO " 11 IC T au 10"*  

Inelastic Scattering Time (s)

The ensemble-averaged diffusion coefficient as a function of X; for both 

Sgmiclassical and quantum analyses. The quantum result decrease? rapidly for' 

large tj, a demonstration of strong localization.

Fig. 6.3
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VIL SUMMARY

In the preceding sections we have developed an integral transport equation which incor

porates dissipation into quantum transport theory:

is (r;E ) = I(r;E ) + Jd r 'Jd E 'K (r ,r ';E ,E ') is (r ';E ')  (7.1)

where is ( r ; E) is the current per unit volume of electrons inelastically scattered at position r 

from an energy E to all other energies. In deriving this equation we have assumed that inelastic 

scattering processes can be modeled by a continuous distribution of independent point-size 

oscillators. This assumption allowed us to simplify the one-electron self-energy to a point func

tion. From this we showed that the inelastic scattering current could be expressed in terms of 

local properties at r.

is(r;E) e n (r ; E) 
Ti(r;E)

e N0( r ; E) f ( r ; E) 
ti(r;E ) (7.2)

where n (r ; E) is the electron density per unit volume per unit energy, No(r; E) is the electronic 

density of states, and f ( r ; E) is the probability of occupation for the coordinate ( r ; E). The ine

lastic scattering time Xj ( r ; E) is defined by

- ^ 7^  s  ^ - J d E 'F ( r ;E '-E )N o ( r ;E ') [ l - f ( r ;E ') ]  (7.3)

where F(r ; E '-E )  is a property of the inelastic scatterers, defined by eq. (3.24). It is apparent 

from eq. (7.2) that three solution variables (is, n and f) can be used interchangeably in the solu

tion of eq. (7.1).

The kernel of the integral equation was shown to be a product of two independent proba

bilities:

K (r,r';E ,E ') = Ps (r';E ,E ') P (r,r ';E ) (7.4)

where Ps ( r ' ; E,E') is the probability that an electron at position r ' having an energy E ' will be 

inelastically scattered to an energy E,
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O -TT

Ps(r';E ,E ') = F (r ';E - E')N0( r ';E) [ I - f ( r ';E)] Xi ( r ';E') (7.5)
n

and P (r,r '; E) is the probability that an electron “ injected” at a position r ' with an energy E (by 

inelastically scattering from some other energy) will suffer its next inelastic scattering event at

r.

P(r,r';E ) H IG(r,r';E) I2 
271 N0(r';E)Xi(r;E)

(7.6)

G (r,r';E ) is the Green function of the Schrddinger equation modified to include the optical 

potential

E -H 0 + ifi
2ti(r;E) G (r,r '; E) 8(r-r') (7.7)

. ■ ■ 1 ■ •

where Ho is the exact elastic Hamiltonian (eq. (2.1)).

Eor any arbitrary structure, a solution of eq. (7.1) can be obtained as follows. Some initial 

guess is used to establish the distribution function f(r ;E) everywhere within the structure. An 

example of this is to assume that each point is in local equilibrium, so that f ( r ; E) is character

ized by a local chemical potential, as shown in eq. (5.21). One then assumes some distribution 

of the chemical potential, thereby establishing f(r;E). The inelastic scattering time Xj is then 

calculated using eq. (7.3). The kernel K (r ,r '; E,E') is calculated from eqs. (7.4), (7.5) and (7.6) 

once the Green function G (r,r';E ) has been determined from eq. (7.7). Given the kernel, eq. 

(7.1) can be solved to determine a new guess for is(r;E ) (or equivalently, f ( r ; E)). Because Xi 

is dependent on f(r;E ), this solution process must be repeated until the solution for f ( r ; E) has 

converged.

In this work, we have restricted ourselves to steady-state transport and neglected many- 

body effects beyond the Hartree term. We believe that it should be possible in the future to 

extend the work, to remove these restrictions. However, our assumption of delta interaction 

potentials is essential in obtaining a simple transport equation in the position representation that 

involves only the electron density, and not the spatial correlations of the wavefunction. For a



different type of inelastic scattering potential it may be possible to conceive of another 

representation which would again simplify the transport equation, though it is not obvious how 

such a representation would be determined. We believe that the simplicity of this transport 

equation will make it feasible to obtain numerical solutions for specific mesostructures, and 

thereby quantitatively answer some of the fundamental questions of quantum transport [44]. 

