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Abstract

Parallel processing is one approach to achieve the large coi’nputational processing
capabilities required by mﬁny real-time computing tasks. One of the problems that
must be addressed in the use of reconfigurable multiprocessor systems is matching the
architecture configuration to the algorithms to be executed. This paper presents a
conceptual model that explores the potential of artificial intelligence tools, specifically
expert systerns, to design an Intelligent Operating System for multipfocessor systems.
The target task is the implementation of image understanding systems on multipro-
cessor architectures. PASM is used as an examplé multiprocéssor. The Intelligent
- Operating’l System concepts developed here could also be used to address other prob-
lems requiring real-time processing. An example image understandiﬁg task is’
preseﬁted to illustrate the concept of intelligent scheduling by the Intelligent Operat-
ing System. Also considered is thev use of the conceptual model when developing an
image understénding system in order to test different strategies for choosing algo-
rithms, impbsing execution order constraints, and integrating reéults from various

algorithms.



1. Introduction

A new approach to the implemenfation of image understanding systems on mul-
t‘iprocessor computer architectures is preéented.' In the simplest descriptive of'orm, an_‘
image unde’fstanding system takes an imagé or a set of images from a group of sensors
and produces a description of the scene. These sysfems have application in reéogniz-
ing and tracking objects in complex natural scenes. These éystems are also character-
ized by the need tb do a great deal of numeric and symbolic processing in real-time.
This type of constraint requires the use of special purpose cﬁmputing Systems that
can exploit the structure of the algorithms used. Omne approach to solve this problem

is through the use of parallel processing.

The various types 'o'fv processing required in an image understanding system can
‘roughly be classified into three groups. Thg first group includeé operations that
transform an image into another imag‘e, such as edgé detection where gray level |
discontinuities in the image are found and fh'e results are represented as an edge map.
This typé of processing is numerical in nature and requires a processing system capa-
ble of fast numerical operations, some of which may be floating point. The second
group includes qua51-syfnbolic computations where the results of numeric imag’e pro-
cessing, e.g., edges, textures, and features, are used to describe surfaces and shapes of
objects in the scene. This level of processing consists of both numeric an_d symbolic
types .of operations. The third group comprises mainly symbp]iq processing used to
producevthe scene description. These various compﬁtations require a large amount of

both raw computing power and flexibility of the computing system.

Because image understanding algorithms may haverprocessing requirements that
differ from one algorithm to another, it is most efﬁcieﬁt to employ different modes of
parallelism when image understanding systems are implemented on multlprocessor

computer architectures [RiJ85, DeM82]. The SIMD (szngle mstructzon stream -



multiple djata stream}v mode [Fly66] typically uses a set of N processors, N memories,
an -inter"connéction network, and a coptrol unit (e.g., lliac IV [Bou72|, STARAN
[Bat77], CLIP4 [Fou81], MPP [Bat82]). The control unit broadcasts an instruction to
the processors and Vall active bi-ocessors execute the éaﬁle instruction at the same
| 'Htix_he, each proceésor on its own éet of data. The interconnection network allows
interprocessor communication. Window-based image processing algorithms are, for
example, most efﬁéiently performed using SIIv£D parallelism where each ‘processor has
a 10ca1 memory and there is only local cvlommun“ications between processors. Other
SIMD algorithms, such as histogram algorithms, require global communications among
al] processors [SiS81]. The MIMD (multiple instruction stream - multiple data stream)
mode [Fly6v6]» typically consists of N processors and M memories, where éa‘ch processor
can follow an independent instruction stream (e.g., Cmmp [WuB72], Cm* [SwF77],
~ Ultracomputer [GoG83]). As with SIMD architectures, there aré multiple data
streams and »ar'x interconnection network. Contour tracing algo‘rithms are examples of
MIMD brocesses w>ith variable communications patterné [KuSSS].‘ A partitionable
SIW/MAdD‘System is a parallel processing systém Whiéh can be structured as one or
more independent SIMD and/or MIMD  machines (partitions) of various sizes (e.g.,
TRAC [SeU80], PASM [SiS81)). |
| Wifh the expected growth in muitiprocessor computer systems, a key issue is the
_abiiitj to prpvidé a high leveil‘, operating rsystem that is ‘able to exploit. fully the
hardware architecture. One of the problemé with using multiprocéssor systems is how
to “ﬁf” the algorithms to the architecture; i.e., how to structure a task for execution
- on a particular parallel architecture. If the parallel system is réconﬁgurable there is
the problem of chooSing an e‘ﬂ"ectiv‘e system organization; i.e., to determine how the |
system is to be rei:o'n’ﬁgured for a givén task or group of subtasks. This paper
presepvts a concel.)tualA model that explbres the poténtial of #ftiﬁcia.l intelligence tools,

' ‘specifically expert systems, to build cost effective special purpose operating systems to



control such recdnﬁgurations

The resultlng operatlng system Wlll consist of generahzed routlnes, useful in all .
enwronments, and a specxahzatlon for a given multiprocessor archltecture in the form
of expert‘rules ‘The PASM [SlSSl] system, which permits dynamlc reconﬁguratlon,
: prov1des a multlprocessor model. The condltlons under which a certam conﬁguratlon
would- be approprlate are stated in the form of expert rules The ultlmate goal is to
comblne the reconﬁguratlon expert system of the operatmg system w1th the problem
i_solvmg component -As the 1mage understandlng task is processed varlous numerlcal ’ ":.
or symbohc processmg steps are requlred As processmg progresses from one algo—
rlthm to the next the new processing requlrements are passed to the reconﬁguratlon ,
: expert which then generates calls to the operatlng system routlnes to reconﬁgure the- ,

system

' Sectlon 2 descrlbes the overall model and dlscusses some of the issues 1nvolved in
the development ‘of this operating system An expert systems approach is used in -
many components of the overall model; a brief overview of expert systems and a new

expert system language that has been developed are presented in Sectlon 3 An exam-

~ ple of executlng an image understandlng task i is presented in Sectlon 4 to 1llustrate e

'the characterlstlcs -of the Intelhgent Operatlng System.” Sectlon 5 explores the model
, ‘further by. consnderlng the issues of a user 1nteract1ng w1th the Intelllgent Operatlng -
System to develop an 1mage understandlng system on a reconﬁgurable multlprocessor

' system.

