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A bstract

Parallel processing is one approach to achieve the large computational processing 

capabilities required by many real-time computing tasks. One of the problems that 

must be addressed in the use of reconfigurable multiprocessor systems is matching the 

architecture configuration to the algorithms to be executed. This paper presents a 

conceptual model that explores the potential of artificial intelligence tools, specifically 

expert systems, to design an Intelligent Operating System for multiprocessor systems. 

The target task is the implementation of image understanding systems on multipro­

cessor architectures. PASM is used as an example multiprocessor. The Intelligent 

Operating System concepts developed here could also be used to address other prob­

lems requiring real-time processing. An example image understanding task is 

presented to illustrate the concept of intelligent scheduling by the Intelligent Operat­

ing System. Also considered is the use of the conceptual model when developing an 

image understanding system in order to test different strategies for choosing algo­

rithms, imposing execution order constraints, and integrating results from various 

algorithms.



I. Introduction

A new approach to the implementation of image understanding systems on mul­

tiprocessor computer architectures is presented. In the simplest descriptive form, an 

image understanding system takes an image or a set of images from a group of sensors 

and produces a description of the scene. These systems have application in recogniz­

ing and tracking objects in complex natural scenes. These systems are also character­

ized by the need to do a great deal of numeric and symbolic processing in real-time. 

This type of constraint requires the use of special purpose computing systems that 

can exploit the structure of the algorithms used. One approach to solve this problem 

is through the use of parallel processing.

The various types of processing required in an image understanding system can 

roughly be classified into three groups. The first group includes operations that 

transform an image into another image, such as edge detection where gray level 

discontinuities in the image are found and the results are represented as an edge map. 

This type of processing is numerical in nature and requires a processing system capa­

ble of fast numerical operations, some of which may be floating point. The second 

group includes quasi-symbolic computations where the results of numeric image pro­

cessing, e.g., edges, textures, and features, are used to describe surfaces and shapes of 

objects in the scene. This level of processing consists of both numeric and symbolic 

types of operations. The third group comprises mainly symbolic processing used to 

produce the scene description. These various computations require a large amount of 

both raw computing power and flexibility of the computing system.

Because image understanding algorithms may have processing requirements that 

differ from one algorithm to another, it is most efficient to employ different modes of 

parallelism when image understanding systems are implemented on multiprocessor 

computer architectures [RiJ85, DeM82]. The SIMD (single instruction stream -
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multiple data stream) mode [Fly66] typically uses a set of N processors, N memories, 

an interconnection network, and a control unit (e.g., Illiac IV [Bou72], STARAN 

[Bat77], CLIP 4 [Fou8l], MPP [Bat82]). The control unit broadcasts an instruction to 

the processors and all active processors execute the same instruction at the same 

time, each processor on its own set of data. The interconnection network allows 

interprocessor communication. Window-based image processing algorithms are, for 

example, most efficiently performed using SIMD parallelism where each processor has 

a local memory and there is only local communications between processors. Other 

SIMD algorithms, such as histogram algorithms, require global communications among 

all processors [SiS8l]. The MIMD (multiple instruction stream - multiple data stream) 

mode [Fly66] typically consists of N processors and M memories, where each processor 

can follow an independent instruction stream (e.g., C.mmp [WuB72], Cm* [SwF77], 

Ultracomputer [GoG83]). As with SIMD architectures, there are multiple data 

streams and an interconnection network. Contour tracing algorithms are examples of 

MIMD processes with variable communications patterns [KuS85]. A partitionable 

SIMD/ MIMD system is a parallel processing system which can be structured as one or 

more independent SIMD and/or MIMD machines (partitions) of various sizes (e.g., 

TRAC [SeU80], PASM [SiS8l]).

With the expected growth in multiprocessor computer systems, a key issue is the 

ability to provide a high level operating system that is able to exploit fully the 

hardware architecture. One of the problems with using multiprocessor systems is how 

to “fit” the algorithms to the architecture; i.e., how to structure a task for execution 

on a particular parallel architecture. If the parallel system is reconfigurable there is 

the problem of choosing an effective system organization; i.e., to determine how the 

system is to be reconfigured for a given task or group of subtasks. This paper 

presents a conceptual model that explores the potential of artificial intelligence tools, 

specifically expert systems, to build cost effective special purpose operating systems to
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control such reconfigurations.

The resulting operating system will consist of generalized routines, useful in all 

environments, and a specialization for a given multiprocessor architecture in the form 

of expert rules. The PASM [SiS81] system, which permits dynamic reconfiguration, 

provides a multiprocessor model. The conditions under which a certain configuration 

would be appropriate are stated in the form of expert rules. The ultimate goal is to 

combine the reconfiguration expert system of the operating system with the problem 

solving component. As the image understanding task is processed, various numerical 

or symbolic processing steps are required. As processing progresses from one algo­

rithm to the next, the new processing requirements are passed to the reconfiguration 

expert which then generates calls to the operating system routines to reconfigure the 

system.

Section 2 describes the overall model and discusses some of the issues involved in 

the development of this operating system. An expert systems approach is used in 

many components of the overall model; a brief overview of expert systems and a new 

expert system language that has been developed are presented in Section 3. An exam­

ple of executing an image understanding task is presented in Section 4 to illustrate 

the characteristics of the Intelligent Operating System. Section 5 explores the model 

further by considering the issues of a user interacting with the Intelligent Operating 

System to develop an image understanding system on a reconfigurable multiprocessor 

system. 2

2. System M odel

The overall system model for executing an image understanding task is shown in 

Figure I, illustrating the interaction among the Image Understanding System, the 

IateUigent Operating System, and the Algorithm Database. An alternative view of
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this model is shown in Figure 2, where the knowledge bases and the algorithm data­

bases for each part of the system are grouped according to their levels of operation. 

