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PART 1: MATHEMATICAL REVIEW

The following is a review of some basic definitions, notations and relations from

linear algebra, geometry, and calculus that will be used frequently throughout this

book.



1. LINEAR ALGEBRA
The purpose of this chapter is to review those aspects of linear algebra and cal-

culus, that will be of importance in the chapters to follow.

VECTOR SPACES

A column n-vector is defined as an array of n numbers which may be real or com-

plex, and is denoted as follows

a3

ag

ap

-

The number a; is referred to as the ith component of the vector a. Similarly we can
define a row n-vector as

| al = [a1,89,.y8n] ,
where the superseript © denotes the transposition operation.

T are equal if a =Db;,

Two vectors a = [a;,89,.,a] and b = [b1,bg, v by
i = 1,2,...,n0.

The sum of the ivectors a and b denofed as a+b is the vector
a+b =.[a1' +by,a9 + by,eryay +byT .

The operation of addition of vectors has‘the'following properties:

(1) Thé‘ Qperation is commutative;

a+b=b+a,

(ii) The operation is associative;



(a.+b)+ +(b+c)
(111) There is a0 ‘-v‘e'cvtorr '
. ) ‘(»,g_ [0,‘0',:,.‘,0];T N
Nefe ,tnat— I | |
j@+oﬁ5+a=;,
o T.l.lie‘ fellowin‘gvlvw}ee"vodrv |
lag— by | aé"';,5‘2,'...;%"—.,"b'ﬁ];T..’
- is called the dlﬁerence between a a.nd b and is denoted as, 5 —b.

| _ Thelveetor- o — b is denoted as —~b and is ca.lled an 1nverse Vector of b
‘ b+(a.—b)-a., ’
—(=b) = b :
—(a—b)=b—a.
o The ‘vecter '_a, — b is the nnique solntionof ‘the ,Ve'ctoi' equation
- e. +x=b.
Indeed, suppose X = [xl,xz,,xn]T ivs,,ar solntien te a +x= b Then:
S e tx=br; 8t =byts $3 =by

hence

 and thus
’x"=b_—"-a,b.‘

~"We define an operation of.'éealarv_mnltiplicat_ion as follows -

‘Note that



Ola.= [Oza.l y XAy eesy Ola.n]T .
This operation has the folvlowing properties:
(i)  distributive laws hold

ofa +b) =oa + ab,
(o + Bla = oa —I—v,B._a. ,
(ii) the operation is associative

o fa) = (ef)a,

(i) there is an identity such that

la =a,
(i\_%) ao=o,
(v) 0a=o,
) (-a=—a.
Note that
| a = o

if and only if o = 0 ora=o. Indéed aa =0 is equiva‘lén‘t to
Qa) = Qag = ... = Gy =0 .

If a=0o0ra=0 thén aa=o. If a # 0 then at- least oné'of its components Al # 0.
Fbr this c"o‘mp'0nent gy = 0, hence we have to have a = Obba.ﬁd similar arguments can
be applied to the case when o # 0. |

A set qf nonyaniéhing vectors aj,...,a; is said to be linearly independent if the
equality |

oqag + dgay ot oy ay =0

implies that all coefficients o (i= 1,...,k) are equal to zero.



The set of the nonvanishing vectors ay,.,ay is linearly depende_nt if at least one o
does not vanish.
Note that a set composed of a single vector a = o is linearly dependent, for if
e’ 750 then Qa = o =0.
A set cornposed of n single nonvanishing vectoif a # o is linearly independent since
aa=o0 implies «o=0.
A vector a is said to be a linear combination of vectors a;,ay;...,ay if there is a set
of numbers 0y ..., G such that
= ja; + oz2a2' + .4+ ogay
- A set of vectors 8,y BY is linearly dependent if and only if one of the vectors from
the set is a linear combination of the rernaining vectors.
Indeed, if a;,...,ax 'ar‘:e linearly dependent then
08 + Qg 8y + .. -l—‘ozka.,k =0
where at least one of the coefficients & # 0.

If o5 # 0 th’en

- On the other ha_nd‘if
a=o0qa; + 0pap + o + By
then s ’

o8y + g 4. + o ay + (—)a =0

~where the last coefficient is nonzero, and thus the set of vectors a;,a,...,ay,a is linearly

~ dependent.



The set of all column vectors (n-tuples) a = [a;,a9,...,a;]7 whose components a;’s

are real numbers is called the real vector space and is denoted IR™.

Let a;,8,,...,a; be arbitrary vectors from IR®. Then the set of all their linear com-
binations is referred to as a linear subspace spanned by these vectors and denoted as

Span [a;,as,...,ay] .

Note that a subspace Span [a] is composed of the vectors ca, where « is an arbitrary
real number (a€R).

Also observe that if a is linearly dependent upon a;,a,,...,a; then

Span [a;,89,...,a;,a] = Span [a;,ay,...,a;] .

Every linear subspace contains a zero vector, for if a is an element of the subspace

so is (—1)a = —a. hence a — a = o also belongs to the subspace.

Note that a subspace V of IR" is a set that is closed under the operations of vector
addition and scalar multiplication. For if a and b are vectors in V then the vector

‘a4 fb is also in V for every pair of scalars « and 5.
We have the following property of linear subspaces.

If V is a linear subspace and the vectors a;,as,...,a; are linearly independent and

a;€V,i=1,.,k =~ wherekis the maximal number of such vectors then
V = Span [a;,a9,..,8;] .

To prove -this statement note that any vector a of V is linearly dependent on

aj,ag,...,a, hence
a = a8 + ..+ 671%: 0%
which implies

V C Span [a;,ay,...,ay] . | |



| bn.tl;e ,otht.ér. hand the Vectors a1,89,- 8y belongto V,‘théfefor‘é :

. V‘_‘) Sp%m [all,va..él,..‘.,a.kl‘cf]i. |
Hence S

v =, Span [al;az,,;.,.ak]
‘ Any set of linearly iIlld'epe.nd‘e.'nt '-vé(:'tbrs a"lf;d\ng';'.,ak, such thét’

'V=s¢nhbgrwﬁ]

is ‘rebfeiz.rre(vl‘._'to as afbva.fz'gs of._tjne’subSpace V,'v;éﬁdvthé. number k ié,the.dimension: of the
s‘lvlbsp'zi‘cé.- : | | | | | -

*(

f the Vectors 8.1,3:2, ak form a ba31s of V then any vector a of V can be A

_represented in the unlque way as a hnear combmatlon of the ba31s Vectors
. . a =’ ,ozélal“‘—’lf a2a2 + —|- .akak’ .
"iwhereaE]Rl—l. k o |
To prove unlquenesé of the representatloﬁ of a in terms of the ba31s veétors assume -
 that | |
‘ #%%M4%%+§+%%.
i P
emhuen t fame ket
""He»n.ce .
RS T SR
. : . S e
(vO‘} - ﬁ1)&1+( ﬂz)az + + (O‘k - ﬁk)ak i

, Since a;(i=1,. k) are. llnearly 1ndependent We have to have



that is
o = ﬁi (1 = 1,...,k)
which proves the uniqueness of the representation.

If k = n+1 then the vectors a;,ay,...,a; (a;EIR") are linearly dependent, that is

there exist scalars f,..., 0 such that

k-
>8>0
i=1
and
)
E ﬁia‘x =
i=1
Ifk= n+2  then
k
Y PAE>0
i=1
and
k
Y B =0
i=1

To prove the above introduce the following vectors 3]

a; ="[1,a1,az,..v.,an]TEIRnJ_rlb , 1=1,..,k, k= nit2.

‘Since any n+2 vectors in IR®'! are linearly dependent, there exist scalars [

(i= 1§...’,k),sﬁch that

M=
s~
)

{

(=]

._.
]
_

and
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: ° v»‘ - k 2 . :
2 B> 0.
Tt follows from E ,81 a; = 0 and the fact that the first component of each a; i is equal to
=l B .

'one that

B=0.

—

I

- _Theﬁnatdral basfs for'Ian 1s the set of"\"»ectorls‘

i ] o

of ~ Jof 0
’ ‘el =1.1» e‘2 = N PR en=

0 0 0

0 10 hl

, .‘The reason for calling these vecto_rs the natnral basis'is fhat
.v -X'li l_
x=|"[=x1& +‘xv2e2 + + Xp€; -

Xy

Sometlmes it is convement to change the natural ba31s €1,€9,. ,en to a new basis
‘f1,f2, fn. One then needs to: the able to express the column x' of new coordlnates in

: terms of the column x of old coordlnates We have
| | SR o
Fx' = [fl-_,vfz,...,f,;]x'é xlfl- i, +o FXpfy =X
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"RANK OF A MATRIX

A matriz is a rectangular array of numbers. A matrix with m rows and n columns

is called an mxn matrix. For example

- .
a11 212 - 21p
a1 a99 ... A9p

A=
am1l 2m2 o aan

Let us denote the kth column of A by ay. Hence

aik

a2
ak ==

| #mk |
The maximal number of linearly independent columns of A is called the rank of the
matrix, and denoted rank A. We will show the following:
The rank of a matrix A is invariant under the following operations:
(1) multiplication of the columns of A by nonzero scalars,
(ii) interchange of the columns,
(iii) adding a linear combination of other columns to a given coiumn.
Indeed, let by = oy ay where oy # 0, k = 1,...,n, Let B = [by,by,...,by]. Obviously
Span [}al,a?‘,.....,an] = Span [by,by,...,b,],
and thus
- rank A =rank B .

In order to prove (ii), note that the number of linearly independent vectors does not

depend on their order. To prove (iii) let



and let B = [bl’b27

On the other hand

Hence

Therefore

With each square (m
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b; =a; +coa9 + ... +cpa;,

by = a, ,

bn=an’

..,by]. Obviously

Span [b;,by,...,by| C Span [a;,85,..,8,] .

aq =b1 "—Czbz _"'chbn)
ap *"—sz,
a, =b, .

Span [a;,ay,...,a;] C Span [by,bg,...,b,] .

rank A =rank B .

= n) matrix there is associated scalar called the determinant of the

matrix. We shall denote the determinant of the sqﬁare matrix A by det A or by A(A).

The determinant of a square matrix is a function of its columns and it has the fol- -

lowing properties [8]

(i) The determinant of the matrix A = [al,az,...,é.n] is a linear function of each

~ column, that is

! "
A(alv"aak—l’aak + /Ba'kaa'k-{—la'":a'n)

'
= aA(a'l yeery Bk—1,8%, 8k +1, °“9a'n)
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"
+ /BA(a'l:"'7ak—1’ak7a'k+1)"'7an) y
(i) If forsomek a, =a.,; then
Alay,...,ap,ar,1,..8,) =0,

(iii) If

- - -
1 0
0 1 0
a; = |0, ay =|0],..., ap = |0
0 0 1

then
Aag,ag,..,a,)=1.
Note that if o = # =0 in (i) then
A(al,...,a.k_l,o,a.kﬂb,...,an) =0.

Thus if one of the column vanishes then the determinant is equal to zero.