2. System Model
| The overall System r'nodel for executing an 'image und'erstanding task is shown in
Figure 1, lllustratlng the 1nteract10n among the Image Understandmg Systern, the

_ Intelhgent Operatmg System, and the Algorlthm Database An alternatxve view of



this model- is shown in Figure 2, where the knowledge bases and the algorithm data-
bases for each part of the system are grouped according to their levels of operation.
It should be note.d that there are situationsv where a human operator interacts with
the Image Understanding Sylstem; one such situation will be COnsidered in more detail

in Section 5.

The Image Understanding System (IUS) determines what types of symbolic and
numerice-l opera’tions it wants to perform, and the results from these operations are
used to determine what needs to be done next. The Image Understanding System will
a.l'sovmake decisions about the particular kinds of algorithms it wants to run. For
ibrllstance, it will determine what types of intensity edge operators it wants to execute
Based on ‘theenvironr.nental conditions that the sensors are observing. The algorithms
’that the Image Understanding System can use are stored as the TUS Database pert of
the Algorithm Database (see Figure 2). |

The Intelligent Operating System (IOS) component of the model incorporates
concepts from the field of expert systems. This expert system will take requests from
theimage Understanding System, e.g., ‘‘find edges ueing algorithms W or X and then
.trace thev object contours using algorithms Y or Z.” Information about how the elge-
rithms can be mapped onto the multiprocessor ar‘chitecture is stored in the IOS por-
tion 'of‘ the Algorithm Database.‘ The expert operatihg system will then use this paral-
lel implementation information to select from among alternat’ive algorithm implemen-
tations and to determine the system con_ﬁguration. As the particular image under-
standing task is running, the multlprocessor system will have to partition and
| reconﬁgure itself to accomplish all of the numeric and symbolic subtasks requested byv

the Image Understandmg System

‘Various scenarios could exist. One could arrlve at a mtuatxon where the next

step is ‘“‘find the mtensxty edges in the image usmg the algonthm X” In the 10S



Algorifhm Database there may be many different parallel implementations for the
algorithm X These implementations may differ in their use of system resources,
placement of data results in the system memories, and/or execution speeds. »T‘he
Intelligent Operating System must be able to exnmine the state of the system and
‘choose the “best” parallel implementation of algorithm X in terms of system perfor-
mance on fhe overall task. In doing this, the operating system can partition the mul-
tiprocesnor such that several numeric and/or symbolic processes are running simulQ
‘taneously in both SIMD and MIMD mode. The Intelligent Operating System interacts
With the “native’’ Low-level Operating System that existé on the multiproceSsor archi-
tecture (see Figures 1 and 2). ‘This Low-level Operating System is userd to execute the

actual system reconfiguration code.

Each new processing step in a task therefore cuts through the three levels shown
in Fié'ure 2. The Irnagé Understanding System (Levei 1) generates an algorithm selec-
tion based on the knowledge of the task (Circle A) and information about each-
algorithm’s image analysis performance characteristics (Circle B), e.g. how thé algo-
“rithm will perform in the presence of noise. The algorithm selection is pfesented in
the form of a data dependency grnph for to the Intelligent Operating Systen'l (Level
2). Circle D is the component of the Algorithm Database that is used by the }In’telli-
gent Operating System and contains infnrmation about the execution characteristiés '
of diﬁ'erent parallel implementations of the algorithms. Each entry in Circle B‘ may
have multiple entries in Circle D, corresponding to different implementations. The
Intelligent Operating System uses this infnrmat.ion in selecting each algorithm iinple-

mentation.

Cifcle C represents the component' of the Intelligent Operating System that pro-
vides the necessary information about the Reconﬁgurable Parallel Processing System
‘to allow intelligent reconfiguration of resources for improved execution perfoi'mance.

This information includes knowledge of the system resources and their current status,



and schedﬁling schemes. Decisions on system reconfiguration and the assignment of
image a>n>alysi>s:algorithms t6 partiti»ons are then passed to the Low-level Operating
System Routiriles.‘ Circle E is the compbnent bf the Algorithm Database that is used
by the de—level Operating System Routines and contains fhe actual implementation
~ codes for the algorithms. The three execution stéps are therefore represented by lev-
els 1, 2, andb 3; together circles B, D, and E forlh the AJgorithIh Database sh-owln in

Figure 1; circles A and C form the Knowledge Base in Figure 1.

There is a gr‘eat deal of interaction among the Image Undefstanding System, the
Intel]igenf Operating System, and the Algorithm Datab#se. The Irﬁage Understanding
System aLd the Algorithm Database could vbe extended to contain expert systems
themselves. One could even venvis'ion a situation where one ‘expert system ‘‘calls”

another éxpertsystem. An import#ﬁt aspect of the model is that the Image Under-
- standing System and the Intelligeht Ope_rating S‘ystém are separate modules. Thus,
despite the potential complexity of the complete system, there is a uniform, modular
structure that allows incremental developmeﬁt of the various components. The gtra-
te_gies and overall structure of the Intelligent Operating System can be used in other
~ application afeas (such as speechvvunderstanding) by CIianging the Algorithm Database
-compoﬁent. | In fhe rest of this section, the major blocks of Figure 1 are described in

more detail. -

2.1 Image Understanding Syé,tem

An image understanding task is assumed to comsist of many subtasks. The
Irhagg Understanding System contains information about which‘ algorithms are used to
| perform a g’ivén subtask. Each subtask may be performed by more than one algo-
rithm, ﬁhere each #lgorithm has differént image analysis performance characteristics
which are stored as part of the algorithm in the Algorithm Database. The- execution

order of the subtasks may be represented as a data dependency graph, indicating



which subtasks can be done simultaneously and which must be done sequentially with
respect to the other subtasks. The exact s.tructut.'e and elements of the data depen-
dency graph may vary during task execution based on intermediate results that ai‘e
derived. This data dependency graph is stored and maintained by the Image Under-

- standing System.

