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 ABSTRACT

We present an inte gral equation derived under the simplifying 'assumption that the inelastic
scattenng is. caused by uncorrelated point scatterers, such as magnetic 1mpur1t1es or 1mpur1nes
'w1th internal degrees of freedom While this assumption 1s not always. reahstrc, we beheve that.'
the model can be used to describe much of the essential phys1cs of quantum -transport in mesos-
_copic systems. -This assumption allows us to write a transport ,equation 'th‘at involves only the
electron density and not the spatial correlations of the wavefunction. The kernel of this integral,' .
equation’ is ‘calculated from the Schrodmger equatron and contains all quantum 1nterference
effects. We show that at equilibrium the electron density relaxes to the expected equ111br1um-
value w1th a constant chemical potential everywhere in the structure. Assumlng local thermo-
dynamlc equilibnum we then derive a 11near-response transport equation which resembles the,
Landauer-Buttlker formula extended to include a continuous distnbution of probes. An altema-
tive denvatlon is provided i in the appendix for the kernel of the 11near-response transport equa-
tion, startmg from the Kubo formula for the conductivity. We discuss the condmons under
wh1ch thlS transport equation reduces to the well-known dnft-diffusmn equatlons describmg,
’classrcal Brownlan motion. In the present work we restrict ourselves to steady state transport

and neglect many-body effects beyond the Hartree term.
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L INTRODUCTION
Much of our understandirig of electron transport in solids is based on the B°“im&miftran_
sport equation (BTE).

; fir:k;t) +yv°‘V,f('r;k;t) +

€ o ... o
v a *Vif(r; ki) = Sep f(rik;t) - (1.1)
Here f(r ; k ; t) is the distribution function in phase space that tells us the number of pafﬁélés- ét r
with wavevéctor k at time t. Sop is the scattering operator which is local in spacé. -
Sop f‘(‘r’ DY [S(k,k") f(k[1 - f&)] — SK’.k) f(k)[1 = f_(kf)]]

a2
K '-

atr,t
The scat’féring func'tion" S(k,k") is commonly 6Btained from Fermi’s golden rule. The BTE is
based on a simple semiclassical picture of n'aﬁsport: Electrons are particles that bbey Newton’s
law in an external clectfic ﬁeldv () and are scatfered occasionally by p‘hon‘oné and vi:ml’)“uft‘ities. :
Déspite its irr‘ipfessi&e suééesses, it suffers from an important limitation; it cannot deéCI_ibe_ tran-
sport phe'n()mena in which the wave nature of electrons plays a cricial role. A variety of such
quantum effects have been discovered over the years, such as btiunneli'ng [1], resoﬂa’nt tunneliﬁg
- [2], weak and strong localizétion [3], the quantum Hall effect [4], etc. Since 1985,-éxperiments
on rhes‘oscopic' structures‘v have reVeaIed a wealth of riew effects such as tih'ev AharOnbv-Bohm
effect, condlictancélﬂ‘uctu»atvions, non-local effécts and the quantized conductance of p_biﬂt con-
tacts [5-12]. For ultrasmall structures at low temperatui'é, these phenomena have clearly
revealed that electron transport is dominated by wave interference effects not unlike those
well-known in microwave networks. It has also become clear that in mesoscopic structures,
whose dimensions ‘é‘re comparable to the phase-breaking length, it is necessary to disﬁngui'sh
between samﬁlé-Speciﬁc properties and ensemble-averaged properties; solid-state phy’siés in the
past had been almost exclusively concerned with Vt'he latter. | |
‘Anrimpo_rtai»lt ‘topic of current theorcti-cél research is to develop a quantum transport for-
malism' théit bah”bebused to deks_cribé the sample-specific properties of »mesos‘tn‘xctures'. A satis-

faciofy tli"e’ofy must not only »'inclukde quantum interference effects, but also the effects of phase-
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breaking processes (arising from scattering processes in which the scatterer changes its state)
that are inevitably present. This is in general a very difficult problem, for it involves one of the
fundamental questibns of physics: How do irreversibility and dissipation creep into a system
~ that is' govemed by reversible mechanics (i.e., the S‘chrﬁdinger equation or Nev?ten"sﬁl law)?
There have been a number of different approaches to quantum transport thedry; eec:h w‘ith its :

own subtle technique for introducing irreversibility.

1. In the Kubo formalism, linear transport coefficients such as conductivity are
expressed in terms of correlation functions evaluated at equilibrium [13,14]. The
. conductivity tensor ¢ at a frequency o is related to the current-current correlation -

function.
, . ne? , Lo
i [0y (rr; 0l = [Cy@r;0lag — — S-r)dp - (13)

" " 'where n is the electron density, m is the effective mass, 8og is the Kronecker delta
~ and the subscripts &, run over x, y and z. The current-current correlation function

Cyyis deﬁned as
Gy = o [dd JE0IE0-IE0 ey (14
, . . 0 v _ :

- where J(r,t) is the current density operator in the Heisenberg pictufe‘ and ( ‘e )
den'otes "the expectation vaiue. Egs. (1.3), (1.4) and relations derivedv from it have
»been the starting point for much theoretical work on localization [15-19]. Recently
Lee van‘d co-workers and Maekawa et. al. have used this approech to study duantum

" 'trerisport in mesostructures [20-24]. Inelastic processes are included in this approach

" (also known as linear response theory) by replacing .(—ico) in the final result with

(1/1;), where T is the inelastic scattering time.
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In the Landauer Jformalism, linear 'transport coefficients are expﬁséed in termé of the |
:scattering properties of the structure {25-28]. Usually it is assumed that _-ineiastic"
‘scattering is negligible within the structure and occurs primarily in- the ,contects.

fUnvder t,hese conditions, the current I; at lead i is related to the chemical potehtia-l':uj'

at lead j by the Landauer—Biitti‘ker formula (Fig. 1.1) [29,30]

= Eh—Z (To)ji Wi = (To)ij 1y} | o ay |

where
o
(To)j = JdE [ =5 ] Ty (E)

Ty(E) = Tr{t}(E) t;(E)) e
tijv(E) is the transmission matrix from lead j to lead i for e’lec:tnonsvw:ith..eherigy.E and
fy is the Fermi-Dirac distribution function. It has been shown that the‘coefﬁcients

(Tg);j are related to the conductivity tensor (G, )@ by the following relatiou [31,32]; :
e? . R ; o o
T T0% = [dEDa [dSp [0o(r.Flop. -an

where the Vector S; is normal to the cross-section of the lead i. Eq. '.(1 5) has-'bee'n the :
startmg pornt for much of the recent work on quantum transport in mesostructures |
[33 43] Although the Landauer approach in principle, can be apphed more gen-

erally [44], egs. (1.6) can be used to compute the coefﬁc1ents (To)lJ only 1f melastlc

scattermg is 51gn1ﬁcant in the contacts and not wrthm the structure Drssrpatlon and -~

1rrevers1b111ty in this approach arise from the coupling to the contacts /whrc_h act as
'reservoirs., as often pointed out by Landauer [25 ,44]t Biittiker simulated the -effec—t’s of
inelastic scattering within the main‘structure by connecting it to a contact TeServoir )
| throu:ghr.a,side probe and setting the current at this fictitious probe to zero j[453. _The -

Landauer approach has so far been applied only to problems involving linear
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_responsé ’though, in principle, it should be applicable to non-linear respohse as well.

. Fihally, a variety of quantum kihetic' eQuations have been used to describe quantum
trénSpoﬁ. The quantum Boltzmann equation (QBE) uses the Wigner distribution
* function W(r;k;E;t) in place of the semiclassical Boltzmann distributiph_ function'
f(r;k;t) used in the BTE [46-53]. The Wigner distributioﬁ functioh i's'_ obféined from

the Green function
Gzt = (Y L)y, b)) S as

(y(r,t) being the electron field operator) by transforming to centcr-of-:@_ss_. :

1 T |
r=o@+n), t==

(t1 +1t2)

and relatlve coordinates, and then Founer transforming with respcct to the rclatlve

'coordlnate
ry —l'.2 -k, tj—-t9p oE

N Tfle QBE is derived starting from the Dyson Aequation, and dissipatidn is introduced
through the self-energy function. Alternatively, several authors have used the density
‘matrix p(ry, l"2 ;t) which is proportional to the equal-time Greén : function
G(ry,ra 5ty ,'tz) D1ss1patxon has been introduced through an 1nﬂuencc func-

tlonal in the path mtegral techmque [54], and through a boundary condition on the

Wigner function coxrespondmg to Landauer-type contact reservoirs [52]. Quantum
kmetlc cqﬁations provide a powerful apprdach to quantum transpoft thedry, including '
ﬁbn-linear résponse. The main difficulty séer_ns to bé their complexity as well as the
fact that qliantum distribution functibns, being complex' quantities, often have

co;inter—intuitive properties, so that it is difficult to make approximations.
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In this paper we present a simple quantum kinetic equation that cén be solved to cdmpute
the electron density pei' unit energy n(r;E), under steady state conditions, 'neglectiﬁg ‘many-
body effécts beyond the Hartree approximation. At'equilibv_rium, n(r;E) is the ,pl;odu_'c't/ of the
dens‘ity of states No(r; E) and the Fermi-Dirac function fo(E). As the system ls driven away
from equilibrium by external sources, the disuibuﬁon of electrons is perturbed. We assume that
any extémél current is injected incoherently from the contacts. Our objective ih this paper is to
present . transport equatioh that can be solved to obtain this nori-equilibrium distribution
n(; E). | Wé emphasize that n(r; E) is not a semiclassical concept, but a Well-deﬁnedquéhtum
meéhanical‘quantity, proportional to the Wigner distribution function W(r;Kk;E;t) integrated
over all k (t is’ ébéent because we have restrictéd bufselves to steady State). The kernel of this
ihtegral tranéport equation is computed from the Schrodinger equation and}»contains all quantum
~ interference effeéts due to elastic scatterers. S"gace-charge effects are taken into}i account by

including in ‘the Schrodinger equatioh the - electrostatic Hartr’eé pdtential Obtéined self-
. consistently frofh the Poisson equatioh.' | H
In general it is not possible to write an integral equation involving only the electron den-
sity; spatial c’ofr'elations of the wavefunction must also be taken into acéoﬁnt. The iraﬁsport
equ‘ation'prese'nted_in this paper represents a major si‘mpliﬁcation‘ for two r_eaSons.' Z'Fir'stly‘, the
- number of indepcndent variables is reduced from (r; : T2 ;E) (or equivalehtly',' (r,k,E)) to
(r;E). Secondly, the transport equation involves only positive quantities, so that it is easy to.
make intuitive approximations. Monte Carlo ahalysis based on a‘>probabi1istic" inte_rpretétion
should also be poSsiblé:.: In order to achicve this simpliﬁcaﬁon, we assume that inelésti‘c scatter-
ing is caused by a distrib_ution of independent oscillato‘rs‘,"each‘ of whiéh interacts with fhe elec-
frons fhrough a delta potential. We also assume that inelastic scattering"procvesses: are weak and
infrequent, just as one does in deriving Fermi’s golden rule; however, the elastic processes are
treated exactly. This model closely approximates a ,laboratory,saniple With_maghétic impurities,
or impurities with internal degrees of freedom. For o;her types of inelastic scattering the model

may not be realistic; however, we believe that it should still be possible to dcscﬁbe much of the



Structure with
no inelastic scattering

V(r), A(r)

Fig. 1.1: The Landauer-Buttiker formula relates I; to W; assuming that all inelastic

scattering processes are confined to the contact reservoirs.



.essential physics. :ofr'drssipation in:quantum transport.

