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ABSTRACT

Edge detection is cast as a problem in cost minimization. This is achieved 

by the formulation of two cost functions which evaluate the quality of edge 

configurations. The first is a comparative cost function (CCF), which is a 

linear sum of weighted cost factors. It is heuristic in nature and can be applied 

only to pairs of similar edge configurations. It measures the relative quality 

between the configurations. The detection of edges is accomplished by a 

heuristic iterative search algorithm which uses the CCF to evaluate edge qual- j 

ity.

The second cost function is the absolute cost function (ACF), which is 

also a linear sum of weighted cost factors. The cost factors capture desirable 

characteristics of edges such as accuracy in localization, thinness, and con­

tinuity. Edges are detected by finding the edge configurations that minimize 

the ACF. We have analyzed the function in terms of the characteristics of the 

edges in minimum cost configurations. These characteristics are directly 

dependent of the associated weight of each cost factor. Through the analysis 

of the ACF, we provide guidelines on the choice of weights to achieve certain 

characteristics of the detected edges.

Minimizing the ACF is accomplished by the use of Simulated Annealing. 

We have developed a set of strategies for generating next states for the anneal- 

ing process. The method of generating next states allows the annealing process 

to be executed largely in parallel.
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Experimental results are shown which verify the usefulness of the CCF 

and ACF techniques for edge detection. In comparison, the ACF technique 

produces better edges than the CCF or other current detection techniques.



CHAPTER I  
INTRODUCTION

1.1 Overview of Edge Detection
Tlje detection of edges in an image is an important task in image 

processing. Its importance cannot be over-emphasized as it is often the front 
end processing stage in object reconstruction and image understanding systems 
[1, 2]; the accuracy in which this task can be performed is a crucial factor in 
determining the overall system performance. Edge detection is sometimes 
viewed as the dual of image segmentation; edges are boundaries between 
regions that have significantly different characteristics. The measure of 
difference in characteristics may be based on texture involving statistical [3] or 
structural properties in the gray levels, or they may be based on changes in the 
image intensity profile of the scene. A great deal of literature has been written 
on edge detection ( see [4-6] for an overview) and the majority of these have 
concentrated on detecting edges that are caused by changes in the image 
intensity profile. They have defined edges to be located at points of intensity 
discontinuity in the image and have traditionally defined three categories of 
ideal edges; these are the step, ramp and roof edges as shown in Figure 1.1. 
Detection algorithms based on intensity discontinuity usually result in
estimating the degree of slope in the intensity profile at each point in the 
image.

The classical edge detectors emphasize the use of difference operators 
which are the digital approximations to the derivative operators in the 
continuous domain. A major difficulty with differentiation is that it is not 
robust with respect to noise and the end result of applying difference operators 
to real images inevitably produce a high degree of false and fragmented edges, 
Torre and Poggio [7,8] showed that differentiation is an ill-posed problem (in 
the sense of Hadmard) and that it can be transformed to a well-posed problem 
by applying regularizing filters to the image prior to differentiation. The 
regularizing filters are essentially low pass filters that minimize a given 
stabilizing functional. There is a good intuitive basis for this since low pass
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(a)

Figure 1.1. Examples of intensity edges, (a) Step edge, (b) Ramp edge, (c) 
Roof edge.
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filtering essentially suppresses high frequency noise in images, and will tend to 
produce better edges at the differentiation stage.

Optimal filtering techniques have been used in the design of filters for 
edge detection. Dickey and Shanmugam [9] defined an edge to be a step 
discontinuity and showed that the ideal bandlimited filter to optimally localize 
its response about the edge is given by a prolate spheroidal wave function. 
Oanny [10] approached the problem of detecting edges by designing one 
dimensional optimal filters that satisfy a set of performance criteria. The 
optimal filter was then approximated by the first derivative of a Gaussian 
function. It was implemented by convolving the image with a Gaussian 
operator and then finding the gradient of the smoothed image. Instead of the 
gradient, Marr and Hildreth [11] used a rotationally invariant second derivative 
operator, the Laplacian, on Gaussian smoothed images. The edges were found 
by locating the zero crossings in the output of the V2G operator. A detailed 
discussion of the motivation for using the V2G operator is given by Marr [12].

Other approaches have used surface fitting techniques to find changes in 
the image intensity profile. These techniques are based on the use of various 
Sets of basis functions to describe the shape of the intensity surface. Each 
basis function has an associated weight and the goal of surface fitting is to 
estimate the weight values such that the sum of the weighted basis functions 
produce a minimal error analytic description of the intensity surface of the 
image. The presence of edges is based on the obtained description. Some of the 
classical digital derivative operators are based on derivatives of best surface fit 
models [13]. Hueckel [14] fitted ideal step edges to the image intensity and 
minimized the error of fitting by using a set of 8 basis functions defined on a 
circular disk. Haralick [15-17] used a model in which he fitted polynomial 
surfaces over small neighborhoods of each pixel, and derived expressions for the 
directional second derivative based on the polynomial coefficients. The pixel at 
the center of the fitted neighborhood was declared to be an edge if a negatively 
sloped zero crossing of the second derivative (taken in the direction of the 
gradient from the pixel center) is found within the pixel area. Nalwa and 
Binford [18] looked for significant step edges by fitting one dimensional 
hyperbolic tangent functions over every possible fixed square neighborhood in 
the image.

Other approaches to edge detection include the use of moment operators 
[19,20]. However, these were shown to be essentially equivalent to the standard 
gradient operators. Sequential techniques for contour tracing or edge 
linking [21-23] have been used. Such techniques usually involve tracing along a
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path in an image in search of thin continuous edges. They have been shown to 
be fairly insensitive to noise. Nevatia and Babu [24] extracted linear features 
in an image by convolving the image with masks corresponding to ideal step 
edges in different directions. The output was then thresholded and thinned and 
approximated by piecewise linear segments.

1.2 Some Recent Techniques in Edge Detection
We now describe in more detail four of the more recent approaches to 

edge detection. They are samples from the optimal filtering, surface fitting 
and sequential edge detection techniques mentioned above.

Derivative o f Gaussian

The derivative of Gaussian operator [10], denoted by VG, has been 
proposed as an approximation to the optimal filter for detecting ideal step 
edges. The optimality is based on a set of three performance criteria: (l) good 
detection, (2) good localization, and (3) single response to an edge. This 
method of detecting edges involve smoothing the image with a Gaussian 
function

G(x,y) =  k exp
2 I 2x - +  y '
2a2

(1.1)

where k is a normalization constant usually chosen so that all the nonzero 
values of G sum to one.

After smoothing, the gradient at each point in the image is computed by 
taking the partial derivatives in the x and y directions;

D =  V(G * I) .

where * denotes convolution, I is the original image, and D is the gradient of 
the smoothed image. An edge pixel is defined to be a local maximum of the 
magnitude of D in the direction of the gradient. The magnitude of D represents 
the edge strength at any edge point. Thresholding the edge strength is required 
to reduce false edge points. The smoothing parameter a  is application 
dependent. Larger values of a  results in better noise insensitivity at the expense 
of reduced image resolution.

L aplacianofG aussian

Tbe Laplacian of Gaussian is a rotationally invariant operator for the 
detection of intensity edges. Theoperatoris of the form



where k is a scaling constant.

V2G =  k X2 + y 2 X2 +  y2 )
2 a2 - 1 v. )

exp
2 a2k /

(1-2)

The edges in an image are detected by convolving the image with the V2G 
operator, and then finding the zero crossings at the output. To reduce false 
detection , the edge points are often detected by thresholding the slope at the 
zero crossings.

Facet model approach

The fact model [17] approach to edge detection uses surface fitting 
techniques to find ideal step edges in an image. It assumes that in each 
neighborhood of the image, the underlying intensity function /  takes on the 
parametric form of a cubic polynomial in the row and column coordinates;

/  (r>c) =  kx +  kjjr +  k3c -f- k4r2 +  k5rc +  k6c2 +

k7r3 +  k8r2c +  k9rc2 +  k10c3. (1.3)

A pixel is marked as an edge if, based on / ,  in the pixel’s immediate 
neighborhood there is a zero crossing of the second directional derivative taken 
in the direction of the gradient. The coefficients kj of Equation (1.3) are 
estimated by fitting the intensity data values with discrete orthogonal 
polynomials. The second directional derivative at point (r,c) on the line in the 
direction a  is given by

f  "  — 6[k7sin3 a  +  k8sin2 acos a  +  k9sin acos2 a  +  k10cos3 a]p -f

2[k4sin2 a  +  k5sin acos a  +  k6cos2 a],

where

p — V r 2 +  c2.-

CM)

If for some p, where the magnitude of p is less than the length of the side 
of a pixel, /  (p)<[0, T 7(P)=O and /  / (/5)t̂ 0> then there is a negatively sloped
zero crossing, and the center pixel of the neighborhood is marked as an edge 
pixel. To reduce false detection, the edge pixels are detected only if the slope 
exceeds a certain threshold.
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Sequentia lE dgeL inking
Eichel and Delp [23] proposed a sequential edge detection scheme called 

Sequential Edge Linking to find intensity edges in an image. The algorithm 
constructs a sequence of nodes (pixels) m  called a path, where

Htl - IXIq j IHj j • • • • j IIlj1 •

This path is a candidate edge path in the image. The path is assumed to be 
modeled as a Kth order Markov chain. That is, if we let

s i =  nrjI - (K— l) >

then assuming m0 is given,

Pr(m ) =  Pr(mj, m2,...., mn)

=  Pr(sn/sn-i)Pr(sn_ i/s n_ 2 ).-P r (si/s0).

The image is modeled as a two-dimensional random field. At each node x, 
the conditional probability under the hypothesis that it corresponds to an edge 
pixel is

Pi(fx =  y) =  Pr(fx =  y / x is an edge node). 

Sim ilarlyjtheconditionalprobabilityunderthenullhypothesisis 

p0(fx =  y) =  Pr(fx =  y /x  is a random node).

The algorithm searches for the paths that correspond to edges in the 
image based on a derived path metric of the form

r(m ,f)
n

=  E
i=l

P l( f Ini) , ,  N
— —  +  In Pr(si/si_1)
PolfHiJ

(1.5)

The first component of the path metric is a function of the image data. It 
is usually estimated from the output of gradient operators on the original 
image. The second component is a measure of the a-priori probability that the 
edge path proceeds in the given path direction. Using a sequential tree 
searching algorithm, the edges are detected by finding the paths that have high 
path metrics.

Despite the tremendous amount of research that has been done in edge 
detection, finding the edges in an image that correspond to true physical 
boundaries remain a difficult problem. Part of the reason lies in the fact that
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we really do not know explicitly what we are looking for in searching for edges. 
Although an edge has often been modeled as a unit step, it is a simple fact that 
ideal step edges hardly ever occur in real images. Furthermore, such a narrow 
concept of an edge ultimately restricts the applicability of the detection 
algorithm. For instance a detection algorithm which assumes that edges are 
ideal steps are invariably ineffective in finding roof edges or texture edges.

A second difficulty in many detection techniques is that the decision on 
the presence (or absence) of an edge is made without considering the local edge 
structure in the neighborhood of the pixel. This is particularly true of non­
sequential detection algorithms. This is a drawback since there is definitely 
some information from the neighborhood edges that can be exploited in the 
decision process. For instance, noise in an image causes many detection 
algorithms to produce fragmented edges; an algorithm that exploits local edge 
continuity information will be able to use this to reduce the amount of 
fragmentation. Two bther problems often encounted are the detection of thick 
edges and the detection of false sporadic edges caused by noise. Here again, 
local edge information can be used to reduce false detection and find only thin 
edges.

Sequential techniques have been effective in countering the problem of 
fragmentation and thick edges. However, computation time may be an 
inhibiting ,; factor because of the sequential nature of the processing. 
Furthermore, they are applicable mostly in contour tracing tasks where the 
scene does not contain an excessive number of edges. Since they are usually 
based on the output of feature enhancement operators, their performance is 
very, much dependent on the operator used.

1.3 Edge D etection by Cost M inimization
We cast edge detection as a problem in cost minimization. We define a 

cost function over the domain of all possible edge configurations on a square 
lattice. The edges are detected by finding the configuration that minimizes this 
function. While most of the other detection techniques previously mentioned 
can also be viewed as some form of cost minimization, this approach is unique 
in tbe way the cost function is defined. The function not only uses information 
from image data, but it also exploits information from local edge structure. It 
takes the form of a linear combination of weighted cost factors. These cost 
factors capture the desirable characteristics of good edges such as edge 
thinness, continuity and well localization. By appropriately adjusting the 
weights of the cost factors, we can selectively emphasize the relative



8

importance of the different edge characteristics in the detection process.

There has been little attempt to formulate the problem of edge detection 
as one of cost minimization where the function is dependent on edge structure. 
By this we mean that the function takes into account not only the pointwise 
presence of edges in an image, but also the local shape and continuity aspects 
of the edge. Two major difficulties arise in such an approach to edge detection. 
T hi first is in the difficulty of defining a suitable cost function for edges. The 
second is that the minimization of such a function inevitably results in one 
that belongs to the class of non-deterministic polynomial time complete (NP- 
complete) problems. The search space for the minimum cost solution is 
extremely large as the number of possible solutions is equal to 2K, where K is 
the number of pixels in the image.

There are a number of advantages of using the cost minimization 
approach described in this report. The first is that it assumes no preconceived 
concept of an edge except that it is a boundary separating dissimilar regions. 
Hence the approach is flexible in terms of being able to detect Various types of 
edges. Second, it uses edge structure information such as edge continuity and 
thinness, and consequently the algorithm is more capable of detecting edges 
that are well localized, continuous and thin. Also, it will be seen that the 
algorithm has edge linking capabilities. Third, unlike sequential techniques, the 
detection algorithm can be implemented largely in parallel.

, In Chapter 2, we present the first cost minimization approach to detect 
edges based on a comparative cost function. This function is a heuristic cost 
function for evaluating edges. In Chapter 3, we present a second approach 
based on an absolute cost function. This a well defined function over the set of 
all possible edge configurations for an image. We will present a mathematical 
description of edges and analyze the characteristics of edges that will be 
produced by minimizing this function. In Chapter 4, we will describe 
Simulated Annealing and show how it can be used to find low cost edge 
configurations for an image. In Chapter 5j we present experimental results of 
the application of both the comparative cost function and absolute cost 
function approaches to edge detection. Finally, in Chapter 6, we conclude by 
listing several potential areas of further research.



CHAPTER 2
A  COM PARATIVE COST FUNCTIO N APPROACH  

TO EDGE DETECTION

2.1 Introduction
The main objective of this work is to formulate edge detection as a 

problem in cost minimization. We will present two approaches to' the 
formulation. The first approach uses a comparative cost function to evaluate 
the relative quality of pairs of similar edge configurations. It is heuristic in 
nature and the function can only be applied to edge configurations that are 
almost identical. In contrast to this, the second approach uses an absolute cost 
function Which can evaluate the relative quality of any pair of different edge 
configurations. In this chapter, we will present the comparative cost approach 
and describe an iterative algorithm to find edges in an image. We will also 
discuss the similarities and dissimilarities of this algorithm with relaxation 
techniques/

Central to both approaches is the formulation of a cost function to 
evaluate edges. In order to accomplish this, we first have to specify what We 
mean by an edge. Unfortunately, the concept of an edge is a difficult one to 
define precisely; in the next section, we will present our concept of an edge in 
order to establish common ground for discussing edge detection.

2.2 Goncept o f An Edge
A precise notion of an edge is crucial to the formulation of a cost function 

for evaluating edges. However, it is a difficult task to explicitly define what 
constitutes an edge in an image. The perception of edges by the human visual 
system is ait extremely complex process that is strongly influenced by prior 
knowledge. There are a number of visual paradoxes in which an edge is clearly 
perceived when none physically exists (see for instance [12] p. 51). Every 
individual has an intuitive notion of what edges are, but this notion varies 
from person to person. Indeed, if two individuals are given identical images 
and asked to find the edges, they may well produce similar looking but non­
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identical edges. Consequently, no absolute definition of an edge exists, and the 
performance of edge detection algorithms are only as good as their inherent 
assumption of what edges are.

Edges in an image can generally be divided into two categories; intensity 
edges and texture edges. Intensity edges are those edges that arise from abrupt 
changes in the intensity profile of the image. Examples of these are the step, 
roof and ramp edges as shown in Figure 1.1. Texture edges are boundaries of 
texture regions that are invariant to lighting conditions. A number of texture 
edges are usually defined relative to image models [25]. A number of detection 
algorithms adopt a narrow concept of edges and are devoted to finding only 
specific kinds of edges in an image. A weakness of such algorithms is that they 
are invariably ineffective in detecting edges outside of their scope.

For our purpose, we will define an edge in a general sense so as to include 
a wide variety of edge types. However, we will restrict our attention to those 
edges that are evident from the image data itself and not from higher level 
human cognitive processes. With this in mind, we define an edge to be a 
boundary in an image that separates two regions that have significantly 
dissimilar characteristics; the regions are assumed to lie on either sides of the 
edge, The cause of the dissimilarity may be due to a combination of several 
factors, such as the geometry of the object, surface reflectance characteristics, 
viewpoint and illumination. The term “dissimilarity” is used in its broadest 
sense to include any form of difference in the structure of the intensity values 
that is evident in the image. Clearly, this definition includes both intensity 
and texture edges. For instance, the well known step edge is a boundary 
separating two regions that are dissimilar in the sense that they have different 
constant intensity values. In the same vein, texture edges are boundaries 
separating regions having different textural properties.

In addition to the fundamental property that edges separate 
nonhombgeneous regions, our concept of edges is also governed by certain 
structural characteristics that edges should possess. These characteristics 
determine the shape and position of the edges in an image. We list four 
desirable characteristics that edges should have.

(I) Accurate localization

It is desirable that an edge should lie in a spatially accurate position, 
partitioning the dissimilar regions in the best possible way. In many real 
images, the position of an edge may be ambiguous. This is often the case when



a collection of closely adjacent boundaries will separate the same pair of 
dissimilar regions. Since each boundary in the collection has a unique spatial 
location, the degree of dissimilarity between the regions on either sides of the 
boundary will vary for each boundary in consideration. We say that an edge is 
accurately localized when it coincides with the boundary that results in the 
maxipmm degree of dissimilarity.

(2) Thiness

Since edges are boundaries, it is desirable that they form thin lines in the 
image. Ideally, they should be only one pixel wide in the direction that is 
perpendicular to the edge direction.

(3) Continuity

.̂  •jvEdges.shotiM exhibit a continuity that reflects the nature of the boundary 
in the physical environment. Most physical boundaries of interest are 
continuous in nature. It is desirable that correct edges should also possess this 
property. However, we do not constrain edges to form closed boundaries in an 
image. We will use the term fragmentation to describe edges that aie 
sporadically discontinuous.

(4)Length

Noise and fine texture may cause the appearance of short scattered edges 
of one or two pixels in length. We will omit from our consideration such short 
edges and restrict our concept of edges to those that are at least 3 pixels long.

In practice, there is often a tradeoff between the different desirable 
characteristics of an edge. Due to conflicting edge requirements, there are many 
situations where it is not possible to simultaneously achieve two or more 
characteristics. For instance, requiring every edge in an image to be long 
and continuous may result in poor localization and the appearance of false 
boundaries. Hence, it is appropriate to associate a measure of importance with 
each desirable edge characteristic so that situations involving conflicting edge 
requirements may be resolved. It will be seen in the formulation of the 
comparative cost function that the importance of each characteristic is 
emphasized by attaching a weight to its associated cost factor.



2.3 A  C O M PA R A T IV E  C O ST  FU N C T IO N

The goal of edge detection is to find the pixels in an image that satisfy the 
concept of an edge as described in the previous section. The edges should be 
detected with minimum error, where the error corresponds either to missing 
edge pixels, or edge pixels that do not satisfy the edge criteria. To find the 
edges, it is of crucial importance to use information from both local and global 
edge structure in the detection process. The reason for this is that the Critefia 
for an edge includes characteristics such as thinness, continuity and length 
which are based solely on the structural nature of the edge. These structural 
properties are not evident from the image data itself; they have to be 
determined by examining the structure of the edge configuration. Hence, an 
important key to good detection is to incorporate edge structure information in 
the detection process. As an example, consider the case of a fragmented edge 
that is the result of noise in the image. A detection algorithm that uses 
information from local edge structure will be able to improve the edge 
continuity by linking together locally disconnected edge segments. Similarly, 
thick edges can be made thin by the removal of excess edge pixels. It will be 
seen that the comparative cost function approach to edge detection uses edge 
structure information in the detection process.

The comparative cost function approach to edge detection is essentially an 
iterative algorithm that makes pointwise (pixel by pixel) decisions on the 
presence of edges in the image. The heart of the decision making process is the 
comparative cost function. The function mathematically captures the intuitive 
concept of an edge. It compares two edge configurations by considering their 
edge structure and the image data. The decision process consists of choosing 
the better edge configuration and iterating the procedure.

We now introduce some notation which will be used in the definition of 
the comparative cost function. An image G is a two-dimensional array of 
pixels g(m,n), I <  m <  mmax, I <  n <  nmax, where each pixel g(m,n) has 
gray level in the range I <  g(m,n) <  255. For simplicity, we will assume that 
the images are square with mmax =  nmax =  N. Similarly, we define an edge 
configuration Si to be a two dimensional array of pixels S[(m,n),l <  m,n <  N, 
where each pixel takes on a binary value 0 or I. If Sj(m,n) == I, the pixel 
s^myn) is called an edge pixel; otherwise it is a non-edge pixel. We denote as S, 
the set of all possible edge configurations on an N x N  square lattice. Since 
every site in the lattice can have one of two possible edge labelings, the number 
of elements in S is equal to 2N . Even for extremely small images, this number
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is so large that it is impossible to implement any exhaustive search algorithm 
to find the best edge configuration. The comparative cost function and search 
procedure is a heuristic technique for finding edge configurations according to 
the edge criteria.

2.3.1 Valid Edge Structures

Jn order to define the cost function, we have to first specify what is meant 
by valid edge structures. Using an 8-neighbor representation, every edge pixel 
has a maximum of 8 neighboring edge pixels in a 3x3 neighborhood. Valid 
edge structures are defined as follows. An edge pixel that has O or I other 
neighboring edge pixel is a valid edge structure. An edge pixel that has 2 other 
neighboring edge pixels is a valid edge structure if the pixels are arranged such 
that the resulting edge structure is continuous and does not turn by more than 
45 degrees. We call this a valid 2-neighbor edge structure. Figure 2.1 shows 4 
valid 2-neighbor edge structures. Figure 2.2 is an invalid edge structure since 
the edge makes a 90 degree turn to the right. Taking into account rotations of 
the edges in Figure 2.1, there is a total of 12 possible valid 2-neighbor edge 
structures. An edge pixel that has 3 other neighboring edge pixels is a valid (3- 
neighbor) edge structure if the edge pixels form one of the 8 structures shown 
in Figure 2.3. Although there are 56 different structures involving an edge 
pixel with 3 neighbors, only the 8 in Figure 2.3 allow for the possibility that 
each of the neighboring edge pixels can form valid edge structures with other 
pixels'in its neighborhood. An example of this is shown in Figure 2.4. Edges 
with 4 or more neighboring edge pixels are defined to be invalid structures.