An example of an image understanding task is shown in Figure 3 to illﬁstrate the
types of data flow and control operations that are representative of these tasks. In
particular, the execution time is non-deterministic when doing “edg‘e linking”’ followed
by ‘“‘edge continuity checking.” Also notice that the processing has both a bottom-up
and a top-down approach. The top-down approach" (e.g., the use of a prior: informa-
tion) mainly consists of a scene model knowledge source that is used to drive the
“edge linking,” “boundary tracing,” and “region formation’ steps. ‘The bottom-up
approach 1s used to drive the early vision steps of ‘‘median filtering,” “texturev
analysis,” and “‘edge detection.” In the situation described iﬁ Figure 3, it is irﬁpor-
tant that the steps leading up to and including the “‘edge cdntinuity test” Be‘per-
formed as quickly as possible, because the “‘boundary tracing’’ step requires this infor-
mation _béfore the rest of the proceséing can be completed. The Intelligent Operating
System will have to recognize this and convcen‘trate more s&stem_ computation power to
the steps leading up to the ‘‘edge continuity” step than to the “texture analysis”
step. It should be noted that the type of processing occurring at the top of Figure 3
is numéric, the type of prpcessing occurring at the bottom is symbolic, and in between

there is a mix of both.



2.2 A]goi'ithm Databa.se

| The Algbrithm Databaée contains the aétual_ imp]ementation codes and two lev-
els of characteristics for each algorithm. The first (Circle B in Figure 2) consists of
algorithm performanc;a. This contains imagevanalysis information such as how a par-
ticular algorithm berforms in the'presence of noise. The Image Understanding System
interacts With the Algorithm Datébase to determine if a/.particular algorithm exists in
~ the database and if any other algorithms exist that perform better in terms of their
image analysis capabilities. The information the Image Understanding System uses to
select an algorithm is based on image characteristics input with the image or derived
during the execution of the task.

The next Ié?el (Circle D in Figure 2) §onsists of information about parallel imple-
ment:;tioné of the algorithm. This will contain info'r'matiovn such as how the input and
oﬁtput, are distributed across the system’s mém_ories, expected execution speed as a
Vftbmction of the number of brocessors uséd', and intcrprocessor network communication
requirements. An algorithm may have vmul'ti‘ple‘ entries in the database for this
_ charactei;istié level corresponding to the existence of :several parallel imp]emeﬁtations
of that particular algorithm. The implementatioh that is most appropriate for per-
forming a vg‘iven subtask is detefmined by the types of processing ‘thatvwere done prior
to the current step, the type of processing that is to be performed next, and the sys-
tem constraints and resources available at that time. Table 1 shows an example of
information about four alfernative implementations of an edge detection’algo;ithm

[WeJs7].



2.3 Intelligent Operating System

The goal of a reconfigurable large-scale paralle]l processing system is to adapt the
system state (machine gonﬁguration) to maximize some performance criteria. The
performance criterion assumed here ié execution speed of the total task. The objec-
tive is to ’use the Algorithm Database described in Sect‘ion 2.2 to reconfigure system
resources to maximize task execution speed or, equivalently, to minimize system
response time. The factors that contribute to the response time for a given task
include the execution time of the component image processing/analysis algorithms,
the execution time of the Image Understanding System and Intelligent Operating Sys-
tem, and the time to reconfigure the state of the parallel processing system. In this

subsection, the Intelligent Operating System and the target Reconfigurable Parallel

Processing System are described.

Reconfigurable large-scale parallel processing systems can be constructed in
different ways (e.g., TRAC [SeU80], DCA [KaK79]). A particular architecture with
given reconfiguration parameters is being considered i’nitially to make ‘the overall
model presented hére tractable. For this purpose, PASM [SiS81] is being used as the
model of the Reconfigurable Parallel Processing System in Figure 1. The overall

model can be applied to other parallel systems.

The PASM design includes 1024 sophisticated prdcessors in its computational
engine, and has ma.ny (e.g., 70) processors for operating syétem support (e.g., memory
management, file directory maintenance for the multiple secondary storage devices,
and SIMD control unit functions). A 30-processor prototype of PASM is currently
operational [SiS87]. Th;e relevant features of PASM’s computational engine needed as

background for the following discussion include:

1. A system with 1024 processors is assumed. |
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2. All prdcessors are the same (e.g., MC68000-family processors).

3. Each processor is paired with a memory module and 1/0, forming a processing ele-
ment (PE). When one PE sends data to or requests data from another PE, the
system is said to be operating in a PE-to-PE conﬁguration (i.e., each processor has
its own local memory). Network interface_s>will also allow each processor to access
another processor’s memory mddule (almost) directly. This mode of operation is
referred to as the processor—to-rrwnwry configuration (i.e., the processors share a

common set of memory modules).

4. The PEs in the system can be dynamically partitioned, under software control,

into independent groups forming independent virtual machines of various sizes.

5. A multistage network is used to provide communications among the PEs. This
network can be dynamically reconfigured under software control to be partitioned
into independent subnetworks (to supporf independent virtual machines) and to
perform a great variety of connection patterns, both for “local’”’ and “global” com-

munications [Sie85].

6. The PEs in a virtual machine can operate in either SIMD or MIMD modes, and

can dynamically switch modes under software control.

One example of how the‘reconﬁguration capabilities of PASM can be exploited is
given in '[KuSSS],L where one approach to contour extraction in gray scale images is
examined. A brief simplified summary is as follows. Each PE is assigned a checker-
board pattern subimage that is processed in three main phases: edge-guided thres-
holding, local ébntour tracing, gnd complete. contour tracing. The edge-guided thres-

“holding involves generating a S@bel,image and using it with characteristics of the ori-
ginalbima»ge to select a threshold valﬁe. This phase is executed most efficiently in the
SIMD mode, with the PE-to-PE configuration, and eight—neares£ neighbor inter-PE

network communication patterns. " The local contour tracing involves each PE tracing
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contours in its subimage, both complete and partial (i.e., contours which span multi-
ple subimages), and generating a symbolic representation of the contours. This phase
is executed most efficiently in the MIMD mode with the PE-;r,o-PE cdnﬁguration (no
iﬁter-PE communications are required). Finally, the complete contour tracing phase
combines the syrﬁbOlic representations of partial contours that cross subimage boun-
daries to form complete contours. This is done most efficiently in the MIMD mode,

with the processor-to-memory configuration, and variable global access patterns from

the processors to the memory modules.