It should be noted that there are situations where a human operator interacts with 

the Image Understanding System; one such situation will be considered in more detail 

in Section 5.

The Image Understanding System (IUSf) determines what types of symbolic and 

numerical operations it wants to perform, and the results from these operations are 

used to determine what needs to be done next. The Image Understanding System will 

also make decisions about the particular kinds of algorithms it wants to run. For 

instance, it will determine what types of intensity edge operators it wants to execute 

based on the environmental conditions that the sensors are observing. The algorithms 

that the Image Understanding System can use are stored as the IUS Database part of 

the Algorithm Database (see Figure 2).

The Intelligent Operating System (/OS) component of the model incorporates 

concepts from the field of expert systems. This expert system will take requests from 

the Image Understanding System, e.g., “find edges using algorithms W or X and then 

trace the object contours using algorithms Y or Z.” Information about how the algo­

rithms can be mapped onto the multiprocessor architecture is stored in the IOS por­

tion of the Algorithm Database. The expert operating system will then use this paral­

lel implementation information to select from among alternative algorithm implemen­

tations and to determine the system configuration. As the particular image under­

standing task is running, the multiprocessor system will have to partition and 

reconfigure itself to accomplish all of the numeric and symbolic subtasks requested by 

the Image Understanding System.

Various scenarios could exist. One could arrive at a situation where the next 

step is “find the intensity edges in the image using the algorithm X.” In the IOS
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Algorithm Database there may be many different parallel implementations for the 

algorithm X. These implementations may differ in their use of system resources, 

placement of data results in the system memories, and/or execution speeds. The 

Intelligent Operating System must be able to examine the state of the system and 

choose the “best” parallel implementation of algorithm X in terms of system perfor­

mance on the overall task. In doing this, the operating system can partition the mul­

tiprocessor such that several numeric and/or symbolic processes are running simul­

taneously in both SIMD and MIMD mode. The Intelligent Operating System interacts 

with the “native” Low-level Operating System that exists on the multiprocessor archi­

tecture (see Figures I and 2). This Low-level Operating System is used to execute the 

actual system reconfiguration code.

Each new processing step in a task therefore cuts through the three levels shown 

in Fighre 2. The Image Understanding System (Level I) generates an algorithm selec­

tion based on the knowledge of the task (Circle A) and information about each 

algorithm’s image analysis performance characteristics (Circle B), e.g. how the algo­

rithm will perform in the presence of noise. The algorithm selection is presented in 

the form of a data dependency graph for to the Intelligent Operating System (Level 

2). Circle D is the component of the Algorithm Database that is used by the Intelli­

gent Operating System and contains information about the execution characteristics 

of different parallel implementations of the algorithms. Each entry in Circle B may 

have multiple entries in Circle D, corresponding to different implementations. The 

Intelligent Operating System uses this information in selecting each algorithm imple­

mentation.

Circle C represents the component of the Intelligent Operating System that pro­

vides the necessary information about the Reconfigurable Parallel Processing System 

to allow intelligent reconfiguration of resources for improved execution performance. 

This information includes knowledge of the system resources and their current status,
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and scheduling schemes. Decisions on system reconfiguration and the assignment of 

image analysis algorithms to partitions are then passed to the Low-level Operating 

System Routines. Circle E is the component of the Algorithm Database that is used 

by the Low-level Operating System Routines and contains the actual implementation 

codes for the algorithms. The three execution steps are therefore represented by lev­

els I, 2, and 3; together circles B, D, and E form the Algorithm Database shown in 

Figure I; circles A and C form the Knowledge Base in Figure I.

There is a great deal of interaction among the Image Understanding System, the 

Intelligent Operating System, and the Algorithm Database. The Image Understanding 

System and the Algorithm Database could be extended to contain expert systems 

themselves. One could even envision a situation where one expert system “calls” 

another expert system. An important aspect of the model is that the Image Under­

standing System and the Intelligent Operating System are separate modules. Thus, 

despite the potential complexity of the complete system, there is a uniform, modular 

structure that allows incremental development of the various components. The stra­

tegies and overall structure of the Intelligent Operating System can be used in other 

application areas (such as speech understanding) by changing the Algorithm Database 

component. In the rest of this section, the major blocks of Figure I are described in 

more detail.

2.1 Image Understanding System

An image understanding task is assumed to consist of many subtasks. The 

Image Understanding System contains information about which algorithms are used to 

perform a given subtask. Each subtask may be performed by more than one algo­

rithm, where each algorithm has different image analysis performance characteristics 

which are stored as part of the algorithm in the Algorithm Database. The execution 

order of the subtasks may be represented as a data dependency graph, indicating
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which subtasks can be done simultaneously and which must be done sequentially with 

respect to -the other subtasks. The exact structure and elements of the data depen­

dency graph may vary during task execution based on intermediate results that are 

derived. This data dependency graph is stored and maintained by the Image Under­

standing System.

Au example of an image understanding task is shown in Figure 3 to illustrate the 

types of data flow and control operations that are representative of these tasks. In 

particular, the execution time is non-deterministic when doing “edge linking” followed 

by “edge continuity checking.” Also notice that the processing has both a bottom-up 

and a top-down approach. The top-down approach (e.g., the use of a priori informa­

tion) mainly consists of a scene model knowledge source that is used to drive the 

“edge linking,” “boundary tracing,” and “region formation” steps. The bottom-up 

approach is used to drive the early vision steps of “median filtering,” “texture 

analysis,” and “edge detection.” In the situation described in Figure 3, it is impor­

tant that the steps leading up to and including the “edge continuity test” be per­

formed as quickly as possible, because the “boundary tracing” step requires this infor­

mation before the rest of the processing can be completed. The Intelligent Operating 

System will have to recognize this and concentrate more system computation power to 

the steps leading up to the “edge continuity” step than to the “texture analysis” 

step. It should be noted that the type of processing occurring at the top of Figure 3 

is numeric, the type of processing occurring at the bottom is symbolic, and in between 

there is a mix of both.
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2.2 A lgorithm D atabase

The Algorithm Database contains the actual implementation codes and two lev­

els of characteristics for each algorithm. The first (Circle B in Figure 2) consists of 

algorithm performance. This contains image analysis information such as how a par­

ticular algorithm performs in the presence of noise. The Image Understanding System 

interacts with the Algorithm Database to determine if a particular algorithm exists in 

the database and if any other algorithms exist that perform better in terms of their 

image analysis capabilities. The information the Image Understanding System uses to 

select an algorithm is based on image characteristics input with the image or derived 

during the execution of the task.