Furthermore the determinant does not change its value if we add to a column

another column multiplied by a scalar. The above follows from (i) and (ii) [8];
A(a'ly“':ak——l,ak + cayx laak+19--'7an)
= A.(a'I:""a'k—laak’a'k+1)"'7a'n)

+ O‘A(aly-"aa‘k—l,ak$ lyak+11"'aan)

= A(al,...,an) .

However, the determinant changes its sign if we interchange neighboring columns.

To show this property note the following [8]:
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A(al;...;ak_l,a];,ak+1;...,gn)
; A(a.l,...,a.k,_l,akv + ak+1,ak+;,...,a#) |
= A(al,...,ak_i,>ak + B 1,8141 — (a]_{ '_{_ ak+1),---,én) .
7=_ A(al,...,ak;l,,ak + akﬂ, — ‘a.k,‘...,anb) .

= A(a.l,...,vak‘_l,(ak +ap;y) — ak;"—a.k-,...,a,n)

()

=— A(al,...,,ai(_l.,ak+'1,ak,.._.,a.n) .
The (m-i)th order minor M of a Ilnxn (mS n) matrix A is the detefminant of the
mafrix obtained from A by deleting i rows and i +v'(n—m) columns.
| One céﬁ usel minors to investigéte v-the rank of a matr_ix. In'parﬁicular, v‘we have:
If in an mxn (mZ n) m__atrix A there exists a minor of the nth order, then the

columns of A are linearly independe_nt, that is rank A =n.

On the contrary, suppose that the columns of A are linearly dependent. Then

there are scalars x;(i = 1,'...l, n) such thaf,

X183 +Xga9 + ... +Xpa, =0,

n
and Y x2 > 0.
i=1

The above vector equality is ‘equivalen‘t to the followihg set of m equations
anX; +appXs + e +apX, =0
a91Xy —|— 18,22)(2 + e A9n Xy = 0
ap1Xy -+ apeXy +.. + annxn =0
a.ml'X1~-. + am2X2_ + s + _aman =) ._.-

© Assume that. the _m.inol{



- 15 -

411 a192 - .- A1q

. 321 3,22 oo azn . _
M =det| ~ - {=det |a;,aq,...,a,|#0.
_anl apg - a'nnJ

From the properties of determinants it follows that the columns a,;,as,...,a,; are linearly

independent. Hence the columns a;,a,,...,a; have to be linearly independent too.

From the above it follows that if there is a nonzero minor then the column associ-

ated with this nonzero minor are linearly ipdependent.
If a matrix A has an rth order minor M with the properties
i) M0,
(11) any minor of A which is formed by adding a row and a column to M is zero, then

rank A=r.

Thus the rank of a matrix is equal to its highest order nonzero minor.
A nonsingular matrix is a square matrix whose determinant is non-zero.
Suppose that A is a matrix. Then there is another matrix B such that
AB =BA =1
if and only if A is nonsingular. Wé call this matrix B the inverse matriz to A and write

B=A"l
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LINEAR EQUATIONS
- Suppose we are given m equations in n unknowns of the form

a11X1 + a12X9 + e + ajpXy = bl

a91X1 + ag9Xo + ... -+ AonXy = b2

am1Xy —+ am2Xo + ... -+ AmnXp =bm .

We can represent the above set of equations as follows

X 8y +Xpa9 + ... +x38, = b, (1.2)
where
[ay; | b, |
8 = agj ’ 5= b.z
[ mj | P

Associated with the system of equations (1.1) are the following matrices
A = [al,a.Z,...,a.n] y

and

[Alb] == [&1,&2,...,&11 Ib] R

Note that (1.1) can also be répresented as

Ax=b, (1.3)
where
_xﬂ
X9
x=

*n
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Theorem 1.1.

The system of equations (1.1) has a solution if and only if

rank A = rank [A]b]. » (1.4)

Proof:

Necessity ( = )

Suppose the system (1.1) has a solution. Therefore b is a linear combination of the
columns of A, that is (1.2) holds. From the above it follows that b belongs to the space
spanned by the columns of A.

Sufficiency ( <= )

Suppose that (1.4) holds. Let rank A = rank [A |b] =r. Thus we have r linearly
independent columns of A.” Let a;,aq,..,a, be these columns. The matrix [A |b] has
also r linearly iﬁdependenf columns and they are a;,as,...,a;. The remaining columns
of ‘[A |b] can be expressed aé linear combinations of a;,as,...,a,. In particular b can be
expressed as a linear combination of these columns. Hence (1.2) holds.

|

Consider the equation Ax = b, where ACR™®, and rank A = m.

Theorem 1.2.

All the solutions of Ax = b, where rank A == m, can be obtained by assigning arbi-

trary values for n—m variables and solving for the remaining ones.
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Proof [8]: .‘
We have rank A = m, therefore W’e can find m liﬁearly independent columns of A
Let al,a,z,...,a,;n ‘be such c01'umps; Rewrite eqliation (1.2) as follows |
X8, —I— Xo 89 + o+ Xpan '=‘b — xm+1am+1 toe FXpag - (1.5)
,As:sign tq Xma1s Xmt2s-orXn ial_fb‘itrary values, say |
X‘m‘+1 =dmt1 Xm+2 = dmi2)+Xn =:dn ) | (1'_6)
and let |
B %[al,az,...am] e» R S (1.7)
Note that det B # 0. | 3 | |
‘We ca# représeﬁt (1.5) as follows

X1
.
X9 '

B ‘= [b — dm;iamﬂf—k.... + dna.n] . .  (1.8)

Xm
The matrix B is invertible, therefore we can solve for [Xl,xz,...;xm]T. Using (1.8) we can
find all the solutions of Ax = b. Indeed, if x = [dl,...,dm,dmﬂ,...,dn]T is a solution to
Ax = b, then substituting (1.6) into (1.5) yields (1.8). But (1.8) has a unique solution
for Xy,...,xp. Hence we have to have Xl =dy,Xg =dg,.yXyy =dpy- | |

-

Corollary 1.2.
: The system Ax = b, ACR™®, has a unique solution if and only if raﬁk.

A =rank [A |b] =n.
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THE ABSOLUTE VALUE OF A NUMBER

The absolute value of a number a denoted |a |, is defined as follows:

I"‘al=‘ aifa= 0
—a if a <0

The following formulae hold [6]:

® lal=1-al,

@{) —la]l =a= |a],

(i) latb| = lal+ [b],

(i) lal—1Ib| = |a=b| = |a]+ [b],

() lab|=la] b]

(vi) Jal = cand |b] = d imply |at+b]| < c4d,

(vii) the inequality |a| < b is equivalent to —b <a <b, or to

—a < b,

a <b

and
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THE PRINCIPLE OF INDUCTION

The principle may be stated as follows [6].

Assume that a given property of positive integers satisfies the following conditions:
(i) fhe rnumrber 1 possesses this property,
(ii) if the number n possesses this property then the number n+1 possessés it too.

The principle of induction states that under these assumption, any positive integer

possesses the property.

The principle of induction is in agreement with the following intuitive argument.
If the number 1 possesses the given property then, the second condition iﬁlplies that the
number 2 possesseé the property. But then again the second condition implies that the
number 3 possesses this pfoperﬁy, étc. Thus the principle of induction gives a

mathematical formulation of our intuitive reasoning.
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Consider a set S of real numbers: A number M is-called an upper boundiof S if

x = M V' x€S:.

A seti of real numbers that has an upper bound: is: said: to: b,.é' bounded: above.

The Least Upper Bound Axiom:
Every nonempty set' S of real numbers that has an: upper bound has a least upper

bound-or supremum and is denoted:
sup {x | x€8} .

Examples:

1) 1= = e — = 1;: ‘
(1) Sup{ 2 ’ 3 y ——y } ,

(11) suP{_ E‘ 3. _ g y —2—7— g oser y =T n_3 , } — @;’

() suplela < 3} —suple | - V5 < x < V31 = V3.

Theorem 171',.3;.:‘ _
If M = sup{x | x€S} and € > 0, then there is at least one number x in § such that
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Proof [9]:
The condition x < M is satisfied by all numbers x in S by virtue of the Least

Upper Bound Axiom. We have to show that for an ¢ > 0 there is some number .XES
such that

M—¢<x.
Suppose on the contrary that there is no such number in S. Then
x<M-—-¢ V x€8

and M — ¢ would be an upper bound of S that is less than M which is the least upper
bound. |
O

To illustrate the above Theorem consider the following set of real numbers

gL 2 3
= 27354""’n+1>"'°

Note that
sup{x | xE€S} =1.
Let ¢ = 0.0001, then |
| ,1‘—0°0001<XS1

where for example

‘= 99999
100000
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LOWER BOUNDS

A number m is called a lower bound for S if
m=<x V x€£8§.

Sets that have loWer bounds are said to be bounded below.

Theorem 1.4.

Every nonempty set of real numbers that haé a lower bound has a greatest lower

bound or infimum denoted as

inf {x | x€S}.

Proof [9]: | |
By assuﬁption S is nonempty and has a lower bound s. Thus
s =x forall XES .
Hence
—x < —s for all X€ES ,
that is
{—x [ xes}

has an upper bound -s. From the Least Upper Bound Axiom we conclude that

{—x : XES} has a least upper bound (supremum) we call it sy. Since
—x = gy for all x€S

we have
—S9 = X for all xESf,

and thus —sp is a lower bound for S. We now claim that —sp is the greatest lower
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" bound (infimum) of the set S. Indeed, if there existed a number x; satisfying
| -—sd <”x'1.5' X V xES |
tﬁen we ﬁduld- have : | |
—x =< —'Xib< So V xX€ES

- and thus sy would not be the Supremum of '{—x I XES}_. :

iTheorem. 1.5.
- If m =inf {x v|_:_xES}.and € > 0, then there is at least one number x in S such that

m=x<m-+e€..

Proof

The proof is :sir»n:ilar to the one of Theorém 1.3.

THE INTERMEDIATE-VALUE THEOREM

Lem'rbnva 1.1.

Let f be continuous on [a,b]. If _f(a). < 0 < f(b) or f(b) < 0 < f(a), theﬁ there is a

number ¢ between a and b such that f(c) = 0.
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Proof [9]:

 Suppose that f(a) < 0 < f(b). The other case can be treated in a similar fa-shi,onb.i
We have f(a) < 0, thus from the continuity of f we know that there exists a numbef &
such that f 1s negative on [a,£). Let |

c=sup{f |f <0 on [a,f)}‘.

Clearly, ¢ < b. Furthermore, we cannot have f(c) > 0, for then f would be positive on
some.v interval extending to the left of ¢. From the properties of supremum (see
v TheOrein 1",3')’ f is negative to the left of ¢. The above argumehté imply that ¢ < b.
We ca?;nnobha,ve f(c) < 0, for then there would be an interval [a,t) with t > ¢, on which

f is negative, and this would contradict the definition of ¢. Therefore f(c) = 0.

O

Theorem 1.8. (The Intermediate-Value Theorem)
If f is continuous on [a,b] and C is a number between f(a) and. f(b), then there is at '

least. one number ¢ between a and b for which f{¢) = C.

Proof 9] f:b. '

Suppose
The function
~ is continuous on [a,b]. We have

€(2) =£(a) ~C <0 sad g(b)=£(b) —C > 0.