2.3.2 Region Dissim ilarity

In order to find edges (or boundaries) that separate regions that are 
dissimilar, we need to specify the regions of interest on either sides of an edge. 
This is done by first defining the position of an ideal edge with respect to a 
given object. The position of this edge must be correctly defined so as to 
accurately reflect the geometry and size of the object. This is important when 
high precision measurements are required. Figure 2.5 shows a square object 
with a corresponding ideal edge. In this case, the position of the ideal edge is 
poorly defined as it does not accurately depict the relative size of an object. We 
illustrate this fact by looking at the image of a pair of embedded boxes as 
shown in Figure 2.6(a). Consider the spacing between the vertical portions of 
the edges; this figure indicates that the distance between the edges 
corresponding to the vertical sides of the smaller square is 5 units, while the



Figure 2.1. Valid 2-neighbor edge structures.
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X

Figure 2.2. An invalid edge structure.
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Figure 2.3. The 8 valid 3-neighbor edge structures.



Figure 2.4. Examples of edge structures, (a) An example of a valid 3- 
neighbor edge structure. Notice that pixel Z1 is part of a valid 3- 
neighbor structure in a 3x3 window neighborhood indicated by 
the dotted lines. Pixel Z2 which is a neighbor of Z1 also forms a 
valid edge structure with its neighbors, (b) An example of an 
invalid 3-neighbor edge structure. Notice in this structure that it 
is not possible for the pixel at Zj or the pixel at I2 to fo rm  a. valid 
edge structure with its neighboring edge pixels because of the 
invalid 2-neighbor structure in its neighborhood.
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Figure 2.5. An example of a poorly defined ideal edge for a square.
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Figure 2.6. Edges resulting from the definition of the ideal edge in Figure
2.5. (a) Edges of a pair of embedded boxes, (b) Edges of a pair of
adjacent squares. Notice that the edge positions are either 
ambiguous or the relative distance between the edges is incorrect.
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distance from the edge on oner side of the smaller square to the corresponding 
edge of the larger square is only 4 units. This is of course incorrect as both the 
measurements should be 5 units. Figure 2.6(b) illustrates another difficulty 
with the above definition of the ideal edge for a square. Although the dividing 
line between the adjacent squares is clearly defined in the image, the position 
of the ideal edge is ambiguous for the vertical edge in the center. Besides these 
difficulties, the defined edge is also undesirable because it contains invalid edge 
structures at the corner regions of the square.

A better definition of the ideal edges for a square and hexagon is shown in 
Figure 2.7. These are thin edges that satisfy our concept of an edge. Figure 
2.8 shows the corresponding edges for the embedded boxes and the pair of 
adjacent boxes of Figure 2.6. Notice that these edges do not suffer from the 
difficulties of the previous example in Figure 2.6. Based on Figure 2.7, we 
define for each valid 2-neighbor edge structure, a pair of regions on either sides 
of the edge. The regions are chosen with the intuitive notion that edges 
separate regions which are non-intersecting, and that these regions lie in a close 
vicinity to the edge. These regions, which shall be labeled B i and R2 for each 
edge structure, are the regions of interest on which a dissimilarity measure will 
be applied. The 12 valid 2-neighbor edge structures, the (circled) edge pixel 
which they are centered around, and their associated regions are shown in 
Figure 2.9. Depending on the application and the specific measure of 
dissimilarity used, larger (or smaller) regions for R l and R2 could be defined.
For example, the regions of interest could be extended as shown in Figure 2.10.

• ' . "  "■ >' ' . • : '■ - ' ;

2.3.3 The Com parative Cost Function  
Given a pair of nearly identical candidate edge configurations Si and S-

that differ only at one pixel location I =(m ,n), we define the comparative cost 
function C(Sj5Sj) as: -

- C f e S jJ =  I > k [Ck(SjlZ ) -  Ck(SbI)] (2.1)

=  E wIcACk(Sj5Sj) (2.2)
. . I c = I  v  "/V '  ■

where wk >  0 and 0 <  Ck <  I.

The function is a weighted sum of the difference of 5 cost factors. Each of 
the weight values are given by wk. It should be noted that I is any location 
within the square array of pixels. For ease of notation, we will write C(Si5Sj) as



yDOur

L i
X X X X

Boundary of hexagon 
Ideal edge

X X X X X
X X

X X
x X

X X
X X
X X
X X
X X
X X

X X
X .. X

X X
X X

X X
X X X X ;

Figure 2.7. Ideal edges for a square and a hexagon.
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2.7. (a) Edges of a pair of embedded boxes, (b) Edges of a pair of 
adjacent squares. Notice that the edges do not suffer from the 
difficulties of the previous example in Figure 2.6.
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Cjj or, when no confusion occurs, simply as C. Also, we shall refer to the pixel 
at location I, simply as pixel /. Now, we specify that

>  ' 0 
<  0

=> Sj is a better configuration 
:>  Sj is a better configuration (2.3)

This implies that we try to minimize the sum of the weighted cost factors Cjc.

The motivation for making Cjj a weighted sum of cost factors Cjc is that 
each of the factors should, in some way, capture a desirable characteristic of 
edges. Ideally, each cost factor should affect one and only one characteristic so 
that the relative importance of each can be appropriately emphasized by its 
corresponding weight Wjc. In practice* this is difficult to achieve as the different 
characteristics often exhibit some form of dependency on each other. For 
instance, minimizing fragmentation may well result in poor localization and 
the appearance of false boundaries.

2.3.4 The Cost Factors

The square grid of an edge configuration is visualized as an overlay on the 
image; the cost factors are computed by examining the local structure of the 
edge configuration about pixel I, and the underlying image data. In the 
following paragraphs, we define the value of each cost factor Clc which is used 
in Equation (2.1).

I) Cd: Cost for region dissimilarity.

The cost for region dissimilarity is based on a function fc(Rl,R2) that 
measures how different region R l is from R2. Large values of fc(Rl,R2) 
correspond to large dissimilarity. This measure could be a simple difference of 
gray level averages in R l and R2, or it could be a more complicated measure 
based on other properties of the gray levels. Depending on the application and 
the features of interest in an image, there are numerous possibilities for the 
definition of fc(Rl,R2). As previously mentioned, to find the ideal step edges in 
an image, we could define the dissimilarity measure to be the difference of 
constant gray levels in the regions R l and R2. For detecting texture edges, we 
could define fc(RI,R2) based on statistical or structural properties of the gray 
levels in the different regions. It is clear that there is great flexibility in such an 
approach to edge detection as we do not restrict the nature of the dissimilarity 
between the nonhomogeneous regions. This is in contrast to many detection 
algorithms that assume some specific nature of edges and are devoted to



finding only such edges.

Nop-maximal suppression is important in ensuring the accurate 
localization of an edge point in an image. In practically all real images, the 
dissimilarity measure has the tendency to enhance the points in the vicinity of 
the true boundary in addition to enhancing the boundary itself. This is 
undesirable as a large number of false boundary points are enhanced. One 
approach to mitigate this tendency is to employ non-maximal suppression 
when computing the dissimilarity. However, an undesirable side effect that 
results from using non-maximal suppression is that some true boundary points 
may also be suppressed together with the false points. This may increase the 
amount of fragmentation in the boundary. It will be seen that the cost factor 
for continuity will compensate for this effect by linking together locally 
disconnected edges;

In our implementation, fc(Rl,R2) is computed as follows. Let d be the 
magnitude of the difference of gray level averages in R l and R2, i.e.,

d - I R i  I S e(U) -
(i,j)€Rl IR 2 1 E g(i.j)

(i,i)€R2

where I R l j , |R 2 j denotes the number of pixels in R l and R2 respectively. 
Note that 0 <  d <  255. Let m(d) be a piecewise linear function that maps d
onto the unit : 
dissimilarity, i.e.,

interval [0,1]. We use m(d) as our measure of region

fc(Rl,R2) = m(d).

Suppose
c  ;; ■

v ' -  ■ . . . .
m(d) =

d
‘■2tr ’ 

I ,

0 <  d <  2t,. 

otherwise . (2.5)

This is a piecewise linear monotonic function that is comprised of a ramp 
followed by a flat region of constant value equal to one, as shown in Figure 
2.11. The parameter tr, which we shall call the threshold, is application 
dependent. It determines the slope of the ramp. The flat region causes 
undesirable effects when non-maximal suppression is applied to the value of 
fcCR'ljR'^). Since values of d greater than 2tr are mapped to the same value, 
rank order information that is useful in the suppression process is lost. To 
avoid this, we choose the strictly monotonic mapping function shown in Figure



Figure 2.11. A monotonic mapping function

Figure 2.12. A strictly monotonic mapping function
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2.12. It is formed by tbe concatenation of 2 ramps; the first ramp rises to a 
maximum value of 0.9 while the second rises from 0.9 to I. The function is 
specified by the following equation:

/

1(d) =

d
2t„ ’

0*9 -f- (d — 1.8tr)
255 -  1.8L

0 <  d <  1.8L

otherwise.
(*■«)

The cost for Region dissimilarity C^Sj,/) penalizes non-edge pixels by 
assigning to them a cost value that is proportional to the dissimilarity at the 
pixel location. If I is an edge pixel, no penalty for dissimilarity is made; this is 
achieved by assigning to edge points a dissimilarity cost value of zero. The 
cost for region dissimilarity is computed by first examining the edge structure 
of Si in a local 3 x 3 window neighborhood centered at pixel L If the pixel at I 
is an edge pixel, we set Cd(SijZ) =  0. If the pixel at I is not an edge pixel, we 
proceed as follows. Observe that there are 12 possible valid 2-neighbor edge 
structures that could fit in a 3 x 3  window region centered at I. The best 
fitting edge structure is chosen according to the following cases:

Case I: There are exactly 2 neighboring edge pixels which will form a valid 
2-neighbor edge structure with an edge pixel at I. This valid structure 
is the best fitting edge structure.

Case 2: There are more than 2 neighboring edge pixels, one or more pairs of 
which will form valid 2-neighbor edge structures with an edge pixel 
at Z. Amongst these valid edge structures, the one which results in the 
maximum value of fc(Rl,R2) is chosen as the best fitting edge 
structure.

Case 3: If the local edge structure does not satisfy cases I or 2 above, then 
amongst the 12 possible valid 2-neighbor edge structures that could fit 
in a 3 x 3 window region centered at /, the one which results in the 
maximum value of fc(Rl,R2) is chosen as the best fitting edge 
structure.

Next, we perform non-maximal suppression by shifting the location of the 
best fitting edge structure in a direction determined by the edge structure. For 
straight vertical, horizontal and diagonal edge structures, the shifting is 
performed by moving the edge location by one pixel in each of the opposite 
directions perpendicular to the edge. For all other edge structures, the shifting
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is done by moving the edge one location in each of the four directions: up, 
down, left and right. Figure 2.13 shows how the edges are shifted for three 
edge types. If the maximum value of fc(Rl,R2) over the shifted edge structures 
is greater than the value of fc(Rl,R2) for the unshifted edge structure, we set 
Cd(Sj,/)=0; otherwise C(i(Si,Z)=fc(Rl,R2) for the unshifted edge structure.

2) Cf1:' Cost for edge thickness.

Using an 8-neighbor representation of the edge, we define a thick edge to 
be an edge structure that has multiple links between 2 or more of its edge 
pixels. A thin edge is an edge that is not thick. A thick edge pixel is defined to 
be an edge pixel whose presence causes multiple links between its neighboring 
pixels. The cost for edge thickness is determined by considering pixel I in edge 
configuration Si. If / is a thick edge pixel, then Ct(SijZ) — I; otherwise 
Ct(SijZ) =  0. Examples of thick edges are shown in Figure 2.14. The edge in 
Figure 2.14(a) is thick because there are multiple links between several of the 
edge pixels. For instance, pixel X1 is connected to pixel X5 by two links; the 
first is through pixels X2 and X4, and the second is through pixel X3. The edge 
in Figure 2.14(b) is also a thick edge because there two links between pixels X1 
and X3; the first is a direct link between the two, and the second is through 
pixel X2.

3) Cc: Cost for edge continuity.

This cost factor reduces the occurrence of single missing edge pixels that 
result in a disconnected edge. Cc(SvI) is computed by examining Si in a local 
5 x 5 window neighborhood centered at pixel Z. If pixel I is not an edge pixel, 
and there are 2 short edges less than 3 pixels each that could be connected by 
pixel Z to form a thin edge that is at least 4 pixels long, we set Cc(SijZ) =  I; 
otherwise Cc(SijZ)=O- Examples of cost assignment for edge continuity is 
shown in Figure 2.15.

4) C1: Cost for edge length.

This cost factor reduces the occurrence of short edge pixels that are less 
than 3 pixels long. If pixel Z is part of an edge that is less than 3 pixels long, 
we set C1(SijZ) =  I; otherwise C1(SijZ) =  0.
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(j) (k)

Figure 2.13. Shifting edge positions for non-raaximal suppression, (a) Vertical 
edge and shifting directions, (b) and (c) are the shifted edge 
positions of the edge in (a), (d) Diagonal edge and shifting 
directions, (e) and (f) are the shifted edge positions of the edge in 
(d). (g) An edge that turns by 45 degrees, (h) to (k) are the four 
shifted edge positions.
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Figure 2.14. Thick edges, (a) Thick edge of 5 pixels, (b) Thick edge of 3 pixels.
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Figure 2.15. Cost assignment for edge continuity, (a) Cc(SijZ)=I. (b) 
^c(SijZ)=O. (c) Cc(Sj,/)=0.
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5) Ce: Cost for number of edge pixels.

Tbe cost factor Cd for region dissimilarity Will favor the placement of edge 
pixels at all points where the measure of dissimilarity fc(Rl,R2) is non-zero. 
This causes an excessive number of edges to be detected. To suppress this, we 
assign a cost for each additional edge pixel detected. If pixel I is an edge pixel, 
we set Ce(SijZ) =  I; otherwise Ce(SijZ) =  0.

The comparative cost function is a weighted sum of the above cost 
factors. It should be noted that the cost factor Cd uses both image data and 
edge structure information, while Cc, Ce, C1 and Ct uses only edge structure 
information. The utilization of this function to detect edges is based on a 
heuristic search procedure which is the subject of the following section.

2.4 A HEURISTIC SEARCH ALGORITHM
In this section, we describe an iterative algorithm that uses the 

comparative cost function to find a good edge configuration for the image. As. 
previously described in Section 2.3.3, the cost function compares two very 
similar edge configurations and produces a value that indicates which of the 
configurations is better. To use this function, we will need some means of 
generating new configurations. The method of generating a new configuration 
is to take the previous best configuration and complement the edge label of one 
of its N x N pixels. Clearly, there are a possible of N2 new configurations that 
can be generated from the previous best configuration. Basically, the 
algorithm begins by selecting any arbitrary edge configuration and calling it 
the best. It then recursively generates new configurations that are compared 
with the previous best by means of the cost function. The algorithm is as 
follows:

(1) Begin by selecting any arbitrary edge configuration Si and any location I 
=(m ,n), where I <  m,n <  N.

(2) Define a new edge configuration Sj such that it is identical to Si except at 
pixel I (where it is the complement).

(3) Compute C iJ and select the better of the two configurations according to:
■ . V-

^  0 = >  Si is a better configuration 
<  0 = >  Sjis abetterconfiguration

Label the selected configuration Si.



(4) Pick a new location I  =(m ,n), where I <  in,h <  N
(5) If stopping criterion is not satisfied, Repeat from step (2).

The algorithm terminates either when no better configuration can be 
found after every possible new configuration has been tried, of when a suitable 
stopping criterion is satisfied. A simple stopping criterion is based on the 
number of better configurations found after K iterations. If this number does 
not exceed a certain minimum, the algorithm stops. Each new location / may 
be selected either in a deterministic or random manner; comparisons have been 
made and experimentally it has been found to have little effect on the final 
result. However, it is essential that every possible pixel location be selected at 
least once. Consequently, it has been found to be computationally more 
efficient to choose new values of I by sequentially stepping through the image 
in a raster scan fashion. When this, is done, typically 3 to 5 iterations through 
the image is sufficient for the algorithm to converge according to the stopping 
criterion.

The algorithm described above begins with a random edge configuration 
and attempts to change the edge labeling at every pixel in a sequential manner. 
The comparative cost function is used to decide if the change is successful. 
When viewed in this way, the algorithm is a sequential pointwise edge 
detection process that uses information from image data, information from 
local edge structure, and information from past decisions at neighboring pixels.

2.4.1 Selecting the weights

Many edge detection algorithms do not use local edge structure 
information in the detection process. Those that do can usually be classified as 
some type of curve or boundary tracing technique. The comparative cost 
function approach to finding edges is unique in the way it attempts to 
incorporate edge structure information in the detection process; the edge 
information is captured in the cost factors. By altering the weights Wjc 
associated with the cost factors, we can change the amount of emphasis placed 
on each factor. Consider the situation where all the weights are zero except for 
wd and we. The edge detection process then becomes similar to the 
straightforward thresholding approach to edge detection; information about 
local edge structure, such as thinness, continuity and length is not used. It 
should be noted that scaling all the weights by a constant will produce the 
same results as using the unsealed weights.
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For our implementation, we used the values WcJ =  2.0, wt =  1.1, wc =  1.1, 
we =  1.0, and W 1 =  1.1. First, let us just consider the cost factors for region 
dissimilarity and number of edge pixels. When we use the weight values of 2.0 
and 1.0 for WcJ and we respectively, edge pixels will be detected at all points 
where Ccl Si: 0.5. However, when we take into consideration all 5 cost factors 
and their associated weights, the interaction of the different factors will result 
in several constraints on the detection process. First, thick edges will be 
disallowed; even if Ccl= I for a thick edge pixel at location /, the weight values 
of 1.1 and 1.0 for wt and we, respectively, will always favor the removal of the 
edge pixel. Similarly, fragmentation will be reduced as edges that are separated 
by only one pixel will be connected together by the weight value of 1.1 for wc. 
Since the cost factor C1 removes short edges, the weight value of 1.1 for W1 will 
ensure that edges that are less than 3 pixels long will not be detected. When 
large values (greater than 0.5 approximately) for W 1 are used, it is necessary to 
set W1 initially to zero for the first several iterations, and then to its correct 
value for the remaining iterations. This is to avoid certain undesirable local 
minimum states that are possible. For instance, if the initial state contains no 
edge pixels, then a weight combination of 2.0, 1.0, 1.1 for wd, we, wj 
respectively, will produce no edges regardless of how many iterations are made. 
This is because the combined value of we and W1 exceeds that of wd, preventing 
transition to any Other state from the initial state.

2.5 COM PUTING THE COST
Since the comparative cost function is used repetitively in the detection 

algorithm, most of the computation is in determining the value of Cjj-From a 
computational standpoint, it is of major importance that this Value can be 
determined in an efficient way. One approach to determine Cjj would be to 
compute each cost factor independently, and then sum the difference as 
specified in Equation (2.1). However, this is a naive approach that does not 
take into account the interdependence of the cost factors. For instance, an edge 
that is a valid 2-neighbor structure is thin, continuous and at least 3 pixels 
long; the fact that it is a valid structure allows us to determine 3 of the 5 cost 
factors immediately. A great deal of reduction in computation time can be 
achieved by pooling together information affecting each of the different factors 
and organizing it in a form that will allow for efficient computation. This is 
achieved by a decision tree structure as shown in Figure 2.16. The structure 
allows for the simultaneous computation of several cost factors by traversing
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C S= C S= Cy = O

T=3 ^

1Ct = o
C# = 0

T  = 1

Qt = 0 Ct = 1 CC1 =  1
Cy =0 Ci = 0

Figure 2.16. Computation of cost factors using a decision tree.
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the tree from root to leaf following the relevant path. The tree is 5 levels deep. 
At each node, the decision as to which branch to take is governed by 
conditions that are assigned to each branch. These conditions are exhaustive 
and mutually exclusive; traversal to the next node is made by following the 
branch where the condition is satisfied. The conditions, which are abbreviated 
by labels, are summarized as follows:

LABEL DESCRIPTION 

E The pixel at I is an edge pixel.

E The pixel at I is not an edge pixel.

T=n The total number of edge pixels T, in a 3 x 3  neighborhood about I 
is equal to n. This total does not include the pixel at /.

V2 The two neighboring edge pixels will form a valid 2-neighbor edge 
structure with an an edge pixel at I.

V2 The two neighboring edge pixels will not form a valid 2-neighbor edge 
structure with an an edge pixel at I.

V3 The three neighboring edge pixels will form a valid 3-neighbor edge 
structure with an an edge pixel at /.

V3 The three neighboring edge pixels will not form a valid 3-neighbor 
edge structure with an an edge pixel at I.

EV2 Some pairs of neighboring edge pixels will form a valid 2-neighbor 
edge structure with an edge pixel at I.

EV2 No pair of neighboring edge pixels will form a valid 2-neighbor edge 
structure with an edge pixel at I.

CE An edge pixel at I will link 2 short segments, each less than 3 pixels, 
to form a thin continuous edge segment that is at least 4 pixels long.

CE An edge pixel at I will not link 2 short segments to form a thin 
continuous edge segment that is at least 4 pixels long.

L3 The edge pixel at / is part of an edge that is at least 3 pixels long.

L3 The edge pixel at I is not part of an edge that is at least 3 pixels long.

CT The 3 neighboring edge pixels are either clustered together forming an 
“L” shaped region in one corner of the 3x3 window, or lined up



straight along one of the 4 straight borders of the window.

CT The 3 neighboring edge pixels are neither clustered together forming 
an “L” shaped region in one corner of the 3x3 window, nor lined up 
straight along one of the 4 straight borders of the window.

fn This is the non-maximal suppressed value of fc(Rl,R2); the edge
structure used to compute fc(Rl,R2) is the one obtained by using case 
"n” of the best fitting edge rule (discussed in Section 2.3.4).

A further reduction in computation time (by approximately half) is 
achieved by observing that configurations Si and Sj differ only at pixel location 
/, and consequently that CiJ can be determined simply by considering Si. We 
need not compute Ck(SijZ) and subtract it from Ck(SjjZ); we can compute 
ACk(SitSj) directly by considering Si or Sj in the neighborhood of I. The 
decision tree for this is shown in Figure 2.17, This tree is similar to that shown 
in Figure 2.16; traversal from one node to the next is governed by the 
conditions assigned to each branch. The value of Cij is determined by 
appropriately traversing the tree from root to leaf following the relevant path. 
This tree assumes that configuration Si does not have an edge at I while Sj 
does. If the opposite is true, then Cij is determined by first computing Cji 
using this tree, and then negating the result. The cost function has the 
property that CiJ ==—Cji.

It has been previously mentioned in Section 2.4 that the heuristic search 
algorithm can be viewed as a procedure where we sequentially try to 
complement the edge labeling at every pixel location in the image. It is 
important to note that each cost factor Cjc(SivZ) is only dependent on the value 
of the pixels in a neighborhood that is no larger than a 5 x 5 window about 
location /. Consequently, the decision of the edge labeling at pixel I1 can be 
made independently of the labeling at Z2, if Z1 and Z2 are 2 or more pixels 
apart. Hence, although the algorithm is sequential, the processing can be 
implemented to a large extent in parallel if the pixel locations are chosen such 
that any pair are at a distance of at least 2 pixels apart. We could, for 
instance, attempt to change the pixel labeling of every third pixel in a T Q V f at 
every third row. For an N x N  image, there are approximately N2/9 such 
locations. The processing at each location can be done in parallel and the 
decisions on the edge labeling can be made simultaneously. This is significant 
as it results in a reduction of the number of sequential processing steps by a 
factor of N2/9.
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Figure 2.17; Direct computation of AClc(SiJSj) using a decision tree.



2.6 R elaxation  Techniques
Relaxation [4,26-28] is an iterative approach to segmentation that makes 

“probabilistic decisions” at every point in parallel at each iteration; These 
decisions are then adjusted at successive iterations based on the decisions made 
at past iterations. In this section, we will discuss some similarities as well as 
dissimilarities of the heuristic search algorithm with relaxation techniques.

