Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
7-1-1989

Tutorial on Lisp Object- Oriented Programming
for Blackboard Computation (Solving the Radar
Tracking Problem)

P R. Kersten
Purdue University

A.C.Kak
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Kersten, P. R. and Kak, A. C., "Tutorial on Lisp Object- Oriented Programming for Blackboard Computation (Solving the Radar
Tracking Problem)" (1989). Department of Electrical and Computer Engineering Technical Reports. Paper 643.
https://docs.lib.purdue.edu/ecetr/643

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages

A Tutorial on Lisp
Object-Oriented Programming
for Blackboard Computation

(Solving the Radar Tracking Problem)

R. Kersten
C. Kak

P.
A.

TR-EE 89-11
- July, 1989

School of Electrical Engineering
~ Purdue University |
West Lafayette, Indiana 47907

B A TUTORIAL ON LISP OBJECT-ORIENTED PROGRAMMING FOR
' BLACKBOARD COMPUTATION :

(SOLVING THE RADAR TRACKING PROBLEM)

P.R. Kersten and A. C. Kak

. Robot VisionLab
School of Electrical Engineering
Purdue University
W. Lafayette, IN 47907

ABSTRACT

- This ekpo'sition is a tutorial on how object-oriented programming‘ in Lisp can be
used for programming a blackboard. Since we have used Franz Lisp and since object-
oriented programming in Franz is carried out via flavors, the exposition demonstrates
how flavors can be used for this purpose. The reader should note that the different
- approaches to object-oriented programming share considerable similarity and, therefore,
the exposition should be helpful to even those who may not wish to use ﬂavors

We have used the radar track1ng problem as a ‘medium’ for expla1n1ng the concepts
underlying blackboard programming. The blackboard database is constructed solely of

- flavors which act as data structures as well as method-bearing objects. , Flavor instances

form the nodes and the levels of the blackboard. The methods associated with these
~ flavors constitute a distributed monitor and support the knowledge sources in modifying
‘the blackboard data. A rule-based planner is used to construct knowledge source activa-
tion records from the goals residing in the blackboard. These’ activation records are
enqueued in a cyclic queueing system. A scheduler cycles through the queues “and -
selects knowledge sources to fire. SR -

2 . - kersten/kak

| TABLE OF CONTENTS
: _ - Page -
1. Introduction...... reeeresrereareeneranen e reeveseetensetenttensnenrsanen eeeeese et sensesnesegens 3
2. The Repreéentatiohal Problem == FIAVOTS «.....curveenrsrmaesssesnsssesens cevseainesnsssssssnns e »..5..‘.8
3. Representation of Abstraction Levels.................... ceterereneneae s sens OIS 1
4 Knowledge Sources RO .24
5. The Blackboard QML ettt oot .28
6. Conclusions......c.ccoveeeevverennen. crevereenenens eeereveseetetentetesaeeneasenenteresensenenran errerssers e sesssaenae rd2
7. Acknowledgemcnt ,.;742
8. References43
Appendix A (Exampl'es) ... 45

Appendix B (Source Code)ovvuivmminiiiiirinninienisieninnesnesiesesseenessensines ceirresreennensennasesseieeesss 08

3 S ‘ker‘sten/kak

1. INTRODUCTION

The blackboard (BB) approach to problem solv1ng has been used in a number of -
systems dealing with a diverse set of applications, which include speech understanding
[9], image understanding [1, 2, 13, 20], planning [14, 19], high-level signal processing
[21], general problem solving [6], etc. Usually, a blackboard system consists of three
parts, a global database, knowledge sources (KS’s) and the control. The global database
is usually referred to as the blackboard and is, in most cases, the only means of communi-
cation between the KS’s. The knowledge sources are procedures capable of modifying |
the objects on the blackboard and are the only entities that are allowed to read or write on
the blackboard. Control of the blackboard may be event driven, goal driven, or expecta-
tion driven. Events are changes to the BB, such as the arrival of data or modifications of
~ data by one of the KS’s. In an event driven BB, a scheduler uses the events as the pri-

_mary information source to schedule the KS’s for invocation. A goal driven BB system,
“on the other hand, is a more refined computational structure, which uses a composite .
mapping from the events to goals and then from goals directly to KS activations or -
. 1nd1rectly from goals to subgoals and then to KS’s. This refinement ‘permits a more
sophisticated planning algorithm to choose the next KS activation. By us1ng goals, one
can bias the blackboard or generate other goals to fetch or generate other components of

~ the solution (5]. Note that if goals are 1somorphlc to the events then a’ BB is essennally

event dnven , . ;

‘As was eloquently pointed out by Nii [22], there is a great dlfference between ‘
understanding the concept of a blackboard model and its implementation, the latter bemg
~ made all the more difficult by the lack in the current literature of a suitable exposition on
how to actually go about writing a computer program for a blackboard. A blackboard is a
complex computational structure, not amenable to a quick description as an algorithm.
To program a blackboard, one must specify data structures for various items, such as the -
data on the blackboard, etc.; the nature of interaction between the data on the blackboard -
and the. knowledge sources must then be made explicit; the designer ‘must also make
exphclt how the high-level goals get decomposed into lower-level goals during problem
‘solving; etc. etc. The purpose of this tutorial exposition is to rectify this deficiency in the
 literature -- if only from the standpomt of gettmg a beglnner started w1th the task of pro- :
.grammmg a blackboard

For this tutorial, we have used the radar trackmg problem (RTP) to illustrate how :
object-oriented programming in Lisp can be used to set up the flow of control required
for blackboard-based problem solving. The radar tracking problem (RTP) is defined as
follows: Given the radar returns, find the best partition of these returns into d1SJo1ntt1me
sequences which represent the trajectories of craft or other moving objects. For 'craft

-4 ' | kersten/kak ‘

flying in tight formations, we will associate a single trajectory with each formation. Each
trajectory, whether associated with a single craft or a formation, will be called a track.
.Since--craft may break away from a formation, any single track can lead to multiple
tracks. The RTP problem then consists of assigning a radar return to_’ohe of the existing
tracks or allowing it to initiate a new track. This problem is not new and has been solved
with varying degrees of success and implemented on numerous systems. In fact, a black{
board solution of the radar tracking problem may already exist, although ‘it is probably
proprietary. In fact, there is indication [23] that TRICERO has a radar tracker embedded
1n it, although it is not clear from the system description that a separate BB was used for
the tracker [25] ‘

“On the basis of the criteria advanced by Nii [23], it.can be rat1ona11zed that the RTP‘ -
problem is well suited to the blackboard approach. We will now provide this rationaliza- -
tion in the following paragraph; the blackboard-suitability cr1ter1a -as advanced by Nu
will be expressed as italicized phrases ' - :

The radar returns vary w1dely in quality. Returns may. have hlgh SNR in unclut-'
tered backgrounds but may also be noisy, cluttered, and weak. Obviously you design for
~ the worst case which includes noisy and unreliable data. Noise and clutter induce track
anomalies such as fades, splits, merges, etc. Track formation in a noisy environm‘ent :
requires not only significant signal processing but, in general, will also’ require forward
~ and backward reasoning at a symbolic level. For example, backward: reasoning can ver-
-ify a track by a hypothesis-and-test scheme which may invoke procedures requlrmg

higher spatial resolution and longer signal integration times for hypothe51s venﬁcatlon
.In other words, under noisy conditions we may use coarse resolution and forward reason-
©ing to form track hypotheses, and then invoke backward reasoning to verify strongly held
hypotheses So, there is a need to use mutiple reasoning methods; combmed forward and
‘backward reasoning steps can be easily embedded in a goal-driven blackboard. In addi-
- tion to multiple reasoning methods, the system must also reason simultaneously along
multiple lines. For example, when track splits occur, it may be desirable to watch and
maintain several alternative track solutions before modifying the track mformatlon Mul-
tiple lines of reasoning, as can be easily incorporated in a blackboard system can play a
natural role in searching for the optimal solution under these conditions." It is generally
believed these days that radar tracking systems of the future will ‘be equrpped with
multl-sensor capability. Therefore, future target tracking systems will have to allow -
fusion of information from diverse sensors, not to speak of the 1nte111gence 1nformatlon
that will also have to be integrated in. With these additional inputs, the solution ‘space
, "qulckly becomes large and complex, necessitating modularized computatlonal structures,
- like blackboards, that are capable of handling a variety of input data. |

In ‘addition to using the above rationlization for justifying a blackboard based solu-
non to the RTP problem one must also bear in mind the fact that the use of blackboards

'5 ‘ - kersten/kak

can simplify software development. The blackboard system solves a problem subject to
~ the constraint that the processes, as represented by KS’s, are mdependent enough so that
they interact only through the blackboard database. This independence amongst
processes. has the advantage of allowing for independent development. There is, how-
ever, a price to be paid for maximally separating the KS’s with respect to the BB data- ~
“base -- overhead. For example, if there is no shared memory, the cost of data transfer
'between the BB and KS’s can be very high in terms of real time, not to mention software
design time. While for research and development this may be a small price to pay, in
real-time environments this may not be acceptable. Also, the opportunistic control made
poss1ble by a blackboard architecture may be ideal from a conceptual viewpoint and may
increase solution convergence, but, because opportunistic control is difficult to model
i mathemauc_ally, it can lead to unpredictable behavior by the BB under circumstances not
taken into account during the test phase of the system. Yet, in spite of these drawbacks,
s probably inevitable that BB systems will work their ‘way into system de51gns of the
future -

Our radar tracking blackboard (RTBB), the subject of thlS tutorlal exposition, 1s,
constructed in Lisp with Knowledge Sources (KS’s) written either in Lisp or in C. The
overall organization of RTBB is shown in Fig. 1. The database part of RTBB consists of
~ two panels, the data panel and the goal panel, each containing three abstraction levels.
Time stamped radar returns reside in the form of beam nodes at the. lowest level of
absu'acuon in the data panel, the hit level. Spatially adjacent returns are grouped together
into segments and reside as segment nodes at the next level of data abstraction. Finally,
- segments are grouped into track level nodes at the highest level of abstraction in the data
panel. A track level data panel node is capable of representing a formation of craft; mul-
tiple formations will require multlphe track level nodes. On the goal side, goal nodes at
the hit level are simply requests to generate time-stamped radar returns. Goals at the seg-

ment level are more varied: there can be goal nodes that are requests to assign incoming
radar returns o already existing segments, goals to deal with the problem of fading in
radar returns etc. Goals at the track level are also varied: goal nodes may request that
new segments be merged with existing tracks or be allowed to form new tracks, or goal
nodes may spawn sub-goals to verify that the currently held segments in a track indeed
belong to the track if the track is deemed to be a threat. The ability to decompose a goal
.into sub- -goals is a special benefit of a goal—dnven BB. A rule-based planner maps the
goals into either sub-goals or knowledge source activation records (KSAR’s). A KSAR is
simply a record of the fact that a goal node is ready with the appropriate data for firing a
KS. RTBB enqueues all the KSAR's and the scheduler then cycles through the queues
and selects the KS’s to fire. The main BB process runs in Lisp, and the KS’s are either
children of the main BB process or are threaded into the BB process itself. The database,

- - BB momtor ‘and the scheduler are all part of the main BB process. All the processes run

i _u_nd_er the UNIX operating system. Each level and each node on the BB is a flavor

GOALPANEL . DATAPANEL

PLANNER
AND
SCHEDULER

TRACKS ~ : . ' KS:)

SEGMENTS
€«

V~._ HITS

‘¥_ppf KSAR QUEUEING SYSTEM |—p

| DISTRIBUT'>

' MONITOR

 KNOWLEDGESOURCES

FIGURE 1. Architecture of Radar Tracking _. B-lackbbatd"(BfB)'.

7 : . : : kerStcn/kak

instantiation. These ﬂavor instantiations are method- beanng data structures which are
part of Franz Lisp. A method is a procedure which is invoked by a message to a flavor
instance. The method triggered depends upon the message sent and the type of flavor
reccwmg the message. For convenience, flavor instances are referred to as flavors or
instances or nodes interchangeably. The methods associated with BB nodes act as local
~_monitors collectively forming a distributed BB monitor or as scribes for the KS’s in
updating the BB information, or even as information agents for the rule based planner.
After-methods written for the data nodes trigger after ‘a node is altered and enter the
changes on the goal BB. This implementation of the ‘monitor using ﬂavors is one of the
more mterestmg aspects of RTBB. :

In the rest of this tutorial, we will start in Section 2 with a bnef introduction to
flavors. As we mentioned in the abstract, the different approaches to object-oriented pro-
gramming share considerable similarities, and, therefore, even a reader who does not use
* Franz should find this tutorial useful; such a reader may want to browse through Section

2, if only to become familiar with what is the main data structure used for RTBB. In -
Section 3, we describe the different abstraction levels used in RTBB. Section 4 briefly
discusses the different KS’s used. Control flow and scheduling are presented in Section
5. Finally, Section 6 contains the conclusions. We have also included an Appendix
~where ‘we have discussed four examples of increasing complexity. After a first pass
v_t_hrough the main body of this paper, we believe the reader would find it very helpful to

go through the examples in Appendix A for a fuller comprehension of the various aspects
of the blackboard. For those wishing to see the source code, it is included in Appendix B.

8 . f R kersten/kak

2. THE REPRESENTATION PROBLEM -- FLAVORS

The representation problem is central to problem solving in general Implementa-
tion of a chosen representation requires suitable data structures. In a blackboard each
* level can have its own representation and there need not be any con51stency between lev-
els. However in this implementation, flavors have been used to represent the data at each
level of the blackboard -and to impleine‘nt the blackboard itself. There are several reasons
for this decision. Flavors are versatile data structures which are easily initialized and
have built-in constructors, selectors, and mutators. In addition, flavors are method bear- .
- 'ing objects; and their methods can be used to monitor and to update the blackboard itself.
The following paragraphs expand on the properties ‘of flavors Wthh have proved useful
in this blackboard implementation. : - =

" Flavors are method bearing objects with 1nstance vanables Wthh may be eas1ly
redefined [12]. These instance variables or just varlab]es may be instantiated to numeri-
cal values, symbolic values, lists, or symbolic expressions (s-express1ons) Thus the
ﬂavor composition is appropriately tailored to the abstraction level in the BB. In addi-
tion, there are very sophisticated ways of mixing flavors, i.e. constructrng flavors which
are built up of other flavors. We will extensively use before-methods and aftér-methods
‘that one can attach with a flavor, the former types of methods initiate procedures before
altering a flavor instantiation and the latter type after. The reader may: note ‘that it possi-
ble to invoke methods in sequences that are more complex than what is implied by the
- names before-methods and after-methods. Only a small portion of the 'ﬂav'ors’ potential

has been tapped for this project. Some of the key propertles of ﬂavors are descrlbe‘d in
this section. : S SRR

Flavor creation is achieved via the deﬁlavor function Wthh deﬁnes the ‘name and :
the characteristics -of the s-expressions in the structure. Consider a track node, the
.h1ghest abstraction on the BB. ' i

-3 This node resides at the track level of the data panel

" (defflavor tnode (
- (type ’track) ; the type is track
-(time 1234) ; the last time stamp in the track
last-coord ; latest position of the track -
last-velocity ; latest velocity of the track.

threat ; true if interval straddles zero
~ snode ; backward pointer list to snode
‘ cpa-bracket ; bracket about x and y
- check splme check of segment group

checklyst) ; and list that must be checked to verify track
() other ﬂavors included must be placed inside this parentheses oo

9 ' ©kersten/kak
:gettable-instance-variables ; allows send to ask for current value
:settable-instance-variables ; allows send to set.the variables
:inittable-instance-variables ; allows variables to be set at creation

)

The deﬂ?avor (define fiavor) funczlon is followed by a list of vanables which may be ini-

’tlalrzed in more than one way. Following these is a place to mlx in other flavors, and =

' ﬁnally there are several options listed to apply to the variables. Flavor instances may be
'mmahzed via two simultaneous avenues. First, one can specify a default 1mt1ahzatlon
"for mstances of a flavor durmg the defflavoring function. Second, -one can initialize
instance variables when the flavor instance is created, the latter may supplement or over-
ride the default initializations. In this example, the flavor called tnode contains eight
- variables. Two of these variables take default instantiations that will occur in every
instance of the tnode flavor. The time variable will be automatically set to 1234 and the
type will be set to ’track. However, this default initialization can be overridden by the
_inittiable variable which was set as a flavor optlon :inittable-instance-variable. Thus for
_example if the creation statement was: B

(setq "t‘rack (fnake-instance tnode :time 2222 :threat ‘true))

then :‘the initial value of time would now be 2222 and the initial value of threat ’true. In
the: latter case the unspecified default value of nil is changed to ’true and in the former
case the default value of time, 1234, is overridden to be 2222. In the creation of abstract
data objects, data consmrcmrs, such as make-instance shown here, are procedures which
make data objects [26]. So the flavors have a simple yet powerful set of constructors.

- Flavors also have natural selectors and mutators built into their instantiations.
‘Selectors extract information from data objects and mutators alter information in the data
objects. Both of these mechanisms are embedded in the send operator which sends the -
flavors (objects) messages to perform operations. Flavor operations are optional and are
declared in our example by specifying the gettable and the settable options in the instan-
tiations. The selecter gets information by sendmg a message to the object with the vari-
able name. For example, (send track :time) will return the current instantiation of time in
the tnode flavor instance called track. The mutator uses the same format except now the
- variable name has ":set-" prepended to it, so (send track :set-threat "false), alters threat
-~ variable of the track instantiation to ’false. The object oriented nature of the flavors is a
real advantage for obtaining and altering the contents of the BB nodes. '

*As we mentioned before, a most useful feature of flavors is that they are method- '
bearing objects, each méthod being invoked by sending a suitable message to an object.
The operation specified in the message and the object combine to uniquely define the
v procedure that is be used to execute the method. Before- and after-methods are executed

10 - - «kersten/kakf

before and after specified operatxons such as :set- or :init. - Usually, these two types of ”
methods are useful for massaging the data received, and storing information in other‘ :
instance variables. Since an after-method may be invoked after initializing or altermg
critical variables in a flavor instance, it is possible to have such specialized methods
-report the changes to a queue or another portion of the BB. In an event-driven BB the
changes are reported to an event queue and in a goal-driven BB the changes are reported
to either a buffer in a centralized monitor or directly to the goal side of the BB. Since
RTBB is a goal-driven blackboard, any changes in the data are reported directly to th'e'
goal panel of the BB by after-methods associated with flavors defining the data objects. - -
One can think of these after-methods as constituting a distributed monitor. The methods
may -also be visualized as being part of the KS’s or as a shared utility of these KS’s for
" reporting changes in the data. The reader should note however that there do exist alterna-f
" tives for designing monitors. For example, polling techniques along with change bits or
variables in the flavor instantiations could be used to create a centralized monitor. As
another alternative, KS’s themselves could report all the changes to a centrahzed momtor
smce KS’s are the only entities allowed to alter the blackboard.

The following defmethod is an example of a method which places a node in the goal
panel after the time variable has been set by an after-method.. The time variable is
updated as new return information percolates up to the track level.; In this new goal node,
the variable source will be set to-the name of the flavor 1nstant1at1on which invoked the
method, which in this case is the internal identity of the tnode whose time change caused
the method to be invoked. The variable action will be set to ‘change1 to reflect that the
goal was caused by changing the time value, in contrast with, for example, ‘a goal node
‘that might be created by sub-goaling. ‘The variable rype takes the value:‘track for obvi-
ous reasons and the variable fime inherits the updated time value The. variable threat
inherits its value from the tnode that caused the method to bi *}nvoked The variable
snode is a pointer to the snode that supports this track node. Fmally, the vanable

The reader who is alrea_dy somewhat familiar with RTBB may be puzzled ‘by this vdefmethod
since it creates a track level goal node from a change in the track level on the data panel. Usually,
a track level goal node will be created by the addition of a segment on the-data panel, the purpose
of the goal being to-either merge the segment with one of the existing tracks or to start a new track
'with the segment.. However, RTBB also needs facilities for creating track level goals directly from
changes in the tracks because of the need for verification and possible subgoaling if the track is a
threat, meaning if the average velocity vector representing a track is aimed directly at the origin of
‘the: coordinate system. The verification consists of making sure that all the segments are similar in
the polynomial sense discussed in Section 4. When a track fails verification; -subgoals must'be "
created that check each segment against the average properties of the track, and if a ségment is
- found 10 be too different, it must be released from the track and allowed to paruclpate in or initiate

a new track. The defmethod shown here could lead to the formation of KSAR s that could
- produce thesc subgoals SRR o

As w1ll be explamed in Section 3, radar returns, in the form of hits, are; ﬁrst grouped mto
segments, which in turn are then grouped into tracks. In RTBB, each segment i§ represented by a

11 : kersten/kak

duration will be instantiated to ’one-shot; this instantiation causes only one attempt to be
made for this goal node to be satisfied. The reader should note that in the syntax of a def-
method, the symbolic name following each variable, such as :snode, is the name of a
~variable from the flavor to which the method is attached, unless the symbolic name is
-'quoted in wh1ch case that symbolic name is used directly.

| »;_; this defmethod pushes a node into the track level of goal panel_"

.”

(defmethod (tnode :after :set-time) (value)

(sendpushgoal -
(make-instance ’bbevent
:source self :
:action ’change
:type ’track
:time time
:threat threat
:snode snode
:duration ’one-shot)
tracks))

~ The ﬂavor instance is placed on the goal side of the blackboard at the track level by the
macro called sendpushgoal which pushes a goal onto the track level using a send mes-
sage.. The sendpushgoal macro is just a procedure which pushes an mstance of the
bbevent flavor onto the track level of the goal panel. It looks as follows:

= this‘'macro pushes an object onto the level on the goal.B'B' '

(defmacro sendpushgoal (Ob_]CCt level)
‘(send ,level :set-left :
(push ,object (send level :left))))

- So the set of goals on the track level of the goal BB is just a stack of these flavor

instances. This method is invoked after a change has been made to the time variable of

the track node on the data panel. This occurs whenever the tracknode is updated and the

e »message which mggcrs this change will look somethmg like (send tnodeptr set-ume (list
o newttme)) :

When only one or two methods are associated with each node type then it’s a simple

- matter to write one method for each variable. However, as the' number of vanables asso-

c1ated w1th each node on the blackboard increases, this becomes cumbersome. Seth

: n,ode called snode. .

2 Bl kefs‘e“/kak

Hutchmson suggested usmg a MAacro to generate these automatlcally and actually wrote a :

macro which did this. The version which follows is a modified vers1on of that macro
des1gned for a goal dnven BB [16] i o

-3, This macro generates a flavor and the corresponding aftér-demons
;; which report to the goal panel any changes to the bnode, snode or .
~ ;;.tnode levels on the data panel. The defmethods of the type embedded
;; in the macro constitute a distributed monitor.

.
,n

-

-

(defmacro newﬂavor (flav level var-hst var-sub 1nher-11st &rest optlons)
(cons ’progn v -

(cons
(gdefﬁavor Jfav var-hst mher-hst @opuons)

(
(worklyst var-sub (cdr worklyst))
(op (car worklyst) (car worklyst))

“(mlyst nil)
. ((null worklyst) (return mlyst)).
~ (setq mlyst o
(cons ‘(defmethod (ﬂav :after (keywordlze (concat :set- op)))
(value)
(sendpushgoal
» (make-instance ’bbevent
: - :source self
:action ’change
itype type
“:variable ’,op
:coord coord
:number number
:time " time
:duratron one- shot
level))
mlyst)
) '

.o
S

oo
.2

In thxs macro, a flavor is created of type flav with variables var-llst and 1nher1tance list
inher- list i.e., with all the variables and options normally avarlable with any flavor. In
addition the variables contamed in the var-sub list will have update methods automa,u-
cally generated by the macro code. So if any of these variables i is altered, the automau—»
cally constructed after methods push goal nodes onto the proper levels of the goal panel

3 "kcrstch/kak-

To construct these methods, the macro generates a program which returns the list of

- methods created in the do* loop. Once the macro is finished it-executes the progn state-

ment it has constructed which includes the creation of the flavor and the associated -
methods which report changes to the goal panel. ‘Note the macro keywordize is a pro-
cedure which is used to intern the :set-op name into the keyword package so that the
,ﬂavors features of Franz recogmze this. operatlon Here is an example of newflavor’s use.

) ;;;snode isa segment level node

o C e
RV £

R ‘(newﬂavor snode tracks(:
S type ; 1S segment : ' E
time. ; this is the time of last coord
~ coord ; note this is a coordinate list
“number ; number of points the the segment
cpa ; closet point of approach a vector
. linear ; (position velocity) : -
- tnode ; ptr to a track node '
threat ; true or false - updated by tnode :

- (number)

0

gettable=1nstance—vanables
“.:settable-instance-variables
: v:inittab1e4instance—vaziables)
v Note here the segment data node has been set up so that when the number of points in thc
- segment is changed, a goal node is pushed onto the goal side of the BB at the track level.

- To generate equivalent code without this macro, one would first need to define a flavor

using the dqﬂiavor functlon and then addto it the following method.

(defmethod (snode :after set-number) (va]ue)
(sendpushgoal
(make instance *bbevent
: :source self
- .:action *change -
- itype type
:variable *number
. :coord coord o
- :number number .
:time time . .
S :duratlon one-shot)
- tracks)) :

" The reader might have noticed that some of the variables, such as source, action, etc., do
‘not appear in the newflavor call, while they do in the defmethod call. The reason for this

uo o Kesenkak

is_that the definition of newflavor automatically sets these variables “to certain fixed
- values. The newflavors macro is an illustration of the power of macros and the ease with-
- which one can create an 1mpressrve array of methods in a BB shell ’ '

CAE each level of the blackboard the nodes are ﬂavor 1nstant1at10ns Each level 1s
1tself alsoa ﬂavor mstantlatlon For example . ' ‘

. 3; This flavor serves as a template for constructlng the
5 abstractlon level of the blackboard. :

: (defﬂavor bblevel (

: up. ;; : for higher level in BB hlerarchy
left ;; for the goal BB panel '
- right ;; for the data BB panel , S
down) 3 for the lower level in BB h1erarchy

0
gettable—mstance-vanables
:settable-instance-variables
:inittable-instance—variables) :

The followmg program statements create the segment level of the blackboard and then
set the pomters held in the up and down variables to link the levels to one another.

| (setq segments
(make-mstance "bblevel down nil :left nil :right nil))

"n B

z’s’end segments :set-up tracks) ;; links segment level to u_"acklevel
. (send segments :set-down hits) | ;; links segment level to hit level. .

The right variable is a data panel level since this variable will be instantiated to a list of
- data segment nodes. The left variable allows us to refer to the corresponding levels on
the goal panel, Since the variables are allowed list instantiations, both the right and the
left variables serve as storage sites for the data and goal nodes, respectlvely, at’ d1fferent :
levels of the BB -- at the segment level in the above example. In effect the lists that
become 1nstant1at10ns for the right and left variables act as queues or stacks of ﬁavors :
dependmg upon their queueing discipline. This is convenient when one w1shes to apply
some function on the entire set of nodes since one may mapcar the funcuon onto the hstj
- simply obtained via (send segments rlght) message. Fig. 1 illustrates the left, rzght ,
organization of the BB, the right panel storing the data at dlfferent abstraction levels, and o
the left panel storing goals, agam at different abstractlons, for the purpose of control ‘
Further advantages of flavors will become more evident in the descnptlon of the black-
board 1tself ' : : ~

.f'l‘5 o - ' | . icersten[kak-

v Although RTBB is constmcted ennrely of ﬂavors, as mentloned bcfore the van--
’ ables in the flavors may be instantiated to any s-express1ons, such as.lists. Any list may -
be used as a queue or a stack. Here, we use the word queue in a generic sense and asso-

ciate with 1t three components: its arrival process, its queuelng d1s01p11ne and its service

o mechamsm The arrival process is charactcnzed by an mteramval time' dlsmbunon for

items stored in the queue. The service mechanism is composcd of servers and-the service
* time dlstnbuuon note there can be multiple servers (e.g. processors) catering to a queue.
: 'The queueing discipline describes how an item is to be selectcd from those in the queue.
~ Items arriving at a queue may be cnqueued (stored) until scrwced or the items may be
‘blocked (discarded) if no server is free at that time. This makes it possible for us to use
'~ the generic term queue to mean any queuemg system such as a LIFO queue (stack), a '
» FIFO queue, or some prioritized queue. For an extenswe d1scuss1on on queuemg con- -
e cepts, thc reader is referred to. [4] : ' :

6 kerstenkak

3. REPRESENTATION OF ABSTRACTION LEVELS

) - As shown in Frg 1, the RTBB cons1sts of two panels, each contamlng three abstrac-
tlon levels. The lowest abstraction level in the data panel consists of bnodes for beam
nodes or h1ts for h1t nodes A bnode is deﬁned as follows ' :

' ;; deﬁnrtion,ofhit node or beamf node_ o

(newﬁavor bnode nil

- type ; type is hit . .
time ; time stamp assocrated with coordinates

coord ; list of the coordinates assoc with time
number number points in the list

0
:gettable-instance-variables
_:settable-instance-variables

1n1ttable-mstance-vanables)

~ Note that the newﬂavor macro has been used to define the bnodes although in thls cas€ no
: methods will be automatically generated since the fourth argument is an empty list. For 3
the same reason, the second argument is set to nil. Coord is a list of coordinates (x,y,z)- o
of a radar return. The vanable fime is the time-stamp of the return which is the 1nteger ‘
- representing the number of clock units since the system started. ‘Unit time intervals are
usually chosen to normalize out the actual system parameters. The vanable numberis
the actual number of distinct returns recelved at the time instance correspondmg to the.
time stamp. The node type is "hit" and specifies the abstracnon level. For this black-,
board, hit nodes and beam nodes are treated the same. In practlce, a beam of 1nformat10n
is more pnmmve than a hit since the latter is a time mtegrated sequence of beams Hlt .
 nodes are generated every n-th clock cycle where at present n is set to four. - S

_ A method may be used to refine the data before reporung changes For example,“ ‘
before reporting the change to the goal blackboard, the following method first calculates

~ the number of radar returns, enters that in the bnode and only then reports the change o

Alternately, number could have been’ set directly. This method i 1s a tr1v1a1 rllustratlon of b

the: data modlﬁcatlon capabllltles of the monitor methods ‘

: an after-method which first updates the number
> of returns and then reports to the goal panel

.
9y

17 L kersten/kak

(defmethod (bnode :after :init) (value)
(setq number (length coord)) :
(sendpushgoal
(make-instance ’bbevent

:source self

:action ’change

itype Chit

:variable ’coord

:coord coord

:number * number

:time = time

:duration ’one-shot -

y

- segments)

This method would be triggered after the creation of a hit or beam node -- for example

(make-instance 'bnode :coord coord). Here the variable coord is instantiated via the

built-in methods specified by the inittable option in the flavor deﬁnition of bnode. Note

~ that the inclusion of ’:init’ in the first line of the defimethod ensures that the method

would be executed upon the creation (or, initiation) of an instance of bnode on the data

~ panel and upon intialization of any of the variables in that bnode. The goal created by -
g makmg an instance of the flavor bbevent represents the desrre to extend exlstmg seg-.

ments usmg the data in the bnode. S

‘A most mterestmg aspect of the above method is that it alters the bnode whose crea-
'tlon causes the execution of the method. The bnode is altered because. the variable
. 'number now has an instantiation which is equal to the length of coord. This’ may seem at -
_variance with the usual viewpoint that in an ideal conceptualization of a BB architecture,
_only KS’s should be allowed to alter information in the BB database. Actually, what we
~ have accomplished with the above method is not at a great variance from the ideal
because that aspect of the defmethod which updated the value of number could have been
‘ mcorporated in the XS that created the bnode in the first place. One can view this data
refinement aspect of methods either as constituting extensions of the KS’s or making the
- KS8’s more distributed. One advantage of such methods is that. they s1mp11fy the codmg'
. of mterfaces between the BB process and the KS’s.

The next level of abstracnon on the data panel is the snode whlch stands for seg-

. mentnodes. Segments are defined for convenience and represent a small number of hits

(a ﬁxed number chosen by the designer) that can be adequately modeled as linear seg-
- ments,- By fitting linear segments to the returns, we reduce the sensitivity of the system
~ to noise spikes.. Segments that are approximately- collmear are grouped together to form
 tracks; more on tracks later. A track will not be started unless a segment is longer than a
- certain minimum number of points, usually two. In addition, if the most recent hit in a |
» segment is older than 10 time umts, itis automatlcally purged from the BB database Ifa

118 EEREE kersten/kak

‘track.consisted of only one segment.and that segment was purgedf'du‘e to the time receney ’
-requirement, the track would also be purged. ‘Segment nodes-are defined as follows: ‘

(newflavor snode tracks (-
-+ type ;issegment
time - ;this is-the time of 1ast coord
coord ;note this is a coordinate list
v -number number of points the the segment
cpa - ; : closet point of approach a vector
linear ; (position velocity)
tnode ; ptr to a track node _
threat ; true or false - .upd‘aited by tnode

(number); the vanables that tngger areport

0
gettable-mstance-vanables
:settable-instance-variables
inittable-instance-variables)

Note that the variable coord is a list of coordinates associated with a given segment, and

not with a given time instance as in the beam nodes. That is, the coordinates are grouped

via spatial continuity, vice temporal continuity as in bnodes. The variable fime refers to

the sequence of times corresponding to the coordinate points.. So both #ime and coord are

stacks implemented as lists. The cpa is the closest point of approach calculated by an

after-method via the position and velocity information contained in linear. The variable
linear is instantiated to a pair whose entries consist of the position and the velocity com-

- puted from the two most recent hits in the segment. Note that the variable cpa is instan-

 tiated to the perpendlcular distance from the origin to a straight line that is an extension
of the two most recent hits in the segment. The variable threat is true if the instantiation

of cpa falls within a small region around the origin, otherwise it is false; the extent of thls

- region is € times: the last-coord, the comparison threshold being dependent upon the dis-

tance. since greater directional uncertainty goes with with more distant craft (this point
will-be explained: further in under the discussion on the GETTRACK KS). For a given
segment, while the computation of a value for cpa occurs when the segment node is-ini-

tiated, determination of whether tireat is true or false: does not occur unul a- track levelj_v
node is updated with the segment. ’

The hlghest data: abstraction: consists:of track nodes As menuoned before, a‘track
‘ ,node is grouping of: approximately collinear- segments. Two segments belong to the- same
track if the following two: conditions: are: satisfied: First; we must’ have cos’ ~16>0.9;
where:8-is- the angle-between:the: velocny vectors. for'the two segmerits;-the’ veloc1ty vec-
tors being:contained in the:instantiation-of:the variable linear for the segmeiit: ‘nodes;: and;

second; the: faster: of the two craft must be able-to reach:the other in'one uiiit time. The
- second: condition - is: made necessary- by the fact: we do not wish: to groups- together’r

19 . Kkersten/kak

segments for aircraft flying parallel trajectories that are widely separated. In general,
there will only be a single track node for a single formation of aircraft, no matter how
large the formation. Of course, if a formation splits into two or more formations, the ori-
ginal track would split into correspondmgly as many tracks The track nodes are defined
as follows :

. :: tnode is of form track node -- the flavor holding info on the track ~ll¢vle’l_ :

n'

_ i (defﬂavor tnode ('
' . type thetypels track -
time ‘_ ; the last time stamp making the track

last-coord ; latest position of the track
last—velocity ; latest velocity of the track
threat ; interval straddles zero

- snode ; backward pointer list to segment node -
cpa-bracket ; bracket aboutx and y v
check ; spline check of segment group

v checklyst ;and list for track verify and break
0

~ :gettable-instance-variables
- .:settable-instance-variables
- ;:inittable-instance-va,riables)

‘The vanable type will always be mstantiated to the atom track. The vanable time is
instantiated to the time-stamp of the most recent hit in any of the segments composing
the track. The variable snode is a list of pointers to the segment level nodes supporting
the track. The variables last-coord and last-velocity are ihe latest average position and
 the velocny vector associated the track; the averaging is performed by taking a mean of
~the position and velocity vectors associated with all the segmenis in the track (the posi-
“tion and velocity vectors for each segment are contained in the instantiation of linear).
The variable threar is instantiated to t through an after-method by taking a disjunction of
the threat values of all the segments in the track. The variable cpa-bracket is equal to the
intervals along x and y, each intervai being the union of the cpa intervals associated with
the segments in the wack. If threat is set to yes, a goal node is deposited at the track level
whose job is to conduct a spﬁin@‘ check of cach segment in the track to confirm thai the
_ groupmg of segments is coherent, where coherence is measured by the similarity of poly-
- nomial cocfﬁcnems associated with fitting sphnes to the segments; this work is done by
GETSPLINE KS. If the grouping of the segments is found to be coherent, the variable
" check in the tnode in the database is set to t, and if not, it is set to fail. Setung check to
_ fail causes the formation of another track-level goal node at the next update of the tnode,
) “this goal node is rccdgnized_ by the rule-based planner which deposits a bunch of

20 . ' kersten/kak

.<subgoals for alternative grouping of': the segments into possibly multiple tracks.