From Lemma 1.1 there is a number ¢ between a and b such that g(c) = 0. Hence
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 THE MAXIMUM-MINIMUM THEOREM
(THEOREM OF WEIERSTRASS)

Lemma 1.2.

If f is continuous on [a,b], then f is bounded on [a,b].

Proof [9]

Consider the following sét {x I)'V(E[é,b]v and f is bounded on [2,x]}. This set is
nonempty and bounded above by b. Let - |

c= sup‘{)vc | £ 1s bounded on [a‘,,x]i} L
Now we shall show that ¢ = b,‘ Suppose that Vc‘ < b. From the continuity of f at c it
follows that f is bounded on- [e—06,c+ ¢ for sorﬁé > 0. Béing ‘bounded oﬁ
‘[a ;e — 4] and oﬁ [c —9, e+ 8], it is bounded on [a, ¢ 4+ 6. This contradicts our
choice of e Wé can ‘therefore conclude thai; ¢ = b. This means 'thaf' f is bounded on
| [a,x] for all x < b. From the continuity of f, we know that it is bounded on soﬁle inter-
val ‘[b—6,b]. Since b—§ < b, f is ‘boundedv on [a,b—J. Being bounded on
[a, b— ¢ and [b — §, b], f is bounded on [a,b]. | h |
. N , -
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Theorem 1.7. (The Maximum-Minimum Theorem)
If £ is continuous on [a,b], then f takes on both a maximum value M and a

minimum value m on [a,b].

Proof [9]:
By Lemma 1.2, f is bounded on [a,b]. Let
M = sup {f(x) | x€[a,b]} .

We will now show that there exists ¢ in [a,b] such that f(c) =M. To accomplish this,
we set

1

A
g(x) & M1
If f does not take on the value of M, then g is continuous on [a,b] and thus by virtue of
Lemma 1.2, bounded on [a,b]. But it is clear that g cannot be bounded on [a,b]. Thus

the assumption that f does not take on the value M has led us to a contradiction. The

other case that f takes on a minimum value m can be proved in a similar manner.

O
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SEQUENCES
A sequence of nuinbers al;a2,...,an,;.. is a set of points (1,a1),(2,a2)>,..;,'(n,an),....
A sequence is increasing if a; < ag < ag < ... in general a sequence is increasing
ifap < apyy. Ifay < apyy, then we saythat the sequence is nbndecreasing; Similarly,
one can cieﬁne 'dec‘reasing'andb nonincreasing sequences. Increasing. and/or decreasing

sed_uencee afe called monotone sequences. '
"A number g is‘ called..thevl‘ir‘rzit of the iﬁﬁnite sequence 81,80, ey 8p, e if for any pesi-
tiVe € there exists a number k‘s‘,uchb that for‘ alln > k
| lan — gl < ¢,
that is ay lies between g—e and g+e for all n > k. In other Words, for any € > 0,
|a,][1 —g| <ecis satlsﬁed for all sufficiently large n’s. (see Fig.) |
- We denote_ the limit of a sequence_ by B

g = lim a, .
n—00

A'seqﬁen'ce which has a limit is called a convergent sequence. A sequence which has no

limit is called divergent. -
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Fig. 1.1. Tllustration of the notion f the limit.
We shall now: show that if a hmlt exists then it is unique. We will prove thls assertlon
= by contradlctlon [6] Let us assume that a sequence aj,ay,... has;two; different limits,
say g1 and g. Then we have lg, +gzl > 0. Let 6=‘l lg;—gs |- ,Fro'm' th'e:‘

deﬁmtlon of 2 hmlt there ex1st kl and kg such that for n > kl, |an—g1 | < & and for

n > k2, 'Ia' —ggl < ¢. Let m = max{kl,kg} Then 1f n > m,. I — g | < € and o

| g—g2|<e Ifwenowadd Ian—g1|<eand Ian—gzl <ethenweobta1n

| ~g | + |a'n"_'g2 | < 2e .

I geﬁml |
Ja=bl = lal+ bl
" 'Hence | |
v|.f~g‘31 tels la-al+ Jon — 83 1
»’I“her'efbo"fe o o |

: |-g1 teg =l el < 2.

But we assumed
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|21 — g2 | = 2¢.
Thus we have a contradiction and the proof is complete.

A sequence is bQunded if there exists a number M such that lan | < M for all n.

Theorem 1.8.

Every convergent sequence is bounded.

Proof [6]:
Let

g= lim aj .
nN—00

Choose ¢ = 1. Then a number k exists such that

la, —g| <1 foralln > k.

In general '

lal = [b] = lJa—b],
hence
o | = lgl < laa—gl <1,
and thus o
la, | < |g|+1 forall n > k.
Let - |

M > max{|a; |,., lax |, lg] +1} .

Obviously
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M > Iak+i l ’ i= 1721"'
Therefore

M > |a,| foralln.

and thus the sequence is bounded.

O]

Let a sequence a;,as,...,ap,.. and an increasing sequence of positive integers

mj,My,...,My,... be given.

The sequence

by = 3amn, by = amza'“;bn = an
is called a subsequence of the sequence ay,ay,...,a,,....

In general, we have

m, = 1.

Indeed, this is obvious for n=1, that is m; = 1, since m; is a positive integer. We now

apply the principle of induction. We assume that m; = n for a given n. Then we |

have myy; > m, = n, hencemy,y; = n+l1. Thusm,; = n for all n.

‘One can say that every subsequence is obtained from the given sequence by
neglecting a number of elements in this sequence. Hence a subsequence {amk } of a

subsequence {ay_} is 2 subsequence of the sequence {an }-

Theorem 1.9.
A subsequence of a convergent se‘q-uenbce is convergent to the same limit, that is if
lim a, =¢g
n—-00

and if
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my <m2<m3<...

_then

lim‘ ap, =8

1—00
"Pyld'oo'f"i[ﬁ] |

Let an € > 0 be glven Then a number k >0 ex1sts such that la, — gl < € for

any n > k. From m, = n m follows, my >n > k and thus Iam —gl <e for any
m, >n > k. This means

lim ap, =g.

Theorem 1.10. (Bolzano-Weierstrass)

. Every bounded sequence contains a convergent subsequence.

vaoof [6]:

Let a SeqUENCE a1,29,..y3y,. denoted as. {an} be bounded Let Z be the set of all
numbers x such that x < ag, i = 1,2‘,.. " The set Z is non-empty. Indeed, the number'
-M belongs to Z, for lan | < M, that is the inequahty -M < a, holds for all n. The set
Z is also bounded from aboVe,: for if XEZ, then x < .M since if x. Z M then the inequal—”
.1ty x < ay Would not be satlsﬁed by any a],1 N | | |

ance the set Zis non—empty and bounded from above, the upper bound of this set

__ex1sts Denote this bound by g, that is
= sup {x | x < an}

: 'Fi‘oid.fbeorem"lf'3 from the previous Sectlon it ’follows that for any € > O there exist
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infinitely many a, such that

g—e<a;, <g-e.
We will now show that g is the limit of a certain subsequence of the sequence {ah}~
This means that we have to define a Sequeénce of positive integers m; < my < ... such
that

lim 2, =g.
n—00

Lete=ling%6<as g—FE. Thus
g—1<a, =g+1.

Choose one of n’s for which the above relation holds and denote it by m;. We have
g—1<a, =g+1.

Now let € = —;— There exist infinitely many a, such that

1 1
—— <a; =g+ —.
g 2 n g 2

Choose one of the elements for which the above relation holds and denote it by Am,
where m; < ms.

In general if m,, is defined, we choosé m,; in such a way that

1 1
E§—m<3~mw1 Sg‘f‘m y My < Mypyy .

O e 1 E
Since lim — =0, we have
n—oo Il

lim [g—%]:g: lim g + =

n—00 n—oo

The two above relations imply
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lim ay, =g.
. n—00 k :

The inequality m; < my,; on the other hand vimpli”es that the sequence {amn} is a
| subsequénce of the sequence {a.n } ) o
O

Theorem 1.11. (Cauchy Theorem)

A sequence {a; } is convergent if and only if for every ¢ > 0 there exist an r such

that

lag —a, | < ¢ holds for alln > r.

Prgofv[vﬁ‘]‘:‘ e
= (if)

Let

lim a, =g
R—+00

and let € > 0 be given. Theﬁ for some r
|anv—g| < 5—6 foralln = r.
In particular ‘|aT‘—.- gl < % €. A_dding the aboVe iﬁ_equalities yields
lan —g | + la —g| <€ forall n= r.
But
an = | < laa —gl+ lar -l

. Hence
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ap, —a, | <e foralln >r.
= (oﬁly if)
Ass'u.me now that for every € > 0 an r exists such that
la, —a. | <e foralln >r.
We have to‘show that the above condition called the Cauchy condition implies

lim a, =g.
n—00o

First we show that {a,} is a bounded sequence. Let ¢ =1. Then an r exists such that

lan —a, | < Lforalln > r. But
Ianl_ |a'r| = |an;ar|<1)
Which méans that

’ian|< Iar|+1'

Let
M > max{lal I,..., lar_l | , Iar I + 1} .
Thus we have
la, | <M foralln.

which implies that the sequence {a;} is bounded. By the Bolzano-Weierstrass theorem

the sequence {an} contains a convergent subsequence. Let

lim a, =g, my <my <...
n—00

We shall show that

lim a, =¢g.
n—o0

Let an € > 0 be given. The Cauchy condition implies that for some r
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| 'lan—ar|‘<%e forallﬁ>f.

On the other hand lim ap = g implies that' for some k
: ‘00, - v o

lam, —g| < %E foralln > k.
One can select k so that k > r. If so then |a, —a, | < 3 ¢ and Iamn fg| < 3 € for
alln > k.
~ Since m, = n>r
« |amn—a,r|<_-:-3—e or |a,r—amn;|<§—e.

1
3

Adding lag —a | < =& lay, —g | < —31- ¢, and IaT;— am, | < %—"6 yields

h;f%l+|%%%%|+l%%—g|<€~~
- ‘
Non = a2) + (o0 = 2) + (3, ~ &)1 = fance =20 |+ lam, =20 | + lom, =51 <.
Thus |
lan — g| < € for}albl n >'k- .
which il?;lplies = o |

o lim oay, =g .
o D00 ’
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 SEGMENTS AND.RAYS

All the analyses-in the subsequent sections will be carried out in an n-dimensional
space IR®. The elements of this >Spa_,c,e are the n-component vectors x = [xy, Xgy ey Xy L.
The vector AB with origin at A(xy, xg,...,x,) and endpoint at B(y;, y2,-.,¥5) has the

components
[YI — X1, ¥2 — X2y ¥ _Xn]T .
Vectors in the space R® ca‘n' be added or multiplied by a scalar, by performing the

corr,esf)onding operations on the components. For any three points A, B, and C in' IR
we have |

AB +BC = AC .
It is easy to see that for any two points A and B -

AB=-BA.

We now introduce the concept of a segment [2]. Let A and B be two distinet
points in IR®. Then we say that the point C lies on the segment AB if |

AC =X\AB @y

where X is 2 real number from the interval [0,1].
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¢

Ac = nAB, nelot]

‘Fig. 2.1. TIllustration of the _conc'ept‘ of a segment.