Consider the task of classifying a set of n objects A1,.....An into m classes
g I,-....Cm. The basic approach of probabilistic relaxation is to assign to each 
object A;, a vector of probabilities pjj, I <  j <  m where each element of the 
vector is indicative of the likelihood that object Ai belongs to class Cj. The 
elements of the vector are assumed to sum to one:

SPij =  1 •

For each pair of class assignments, AiG Cj and Ah6 Ck, there is a quantitative 
measure of the compatibility of the pair, denoted by c(i,j; h,k). We assume 
that c(i,j; h,k) lies in  the range [-1,1] with larger values indicating good 
compatibility and low values indicating poor compatibility; zero represents the 
“don’t care” situation. Based on this compatibility function, the probability 
vectors are altered in parallel using an iterative scheme. There are no fixed 
rules as to how the vectors are altered; numerous heuristic methods exist. 
Intuitively, we would like to increase the probability pjj if the class assignment 

G Gj is highly compatible with AilG Cic, and Pilic is large. Conversely, we 
would like to decrease it if the assignments are incompatible, and phk is large. 

Tf Phk is l°w, we do not want to alter PiJ very much regardless of the value of 
the compatibility function. One possible method of updating the vector based 
on this intuition is to use the product

c(i,j; h,k) . phk .

The updating process at the (r+1) iteration is given by:

r+l PiK1 + ^ )
1U =  ~m

S P y(1 Tqij)
j=i

(2.7)

where
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(n-1) E
h = i 
h * i

E c0»j; h>k) • Phk
k=i

(2.8)

Notice that qjj is simply the average over the sum of all increments due to 
the product of c(i,j; h,k) and Pilk. The denominator in the equation Of piJ+Vis 
just a normalizing constant ensuring that the elements of the vector sum to 
one. Ideally, the goal is to iterate until every vector converges to the state 
where only one of its elements is non-zero. Practically, however, this is difficult 
to achieve and the process is terminated typically after a number of iterations.

Comparing, we see that there is some resemblance of the heuristic search 
technique with probabilistic relaxation. Both techniques are heuristic iterative 
processes; at each iteration, new decisions are made based on past decisions. 
Both are for object classification. Specifically, in the case of edge detection, 
there are two classes; edge or no edge. However, there are also several distinct 
differences in the two techniques. First, the heuristic search algorithm is 
essentially a sequential technique where new decisions are made one object 
(pixel) at a time. Although it can be implemented to a large extent in parallel, 
the technique is essentially a sequential process. In contrast, the relaxation 
technique is a parallel process where all the probability vectors are altered 
simultaneously at each iteration. Second, the classification process of the 
heuristic search technique is not probabilistic in nature. At each iteration, firm 
decisions are made as to whether a pixel is, or is not, an edge. This again is in 
contrast to relaxation which, for each pixel, assigns a vector of probabilities 
that is incrementally adjusted at successive iterations. Third, the comparative 
cost function is not equivalent to the compatibility function. In a sense, the 
heuristic search algorithm can be viewed as a degenerate form of relaxation 
where there are only two classification classes, and the elements of the 
probability vectors are binary valued, 0 or I. The comparative cost function is 
then analogous to a complex “compatibility function” of the form

c{ I>jJ hpk].; h2,k2;.... h2̂ ,k2̂  ) ,

where each of the 24 objects are the neighboring pixels in a 5 x 5 window 
about the Object (pixel) Ai. A closer examination will reveal that this function 
is different not only in form, but also in usage from the usual compatibility 
functions in relaxation.

We conclude that the heuristic search algorithm is not a relaxation process 
because of the fundamental differences listed above. It is an iterative process



41

which can be appropriately viewed as a heuristic cost minimization approach 
to detect edges. This view will be further justified by the formulation of an 
absolute cost function which will be described in the next chapter.

2.7 An A bso lu te  C ost F unction

The comparative cost function given in Equation (2.1) is defined only for 
pairs of similar edge configurations; it measures the relative quaity between the 
configurations. This function can be modified to yield an absolute cost 
function which is applicable to individual edge configurations. The resulting 
cost of each configuration is indicative of its quality. One possible definition of 
an absolute cost function is

C7(Si) E
all I

E  WkCkIsi,;)
k = l

(2-9)

Where the cost factors CjcfS are the Same as those of the comparative cost 
function. In this case, two configurations Sj and Sj can be compared by 
computing the difference in the cost values. This is given by the difference 
function

ACf(SijSj) =  Cr(Sj) — CT(Sj) :(2,10)

=  E  E wk[ck(Sj,/) -  Ck(SijZ)] .
all I [ k= l

Notice that A c f(SijSj) <[ 0 if and only if Sj is a lower cost configuration that 
Si. The difference function ACf(SijSj) is similar in form to C(SijSj) of Equation 
(2.1). ■//,.

When used in accordance with Equation (2.1) of the comparative cost 
function, the cost factors together define a function th a t ' mathematically 
captures the intuitive idea of an edge. However, when the same cost factors 
are used in Equation (2.9) to define an absolute cost function, the result is a 
function that is not consistent with our concept of an edge. In other words, 
lower cost configurations may result in poorer edges. This is particularly 
evident in the case of edge continuity. An example of this is illustrated in 
Figure 2.18. The figure shows five hypothetical edge configurations S0 to S4 S0 
contains a fragmented edge; there are three missing edge pixels which, if 
present, would make the edge continuous. Based on Equation (2.9), the total 
continuity cost for an arbitrary edge configuration Sm is given by:
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Figure 2.18. Continuity cost for different edge configurations. Cc(S0) =  3wc.
Cc(S1) =  Cc(S2) =  Cc(S3) =  Cc(S4) =  0. Although, 
configurations S2 to S4 have a lower value for continuity cost 
than S0, it is clearly noticeable that they have a higher degree of 
fragmentation.
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Cc(Sm) E
all I

wcCc(Sr ,0 ]

According to the definition of the cost for edge continuity in Section 2.3.4, this 
implies that

Cc(S0) =  3wc

The continuous version of S0 is S1. Clearly, this edge configuration has an 
associated continuity cost Cc(S1) =  0. An examination of the edge structures in 
configurations S2, S3 and S4 reveals that they also have zero continuity cost; 
i.e., Cc(S2) =  Cc(S3) — Cc(S4)= O . However, it is clearly noticeable that 
configurations S2 to S4 have a higher degree of fragmentation than S0. 
Consequently, we see that the cost for continuity may not reduce 
fragmentation when used in the manner specified by Equation (2.9). In fact, as 
seen in the above example, it has a greater tendency to increase than to 
decrease fragmentation.

A better definition of an absolute cost function will be given in the next 
chapter. It takes the form of Equation (2.9); the cost factors are appropriately 
redefined to capture desirable edge characteristics.

A .. V. -' 2 . 8  Summary
In this chapter, we have shown how edge detection can be cast as a 

problem in cost minimization. We first described our concept of an edge which 
is based on criteria such as accurate localization, thinness, continuity and 
length. Based on this description, we formulated a comparative cost function 
th a t mathematically captures the intuitive ideas of an edge. The function uses 
information from both image data and local edge structure in evaluating the 
relative quality of pairs of edge configurations. Computation of the 
comparative cost function is performed efficiently by organizing the 
information in the from of a decision tree. Edges are detected using a heuristic 
search algorithm based on the comparative cost function. The detection 
process can be implemented largely in parallel. Ah extension of this approach 
to deteqt f$ges would be to formulate an absolute cost function that assigns an 
absolute cost value to any given edge configuration. The best edge 
configuration would be the one that achieves the global minimum of this cost 
function. The formulation of the absolute cost function is presented in Chapter 
3.'.:



CHAPTER 3
■' " "Van absolute cost function approach

TO EDGE DETECTION  

3.1 Introduction
In the previous chapter, we have presented a comparative cost function 

that evaluates the relative quality of pairs of very similar edge configurations. 
Although fairly good results have been achieved using this function, two 
difficulties arise in its, use.

First, the comparative function measures only relative quality. 
Furthermore, the pairs of configurations that it compares are constrained to be 
almost identical, differing at only one pixel site. This is rather restrictive 
because for any given edge configuration, only a relatively small subset of all 
possible configurations can be used for comparison. A practical consequence of 
this is that the heuristic search algorithm is sometimes trapped in undesirable 
local minimum states.

Second, the heuristic iterative search algorithm based on the comparative 
cost function is difficult to analyze. The goal of analysis is to determine 
specific properties or characteristics of the edges in the output of the 
algorithm. For instance, we would like to know if there are any thick edges in 
the output, the minimum length of each edge, and how well the edges are 
connected. Except for superficial analysis, it is difficult to track and analyze 
these characteristics in the comparative cost function approach to edge 
detection.

A solution to the difficulties mentioned above is to modify the 
comparative cost function approach to one that uses an absolute cost function 
which i§ Ijxathematically well grounded. As the terminology suggests, it is § 
function that measures absolute instead of relative quality. The function is 
applicable to individual edge configurations and the resulting cost of each 
configuration is indicative of its quality; lower cost implies better edges. This 
chapter deals with the formulation and analysis of the absolute cost function. 
From here on, we will use the term cost function to refer to the absolute cost
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function. Three things are required in formulation of a cost function for 
evaluating edge quality:
(1) A precise concept of an edge.

(2) A mathematical description of edges and their related properties.

(3) A suitable cost function which captures the above concept of an edge.

The concept of an edge has already been described in detail in Section 2.2 
of the previous chapter; we use the same concept as that of the comparative 
cost function. We draw attention to the fact that it is not the concept of an 
edge but the approach to edge detection that is different when comparing the 
absolute and comparative cost function techniques. A mathematical 
description of edges is essential as it enables us to state a precise description of 
the intuitive concept of an edge. Its primary purpose is to provide a basis for 
unambiguous definition and analysis of the cost function. The goal of the 
formulation is to find a suitable cost function which, when minimized, will 
yield edges that are consistent with the above concept of an edge. The ultimate 
test of its validity is in its performance in finding good edges in an image.

3.2 A  M athem atical Description of Edges
The intuitive concept of an edge has been described in Section 2.2 of the 

previous chapter. We now describe in mathematical terms the ideas presented 
in the concept. Based on this description, we will be able to state the precise 
definition of a cost function and perform a detailed analysis of edge structures.

We will describe edges in terms similar to graph theoretic terms because 
of the close analogy between edges and planar graphs [29]. In fact, any edge 
structure can be considered to be a planar graph where each vertex in the 
graph corresponds to an edge pixel, and each arc in the graph corresponds to 
adjacent pixels in the edge structure. An example of this is shown in Figure 
3.1. One approach to describe edges using graph terminology is to first 
transform the edges into their corresponding planar graphs. However, because 
of the need to keep track of the one to one correspondence between the edge 
pixels and the vertices, it seems unnecessarily cumbersome to describe edges in 
terms of planar graphs. In view of the analysis in the following Sections, there 
seems to be no specific advantage in using a description based entirely on 
graphs. Instead, we will describe edges in their own context, using a number of 
terms that are similar to those in graph theory. The definition of these terms 
follow closely to their graph theoretic counterparts, but they apply directly to 
edge pixels and their corresponding edge structures.
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Figure 3.1, Au edge with its corresponding planar graph representation, (a) 
An edge, (b) Planar graph representation of the edge.
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3.2.1 Prelim inary Definitions

In this section, we begin with some preliminary definitions of images and 
edge configurations. We will also define some basic terminology that will be 
frequently used, such as neighborhood, window, connection, path and cycle. 
Based on these definitions, we will state a proposition about the pixels in an 
image.

An image G is a two-dimensional array of pixels
G =  { g(i, j) ; I <  i <  imax, I <  j <  Jmax } ,

where each pixel g(i,j) is assumed to have gray level in the range 
0 <  g(i, j ) ' <  255. For simplicity, we will also assume that the images are 
square with imax'=  Jmax =  N. That is, the pixels occupy the sites of an N x N  
uniform square lattice.

An edgeconfiguration Sm is also a two-dimensional array of pixels

Sm =  { s m(i , j);  I <  i , j <  N }  ,

where each pixel takes on a binary value 0 or I. If sm(i, j) == I, the pixel 
sm(i, j) is called an edge pixel; otherwise it is a non-edge pixel.

An edge configuration can be considered to be a binary image where the 
gray levels take on values of either 0 or I. As seen in the definitions, we will 
always denote images by uppercase letters and their pixels by the 
corresponding lowercase letters. We shall denote as S, the set of all possible 
edge configurations on an N x N square lattice. Since each pixel in the lattice 
can have one of two possible edge labelings, and since there are N2 pixels in a 
configuration* the number of elements in S is equal to 21N . Sometimes, we will 
refer to an edge configuration Sm simply as S, with the understanding that we 
are referring to any arbitrary edge configuration. The pixels of S are denoted 
by the corresponding lowercase letters s(i, j).

As observed in the definition, each pixel in an image or edge configuration 
is uniquely specified by the pair of indices (i, j) representing the location of its 
site in the lattice. We shall denote as L, the set of all pairs of indices for an 
N x N  lattice of sites:

L =  { ( i , j ) ;  I <  i , j <  N }  .

Definition 3.1: The neighborhood  of a pixel s(i. j) €  S is the set of 8 pixels
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specified by:

Nij(S) =  I s(m>n) : m -i <  I <  I , and (m,n) ^  (i, j) J

where denotes the absolute value. This is the typical “8-neighborhood” 
representation of connectivity in images. Notice that s(i, j) 4 Ni j(S); a pixel is 
not a member of its own neighborhood. If s(m,n) € Ni j(S), then s(m,n) is a 
neighbor of s(i,j), and s(m,n) is said to be adjacent to s(i,j).

It is straightforward to observe that adjacency is a symmetric relation; 
s(i, j) is adjacent to s(m,n) implies that s(m,n) is adjacent to s(i, j). However, 
it is not reflexive since a pixel is not a neighbor of itself and hence cannot be 
adjacent to itself. When the exact location of the edge pixel s(i, j) is not of 
importance, for ease of notation, we will sometimes denote s(i, j) simply as ek, 
for some integer value of k.

D efinition 3.2 The window Wi j(S) is the set of 9 pixels contained in a 3 x 3 
region centered at pixel s(i, j):

Wij(S) s(m,n) : m—i <  I and n-J <  I

Fact 3.1: ; Wij(S) =  Nij(S) U s(i, j)
This is easily seen from the definition of window and neighborhood, and it is 
always true that Nij(S) C  Wij(S).

A walk is a non-null sequence of edge pixels W =  ex, e2, e3 .... ek such that ej is 
adjacent to ei+1 for all I <  i <  k—I. The ends of the walk are C1 and ek, and 
W is a (e^ ek)—walk. The origin of the walk is e1} the terminus is ek, and the 
internal pixels are e2,.., ek_v  The length of the walk is equal to k.

A path is a walk in which every edge pixel is distinct. Intuitively, a path is a 
walk that does not intersect or merge with itself.

Two edge pixels eh, ek are connected if there is a (eh) ek)—path.

Fact 3.2: Connection is an equivalence relation.
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(1) eb is connected to Cjc implies that ek is connected to eb.

(2) Cll is connected to Cll.

(3) eb is connected to ek which is connected to e] implies that eh is connected 
X' to Cj. ...

A collection of edge pixels M — (C1, e2, .... em} is connected if for any eb, 
ek E M, there is a (eh, ek)—path in M.

Let Se C  S be the set of all the edge pixels of edge configuration S. There 
is a partition of Se into non-empty subsets Se1, Se2, .... Sew such that eb and ek 
are connected if and only if they belong to the same subset. The subsets Se, 
I <  i <  CO, are the components of S (or Se). Clearly, the components are 

connected. In Figure 3.2, we show an example of an edge configuration on a 
10 x 10 lattice that contains 4 components. Notice that one of the components' 
contains only one isolated pixel.

P ro p o sitio n  3.1: In any connected set M, such that || M || >  I, every edge 
pixel has at least one other edge pixel in its neighborhood.

Proof: Consider any pixel ea £ M; it is always connected to some other pixel 
eb £  M by an (ea, eb)—path. If the path has a length that is greater than 2, its 
first internal pixel is in the neighborhood of ea. If the length is equal to 2, then 
eb is in the neighborhood of ea.

: V. . □
A cycle C is a walk such that:

1) the origin and internal pixels are distinct,
2) the origin and terminus are the same,
3) there is at least I internal pixel.

The length of a cycle is the length of the corresponding walk minus I.

Let A be any collection of pixels. The size of A is the number of distinct edge 
pixels in A, and is denoted by IlA 11.

3.2.2 Definition and Properties of Edges

Most of the definitions in the previous section involve edge pixels and their 
associated structures. Up to this point, we have not yet specified what edges 
are, and how they relate to edge pixels. In this section, we will specify what is 
meant by an edge (of S), and a segment of an edge. The term “thick” edges



Figure 3.2, An edge configuration on a IOxlO lattice which contains 4 
components.

B

Figure 3.3. An edge which contains a unique path between pixels A and B.
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has often been used without clearly defining the meaning of the term thick. We 
will give explicit definitions of thick and thin edges, and state several 
propositions concerning the structure of thin edges.

D efinition 3.3: An edge E is a component of S.

D efinition 3.4: A segment of an edge E is a subset of E that is connected.

Again referring to the example in Figure 3.2, based on Definition 3.3, 
there are 4 edges in the configuration. It should be clear from this that when 
we refer to an edge, we are always referring to a maximal collection of 
connected edge pixels. However, this collection may be just a single pixel as in 
the case when a component is comprised of only one isolated edge pixel.

According to the edge concept, the edges in an image should be thin. 
Intuitively, we know what thinness means, but mathematically, it is a term 
that is difficult to describe. As in the case of the cost factor for thickness in the 
comparative cost function, we will use the idea of multiple links to describe 
edge thickness. Consider an edge E that joins pixel A to pixel B in an image; E 
contains a path from A to B. We will say that the edge is thin when this path 
is unique. This is shown in Figure 3.3. However, when the path is not unique, 
we say that the edge is thick. A path that is not unique implies that there 
could be a collection of closely adjacent paths in E that would join the same 
pixels A  and B. This collection of closely adjacent paths form what we call 
multiple links between A and B. An illustration of an edge containing multiple 
links is shown in Figure 3.4. As multiple adjacent lines form a thick line, so 
multiple links form a thick edge. We therefore choose to describe thin edges as 
edges that contain no multiple links between any of its edge pixels.

Based on an 8-neighbor representation of edges, an examination of edge 
structures reveals that the cycle of length three can be considered to be the 
basic building block of multiple links. An example of this can be seen in Figure 
3.1. Notice that in the planar graph representation of the edge shown in the 
figure, the huddle left portion of the edge contains a triangular region which is 
a cycle of length three. This cycle is the source of multiple links in the edge. 
Consequently, in the following definitions, thin edges are those that contain 
none of these cycles. Figure 3.5 shows a cycle of length three; notice that each 
pixel of the cycle is multiply linked by 2 paths to the other pixels within the 
same cycle. For instance, if we represent the cycle as {e1? e2, e3, e ^ , the first 
path between ex and e3 is C1C2C3, and the second path is C1C3. All cycles of



X

X X

X X

X x

®

B

l®l

®

X ®
X

X

X

®

; , ' X ®
X ; •

X
■■

J-,

X

® " : v

Figure 3.4. Au example of an edge which contains multiple links, (a) An 
edge E joining pixels A and B. (b), (c) and (d) are three possible 
paths contained in E that join the same pixels.

Figure 3.5. A cycle of length three.



53

length three have a characteristic L shape, differing only in orientation and 
position.

D efinition 3.5: An edge pixel that is not contained in any cycle which has a 
length equal to three is called a thin edge pixel; otherwise, it is called a thick 
edge pixel.

D efinition 3.6: An edge that contains only thin edge pixels is called a thin 
edge; otherwise, it is called a thick edge.

It is clear that edge pixels are either thick or thin. Since an edge is thick if 
and only if it contains one or more thick edge pixels, a thick edge can be 
transformed into a thin edge by the removal of the thick edge pixels. In Figure 
3.6, we show several examples of thick edges, and the possible transformations 
of these edges into thin ones. The definition of thick and thin edges also apply 
to edge segments; an edge segment is thin if and only if it contains only thin 
edge pixels.

We now state several facts and propositions concerning cycles and the 
structure of thin edges which will be frequently used in the analysis of later 
sections.

Fact- 3.3: If ek E E is contained in any cycle C of length three, then C is 
contained in E.
This is a simple yet important observation from the fact that all the pixels in a 
cycle are connected and must belong to the same component.

P ro p o sitio n  3.2: E is a thick edge if and only if E contains a cycle of length 
three.

Proof: If E is a thick edge, then from the definition, it must contain a thick 
edge pixeTwhich is contained in some cycle of length three. By Fact 3.3, this 
cycle is contained in E. Conversely, if E contains a cycle of length three, then 
each pixel of the cycle is a thick edge pixel, and hence by definition, E is a 
thick edge.

' □

P ro p o sitio n  3.3 If C is a cycle of length three that contains the edge pixel 
sm(i, j) E Sm then C is completely contained in the window Wjj(Sm).
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Proof: Let the cycle be represented by C = . sm(i, j), e1? e2, sm(i, j). Since C is 
a walk, the edge pixels C1 and e2 musty be adjacent to sm(i, j), and 
consequently, they must be contained in Njj(Sm). Since Njj(Sm) C W jj(Sm) 
(by Fact 3.1), we conclude that C C  Wjj(Sm).

From Proposition 3.2, we conclude that one way to determine if E is a 
thin edge is to look for a cycle of length three in E. If one cannot be found, 
then E is a thin edge, otherwise it is a thick edge. Proposition 3.3 tells us that 
if we wish to determine whether a pixel ek is thick or thin, we only have to 
consider the pixels in the window centered about ek. That is, the pixels outside 
of the window do not affect the thickness or thinness property of the center 
pixel.

The following 5 propositions relate to the structure of thin edges in a 
3 x 3 square lattice. They list the different kinds of thin edge structures that 
can exist in the lattice.

P ro p o sitio n  3.4: Any edge E such that || E || <  2 is a thin edge.

Proof: The proof is trivial since for E to be a thick edge, it has to contain a 
cycle of at least 3 distinct edge pixels. This is impossible since E has at most 2 
pixels. ■

□

Proposition 3.5: The only possible thin edge E contained in a 3 x 3 square 
lattice such that the center is an edge pixel and || E || =  3, is one of the 16 
structures shown in Figure 3.7.

Proof: By construction and use of Proposition 3.2. Of the 28 structures 
satisfying the above condition, only these 16 contain no cycle of length three.

. O

P ro p o sitio n  3.6: The only possible thin edge E contained in a 3 x 3  square 
lattice such that the center is an edge pixel and || E || — 4, is one of the 8 
structures shown in Figure 3.8.

Proof: By construction and use of Proposition 3.2. Of the 56 structures 
satisfying the above condition, only these 8 contain no cycle of length three.
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Figure 3.7. The 16 thin edge structures in a 3x3 lattice. Each of the 
structures has 3 edge pixels.
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Figure 3.8. The 8 thin edge structures in a 3x3 lattice. Each of the structures 
has 4 edge pixels.

Figure 3.9. The only thin edge structure on a 3x3 lattice which contains five 
edge pixels.



P ro p o sitio n  3.7: The only thin edge E contained in a 3 x 3  Sqnarfe lattiee 
such that the center is an edge pixel and Il E || =  5, is the structure shown in 
Figure 3.9.