The next level (Circle D in Figure 2) consists of information about parallel imple­

mentations of the algorithm. This will contain information such as how the input and 

output are distributed across the system’s memories, expected execution speed as a 

function of the number of processors used, and intcrprocessor network communication 

requirements. An algorithm may have multiple entries in the database for this 

characteristic level corresponding to the existence of several parallel implementations 

of that particular algorithm. The implementation that is most appropriate for per­

forming a given subtask is determined by the types of processing that were done prior 

to the current step, the type of processing that is to be performed next, and the sys­

tem constraints and resources available at that time. Table I shows an example of

information about four alternative implementations of an edge detection algorithm
■

[WeJ87].
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2.3 Intelligent Operating System

The goal of a reconfigurable large-scale parallel processing system is to adapt the 

system state (machine configuration) to maximize some performance criteria. The 

performance criterion assumed here is execution speed of the total task. The objec­

tive is to use the Algorithm Database described in Section 2.2 to reconfigure system 

resources to maximize task execution speed or, equivalently, to minimize system 

response time. The factors that contribute to the response time for a given task 

include the execution time of the component image processing/analysis algorithms, 

the execution time of the Image Understanding System and Intelligent Operating Sys­

tem, and the time to reconfigure the state of the parallel processing system. In this 

subsection, the Intelligent Operating System and the target Reconfigurable Parallel 

Processing System are described.

Reconfigurable large-scale parallel processing systems can be constructed in 

different ways (e.g., TRAC [SeU80], DCA [KaK79]). A particular architecture with 

given reconfiguration parameters is being considered initially to make the overall 

model presented here tractable. For this purpose, PASM [SiS8l] is being used as the 

model of the Reconfigurable Parallel Processing System in Figure I. The overall 

model can be applied to other parallel systems.

The PASM design includes 1024 sophisticated processors in its computational 

engine, and has many (e.g., 70) processors for operating system support (e.g., memory 

management, file directory maintenance for the multiple secondary storage devices, 

and SIMD control unit functions). A 30-processor prototype of PASM is currently 

operational [SiS87]. The relevant features of PASM’s computational engine needed as 

background for the following discussion include:

I. A system with 1024 processors is assumed.
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2. All processors are the same (e.g., MC68000-family processors).

3. Each processor is paired with a memory module and I/O, forming a processing ele­

ment (PE). When one PE sends data to or requests data from another PE, the 

system is said to be operating in a PE-to-PE configuration (i.e., each processor has 

its own local memory). Network interfaces will also allow each processor to access 

another processor’s memory module (almost) directly. This mode of operation is 

referred to as the processor-to-memory configuration (i.e., the processors share a 

common set of memory modules). .

4. The PEs in the system can be dynamically partitioned, under software control, 

into independent groups forming independent virtual machines of various sizes.

5. A multistage network is used to provide communications among the PEs. This 

network can be dynamically reconfigured under software control to be partitioned 

into independent subnetworks (to support independent virtual machines) and to 

perform a great variety of connection patterns, both for “local” and “global” com­

munications [Sie85].

6. The PEs in a virtual machine can operate in either SIMD or MIMD modes, and 

can dynamically switch modes under software control.

One example of how the reconfiguration capabilities of PASM can be exploited is 

given in [KuS85], where one approach to contour extraction in gray scale images is 

examined. A brief simplified summary is as follows. Each PE is assigned a checker­

board pattern subimage that is processed in three main phases: edge-guided thres­

holding, local contour tracing, and complete contour tracing. The edge-guided thres­

holding involves generating a Sobel image and using it with characteristics of the ori­

ginal image to select a threshold value. This phase is executed most efficiently in the 

SIMD mode, with the PE-to-PE configuration, and eight-nearest neighbor inter-PE 

network communication patterns. The local contour tracing involves each PE tracing
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contours in its subimage, both complete and partial (i.e., contours which span multi­

ple subimages), and generating a symbolic representation of the contours. This phase 

is executed most efficiently in the MIMD mode with the PE-to-PE configuration (no 

inter-PE communications are required). Finally, the complete contour tracing phase 

combines the symbolic representations of partial contours that cross subimage boun­

daries to form complete contours. This is done most efficiently in the MlMD mode, 

with the processor-to-memory configuration, and variable global access patterns from 

the processors to the memory modules.

The configuration of PASM at any given point of time, the status of any jobs
I

executing or awaiting execution, and the memory contents determine the system state. 

The parameters in the state Space include: the number of virtual machines and the 

size of each (in terms of number of computational engine processors assigned to the 

virtual machine), the status of the algorithm executing on each virtual machine (e.g., 

execution time expended, amount of working memory consumed), the 

performance/system-requirements characteristics of all algorithms executing or await­

ing execution (e.g., relationship of execution speed to number of processors used in the 

virtual machine, expected execution time, expected memory requirements, data alloca­

tion scheme among the processors of the virtual machine for both input data and out­

put data1), the processing mode (SIMD or MIMD) of each virtual machine (which can 

vary dynamically at execution time), the inter-processor connectivity (inter-processor 

communication patterns) of each virtual machine (which can vary dynamically at exe­

cution time), etc.