I‘he configuration of PASM atl any given point of time, the status of any jobs -
execuLing or awaiting execution, and the memory contents determine the system state.
The parameters in the state space include: the number of virtual machines and the
size olf each (in terms of nunﬁber_ of computational engine processors assigned to the
virtual machine), the status of the algorithm executing on each virtual machine (e.g.,
“execution time expended, amount of working memory | consumed), the
performance /system-requirements characteristics of all algorithms executing or await-
ing execution (e.g., relationship of execution speed to number of proce_ssdrs used in the
virtual machine, expected execution time, expected memory requirements, data alloca-
tion scheme among the processors of the virtual machine for both input data and out-
put datal), the érocessing mode (SIMD or MIMD) of each virtual machine (which can
vary dynamically at execution time), the inter-processor connectivity (inter-processor

communication patterns) of each virtual machine (which can vary dynamically at exe-

cution time), etc.

1This information about data allocation is important when juxtaposing algorithms to
perform a complete task - i.e., the output data allocation of one algorithm will become
the input data allocation of another, and this may affect the choice of algorithms
and/or the need to restructure the data.
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The Etelligent Operating System is responsible for keeping frack of the system
vstavte. Most importantly, it determines niany of the parameters, such as selecting
which parallelvimplementation of an algorithm to use to perform a given subtask,
scheduling algorithms for execution, choosing the size of the virtual machine for a
- given algorithm (i.e., how many PEs), and assigning algorithms to virtual machines
(i.e., which PEs). (The Intelligent Operating System can modify the current alloca-
tion of resources to an algorithm being execufed if it deems it appropriate for
improved overall systemiperforniance of the complete task.) The Intelligent Opérat—
ing System perforrné these functions using information from the Image Understanding
System (i.e., data dependency graphs for subtasks, algorithms available to perform a
given subtask), from the Algorithm Database (i.e., the algorithm system-requirements
characteristics), from each virtuél machiné’s master control unit (e.g., algorithm exe-
cution status, such as time and space consumed, expected time to completion, and
| any significant intermediate results of the computation), and from its own knowledge

of the current system state.

In addition, the Intelligent Operating System has information about the execu-
tion characteristics of the Low-level Operating System routines, allowing it to deter-
mine the time required to perform a system reconfiguration. The goal of the Intelli-
gent Oper#ting System is to assimilate all of this information and use it, whenever
app»r»opriate,» to generaLte new system states that will optimize system performance of
the task under execution. "The resource management role of the Intelligent Operating
System is a standara function of any operating system. However, on a reconfigurable
p#fa.llél s_ystem,’ this job is signiﬁcéntly more involved than on a less flexible system.
As described 'in the next .section, ‘an expert system is used to pei‘form the decision-
“making nécessary to select an algorithm implementation and assign resources based

on a diverse set of information. Hence the name Intelligent Operating System.



There are additiona‘l ‘issues in reconﬁgura'ble parallel system'design that can be |

,1ncorporated 1nto our model as extensrons to the above functlonahty requlrements for

the Intelhgent Operatlng System These lnclude reconﬁguratlon for fault tolerance, o

' usmg data dependency graph look-ahead when scheduhng algorlthms to perform sub-"

tasks, ass1gn1ng measures of relatlve lmportance to the speed of executlon of different
v‘v»subtasks based on thelr practlcal 1mportance in a real—tlme processmg envrronment
“and ¢ concentratrng computatlonal power to enhance the executlon speed of a sub— ,

»task of hlgh 1mportance

3. Expert Systems |

Expert systems are used in many components of the overall model from per?:
B '_formmg 1mage understandlng routines to selectlng algorlthms and hardware‘
vconﬁ\gur‘ations There has been a significant amount of research on computer-based'
"problem solv1ng models us1ng the expert systems approach A demsron theoretlc ba51s :
| for expert systems ‘was outhned in [HaM86] Expert systems are computer based sys-‘
’ tems des1gned to apply spec1allzed knowledge in solv1ng dlfﬁcult problems that ordl-
narily requlre human 1ntelllgence They store, select and process - fragments of -
knowledge about a speclﬁc task in a reasonlng process de31gned to arrive at an
acceptable solutlon " These fragments of knowledge are represented as rules and facts
that descrlbe re]atlonshlps between possrble true states (or facts) and characterlstlcs‘
- of the problem assoclated with these states. For example, in the 1mage understandlng
field, the emphasxs is on the representatlon of knowledge for the selectlon of approprl- |
ate algorlthms to recogmze an obJect and ‘with the selectlon of efficient hardwarev .'
conﬁguratlons to execute the algorlthms The capablhtles of expert systems appear to :

: be well matched to the types of declslon maklng that must be performed in the model. -

A new expert system language has been developed to provrde efﬁclent support forv

- the dlver81ﬁed needs of the expert systems in our model; speclﬁcally, the ab111ty to
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deal_ With-bothv numeric and symbolic processing, and to perform algo‘r’ithm and
bardware configuration selections. Knowledge fragments are‘gfouped in terms of rule
“sets. VA rule set consiSts of .speoiﬁc knowledge required to solve a particular type of
problem. As noted later, rnle sets can be joined together implicitly in order to solve
‘problems that involve expertise from a number of areas. The syn.tax for defining this
expert rules language, known as Rule Set Language (RSL), is‘igiven in Section 3.1. An
example is given in Section 4 to demonstrate how RSL can be used to make a decision
about the sequence of image analysis operations that should be performed. Fusion of
RSL with other conventional knowledge‘management tools will furnish a much greater
,degree of flexibility in expert systems deSign. The Rule Set Expert System Develoi)-
ment Tools blend expert system functionalities into tnose of data base management,
'graphies, conventional programming, and so forth.

- The segregatlon of knowledge into different rule sets lends 1tself naturally to
parallel execution. Since the only possible 1nteractlon between rule sets is via the

CONSULT command (see Section 3.2), different rule sets can be run concurrently.

3.1 Rule Set Language Syntax
 Expert systems methods are exploited to represent knowledge of hardware }
reconfiguration and algorithm selection for image understanding. The expert system
language, as described here, serves the purpose of presenting a prototype environment
in which concepts and techniqu_es of expert systems. can be integrated into t'h'e‘frame-
" work of the Image Understanding System and the Intelligent Operating System.
 Hence, the speciﬁcation of the syntax of an expe'rt system that is oriented towards the
type of problem solving in these tasks is necessary In a sense, one can consider the
]anguage introduced here as a tool for the development of an image understandlng
envlronment capable - of capturing the knowledge of a human being in the .