Proof: By construction and use of Proposition 3.2. Of the 70 structures 
satisfying the above condition, only this contains no cycle of length three.

Any edge E contained in a 3 x  3 square lattice such that 
the center is an edge pixel and H E Il >  5 is a thick edge.

Proof: By construction and use of Proposition 3.2. Each of the 98 edge 
structures satisfying ’the above condition contains at least one cycle of length 
three. ■

Z ■' - :  □
■v::: jthfe/^boye propositions' hold only for small lattices of size 3 x 3, and may 

seem irrelevant as they cannot be directly applied to real images of larger size. 
However, their importance is seen when they are used in conjunction with 
Proposition 3.3 and the next proposition. These propositions together provide 
the basis for an alternative method of determining whether an edge pixel is 
thick or thin.

Proposition 3.9: Let E be an edge contained in the window Wj j(S) such that 
the center pixel s(i, j) is an edge pixel. Then E is a thick edge if and only if 
s(i, j) is a thick edge pixel. Similarly, E is a thin edge if and only if s(i, j) is a 
thin edge pixel. _

Proof: I fE  is a thick edge, then by Proposition 3.2 it must contain a cycle of 
length three. By construction, every cycle of length three contained in a 3 x 3 
lattice must include the center pixel. Hence, the center pixel must be a thick 
edge pixel. Conversely, if the center pixel is a thick edge pixel, then it must 
belong to E. Thus by definition E is a thick edge. The proof of the second 
statement follows trivially from the first.

□ :

To determine if s(i, j) is a thin/thick edge pixel, by Proposition 3.3, we 
simply have to consider the pixels in the window Wy(S). But by Proposition
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3.9, this is the same as determining if the edge E in Wy(S) is a thin/thick 
edge. All the possible thin edges in a 3 x 3 square lattice are given in 
Propositions 3.4 through 3.8. Hence an alternative method of determining if 
s(i, j) is a thin/thick edge pixel is to see if the edge structure in Wy(S) is 
identical to any one of the thin edge structures listed in Propositions 3.4 to 3.8. 
If it is, then s(i, j) is a thin edge pixel; otherwise, it is a thick edge pixel. We 
will make use of this fact in Section 3.3.3 to reduce the amount of computation 
required to determine the value of the cost function.

3.3 A  C ost F unc tion  for E v alu a tin g  Edges.
Having established the necessary mathematical preliminaries and 

definition of edges in the previous sections, we now turn our attention to the 
formulation of a cost function for evaluating edges. As mentioned in the 
introduction to this chapter, we seek to use an absolute cost function that 
measures absolute quality of edges instead of relative quality. The function 
should be applicable to individual edge configurations by assigning a cost value 
to each configuration. The configuration with the lowest cost corresponds to 
the best configuration in the sense that it is most consistent with our concept 
of an edge.

The motivation and approach to the formulation of the absolute cost 
function is very similar to that of the comparative cost function. In fact, we 
will employ essentially the same form of the cost function, using a linear 
combination of weighted cost factors. As in the comparative cost function, each 
cost factor captures a desirable characteristic of edges. However, it will be seen 
that the definition of the absolute and comparative and cost functions differ in 
several important aspects. First, the absolute cost function is defined using 
only one single edge configuration as its argument, while the comparative cost 
function uses two configurations. Second, although they have the same form, 
the definition of four out of five of the cost factors are different for the two 
functions.

We will first describe the general form of the absolute cost function, and 
then describe the cost factors. We will also state a number of propositions that 
will aid us in the computation of the cost.

Again, let Sm €  S be an edge configuration and L be the set of all pairs of 
indices for an N x N  lattice of sites: L — { (i, j) ; I <  i, j <  N }.

Definition 3.7: The point cost of Sm at site I — (i, j) £  L is defined as the
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following linear sum of weighted, cost factors:

Cp(Sm, /) =  [ wcCc(Sm) /) +  wdCd(Sm, I) +  weCe(Sm, I)

-h wfCf(Sm, /) +  wtCt(Sm, /) J ;

=  E wkCk(Sm, /) (3.1)
' k=l .

where wt  >  0 and 0 <  Ck <  I . :

Definition 3.8: The total cost of edge configuration Sm is the sum of the 
point cost at every point in the image:

m , ) : =  ECp(Sm, 0  (3.2)
/..I. ■

or equivalently,

J f(Sm):=  S
leh

E wkCk(Sm, I)
k-1

This total cost is the absolute cost function for evaluating edges. We will 
often omit the term absolute and refer to this simply as the cost function when 
there is no confusion with that of the comparative cost function. Notice that 
the cost function is the sum of the point cost at every site in the image, and 
also takes the form of a linear sum of weighted cost factors.

Definition 3.0: For any pair of edge configurations Sm, Sn £  S, the
incremental cost from Sm to Sn is given by

AF(Sm,Sn) =  F(Sn) -  F(Sm) (3.4)

: ^  =  E C p (S n, 0  -  E c p (s m, 0
leh /eL

— E Jj ®p(3n.> 0 p̂fSin, /)1 (3.5)
l e h L J
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= E E wkek(sn,/) - E wkck(sm,/)
ZeLk=I k=l

-

AF(S01S1) = S w k.
' k=l

Alternatively, we can write the incremental cost given in Equation (3.6) as a 
sum of five incremental cost factors, ACk.

AF(S01S1) = S w kACk(L i S0 1 Sn) (3.7)
■ k=l

where ACk(L ; Sm, Sn) =  E
zeL

For notational simplicity, we will often write AF(Sm,Sn) simply as AFm n. 
Notice that while Equation (3.4) is the basic definition of the incremental cost, 
Equation (3.5) expresses it in terms of the point cost, and Equation (3.7) 
expresses it in terms of the incremental cost factors. A comparison of Equation 
(3.7) with Equation (2.2) shows that the two equations are very similar in form. 
However, because of the difference in the definition of the cost factors, the 
results produced using the two equations are significantly different. The 
incremental cost AFm n gives the cost difference between configurations Sm and 
Sn. If it is negative, then Sn has a lower cost than Sm, and is consequently a 
better configuration. Conversely, if it is positive, then Sm is better.

P ro p o sitio n  3.10: Let (Sl j S2J - - S m) C S  be any collection of edge
configurations. The incremental cost from S1 to Sm can be written as the sum

m—I
AFl,m= E afU-H

ck(sn) 0 - ck(sm, /)]

E
ZeL

Ck(S11Z) -  Ck(Sml 7) (3.6)

Proof:
m—I
E i+1 =  ^ 1 , 2  +  ^ 2 , 3  +  ^ 3 , 4  —• +  AFm-I,
I==I'

F(S2) - F ( S 1) +  F(S3) - F ( S 2)
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+  P(Sj ) - P j S 3) .... -I F f S J - F i S c  ,)

= F(Sm) - F ( S 1)

: = A F i im

V'/' " ■ □
Tliis proposition provides an indirect method of computing the 

incremental cost from S1 to Sm. This indirect method is very useful, especially 
when it is difficult or computationally inefficient to determine the incremental 
cost value directly. In most of our applications, this method of computing the 
incremental cost will be used. This proposition is also useful in analysis; in 
Section 3.4, we will use this property of the incremental cost in the proof of a 
number of other propositions.

Figure 3.10 shows a block diagram of our cost minimization approach to 
edge detection. The fundamental property of edges is that they separate 
regions that are dissimilar. The first step in the detection process is to enhance 
those points in an image that satisfy this fundamental property of edges. These 
points serve as good candidates for edge points. The enhancement is based on a 
given dissimilarity measure and a enhancement scale factor. We refer to this 
processing stage as dissimilarity enhancement. In this stage, we also attempt to 
ensure that the enhanced points satisfy the desirable edge property of accurate 
localization. It will be seen that this property will be achieved by using non- 
maximal suppression for the dissimilarity values.

Instead of using the original image directly, the cost function is defined in 
terms of the enhanced image. Desirable characteristics of edges such as thinness 
and continuity that are difficult to capture in the dissimilarity enhancement 
stage are embedded into the cost function. The edges are detected by finding a 
suitably low cost solution to the cost function. Simulated Annealing will be 
employed as a technique of finding low cost solutions. As seen in Equation 
(3.3), the cost function is a weighted sum of five cost factors. The choice of 
weights for the cost factors is application dependent, and it determines the: 
nature of the edges which will be detected.

In the following sections, we will elaborate on dissimilarity enhancement 
and the definition of the cost function. We will also analyze the cost function 
and provide guidelines on the choice of weights to achieve specific 
characteristics in the detected edges.



63

image G
Low cost 
edge
configuration

Figure 3.10. A block diagram of the cost minimization approach to edge 
detection.
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3.3.1 Determ ining Region D issim ilarity
We have mentioned in Section 2.2 that an edge is a boundary in an image 

that separates regions that are dissimilar. In this section, we focus on the task 
of enhancing the points in an image that are good candidates for edge points. 
The enhancement procedure is very much dependent on how dissimilarity is 
defined in an image. For instance, we could model an edge as an ideal step and 
define dissimilarity to mean that the region on each side of the edge has 
different constant gray levels. In this case, a possible method of enhancement 
is to convolve the image with a gradient operator to obtain the enhanced 
image.

Dissimilarity based on the ideal step is only one of a myriad of possible 
region dissimilarities that could exist in an image. Instead of focusing on one 
specific kind of dissimilarity, we will give a general definition of region 
dissimilarity in the form of a dissimilarity function. We will describe a 
procedure that uses this function to enhance the points in an image that have a 
high degree of dissimilarity in its neighboring regions. These points are good 
candidates for edge points based on the criterion that edge points separate 
dissimilar regions. However, for reasons to be stated in the following 
paragraphs, we emphasize that region dissimilarity itself provides insufficient 
information for good edge detection.

Referring again to Figure 3.10, the first step in the detection process is to 
obtain an enhanced image from the original image. The edges are then 
detected by finding the edge configurations that minimize the cost function. 
Thresholding the enhanced image can be considered to be the simplest form of 
cost minimization where the cost function does not take into account edge 
structure information. The required complexity of the cost function and the 
subsequent minimization procedure is very much dependent on the 
performance of the dissimilarity enhancement stage. For instance, if we could 
have perfect performance at the enhancement stage in the sense that the 
dominant features in the enhanced image follow closely to our concept of an 
edge, then the edges could be detected by a simple thresholding operation.

However, in practice, it is impossible to have perfect performance in 
dissimilarity enhancement so that high quality edges can be obtained by simple 
thresholding. This is because of two main reasons. First, region dissimilarity 
based on the original image data often provides insufficient information for 
edge detection. Good edges are those that exhibit the desirable characteristics 
of accurate localization, thinness, continuity, and sufficient length. Some of
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these characteristics, particularly the last three, are structural characteristics of 
edges that are difficult to determine directly from the image data. They are 
embedded in the structure of the edge configuration. Second, dissimilarity 
enhancement is a process that is usually sensitive to noise. Noise processes will 
cause many points to be incorrectly enhanced as potential edge points. Except 
for artificial images, noise is always present in an image.

The above discussion leads us to conclude that it is necessary to exploit 
information from local or global edge structure to aid in the detection process. 
Our approach to detect edges is to attempt to achieve the best we can at the 
enhancement stage. Desirable edge characteristics that are not captured in the 
enhanced images are embedded into the cost function. The cost minimization 
procedure will then find the edges which exhibit the characteristics that are 
consistent with our concept of an edge.

The fundamental property of edges is that they separate dissimilar 
regions. In dissimilarity enhancement, we concentrate on the following two 
goals that relate to our concept of an edge.

(1) To signify those points in an image that possess the fundamental property
of edges.

(2) To ensure that those enhanced points are accurately localized.
The enhanced image

D =  <  I, j <  X }

is a collection of pixels where each pixel value is proportional to the degree of 
region dissimilarity that exists at that pixel site. The pixel values lie In the 
range O <  d(i, j) <  I. Pixels with large values close to I are good candidates 
for edge points in an image. Three things are required in order to enhance an 
image according to the set goals:
...(X) Well defined regions of interest on either sides of an edge.

(2) A function that measures dissimilarity between the regions of interest.

(3) Non-maximal suppression as a method of ensuring accurate localization.
The regions of interest are defined with reference to a set of selected edge 

structures. We call this set of edge structures the basis set. Within the scope of 
this report, the basis set is constrained to be 3-pixel edge structures contained 
in a 3 x 3 window region. In line with our concept of an edge, we also require 
these structures to be thin. The basis set is thus selected from the 16 edge 
structures given in Proposition 3.5. In most of our applications, we selected as
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our basis set the first 12 of the 16 structures shown in Figure 3.7. TThe regions 
of interest on ether sides of each edge of the basis set are defined in the same 
way as those for the comparative cost function in Section 2.3.2. These regions 
are again labeled as R l and R2 for each edge structure in the basis set. 
JFigures 2.9 and 2.10 show an examples of the basis set and the corresponding 
regions of interest for each edge structure.

The function that measures the dissimilarity between regions R l and R2 is 
denoted by fa(Rl,R2). This measure could be a simple difference of gray level 
averages in R l and R2, or it could be more complicated measures based on 
statistical or structural properties in the gray levels. Depending on the 
application and the features of interest in an image, there are numerous 
possibilities for the definition of fa(Rl,R2). As previously mentioned, to find 
step edges in an image, we could define the dissimilarity measure to be the 
difference of constant gray levels in the regions R l and R2. It is clear that 
there is extreme flexibility in such an approach to dissimilarity enhancement as 
we do not restrict the nature of the dissimilarity. This is in contrast to many 
detection algorithms that assume some specific nature of edges and are devoted 
to finding only those edges. At this point, we do not need to know the explicit 
definition of the dissimilarity measure fa(Rl,R2) which will be used; we simply 
assume that one exists.

Non-maximal suppression is important in ensuring the accurate 
localization of an edge point in an image. In practically all real images, the 
dissimilarity measure has the tendency to enhance the points in the vicinity of 
the true boundary in addition to enhancing the boundary itself. This is 
undesirable as a large number of false boundary points are enhanced. One 
approach to mitigate this tendency is to employ non-maximal suppression in 
dissimilarity enhancement. However, an undesirable side effect that results in 
using non-maximal suppression is that some true boundary points may also be 
suppressed together with the false points. This may increase the amount of 
fragmentation in the boundary. It will be seen that the cost factor for 
fragmentation will compensate for this effect by linking together locally 
disconnected edges.

We now describe a procedure to obtain an enhanced image D from the 
original image G. It performs non-maximal suppression by shifting the edge 
structure in a direction perpendicular to the edge direction. The procedure is 
as follows:
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(1) Initially, all the pixels d(i, j) are set equal to zero.
(2) At each pixel site (i,j), we perform steps A and B.

A. Each of the edge structures of the basis set is fitted onto the site by 
centering it on the location (i,j) in G. The corresponding paired 
regions R l and R2 in G are determined for each structure, and the 
value of fa(Rl,R2) is computed. The structure that results in the 
maximum value of fa(Rl,R2) is chosen as the best fitted edge 
structure.
Note that each edge structure of the basis set contains exactly three 
edge pixels; we will denote the sites of the three edge pixels of the best 
fitted edge structure in G as (i, j), (il9 j j ,  and (i2, j 2).

B. Next, we perform non-maximal suppression by shifting the location of 
the chosen best fitted edge in a direction determined by the edge 
structure. For vertical, horizontal and diagonal edge structures, the 
shifting is performed by moving the edge location by one pixel in each 
of the opposite directions perpendicular to the edge. For all other 
edge structures, the shifting is done by moving the edge one location 
in each of the the four directions: up, down, left and right. Figure 
2.13 shows how the edges are shifted for three edge types. For each 
shifted edge, we determine the new regions for R l and R2, and 
compute the corresponding value of fa(Rl,R2).
One of the following two cases results:
(i) If no larger value of fa(Rl,R2) results from shifting the best fitted 

edge structure, we set

S =  a
fa(Rl,R2)

where fa(Rl,R2) is determined using the best fitted edge. The 
factor a  is called the enhancement scale factor. We then 
increment the value of each of the pixels 
dO, j), d(ii, Ji'),-and d(i2, j 2) by 6.

(ii) If there is a larger value of fa(Rl,R2) from one of the shifted edge 
structures, we do not alter any pixel value.

(3) Finally, the values of the pixels d(i, j) at all sites are truncated to a 
maximum of I.

Step (3) is performed essentially to ensure that the dissimilarity values lie 
in the assumed range 0 <  d(i, j) <  I. The value of the enhancement scale
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factor Oi is application dependent. It serves as a selection parameter in 
determining the number of edge points that will be detected. Section 3.4.3 
gives guidelines to selecting the value of or.

3.3.2 Defining th e  C ost F ac to rs

The general form of the cost function has been given in Equation (3.3); it 
is a linear combination of five weighted cost factors. Specifically, the five 
factors are as follows.

(1 )  Costforcurvature
(2) Cost for region dissimilarity

(S)C ostfornum berofedgepoints
(4) Cost for fragmentation
(5) Cost for edge thickness

In this section, we will define each of these cost factors and discuss their 
relevance to edge evaluation. Each of these factors affect a desirable 
characteristic of edges. It will be seen that the cost for region dissimilarity is 
the only one that is based on information from the image data; the others ar4 
based on information from local edge structure. Ideally, each cost factor 
should affect one and only one desirable characteristic so that the relative 
importance of each characteristic can be appropriately emphasized by their 
corresponding weight. In practice however, this is difficult to achieve as the 
different characteristics often exhibit some form of dependency on each other.

The cost factors together give an objective measure of how well a given 
edge configuration fits our concept of an edge. These factors are defined based 
on the assumption that lower cost configurations are better edges. 
Consequently, the best configuration is the one that achieves the global 
minimum of the cost function. The ultimate test of the validity of the cost 
function is in its performance in detecting edges. In Chapter 5, we will show 
experimental results of detecting edges using this cost function.

In order to define the cost factors, we have to first specify what is meant 
by a straight edge and an endpoint. These are given in the following two 
definitions.

D efinition 3.10: An edge E (or segment of an edge) is straight if all its edge 
pixels lie on a single horizontal, vertical or diagonal line of the lattice on which 
it is defined.
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D efinition 3.11: An endpoint is an edge pixel that has at most one other 
edge pixel in its neighborhood.

Using the definition of straight edges and endpoints, we will now specify 
what is meant by the angle of turn at a point. If ek is an edge pixel that is not 
an endpoint, then it can be considered to be the connection point (or common 
point) of at least one pair of straight edge segments. The direction of each 
straight edge segment is uniquely specified by the straight line joining the site 
of ek with the site of any other pixel of the segment. This is illustrated in 
Figure 3.11. Let n be the maximum number of different pairs of straight edge 
segments connected at ek, each pair being denoted by the label Pi, I <  i <  n. 
Let 4>j be the larger of the two angles between the edge segments of pj. The 
angle of turn between the pair of edge segments in p; is given by

9i — 180.
■ ’ ■ •. . /. ■ ■■ ■■■ ' . '

In Figure 3.12, we show an example of an edge pixel that is the connection
point of 3 pairs of straight edge segments.

D efinition 3.12: The curvature 9(1) at any site / G L of configuration S is 
defined as follows:

(1) If s(/) is a non-edge pixel or an endpoint, then the curvature is equal to 
p zero.

(2) If s(/) is an edge pixel that is not an endpoint, then the curvature is the 
maximum angle of turn at that point:

W)  - .

Assuming that the image lattice is uniformly spaced, the curvature at any 
site can take on one of four possible values; 9 G { 0, 45, 90, 135 }. In the case of 
the example in Figure 3.12, the curvature is 135 degrees.

Cosrt for curvature

The cost for curvature assigns a cost to each point in the edge 
configuration according to the value of the curvature at that point. As / 
previously mentioned, the curvature at any point can take on any one of the 
possible values of 0, 45, 90, or 135 degrees. At site I of configuration Sm, the 
curvature cost Cc(Sm, I) is given in Table 3.1.
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Figure 3.11. The angle of turn at a point, (a) The pixel ek is a connection 
point of a pair of straight edge segments, (b) The pair of straight 
edge segments and the resulting angle of turn. In this case, the 
angle of turn is 45 degrees.
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Figure 3.12. An edge pixel that is the connection point of 3 pairs of straight 
edge segments, (a) The pixel ek as part of the edge, (b) A pair of 
segments with 0=0. (c) A pair of segments with 0=45degrees. 
(d) A pair of segments with 0=135 degrees.
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Table 3.1. Curvature cost at pixel Z

Curvature 6(1) Cost Cc(Sm, I)

O 0

45 0.5

90 1.0

135 1.0

The above assignment causes edges that have many turns to have a higher 
curvature cost than those with relatively few turns. By appropriately choosing 
the weight of the curvature cost, we can avoid excessive meandering and 
turning of edges. This is particularly useful when, for instance, we know a 
priori that the edges of interest are straight. Such edges often occur when We 
are dealing with polygonal objects. This factor is also useful in the suppression 
of noise effects. Noise in an image often stimulates the formation of jagged 
edges which have high curvature cost. A sufficiently large weight for curvature 
will tend to smooth out such edges.

C ost for region dissim ilarity
This cost factor is based on the enhanced image D. It assigns a cost to 

non-edge pixels that is proportional to the degree of dissimilarity at that point. 
In other words, a site that contains a non-edge pixel but has a high degree of 
dissimilarity will have a high cost. On the other hand, if it has a low degree of 
dissimilarity, then the cost is low. This factor is intended to be used in 
conjunction with the cost for number of edge points. It will favor the 
placement of edge pixels at points of high region dissimilarity. The definition 
of the cost factor is as follows:

Cd(Sm, I) -
0 ,

4 ( 0 .
if sm(/) =  I
if Sm(Z) =  0.

C o stfo r n u m b e r o fe d g e p o in ts

When used by itself, the cost for region dissimilarity will favor the 
placement of edge pixels at all points in an image that have non-zero 
dissimilarity values. This will result in an excessive number of edge pixels being 
detected. To compensate for this, we assign a cost to each additional edge pixel 
as follows:
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if sm(/) =  O 
if Sm(Z) =  I.

C ostforfragm en tation

This cost factor reduces fragmentation by assigning a cost to the 
endpoints of an edge. It is based on the intuition that fragmentation causes the 
formation of surplus endpoints. For example, a straight continuous edge 
contains two endpoints; the same edge fragmented in two places will contain 
six endpoints.

There are two kinds of endpoints. The first is an endpoint that is the 
terminus of some segment or path. The second is an isolated endpoint. An 
isolated endpoint can be considered to be a path that has shrunk in length to a 
single point. In the process, the former two endpoints of the path are merged 
into one single point. Hence, as will be seen in the definition, the cost of an 
isolated endpoint is twice that of a path endpoints By assigning a cost to 
endpoints, fragmentation will be reduced. This is because adjacent endpoints 
which represents locally disconnected edges will be removed by linking the 
edges together. The cost is defined in the following way:

Bet T be the number of edge pixels in the neighborhood of pixel Sm(Z) in 
ConfigurationSm.

C f(sm, Z)
O , if sm(Z) is not an endpoint 

• 0.5 , if sm(Z) is an endpoint and T =  I 
1.0 , if Sm(Z) is an endpoint and T =  0.

Our concept of an edge includes the property of m in im um  length; edges 
should be at least 3 pixels long. Although it is not obvious in the definition, it 
will be seen later that the cost for fragmentation will guarantee th a t detected 
edges are of a certain minimum length. Hence, unlike the comparative cost 
approach, we do not need a separate cost factor for edge length to ensure that 
edges are of a given minimum length. The minimum length property is 
inherently embedded in the cost factor for fragmentation.
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C o s tfo re d g e th ic k n e s s

Since thinness is a desirable edge property, we foster the formation of 
thin edges by assigning a cost to thick edge pixels. This is achieved by the 
following cost factor for edge thickness.