1This information about data allocation is important when juxtaposing algorithms to 
perform a complete task - i.e., the output data allocation of one algorithm will become 
the input data allocation of another, and this may affect the choice of algorithms 
and/or the need to restructure the data.



-  12 -

The Intelligent Operating System is responsible for keeping track of the system 

state. Most importantly, it determines many of the parameters, such as selecting 

which parallel implementation of an algorithm to use to perform a given subtask, 

scheduling algorithms for execution, choosing the size of the virtual machine for a 

given algorithm (i.e., how many PEs), and assigning algorithms to virtual machines 

(i.e., which PEs). (The Intelligent Operating System can modify the current alloca­

tion of resources to an algorithm being executed if it deems it appropriate for 

improved overall system performance of the complete task.) The Intelligent Operat­

ing System performs these functions using information from the Image Understanding 

System (i.e., data dependency graphs for subtasks, algorithms available to perform a 

given subtask), from the Algorithm Database (i.e., the algorithm system-requirements 

characteristics), from each virtual machine’s master control unit (e.g., algorithm exe­

cution status, such as time and space consumed, expected time to completion, and 

any significant intermediate results of the computation), and from its own knowledge 

of the current system state.

In addition, the Intelligent Operating System has information about the execu­

tion characteristics of the Low-level Operating System routines, allowing it to deter­

mine the time required to perform a system reconfiguration. The goal of the Intelli­

gent Operating System is to assimilate all of this information and use it, whenever 

appropriate, to generate new system states that will optimize system performance of 

the task under execution. The resource management role of the Intelligent Operating 

System is a standard function of any operating system. However, on a reconfigurable 

parallel system, this job is significantly more involved than on a less flexible system. 

As described in the next section, an expert system is used to perform the decision­

making necessary to select an algorithm implementation and assign resources based 

on a diverse set of information. Hence the name Intelligent ,Operating System.



There are additional issues in reconfigurable parallel system design that can be 

incorporated into bur model as extensions to the above functionality requirements for 

the Intelligent Operating System. These include: reconfiguration for fault tolerance; 

using data dependency graph look-ahead when scheduling algorithms to perform sub­

tasks; assigning measures of relative importance to the speed of execution of different 

subtasks based on their practical importance in a real-time processing environment; 

and “concentrating” computational power to enhance the execution speed of a sub­

task of high importance.

3. Expert System s

Expert systems are used in many components of the overall model: from per­

forming image understanding routines to selecting algorithms and hardware 

configurations. There has been a significant amount of research on computer-based 

problem solving models using the expert systems approach. A decision theoretic basis 

for expert systems was outlined in [HaM86]. Expert systems are computer based sys­

tems designed to apply specialized knowledge in solving difficult problems that ordi­

narily require human intelligence. They store, select, and process fragments of 

knowledge about a specific task in a reasoning process designed to arrive at an 

acceptable solution. These fragments of knowledge are represented as rules and facts 

that describe relationships between possible true states (or facts) and characteristics 

of the problem associated with these states. For example, in the image understanding 

field, the emphasis is on the representation of knowledge for the selection of appropri­

ate algorithms to recognize an object and with the selection of efficient hardware 

configurations to execute the algorithms. The capabilities of expert systems appear to 

be well matched to the types of decision making that must be performed in the model.

A new expert system language has been developed to provide efficient support for 

the diversified needs of the expert systems in our model; specifically, the ability to
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deal with both numeric and symbolic processing, and to perform algorithm and 

hardware configuration selections. Knowledge fragments are grouped in terms of rule 

sets. A rule set consists of specific knowledge required to solve a particular type of 

problem. As noted later, rule sets can be joined together implicitly in order to solve 

problems that involve expertise from a number of areas. The syntax for defining this 

expert rules language, known as Rule Set Language (RSL), is given in Section 3.1. An 

example is given in Section 4 to demonstrate how RSL can be used to make a decision 

about the sequence of image analysis operations that should be performed. Fusion of 

RSL with other conventional knowledge management tools will furnish a much greater 

degree of flexibility in expert systems design. The Rule Set Expert System Develop­

ment Tools blend expert system functionalities into those of data base management, 

graphics, conventional programming, and so forth.

The segregation of knowledge into different rule sets lends itself naturally to 

parallel execution. Since the only possible interaction between rule sets is via the 

CONSULT command (see Section 3.2), different rule sets can be run concurrently.

3.1 Rule Set Language Syntax

Expert systems methods are exploited to represent knowledge of hardware 

reconfiguration and algorithm selection for image understanding. The expert system 

language, as described here, serves the purpose of presenting a prototype environment 

in which concepts and techniques of expert systems can be integrated into the frame­

work of the Image Understanding System and the Intelligent Operating System. 

Hence, the specification of the syntax of an expert system that is oriented towards the 

type of problem solving in these tasks is necessary. In a sense, one can consider the 

language introduced here as a tool for the development of an image understanding
■ ' I

environment capable of capturing the knowledge of a human being in the 

identification and description of a scene and in the reconfiguration of computer
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hardware.

The language is basically a collection of syntactic entities called rule sets. A rule 

set consists of the specific knowledge required to solve a particular problem. More­

over, rule sets can be joined together implicitly in order to tackle problems that 

involve expertise from a number of areas. The syntax of a rule set is defined as fol­

lows:

RULE SET <rule-set-name> READ <read-codes> WRITE <write-codes>
EXECUTE <execute-codes>

INITIALIZATION <command>
GOAL <variable> FOR <variable conditions> DO <command> ...
{RULE <rule-name> PRIORITY <priority-level> COST <action-cost>

READ <read-codes> WRITE <write-codes>
IF <condition>

THEN <command>
USING <decision variables> COMMENT <ascii characters>
}

CONTEXT <variables> ...