-identification and description of a scene and in the reconfiguration- of eomputer
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hardware.

The language is basically a colléction of syntacfic entities called rule sets. A rule
set consists of the specific knowledge required to solve a particﬁlar prébleﬁ. ‘More-
bover, rule sets can be joined together implicitly in drder to tackle problems that
involve expertise from a number of aféas. The syﬁtéx of a rule set is defined as fol-

lows:

RULE SET <rule-set-name> READ <read-codes> W'RITE <wr1te-codes>
EXECUTE <execute-codes>
INITIALIZATION <command>
GOAL <variable> FOR <variable conditions> DO <command> .. .
{RULE <rule-name> PRIORITY <priority-level> COST <act10n-cost>
READ <read-codes> WRITE <wr1te-codes>
IF <condition>
THEN-<command>
USING <decision variables> COM]\/IENT <ascii characters>

}

" - CONTEXT <variables> ...

There are four parts in a rule set declaration. The first part defines the name of |
the ru}le set <rule-set-name>, and is a unique identification tag Qf a rule set for bofh
~ internal operation and external inspection. This section also provides security control
functions by allowing the creator of the rule set to specify the authority level for
reading, writing, and executing ther rule set. The <read-codes>, <wrif,e-codes'>, and
<execute-codes> are optional in the sense that ignoring any of these implies public

access is allowed for that operation on the rule set.

Unlike ‘the first section, which is compulsory for all rule sets, the INiTIALIZA-
- TION section is optibnal. If the INITIALIZATION is present, its commands are exe-
cuted in sequence when the rule is invoked. These cominands may be performed to
establish initial variable values by assignment, to retrieve additional information, to

interact with the end user, to perform computations for certain variables, and to
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establlsh communlcatlon hnks Wlth other systems The INITIALIZATION section
serves to provxde a processmg environment for the execution of the rule set, and can

be neglected if the effort to provide such an env1ronment is not justified or necessary.

The mandatory GOAL section identifies the variablevwhose value will be ini‘erred
When the rule set is invoked. The optional FOR clause specifies conditions (e.g.,
integrity condltlons) that must be satisfied when thls goal variable’s value has been
determlned in order for that value to be considered vahd The optional DO clause

consists of a list of commands that will be automatically executed 1f the goal is met

The last part of a rule set is the specification of individual rules. One or more
RULE sections must be present. Each rule is given a unique name, an optional prior-
ity level, and an optional actlon cost. The function of the priority level is to provide
a measure of 1mportance or confidence of the rule, while the relatlve processing cost of
the rule’s action is r‘eﬂected by the actlon cost. Both the priority level and the action

cost are important attributes in the resolution and backtracking strategies.

A rule’s IF clause con51sts of any permlssrble loglcal expression composed of one
or more conditions connected by Boolean operators. A condition clause can be elther
an assertion (e.g., nun:lber-of—vertices < 10), or a query statement (e.g., whether an
object-shape can be retrieved from object-library where object-name=car).

A rule’s THEN clause consists of a sequence of com.tnands which will be executed
“when the- inference engine determines that the rule’s premise is true. These com-
mands can. include not only assignment statements‘, but also procedure invocation,
rule set invocation, input statements, output statements, graphics; computations,
-da.ta- retrieval, etc. The USING clause identiﬁes one of the variables whose value
" could be altered by the rule’s action as the rule’s bldec‘isionvariable. ~The inference -
engine exa-mines_a rule"s deciSion variable in the course of inference in order to decide

whether that rule is presently applicable as a candidate for backward chaining. The
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optiénal COMMENT clause contains text thé.t explains the nature of the rtﬂe.

A rule set’s optional CONTEXT section identiﬁés those variables (in addition to
decision variables) whose values will be preserved at points where backtracking could
occur in an inference process. | Implicit input rules exist for all condition variables in a

rule set’s rules.

3.2 Rule Set Invocation

A rule set can be iﬁvoked via the CONSULT command whose syntax ‘is as fol-
lows: |
CONSULT <rule-set-name> [TO SEEK <decision-variable> ... ]
[FOR <condition>...] [DO

<command>... |

| The optional SEEK clause is used if some decision variables other than the rule set’s
goal variable are desired. The optional FOR clause is used if some goal conditions
fother than those specified in the rule set’s GOAL section are desired. The optional
DO élause is used if some goal actions other than those stated in the rule sét’s GOAL
section are desired.

The CONSULT command utilizes the inference engine’s backward  chaining
approach to inference. A variation of the CONSULT command uses a forward chain-

ing approach.

'CONSULT <rule-set-name> TO TEST <decision-variable> ... [DO

<command>> ... ]

Here the rule set is used to determine the value of the decision variable, as implied by
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the present context. The optional DO clause specifies commands to be executed if the
consultation resulted in a change in the decision variable’s value. This generative use
of a rule set can be used to test the present decision variable context. A variation of

- the generative usage of a rule set is

CONSULT <rule-set-name> TO PERFORM <rule-name>> ...
[ORDER BY | | PRIORITY]

This will cause the rules to be executed in the sequence indicated or in order of their

relative priorities.

4. Execution of an Image Understanding Task

A very simple example task in image undefstanding is presented to illustrate the
application of expert systems and the éoncépt of intelligent scheduling on the parallel
provcessof by the Intelligent Operating System. Most image understanding systems
employ va top-down approach in the identification of individual objects and their spa-
tial relationships in a given séene. Objecf identification includes the clarification of
all relevant ’properﬁeé associatéd with | the object. These properties may include
shape, téxture, color, and the object’s orientation in the scene. In general, the process
of object identification is a hypothesis-verifying proéess. Hypotheses concerning vari-
ous properties of the object are set up in conjunction with the scenario given, a freri-
fying procedure is then invoked to test the validity of the hypotheses. Dﬁring the
hypothesis-verifying process, new information may be aggregated into or deleted from
the current hypdthesis. More sub-hypotheses may also be generated for testihg. Con-
ventional programming environments are not appropriate for accomplishing this task
in a cost effective manner. An example is presented below to illustrate how the RSL

as described in the previous section is used to verify a simple hypothesis.
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4.1 Example Image Understanding Task