Also, by comparing the predictions of our model with experiment, it should be possible to iden

tify new phenomena arising from correlations between inelastic scatterers, and to shed light on 

the microscopic origin of irreversibility.
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Appendix: Derivation of the Kernel from the Kubo Conductivity

In Section V we assumed that, for small perturbations from equilibrium, inelastic scatter

ing was strong enough to maintain local equilibrium everywhere in a sample. In this linear 

response regime, the transport equation was reduced to a simple form (eq. (5.29)) which resem

bles the Landauer-Biittiker formula (eq. (5.32)) generalized to include a continuous distribution 

of reservoirs. The purpose of this appendix is to reproduce our expression for the kernel 

f  ( r , r '; E) of this integral equation. We start from the Kubo formula for the conductivity (eq. 

(1.3)), and apply the Lee-Fisher formula (eq. (1.7)) to determine the “ transmission” between 

reservoirs at r  and r'.

In the Kubo formalism, the conductivity tensor a  at a frequency CO is related to the 

current-current correlation function [13,14],

2
ico[ao(r,r';co)]ap = [Cjj(r,r';co)]ap -  ^ - 8 ( r - r ' ) S ap (A.I)

where n is the electron density, m is the effective mass, 5ap is the Kronecker delta and the sub

scripts a, P run over x, y and z. The current-current correlation function Cjj is defined as

OO

C jj(r,r '; co) = ^  Jd te itot (J(r,t) J (r ',O ) - J(r ',0 )J(r,t)) (A.2)
K 0

where J(r,t) is the current density operator in the Heisenberg picture, and ( • • • ) denotes the 

ensemble-averaged expectation value. For convenience, we define each of the terms composing 

C jj :

OO

Ci(r,r';co) = i  J d te imt <J(r,t) J(r',0)) (A.3a)
n O

oo
C2(r,r ';co )=  ^  J d te iwt (J(r',0) J(r,t)) (A.3b)

5 o

Thecuirentdensityoperatorcanbewrittenas



j ( r»t) = X  JnmCD aS(t)8M(t) (A.4)
N,M

where Jnm (r) is defined in terms of the eigenfunctions (^ (r) of Hq (eq. (2.1)),

JnmOO S [(V<t>N)* ^ (V<|)m)] (A-5)

and aft, aN are the creation and annihilation operators for the eigenstate N. Substituting eq. 

(A.4) into eq. (A.3a),
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Ci(r,r';co) = X  Z  J nm(f) Jn'M'O*')
N1MN', M'

OO

^ J d t e iojt (a^(t)aM(t)a^(0) aM'(0)) (A.6)
n O

Since N, M, N', M' are eigenstates, the expectation value on the right hand side is zero unless 

N '=  M and M '=  N. Hence

Ci(r,r';co) = X  JnmOO JmnOO F1 (go) (A.7a)
•NT M

Fi(CO) = i  J  dte‘“  (aS(t)aN(0)) <aM( t ) afo(0)> 
h O

_ fo(eN) [ l _ fo(eM)]
Kco + eN — eM +

T] is an infinitesimal positive quantity (Tj = O+). Similarly it can be shown that

C2(r,r';©) = X J nmOO Jmn 0*0 F2O0)
N.M

where F2O0) = - fo(eM )[l-fo(% )] 
Kco + eN -  eM + iq

Substituting eqs. (A.7a,b) and (A.8a,b) into eq. (A.2) we have

(AJb)

(A. 8a)

(A. 8b)
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Q tjOm * ';co) =  £  J n m C1*) J m n CO Fn m 0°)
N,M

(A.9a)

where Fnm (co) = Fi - F 2
Q Ĉm ) Q (®n ) 

Kco +  En  -  £m +  frl
(A.9b)

We will now rewrite Fnm(Q) Q a somewhat different form by proceeding as follows.

f0(e+Kco) 8(e ^ £ m +Kco) f0( e )8( £ - e N)
Fn m Cco) =  Jd e E-En -ITI E-£M+KC0 + iTV

Using the relation

5(x)
27ti

I I
x—it) x+irj

we obtain from eq. (A. 10), Vr

F n m (co) =  J ^ -  [ - f 0(e+Kco) G&(e) [G ^ (e +Kco) -  G m Ce +Km)] 

- f 0(E) G&Ce +Kco) [Gft(B) -  GR(E)]]

where

Ggi(E)

GiJi(E)

I
e - em + iT] 