, ‘The abstracuons for the ;goal nodes are identical to the abstractions for the data ‘
;nodes, as:shown in Fig. 1. The ‘goal nodes are: «defined as flavor instances built up as mix-
 tures of two flavors. The main flavor is bbevent and mixed with this is the flavor goal-

-;attnbutes which :contains duration and ;position : atmbutes for the goal nodes. The dura- - -

stion refers to the length ‘of time the g@al is allowed to stay on the blackboard. For exam-
ple, a one-shot- duration means there is:only one .opportunity for the planner to test a node
‘against the Tules 10" see if it matches -any- «of the antecedents; if the match fails, the goal
node is discarded. Most goal nodes are of one-shot type; for example, the goal to update
a tnode with new . segments. ‘Orily -one KSAR for ithis goal node, which contains a pointer
1o the segment that should be used for updating, will ever be formed by the rule-based
planner. The goal node is jpurged s - soon as the KSAR is formed. Therefore, if this
KSAR fails to satisfy the goal :node, the goal node will not be there to re-attempt updat-, ’
ing of the tnode with the:same segment. : '

In addmen 1o the -one-shot type, R1BB dlso contains a recurrent goal node. A
~‘recurrent goal node is disabled after it satisfies the antecedent of - specific rules, and then.
is re<enabled :after a KS i fired from ‘the subsequently generated KSAR. Recurrent goal
‘nodes are never ‘removed from ithe blackbeard ‘So they -act much like synapses having a
» Elatency penod before they may ‘be fired : agam ‘The job - of the recurrent goal node that is
currently in RTBB i is'to: ﬁrst locate -0ld - segments, these -are segments whose most recent
Teturns-are between 3 :and 10 time units old, and ito ‘attempt to join these segments with
v %ifnor-.,e rtecent segments. Suppose the:database at the segment level contains an snode com-.

- sposed of the following bnodes (bly,..........-b15) and fet’s say the time stampof bl; is 7,
.of ‘bl 8, and so ‘on.. -Also, :assume :that ‘there wexists another -snode made up . of
(b24,b2,,b23) where the time stamp of 23 iis 3. Then the job of the recurrent- goal node
will be to'merge the two: ‘segments ‘since ‘th 'ume stamp of b23 is-s0 close to that of . bll
'"The‘ac‘tual merging, camed out "byfhe’ GE-SEGMENTS K8, wil ' ’

’bl segment is w1th1n an. acceptable 01rcle

TIZh'C‘ sgoal ‘nodes at :all three levéls are created f?.sb‘ makmg Liﬁstanee_s ':Qf'%thc ;fdl‘loyv;ing
‘bbevent flavor mixed in ‘with :thie g ‘ :
‘ 'i-between thc data and the ‘goal] ‘ancls

. iinsactual ;practice,-an; snedeas
. g #hat'form :the :snode. "The - actusl
,bnodes are; d:scarded as: soon as: themrétums«are assxgned;to prevent sthemifrom: everWhelmmg ithe -

BB database.

therefore their similarity is a convenience.

, 5 The goal node ﬂavor called bbevent Wthh is the basw |
' ﬁ i goal blackboard node ' . ,

(defﬂavor bbevent (. R :
source ; generating node
“action . ; level this event affects
- typ ; hit or track etc
 variable ; this is variable tnggermg event
- time may be list or number '
coord - ; list of coordinates -
‘number . ; number of coordmates 4
- threat for tnodes .- . N
-snode " ; pomters to snodes -
‘ pattern thls is hst used for pattem match :

)
(goal-attnbutes) ".; mixed in ﬂavor
gettable-mstance-vanables "
- :settable-instance-variables .
.inittable-instance-variables)

© .3 The mixed in flavor representing the goal node atiributes,

: ‘;'(defﬁavor .
goaﬁ-atmbutes(. T A
. duration ; time latency of the goal node -
- position ; poSiﬁon relative to coord
goalptr ; pointer to other goal nodes
- conditions ; preconditions to fire L
‘ ksat’pﬁ“ : pomter to ksar which is queued

()

gettable-mstance-vanables
:settable-instance-variables
sinittable-instance-variables)

B '_-For those goal nodes which are created by aﬁ‘ér-niethods ’executed“in tesponsé to néw

~entries on the data panel, the vanable source is instantiated to the internal 1dent1ty of the

“data panel node. On the other hand, when a goal node is created by the subgoahng pro-
- cess, source is instantiated to the internal identity of the tnode which caused subgoaling
to take place. The variable acnon is usually 1nstannated to change, as can be seen in the -
. definition of newﬂavor to reﬂect the fact that a goal node was created by a change in the
L 'data panel ‘The vanable type is set to: the level at Wthh the goal node is created :

22 , L 'ke’r,stcn,/kak

_ meamng that it is 1nstant1ated to elther h1t segment or track “The vartable vartable is

- instantiated to the name of the variable for which newflavor creates an after-method for
o repomng to the goal panel; this can be seen in the definition of newflavor in Section 2.

. The variable time is the time-stamp of the data panel node whxch tnggered the formation

- of the goal node; if a goal node is intiated by an snode, then time would be mstanuated to

~alist of time-stamps. of the hits constituting the snode. If a track level goal node is ini-

tiated by a tnode, then time is set to a smgle wvalue whxch is the latest tlme-stamp associ-

ated with the track. For a goal: node at the: segment level the variable coord is instan-
- tiated to the list of coordinates of the. hits that have to be assigned to segments. When a

track level goal node is launched by atnode, then coord is left uninstantiated. For seg-

ment level goal nodes, number is set to the number of hits in the radar return that are yet

to be assigned; for track level goal nodes, it is left uninstantiated. The mstantratlon for

threat takes place by mechamsms explained before; basically this variable would be set

to t or nil or the list of pointers correspondmg to the snodes that compose the track The

' vanable pattern is not used at this txme : Lo *f‘ :

In the flavor goal-attributes, the vanable duratlon mdrcates whether the goal node is
one- -shot or recutrent; its instantiations are therefore *one-shot or ‘recurrent. The next
three variables are not being used at this time and have been included for possible’future
use.. The variable ksarptr is left uninstantiated for one-shot goals; for the recurrent goal, it
is 1nstant1ated to the internal identity of the KSAR that is generated by. the .goal node.
~ While: ‘ksarptr maintains this instantiation, the recurrent goal node is mhlblted from

launchmg another KSAR. The instantiation of ksarprr is reset to nil by the termmanon of ‘
’ the execution of the MERGE-SEGMENT KS. S S

Given that the reader is now fam111ar with the organlzatlon of RTBB - we w111 nowv

reiterate, hopefully in a more: precrse manner the overall method for solution formatlon
All the radar returns or hits generated on a scan of the search space are given the same
time stamp. The list of hits occurring in one scan is contained in a flavor on the hit level
of the data panel shown in Fig. 1. Arrival of a new list of hits triggers the dlStl‘lbllted
“monitor to place a goal node on the segment level of the goal panel This goal node
represents a desire or a request to use the new list of hits to update existing segments If
- no existing segment can be found to match a particular hit, a new segment is started w1th] ,
the new hit. e ‘ ' : :

= The segment nodes on the data panel are supported by the hit nodes The segment
‘nodes . are, in turn, grouped mto track nodes. In order to drive the segment nodes toa -

E _hlgher abstractlon level, meamng push segments into tracks, one needs to express this

_desire by estabhshmg goal nodes at the track level of the goal panel These, goals pomt to -
segment nodes which need to ‘either. extend existing tracks or estabhsh new tracks |
v ATracks are not established from segments unless the segments are at least two pomts long
(actually any length threshold may | be chosen since thls is a constant parameter) A track

23 _ , R kersten/kak »

L may be thought of as an extended segment with the segments prov1d1ng some. buffering

- against spunous noise resulting in false segment starts. However, a track is more than an B
extended segment; it may represent many segments so that if several craft are in tight for-
" mation, these craft would be represented as one track, w1th the track bemg characterized
by an average position and velocity vector. |

» To process a track goal, a KSAR is generated via the nodes on the track level of the
goal panel. The KSAR generation is accomplished via the rule base when rule3 is fired.

" This rule requires that the node be of type "segment have more than one data point and

" have an action variable instantiated to "change”. If all these antecedents are satisfied

then the create-ksar function is called and a KSAR is created to extend a segment into a
track or extend and update an existing track. The function create-ksar uses the informa-
tlon inthe goal node to select the correct flavor instantiation for the KSAR.-

, “-In general, a goal can only be achieved by activating a KS via a KSAR. Soa goal
) ’node must _activate a KS directly via an appropriate KSAR, or indirectly through °

~ -subgoals generated from the goal. The priority of the KSAR generated by a goal node
- will determine its position within the KSAR queue, as further discussed in Section 5.’

24 | - v:ke'rst’en/kak.

- 4. KNOWLEDGE SOURCES

There are six knowledge sources (KS’s) that are part of RTBB. Each KS isa spe-
cialist solving a small portion of the problem and each concentrates on a blackboard
Ob]CCt The followmg is a list of these KS’s and a short descnptron of thelr purpose

‘ HIT GENERATION (GETBEAM)

This KS is written in C and simulates the trajectories for the various aircraft. Tra-
jectories are generated by using Bezier curves in 3-space. A Bezier curve is specified by
a trapezoid formed by four vectors, denoted by ry, ry, ry and r3 in the following formula

_in which r(t) represents the position of an aircraft at normalized time u:

| r(w)=(1-u)’ro+3u(1-u)?r;+3u? (1-wry+u’r;

~ where it is assumed that time is normalized such that O<us<1 for the entire flight of the
craft. Every nth clock cycle (currently n=4) a goal node is placed on the hit level of the
goal panel, the goal being to fire the GETBEAM KS. A KSAR is then is formed directly
- from this goal node by the rule-based planner. The scheduler uses the KSAR to invoke
the GETBEAM KS. For the case when a single craft is being tracked, the KS will create
a bnode composed of r(u) and its associated time stamp and then deposit this bnode on
the hit level of the data panel. The step size of the trajectory thus generated is controlled
by the step size of u which is stored as a constant within the C program. When more than
one trajectory is desired for sunulaung the flight of a formation, a separate Bezier curve
must be specified by designating its 4x3 parameter matrix for each craft in the formation,
and upon each call the GETBEAM KS must spit out the coordinates of all the craft in the
formatron :

| ASSIGNMENT (GETASSIGNMENT)
After a set of radar returns with the same time stamp is received, one of the follow-
ing actions must be taken: ‘ ’
1. extend an existing segment,
2.‘ . start a new segment,
3. - merge two existing segments,
4

 terminate an existing segment.

The GETASSIGNMENT KS handles the first two cases. Mergmg is done by a separate
- KS and termination of atrophied segments handled directly by the rule-based planner.

25 FE ‘ kersten/kak»

The problem of assrgmng hits to segments is akin to the cons1stent labehng problem .
‘m Wthh one seeks to assign a set of labels to a set of objects, each object taking one and
~ only one label. Although, clearly, a metric is needed to compare “hits agamst the seg-
‘ ~ments -- the metnc could be a function of how far apart a hit is from a segment spatially -

} ‘_'and temporally -- assigning h1ts to segments is made complicated by the fact that after B

. one such “assignment has been made, that segment is no longer avallable for the other '

~ - hits. Our current solution to this problem uses a branch and bound approach 1mple-

_ 'mented via a best first-search algorithm; see [23, 25] for 1mplementat10n of best-ﬁrst
B search Further dlscuss1on on the complexmes of the assignment problem can be found in

= ﬁ*ﬁA’éit FORMATION-(GETTRACK)

ThlS KS groups segments or linear fits. by average traJectory More pre01sely, the

KS groups together segments which are close in both coordinate and velocity space; such

_groups ‘are then represented by "average" tra]ectorles called tracks. "Close" in coordinate _

" 'space means within one time unit of travel for the fastest craft. That is, if the fastest air-
.. craft. turned d1rectly toward the other craft, the former would 1ntersect the latter within
‘ l ; __one time unit. The velocrty vectors are "close" if they are parallel or nearly so (i.e. the
- . _cosine of the angle is greater than 0.9) Other conditions may be added to’ ensure that the

veloc1ty Vectors are more s1m11ar This KS is wntten in Lisp and complled usmg L1szt _

, Th1s KS also evaluates the threat of a track to the region near the: origin by using a
. »—,threat assessment algorithm. The two quantltles needed for this are the current position:
- and the cpa of the craft, both variables defined in the tnode flavor. The cpa, which stands -
for * closest point of approach,” is computed by extendmg the velocity vector of the air-

- .craft and then computlng the closest distance from the origin to this extended vector An
. -error vector is formed from the difference between the’ cpa and the current position, that §
is, by usmg s(cpa-—_ﬂ where £=0.1. The use of € allows a confidence region to be formed -
. at the cpa point for each coordmate axis separately. If for any . of the axes, the conﬁdence
‘ . reglon 1ncludes the orlgln then the craft is consrdered to be a threat

- SPLINE INTERPOLATION (GETSPLINE)

If the GETI'RACK KS determmes that a parucular track does 1ndeed pose a threat

to the ongln a venﬁcanon of the ¢ ‘soundness” of the track must be 1mmed1ately carried -

**out, since it is possible for the average parameters associated with a track to giveTise to a
‘threat while the actual trajectories within the track are non- threatenlng or even diverging’
. away from the ongln The GETSPLINE KS does this verification by ﬁtnng a spline to

each of the trajectones w1th1n a track and companng the trajectones on the basis on the - -

«j »;spllne coefﬁcrents Th1s KS “written in C is based ona sphne routine in- [10 11] and»

26 Co N ' kersten/_kak

- 'obtams a polynomlal expressmn for the track between sample points based on the COOI'dl-
: _nates and txme stamps held in the segment nodes. ¢

‘ MERGE SEGMENTS (MERGE-SEGMENTS)

Th1s KS detects moderate length gaps in the trajectory data and then attempts to

: .‘“'extend the older segments to the appropriate current segments, thus creatmg longer and

- 'more estabhshed segments. Of course, if a segment stays faded for a long time (in the

current 1mplementat10n more than 10 clock units) the segment i$ eventually removed
from the BB." ‘

A MERGE-SEGMENTS KS goes into action if the time at which a segment was last
" updated and the beginning time of another segment is greater than 3 clock uits and less

than 10. For time separations of 3 or less, the GETASSIGNMENT KS is capable of

assigning hits to segmenits directly. If an older segment is eligible for merging on the

 basis of this time-window criterion, the older segment is extended in time and space and
then its predicted position is matched with the more recent segment to see if merging can
be carried out successfully.

- The MERGE-SEGMENTS KS is 1mplemented within the BB process 1tse1f since it
~ requires extensive access to the data nodes on the BB itself. (If shared memory were
available on the BB, one could implement the KS as a separate process. ,)_ RTBB uses a
‘recurrent goal node, at the segment level, to monitor and schedule the MERGE-
SEGMENTS KS, implying that a goal to invoke this KS is placed permanently at the
segments level of the goal panel. This goal node is an instance of the flavor bbevent with

goal-attributes mixin; in this instance, the variable fype is set to ‘merge-segments’, the

variable duration to ‘recurrent’ and the rest of the variables to nil. When segments
satisfy the rule to activate the MERGE-SEGMENTS KS$, a flag pointing to the generated
KSAR is established in the goal node. As was stated in Section 3, this flag inhibits any
 further activation of the KS until the end of the execution of the KS: Once the KS has
been activated and its execution completed, the flag is removed and- the rule base can

>

: satlsfy the goal again. In this manner, the MERGE-SEGMENTS KS is run on a continu- -

ing basis and at a low priority. Example 4 in the appendlx demonstrates how the merge-
segments KS works. :

THE SEGMENT VERIFY KNOWLEDGE SOURCE (VERIFY).

Th1s KS is used to venfy ‘that a segment still matches a partlcular track after the

" GETSPLINE KS has failed the track 1ndlcat1ng the segments are no longer cons1stent

" Th1s KS, implemented as a part of the main BB process, merely examines each seg-
‘ment composing the current track to determine if it still satisfies the 1n1t1a1 formation
condmon The manner in ‘which this is done is by subgoalmg One subgoal 1s generated

27 S . kersten/kak

, for each segment node in the track by the rule base, the subgoal being for the BB to. ver- -

ify that the segment belongs ‘to the track. If a “segment fails the venﬁcatron test, the,
" pointer to the: segment from the track and the pointer to the track from the segment are
removed. The segments thus released can reform new tracks at a later time.

The test condmons for venfymg whether a segment belongs to a track are the same
as’ those needed to form the tracks in the first place. The current position of the segment

o must be within one clock unit of the maximum velocrty craft. 'In addrtlon ‘the angle 0

:‘between the traJectones must have cosme"le >0.9. During this venﬂcatlon ‘period, the

. GETSPLINE KS, which initially. detected the improper grouping of segments, is

suspended This is accomphshed by markmg the track node check vanable as fazled and
: ’havmg the GETSPLINE KS check that condrtlon before the KS can be ﬁred

Thls ends our mtroductlon to the various- KS $ in the system To put. the KS sina

_perspectlve, the GETBEAM KS dnves the blackboard with radar retum samples The

GETASSIGNMENT KS maps these samples mto linear approximations of tra]ectorles .

B 'and the GETTRACK KS further groups these linear- segments into tracks. The GETSP-

LINE KS checks that the final trajectory grouping makes sense, especially if the average

- parameters associated with it are such that the track is considered to be threatemng The -~ -

'VERIFY KS is used to break out tracks that fail the GETSPLINE KS test; the segments

: . thus released are allowed to form tracks later. The two KS’s, GETSPLINE and VERIFY

constltute a ‘backward type. of reasoning. And lastly, the MERGE- SEGMENTS KS
‘ attempts to maintain track contmulty across fades in traJectones : ‘

28 ' S kersten/kak

‘5. BLACKBOARD CONTROL

. Ideally, the control of the blackboard should be opportunistic in nature, i.e. choose
" the KS which advances the solution the most. However, the design of the "optimum"
‘choice is ultimately the product of the programmer who presumably has an understand-
ing of the application domain. In RTBB, data events are mapped into goal nodes, which
in turn are mapped either into subgoals or KSAR’s. The KSAR'’s are enqueued into a

~ priority queueing system. The scheduler then cycles through the KSAR queues and - -
selects KS’s to fire.

We will now. briefly describe various possible approaches to the representation and
processing of KSAR queues. Then, at the end of this section, we will discuss the current -
implementation in RTBB of the KSAR queueing system. Ideally, the KSAR priorities
should be dynamically determined based upon the threat the craft present to the air space
represented by the origin of the coordinate system. For dynamic prioritization, the
planner must contain rules for assessing the relative severity and immediacy of a threat. -
* Furthermore, the scheduling of the threatening tnodes must allow the other goal nodes in

the system to be serviced often enough so that any future threats would not be ignored.
Evidently, designing a planner and scheduler for such dynamic prioritization is a com-
plex task and is not addressed in RTBB. We have chosen a simpler approach to.K‘SAR ‘
prioritization which has the virtue of allowing for the main BB process to fork off KS
computations while the main process attends to other chores. The KSAR prioritization in
RTBB is accomplished by making a separate KSAR queue for each KS and then visiting
each queue, implemented with a FIFO access discipline, in a cyclic fashion, as shown in
Fig. 2. The main consequence of this prioritization is that every goal node gets equal _
priority through its KSAR. In other words, the priority accorded a goaf node does not
depend upon its abstraction level, as is the case with some other systei_ns. .This may
appear excessively simplistic, but we felt that at this time there was not_enough
knowledge available about the radar tracking problem to permit a more sophisticated
_ approach

_ ~The rule-based planner for mapping goal nodes into KSAR’sis a forward chammg
system Here is an example of a rule from the planner:

;> Rule 5 creates a KSAR for invoking the MERGE-SEGMENTS KS 1f
;; appropriate conditions are satisfied by the goal node. -

- (setq rule5
. ’(rule merge-segments
Gf
(and
(equal (send gnode :type) 'merge- segments)

. KSI

K2

KS3

o

FIGURE 2. This figure depicts an '_ideal KSAR queueing system.' .

30 . . - kersten/kak

(null (send gnode :ksarptr)) ; no merge-segment ksar active
(setq rvarl (ﬁnd-oldest-segment))
(setq rvar3 (find-most-recently-started-segment-with-length-gt-y 1))
(setq rvar2 (abs (diff (car (send rvarl :time))
(car (last (send rvar3 ume)))))) .
(and (> rvar2 3) (<=rvar2 10)) ; is time separation nght” S

;3 --- rule attempts to patch fades in signal ---

(then .

(progn ; this creates ksar and sets ksarptr to that ksar
(send gnode :set-ksarptr (create—segmcnt-merge-ksar gnode)) »
(format t ""% 5555555 CLOCK ~a 55555555555555555555 " clock)
(format t ""%$$$$$ rule 5--- MERGE-SEGMENTS --- ﬁrcd $$$$$")

D))
- This rule states that:

IF - the goal node is of type "merge-segments”

and there are no KSAR’s fired from this rule :

and the difference between the end time of a segment and the start time of another seg-
ment is between 3 and 10 time units, '

'THEN - create a KSAR to merge the two segments. -

- Note that that this rule is disabled by the send gnode statement in the consequent of the
rule by assigning the ksarptr to point to the generated KSAR, since to fire the rule the
ksarptr must be nil. The format statements are merely for the purpose of printing out a
history file on a BB run. The first format statement will print out a line like "555555
CLOCK 7 5555555555" indicating that rule 5 was fired at clock time 7. The: second for-

mat_statement would similarly print out on a new line "$33$$ rule 5 - - MERGE-

SEGMENTS -- fired $$$$$$"

- The above rule creates a KSAR by a call to create- -merge-segment-ksar function
_ which simply first makes an instance of the KSAR flavor and then pushes this instance
~into the KSAR queue. This function is fairly easy and is shown below

.;; This function creates the merge-segments ksar

(defun creatc-merge segment-ksar (gnode)
(sendksarpush
(make-instance ’ksar
:priority 1
:ksar-id "merge
ks nil _
:boot ’(merge-segments)

38 Kersten/kak

‘ :cycle clock |
:context gnode

ksarq)
)

y | The following is an example of a KSAR created by a call to the above function. |

;; An cxé.mple KSAR that seeks to invoke MERGE-SEGMENTS KS

<ksar 1074948> is an instance of flavor ksar with instance variables:

priority: 1

ksar-id: extension
ks: nil

cycle: 40
trigger” nil

~context: <bbevent 1071572>
preconditions: - nil

boot: - (merge-segments)
nodeptr: nil

channel: nil
messenger:. nil

command: nil

- arglyst: nil .

anslyst: = nil .

preboot: nil

prelyst: nil

~ This KSAR is constructed by making an instance of the following flavor, togethef with
-the mixin ks-protocol whose purpose should become clear when dlscuss distributed
- KSAR’s. :

(dcfﬂavor ksar (o
, priority © ;; static priority now
ksar-id ;; used at present _

ks - ;; ks to be fired
cycle ;; cycle created
trigger

context: ;; arguments to the functlon boot
. precondmons ;> undefined for now
“boot ;; the function call for the ks
‘nodeptr ;; can point to any node :
~ channel . ;; nil no transmission, -1 ready-to—read
R | ready-to-wnte

3 | Kersten/kak

"~ messenger ;; the i/o handler for this ksar

- (ks-protocol)
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

~In the above KSAR, the variable priority needs some cxplaining_'. We said earlier that a -
k scparatc KSAR queue is created for each KS. This is our goal in this research project and

~ _has not been fully achieved yet. At this time in RTBB, we have separate KSAR queues

for. only the distributed KSAR’s, these corresponding to the GETBEAM and GETAS-
SIGNMENT KS’s. The queue for the GETBEAM KS is called beam-queue and the one
for the GETASSIGNMENT KS assign-queue. All the atomic KSAR’s are enqueued
separately; this queue is called the atomic-queue. While the beam-queue and the a551gn-
queue are FIFO, as they should be, it would be unreasonable to impose the same queue-

mg discipline on the atomic-queue. The instantiation of the variable priority reflects the -

‘ prlonty that should be accorded to the KSAR shown in the atomic-queue. -

The variable ksar-id is instantiated to a symbol that reflects the general activity of
the KS that will be invoked by the KSAR -- in this case the activity is 'merge’. The vari-
able ks will usually be instantiated to the previous activity that resulted in a data node
‘whose addition to the data panel gave rise to the goal node which led to the present
KSAR. The reader should note that both these variables are not 1mportant to the proccss- o
ing of KSAR’s and have not been used in a consistent manner. B

'~ The variable cycle is instantiated to clock time at which the KSAR was created. The

variable. trigger also is not important to KSAR processing and should be ignored. The
variable context is instantiated to the pertinent aspects of the context at -“thc*tirrie’of the
- KSAR creation. The instantiation for this variable can be as simple as just the internal
identity of the bbevent that caused the creation of the KSAR; or, in other casés, can also
“include information such as the latest time assoclated with an snode, thc number of h1ts
of which the snode is composed, etc. s

The vanable preconditions is not used at this time. Perhaps at a futurg'datc this vari-

- able could be used to ascertain that at the time the KS is fired the conditions that gave

rise the KSAR are still valid. For such usage, preconditions would be set to the minimum
conditions that must hold for the KS to be fired for satisfying the goal node that gave nse
to the KSAR. ' : '

The variable boot is 1mportant and is 1nstant1atcd to the name of the KS which the -
KSAR must invoke. The actual execution of the KS takes placc by making a function call
composed of the name of the KS followed by appropriate arguments. The variable
nodeptr is set to the internal identity of the goal node that gave rise to the-KSAR. The
- other variables in the above KSAR will be explained after we introduce the notion of a

33 kersten/kak

‘_dzsmbuted KSAR. .

" When a KSAR of the type shown above is selected and its correspondmg KS exe-
"cuted then dunng the KS processing the control resides completely in the KS. In other
'words the main BB process simply waits for the KS to finish up before focussing on any
" .other” act1v1ty We will call such KSAR’s atomic. In RTBB, atomic KSAR’s have been
-~ used for most of the KS’s. ‘One advantage of an atomic KSAR is that because it allows
‘the KS to wrest control away from the main BB process, it 1mpllcltly freezes the context.
“In other words, since the mformatron on the BB can not alter during the execution of the
KS, you don’t have to worry about the 1napp11cab111ty of what might be retumed by the
- KS. Clearly, if the information on the BB was allowed to change dunng the execution of
the KS,itis enurely possible that what is returned by the KS may not be relevant to the

o new state of the BB.

()ne maJor dlsadvantage of an atonuc KSAR is that it does not perm1t explonatlon o

bof parallehsm that is usually assomated with blackboard problem solvmg As we men-: o

Vuoned in‘the Introduction, one main attraction of using the BB paradigm is that the KS’s,

S they represent independent modules of domain knowledge, should lend themselves to

. parallel invocation. Although from the standpoint of enhancing performance parallel

E executions of KS’s are highly desirable, the reader beware, however. ‘Parallel execution
R also demands that attention be paid to the elimination of mterference between the KS’s,

' in'the sense that one KS should not destroy the conditions that must exist on the BB for

© the results returned by another KS to be relevant Researchers have proposed methods to

) deal w1th these difficulties; the methods. consist of either lockmg regions of the BB data-

base or tagging dlfferent nodes with the identities of the KS’s that need. them [13] There
is also the -opinion that one should not bother with the overhead assocrated with region
5 lockmg or data tagging, and should simply. let the BB resolve on its own any inconsisten-
) 'mes that might arise due to mterfemce between the KS’s. '

A In addition to atomic KSAR’s, in RTBB we also ‘have another type of KSAR’s that

. 'perrmt parallel invocation of two of the KS’s; we call the latter type distributed KSAR’s.

The KS’s that can be 1nvoked via dlstnbuted KSAR’s are GETBEAM and GETASSIGN-

7 'MENT ‘An instance of a distributed KSAR is made from the same flavor that is used for

o an atomtc KSAR. A most important charactenstlc of a distributed KSAR is that it allows :
- the BB database to interact w1th the KS on a polling basis. '

. The KS correspondmg to a distributed KSAR is executed in three stages The ﬁrst |
' .'stage sends a command to the KS. contammg all the information needed to execute the

- K8 The format is just a list which represents a function call w1th all the 1nformat10n as
: '}'arguments The KS then just eval s the list. The second stage occurs when the system

' . does a non- blocking read of the KS port to see if the K is finished. A non- blocking read

- first checks the port to see if there is data available before actually readlng the data. If we

had used a regular read as for example via read or tytpeek functlons, and there was no -

.34 , - kersten/kak

data available at the port, the used function may either wait indefinitely for the data to
appear or do something unpredictable, but that is not what we want. What we wished was
that we be able to poll the KS every few clock cycles, check for whether or not the KS
has returned the results, then read the results if available. In the absence the results, we
- wanted the system to move on to other tasks, to return to the KS ata later time. Hence,
the reason for non-blocking read. The non-blocking read function takes the KS results
‘and stores them in the KSAR. The third stage occurs when the BB takes the answer
returned from the KS and modifies the BB accordingly. Between stages the BB is
actlvely working on other parts of the problem. The result is a speed up due to the paral-
" lel processing carried out by the system.

An example of a dlstnbuted KSAR which seeks to invoke the GETASSIGNMENT
KS follows

‘<ksar 1074284> is an instance of flavor ksar with instance variab‘l'es:

priority: 1
© ksar-id: segment
©ks: hit
cycle: - . - - 40
trigger: o change
" context: - ((time nil) (number <bbevent 1075036>) &)
: precondltlons , empty
boot: (post-assign-hits)
- nodeptr: - <bbevent 1075036>
stage: ' 1
messenger: ~ <messenger 1072204>
- command: getassignment -
arglyst: . (C((8 93.54559999999999 6.019744 0.0)

(8 5.52 93.54559999999999 0.0)
(8 93.54559999999999 5.52 0.0))

"((9 92.67895 6.1425 0.0)
(9 6.1425 92.67895 0.0)
(9 92.67895 6.642136 0.0)))
anslyst: nil -
preboot: (pre-assign-hits)
prelyst: ~ ((<snode 1073184> <snode 1073144>

<snode 1072948>) & & & 9)

This KSAR is created by making an instance of the ksar flavor shown earller “The ﬂavor
ks-protocol that is a part of the KSAR flavor definition is presented below:

...

””n”nnnn”nn’nnnnnnnnnn7nn”nn”nnnnnnv
.
'n

s .ThlSv isa mlxm;ﬂavor called ks-protocol

...

35 " kersten/kak
: (defflavor ks-protocol

~command " ; the input function
arglyst ; the argument list
anslyst ; answer list ‘
preboot ; command to start up function after read

. prelyst argument hsa for reboot after rcad

:gettable-instance-variables
- :settable-instance-variables
:inittable-instance-variables

AsWilI, be evident from the following definitions of the variables, the mixin flavor is only
useful for a distributed KSAR. Since all KSAR instances use the mixin, the reader might

“wonder why use the mixing ~ks~protocolj'at_ all; after all, the variables in the mixin could
have been incorporated in the definition of the ksar flavor. The reader should note that
even when a mixin is always used for defining objects, its separate definition allows the
definitions of objects to be expanded incrementally as the software is being developed.
Also, one can take advantage of the fact that mixin associated methods will be mvoked in
a certain order depending upon the order of appearance of mixins, etc.

“We w111 now explain the nature of the variables in the above distributed KSAR. We
’ ‘have already explained the nature of the variables from priority through nodeptr in con~ .
nection: .with atomic KSAR’s. We will define the other variables. The variable -stage is
1nstant1ated to either 2, 1, -1, or 0. When the instantiation is 1, the KSAR is in"the first
' stage, meaning that it is ready to send a command to the KS that would initiate the exe-
cution of the KS; the command is taken off the variable command and its arguments from
arglyst After the command is transmitted to the KS, the instantiation of szage is set to
-1, Wthh is a signal to the BB process that it should start polling the KS port for new
results using non-blocking read. Afier the results are read off the KS port, they are depo-
~ sited in the KSAR at anslyst and at that time the instantiation of stage is changed to 0.
The instantiation of O for stage causes the function that is at boot, in this case the func-
tion is post-assign-hits, to take the results out of the KSAR and deposn them at the
appropriate place in the BB database, at which time the KSAR ceases to exist. It is obvi-
ous that stage is being used for sequencing in the correct order the initiation, execution,
and- results-reportmg phases of KS operation. In the above KSAR example, the varxable

——
* The usage of boot in a distributed KSAR is dlffetent from that in an atomic KSAR. In the latter,

o , baot held the function name for invoking the KS, a job now carried out by the instantiation of

: command This inconsistency in the usage of boot and some other variables is owing to the ’
- -manner in. ‘which RTBB has evolved The aulhors apologize to the readers for any resulting
B} f_confusmn

36 o _ o kersten/kak

arglyst already has an instanti_ation, so KSAR 'processin'g‘ can begin in stage ‘1_. While in

_ some cases ‘arglyst instantiation can be generated easily at the. time the KSAR is formed =~

" by the planner -- this is the case when a KSAR ‘is formed for invoking GETBEAM since -
- the arglyst here is nil -- in other cases, some computational effort may have to be
: expended for constructmg the arguments. In the latter cases, arglyst is synthesrzed by
: addlng yet another stage to the three stages we have already mentioned. This addltlonal ‘
- stage is specified by instantiating stage to 2. When the scheduler sees this instantiation, it
- puts out a function call which constructs the arguments, the function call being held in
~ the variable preboot. In the above example, the instantiation of arglyst was generated by
~‘a call to the function (pre-assign-hits) during the stage_ when stage is set to 2. The pre-
- boot function, in this case pre-assign-hits, not only synthesizes arguments for the func-
- tion call to the KS but also puts together, for diagnostic purposes, a list of all the BB
database items that were used for the arguments The database items used are stored in
the variable Dprelyst. ’

- A note of explanation is in order for the exact nature of arguments under drglyst in
the above example. The function pre-assign-hits examines all the snodes i in the' BB data-
base and yanks out of each snode the most recent hit. This list of these most recent hits is
 the first of the two arguments under the variable arglyst, the time-stamp correspondmg to
this argument is 8. The second argument under arglyst, corresponding to time-stamp 9, is
- the list of hit nodes that must either be assigned to the segments, or allowed to form new

segments. The GETASSIGNMENT KS then tries to assign each new hit to'a segment |

based on the spatial and temporal closeness of the hit to the most recent entry in the seg-
ment. ‘ _ o : |
 The actual activation of a KS, for both the atomic and,distribtrted KSAR’s, is car-
ried out by sending a write command to a flavor which acts as an I/O handler for the BB.
The write command is synthesrzed by the following method that is deﬁned for the ks-
protocol ﬂavor s

5 ThlS method writes to the input port of the KS whichisthe - ‘... -
;; same as one of the output ports of the BB process.

(defmethod (ks-protocol swrite-ks) () , DR
.. (format t "COMMAND sent to ks "a™%" (cons-command arglyst))
~ (format (send ; get output port name from messenger flavor =
(send self :messenger) ; get messenger name from varlable
:write-port) ""a"%"
(cons command arglyst)) ; form functron call

Note that this method is nerther an after-method nor a before- method The method that is shown B
‘here is a primary method that is invoked by sending the ’ wme-ks message. to the ks-protocol
ﬂavor :

37 . kersenkak

: "‘(send self :.se'_t~’stage -l) ; change State of ksarto 'read’

: "Essentlally 1t isa complex format statement Wthh ﬁnds the correct mput port to the KS _

o (wh1ch is the same as an output port of the BB process), constructs the command

sequence from the vanables command and arglyst in the KSAR and sends the command

: , :.to the - port. Before exiting, the method also changes the state of the. KSAR stage to reﬂect '

. _that the command has been sent to start KS execuuon and that the KSAR is now ready to
i poll for an answer usmg the non- blocklng read. - '

We have not yet explamed the purpose of the variable messenger in the dlsu'rbuted

e “KSAR example we showed above. To understand the function of this variable, note that . -

o we need to assoc1ate with each KS an I/O. handler' the handler should contain informa-

» tlon such as the ldentlty of the mput and the output ports associated with the KS. 1/O
,handlers are created by makmg mstances of the messenger ﬂavor shown below '

| '_' i _ThlS 1s the ﬂavor messenger .
L in?(defﬂavor messenger 5 these should be named after ks s

PR wnte-port ; the output port to the process o
w . write-fd the output port file descriptor - -
..+ -read-port ;thei input port to the process -

.. read-fd. the input port file descrlptor
pid the process 1dent1ty

0 R
gettable-mstance-vanables
- :settable-instance-variables
< :inittable-instance-variables

. The variables write-port and read-port are instantiated to internally generated symbolic

, name’s that designate the two ports; the symbolic names are returned by a **process’ call
: tlike:‘: I i S R

*.. " (*process path t t)

o Thls call will return

(#<port from-process> #<port to~process> 13067)

»where the symbolic name #<port from-process> is the output port of. the unix- process R

"whose processor id is 13067, the unix process in this case being path’. S1m11arly, #<port
:to~process> is the symbohc name of the mput port of the process, which calls up the unix

: » -process representing the KS. A reader not too familiar with the hsp-umx mterface might
U ’_»want to know that a call 11ke (*process "path) would actually run the unix process ’path’.
N : ,The varrables write- fd and read fd are 1nstant1ated to the file descnptors for the two ports;

38 ' . kersten/kak

these file variables were good for diagnostics and are not being currently used for any-
thing. The variable pid is instantiated to the process id of the process; this zvariable also is
not used at this time. The variable messenger in the distributed KSAR shown previously
is instantiated to the identity of that instance of the messenger flavor that is assoc1ated
with the KS that the KSAR seeks to invoke. '

- We will now address the subject of how the KSAR’s are queued in the current
implementation of RTBB. As mentioned before, to maximize the potential for parallel
implementations of the KS’s the system should construct separate KSAR queues for each
KS. However, the current implementation has separate queues for only the GETBEAM
and GETASSIGNMENT KS’s, called beam-queue and assign-queue, respectively; all the
other KSAR’s are enqueued into a single queue called the atomic-queue (F1g 3). Each
KSAR queue is an instance of the following event flavor.