This example is concerned with the identiﬁcation of a cube »iﬁ» a three-
dimensional space (see Figure 4). -Twcv> fule sets are used: CUBE-HYPO-VERIFY and
CAMERA-POSITION. The former rule set focuses on the verlﬁcatlon of a cube in
space based on two camera images of the ob_]ect The latter is mainly concerned w1th ‘
the generation of two new camera positions based on the given hypothesis of the
sha’pe of the object. What followé is a brief descfiption of the two -rule‘ sets; the
actual rule sets listing is in the Appén-dix. For simplicity, all‘ priority; cost, - read,
write, and execute entries are left blank. However, this VAis not true tn general; all
these entries do bear some significance in the éfﬁciency and secufity of the code and
would not be left blank in most applications. |

In the INITIALIZATION section of CUBE-HYPO-VERIFY, CA_MERA-‘PO'SI’I‘_I.ON

is coﬁsulted to generate two new camera positioﬁs. th) camera images are then
- taken in these two positions ﬁnd prot:essed. The routine PREPROCESS will take in a
camera image taken by a camera andv produce a,processe‘d‘image that can be recog-
nized and used by the system 'internally. The goal of CUBE-HY'PO-VERIFY is to
check Whether the object is a cube or not. The dec;ision variable used by CU'BE-
HY‘PO-VERIF‘Y is CUBE-HYP-O‘and can take on any of these values {true, false, nil}.
If the goal is satisfied (i.e., CUBE-HYPO is either true or false), thenthe conclusion of
this test (i.e., the object is a cube or ﬁot) is returned. ' |

There are three rules in ’the RULE section‘ The English interpretation of the
first rule is that “if the minimum of the two certainty factors that the object is a
cube as compared with the knowledge base is greater than or equal to 0.7, then we
conclude that the object is a cube with certainty factor equal to the minimum of the
 two certainty factors estimated from the two camera images.” Thé second rule deals

with the ambiguity of the twb images. It says “if one or both images has certainty
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factors between 0.2 and 0.7, then recursively consult CUBE-HYPO-VERIFY to test
~the shape of the object again.” The third rule states “if certainty factor of either one

" These three rules cap-

is below 0.2, then the observed ébject is’npfobably ﬁot'a cube.
ture the kind of knowledge Whiéh' is. typically required in the course of objéct
identiﬁcarti‘on'." o ~ » | |
| The s‘econd rule set, CAMERA-POSITI"ON,' is called to deterﬁihe the ﬁext two
~ appropriate positions for the camera in vérifying the shape of aﬁ objecf;. In the INI-
_ TIALIZATION section of CAMERA-POSITION, a routine calld VERTEX-
DETECTION is invoked to extract fhé number of vertices of the objeéﬁ. If the max-
imum nuinber of vertices that the object caﬁ have from any ahgle of view is not
kﬁown, then reti"iievbe this piecé of information from the’knowlédgé base. POSITION1
and POSITION2 are the two decision variables of CAMERA-POSITION and are
un'kno‘v‘vn initially. ThlS rule set is capable of déaling with a large m;mber of object
hypotheses; for illustrative purpos~es,.'oﬁly'the first three rules that afe concerned with
cubic objects are shb'wn. | | |
| ~ Fora .Acube",; ’either‘seven or fo‘uf »vertices can be observed from ény angle of view.
Therefore aﬁy object that has‘mc->re than seven or fewer than four vertices is probably
not a cube. This is the purpose‘of the first rule of -'CAI&4ERA-POSIT10N. Here, an
assumption is made on the occluSioﬁ of objéct: there is no obs‘tac'le blocking the view.
The second rule stafes “if the’o‘bject‘hypothe»sis is a cube and the number of \;'ertices
obsefved is b.etweén four and Seven, then ré.ndoml-y generate a new camefa position,
move the camera, and recursively consult CAMERA-POSITION to obtain further
| cl#riﬁcafion of the object’s sha'pe.” The third rule simply says “if the objecf
hypothesis is a cube and »the number of veftices as observed is seven, then the first
éaméra positio_nr is the current camera position and‘fhe seccl>ﬁd camera position is 180
dégrees off the orthogonal plane formed by the camera and the object (i.e. the ‘mirror

image’ of the current camera position).”
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The three rules in CUBE-HYPO-VERIFY and the first three rules in CAMERA-
POSITION provide the knowledge which is sufficient, if not complete, in the
identification of a cube in an unobstructed three-dimensional space. This example
does not serve to reveal the technical implementation details of an image under-
standing system but rather to providé insights as to how an expert systems paradigm

is aggregated into the design and construction of an image understanding system.

4.2 The Intelligent Operating System

The role of the Intelligent Operating System can be seen, in part, by further
analysis of the execution of this example. Two of the routines called by the rule sets
(PREPROCESS called from CUBE-HYPO-VERIFY and VERTEX-DETECTION called
from CAMERA-POSITION) entail intensive processing. Routines such as these are
therefore prime candidates for intelligent scheduling on the parallel processor by the

operating system in order to achieve reduced execution times.

The routine PREPROCESS accepts as input a two-dimensional gray scale image
and produces as output a symbolic description of that image. A typical algorithm for
this task might be [Oht85]:

(1) Extract textural regions using a 3 by 3 Laplacian window.

(2) I every region can be described by its texture, proceed to the symbolic pro-
cessing (step 4). |

(3) While some unprocessed region has an area of greater than 50 pixels

(32) Compute the histogram of the region.
(3b) If the histogram is unimodal

(3b.1) If the area of the region is less than 1537, then go on to the

next region.
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(3b.2) Do a window scanning histogram

(3b.3)  If the histogram is still unimodal, then go on to the next

region.

(3c) Else the histogram has multiple peaks. Split the region into multiple

new regions.
(3d) If the region area is less than 8, ignore that region.

(4) Generate a symbolic description of the segments.

Many versions of each individual routine used in the task exist in the IOS portion
ofvthe Algorithm Database (Circle D of Figure 2). For instance, there might be three
“versions of the Laplacian operator: two SIMD versions (one with data allocated by
regions and one with data allocated by rows) and one MIMD version. Also of impor-
tan_ée is the existence of decision, or branching, points '_m the algdrithm. This makes
the execution characteristics of the algorithm impossible to determine a priori. The

algorithm for the VERTEX-DETECT has similar characteristics.