There are four parts in a rule set declaration. The first part defines the name of 

the rule set <rule-set-name>, and is a unique identification tag of a rule set for both 

internal operation and external inspection. This section also provides security control 

functions by allowing the creator of the rule set to specify the authority level for 

reading, writing, and executing the rule set. The <read-codes>, <write-codes>, and 

<execute-codes> are optional in the sense that ignoring any of these implies public 

access is allowed for that operation on the rule set.

Unlike the first section, which is compulsory for all rule sets, the INITIALIZA­

TION section is optional. If the INITIALIZATION is present, its commands are exe­

cuted in sequence when the rule is invoked. These commands may be performed to 

establish initial variable values by assignment, to retrieve additional information, to 

interact with the end user, to perform computations for certain variables, and to
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establish communication links with other systems. The INITIALIZATION section 

serves to provide a processing environment for the execution of the rule set, and can 

be neglected if the effort to provide such an environment is not justified or necessary.

The mandatory GOAL section identifies the variable whose value will be inferred 

when the rule set is invoked. The optional FOR clause specifies conditions (e.g., 

integrity conditions) that must be satisfied when this goal variable’s value has been 

determined in order for that value to be considered valid. The optional DO clause 

consists of a list of commands that will be automatically executed if the goal is met.

The last part of a rule set is the specification of individual rules. One or more 

RULE sections must be present. Each rule is given a unique name, an optional prior­

ity level, and an optional action cost. The function of the priority level is to provide 

a measure of importance or confidence of the rule, while the relative processing cost of 

the rule’s action is reflected by the action cost. Both the priority level and the action 

cost are important attributes in the resolution and backtracking strategies.

A rule’s IF clause consists of any permissible logical expression composed of one 

or more conditions connected by Boolean operators. A condition clause can be either 

an assertion (e.g., number-of-vertices <  10), or a query statement (e.g., whether an 

object-shape can be retrieved from object-library where object-name= car).

A rule’s THEN clause consists of a sequence of commands which will be executed 

when the inference engine determines that the rule’s premise is true. These com­

mands can include not only assignment statements, but also procedure invocation, 

rule set invocation, input statements, output statements, graphics, computations, 

data retrieval, etc. The USING clause identifies one of the variables whose value 

could be altered by the rule’s action as the rule’s decision variable. The inference 

engine examines a rule’s decision variable in the course of inference in order to decide 

whether that rule is presently applicable as a candidate for backward chaining. The
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optional COMMENT clause contains text that explains the nature of the rule.

A rule set’s optional CONTEXT section identifies those variables (in addition to 

decision variables) whose values will be preserved at points where backtracking could 

occur in an inference process. Implicit input rules exist for all condition variables in a 

rule set’s rules.

3.2 R u leS etIn vocation

A rule set can be invoked via the CONSULT command whose syntax is as fol­

lows:

CONSULT <rule-set-name> [TO SEEK <decision-variable> ... ]

[FOR <condition>...] [DO 

<command>... ]
■ ■ ■ ■ . . !

The optional SEEK clause is used if some decision variables other than the rule set’s 

goal variable are desired. The optional FOR clause is used if some goal conditions 

other than those specified in the rule set’s GOAL section are desired. The optional 

DO clause is used if some goal actions other than those stated in the rule set’s GOAL 

section are desired.

The CONSULT command utilizes the inference engine’s backward chaining 

approach to inference. A variation of the CONSULT command uses a forward chain­

ing approach.

CONSULT <rule-set-name>  TO TEST <decision-variable> ... [DO 

<command> ... ]

Here the rule set is used to determine the value of the decision variable, as implied by
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the present context. The optional DO clause specifies commands to be executed if the 

consultation resulted in a change in the decision variable’s value. This generative use 

of a rule set can be used to test the present decision variable context. A variation of 

the generative usage of a rule set is

CONSULT <rule-set-name> TO PERFORM <rule-name> ...

[ORDER BY [ ] PRIORITY]

This will cause the rules to be executed in the sequence indicated or in order of their 

relative priorities.

4. E xecu tion ofan Im ageU n d erstan d in gT ask

A very simple example task in image understanding is presented to illustrate the 

application of expert systems and the concept of intelligent scheduling on the parallel 

processor by the Intelligent Operating System. Most image understanding systems 

employ a top-down approach in the identification of individual objects and their spa­

tial relationships in a given scene. Object identification includes the Clarification of 

all relevant properties associated with the object. These properties may include 

shape, texture, color, and the object’s orientation in the scene. In general, the process 

of object identification is a hypothesis-verifying process. Hypotheses concerning vari­

ous properties of the object are set up in conjunction with the scenario given, a veri­

fying procedure is then invoked to test the validity of the hypotheses. During the 

hypothesis-verifying process, new information may be aggregated into or deleted from 

the current hypothesis. More sub-hypotheses may also be generated for testing. Con­

ventional programming environments are not appropriate for accomplishing this task 

in a cost effective manner. An example is presented below to illustrate how the RSL 

as described in the previous section is used to verify a simple hypothesis.
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4.1 Example Image Understanding Task

This example is concerned with the identification of a cube in a three- 

dimensional space (see Figure 4). Two rule sets are used: CUBE-HYPO-VERIFY and 

CAMERA-POSITION. The former rule set focuses on the verification of a cube in 

space based on two camera images of the object. The latter is mainly concerned with 

the generation of two new camera positions based on the given hypothesis of the 

shape of the object. What follows is a brief description of the two rule sets; the 

actual rule sets listing is in the Appendix. For simplicity, all priority, cost, read, 

write, and execute entries are left blank. However, this is not true in general; all 

these entries do bear some significance in the efficiency and security of the code and 

would not be left blank in most applications.