(defﬂavor event (
number -
(mask’(11))
(atomic-queue ’())
(beam-queue ’())
(assign-queue ’())

0

:gettable-instance-variables
:settable-instance-variables
- :inittable-instance-variables)

Note the mask represents the status of the KSAR’s that are curreritly at the head of the
queues‘ The list that is the instantiation of mask has a status value for each of the
distributed-KSAR queues, and the interpretation to be given to each value in the list is
the same as that given to the instantiations for the variable szage in a distributed KSAR.
In the defflavor, the initial mask values have been set to 1 for head KSAR’s in both the
- beam-queue and the assign-queue, meaning that if any KSAR’s are found at the heads of
the respectlve queues, they are in stage 1. Recall that stage value’of 1 corresponds to
write stage in which commands are written to the KS’s.

A single instance of the above flavor is made, the resulting object being called
- ksarq. The variable atomic-queue of this object, initially a null list, is instantiated to the
list of all the atomic KSAR’s, the variable beam- -queue to the list of all the distributed
KSAR’s that seek to invoke the GETBEAM KS, and, finally, the variable assign-queue
to the list of all the dlstrlbuted KSAR’s that seek to invoke the GETASSIGNMENT KS.

The RTBB scheduler cycles through the three queues. It looks at the head KSAR in
each queue and services it in a manner that depends upon whether the KSAR s in the
atomic-queue or one of the other queues. For the atomlc-queue the KS is threaded into

ATOMIC - QUEUE

~ ASSIGN - QUEUE

FIGURE 3. This is the actual KSAR queueing system
currently employed in the RTBB.

40 . . kersten/kak -

the BB process before visiting the other queues. On the other hand, for the beam-queue
and assign-queue the KS activation is executed in stages as described earlier so that the
BB does not wait for the KS to finish executing. '

The following is an example of ksarq during execution.

<event 1071376> is an instance of flavor event with instance variables:

number: _ 3

mask: (1 nil 2)

atomic-queue: N (<ksar 1074140> <ksar 1074212>)
beam-queue: nil

assign-queue: (<ksar 1074284>)

Here the mask represents the status of the atomic-queue as 1 which does not mean any-
thing for this queue, nil for the beam queue which is empty and 2 for the assign-queue
- which means that the KSAR is ready for the preboot function to be run. The variable
number is instantiated to the total number of ksar held in the queueing system and is
updated at every change by a defmethod.

We will now make comments about how the clock is used in the system. Each
cycle of the scheduler consists of going through all the three queues. Each cycle of the
scheduler is followed by an invocation of the planner, which maps all the previously
unattended goals into either KSAR’s or sub-goals. One cycle of the scheduler followed
by one invocation of the planner constitutes one control cycle, and one control cycle con-
stitutes one clock unit. When the BB process is first started, the main control loop first

deposits a goal at the hit level; this goal for generating new hits is placed at the hit level =

every fourth clock unit. The scheduler now looks at all the queues, first examining the

atomic-queue, which it finds empty. The scheduler then examines the beam-queue, where

it finds a KSAR generated by the planner from the hit-level goal. It services this KSAR

‘ according to its stage status value as stored in the mask variable of ksarq. Finally, the

- scheduler looks at the assign-queue, which it finds empty also. The process then repeats
as deplcted in Fig. 3. R

. The main control loop that alternately runs the planner and the scheduler is shown
: below :

...

,,,,397,”’,’,,”7”””’,’””’7’”7”"7”’,’,’,””’7’7’7’7”””,"
o
¥y

: _.;'; this is themam loop for driving the BB _

..

. ’,””””’”,7’,”””’7””,””””’”””’9,,,7”’””””””””

o (defun cloop 0

41 | 7 kersten/kak

(do() ;putinto infinite loop

~ (go-for-it) ; allows you to choose the number of control cycles
(clock-update) ; updates the clock variable and place a goal at the
; hit level every fourth clock unit. It also places
; a purge-segments goal at the hit level every fourth
; cycle. ,
- (plan-goals) ; maps the goals into ksars, it calls the rule-based
; planner
(scheduler) ; runs the scheduler which cycles through the three
; KSAR queues in ksarq.
) '

The comments explain the nature of each function in the main control loop.

42 ‘ kersten/kakr

6. CONCLUSIONS

We hope we succeeded in conveying to the reader a sense of how Lisp object-
~oriented programming can be used for constructing a blackboard. In practically all the
literature we have gone through, we have not encountered much discussion on the pro-
grammings aspects of a blackboard. We hope this report has rectified that deﬁmency, if
only to a slight extent. :

Evidently, our blackboard was meant more as a learning and tra1n1ng exercise.
Therefore, our efforts should be judged less from the standpoint of whether we succeeded
" in designing a system that could actually be used for controlling a radar system and more
from the standpoint of whether we succeeded in reducing the problem to manageable '
proportions, without trivializing it, and whether we succeeded in elucidating adequately
‘the important details of our implementation. - :

Although, the RTBB as discussed in this report does work, many aspects of it could
be further refined. For example, one of future goals is to implement a separate queue for

each KS; that would enhance a parallel or multi-processor implementation of RTBB. We

would also like all the KSAR’s to be of distributed type, which would make it necessary
that we somehow "split" those KS’s that are currently processed via atomic KSAR’s into
pre, write, read, and post phases The RTBB rule-based planner is rudlmentary at this
point. A much more knowledgeable planner could be created to better focus the control.

As was mentioned in the previous section, a clock unit in RTBB consists of the
scheduler taking one pass through all the queues and one invocation of the planner. This
definition of a clock unit makes the programming easy, but it does make the exercise
‘somewhat artificial. If the blackboard had to run by a real clock, provisions would have
to be made to buffer the radar returns; the BB could then take the hits o_ut- of ‘the buffer
whenever it was allowed to attend to that task by the scheduler. Real time implementa-
tion 'of RTBB remains a future goal. ' |

7. ACKNOWLEDGEMENT

Seth Hutchinson’s expertise in Al programming was invaluable and our many dis-
cussions with him about design decisions provided a sounding board which resulted in a
much better product. e

43 v S kers_ten/kak |

8. REFERENCES

[1] K. M. Andress and A. C. Kak, “Evidence Accumulation and Flow of Control in
o ‘a Hierarchical Spatral Reasomng System " Al Magazme Vol. 9, No. 2, 1988 PP
75 - 94. .

'v€[2] K. M. Andress and A. C. Kak, The PSEIKI report -- Version 2 Techmcal Report_

- TR-EE 88-9 School of Electrical Engineering, Purdue Un1vers1ty, 1988.

v [3] Y.Bar-Shalom and T. E Fortmann, Trackmg and Data Assocmnon, Academlc -

. Press 1987. ‘ : o

- [4]+ R.B. Cooper, Introduction to Queuemg Theory, Second Ed1t10n North Holland " -
- 1981. _ o

,f[S]b D. D. Corklll A Framework for Orgamzattonal Self-Design m Dtstrtbuted
Problem Solving Networks, PhD Thesis, U of Mass, Feb 1983. ;

‘[6] D. D -Corkill, et al., GBB: A Generic Blackboard Development Systems AAAI: '

. Conference, 1986, Philadelphia. S S

_[71 LD. Cralg, The Ariadne-1 Blackboard System, The Computer Journal Vol 29

. No.3, ‘1986, pp. 235-240. v

[8] R. Englemore and T. Morgen Eds., Blackboard Systems,‘ Addiso,n—Wes_lcy,v ,

1988

[9] L:D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, “The Hearsay-1I
- Speech Understanding System: Integratlng Knowledge to Resolve Uncertamty,",
ACM Computtng Surveys, pp. 213-253, 1980.

'[10] I. Faux and M. Pratt, Computational Geometry for DeStgn and Manufacture
© Ellis Horwood lerted 1979. S

[11] G. Forsythe M. Maicolm and C. Moler Computer Methods for Mathemattcal_ .
Computanons Prentice-Hall, Inc., 1977.

' [,12] Franz Lisp Reference Manual, ECN No. 750, Purdue_University, March, 1987.

o [13] A.R. Hanson and E. M. Riseman, VISIONS: A Computer System for Interpret-

_ing Scenes. Computer Vision Systems, Hanson and Rlseman eds., Academrc
Press NY, 1978. '

’[14] B Hayes -Roth, ‘A Blackboard Architecture for Control " Artificial Intelli-
gence 26, 1985, pp. 251-321.

[15] F. S. Hillier and G. J. Lieberman, Introduction to Operattons Research,
Holden Day,1980 Chapter 18. ' :

44 . " kersten/kak

,[16] S. Hutchmson, Personal Commumcauon Summer 87.

[17] V. Lesser and R. Fennell, ““Parallelism in Artificial Intelligence Problem Solv—
' “ing: A Case Study of Hearsay I1," IEEE Trans. on Computers, Vol C-26, No 2,
Feb. 77, pp 98-143. :

[18] V Lesser and D. Corkill, ‘‘Functionally Accurate, Cooperative, Dlstnbuted Sys-_' -
tems," IEEE Transactions on Systems, Man, & Cybernencs Vol SMC 11 No.
1, Jan. 1981., pp81-96. Lo _

[19] V. Lesser and E. Durfee, Incremental Planning in a Blackboard-based Problem' R
Solver, AAAI - 86, Philadelphia. '

~ [20] M. Nagao and T. Matsuyama, A Structural Analysis of Complex Aerial Photo-
graphs, Plenum Press, New York, 1980.

[21] H P. Nii et al,, Signal-to-Symbol Transformation.: HASP/SIAP Case Study, The"
Al Magazine, Spring 1982, pp 23 - 35.

[22] H. P. Nii, ‘‘Blackboard Systems The Blackboard Model of Problem Solvmg'.
- and the Evolution of Blackboard Architectures," Af Magazine, S.umm_er, 1986,
pp 38-53. :

[23] H. P. Nii, *“‘Blackboard Systems: Blackboard Application Systems, Blackboard'
. Systems from a Knowledge Engineering Perspecuve, Al Magaggne _',_Augu,st.
1986, pp 82-106.

[24] N. J. Nilsson, Principles of Artlﬁaal Intelllgence T1oga Pubhshmg Co Palo | ,.
- Alto, CA., 1980. e

[25] M. A. Williams, Distributed, Cooperating Expert Systems for Slgnal Under-
‘'standing, In Proceedings of Seminar on Al Appltcatzons to Battleﬁeld 3.4- 1 to- :
3. 4 -6, 1985.

‘[26] P, H Winston andB K. P. Horn, LISP, Second Edmon Addison- Wesley, 1984

[27] R. Worden, Blackboard Systems, in Computer Asszsted Decision Makmg Edlted
byG Mitra, North Holland 1986, pp. 95-106. S e e

435 '» o Kersten/kak

- APPENDIX A

We w111 now present four examples to illustrate the workmgs of the RTB black-
- board ‘The examples are at increasing levels of difficulty, startmg with the case of a sin-

T gle track formed by a single craft in the first example; progressmg to two stable tracks

. formed by three separate craft in the second example; further progressrng to- the case

) ‘where -initially three craft form a single track, but eventually form only two tracks as one
craft breaks away; and ﬁnally, deallng with the problem of fadlng tracks m the last
example :

: Example 1
In thzs example there is a smgle craft Most of the ﬂavors are expanded out to zllustrate'_

. the detail of each step.

The first example 1llustrates the BB solution formation for a smgle trajectory The '
: data which drives the trajectory is based on Bezier’s curve. For this curve the trapazoid

~ . which deﬁnes the space curve is given by the four points indicated in Flgure 4. Note that -
’ the origin is one of the points so the trajectory will go through the origin. The ongm in
o these examples isa spemal point, it represent not only the origin of the coordinate system

~ but also center of the air space around a hypothetlcal airport. The startmg pomt of the_‘

- single trajectory is (100,0,0).

The data nodes on the h1t level (the bnodes) are initiated by penodrcally placmg a
o goal node on the hit level of the goal panel. The goal node causes the generatlon of a
~ KSAR which causes the hit generation KS GETBEAM to fire. Recall from the BB Con-
~ trol section, that this KSAR is distributed although no preboot functlon is necessary since
the functlon call is so simple. The preboot may be considered as a precondltlon type of
function which freezes the context and extracts the variables needed by the KS. The
- preconditions variable is never used a mlsnomer arising out of development process
The KSAR looks as follows: :

. <ksar 1072368> is an mstance of ﬁavor ksar w1th instance vanables

- - priority -~ 2 .
- ‘ksar-id: newhit
oo kst 0 o add
: ‘:‘cycle 1- '

-trigger: clock
context: - none - .. -
preconditions: - - empty -
. boot: (getbeam)
~nodeptr: - nil :

100 —p—
90 4
80 -
70

_'e'o-f
50 il

4 DEFINING TRAPEZOID

-—

FIGURE 4. Single trajectory generated via Bezier's curve with every tenth
point shown. Defining trapezoid shown with cutve.

47 | , - kersten/kak_

. -"channel 1 '
. messenger: <messenger 1072044>
‘command: fire

- arglyst: nil
anslyst: nil
'preboot nil

prelyst: nil

The boot is the C coded KS called GETBEAM and its only command i isa tngget' "fire".
The KSAR causes the formation of a data node to be placed on the hit level of the data

panel The data node looks as follows:

<bnode 1072668> is an instance of flavor bnode w1th instance vanables

type: hit
~time: 0

coord: ((100.0 0.0 0.0))
number 1 '

o Note the return count is given by number and it occurs at time 0 at the coordmates coord :
The node type is specified by type.

The placement of this hit node on the data panel causes the placement of a goaf '
» node on the segment level of the goal panel. This goal node looks as follows: '

C <bbevent 1072808> is an instance of flavor bbevent with mstance vanables -
"’ source: <bnode 1072668> A

.- action: change
- type: hit
- variable: coord
o time: 0
_ coord: (10000000))

© number:

threat: ml

snode: ~ nil

‘pattern: " nil

- duration: one-shot
position: nil

goalptr: nil -
conditions:. nil
' eksarptr nil

' Thls goal represent the desire to match this data to the nearest segments. The duratlon of B
the goal node is one-shot meaning the rule base gets only one pass to satisfy it, otherwise

 the goal node is removed from the goal panel. The source is a pointer to the data node e

’ vresponmble for the creation of the goal node by the distributed monitor.

" The rule base causes the. segment goal node to generate a KSAR to match the hit

* data to a nearest segment, if there is one. Otherwise, it creates a new segment. Again, the
ksar-id generally describes the dnvmg activity, i.e. segment formation. The KSAR for
this KS is distributed with a separate preboot function which forms the arguments for the
blackboard formation. The boot function is really the "postboot” function that is

48 E , " ketsteh/kak

" impropeﬂy named since its use changed while the blackboard system eilolved ‘and its

‘ name is too embedded to easily change. The command variable carries the main KS call

. function. It looks as follows: _
- &ksar 1072876> is an mstance of flavor ksar with instance vanables

© priority: 1

. ksar-id:: segment
“ks: - hit

cycle:4

trigger: change
_context: ((time nil)(number <bbevent 1072808>) &)
preconditions: . empty
boot: (post-assign-hits)
nodeptr: - <bbevent 1072808>
channel” 2 '
messenger: <messenger 1072204>
command: getassignment
arglyst: nil '
. anslyst: nil
-+~ preboot: (pre-assign-hits)
“prelyst: nil

~ The GETASSIGNMENT KS which is fired by this KSAR matches the- ségmems to the
data and the post-assign-hits function places the nodes on the data panel at the segments
level. ThlS segment node looks as follows: '
<snode 1072948> is an instance of flavor snode with mstance variables:
type: segment .
time: (0)

coord: ((100 00.00.0))
number: nil

cpa: nil

linear; nil
tnode: nil
threat* nil

Most of the vanables are initially nil since the segment is not long enough; however thls

v w111 fill in at a later time when the segment becomes part of a track. In fact two time - - -

umts later the snode looks as follows:

<snode 1072948> is an instance of flavor snode with instance vanables, L
' type: segment R '
- time: (1,0).
- ecoord: ~ ((99. 24254999999999 0.7425 0.0) (100.0 0.0 0. O))
" ‘number: 2.
cpa: (49.00339911339883 49. 99006688005953 0. O)
linear: ((99.24254999999999 0.7425 0.0). :
- (-0.7574500000000057 0.7425 0.0))
trode: nil -
threat: nil"

At the formation of a segment data node, a demon from the distributed monitor creates a

a9 | vaersten/kak”
track goal node wh1ch represents the des1re to form a track from the segments The goalv

e node looks as follows: .

: .»~<bbevent 1073816> is an 1nstance of ﬂavor bbevent with 1nstance vanables
..source: " .. . <snode 1072948>] » : .

. action: - . change
. type: Segment :
vanable "number A ,
Soootme: 0 (10)
“neoord: ((99. 24254999999999 O 7425 0. O)
o (10000000))
O ‘:ﬁ.ia-‘n'umber:.', o 2
. threat: il
.'snode: © .. nil
. “pattern: - nil”-

. duration: - ’one—shot
“position: . nil -

~goalptr: - nil
S -condltlons nil* .
P ’-fksarptr nil -

Note here that a data segment node was the source of this node and the coord is the two .

: : consecutrve coordmates which are used to form the segment and the track The time
R vanable 1s the sequence of times Wthh support the formation of the track L

P Agam the rule base creates from this track goal node the followmg KSAR whose:

o _'purpose is to form tracks from the segments

»_<ksar 1074640> is an mstance of ﬂavor ksar w1th instance vanables " b

... -priority: .0
./ -ksar-id: " track -
oo kst segmentv
: .cycle 16 -

Lo octriggers - »change : ‘
" context: ~ ((time ml)(number <snode 1072948>) &)
preconditions: ‘empty :

. . .boot: - (assign-tracks) . . -
© . nodeptr; <snode 1072948> - = .
~ “'chanpel: 1. - o

/' messenger: nil
. command: nil = .
‘. arglyst: nil

. "analyst: - nil
“...preboot: ,,nil .

e : prelyst: - nil -

Note that thrs KSAR is an atomic KSAR unhke the prevrous KSAR on: the assrgnment of -
hlts The KS places a track node on the data panel at the track level Thls node looks as
follows v : : :

<tnode 1074228> is an 1nstance of ﬂavor tnode w1th 1nstance vanables g
type track - o i :

50 | kefsten/kak

time: ¢))
last-coord: (99.24254999999999 0.7425 0.0)
last-velocity: (-0.574500000000057 0.7425 0.0)

. threat: nil
snode: (<snode 1072948>)
cpa-bracket:((43.97948402473871 54.02731429295895)

(45.063561019205357 54. 91482356806549))

check: “nil
checklyst: nil

This data node time variable contains only the current time. The last-coord and last-
velocity are the corresponding position and velocity. The variable snode contains a list of
pointers to the segments which form the support for the tracks. The confidence region
which is called cpa-bracket causes the threat variable to be marked if it mcludes the ori-
gln For the node above, the track does not appear as a threat - yet!.

The above nodes are the initial formation of the solution track. The solutit;ri track
structure is a tree with the base of the tree being the track node and the branches being
the segments nodes. In this example there is only one branch, so the solution tree is very
simple. The track coordinate history contained in the tree expands as the track grows in
- length. As an example, consider a segment node at a later time

<snode 1072984> is an instance of flavor snode with instance variables:'
~ type: segment v

time: (43210)
coord: ((96.8832 2.88 0.0)

(97.68385000000001 2.1825 0.0)

(98.4704 1.47 0.0)

(99.24254999999999 0.7425 0.0)

(100.00.0 0.0))
number: 5
cpa: (43.2289227832382 49.621934519913962 0.0)
linear: ((96.88322.88 0.0)
‘ (-0.8006500000000045 0.6974999999999998 0.0))

tnode: <tnode 1074228>
threat: nil :

Note that the cpa has been calculated and the linear variable contains the current position
and velocity so that the segment can be extended forward. The rhreat has been evaluated
and the track node which this segment node supports is contained in fnode. Information
has been sent to this node either by demons associated with these nodes or by the KS’s -
themselves. '

~ After the segment information has been extended to more than thirteen points, the
list is truncated. This is accomplished with after-method so that after say 20 time units,
the snode looks as follows:
<snode 1072948> is an instance of flavor snode with instance vanables

type: segment
time: (20191817 161514 131211109 8)

s ek

- coord: ((82. 40000000000001 12.00. O) o
L. (83.38545000000001 11.5425 0.0) (84.3616 11.07 O 0)
(85.32814999999999 10.5825 0.0) (86.2848 10.08 0. O)
(87.23125 9.5625 0.0) ‘
(88.16719999999999 9.029999999999999 0.0)
(89.09235 8.4825 0.0) (90.0064 7.92 0.0) ‘ _
(90.90904999999999 7.3425 0.0) (91.8 6.75 0.0) RO
S (92.67895 6.1425 0.0) (93.54559999999999 5.520. O)) s
... . -number: 13
. -cpa: (19. 19401128389733 41.34369053489974 0.0)
“ . linear: ((82.40000000000001 12.0 0.0)
e (-0.9854500000000002 0.4574999999999996 0.0))
B tnode: <tnode 1074228>
. Jthrcat nil

In the above snodc the maximum length of the coord and time vanables arc now only of
length thirteen as fixed by a global variable. The truncation length may set to any fixed

~ value but this variable is not totally 1ndependcnt of the other parameters. For example, a-

© track may only be generated when the segment length exceeds another fixed parameter. -

Certalnly the truncation length must exceed this minimum length needed to 1n1t1ate a

. track. So thc truncation length must be chosen carefully, otherwise, thc cntrre program B
' _could be comfounded. i eE

S The gencral sequence of KS calls is outlmed in Flgurc 5. Here the ordcr of KS calls
is numbered to push data nodes to higher levels of abstraction. The order is not exact

- since several data nodes must be advanced to form a track - but the general order

requlrcd to push data through to support a track solution is outlined. The first KS 'is ‘the
hit generation KS (GETBEAM), the second KS is the GETASSIGMENT KS and.the
“third KS is the track formation KS (GETTRACK) Demons from the drstrrbuted monitor
- generate the goal nodes from the data nodes. The simple construction illustrated is essen-
tually data driven with goal nodes being isomorphically mapped to KS This example
: 111ustrates the operation of a goal driven BB cmulatmg a data driven BB '

Example2

- In this exdmple there are three separate craft being observed. Three craft, generate
_ returns, but only two tracks solutions are formed. This example zllustrates the track for-

- matlon process and and especially the grouping of segments into tracks. .

e In Figure 6, there is a plot of three trajectories. Two of these traJcctones are very
close and logically form a track. The other trajectory forms a separate track by 1tse1f The
plots of Figure 6 are mirrored in the data structures on the blackboard panels Since a tree

' rcprcscnts a track, one tree will represent two trajectories and the other will represent a
- single trajectory. So each tree groups the time sequences forming a track and the set of
all tracks formed from the data is a forest. R :

GOAL PANEL DATA PANEL

TRACK
SOLUTION
TREE

DEMON

2 |
| SEGMEM W/_\ N\p

TRACK

DATA ﬁ\

- FIGURE 5. The track formation for a single trajectory is outlined here.

100 “%—

,8}0_..._
04 - |
b <+- FIRST TRACK
H
B 40
SECONDTRACK
204
0 ~ . i "-A' 'I i ..V.I ., " I. . . \
‘0 20 - 40 60 80 100

X - DISTANCE

' FIGUREJ'G. Trajectories for three ‘separate craft with two tracks indicated.

54 . kersten/kak

Figure 7 graphically traces the formation of the solution trees on the. blackboard.
Notice the similarity with the formation of a single track. The overall crisscroSsing of the
o ~solution-path on the blackboard panels from lower levels of abstraction to higher levels is

~ due to the data driven nature of the problem. The presence of the three distinct trajec-
tories in the data causes the formation of three distinct nodes on the goal panel. Each goal |
- Tepresents, the desire to use the segment data node as support for a track node. By support ‘
is meant the segment node supports the hypothesis that the track node should contain that
. segment as part of the group that makes up the track. ' : '

Lets looks at some of the data nodes on the BB, after the tracks arc estabhshed
- The two tracks look as follows

<tnode 1074720> is an instance of flavor tnode with instance vanables:

' .Type track
time: (5) e
last-coord: (96.07797734375001 3.905422931640625 0.0) o
last-velocity: (-0.8144500000000079 0. 6824700000000004 O O) N
threat: nil '
snode: (<snode 1072948> <snode 1073184>)

" cpa-bracket:((36.18550040607643 54.2522089149583)

© (44.94766067922566 55 14530386696201))

check: nil
checklyst: nil

: <tnode 1074676> is an instance of flavor tnode with instance vanables: S
o ’;‘_type track) : e
.. time: (5) ,
" last-coord: (3.6225 96.12575 0.0) ‘
last-velocity: (0.6825000000000001 -0.8144500000000079 0. 0)
threat: nil
snode: (<snode 1073144>)
cpa-bracket:((44.80414791166273 54. 91482356806549)
(35 91704278661875 54. 02731420205895))
. check:” nil
checklyst: * nil

Note <tnede 1074720> is the second track in Figures 6 and 7 w1th two supporting
segment nodes ‘Snode is the list of pointers to segment nodes. The pointers contained in
snode are the branches of the solution tree and the supports for the track hypothes1s The
other track node <tnode 1074676> has only one pointer which simply means only one
branch and one supporting segment node. Neither track is presently a threat to the origin,
although its plot of the trajectories indicates that this will not be true in-the future.

" The snodes in this case also contain parent pointers which establish whlch track
they support. These nodes look as follows:

<snode 1073184> is an instance of flavor snode with mstance varlables

type: segment
time: (543210)

. GOALPANEL ' DATAPANEL

B E - SOLUTION TREES

‘ FIGURE 7. The nodes on the BB for the 3- traJectory, 2~track
i-: example Shown here are two solution trees. - T

56 o ~ kersten/kak

- coord: ((96.06874999999999 4.062438 0.0)
- (96.8832 3.379968 0.0)
(97.68385000000001 2.682486 0.
- number: 6
cpa: (41.62943218734221 49.67997281196416 0.0)
linear: ((96.06874999999999 4.062438 0.0)
(-0.8144500000000079 0.6824700000000004 0.0))
tnode: <tnode 1074720>
threat: nil

<snode 1073144> is an instance of ﬂavor snode with instance vanablcs :

type: segment :

time: (543210)

coord: ((3.5625 96.06874999999999 0.0) (2.88 96.8832 O 0)
(2.1825 97.68385000000001 0.0) (1.47 98.4704 0.0).
(0.7425 99.24254999999999 0.0) (0.0 100.0 0.0))

number; 6

~cpa: (49. 38655323518081 41.38537980601705 0.0)

linear: ((3.5625 96.06874999999999 0.0)

: (0.6825000000000001 -0.8144500000000079 0. O))

tnode: <thode 1074676>

threat: = nil

<snode 1072948> is an instance of flavor snode with instance variables:
type: segment
- time: (543210) :

coord: ((96.06874999999999 3.5625 0.0)

E (96.8832 2.88 0.0)(97.68385000000001 2.1825 0.0)
(98.4704 1.47 0.0) (99. 24254999999999 O 7425 0. O)
(100.0 0.0 0.0))

number: 6

’ cpa: (41 38537980601705 49. 38655323518081 0. 0)

_ linear: - ((96.06874999999999 3.5625 0.0)

(-0.8144500000000079 0.6825000000000001 0. 0))

tnode: <tnode 1074720>

threat: nil

At a much later time both tracks are classified as threats. In fact at time 41 the track
nodes look as follows:

<tnode 1074720> is an instance of flavor tnode with mstance vanablcs .
type: track

“time: (41) '
last-coord: (60.0895833333333418. 3031817537037 0. O)
last-velocity: (-1.111450000000005 0.1400399999999991 0. O)
threat: t

- ‘snode: (<snode 1072948> <snode 1073184>)
cpa-bracket:((-2.437209695431297 54. 2522089149583)

(24.69991086768157 55. 14530386696201))

check: t
checklyst: nil

ST kersten/kak

<tnode 1074676> is an instance of flavor tnode with 1nstance vanables
-type: track - :
. time: (41) '
~ “last-coord: (18.7425 60. 44255 0 0)
- last-velocity: (0. 1424999999999983 -1. 111450000000005 0. O)
- threat: = t
© .7 snode: (<snode 1073144>) -
i cpa—bracket ((24.69991086768157 54. 91482356806549)
IR (-2.422621460220589 54 02731420205895)) ’
- check: nil
'checklyst ml

By now both tracks represent threats to the origin and so the threat vanable is

mstantlated as true. Note that the confidence regton represented by the cpa-bracket has

one’ coordmate which straddles the origin. Although this condition is an-arbitrary and
. probably not a sharp cntenon the pomt is to illustrate the detectlon via the rule based -
system

Example 3

In thls example there are three separate craft bemg observed Imttally these three craft
form one track. Subsequently, one craft breaks away from the established-track. This
, example illustrates the detection of the break away and the subgoalmg needed to estab-

: ltsh tWO tracks

v In Flgure 8, there isa plot of three trajectories. All of these traJectones are. 1n1t1ally
: very close and logically form a track. However, as the track evolves in time, one of the
segments supporting the track formation obviously departs from the track itself. By :
departs i is meant that if the track grouping were to be reformed two tracks instead of one
track would be formed. The spline test is a backchaining algorlthm which is des1gned to
“detect if the grouping of segments into a track is still logically valid. :

One way to solve the problem of regroupmg the tracks is 51mply to d1ssolve the
.track node and keep the segment nodes on the data level after removmg their parent
pointers to a track. The track formation algorithm would then pick up these "uncommit-
ted” segments and regroup the segments into tracks. This solution is acceptable but not as

- desirable as maintaining the track history and forming a new track from a subset of the -
segments of the original track. This is implemented by subgoallng an important tech-
nique which allows finer granulanty in KS’s and easier implementation of more complex-

-.goal 1nterre1at10nsh1ps

~ The nodes or solutlon tree should reflect the history of this trajectory Indeed Flgure
9 shows the parallel between the physical trajectories-and data structures which represent
" these traJ,ectones First a tree will form on the blackboard which has,onlyv one root - i.e.
~ ‘one trajectory with three branches representing the three distinct craft. Once the track is

100
80
60
é
%
™ 404
204 . . o —f—— TRAJECTORY. 1
—— TRAJECTORY 2
—— TRAJECTORY 3
0 | R—— T ¥ T — T T
-0 . 20 40 60 80 100
X—DISTANCE

FIGURE 8. The three-aircraft problem where one track breaks away. v, '

GOAL PANEL DATA PANEL

\ TRACK 2
y TRACK 1

| BREAK TRACK \\
SEGMENTS | N

HITS

FIGURE 9. This example illustrates the cancellation of the segment node support of
the track 1 hypotheses. This node eventually supports a new track hypothesis.
Subgoaling triggered by the failure of the spline test is illustrated in the goal panel.

60 : kersten/kak

established and determined to be a threat, the track grouping will be checked via the
spline KS. When the track grouping is not verified by the spline KS, subgoals for each
segment are created and placed upon the goal segment level. Each goal represents the -
desire to determine if that segment is in the same equivalence class as the average track
representing the root of the track. If the segment does not satisfy the grouping criterion
against the track, it is spun off as a segment with no parent pointers. This means the BB
will establish this segment as a separate track The following paragraphs will show the
state of the nodes in this sequence.

Initially, the track node formed from the three segments looks as follows:

<tnode 1074676> is an instance of flavor tnode with instance variables:
type: track

time: (1)

last-coord: (99.24254999999999 98.61066633333331 0.0)

last-velocity: (-0.7574500000000057 -1.722667000000001 0.0) =~

threat: - nil
snode: (<snode 1072948> <snode 1073144>
<snode 1073184>)

cpa-bracket:((32.08760233000798 62.90600256325121)
S (-31.94628530341367 -7.667384301036718))
- check: nil
checklyst: nil

Observe that there are three snodes or branches supporting this track. The three segments
supporting the trajectory are given below. Note that the track node pointers are really the
parent pointers or the edges of the graph pointing to the root of the tree which represents
the track. ‘

- <snode 1073184> is an instance of flavor snode with instance varxables
type: segment
time: (10) :
coord: ((99.24254999999999 99.522324 0.0)
: (100.0'101.0 0.0))
number: 2
cpa: (38.19259757273452 -19.5773518900408 0.0)
linear: ((99.24254999999999 99.522324 (.0)

(-0.7574500000000057 -1.477676000000002 0.0))

tnode: <tnode 1074676>
threat: nil

<snode 1073144> is an instance of flavor snode with instance variables:
type: segment o
“time: (10) : .

coord: ((99.24254999999999 98.522325 0.0)

(160.0 100.0 0.0))

number: 2

cpa: (38.59849373098595 -19.78542580508939 0.0)

linear: ((99.24254999999999 98.522325 0.0)

' (-0.7574500000000057 -1.477675000000005 0.0))
tnode: <tnode 1074676> -

61 o Kkersten/kak
. threat: il

<snode 1072948> is an instance of ﬂavor snode w1th 1nstance vanablcs
R type: segment .
time: (10)
- coord: ((99.24254999999999 97.78735 0.0)
- (100.0 100.0 0.0))
number: 2
- cpa: (58.86860840361245-20. 15231845764879 0.0)
linear: ((99.24254999999999 97.78735 0.0)
~ (-0.7574500000000057 -2.212649999999996 0.0))
tnode: <tnode 1074676>
threat:- ~ nil -

This solution tree structure is the initial state of the track prior to the discovery that the
traJectory is a threat and prior to the depanure of one of the craft from the formation. -

At the time stamp of 11, the track is determined to be a thrcat to the origin and the
spline KS (GETSPLINE) will now begin to check to see if composmon of the track still
makes sense. The following track node illustrates the track node state just after it has
been determmed it is a threat. ’

'-<tnode 1074676> is an instance of flavor tnode with instance vanablcs
“ type: track
time: (11)
last-coord: (90. 91376606802292 86. 24495864263466 0. 0) }
lﬁit-velocuy (-0.8909500000000037 -1.085756000000003 0.0)
threat: ~ t : . DR
snode: (<snode 1072948> <snode 1073144> <snode 1073184>)
cpa-bracket:((3.746220505494785 62.90600256325121)
S (-32.057501 15050004 0. 08018509395760631))
check: °~ nil
checklyst: nil

After the spline test detects the break away of a track; it marks the track node check
variable as failed. A failed spline test automatically disables further spline tests for that
track until a track verification KS can be run. The rule base will detect a failed track in
~ the goal blackboard, and then generate a subgoal for each segment which supports the
track. Each goal expresses the desire to re-evaluate the track formation grouping criterion
of each segment against the averaged track. The following are the subgoals generated by
the rule base. _ .
‘<bbevent 1074788> is an instance of flavor bbevent w1th instance vanables
source: <tnode 1074676> :
action: verify-track:
- type: track :
variable: - nil o 3
- - time: (12) : . ‘ -
- - coord: ((90.00946578449609 82.81725806347009 0.0)

62 . kersten/kak

(-0.9026499999999942 -1.052371999999991 0.0))
number: nil
.. threat: nil
- snode: <snode 1073184>
pattern: nil :
duration: one-shot
- position: nil
~ goalptr: nil
" conditions: nil
ksarptr:, nil

<bbevent 1074720> is an instance of flavor bbevent with instance variables:
source: - <tnode 1074676> : :
action: verify-track f
 type: track : |
variable: nil : ,
time: (12) - '
coord: ((90.00946578449609 82.81725806347009 0.0)
(-0.9026499999999942 -1.052371999999991 0.0))

.

number: nil

threat: nil
snode: <snode 1073144>
pattern: nil

duration: one-shot
position: nil

goalptr: nil
conditions: nil
ksarptr: nil

<bbevent 1075076> is an instance of flavor bbevent with instance variables:

source: <tnode 1074676> R AR

action: verify-track

.type: track

variable: nil _

‘time: (12) ' L :

coord: ((90.00946578449609 82.81725806347009 0.0)
(-0.9026499999999942 -1.052371999999991 0.0)) -

number: nil

threat: nil ,
snode: <snode 1072948>
pattern: nil

duration: one-shot
position: nil

goalptr: nil g
conditions:- nil :
- ksarptr: nil -

Each of these subgoals points to the parent track as the source and the supporting' seg- |
ment node as the snode. The KSAR generated from each of these subgoalswill: activate
the: VERIFY KS. This KS is part of the blackboard process - i.e. it is not spun off as a
separate: process. If the segment is re\-veriﬁed,to.be,vin the same track grouping , then

- nothing is done, except to record the verification result by removing the node from the

’ 63 o : . .,kersten/kak

: checklyst I not, then the KS docs three thmgs Frrst KS removes the segment pomters in-

© the track node - i.e. the pointer to thlS sibling or branch of the tree. Then it removes the
- parent polnter in the segment node or the pointer to the root of the tree representing the
 track. And lastly, it removes the pointer from the checklyst from:the track node.