ANow, i11v1.a;ijdition_ to the poi‘nts A, B, and/C,v we t'éke aﬁ arbitArary’ poi;lt .‘Q éf']fiﬂ.
Without Iosing generality we stiﬁulate Q =10,0,...,0]. _ATihen‘we have
and -

Ab-gh-Gh.
He;ige the e‘qua'ti()‘n AC = >\‘A_]’3 will take fhe form

QC-QA=N(@QB-Qh),
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a

Fig. 22 An alternative illustration of the concept of a segment.

or
QC=(1—) QA +)QB. (2.9
In summary, the point C lies on the segment AB if and only if (2.1) or (22) holds
where A€[0,1] is a real number and point Q is arbitrary.

Let Q and A be two distinct points in IR®. Then the set of all points B for which
QB=XQA , X= 0.

will be called the ray emanating from Q and passing through A [2].
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Fig. 2.3. Notion of the ray.
INNER PRODUCTS

For elements of real vector space we define an inner product <X,y> to be any real

valued function having the f‘olloWing pfoperties:

Posiﬁvity: o <-x,x> > 0, 'except‘that <0,0> =0,
' Symmetry: <x,y> = <y, x>, |
Additivity:  <x+y,2> = <x,2> + <y,z>,

Homogenéity:' <rx,y> =1 <X,y>.
,'Aithough we assumé :additivity only in.'the; ﬁrst Vect‘or, we always hafre the properties of
' additivity ;ind homogeneity in the :s‘é<‘:0hd \;éctbr; S - |
<‘x,,y + Z> =< x,y > V—}:v< X,z >
The abéve equation foliows vfrom thevsymme.t_rjvr property of an inner productv. ‘Ind'e‘ed.
<%, y+iz>=<y+t1 x> = <y;z> + <.Z,?>
= <%y> +<x2>.
Similarly, | |

<xIy> = <ryx> =1 <ypx> =1 <xy >
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The vectors x and y aré said to be orthogonal if < x,y > =0. The magnitude or norm
vo_f a v’ééto'r X is _

- kll= V< XX > .

An n-dimensional space IR® equipped with the inmer product will be called the

Euclidean space and denoted I °.

Cauchy- Sehwars Tnequality
For any two vestors x and y in B ®, the Cauchy-Schwars Tnequality is true:
| <xy> | = Ikl bl
Proof [r0]: | |
First ass'utné‘th&f x and ¥ are unit vectors, that is, that [ix|}=Ily[|=1. Then, _
B 0"54 e —yIf = <x—y, x—y> |
— Ik -2 <xy> + P
=2 L’—’fv2 ‘< Xy,
or | -
‘< X, y>: = 1
 Next, assuming that neither x gor y i8 gero (for the inequality obviously :h‘?(i)lds-if.one of
them is zero), We can replace x and y by the unit vectors x/[j[| and y/|lr[} The result is
<xy> < Kl |
Now replace x by -x to get |
—<xy> = [kl

" The last two i‘neqﬁalities imply the absolute value inequality.
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O
The magnitude or norm of a vector ||| has the following properties:
* Positivity: ||x||> 0,'éxcept that |b]|=o0.
Homogeneity: v ||r||= |r | Ik} r real.
Triangle Inequality: ||x+y|| < |kll+IkIl
The fdllowing is a simple proof of the triangle inequalit-yv:
Ik +yIF = IkIF +2<xy> +[yIF
(by Cauchy-Schwarz’s Inequality) =
< IklF 2 Il I+ I P
+ (Ikell + fly 1D,
and therefore - o
e+yll =< Ikl + ll}
O

For elements of a complezx vector space we define an inner produci <x,y > to be

any complex valued function héving the following properties:

"

g

< x,x > > 0, except that < 0,0 > =0.
< %,y > =< y,x >; the bar over the vectors denotes the complex conjugate.
<x+y,z> =<x,}z'> +<y,z>

<rx,y > =‘r.<‘x,y >

~ We can verify that in an n-dimensional complex space, the following definition of an

inner product
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<X%7y> =Y %5V
i=1

satisfies all four properties, where x; and y; are the ith compcv)n”ents‘ of x arid y. One can
deduce other properties, such as

<X, My +rez> =T <%y> +T, <x,zi>.
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PROJECTORS |
We know that a subspace V of E is a subset that is closed under the operations of
vector addltlon and scalar multlphcatlon Thus if X3 and X, are vectors inV. then'
Xy + sz is also in V for every pa1r of scalars )\, g In other Words, V is a subspace of
E" if xl, Xy EV = >\x1 + X EV v A ,uEIR Furthermore, the dimension of a sub—
space V is equal to the maximum number of lmarly 1ndependent vectors inV. If V isa
subspace of EIl then the orthogonal complement of V, denoted vt , cons1sts of all vec-
~ tors that are orthogonal to-every vector in'V. Thus, '
vt ={x I»VTX =0 V veV}.
: The orthogonal complement of Vis a subspace, and together V and V'L, span EIl in the
sense that every vector xEEIl can be represented unlquely as | | .
x=x1+%
'._where xl EV Xo EVJ‘ One'can saythat X3 "‘and Xg - are- the. o.rthogonal projectiOns‘ovf x .
onto the subspaces V and V s respectlvely In this case

——VGB v,

He. E" is a direct sum L of V and V‘L Suppose that we are glven a direct sum decompo-

s1tlon of E* of the form
B = V‘;EB‘ V2 |
Thenevery xEEn §5n‘ be u'rltten 'uniquely as
| x %,xl + x2 ,x1€V1 s ‘xzpeVgi .
‘Consider'a’ mapping P of the ,'form .
PxAx, .

~ This defined mapping is a linear one. Ind‘eed, let x‘, x €EE" such that -
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) ! ' N
X=X +X2,X =X1 +Xg,

where
vxl,xrléVl , X2,X’2€V2 .
Then Wev have
Px=x; and Px =x'1 .
Furthermore, for any scalars o, o €IR the following equality holds
ox + ox = (ox; + axy) + (oxy + o'Xy)
where
oxy o/x’l €V, Xy + a’x;EVz .
Theréfore
P(ax + ox) = ax; + ax; = aPx + oPx ,
and thus P is a linear mapping.
Noté that if 'XéVi, then x = x + 0 where X€V1 , 0EV, and
| Px=x V x€V,,
which means that
PE* =V, .
P is referred to as an orthogonal projector of E® onto V; along V,.
The projecfor P pOsseSs;s the following property
I

Tiideed, let XEE® then PxEV;. Furthermore, Px =x V xEV;. Henceforth P(Px) = Px

for all x€E™.
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- Definition 2.1.
Transformations possessing the properbty P2 =P are called idempotent ones. ’

In the subsequent discussion we are going to utilize the following notation. Let

AER™®, Let the range (or image) of A be denoted by
R(A) 2 {yER™ | y =Ax - for some x€R"}
and let the null space (or kernel) of A be denoted by

N(A) A {x€R* | Ax =0} .

Theorem 2.1.

Ever.y‘linear idempotent transformation is _aﬁ ’orthogonal projector.

Proof

Let P2 =P and V; =R(P) v;/hgre Vy is a linear suﬁspace. Denote by V, a set of

all the vectors o'f“v the form e , : ace . |
| X - p X )

where

x€E".

If x', X"GVZ ‘then x = x;,‘ —-fo:), X

" " ! no_
=X — Pxg where xq , Xq€E". So, for any
' ] o
o , o €R we have
l’ 4 n-n 't mn.on 1 i n n -
ax +ax =axy+ axy — (aPxq + o Pxp)
non

= (o'xp + &'xp) — P(arxg + 'xq)

and thus o'x + a'x €V. 9. Thus indicates that V, is a linear subspace.
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Furthermore, if x; €V, then Px; = x;, and -

Px; =P(Px) =P’x =Px =x .

On thé other ,h.a:I‘ld,'bibf X2€V2 then Px, =0 since by definition of V, the _Vect_bf |
Xy =X — Px where x€E®, Hence 7

. Px =Px—P(Px)=Px —PXx=Px —Px=0.
i.e. Xy EN(P) The 'conch:’ls"'i()n' is that any x€E" can be represented as

| .~
| x =X +X; X1€Vy, %€V, .

Tihi's follows frotn the fact that
i vx-=_ Px 4 (x — Px)

'wher'eg PxEV, and (x = Px)EV,. Tg complete the proof it must be showﬁ. that the
‘above répre"s‘efﬁtétién of x is vuniqli'e. the that if x =x; +x, thén

' Px =Px; +Px, =Px, +0=x
and thus | -

Xy =x =% =x—Px=(I~-P)k,
ie. Xy ER(I — P) Therefore, we see th‘é,t x; and x, are uniquely determined by x. The
above statement means that |

E'=V,© V,

~ and the proof is complete.
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. HYPERPLANES

The set of all points x = [xy, x2,...,xn]T which satisfy the linear equation '
041’,"1 + Xy + . + opxy =f ' o (239)

in which at least one of the coefficients o (i =1,..,n) differs from zero, is called a

hyperplane of the space L ®. The hyperplane may not be regarded as a subspace of n

since, in general, it does not contain the origin. For n=2, the equation of the hypef—

plane has the form
L ayxg + opxy =f,

which is the equation of a straight line.‘ Thus straight lines are hyperplanes in E 2. In
E3 (three—diménsional space) the hyperplanes are ordinary planes. - Thus one may speak
of the dimension of the hyperplane. Note, that by translating a hyperplane so that it
contaiﬁs the origin of ", it bécomes a subspacé of & ®. The dimension of this sub-

space is n-1. Thus a hyperplane ink® Iiasvdimension n-1.
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—

" Fig. 2.4. Translation of a hyperplane. -

’I’he. hyperplane (23) divides E * into tWo.'half;s,paces. One of these half-spacéé

consiéts of the: points satisfying the inequality | | |
01Xy + Ongz + eee —|— Cl{an = ﬂ
denoted by

CH, ={xcE*|a"x = £},
where

o= [ala a2‘,°"°aa-n]T y
Cox =[x, XgpenXa]T .