‘Phys'iceﬂfly, it is easy to see ‘why 'the above assumption leads to a ‘simiple ltr-'tin'sp(')"'rt ‘equation
that does not involve spatial correlations of the wavefunction. In the “‘golden rule”™ approximna-
tion, -each sea-'tterer:acts independ'en‘tly. Since we ihaVe ’as'sumetl a-delta interaction ‘potential, an
inelastic scattering event only involves the wavefunction at a particular point and is "in‘sens"itive

to spatial correlations. In fact, inelastic scattering events in our model --ma?"yv be viewed as quan-
tum measurements of the position and energy of the electron. Every time an electron is inelasti-
cally scattered it leaves one of these oscillators in an excited state; and energy 1is dlss1pated into -
the surroundlngs as the oscillator relaxes back to its state of thennodynamlc equrhbnum An
observer who monitors the states of the oscillators will see a sefies of ﬂashes with different
energies from different spatial locations and can, in 'principle, deduce"the electron d’ensfit"y,
n(r; E) from the observations. Our transport eciﬁation is thus formulated m ‘ter'rns of a vatiable ,
that is actually measured rather than a conceptual quantity from which observable quanti-‘tie"scan
be deduced. We believe that it is for this reason that the transport equatron 1nvolves only real
pos1t1ve quantmes

In this paper we adopt a microscopic approach starting from a model Hamiltonian for the
inelastic scatterers; however our model is closely related to the Landauer plcture Since the
.1nelastrc scatterlng process is purely local, it can be viewed as an ex1t into a feservoit followed
by remjeetxon into the main structure. From this poeint of view it would seem_that distributed
inelastic scattering processes can be simulated by connecting a continuous distr‘ibution of,rCser'-
Voirs throughout a structure (Fig 1.2). Indeed, when we simplify our transport equation to linear |

- response we obtain What.looks like the LandauerfBiitt'ilker formula (eq'; ‘.(1.5)) generallzed to

include a}continuous .distribntion of probes. Moreover, the kernel of th‘is linear-r‘e’spoﬁs'e fran- |
sport equation can be derived directly from the Kubo formula for the conductlvrty (eq (1 .3))
* using the Lée-Fisher formula (eq. (1.7)); this is shown in the appendix.. Therefore, our transport
eduation reduces to well-known results in the hmrt of linear response. We: Belretie'th‘at‘ even the -

full (non-linear response) transport equation can also be dérived from a Landauer picture if we



Inelastic
Scatterer

Landauer-type
Reservoir

Zcontact

Fig. 1.2: In the limit of linear response at zero-temperature, the transport equation can be
viewed as a generalization of the Landauer-Buttiker formula to a continuous
distribution of reservoirs. Each reservoir simulates the action of an inelastic

scatterer.
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assume an appropriate relatlonshlp between the energy spectra of carriers entermg and 1eav1ng
the reservous A direct generahzauon of the Landauer-Buttrker formula, however would
appear to be a phenomenolog1ca1 approach to s1mu1at1ng inelastic scattering. Our paper pro- |
vides. the ngorous Justlﬁcatlon for such an approach by denvmg the transport equatlon men-

noned above d1rect1y from a model Hamiltonian making certam well-deﬁned assumptlons

Th1s paper also serves to clarify the meanmg of the chermcal potential u(r) in quantum
transport theory As we mentloned earlier, the transport equauon denved in this paper is formu-
lated in terms. of the electron density per'unlt energy n(r;E). We emphasize that thisis a well-'b
defined quantum ‘mechanical quantity. The energy vanable E is derived from the temporal
correlattons of the wavefunction ata pomt r, and bears no relatlonshlp to k; there is thus no v1o-
lation of the uncertamty principle since conJugate variables (like r and k or E and t) are never
invoked s1multaneously. In order to derive the hnear—.response transport equation, we assume
local thermodynamic eQuilibrium so that we can write the electron density n(r;E)interms of a -
local chemical potential p(r)

1
e(E— H(r) /kgT

n(r;E) = No(r;E) a9

+1
where No(r.': E).:is’ the eleetronic density of states. It is with this assumption that our transport '
equation s1mp11ﬁes to.a form resembhng the Landauer-Biittiker formula generahzed to a con-
t1nuous d1stnbut10n of probes. On the other hand, if the driving forces are large enough (or the
inelastic scattenng weak enough) then local thermodynannc equilibrium may not be main-
ta1ned Iti is then not appropnate to talk in terms of a local chemical potential; we should solve '
for the actual distribution n(r ; E) using the more general transport equatlon
The outhne of the paper is as follows. In Section II we descnbe the model that we use and '_ .
prov1de an overvxew of the main results. In Section I we show that in our model the inelastic
scattenng rate at any point is proportlonal to the local electron densny and does not 1nvolve spa-
tial correlatrons of the wavefunctlon The transport equatlon is then denved in Sectlon v,

‘ usmg a one-electron picture. An extra factor in the kernel arising from the excluslon pnncrple
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is added in Section V, using thermodynamic arguments for the equilibrium state; the linear-
response transport equation is also derived in this section, assuming local thermodynamic
equilibrium. In Section VI we discuss the conditions under which the linear-response transpbrt
equation reduces to the drift-diffusion equation that is widely used to deseribe’ classical
Brownian motion. The diffusion coefficient is computed for a few simple examples (analyti-
cally as well as numerically). Fmally in Section VII we conclude by summarizing our 1mpor-

tant results.

II. OVERVIEW

We consider any arbitrary structure in which the propagation of electrons is described by

the following one-electron effective-mass Hamiltonian.

_ [p-eAMP R
Hy = = ——— + e V@) o 2.1)

The vector and scalar potentials A(r) and V(r) include the Hartree potential obtained from a
self-consistent solution with the Poisson equation, as well as externally imposed potentials, and
all sources of elastic scattering such as impurities, defects, boundaries, etc. For the inelastic

scattering we assume a reservoir of independent oscillators labeled by the index m,
" 1 |
= ¥ ROy () am + ) | (2.2)
m v : v

where a};, and a,, are the creation and annihilation operators for oscillator m. We assume that
each oscillator interacts with the electrons through a delta-potential, so that the interaction

Hamiltonian H’ can be written as -

H = $USr—ry) @h +am) @3

Note that we have assumed the interaction strength U to be constant. There is no loss of gen-
erality since the strength of inelastic scattering can be adjusted through the density of scatterers

per unit volume per unit energy, described by some function Jo(r ; K ®). The summation over m
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is evcnttally'réplaccd by an integral.

> = [dr [dFw) Jo(r; Fa) L es

We will show in Section III that, with the assumption of a delta interaction potential, the self-
energy function X(ry,r3; E) in the simplest approximation reduces to a point function in space, |

if

2(ry,ry;E) = —m
1 b

sri-ry ey

_where‘ ti-(i';'E) iS defined as the inelastic scattering time. Physically, this simpliﬁcation (axjises
_from» the »facv.t‘. ,thatv..an individual inelastic scatterer sees only the electron wavefunétioﬂ at a point.
In general, the scattering rate would dépend, not only on the vloca1’ electron denSify
n(r) ~ '(IWT (™) w(r)) but also on the spatial coﬁe’latidns of the wavefunction ~ (y'(r) y(r")). As B
a consc(juehée of eq. (2.5), however, the inelas‘fic scattering rate per unit’vc‘)lumé per unit (ini- |

tial) energy at a point can be written solely in terms of local quantities.

SRS e E e

where ig(r; E) is defined as the inelastic scatterihg current per unit volume per unit energy. We
will show in Section IV that in the absence of external sources, the scattering current must |
satisfy an integral equation of the form | |

is(r;E) = [ar [dE’K(r,r’; E,E)is(;E) . @27
~ where the kernel K(r,r’;E,E’) is proportional to the square of the Green function of the
Sch’r'édixiger equation, and thus contains all quantum interference effects due to elastic scatter-
ers, bbgnc;la,ri@s;, etc. It is interesting to note that the BTE (eq. (1.1)) without the diffusion and
field terms, | | |
- d

—f = LI > S (1—-fy) fir ‘ (2.8)

can also be_'Writtven in a form similar to eq. (2.7) abdve, assuming steady state (dfy /dt = 0) and

defining ‘a.scattgring current (is)x /e = fy / Tx:
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sk = 3 Kiw Gs)e @)
K : »

where

Kk,k; = Sk (1-fx) T o (2.10)
Eq. (2.8) is derived assuming that the momentum eigenstates |k > are energy eigenstates with
definite energies Ex. For this reason, the energy Variable does not appear explicitly in eq. (2.8).
The f_act that the position eigenstates |r > are not energy eigenstates makes the derivation of eq.
2.7) somewhat}morev complicated than that of eq. (2.8). Indeed, were it not for our assumption
of point-size inelastic scatterers it would not be possible to write down an equaticn such as eq.

Q2.7) solely in terms of the electron density; in general such an equation would also 1nv01ve

spatial correlattons of the wavefunction.

We assume that any external current I(r; E) flowing in and out of the contacts is com-

pletely incoherent and can simply be added tc eq. 2.7).
ig(r;E) = I(r;E) + fdr'jdE’ K(r‘,r’;E,E’) is(r';E’) o (2.11)

In general the extemally mjected current may have spaual correlations, which we are neglect~
ing in thlS treatment This is the transport equation that must be solved to determme the 1nelas-
tic scattermg current ig(r; E), or equivalently, the electron density n(r; E) G1ven the stat1c
; potentlals V(r) and A(r) (eq. (2. 1)), and a d1str1but10n of inelastic scatterers Jo(r Hco) the ker-
nel K(rvr E E) can be computed. We can then proceed to solve eq. (2.11). At any node
(r;E) we ‘have two variables: the extemal current I(r ; E) and the electron density n(r; E) (or
equlvalently, ig=en /‘c,) At all nodes which are not connected to some extemal source,
I(r;E)=0, and we must solve for n(r; E). At contact nodes, we can assume n(r; E) to be given
by a thermodynamic distribution characterized by a local'cherm'cal potential, and solve instead
for I(r ; E). It should be noted that I is the current flowing into the structure and nct the current

density J within the structure; the two are related by I=-V « J.
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In Sectiori V we will first show that in the absence of external sources (I=0) eq. (2.11)
does predict the expected equilibrium electron density neq(r; E)
Neg(r;E) = No(r; E)fo(E) . Q1)
Here £ (E) is the Fermi-Dirac function

o1
fo(E) = SE—cHo)ksT

@13)
+1 -

with a constant chemical potential py. Ny (r.; E) is the electronic density of states given by -

No(r3E) = 3 1m(r) 12 SE—en) 1y
M , v o

where dp(r) are the eigenfunctions of Hy (eq. (2.1)) with eigenvalues gy .7 In writing eq. (2.14)
we assume weak inelastic scatteﬁng, so that levth;l broadening effects may be neglected. ‘

Theb rcrilainder of Section V is devoted to simplifying the transport equaﬁon_(eq. _(2.'11))
assumin_‘g.a. small pertﬁrbation from equilibrium. Below we state brieﬂy_ the main,fe‘siilfs in
order to show the resemblarice between the simplified tran‘sporf équation and the Léndéuer-
Biittiker formula. In this linear response regime; _we'assume local.t.hermody'namic equilibrium;
the electron density n(r; E) can be desci‘ibed by é spatially varying chemical potential p(r) (cf.
eqs. (2.12), (2.13)). D

1

+1

For linear respdnse at low temperatures, only electrons within a narrow ‘range of energics near

the Fcrmi surféce (E =EF}) ébontm'bubte bto: the»»itransport;procésbs. Consequently, kthe,. linear-

résp(insg transpgrt cq’uatidn at iéro—temperature looks ‘rrvluch like eq. (2.11), but with the energy

argument_ diopi)é_d: | e | | | N
is(r) = 1) + [ar Poeryis) 16

where it is understood that all quantities are evaluated at E = Eg and
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P(r,r’;E’) = JdE K, r';E,E) - (2.17)
We have changed nothing by writing eq. (2.16) in the form
Ir) = [ar' (P@,0)is() — PE,r)is(r)) e

because jdr’ P(r’,r) = 1, as we will see in Section IV. Noting that is =en/t; and n= Ny i, we

may write eq'. (2.18) in terms of the chemical potential as follows.