The Intelligent Operating System will have to ma_ke two types of decisions at
Level 2 (of Figure 2). It will first have to detern;ine an initial schedule and
configuration for the parallel processor based on fitting the available resources tov the
predicted runtimes and PE tisages of the particular implementation of the algorithm.
Secondly; the Intelligent Operating System must monitor the progress of the algorithm
and update the schedule and configuration based on actual exvecution times and deci-
sion point results. The overall execution time of the given task can therefore be
reduced by allowing the Intelligent Operating System to make dynamic scheduling
decisions. This method will provide:an obvious improvément over rigidly specifying

the subtask list based on general performance characteristics.
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8. Algorithm Prototyping and System Prototypihg Using the Model

There are two types of prototyping in which a user interacts with the image
undefstanding environment. In 'algorithrﬁ prototyping, the usar executes a particular
‘ algorithm using different sets of data to examine the performance of -the algorithm.
'In this section, an algorithm refers to a task independent' routine; for example, the 3
by 3 Laplacian operator in the exainple of Section 4 is an algorithm. In system proto-
'typz'ng, the user can test diﬁ"efent strategies for choosing algorithms, iniposing execu-
tion order const.rainfs, and integrating results from various algorithms. The outﬁut of
‘system prototypingi is typically task specific and composed of a]gorith;ﬁs. The task
example in Section 2 shown in Figuré 3 isv one such system. It is assumed throughout
Sectioh 5 that the TUS only serves as an interface betﬁeen the user‘ .and the Intelligent
Operating Sy‘s.tem, and, in some cases, between the user and the Algori£hm Database

(see Figure 5).

5.1 Algorithm Prototyping

Before testing a new algorifhm; the implementatipn code (Circle E in Figure 2)
and information about parallel .implementations (Circle D in F_iguré 2) of the algo-
rithm must be supplied. One issue that arises is to determine when and to what
extent in the prototyping process should the Intelligent Operating System tools assist
the user in providing the information to the Algorithm Database. '

Developing the implementation code, or progfamming a parallel computer, is not
' ~easy; a detailed discussion of the variety of approaches [Ge186, DiK85, ‘Jor87, Gem86,
Hum86; Pot82, Jam87] is beyond the scope of this paper. The current state in thé
development of parallelizing compilers does not allow pragrammers to‘be as removed
from the hardware as in the case of serial computers [Dﬁf82, Lu087, Uhr84]. For an

entirely new algorithm, the parallel code in the Algorithm Database is either ekpli_citly
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paral'le'l_Acc;de or is geﬁerated byr'a ‘parallelizing compiler. The plans for the ,softwa_tre‘
eﬁvfronment for 'PASM, PARSE, allow the user to ;employ &iﬁerent approaches
[CaD87). o | - |

An zixltevr,native to -generéting the code and determining the para‘llel characteris-
tics eve_rjr- tilﬁe an al_goi-ifhm is entered iﬁto the Algorithm Database is to exploit the.
kﬁOwledge the systém possesses about parallel implenientations of élgorithms. This
| knowledge is in the form of the codev and ihformétion about each algorithm stored
iﬁ the AJgorithm Database. An operation based‘on expert system concepts, referred
to as clonkng, allows a starting point for algérithm development. Through an interac-
ti;;e intérface‘, the cldning process would ask the user t§ note Which élgorithm in the
current détébaSe most closely resembleé thé algorithm that ié to be added;. The user
would be prom{pted’for further information required by the system about the algo-
. rit‘hm.. Byiusing a set of features that characterizes parallel algorithms [Jam87], the
steps that the cloning process should take to make the necessary changes can be
stated explicitly in rules. Hénce, the éloning process can build a new entry in the
Algor'ithm‘Database based on modifying‘an existing one. ;Approaches tb iinplement

this are élirrently under study.

5.2 System Prototyping ,

| System prof,otypihg 1s the process by which algorithms to ‘per_form an image
n?derstanding task for a particular situation are selected and the data ﬂqw among
| these algorithms is chosen. Consider thg ex#mple previously discussed in Section 2.1
| (Figure 3) During the ‘sy‘stem pi;ototyping process, the user caﬁ, for eké,mple, exﬁeri—
~ ment with either directly feeding the ‘iniagé‘ to ‘‘texture analysis” withbﬁt median
filtering, or performing “textufe Aanalysis” after median filtering. T‘ﬁe‘ user can alsd
choose‘a.n edge detector algorithm depending on the specific task situation. All these

are facilitated by the'mbdel in that the Algorithm Database provides a set of tools
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for the user while the Intelligent Operating System frees the user from having to
interact with the hardware directly. Since the user (at Level 1 in Figure 2) does not
have to choose the actual implementation for carrying out each subtask, one direct
conséqﬁence is that an image understanding system developed under this model will
be machine independevnt.ﬂ The output of this rapid prototyping will beb‘a final algo-
rithm sequence for a 'particular situation that is étored as part of _the Image Under-
standing System so that itb can be called upon in the future to execute a‘sin.ﬁlar image

understanding task.

6. Summary

The conceptual model that was described involves the following aspects of paral-

lel processing, image understanding, and expert systems research:

- Design of an Intelligent Operating System for a reconfigurable parallel :com—
puter system and an Image Understanding System; focusing on incorporating
'intelligence in (1) th,ev automatic selection of the élgorithms to be,usedr to per-
form an image understanding task and (2) the selection of appfopriate archi-
tecture configurations for execution of the algorithms, vv‘vith performance
requirements driving both selection processes.

* Exploiting the flexibility of a feconﬁglirablé paraliei architecturé by pro-
viding a very powerful Intelligent Operating System. .

* Deve‘loping a database of inférmation about image understanding a’lgo-‘
rithms, including information about -both their image analysis properties
(for algorithm selecii;ion) and their execution characteristics (for algorithm
implementation and architecture configuration seléction). .