In the INITIALIZATION section of CUBE-HYPO-VERIFY, CAMERA-POSITION 

is consulted to generate two new camera positions. Two camera images are then 

taken in these two positions and processed. The routine PREPROCESS will take in a 

camera image taken by a camera and produce a processed image that can be recog­

nized and used by the system internally. The goal of CUBE-HYP O-VERlFY is to 

check whether the object is a cube or not. The decision variable used by CUBE- 

HYPO-VERIFY is CUBE-iHYPO and can take on any of these values {true, false, nil}. 

If the goal is satisfied (i.e., CUBE-HYPO is either true or false), then the conclusion of 

this test (i.e., the object is a cube or not) is returned.

There are three rules in the RULE section. The English interpretation of the 

first rule is that “if the minimum of the two certainty factors that the object is a 

cube as compared with the knowledge base is greater than or equal to 0.7, then we 

conclude that the object is a cube with certainty factor equal to the minimum of the 

two certainty factors estimated from the two camera images.” The second rule deals 

with the ambiguity of the two images. It says “if one or both images has certainty
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factors between 0.2 and 0.7, then recursively consult CUBE-HYPO-VEREFY to test 

the shape of the object again.” The third rule states “if certainty factor of either one 

is below 0.2, then the observed object is probably not a cube.” These three rules cap­

ture the kind of knowledge which is typically required in the course of object 

identification.

The second rule set, CAMERA-POSITION, is called to determine the next two 

appropriate positions for the camera in verifying the shape of an object. In the INI­

TIALIZATION section of CAMERA-POSITION, a routine called VERTEX- 

DETECTION is invoked to extract the number of vertices of the object. If the max­

imum number of vertices that the object can have from any angle of view is not 

known, then retrieve this piece of information from the knowledge base. POSITIONI 

and POSITION2 are the two decision variables of CAMERA-POSITION and are 

unknown initially. This rule set is capable of dealing with a large number of object 

hypotheses; for illustrative purposes, only the first three rules that are concerned with 

cubic objects are shown.

For a cube, either seven or four vertices can be observed from any angle of view. 

Therefore any object that has more than seven or fewer than four vertices is probably 

not a cube. This is the purpose of the first rule of CAMERA-POSITION. Here, an 

assumption is made on the occlusion of object: there is no obstacle blocking the view. 

The second rule states “if the object hypothesis is a cube and the number of vertices 

observed is between four and seven, then randomly generate a new camera position, 

move the camera, and recursively consult CAMERA-POSITION to obtain further 

clarification of the object’s shape.” The third rule simply says “if the object 

hypothesis is a cube and the number of vertices as observed is seven, then the first 

camera position is the current camera position and the second camera position is 180 

degrees off the orthogonal plane formed by the camera and the object (i.e. the ‘mirror 

image’ of the current camera position).”
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The three rules in CUBE-HYPO-VERIFY and the first three rules in CAMERA- 

POSITION provide the knowledge which is sufficient, if not complete, in the 

identification of a cube in an unobstructed three-dimensional space. This example 

does not serve to reveal the technical implementation details of an image under­

standing system but rather to provide insights as to how an expert systems paradigm 

is aggregated into the design and construction of an image understanding system.

4.2 The Intelligent Operating System

The role of the Intelligent Operating System can be seen, in part, by further 

analysis of the execution of this example. Two of the routines called by the rule sets 

(PREPROCESS called from CUBE-HYPO-VERIFY and VERTEX-DETECTION called 

from CAMERA-POSITION) entail intensive processing. Routines such as these are 

therefore prime candidates for intelligent scheduling on the parallel processor by the 

operating system in order to achieve reduced execution times.

The routine PREPROCESS accepts as input a two-dimensional gray scale image 

and produces as output a symbolic description of that image. A typical algorithm for 

this task might be [Oht85]:

(1) Extract textural regions using a 3 by 3 Laplacian window.

(2) If every region can be described by its texture, proceed to the symbolic pro­

cessing (step 4).

(3) While some unprocessed region has an area of greater than 50 pixels 

(3a) Compute the histogram of the region.

(3b) If the histogram is unimodal

(3b.I) If the area of the region is less than 1537, then go on to the 

next region.
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(3b.2) Do a window scanning histogram

(3b.3) If the histogram is still unimodal, then go on to the next 

region.

(3c) Else the histogram has multiple peaks. Split the region into multiple 

new regions.

(3d) If the region area is less than 8, ignore that region.

(4) Generate a symbolic description of the segments.

Many versions of each individual routine used in the task exist in the IOS portion 

of the Algorithm Database (Circle D of Figure 2). For instance, there might be three 

versions of the Laplacian operator: two SIMD versions (one with data allocated by 

regions and one with data allocated by rows) and one MIMD version. Also of impor­

tance is the existence of decision, or branching, points in the algorithm. This makes 

the execution characteristics of the algorithm impossible to determine a priori. The 

algorithm for the VERTEX-DETECT has similar characteristics.

The Intelligent Operating System will have to make two types of decisions at
i

Level 2 (of Figure 2). It will first have to determine an initial schedule and 

configuration for the parallel processor based on fitting the available resources to the 

predicted runtimes and PE usages of the particular implementation of the algorithm. 

Secondly, the Intelligent Operating System must monitor the progress of the algorithm 

and update the schedule and configuration based on actual execution times and deci­

sion point results. The overall execution time of the given task can therefore be 

reduced by allowing the Intelligent Operating System to make dynamic scheduling 

decisions. This method will provide an obvious improvement over rigidly specifying 

the subtask list based on general performance characteristics.
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5. Algorithm Prototyping and System Prototyping Using the Model

There are two types of prototyping in which a user interacts with the image 

understanding environment. In algorithm prototyping, the user executes a particular 

algorithm using different sets of data to examine the performance of the algorithm. 