- 2
i) = = [dr’ (Tor',r) pr) = Toe,r) () 2.19)

where we have defined

hNo(r')

W P(l', r') (220)

To(r,r’) =

This form of the transport equation bears a striking similarity to the Landauer-Biittiker formula,

- repeated here for convenience
2 S
I = TZ {(To)i i — (To)y by} . (2.21)
j :

Eq. (2.19) can be viewed as an extension of the Landauer-Buttiker formula to include a continu-
ous -distribution of reservoirs, connected through perfectly conducting probes with
infinitesimally small cross-sections to the main structufe (Fig. 1.2). A single reservoir whose
coupling can be varied has been used in the past to simulate the effect of inelastic scattering
[45,55]. A better model for distributed inelastic scattering processés is a continuous distribution
of reservdirs that repeatedly absorb anci reinject electrons. From this point of view eq. (2.19)
would seerri_to be an obvious extension of the Landauer-Buttiker formula. It is not obvious,
howevcr,'how the kerhel To(r,r") is to be calculated for a given structure. Furthermore, the
assumptions implicit in such an approach are not readily apparent. Indeed, critics would argue
| that this means of incorporating dissipation is purely phenomenological. This paper serves to
rigorously jusﬁfy sﬁch an approach, by deriving an integral equation starting directly frorh the

Hamiltonian and making certain well-defined assumptions. Moreover, it extends the approach
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to include non-linear response as well.

1. INELASTIC SCATTERING RATE
 Our objective in this section is ’to show, staﬁing from the Hamiltoﬁian stated 1n Section II
(egs. (2.1)-(2.3)), that the inelastic scattering rate depends only on Iocal propeﬂieé, as expressed |
by eq. (2.,6). To accomplish this, we first relate the inelastic scattering rate to the self-eriergy. It
- will bé, vevider‘lt_from this relationship‘that the inelastic scattgring rate depends onl):' on local pro- -
pertiés‘ if:thic gelf-cnergy is a delta funcﬁon in space, We will thén show that in our ﬁibdel, vwith
poiht inelastic scatterers, the self-enefgy is indeed a delta function. |
Our approéch is to use a one-electron Hamillt'onianHo, coupled to a bath of o'sc,illlat‘orsﬁ H,
through the interaction Hamiltohian H’ (eqgs. (2.1)-(2.3)). A correction factor ‘due tb the exclu-
sion principle will be inserted later in Sectior:V.v The state vector ¥ for the entire many-
particle system comprising the electron and the oscillators obeys the equation |

iﬁaa;f = (Hy+H, +H)¥ @

We expand- the state vector ¥ using the position representatibn |r> for the électron and the
eigenstates | o> for the oscillators. - |
¥ = Yy, () la> Ir>etrt/h N ¢ V) B
. o .
where Er is the total energy of the system (electron plus oscillators). The ket o> represents
an eigens-‘taté' of the oscillator Hamiltonian H, (eq. (2.2)), which can be ekprCSSed as a direct \

product of the individual oscillator eigenstates.

lo> = [T INm>m - E - (33)

Here, the subscript m indexes each of the oscillators, and N, is the number of “‘phonons’’ in

 oscillator m. The corresponding energy eigenvalue g, is given by
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o = T HONp +2) | G

~ Substituting eq. (3.2) into eq. (3.1) and taking the projection onto | o> we obtain -

Br - 0 —~Ho) Vo) = T Haa () Vr(®) 6y

Eq. (3.5) is a system of spatial differential equations coupled by the matrix elements of the
interaction Hamiltonian. The probability a_.mplitude Ya(r) can be written as the product of two.
terms: the amplitude dia for the oscillators to be in state |o>, and the amplitude \|1(r) for the
electron to be at It >: Yo (r) = @y y(r). Irreversibility is later introduced into the model by |
assuming that the phonon bath is maintained in thermal equilibrium, so that the phonon density_
matrix is always diagonal,
O Pz =0 forazp (36)
The electron density matrix p(r,r’) is obtained by tracing over the oscillator eigenstates.

pIr) = T Yol Vo) R < 2
_ 2 A -

Our transport equation will only involve the diagonal element of the density mauii, which can
be identified as the electron density n(r), | |

n(r) = p(r,r) = po l\}fa(‘l')|2 o B | (3.70b) :

- We deﬁﬁe iheélec_t}ron_density per unit cnel"gy n(r;E) to be
"nmm=zmum%®£w | (3.8
o : , -
where thé éleéfrdn energy E, 1s obtained by subtrécting the oscillator énergy €a from .the tofal
enefgy ET.
Eq = Br—¢q - . (3.8b)
Note that we -ob:‘tain. the total electron density n(r) (eq. (3.7b)) if we integrate eq. (3.8a) over all

“energy. |
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- A. RELATIONSHIP BETWEEN INELASTIC SCATTERING
| RATE AND SELF-ENERGY |

- We could rewrite eq. (3.5) in terms of the Green function, rather than the wavefunction, as

follows. :

(B —Ho)Gop(r,r) — T Hou () Gup(r,r) = 8o 8Cr-1)  ~ (39)
Note that eq. (3.9), like its counterpart eq. (3.5), is a couple:d system of differen_tial‘ equations
ir__ldexed ny' the oscillator states o and . Gup(r,r’) represents the wavcfunCtion Yo(r)duetoa

delta excitation at (8,r"). It is well-known that the Green function G (T,1") kobeyskthe Dysdn

equation [46],

Goa(r, ) = Go(r,r';E) + [dry [dry Go(r,r2; Ea) Za(r,r1) Gaa(r1,r)  (3.10)
where X (ry,rs) is the self-energy function, and Gg(r,r’;Ey) is the undamped~propagato‘r-.'
defined by | B

(Bo ~Ho)Go(r.r';Eq) = 8(r-r) B AT
Operating on eq (3.10) with (Ey —Hp), and using eq. (3.11) we have,
(Bo ~Ho) Gaa(r,r) = 8(r=r) + [dri Z(r,r) Goalri,r)  (312)
This equzition cén,alternativély be written in terms of the quasi particle wavefunction as, .
(Bo ~Ho) Yo (r) — [driZa(rr)ye(r) =0 - (3.13)
The non-local “‘optical potential”” in eq. (3.13) is well-known in scattering theory [56]. It is
easy to show that eq. (3.13) leads toa continuity equation of the following form for the proba-
bility current density Ju, S
L 1 3 2 ,» ' o , .
- S Veda = -2 [drRelZa(r ) Vo) Ya(r) RN AT
Current is not conserved because eq. (3.13) describes damped quasivparticles.wlt in’c}l}udc's out- .

‘scattefih-g but no in-scattering. The term on the right represents the rate at which electrons are
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inelastically scatteréd out.
. 2 Y . 7 * ’4 » )
isa(r)/e = = [dr' Re(iZa(rr) Yo Va(™)) (3.15)

It is apparent from eq. (3.15) that the inelastic scattering rate, in general, depends on the spatial
correlations of the wavefunction. However, we will now show that in our model the self-energy
is a point function in space as stated earlier (eq. (2.5)), so that the inelastic ‘scattefing_'rate

depends on purely local factors.

B. SELF-ENERGY IN THE
““GOLDEN RULE”” APPROXIMATION

Our approach in this paper is to treat the elastic Hamiltonian Hy exactly, while treating the
inelastic scattering in the *‘golden rule’’ approximation. As such we consider only the simplest

diagram for the self-energy shown in Flg 3.1. This dlagram yields for the self—energy [56],

a<r,r>=2H'as<r)Go<r,r Ep) Hpa) (316)
B . . .

Our assumption of delta interaction potentials between the electron and the oscillators now
leads to a simplification: The self-energy reduces to a point function. To show this, we note
that (using eq. (2.3) for the electron-oscillator interaction H’)

aB(r) H'a,s(r) = 1UI% ¥ 8(r—rp) 8('—ry)

m,n

<a|a;,+am||3’><[3|a;+an|a>. AT

The factor <ocla};1 + ay, | B> is non-zero only if loc> and B> rcpresent states for Wthh all
0scﬂlators are in 1denucal states, except for the m™ oscﬂlator whose state d1ffcrs by one.
_ Clearly the product of this factor and the followmg factor <Bla + an o> cannot be non-zero

unlessm n, Hence,,
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Fig. 3.1: Diagrammatic representation of T (r,r’) in eq. (3.16).
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Hogp() Hg() = Fop(® 8r=1) (318
where - |
r|U12§;e3(r Im) N + 1), if ag 1B>=Npo +1 la>
FaB(’) = |U|2>:5(r ) No 5 if al IB>= AN la> - (319)
0, ~ otherwise |

L

Using eq; (3.18) we write the self-energy from eq._ (3.16) as

Zo(r,r) = 8(r— r')ZGo(r,rf;Ep)Fap(r) (3.20)

Usmg eq. (3 19) and noting that Gy(r,r; Ep) ——11cN0(r Eg) (neglecting the real part of the

self—energy) we obtain
Zo(r,r) = <ind(r-r) IUI? Y O(r—rp) [(Npe + D) No(r; Eg —Tay,)
: m

+ Ny No(r 3 B +Han )] (321

Replacing the sum over m by an integral (eq. (2.4)), we obtain

Zd(r,r’) = ——ﬁsﬁ(r r’) (322
where
L o 2 e BB N E) | (3.23)
(B  m T O E e
1UI2 Jo(r; Ro) N(B ) , if Ro=E—F'>0

F(i‘;E}E’) = (3.24)

IUI% Jo(r;Rw) NEw) +1) , if Fo=E'-E>0

Assuming that the oscillators are in thermal equilibrium, the average number of ‘‘phonons’’ in

each oscillatdr is related to its frequency ® by the Bose-Einstein factor.
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1

HO)/kT -1

N(H(o) (3.25)
Now that we have computed the self-energy function, we substitute 1t 1nto €q. @G. 15) to

obtam the 1ne1ast1c scattering rate.
ISa(r)/e = Iw(r)l /4B S (26)
The inelastic scattex‘ing cufrent per unit energy is deﬁn'ed as

is(r; ) = zi3a<r>8<E’—Ea> e

Usmg egs. (3 26) and (3.8a) we obtaln the desired relation (eq 2. 6))

e n(r E)

55 B) = & ik @)

This représehts5 the total rate at which electrons are inelastically scat'tered fror“n: an energy E .to
some other energy The rate at which electrons are 1ne1ast1cally scattered into"a- partlcular: '
energy- E’ is glven by en(r E)S(r; E',E), where S(r E’ E) is g1ven by the 1ntegrand in eq.
(323), | '

S(r;E’,E) = 2—“ F(r; E'—E) Ny(r; E’) - S (329)
Eq (3.29) may be viewed as a ‘‘golden rule”’ describing the inelastic sCattering process; how- .
ever, 1t should be noted that unlike the usual golden rule we are usmg the posmon representa-

tion and not the energy eigenstates. This s1mp1e result is made poss1b1e by our assumpnon of
mdependent p01nt-s1ze 1ne1ast1c scatterers.

Itlls convement to define a d1mens1onless factor Ps (r E’,E) as the fractlon of the total ine-
lastic scattenn_g current ig(r; E) that acquires a final energy E’ after 1nelasttcally scatterlng from‘

an energy E.
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S (‘r ;E",E)

P ELE) = = SEGEEWGE o (330)

[dE’ S(r; E’,E)
 Using eq'.» (3.29) We obtain
Ps(r B JE) = 2—“F( B - E) No(r B %(r:E) S @33

~ IV. THE TRANSPORT EQUATION

- We 'have shown in Section III that the inelastic scattering process in our model is a purely
local one; at any pomt r’ the Tate at wh1ch electrons are inelastically scattered from an initial
energy E’ to a ﬁnal energy E is given by i is (r E’) Ps(r’;E,E"), as illustrated in F1g 4.1(a).
Once the electron has been ¢ 1nJected” atr’ with an energy E (by an 1ne1ast1c scattermg pro-
cess) it propagates elastlcally in real space. We can define a function P(r r’; E) as the probabll-
: ity that the electron will suffer its very next inelastic scattering event at posmon r. Later in this -
section we will evaluate this function. Assuming that we know this function, it is straightfor-
ward to eStabli"sh' a transport eqnation simply by balancing the in-flow and out-flow at each
“‘coordinate’’ (r ; E), as shown in F1g 4.1(b).