. The snode which is orphaned by the VERIFY KS is the following segment node.

o <snode 1073184> i is an instance of flavor snode w1th 1nstance variables: -
~type: segment , : :
e times. (131211109876543210) :
:j,coord - ((89.09235 84.915828 0.0) (90.0064 85. 935872 0. O)
(90. 90904999999999 86.98824399999999 0.0)
(91.8 88.074 0.0) (92.67895 89.19419600000001 0. 0
(93.54559999999999 90.34988800000001 0.0)
Lo (94.39964999999999 91.542132 0.0)
- (95.24079999999999 92.771984 0.0)
(96.06874999999999 94.04049999999999 0. O)
(96.8832 95.348736 0.0) (97. 68385000000001 96 697748 0 0)
(98.4704 98.08859200000001 0.0)
‘ (99.24254999999999 99. 522324 0.0) (100.0 101 O 0. O))
'number 14
- cpa: (7.210431076363022 -6. 461186503081834 0.0)
- linear: ((89.09235 84.915828 0.0)
o (0 9140500000000031 1.020043999999999 0. O))
_tnode: nil ,
threat nil

After the blackboard detects the unmatched segment node, it constructs a dlsnnct track
for this segment and the resulting solution is the two track nodes given below. The first

. track node is the newly created node from the unmatched segment node. The second

“track node is the old established track node which now contains only two supporting seg-
~ment nodes. The solution of the tracklng problem is now two trees (and in general a

S forest of trees) representmg two separate tracks

. Track 1of Figure 9.

N <tnode 1074280> is an instance of flavor tnode w1th instance vanables:
L type track : _
- time: (13) - ' : :
- last-coord: (89. 09235 76. 75794999999999 0. O) :
last-velocity: (-0 9140500000000031 -1. 382850000000005 0. O)
threat: - nil . ,
- snode: (<snode 1072948>) .
cpa-bracket:((20.45362766455384 32. 93339536190769)
: (-27. 08435313612137 -8. 203934384099306))
check: .- nil:
checklyst. n11

Track 2 of Flgure 9.

o ; <tnode 1074676> is an 1nstance of flavor tnode w1th 1nstance vanables:

64 | kersten/kak

type: . track
time: (13)
last-coord: (89.09235 84.4169265 0. 0)
last-velocity: (-0.9140500060000031 -1.019809500000001 0.0)
threat: t .
snode: (<snode 1073144> <snode 1073184>)
cpa-bracket:((-0.977760816000675 15. 82484430129828)
(-15.96939768539792 2.67651494722635))
check: - nil
checklyst: nil

Example 4

In this example there are three craft, one of which has a signal which fades for a short
period. This example illustrates how faded segments may be matched up with established

segments. It also illustrates a dzﬁ’erent type of goal to activate the extend-segments KS.

Recall from the KS section, that the MERGE-SEGMENTS KS is activated by a _:'
recurrent goal. This means that once a KSAR has been created and scheduled, the goal is
- inhibited from creating another KSAR until the KS finishes its attempt to extend atro-
phied segments. In this example there are three trajectories as illustrated in Figure 10.
Only one of these trajectories fades. Its segment node is given by: '

<snode 1073144> is an instance of ﬂavor snode with instance vanables
type: segment
time: (21 0)
coord: ((1.47 98.4704 0.0)

- (0.7425 99.24254999999999 0.0)

(0.0 100.0 0.0))

number: 3
cpa: (49.92671489395662 47. 0396750441671 0.0)
linear: ((1.47 98.47040.0)
’ (0.7274999999999999 -Q. 7721499999999963 0.0))
tnode: <tnode 1074676>
threat nil

ThlS is the initial part of the traJectory, which results in a track node bemg fonned How-

ever, after the time 2 the trajectory input fades resulting in a time gap for the mput' o _
- values. The path does not return until the time 8. At this time a new segment node 1s gen-_ o

erated on the BB which represents a "newly found segment." It looks as follows:

<snode 1075068> is an instance of ﬁavor snode with mstancc vanables
type: segment :
time: (87)
coord: ((5.52 93.54559999999999 0.0)
: (4.8825 94.39964999999999 0.0))
number: 2
cpa: (48. 38657378899811 36. 11783945961739 0. O)

 Y—DISTANCE -

2 S , ; - —o— TRAJECTORY 1
80 4 . - : - —e— TRAJECTORY2
g : ' ¢ =—@— TRAJECTORY3 -
S] —o— TRAJECTORY3 -
704 : "

5 .60 {
5
_45TT{
4
204

10 4

0 7t . r - 1.1 11

0o 10 20 30 40 50 60 70 80 90 100

X—DISTANCE

FIGURE 10. Merging of the two segmehts of a track is illust'r’ated.'

66 © Kersten/kak

linear; ((5.52 93.54559999999999 0.0)
(0.6374999999999993 -0.8540500000000009 0.0))

tnode: © <tnode 1074172>

threat: nil

Note that both of these segments point to a track node, so that a track exists for each one.
Moreover, these tracks are different since the second segment was not deterrnmed to be
an extension of the first one - yet.

After the MERGE KS has run, the above segment is recogmzed as an extension of
the first segment. So the latest track and segment nodes are retained and the older seg-
ment is removed from the BB and the pointer from the track to that segment node is
deleted. If that is the only segment supporting that track, then the entire track is removed
by removing that node from the BB. This is the case here.

The KSAR which initiates this KS looks as follows:

<bbevent 1071572> is an instance of flavor bbevent with instance variables:
source: nil

action: nil

type: extend-segments

variable: nil

- time: nil
coord: nil
number: nil
threat; nil
snode: nil
pattern: nil

duration: recurrent
position: nil

goalptr: nil

conditions: nil

ksarptr' <ksar 1073224>

It has a recurrent duration and contalns a pointer to the KSAR which initiates merge-
segments.

The resulting track node which was established for the reappearing track now
represents both the current track and the merged track. The older segment and its track
have been removed and is now represented by this track node as well. The track node
looks like: :

<tnode 1074632> is an instance of flavor tnode with instance variables:

type track ,

‘time: (8) ’

last-coord: (5.52 93.54559999999999 0.0)

last-velocity: (0.6374999999999993 -0.8540500000000009 0.0)
~ threat: nil

snode: (<snode 1075068>)
- cpa-bracket:((44.0999164100983 52.673231 16789792)

(30. 37506340557913 41.86061551365565))
check: nil

67 ' ‘ kersten/kak- '

| checklyst nil

So the old segment has been patched to the new track although the old segment data has

not been appended to the new track. No history of this older track has been 1ncluded in '.7 '

the current track since the segment nodes and hit nodes are removed from the BB as soon
as p0551ble However, a short history trail could be easily added to the track node

- 68
APPENDIX B

THE BLACKBOARD CODE

' The code is contained in files which are functionally orgamzed The orgamzahon is - -
not perfect. What follows is a brief description of the contents of each file and its- pur-
pose. This description is a only a preliminary guide. The code follows the description.

THE BLACKBOARD DATABASE FILES

. Most of the structures which define the blackboard are contained in the file
'ggoalbb.l. Here the flavors that make up the BB levels and nodes are defined along with
their associated defmethods. Many of the global variables and constants are also defined
in this file. A second file containing the communication structures and methods is
ggmess.l. These structures contain the information needed to interface the KS’s with the -
BB database, e.g. the I/O ports. The KS protocol information and the non-blocking read
is also contained in this file. So most of the BB database is contained in these two files.

THE CONTROL FILES

The main control loop is contained in the file ggrioop.l along with sevcral dlsplay
utilities for observing the flavors on the blackboard. In addition, the bootstrap function
which kicks off the KS’s from the KSAR’s is contained in this file. The rule base control
is run by the functions contained in ggplan.l. Here the goals that form the data of the rule -
base are tested against the rules and the resulting goals are placed on the BB or the gen-
erated KSAR’s are queued. The rules composing the rulebase are found in the file
- ggrule.l. Many of the KSAR creation functions which support the %control_v__a_re located in
the files ggnode.l and ggksar.l. These above five files form the control of the BB.

KNOWLEDGE SOURCE FILES

. There are six knowledge sources, four of which run as subprocesses The HIT"
: GENERATION program is a C program which is spun off as a subprocess. by the *pro-

cess command. Actually there are many different HIT GENERATION programs each -

' representing a different set of tracks. The C program included here is fora smgle track
_called not surprlsmgly singlepath.c. The ASSIGNMENT KS resides in the ﬁle nassign,a
'LISP file which i is also run as a subprocess. The TRACK FORMATION KS .is another

LISP file run as a subprocess and found in-the file testtrack.l. The SPLINE INTERPO-

LATION KS file is called testsplme ¢ and is run as-a subprocess. The file smerge con-. "

talns the MERGE SEGMENTS KS which is run as part of the blackboard process. itself,

because of the extensive access needed to the BB nodcs The SEGMENT VERIFYKS s

- 69 - R kersten/kak o

'?.also part of the BB process and is found in the file ggksarl Th1s ﬁle is also part of the
o control so that the exception proves the rule here. So each KS islocated in a separate file
and each of these files, except for ggksar 1, is solely dedlcated to that KS ‘

GENERAL SUPPORT FILES

Several ﬁles contain supportlng functlons Wthh are more general in nature. The

EE ;ﬁrst is the setoperations file which contains. the functlons that operate on sets like set
i . :differences. Another file is the testutllltles file which contains many vector subroutines
. .“hke dot-product and even some functions that mimic those found in COMMON LISP
‘Further there are several functlons which are cfasl’d in on loadmg The first file read.c is
vfor the non- blocking read function and the second file gegfd c ﬁnds the file descrlptor o

: number of the subprocess

/

*
*
*
*
*
*
*
*

#i

Note that the lisp func:tion (setg port (infile ...})
of (setq port (car {*process))) makes that lisp
variable port be bound Zo a pointer to a file pointer.
that is, what comes into this function is actually the
address of the pointer o the FILE thing. thus, we use
**port and set up fd to be fd=*port at the beginning
of the routine. In this way, we can use fd as expected.

~

nclude <stdio,h>

get fd (port)

FI

{

FI

LE *(*port);

LE *FILE ptr;

int fd;

FILE ptr = *port;

fd = fileno(FILE_ptr);
return(fd);

0%

;i o (include /usr/franz/lib/flavors)

(defvar clock 0)
{defvar predlctlon-threshold 2)
(defvar group-threshold 5)
(defvar rvarl 0)
(defvar rvar2 0)
{defvar rvar3 0)
(defvar pi 3.141592653589793)
(defvar cloop-count 0}
(defvar cloop-display t)
(defvar junkheap nil)
{(defvar oldage 3)
(defvar max-segment-length 13)
(defvar KSQUEUES (list ’beam-queue ’assign-queue
;7 ‘track-queue ‘spline-queue ’‘merge-queue
)}
;7 This value set in ggmess.l since instances must be created first
B (defvar KSSOURCES (list beammsg assignmsg
i))

;in the file...l.e. load the flavor stuff *before* invoking
;jdefflavor. Must be some problem with autoloading inside

;jour funny llttLe macro.

this is the event queue

’
i
‘
‘
‘
’
‘

NeTN Ne v

PR iR iR i i IR IR R IT it

‘(defflavor event (

number

{mask (1 1 1 1 1))
(atomic-queue * ()}
{(beam~gqueue ‘ ())
(assign-queue 7 ())
(track-gqueue ‘ (})
(spline-queue " ()}
{merge-queue ' ())

:)

0
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

(defflavo* event (S
(queue ' (})
.. {num-in-queue 0)
(beam-queue ‘ ())
i+ (assigh-queue " ()}
;1 (track-queue ‘ ())
;s (spline-queue ‘ ())

i; (merge-queue ‘{())

O
:gettable-instance~variables
:settable~-instance-variables
tinittable-instance-variables)

Defmethod for constructing the parallel queues

v
7
7
’
’
i
;
7
’
’
2
’
’
’
’
.

(defmethod (event :set-queue)} (value)
{let*
{ ,
H (temp (car value))
H (test (send temp :ksar-id))
{temp value)
(test (send temp :ksar-id))
)
{cond
({equal test ‘newhit)
(queue-flavor-onto-node-at-attribute temp self beam-queue) }
((equal test ‘segment)
(queue—flavor—onto—node—at-attribute temp self assign-queue))
(t
(queue-flavor-onto-node-at-attribute temp self atomic-queue))
)

77 (send self :set-number

HH (apply ‘sum (mapcar ‘length ‘(,atomic—queue ,beam-queue)))}

22 (format t * inside method temp is ~a ~% " temp)

HE (format t " inside method number is ~a ~% " (send self ‘number))
))

IR ERE R RN IR R RN RN

;7 this defme it event

Firiririiiiad Fiiiiiiviiieiiiiii

(defmethod (e

(send self :set-number
(apply ’sum {mapcar ' (lambda (x) (length (eval x)))
(cons ‘atomic-queue KSQUEUES;)))\

Defmethod for constructing the paraliel queues

(defmethod (event :after :queue) ()

(let* R

(temp (car (send self :queue)))

(test (send temp tksar-id))

(cond . .
{(equal test 'newhlt)

(queue-flavor-~onto-node-at-attribute temp self.heam -queue})

{(equal test ’‘segment)

TL

{queue-flavor-onto-node-at-attribute temp self assign-queue))
((equal test ’track)

(queue-flavor-onto-node—-at-attribute temp self track-queue))
((equal test ’spline) '

(queue-flavor-onto~-node~-at-attribute temp self spline-queue))
((equal test ’extension) :

(queue-flavor-onto-node-at-attribute temp se.f merge-queue})
(t (format "~a is not a ksar-id, inside defmethod ~%" test))

RN}

‘
;
7
;
’
v
H
v
7

~
~

frrsrr

(defmethod (event :before tmask} ()
(let (
(temp
(mapcar ’ (lambda (X}
(if (null (eval x)
nil
{send
(car (eval x)
:stage)})
(cons ’atomic-queue KSQUEUES ;7 limit mask size for now
0y
(send self :set-mask temp)
(format t " inside defmethod mask which is ~a~%" temp)

(defmacro keywordize (sym) °(intern (symbol-name ,sym} *keyword-packaget*))

(defflavor bbevent (

source ; generating node

action ; level this event affects

type ;7 hit or track etc

variable ; this is variable triggering event
time ;. may be list or nurber

coord ; list of coordinazes

;
number ; number of coordirates-

threat ; for tnodes

snode ; polnters to snodes .

pattern 7 this is list used for pattern match

)
(goal~attributes)
igettable-instance-variables

:settable~instance-variables
tinittable-instance-variables)

{(defflavor
goal-attributes (
duration ; time latency of the goal node
position ; position relative to coord
goalptr ; pointer to other goal nodes
conditions ; preconditions to fire
ksarptr ; pointer to ksar which is queued

)
0
:gettable-instance-variables
:settable-instance-variables
tinittable-instance-variables)

(defmethod (bbevent :before :pattern) ()
(cond
({eq type ‘track)
(setq pattern
(list source action type time threat snode}))
((eqg type ’clock} ! .
{setq pattern
(list type)))
(t
(setq pattern
(list source action type variable coord number time)})
)

This macro generates a flavor and the correspending after
deamons which which report changes of a bnode, tnode, or snode
to the event queue. It is in effect part of a distributed
monitor.

PRI RGN il i iiiiiiiiiiiiiiiiiiiii:

7
7
i
7
;
v
[
’
i
’
’

(defmacro newflavor (flav level var-list var-sub inher-list grest opt ions)
{cons ’progn
{cons
‘(defflavor ,flav ,var~list ,inher-1list ,Roptions)
{(do*
(
(worklyst var-sub (cdr worklyst))
(op (car worklyst) (car worklyst))
(mlyst nil) -
) .
((null worklyst) (return mlyst))
{setg mlyst
(cons *(defmethod (,flav :after , (keywcrdize (concat :set- op))
(value) =
(sendpushgoal

(92

{make-instance ‘bbevent
:source self
taction ‘change
itype type
:variable ’,o0p
:coord . coord
:number number
ttime . time
:duratlon ‘one-shot
),

, level))
. mlyst)
IRRRN
B
iri
Vi
B
RN R R SR R R SRR S
;7 this is the flavor which makes up the levels of the
7+ blackboard hierarchy
Fr T T i v T il i e s i i s i el il i r it id i eraiireeliiiiiieiieiiisieis

(defflavor bblevel ({
up ;; next level up in hierarchy
left ;; the goal panel of the BB
right ;; the data panel of the BB
down) " ;; the lower level of the BB
()
:gettable-instance~variables
:settable-instance~variables
:inittable~instance-variables)

(defflavor ksar 4
priority ;; statis priority now

coord
number

i 0
-0 '

; list of the coordinates assoc with time
; number points in the list

rgettable-instance-variables
:settable-instance-variables
:inittable~-instance-variables}

‘
; try designing a defmethod which updates the number
H

-(defmethod (bnode :after :init) (value)
;; (format t " ~%message to eventq here ~%~%")
{setq number (length coord}}

{sendpushgoal
(make-instance ’‘bbevent
' isource
taction

ttype

:variable

:coord

:number

ttime

:duration
)

segments)

self
*change
*hit
fcoord
coord
number
time
‘one-shot

{(defflavor unnode {(

type
time
_coord
number
)
()

; type is hit

; time stamp for coordinates

; list of the coordinates assoc with time
; number points in the list

ksar-id ;; used at present

ks ;7 ks to be fired

cycle ;: cycle created

trigger

context ;; arguments to the function boot

preconditions ;; undefined for now

boot ;7 the function call for the ks

nodeptr ;; can point to any node

stage ;; nil no transmission, -1 ready-to-read,
;7 1 ready-to-write

messenger ;; the i/o handler for this ksar

)
{ks-protccol)
:gettable-instance-variables
:settable-instance-variables
sinittable-instance-variables

)

(newflavor brode segments (
type H
time ;

type is hit .
time stamp for coordinates

:gettable-instance~variables
:settable-instance-variables
tinittable-instance-variables)

(defmethod (unnode :after :init) (value)
;2 (format t " ~%message to eventg here ~%~%")
(setq number (length coord))

(sendpushgoal
(make~instance ‘bbevent
:source self
raction ‘change
ttype ‘unmat chec
ivariable ‘coord
rcoord coord
snumber number
time
‘one-shet
segments)

€%

(defflavor tnode (

the time is track

the last timestamp making the track
latest .position of the track

latest velocity of the track

type

time
last-coord
last-velocity

threat interval straddles zero

snode backward pointer list to segment node
cpa-bracket bracket :about x and 'y

check spline check of segment group
checklyst and list for track verify and break

}
() .
:igettable-instance-varia
:settable-instance-varia
:inittable-instance-variab.es}

this defflavor generates an entry into the event Gueue

EYSRRR

(defmethod (tnode :after :sec-time) {value)
(sendpushgoal .
(make-instance ‘bbevent
:source self
taction ‘change
ttype ‘track .
ttime time
tthreat threat
:snode snode
sduration ’one-shot)
tracks)

e Ne ve v s
P R

i;:77;;;7;;;7:;;;i;;;;;;;;;7;?7i;:;;?;:::7:7;;:77;;;;;;;;:;??iii;;;i
this defmethod activates the spline check after tracks have been
broke out from the main track

i 7 i v

(defmethod (tnode :after :set-checklyst) (value)
(format t "Inside defmethod of tnode to reset CHECKLYST ~%")
(format t " checklyst is ~a~%" checklyst)
(1f (null checklyst) ;; if all paths have been checked and modified
(remove-nodes-from-level tracks (list self))
77 (send self :set-check nil) ;; then all spline tests to continue

nil)}) /7 otherwise dont reactivate spline tests
i
;;:;?;i;i;;;;;;;777;i;;;i;;;;7:;;iii;i;;;i;;;;:;7?;;;;;;;7;77;7;??7;i;
;7snode is form segment node - the flavor holding info on the segment level
7?;;:;;;;i;:;;;;7;;;i;7;;;;:;;?;t;i?;;;;i;;;;;;?;;;;;;i;:;?:::;;:?;:i?

(newflavor snode tracks {
type ;. is segment

()
:gettable-instance-variables
:settable-instance-variables
tinittable-instance-variables)

try designirg a defmethod which updates the number

~. e o~
. e e

(defmethod (snode :after :set-coord) {value)
; (setq number (length coord)) ; note this does not trigger after number
(send self :set-number (length coord))
{cond
((> (length coord) max-segment-length)
(send seif :set-coord (truncate_lyst
(send self :coord)
max-segment-length})
(send seif :set-time (truncate_lyst
(send self :time)
max-segment-length)}
)
{(t nil)
)
{cond
((< number prediction-threshold))
('t
(setg cpa (find-cpa coord time))
(setqg linear (find-~linear-model coord time))
) .
)
)

this function is an accessor function which gets the
list of all id of the nodes on a level

~e e Ne one e o~
R T T M

‘

(defun getid { level))
(mapcar ’ (lambda (x) (send x :node-id)) (send level :right)))

this function is an accessor function which gets the
list of all props of the nodes on a level

(defun getpropr (level property)
(mapcar ‘ (lambda (x) (send x property)) (send level :right)))

YL

time ; this is the time of last. coord
coord -7 note this is a coordirate list
number ; number of points the the segment
cpa ; Closet point of approach a vector
linear ; (position wvelocity)

tnode ; ptr to a track node

threat ;

)

(qumber)

true or false -~ updated by tnode

AR R RN R R RN N R R RN
wo levels on the blackboard and then connect them
AR NN R R
(setq hits
(make-instance ‘bblevel
sdown nil
:left nil

:right nil))

xR

(setq segments
(make-instance ‘bblevel
:down nil

tance ’event))

ht nil))

—1lns

rig
right nil

left nil
left nil

up nil
{make-instance ‘event})

te the queues - w

instantia
{make

(make~instance ‘bblevel

setq workq

{setq tracks
(setq ksarq

m

links top level to bottom level

links bottom level to top level
links top level to bottom level

links bottom level to top level

’

2

’

’

(list tracks segments hits})

set-up tracks)
(setq queue-lyst (list ksarq)}

set-down hits)

{send hits :set-up segments}

set-down segments)

{send segments
(send segments
(setq level-lyst

{send tracks

(defun create-subgoals-to-break-track (trnode)
{let
(
{snode (send trnode :snode})
(pos (send trnode :last-coord))
{time (send trnode :time))
(velocity (send trnode :last-velocity))
)
(dolist (var snode)
(sendpushgoal
(make-instance ’bbevent
:source trnode
taction fverify-track
ttype ‘track
ctime time
tcoord (list pos velocity)
:duration ‘one-shot
:snode var
)
tracks)
(send trnode :set-checklyst (send trnode :snode})

AR R N N N R RN R N R

(defun create-verify-track-ksar (trnode segnode coords)
(let
(
(tnode trnode)
(pos {car coords)
(vel (cadr coords))
(snode segnode)
)
(sendksarpush
_ (make-instance ‘ksar
ipriority ©
tksar~id ’verify-track
:ks fverify-track
tboot ’ (verify)
:nodeptr trnode
tcycle clock
‘preconditions ‘empty
icontext (list tnode snode)
)
ksarq)
)

i
77 function verify is XS to check the segment path against the
/7 average track trajectory using the angle and the distance

(defun verify (ksarptr
(let*

(.
{tnode (nth 0 (send ksarptr :context)))
(snode (nth 1 (send ksarptr :context)))
{tvec (send tnode :last~coord)}
{tvel (send tnode :last~velocity))
(ttime (car (send tnode :time)))
{svec (car (send snode :coord)))
(stime (car (send snode :time)))
(dstime (diff (car (send snode :time})

(cadr (send snode :time))))
(dsvec (vector-difference (car (send snode :coord)}
{cadr (send snode :coord))))
{svel (scale-vector
(quotient 1.0 dstime) dsvec))

(lystl (list tvec tvel ttime))
(lyst2 (list svec svel stime))
)
HH (format outverify "~a~%" Y (verify ’,lyst /,lyst2)
(format t "~% INSIDE VERIFY INSIDE VERIFY INSIDE VERIFY ~%")

(format t " the stime is ~a and ttime is ~a ~%" stime ttime)
(format t " the svec is ~a and tvec is ~a ~%" svec tvec)
(format t " the svel is ~a and tvel is ~a ~%" svel tvel)
(format t "~% END VERIFY END VERIFY END VERIFY ~%")

{cond

((ksverify lystl lyst2) nil) ; if the tracks are paired correctly
(t ;; if track should be broken ~ rip out segments
(send snode :set-tnode nil) ;; removes pointer to track-node
(send tnode :set-snode
(remove snode (send tnode :snode))) ;; remove otr to snode
{send tnode :set-checklyst ;¢ forces an and of children:
(remove snode (send tnode :checklyst)))

7; This is the program will eventually be apart of the knowledge graph
;/ Returns true only if the paths craft are within one seconds travel
77 and the angle between the velocity vectors is greater than 0.9

(defun ksverify (lystl lyst2)
(let*

(

(tvec (nth 0 lystl))
(tvel (nth 1 lystl))
(ttime (nth 2 lystl))
(svec (nth 0 lyst2)

(svel (nth 1 lyst2)
(stime (nth 2 lyst2))

9%

{tmax (max ttime stime)}

{tnewvec (vector-sum tvec (scale-vector (diff tmax ttime) tvel)))
(snewvec (vector-sum svec (scale-vector (diff tmax stime) svel)})
(deldist (vector-magnitude (vector-difference tnewvec snewvec))
{maxvel (max (vector-magnitude svel). (vector-magnitude tvel}})
(cosangle (vector-angle-cosine svel tvel})

)

(format t " ~% INSIDE KS VERIFY INSIDE KS VERIFY INSIDE KS VERIFY ~%")

(format t " dist end points ~a , max dis in 1 unit ~a~%" deldist maxvel)
(format t " cosangle between velocity vectors ~a ~%" cosangle)

(and '

(> maxvel deldist)

(> cosangle 0.9}))))

the lyst consists of the following terms

0. bbnode id which goes into the trigger node variable
1. the ks which is to be invoked

2. is the type of node or level it came from

3. identifies the entities which follows

4. list of the values of the variable designed by 3

5. number of entities or length of queue of entities
;7 6. time stamp

’

(defun create-update-~segments-ksar (lyst)}
{sendksarpush
(make-instance ‘ksar

:priority 1

tksar-id ‘segment

tks (nth 1 lyst)

:boot ’ (post-assign-hits)

:nodeptr (car (last lyst})

tcycle clock

itrigger (nth 0 lyst)

:preconditions ‘empty

:context (list
(list 'time (nth 6 lyst))
(list ‘number (nth 5 lyst)}
(list "coord (nth 4 lyst)))

:stage 2 .

:command ‘getassignment

targlyst ‘()

tanslyst * ()

:messenger assignmsg

:preboot ’ (pre-assign-hits)

rprelyst ‘()

)

(defun create-check~track-ksar (lyst)
(sendksarpush

(make-instance ’ksar

:priority O

tksar-id ‘spline

:ks (nth-'1 lyst)

:boot ‘ {(assign-threat)

:nodeptr (car (last lyst})

:cycle clock

ctrigger (nth 0 lyst)

:preconditions ‘empty

:context (list
(list ‘snodes (nth 4 lyst))
(list "time (nth 2 lyst)}
(l1ist ‘tnode {nth 5 lyst}})}

:stage 1

T i r T i T i i T ii i i ir i P T iiiiisisiidivieiiiisiiiiisid

(defun create-update-tracks-ksar (lyst)
(sendksarpush
(make instance ‘ksar
:priority 0
tksar-id ‘track
:ks {(nth 1 lyst)
:boot ‘ (assign-tracks)
:nodeptr (car (last lyst))
:cycle clock
strigger (nth 0 lyst)
:preconditions ‘empty
:context (list
(list “time (nth. 6 lyst}}
(list ‘number (nth 5 lyst}))
(list ’coord (nth 4 lyst)))
:stage 1
)

(defun create-newhit-ksar (lyst)

(sendksarpush

(make-instance ’ksar
:priority 2
tksar-id ’newhit
:ks (nth 1 lyst)
:boot ' (getbeam)
:cycle clock
:trigger ’‘clock
:preconditions ‘empty
icontext ‘none
:stage 1
:command ’ fire
rarglyst ‘()
tanslyst nil
:messenger beammsg
)

LL

creates all the different type of ksars
note that this list must be extended. considerably to ald
in the mapping process

~
~
~
~
~
~
~
-~
~
~
-~
~
-
-~
-
-~
~
~
-~
~
~
~
~

;
;
defun create-ksar (lyst)
(format t "just entered createé-ksar ~%%)
(format t " the lyst is ~a~%" lyst)
(*break t * stopped before cond *}
{cond
{
(equdl (nthH O lyst) ‘newhit)
; {(format t "about to create a newhit ksar ~%")
(create-newhit-ksar lyst))
((equal (nth 0 lyst) ‘change)
; (format t "about to create a change ksar ~%")
(cond
({equal (nth 1 lyst) ‘hit)
(create-update~segments-ksar lyst))
({equal (nth 1 lyst) ’segment)
(create-update-tracks-ksar lyst))
((equal (ntH 1 lyst) ’track)
(create-check~track-ksar lyst))
(t
(format t “++++++++ ERROR - UNKNOWN CHANGE KSAR TYPE +H+++++++~%"))
1}
(t

‘
’
7
7
7
7
’
’
’
’

(format t "“++++++++ ERROR - UNKNOWN KSAR TYPE ~+¥++++++~%"))
})

h

;

; this function gets the assignments when given two lists

;i of coordinates by passing the problem off to the assignment
;7 process. Note that the lisp file of testassign.i must be

; compiled and placed in a file called test for the ports to be

; assigned correctly

;

(defun getéSsignmént (lystl lyst2)
7¢ (read inassign) ; note this 'is read the prompt of rewl supplied by franz
77 (format t “=~a~%" °(getassignment ‘,lystl * lyst2))
(formac cutassign "~a~%" °(getassignment / 1ystl ',-yst2)
; (format outassign “~a~%" ’(getass1gnment))
,,(format outassign "~a~%" lystl)
7 (format outassign “~a~%" lyst2) X .
(read inassign) ; reads the answer & ‘list like (0.2 1) to.compare to (0 1 2}
) B . .

R R R R R NN RN R RN RN R R R R R R R R R

This is the main function which assigns the incoming hits to
existing tracks. It assumes that the number of tracks and hits
match directly and that there is a one-tc-one ccrrespondence.

(defun assign-hits (ksarptr}
{cond

’
’
7

’

((zerop (get-number-on-level segments))

{cond (; if there are no segments - 1n1t1allze one for each hit
(> (get-number-on-level hits))
(dolist (var.(get=hits-coord))
(sendpushlevel (make-instance ’snode
:type ’segment
scoord (list var)
stime (list (get-hits-time)})
segments))
(fifodequeue hits))
(t (format t “ERROCR in the nodes on the hit level")}}))
(t (cond ((zerop (get-number-on-level hits))
(format t “ERROR in the nodes on the hit level"))
(t (let* ;otherwise match hits to the segments by using bé&b algorithm
(

test statement to remove updates to segments older than 3
time units
{snodelyst (get-recent-segments time))
(lystl (get-segments-coord-with-time-for-nodes-y snodelyst))
{lyst2 (get-hits-coord-with~time)) ; forms list of (¢t x y z)
{lyst3 (get-hits-coord)} ;forms list (x y z)
{temp
(1f (>= (length lystl) (length lyst2))

(getassignment lystl lyst2)

(getassignment lyst2 lystl)

[N

(

time (get-hits-time))
;
7

(format t "~% ¥++++++ order of getassignment +++clock is ~a +++" clock)
(format t "~% the lystl is ~a " lystl)
(format t "~% the order info in temp is ~a " temp)
(setq junkheap (list ’lystl lystl ‘temp temp
rlyst2 lyst2 ‘snodelyst snodelyat))

824

(update-segment-coord-and-time temp snodelyst lystl lyst3 time)

here is wheré must take the set difference from the new data
p01nts inorder to insert a goal which accounts for unmatched
data

(if (< (length lystl) (length lyst2))
(create-goal-for-unmatched-hit-data temp lyst2)
nil)y

(update-segment-time)
(update-segment-coord temp lyst3)

(fifodequele hits)))))}))

note that in using getassignment, the first argument is the row
of the distance array and the second is the columns of the distance
Two cases: 1. More segments than hits - segments are rows

2. More hits than segments - hits make up rows

{defun gettrack'(cpa vector}

(read intrack)
(format t “~%TRACK TRACK TRACK TRACK TRACK TRACK ~% "}~
(format t “~a~%" ‘(gettrack ‘,cpa ‘,vector})
~(format t “~$TTTTTTTTTTITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTITTT~%"
(format outtrack “~a~%" ‘(gettrack ’,cpa ‘,vector))
(format outtrack “~a~%" ’(gettrack))
(format "outtrack "~a~$" cpa)

: (format outtrack "~a~%" vector)
;7 {(progl (list (read intrack) (read intrack)) (read intrack))
{read intrack) .

~
~
~
~
~
~e
~s
~
~
~
~
~
~
~
~
~
.
e
“~
~e
~
~
~
~
-
~
~
-~
N
-
-~
~

This 1s the main function which assigns the incoming hits to
existing tracks. It assumes that the number of tracks and hits
match directly and that there is a one-to-one correspondence.
This is the precondition material to freeze the context and
and hold the information for the output.

FI i i i iiai il iifisiiTiifiiiaiediiidiivei

Ne me %e Ne %a wa we wa % Se e
~
~
~
~
e
~
~
~
~
~
~
~
~
.
~
~
~
~

Ne Ne e e Ne Ne Se Se we e we

(defun pre-assign-hits (ksarptr).
{cond '
(({zerop (get—number—on -level segments)) .
{cond { ; 1f there are no segments - initialize one for each hit
(> (get-number-on-level hits))
(dolist (var (get-hits-coord))
(sendpushlevel (make-instance ‘snode.
:type ’segment
ccoord (list, var)
:time (list (get-hits-time)))
segments))
(fifodequeue hits)
(poptart ksarg assign-queue} }
(t (format t “ERROR in the nodes on the hit level“))))

(t- (cond ((zerop (get-number-on-level hits}}
{(format t "ERROR in the nodes on the hit level"))
(t (let* ;otherwise match hits to segments by b&b algorithm
(
(time (get-hits-time)}
est statement to remove updates to segments older than 3
ime units
{snodelyst (get-recent-segments time)}
(lystl (get-segments-coord-with-time-for-nodes-y snodelyst))
(lyst2 (get-hits-coord-with-time)) ; forms list of (t x y z)
{lyst3 (get-hits-coord)) ;forms list (x y z)
«(temp . (if (>= (length lystl)} (length lyst2}}
“(f,lystl ‘,lyst2) ‘(',lyst2 ‘,lystl}})}

f"f"

)
(format t "Inside pre-assignment function - arglyst is ~a<%" temp)
(send ksarptr :set-arglyst temp)
{send ksarptr :set-prelyst
{list snodelyst iystl lyst2 lyst3 time))
MM

~

Thié is post condition assign-hitswhich will be fired from the
normal boot.with arglyst

P TR TR TR TS
e e e Se e we e e we

{defun post-assign-hits (ksarptr)
{let*
(

(temp (send ksarptr :anslyst))
(lyst (send ksarptr :prelyst}))
{snodelyst (nth 0 lyst))
{lystl (nth 1 lyst})

{lyst2 (nth 2 lyst})

(lyst3 (nth 3 lyst))

" (time . (nth 4 lyst))

} . :) . :
(format t “~% +++++++ order of getassignment +++clock is ~a +++" clock)
(format t "~% POST ASSIGN ' POST ASSIGN

POST ASSIGN clock is ~a +++" clock)
(format t "<% the snodelyst is ~a “ snodelyst)
(format t “~% the lystl is ~a " lystl}
(format t “"~% the lyst2 is ~a * lyst2)
(format t “~% the lyst3 is ~a * lyst3)
(format t "~% the time is ~a “ time)
(format t "~% the order info in temp is ~a * temp)
(setq junkheap (list ’lystl lystl ‘temp. temp

s1lyst2 lyst2 ’snodelyst snodelyst))

(update-segment-coord-and-time temp snodelyst lystl lyst3 time)
here is where must take the set difference from the new data

‘
; points inorder to insert a goal which accounts for unmatched
; data

(if (< (length lystl) (length lyst2})
{create- goal for-unmatched-hit-data temp lyst2)
niU

8L

(update-segment-time)
(update-segment-coord temp lyst3)}

~ .
~. e

(fifodequeue hits)
1)

note that in using getassignment, the first argument is the row
of the distance array and the second is the columns of the distance
Two cases: 1. More segments than hits - segments are rows

2. More hits than segments - hits make up rows

~s e Ne e s e
D I T IR PR

i
(defun-getspline (snodeptr)
(let*

(.
(lystt (send snodeptr :time)) ;; this gets time list
(lystl (send -snodeptr :coord))} ;; this gets coord list
(lystt (first-n-elements 4 lystt)) ;; get last 4 time p:s
(lystl (first-n-elements 4 lystl)) ;; get last 4 pos pis
) .
(format t “~a~%~a~%" lystt lystl)
(format outspline “"~a~%" lystt) ;; send ks time instances
(format t “~a~%" (read inspline))) .
(format outspllne “~a~%" lystl) ;; send ks pos. instances
(do (.