In this section, an algorithm refers to a task independent routine; for example, the 3 

by 3 Laplacian operator in the example of Section 4 is an algorithm. In system proto­

typing, the user can test different strategies for choosing algorithms, imposing execu­

tion order constraints, and integrating results from various algorithms. The output of 

system prototyping is typically task specific and composed of algorithms. The task 

example in Section 2 shown in Figure 3 is one such system. It is assumed throughout 

Section 5 that the IUS only serves as an interface between the user and the Intelligent 

Operating System, and, in some cases, between the user and the Algorithm Database 

(see Figure 5).

5.1 Algorithm Prototyping

Before testing a new algorithm, the implementation code (Circle E in Figure 2) 

and information about parallel implementations (Circle D in Figure 2) of the algo­

rithm must be supplied. One issue that arises is to determine when and to what 

extent in the prototyping process should the Intelligent Operating System tools assist 

the user in providing the information to the Algorithm Database.

Developing the implementation code, or programming a parallel computer, is not 

easy; a  detailed discussion of the variety of approaches [Gel86, DiK85, Jor87, Gem86, 

Hum86, Pot82, Jam87] is beyond the scope of this paper. The current state in the 

development of parallelizing compilers does not allow programmers to be as removed 

from the hardware as in the case of serial computers [Duf82, Lu087, Uhr84]. For an 

entirely new algorithm, the parallel code in the Algorithm Database is either explicitly
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parallel code or is generated by a parallelizing compiler. The plans for the software 

environment for P ASM, PARSE, allow the user to employ different approaches 

[CaD 87].

An alternative to generating the code and determining the parallel characteris­

tics every time an algorithm is entered into the Algorithm Database is to exploit the 

knowledge the system possesses about parallel implementations of algorithms. This 

knowledge is in the form of the code and information about each algorithm stored 

in the Algorithm Database. An operation based on expert system concepts, referred 

to as cloning, allows a starting point for algorithm development. Through an interac- 

tive interface, the cloning process would ask the user to note which algorithm in the 

current database most closely resembles the algorithm that is to be added. The user 

would be prompted for further information required by the system about the algo­

rithm. By using a set of features that characterizes parallel algorithms [Jam87], the 

steps that the cloning process should take to make the necessary changes can be 

stated explicitly in rules. Hence, the cloning process can build a new entry in the 

Algorithm Database based on modifying an existing one. Approaches to implement 

this are currently under study.

5.2 System  Prototyping

System prototyping is the process by which algorithms to perform an image 

understanding task for a particular situation are selected and the data flow among 

these algorithms is chosen. Consider the example previously discussed in Section 2.1 

(Figure 3). During the system prototyping process, the user can, for example, experi­

ment with either directly feeding the image to “texture analysis” without median 

filtering, or performing “texture analysis” after median filtering. The user can also 

choose an edge detector algorithm depending on the specific task situation. All these 

are facilitated by the model in that the Algorithm Database provides a set of tools
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for the user while the Intelligent Operating System frees the user from having to 

interact with the hardware directly. Since the user (at Level I in Figure 2) does not 

have to choose the actual implementation for carrying out each subtask, one direct 

consequence is that an image understanding system developed under this model will 

be machine independent. The output of this rapid prototyping will be a final algo­

rithm sequence for a particular situation that is stored as part of the Image Under­

standing System so that it can be called upon in the future to execute a similar image 

understanding task.

6. Summary

The conceptual model that was described involves the following aspects of paral­

lel processing, image understanding, and expert systems research:
I

- Design of an Intelligent Operating System for a reconfigurable parallel com­

puter system and an Image Understanding System, focusing on incorporating 

intelligence in (I) the automatic selection of the algorithms to be used to per­

form an image understanding task and (2) the selection of appropriate archi­

tecture configurations for execution of the algorithms, with performance 

requirements driving both selection processes.

* Exploiting the flexibility of a reconfigurable parallel architecture by pro­

viding a very powerful Intelligent Operating System.

* Developing a database of information about image understanding algo­

rithms, including information about both their image analysis properties 

(for algorithm selection) and their execution characteristics (for algorithm 

implementation and architecture configuration selection).

* Exploring the process by which algorithms are selected to accomplish an 

image understanding task, where the analysis “so far’’ is used in deciding
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what algorithms to use next.

- Use of expert systems in multiple areas of the Intelligent Operating System.

* Focusing on the use of intelligence in the operating system.

* Employing a uniform structure throughout the Intelligent Operating Sys­

tem, even though it makes decisions of many different types.

* Using expert systems in a control role for invoking other expert systems 

and the image analysis algorithms which are ultimately executed.

* Exploring the use of new expert systems development tools.

In summary, a model for an Intelligent Operating System that can make efficient 

use of reconfigurable parallel architectures has been presented. Characteristics of the 

Intelligent Operating System and the overall model have been illustrated by consider­

ing an image understanding task example and scenarios of a user interacting with the 

operating system. Current work involves the detailed implementations of this model, 

using the PASM simulators and prototype as validation tools. The concepts underly­

ing the methodologies employed by the Image Understanding System and Intelligent 

Operating System can be abstracted so that they can be incorporated into other 

reconfigurable large-scale parallel processing systems, as well as other problem 

domains.
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Appendix
Rule Set Listing for the Image Understanding Task Example in Section 4

rule: set CUBE-HYPO-VERIFY read write execute 
initialization

consult CAMERA-POSITION to test P0SITI0N1, P0SITI0N2
call MOVECAMERA(POSITIONl)
call IMAGE(POSnTONi, IMAGEl)
call M0VECAMERA(P0SITI0N2)
call IMAGE(P0SITI0N2, IMAGE2)
call PREPROCESS(IMAGEl, PRE-IMAGEl)
call PREPROCESS(IMAGE2, PRE-IMAGE2)
CUBE-HYPO =  nil

goal CUBE-HYPO < >  nil do OBJECT-SCENT(OBJECT,CUBE-HYPO)
{rule CHVl priority cost read write

if (MATCH(PRE-IMAGE1, CUBE, CFl)) & (MATCH(PRE-IMAGE2, CUBE, CF2)) 
(min(CFl,CF2) > =  0.7)

then
(CF =  min(CFl,CF2))
(CUBE-HYPO =  true) 

using CUBE-HYPO
comment if the certainty factors that the object is a cube as

estimated from the two preprocessed images are known and 
the minimu m 'of which is larger than 0.7, then we conclude 
that the object is a cube with certainty factor equals to 
their minimum. }