[is(r;E) = I B) + [dr [dE'K(r,r;EE)is@3E) 0 (@4)
- where
K(r,r’ EE’) —P(rr E)Ps(r EE') - " (42)

The kernel K(r r’; E E’) is the product of two factors The first factor P(r,r’; E), which will be
evaluated later in thlS_ section, 1s.proport1ona1 to the square of the Green functlon G(r,r’;E) and
thus .in_clndes all quantum interference effects, while the second factor Ps(r’; E,;E’-'), whichwas g
evaluated in Section I (eq. (3.31)), contains all informationfregarding the spectrum,of the ine-_

_ laSt_ic scatterers. Our model thus provides an intuitive picture of quantum transport as a
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. is(r’; E)Ps(r’; E,E)

Elastic propagation

is(r;E)

> Position

. j‘:‘: ls(r,;E')/: e \V‘aueso .
o I(r,';‘E:') > — . C

:, ‘ (b) T : Ps(l".;E,E.') is‘(l'.";E') \

Lusetan e
1r;B) —> )—

T

P(r,r’;E) Ps(r’;E,E) is(’; E)

| Fig. 4.1: " (a) Physmal plcture of the transport process (b) Schemanc dlagram 1llustraung v

dlfferent terms in the transport equauon (4. 1)
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d1ffus1on process in (r E) The kemel K(r r’;E,E’) can be v1ewed as a transfer funct1on from

‘one 1ne1ast1c scatterlng event at (r E) to the next one at (r E)

For lmear response at zero- temperature the funct10n Ps(r’;E,E’) does not appear s1nce all
. transport occurs in a narrow rangeof energxe,_s around E = Eg. We w1ll show_ in Section V that

the linear"-fesponée transport equation at ‘2ero4temperature acquires a simple form 4s ‘folloWs:
is(r) = I(r) + jdr P(rr)1s(r) Y )

where all jquantities are evaluated in a narrow energyshce around E = Eg. 'l’his linear4response
equation is illustrated in Fig. 4.2.. '

It now remainsv to evaluate the'fact'or P(r,r’; E). As we have statedb P(r, r’-;‘E) represents
the fraction of electrons 1nJected atr’ w1th energy E (by 1ne1astxcally scattermg from some other
energy) that suffer an 1ne1ast1c scattermg event atr w1thout melastzcally scattermg in the mean-
time. If th1s restncuon (in 1tal1cs) were absent, we would basically be calculatmg the d1ffus1on .
propagator from r to r, wh1ch 1nc1udes the poss1b111ty that an electron 1nserted at r ends up at r
after suffermg any number of 1ne1astxc scattenng events However, because of th1s restrrct10n
what we are calculatmg is merely the - piece connectmg success1ve rungs in a.ladder series

d1agram for the diffusion propagator _'

Inelastrc scatterlng may be v1ewed asa two step process 1nvolv1ng a decay out of an initial -
energy E, followed by an mJectlon 1nto a final energy E. In calcul‘atmg P(r r 'E) the second
step is irrelevant. We are s1mply 1nterested in the probablllty that an electron injected at r’ with

‘energy E suffers 1ts very next inelastic event at r; the remjecuon atris a separate part of the
: problem that is already taken into account by the 1ntegra1 transport equatxon Thus, for the pur-
‘pose of calculatmg P(r r’; E) we can ignore the re1n3ectxon process and assume that we are
dealing w1th decaymg quasi partlcles. Such particles are described by the Schrodinger equation
‘modified to include the optical' potential.(eq.' (3.13)). In our model, the optical potential reduces

to a purely local potential because the self-energy is a delta-functiori (eq. (3.22))..



=26 -

To other

values of r
P(r,r’) ig(r’)
Fig. 4.2: A schematic diagram illustrating the different terms in the linearized transport .

equation at zero-temperature (eq. (4.3)).
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ih

Eo —Ho + 52 (F;Eq)

Goa(r,r) = 8r-r) (4.4)

Since Gy (r,r’) depends only on the energy E, we can write it as
Gaa(r,F) = G(r,I'; Eg) @5
threvth‘e dafnpéd propagator G(r,r’; E) is éorhputed from the equation
[E Hy + 2—5———] G(r,r’;E) = &(r-r) | (4.6)
Ti(r; E)

Since we have assumed point-size inelastic scatterers, an electron is injected as a point
source by the inelastic scattering process. We can thus expect P(r,r’; E) to be proportional to
the squared magnitude of the Green function G(r,r’;E). Consider the continuity equation

obeyed by the probability density

n = |G(r,r’;E)i? | 4.7
and the probability current density
1 ih ;
?J = m [(VG) G-G (VG)] (4.8)

that we obtain from the solution to e€q. (4.6). It can be shown from egs. (4.6), (4.7) and (4.8)
that

. —l-V-J+—n— =
e T

i

8(r ) [G-G"] o - (4.9)

: bfl"'

Integrating over all volume, using the divergence theorem and assuming that the boundaries are
far away so that no current flows out of the surface, we have

_ 2
jdr IG(r,r"; E)l _

@ E) H LN o(r’;E) (4.10)

since No(r; E) = —Ifn[ G(r,r;E) }/r [14]. The integrand on the left in eq. (4.10) is the steady-
state current n/t; due to electrons lost from the coherent state by inelastic scattering; the term

on the right is the total steady-state current injected at r’ (Fig. 4.3). The ratio of these two terms
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is equal to the probability function P(r,r’ ; E), which is the quantity we SOught. o

Prr; E) _ I _16@rsE)?

2 N B) 4 E) @.11)

Substltutlng for Ps from eq. (3. 31) and for P from eq. (4.11), into eq. (4 2) we obtam an

expressron for the kemel

)

| K(r,r’;E,E’) - :IG(r,}r';.E_)"I2'F(r’;E—E’) ~ ( E) "("4.12)
It w111 be noted from eq (3 30) that the factor Ps is normahzed to un1ty
| jdEPs(r ;E,E) =1 | | o R ‘(4,13‘)
Agam from eq (4. 10) it is ev1dent that the factor Pis also normallzed to un1ty
| jdrp(rr By=1 S (4;14).
Egs. (4'.‘1‘:3; apd t(yz:i.14) together imply that the kernel K is norrnalized to unlt’y’._ U
' / | - jdrjdEK(r,r’;E,E’) = 1 (415)

‘This normalization condition ensures that the particle current is conserved The scattering'
current 15 (r';E’ ) out of a coordlnate ; E’) is distributed amongst the other coordmates (r; E)‘
accord1ng to the kernel K(r r’;E E’) Eq (4.15) ensures that no current is lost or gamed in the
process. - |

It should be noted that the assumptlon of po1nt-s1ze inelastic scatterers is cruc1al in arriving
at such a s1mple descnpt10n of non- lmear quantum transport. Fxrstly, 1t allows us to wnte the‘
function Pg ,(r 3 E,_E ) in terms of,purely local factors (eq. (3.31)). Secondly, it allows us to com:~
nute the probability function P(r,r";E) in a straightforward, manner\f:rom the Green :qu’nction.
This is pos‘sible 'because each inelastic scattering event is assumed to reinject the eleCtron
incoherently witha neuv 'energy at a slngle point; the initial condition for each elastic ,propaga-
tion process is thus always a delta function. An extended inelastic sCattere'r; would reinject the

electron over an extended region; it would then be necessary to know the spatial correlations of
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‘.v

Posmon
l l l l L l l l l R l
lG(rr)lz‘dr

. *c(r)

Fig. 43 Sketch of the probab111ty densxty |G(r,r’; E)l2 calculated from eq. (4 6). The :

index E has been dropped for convenience.
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the wavefunction ~ (y(r) W*(r)) in order to obtain the initial condition for the elas_tiepropaga-
~ tion process‘ ‘ h . | | - -

We can rewnte the transport equatlon (eq (4 1)) in . terms of n(r E) 1nstead of 1

1s(r E) en(r E)/'cl(r E)

I(r E) ’cl (r E)

n( .E) = = + [dr [dE' K (s EE) 0@ :E) 0 (4.16)
 where
K (-.".Eﬁ,__ T;(r;E) K(e.r' BB
n r,r ,v,, )_ 'EI(T'E_E'T)- r,r. L, )
= 16(rr;E)I’F@;E-E) 41D

* Eq. (4.16) can alternatively be derived by considering the ladder diagrams for the particle-hole
‘_ﬂpropagzttor,and setting up a Bethe-Salpeter eqnation. It can then be shown that the kernel

K, (r,r’; E,E') is simply one unit of the ladder diagram. -

V. EQUILIBRIUM AND LINEAR RESPONSE
In thls sectlon we consider solunons of the transport equatlon at or near equ111br1um ‘We -

: verlfy that in- the absence of external sources, solutlon of the transport equatlon y1elds the .

correct d1str1but10n of electrons in energy (1 e., the Ferrm-Dlrac dlstrrbutlon) For small pertur-

,batlons from equlllbnum we reformulate the equatlon assumlng that the dlstnbutlon of elec- :

trons at- any pornt can be charactenzed by a local chemical potent1a1, or quas1 F.erml level. - In
this form, the-‘etiuation bears a striking similarity‘to the Landaner-Biittiker forrnnla; Each ine-
lastic scatterer in our model acts as an 'independent reservoir in the Landauer model, 0 that our
' transport equatron appears to be a sxmple extension of the Landauer-Buttlker formula to account
for a contlnuous dlstnbutlon of probes A s1mp1e express1on is denved for the two-probe con-

ductance of any structure
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A. Effect of the ExcluSion Principle |
In the prev1ous section we denved an 1ntegra1 transport equatlon (eq (4.1)) based upon a
one- electron p1cture We now consider the effect of the Pauli exclusion pnnclple and insert a

correction factor mto the definition of the kernel. It will be shown in Sectlon B that this factor

is neceSsary in order to obtain the proper equ111bnum solution.

At equ111br1um the electron dens1ty should be given by the product of the density- of-states

No(r; E) (eq (2 14)) and the Ferml-Dlrac factor fO(E)
neq(r B =  No(r: ) o(®) e G5

"Extendmg th1s relatlonshlp to non- equlhbnum s1tuatlons, we define a convenlent solutlon vari-

able f(r E) wh1ch we refer to as the dlstnbutlon functlon
n(r3E) = No(l' B fr; B 6
Although the solutlon variables that we have 1ntroduced are all interchan geable, oy

CenrsE)  eNo(r:E) fr;E)
T(E) 7(r;E)

is (r; E) = - (53

~ f(r;E) is '»particularly well-suited to discussion of the exclusion principle. Using this newly
defined distri‘bntion functiOn, the transport equati_on' (eq. (4.1 1)) can be expressed as

No(r’; E')

 eNo:B) f( E) = 13 E) + jdr jdE’K(rr EE')——f( E) G4

B (i E)

- We ernpha‘vsiz‘e that the distributiOn function f(r ;E) as deﬁned above is not a senﬁclassicai con-
cept but a weilv-deﬁned quanturnmechaniCal' ’quanti'ty,- There is no violation of the 'uncertainty |
principle, since a 'knowledgeof the electron’s energy is conjugate to the time coordinate, not the
kposition‘_coo’rdinate,v ’Thi's"is in contrast to a senliciassical distribution such as f(r ; k), used in the
3 vsolution‘of the Boltirn'ann transport equation | |

In Secuon v we showed that the kemel K(r,r’; E, E ) is the product of two mdependent

‘probablhtxes Pg (r E ,E’) is the probab111ty that an electron suffering an melastlc scattering

‘event at (r';E") would be scattered to an energy E, and P(r,r ; E) is the probability that an
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| electron mJected” at posmon r w1th an energy E would suffer its next 1ne1ast1c scattermg
'event atr. The Paulr exclusron pnncrple requrres that an electron cannot be scattered into a
state that is already filled. To account for thls, we ‘modify Ps by 1nc1ud1ng a factor [1- f(r E)]
in the deﬁmtlon of S(r :E E’) |

S.(r’;E;E') = Q%F'(r’;E—E') N'o(r";E)'[I}—lf(‘r:';;‘:E):-]‘\ o . (5.5)

- This 'modiﬁes the "eXpressions for both Ps and T; as foIIows..