(work (read inspline) (read inspline)) ;; read coefficients

{lyst nil (cons work lyst)) ;7 continue reading coef x y z
)
((null work) (return .
(cddddr (reverse lyst)))) ;; reverse to get in order
[N

fr::::r,:;;:?;;;/r;;,;;;;rr;;r'r:yrr/,r,,r,r,,r:::f:r:rr::::r:r:,r:i:r::

this function compares two spline representations

L TP,

; ;;;;;?;i::;?;;;;;;;;;;;;?;;;;;;;;;;;;;i;;;;;,,:,,,,,;7;?;;;7?:;;:;;;7;:;
(defun compare-spline-models (sptrone sptrtwo
(format t " in compare-spline-models ~a~a~% * sptrone sptrtwo}
(let*
(
(lystone (getspline sptrone)} ; this gets the spline representation
(lysttwo (getspline sptrtwo })) ; for both nodes

(format t "~% SPLINE. SPLINE SPLINE SPLINE SPLINE SPLINE ~%“)
; (format t “first set of coefficients is ~% ~a ~g" lystone)
H (format t "second set of coefficients is ~% ~a ~%" lysttwo)
; (format t " END SPLINE END SPLINE END SPLINE END SPLINE ~%")
{dist (apply ’add 7 this Jjust sums the abs diff of coef for alltimes
(mapcar ‘vector-absolute~difference
lystone lysttwo)))}
(format ¢ "~% SPLINE SPLINE SPLINE SPLINE SPLINE SPLINE ~%"
(format t " ERROR between pairs is ~a~3% dist) ’
dist

3

ARARAAA AR E SRR R A N R N R N S R NN S N SRR R R RN R R R

this creates a segment for unmatched hit
It does no checking since it has alreadly been confirmed that
; there are no matching segments

;
NN R RN

(defun create-unmatched-hit-ksar (bnodeptr)
(let*
(
(coordinates (send bnodeptr tcoord)) ; copy the coords
(time (send bnodeptr :time})) ; remove time part of the coordinate
(number (length coordinates))
)
(sendpushlevel (make-instance ’snode
:type ’segment
tcoord coordinates
inumber number
itime (list time))
segments)
(remove—data-x—from—level-y bnodeptr hits)
N

;;7;;;;;;2??;????:7:;;;;;;;;;;;;;7;7;??::??:?;;;;;?i?;;;;;?;?;i;;
; this program grabs a sample from

¢ the from the program and places it on the

: the hits level

‘
‘
i

7

H
HH assume that outbeam and inbeam are the out
i and in ports to the beam XS . ~

(defun getbeam (ksarptr)
i+ (format outbeam " {fire)~%")
{let*
{temp (send ksarptr :anslyst)) ; read in the answer list
{count (nth 0 temp))} ; first entry of the list
(timestamp (nth 1 temp)) ; second timestamp of list
(coord (nth 2 temp)} ; third entry of list
{xnode (make-instance ‘bnode :coord coord
itype ‘hit :number count :time timestamp))

Enter the data point in the data file for plotting

(dolist (ele coord)
(format outdata "~a ~a *
{(nth 0 ele}
(nth 1 ele)))
(format outdata "~%")

{cond
{count
HH (format t " count is ~a~% " count)
HH (format t * timestamp is ~a~% " timestamp)
HH (format t " coord is ~a ~% " coord)
HH (format t " beam node is ~a ~% " xnode)

(send hits :set-right
(cons xnode (send hits :right))})
{t nil}}})}

(defun getbeam (ksarptr)
(format outbeam “fire~%")
(setg count (read inbeam)}
(setq timestamp (read inbeam))
{cond
{count
(format t " count is ~a~% " count}
H (setq temp
HH (make-instance ‘bnode :coord (read inbeam)
HH itype ‘hit
number count
itime timestamp)

)
(format t " beam node is ~a ~% " temp)

HH (send hits :set-right
HH (cons temp (send hits :right)}))
Pi {t nil)

08

81

o~ N -~ N o~
. N -~ N .~
-~ . “ o N
o~ o~ ~ -~ -
-~ N “ - N
-~ -~ .- - -~
-~ I -~ -~ o
“ “ - ox -~
-~ N o0 e o @ ow N -~
. - m e m ew -~ —
o~ - M . — e -~ -~
N .~ 2o M e~ -~ -~
. -~ o o O on o~ —
o "~ T e o e o~ m
o~ -~ "~ -~ -~ £
o~ -~ Q e D sw - o
-~ o~ F=EEN =™ -~ o
-~ N Do Do "~
~ -~ “ -~ o~ ~ .
-~ -~ 0 -~ O . —~ -~ .
-~ -~ FEREN - e -~ o~ —
N -~ O -~ —~ -~ Py [T]
" w ~ e ye) — —~ 3 ew »
~ o~ (M QU on Pl [TN e [TS [
“ o~ 0 D ew o > en [3 e — o]
" “ M D o - @ . [o' ~ (e}
“- -~ — — en —~ ~ PRV — o~ P
-~ PO O -~ — . N — . o e o] el
-~ “a - =] D oes) O oes — .~ [+ 0
o LIS} [N Q e > — M e [1 LXERIN [£
L LY o 3 -~ Y [o~ > [O 0 -3
“ O w O o > o @ e~ — > O e o > - ~ 4y
“w @ o~ 4 3 @] (SN @ O o —t @ Mo
o w oot) [=IEIS e} — C e — [L Il
w -~ ~ O Q) w4 - | e 3] -~ [T I -~ Q e~ (] M
.~ —~ -~ N € D e O RN 3] E —~ Y] o
“w o Py —“ @ > 5] W e - o W e o o [T pn o 7
- — » “ O w0 o £ e Q P C e — Pl £) >
— — [N} ~ =1 g — 3 Il —t e O 2 @ et ea O Q o~ > oo 0 [}
3 o~ [y 0 (] o~ W o w -~ bl =7] -~ QL wu e [=] <
3] Py “w o o =1 o~ ~ 3 ooew o~ [T ~ i~ " e - o~ o
@ @ [e} o w0 o) O o — O o~ . o a o~ — .
o = s 17 . ~ c Feiu - D oew O Moy > = R MM H
0 L] o~ LN 0 P > 0 | ew >0 @ e~ [0 T I & o~ Q1T (o]
~ 3 o (=} 3 -~ 30 g 3 o~ — oa [N — e o v o P . S 0 .
o (INe) -~ ¢} LI 0 un ~ g -~ LSRN —~ QD LTS oo D FSEEIN [V B
o .. LI =3 L] “w O o O~ - g unQ -~ L0 Q e 3 u [=}
o “w o £) “w o> © .~ a N | e W e O o e 0 e O . O e @ Lo}
] ~ -~ o] o~ [V} [-~ 3 ~ - =1 - 3RS [7] -
£ Q [~ =1 ~ o~ M3 Q2T T [N 2 [ICIN Q,— O s Yo M +
el a L) T . T OO0 a N Q o T 0 C [N T o D oee oo o <]
[+ + o~ o =1 g -~ S0 N 00 Lo [=E-] Lo o o0 O oD > [
[w -~ [[~ @ Qo U~ 0 O 0 [= S IR L 03 E »~ 0 O 3
7] ~ “ o (7] (0] .-~ wE . 3 ew w —~ 0 3 e n — 0 @ Yt~ M —
“ o 7] “ 0 ~ = Q, o -~ [SERS -~ (VN .~
(o] ° L) o~ -~ @ o - o -~ o] o o M
N =1 -~ N . LI < N T 0 e M T L Eael 0 H.T [
QO N O LIS (SR =] - (ST <1 e (S =) o en (S =1 e (SN =1 kel
-@ @ 0 w o 2 o 3 " O Lo L) £ e o O £ e m @ M
g O~ D =~ w0 E 0 PSRN E 0 FEREN =) FEREIN E 0 o
o~ -~ o~ -~ o~ -~ g~ uq ~ -~ 4~
o - -~ - -~ o - - o - o - - o -
-~ o LTS TS ko] CESECTNRY TN o S o oew en kel -~ kol LTS o
-~ -~ "~ -~ -~ o -~ . o~ -~
N “ N -~ o -~ -~ o~ o~ o~
-) -~ -~ . - -~ -~ o~ .- -~ "~
-~ — o~ . [} — "~ o -~ .~ . - -~
o Q0 . o~ fu) — -~ -~ -~ on o~ xS .
o~] - o~ =] — -~ o~ -~ .~ o~ -~ -~
oy [-~ -~ Q - o~ -~ N -~ - -~ -
] -~ [-~ o~ o) - on on O en -~ .~ o~
(] -~] -~ o~ 151 — o~ -~ o) e o~ o~ LTS}
~ -~ > o -~ “w.o - " o -~ -~ “g e . ~ o~
o -~ B -~ 3] N)) -~ -~ o~ @ e~ N -~ -~
-~ o @ -~ @ ew m =] -~ -~ D> e -~ -~ o~ 0
w“ -~ 0 0 -~ £ 0 e Q -~ -~ o~ D o~ - -0
0o -~ oo~ .~ z Q o~ [ety -~ -~ -~ -~ -~ -~ -
- el ' & e o N . P @ e -~ - .~
c . LT -~ [-~ o~ N “ e g ew)
° - w © -~ PRI c o~) -~ -~ o~ P e [P ~ 0
ot -~ £ o~ 30 e o] -~ -~ o~ -~ g e]
e - P “ a5 O P . -~ -~ o~ @ o~ . m o~ "~
-— o o -~ e 33 . o~ - [TURVEEN "~ -~)
2 -~ Q -~ Mo e —~ 0 “ "~ w o 0n o O sn “w o
~ o~ 3 c o~ RN @ - I o~ -~ w ot oen O e 0
« -~ Q0 -~ e} -~ Y] [EVIN -~ -~ .~ -~ PN+]
o o~ 3 > o ® e o o e U o~ U oew T -~
(TS oo . I O 2 o o (0 aw — QU o o~ O oen “-~
“ -~ -~) .“ ®m O o~ e - I “w O o~ — “w 3
o -~ o o .~ A O e s [3] w e — o U ee w) oew piy w .
“ g0 -~ (YIRS 3 ~ N N —~ w3 e o~ -~ o, o~
o P e -~ [IS BTN Qo o O o Q “ O e O e I3 w @
M -~ 1 -~ T O -~ @ (] LR =S IN 3 -~ -~ [T =SE TN [V w
@ -~ g -~ O A e o0 ~ RNYEREN [o~ e D oee i “ o
2 o~ ow -~ £ M e 4 e - -~ -~ 3 w0 s “ -~ -~ 3
.~ s O -~ =N I o O o o~ .~ LIS < I — LIS o
—_ “w S -~ 0O D e~ @ 0 Y O o~ o [Ar=ay O en ~ -
) -~ o - 2o [o o~ - D e [v O -
o -~ 0n 3 -~ c -~ o0 = “ @ ew A Do — “w ol = “ e
Y] -~ E O -~ O O o =t S T en 3] “ o - “ S e o o~ 3
(3] . [} "~ I~ ea It O () o O ou — (4] w O o — LN -~ jo I) o~
[u] -~ FE I - @ Q - o U 3 LIS SR B3 + e Q L o R
E w o H N -~ —_ 5@ e o~ =~ -~ -~ 3] 7] o~ -~ 5] U e P)
-~ - o~ £ e e o - LNEYERN] N w O en [Mo =) -~
- -~ 0, — N f3) [IEVIRTS PN “w O D “ Do =] o ~ O o
o - o -~ « > o@ e (RS) Do w oo TN o DT Ul “a
o .~ 0o o~ o~ [- O - el LTS YN ja B o PTN < BN — - (1S —_~| wQ
2 (TN = -~ N -~ £ -~ 2 O o LN T > 0w RN o ST ~ LS CIN MY @ -~
- PRI] N ¢ W O e [c e =1 -~ -~ U -t ew O wow -
XS [oRRs) -~ RN 3 .G e [e XN o] ~ LIS - —~ O~ w O s © O o O M« e “w Q
— LIS @ Q - [T} [« RN | 20 M e ot (TSN RN + T - £XS) LI
. -~ " -~ v L LIN ¢ >3T -~ - - g e 0 2 w0 e [e A [T
[} 1S Fed (1S ™0 0 g . S0 4 e o W e O © -~ - - 0 w O o~ hagll I SRPEN .
- - w 0 -~ a2 9~ MO e ~ XM “w @ e L] e [N BTN ~ [INFEREN O M o~ “w 0
[¢] - 3N -~ O . o3 -~ 9~ > u w0 e 0 e o o e ey -~ -~ Q0 o O “wh
@ -~ 0, 0 -~ —- g T O e~ > . o~ @ oel =] -~ [oo w0 e o~ un g -~
£ -~ > -~ 3] E D o 1 e 0, & o~ D e IS =t o~ D e o} -~ @ oot
o LIN o @ -~ £ 0 e £ 0 c LI o JRE TN T O n LIS “~ s 0 o~ Q ee e o o Ut
[+ -~ O — - 0 @ M = 0w T n -~ -~ coam o w0 e L wn LI ¢ TN e E T o~
-~ o o~ 3.0 [30 3 “Ooee [TV LIS VI et BN -~ QO C o «“o
7] -~ [3) N 2.0 0 S o.c o “y oes w w O w U o o o~ 0 e 9w oo o
-t .~ ™ O "~ -~ N e - L= BTN - M e el . O u el B 8 “w Q
.~ £ o -~ o [T o} o 0 e o) “w E e O 0 e Q = LI =
O -~ 3] -~ g o0 [TER=I [Y i) - ew [o] -~ -~ g o WO e Y 3
— - @ -~ [SRr=1 oo e (SR} o U c “ o [Tar=t “ Qo [“ g
- w o ow -~ @ O RN @ o AT o @ LRGN @ o ST] ~ o
[w © O ” £ O 0, e £ 0 SR RN E u [-REN £ — U E — o~ 0
-~ -~ ug o~ -~ o~ o~ -~ o~ Do o~ o~ W o~ -~
- . @ - . .~ @ - .~ o~ . o - . . o - . @ - o~
LTS TN LT T O T L T TN T o .~ D o LT T T .Y o L LT T e LN TN i) LN 2N

82

— —~
— —
[[.~
> > - .~
v o N -~
— — -~ -~
- ~ "~ N
N -~
® % .~ N
o o -~
[¢) o -~ .-~
"~ " "~ s “ o o~ -~ 3] -~ -~
-~ -~ "w "~ N N ~ g N .~ -~
-~ "~ N - 9. -~ N | .-~ -~
-~ "~ -~ N I) s N o~ e s -~ -~
"~ . .~ -~ o~ 17}] . .~ 17} i N -~
o~ “~ -~ “ o~ - ? -~ -~ -~ 3 “~ ~)
"~ = . -~ “~ o~ ~ “ o~ — " -~ Fe)
~ o N -~ N I — .~ o~ o — N -~ %
"~ o " “ o~ -~ [o%] “ -~] .~ -~
-~ "~ I I o =3 > -~ -~ E > -~ - 1=
o~ 1] -~ o " “] [} [N .~) Q (1N -~ o
“ 0 I o - g P “ E .- o - N BN @
N o "~ © N o~ N “ 9] -~ o~ 0 ~ 7]
"w < -~ > I -~ N & E -~ o] “ g £ “ e .-
(1S 2 "~ (0] "~ “w .~ ¢} o o Y-t -~ [e] o “ - o~ ()
" [— “ “~ “w P ~ “ -~ oM 1 1S = -~ et
~ > " . -~ & [, e L “ X “~ - 0 - W -~ PN}
"~ —~ "w o] ~ " o ENE—— v "~ v o -~ . "~] -~
N o o~ o "~ " el - ¢ A0 T “ > IN @ —~ o g w “ o
"~ e} " > “ " Yy S > ~ T [} "~ Q -~ > o [-~ Fs} -~ +
. w oo N " " 1 Q > - .~ ¢ ~ 0 > N o~
“~ % ~ [} N N » i~ — ~ O o] -~ o “ — T o e} -~ 4+ -~ k3
" o " " " "~ © E N @ "~ o] £ -~ I N
-~ o .~ o Iy e > N) oo 0] - N [(S)) N o “w T
" — w oo o~ “ QO o oo = w oW N o vl N N @
(18 el 1S yej o -~ "~ o) -~ -~ “ [¢] > O . -~ Q -~ Ful
~ Y -~ " -~ o] -~ =] >y [-~ (4] "~] Q. =1 -~ 2 .~ ©
o~ - e N N @ “w oo~ o w [N Q “w o= o w o -~ woo
-~ ouw o~ o N [—1 “ 0T) "~ o} N 351 Q -~ 0 -~ 9]
" oon Ios - w9 o~ >y o Q -~ 7 N > o~ Q N o -~ o
"~ () S o) -~ o~ — “~ 1 LINICIN -~ -~ 1 -~ -~ o] -~ 0
"~ MO "~ 7] [-~ 9] “ — 7] [y [o~ —~ -~ 0 “~ -— -~ n
-~ o O -~ > "~ ~ 7] o~) ~— w o -~ o ~—D [-~ e .~]
-~ -~ [T N " jo} N > -~ D -~ o “ > - 0w -~ Q -
-~ -~ 0~ "~ -~ o~) -~ @ —~ -~ < - 9] 2o~ Dy .- <] w o
-~ o~ — -~ — -~ -~ "~ — o~ > @ o~ -~ — L~ -~ = -~ N
-~ e} O -~ “~ [l S “w =] .~ 1 O~ IS 5 ~ | [I o VSN -~ — -~ o
“~ Yoo o o~ o “~ Py - 4 o~ E v E L o~ > " [— £ . ~ . -~ o —
[y — Q QO -~ o “~ — -~ e} “ e} —~ @ 5] -~ 5 -~ [¢] [CRET 51 -~ El -~ o -~
~ — — e D o~ o~ [.~ 5] -~ 8 [LRFTAFS e 2 (=) -~ N (LIRS elal -~ o -~
E -~ [L ol -~ (V) -~ » o~ o~ o~ Yt “ O ~ o~ Y4 o O -~ 0 -~ @ o
o -~ > ~ g Q o~ < o~ D o~ -~ ["~ U — O Q= -~ o -~) — Q-2 -~ 12 -~ g} 5
e} -~ [— T 2z~ -~ + "~ 3 - ~ % T~ -~ -~ x U N -~ o .-~ = o
14 "~ — [e}] - -~ ~ -~ %] o~ [} > 0t 4 2 0n o~ 1 > 0 I -~ O -~ o
> LD ~ > E 3D -~ [-~ [V -~ Q -~ — [SRS o "~ [-~ o O oL K -~ o -~ 0 (8]
7 - [oo .~ o "~ w —~ ~ > -~] —~ -~ @ O -~ > o~ o — -0 -~ © -~)]
= (4] — Q >0 "~ -~ -~ — e -~ o -~ o ~ w v -~ o] -~ 0] ~ u 0 -~ -~ @ 0
o "~ — ~ 0 . s o, o~ © -~ =3 a o Q - "~ E o~ kel Q es .~ o o~ o 2
[=} -~ © o o~ [o] -~ O —~ S [} .~] T oe -~ [-~ 3 e I¥S] o o~ E -~ [
- -~ o T 0o~ -~] ~ o o -~ ~ -~] [] -~ Y] [N] S0 2 N o] N = 7]
(=] -~ o o on.ooe o~ .~ | > IS -~ > e~ Q= -~ -~ > O+ Q= -~ n -~ o E
-~ -~ f [T~ R "~ o} -~ > O -~ o -~ o 0w o > "~ o "~ o nw o > -~ o~ A o M
Il “ooD w E v o~ v - o — ~ v -~ I ~T O o “ g N £ ~T O D o~ w -~ o U
= "~ [~ [] .~ 3] " (SIS “w 3] -~ [} ~ -~ (3] -~ [9) ~ w 3] -~ 3) 0 o
3} o~ o n o~ . o~ o - 3] .~ G > "w ~ Q, ~ o o~ q > -~ ~ o} e "~ 3 -~ o I~
-~ Q- S £ .~ he] -~ £ " E o © -~ £ -~ £ o] -~ N "~ = o
o .~ o} EC oD N -~ o< -~ — .~ o JdunoE "~ —~ -~ o o vy E “w o oW [T
@ '™ 5 30 D08 qQ N u “w S0 -~ n o N Sx D >NC N -~ 0 o “ [R ¥ N 7} N o @
] -~ [SRFE) o E LT “ S “ooHd > N Uo~4 a0 “w oA > "~ U~ 00 " c -~] 9]
a -~ 1 I e TSR TN I T R S K=l S m o~ - Foa) S o o 2 W~ -~ oo LIN T O RN I N -~ o -~ Rl e Q
Q -~ i S T s "~ = o~ g - .~ 0~ “ E =~~~ — -~ 23— o~ B oo~ " 3] w o =@
R -~ woou "~ S -~ N -~ "~ e} W E
“ [T "~ “w Q o~ o~ Q- .~ - [VIEd [-~ v~
okl T NIRRT 1 T N < N T O o T A <1
&
&)
]
—
&)
L
. -~ " “ i
-~ “ s "~ it
S -~ - "~ i
-~ s "~ - — I
.- -« " . M 1
-~ -~ N N o — I s -~
“ -~ “ww o ! — . "~ -~ a
.~ . ST n ©) N N o
-~ -~ “w S o] 2 ? 7 o~ -~ o
- - “w @ = = > -~ LIS z
“w -~ [LE=AETS @ -~ n - -~ -~ M
-~ “ o O e =] = -t Q, "~ “~ o
- - o w o 0 .~ .~ — [t
-~ o Uy e - M X = .~ N —-
-~ - O e ~ o 183 o -~ o~ —~ o
1S S "~ -~ [} ' (8] (@]] a . Q, Kol
xS - LD IS 4] |93 ~ = * -~ -~ E R
-~ 0 e O e ~ e} —~ O * “ -~ (7}
o~ 2T wQ o = [— * -~ -~ o >
~ [TEN wE “ 8} =] —~ x N > N o~ 1 Q
-~ e w d e)) - * “ Ny piy >
I Hoe W E o [3 — * “w o~ o~ Q, -1 kel
N FEEN -~ - [) * -~ [- £ — Q
LTS - B B e ~] %] * “ > o~ > [} 0.0 0
O ! e wooee o > * - 7] -~ o —~E & 7]
-~ FURN [o [S J— x “ o~ N X O]
wm S o o~ -~ —_ -~ | * “ o~ X) D~ [SI
QD ee oo = @ . * - I3 “w = o <~ 1 o
g E [N S o —~ (%1 =] LI -~ o -~ O > E N
“ O D e w0 t Oz a [x o~ N] .~ ~ — a foh
e Do =N X e . 3 x o “ oo N O~ 0
" [BTN LIS I oM o * 0 o~ -~ > —~ Q. 0, — @
“w o -~ o~ -~ & o [} * D "~ 2] -~ 1 — >NE M o~ Q
LI SRR LL =ITN oo 3 ~ * —~ -~ — -~ — ps} . o0 © o~ -
(TSI BTN U e n 2] [a [5] x 0, o~ © S [U] “— —~ v U Q o
"~ Do [N 0Dy N] 5] * "~ [} -~ >) -~ — E 2
o e an [T =R H 0 o~ =) * N - o -~ o — [N g
e =N X en Jaqy™) [s] 5] * @ o~ “w o~ o EQawny o)
N -~ N “ Il £ " o« 5 x> "~ x - | g EOC 7]
"~ [V [T -IN o= T > [.~ - I > D 8 —0 > >
(DR RS RN = O s ol 5 ¢~ D il ~ () .~ o N Il v 01 —
O @™ e e ~ Q= o o = -~ Q -~ N > 0~ .o
—~ s (NS RN v o . 4] (o] T Q -~ > -~ S o Moo e) —
LSRR TS —~ woU e [RFER] N 0 -~ + - [} =} £ ® O QcC a
o~ e — (NI Dcow v @ o o) ~ N N ") [5 00 E Q
—~— LRI B R TN [e Moo J U 0 2z “ o -~ —~ w S~ v o
Dy Dy w5l 5 o~ (ISR D> .a Q ~— — 5] x = -~ c BN © -~ o~ o FERD]
FE) s Q e Q ~ LIS " (o BN RNTRN N 3 * of 1S - o~ (o — /o o] Q
P LTS T — e Dy s Il O -~ o .] x 1 -~ — o~ o] ol N CE > £
o~ N -~ "~ ~ G oMo oo ool I 2N it * m woo— “ 1 o £ —-oo1 1)
>N O 0] e o e id oo O e I * 2 -~ =] -~ x o~ n oo oL P
M - -~ 0 [AN Howeomo ~ > I * -~ 0, “~ | @~ 0 ~—=1 00 2]
Y TR I O N oo | E 4 g i * e -) > A E [o) >~ E o o
X 00, [EN= 2 TN T e el wa [e Ry | o =0 I3 * "~ N -~ 0, 0 £ - . Q
A seoan o E e] (TSN - BN 1] x —_ ® = N o o~ > Y o o oo o
~ W O™ oG c o~ S - —~= z =z (LIRS FERN] * -~) .~ 0 ~ 0, D30 o >y
x> [N S =T o T e ~ e @ QO (2] * o -~ ¢} -~ | £ > o0 a - o
[R aw -~ D> LIS IR EE RS RS I g SR ¥ > * "~ ()] -~ o Q.0 1 —~ Q¢ u n 4
) LR B BTN v @ "~ "~ o ? ~ = — puj [N — -~ @ E L p N =~ -7 o
T T T OO e o W e O s 4] z = T @ -~ Q -~ o [T) j=] < a
H e g D e ~ LN = BTN O mam Pt -~ E -~ 0 -~ P> C o L] E
[I TINT) ~ 0 T o~ o -~ LIS LEEELD [/ 7] — FERS) “~ -~ o e P 0
[SNY T e o N T [T/ BN 0w N g9 > D>y 5] — [o] - ~ “ N o~ ~— ~— ~ [}
— ol -~ [Sr=} e e O 00w — g S o R -~ P - [3) -~
c D Qe o O “~ .G oew CW Y @x =0 > c a © ~— “) N e <
34 w W Lo E un e S———EO0T<~ T <g e Ny o - E T =
[V [N IR o~ -~ “ '™ 80— - g g oy “w o O~
o~ -~ -~ g -~ N o o~ o) .~ -~ o -
- hol L N T N S el LN P P LT bt o BT P) - U w“ — LS T P T el EESE TN TS
-~ el LE L O T TS S L T T TS e I . o — N e T TS ~ . en aa

-~
-~ -~
o o~ o~
e “ -~ < o~ -~
-~ o~ "~ o~ -~ o o~ -~ —~
“ o~ -~ o~ " | o« o -~ :
-~ " "~ "~ -~ B N 7] -~ o
N N -~ -~ o~ Q N > o~ ?
-~ "~ -~ -~ - o~] A= . e
-~ o~ -~ LTy — "~ ~t L -~ .-~ <
"w -~ "~ N - N) o PN - 7]
.~ s -~ o~ —~ -~ “ 2> o -~ [} -~ >
-~ -~ -~ -] —_— — -~ n o -~ . —.
-~ "~ o~ | N o -) “oo. Dyt 0 -) -
-~ -~ [y K3 -~ - 9 n -~ - ¢ -~ Fe) -~ [~}
-~ "~ "~ 3] -~ o 0 > "~] ks] "~ o N -
-~ "~ (1S o o I > — -~] o -~ Q -~
w0 o~ "~ V] o~ ~ — ~ -~ FERN RS} o -~ E -~ @
=] "~ o~ 2 o~ [~ [o~ 7] N 3] -~ 2
[T -~ "~ | on Q 4o e N >0 C o] w -~ 5]
-~ -~ oo "~ © I o~ ~ @© O [-~ (9] -~ Q
“ o o~ ™~ Q -~ — - "~ Q0 U o -~ -~ E
“~ O N "~ o -~ - - iy) "~ oo ou I -~ =1 N o
o~ -~ "~ s - iy > -~ o) a -~ -~ ~
TSk e] “w [2] - e -— i) () "~ [SIN Bl z -~ o) -~ a
o @ (1N “ [=1 -~] el @ — -~ £ 0 =1 -~ 12 -~
w ~ -~ o " 3] () Y3 -~ — Q2 =] -~ 151 -~ ol
— w Q -~ "~ - o~ o & [} L] -~ el K] o~ i - =
—~ w3 ~ ~ o -~ o 3] © -~ 7] ©on o PN] o N]
LN “w e o~ "~ 13} ~ (8} o i =] “ > wl O —~ .~ —~ I
i~ L e -~ [-~ M Q o ~ — o o oo -~ (3 -~
- “w @ -~ o~ =1 -~ ~ Q | o “ © T 0 0 < N o
G M " -~ -~ Yy -~ 1 o hal -~ el Q -~ —~ >0 e -~ o
E O- “w -~ -~ -~ — [0] © Q. -~ o T L~ — > - +
-~ 0 w g o~ .~ o ~) N Q, 3) w -~ o FERN]] E o~
PERNY “w @ . "~ o) {1 7] -— . O .) " ey ~ 2 E o “ o
1) - -~ o~ w -~ > hel -~ — o -~ T e) o Lal -~ £
0w n o~ N “w w oo~ Y] " U] o wooo— 0. [C.% [-~ ©
FERE) “w -~ [= s K4 [e] n % 0 = -~ [— - -~ Fe]
o o~ o~ woou -~ 3] =z > > .~ > -~y [N el -~
—_— g “w O i~ - w O -~ © S5 ~T a8 — ~) ~ ' 7] N o
~ T -~ N — “w o -~ o O = » 0 o woo ~ e o > -~ =i
U M -~ o -~) k] [eI] oo “w o~ —~ 0 0 —~ ~ - —~
[CR U o~ @ . - o~ [} - ~ & n [+ -~ M.Z 0~ .~ P £=4
E DD wQ -~ O o~ w O -~ o ~ - = 7} et MO~ oo L1 -~ I3 Q,
P "~ m -~ — -~ . o . o M - .~ [[e] —~ [-~ > I3
o "~ -~ - - < g — X n M n o — "~ >) — >y 7 - p]
[’} e "~ < -~ o —~ @ —~ a -~ [o os o — Fe) o~ 2
o -~ -~ - o [A "~ [} el © O @ O L] -~ — o o > o -~ = 2
oo “ o o~ Q - -~ 3] N - = >~ >~ N | S| o s S e —~~a
— O “w o o~ >N .~ I o~ U -~ 19 1o 7] -~ g o M — 4 N o~ [<]
3~ (IS} "~ Q -~ M LIS QK N o~ U o~ Q o~ Q -~ e} O o~ e Fs} “~ 0 o
i -~ - —~ o W 0= —2 ox ewx > w05 -0 T O] -~ 0 ~0
T o~ (O o~ |~ [.~ ~ 4 g~ [[¢] "~ Yy nw o~ o> o .~ (=i
5% LLE) LIS [~ LIN () -~ L] 0 -~ -— £ -~ 1 2 >0 [e o -~ o 0o
0~ “o A e o > -~ Y] “w xT > | ® | © [-~ 0 0w = > n E 3} -~ £ Sl
O o LIS« TN [} .~] o~ [S3e] — X g >0 M o~ [>0 0 ~ a -~ v~
S] WD e g - “w ©®E ~ _m _m “ T T v o - - =z
1 Q [ON =B TN [-~ o -~ MM ¢] K4 £ =] -~ <] v O — [e] -~ o
w E w0 e Md "“w o ~ 3~ o] 0 a [Sh] 0 -~ s} B8 oo ~ -t -~ [t
R e -~ o ow -~ [M @ — @ — Bl -~ | o g N 5] -~ c o
o (TS B o LTS = - k3 -~ PSRN s M~ Mo~ e} “~ [} o] o w 0 -~ 1 &P
£~ U N oe c w -~ o “w O = [N FERN 3] .~ > FER YN] z > <] -~ FERTIRT]
I~ LN = BTN it~ LIS — “~ o [t o= [=4 (1N o [B oo =] -~ 0~ E
o [N~ - TN + P N SN o o =] -~ £ ~ 0 [-~ [T I
[Qe [-~ (o] " o @ U M Q M Ut .~ [0} oW —~ O -~ -—t O ~
o © TN (>] -~ W -~ o O o o a -~ N o] w — L 0 -~ VN A
9 0 O e o "~ 1S [SEeN o] 5] -~ 2 C > 3o - e .~ ~
g o e [SEE] -~ [} [@ @ oo (=i - ~ £ox - S0 o~ Eel o~ o x
5 @ o apN 5 @ w oo o~ £ E 5@ o @ < -~ 3 0 e P P o~ = o
- E FERN BT 44— -~ 32 -~ by~ “w g B Fs) "~ “w o~ ~ -~ o T~
Q. " Q ~ "~ -~ [Q o~ ad @~ ™~ v ~
s ko) [T R ° P T kel o o . an an e o] o~ e TN o
-~ ~— LTS TR T T ~— L L LT -~ -~ ~- n v an e hd - m L T T A hed
~ -~ “ -~
-~ o~ .~ o~
-~ -~ (1N Mo
o~ N on O on
7] -~ -~ [-~ SN
s -~ o~ po) o~ | e
[[N -~ = IS — en
[el -~ -~ [o - Yt e
m, ™ N - £ o o~ .
~ - o -~ 0 e~
Q — -~ LIS Q — LI o —
0w~ -~ -~ 7] — 0 e — —
Q W "~ “ o u - £ oen kel —
0oz O ~ -~ [z O - N .~ el)
= o " S 3] > w4 e o £
RN) -~ -~ &£ a0 ~ - 0 e (o] el
© M -~ -~ [P RS —~ o~ Q = 3] +
Fel o} ~ -~ £ g o > -~ O -~ . .
20 -~ .~ +2 00] o~ — e T
—o D s -~ - e P D 0 = -~ O =~ o~ —
@ o -~ -~ 2 [~ [o~ -~ — —
(=] -~ — o~ o oa A o o —~ -~ [N — —
T -~ O -~ — -~ o =R B =} o ¢ — o~ FSEETN 2 e
¢T O -~ —~ -~ v T O o — -~ 2o Eel Eel
— FURS) BN —_— w P E NP) —_— o~ -~ o o
-~ w O ® -~ T -~ oo m Mo ~ 0 -~ E - e
o —~ 0 E -~ o O w A 00 E o [T N O o~ Y %
9 T3] “w = =) w Lw®o “on E O PN VR -
o o) s -~ O .~ o) 10 A 0 “w W
o w Q c “ 3] W 0w Y <] o O - -“ w 0
3} .mE P -~ E [N N o0 E & E O -~ 0 e e} Fu]
LN @ -~ -~ pa -~ @ o — E [N o o~ e e
+ e =} -~ e X X -~ <P e & o X X -~ Aoex =) «
X © -t (IS 1 — S o u Eal ' -~ Q o
o 80 (1N =} T T W .~ HeA 0 £ 0 o le] -~ Q o~ T o
o -~ O &8 M -~ 2 cop -~ O — & M 21 c o - U e =} [
[=3R] [oRFE] -~ Rl [-~ o] L0 4 [~ e [o
O e 3] e "w x u n g -~ 0 a o 20 0 un - Q o~ n o
u [oa) ~ [} ~—E -~ £ 0 [=~ “ FSEEIN ~ ~
~n Q- E -~ T 2] o -~ Q B T (%] LIS FEREIN —
o o o ~ M M NO -~ o T H O (<IRS| - o~ ~ —_
—~ B0 N "~ o] ~ 0 m ™ u -~ P o v ~ 0 m @ -~ @ . %] ~ 0’
X U FE) "~ [o] X O OO -~ AP M [¢] X O OO -~ e T @ “m
~ g w30 “ 3] ————n -~ n 30 S — “ Q e~ gy @
o Do "~]) “ oL Q 13 N N 0~ E ~
° O [L] -~ 2] [} el -~ o u Q w Q0 5 -~ -~ Q -
kol] oo E -~ 2 ° ‘o .-~ o>y o E oo o -~ £ e O N o
~ .Q 0o -~ o N Q £ -~ ~ O A [*RaiR! m -~ O o | 1 @
M E T [~ P LIS [= 1 -~ =1 Rl] L (o] ~ EEERTS 0w o w o
g =1 oW o~ £ 0 © o) N O > Eo® O @ . "~ FERRN o~ o~
0~ @ A O -~ o0~ [-~ — 0w (o I o] —~ -~ O o - -
g~ n 20O “~ v @~ o o~ o o o oz o~ — -~ £ e~ Eolie) £
E &« ™ o 0T w -~ [= ~ “ [0 o B o IS} " Fio~ > ~ 2 BN [5 1o
~ —~ o om -~ [— “ U @ [T . G] Doa
-3 o -~ ") -~ ' v 2 - - o 0 @ w
“ ol -~ [s. " [SEe) L 4 - -~ o [ined
PRERE] -~ 3} -~ 3 o @ -~ -~
» - -~ -~ v o . ﬁ N -~ 5 I3
-~ 0. 0 -~ o -~ - 9T O (ol -~ -~ 13 o
ol ol o} -~ o] o~ ol o NI <} 3 0 -~ -~ 4 hd
PR] -~ — -~ 2 moG A el -~ - o kY
-~) -~ o~] °
P Ty kel P Y P Ty o e en te e e e = ~

o~ tm tn sn e ew P .