0 ,  if sm(/) is not a thick edge pixel
1 , if S m ( Z )  is a thick edge pixel.

In Section 3.4, the practical consequence of the above definitions of the 
cost factors will be examined. We will also consider the choice of weights to 
achieve specific characteristics in the detected edges. In the next section, we 
concern ourselves with the question of how to compute the cost factors 
efficiently.

C,(Sm) () =

3.3.3 C om puting  th e  C ost

The cost function is used to evaluate the quality of an edge configuration. 
It will be seen in the minimization procedure that this function will be used 
repeatedly in the search for low cost configurations. Hence, from a 
computational standpoint, it is of major importance that this function can be 
computed in an efficient way. By taking into account the interdependence of 
the cost factors, a great deal of computation time can saved. We will now state 
the first of several propositions that will aid us in finding an efficient procedure 
to compute the cost.

P ro p o s itio n  3.11: The point cost C p(Sm jZ) is dependent only on the
dissimilarity value d(Z) and on the pixels in the window W /(Sm).

Proof: Since the point cost is the sum of 5 cost factors,

c „ (s m. O = S  w kc k(sm. / )
k<=l

it suffices to show that each of the 5 factors is dependent only on W /(Sm) and
m -  '

(I) Cc(S„, I )

Case I: sm(Z) is not an edge pixel. It follows trivially from the definition 
that Cc is dependent only on Sm(Z) 6  Wj(Sm).
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Case 2: Sm(Z) is an edge pixel that is an endpoint. Since an endpoint is 
determined by considering a pixel and its neighborhood, it is seen easily for 
this case that Cc is dependent only on sm(l) U Nz(Sm) — Wj(Sm).

Case 3: Sm(Z) is an edge pixel that is not an endpoint; it is the connection 
point of n pairs of straight edge segments. Since the direction of each straight 
edge segment is uniquely determined by the straight line connecting Sm(Z) with 
any other pixel of the segment, we can choose the other pixel to be the one in 
its neighborhood, Nj(Sm). This is always possible by Proposition 3.1. Hence, 
the direction of each segment is uniquely determined by the pixels in N7(Sm). 
The curvature at Z, the endpoint property (see Case 2), and consequently Cc, 
are dependent only on the pixels in Nj(Sm) U  Sm(Z) =  Wy(Sm).

(2) Cd(Sm, Z)

From the definition, it is trivially seen that CcJ is dependent only on 
s m (0  € Wj(Sm) and d(Z).

(3) Ce(Sm, Z) V

Again1Irom the definition, it is trivially seen that Ce is dependent only on
SJOeWz(Sm).

(4) c f(sm, Z)

This factor assigns a cost to endpoints. Whether a pixel is an endpoint is 
determined solely by the pixel itself and its neighborhood Nz(Sm). Hence, this 
factor depends only on Wz(Sm).

(5) Ct(Sm, Z)

This factor assigns a non-zero cost to thick edge edge pixels. An edge pixel 
is thick if and only if it is contained in a cycle of length 3. According to 
Proposition 3.3, this cycle, if it exists, is completely contained in Wj(Sm). 
Hence the factor is dependent only on the pixels in Wj(Sm).

Since each of the 5 factors are dependent only on Wj(Sm) and d(Z), so the 
lmear combination of them is also dependent only on these pixels.

■ - D 1'
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C o m p u tir ig th e p o in tc o s t

From the above proposition, we only have to consider the pixels in the 
3 x 3  window about a site to compute the point cost at that site. A 
straightforward method of computing the point cost is to determine the values 
of each of the cost factors independently. However, this is computationally 
inefficient as we do not take into account the inter-dependence of the cost 
factors. Our method of computing the cost function is based on the decision 
tree show in Figure 3.13. This tree is obtained by pooling together all the 
information affecting the different cost factors. It represents a compact 
description of the cost factors, and it allows for the simultaneous computation 
of several cost factors by traversing the tree from root to leaf.

As mentioned in Section 3.2.2, Proposition 3.9 gives an alternative method 
of determining if a given pixel s(i, j) is a thin/thick edge pixel. All that is 
needed is to see if the edge structure contained in Wy(S) is identical to any of 
the thin edge structures in Propositions 3.4 through 3.8. If it is, then s(i, j) is a 
thin edge pixel; otherwise it is a thick edge pixel. By using this method, we 
avoid the need to trace an edge pixel to see if it belongs to a cycle of length 
three. Contour tracing is time consuming compared to the alternative method 
we have just described.

It is important to note that the decision tree in Figure 3.13 gives an 
equivalent definition for each of the cost factors we have defined in the 
previous section. The validity of this tree in representing the cost factors is 
hinged on Propositions 3.3 to 3.9, and the following two propositions.

P ro p o sitio n  3.12: Every thick edge pixel has a corresponding curvature 
greater than or equal to 90 degrees.

Proof: Every cycle of length three has a characteristic L shape. Hence at each 
pixel of the cycle, there is a pair of straight edge segments that form either a 
90 or 135 degree angle of turn. Since a thick edge pixel belongs to a cycle of 
length three, it must have a curvature of at least 90 degrees.

. D

P ro p o s itio n  3.13: Every edge pixel with three or more neighboring edge 
pixels has a corresponding curvature greater than or equal to 90 degrees,

Proof: It is sufficient to show that the above is true for the case of three
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Cg=O Cc= 0.5 Cc= 1.0

n =  Il Nj(Sk) Il

thin: The edge contained in Wi(Sk) is a thin edge, 

thick: The edge contained in Wj(Sk) is a thick edge.

Figure 3.13. Computation of point cost Cp(Sk,/) using a decision tree.
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neighboring pixels. The simplest proof is by construction; each of the 56 edge 
structures which has 3 neighbors in a 3 x 3 window has a curvature of at least 
90 degrees.

□

C om p u tin g  th e  increm en ta l cost
According to Equation (3.5), the incremental cost from Sm to Sn is

=  >■; f c P(s„ , 0  -  c f (sa , / ) ]
I e LL J

Since there are N2 sites in L, this represents a total of 2N2 times the point cost 
has to be computed. This is a tremendous amount of computation, and even 
for small images of size 128 x 128, the value of 2N2 is equal to 32,768. We will 
show that by appropriately restricting the choice of Sn, the incremental cost 
can be reduced to a summation over a small subset of L, i.e.

« =  S  f
/ GRl

where R is a small subset of L, containing only 9 sites. We essentially reduce 
the summation of N2 terms to that of 9 terms. This is given in Proposition
3.14. Before stating it, we give several preliminary definitions and lemmas.

D efin ition  3.13: Let Wj(S) be the set of pixels of S whose windows contain 
the pixel s(/). That is, for /, q €  L,

W 1(S) =  { s(q): S(I) e w , (S) }

C„(S„ I )  -  Cp(Sm, Oj ,

L em m a 3.1: For any /, q GL,

if and only if s(/) £  Wq(S) .

Proof: Let I =  (i ,j) and q — (m,n). Then, from the definition of a window, the 

pixel s(q) is a member of Wj(S) implies that i—m ^  l  and j —n ^  I.
Since i is interchangeable with m, and j is interchangeable with n within the 
absolute value signs, We conclude that s(q) £  Wj(S) implies that s(/) £  Wq(S). 
In the same way, a simple change of variables will show that s(/) €  Wq(S) 
implies that s(q) E Wj(S).

□
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Lemma. 3.2: For any / G L, Wi(S) =  Wi(S).

Proof: We will show that the following holds for any I G L; Wi(S) £  Vft (S) 
and W |(S )G W |(S ). Let s(q)€W /(S), q G L  By Lenima 3.1, we have 
s(/) G Wq(S). From the definition of Wi(S), We see that s(q) €  Wi (S), which is 
true for every s(q) G Wi(S). Hence Wi(S) £  Wi(S))
Now, let s(q) G Wi(S), then from the definition of Wi, we know that 
s(/) G Wq(S). Again, by Lemma 3.1, we have s(q) GW i (S), which is true for 
every s(q) G Wi(S). Hehce Wi(S) C  Wi(S).

' ' □

D efinition 3.14: The index set of A, I(A) is the collection of the pairs of 
indices of the pixels in A. For example, if

■A- — { ®0ldl)> ®(^22)» -•••• ®0m*im) } >

then the index set of A is given by:

I(A) -  { (i, j) : s(i, j)  G A }

“ { O ldl)*'02*i2)> (*miim) } •

Note that I(S) is the set of all possible indices of the edge configuration S, and 
is equal to L. For notational purposes, we will write IfWiJ(S)) as Wi y  That is, 
when the window is used without specifying its argument, we are referring to 
the indices of the pixels in the window.

P ro p o sitio n  3.14: If Sm, Sn G S are edge configurations that have identical 
edge labelings at every pixel site, except at site x=(y,z) G L, where they are 
complementary, then

AFm,B= E  [ c p(Sn, / ) - C p(Sm, / ) l .  (3.8)

Proof; From the definition of incremental cost in Equation (3.5), we essentially 
have to show that

2  f O p(s„ /) -  CP(S„, o l  =  S  f Cp(sn, 0  -  Cp(sn , o |
< a L 1 lew, L J

Let Wx =  I ( Wx(S) ), and partition L into disjoint sets:



L =  ( L - W x) U W ,  .

We can write the incremental cost according to the definition in Equation (3,5)

A Fmja=  E  f C p(Sa) 0  -  Cp(Sm, 1)1
16(L-WJl

+  E  [ c p( s a, /) -  c p( s m, ( ) ]
JeWx

For each I G (L-W 3t). it is easy to deduce that x ^  Wt. Since all the pixels of 
Sm are identical to those in Sn except only at site x, therefore, the 
corresponding pixels in the windows Wt(Sn) and Wt(Sm) have identical edge 
labelings. Using this fact and Proposition 3.11, we conclude that

C p(Sn, I) -  C p(Sm, I) for all / G (L-W x) .

Hence, the partial sum

E  T  c p( s a, /)  -  c p( s m> o l  =  o .
Ie(L-Wil)

By Lemma 3.2,

Wx= I ( W x( S ) ) = I ( W x( S ) ) = W x .

Thus, the expression for the incremental cost becomes

A Fa ia =  E  I C p(Sa, I) -  C p(Sm, /)]

=  E  f c P( s n, i) -  c p( s m, / ) ]
Jewx L J

F a c t  3.4: An equivalent expression for Equation (3.8) using incremental cost 
factors is

A Fmm =  E  WkAcywx ; Sm, Sa) (3.9)
k=l

where ACk(Wx ; Sm, Sn) =  £  [ck(Sn, /) -  Ck(Sm, /)] .
Jewx L J
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From the above proposition, we see that by restricting Sn to be an edge 
configuration that differs from Sm at only one site x, the incremental cost can 
be reduced to the form shown in Equation (3.8). This proposition in itself is 
not very useful because of the restriction on Sn. However, it can be used in 
conjunction with Proposition 3.10 to provide a very efficient method of 
computing the incremental cost between any pair of configurations Sm and Sn. 
For example, let Sm and Sn be configurations that differ at K sites. It is possible 
to find a sequence of configurations {S0, S1,.... SK} such that S0 =  Sm, Sk — Sn, 
and any consecutive pair of configurations differ at only one site. Then 
Proposition 3.10 can be used to express AFm n in terms of consecutive pairs of 
configurations, and Proposition 3.14 can be applied directly to each of these 
pairs. This is the indirect method of computing the incremental cost. It is 
particularly efficient for values of K much less than N2. We will be using this 
method of computing the incremental cost in our search of low cost 
configurations.

3.4 Analysis o f Minimum Cost Configurations
In Sections 3.1 to 3.3, we have provided the necessary mathematical/ 

preliminaries and presented a cost function for evaluating edges. This cost 
function is a linear sum of weighted cost factors which mathematically 
captures our intuitive concept of an edge. The validity of this cost function for 
evaluating edges is ultimately determined by its performance in detecting edges 
that fit our edge concept.

The cost function has been formulated with the inherent assumption that 
lower cost configurations are better configurations according to our concept of 
an edge. The best configuration is the one that achieves the global minimum of 
the cost function. Two important issues have to be addressed in using the cost 
function for edge detection. First, we need to address the issue of how to find 
low cost edge configurations. Second, we need to know the nature of the edges 
in the low cost configurations. The method of finding low cost configurations 
■will be discussed in chapter 4. We will use a stochastic optimization technique 
known as Simulated Annealing to find suitably low cost configurations.

In this section, we focus on the second issue mentioned above, which is 
analyzing the nature of edges in Ipw cost configurations. The goal of analysis is 
to determine specific properties or characteristics of the edges that will be 
produced. For instance, we are interested in knowing whether there are, any 
thick edges in the low cost configurations, the minimum length of each edge,
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and How well the edges are connected. Some of the results obtained from this 
analysis will be used in the next chapter to prove certain bounds on the depth 
of the cost function.

The nature of the edges in low cost configurations is necessarily related to 
the set of weights chosen for the cost factors. For instance, if we set the weight 
for thick edges to be very large, then low cost configurations will probably not 
contain any thick edges. However, large values for the weights will tend to 
cause the cost function to have many deep local minimums which are highly 
undesirable. Deep local minimums are potential hazardous points which will 
trap many algorithms in search of the global minimum. Hence, a judicious 
choice of weights is essential in ensuring good performance for the cost 
function. Our choice of weights will be based on several propositions which 
will be presented in this section.

We will begin by formally stating the definitions of local minimum, global 
minimum and neighborhood of a configuration. Based on this, we will state a 
proposition which gives a sufficient condition on the choice of weights to ensure 
that the detected edges will be thin. Also, we will analyze edges for other 
properties such as their minimum length and certain characteristics of the 
endpoints. Hypothetical examples will be given in the later part to provide a 
better understanding of the nature of the edges in low cost configurations.

The cost minimization procedure which will be described in the next 
chapter is based on Markov chains. Each state in the chain corresponds to a 
possible solution to the minimization problem. For this reason, an edge 
configuration is considered to be a state in the chain. In the following sections, 
we will use the terms "state" and "edge configuration" interchangeably to mean 
the same thing.

Again, let S represent the collection of all possible edge configurations on 
an N x N square lattice.

D efinition 3.15: The neighborhood of a state Sm is a subset of S defined by 
a neighborhood function H(Sm). If Sn G H(Sm), then Sn is a neighbor of Sm.

D efinition 3.16: A state Sq is a global minimum  if it has the following 
property:

F(Sg) <  F(Sk) for all Sk £  S . .

Notice that the global minimum may not be unique; there may exist a set of
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different states with the same minimum cost value.

D efinition 3.17: A state Sl is a local minimum  if it has the following 
property:

y  F(Sl ) <  F(Sk) for all Sk G H(Sl ) .

D efinition 3.18: The neighborhood function H 1(S) is the subset of S such 
that for each state Sk E H 1(S), the edge labeling at every site is identical to 
that of S, except at a single site Zk E L, where it is the complement. That is,

S =  I sk(0 : sk(/) =  s(0 for all / #  Zk, I E L  ' 
k } sk(0 = s(0 for Z =  /k ’

where s(l) denotes the complement of s(/).

Since there are N2 different sites that could be specified by Zk, so there are N2
different states in H 1(S).

3.4.1 F o rm atio n  of th in  edges I
■ ■/. - ' v . v v ' : ■ ■ . •

An important aspect of our edge concept is that edges should be thin. By
a proper choice of weights, we can ensure that all the edges in any local or 
global minimum state are thin. We do this essentially by placing a sufficiently 
large weight for the cost of thick edge pixels. The following is a sufficient 
condition for the formation of thin edges.

P ro p o sitio n  3.15: Assume that the neighborhood function is Hi(S).
If wt >  (2wf +  wd — we — wc), then there are no thick edges in any local or 
global minimum state.

Proof: It is necessary and sufficient to show that there are no thick edge pixels 
in any minimum state. Let S0 be any state that contains a thick edge pixel. If 
the condition holds, we will show that we can always find a lower cost 
neighboring state that has at least one less thick edge pixel than S0.

Since S0 has a thick edge, it contains a  cycle of length 3; 
C =? So(Z1)Sp(Z2)So(Z3)sO(Zi). Let Sn be the edge configuration that has identical 
edge labelings as S0 except only at site Zlr Where it is a non-edge pixel. Notice 
that this state is a neighbor of S0 and has one less thick edge pixel. From 
Proposition 3.14 and Fact 3.4 the incremental cost can be written as
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AF o,n E w kA c k(W x ; S0,
k=l

Sn)

=  WcACc +  WdACd H- WeACe +  WfACf H- WtACt .

By taking into consideration the various edge structures in a 5 x 5 region 
about site Z1, we obtain bounds for each of the above incremental cdst factors. 
The incremental cost for curvature lies in the range —7 <  ACc <  —I. An 
example of the edge structure for each of the limiting cases is shown in Figure
3.14. The incremental cost for region dissimilarity lies in the range 
0 <  ACd < 1 .  The incremental cost for the number of edge points, 
ACe =  - I .  The incremental cost for fragmentation lies in the range 
0 <  ACf <  2. Two examples of the edge structure for the upper limit is 
shown in Figure 3.15. Similar to curvature, the incremental cost for edge 
thickness lies in the range —7 <  ACt <  —1. From the above equation, we 
have

max  ̂AF0in ] <  E  w k (max J ACk j j

=  wc( - l )  +  wd(l) +  we(—I) +  wf(2) +  wt(—I)

=  2wf H-wd -  wc -  we -  wt

Assuming the condition of the proposition holds,

2wf H-wd - w c - w e - w t < 0  ,

We conclude that

max AFo n j < 0 .

This implies that Sn is a lower cost state than S0. Hence, we have shown that 
for any state which contains a thick edge pixel, we can always find a 
neighboring lower cost state by relabeling that pixel as non-edge. Therefore, in 
any minimum state, there cannot be any thick edge pixels.

□
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Figure 3.14. Computation of ACc. (a) Removal of edge pixel at I1 results in 
ACc=-7. (b) Removal of edge pixel at I1 results in ACc= - I .

Figure 3.15. Computation of ACf. Removal of edge pixel at Z1 of either (a) or 
(b) results in ACf=2.
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3.4.2 M inim um  length  o f edges

The cost for fragmentation increases the continuity of edges by assigning a 
cost to the endpoints of an edge. Although it is not obvious from the definition, 
this cost also guarantees that the detected edges are of a certain minimum 
length. This length is dependent on the choice of the weights wf, wd and we. By 
appropriately selecting the weights, we can ensure that the detected edges are 
of an arbitrary minimum length.

Before stating the proposition relating the minimum length of edges to the 
weights, we first state two lemmas and a related proposition.

L em m a 3.3: Let Sm(I) be any edge pixel of configuration Sm, and let Sn be 
the configuration that has identical edge labelings as Sm at every site, except at 
I where it is a non-edge pixel. Then, the incremental cost factor for curvature 
ACc(L ; Sm, Sn) is always less than or equal to zero.

Proof: By using Proposition 3.14 and Fact 3.4, and setting all the weights to 
zero except wc, it is straightforward to see that

ACc(L ;S 01SJ -  ACc(W, ; SmlSJ .

Using Fact 3.1, we can rewrite the incremental cost as

ACc( W, ;  S01SJ =  ACc( I  ; So iSJ +  ACc(N, ; S01SJ .

It is sufficient to show that ACc( I ; Sm,Sn) <  0 and ACc(N/ ; Sm,Sn) <  0. 
From the definition of the curvature cost, it is easily deduced that the first 
inequality is always true. For the second inequality, we observe that for each 
x € N „

Il Njj(Se) | = | !  Nx(Sn ) I -  I .

Consequently, from the decision tree for computing the point cost shown in 
Figure 3.13, we see that for each of the cases of the number of edge pixels in 
the neighborhood of x,

Cc(Se1X) <  Cc(SmlX).

Hence1 the sum

ExeN,
j c c(SE1x) -  Cc(S01X)] <  0

□
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L em m a 3 .4 : Let Ssa(Z) be any edge pixel of configuration Sm, a n d le t S be 
the configuration that has identical edge labelings as Sm at every site, except at 
I where it is a non-edge pixel. Then, the incremental cost factor for thick 
edges ACt(L; Sm,Sn) is always less than or equal to zero.

Proof: Let Am be the union of the pixels in all possible cycles of length 3 in 
Sm, and similarly, let An be the union for the cycles in Sa- The cost for edge 
thickness assigns a cost value of one to each distinct edge pixel belonging to a 
cycle of length 3, and hence,

I )  =  II An Il , and £ C t(Sm, /) =  |l Am || . v
16L '• ■ Ial.

Since Sn is identical to Sm except that it has I less edge pixel, then every cycle
C = sn{li}sn(l2)sa{h)sa{h) contained in Sn must have a corresponding cycle
C  =  sm (^i)sm (/ 2)sm( / 3)sm( / 1) in Sm. Consequently, the size of An must be less 
than or equal to that of Am, and so

£ct(sa, i)
IeL

ECt(sn; /) =  H An ||
ieh

Am Il <  O

D
LFsing the above lemmas, we now state a proposition that relates how the 

cost for edge thickness and the cost for curvature change when edge pixels are 
removed.

P ro p o sitio n  3.16: Let M be any collection of edge pixels in Sm, and let Sn be 
the edge configuration that has identical edge labelings as Sm at every site, 
except a t the sites of the pixels in M, where they are labeled as non-edge pixels! 
Then, the incremental cost factors for curvature and thick edges, 
ACc(L; Sm,Sn) and ACt(L; Sm,Sn), are always less than or equal to zero 
Conversely, the factors ACc(L; Sn,Sm) and ACt(L; Sn,Sm) are always greater 
than or equal to zero.

Proof: Consider any collection of edge configurations { S1 S2, .... Sk }. Using
Proposition 3.10 and Equation (3.7), and setting all the weights except wc equal 
to zero, we see that

ACcP ^ S 11Si ) - V 1 A C U L iS hSi .,)
i—I

By letting k =  || M || +  I, we can construct a sequence of configurations
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beginning with the initial configuration S1 =  Sm, and ending with Slc =  Sn, 
such that each consecutive configuration contains one less edge pixel of M. 
That is, Si+1 is identical to Si except at a single site of M, where it is non-edge. 
By Lemma 3.3, each of the terms ACc(L ; Si,Si+1) is less than or equal to zero, 
and hence

■ k-1 "
ACc(L ; Sm,S J  =  £  ACc( L ; Si?Si+1) <  0 . /

■ i=0
From Equation (3.7),

ACc(L ; S3,. SJ =  S  [cc(Sn. /) -  Cc(Sm, /)] <  0 ,

it is easily concluded that

ACc(L ; S3, Sm) = £  fcc(Sm, /) -  Cc(S3, 1)1 ^  0 .
■ /Cl. L j

The proof for the incremental cost for thick edges follows the same procedure 
as for curvature, except that Lemma 3.4 is used instead of Lemma 3.3 above.

-I.□
Intuitively, the proposition tells us that when edge pixels are removed 

from a configuration, the cost for curvature and the cost for thickness never 
increase. Conversely, when edge pixels are added, the two cost factors never 
decrease. This proposition is important as it gives us an intuitive idea of how 
the cost factors affect the edges.

We now state an important proposition which gives the minimum length 
of any edge in a global minimum state.

P ro p o sitio n  3.17: Assume that there are no thick edges in the global 
minimum states. In a global minimum state, any edge E that contains at least 
two endpoints has size

IIE II > wf
Wd -W e

where denotes the smallest integer greater than or equal to x.
If E contains less than two endpoints, then || E || >  4.