RiEE) = -—F(r SE-E)No )1 - i E)]t,(r Ev 69
D H_jdEF(r,E. E) Nor ,,E?[l ‘f(r:,E)] e

It isﬁecessary to include this f'aCtor' without it the di"stribution function f(r; E) -’yvould not relax
to the proper equrhbrrum solutlon fo(E) in the absence of extemal sources. In pnncrple one
| | could also modrfy P by usmg some form of exchange potent1a1 in eq. (4.6). However we will

not con»srder. thrs.,further in our present treatment.

| B. Equlllbrlum State
Close to equlhbnum, the dlsmbuuon function can be wntten in the form of a Ferml Dlrac' :
. functton | - |

_. .
oE- Zen( ks T

£(r; E)—~ ‘ '('5.,8)"_-."
+1 A
- b_ -where u(r) is the local chermcal potentlal At equilibrium, the chermcal potenual is constant '

v everywhere in the structure In this section we will show that the drstnbutlon functron in eq -
(. 8) w1th u(r) ug (a constant) is 1ndeed a soluuon to our transport equatlon (eq (5 4)) w1th E -

the external current I(r E) set equal to z€r0; that is, we w111 show that "
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eNo(";E) eNy(r;E)

e fekeren TR 0E = TERam 69
' vyhere' ' | ”
= fo(E) = éu(,)l/'k.,r  (5.10)
g +1 S
Ho bemg aconstant‘ It 1seas11y shown that o | v
fo(E')[l fo®1 —fo(E) [1- fo(E')]c(E E’“‘“T, ey

B Usmg th1s fact we can perform the energy 1ntegra1 in eq (5.9) as follows. We obtam the kemell
* from eqs (4 11) and (5.6), |

‘K(ry,r’;E,E'__) = Ps(r E E') P(r r E)

= ——— |G(r,r ;E)l , F(r yE-E)[1-1(r"; E)]- (5.12)
131(15) I
B This expression‘ac‘cohnts for the exclusion principle, as described previously. Now, we substi- . .

tute this definition into eq. (5.9) and apply eq. (5.11),

eNo(r';E)

: , N , - f _ : B .
JdEA I?(”’,’E’E)—-ti(r';_ls’), q.@, N

_eH. IG(r,r';E)I1?

T2n %(r,E)

JdE No' s BV R s E-E) [1-fo®)l foB)

_eR IG(rr;E)I?
L 21‘: ) Ti(l',E)'

f@®
Jae No(r";E% FeB-E) =@ BT ey

If our system of oscﬂlators isin equlllbnum ‘then the number of “phonons w1th an energy H(o
1s glven by the Bose-Emstem functlon (eq (3 25)) In. conjunctlon with the deﬁmtlon of

F(r ;E— E ) stated in eq (3 24) th1s 1mp11es that -
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F';E'-E) = F(r'-E—E')e(E‘E"’k”T I 14)  

After substituting eq. (5 14) in eq. (5. 13), the remaining 1ntcgra1 is s1mp1y dcﬁncd by eq 5.7 to

be 1/1,(r’; E)» Therefore, we have simplified the integration over energy to -

o eNo(r'; E) ef fo®) ’IG(ri‘"’E)Iz
fdr [dE’ K(r,r’; E,B) ——0 2= ¢ gy = S0 1O g 1G(OE]
Jar' [eB K BE) — g 0E) = o0r wem [ oD

(5.15)

We must now evaluate the integral over the position coordinate r’. ‘It was shown in Section IV

(cf. eq. (4.10)) that

jdr' IG(r r;E)I? _

D H % No(r;E) 618

~ which is eSsentiaHy the integral that we musi-perfoﬁn, but with the coordinates interchanged in
the Green function. A well-known symmetry property of the Green function is that

G B, - Gw.riB)| e

where H = —H 1mp11es a reversal of the magnetxc field. From this property, we can evaluate the ’

followmg 1ntegra1
o IGEER | _ (qrlO@LEBZ E
J‘dr T (l" . E) H ,[ r 7. ; E) HoH No (l‘ E) - (518)
We have by deﬁmuon (eq. (2 14)) |
No(r; E) ): 1om(r) 1% S(E—eym) | (5.19)

where dpm (r)b-are the eigenfunctions of Hy (eq. (2.1)) with eigenvalues €y. The reversal of the -
magnetic field mc_fely replaces each eigenfunction ¢p(r) by its complex coﬁjugatq, so that the

density of states No(r ; E) remains 'uAnchangevd.v

,IG(rr B2 _ L IGW,rE)I2 _ 2n B
jd - %(';E) = Jar %(r’; E) ,_ H NO(r E) o ,.(.520) :

Substituting eq. (5}.20) into 'cq. (5.15) we obtain eq. (5.9). This shows that in vequilibn'um (with

source‘terms‘I(r';E) set to zero) the Fermi-Dirac function fi(E) is in_deéd the solution of our
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transport equation.

It is thus fairly straightforward to calculate the equilibrium density of electrons in any
structure. We first calculate the eigenfunctions ¢p(r) and eigenenergies €) for the clasfié part
of the Harhiltonian Hy; these are then used to obtain the density of stateé No(r; E) from eq.
(5.19). The chemical poténtial Lo appearing in the Fermi-Dirac function fo(B) (eq. (5.10)) is
adjusted to obtain the correct average' density of electrons, according to eq. (5.1). In general,
any uncompensated space-charge must be accounted for by performing an iterative solution for
the electron density and the electrostatic potential. The electron density n(r) should be inserted
into the Poisson equation to obtain a corrected potential; the eigenfunctions ¢p(r) and the
eigenenergies €y should then be recalculated including this potential, and iteration should con-

tinue until the solution is self-consistent.

‘C. Linear Response

_ To obtain a transport equation valid for linear response, we assume that inelastic scattering

is sufficiently strong to maintain local thermodynamic equilibrium everywhere in the structure.

| If this is the case, the distribution function f(r; E). can be written in the form of a Fermi-Dirac
function with a local- chemical potential p(r).

1

f(r;E) = —— (521
SE—eRO kT o
Provided that this assumption is true, the following relationship is valid:
@) [(1-f@)]|, = f®U-fE)]| 6T 5

Note that this is the same condition which allowed us to perform an integration over energy (eq.
(5.11)) in the discussion above. Although the distribution f(r; E) is now a function of position,
the arguments leading to eq. (5.15) are still valid. Therefore,‘we use this result to integrate eq.

(5.4) over energy,
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: _I(r) E.de : Mf(r;E),— fdr’ T(r,r’; E) f(r';E)’ e (5.23)
R’ | wE) | | = |
v‘\‘avhere B
I(r) = deI(r;E)‘ | ! "(:5-24) . |
) ) . v
Tr,r';E) = I:l(:Gé;;(rE)li:) 6-25)
From eq, (520) |
Jdr' T(',r;E) = jdir’_'f‘('r,r’;E) = M S | ?5.26)
| | : - w(r;E) L o
We use th1s property to writ,e eq. (5 .235 ina more sfmmctric férm. »
im a%jd;’ [dE {’T(r’,r;E)ﬁl;(r;E)_ - T(r,r’;E) f(r’;E)‘} | i o ,'('5_»'2'7)»‘,

In "l‘inear respdhse 'theory we assume that the distribution function f(r'E) déviatés ”only v
: shghtly from the equxhbnum distribution fo(E), so that we can expand f(r;E) in a Taylor senes

about B= Mo Notmg that 9/ au —eB/ dE, we obtain
- f(r;E) = f(B) + .—a—E e [1(r) — Hol B - (528)

Substituting eq. (5.28) into eq. (5.27) and ‘using eq. (5.26) we obtain

. &2 | R S
M) = < [o (T DO -To@) ) (529

where
Totr,r) = [dE ——E] T, E) 630

At low 'témpcratures, —dfy /dE = 8(E';— Er-),, SO that.
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nN o, 2 |G(r,r’) 12
To(r,r") = T(r,r';E=EFp) = ———2> 2 :
o) = T s E=Ep) = —S0o— | oo (5:3D)
Eq. (5.29) can be viewed as a generalization of the Landauer-Buttiker formula,
- B |
L = T 2T by — Ty 1y} (532
i

to a continuous distribution of probes. The coefficients Ty (r,r’) have the same symmetry pro-

perties in a magnetic field H as the coefficients T;; [29,36]. Namely,

Tijl _— Tjil . (5.33a)
To(r,r’) . To(r',r)l _H (5.33b)

This is apparent from the definitions of To(r,r’) (eq. (5.30)), "f‘(r,r' ; E) (eq. (5.25)) and thé sym-
metry property o.f the Green function (eq. (5.17)). It has also been shown that the coefficients

T;; obey the following relationship [29],

S{Ti-Ty} =0 - (5.34a)

i
Similarly, it can be sh@wn that
[dr'{To(’,r) = To(r,r)} = 0 | ~ (5.34b)
~ This property follows directlyvfrom egs. (5.26) and (5.30).
| Space-charge effects: In deriving eq. (5.29) from eq. (5.27) we have implicitly assumed
that when We drive _thé system slightly away from equilibrium, the distribution function f(r; E)
deviates frOm the equilibﬁum value of fy(E), but thecOefﬁciénts ’I‘-(r',r ; E) remain ‘ﬁxed. Actu-
ally, the coefficients T(r',r ; E) will change because corrections to the electrostatic potential will

change the Green function G(r’,r ; E), as well as the inelastic scattering times t;(r; E). In con-

sidering the variation 81, we have accounted for one term,
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%jdr’jdE 8f,(B) {T(r’,r; E) - T(r,r'; E)}
It would seem that we should also have a term of the form

€ 4 T _ I

+ [’ [dE fo(E) (8T(,r; E) - 8T(r,r"; E)}

where 8T is the change in the coefficient T. This term is zero, hoWeQer; because of the felation,
(eq. (5.26)) that must be saﬁsﬁed by T@’,r;E). Consequently, inz l‘inear‘ reép.onse. theory we een
use the coefficients ’i"(r’,r ; E) obtained (self—consisten-tly) under equilibri:u_m‘ conditions, and '
ignore corrections due to the modification of the electrostatic potential under an applied bias.
This, however, may not be true if there are sharp resonances in T; secoﬁd—order terms (~ S'T‘ dfy)

may not be negligible in that case.

D. Power Dissipation and Circulating Currents
In general we can solve eq. (5.29) for the potential distribution u(r) in ariy structure. At
equlllbnum u(r) is equal to a constant uo, and I(r) is equal to zero. In the absence of magnetic
fields (H=0 in eq. (5. 33b)) To(r’,r) = To(r,r’) so that at equilibrium the 1ntegrand in eq. N
(5. 34b) is zero, and there is detailed balance between any two points r’ and r. But in the pres- '
~ence of a magnetic field this is not true. There can be circulating currents, even at equ111bnum. |
- However, the net current out of any point is zero, as evident from eq. (5.34b). Any outﬁoW in

one direction is balanced by an inflow from another. -

We can 'reWritje eq. (5.29) in the form
1= [ar (Ts(,n) (MO - uE] + TAED MO +ROD - (539)

where

1

- Ts(',r) == [To(r’,r) + To(r,r)] . (5.36a)
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TAGD) = o [To@,0) = To(r,r)] | (5.36b)
The power Py dissipated in the structure arises solely from the first term.
32 ’ ’ ’ "2
Py = o [dr [dr’ Ts(,r) (W) — u(r)] (5.37)
The net power dissipation due to the second term is zero.