{rule CHV2 priority cost read write
if ((MATCH(PRE-IMAGE1, CUBE, CFl))' & (CFl >  0.2) & (CF1 <  0.7)) or 

((MATCH(PRE-IMAGE2, CUBE, CF2) & (CF2 >  0.2) & (CF1 <  0.7))
THEN
then

(consult CUBE-HYPO-VERIFY) 
using CFl, CF2
comment if either or both of the certainty factors is between 0.2

and 0.7, then recursively consult CUBE-HYPO-VERIFY for 
further clarification. }

{rule CHV3 priority cost read write 
if (((MATCH(PRE-IMAGE1, CUBE, CFl)) & (CFl < =  0.2)) or 

(((MATCH(PRE-IMAGE2, CUBE, CF2)) & (CF2 <== 0.2))
then

(CUBE-HYPO =  false)
(CF =  max(CFl, CF2)) 

using CUBE-HYPO
comment if either or both of the certainty factors is equal to or 

below 0.2, then we conclude that the object is not a cube 
with certainty factor equals to the maximum of the two 
factors. }
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rule: set CAMERA-POSITION priority read write execute 
initialization

call VERTEX-DETECTION(OBJECT, NUM-OF-VERTICES) 
if OBJECT-MAX-VERTICES =  nil then

OBJECT-MAX-VERTICES =  (retrieve MAX-VERTICES from
OBJECT-DES-FILE where SHAPE =  OBJ-HYP)

goal POSITIONS P0SITI0N2
{ rule CPl priority cost read write 

if (OBJ-HYP =  CUBE) & ((NUM-OF-VERTICES >  7) or 
(NUM-OF-VERTICES <  4))

then
(POSITIONl =  nil)
(P0SITI0N2 =  nil) 

using POSITIONl, P0SITI0N2
comment if the maximum number of vertices as detected is larger 

than 7 or less than 4 and the object-hypothesis is a 
cube, then no new camera positions is required for 
further clarification (i.e. the object is probably not 
a cube). }

{ rule CP2 priority cost read write 
if (OBJ-HYP CUBE) & (NUM-OF-VERTICES > =  4) & 

(NUM-OF-VERTICES <  7) 
then

(POSITION =  move(random-deg(POSITION)j random-plane(POSITION))) 
(consult CAMERA-POSITION for OBJ-HYP =  CUBE,

OBJECT-MAX-VERTICES =  7)
using POSITION
comment if the object-hypothesis is a cube and the maximum 

number of vertices detected is between 4 and 7, then 
randomly generate a new position for the camera and 
consult CAMERA-POSITION again for a better view. }

{ rule CP3 priority cost read write 
if (OBJ-HYP =  CUBE) & (NUM-OF-VERTICES =  7) 
then

(POSITIONl == POSITION)
(P0SITI0N2 =  move(l80, orthogonal)) 

using POSITIONl, P0SITI0N2
comment if the object-hypothesis is a cube and the maximum 

number of vertices detected is exactly 7 then the 
first camera position is the current position and 
the second camera position is the mirror image of 
the first position. }
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Figure I. Overall model of an intelligent operating system executing image under­
standing tasks on a reconfigurable parallel architecture.



Control

Input . 
Images

Scene
Descriptions

Level I: Image Understanding System (IUS)
A: IUS Knowledge Base (overall task information)
B: IUS Database (information of algorithm image analysis performance)
Level 2: IntelligentOperatingSystem(IOS)
C: IOS Knowledge Base (reconfiguration and scheduling)
D: IOS Database (algorithm execution time as a function of resources)
Level 3: Low--IevelOperatingSystem
E: Algorithm Implementation Encodings
F: Reconfigurable Parallel Processing System

Fieure 2. Alternative view of the overall model with knowledge bases and algo­
rithm databases grouped according to their levels of operation-



Input Image

<FAIL> <PASS>

Median

Edge
Linking

Shape
Analysis

Texture
Analysis

Object
Recognition

Boundary
Tracing

Edge
Detection

Region
Formation

Scene Model 
(Knowledge 

Source)

Scene Description

Figure 3. A data dependency graph for a “typical” image understanding task 
scenario.



Figure 4.

Light source

Position I

Position 2 mm
A model of the sensor geometry for the image understanding task exam­
ple in Section 4.
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Table I. Implementation data for four implementations of an edge detector. The 
Time, parameter is the expected execution time of the implementation in 
terms of the image size and the number of PEs allocated to the parti­
tion. The Input allocation and Output allocation parameters specify how 
the data is distributed among the PEs when the algorithm begins and 
ends execution.

Parameter
Implementation

Il 12
Mode SIMD MIMD

#  PEs /  #pixels 
“  64

^pixels

Time 6*image_size * „pF 4*image_size image_size
#PEs * #PEs 64

Input format I byte/pixel I byte/pixel
Output format edge list edge list
Input allocation regions regions
Output allocation regions regions

Parameter
Implementation

13 14
Mode SIMD MIMD

#  PEs ^  ^pixels 
— 64

=^pixels

Time 6*image_size 4*image_size image_size
#PEs #PEs + 64

Input format I byte/pixel I byte/pixel
Output format binary image binary image
Input allocation regions regions
Output allocation regions regions
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