(index n (subl index))

(outlyst nil (cons (nth index lyst) outlyst})
)
({zerop index) (return outlyst)})}

r:r:r::,rrr,:;;i/r:;v:/:,rrIVr,;;:/;;::7//:,rr:;rr:rrrr/rrrrr,;rrrrr:/rrr,

get-recent-segments gives the segments which are within
"recent-time" i.e. < oldage - which is a 'global variable

PRRRTRRRIRIINIINIII NI

D R P TR,
~
~

{defun get-recent-segments (time}
(do* .
(
(slyst (reverse (send segments tright)) (cdr slyst))
(clyst (reverse (gét-segments-coord-with-time}) (cdr clyst))
(newlyst nil)
) .
((null slyst) (return newlyst)
(L1f (>= (diff time (caar clyst}) oldage) ; oldage global set at 3

nil

{setq newlyst (cons (car slyst) newlyst)}

[
";;7;;777:?;;;;;;;;;;7?;F;;;];;;;:;f;?:;;y,;7;r,,,;;;,;;i;;?i7;;:;7;;:7?;

;
; This function finds the latest data point and returns the
; time of that data point (hit or segment)
;

{defun find—time—of—last—data—point ()

;7 look at the segment and the hits data bb level

77 find the maximum point

77 1f both are empty or either one return value of zero

(let*
((hlyst (send hits :right))
(hmlyst (mapcar #‘{lambda (x) (send x ttime)) hlyst))
(slyst (send segments tright)}
(smlyst (mapcar #‘ (lambda (x) {car (send x :time))) slyst))
(testlyst (append hmlyst smlyst}))
(if testlyst (apply ‘max testlyst) 0)))

:;;:,;;;fryrr,,y,;7,,:,,:7?:;;;7;;;7;?;7;;?;;;7;;;7?:?:;;;?7;7;;:
i
77 This subroutine finds the oldest or (min clock time) of
;7 a segment entry
;??;f;;;;?;?;;i?;7;;;;;77;??:;;??,,,r,,,r,,,,,,,r,f,;;ifii;;;i;;;
(defun find-oldest~segmeént ()

77 look at the segments on the data bb

77 find the minimum clock time of latest data point

;7 return the node to test for atrophied data segments

{do* (

(slyst (send segments :right) (cdr slyst))

(node nil})
(smlyst (mapcar #’ (lambda (x} . RN
(car (send x :time)}) slyst)

{cdr. smlyst})

(work (car smlyst)))

({null slyst) (return node)) ; returns nil if no segments

{cond : ’ ’

(- (< {car smlyst) work)
{setq work (car smlyst)} ; update current minimum
{setq.node {car slyst})} ; update node corresponding to min

(t nil)

M)

(defun get-nodes-at-level-y-satisfying-predicate-f (y £)
(do (.
(temp (reverse (send y :left)) (cdr temp)) -
{(y-temp nil)
{(not-y-temp nil)
)
{{null temp) (return y-temp))
(if (funcall f (car temp)) .
(setq y-temp (cons (car temp) y-temp})
(setq y-temp (cons (car temp) not-y-temp}))
(send y :set-left not-y-temp))) .

b8

(defun copy-goal-nodes-at-level-y-satisfying-predicate-f (y f}
(do (
(temp (reverse (send y :left)) (cdr temp))
{(y-temp nii)
(not-y-temp nil)
) .
({(null temp) (return y-temp))
(1f (funcall £ (car temp))
(setg y-temp (cons (car temp) y-temp))
M)

;?;;7;7;;fiF;;?;i;;;;t;;;i??;?;:;,,;,iii;;i;;;'?7;;;77:;7:17;}7;;
] .

;7 goal selector copying from level y goals that satisfy f

i

(defun copy-data-nodes-at-level-y-satisfying-predicate-f (y f)
(do (
: {temp (reverse (send y :right)) {cdr temp))
(y-temp nil}
(not~y-temp nil}

8b

o “ -~
“ O e~ N
. -~ = -~
- -~ @ on "~ —~
- -~ 3 ew -~ — -~ o~ -~ -~
0, .~ SN 0. " -~ o~ o~
£ .~ i e -~ E .“ -~ -~ .-~
o -~ E e e] o~ -~ .~ N
Es) -~ U -~) -~ .~ -~ -~
-~ O o~ .~ “ g -~ “w 0 “w
P - Q e -~ Py «w O .« -t “
—~T o -~ N - v} -~ I -~
-0 S [V N -~ 0 o~ -~ o -~
—~— an VRN “ -~ .~ N o -~
—~ WA e -~ Py w0 o] -~
Y o~ N R S -~ Q ~ “ o o~ o N
- -~ e E —~ g1 - " -
) .~ @ O e - q © b - PO} "
[=3 =1 .“ B D e o~ f=3=1 PN “ womo e
o © -~ G - en N o d “w e “w w e e
—~ . .~ £ x e -~ c ~ @ -~ PINER N
[o -~ o e -~ o o~ -~ e
=1 LN o~ PR - w Q -~ w T O e
o “., WA e -~ oo =} N @ e
[=] FE I) -~ L e -~ T M (TS -~ W -~
o M O o~ FERRS TN o~ 0w o ~ (1N e) e
0o > -~ [TN -~ o0 D> w o -~ oD A e
) cunwg o~ PRI ~ TR =} N w0 U o~
o Q e -~ = R LY -~ o —t e “~ nh @ e
Q o L] . QT e o~ hadF TR] ~ > [LIS« =Y
[~— -~ -~ -~ [} -~ O - *~ LS TN
~ [el .~ O T on -~ o 0OY ~ E o~ -~ 0 o~
Q0o -~ M e -~ N S0 o~ @ -~ -~ [=ERE2N
@ N e O o~ [T .~ “ O R - M -~ .S O on
3 —~ O Q -~ @ e -~ o O -~ - D e
L ™ 0 0 - E e - M~ O [&) -~ LIS « IS TN
3 [i o1 LIS [SIRCTN -~ o] [+ (1N - O e
o o “ [N -~ 20 o -~ “ WS e —~
] T 00 " >0 s -~ >N N Q@ [T} -~ — e e
) >N -~ O A ew -~ [] w o -~) N TR S
o [t w0 "~ -~ V3 T =1 -~ 0 O s
| M T -~ [2SR Y] T} N - > e e —~
[el Y =) -~ R BTN -~ o ~0 g o “ o — o~ “~ 3 oew — +
o O M [@ -~ -~ =] M -~ “~ =} P O e [=4 0w
Q o3 S -~ £ 0 e -~ [O >N D -~ Q -~ + LN B BTN >
[~ T Do (I8 2O e -~ =} T O o [T -~ 1] — DD e I —
1 [CI] -~ [=ICIN -~ o o M 0 -~ [ICIY > a0 e O s [
2. [SEE RS (1N 0 - e -~ £~ N4 LEE N BTN — Bl -~ Mo > =
[~ on T N e -~ @ -~ w0 W e ~ o~ “~ o Qe — +)
] (1N "~ -~ o~ ° o~ P I BTN 4 -~ -~ ~ o
M T o -~ Q Dy e -~ %) T O L I BTN Fo 0w un.o o~ O e =}
o C T o~ -~ E ~ o -~ =} CQ —~ - -~ 7 > | oL e [7]
> 0 O O . T 4 e -~ - o O Q w @™ a > ~~ O o 0B e I —t
o 0w CE ~ 0N U e ~ Fe 0w cE -~ K< — Iy) “ g -~ o ~
— ~ 0 - -~ O o .~ ~ ~ @ LIS RN] —~ | o~ o - o —
L) - @ N e -~ [o Uy o~ [} FERITRN “w o] P
[} o2, -~ oo e -~ e Qo LEN B BN Ful n oo -~ K e =1 - 0
Q £ o M - 2T e -~ o, E g M o~ U O o [e R L I o BTN @ Dy
o v O @ LIS o~ - [*) ¥ O m LN =} -~ 3] O N .0 3 e + O e
Q. N0 -~ -~ n G e~ -~ o, 2 0M O~ w3 Y e =} ~ O LE =3 o BTN I -~
- e O ew ~ —- - N VEPCEN =] -~ c g e o]
o~ N [N o~ o~ TR TR Y] —) o~ Qe S0 NW
~ - 0w O e~ -~ M -~ -~ o = B w0 “~ 0w NT M
[SRFE] [XN o4 e “ [SE W e T £V vt O e ¥ 0
" o -~ £ O e -~ o O e O e oo [T e S BN o b o>
E —~ -~ QO e - £ T <R, O O g O e a0 L0 O
4o~ -~ -~ -~ LS Bt [TNE) -~ - O -~ — e U S M~
Q" "~ Py -~ o - . -~ Q ~ "~ - @
w o T N < PPN o — P o
-~ ~— L DL D TN T el LN TN TN TN - -— LT TN TN TN et
— . -~ [xS
-~ -~ -~ o N -~ ey -~
-~ w o -~] -~ -~ 3 -~
-~ -~ o o~ -~ o} -~ -~ Q -
-~ .~ a -~] 0 ~ -~ - — o~
-~ -~ = o] Q "~ -~ ~ — v -~
-~ -~ 9] -~ Q '] -~ -~ o - - - N
-~ -~ o .-~ 0n o [=4 ~ o] -~ -~ o
-~ . W -~ @ — o~ O -~ © e .~ . >
-~ -~ " [-~ e @ e 3 .~ o~ a
-~ -~ [-~ -l ~ L g e I @ L “ -~ —
-~ “w g -~ — wF O e ° o -~ “woow
-~ “w - - -~ e o 9 -~ N
-~ -~ N —~] ~ - [RP o -~ -~
-~ -~ > . @ o e) Mo — el .~ - [
- “ Q -~ > - w3 0 e =) o o~ e Q,
-~ - -~ & ey QB en M o - "~ [oN
— -~ “w o " — © I IS — 3 . .-~ BN o
— -~ -~ (] -~ - M Mo - Q -~ o~ 2
Q. -~ -~ 0 -~ 3 o e e | ful . -~
E -~ — -~ u -~ > o -~ -~ i3] o -~ -~ (2]
[-~ — — -~ [-~ [] e LIS I TS Q 4] - -~ =
i} -~ — — -~ (4] XN = w1 O FERE] = — .~ (28 N
1 -~ w — [[o] -~ Q F o -~ 3 @ [e] —~ - - =
> [2N Ees il -~ ~ -~ -~ “~ O . - Q 3} -~ [2N -~ Fu]
-~ o [-~ o) “~ Ee] g LE S I TN Eal | ~ > -~ .- [
. -~ ‘@ Pl -~ N @ Pa] -3 e oo o oy - Y]
o o~ m. [¢] -~] ow ~ K “T Qe = e [- L3N -
£ -~ e “~ Q o~ =] 0 N RN e 3] 9 -~ N -
@ -~ [} o -~ -~ el —~ LN~ N @ - - (e} -~ .~ [
L~ Fi3 1S (7] [=1 1S [o] TS 1 LTSRS BT 1 o ol o~ s o
— “ —~1 =1 o~ M . “ ~ P YIS [eRye) 54 Sk N -~ Q
[o~ x O 3 -~ .- o —~ © PR TN @ @ o 0, o~ o~ IS
£ o~ -~ [SlEe] - -~) -~ 1 s =1 R = -~ 1 0 = N .~ -~
U~ 0 -~ O M -~ 0 -~ b - o — O @ e Qo > -~ -~ e
2o~ oy ~ 2 — -~ > N 1 o @ 0, o~ o ew ° 0) > -~ o~ @
() " [SINN @ - H -~ — -~ @ w Qe o 0 ™ .« -~
>0 0 -~ ~ o~ Q, - -~ [L [} LI I I o~ et o -~ -~ [
RN 28 > - -~ E Y~ £ s I BTN 1 -~ [-~ -~ 3
5] o -~ —~— -~] -~ [e X “m Mo o v > [-~ “ @
H oM O -~ o ¢ QU e -~ s} -~ ~ [it 2 wp o o 2 N g e w -~ -~ 3
[0 Mt o~ Q. 0, g (TN o E LIS | >0 Yt Ll - T £+ ~7 ~ -~ -~ o
e -~ >y o w -~ Q -~ E o > @ (] LI o} -~ O T WX O 2N -~
o~ 0 o~ 2P g -~ [-~ [e] —~ Q0T — w0 Q@ e | I L — -~ -~ [}
M E -~ e e ~ O . S0 -~ N ~E Q ~ 1 w3 O o S0 -~ M o> -~ S o
el ST -~ - =1 (18 2> “ “ U E ~ En LIS e AFE IU TN [o I IS} [e} - - +
A “~ Qo ¢ o o -~ w LI [} T N @0, [o~ -~ > o>y T T Coe -~ -~
o~ w T T o T -~ [0] -~ 4] ol HE 12 “w O O ™ O~ oM — -~ -~ L
Qi >y =~ O © o = 1 -~ + o -~ — [Tl T} . o~ M O —A M~ O O ~ > 0 (1S -~ —
E ™ L2 = [-} (O3 }] -~ [V] -~] 0N E « B w0 "~ o) - -— -~ -~ o]
o0 o - — PEgR] -~ o - o ~—— — @ W e I« ~a - B o~ “
P e D “ oY @~ .“ [SEEEN o [w B S e o o ~ o - e 4
3 Q o~ w0y o8 E o~ O -~ o~ 1 o0 > - — 30 O . -~ -~ o]
Y~ “ O v 0 o — (TN Moo e + E 0 L . @ M ew QT M M -~ -~ b
— “w w 0 = 1 o~ [=) - [v O — .~ B 30 Q0 O X -~ -~]
3 (S e] o =] -~ q O -~ o) - w0 -~ oo E o -~ -~ —
CRT o~ O FEaN -~ £ .~ ~—— —~ w0 e -~ g0 .~ w4
—~ “w o —~ c o -~ el -~ o . o -~ Q o~ [e] o "~
— w O © [o~ LN n o (2N Mok o O WO O o T “w o -~ “
-~ 33 -~ -~ 0 N (SRS v E [S BT (S =1 n -~ 2
LI =4 o o (= -~ £ . -~ o @ 0n U o~ w0 3 oew o ¢ e~ -~ 0.
w3 N OO 3 0 . B+ O - E —) - w0 e E 0 = -~ Q.
wlUd O~~~ Ny -~ -~ g~ -~ o~ v o~
-0~ . o — .-~ -~ o - N o - o~ -~
o o L N+ | “] “T woen ae

({x3beYORd-pIOMADY, (WAS’ sweu-Toquis) uIsluT),

JROUOD)

({{({{{aanqTI338

(23InQTI3le 2poU sn{eA) 23INTIITB-1E-8pOU-03UO-dnTRA-Ysnd 0IDBWIDP)

98

®@[qeTIRA dDUEBISUT @nenb syl woxy swely dod pue ysnd soidew sy

peal o3 Iesy Jo a3elSs ®bueys

T1e2 uoTIduUNy WIoy

@7geTIeA woIxy aweu zabussssw 8b

Joa®13 Isbusssaw woxy sweu 3xod andino 396 ¢
(Quawubisseleb-o3TIM-210J09q, (Iuswubisselsb, purwwoo Tenba) Nesaqy)

{(3sA1bxe pueumos suod)

e s e —_ P LI VIR TR [T —_ e e s —_ e me e as e v ey m
e s e e [Q. e e e ne we - Q o e tQ a ~e e e e e Se e ne e
- e me - v TERE TT L o 288 5 ~B -
~e £ [= e - ~ Q [NN EE A ~
=] hid o 3 (o] i) e ot ot KNN3 H O o] hed =] hd [SE s ad =0 0P KRR H =] a3 e
f= i 3 @ 3 e o g hed oo ® o S.DW = i = ~e [aL W - - o o o h
= = Q rt o o ~e Ll ~e n oo = O e o ~e - s B OO 2. Q ot] o m - ~
(7] ~e = = g [e O = = KON o < e 2] e O = = 1o 0 <] [~e
©w O ©w O e e =@ © wounuuwnyo] i ~e = o ® Lagke BN} o = e
[N © Q e TN o ottt Q] i - ~e @ 1 ¢ Q0 M7y a1 (el 3o e
E] — = - 3 ~ b - e 0 ~ [N o0 0 - 0 “~
® [® > (=] o = (== (S =] Q S
(s 3 3 hid [i 3 0'u n hd] ~e 30w ot [ot Wy e
5 - - <. 5 W ot ot] ~ ~ B ot o w oy Fa R P
[W 0 v ©n ~e o ~e (Sl T ~e 3 ~. oo [o L e
a. ® « o v e [+ héd j il el N H e (o et [SER= =] ® o @ hd
t o @ hed e 300 ha o hd] e 300 184 (=Y 3 hd
£ (=] (-] ~ £ ~ o0 0 o oot “ -~ ORI o oo . se e v m. « 1 a ~
[at afe} £ Q hid [a} s [] L 0B oy [¢] . =4 hed o 1| (0] o Hh bl
s o ® [a g hed L had I < < RO 0o [2] ~e l'e) hid 1< < t ottt a1 < .lfm hd
ct LR [alial had (2 hid < oo .DWM Q hid hid < wop T oD e} P héd
I o o) [] g O e e s e [T oo 000 " <0 e
[[D ~e (2} ~e o [T s =] ~. [~e L o w ~
Y [~e . [o 2 «Q T . [} oo T 00 ~e 3 [~e
IN L R Nt~ o oo Jarcc - < o U o LR - o 0 o
] o [T o S [ot - ~ 0 U ke oke o gy et » DY =
—_ o @® hd hid = 0 @ Tt w0 hid L2 = 0 @ 0 S 2 TO ot (2 hd
[ad Q - e ct e o » © =0 O3 m © n n [B =~ = o g [} [hd
= (] Q =3 hed 2] dosn (o =1 [¢] 4] %] o et @ 3 =3 ~e
1) ot e @ o @ [=3] [Is B o] 4] Q ® hd
InJial [0 ot = - 0 o0mTQT o [e
o o o (2331 [¢]] -t = RN R OO H Hh ~.
(=4 o Q- c "R n - [} Qo t R w0 = ~e
t AN ot ct Q (e [o3 [} ct oot =2 — h
ke} o £ ® kel a3 =3 3 bt ¢} 0] e
c P | =3 c ~ O o o)
ct Qo ek} 2]]) e = O I £ s
e [a1 (e . [1]) & O ct = o > e
o] hid T [V 5] T g kel < > O - ~e
[°] ! Qo ~ [N [e] [o 3 =1] Qo = o Q hid
2l e [ai T~ H o .0 @ 2 o © = e
Il ~. [[s] t [adN?] [ad w'o @ e
“~a el [N . t Q QY g 13 o e
~e ~ ot~ » = 0] RO aomn 34 e
= -~ ~ = O o) b () by O H ot S
~e ~ et (B Lo B) © o e
~ — ® oo 0. [
~ oW O n ctw [44 il
e H] oo [b e
s oot R J L
s o o [ad =3 it
. [[[~e
~ o = W e
~ N ~
~ o ~ o~
~ o 0 =2
~ o ~ o -~
-~ [
e me el e v e Ne ne Ne v e Ne T %e e %o Ne Np Ne SEone e ve e v v e e ne s —_
~ 0 ~ ve v, Se e Se we me v e Se e Ss o SENe Ne N Se e Se Ne Se e e ve e . ~ ~ ~ o
—~—O ~ ~ ~ ~ —_ —~ e e O
W s ~ —_ ~ —_ —~— 0 M
© 0 .Q S e o Ealid Kel=4 o o ~ 0 "o] o o 3
= =] IR [u] M ~e - o O - M H D O kh 3 [a]]
o 0o ~e D e s e — ©w R — o 3K 3 o 3 3 t
. o S ose = E ~. w oo Q3 o M3 o n o >
TOM v ot o 0o = ® o oo > 3 [T ©w Pt
® ~ D a 5~ —_ 0w - 3 a o »ot) o
Y ~ e I Qs T Q 7] 7] o o = -~ ot
0 e o e e c < o) — aQ thQ e~ —_
Q ~ s N e u -~ o o ~ e o= o w0 o~
0w w0 ~e W ~e ~ 1] >3 = o9 bY) = e~ e 3 R O3 Qw0
Q@A e vt o o c 3 o= < P oA - ot
El ~e o~ s - —_- o n (A Q T v [} Qo o
o oee e 3 s £ =] n < o Q © = [ad [) .0 o® [a]
WA ot o n o o R Q [@ 'z 1.0t u o
®© 0 o Se @ e] @ =B g 30 - =3 [a] SWda [
et o ~ = o H QC ~ o) » I o o o [SH}
T e e O o ot o~ Palie] ~ T a |~ DT Q
[N Mo] S e N 1] ~ © >e n . t Qwuwwu o Q 3 ot v O
N O @ ~ -~ o = < o) = o0 o q O Q~ o o —
QT e Z) o % = [=4 m.luo = =1
— 8 ~ D~ —_ < a o < Qo Q Qo [] ot e
oS ~e 0 S [%) =} 10} H [T ~ o o~ =M z
w3 a e . < o oD ~ 0 — 3 0 e ~Q L a o
QD D e 5 - - [[~ et - Qa o) o -
e T . =] P—— nc o ~ ~ 0 < o0 3 I
S s s s e ot ~ o o0 Q] ~ o0 ewoz@ ~ M
[-] ~e (D e Q o — ~ t [ad (0] 0.1
— - ® e Ko < —~ o O - e} . ~— ~ ~
H @ ~e ot £ Q = c o~ -~ t
-0 0 ~ o o Pe) ot) o [
~ o o~ o R =] o+ 0 = w) ~ ?
S . o o sl ® ~ ~ E
Q ~ ~ - [[al=] [[2~
0] ~] o (o = O =
R ~e < [o Q 1 Q.
~ £ .~ c o ~
~ o [ot o ~
~ [a] [} o o a
Q. [ad ct
1 o | [
kel o <
1 [(2] (]
Q lad [3
~ I =R o
o n [Q
Q - < T
[o o =]
= Mot 3
[ad [Q
[=4
~ o ~
~ Qo 0
o Y
2] [a]
= Q

setq assignmsg (make—ins:énce ‘messenger })
; (send assignmsg :set-command ’getassignment)
; (send assignmsg :set-arglyst ‘(*,r4 f,r3))

(

;:;;7;:7;?:;7;:;7;7;;;;;;::;;;i};:;;;;;;}:i?7:7[;:;;:777;;7;;::;;7;7;
b

;¢ This method .reads from the output port and places it in the

;¢ answer lyst in the flavor

i
77;;;;?;;;;;;;;;;;;7?;:;;;;;7::;?i7;;;;;;177;7;7;;;;;;;}};;P;;;;:;;;;
(defmethod (ks~ protocol read -ks) ()

HE (format t. “~% READKS READKS READKS READKS READKS READKS ~%"
HH (format t “INSIDE DEFMETHOD READ-KS clock is ~a ~% " clock)
72 describe. self)

;7 (*break (> clock 8) ‘stop-to-test-read)
(let> ¢
{rtemp (send self :messenger))
(ptemp (send mtemp :read-port}))

2 {xxx (format t "messenger is ~a and port is ~a %" mtemp ptemp}}
(temp (read ptemp)) .
HH {send
HH (send self :messenger) ; address of messenger flavor
H tread-port})) ; get the readport ‘
}

(format t “The address of messenger was ~a~%" mtemp)
{format t “The port read was ~a~%" ptemp)
(format t "The message received back from ks is ~a~%" temp)
(send self :set-anslyst temp)
(send self :set-stage 0)

s e v
P N

)

i .

77 This Zunction a read predicate which tests if the read port is
;: ready o receive data.
b
i
Vi

(defun readp (port)
{cond
{({zerop (pread port)) <)
(t
(cond
({arnd)
{egual (tyipeek port} 10}
{progn (readc port} {if (equal (pread port) 0) 1 nil})

y O
[0 B
)
Iy
i E
77 cond
b {{zerop (pread por*) nil) ; test 1f empty channel
b {t ; else
HY {cond
H {(and
¥ (equal (tyipeek port) 10) ; see if next char is return ascii 10
e {progn (readc port) (if (equal (pread port) 0) 1 nil)) -
H ! nil) ; if return and channel empty return, nll
HH {(z 1)) ; elsé return 0 :

;
H
; This function poll-reads those KS’s which have non-empty buffers
H) :

v

v

d

(defun poll-reads (kslyst)")
(mapcar '’ readp ; check to see which ports are ready to read
(mapcar ‘ (lambda(x) {send x :read-port)) kslyst)))

(defun poll-writes (kslyst)
(mapcar ‘readp . ; check to see which ports are ready to write
. {mapcar ’ (lambda(x) (send x :write-port)) kslyst)})

PR IR I IRtk
b

77 This function opens ports to a process which will test output

i
;;i;;;;;;;;7:7;;7;;;:7??;:,,7;;:7;;;:;;i:;;;?;;;;;;;;;:7;;;;;;;;7;?;;
v

;7 (defun openports (}

e (setq ports (*process ‘path t t))

HH (setq inbeam (car ports) outbeam (cadr ports)))

i: ’

i

;7 now open the port

)

Vi

;7 (openports)

{(send beammsg :set-write-port outbeam)

(send beammsg :set-read-port inbeam)

e

i

;7 (defun open_assign_ports ()

HY (setq ports (*process ‘test -t t))

HH (setq inassign (car ports) outassign (cadr ports)))
i

i

;¢ now open the port

HH

;7 (open_assign ports)

(send assignmsg :set-write-port- outass*gn)

(send assignmsg :set-read-port inassign)

(defvar KSSOURCES (list beammsg assigrmsg
’ V) ’

L8

(defun. forminports '(kslyst)
(mapcar ‘(lambda (x) (getfd (send x :r=:z

(defun formoutports (kslyst)
(mapcar ‘ (lambda (x) (getfd (send X :wr:

create inport and outport lists

(defvar inports (forminports KSSOURCZIS! §
(defvar outports (formoutports KSSOURCZS);

e

0 -
Q0.

(goal ggnode) part of partition of gksaf

H
H

;7 this function puts a true or false in the those nodes which

;; are threat and have more than one segment associated with tnode
;i .

(defun assign-threat (ksarptr)
{let*

{(nodelyst (cadar (send ksarptr :context}}) ; get seg set list
(testlyst (find-closest~set nodelyst}) ; find spline fit set
(test (samesetp nodelyst testlyst}) ; compare track lists
)

{format t "“~% ASSIGN THREAT ASSIGN THREAT ASSIGN THREAT ~%")

(format t.“Origiral set from context is ~a~%" nodelyst)

(format t "Test verified set from splines is ~a~%" testlyst)

{(format t " Result of sameset predicate ~a~% " test)

(format t " - e e ~%")
{send (send ksarptr :nodeptr) :set-check

(if test t ’failed)

})) ;7 set check

PRRiiiiiiiiiiiiiiiiiiiariiiiiiiiiiiiiiiiiiiciviviciiiiiiiiiiiiiiiiii

; this function puts the right coordinate with the matched
; segment assigned coordinates
; NOT USED CURRENTLY

TR IR i i iiiviiiitiiiiiiiii

(defun update-segment-coord (order clyst)
(do
(

(nlyst order {cdr nlyst)) ; this contains the order information

(flavorlyst (send segments :right) (cdr flavorlyst)) ; snodes on segments

)

{{null nlyst) (format t "“segments are updated ~%"})
(format t * ~% the nlyst is ~a ™ nlyst) :
(format t " ~% the clyst is ~a " clyst)

{send (car flavorlyst) :set-coord

(push (nth (car nlyst) clyst) ; choose proper coord to assoc with seg

(send (car flavorlyst) :coord)))}

;
: .
; update-segment-coord-and-time is the goal bb version of
; update-segment- coc:c and it handles both cases when

H # segments >=
; 2..4 segments < # hits

ssigning the coordinates to the proper segments .after

he assignment prcilem has been solved and the permutation
stored the permutation vector order

rfmt\)l—'

PENIR NIRRT IR iR T iR i iiiiiriiiiieiig

i

(defun update-segment-coord-and-time (order snodelyst segcoord hitcoord time)

(cond
{ (>= {length segcoord) {length hitcoord))} ;more segs than hits
{do*
{
(nlyst order (cdr nlyst)) ; permutation of segments
(flyst snodelyst} ; flavor lyst of segments
(clyst hitcoord (cdr clyst)) ; coordinate lyst
) .
((null nlyst)
(format t “~% Segments are updated, TIME IS ~a * clock))
(let
{
{snode (nth (car nlyst) flyst))
{(value (car clyst))
) .

;s update the time and then the coord values of snode
{push-value~onto~node~at-attribute time snode time)
(send snode :set-coord

(push value (send snode 'coord)))
B3
;i7 i: --- more hits than segments
(t :
{do~*
(

(nlyst order {cdr nlyst)) ; permutation of hits

(flyst snodelyst (cdr flyst))

(clyst hitcoord)

)

((null nlyst)

(format t “~% Segments are updated, TIME IS ~a " clock))
(let :
(

(value (nth (car nlyst} clyst))
{snode (car flyst))
)
;7 update the time and then the coord values of snode
(push-value-onto-node-at-attribute time snode time)
(send snode :set-coord
(push value (send snode :coord)})

M)

this function generates a hit goal to account for those
data points that are not matched to the current segments
lystl is coordinates with time in the original data hit
intset is the assignment of segments to data and this
function should only be applied when there are more hit
data then current segments. .

numset generates integer set (n-1,n-2,...,0) for input n

r/:r/rr:rrz/r(:rr//:r:/r:lrr/r:r/r///r::lr//r://r:::,,:,r::lrrr

(deﬁun create-goal-for-unmatched-hit-data (intset lystx)

(format t "~% intset and lyst2 ~% ~a ~% ~a" intset lystx)

" (let*

((nse:.(set—difference (numset (length lystx)) intset))

(time (caar lystx}) ; copy time from one coord
{(number (length nset)) ; number of coord’s unmatched
{wlyst (mapcar ‘cdr lystx)) ; removes the time from all coord
{lyst nil) ; initialize the lyst

68

) .
7 note the sort is used keep the order of the wlyst

; Unaltered .

{dolist (var (sort nset ’>) lyst)

(setqg lyst (cons (nth var wlyst) lyst)}y

;
;

(sendpushleve]

;pushes node onto data side
(make~instance ‘unnode
itype “unmatched
:coord lyst
number number
itime time
) hits)

l!rlrllrrrlrvlll!l/lllllll!rl(llll!lrlllrllrrllrlrlr

this function updates the time list in the segment nodes
NOT CURRENTLY USED

rr!rlrlrlrlrrrrllllrrlrllrrllrrlllllllrrr(lllrllrlrlll/lllrrrllll

(defun update-segment -t ime ()

(let .
{
{time (get—hits—time)) ; this contains the time
(flavorlyst (send segments :right))} ; snodes on segments
)

; (format t "entered update-segment -t ime ~§")

i (format t “time is ~a and flavorlyst is ~a ~%" time flavorlyst)
(mapcar ’ (lambda (X} (send x :set-time

(cons time (send x itime))))
flavorlyst)

R N R RN

c¢reate new track node is a function which generates the track node
from the segment node when there is no tracks on the track level

lllrrlrl!lIlllltr[lrrrlrrrrrr/l:lrl!rlrlrlllIrlrvlrlllrllllrrlllrr

(de fun create-new~-track-node (segnode)
(let*

(. .
(temp (gettrack (send segnode :cpa) (car (send segnode :linear))))
(intervals (car temp)) E .
(threat (cadr temp))

(trknode

(make-instance ’tnode
ttype ‘track
ttime (list (car (send segnode ttime)))
Isnode (list segnode)
iCpa-bracket intervals
tthreat threat
:last-qoord (car (send segnode :linear))
:last—velocity (cadr (send segnode :linear))
)

(send segnode :set-tnode trknode) ;
(send segnode :set-threat threat) ; establish threat contribution
(sendpushlevel trknode tracks)

b}

establish forward ptr

FEREIRIIII I

~
-
e
~

assign-tracks is the boot to the knowledge source which refines
the segment into a new or established track

o
.
~
-
~
.
“~
e

(defun assign-tracks (ksarptr)

first if there are no tracks - create the one for one with
the segments so far

{cond

{{zerop (get-number-on-level tracks)

(cond -
{{plusp (get-number-on-level segments)
(mapcar #’create-~new-track-node (send segments :right))
(merge-tracks))
(t
(format t "ERROR no segment to construct tracks ~%"})))

if the segment already associated with track node

e Se s

{{send (send ksarptr :nodeptr) :tnode)
(update-track ksarptr)
(format t “Updated TRACK NODE ~% “))

segment node is not associated with track node - so it
the tracks will have to be reformed

{ (copy—data—nodes—at—19Vel—y—satisfying~predicate—f
‘segments ’ (lambda (X} (null (send x itnode)}))
(format t “~% KSAR CREATING NODE follows: ")
(describe ksarptr) / (*break t ‘look)
(mapcar #’create-new~track-node ;Put these on the blackboard
(copy-data—nodes—at—level—y—satisfying—predicate—f
’ segments ’ (lambda (x) (null (send x itnode))}))
(merge-tracks)) . .
(t (format t "~% ERROR - Fallen through inside assign—tracks“))))

the following is a function to detect two track nodes next to each other

(defun find-formation (tnodel tnode2)
(let* :
(
(posl (send tnodel tlast-coord)) ;pos of the first track
(pos2 (send tnode2 tlast-coord)) ;pos of the second track
(vell (send tnodeil tlast-velocity)) ;vel of the first track

©
=)

(vel2 (send tnode2 :last-velocity}} ;vel of the second track
(magl (vector-magnitude vell)) ; mag of velocity 1
(mag2 (vector-magnitude vel2)) 77 mag of velocity 2
{mag (max magl mag2)) .
(dp (vector-magnitude (vector-difference posl pos2)))
(cosangle (vector-angle-cosine posl pos2))
) .
; is the angle between tracks small 2?
(format t "~% INSIDE FIND-FORMATION INSIDE FIND-FORMATION ~%")
(format t " distance is ~a and.the mag of velocity is ~a ~%" dp mag)
(format t " cosine angle is ~a ~% " cosangle) .
(cond
{(and (> cosangle 0.9) ;; if angle .small enough
(> mag dp)) t) ;. and the distance is within 1 unit of travel
{t nil) ;: otherwise do not associate this pair

M)

PR R T T T i g d e T i i i id i i in it i i i i i nidiir i idiiveiieriiiiis

(defun find-nearby-tracks (ele lyst}
(cond’
({null lyst} (list ele)) ;; return element of lyst is empty

{t

(cons ele ;;include itself
(mapcan ;77 test each track in against lyst to see if it is
‘(lambda (x) (if (find-formation ele x) ; it is close enough

. (list x) nil)) :

lyst)}))) :

;7;;;;;;;;?r,r:rr,rr::vrrrr::r:,:,r,:,r:"r,r,,,/:vr:::r:r::y::yr::y;rr

;1 the following function returns a list of subsets of nearby tracks
;7 The function creates equivalence classes for the tracks using
;+ find-nearby-tracks to construct the relation.