2
= [dr far’ TAG'0) (2@ - k2] = 0 (5.38)

Eq. (5.38) follows readily if we note that from} egs. (5.34b) and (5.36b)
[dr’ TAo@',r) = [dr Ta(¥,r) = 0 - (5.39)

The circulating currents that are present even under equilibrium conditions thus dissipate no
power. From the point of view of power dissipation we can represent any structure by a con-
tinuous network of conductors; any two volume elements dr’ and dr are connected by a conduc-
tance equal to (e2/h) Ts(r’,r)dr’dr (Fig. 5.1). If we have two external probes with a potential
diffefence‘Au' between them, the conductance go seen from the terminals can be obtained by
equating the total powér dissipated in the network P to gy (Ap)?. From eq. (5.37) we obtain the

following expression for the two-probe conductance gg.

B — ) ] : (5.40)

2 .
€ ’ ’
g = ﬁ“‘dr_“dr Ts(r',r) [ n

One may adopt a variational approach to calculating u(r): choose a trial function and then

minimize the power dissipated.
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+ Ap -

e2
o Ts(r’,r)dr’'dr

—MMW

Structure with distributed
_inelastic scattering

Fig. 5.1: Neglecting the circulating currents due to magnetic fields, any structure can be
represented by a continuous network of conductors; any two volume elements

dr” and dr are connected by a conductance equal to (e2/h) Tg(r’,r)dr’ dr.
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VL RELATIONSHIP TO CLASSICAL BROWNIAN MOTION

The transpon equation discussed in this paper (eq. (2.11)) can be viewed as describing a
random diffusion process in'(r ; E), where the kernel K(r, r’; E,E’) represents the pr’jobahility of
““hopping”’ from (r;E") to (r;E). Thus, the transport process can be viewed as classical
Browmanmotlon,the only quantum mechanical input is in computing the kernel In Siieciaﬁz- |
* ing to linear respOnse (Sec_tion V), we have integrated over energy, so that we are left with a dif-
fusion process m real space only. - In this section, we will show that the linear-respOnse transport :
equation (eq. (5.29)) reduces to a dnft-d1ffus1on equatlon if we assume slowly varymg
ensemble averaged quantmes Using this formulation, we evaluate the d1ffusron coefﬁcwnt ina
few sunple cases. The purpose of these examples is not to derive any new results, but to show
that vour '-formulation reproduces v.vell-known' results. These examples involve}' ensemble-
averaged ;_prop.,‘cr,ties‘ of systems; this is in contrast to all previous disCu‘ss‘ion' i Whicﬁ ‘has
emphas'ized 'sample-speciﬁc solutions | The well-known ei(pression for the semiclassical vmagne-
tores1stance s denved by determmmg the hopping dlStI‘lbuthl’l v(r,r’) from semlclasswal
dynamlcs We then present numerlcal results for the ensemble-averaged d1ffus1v1ty in a disor-

- dered res1stor Wthh are in agreement with the work of Thouless et. al. [18] When the melastlc

R scattenng time is short, the senuclassrcal and quantum diffusivities agree well. ‘But as the ine-

~ lastic scattermg t1me is 1ncreased the quantum diffusivity approaches zero due 10 strong locah- '

zation, whlle the semlclass1ca1 d1ffus1v1ty becomes constant.

A Drlft and lefusmn

Eq (5 27) can: be wntten ina shghtly d1fferent form 1n terms of the electron dens1ty per

unit. energy n(r E) No(r E) f(r;E).
I(r E) = ejdr {v(r r; E) n(r E) — v(r,r’ ;E) n(r’; E)] : (6.1)

‘where -
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T(,r;E)

"“’—'z“E) = BNy E) 62

~Eq. (6. 1) has a s1mp1e physmal mterpretatlon v(r r; E) dr’ tells us the fractlon of electrons per L
unit tlme that “hop” from r to r'. The ﬁrst term on the nght-hand side of eq. (6 1) is. the total

number of electrons hopprng per unit time our of the volume clement dr wh11e the second term‘

~ isthe number of electrons hoppmg per unit time mto the volume element dr. The net hopp1ng .

frequency Yo 1s equal to the 1nelast1c scattering rate, usmg eqs. (6.2) and (5 26) we have

vo = [ar va',r; E) = 1/1,(r B 63
Quant.urn transport is thus rnu'ch like class1ca1 Brownlan motion with avdis.tribution of hopping .
lengths v(r’,r; E) that is determined quantum mechanically. In the absence of any extemally

injected current I(r ; E) we can write eq. (6.1) in the following form.

o LBy na’sE) = 0 S 6
e 80T S e
.C(r,r?E) G E) - v(r,r’;E) 3 o - (65)

The 'obvfio.lls"‘.qnestion to askis under what condmons does eq. (6.4) reduce' to at:he.drift-diffusmn
“equation ; o : | ' ' vv
DViVin + vgVin=0 - (66
‘Here D 1s the d1ffus1on coefficient (tensor), v is the dnft velocrty (vector) and summatron over
repeated 1nd1ces is 1mp11ed (x y and z). . |
' To get from eq. (6 4) to. ©q. (6.6) we first assume that we are dealxng w1th ensemble-v

r averaged quantltxes (denoted by a bar on top) so that the coefficient C(r r’; E) depends only on.

' the dlfference coordlnate
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YersE) = %50'—” VB B %)
| Next Vvve: assume‘ that Cn = Cﬁ‘ so that eq (6;4), bee‘emes‘ a cenvolution integfal; L
fdr'_(r;r')ﬁ(r') -0 : | (68)
We have suppressed the argument E for s1mphcrty Fourier transforming eq. (6 8) Vve ebtam
| RCOEO) =0 - '- e o | - (69)
Now we expand E(q) in a‘Taylor series up to the quadratic term. -
| | 3 z(Q) :‘E'(O)"—'iqj Vaj ~ Qibqj‘ Drj_ , | a . o (610)
The cdefﬁcients"vin th1s expansion are obtained readily frem the moments of the -funeti‘on. .

Ur-r)in real space.

Co = ey o | (61D

g =[dopve) 6D
N 1., _ : : o e =
Dy = ——j'dpvpi pve) o (613)

where vwe have written P bfor r;r Usmg eq. (6. 3), (6.7) and (6. 11) it is easy 10 show that

\

‘ C(O) 0 Hence, 1nsert1ng eq (6.10) in eq (6 9),
| (1qjvd,+q1q,DU)n(q)— 0 SR (6.14)
Founer transfonmng tov real space we obtam the dnft—dxffuswn equatlon (eq. (6.6)). o
‘ Eqs. (6.12) and (6.13) may be used to compute the drift velocity and d1ffus1on coefﬁeient
from the ensemble-averaged hoppmg functlon v(r-r). In general we also need to average over
the energy E ‘though at low temperatures we could let E equal the Fermi energy EF It should
be noted that a number of approx1mat10ns have been made in deriving egs. (6. 12) and (6.13).

‘We feel that 1n general eq. (5. 29) is a better startlng pomt for the computatron of sample- |

spe01ﬁc propemes that vary rapldly in space. However, for slowly varymg ensemble- averaged
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propéfties eqs. (6.12) and (6.13) are more convenient.

We w111 consider two simple examples where the electron densit_y‘variés slowl"yb enough
that we can use these results to calculate the drift véylt)cityv'an'd diffusion coefﬁéieht.' Fof simpli-
city,‘thc iheléstic scatten'hg time T; is assumed to be constant. First, we conside_f the sémiclaSsiF '
cal magr_ietores}istance of a free electron gas with isotropic scattering described by an inelastic
scatfen'rig time ;. In this case we compute the function v(p) directly from the classical trajec- |
tory and use it in eq. (6.12) or (6.13). The results bbtained agree with the well-known semiclas-
sical results. Next, we consider a disordered resistor with delta-function velastic;scat‘tere_rs distri-
buted randomly. We compute the function v(p) numerically, ensemble-average it and obtain
the diffusion coefficient D from eq. (6.13) for different bvaluesv of the inelastic scattering tirhe T
(assumed constant everywhere). For smalllvvalues of t;, we find that the semiclassical and quan-
tum val_u_cs of the diffus_ioh coefficient D agreeg:;'ery well, while at large values of T;. the two.

values différ significantly due to quantum localizatién.

B. Semiclassical Magnetoresistance
Consider an electron injected with energy E at r’=0 and following a certain classical tra-
jectOry‘ 1'0(‘t).i The probability P(r,0; E)dr that it will suffer its nextki‘nelastAic scattering in the

volume element dr is given by (%; is the inelastic scattering time, assumed (;onStant)'

P(r,0;E) = j % o(r—ro(t)) e_t/Ti o | (6.15)
0 4 , ‘

This simply states that as an electron follows the classical trajectory, it decays from the YCOherent
state with a 1if@time of ;. The factor 1/7; is included so that the function is properly normal- =

ized. We note from egs. (5.26) and (6.2) that
fdrv(r,0;E) = 1/t 619

Since v(r,0;E) is prbpor’tional to P(r,0; E), énd the latter is normalized‘to one, we must have
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v(r,0;E) = | S—;S(r—ro(t)) e R (R T)
0 U

Using egs. (6.12) and (6.13) we obtain

/ Voo = [ e xe - (6.18)
. 0 T
1% dt -
Dy = > [ e Y% x3(1) » (6.19)
o Ti ‘

where xo(t) is the x-component of the trajectory ro(t). The other components may be evaluated
similarly. o
Now we need the classical trajectory xo(t). To start with, we consider a classical electron
moving without any influence from electric and magnetic fields. Assuming the particle has an
initial vélocity v,; in the x-direction, the x-component of the trajectory is x¢(t) = v,t. ‘Because
we are interested in the collective behavior for an ensemble of electrons, \I;vevmust average over
all possible initial states. We assume that the initial velocity of an electron is uniformly distri-
buted over all directions in a sample, due to the action of scattering processes. With these

assumptions, we evaluate egs. (6.18) and (6.19):

% dt

van) = ([ S wte) = (v) =0 - (620)
0T : :
°dt 2 HEY = (2 : ‘
= ([ &Rty = (i) =0 62
0T _ '

where we have used the angle brackets ( -+ ) to denote ensemble averaging. With()ut the
influence of fields, the drift velocity of an ensemble of electrons is zero; the diffusion coefficient
is not. |

As a second example, we consider the effect of an electric field in the x-direction, causing
an eleCtroh to accelerate: xo(t) = vyt + a,t% /2, where a, =e¢€/m is the acceleration due to the

field. We evaluate the drift velocity and obtain,
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= j 7 Ot %) = (ve) + (aeT) 62

After averagmg over all initial velocities, we agam find that (v, ) =0. Because of the accelera-

tion, however the dnft velocity is not zero,

v,.<v‘:"‘)-=eTnTi‘€x S o (6.23)

Next, we consider the more complicated problem of semiclassical magnetoresistance. We
assume a magnetic field along the z-axis, and an electric field in the x-y plane. It can be shown

[57 that the x-component of the classical trajectory is:

(® [ 2 a- n+ | L+ LR t 3 t} 624)
“Xolt) = - COsQ, r — 1 smw,t - —1 (0.
XO S (0% O)c E ¢ 1 @ g (Dc 1 ¢ (oc , ‘ .

where we have introduced the cyclotron frcqu,ericy for 'an_electron . = le|B/m. Substituting |

eq. (6.24) into eq. (6.18) and performing the necessary integrals, we obtain the drift velocity,

Cfa o (o 1 1 a o
R — st || - (6.25)
, @ 1+ wets e | 1+o:t ®; R

~ If we average over all initial velocities, (vx) and { vs,) vanish, leaving only the terms inv,blving

acceleration. B"y‘*substituting in the acceleration due to the electric field,

e ‘f‘ ,\|: 'gx ‘ 6y O Y ]

{Vax) m |1+t 1**‘(03112, ¢ )

This velocity defines the x-component of the drift current, which we can use to determine con-
ductivity:

o envg | G o ."(627a)
Gog ' = = e————— ' R .6 A 9
T8 &= l+eitt S R

. envyy | | o T; e
Oy = |, =-00—== - (6270
% =g e T P Trald - ©2m)

Fo'llo\";vihg"}_é S1m11ar 'déﬁvati(_')n_ for the y-component '_of the drift velocity, we can de,ﬁné ny and
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Oyy, and obtain the usual rnagnetoconductivity tensor [58],

Oo 1 -1 _ .
o= ——— | N - (6.28)
l+oelt |0 1 : ‘ ' ,

We have shown‘that some familiar results can be obtained by assuming a classical motion of
electrons. We now proceed to demonstrate quantum mechanical effects in a numerical exam-

ple.