The other "ha‘vlf-sp‘at:e consists of the points satisfying the inequalityﬁ
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oy + oy o+ Ogxg S B
i.e.
H_ = {x€b ™ [o"x s B}
" The ’}ialf-spacevH_,, is: éalled the pvositvivve half-space, and the half-space »AH_ isvcalltbad the
‘negative half?spape. | | | | ‘v
| Let Q(al,v‘az ,...A,‘an‘) be aIi arbitrary point of the hyperplane (2}.3). Thus. .
| oy + p2p +---+?‘nan=ﬂ,"

i.e.

ofa —f=0. o (2.4)
‘wlvlere a=[a, a2,...,an]T; Denote byv M,(Xl’ x2,...,xn) an arbbitrary point of £ ®, and 3

consider the expression oTx — f. By virtue of (2.4) it is possible to write
 dTx—B=0oTx—f—(cFa—p)

=al(x—a)

=0 (x1 —a1) + 0p(xe —2z) + . +on(xy —an) . (2.5)
v The numbers (x; — 2;) i =1,...,n, are the components of the vector Q_M. Denote by n

the vector with the components ¢, i=1,..,n. The hyperplane (2.3)‘consists of the

points M(xy,...,X; ) for which <n, Q—M> =0.
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~ Fig. 2.5. Hyperplane H = {xcE™ |aTx = 4}

In other words, the _hYp.erplane (2.3) consists of the points M for which the vectors n
and ‘Q_l{/l are orthogonal. We call the vector n the normal to-the hyperplane (23)
Respectlvely H+ consists of those points M(xl, Xg ;. ,xn) for which <n QM> > 0,

and H_ con31sts of those’ po1nts M for which <n, QM>

CONVEX SETS

A set M in the space IL  is convez if it contams line segments that JOlIlt each of its .
points. v A “line segment  between u, v E M s the | set
weM |- >\u+(1—>\)v,>\€[01]}

A set M in K D g called a cone with vertex at the point Q 1f together W1th every
_point A in M dlﬁerent from Q, the set M contams also the ent1re ray emanatlng from Q
'and pa-ss__lng throu_gh A If the set M is convex and it is a cone then 1t is called a convex

cone. .
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Fig. 2.6. Convex sets

Fig. 2.7. Examples of sets that are not conves

Every 'convéx cone e.ithe_r _coincides with the entire spacé E® or lies completely in a

halféspaée. '
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I - NEIGHBORHOODS

A‘neligii’b'o‘rhwd of a pointx €EE ™ is a seb of the fori’n

{x EE n | ||x—x0|:l‘ < €} | .
Whéreéé is. som_é_unurﬂber greatér than zéro'. |
| The set of all véctors X that satisfy the inequality ||[x — x|l < € is called an € - ball
‘with rja’di'ué ¢ and center x5. In the plane, a néighborhvood of xg = [X10, XZO]T consists of
call thjé points inside of a disc centered at x,. ‘11_1 three—sp;llce,‘ a néighboi‘hood of

Xg = [%10’, X4, X30] T consists of all the pqi;nt_'s;‘ inside of a ball centered at x, .

disc
: Fig-. 2.8. Examples of a neighborhood of a point in I 2 and X 2.
A point xo i‘s"'sé,id to bé an interior point of the set S bif""an"'_d only if the set'S con-

: ta;ins’ some"_néi__ghborhoo'd- of xq, i.e., if all points within some fixed neigh’borh’ood of xp

are also in S.
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»Fig. 2.9. ‘_Interior‘p‘oint.

: The set of all the 1nter10r pomts of S is called the znterwr of S

“A pomt xo 1s sald to be 2 boundary poznt of the set S if every nelghborhood of Xo
contalns pomts that are in S and pomts that are not in S The set of all boundary
’-_,'p01nts of S is called the boundary of S | | o
A set S is sald to be open 1f it, contams a nelghborhood of each of its. pomts ie. if

“each of 1ts pomts is an mterlor pomt or 1f it contalns no boundary pomts

' A set S is sald to be closed if it contalns its boundary

o S ) 6 {(x,,xl)‘ <Kx<2, 4<x <2§

3T . O _5(: _l.s* OPEn' _
i R \s\ N N 59_'{(‘/‘”*1)' 3"‘ ﬁ‘l 1<>< 42}
RN RN R N\\z\ |
R I T ——— ~52.' f‘ cLoseol '
B2 DR | 2 S 4 5{ o .

Fig. 2.10.. Open and closed sets.
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T ,’HYPE”*'RPLANE-OF S'_UP"PORT |
Let M be a convex set of the space & * and let Q be one of 1ts boundary pomt A
l ' .
hyperplane pass1ng through Qis called a hyperplane of support of the set M, if the entlre’
set, M lles completely in one of the two half—spaces into whlch th1s hyperplane d1v1des

the space E

@ o

- Fig. 2_;11. Hyperplane of support for various convex sets (n = 2). "

|

It can be proven that it is possible to draw a hyperplane of support to a convex set'_i :
M through each of its boundary pomts In some cases more than one hyperplane of ‘

support can be drawn through some boundary pomts (F1g 12 (c))

In order to show that one can draW a hyperplane of support to the convex set M -

.we need.

'The ?Sep:”al"ation Theo'reirn
“Let MCE bea closed convex set and let xoé M. Then there ex1sts a vector aEE nv

such that

al(x —x0) >0 ~ for all xeM .
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Proof ([3], [7])
Let

§ =min ||x —Xol| -
xeM

There is a point. zy on the“bou’ndary of M such that ||z ;—xolvl = 4. Thls follows
from the {;heorém of | Weierstrass, that is, the éoﬁtinuous function f = ||x — x|| achieves
its fniniinum over any‘closed and bounded ‘(c'ompact) set. 'We consider x in the intersec-
tion of thé closure of M and the sphere Sy5(xo). We claim that a = 75 — X, satisfies the

condition of the theorem. (See Fig. 2.12.)

'Fig. 2,12. Two dimensionals illustration of the §eparation Theorem.
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F1g213 Thfeé diiﬁénsidnzﬂ illusti.'afioiiﬁof the ‘Sepzliratidn Theorem.
Let XEM, then for all dg[b,l]‘ the point
C xmoxt(-o—1 talk—m)eM.
Henee |
e =30l =l + ol — 10) —all? = llto —oll®.

- Expaﬁéiiin' of the above inequality yields

Ul = %o +afx — )l = [(z0 = x0)" + ofx — )" ][(z0 — xO‘)» + afx —n)

-~ =llz —%l1? +20(20 — %0)T(x — 20) + A|lx — 5> = 9.~ Xoll? «

20z = x0)T(x — 15p) + oz2||-'3c —zol[2 = 0 L

Lettmga—-»O we obtain o
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o sl —1)= 0.

"Therefore. |

o)™ = (10— x0) a0 = (s0 —%0) R0 + (10— x0) (0 —x0)

“ =(z0_ XO)TXO +52’ ‘.

andihus TR

O _X,_)T(,;;_,;o)gar(g Cx)>0  foral XEM .

‘ Let K be a convex cone of the spaceE 2 with vertedc Q If this cone does not‘ coin- o

-»c1de W1th the entlre space, ‘then there ex1sts a point A Whlch does not belong to this

‘cone.. Therefore none of the po1nts of the ray emanatlng from Q and passmg through A

' ;belong to the coné (see F1g 2. 14)

Fig, 2.14. »Cont'ex ,cone K with'a ray,.enianating from its vertex.

. Thus, there are pomts as close as desrred to Q Wlllcll do not belong to K Hence Q isa

, boundary pomt of the convex cone K

If the convex cone does not comc1de Wlth the ent1re space, then its vertex pomt isa:
S boundary p01nt of this. cone and thus 1t is poss1ble to draw a hyperplane of support H
o through Q o '
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Fig. 2.15. Hyperplane of support H passing through the vertex Q of the convex cone K.

Assume that the.cone K lies in the negative half-space H_. Denote by n the vector
that is normal to the hyperplane H. Then we see that if the cone K does not coincide

with the entire space Il ®, then there exists a non zero vector n such that
<n, QP> =0

for any point P of the cone K.

POLYTOPES AND POLYHEDRA.

A set that can be contained in a sphere (ball) of finite radius is called a bounded
set.
A set is compact if it is both closed and bounded.

If M; and M, are two convex sets, then their intersection is also a convex set (pro-

vided that this intersection contains at least one point.)
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Fig. 2.16. Intersection of two convex sets.

In fact, the intersection of any number of convex sets is convex. In what follox&s
we will be concerned with the intersection of a finite number of half-spacés. Since'every v
h‘alf. spéce otx <= B (or iaTXYZX B) is -convex in B *, the intersection of any number of
half spaces is a convex set. |

A set which can be expreésed as the intersection of a finite number of closed half

~ spaces is said to be a convez polytope. |

A nonempty bounded polytope is called a polyhedron.

g 7
(@ (D)

Fig.i 2.17. Polytopes

" For every convex polyhedroﬁ, M in an n-dimensional space there exists a non-
negative integer such that M isb cdntained in a k-dimensional plane of the n-dimensional
space, but is not entirely contained in any (k-1)-dimensional plane. Furthermore, there

: exist_s"orily one _k-dimensional plane containing M. It is called the carrier of the
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|
polyhe;d'ron M, and k is called the dimension of M A zero-dimensional polyhedron is a
point é)f n-dimensional space. A one-dimensional polyhedron is a segment, and its car-
rier is ;the' straight line on which it lies. The boundary of any k-dimensional polyhedron
(k>0)i consists of a finite number of k-1 dimensional polyhedra [2]. For example, the

boundary of a one-dimensional polyhedron consists of two points which are the end-

points of the segment.

Fig. 2.18. One-dimensional polyhedron.

These (k-1)-dimensional polyhedra are called the (k-l)-dimensional faces of the k-
dimensional polyh‘edron. Each of these faces has in turn (k—2)—dimensional faces. Thus,
every k-dimensional polyhedron has faces of dimensions k-1, k—2,..., 1, 0. The zero-
diménsional faceé of a polyhedron are called its vertices, and the one-dimensional faces

are called edges.

EXTREME POINTS

A point x in a convex set M is said to be an e:itreme point of M if there are no two
distinct points x; and x, in M such that x = Ax; + (1 — \)x, for some \, 0 < \ < 1.

The convex hull of a set S, denoted co(S) is the set which is the intersection of all
convex sets containing S. This intersection is the smallest convex set containing S. For

example, the convex hull of three points not lying on a straight line is a triangle
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Fig. 2.20. Convex hull of the set M.

Any convex polyhedron is the coqvek hull of all its vertices.

In general, a closed bounded convex set in E.“ is equal to the closed hull of its

extreme points.
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‘ 3. vLINEAR T;RANSF:ORMAT.IONS AND MAT.:RICES |
A correspondence A that assocmtes each p01nt in a space X w1th a point in a space

Y is sa.1d to be a mappmg or tmnsformatzon from X to Y. For convenience th1s situa-

tion is symbolized by .
A X —>Y
A transformafion A is linear if it satisfies the folching properties |

1) A@)—aAy)
2) Alx+y) = Ax+ Ay

One can obta.ln concrete realizations of such llnear transformatlons in terms of matr1ces

. Suppose {el,ez, en} is a basis. Appllcatlon of the transformatlon A to each vector

from the basis results in n new vectors
4 i N - .
e =Ag¢g, 1=12,.,n

Since the ¢ form a basis, it is possible to express e; in terms of the e; as follows

Ae —-el 2 €] i=1,2,..,n.