* 'Explbring the proéess by which ‘algorithms are selected to accoxﬁplish an

image understanding task, where the analysis “so far” is used in deciding
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-_ what algorithms to use next.
- Use of expert systems i-n multiple areas of the Intelligent Operating System.
* JFoeusingon the use of intelligence in the operating system. : |
* Eniployiﬁgy a uniform s,t;-ucture throughout the Intelligent Operating Sys-
tem, even though it tnakes decisions of many different types.
* Using Iexpert systems in a control role for invoking other expert systems‘

and the image analysis algorithms which are ultimately executed.

*  Exploring the use of netv expert systems development tools.

In s.urnmary, a model for an Intelligent Operating System that can make efficient’
' use of reconﬁgurable parallel architectures has been presented. Characteristics of the
Intelhgent Operating System and the overall model have been 1llustrated by consider-
ing an 1mage understandmg task example and scenarios of a user mteractlng with the
operatmg system. ‘Current work mvolves the detailed lmplementa.tlons of this model, |
. using the PASM simulators and prototype as valldatlon tools. The concepts underly-
ing the methodologies employed by the Image Understandlng System and Ihtelligent »
Operating System can be abstracted so that they can be incorporated into other
recohﬁgurable ,large_,-scale parallel' processing systems, as well as other problem

domalins.
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| Appendix
Rule Set Listing for the Image Understanding Task Example in Section 4

rule: set CUBE-HYPO-VERIFY read write execute
initialization
consult CAMERA-POSITION to test POSITION1, POSITION2
call MOVECAMERA(POSITION1) :
call MAGE(POSITION1, IMAGE])
call MOVECAMERA (POSITION2)
call MAGE(POSITION2, IMAGE2)
call PREPROCESS(IMAGE1, PRE-IMAGE1
call PREPROCESS(IMAGE2, PRE-IMAGE2
CUBE-HYPO = nil

goal CUBE-HYPO <> 1il do OBJECT-SCENT(OBJECT,CUBE-HYPO)

{rule CHV1 priority cost read write : :
if (MATCH(PRE-IMAGE]L, CUBE, CF1)) & (MATCH(PRE-IMAGE2, CUBE, CF2))
(min(CF1,CF2) >= 0.7) :
then '
CF = min(CF1,CF2))
(CUBE-HYPO = true)
using CUBE-HYPO
comment if the certainty factors that the object is a cube as
estimated from the two preprocessed images are known and
the minimum of which is larger than 0.7, then we conclude
that the object is a cube with certainty factor equals to
their minimum.
{rule CHV2 priority cost read write
if (MATCH(PRE-IMAGE1, CUBE, CF1)) & (CF1>0.2) & (CF1 < 0.7);)or

((MATCH(PRE-IMAGE2, CUBE, CF2) & (CF2>0.2) & (CF1<0.7
HEN v '
then o
(consult CUBE-HYPO-VERIFY)
‘using CF1, CF2 '
comment if either or both of the certainty factors is between 0.2 :
and 0.7, then recursively consult CUBE-HYPO-VERIFY for
further clarification. }

{rule CHV3 priority cost read write
if ((MATCH(PRE-IMAGE1, CUBE, CF1)) & (CF1 <= 0.2)) or
(((MATCH(PRE-IMAGE2, CUBE, CF2)) & (CF2 <= 0.2))
then . :
CUBE-HYPO = false}
- {(CF = max(CF1, CF2))
using CUBE-HYPO ‘ ‘ _
comment. if either or both of the certainty factors is equal to or
below 0.2, then we conclude that the object is not a cube
with certainty factor equals to the maximum of the two

factors. }
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rule: set CAMERA-POSITION priority read write execute
initialization |

call VERTEX-DETECTION(OBJECT, NUM-OF-VERTICES)
if OBJECT-MAX-VERTICES = nil then
OBJECT-MAX-VERTICES = (retrieve MAX-VERTICES from
OBJECT-DES-FILE where SHAPE = 0BJ-HYP)

goal POSITION1, POSITION2

{ rule CP1 priority cost read write
if (OBJ-HYP = CUBE) & ((NUM- OF-VERTICES > 7) or
(NUM-OF-VERTICES < 4))
then
POSITION1 = nil
POSITION2 = nil
- using POSITION1, POSITION2
comment if the maximum number of vertices as detected is larger
than 7 or less than 4 and the obgect-hypothems isa
cube, then no new camera pos1t10ns is required for
further clarification (i.e. the obJect is probably not
a cube). } ,

{ rule CP2 priority cost read write
if (OBJ-HYP = CUBE) & (NUM-OF-VERTICES >=4) &
NUM-OF-VERTICES < 7
~ then

(POSITION = move(random—deg(POSITION) random—plane(POSITION)))
consult CAMERA-POSITION for OBJ-HYP = CUBE,
OBJECT-MAX-VERTICES = 7)
using POSITION
comment if the object-hy'pothesm is a cube and the maximum
number of vertices detected is between 4 and 7, then

randomly generate a new position for the camera and
consult CAMERA-POSITION again for a better view. }

rule CP3 priority cost read write
if (OBJ-HYP = CUBE) & (NUM -OF-VERTICES = 7)
then
POSITION1 = POSITION)
POSITION2 = move(180, orthogonal))
‘using POSITION1, POSITION2
comment if the obgect-hypothesm is a cube and the maximum
number of vertices detected is exactly 7 then the
- first camera position is the current p051t10n and
the second camera position is the mirror 1mage of
the ﬁrst pOSlthD }
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Table 1. - Implementation data for four implementations of an edge detector. The
Time parameter is the expected execution time of the implementation in
terms of the image size and the number of PEs allocated to the parti-
tion. The Input allocation and Output allocation parameters specify how
the data is distributed among the PEs when the algorithm begins and

ends execution.

Implementation
Parameter
11 12
Mode SIMD - MIMD
# PEs < ﬁ%}ls- Fpixels
‘ 6*image_size 4*image_size = image_size
Ti +4*#PEs
e #PEs # #PEs
Input format 1 byte /pixel "1 byte /pixel
Output format edge list edge list
Input allocation regions regions
Output allocation regions regions
Implementation
Parameter - -
I3 I4
Mode SIMD MIMD
# PEs < _ﬁ%els : Fpixels
. 6*image_size 4*image_size , image_size
Time
‘ #PEs #PEs
Input format 1 byte/pixel 1 byte /pixel
Output format binary image binary image
Input allocation regions regions
Output allocation regions - regions
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