I
E -E m - iT]

For small CO, we can write eq. (A, 11) as

Fn m Cco) -  ĉoaNM + t>NM

(A. 10)

(A. 11)

(A. 12a) 

(A 12b)

(A. 13a)

where
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aNM Jde Bf0
3e

Gft(E)Gft(E)

bNM = - J ^ J d E f0(E) [Gft(E) Gft(E)-Gft(E) Gft(E)]

Using eqs. (A.9a) and (A. 13a), we obtain from eq. (A. I)

[tfo(r,r')]ap = A + 8(r-r') 8ap)

(A. 13b) 

(A. 13c)

(A. 14a)

where A =  £  U nm t o ® JM N (r')]a p aNM (A.14b)
N,M

B = 2  [Jnm(f)®  JMNCrOlaP bNM (A.14c)
N,M

It can be shown that A and B are both real quantities so that the real part of the conductivity is 

simply equal to A. From eqs. (A.13b) and(A.14b) we obtain a familiar expression for the Kubo 

conductivity [32],

a 0(r,r') = JdE
afo;
3E

a(r,r';E) (A. 15 a)

o (r ,r ';E ) = ^  X  [JNM(r)®JMN(r')]Ggi(e)G^(e) (A.15b)
N,M

So far in this appendix, we have neglected inelastic scattering; the energy q in eqs. (A. 1.2) 

is then a true infinitesimal. As we have seen in Section HI, inelastic scattering causes damping 

of the quasi particle propagator, which is described by including the optical potential 

ifi/2Ti(r;E) in the defining equation for the Green function (eq. (4.7)); consequently, we 

modify eqs. (A. 12) to



Gm (£) =
_ I.

e-eM+iff/2xM (A. 16a)

I
£ Em -* i K / 2xm

(A. 16b)

Since the inelastic scattering time t i ( r ; E) is not a constant but can vary spatially, we have used 

different lifetimes xM for the different eigenstates; in principle, these may be obtained from the 

imaginary parts of the eigenenergies Em calculated using the Hamiltonian (H0 -  ifi/2Xi(r ;E)). 

However, we assume that the imaginary potential is small enough that we can neglect any com

plication due to the non-orthogonality of the corresponding eigenfunctions <>m C*4)-

We obtain the conductivity which accounts for inelastic scattering by inserting eqs.

(A.16a,b) into eq. (A. 15b),

Gap(r,r';E )
K _____ [Jnm(X) ® Jmn (Olap
2k nm  (E -£M +ih/2xM )(E-eN -ih/2xN)

(A. 17)

We can relate this expression to the kernel T (r,r '; E) by recalling the Landauer interpretation of

the linear-response transport equation: The kernel T (r,r';E ) corresponds to the transmission 

coefficient between reservoirs connected to the infinitesimal volume elements at r  and r'. With

this physical picture, we invoke the Lee-Fisher formula (eq. (1.7)) which links transmission to 

conductivity. Inthe limit of a continuous distribution of probes, each probe has an infinitesimal 

cross-section, so that eq. (1.7) is extended to

e2 j=. , _  , ,  K „  (Jnm(x) * n(r)dr) (Jmn(x') * n(r') dr')
—  T (r,r ; E) dr dr -  X  (E -e M+iIT/2xM)(E -e N-iIT/2xN) (A. 18)

where n(r) is the unit vector normal to the probe at r. But J  • n is the current entering the probe 

at r  <Jue to inelastic scattering; as shown in Section in, this current is is = e n/Xj.

ft2 _  Pnm (x) pMN (r')/X i(x;E) X i(r';E) 
(E-eM +iK/ 2XM)(E^eN^ilv/ 2XN)

where Pn m  (x ) = B ̂ n (X) <|)m  ( x) , so that

(A. 19)
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T (r,r ';E ) ♦K(r) fofGO (r ) <t>M(r O
X i(r;E )X i(r';E ) "  (E -e N-iIi/2xN) ^  (E -e M +iH/2xM) 

We note that the Green function can be expanded in terms of the eigenstates <t>M(r ) as

<|)M(r)G(r,r ;E) = y — ———————
U  (E -e M+iB/2xM)

Therefore, we have obtained our previous expression for the kernel (Cf. eq. (5.25)):

K2 IG (r,r ';E )l2T (r,r';E )
X i(r;E )X i(r';E )

(A.20)

(A.21)

(A.22)
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