C. Numerical Example of Localization

In recent years, cons1derab1e attention has been given to the effects of disorder on electron
transport In particular Anderson has shown that for a sufficiently high degree of disorder and
in the absence_ of 1ne1ast1c scattering, conductance decreases exponentially w1th length [59].
Electron wavefunctions‘ become spatially localized, having envelope 'function_s that decay
exponentially with distance. As the overlap between localized states decreases, the conductance
vanishes. In the presence of inelastic scattering, however, electrons can ‘‘hop’’ between local-

ized states so that inelastic scattering actually improves the conductance.

An illustration of this effect is well suited to our model. In principle, we can calculate the
diffusion coefficient D for any cham of randomly spaced impurities. We cons1der the average
diffusion coefﬁc1ent of many such chains as a function of the inelastic scattering time T;. We
will show that as.'ci increases, D rapidly approaches zero. Furthermore, if we treat electrons
semiclassically (i.e., work with probabilities rather than probability amplitudes), localization
behavior is destroyed, and D is limited by impurity scattering for large t;. Our vnume'rical solu- }‘
tion has been descn'bed_in detail elsewhere [37,57,60]. In the following discussion, ‘we focus
more on the physical assumptions in our model, rather than on the details of .c,omputing' a
numerical solnt'ion; - |

To. th1s point ‘we have worked in:the position representation, uSing the basis lr> A |
'change of basis is convement for modehng narrow wires, in which a conﬁnmg,r potent1a1 in the

'transverse d1rection gives nse to a set of sub-bands or modes. From this standpomt transport is
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analogous to electromagnetic waves traveling in a waveguide, and is conveniently described -
usmg the ba31s Ix, ky,m >, where m enumerates modes in the transverse (y) d1rect10n Us1ng

this ba51s the hopplng d1stnbut10n v(r,r’; E) becomes
v(r,r ;E) & Vm(x,x";E).

and is'interpret'ed' as the"fraction of electrons per unit time that ‘‘hop”’ from position x” and
mode n to posmon X and mode . Strictly speaking, such a change of basis is not straightfor-
ward. The transport equation takes on a simple form in the position representation because each
inelastic s¢attering event in our model measures the position of the electron. In principle, one
could conceive of an inelastic scattering potential (possibly non-local) that measures the ““coor-
.dinate”' in sorhe other basis The transport equation would then take ou a simple form in that
-bas1s Although this necessitates a change in our assumptions regarding the inelastic scatterers,
we belleve that the essential physics of diss1pat1ve transport is still described. In the followmg
example, T should:be v1ewed more as a phenomenologlcal parameter than as a well-deﬁned
microscopic quantity. | | | |
We can evaluate the ensemble averaged d1ffus1on coefficient by determining the second

‘moment of the d1str1bution v(p)
Dyxn = = Z [Idpx Px an(px)] o (629)

where Dyx,n Tepresents diffusion due to electrons injected into mode n. We average the contri-

butions of all possible injected modes to obtain
Dxx' =M Idpx p3 [mzn mn(pX)]' v k v 7 (6.30)

where,M is the ‘total numberr of propagating modes. In general, the function Vi, (Px) falls off -
exponentially awayvfrom‘ px = 0, due to the imaginary potential ifi/27;(r ; E) in the Schrodinger
equation (eq. (4.6)). For each configuration of impurities, however, Vm(px) will have a charac-

teristic “noise”‘superimposed on the exponential decay. In an ensemble-averaged sense, the
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““noise’’ components average to zero, and the remaining exponential decay can be characterized

by a decay length Lp,
(% Van(po) = voe~'P!/T0 63
m,n v ) ‘ S -

The c(ihS“térit Vo is determined so that the function is properly normalized:

, Z Idpx an(px) = 1

LN

(6.32)

where T; , is the inelastic scattering time for mode n. We assume for simplicity théi; the inelas-
tic scattering time is a constant, independent of both position and mode number. In this case,

the normalization condition for vy becomes

R S

Japel T Vam(P0)) = == B -2

m,n T

After dctermihirig Vg, we evaluate eq. (6.30) with the functional form stated in éq. (6.'31).

| 1 2 lpI/LDV LzDV |
D,, = — P = 6.34
Dy x it 1lp jdpx pxeb % v (6.34)

Our soluiion hinges upon determining the ensemble—averagedvdecay length Lp for the ‘hopping
distribution within a long wire. We expect that, for srﬁall 1;, the decay length should ihcre’ase as
Lp=vE ;ci' for 'both semiclassical and quantum mechanical analyses. This is becéﬁsé‘vin this
limit, ‘inelas'tic | scattering events are so frequent that trémsport between successiv’evevents. is

essentially ballistic. On the other hand, for long T;, the electron will elasﬁcally scatter many

times between two inelasfic scattering events. Consequently, the semiclassical Lp = \[Del T,
whefe D;l is the diffusivity due to the elastic scatterers. ’Th'e quantum mcj,chanical Lp, however;
tends to a constant equal to the localization length L. It is apparent from eq. (6.34), therefore,
that Dy, will initially increase with 7;. The semiclassical result will then level off to Dej, while
the quantum mechanical result will decrease as L2/1;, due to localization. This is precisely

| what we. obtziin from our numerical solution (Fig. 6.3), which is described below.
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For each‘randonh conﬁgurationj of impurities, we must deterrnine thev Green function of the
--Schrodinger equation as} shown schematically in Fig. 6.1. | Gn‘,n(px) represents the vamplitude in _
| mode m at pos1t10n px for an electron mJected in mode n at pos1tlon px =0. Solutions for the

wavefunctron on either s1de of Px= =0 can be determined by ord1nary means--for example, w1th}

the use of scatterlng matnces, as descnbed in Ref. [37]. Each impurity is represented by a

scattermg matnx which SpCClﬁCS the coupling between various modes 1ntroduced by a parucu-

lar scattenng potent1a1 Reglons between scatterers are represented by d1agona1 matnces which = |
account for the phase shift (and attenuatlon) acqulred by each mode wh11e propagatmg through |
‘a g1ven reglon These 1nd1v1dua1 scattenng matrices can be combined to deterrmne an overall
scattenng matnx representmg transmission through a given region. To connect the two solu-

 tions on either s1de of py= =0, we 1ntroduce the following boundary con_dmons.

Gmn (Px =0+) =Gmn(px =07) . , w » (635a)
T e o = 2 K=

A serriiclassicval'-:resultcan.also be obtained using _thismethod, if the elernents :of- allb'scatteri»ng
o matr'icesa‘re replaCed with their squared magnitudes. In this case, the solution vectoervn.(px') |
is comprised of (real) probabilities rather than (complex) probability amplitudes. In any event,
the solution of Gon(Px) for a particular irnpurity conﬁguration determines the hopping di's_tribu- :
tion, which is fit to a decaying exponentialb (eq. (6.31)) to determine the decay length Lp.
Decay lengths for a‘large. number of random samples are then averaged to determine the
ensemble averaged diffusion coefﬁc1ent D=L3 /1. A final concem is the averaging process f
used to detemnne LD In the localized regime, fluctuations in Lp from sample to sample can be, -
qu1te large;. however, Anderson et. al. [61] have shown that the inverse localization length LD

,,,,,

to deterrmne the ensemble-averaged LD
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Elastic scatterers

N
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px =0 |

Fig. 6. 1 A narrow wire with randomly spaced 1mpunt1es is represented by two scattermg

matnces, one on elther side of the injection point (px = 0).
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Wehav’e"applied this model to samples with five propagating modes and _40_0virnpurities
with an ayerage spacing of 1.5 um; the injection point (pyx =0) was immediately left'vof -the_ 200th . |
impurity. "All»'vi’mpurities were characterizedby the same scatteﬁng matrix, and the 1mpunty .
strength was chosen so that the elastic scattering length A,; was 4 impurities, co‘rresponding‘ to A
an elastic scattering time of 7o = 2.87<1071 5 [37]. An estimate of the _locali'zation length is
Ajoe = MA,; [62], where M is the number of propagating modes. | For the 'present Jexa:mple,'
samples should e)thibit localization when vthe_inelast’ic scattering length A; .exce’eds 20 impuri- S
- ties. Inela‘stic scattering'times were chosen between 10712 5 and 1078 s, correspondlng to A4
between 0. 2 and 95 impurities. All results were verified against longer cha1ns to ensure that

edge effects due to.the ﬁmte length of the cha1n were neghglble

To prowde some insight into the arguments concerning the decay length LD, we have plot- '
_ted the hopping distribution for two arbitrary samples with different scattenng t1mes 1, ‘These - |
results are presented in Fig. 6 2 on identical logarithmic scales For 1, =10~ 10, s (A =9i 1mpur1-
ties), the sample is in the so-called weak locahzatlon regime. The d1str1butlon is predommantly :
charactenzed by its exponenual decay, although small ﬂuctuatlons are clearly v151b1e As the:-"‘
3 1nelasnc scattenng time ‘is increased, the fluctuations become larger For t, = 10’8 S (A 95 '
1mpunt1es) the general character of exponentlal decay remains, but the ﬂuctuatlons have added‘ |
conS1derable scatter to the decay length LD | |
InFig. 6.3 w_e present the ensemble-averaged diffusion coefficient D for both semiclassical
and quantum analyses. For small 1;, inelastic scattering dominates, and both solutions are in
close agreement As t:i , increases, however, the quantum mechanical solution rapidly-‘
approaches Zero, while the semiclassical result levels off to the value dlctated by 1mpur1ty _
scatterers This clearly demonstrates that locahzauon must be understood in the context of
quantum mechamcs ‘Both semlclass1cal and quantum solution methods are 1dent1cal except
‘that elements of the semiclassical scattering matnces are replaced by their squared magmtudes
By neglectmg 1nterference of the electron1c wavefunction between successwe scatterers the

semlclass1cal analys1s cannot account for locahzatlon
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| : 2 Van(Px) (arbitrary IUnits)
T Px = 0
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‘ Fig. 6.2:. The hoppf_ng distribution Y, Vmn(Px) for.two arbitrary samples with different
" inelastic scattering times T;. Both functions exhibit the genci'al character of

- _cxponéntial decay.
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Diffusion Coefficient (cm?/s)

~Quantum Mechanical
1. ———— Semiclassical

1o =2.87x1071 g

L

10712 10 10710 107 10‘8
Inelastic Scattenng Time (s )

Fig. 6.3: The ensemble- averaged diffusion coefficient as a function of t; for both '
R semlclassmal and quantum analyses The quantum result dccreascs rapxdly for

large T, a demonstration of strong localization.
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VIL. SUMMARY