The n? coefficients a;; determine the linear transformation. The coordinates of any vec-
o v ‘ L any

tor of the space are changed according to the forrnula

!’
x =Ax
where
- . o ]
X1 Xip ajp 312 " A
’ o : '
, X9 X9 ag1 Az a2n
X = )X = y A=
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Let us now consider a linear transformation A, and let the matrix A correspond to
it with respect to the basis {e;,ey,...,e;}, and the matrix B with respect to the basis
' {e;,e;,...;e;}. Let x be the column of the coordinates of some vector with res‘pect__to the
basis {e1,eq, . . . ,eq ) and x coordinates of the same vector with respect to the basic
{e/l,e;,'...,e’n}. Denote by T the transition matrix from g to e; . We have
y=Ax,
y =Bx.
But x =Tx and yl =Ty. Therefore
y =Ty =TAx =Bx = BTx,
and
A =T 'BT.
In conclusion: similar- matrices correspond to the same linear transformation with
respect to different basis. -
In many applications we will utilize the concept of the Hermitian transpose A

bdeﬁned by

A =A"

where the bar ‘in KT dehotes the complex conjugate of a transposed matrix AT. Thus
A’ is obtained by replacing every component of the AT by its complex conjugate. In
the case where A is é real matrix A* =AT, If A" =A, we mé.y séy ‘that the matrix A is
hermitian. A real hermitian matrix is calledusymmetri’é.} A simple cdlculatioﬁ»reﬁeals
that | | |

< Ax,y > = <x, A*y.> .
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EIGENVALUES AND EIGENVECTORS

Corresponding to an nxn square matrix A, a scalar X and a nonzero vector v satis-
fying the equation Av=»Xv are said to be, respectiveiy, an eigenvalue and eigenvector of
A. ‘In order that A\ be an. eigenvalue it is necessary and sufficient condition for the
matrix \I—A to be singular, that is det [\ —A] =0. This leads to an nth-order polyné—

mial equation
det NI—A] =3 +a,  N7h 4 -+ fagh 425 =0.

This equation must,v according to the fundamental theorem of algebra, have n (possibly
nondistinct) complex roots which are the eigenvalues of A. Suppose now that the deter-
minant equation det [\I—A] =0 has n real distinct roots: Aj,Ag, . .., A\;. Correspond-

ing to them we find n vectors Vi,Vay o o« Vp such that
Avi=Nv;, i=12,.,n.
We shall show that the eigenvectors vy,Vsy,...,v, are linearly independent. We prove the

above statement by contradiction. In order to do this assume that there exists a set of

scalars ¢; such that

where at least one of the c; does not vanish. Without loss of generality supposé that
c; #0. Next, consider the matrix

P.=(NI—A)NI—-A): -+ - (AI-A).
Note that

Pvy = Mol —A)OgI—A)+ -+ - O I—A)OGI—A)vy

= O I=A)eI—A) - * -+ - Casil—A)Nava —Avy)
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=0  because ()\nvl1 —Avy) =

- Similarly

‘ tht o |
P = Oul-AYoT-A): - (s A=A
| ;(xzxeA)(xgi—A)f L f‘Avli)(kn—%;)l |
= (xzi _A)(xsi-—'Ajvl . Ot —X;f),(%“‘n - N)‘_’
s Do =N)0s =) - Dact =00 Nt

: Usi"ng‘ the above équation we see that' ‘

(E clvl) = E cl Pvl —cl PVl
i=1 ) 1 1 : .
=k —xl)( _xl- RN O —N)v =0. f

Since all N are d1st1nct 1t must follow that ¢; =0. It thus follows that all ¢ must van-

ish, and therefore the set of elgenvectors {vlﬂ,vz, . ', Va } is linearly 1ndependent.

m|

, Linearly mdependent set of elgenvectors can be consxdered as a ba31s Wlth respect to

“thls baSlS matrix A has dlagonal from Indeed let
B T = [v1, _Vg,.-..,'V‘n'] ‘, '
" Then

T -
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= T7![Av;,Avy,..., AV, ]

=Tt A1vis Ao Ve, AnVy]

Let us now consider hermitian matrices. We shall show that all eigenvalues of a

hermitian matrix are real [4]. Let
Ax = Xx ,
where x # 0 . Taking the inner product of Ax with x yields
<AXXD> = < MK,X> = A < X,X > .
On the other hand
CAXX>S = <x,AX> = < AX D> = <YM D> = AKX D .
We note that < x,x > is real and <x,x > > 0. Hence
| A <xX>S =N < XX >
and
=N\ <xx>=0.
But since < x,x > > 0, we have
=X

so A is real.
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We shall now show that the eigenvectors associated with distinct eigenvalues of a

hermitan matrix are orthogonal. Suppose

Avy =X\ vy,

Avy =Xy Vo
where
A1 # Ao
Then
<AV, V> = <NV, > =N <V, >",
but since A=A"

<AV1,V2 > = <V1,A*V2 > = <V1,AV2 >

= XAp <V Ve >
Therefore
N < V1,V > = Ne < V1,V >,
and since )\; # )Xo, it follows that
<vy,vg > =0.
If Ais hermiti#n ‘and its eigenvalues ére distinct, then the set of its eigenvectors

forms an orthogonal basis for K ™. If the basis {vy,Vs,...,Vy | is normalized so that each

element has norm unity, then defining the matrix ,
Q= [vi,v2,...,vn] , |

* we have

QfQ =1,

and hence -
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QT = Q—l .
A matrix with this property is said to be an orthegonal matrix

A symmetric matrix A is said to be positive definite if the quadratic form xT Ax is
positive for all nonzero vectors x. Similbarly, we define positive semidefinite, negative
definite, and negative semidefinite if xTAx > 0, <0, or <0 for x. The matrix A is
indefinite if x* Ax is positive for some x and negativé fof others.

It is easy to obtain a connection between definiteness and the eigenvalues of A.

For any x let y=Q 7 !x where Q is defined as above. Then

. n '
xTAx=yTQTAQy = 3 NyZ. Since the y;'s are arbitrary (since x is), is is clear that
i=1

A is positive definite (or positive semidefinite) if and only if all eigenvalues of A are
positive (or nonnegative).

Through diagonalizatioﬁ we can show that a positive semidefinite matrix A has a
positive semidefinite ‘(symmetric) square root Al/? satisfying A2 A2 = A [7]. For
this we use Q as above and define |
_>\%/2

\3/?

A2 =qQ| ' 1 QT,

. "

which is easily verified to have the desired properties.
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NORMS OF MATRVIC‘ES’ |
' The'norm of a matrix A is a nonnegative numvber |IA || satisfying the conditions o
1) ||A||>olfA7é0and ||o|| o; R -
Teal=lellalb=
: IlA+BIIS Al + IIBII

laB|l < lall 1Bl

" The norm of a matrix may be chosen in a Varlety of ways. In many problems both‘

[

w

)
)
3)
1)

matrlces and vectors appear srmultaneously Therefore, 1t is convenlent to 1ntro-
- duce the norm of a matrlx in such a Way that 1t will be connected with the vector

norms employed in the cons1deratlons

We shall say that the norm of a matrlx is mduced or 1t is compatzble ([5]) with a
given norm of vectors 1f for any matrlx A and any vector x the followrng 1nequa11ty 1s'

'satlsﬁed

IIAxII < ll IIxIl

We deﬁne the norm of the matrix A as the max1mum of the norms of the Vectors Ax

where the Vector x runs over the set of all Vectors Whose norm equals unlty

”X"‘ﬁ. el

Because of the contlnulty of a norm, for each matrlx A thls maximum is attamable,
* that is, a vector ¥y .can be found such that ”xo"—-l and A%, [|= ||A|L ‘We shall. now
prove {hat a norm defined in such a mannerrsatlsﬁes conditions (1) - (4), and the com-

' patibility condition.A
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' 'Proof[ ] 7 | v
(1) Let A#O Then a Vector X, ||x||—1 can be found such that Ax;éO and thus “ B
||Ax||#0 Hence ”A"— max ”AX” 0. If, on th e other hand, A =0,

Ihell=1
Il g, oxl=o.

( ) By the definition
Al = max feax|l
Obv1ously

IIchll = lel IIAxll

and therefore

Ilc "—,ﬁa_" IcI ILAxII— le | i IIAxII

= |e I I‘IA'IL

The Cempatlblllty Condltlon
Let y;ﬁO be any vector Then x——IWykwﬂl satlsfy the cendltlon ||x||—1 Conse— |
) quently | | i |
"AY"— [lA( ||y||x ||— o ||AXI| =< ||y|| ||A||
(3) For the matrix A—|—B find a vector Xo such that
Bl KA+ Boland ol
' Thenr we haye B

 In+Bl= A+ Bl
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||Ax0 +BX0 " = ||Ax0 " + "BXo "
||A|| ko l|+ |IB|| ||Xo ||— ||A||+ ||B||
' (4) Fop the matrlx AB ﬁnd a vector Xg such that ||x0||——1 and ||Aon ||—||AB||. T |
Then We have ‘ . A ’

IIABII— IIABxOII
IIA on)"< IIAII "BX0"< IIAII IIBII le II
IIAII IIBIL

" Let
e -
o "X”'—‘-[E Xlzc =VIxx> =
- The induced matfix nbrm by this Vet:torjnomn s

mevE

~ where )\1 is the largest elgenvalue of the matrlx A A.

‘Pl.'oef:_
We have ‘

IIAII = IIAxIl

| ..,On the other hand
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IAx|P = < Ax, Ax> = <x, A"Ax >

The matrix A A is a hermitian one. Let \; = A= X3 -+ + = ), be is eigen-
values and x4,Xs,...,X, be the orthonormal set of the eigenvectors corresponding to these

eigenvalues.

Now we take an arbitrary vector x with |lk||=1 and represent it as a linear combi-

nation of %;, that is:

X=¢1X3 +CoXo + * " FcyXy.
Note that

<xx>=c}+ci+ - +ci=1
Furthermore

lAx|P = <x, A"Ax >
=<exp + 0 Xy, e NX ot e AgXy >

=XIC% s +>\DC§ =< >\1(C% + e +C121)=>\1.
For the eigenvector x; of A'A corresponding to the eigenvalue \; we have
1A%, ||? = <xp,A A% > = <xp,M%; > =)\,

and hence

max [lAx| =V .

lxll =1
]
From the above considerations one can deduce the following important inequality.

If an nxn matrix P is real symmetric positive definite, then

>\min(P) ”X”2 < xTPx < >\max(P) HXH2 .
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We shall refer to the above relation as the Rayleigh inequality.

Examples:

Consider the matrix operator A =

5 1 . _
2] from IR? into IR? and let the norm in IR? -

be given by -
lIxll = (cd +x3)2 .
Then ATA = |° 4},
ST las
det{\I — ATA] =22 — 100 +9 = (A — 1)(A — 9) .

Thus

Al = V9 =3.

The eigenvector of ATA corresponding toX =9 is

1 T

x1=V;[1 1]

Note that

||Ax; [} = [|A]l .
Indeed
1

P

|| Axy |] =

Va2

In this example [|A]| = max
1<i=<n

Py (A) | This is because A = AT,



- 75 -

Warning: In general max A\A) # ||A||, instead we have ||A]| =

example, let

' 0
A= 1}, then ATA=OO],
00 01
A0
and [\ — ATA] = } Hence
0 X—1
detPI — ATA] =X\ —1) ..
Thus

Al =1.

max |N(A)|. For

1=i=n

The eigenvector of ATA corresponding to \; = 1 is any nonzero vector of

01

Adj[M—ATA]L = {0 0].