R NN R SRR R R R R R R

(defun find-track-subsets ()
; {format t "~% ENTERED find-track-subsets ~%")
(do*
(.
(tlyst (send tracks :right) ; gets all the tracks

(our-set-difference tlyst (car endlyst))) ;remove ones matched
(tindex (car tlyst) (car ‘tlyst)) ; start with first one and find ones

(endlyst nil (if tindex ;. in. the same equivalence class

(cons (find-nearby-tracks tindex (cdr tlyst)) endlyst)

encdlyst})
) .
((pull tlyst) (return endlyst)))) ;endlyst is a list of lists

i each list is the eqivalence class

W e e e b e s a am s e s anu a4 s A e eisam s e e B e mrah h e mE s A s s ae e s taases s ansas
RN NN RN N N RN R A

che‘following functicon "make-merged- node" merges nodes and ignores
the ones constructed o find the merged nodes.

(defun make-merged-nodes (tsets)
{format t "ENTERING MAKE-MERGED-NODES_--'—---fr-~FW

ggnode.l
{(format t “"The set of tsets is ~a ~%" tsets)
{do*

ir
iri

" {segv (get-velocity lyst)) ; tears out the velcc

({ttwork tsets (cdr ttwork))
{twork (car ttwork) (car ttwork))
({null twork) (format t "“MERGED TRACK NODE CREATED~%"})
(format t "~% the set of nodes being merged is ~a ~%" twork)
(let
(
{(temp
(make-instance ’tnode
. ttype ’track
:time {list
(average
(mapcar ‘car {(get-track time twork))))
:snode
{apply ‘append (get-track snode twork)
icpa-bracket (list
(anion~intervals
{get-track-x~intervals twork))
{union-intervals
(get-track-y-intervals twork)
) .
:threat (apply ‘or (get-track threat twork)
tlast-velocity (vector-average
(get-track last-velocity twork)}
:last-coord (vec:tor-average
(get-track last-coord twork))
IRN
(mapcar ‘ (lambda (x) -(send
(car (send x :snode)) :set-tnode temp)) twork)
(remove -nodes-from-level tracks twork) ; remove tracks grouped
(sendpushlevel temp tracks) ; replace with new group
IBD)

(defun merge-tracks ()
{let*
((tsets (find-track-subsets)) };creates the groups
(make-merged-nodes tsets) ;creates an equivalence ncde
(format t “TRACKS MERGED ~%")
) ’

;+ this function updates ;he track frem the segment ncdes

(defun update-track (ksarptr)
“(let*

(. . ,
(snodeptr (send ksarptr :nodeptr;: ; gets the snode Zlavor for ksar
(tnodéptr (send snodeptr :tnode)} ; get the tnode flavcr from snode

- {lyst (send snodeptr :linear)) ; reads in the linear model

on

nfo fm linear
info fm linear
(trkpos (send tnodeptr :last-cocrd}} ; get track pos or from track node
(trkvel (send tnodeptr :last-velccizy)) ;obtain track velocity fm trk node
(dt (diff (car (send snodeptr :time}}

{(segp (get-position lyst)) ; Tears out the posi

I6

~o e e A

{defun get-velocity (pl)
(defun get-position {pl)

e e w.

(car (send tnodeptr :time))
)} i;determine the time difference

(n (length (send tnodeptr :snode))) ; number of snodes in a track

(sl (diff 1.e0 {quotient 1i.e0 n}))) ; convex weight 1/number in tracks

(newtime (car (send snodeptr :time))) ; want the latest time on track

(temp (gettrack (send snodeptr :cpa) ; want the threat and intervals

{car (send snodeptr :linear))))

(intervals (car temp)) ; tears out the interval information

(newthreat (cadr temp))} ;tears out the threat information

(txint (get-track-x-intervals (1ist tnodeptr))) ;get snode x-interval

(tyint (get-track-y-intervals (list tnodeptr)));get snode y-interval

(txint (cons (car intervals) txint)) ; collect the x intervals

(tyint (cons (cadr intervals) tyint)) ; collect the y intervals

}

(if (minusp dt)
(format t “~% ERROR INSIDE UPDATE-TRACK TIME DIFF IS NEG “3)

(format t "~% Inside update-track ")

(format t "~% segp and trkpos are ~a ~a " segp trkpos)

(format t “~% length n is ~a and sl is ~a " n sl)

(format t “~% dt is ~a and trkvel is ~a " dt trkvel)

{cond .

((zerop dt) (send tnodeptr :set-last-coord ; just average positions
(convex—vector—average sl trkpos segp)))

(t

(send tnodeptr :set-last-coord i Just average updated positions
(convex-vector-average si segp
(vector-sum trkpos (scale-vector dt trkvel)}})
{send tnodeptr iset-last-velocity segv)))

{send tnodeptr :set-time {list newtime)) ; update the time

(send tnodeptr :set-cpa-bracket ; update the cpa intérvals
(list (union-intervals txint)
(union—intervals_tyint)))

(send tnodeptr :set-threat ; update the threat accessment
(apply ‘or . '
(list newthreat
(car
(mapcar ’(lambda (x) {send x :threat})
(our-set~difference
(send tnodeptr :snode)
{list snodeptr))
|RRRN :
Y)

{cadr pl))
{car. pl))

;

this function finds the absolute difference between two numbers

(defun absolute-difference (x vy}
{abs (diff x y)))

77 this function finds the sum of the absolute diff between two
;7 vectors using the above function

:

(defun vectof—absolute—différence,(u v)
(apply ’add . .
(mapcar ’absolute~difference

u v)))

;?i;;;};;rr,r:,:r/,;;;r,,r:,,,r:::r::'r::,'/,:,,:,.,,,,:'p,',,rz:rrrr,r

~ we
~ ~e

this function gives those tracks that are close enough to be
grouped with the segment represented by snode

Se N Ne e Ne S we e Se v v
~e
“~
“~
~
.
~
~
e
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
L
~
~
~
~
e
~
~
~
~
~
-
~
~
~a
“~

e Se e N e e e e Ne e e

(defun find-closest-pairs (snode lyst) jassumes snode in lyst -
(format t * in find-closest-pairs ~a~a~% - - " snode lyst)
{do*
{ E ;compare to others in group
(worklyst (our-set-difference lyst (list snode))
{cdr worklyst}) ; do it one at time
(dlyst nil) ; cummulate those tracks are close enough in dlyst
) ‘ .
((null worklyst) (return dlyst)) ; returns lyst with snode included
(format t "CLOSEST PAIRS for snode ~a and lyst ~a ~%" snode lyst)
(format t " the dlyst ~a~%" dlyst)
HH (format t “HOW CLOSE IS SPLINE MODEL - distance is ~a~%" thresh)
(1f (< (compare-~spline-models snode (car worklyst)) group-threshold}
(setq dlyst (cons {car worklyst) dlyst))
nil)})

26

(defun find-closest-pairs-new (snode lyst) ;assumes snode inside lyst
(format t * in NEW find-closest-pairs-new --.~a ~a ~%" snode ‘lyst)
(setq sumlyst nil)

(dolist
(var (our-set-difference lyst (list snode)) sumlyst)
(format t " snode is ~a var is ~a ~% " snode var)
(let (
{dist (compare-spline-models snode var))
) .
(format t " the spline distance is ~a ~%" dist)
(if (< dist group~-threshold)
(setq sumlyst (cons var sumlyst})
nily))) '

(defun find-closest-set (lyst) ; returns teh lyst of grouped tracks
(format t “ --- find-closest-set ~a~% =——=t lyst)
{let ((ulyst nil)) ; initialize union lyst as nil
(dolist (ele lyst ulyst) ’
(format t " ele lyst ahd'ulyst are ~a~% ~a~% ~a~% " ele lyst ulyst)
(setq ulyst (our-union .

93

(find-closest-pairs ele lyst)

ulyst))?))

o~ o

(goal ggplan) -part of partition of gksar

PR R R IR IR iitiitiiti;:

iries

this program maps all the events into ksars and puts
them on the ksar queue. It is done in two stages :

1. using the rule base to chain forward and store
results in the workq

use the termporary output to initiate a function
call to construct .and insert the ksar into the ksarq

[N

{defun map-events (lyst)
(try~all-events lyst)
;{*break t " just finished try-all-events ")

(format t " just finished try-all-events ~F"}

{showq) (showl) (expandqg workq) (expandq ksarq)
workqueue now contains all the events process by the
forward chaining system.

(do* ((worklyst (send workg tqueue} (cdr worklyst))
(var {(car worklyst) (car worklyst})}
(accumulate nil))
((null worklyst) (send workq :set-queue accumulate)
(format t " worklyst is prior ‘to funcall ~a~%" worklyst)
(format t " call to funcall with var ~%~a~%" var
(format t " call is to function ~a ~% * (car var))
{cond
%' (funcall (car var) (cdr var))
(format t " ~% just finished funcall ~&"
; {showg) (showl) (expandq workq) {expandq ksarqg)
; (*break t "inside map-events just finished funcall")
-)
(t (cons var accumulate)
(*break t " inside the mapevent loop"))

try this function separateés the if and then parts
tests the if part and if true evaluates the then part

A A R A R N N N R S R R R R S S SRR RS SRR RN

(defun runrule (node rule)

v
I
7

(format t "~% =“—~e——-wc entered runrule --<---—~-—--)
(format t “~% node value is ~a " node)
(format t "~% rule is ~a " rule)
{let™*
(
(ifs (subst node ’gnode (cadaddr rule}})
{thens (subst node ’gnode (cadadddr rule)))
)
(format ¢ "“~% ifs is now ~a " ifs)
(format t “~% eval of ifs igs ~a © (eval ifs)
(If (eval ifs)
(progn (eval thens) t)
nil)

)
77 this is the start of monitor or a planner,

;7 functions it just determines which nodes wlll be placed
;7 back on the -blackboard

H

i

(defun mini-monitor (gnode)
(let ’
((tvalue (send gnode :duration)})
(cona
((equal tvalue ‘one-shot)
(remove-goal-x~-from-level-y gnode level}}
{{equal tvalue ‘continuous) nil})
{t nil)

;

;

; try-all-rules this procedure tries all the rules on each
; given node which is input to the procedure

fdefun try-all-rules (node)
(do

((rules-to-try rules (cdr rules-to-try))
(record nil)) ; suppose to hold all rule fired on this node
({null rules-to-try)
(format t "~%#### fini try-all-rules "}
(format t “ applied -- ~a -- §###" record)
)

{cond
((runrule node (car rules-to-try)) ; try each rule

(setq record (cons (cadar rules~-to-try} record))

{t nil)
IRD

i

;7 .
;7 given a lyst of goal nodes - try each rule on -each
77 of these nodes
HY
i

(defun map-the-goals (lyst level) .
; - (format t “~% just entered map-the-goals, lyst is ~a ~%" lyst}
(do*
(.
(wlyst lyst (cdr wlyst))
-(node (car wlyst) (car wlyst))
)
{{null wlyst)
(format t “~% *** finished mapping goals to ksars *** ~gv
(format t “~% ***** clock is now ~a ***#*%* ~g% clock

) .
(try-all-rules node)
))

¥6

this function in the start of the planner
;' plan-goals gets the goals and maps them into KSAR's

RN RN N R N RN RN RN NN R RN
s (format t "You are about to map the events, the ksarq is follows ~%")

‘{defun plan=goals (}

(do*
(
{llyst level-lyst (cdr llyst))
{goallyst
(get-goals-from-level-x-of-duration-y {car llyst) one-shot)

(1f llyst
{(get-goals-from-level-x-of-duration-y (car llyst) one-shot}
M)
)
({null llyst)}
(format t "~% goallyst is before map ~a " goallyst)
(format t "~% llyst is before map ~a " llyst)
{cond .
(goallyst ; (mapcar ’describe goallyst)
(format t “~% to enter map-the-goals - lyst - ~a ~%" goallyst)
note this is going through the rule list by level
{map-the-goals goallyst (car llyst}})
(t nil))))

a6

96

0

) £

N o]

Q Eal

Q, -

o

] 3}

ied =]

] Y

O

~ [

o}

o -—

-~ —

o~ Q,

2o 0
o1} —
o0 N —
Is) O [
Q3 (] —
S 0 ot
- n Yt
o~ 4 ©
Qn M [
0 o [e] ©
—_~. Q o
o o N

n Q, 7]
w w []
2O N [V} -
M 0 @ Q. -t
0 0 O (o] 4
Qb ~ o
0 Q — e 3
£ x @ 4] (8] o

R Bl =1 =] - ~
— - N =
o n ~ o = a
w L0 Q <
(=R IR’} [=4 a
[e T = (S o o
Ry et - - - o
o] — S) s

o o o -~ 3} o
g0 7] - =]
30 @ o -~ = o
W0 [oW +
Qo 0, o "~ ©
o w O e o~ 2]
=~ RN -~ ~
-~ o o~ " “ -~
.- =t -~ -~ -~ -~
“ -~) o~ .~ o~
Pt - o o -~ -~
“ -~ 3 0 R o~ -~
~ - o c -~ - "~ .-~
o -~ s B -~ @ -~ -~
.-~ @ “ D -~ -~
Yt -~ . . Q -~
o o ® E o~) -~
.~ o oa -~ -~
c "~ ISR -~ o -~
S) - o Fr— P .~
o] -~ st O -~ Py N
' -~ O 5 I —~ -
N -~ NI D, [) —~ .
o~ ' ol i 0 I
. 1% - I 0 0 S o
o~ n o n o o et
eh i o~ (LI o +)
+ —~ 1ol [N} Q o
i] 0 > a e ~ Oy v
[« M~ s} - o -~ o =
(0] N 42 o o) M il
5} = -~ o O B T M 3] e}

TN [0} -~ Q a [o] ~] @
© o -~ T 0w 3] <
Q BN] 0 - [SRe] o e -

£ -~ o 0 IS o o~ o -
— [.-~ T [[] -~ - —~ Q.
)] -~ 3] [} O .~ —_wn 0 —~ U 0
) Q -~ —~— o) 3] -~ — 0 o O m©
N -~ —~) 0w un g o~ L om ~ - 4
[} o o~ e 0, M o 3 "~ i) o FERNS O
Q g -~ ISR [=lT -~ —~p 3 2, + -~ W
o) o~ Y]] ot -~ ~ o & 3 -~
o -~ P Q - — & -~ w LIS P A~ O o -~ @
0 - i) o o] 3] w o p -~ 0w o0 o~ 3] a w0
— el .~ Fopal I8 £ 0w -~ ~ -~ 2 0n -~] oo~ -~ N
n = -~ « 0O 2 H -~ [o] -~ Mo ~ M -~ —~ 0 o~ (o]
o (0] -~ L 2, w PP -~ Q, -~ O~ M o~ =) .- . v o~ [N
o w "~ Oy e~ Q)) " TS o, (e} “—~ -~ M o~
~ L7 - . w0 (0] [=a] o~ %] -~ t n 0 — -~ 0 - w u o o~ [}
Y o~ e} ~ o ® O .~ o oo) o~ o [N I I o -~ c
— o} -~ 0w N Q> o~ [-~ o0 M + -~ [-~ Lk - [0}
. o . -~ (e o] -t T -~ o, -~ ¥ O © Ll -~ Q -~ o O N -~ o,
1] N E -~ — QU 0 Fs) n oo - o] -~ m o o o] -~ o -~ Q2.0 ® 1S -0
o] w —0 I= @ -~ o o~ 2, -~ -~ I 9 O —~ .~
“ S0 -~ [eRnC] (4] [S “~ fed -~ o0 U -~ o -~ M0 4] .~ e}
[o3 0 O -~ 0 X om o [e R =lvY -~ 3] - -k O Fe) XS © -~ O« I -~ (¢}
o) i -~ 0,0 M Lol 4] .-~ - -~ u ~ o = -~ - -~ © ~— N [N -t
o o3 s~ Hoe — o) E « - - [B - - < -~ “ 3] o ~
o x 0 -~ Q ~ o} oOa M .~ k3 (2N T.uou E -~ 3 o~ o om Q, o~ =
-~ Q, £ 4 Dy o~ - [T sl -~ -~ | SRS | .~
(4] 0w un -~ oowoa o — ® - o "~ o -~ foln L] o -~ o1 - 205 2 -~ ot
-~ [aEe -~ [S [w 0 A . o] -~ v o R - -~ [} -~ v O o - o]
[-~ 24 Q Q.. Fs] [} S - -~ 0, @ -~ 2] o~ - S Q0 0 - I -~ -
L) O P -~ 0 0o c [} M 123 B e BERENEN + -~ [} 0 -~ + -~ [} M - +
— Y I « At o -~ » N 3] -~ o o a o~ 3] -~ oo o -~ [$]
-~ M0 -~ o 3 [E e -~ o . (SRR | o~ = o~ [SEEE] [} -~ £
159 o, 0 -~ J oo o] = ¥ a -~ jal -~ 30 0 f=} -~ 3 -~ 30 o = . 3
-~ L BEE RS} o [-~ Uy -~] [LIS 4y o~ w0 [LIN Lo
. oen am ew Q0O 0, .~ o~ Q ~— ~— 0, "~ Q = — “w 0, -~
e Wi T U B o oen e 5] L “wQ e “we O aw O en s e be ae

;
(
;
;
i
H
;

IR RN
;
:+ this file is gr for goal rules

H
HH and ‘contains the rules some of the code to work through
these rules

~

~.
.~
~e

This is the initialization for a recurrent goal. A recurrent is a
goal which when satisfied, generates a ksar and then is disabled from
; generating anymore ksar’s until the KS is activated. Even if the

: KS fails at that point it only reenables the goal. This goal creation
; is for ruleb
;

R R R R N N R R R N AR RN R R

(sendpushgoal
(rake-instance ’‘bbevent
:type ’'merge-segments
:ksarptr nil
:duration ‘recurrent

segments)

purpose of this program is to determine if one can take
the rule format and feed it a node and have it implement
the rule if the precedent is satisfied. This is a rule
which uses bbevent flavors as its facts

;
{setg rule0
! (rule clocked- data—arrlval

(if

(equal (send gnode :type) ‘clock))
;:---—- then place data node on the hit data ---
{then :

{progn

(create-ksar

{list ’‘newhit ‘add ‘hit ‘unknown ‘unknown clock)

(format t "~% $5$$$$ CLOCK RULE FIRED CLOCK IS ~a $$53$ " clock}
'

N

(setg rulel -
r (rule create- segments -from- hlts
(if
{and .
(equal (send gnode :type) ‘hit} ; 1is goal a hit node
;: ;(null (send segments :right}) ; no segments
(equal (send gnode :action) ‘change) ; is it for change
)
i:=--- then assign hit update to the segments ---
(then
{(progn (create-ksar ; this is call to create a KSAR
(list ‘change ‘hit (send gnode :coord)
(send gnode :number) (send gnode :time) gnode))
(format t " ~%$5$5553% rule assign hits that arrived fired $$$S855"}
| B

{setq rulela
’ (rule process-unmatched-hits
(if
(and
(equal (send gnode :type) ‘unmatched) ; is type unmatched
(setq rvarl -(send gnode :source)}) ; what is hit node
) .
;i mmm————- for now just remove these two nodes ---=
(then
(progn
(create-unmatched-hit-ksar rvarl) ; note ksars created directly
(remove-goal-x-from-level-y gncde segments}
{format t " ~%$$3$5S rule removes UNMATCHED nodes fired $$$$3$s")
)
IR D]

rr

{setqg rule2
* (rule spline-check-of-tracks
(if
{and
(equal (send gnodé :type) ’‘track)
(equal (send gnode :threat) t)
(null (send (send gnode :source) :check}))
(and (> (length (send gnode :snode)} 1)
(>= (apply ‘min
(mapcar
#’ {lambda (y) {send y :number)
(send gnode :snode)
Yy 4nm

- L6

(progn
{create-ksar
(list ‘change ‘track (send gnode :time}
(send gnode .:threat) (send gnode :snode}
(send gnode :source)))
(format t "~%555$5S this is spline-check-of-tracks $$$$$s"})

)

;i
;; This rule generates the subgoals needed to check tracks

i

(setqg rule2a
‘ (rule spline-check-failed-generate-subgoals
(if
(and
{equal (send gnode :type) ’‘track}
(equal {send gnode :threat) t)
{equal (send (send gnode :source) :check) ‘failed)))
P e b generate subgoals -------w-m—mmme—oooo

(
)

(progn
(create-subgoals-to-break-track (send gneode :source)
(format T “~% 2A 2a 2a 2a 2a 2a 2a 2a 2a FIRED ")

format t "~% $5s55

[

e spline-check-failed==> generate subgoals $$S$")

IR

{setg rule3

(s

;

)

’ {rule Create-tracxs-from-segments
(if
(and
(equal (send gnode :tYpe) ’ segment) .
(> (send gnode :number) 1) ; are the number pts in a segment > 1
(equal (send gnode :action) ’ change)
M)
7i==— construct the tracks from the segments -—--
(then :
(progn
(create-xsar
(list ’change ‘segment (send gnode :coord)
(send gnode :number) (send gnode :time)
(send gnode :source)))
(format t "~$$55$3$ just executed rule 3, create tracks $$5$s"
Ny

Tule 4 purges old rulés from the goal BB

etq rule4
! (rule purge-~old-segment-nodes
(if
(and
{equal (send gnode :type) ‘purge-segments) ; is it a purge node
(setq rvarl (find-oldest-segment))
(> (abs (diff (car (send rvarl sttime))
(find-time-of-last-data-point)
1)
10); 10 is age afterwhich is purged from the list
)}
/7 —--delete the goal node and its supporting data---
(then
(progn
;i is the number of snodes supporting track <= 1
(if (and (send rvarl :tnode)
(<= (length (send (send rvarl :tnode) :isnode)} 1))
; then delete both track and segment nodes
(progn (setq rvar2 {send rvarl :tnode))
(remove—data—x—from—level-y rvar2 tracks)
(remove—data—x—from—level-y rvarl segments)) nil)
(format t "“~%$444444 ryle purge-old-segment-nodes fired 44444")
M) .

Rule 5 is to merge-segments when the appropriate conditions exits

Illllrl!llrll!lllrllltlIlrlllllllllIIIlIlllllll'lIlllllrll/lll!lll!'lll!l

(setqg ruleb
" (rule merge-segments
(if
{and
(equal (send gnode :type) ‘merge-segments) ; is it a purge node
(null (send gnode :ksarptr)) ; no merge segment ksar active
(setq rvarl (find-oldest-segment})
(setq rvar3 (find—most—recently~started—segment—with—length—gt—y 1)
(setq rvar2 (abs (diff (car (send rvarl ttime))
| (car (last (send rvar3 ttime)))))}
fand (> rvar2 3) (<= rvar? 10}} ; is age of proper range
Iy
;77 —~— rule attempts to patch fades in signal ---~
{then
{progn . ; this creates ksar and sets ksarptr to that ksar
{send gnode :set-ksarptr (car (last
(create-segment-extension-ksar gnode))})
(format t “"~% 5555555 CLOCK ~a 55555555555555555555 * clock)
(format t "~%$$555 rule 5--- merge-segments --- fired $$5$$"
1)

This rule verifies the track composition

(setq ruleé
" (rule verify-track-composition
(if
(and
(equal (send gnode :type) ’track)
{equal ({send gnode :action) fverify-track)
Y
——————————————— rule verify track composition ——=——-e—o

{progn
- (create-verify-track-ksar (send gnode :source)
(send gnode :snode)
(send gnode :coord))
(format t “~% $53$$ rule verify-track-composition fired $$$$ ~%")
I3
13

B
i
(setq rules (list rule0 rulel rulela rule? rule?a rule3
ruled
rule5 rule6))

86

RN R RN R R N R R R S RS N N RN R R RN R N R RN R

1 FILE NAME Is grloop

‘This function is used to update the global Qariable called clock
and to push a clock event onto the eventq

(defun clock-update ()
{cond
({zerop (mod clock 4})
{sendpushgoal
(make-instance 'bbevent
ttype ‘clock
:duration ‘one- shot)
hits)
{sendpushgoal
(make-instance ‘bbevent
:type ’‘purge-segments
:duration ‘one-shot)
hits)
)
(t))
(setq clock (addl clock)}

efun goon ()
(format t “Do you wish to go on 2 ~%")

(format t “Answer nil for no, and anything else for yes ~%%)
(cond - .
((null (read)) (reset))

(t t))

RN

(defun bootstrap ()
{cond

((equal (send ksarq :number) 0)

{(format ¢ "number is ~a at first test of ksarg contents " number)
nil)

(t (format t “ksarqg not empty - test if atomic queue not empty ~%")
(cond ({> (length (send ksarq :atomic-queue)) 0) 7 if atomic not empty
(let* | ; pull ksar out of queue

(xxx (format t “"Try executing KSAR fm ATOMIC QUEUE ~%"})
(temp (poptart ksarq atomic-queue))
(ctemp (send temp :boot)) ; pull command out of boot

~
~

rr

~
~
~

~
~e

~
~ e
~

e

(ctemp (append ctemp. (1ist temp))} insert arg of ksarq ptr

)

{(format t “~% BOOTSTRAPING COMMAND ~a BOOTSTRAPING COMMAND ~%*
ctemp)

(format t * bootstrap is to fire ~a command ~%" ctemp)

(format t * bootstrap is to fire ~a command ~%%" ctemp)

(eval ctemp) ; this fires the command held in boot

(format t ® bootstrap is COMPLETE -- continuing on~% *)

)} ’
(t (format t “Number of Entries in Garbage Queue < 0 ~%%))
)

now finish off ksars which need only put data on bb

~. e v
ae e we

(format t "Test if any ksar’s needed to be finished off~%%)
(cond ; take care of the reads, are any mask elements = 0
{{and (nequal (send ksarq :number) 0)
{apply ‘or (mapcar ‘ (lambda (x} (if (equal x 0) t nil))
(cdr (send ksarq :mask)))})}))
(format t “Mask elements = 0,got down to the let statement-~%")
(let*(
(xxx (*break (equal clock 9) 'break-at-finish-work))
(mtemp (cdr (send ksarq :mask))}
;; at this point mtemp will be the mask
;: the zero values correspond finishing. ksars
(ntemp (mapcan ‘ (lambda (x y) (if (equal x 0) (list y) nil))
mtemp KSQUEUES)) ; this a list of KS’s to read
(xxx (format t “mtemp is ~a and ntemp 1s ~a ~%* mtemp ntemp))
(ftemp (mapcar ‘ (lambda (x)
(pop-flavor—at-node—at—queue ksarq x))
ntemp)) ; this is.a list of instances
(xxx (format t "ftemp is ~a ~%" ftemp))

(btemp (mapcar ‘(lambda (x) (car (send x :boot))) ftemp))
(xxx (format t *“btemp is ~a ftemp is ~a ~%" btemp ftemp))
(rtemp (mapcar ’list btemp ftemp)) ; list of functions to fire

)
(format t "mtemp is ~a, ntemp is ~a, ftemp is ~a, ~%
btemp is ~a, and rtemp is ~a®* mtemp ntemp ftemp btemp rtemp)
(mapcar ‘eval rtemp))) . ; this fires all the functions

66

i
(format t *"None of subqueues ready to boot ~%%))
)

now take of the reads - stage is -1/

~e w0
~e ws

(format t “About to test if there are any READS to do ~%")
(cond ; take care of the reads, are any mask elements = -1?
. ((apply ‘or .(mapcar ‘{lambda (x) (if (equal x -1) t nil))

{cdr (send ksarq :mask))))}
{let* (.
{ktemp (poll- -reads KSSOURCES))
{mtemp .
(mapcar ‘ (lambda (x y) (times x (if ‘(null y) 0 y)))

ktemp (cdr (send ksarq :mask))}))

; at this point mtemp will have 0,1,~1 and the 1 correspond

; to those ks’s that néed to be written to

(rtemp (mapcan ‘(lambda (x y) (if (equal x ~1) (list y) nil))
mtemp - KSQUEUES)); this a.list of KS’s to read

jktemp is read ready ports

~

e

~

~ ~.
~ ~e

~e e
o

.

~e

.

~e o

~

~

~

} 7; now read each of these KS’s and place result in
(format t " ktemp is ~a mtemp is ~a and rtemp is ~a ~%*
" ktemp mtemp rtemp)
;; (*break t 'boot-strap)

(mapcar ’ (lambda (x) (send
(car (send ksarq (keywordize {concat : x)}})
iread-Xs)} rtemp)

i {(*break t ‘boot-strap)

});; message flavor

(t :

(format t “None of KS’s need to or are ready to read ~%")))

now take of the writes ~ put this code inlater

~ e v
N Ne s

(format t “About to test if there are any WRITES to do ~$")
(cond ; take care of the writes, are any mask elements = 1?
((apply ’‘or (mapcar ‘(lambda (x) (if (equal x 1) t nil))
(cdr (send ksarq :mask))))
(format t “About to enter WRITE segence ~%")
/7 (*break t ’boot- -strap-write-ks)
(let*(.
(ktemp (poll-writes KSSOURCES)) iktemp ls write ready ports
(ktemp (mapcar * (lambda (x) 1) KSSOURCES))
(mtemp
(mapcar_‘ (lambda(x) (if (equal x 1) 1 0))
(cdr (send ksarq :mask})))
i; at this point mtemp will have 0,1,-1 and the 1 correspond
7; to those ks’s that need to be written to
(rtemp (mapcan ‘ (lambda (x Y} (if (equal x 1) (list y) nil))
mtemp KSQUEUES)); this a list of KS's to read
) 77 now read each of these KS’s and place result in
(format t " mtemp is ~a and rtemp is ~a ~%*
mtemp rtemp)
(mapcar ’ (lambda (x) (send
(car (send ksarq (keywordize (concat : X))))
twrite-ks)) rtemp)
}} ;; message flavor
(t
(format t “None of KS’s ready to or need to read or write ~%")))

n use the preboot to establish the precondtions and
f reeze the local context

P
P N Y

(format t “About to test for precondtions ~%*)
(cond ; take care of the reads, ‘are any. mask elements = 0
({and (nequal (send ksarq inumber) 0)
(apply ‘or (mapcar ‘ (lambda (x) (1f (equal x 2) t nil))
(edr (send ksarq :mask)))))
(format t "Mask elements = 2,got down to the let statement~%")
(let*(
(mtemp (cdr (send ksarq :mask)))
;7 at this point mtemp will be.the mask
/s the zero values correspond finishing ksars
(ntemp (mapcan ’(lambda (x y) (if (equal x 2) (list y) nil))
mtemp KSQUEUES)) ; this a list of KS’s to read
(xxx (format t “mtemp is ~a and ntemp is ~a ~%“ mtemp ntemp))
(ftemp (mapcar '(lambda (x) (car
(send ksarq
’ (keywordize

(concat : x)))})
ntemp)) ; this is a list of flavor instances

77 "{xxx (format t "ftemp is ~a ~%" ftemp))

(btemp (mapcar ’(lambda (x) (car (send x :preboot))) ftemp)}
;e (xxx (format t “btemp is ~a ftemp is ~a ~%" btemp ftemp))
(rtemp (mapcar ‘list btemp ftemp))) ; list of functions to fire
;7 (format t “~%mtemp 1s ~a, ntemp is ~a ~%" mtemp ntemp)
37 (format t "~%$ftemp is ~a, btemp is ~a ~%* ftemp btemp)
HH (format t “~%rtemp is ~a~%" rtemp)
(*break t ‘bootstrap-fire-pre-assign-hits-before-mapcar)
(mapcar ‘eval rtemp) ; this fires all the functions
37 (*break t ‘bootstrap-fire-pre-assign-hits)
(mapcar ' (lambda(x) (send x :set-stage 1)) ftemp)
»)
(t (format t “ None of the queues had preconditions to execute ~3%)))

e

thls function fires the boot found in the ksar’

R R R R R R R N R N R R A N P N N R R R R R R R RN

~
~
~
~
~
~
~
~
~
~e

(defun bootstrap ()
(1f (> (qlength ksarq) 0)
(let* | .
(temp (sendpop ksarq)) ; pull ksar out of queue
(ctemp (send temp :boot)) ; pull command out of boot
(ctemp (append ctemp (list temp))) ; insert arg of ksarq ptr
)
(format t "~% BOOTSTRAPING COMMAND ~a BOOTSTRAPING COMMAND ~%*
ctemp)
(format t " bootstrap is to fire ~a command ~%* ctemp)
(eval ctemp) ; this fires the command held in boot
)
nil)

e
~

~
~
~e
~
~
~
~
~
~
N
~
-
~
~
~
-~
~
~
~
~
~
~
~
~
~
~
~
.
~
~
~
~
~
~
-
~
~
~
~
~
~
~
~
~
~
~
~
~

this is the main loop for driving the BB

Ne SE S NE Ns %i NP SE N3 e Ne N6 e Ne Ns Ne N Ne N4 N Yo Ne e e v
SB Ne e Na Ne %e e Ne Sh Se Se Se N Ne %2 e Se Ss Ne N5 e e we we

(defun cloop. ()
(do () ;sput into infinite loop
(0)
H (format t “CLOCK UPDATE -- TIME IS ~a -~ CLOCK UPDATE~%" clock)
(go-for-it) .
(clock-update) ; update the clock variable and place on event q

(cond
(cloop-display ; if global variable set for display then
(showq) .
77 (expandq ksarq)
(showl)
(expandl tracks)(expandl segments)(expandl hits)

001

101

((
, ananb-joex1y, !!
onanb-ubisse, !! ananb-weeq, 3ISTI) $ANANDSH TeaJop)

ananb-abiow, ananb-sutrds

(qunoo-doofo , B~ WO330q 3@ ST 3T WNoo-doolo g~y I IBWIOT)
({{((39s01) 23)
({(d-u-x0-4) Ketdsip-dooTd bios)
(wiiie uw>MHava s{eA®T pue sananb juem noA od §~« I IBWIOT)
((xomsue Tqns) 3unodo-dooid bies)
{ (zomsue dsnid) (2omsue daaqunu) pue))
puod)
(I9MSUE ,§~ B~ P2I23Ud NOA IoMsuy , 3 IJeuroy)
(({peaax) xamsue)
(TTu Atdex)) 321)
(w i] UIN32T ITY pue MON I2quNU I3IUF §~u I IBWIOT)
(%0012 » °*Sdo@1s N Suesw N "JOLS Sueaw oxa7 ¢iuem nok
op sdsis doof TOoX3U0D Auew MOH " B~ ST XDOTD IWDIIND §~u I JEWIOT)
(0 2unoo-doo1d =>))
[
(UN0D-doOTD 4 B~ MOU ST 3T ‘1 Aq poonpail unoo-doold §~a 3 JRUIOCT)
({3qunoo-dooTo 1qns) 3unoo-dooid bies) (junon-dooio dsnid))
’ puod)
{(Junoo-dooTo , e~ dol 1B ST uNodo-dooTd g~u I IBWIOT)

4

() 37-I03-06 unjap)

((((21@ oq1I0sBP)
((zes baesy puas) 2T2) 3IsITOpP)
(TBA wH~yxrvyrrrrrxsxyUOTSURAX® ONOND B~y xxxxxxyxvxw I IBUIOT)
(({udnd, SpIoMAa¥y-1TUT-POMOTTEB~I0ABTIZTS) IpPpPD) IJEBA)
) as11op)
(o09Nb u§~yxsxxxvryxrnsUOTSUBAX® BNBND B~y xyvxxxxxyyu I -JUIOT)

[N TN

14

{ononb) bpuedxs unjyap)

({(xea BgTIDSOP)
{(1F@1: ToAST puas) IeAa)
3IsT10P)

“ e one e

(19437) bpuedxe unjap)

((({xea @qiI0osep)
((aybTI: T9ADT puas) Iea)
) 1sT10P)
(1ea@1) Tpuedxd® unjyap).

opTS Ty09 spuedxa bpuedxe pue apTs ¥IVAd @Yl spuedxa fpuedxs
13427 B UO sapou ayj puedxa o1 sufinox Aerdstp e STY3I

[

. ((
((3J97: IEA PUDS) wW%~B~ , 1 1BWIOJ)

({TIBA XBD) ,f~ ————==—————mm————— 10D Br emeemm e w 3 Jjewroj)
((3ybta: zea puas) ,%~B~ w I IEUWIOT)
({TIeA IBD) p%~ =———=—=w—————————— elEp B~ w 3 Jewioy)
((NOOTD w§~§~ ========== B~ ST ¥YDOTD ==== STIATT €8 IO QNI ========= , I JBUWIOJ)

(asATyaom TTNU))

{

sT2a@1 I0j sTeqetr ! ((Txea aIp2) (S3TYy suswbas syoexl), Taes)

1°omigqq ut ! ((asATxzom zED) (IASATYIOM IED) IBh)

ut bijes 1eqoTb 3IsAT-Tonel ! ((1SATdIoM Ipd) 3SAT-Toad] ISATYIOM)
) 0P}

(HOOTD wh~ ====== B~ ST NOOTO ======== STIATT €€ JO IYVIS ======== %~ I IBWIOCJ)

() Tmoys ungap)

(PSR TSE TR TN

(uoob) ¢
sTea®] pue sananb Aerdstp ! (Tmoys) (bmoys) !