Proof: Let E be an edge in a global minimum state SG, and let Sn be the state 
that has identical edge labelings as Sq a t every site except at the sites of E
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where they are labeled as non edge pixels. Using Equation (3.7), the 
incremental cost can be written as

E w kACk(L i S01S0)
k=l

=  wcACc +  WdACd +  WeACe +  wfACf +  wtACt 

The incremental cost factors have the following values:

Hence,

AGt =  0 , ACe =  H E H , and ACd =  £  -d ( /)  .
/GI(E)

— WcACc — X  wdd(/) +  WeI I E 11+ WfACf
/Gl(E)

=  WcACc +  X! [w e -  wdd (/) J +  WfACf .

Since 0 <  d(/) <  I,

n,G -  WcACc +  X  fwe - W d I +  WfACf 
/CTrtN-L.- J/GI(E)

=  WcACc +  II E H (we -  Wd) +  WfACf .

From the fact that Sg is a global minimum state, we have AFn G <  0, which 
implies that ’ - ^

Il E H (wd - w e) >  WcACc +WfACf .

If E  contains at least 2 endpoints, ACf >  I. Using Proposition 3.16 we have
ACc >  0. Therefore, taking the minimum of the factors to the right of the 
above inequality,

EU  >
wd -  we

The size of E is an integer, and using the ceiling notation, we have

EH />
wd -  we

:■+

If E contains less than 2 endpoints, it must contain a cycle. Again, by 
Proposition 3.15, the cycle must be thin. By construction, the smallest cycle
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that is thin must have at least 4 distinct edge pixels as shown in Figure 3.16.

3.4.3 D issim ilarity  values a t  th e  endpo in ts

Dissimilarity enhancement signifies with large values those pixels which 
are good candidates for edge points. The following proposition gives a lower 
bound on the value of region dissimilarity at the endpoints of an edge. It is 
useful in estimating the value of the enhancement scale factor a  used in 
dissimilarity enhancement.

P ro p o sitio n  3.18: Assume that the neighborhood function is Hj(S). Let E be 
a thin edge that is a path in a local or global minimum state, such that 
Il E H >: 2. Then, the dissimilarity value at each endpoint of E located at 
site / E (Z1, /2} must satisfy

d(/) >  —  . (3.10)
wd

Proof: Let S0 be a minimum state, and let Sn be a member of H(S0) such that 
S0 and Sn differ only at site Z1 ; pixel S n ( Z 1 )  is a non-edge pixel. From 
Proposition 3.14 and Fact 3.4 the incremental cost can be written as

A Fn>0 -  £ w kACk(Wx 5 Sn, S0)
k=i

=  WcACc +  WdACd +  WeACe +  WfACf +  WtACt .

Since E is thin and S0(Z1) is an endpoint of a path, the incremental cost factors 
must take on the values:

ACf =  0 , ACt =  0 , ACe =  1 , and ACd = ^ ( Z 1) .

Hence,

WcACc — Wjjd(Z1) + w e

Since S0 is a minimum state, AFn o <  0. This implies that

d(/i) +
wd wd

By Proposition 3.16, ACc >  0, and hence
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Figure 3.16. A cycle of 4 distinct edge pixels.
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Figure 3.17. Two examples of extended edge segments.
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Wp

d('*>*  v ;  •

■ ' ' ■ D

Sinced(Z) is linearly dependent on the enhancement scale factor a  (up to 
a maximum of 1.0), the above proposition provides a guideline to selecting the 
value of a. Essentially, edges can be extended by increasing a  so that more 
points satisfy Equation (3.10). The above weight ratio will be given a special 
term called dissimilarity threshold which will be discussed in the next section.

3.4.4 General Considerations in Selecting the W eights
Selection of weights is of major importance as it determines the nature of 

the edges and the number of edge points detected. In the previous sections, we 
have given a sufficient condition for the weights to ensure that only thin edges 
will be detected. Also, we have analyzed the minimum length of edges in terms 
of the weights, and gave a lower bound on the values of the enhanced image at 
the endpoints of an edge. Further insight is gained into the choice of weights 
by considering the minimization of the cost function from the standpoint of 
thresholding and edge linking. To do so, we have to first state an important 
property of thin edges in a global minimum state. This property is given in the 
following proposition. Several hypothetical edge structures will be used as 
examples to provide additional insight into the weight selection process.

If E is a thin edge in any state S, we can partition E into non-empty
m

disjoint segments E 1( E2j .... Em such that E =  U Ei. We define the extended

segments Ej as the set of edge pixels of E contained in the union of the 
windows of the pixels in Ei. Two examples of extended segments are shown in 
Figure 3.17. Note that if m =  I, E1 =  E =  E 1, and if m >  2, Ej C  Ei.

P ro p o sitio n  3.19: Let E be a thin edge that is a path or cycle in a global 
minimum state SG. If E1, E2, .... Em are non-empty disjoint edge segments such

that E = U  Ei, and Ej are the corresponding extended segments, then for eachi - l
segment, the following inequality holds:

Il E i H we + w c £  Cc(SG, I )

IeI(Ej)
w d E  d( 0  -  w f

Iei(Ei)
(3.11)

Furthermore, if m = l ,  or if Ei contains an endpoint of E, then
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Il Ei H we + w c £  Cc(SG, / ) - w d £  d(0  <  0 . (3.12)
Zei(Ei) Zei(Ei)

Proof:
Case I: m >  2.

Let Sn be the state that has identical edge labelings as Sq at every site, 
except at the sites of Ei, where they are labeled as non-edge pixels. The 
incremental cost from Sn to Sg is

a f BiG =  E w kACk(L ; SD, Sg) \
■ k=l

=  WcACc +  wdACd +  WeACe +  wf ACf +  wtACt :.

Since E is a thin edge, ACt =  0, and ACe =  || Ei ||. Therefore, 

AFnjQ =W cACc -W d £  d ( 0 + WeII EiH +W fACf .
Zei(Ei)

The state Sq is a global minimum, and so AFn Q <  0. Thisimplies that

wcA^c — wd E  d(0  +  well EiH ^  -WfACf .
Zei(Ei)

The incremental costfor curvatureisA C c =  £  Cc(SG, /).
Zei(Ei) '

We will refer to the segments containing the endpoints of a path as the end 
segments. Segments that do not contain any end point are referred to as 
interior segments. The incremental cost factor for fragmentation takes on one 
of two possible values.

ACf
0, if E is a path and Ei is an end segment 
-I, if E is a path and Ei is an interior segment 
-I, if E is a cycle

Substituting these into the above equation and taking the upper bound of the 
factor to the right of the inequality,

wc E  Cc(SG, / ) - w d £  d ( / )+ w e|| Ei H <  wf . :W
ze I(Ei) Zei(Ei)

It is easily seen that if Ei is an end segment, then ACf=O, and the inequality 
becomes
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Wc £  Cc(SG, O -  wd £  d(/) +  WeII Ei Il <  Q-.
/GI(E1) /GI(E5)

Case 2: m =  I.

We have E 1 =  E = E 1. Again, let Sn be the state that has identical edge 
labelings as Sg except with the corresponding pixels in E1 labeled as non-edge 
pixels. Following the same procedure as in case I, we have

wc E  Cc(SG> 0  ~  wd E  d( 0 +  well E 1 Il <  -WfACf .
/Gl(Ei) /Gl(Ei)

The incremental cost factor for fragmentation takes on one of the 2 values:

ACf 0, if E is a cycle 
+1, if E is a path

Substituting this into the above equation and taking the upper bound of the 
factor on the right of the inequality,

w c E  Cc(SGv 0 -  Wd E  d ( 0 + w ell E i Il <  0 .
/Gl(E1) /GI(E1)

□

3 .4 .4 .1 Thresholding
Thresholding is the simplest form of edge detection based on an enhanced 

image. It can also be considered to be a trivial form of cost minimization 
where the cost function does not take into account edge structure information. 
For the cost function which we defined, the edge structure information is 
contained in the cost factors for curvature, fragmentation and thickness. By 
setting their respective weights to zero, the cost minimization procedure 
becomes a simple thresholding operation. From Equation (3.12) of Proposition 
3.19, any edge E must satisfy

Wd £  d ( / ) >  | |E | |w c +  wc E  Cc(SG, 0  . (3.13)
/61(E) /61(E)

I fE  is a single edge pixel at /, then the following must hold:

d(0  s
We
Wd *

We call the above ratio the dissimilarity threshold, and denote it by



Using a thresholding approach, in the minimum cost state, dissimilarity 
values tha t are greater than or equal to f will be labeled as edge pixels, while 
those that are less than f will be non-edge pixels. The dissimilarity values are 
Iihearly dependent on the enhancement scale factor a, up to a maximum value 
of one. Hence, the number of edge pixels that are detected can be adjusted by 
varying the value of oc. It is seen that a cost function comprising only of the 
cost factors for dissimilarity and number of edge points, Cd and Ce, represents 
the general class of edge detection by pointwise thresholding algorithms. 
However, for reasons that we have already mentioned in Section 3.3.1, 
pointwise thresholding algorithms do not perform well in finding edges that 
suit our edge concept.

Consider a hypothetical minimum cost configuration S1 containing a single 
thin edge E as shown in Figure 3.18. Let S2 be the edge configuration that 
contains no edge pixels. If the cost function uses only the cost factors Cd and 
Ce, then by considering A F12, S1 is a lower cost state if and only if the 
foliowing inequality holds: .-v;; i:,

wd E  d(0  ^  II E l|we . (3.15)
/61(E)

However, when the cost factors for fragmentation and curvature, Cf and Cc, 
are included, the inequality becomes:

wd E  d(0  -  Il E ||we + w f + w c . (3.16)
/61(E)

A comparison of Equation (3.15) with Equation (3.16) shows that the sum 
of the dissimilarity values for the litte r equation has to be larger than that of 
the former. In this case, when the cost factors Cf and Cc are included into the 
cost function, the lower bound of the sum of the dissimilarity values is 
increased by wf +  wc. Consequently, the edges that are detected for the case 
using Equation (3.15) may not be detected for the case using Equation (3.16). 
This is an example where we observe the influence of Cf and Cc in suppressing 
short edges.
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Figtire 3.18. A minimum cost configuration containing a single thin
edge.
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Figure 3.19. An example of edge linking, (a) Configuration Sj which contains 
an edge E comprised of the segments E0, E1, and E2. (b) 
Configuration S2 which contains fragmented version of edge E by 
the removal of segment E1.
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3.4.4.2 Edge linking
We will now consider how the cost for fragmentation promotes edge 

linking. Consider a minimum cost configuration S1 that contains a single thin 
edge E as shown in Figure 3.19(a). Let E be partitioned into 3 disjoint 
segments Eq, E 1 and E2. Now let S2 be the configuration that contains E but 
with the edge pixels of the center segment E 1 relabeled as non-edge. This is 
shown in Figure 3.19(b). Notice that the edges in S2 is actually a fragmented 
version of edge E. The size of the fragmentation, or the fragmentation length, 
is equal to || E 1 ||. By considering A F12, S1 is a lower cost state if and only if 
the following relationship holds:

wd £  d (/) +  wf >  H E 1 Hwe + w c .
/GI(E1)

(3.17)

Notice in this case that if

Wf >  H E 1 ||we -I-wc ,

then S1 will have a lower cost than S2 regardless of d(/); the continuous edge E 
has a lower cost than the fragmented version of the edge. Assuming that the 
weight for curvature wc is comparatively small, we can approximate the above 
inequality by

wf >  II E 1 IIwe .

If we let

AC =
W1
W„

(3.18)

(3.19)

where J is the floor function, we see that thin edges with a fragmentation
length of less than or equal to AC pixels will have a lower cost when they are 
linked together. Stated in another way, endpoints which are less than or equal 
to AC pixels apart have a lower cost when they are linked together. For this 
reason, we will call Ac the fragmentation linkage length.

In arriving a t the value of AC given in Equation (3.19), we have not taken 
into consideration the dissimilarity values; they were assumed to be zero. Whon 
these values are taken into account, edges that have fragmentation lengths 
larger than AC can also be linked together. This is illustrated in the following 
two examples.

In the first example shown in Figure 3.20, we show a straight edge and the 
dissimilarity values along the edge. Assume that the dissimilarity values are



X X X X  X X X  X X X  X X X X X

(b) d(/)

Figure 3.20. An example of edge linking across a region where the 
dissimilarity values are equal to 0. (a) A straight edge, (b) The 
dissimilarity values along the edge.
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zero at all other points. Notice that the edge contains a segment E 1 where all 
the sites have dissimilarity values equal to 0. If the cost for fragmentation is 
not included, only those points with dissimilarity greater than the dissimilarity 
threshold f will be detected. This will result in a fragmented edge as the center 
portion E 1 has dissimilarity values equal to 0. However, with the inclusion of 
the fragmentation cost, fragmentation will occur if and only if the length of Os 
in the dissimilarity values exceeds the fragmentation length /c. That is,
IIE1H

In the second example shown in Figure 3.21, we show another straight 
edge and the dissimilarity values along the edge. Here again, fragmentation will 
occur in the center region if the fragmentation cost is not included. In this case 
however, since the dissimilarity values at the sites of E 1 are non-zero, 
fragmentation may not occur even if the size of E 1 exceeds /c. In fact, 
fragmentation will occur if and only if the following relation based on Equation 
(3.17) holds:

If we let

wd £  d(/) +  wf < | |  E1 ||we 
Zei(E1)

I

_1_
W0 wf + wd £  d(0

Zei(E1)
(3.20)

then fragmentation will occur if and only if

IIE1H > « ,

Using the property

IA + B J S; [aJ+|BJ ,
it can be deduced that

K  >  K  +
wd

£  d(0
Zei(E1)

(3.21)

Note that K is always greater than or equal to k. Hence edges with 
fragmentation length greater than k can be linked together. However, this 
value of K  only holds for straight edges. For general paths or other thin edge 
structures, Equation (3.11) will have to be used to account for curvature costs. 
From the above two examples, we can View the effect of the fragmentation cost 
from another standpoint; for some regions that have dissimilarity values below



99

X X X X X X X X X X X X X X X

Figure 3.21. An example of edge linking across a region where the
dissimilarity values are non-zero, (a) A straight edge, (b) The 
dissimilarity values along the edge.



the threshold f, the fragmentation cost lifts them above the threshold.

3.5 Summary

In this chapter, we have given a mathematical definition of edges using 
terms that are similar to those in graph theory. Based on this definition, we 
accomplished two things. First, we analyzed certain properties of edges and 
stated several propositions governing the structure of edges in a 3 x 3  lattice. 
Second, we formulated an absolute cost function that measures edge quality. 
As the term suggests, this cost function is different from the comparative cost 
function of the previous chapter in that it measures the absolute quality of an
edge configuration instead of the relative quality between configurations.

The absolute cost function is a linear sum of five weighted cost factors. 
The cost factors are curvature, dissimilarity, fragmentation, thickness and the 
number of edge points. Each of the cost factors captures a desirable 
characteristic of edges. We have provided efficient methods of computing both 
the cost of a configuration, and the incremental cost between configurations. 
We have analyzed the cost function in terms of the nature of the edges that 
will be detected. Based on this analysis, we have stated a number of 
propositions which provide guidelines on the choice of weights to achieve 
certain desirable characteristics in the detected edges.
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C H A PT E R  4
SIM ULATED A N N EA LIN G

4.1 Introduction
The general problem of combinatorial optimization which we are 

concerned with can be briefly stated as follows. Given a large but finite set of 
states S, each state Sj €  S having an associated cost defined by the cost 
function C(Si), it is required to find the state with the minimum cost. 
Depending on the specific nature of the problem, a variety of techniques [30] 
exist for minimizing the cost. In this chapter, we focus on the use of Simulated 
Annealing as a method of combinatorial optimization. In particular, we will 
show how it can be applied to edge detection by minimizing the cost function 
for edges which has been described in the previous chapter. ' I

Simulated annealing is a stochastic optimization! algorithm derived from 
Monte Carlo methods [31] in statistical mechanics. Metroplois et al. [32] 
originally proposed the algorithm as a simulation method for investigating the 
behavior of substances consisting of interacting molecules. One of its many 
later applications is in the study of properties of magnetic materials based bn 
the Ising model [33-35]. The Metropolis algorithm has been used extensively to 
simulate the behavior of substances in thermal equilibrium as the temperature 
was slowly decreased to the point of crystallization; hence the term “Simulated 
Annealing”. The goal of the annealing process is to find the ground states of a 
substance which corresponds to the configurations of low energy in its 
molecular structure.

Kirkpatrick et al. [36] and Cerny [37] independently observed that the 
search for the low energy configurations in the annealing process could be 
likened to the search for the low cost solutions in a combinatorial optimization 
problem. The many different states that a system can exist in corresponds to 
the many possible solutions of the optimization problem. The energy of a 
particular state corresponds to the cost of a particular solution, and the ground 
state corresponds to the lowest cost solution. A direct correspondence between 
statistical mechanics and combinatorial optimization was thus drawn in the
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following way.

StatisticalM edhanics C om binatorialO ptim ization
1) States (of system) Solutions (to problem)
2) Energy (of state) Cost (of solution)
3) Ground State OptimalSolution

Based on the above correspondence, the annealing algorithm of Metropolis 
et al. was first applied to the optimization of wire routing in integrated circuits 
[36], and the traveling salesman problem [37]. Good results comparable to 
present heuristic algorithms were reported. Since then, the algorithm has been 
successfully applied to a number of diverse optimization problems such as the 
traveling salesman problem [38], wire routing[39], coding[40], speech 
recognition[41], image processing[42,43], and logic optimization[44].

4.1.1 Markov Chains
The Metropolis algorithm is based on stationary Markov chains. The 

definition and theory of such chains can be found extensively in the literature 
on stochastic processes, such as [45-48]. We will give a brief description of 
Markov chains concentrating only on those aspects that are relevant to 
Simulated Annealing. We will state several properties and a theorem 
concerning the limiting behavior of such chains.

Let Cl be a sample space and P be a probability measure on it. Let 
X =  (Xn; n £  N} be a stochastic process with a countable state space E. That 
is, for each n £  N  =  {0,1,...} and ui £  Cl, Xn(w) is an element of the countable 
set E . We will say that “the process is in state j at time n” to mean Xn =  j.

D efinition 4.1: The stochastic process X =  {Xn; n £  N} is called a Markov 
chain provided that

P{x»+i=iAo. • • • • XJ = P ft.-HA=!
for all j £  E  and n G N.

A Markov chain is thus a sequence of random variables such that for any 
n» Xn+! is conditionally independent of X0, . . . ,  Xn_x given Xn. That is, the 
next state Xn+1 is independent of the past states X0, . . .  , Xn-1 provided that 
the present state Xn is known. If the conditional probability

P{Xn+I = J A n  =  O =  PO. j)
is independent of n, the process is a time-homogeneous or stationary Markov



chain; otherwise, if it is dependent on n, it is a time-inhomogeneous or 
nonstationary chain. The probabilities P (i, j) are called the transition 
probabilities' They can be arranged in a square array resulting in a transition
matrix of the form:

P (0,0) P(0,1) P (0,2) .... 
P(l)O) P (l,l)  P(l,2) .... 
P (2,0) P (2,1) P(2,2) ....

If P(i, j) is not equal to zero, we say that state j is reachable from state!. 
A set of s t a t e s  is closed if no state outside of it can be reached from any state 
in it. A Markov chain is irreducible if its only closed set is the set of all states. 
A criterion for irreducibility is that a Markov chain is irreducible if and only if 
all states can be reached from each other. The proof for this can be found in

A state j is said to be recurrent if and only if starting at j, the probability 
of returning to j is one. Beginning from a recurrent state j at time n = 0 , let 
n—R be the time of the first return to state j. Assuming that 8 > 2 is the
largest integer for which the probability that R is some integer multiple of 8 is 
equal  to one, then state j is said to be periodic with period 8. If no such 8 
exists, then j is aperiodic. It can be shown [45] that for irreducible chains, 
either all states are aperiodic, or all states are periodic with the same period 8. 
It follows from this that if the chain is irreducible and if there exists some state 
i for which P(i, i) ^  0, then the chain is aperiodic.

L im itingd istribution
We now state a well know property of Markov chains relating to the 

limiting distribution of a chain.

T heorem  4.1: If X is an irreducible aperiodic Markov chain with finitely 
many states, then the system of linear equations

* ( j)«  J X O P (U ) .' j e 'B  , ( « )



has a unique solution that is strictly positive.

Proof: Refer to the text by Cinlar [45].

The probability distribution tt which satisfies Equations (4.1) and (4.2) is 
called the invariant distribution of the Markov chain X, For simplicity in 
notation, we will write 7r(j) simply as TTj.

4.1.2 The M etropolis A lgorithm
The Metropolis algorithm, first proposed in 1953, was a method of 

simulating the behavior of substances at thermal equilibrium. The description 
and analysis of the algorithm given here follows closely to that given by 
Hammersley and Handscomb [31]. Let S =  (S1, S2,....SK} be the finite set of all 
possible states of a physical system. Each state Si has a corresponding positive 
energy denoted by E(Si). In statistical mechanics, it is often desirable to 
simulate the behavior of the system at thermal equilibrium at temperature T. 
To do so, it is necessary to be able to sample the states with the following 
probability density:

<  i <  K , (4-3)

where a  is a positive scalar constant, and

Zx =  XI exP
SiES

is a normalization factor which ensures that the sum of P(Si) over all possible 
states is equal to one.

The denominator Zx of Equation (4.3) is unknown and cannot be 
computed because the number of states, although finite, is very large. Hence, 
although E(Si) is known, the probability P(Si) of Equation (4.3) cannot be 
determined. As a result, it is not possible to generate the states according to 
the given distribution using direct sampling methods. The Metropolis 
algorithm achieves the above sampling requirement by constructing a finite 
stationary Markov chain that has an invariant distribution which is identical 
to that of Equation (4.3). That is, the chain has the set of all possible states of
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the system as its state space, and its invariant distribution is given by:

H i ) - P ( S j ) .  (4.4)

The method of generating the Markov chain is as follows. Consider any 
arbitrary chain with a symmetric matrix P* of transition probabilities; the 
elements of this matrix must satisfy

Pij — 0 > SPij sbsI >' Pij =  Pji ♦ . (4.5)
’ - /..-■■■ ■■ . . j . ;
We now define a new set of transition probabilities pjj using the known

quantities -7r̂  .
* 0 )  ■ ■.

If i ^ j  we define

If i =  j we define

Pij 7TjAi if TTjAi <  1

Pij if TTjAi ^  !•

Pu =  Pii +  ! A u ! 1 -  TTjAi) >

(4.6)

(4.7)

y^here ^  is taken over all values of j such that 7Tj A i <  I*
We will next prove that these Pjj are elements of a stochastic matrix and

that the Markov chain defined by these transition probabilities has tt as its 
invariant distribution.

."Proof: . ■
We will denote as £ )"  the summation over all values of j such that j ^  i and 
TTjAi ^  I.

(I) From Equation (4.3), each 7Tj >  0, and hence by Equations (4.5), (4.6) and 
(4.7), all the Py satisfy

Pij ^  0 . (4.8) 2

(2) The summation over all j of the quantities p,j can be written as
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EPij — Pu +  E /Pij(1—7rj / 7ri) +  E^Pij7rjA i +  E^Pij 
j J j j '

=  Ph +  E 'py  +  E " pu 
j j

=  Pil +  E pu

=  E P i j = 1 * (49)
j " ' '

Thus by Equations (4.8) and (4.9), the Pjj are elements of a stochastic matrix.