Take

and

i

1Al = max [N(A)]

1<i<n

|=1=HAH-

The fact that

can be shown as follows [5]. Consider a matrix

1

B=-—— A,
I|A]] + ¢

where € is any positive real number. We have
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|Al|
B = Ay
HA[|l + €
- Hence B™ —0 as m—00, and thus
N@B) <1.
On the other hand
1,
AN(B)=— X\(A).
Thus |
NI
AXB)|l=——m <1
B =+
that is

(A < 1Al +e.
Since € may be arbitfarily small

i(a)] = 11All .
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QUADRATIC FORMS
A real quad‘r‘aﬁc form‘isvan expression
7= xTAx ,

where x is an nx1 real column vector and A is an nxn real symmetfi‘c’matrix, that is
A=AT,

If the matrix A is not a symmetric one we can alWays replace it with a symmetric
one, skz:LyTAo = Al such that |

xTAx = XTAOX .

This is because

xTAx =xT %A—I—%AT x|

vNote tha‘ut‘. :
A, = E'(A +A%Y)

is, a‘ symmetric matrix. Hence there is bno loésvof generality in ,sup’p‘osi;ig A to be sym—
‘metric. | |

A ,qua‘dli;artic fofm xT Ax is said ﬁo be’ positive deﬁm'te if xTAx > ’OIfor ali n.on.zer_d
vectors x. It risbposz'tz've";serriz'deﬁm't‘e if xTAx = 0 for all x. Similarly, we defirie ﬁega-
tive definite and negative semidefinite if X' Ax < Oor < 0 foi‘ all x. | | |

The minors of a matrix A are the determinants of thé matricés bdbtained‘by'remov-:
ing ‘suc‘cessyively rows and columns from A. The leading principal _mz’no’rs are dét A and
the minors obtained by removing successively the last row and the last _columii. The
principal ‘minors are det A itself and the determinants of matrices obt#ined by removing
successively aﬁ.‘ith row and an ith coiumn. Thus the leading pﬁncipal minors of an nxn

matrix A are:
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_ : 411 212 213
: arr 212 :
Ay =251, Ay =det , Az =det |21 27 ag3|, .., A, =det A.
, g1 a2 1 ‘
agy agz a3

The principal minors are

iy,ig,eip] - ' .-
Pl: . 71-—11<12<”'<1p——n7
11,12,...,lp )

where

ailil ailig wes ai'li

il,iz,...,ip ' Qi i, Ay, e 94
2l olg 2
A [ - |=det 1.

pls
i1,ig,eyip
aii, A

We will next prove Sylvester’s criterion which allows one to determine if a quadratic

form is positive definite.

Sylvester’s Criterion
" A quadratic form xTAx (A =AT) is poéitive definite if and only if its leading prin-
cipal minors are pdsifive. v
Note th#t this criterion does not hold if A has not been symmetrized. To see this

consider an example where

10

A= .
—4 1

The leading principal minors of A are
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Aj=1>0 and Ay=detA=1>0.

On the other hand

e el 1o |1 —4
- xTAx =xT x:le + 1x
* J= 17727 ||—a 1| o 1

3 'The, léading principal minors of A, are
Ay=1>0 and A;=detA,=—3<0.

From Sylvester’s criterion it follows that a necessary condition for a real quadratic form

to 1be‘positive semidefinite is that the leading principal minors be nonnegative. How-

. ever, this is NOT a sufficient condition.

A real rquﬂadratic ‘form is positive semideﬁnite if and only if all prin’cipal minors are
nonqegative. o |

The ‘key to the proof of Sylveéter’s criterion is the fﬁct that a quadratic form can
be expre$_séd in some basis as a sum of squaresi ' | |

: Ay 2 Ay 2 Ap gy 2
R

 where Ag 21, and X; are the coordinates of the vector x in a new basis. -
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| REDUCTION OF A QUADRATIC FORM ‘
INTO ITS CAN'ONICAL“'REPRESENTATI‘ON‘-”
We shall now describe a method of constructlng a bas1s in Whlch a gwen real qua- |

dra.tlc form becomes a sum of squares [4].
: Cons,lder e' quadratic fqrm xTAx, where A = AT. Using the- inne}r‘ ﬁroduét notation
one esn‘fepresent xT Ax vas N | H |
- B . ‘xT_Ax‘ = <x,AJ£> = <Ax,x> ;_
Note that | - |
<xp + %, Ax> ’=.:<>:c1,,A$(>f+_ <xg,Ax>
| and |
<dx,“Ay'>'¥ a<x,Ay> .
Ne%av let fl,fz; ,f. be ; bas1s fos IRn,ra.nd let
X = xlfl_ + x2f2 + + Xpfy
We shall eﬁipress the quadratic vfor‘I‘Ii‘l.lvsinv'g the cobrdinefes Xi(i = _1,7.-.,n) of vx_relative vtor.
the basis fl,fzv,r...‘,i“n.' We have | . | |
| z —-xTAx <x1f1 +x2f2 + . -I-vxnfn,bAv(xlfl +X,2f2 + o+ x3)>

n
0 Y X <'fi,Afj> .
1j=1 o

Ml:r

i
If we denote the constants o
o <fl_,AfJ > = ajj

‘then
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Z = a4 XX; = XTAX .

NG
1195

i=1]

The matrix A is called the matrix of the quadratic form z relative to the basis
f1,f9,.,5,. If we change the basis from fl,fz',...,fnv to f&,f;,...,f;l'then the coordinates of
the vector x in the new basis arevexp»réssed in terms of the coordinates in the old basis

as

X = [fll,f;.,..;,f;] x=Fx.
Aécordingly the matrix of tile quadraticq form z in the new basis is
2 =xTAx =% FTAFX.
Now, let the ‘quadlfatic form z be déﬁned relative to the basis e,eq,...,e, as
z =x' Ax |

where a;; = <ej,Ae;> . Our gbal is to find a new basis, say, f;,f,,...,f; such that the

matrix of the quadratic form in the new basis is a diagonal one, that is
<fi,Afj> =0 for 1#]j.
We shall seek the new basis in the form

fi =one

fo = apre; + aggey

f, = oznleln + apges + o + appey .
Observe that if |
<fi,Ae> ~0 for j =121,
then_ |
<£;,Af;> —0 for §=12..i-1.

Indeed
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<an( liel +O‘232 + F T ) _0
'for j= 1 2,. | —1. v»
: Our goal then is to determme the coeflicients ozjl,o:ﬂ, ,01” such that the vector
| = o1 »+ Qjgey + o+ 05585 k
satisfies the foildwihg relations |
<e AL> =0 for i=1,2.,j-1
sd |
<ejAfj> =1.

 The above i reiati§ns d¢£erminé the ‘Vect'or' fj in a }uvni'que,Way’. Indeed, upon sﬁb-
stitutiﬁg the exp.re‘s.sion'_"for fj'binto: the ab‘ove equatibns we gbﬁain ‘va‘set of the equétions '
‘of the form R - a |

J1 <61,Ael> + o 2<81,Aez> + Tt o <e1,AeJ > =0

jl<ej 1,A-e1> + 2<e_] ]_g-A-e2> + + <e] l’A.eJ 0
a]l <eJ’Ae1> + aj2 <eJ)-A-e2> + . + <eJ7A'ej> = 1 .

‘The above set of equations is equivalent to the fOlIowing matrix e_qua,tlon

i _ 1.1 o
ann a1z - My %) 0
» ag91 A99 .. a.2j Oljz P
21 g2 - B %) g

If the leading principal minors of the matrix A are not equal to zero then the coefficients

aj; can be obtained by employmg Cramer’s rule. In partlcular
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- and

’(all vee afli—l 0 a1i41 e aIJ

a9y i... a,zi_i 0 a9i42 e A9i |-
det . , !

_ajl’ vee aji’_‘l' 1 .aji+2v ....ajj '

A . Ay _ .

- In the new basis the quadratic form is expressed as a sum of squares

: 1 2  Ay _2 " ,An~1.;2
Z_,A_1X1+_A—;X2+ + Anv Xn.

~ Note that a neces'sary and sufficient condition for Z ’té be posit,iVe definite is
A0, i=1,2..0.

Suﬂiciency is clear, for if A; > 0 (i=1, 2 ,n) then there is a bas1s in Whlch the

: matrlx of the quadra,tlc form is diagonal with respect to this ba31s Then

— 0
| Ay
z=X-T, . . X
6 [A.nfl
Ay




=y | S o y::>'0 in a_anasis.

. Cdﬁ{érsély, 1f z ié‘-'-positiﬁe deﬁﬁiﬁé ifhghffiAi > 0 (1 ‘=:1 ,,2,.‘.'.,}1)‘. S‘uﬁposés thét. |
| | . <é1,Ae1> ‘<<‘e1,Ae_k> | e |

» ,<ek,;Ae1 »>”, :<_,e1;.,Aek> :

fo;; sofne k. | | |
= Théi; théré afg' s¢aiars ui,..},pk not a,ll'zéljo suchthat :

- 'ui'l<e1',5éi >+ +l,uk <ep,Ae> -0
-fpri = 1,2,,k - EER
Thus

| <pe + —|—,ukek,Ael> = 0 for ‘i..= .1,2:,.‘.:.,1%,. 5

- _and hence -
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<pmer F oo F e, Alirer + -+ pyer)>

= (lu']_el + “es + Mkek)TA(/J’lel + ves + :ukek) =0 s
where
piep + ... + prex =0,

which contradicts the fact that z = x* Ax is positive definite. Therefore if xTAx > 0
then A; #0 (i =1,...,n). But the fact that A; # 0 implies that the matrix of the qua-

dratic form is diagonalizable, that is in some basis

1 _2 Ay 2  DApg 2
Z—EX1+—A—2X2+... An Xp -

Hence if the quadratic form is positive definite then all leading principal minors must be

positive.
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4. DIFFERENTIABILITY

Many of the techniques of calculus have as their foundation the idea of approxi-

mating a function by a linear function or by an affine function. A function
A: R*—R™
is affine if there exists a linear function
L: R*—R"™
and a vector &o in R™ Such that
A(x) =L(x) + o

for every x in IR®. Affine functions are the foundation of the differential calculus of vec-
tor functions. However, it is the linear part L of an affine function that is most useful,

so we often speak of finding a linear approzimation.