{(biesy bpuedxa)
(w3~ ANVAXT ININOUVYSH dVMISIO0H YILdW. I IBWIO])

(TSN
(TN

(dexasjooq)

(11U
{ (bxesy bpuedxa)
{w%~ ONVAXZ ANINOYYSH JVIISIOOH FHOJT€s I IBWIOT)
uboad})
Ketdstip-dooio I71)

zouueid sTieo 37 fsiesy ojul sieob oyl sdew wﬁ:u m (sTeob-uetd)

(u$~ SMOTTOJ ST biesy ay3 ‘sjuss@ oyl paddew o3} 3Inoge Nox. 3 aewroy) ?

) (3T-703-0D) ¢
w::Hunoo.ouHmcuﬂmuouuﬂmzu A:oomvu

({11u 3}
sTeaa] pue sananb Aerdsip! (
(s3aty bpuedxs) (sjuawbes bpuedxs) (s)oe1l bpuedxe)

o

/*

Note that the lisp function (setq port (infile ...))

* of (setg port (car (*process ...))) makes that lisp

* variable port be bound to a pointer to a file pointer.
* that is, what comes into this function is actually the.
* address of the pointer to the FILE thing. thus, we use
* **port and set up fd to be fd=*port at the beginning

* of the routine. In this way, we can use fd as expected.
*/

tinclude <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>

pauls_new_read(port)
FILE *(*port);

{

FILE *FILE ptr;
int fd, c, mask;
struct timeval timeout;

FILE ptr = *port;

fd = fileno(FILE_ptr);
mask = 1<<fd;

timeout.tv_sec = 0; timeout.tv_usec = 0;
"/* causes polling see page PS1:8-9 */
/* note mask is really a fd_set but that is integer */

c .= selecc(fd+1,&mask,(fd_set *)0, (fd_set *)0,&timeout) ;
/*
printf("\nmask %d ¢ %$d fd %d\n",mask, c, fd);
t/ .

/* this returns 1 if something to read, zero otherwise */
return(c);

}

o1

(defun merge-segments (ksarnode}
{let*
(
(wlyst (find-segment-pair))

finds best pair of segments to merge
first segment

second segment

value of the cost

;
(sl (car wlyst)) H
{s2 (cadr wlyst))} ;
{value (car (last wlyst}))) H

)

(merge-segment -x-to-segment-y sl s2) ; change the nodes
; {(format t "~% 555555555555555555555555")
H {*break t ‘beforeset)

(send (send ksarnode :context} :iset-ksarptr nil) ;
; (format t “~% 555555555555555555555555")
; (*break t ’afterset)

12

reset goal node

This function merges two segments which have been determined to be
the same. It needs to remove the track that 1s associated with

sl if it is only supported by sl. If there are more than one
tracks support the track hypothesis, then the snode must be removed
from the support list. All these cases are included under the conds
statement.

(defun merge-segment-x-to-segment-y (sl s2)
(send s2 :set-number

(addl (diff (car

{car

ttime)))
itime))))))

(send s2
(last (send sl
(let*
(
(tl (send sl
(snodelyst (if tl
)
(cond
{(null tl}))
((and tl1 (equal

(send tl :snode) nil))

; if there is no track established just remove sl
(length snodelyst) 1)) ; if only one supporting
;snode, remove track node
if more than 1 snode supports
remove pointer fm tl

(remove-data-x-from-level-y tl tracks)
((and t1 (>
(send tl
(t
(format t “~% and ERROR in logic 1nside merge~segments in gksar “}
)

(remove-data-x-from-level-y sl segments)))

{length snodelyst) 1)) ;
'set -snode (remove sl snodelysc))) ;

:tnode}) . ¢

(defun create-segment-extension-ksar (gnode}
{sendksarpush
{make-instance ’ksar
:priority 1
sksar-id ’'extension
tks nil
:boot f {merge-segments)
:cycle clock
:context gnode

)

This function finds the equivalence class which contains the first

In some texts this would be given by [a]-a.

£0T

;
7
;
; element in the larger given set minus the element itself.
7
7

PR r T T T i i i e TR i i s T i i e i s i Tt i T idiiiiiiiiiiaiiiitidisiiiiriiieivi

(defun equivalence-class-of-a-minus-a (a lyst rab rba)
(do
(;compare to others in group
(worklyst (our-set-~difference lyst (list a))
(cdr worklyst)) ; do it one at time
(dlyst nil) ; accumulate the member of equivalence class
)

((null worklyst) ({(return dlyst)) ; return [a]-a

(if (and (rab a (car worklyst)) ;relation of Rab
(rba a (car worklyst))) ; relation of Rba
(setq dlyst (cons (car worklyst) dlyst))

nil)))

Finds just the RAT matches ie reflexive,
matches FORWARD from sl to s2

antisymmetric and transitive

| (defun find-forward~-candidates {a lyst rab)

(do
{ . ;compare to others in group
(worklyst (our-set~-difference lyst (list a)
(cdr worklyst)) ; do it one at time
(diyst nil) ; accumulate the possible candidates of forward extension

({null worklyst) (return dlyst}).; return [ai-a

(if (rab a (car worklyst)) ;relation of Rab, possible link
(setq dlyst (cons (car work.yst) dlyst)) ; record if-true
nil }))

This is the relation .that we will test .the aone functioﬁ upon

(defun time-crdering (snodel snodeZz}
(let

({tl (send snodel :time))
(t2 (send snode2 :time}))

) ' :
(or (< (car tl) (car (last t2))) ; proper forward order
(> (car (last tl)) (car t2))} ; proper backward order
1)) -

sequence of snodel
sequence of snode2

(defun forward- time-orderlng (snodel snode2)
(let .
((tl (send snodel :time)) ; time sequence of nodel
(t2 (send snode2 :time)) ; time sequence of node2
) >
(< (car tl) (car (last t2))}))) ; proper forward time ordering

i

i :) . .
;7 Computes the cost of merging a path forward over the time gap
;7 to the possible candidate extensions.
iy
i
i

(difun ?ost (sl s2) ; from sl to s2 where these are segment nodes
et* : :
(deltat (diff (car (last (send s2 :time))) (car (send sl :time})})
(model (send sl :linear)) (estimate (vector-sum (car model)
(scale-vector deltat (cadr model))))
(dx (vector-difference (car (last (send s2 :coord))) estimate))
(d) (vector-magnitude dx))
(mean (quotient (vector-magnitude (cadr (send sl :linear))) 2.e0))

{prob {exp~cdf d mean))
(cprob (diff 1.e0 prob)})
(format t “~% time difference is ~a " deltat)

(format t “~% model is given by ~a " model)

(format .t "~% estimate of new position is ~a ® est1mate)

(format t "~% actual position is ~a " (car (last (send s2 :coord}}))
(format t “~% vector difference of these last two values is ~a * dx)
(format t "~% magnitude of this difference is ~a " d)

(format t "~% the mean value is ~a " mean))

(format t “~% the probability of being <= this ~a " prob)

(format t “~% the probabilitiy of > ~a * (diff 1.e0 prob))

{cond ; temp criterion, if 1/cprob > 3 then eliminate.
{ (< cprob 0.33333333e0) 101.e0) ’
(t (sum deltat (quotient (diff 1.e0 prob))}))))

;

;

; This function finds the particular the best pair of eligiable
; segments for extension

; Note the problem may not be commutative.

; That is, it matters which pair is merged first. So unless you
; are able to look for a global optimum via a linear program.

;

(defun find-segment-pair ()
(do* (
(slyst (send segments :right) (cdr slyst))} ; original segment lyst
(olyst (sort slyst ’ (lambda (x y)} (< {(car (send x :time))
(car (send y :time)}})))
(sl {car olyst) (car olyst)) -; first trial candidate
{clyst nil nil) ; candidate list)
(dlyst nil nil) ; distance list corresponding to the segment sl
(answer nil))} :answer from internal loop passed to outer loop
{{or answer (not sl)) answer)
(setq clyst (find-forward-candidates sl slyst ‘forward-time-ordering))
(setg dlyst (mapcar ’ (lambda (x) (cost sl x}) clyst})
(do ((cwlyst clyst (cdr cwlyst)} ; list of candidate segments
(dwlyst dlyst (cdr dwlyst)) . ; list of distance value
(bestseg (car clyst)) ; the segment with lowest dist
-(bestvalue (car dlyst})) ; the distance
((null cwlyst) ; out of candidate to share
(setqg answer (1f (< bestvalue 100.e0)
(list sl bestseg bestvalue) nil)})
(cond ((< (car dwlyst) bestvalue) ; less than current minimum
(setq bestvalue (car dwlyst)) ; if so reset minimum
(setq bestseg . (car cwlyst})))} ; also reset the segment. flavor
(t nil)}))) ; end of if statment - returns answer is not nil

i
i

i3 . This function finds the start time of the most reCently initiated
HA segment ’ ‘
HH

(defun find-latest-segment-start-time ()
(let*
((slyst (send segments :right})
(tlyst (mapcar
* (lambda (x)

¥01

(car (last (send x :time)))) slyst))

) .
(apply ‘max tlyst)))

P i e iineiiRiiiiiiiIRIiiiiiiiiviiiiiiiiiiiii

~
~
~
~
~
“~
~
~
~
-~
~
~

This functtion finds the flavor re'presenting the most recently started

~e N3 we Ne ve we
Ne e e Se se we

segment
IIIIIIIIIIllllll"lllllllll‘ll'llllllllllllI'IIIII'IIIIIIIIIIIIIIIIIIIIII

(defun find-most-recently-started-segment ()
(let*
((slyst (send segments :right))
(tlyst (if slyst (mapcar
¢ (lambda (x) o
=) (car (last (send x :time)))) slyst) nil))
(tmax (apply ‘max tlyst))
(smax (if slyst o .
(my-remove-1f “ (lambda (x) (< (car (last (send x :time})) tmax})
slyst) nil))
)

(Lf smax (car sméx) nil))}

(defun find-most~recently-started-segment-with-length-gt-y (y)
(let* ’
{(slyst (send segments :right))
(tlyst (if slyst (mapcar
i ’ (lambda (x) ’ .
(car (last (send x :time)))) slyst) nil}))
(tmax (apply ‘max tlyst})
(smax (if slyst . .
(my-remove-if ’ (lambda (x)} (< (car (last (send x :time))}) tmax))
slyst) nil)) .
(ymax (if smax -
’ (my-remove-if-not
¢ (lambda (x) (> (length (send. x :time)) y)) smax))})
) - .
(if ymax (car ymax) nil)}))

01

ion

108

2]
]
=1
3]
[
N
[
~
-
—_
L]
B -
I -
-~ [~
<
-]
+
[<]
o o
@
— 0
]
- -
o
£ -
o [~
P [I
= E= 4
) I
- >y
— 0 —
L] 0
83 [T
— —
[[
- - "~ '
—~ m e
o L
3] > P
— w
-~ > (]
-t =] — 1]
= ~ E
~a ~ 3
— [=] o)
1 3] ~
v~ []
17} I -1
E E o
S =1 n]
c o s s o
7] o o o
=N =1 a8~ O
S 3 50—~
WO 0~
[s
o o
" - -~
X9 LTy -~
£ .-~ - .~
) I o -
Q - . -~
Q - - - —~
-~ "~ -~ —_ —_
] - - -~ FR. -
f=4 "~ S [T 3 o~ -_—
o3 -~ -~ s - O ~]
o -~ -~ L o~ —
|71 N “ ™ - —~ - a
o (2N - - - (=%
- “w ™ - o -~ - o,
3 o~ o~ o o~ o e £
"~ a o~] -~ 1 (1] [¢]
“ .~ o e Q w2 T~ 7] -
o -~ T .-~ — [o Q £
R - R Py [5 — =
< I o~ - 1<} -~ I —_
™ —~— -~ 0 o~ > o “ M [T | Q o
—~— o~ =] -~ o~ “ @ og o)
[>~ o~ o ~ -~ o -~ o [=IN3] 3 —_ 0
o — et -~ * 3] [o~ o o
L] —_—— woop o~ <] “~ a H ~ 0
Q L] e 3} -~ H =] [v o — ~
o~ =] .~ o [} “ w0 L] —~ o w
2] N w 3 ~ 3] .~ ¥ wc 3 Q 3] o
=3 o o -~ Y “~ ~ - Ee] o~ ~ — @ o ~
o 3] “~ -~ — Q -~ o T M Q o o
Rl - N -~ Fe -~ [=ICN w -~ [0, o g
+ o o~ o .~ 0 —~ I - [o, I [T
o e 0 -~ 7] (18 — Dy o -~ -y U i ye) Q - E @
=] o~ [.~ + o "~ W © @ 7] ¢ N
=] -t L1 = LTS (S] "~ - [k e (%} 0 +— T
- ca w 0 “ VX 7] -~ (ST 0 Q E] -0
3 0 RSy] -~ 7] < “ A =) e} =] 0 - E o
o 1 -~ 7] N Mo -~ o~ o] ©w | o .g
] [N =] - c "~ - = w 3 <0 78 | ~ —~ 00
] 0 53 “ - o0 -~ o] H = '
& o1 [-~ it o " - o = 0o [)
o 1= ~ & -~ -~ —~ ot F [N =1 - 3 o -~ £
- o 3 (I [T [o o~ A 30 Is] ~ o0
o] -0 w o -~ ~H 0 w - o~ — o
Il 7 >y = .~) .~ X > DA) N Wt o 2 — E O
~ s "~ - = o ~ .~ [R -t] 2 H®
@ wed — o~ o~ @ N —_—— 0 m - o [=3 =1] - —~ o 0
2 x® L] [wooq % [(LY - Qg g) -~ a @ P - o
o ~ "~ L] w0~ -~ [“ o~ [uw <
42 () el Mo -~ 2N oM KN Q “ Moed Mo o —] 2] - O U
] Fe) ~ o a “ o P @ o [~ w wC @@ -~ Q ~a-~a — D
] P X >0 U w © w0 L0 N o woow o o m Qo [}
-~ w w 0 ~wmc Y] N L] o, ~ [OR =]
@ — .~ < -~ 0 o~ O - Q o~ — o [~ o~ —_ o0
[} v YR o~ [3] N T u w Tt How o U @ Mo~ L oo
H T] [T o~] w0) “ — -~ i o c o 2w 0 ~ [}
— e~ 00 -~ o -~ 240903 - o~ 290 o I 2 -0~ w o ®n
5] o g ~E O woou « CcHERQO o ~ WHED I 3= E - -]
= o S o ¢~ w @ -] o w 3o dg~ o 0 w3 oa —
— - (=] [T -~ | EEO 2 -~ ' 2§ 7]] | E 0 on
=9 =] ==y "~ 5] O Y]] P Y] I I == Yt e o
3 A o -~ - "~ = ~— 7] e fe Tt 1 T = Bt
[1 o -~ 1 “ 0] ~ 0] 0 o - LR
—= Y] o] -~ N o~ o H -~ il E o o
= =] =<1 -~ 3 “w. 88 3 "~ == o] 3= £ o0
3] [+] 5 0 .~ o “ 30] " S 0 n =] 3 0 FEREERT
o S N3] w40 “Woow 0
@~ o~ -~ ¥~ [[T
LCSCINE TS LTS hel -~ hel LTS TN T TN TN kel "woen e e ol ol L N LTSNS
haed TS - R A LN - LE DTS ~— el LN L T TN T T

~ oo

o~ e

u P
o -
-
2 T .
-~ [¢] - on o~ -~ N -~ "~
-~ I -~ .~ "~ ”~ [#] -~ e
"~ > -~ s -~ -~ [o] -~ -~
"~ " ¥ I .~ .~ o -~ -~
"~ [+ TS o " "~ . “ s
-~ = "~ o - -~ o~ e -~ -~
“woop -~ 13 -~ " -~ o s o
N ~ I o~ -~ o~ — -~ o -~
o~ (TS o~ -~ N e Q -~ -~
-~ o -~ > Y -~) " < .~ w -~
-~ "~ : "~ "~ i) (1S u . hd
-~ 1] -~ w g "~ 0 - @ -~ 3] -
.~ =1 "~ <} “w o~ Q s N [[} -~
.~ 0 -~ @ o - > “ r= -~ > o~
-~ -~ ey .-~ “ N o o~ -~
(1N o LIS 17} -~ -~ =1 LS] o~ o b
-~ [=} -~ Lo " — "~ (s} -~ =1 -~ [»] ”~
o] -~ o " iy [g—1 “ o “w oA -~
-~ Y 'S e "~ Fel LTS -— -~ e -~
"~ Q "~ Q "~ « -~ ol . Fe] e, ot [XS
N 3] o~ —~] .~] o~ u -~ 3] o] -~
.~ [=] -~ — e} -~ — - [e] "~ -t -~ (o] -~
-~ Q “ -~ “w Q “ Q, o o -~ o, ~
o~ ﬁ o~ — =] "~ o "~ -~ m o~ ° -~
.~ N -~ -~ [I . -~ o~
w W o > m - —~ “w £ -~ o, -~ w o .~
-~ L - N e '3 s el -~ —~ — on el "~
o~ A -~ o —_~ e o~ -~ o o —— -~ -~
w T e o oy > e u “w g e Q- b~ w B e
.~ (1S ~ -— iS) “~ T .~ (s} ~ o3 —_ "~ o -~
-~ o ~ —_ o -~ o o 5 o~ o n oo -~ e o~ -~
o~) ~ —_ > v oo w -~ O~ ° “w o wH s nm.
w2 o~ E} o [-~ .~ 2 "~ -~
o~ o -~ (%] — - o~ o~ @ .~ [N~ O~ o~ o o~ ot
-~ -~ @ .~ [% °) - oo -~ Qe L ~3 @ I Qe P
- "~ > -~ - 3] > W o= -~ 3} -~ O e ~T O o~ [3) o~
> -~ -~ -~ O —~— .~ PR o . N —~~— 30 n -~ “w T
(1S Q -~ — - —~ [} “~ T ¢ - L) [M — .~ [} -~ M~
o] o~ =} ~ > |-, = - ot -~ =} on [} MO M-~ o~ = -~ Q
o “~) "~ [er =) re] o~ (e ou) “~ —~ 133 O 1 O~ [IN + -~ [*]
4] (1S -~ = @ O N “ c 0 - IS —~] o YooY o " O
-~ -~ 2] = O @ M [} “ o3 2N 7] "~ 54 [Vo U E -~ 2] o~
- o~ o o~ -0 0.9 I3 - Lo -~ =] w oA ~ 0T OO -~ c on
= -~ 1ol -~ Q N ~ O iy o~ Q@ ~ - [¥) 'S o Q@ D= >y "~ ~ ”~ —
(1N =1 -~ [4) —_—Q -—_ -~ o o~ > "~ = o - t 1> LIN = [y Q o~
] o~ el “~ <} = 3 —~ I N ~ . - . o~ o o~ PRI) o~ Fe] - T ~
o o~ o -~ o Lo . = m Q [X8 % -~ Q [T N T = A T M [[w 0T
4] -~ 1Y) [y 1Y) Mo =] ~ “ o "~ 4 o~ [o T [~IE=3 1 .~ & -~ B N
~ o~ -~ @ ® T ~ M0 o~ IS "~ ~ o Q) 5S4 0 m -~ o~ 10
-~ o o~ W O i @ | o IR PO -~ 3] -3 T Ewn o~ = -~ 5 0
+ (1N [+] en Y -~ N m -— O M 0 -~ C“W\I (28 [} s ~ v o -~ n [o -~ @ O
o -~ - on ot — o — ~ 0 - o~ o N o~ - “ o + <] -~ ~— -~ @
=] o~ e "~ o ot Yy g 0 ot o) o~ —~ E O - ey "~ L ~H O Eaik R .~ 2 o S
o -~ 3] o~ o WD | & ©TO 131 -~ © T o “~ 3] - Q, o O “He= E O .- 3] w A ®
I} “ e w N — 0 N B 0 c - 5>~ 0 w g “w O 0> —® 0o w g w ~HO
1<l -~ 3 ”" fe] — o > o - o > o -~ 1~ o “ 3 o~] bt O W0 -~ = .~ | Rt
[+ -~ Lo o~ o =} ~— v =1 ~— (' .~ T« > s (] o~ ° > 0> 0 ~ (%] -~ °
1 -~ -~ 0 3] o =3 “ g <t O e s o~ “~ =Y
= -~ 0] -~ [0 — 7] Q - "0 3 -~ Rk "~ 7] -~ B M et -~ (] (S e Bt
[+] -~ ot - > — =] [o ok} o~ Y4 @ - - -~ i (18 - A~ 4y~
T . L “ LT3 [o] T 2 o3 = o~ 4] -~ £ 3N * o~ £ "~
o~ w B "~ mmn o cogs O 3 “ £ “ K "~ ma s B e ma
- "~ o~ gy - 50—y — .-~ =3 I .~ -~ -~
LN [O — 44 O~ whw -~ - m -~ ”~ Y~ -~ -~ 4~
-~ -~ on Q ~ —~ Q ~ [Q ~ “ an Q ~ -~ .~ [
LI TR TR TRy 1 o o LT T T, o [T T T T o e tn n te m o
LT T T T T - ~— L D DN DS T ~— LTSI TN T T TN had ot tn Ay e -
S - "~ “ o
N o~ “ -~ .~
.~ N S -~ “~w -~
o .- -~ -~ o~
-~ -~ ~ -~ .~
o~ -~ “ “ "~
.~ on -~ “ "
- -~ -~ .~ o
.~ .-~ -~ -~ .
o~ -~ -~ o~ "~
-~ “ i [“~ w o
-~ -~ o -~ “w W BN
.~ -~ o ~ " o. s
-~ -~ o - -~ “ D on
.-~ -~ @ oy -~ N 3] -~
o -~ 4 o -~ “ Qe
o~ -~ © ~ “~ > "
IS .~ o £ ™ o~ . .
o T - TS "~ [e} LS
N -~] - “ -~ = o~
(] o o~ 1] » - .~ I .~
g -~ -~ £ s - -~
=3 -~ - el o o~ o~ Ny -~
e} .~ -~ o © "” -~ o -~
-— .~ . -~ o .~ - .~ .~
=] .~ — -~ 1] o~ .~ N - -~ el on
o -~ - [N [} “— .~ [e] = ~ 0 ~
m TS — . el Py — o~ P} (TS j=} 19
] I o N 3] - - -~ 3] - “ o .-
I o -~ Q - o .~ @ - . o -~
8 -~ o o~ > ~ ["~ » £ .~ £ e
7] o .~ P 3] o o 0] -~ -~ Qe
[p} TS — Q -~ o)) ey -~ o @ -~ “
-~ 3] .-~ -~ > ot 3] o -~ Q o “ v on
2 @ -~ [% — .~ o @ 0 “w - Q. “ o -~
-t -4 .~ —~ 0 N =] o~ jul —_ =] -~] — o~ o .
— -~ Moo Q o -~ M o (1N 5 L - o~ .
had Q -~ 0 0 4 - 0 -~ @ oo ~ "~ [} - [} s -
Fe) st - PR] 13 o~ o~ ¥el 2o (IS — 0 (XS = [—
=1 [} (8 o > [s 2 Lo -~ —~ o~ L > @ -~ FE] "~ o~
pEl (3] > - “w QP [> o~ E .~ . >
I3 7] .~ > ~ o0 o~] > [} ~ o~ -~ 7] @ -~ 7] -~
] e .~ o o g .~ <] -~ I LN .~ 5] c p -~ o -~ ~
2 3] .~ o — 23 -~ N o 3} T -~ -~] o, ~ -~] -~ o~ — °
=] oa [=] Q [$) S = MO @ a4 -~ =1 — .~ =] o~ > E 3]
|2 4 (3N T . O [-~ e 0 E 3 E © “ o 0 o~ - 2 o ~
H] "~ =] =] > e -~ @ P T o -~] — X "~ @ .~ S~ =]
~ -~ P o 2 —_ o -~ ~ 0N — — D -~ ~ ~ -~ ~ LIS R
w o~ -~ o - o N o “ [l o ~ @ o~ 4 .~ . > —
] =] o~ c o =] o E " o > o o ~ > o~ =} o ® “ o -~ el pel =1
-] -~ o E [< N 0 -~) [(RR?} E o~] o - "~ o -~ [T-] 3]
- -t -~ - |] M~ ~ N -~ - FE) ~ -~ - L Q -~ -— -~ =} =] M
[o] o~ E N B o [3 fu] - > o, a -~ el o E ~ el o~ g~ o - il
[¢] (2 (I]) o P4 LIS 3] g~ [s] 4] LIS [¢] > .~ 3] -~ O [} o 4]
12l =1 "~ Mo 1ol 4] o0 [=1 = M o, (1N [1 — -~ =] -~ a0 4 ~
[} = -~ o 0 Q Q X 0 [=] | T O] -~ 3 [B -~ = -~ Q3 Q. —
€T - R 2 > 0 > [T TagaN E “woow — “ W 1 (=] | =]]
[(18 0 > 3] ~ o~ IS B E O~~~ -~ “ .~ -~ oo 2]
] " Q ~ Q — o~ w = O -~ [O N o 0. -~ 0 N o — =]
- Y > E3 — el -~ -~ Y~ —~ .~ -— 0w © o~ P s T Q o — (=]
F=} -~ L T 3 hel -~ = -~ = o] -~ L o~ 1 o3 =]
] "~ =) aca q -~ B (= .-~ [l e .. B -~ [=E] (=i =I~] 0 ~
-~ =5 o 30O o~ =5 Q@ -~ =] .~ . 5 0 50~ 1~
-~ - 0 U O~ —~ (S U LIS W E -~ ~ - Y O~
-~ Q ~ Q ~ - (3 o ~ -~ Q . -~ . (1S Q ~ [
[T LTS TSI ke o [T SN ° I T ke [T N Y o o
LS TN .~ ~— ~— LLS T T 7Y ~ e tw Ta e ~— LS TN T TN T e ~

108

IS "~ -~ -~ " RN
"~ o~ w TS TS o~ aw en
s “ 9] -~ -~ “ RS
.~ -~ o -~ N .~ .~ .~ o~ e
.~ -~ “ ~ o "w o “ -~ -~ o o
[T ~ =1 ~ "~) ~ «“ -~ o~ [o~ LTS
-~ "~ = "~ -~ "~ s -~ -~ ~ o~ o~ e
-~ "~ -~ -~ o o~ -~ o~ o~ * o~ NN
"~ -~ o -~ -~ @ -~ .~ .“ -~ I o~ o~ e
"~ "~ k3 o~ -~ Q .~ o~ . — “~ ~— -~ o~ en
- w D - - z .- o - -~ N o, .. gy o
-~ "~ . .~ o “ "~ . — .« " - o~ e a
s -~ o "~ -~ i) . " -~ — -~ [} "~ — LIS [} u
"~ -~ o -~ w Q N “ -~) -~ 1 .~ —- o Q Q
"~ -~ @ "~ (29 "~ - -~ R -~ —~ o~ —_ LIS [SERC]
o o~ = o~ “ Yy o~ o “ ~ o~ o~ —~ [T — O E
-~ woo I woow o~ I -~ o -~] ex —_ o n c
"~ o~) ~ o~ Bl "~ “ -~ @ - <] “ =} “ e RN |
"~ I a o~ " kel -~ “ ' 1 -~ “ [-~ ol “ o - o
"~ s -~ . " o s M -~ .~ = @ “ . - (o]
-~ (Y [} "~ -~ L) o~ -~ (18 N -~ - Ful -~ =3 LTS (U
[s 3} -~ o~ 2 o~ "~ -~ O~ -~ [-~ o~ e (=]
LIS "~ o -~ . 3 -~ “ -~ N~ -~ o “ —_ woen O P
- "~ [" -~ — . o~ “~ N~ -~ .~ » "~ o T c
-~ "~ ~ -~ -~ [o] . -~ -~ W X -~ - -~ PR — u o
“w o~ 3 -~ o~ 73 [S "~ — o~ =1 -~ Ie] e Q@
-~ [N bl -~ (XS Q (28 o~ -~ < X -~ T -~ T . e U o
o -~ (5 -~ [N @ "~ — “ -~ — "~ L] LIS o [N H oM
.~ W .~ .~ -~ > o~ N -0 .-~ 5] -~ ~ o [
~ s o s s Q -~ [s -~ ™ C -~ [— e L ==
N .~ N “w = “ o 3] N .~ E N =1 o~ - PN o=zt
(1S -~ L) "~ "~ PRI = -~ ~ o "~ o~ e -~ [-~ o [
-~ o "~ -~ o) .~) -~ -~ [V o~ > o~ w NN [=iS)
"~ s =] -~ [Vi o~] o N -~ o~ o~ .-~ =] o en O ! >
-~ — Y — TS — 1S [e S} -~ [} [} s TS 17} o o -~ (] LENEE TN A -4~
o -3 Y [e] . = “~ (4] o~ (=] — -~ "~ ~ w0 o~ -~ - . n 0 o~ o~ —
.-~ X o~ @ I " E C .~ [— .- . = - = - o e ~ o o
I = “ Q -~) o~ 3 3 N [V o~ < -~ o c -~] o~ o N -] a
"~ ~ "~ o “ ~ "~ n - . [° - (e} -~ -~ -~ -~ -~ = o en i o >
an sa "~ .~ -~ [] o~ o -~ O = “ Fe) "~ o (TSN o N —
.~ [.~) -~ © .-~ o o “ o o “ o .~ — = .~ 3] -~ - W T £ d
-~ o “ o -~ 0 “w o> “w oA e} -~ 3] o~ -~] -~ o~ Q- > u
(18 - o~ e -~ = -~ 2 0 "~ kel 3 s o -~ & o -~ = -~ w (TN P ou =}
-~ %] —_— . - [0} o O s 1 o~ -~ = -~ o -~ — -~ —_3 LI - 5] 3
- o = -~ 0 "~ o -~ w oo o~ [Qo —~ “ W -~ v O -~ -~ [~ o g @ ksl
-~ &) -~ el -~ @ o~ T -~ & 0o~ o~ -~ — o~ — o~ T - o~ e -— -~
" 1 [-~ <t w oW " & o .- S Qb “w o> “ D “ a “ o g W o
o~ @ o 0 -~ o o~ LIRS o~ g I — L] -~ 2 -~ 0 -~ -~ "~ £ ~— o e (o] -
XS — PR “~ — "~ =~ -~ “W P [[e] -] 28 -t S aJn -~ Fel -~ LU . -
LIS o [SIN4] LIS -~ T o~ ~ .~ 7} " 7] "~ (S =4 - o -~ » Q. [T > o]
o~ < ¢ o (TN [=3 .~ [.~ c o "~ Q “ "~ =] -~ -~ 0 -~ [L2 ~ X e > - %
o~ b1 > > -~ o -~ [«f) 2 oo "~ @ L] " Q o~ X (3] o~ = -~) e — o >
-~ L= 2) o~ -~ o~ PR o o e "~ | o -~ el "~ ~ -~ o -~ N4 (I S 0Z o
-~ 80 pp o~ ey -~ =1 o~ »on s o T 0 "~ "~ n w o~ Q. o~ kel o~ o o £
“~ O 3 -~ [4] LIS — 28 0 3 -~ 0T © -~ =1 -~ uc g o~ x -~ 0o LIRS 5] [
w pYggg " c o~ o W " c w o mE “ a N o E o~ o o~ | O NN 0w x o G
"~ [===} -~ =] [0 -~ -~ S0 -~ ["~ -~ -~ S 0 -A -~ -~ 0, oo -~ 4 O !
"~ [] -~ Lol -~ Qo "~ “W oM -~ Q -~ 5] "~ ™~ g .~ I -~ X A I o -~ >
- > 0T T .-~ o~ © ~— -~ o N > > s 7 “ oy~ ~— “~ N) ~ o w =z u £
"~ [=T~} -~ 5] .~ 28 0w o LIS — 1S =] "~ o~ =9 [S (SN s} M
-~ [e -~ - -~ cown o~ — O "~ c oo "~ a -~ j=s} o~ [a) -~ (=] [ENEETN £ 00 s
“ e w8 w3 Q “w =0 .~ 80,] .~ S o w O N ! e DA > ~ 3
-~ H O~ -~ e ~ “ m -~ PR o~ o o~ -~ Y3 [N o~ T b
"~ Q@ ~— -~ s QP ~ a o Q ~ o~ ~ Q ~ s -~ U ~ [}
-~ el [ERL DTN P T LT T T T (TN [ESETSE TS T el SISO N kel kel
-~ ~ L L L S LT T T P T b [T TS LN D T T Y S L A LS ~ -~
-~ -~ “
_ o~ -~
) -~ N
- "~ “
— e "~ - .-~
T o2 (TS —_ o~
el .- D IN
m m LS w -~
" > -
O~ I — o~
] "~ [-~ 7]
— g -~ o - -~ N
T u ~] — -~ o}
~ O w o4) N In}
oM [[— -~ 9}
=g =] LY > Q - —_ o~ Q
0 o " T —~) .~ >
o "~ . a] N
N -~ 5 9] =~ =4 o~ 0]
L0 -~ [} 4] [[— -~ — 3
2o woooo £) > o~ © — 2
| o "~ 8] I] N -~ » -
[<INe] -~ [o - — -~ IS —_— c
O A -~ > o L] c T -~ [-~ [
-~ "~] — M~ = on = —u [
oo -~ ° [— = [s}% -~ = &>y =z
[SER NI -~ c —_ > oo~ o — -~ - n ~ +
-~ “ @ -1 n = 9] —_ o [> @
el o —_ > u ~ > o~ w“ — M e}
[o~ [oo~ —~ 0 ~ (=] -~ [e] et
] -~ o n m M] [o~ Mo)
(o=} -~ [0 >~ 0 ol —_ —_ -~ [=} T O <
0 ~ ~ —~ 0 ~0 m — LR] o~ (o] O~ -~
-~ "~ O P -~ - = w < [
Q . .~ > — —~ > E= 2 1] 4+ 0, M W o~ [~ o
5o -~] - > Do~y u — o -~ =] ISR o
n B ~ o —~ [B > © 0 -~ © O
-~ a o~ a 1 x a o~ 00 — ~ =~ -~ [} (S a
[~ w o B~ o~ =) s B © ~ “w < - Qo <
QO o - -~ s} — - -~ L] [+ — — @ N 3]] [-~ 5} 2 T E e
S W e + ~ + - Fel — 4 Q0 ~0 o D H Y .~ I E
Q£ E T .~ 2] £ ®n =3 Q, L (4 Q3o > = ® O O -~ [> ~ “
e Bl -~ =1 = > [} —~ > o E 0w~ MowoD o~ =} — X =]
(] & 3 -~ N 0~ —] o = [-1 = v 00 -~ M~ ~ S m -~ =]
[EEP N =1 N -~ 0 -~ AT~ W > 00 -~ 3 —~ E T~ S
T M o> -~ + = E —_ L R S R o T > > -~ o 0 £~ — 4+
MM + IS (] — PR = a [<) « 40 = I -~ (] ~ . < [
T O U -t -~] o - w o o o= o > L] 500 -~ ~ T > o M
I O~ 1%} -~ 1 & . @ (LI [l =3 22 - — Q- -~ > > -
H4 0 [e] -~ c > 2 0 I =] &t (ORI > ~ PRI (2N =] “ —~ Q. = =
[o] Y — [XN (o] — © — + o Q-H [} D>y o 0 U o~ o] L Q. Q. o]
FR R o on e ~ o o > T > WO @M Bl U VD o~ -~ - 2 Q. a <3 -
U ©-~ > -~ +] LB B a caQar>uUvwm Q BT T~ "~ o =} T~ o +
o vVT | o <] [E ot 1] 3 ™ ~ U El 1 "~ [3} -~ ~ — 3}
el el ™~ =] o S o 4+ X uwn 12} o E D ~ 0 x m o~ c 1 = [=
~ 2 [~} "~ = T w o o] [) o] el B ~] -~ = o z D + =
2 w - " (=) o [— =] > EE pu) >S4 > 0 (1S Y o O -~ 4] Y
= kel - Yo~ ~ [— =~ S| 3} U o~ O~ o = -~ -~ —~ o —
~ N B B -~ [- ~ O L P - @ — Mg 3 o 0 M 1 17 o —_ =~ %]
~— -~ -~ o O~~~ ~ > M > MO N (S e} -~ o = =~ s
~ Fe] ® (S] o} o -~ £ <
-~ = (=R S E =] m >3 UN N £ 0 -~ 3 c o B
-~ S5 O = 3 3 0 T T T YT e~ S 0 .~ = @
-~ o~ - v o = o~ o> -~ o
- o~ o~ o ~ [-~ o~
P <1] ° a e mae e O CSENEN

. .109

- —
>t e
o
e
wu —
- >
—
~ I
w
— -
ot — |
c - &
x b
L Lo
- ot .

(mapcar func lyst) lyst)}
(mapcar func lyst) lyst})

(mapcan ‘ (lambda (X y)

(defun my—remove—if—not {func lyst}
(mapcan ’ {lambda {x y)

	Purdue University
	Purdue e-Pubs
	7-1-1989

	Tutorial on Lisp Object- Oriented Programming for Blackboard Computation (Solving the Radar Tracking Problem)
	P. R. Kersten
	A. C. Kak

	tmp.1542052450.pdf.JSanY