(3) To show that the chain has an invariant distribution equal to 7r, we 
essentially have to show according to Equation (4.1) that

7rJ ~  E 7rIPij *
i

First we observe that for any pair i and j such that 7Tj =  7Tj, we have by 
Equations (4.5) and (4.6)

Pij =  Pij =  Pji =  Pji >
and therefore, since 7Tj =  7Tj,

7rJPij = 7rJPji-
Next, if 7Tj <  7Tj, we have

Py =  Pij7rjA  — Pji7rjA i =  Pji7rjA i t

(4.10)

which again gives Equation (4.10). Similarly, it can be shown that the same 
equation still holds for TTi <  ttj. Consequently, it holds for all values of i and j. 
Finallyj W eseethat

E 71IPij =  E 71jPji =  7̂ EPji =  7rJ *
i ■ i i . .

which completes the proof that the invariant distribution is n.
. □

Notice that by Equations (4.3) and (4.4), and the assumption that the 
energy is finite, TTj >  0 for all j. Consequently the matrix P =  [py] represents an 
irreducible aperiodic Markov chain whenever P* =  [py] does. Hence by 
Theorem 4.1, a unique solution exists and is of the form defined in Equation 
■(4.3). -



We now consider the implementation of Equations (4.6) and (4.7), which 
essentially is the Metropolis algorithm. The algorithm begins by defining an 
arbitrary transition matrix P over the state space. The restriction on P is that 
it must be symmetric, aperiodic and irreducible, which are the assumptions 
made in Equation (4.5). For a fixed temperature T, the algorithm proceeds as 
follows.

Algorithm  (Metropolis):

(1) Pick a random initial state, and set k = 0 .
(2) Call this the present state Sp.

(3) Based on transition matrix P, randomly select another state Sn.
(4) If ( E(Sn) <  E(Sp) ) then

transition to state Sn

(5)

else

transition to state Sn with probability exp 

Increment k, then go to step (2).

' -[E(S11)-E (S8)] ’ 
oT ̂ /

The algorithm loops from steps (2) through (5), and as the number of 
repetitions k becomes very large, the process approaches it invariant 
distribution. We have shown that the invariant distribution takes on the form 
given in Equation (4.3). Similar results relating to the invariant distribution 
are given in [49-51],

By making a simple substitution of the energy of a state E(Si) with the 
cost C(Si) of a solution, the above algorithm generates a Markov chain with an 
invariant distribution of the same form as that of Equation (4.3):

TT(Si) = I <  i <  K , (4.11)

where K is the total number of all possible solutions, and a  is a positive scalar 
constant. Z f  is again a normalization constant. Assuming that C(Si) is non­
negative for all !, Equation (4.11) specifies that lower cost solutions Will have 
higher probability of occurrence. Notice that if T is small, the distribution will 
be concentrated about the low cost solutions. That is, when the Markov chain 
achieves its invariant distribution at low temperatures, there is a high
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probability that it is in a state corresponding to a low cost solution. As T 
tends to zero, the distribution will be concentrated at the minimum cost states. 
Hence the algorithm can be used in combinatorial optimization to find the 
minimum cost solutions.

It is of interest to note that the Metropolis algorithm presented above 
allows for uphill state transitions so that it does not get stuck in a local 
minimum of the cost function. The temperature T can be interpreted as a 
control parameter, and if it is set equal to zero, the algorithm is similar to the 
steepest descent search method and will usually terminate in a local minimum.

4.2 Tem perature Variation and Simulated Annealing
In using the Metroplois algorithm for optimization, two related issues have 

to be resolved. The first is in estimating the number of repetitions or 
transitions sufficient for the Markov chain to reach its invariant distribution. 
The second is in the devise of a sequence of temperature decrements to bring 
the system to the states of minimal cost. This is known as the temperature 
schedule. The schedule has to be efficient in the sense that it ensures that the 
lowest cost states are reached rapidly.

In order to ensure convergence to the global minimum states, temperature 
variation has been incorporated into the Metropolis algorithm by changing the 
temperature parameter T in step (4) so that it becomes time dependent. The 
process generated by such such an algorithm is a non-stationary Markov chain. 
A number of researchers [52-58] have proved the asymptotic convergence 
properties of the chain and estimated various rates of convergence. The 
general form of the Simulated Annealing algorithm for cost minimization is as 
follows.

AJgorithm (Sim uIatedA nnealing):
(1) Pick a random initial state, and set k = 0 .

(2) Call this the present state Sp.

(3) Based on a transition matrix, randomly select another state Sn

(4) If ( C(Sn) <  C(Sp) ) then
transition to state Sn

else ■ '

transition to state Sn with probability exp
' -IC(Sc)-C (Sp)]

Tk
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(5) Increment k, then go to step (2).

In devising a temperature schedule, we will focus our attention on the 
work of Hajek [58] where he states a theorem which gives a necessary and 
sufficient condition on the j temperature schedule for the convergence of the 
annealing algorithm to the set of global minimum states. We will also present 
some related results of Geman and Geman [52], and Mitra et al. [54] in this 

■area..'

Before stating Hajek’s theorem, some preliminary definitions are in order. 
The problem is to minimize a function C defined on some finite set S. The set 
of states in S at which C attains the minimum is denoted by S*. Assume that 
for each state Si in S there is a neighborhood set H(Si) contained in S. In 
addition, there is1 a transition probability matrix R over S such that 
I^(Si)Sj) >  0 if and only if Sj is in H(Si). A state i is reachable from state j  if 
there is a sequence of states j= i0, 11, . . . , ip=i such that R(ik, ik+1) > 0  for
0 — k <  p. (S, H) is irreducible when for any pair of states i and j, i is 
reachable from j.

A state i is reachable at height E from state j if there is a sequence of 
states j —i0, i1? . . . ,  ip=i such that

R(ik> ik+i) ^  0 for 0 ■< k <  p

and

C(ik) <  E for 0 <  k <  p .

P ro p e r ty  4.1 (Weak reversibility): For any real number E and any two states
1 and j, i is reachable at height E from j if and only if j is reachable at height E 
from i.

A state i is said to be a local minimum if no state j with C(j) <  C(i) is 
reachable from i at height C(i). The depth of a local miniimim  i is plus infinity 
if i is a global minimum. Otherwise, the depth of i is the smallest number E, 
E >  0, such that some state j with C(j) <  C(i) can be reached from i at height 
C (i)+ E .

Let the temperature schedule T1, T2,.... be a sequence of strictly positively 
numbers such that

T1 >  T2 ^

and

(4.12)
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IimTk =O . (4.13)
k-+oo

Suppose that a discrete time non-stationary Markov chain X0, X1,.... on the 
state space S is generated using the Simulated Annealing algorithm described 
above. The convergence in probability of the chain to the set of globally 
minimum cost states is given by the following theorem.

T heorem  (Hajek): Assume that the Simulated Annealing based on (S, H, C) is 
irreducible and satisfies weak reversibility, and that the temperature schedule 
satisfies Equations (4.12) and (4.13). Then

Iim P [Xk E S  ] = 1
k—>>00

if and only if

OO

S exP
k=i

+OO ,

(4.14)

+ I S )

. £
where d is the maximum of the depths of all states which are local but not 
global minima.

Proof: Refer to the paper by Hajek [58].

R em ark : If Tk takes on the parametric form

V '  ̂ T l =  M S i j -  '
then Equation (4.15) and hence Equation (4.14) holds if and only if c >  d*.

Mitra et al. [54] showed that convergence can be achieved by a 
temperature schedule of the form

Tk log(k +  k0 +  l) ’ ^ • 17^

where k0 is any parameter satisfying O <  k0 <  oo, and

V  T ^  rP , ' ■■■
where r and p  are defined below. Let S ' be the set of all local minima, then the
radius r is defined as



r =  min max dfi, j) , 
i€(S—S') j€S V’ J ; ’

(4.18)

where d(i, j) is the minimum number of transitions from i to j. The parameter 
p is the maximum change in cost across any transition, and is defined by

p =  max max I C(j) — C(i) I
i6S j€H(i) A ' w  1

(4.19)

Geman and Geman [52] applied the annealing algorithm to Markov 
random fields and image restoration, and proved its convergence based on a 
temperature schedule of the form

T MA 
k log(l +  k)

The parameter A corresponds to the maximum difference in the cost for any 
pair of states in S, and M is the number of pixels in the image. However, the 
above schedule is not useful because the number of iterations k required to 
reach a typical temperature of Tk=0.5 is far too large for any practical 
implementation. For example, if M=20,000 and A = l, it would take 
k =  exp (40,000) iterations to reach a temperature of 0.5. In their 
implementation, Geman and Geman concluded that the bound MA is far from 
optimal and used an empirical value of 3.0 in place of the value MA.

To summarize, three things are required in the use of Simulated 
Annealing for general problem solving:

(1) a cost function defined over the state space of all possible solutions,
(2) a method of generating next states (i.e. a suitable transition matrix), and
(3) an efficient temperature schedule.

4.3 Edge D etection Using Simulated A.nnealing
In Chapter 3 we have presented a cost function that evaluates the quality 

of an edge configuration. This function mathematically captures the intuitive 
ideas of an edge and serves as an objective measure of how well an edge 
configuration fits a given image. It has been shown that when this function is 
minimized, a number of desirable characteristics of good edges are achieved. 
The goal is to find the configurations that achieve the global minimum of the 
cost function. Since there are 2 possible edge configurations, it is not possible 
to implement any exhaustive search approach because of the large number of 
configurations to be considered.



We will use Simulated Annealing as a tool to find relatively low cost 
solutions to the cost function. Although asymptotic convergence to the global 
minima is guaranteed with the use of a suitable temperature schedule, the 
finite time behavior of the annealing algorithm will often yield solutions that 
are not global minima. However, they are local minimum of relatively low cost. 
In the context of edge detection, we find that it is not necessary to achieve the 
global minimum states; very satisfactory results are obtained from these 
relatively low cost solutions. This is particularly evident from the fact that 
many of the desirable characteristics of edges are achieved in low cost locally 
minimum states which may not correspond to global minima.

Since we have already formulated a suitable cost function for the 
annealing process, we proceed to discuss the remaining two requirements of 
Simulated Annealing mentioned in the previous section. These are the method 
of generating next states and the temperature schedule.

4.3.1 M ethod of G enera ting  N ext S ta te s
The state space of the annealing process is S which is the set of all 

possible edge configurations on an N x N  square lattice. For each 
configuration S E S, the cost of the configuration is given by F(S). Each 
configuration corresponds to a state in the Markov chain generated by the 
annealing algorithm; the terms “configuration” and “state” will be used 
interchangeably to mean the same thing. At any state Sm, the potential next 
state Sn is generated according to a transition matrix. Conceptually, the next 
state is selected according to the probability distribution defined by the matrix. 
Practically however, it is unnecessary to explicitly define a transition matrix 
for the selection of potential new states; all that is needed is a method of 
generating next states such that certain conditions on irreducibility and 
reversibility are satisfied.

Our method of generating the next state is based on a combination of five 
possible strategies. The first strategy generates the next state by 
complementing a single pixel labeling in the present state. The second strategy 
complements two pixel labelings in the present state. The third and fourth 
strategies generate next states by shifting or perturbating the location of the 
edges in the present state. The fifth strategy involves changing an arbitrary 
number of pixel labelings in a window region. We now give the details of each 
of these strategies and the method of combining them together. Again, we let L 
denote the set of all pairs of indices of the pixels in a configuration. In each



case, we assume that / G L is a given parameter; the method of selecting / will 
be discussed later.

S tra te g y  I :  Single pixel change

Sn = M i ( S p , / ) .  '

In this strategy we generate the next state Sn by complementing the edge 
labeling at I of the present state Sp. That is, for every pixel sn(x) 6  Sn, and 
sp(x) G Sp such that x #  /,

and for x =  /,
sn(x) =  sp(x) , 

sn (0  =  Sp ( Z )  ->

where the bar notation denotes the usual binary complementation

S tra te g y  2: Double pixel change

Sn = M 2(Sp, / ) .

This is the same as the strategy M1 except that we change the labeling of 
two pixels in the window Wi (Sp). We first randomly select a neighboring pixel 
of /, sp(r) G Ni(Sp). Then the new configuration is the state that is specified by

. sp(x ), x GL, x £ {/, r) 
Sp(x) > x G {/, r) .

S tra te g y  3: Single pixel shift

S n = M 3(Sp, / ) .

This strategy of generating a new state is based on locally perturbating 
the edge structure in the window Wi(Sp). The next state Sn has identical edge 
labeling as Sp at every site except for the pixels in Wi(Sp). The pixels in Wi(Sn) 
are labeled according to the transformation of the edge structure in Wi(S ) 
shown in Figure 4.1. If the edge structure in Wi(Sp) is one of the fourteen edge 
structures shown in the figure, the edge structure in Wi(Sn) is the 
corresponding structure shown on the right. Where there are two structures 
possible for the transformation on the right, either of them are selected on an 
equally likely basis. If the edge structure in Wi(Sp) does not correspond to one
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Figure 4.1. The fourteen edge structures in Wy(Sp) and their corresponding 
transformations in Wy(Sn) using strategy M3.



of the structures shown in the figure, then the structure in Wr(Sn) is made 
identical to that in Wr(Sp). In doing so, we are actually setting Sn =  Sp.

S tra te g y  4: Multiple pixel shift

S„ M4(sp, Z) .

This strategy of generating a new state is again based on locally 
perturbating the edge structure in the window Wr(Sp). It is very similar to the 
Strategy of M3 except that the perturbation is more significant. The next state 
Sn has identical edge labeling as Sp at every site except for the pixels in Wr(Sp). 
Tho pixels of Wr(Sn) are labeled according to the transformation of the edge 
structure in Wr(Sp) shown in Figure 4.2. If the edge structure in Wr(Sp) is one 
of the ten edge structures shown in the figure, the edge structure in Wr(Sn) is 
one of the two corresponding structures shown on the right; either of the two 
are selected on an equally likely basis. If the edge structure in Wr(Sp) does not 
correspond to one of the structures shown in the figure, then the structure in

ettingWj  (Sn) is made identical to that in Wr(Sp). In doing so, we are again s 
Sn — Sp as in the case of Strategy 3.

S tra te g y  5: Window region change

Sn = M 5(Sp j Z).

In this strategy, the next state is generated by arbitrarily changing all the 
pixel labelings in the window Wr(Sp). That is, for all sn(x) G Sn such that 
sn(x) & Wi(Sn), sn(x) =  sp(x), and for each sn G Wr(Sn), the pixels are labeled 
randomly; each pixel in the window has equal likelihood of feeing an edge or 
non-edge pixel. This strategy allows for as many as nine changes in the edge 
labelings of Sp when generating the new state Sn. In fact, the edge labeling of 
Sn and Sp are identical at every site except for a random number of K sites in 
W h  where O <  K ^  9. When K=Q, Sn and Sp are identical, i

The method of selecting the next state is a combination of the five 
strategies mentioned above. Given Z, we randomly choose from one of the five 
strategies to generate the next state. Mathematically, the selection process can 
be expressed in the form

Sn =M x (SpjZ), (4.20)

where X is a discrete random variable taking on values in the set {l,2,...,5}.
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Figure 4.2. The ten edge structures in W/(Sp) and their corresponding 
transformations in Wi(Sn) using strategy M4.



The probability distribution of X is given by

P(X =  i ) = P i ,  i — 1,2,...,5 (4.21)

where

EPi = i- ■
'■ ; • ■ i=l

The specific values of Pi are application dependent; they determine the 
frequency that each strategy will be used. Notice that given / and Sp, each 
new state that can be generated using or M3 can also be generated using 
M2. That is, the set of states that can be generated using M1 and M3 is a subset 
of the states that can be generated using M2. Similarly, the set of states that 
can be generated using M1, M2, M3 and M4 is a subset of the states that can be 
generated using M5. Consequently, the total collection of states that can be 
generated from a given state using the five different strategies is determined by 
M5. Given 7 and Sp, there are 256 possibilities of generating the next state. 
Given Sp only, there are approximately 256N2/9 different possibilities for the 
next state. Figure 4.3 shows two examples of the various possible transitions 
using the five different strategies.

The strategies M1 and M5 have a reversible property in the sense that 
given 7, if Sa can be generated from Sb, then Sb can also be generated from Sa. 
Since M5 will generate all states possible with the other four strategies, it can 
be deduced that the method of generating new states using Equation (4.20) 
also has this reversible property, provided that p5 is non-zero. This property 
will be useful in the proof of the weak reversibility (Property 4.1) of the 
annealing process.

At each iteration through the annealing algorithm, the value of 7 can be 
chosen either in a random or deterministic manner. An example of a random 
approach would be to select the 7 on an equally likely basis from the set L. An 
example of a deterministic approach of selecting 7 is to to sequentially step 
through each pixel site in the image in a raster scan manner. One guideline 
that is used for the selection of 7 is that at low temperatures, every site should 
be selected at least once before the termination of the annealing process. When 
this is achieved, we have found experimentally that the results of cost 
minimization obtained by both approaches are fairly similar. It should be 
noted that using the above criterion that each pixel site should be selected at 
least once, a random approach in selecting the value of 7 would require a
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M9 or M

Figure 4.3. Examples of possible transitions using the five different strategies 
of generating next states.



119

significantly larger number of iterations through the image than the 
deterministic approach. For example, if the sites are selected on an equally 
likely and independent basis, after K iterations, the probability that a given 
site has not been selected,

IP (a given site has not been selected)

where N2 is the number of pixels in the image.
Consequently, the probability that it has been selected at least once,

9 I K 
N2 - IP (a given site has been selected) =  I - 

Hence, the probability that every site has been selected after K iterations is

P (every site has been selected) I - N2 - I
(4.22)

For a 128 x 128 image, a value of K =  ION2 iterations would yield 
probability of 0.475 that every site has been visited at least once; a value of 
K =  13N2 would yield a probability of 0.964. For a 256 x 256 image, it would 
require K =  14N2 iterations to yield a probability of 0.947 that every site has 
been visited at least once. A deterministic raster scan method of selecting I 
requires only one iteration through the image to ensure that every site has been 
selected. Hence, from a computational standpoint, it is far more efficient to use 
a deterministic approach rather than a random approach in selecting /.

We will now show that the method of selecting the next state involving 
the use of the five different strategies as given in Equation (4.20) results in a 
Markov chain that is irreducible and has the property of weak reversibility. It 
does not matter whether the above mentioned random or deterministic 
approach in selecting / is used; both will result in irreducible and reversible 
chains. We will assume that the value of p5 in Equation (4.21) is non-zero.

First we observe that using either the random or deterministic methods of 
selecting I described above, if state Sm can be generated from Sn, then S0 cap 
be generated from Sm. Consequently, for any sequence of next states 
S0, S1, ..., Sm, there is a non-zero probability of generating another sequence of 
states by backtracking the original sequence, which yields the sequence 
Sm, Sm.! ,  ..., S0. Hence the process has the property of weak reversibility as 
given in Property 4.1.
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Let Sm and Sn be any pair of states that have different edge labelings at k 
sites contained jn the set M={/1} . . . , /k}; 0 < k  <  N2. Assume that the 
method of selecting I is the deterministic raster scan approach described above. 
That is, / is selected by sequentially iterating through each site in the image. 
Beginning from Sm, there is a non-zero probability of generating a sequence of 
next states such that

(1) i f , M >  then the next state is the same as the present state, and
(2) if / EM , then the next state is generated using M1.

Each next state generated using M1 has one less different edge labeling from Sn. 
At most k intermediate next states are needed to arrive at state Sn. Hence 
every state is reachable from any other state, and the chain is irreducible.

If the method of selecting I is random and equally likely in L, then it is 
straightforward to observe that there is a non-zero probability that every 
member of M will be selected. Hence, as in the previous deterministic case, it is 
possible to generate a sequence of next states from Sm to Sn. This again results 
in an irreducible chain.

4.3.2 Tem perature Variation
The selection of a suitable temperature schedule is important in the 

annealing process because it governs in part the rate of convergence to the set 
of global minimum states. The other governing factor in convergence is the 
method of generating next states; we could conceively have a very “intelligent” 
method of generating next states so that the minimums states would be 
approached rapidly along a path of least cost. We will now focus on the use of 
Hajek’s theorem in the device of a temperature schedule. In particular, we will 
use a Schedule of the form given in Equation (4.16). For practical purposes, the 
parameter c in the equation has to be kept as small as possible so that the 
number of iterations can be held within a reasonable limit. For instance, if 
c =  10, then to decrease the temperature to a typical value of 0.3 using 
Equation (4.16) would require k =  300 x IO12 iterations. However, if c — 5, then 
it would require only k =  17.3 x IO6 iterations. Since convergence is guaranteed 
if and only if  c >  d , it is crucial to be able to find a relatively tight upper 
bound on d . The remainder of this section deals with the analysis and 
estimation of an upper bound on the value of d*.

We will estimate the upper bound of d* by first stating a theorem on the 
maximum cost ascent necessary to reach the global minimum from a given 
state S0. Based on this theorem, we will then give an estimate of the maximum
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cost ascent necessary to reach the global minimum from any state. The 
theorem is as follows.

T heorem  4.2: Let E =  sg( î)sg(^2)-"* sg(̂ k) be any thin edge that is a path 
or cycle in a global minimum state SG. Let M be the sites of the pixels 
contained in the union of all the windows of each pixel site in E;

M =  U W, . .
s(/)eE

Define a sequence of states S0, S1, . . . , Sk such that I

(I) S0 =  {s0: / €  L } is any state with S0(Z) =  0 for all I £  M ,

(2) Si
Si(Z) — S ^ 1(Z) ; I Zi 
Si(Z) =  I ; Z =  Zi ,

for i =  1,2,...K.
Then for all 0 <  m <  n <  K,

and

if E is a path 
if E is a cycle ’

^ f OiK — 0 •

Notice that the construction of the sequence of states is such that each 
consecutive state Si differ from the previous state Si_1 in that it contains one 
additional edge pixel of E. The proof of the theorem follows.

Proof:
(A) Assume that E is s thin path. We will first show that AFp n <  ^ f for 
0 < n  <  K. Next we will show that A Fmn <  wf for all I <  m < n  <  K. 
Based on these we can conclude that A Fm n <  wf for all 0 <  in <  n <  K.

(I) AF0 n <  wf, 0 <  n <  K.
Let En — Isg(Z1),...., sG(Zn)} be a segment of E, and En be the corresponding 
extended edge segment. From the construction of S0, it can be deduced that for 
any state Sn, 0 <  n <  K, the incremental cost between S0 and Sn can be 
written as
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AF0in=W eIIEnII + w c S  Cc(SG, / ) - w d £  d ( /)+ w f + w tACt .
Zel(En) Z6I(En)

Since E is thin ACt =  0. For each edge segment, En C E n. Using Proposition 
3.19 and the fact that En contains an endpoint of E, it is straightforward to 
conclude that

' A F 0 n  <  Wf . ;'

(2) AFm n <  wf, I <  m <  n <  K.
Let Emn =  {sG(/m+1),...., sG(/n)} be a segment of E, and Emn be the 
corresponding extended edge segment. Let

E 7mn- E mnU sG(/m) .

For &ny state Sn, I <  m <  n <  K, the incremental cost between Sm and Sn be 
written as

AFnit- w ,||En J |  + w c S  Cc(SG>0 - w d S  d ( 0 + WtACt .
/CI-K „..S ICIIE1J

" ' : ' \ ■’ v ■
Again, since E is thin ACt =  0. For each edge segment E 7mn C  Emn. Using 
Proposition 3.19, we again conclude that

AFmin <  wf .