We shall analyze the possibility of approximating an arbitrary vector function near
a point x, of its domain by an affine function A. The general idea is the possibility of
replacing near x, what may be a very complicated function by an affine function that

"best é,pproximates" it. We begin by requiring that
f(x) = Alxo)
Since
A(x) = L) + 7o
where L is linear, we obtain f(x,) = Lx, + y,, and so y, = — Lx, + f(x,)-
Then the linea;‘ity of L shows that
A(x) =L{x —x,) + f(x,) -

This requirement is signiﬁcanﬁ, but L could still be any linear function with the same



domarn and range as f. Some addltlonal requlrement is necessary A natural condltlon,

~and the one we shall requlre, is that
() — Ax)

approaches 0 faster than x approaches x,. That is, ’We demand that

In addition,‘we Want to guarant‘ee't‘hat X can approaeh X, from any dir‘ection;rfo do tbis
- we assnme that X, is an interior poinﬁ of ﬁhe_domain f. |
: A function,f: RDAIRU’ will be calleddiﬁ”eréntiable; at xo if [10]:
(i) xoisan inter.ior point of ‘,”che'domarin of 1. |
(ii) there is -an affine function that approXimates‘ f near x,. That. is,‘there exists "a_' .
ljnear funeﬁon L: R" —>]Rm such that | | |

‘llm (X) - f(Xo) - (X _Xo) —

x—x, = x|

- The hnear functlon L is called the dzﬁerentml of f at X,. The function f is said to

be dzﬁerentmble 1f fis dlﬂ'erentlable at every pomt of 1ts domaln

In d1mens1on 1, an aﬁine functlon has the form ax + b Hence, a real-valued func-
tion f(x) of a real varlable X that is dlﬁ"erentlable at X, can be approx1mated near X, by

a functlon )
| A(X) = ax +.‘b 5 |
- since f(x,) =A(xo) = ax‘0 + b, we obtain
| CA(x) = ax +‘b _ a(x —x,) + f(xo) .
Tbe linea'r part }of A ’(denoted‘earli}erby L) isin tbis 'case just multiplication by the real

' nnmber a. The norm of a real; number is »itsrabsolutervaIUe, so condition (ii) of the
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‘definition of differentiability becomes

f(x) — f(x,) — a(x —%,)

lim =0
X—X, IX — X5 i
which is equivalent to
. f(X) - f(Xo)
lim ————— =a
X—X, X —X,

The number a is commonly devoted by f'(x,) and is called the derivative of f at x,. The

affine function A is therefore given by
Ax) =1(x,) + f'(x0) (x —%o) -

Its graph is the tangent line to the graph of f at x,.

Fig. 4.1. Tllustration of the notion of the derivative.

A linear function
L: RP—R™

is representable by an mxn matrix. It follows that L is uniquely determined by f at
each interior point of the domain of f. Thus we can speak of the differential of f at x,,

and of the function
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A = flx) +Lx — %)

as the best affine approj(imation to f near x,.

The Derivative Ma.t;'ix '
To ﬁnd-theﬁ_mét_rix representation of ‘the differéntial L of ,a.functién f from IR® tb. ' .
“IR™, we use the ‘natural baéis {ey,.yeq } for the ddméin space R®. Tf x, is an ini‘zerio_f
point of the dom#in of f, the vectors ‘ % .
xj =X, ;I-tej y ] =1,..'.;n o
are all in the domain of f for ‘sufﬁéiently small t. By (c"oﬁdition (ii) of the deﬁnition .o_f"'
.the diﬂerential, we havé R | | |

) = 1) — Lite)
t—-fO ‘ ot

=0

~ for j =1,..,n. SinceL is a linear function, this means that

) — f(x0)

lim ———"°% = Le

fa'or> J .——-'1,»..;,‘11. YB‘ut Léj"isvthe' jth column of the matrix L. On the‘other hand, the‘veg:-'
tor x; diﬂ"ers‘from x, only in the jth coordinate, and in that coordinate the difference is
just the number t. Therefore the left side of the laéf équation is precisely._the‘parti_a_,l_ B
defiv'ativle‘ ' R ' | ;
@)
Since vector limits are compuféd-’by taking the'limitrof eaéh‘ coordinate function, it fd_l- .

lows immediately that if
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— (x
(%) . 5 ™
fx)=| : | then —(x)= :
O
fm (%) Ofm
=
Thus if the coordinate fu»nct'ions of f are fy,..;fn, then
of,
. ExT (%)
) =|
8_}(' 0 - ) ¢ b
] afm .
Ej‘ (Xo)
and the entire matrix of L has the form
of, - of

—5—x—1— (Xo) o —5;(: (o)

2 Ot
. E(xo) . '8xn (XO) -

This matrix is called the Jacobian matriz, or derivative matriz, of f at x,, and is
denoted f (X,); we sometimes simply refer to f'(xo) as the derivative of f at X,. We can

summarize what we have just proved as follows.

Theorem 4.1. If a function - |
- f: R*—R™
is differentiable at x,, then the differential of f at X, is uniquefy detern_ﬁned of f at x, is

 uniquely determined and is represented by the derivative matrix f (Xo). The best affine

approximation to f near X, is then given by
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Alx) = f(xo‘)’ + f'(xo)(x —%,) -
The columns of the derivative matrix f (x,) are vector partial derivatives.. The vector
partial - :
(02 (xo)
is a tangent vector at f(xo) to the image curve of f obtained by varying only the jth _

coordinate variable x;.

- Gradient Vectors
If f is a differentiable real-valued function
- f: R*-R

then the function Vf defined by

Vf(x)»% '% (), s éi‘; @]‘1 -

is called the gradzent of 1. The gradlent is evidently a function from R" to IR, and it
can be p1ctured as a vector field, ‘that i is, by drawmg the arrow representlng Vf(x) SO
| that its tall starts at f(x) mstead of the or1g1n Physmally, the dlrectlon and length of
the arrow Vf( ) can often be thought of as the dlrectlon and speed of a fluid flow at the

pomt x to which the arrow is attached [10].
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Chain Rule
Now we shall prove a chain rule for differentiating the composition g(f(t)), of a

function f : R—IR" and a function g : IR"—IR.

Theorem 4.2. Let g be real-valued continuously differentiable on an open set D in R® _
and let f(t) be deﬁned and differentiable for a < t < b, taking its values in D. Then

the composite function F(t) = g(f(t)) is diﬁ"erehtiable fora < t < band

F'(t) = V7g(i(t)) - £(8)

Proof [10]:"
By definition

o F’(t)':ﬁl_rﬂ) F(t +hk)lf-F(t) =

() —g()
h—0 h

if the limit exists. Since f is differentiable, it is continuous. We now apply the mean-

value theorem to g, getting

g(y) —g(x) =8 (x)y —x) =
=Ve) (v — %)
where x, is some point on the segme‘nt‘ joining y and x. Letting x = f(t) and 

y =f(t + h), we have

F(t +h) — F(t) L | . A +‘ h) — {(t)
. —VT-g(xo) ‘ h s

Thus
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16 + b) — £(t)
=

= )

= VTg(t(t)) - £(t)

Norma.l Vectors
" The gradient is particularly useful in analyzing the level set of a real-valued fune-
ﬂion. Recall thé}; a level set S of a function f is a set of points x satisfying
f(x) = k - for some constant k .
For f: R*—>R ‘we are 'vusuavlly interested in" S when it is a »curv’e,vy and for
"~ f: R®—>IR, the sets S most often considered are surfaces. R
-~ To say that a_,'p'oin:t X, is én the level S correspbnding to level, k is to say that
fx,) =k .

Now suppose that there is a curve 7y l&ing in' S and parameterized by a continuously

differentiable function -
 g: RoR®
Suppose a!s‘,o‘,that g(to) = xo énd‘ o |
| ',"g'(to‘)”=v-;£0 ,

so that v is a tangent vector to 7y at X, |
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Fig. 4.2. Illﬁstration of the level sets.

Applying the‘ chain rule to the function

gifres"'
H(t) = V*Helto) - €to) =
= VTi(x,) -‘vv |
But since ’y lies on S, we have -

| | - h(t) = f(g(t)) =k
~ that is, b is c‘onsta_nt. Thus h'(t,) = 0 and
VIf(x,) s v=0

Hence Wé have proved, assuming f continuously differentiable, the folldwing theorem.



- 95-

Thédreni 4;3. If Vi(x,) is not zero, then it is perpeﬁdicu_lar to the_‘tange_nt vector to aﬁ _
arbiﬁrary smoqth curve passing through x, on the level set determined by f(x) =k. For
this reason it is natural to say that Vi(x,) is pérpendicular or normal fo_ t_ile levél set .S
defined by f(x) =k at x4 an‘d' to take as the tangent plane (or line) to S at x, the set of

- all points x satisfying

V(%) (x —%,) =0 it
Vi(x,) #0 .

We see that the direction of maximum increase of a real-valued differentiable func-
‘_tz'bn]at'a‘poz’nt is perpendicular to the level set of the function through that point. The
reason is that Vi(x,) is the-direction of maximum increase of f at x,, and at the same

'time is pé‘rpendicular to'the levél set through x,, determined By f(x) =k.
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F ig. 4.3. Illustration of a path of steepest ascent.

The curve on the graph runnmg from bottom to top has the property that its prOJect1on
‘onto (xl,x2) plane is always perpend1cular to the level curves, and is called a path of

ste epe‘st ascent, because it always heads in the d1rect1on of maximum increase s for f.
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REVIEW OF TAYLOR SERIES

The basis for many numerical methods and linear models for dynainic systems can

be traced back to the Taylor formula. In what follows we discuss the Taylor series.

Let us assume that a function f:IR! —IR! is n times differentiable on an interval

a = x =< b. Denoteh =b —a. Then f(b) may be representéd as follows

h o h?

f(b) = f(a) + 7 f(2) + 3 f'(a) + .

hn—-l

T D)

f(n—l) (a) ‘+ R,,

where

R-ept g

B = =0 (2 +6h),

and O is a suitably chosen number satisfying 0 < © < 1.
Proof [6]:

We have

R, = f(b) — f(a) — by (a) —

h2 ! hIl 1 1
. n—

(a) — =) 27" (a) . |

Denote by g, (x) an auxiliary function obtained from R, by replacing a by x, hence

b—-x .
1!

ga(x) = f(b) — f(x) —

Diﬁerentiating gn (%) yields
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Note that

Observe also that
gu(b) =0 and gy(a) =R, .

Applying the mean value theorem yields

€n (b) - gn(a‘)
b —a

=g.(a + 6h).

The above equation is equivalent to

Ry  (b—a—enpt .y
- - ) f)(a + ©h) .

: hn41 1—6 n—1 .
- Enwl)!) £

(2 + ©h) .

Hence
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.vWe say fhat a function is analytic at a point P if it can be eipanded in a Taylor
series abouf'P. o o | |
A 'fUI_Jctioh is-analytic in a region if it is _analyticv at every point of the region.
, ”Notebtvhat vthe‘ existence of all the‘derivatives of a funcf‘ioﬁ at a point ‘does"no't‘
, necessarlly 1mply that the function is analytic at th1s point. - |
Hence given an afbltfary anal&tlc funétlon f(x), the Taylor series for the function is
| oo

‘f(x)=f(x0)+ > m)—ﬂk( o) -

We now turn to the vTaylor_se:riesb expansion about the point ‘vx(‘)rE]R’l1 of ::1:~-1fea.lr
valued function f : R ——> R. | | o | “
| .‘ ',Le{;, x and Xo be fixed vectors in jR“ and let z =_)><0v+ o(x —Xg).. Define
FiRUSRUby (1) |
F(0) = 1(2) = f{xo + ofx — o))
Using the chain n’lie,' we obtain

dF _ df dz _ df

Friair PRy TR P )
(o ot df op
—(X XO) (dz)
S &#F 4 ,dF "‘_* 4 d L df g
o d ,df g d

=G —xO). & (d?> =



Hence

where

and
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af _ | of - of |
H_X— - axl ’ 8)(2 ’ ’ 8Xn ’
T
el afar
dx? | dx | dx
-821‘ o%f 9%f
ox2 Ox1 0%y Ox; 0%,
&t Of 82f
Oxy0x;  Oxj Oxq 0%y
52t Pt Pt
Ox2
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