In the preceding sections we have developed an integral transport equation which incor-

porates dissipation into quantum transport theory:
is(r;E) = I(r;E) + [dr’ [dE’K(r,';B,E) is(r'; E) @

where isz(r';E) is the current pér unit volume of electrons inelastica]ly scattered at position r
from an energy E to all other energies. In deriving this equation we have assumed that inélastic
scattering processes can be modeled by a continuous distribution of independent point-size
oscillators. This assumption allowed us to simplify the one-electron self-energy to a point func-
tion. From this we showed that the inelastic scattering current could be expressed in térrhs of
local properties at r. |

en(r;E) _ e¢No(r;E)f(r;E)
t(;E) ;B

is(r;E) = (7.2)

where n(r; E) is the electron density per unit volume per unit energy, Ny (r ; E) is the electronic
density of states, and f(r ; E) is the probability of occupation for the coordinate (r ; E). The ine-

lastic scattering time T;(r; E) is defined by

1 M N e A eeemny
oD - 1 [EFCE-DNEBI-E) K&

where F(r; E'—E) is a property of the inelastic scatterers, defined by eq. (3.24);--~It is éi)parent
from eq. (7.2) that three solution variables (ig, n and f) cé.n be used interchangeably in the solu-
tion of eq. (7.1). . | |
" The kernel of the integral equation was shown tobb_e a product .of two indépendent'proba-
bilities: |
K(r,r';E,E) = Ps(';E.E) P(r.'; E) R (14
where Pg ( r’ , E,E) is the probability that an electron at position r’” having an eﬁérgy'E' will be

inelastically scattered to an energy E,
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Ps(r';E,E') 2—"tF(r ;E-E)No(r’; E)[1-f(r"; E)] 4 (r’; E) '- (1.5)

~and P(r,r’; E‘)Nis_the probability that an electron ‘‘injected’” at a position r” with an energy E (by
inelastically scattering from some other energy) will suffer its next inelastic scattering event at 7
r. |

A IG(r,r;E)1?
2 No(r’; E) t;(r; E)

P(r,r’;E) = -~ (7.6)

G(r,r’;E) is the Green function of the Schrodinger equation modified to include the optical

potential

il

%EE | GrriE) = de-r) (D)

[EHO

where Hg is the e)tact elastic Ham_iltonian (eq. (2. ).

,'Fo‘r'any arbitrary strticture, a solution of eq. ’(7.1) can be obtained as follows. Some initial
guess is used to establish the distribution function f(r ; E) everywhere within the structure. An
example of this is to assume that each point is in lo'eal equilibrium, sothat»f(r ;E) is charactef-
ized by a loeai chemical potential as shown in eq. (5.21.). One theh assumes some distribution
vof the chermcal potential, thereby estabhshmg f(r;E). The inelastic scattermg time 7; is then
,calculated us1ng eq (7. 3) The kernel K(r,r’; E,E’) is calculated from eqs (7.4), (1.5) and (7.6)
once the Gre_en function G(r,r’; E) has been determined from eq. (7.7). Given the kernel, eq.
(7.1) eah be solved to determine a new guess for ig(r; E) (or equivalently, f(r; E)). Because t:i
is dependent on f(r; E), this solution process must be repeated until the solution for f(r; E) has
conve_xgcd,b R . ,

In this work, we have restricted ourselves to steady-state transpt)rt and neglected many-
body effects beyond the Hartree term. We believe that it should be possible in the future to.
extend the work, to remove these restrictions. However, our assumption of delta mteracuon
potentials is esser_mal in obtaining a simple transport equation in the position representatxon that

involves only the electron density, and not the spatial»_correlations of the wavefunction. For a



-57-

different type of inelastic scattering potential it may be possible to concéive‘ of another_
representation which would again simplify the transport equation, though it is not obvious how
such a representation would be determined. We believe that the simplicity of this transport
equation will make it feasible to obtain numerical solutions‘ for specific mesostructnres and
Also, by comparing the predlctlons of our model with expenment it should be poss1ble to iden-
t1fy new phenomena arising from correlations between inelastic scatterers, and to shcd light on

the mlcroscoplc ongln of 1rrevers1b111ty
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.. Appendix: :Derivation of the Kernel from the Kubo:Condluctit'ity .

‘In SeCtion» V we. assutned that, for small perturbations from equﬂibﬁum rnelaStic seatter-
vmg was strong enough to maintain local equ111br1um everywhere in a sample In th1s linear
response reglme, the transport equatlon was reduced to a simple form (eq (5 29)) Wthh resem-
bles the Landauer—Buttlker formula (eq. (5.32)) generahzed to include a continuous dlstnbutlon-
of reservoirs. The purpose of this appendlx is to reproduce our expression for the kemel
' T(r r';E) of this mtegral equatlon We start from the Kubo formula for the conduct1v1ty (eq. |
(1. 3)) and apply the Lee-F1sher formula (eq (1.7) 1o determme the * transmrssron between"
v reservorrs at r and r. o |
In the Kubo formahsm, the conductrvrty tensor © at a> frequency ® is related to the‘

current-current correlatron functton [13 14]
| - A | ;o ne? o, BESIARVE _
;‘193[00(1',1‘ ;0)op = [Cu@r’;0lp — =—8r-M8p  (AD
where nv_is, the electron densitj, m is the effective mass, dop is the K,roneeker delta and _the suh-_
~ scripts , B run over x, y and z. The current-current correlation function Cyy is defined as
;xﬁnﬂ®=%ﬁﬁmm&Wmdmwmm' @y

where J(r t) is- the current dens1ty operator in the Hersenberg pictare, and ( ) denotes the |

ensemble-averaged expectanon value For convemence, we deﬁne each of the terms composing

- Cyr

-, Ci(r.r'; ) =7;1fj (J(r,t) J(r 0)) R \"_(A.?’a)
Cylerse) = £ [dre™ (J00 e 9 @3
‘ 0 o

The current density operator can be written as



I = z JNM(.r') afi(t) am(0)

where JNM (r) is deﬁned in terms of the e1genfunct10ns ¢N(r) of Hy (eq. (2 1))

JNMm l‘?ﬁ [(V¢N) o — O Vou)

-(A4)

’_ (A.S)

and aN, aN are the creation and annihilation operators for the eigenstate N. Substltutlng eq.

(A4) into e (A 3a)

C'1(r,r’;co) =3 3 I (0) Inwr ()
S NMN.M '

L
®

™ (a0 ay ® 20 )

A8

Since N, M; N’, M’ are eigenstates, the expectation value on the right hand side is zero unless

N’=M and M’ N Hence

Cl(l'l' ) = Z JNM(I‘) JMN(I") F1(03)
~ NM.

_ where

Fi(@)

Ot~y §

Tlf dt & (aki(®) an(0)) (an ® at1(0))

oo [1-folem)]
: Hm:+eN-eM +in

Nis.an inﬁnitesirrial positive qﬁahtity Mm= O*). ‘Similarly it can be shown that

G, 0) = z I (®) I () F @

f_(eM)_[l_fo(eN)] |
3] + €N —gq+in

i where ' Fz(m)

'Substituti_ng‘eqs. »(A.‘7a,b). and (A.8a,b) into eq. (A.2) we have

. (A.7a) |

(ATb)

(A83)

(A8b)
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Cpnr;e) = 3 I IunG) Fam@) . (A9)

where Fym(w) =

N,M o

fo(em) — £, (en)

F,~Fy = ' (A9

ho+ey—gy +in

We will now rewrite Fyy () in a somewhat different form by proceeding as follows.

Fam(@) = [de [—

Using the relation

f(e+h0) Se—ey +Hm)  f,() 8(e—AeN):

- ] ' (A.10)

e—gn—in e—gy +ho+in

o1 1 1
3(x) = 2mi [ X~in x+i1]]

we obtain from eq. (A.10),

o de

: I;NM-(m) = Jor [—fo(e+ﬁm) Gﬁ(e) [Gﬁ(e+ﬂm);ci‘4(e+ﬁm)]

where

~£,(€) Gﬁ,(e+ﬁo)) [Gﬁ(e);cﬁ(e)]] o (A.11)
Rey = 1 » P

- Gu® = Pyr—— ; | (A.12a)

Gfie) = Py | (‘A.12b)‘

For small o, Wc can wnte eq. (A.11) as

where . =

Fam(®) = ioany +byv o (Al3)
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: of,
b = 2+u Jde £, [GR© Ghi©) - Ghee) Gh®)] (A3

Using egs. (A.9a) and (A.13a), we obtain from eq. (A.1)

1 : bnez ‘ - .
[Oo(r,r)]ap = A+ o B - =y 3(r—r’) 8qp) -~ (A.l4a)
where }A= Y, [Inm (@) ®JMN(r’)]ab aNM - (A.14b)
: N.M _, :
B= % [Inm(r) @ Iun(r)]ap bam (A.14c)
N,M .

It can be shown that A and B are both real quantities so that the real part of the conduCtivity is
simply equal to A. From egs. (A.13b) and (A.14b) we obtain a familiar expression for the Kubo

conductivity [32],
, | : afo X -, ) ' .
oo(r,r’) = [dE == o(r,r’; E) : (A.152)

~o(r,r’; E) = -g—}t— N%. [JNM‘(_r) Q@ Jmn ()] GRi(e) Gf}(e) | (A.15b)

- So farin this appendix, we have neglected inelasﬁc scattering; the energy M in eqs.ik(A.12)
is then a true infinitesimal. As we have seen in Section III, inelastic scattering causes damping
of the quasi particle propagatbr, which is described by including the optical potential
ifi/ 21:i(f ';,E) in the defining equation for the Green function (eq.- @4.7); Coxiéeqﬁently, we
modify eqs. (A.12) to o
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GRice) = 1 - | .‘ | "'(A.16a)

8 GM +IH/2‘CM

Gie) = ' | A.16
| Smce the 1nelast1c scattermg time 1;(r ; E) is not a constant but can vary spatlally, we have used
d1fferent 11fet1mes tm for the different eigenstates; in principle, these may be obtamed from the
1mag1nary parts- of the eigenenergies €y calculated using the Hamiltonian (Hg = 1H/21: (r;E)).
However we assume that the imaginary potential is small enough that we can ne glect any com- '

phcatlon due to the non- orthogonahty of the corresponding elgenfunctwns Om(r).

Wef _obtam the conductivity which accounts for inelastic scattermg by ‘mse'rting eqs.

(A.16a,b) into eq. (A.15b),

[JNM<r)®JMN(r Nop
(E eM+1H/21M)(E eN—ﬂT/ZtN)

" Oup(r,r;E) = 2i ZM (A17)
We c_ah relate thlS expression to the kernel T(r,.r ; E) by recalling the Landauer 1nterbpr\ret‘a>ti:on of

the linear-respehse transport equation: Thekernel T(r, r';E) corresponds to the transmission |
coefﬁcient b'e‘tween reservoirs connected to fhe infinitesimal volume elements at r and r’; With
this physical picture,-‘we invoke the Lee-Fisher formula (eq. (1.7)) which links tifzmsmiS‘si‘oh to
conductivity. In the limit ofe contih’uous distribution of probes, each probe has an infinitesimal

cross-section, so that eq.(1.7) is extended to

eZ

h

i1 N%{ (E—SM+iﬁ/_2'eM)(E"—€N*iﬁ/2'tN)z (A.18)

where 7i(r) is the unit vector normal to the probe at r. But J* n is the current entering the probe
at r due to inelastic scattering; as shown in Section III, this current is ig =en/%;.

L P P/ E) T B)
s B = & Nz;'w (E—ew+ih/20y) (B— e~ 0/ 2TN)

(A.19)

where pam(r) = e On(r) ¢M (r), so that.
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. S 2 *v ’ ) orp(r”
T.(”" E) = 1.-; r, 13)H 4 ;E) & (Eqi:)—?g;;;) < (qug )ﬂuqirl\:/( ;:M) (A.20)
We note that the Green function can be expanded in terms of the eigehstates om(r) as-
r) om(r’ \
GEr'iB) = 3 (Eqihgw 1(2;‘/(2:1“) (A21)
Therefore, we have obtained our previous expresbsion for the kernel (cf. eq. (5.25)):
e B) = EIOEE)12 (A22)

T(r; E) t,(r’; E)
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