Combining the results of steps (I) and (2) above, we see that

AFm n <  wf for 0 <  m <  n <  K .

(B) Now assume that E is a cycle. Following the same procedure as in (A)
above, we can conclude that

■; .u v + + ; . V (I) AF0 n <  2wf ; 0 < n  <  K, and

, -X ’ V (2) AFmjn <  wf ; I <  m < n  <  K

Hence, U- -■ . ,

; >• . •" ■ AFmjn <  2wf ; 0 <  m < n  <  K .

(C) We will now show that AFo k <  0. Let Sn be the state that is identical to 
Sg except with the edge E removed; that is,
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. sn(/) =  Sq(Z) Sg(Z )^ E  
sn( / ) = 0  sg( /)G E . ’

By the construction of S0, SK, and the use of Proposition 3.11, it can be 
deduced that the incremental cost between S0 to Sjg is the same as that from 
Sn to Sg ;

AF0)K — AFn G •

Since Sg is the global minimum, A Fn G<  0, and hence

AFo1K — °-

4.3 .2 .1 An A dd itiona l C ost F a c to r

□

For the purpose of estimating a tight upper bound on d*, we define an 
additional cost factor in order to restrict the edges of m inim um  cost 
configurations to be either paths or closed cycles; edge pixels that connect three 
or more edge segments are disallowed. This is necessary to limit the numerous 
possible edge structures that need to be taken into consideration. It is achieved 
simply by assigning a cost to edge pixels that have three or more neighboring 
edge pixels. For typical images, this restriction affects the final output of the 
edges only in a very minor way. In most images of interest, the number of
points where three or more edge points are connected are few. Furthermore, it 
will be seen that at such points, the use of the additional cost factor will result 
in a local discontinuity of usually only one or two pixels; if necessary, this can 
be easily corrected by a post detection process.

The cost factor is labeled as Cn and is called the cost for number of 
neighboring edge pixels. It has the following definition:

C JS in, / )
o , Sm(Z)=O
o ,  11N/(Sin)JI <  3 and Sm(Z)=I 

I > I IN/(Sm)I I ^  3 and Sm(Z)=I.
(4.23)

The cost function is now a linear combination of six cost factors instead of 
the previous five. That is,



124

F(Sm) =  E
ieh

6
E

k=i
wkCk(Sm, /) (4.24)

=  WcCc +  wdCd +  WeCe +  WfCf +  wtCt +  wnCn ,.

where each of the other five cost factors have been previously defined in 
Chapter 3. By a trivial modification of the cost tree of Figure 3.16, we obtain 
the new cost tree shown in Figure 4.4 which includes the cost factor Cn. It is 
clear that the factor Cn also depends only on the pixels in Wf(S), and 
consequently, Proposition 3.11 also holds for the new cost function. By simple 
modification of the proofs to include Cn, it can be shown that Propositions
3.14, 3,16, 3.17, 3.18, 3.19 and Theorem 4.2 also holds for the cost function 
with 6 cost factors. The two functions are essentially the same except that in 
the new cost function, we place a cost which tends to disallow edge pixels from 
having more that two neighbors. We will now state two propositions relating to 
this new cost function which governs how the weights wn and wt are to be 
chosen to achieve certain characteristics in the detected edges.

P ro p o s itio n  4.1 Assume that the neighborhood function is H 1. If 
wn >  2wf + w d — we, then in any local or global minimum state, every edge 
pixel has at most two other neighboring edge pixels.

Proof: The proof is by contradiction. We will assume that there exists a local 
or global minimum state Sq that has three or more neighboring edge pixels. 
Assuming that the condition of the proposition holds, we will then show that 
there exists a neighboring state that has a lower cost; this contradicts the 
assumption that the initial state is a local minimum.

Assume that S0 is a local or global minimum with S 0 ( I ) = I  for some /, and 
that I I Nf(S0)JI =  k, where k is greater than or equal to three. Let Sn be the 
state that is identical to S0 at every site except at I where it is the complement. 
Clearly, Sn £  H 1(S0). The incremental cost can be written as

^ o ,n  =  X > kACk(Wx ; S0, Sn)
' ic -r  .
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site I

Sk (7).- O

C c " Ge " C f *  C n “ C t 
Cd *= d (/ )

c C -  0 Cc asO C | = 0
Cn=O

Cr * 1
Cf *  V Cf « 0.5 Cf - O  

Cn -  1Cn c n - o V
C1 = 0 Ct « 0  thin /  \ thick A • ■ ;
.-I' ■"

; thin /  \  thick ,*■■■. 4

c i = 0 Cc* 1
\  C1* 1

/  A
C1 * 0 C1 * 1

Nfl*90* ■ .. , .

v ^ e - 45* ■ . ' . ■ V

Cc“ °  Cc“ 0 01 O O N 
V

b ■ ; -:k  ' ■ ■ ' ■' ■A /■■■:.

H =  IiNz(Sk) Il

thin: The edge contained in Wi(Sk)  is a thin edge, 

thick: The edge contained in Wi (Sk) is a thick edge

Figure 4.4. Decision tree for computing the six different cost factors.
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=  WcAGc +  wdACd +  WeACe +  WfACf +  WtACt +  WllACj l .

The factor ACe= - I ,  and ACd =  d(/). Hence,

AF0ill =  wcACc +  wdd(/) -  We +  WfACf +  WtACt +  WnACn .

Using the fact that the removal of a single edge point can result in at most 
four additional endpoints we have ACf <  2. By Proposition 3.16, ACc <  0, 
and ACt <  0. Since d(/) <  I, we can conclude that

; AFoin -  Wd -  We +  2wf +  WnACn .

It is clear from the definition of Cn that ACn <  —I. Therefore

AF0 n <  wd -  we +  2wf -  wn .

Assuming that the condition of the proposition holds,

wn >  wd -  we +  2wf ,

it is straightforward to conclude that AF0 n <  0, This implies that Sn is a state 
of lower cost; we have a contradiction of the assumption that S0 is a local or 
global minimum state. Hence, if the condition holds and S0 is a minimum 
state, every edge pixel in S0 can have at most two other neighboring edge 
pixels.

"" □

P ro p o s itio n  4.2: Assume the neighborhood function is H1 and
■vk >  Wd we +  2wf. Let Sl be a local or global minimum state. If E is a thick 
edge, then HE |I —3.

Furthermore, if Wt >  — [wf +  wd -  We — 3wc], then there are no thick edge
. ■ ■ 3 ■

pixels in Sjj.

Proof:
(I) We will prove by contradiction that ||E || =  3. Assume that E is thick and 
||E || >  4. Since E is thick, there must exist a cycle of length three comprising 
of the pixels C =  {ef, e2, e3} C  E. Since | | E | | >  4, there exists a pixel 
Cx €  E such that e ^  C, and Cx is adjacent to one of the pixels in C. Refer to 
this pixel in C as C1. Now et has three neighbors; e2( e3 and Cx. This 
contradicts the fact that any edge pixel has at most two other neighboring edge 
pixels according to Proposition 4.1. Hence ||E || <  4. Clearly, every thick edge
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; ' . r ■ ■ • '•

must have at least three distinct edge pixels and so ||E || = 3.

(2) We will show that if the conditions hold and S0 contains a thick edge pixel, 
we can always find a neighboring state Sn which does not contain that edge 
pixel and F(Sn) <C F(S0). Consequently, any local or global mininiuin state
cannot contain a thick edge pixel.

• • / '

Assume wt >  ~[w f +  wd — we — 3wc], and S0 contains a cycle of length threeO
comprising of the pixels C =  (S0(Z1), S0(Z2), S0(Z3)). Let Sn be the configuration 
that is identical to S0 at every site except at Z =  Z1 where it is non-edge. 
Clearly Sn is a neighbor of S0 based on the H 1 neighborhood function. From 
part (l), we know that C must be an isolated cycle of length three. 
Consequently the pair of edge pixels (sn(Z2), Sn(Z3)) must also be isolated. The 
incremental cost can be written as i

■ 6 ■■ I :
^ 0 ,»«=  EWkACk(Wx i S01Sn)

k - l  J

— WcACc +  wdACd +  WeACe +  WfACf +  WtACt +  WnACn (

It is easily deduced that ACc =  -3 , ACd =  d(Zj), ACe =  - I ,  ACf =  I, 
ACt == —3, and ACn =  0. Thisim pfiesthat

A Fon =  —3wc +  wdd(Zj) — We +  Wf — 3wt . 

Since wt >  [wf +  wd — we — 3wc], we have
O

A Fon <  wd[d(Zi) — 1] ,

and since d(Z) <  I, the incremental cost

AF0ill < 0.

Therefore, Sn is a state of lower cost than S0.
□

4.3.2.2 Estim ating the Upper Bound o f d*.
The parameter d in Equation (4.15) is by definition the maximum cup

depth of all states which are local but not global minima. We will now discuss
a method of estimating an upper bound on the value of this parameter. It is
important that this estimate should be fairly tight as it governs the rate at
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which we cart decrease the the temperature of the annealing process. This 
ultimately affects the rate of convergence to the set of globally minimum 
states. Our approach in estimating the upper bound of d is to show by 
construction that we can transition from one local minimum to another local 
minimum of lower cost without having to encounter a maximum cost accent 
greater than 8. Except for the global minimum, the maximum depth of each 
local minimum is thus bounded to a maximum value of 8 and hence

.. d* <  5 . ' ■

Because of the complex nature of the interaction between the different 
cost factors, and because of the large number of possible edge structures that 
have to be taken into consideration, we are unable at this time to give a precise 
theoretical upper bound on d which is tight. Instead, we estimate the value of 
Abased on Proposition 3.19, Theorem 4.2, and an heuristic argument on edge 
formation. Gur approach is to first estimate 8 for simple edge Structures and 
their resulting local minimum states that are hot global minimum. We 
progressively move from trivial to more complex forms of local m inim um  
states. We will show heuristically by construction that even in extreme cases, it 
is possible to transition from one local minimum to another local minimum of 
lower cost without having to undergo a maximum cost climb exceeding 8, 
where 8 =  2wf +  wd —we.

In the following paragraphs, we will discuss six different cases of edge 
structures and the corresponding estimates of 8 for each case. We will denote 8 
for each case as 5, where i denotes the case number. In each case, the 
corresponding figures depict an edge as a thin continuous line. The position of 
the edge that corresponds to the global minimum state is represented by a 
dotted line. We will refer to an edge that exists in the global minimum state 
as ah “optimal” edge. We will assume for each of the cases that the weights of 
the cost factors are chosen such that in any local minimum there are no thick 
edges, and every edge pixel has at most two other neighboring edge pixels.

Case I  '

The edge corresponding to the global minimum state is a path extending 
from the top right to the bottom left region of the square lattice, as shown by 
the dotted line of Figure 4.5. This is the “optimal” edge position. In this case, 
the local minimum shown is a configuration that contains no edge pixel. We 
estimate the value of S4 using Theorem 4.2; we can construct a sequence of 
states where each consecutive state contains one additional pixel of the optimal



Figure 4.5. An edge configuration that contains no edge pixels. Ih e  dotted 
line indicates the optimum edge position.

Figure 4.6. An edge configuration that contains two short false edges.
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edge, with the final state corresponding to the global minimum. The theorem 
specifies that the maximum cost ascent is no larger than 2wf, and hence

S1 <  2wf . (4.25)

C ase 2 :

The local minimum in this case is a configuration that contains two edges 
E1 and E2 that are displaced a distance away from the optimal edge position. 
This situation is shown in Figure 4.6. Since neither E 1 nor any segment of it 
exists in the global minimum, it is straightforward to deduce that for any 
segment EsCE1,

^ d E d ( Z ) - W eIIEsII - wc £ C c(Sl , I )  <  w,..
/eE* ie Es

The same can be said for segments of E2. Consequently, beginning from an 
endpoint, we can sequentially remove each pixel of E1 or E2 without exceeding 
a cost climb greater than wf and arrive at lower cost states. Hence

A  ^  wf . (4.26)

C ase 3 ■;

The local minimum in this case contains an edge that spans only a portion 
of the optimum edge, as shown in Figure 4.7. We can construct a sequence of 
states by extending the edge in this local minimum one pixel at a time along 
the position of the optimal edge. Using Proposition 3.19, it can be concluded 
that the maximum total cost ascent will not exceed wf. Hence for this case

S3 < w f . (4.27)

■ C ase 4 ■.

In Figure 4.8, we show a continuous edge of a local minimum in which 
part of the edge is just slightly displaced from the position of the optimal edge. 
This is possibly the most common local minimum that will be encounted in the 
minimization process. It is possible to generate a sequence of states in which 
the edge pixels are sequentially locally shifted into the position of the optimal 
edge without breaking the continuity of the edge structure. Consequentially, if 
there are cost ascents, they will be dominated by curvature costs caused by 
perturbation of the the edge position. The ascent will not exceed 2wc as the
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Figure 4.7. Au edge that spans only a portion of the optimal edge position

An edge that is just slightly displaced from the optimal edge 
position.



pixels are shifted into the positions of the optimal edge. Thus

S4 <  2wc . (4.28)

Typically, the value of wc is small compared to the other weights.
Case 5

In Figure 4.9, we show a continuous edge of a local minimum Sl in which 
part of the edge is displaced some distance away from the position of the 
optimal edge. We denote the sites of the missing edge pixels of the optimal 
edge as R0 and the sites of the displaced edge as Rd. It is possible to generate a 
sequence of states in the following way. First we generate S1 by introducing a 
local discontinuity in the edge as shown in the same figure. The resulting 
incremental cost is bounded by

a f LiI ^  Wf + w d - W e . (4.29)

Next, we generate a sequence of states from S1 to S2 by sequentially 
adding edge pixels in the positions of the optimal edge. By Proposition 3.19, 
the maximum cost ascent required for the transitions given by this sequencers 
no greater than wf. In addition, since we are constructing the optim al edge in 
S2, it is safe to assume that F(S2) X F ( S 1). As a result, the maximum cost 
ascent so far from Sl is still given by Equation (4.29). From the results Case 2, 
we deduce that it is possible to transition from S2 to the global TninimnTn S3 
without encountering a maximum cost ascent greater than wf. This is done by 
sequentially removing the edge pixels in Rd. An estimate for an extreme case 
of the total cost ascent is given by taking the sum of the maximum ascents of 
AFl i and A F2 3 :

S5 =  2wf +  wd -  we . (4.30)

'Case 6

The example shown in Figure 4.10 shows a local minimum S0 that is a 
combination of several of the five cases discussed above. Each consecutive 
state, S1, S2, S3 is a lower cost state with S3 corresponding to the global 
minimum. The maximum cost ascent required to reach the global rnmimnm 
from Sl is the maximum of the 8 for the five cases above, and is given by

^  2wf +  wd -  we . (4.31)
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Figure 4.9. Displaced edge. Sl is a continuous edge that has a portion that is 
displaced some distance away from the position of the optimal 
edge. Each consecutive state can be reached by a sequence of 
transitions from the previous state. S3 corresponds to the global 
minimum state.
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Figure 4.10. A sequence of states of lower cost, S0 Js a local minimum. Each 
consecutive state has a lower cost and S3 corresponds to the 
global minimum state.



General case

 ̂ In the preceding discussion, we have estimated by construction that fof 
minimum cost configurations containing a solitary edge, the T n a y i m i i m  depth 
Of local minimum is given by Equation (4.31). It should be noted that the 
estimate is quite conservative as the method of constructing a sequence of low 
cost transitions is based on assumptions corresponding to fairly extreme cases 
of edge structure. It is conceivable that for typical images, the maximum 
depth i5 much smaller than the given bound. Given a specific image and a 
local minimum state, it is very likely that one could construct a sequence of 
transitions to the global minimum with a total maximum cost ascent much less 
than the bound of Equation (4.31). However, when the specific image is not 
known, we are unable to devise a general method of constructing a sequence of 
low cost transitions that has a lower maximum cost ascent. This is due mainly 
to the complexity of the interaction of the cost factors, the vast number of 
possible transitions, and the uncertainty in the values of the pixels of interest 
in the enhanced image.

As mentioned before, we have assumed that the weights of the cost factors 
are chosen so that in a local or global minimum state, there are no thick edges 
and every edge pixel had at most two other neighboring edge pixels. 
Consequently, for a general image, the corresponding global minimum cost 
configuration is simply a collection of non-intersecting edges which are isolated 
paths or cycles. Each of these edges corresponds to an optimum edge. In cases 
1 to 6 discussed above, we have dealt only with images that have one single 
optimum edge. The estimation of 6 for images containing more than one 
optimum edge is similar to that for images with only one edge. The intuitive 
notion is that using the techniques described in the different cases above, we 
can sequentially construct one edge at a time by appropriately chosen 
transitions. This is repeated until we arrive at the global m i n i m u m  

configuration containing all the desired edges. Based on this notion, we 
anticipate that the maximum depth of any local minimum is again no larger 
that that given in Equation (4.31). That is,

: S <  2wf +  wd — we . (4.32)
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4.3.2.3 T em p era tu re  schedule
The method of generating next states in the annealing algorithm is given 

by Equation (4.20). The image is assumed to be of size N x N. The 
temperature schedule used is the the following:

log(nks +  2) (4.33)

where ks is a scaling constant, and n is defined using the floor function:

_k_
N2

Note that the temperature is monotone decreasing and is changed only 
after every N2 iterations through the annealing algorithm. It can be easily 
verified that for any finite and strictly positive value of ks greater than or equal 
to 2, the temperature schedule satisfies Equation (4.15) if c >  d*. This implies 
that convergence to the set of global minimum states is guaranteed if c >  d*. 
Our estimate of the upper bound on d is based on Equation (4.32). Hence, in 
our implementation, we set c = 6 =  2wf +  wd — we for the temperature 
schedule given in Equation (4.33). Hence, to ensure that the process will 
converge asymptotically, the value of c must be no less than 8. That is,

c >  2wf +  wd — we (4.34)

It is interesting to note that if we attempt to use the temperature schedule 
of Mitra et al. given in Equation (4.17), the value of r is approximately N2/ 9, 
and a very conservative lower bound of p is I. This implies that the value of 7  
which is analogous to c in the above equation is given by

\ y >  N2/9 .

The schedule is impractical from an implementation standpoint because it 
would take far too many iterations to span even a small range of low 
temperatures. As an example, consider a 128 x 128 image. Assume that k is 
small. For the temperature to be in the proximity of 0.3, the value of Jc0 will 
have to be set approximately to

k0 =  exp (6000) .

From an implementation standpoint, this number is far too large for computer 
representation. Even if representation is possible, the temperature schedule 
according to Equation (4.17) would then remain constant for any practical



range of the values of k.

4.3.3 Parallel Im plem entation

T h e  Simulated Annealing algorithm described in Section 4.2 is essentially
a « al ^1g0rithm- We willBOW discuss ^ method of generating next states 
- hlV  ^ I alIow the algorithm to be to be implemented to a large extent in 
paralkh In fact, we will show that the number of sequential computations can 
be reduced by a factor of N2/9. That is, up to N2/ 9 computations can be made 
simultaneously in parallel. We will assume that given a present state Sp and a 
site / €  L, the method of generating the next state is given by Equation (4.20);

Sn = Mx(Sp,/).
Up to this point we have interpreted the above equation as a method of 

generating next states, and the Simulated Annealing algorithm as a method of 
transitioning from one state to another. We now present another interpretation 
of Equation (4.20) and the annealing process in the context of detecting edges 
by cost minimization. The above equation can be viewed as a method of 
altering the local edge structure in a window region centered at site I. The 
transition rules of the annealing algorithm correspond to a method of deciding 
if the alteration is to be accepted based on the change in cost caused by the 
alteration. The annealing process is thus a procedure where we repeatedly 
attempt to alter the local edge structure at each site in an image according to 
the rules of annealing. Since the annealing process is guaranteed to converge, 
the eventual result of the repeated changes is that the edges will take the form 
of a minimum cost edge configuration.

A s  mentioned in Section 4.3.1, the value of / can be selected either in a 
random or deterministic manner. We will now present a deterministic method 
of selecting I which allows for parallel computation. If the raster scan approach 
mentioned in Section 4.3.1 is used, the annealing process can be viewed as a 
procedure where we sequentially attempt to change the edge structure in a 
window region as the window is shifted through each pixel in the image. 
Clearly, this is a strictly sequential process as each decision on accepting a 
change is dependent on the immediate past decisions. Such a method of 
selecting / does not allow for parallel execution.

By using Proposition 3.11, it is easy to deduce that if an edge structure is 
altered at a single site I according to Equation (4.20), then the resulting change 
in cost is dependent at most on the pixels in a 5 x 5 window region about /
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Consequently, if Zj and Z2 are two sites that are at least two pixels horizontally 
or vertically apart (i.e. two pixels between them), the decisions to accept any 
alterations of the edge structure in W li and W l2 can be made independently. 
In fact, for any set of sites (Z1, . . . , ZM} in which every pair is at least two 
pixels apart, the decisions to accept alterations in the edge structure can be 
made independently of each other.

The Set of all sites in the lattice denoted by L can be partitioned into k 
disjoint subsets where any pair of sites in the same subset are at least two 
pixels apart;

L = L 1 U L2 U-.... Lk . (4.35)

It is easy to deduce that at most 9 subsets are required to partition L in this 
manner. This holds for images of any size. An example of this is shown in 
Figure 4.11. If alterations in the local edge structure are made at any number 
of sites belonging to the same subset, the decisions to accept each of the 
alterations can be made independently. Consequently, it is always possible to 
make I iteration through each pixel in the image in 9 sequential processing 
steps, where each step requires approximately N2/9 parallel computations. 
Instead of making N2 sequential decisions in altering the local edge structure at 
each site in the image, the same can be achieved by simultaneous decisions in 9 
sequential steps. This of course is significantly more efficient in terms of the 
total required computation time. *

Assuming that the method of selecting the sites is such that every site will 
be repeatedly selected in the annealing algorithm, it can be shown that the 
corresponding annealing process which allows for parallel computation has the 
property of irreducibility and weak reversibility. Hence this method of selecting 
Z will result in asymptotic convergence to the global minimum.

4.3.4 S ta te  Space R eduction
Simulated Annealing is a computationally intensive algorithm suitable for 

minimizing complex optimization problems. In the context of edge detection, 
the amount of computation time can be significantly decreased by reducing the 
state space of the annealing process. This is achieved by introducing a 
preliminary processing stage which we call “low resolution detection”. The 
output of low resolution detection is a binary image indicating where edge 
pixels can and cannot lie; ones indicate the possible positions of edge pixels, 
and zeros indicate the positions where edge pixels cannot lie. By using this, we 
effectively reduce the set of all possible edge configurations by placing a



139

I 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

L = L 1 U L2 U •

L1 =  {1,4, 19, 22} 
L2 =  (2, 5, 20, 23} 
L3 =  (3, 6, 21, 24}

L9 =  {15, 18, 33, 36}

Figure 4.11 Example of partitioning h  into disjoint subsets. Any pair of pixels 
m the same subset is at least 2 pixels apart. The pixels of the 

_  above 6x 6 image are labeled I through 36. The image is first 
divided into blocks of 3x3 pixels. Partitioning is then achieved by- 
selecting corresponding pixels of different blocks.
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constraint on the configurations that are taken into account. In other words, 
the cost function is minimized subject to the constraint that the edge 
configurations can contain edge pixels only in the regions specified by the low 
resolution output.

There are a number of ways of performing low resolution detection. We 
chose to first threshold the enhanced image. Next we performed the 
morphological operation [59] ' ‘dilation” on the thresholded image using a 
square 3 x 3  or 5 x 5  structuring element. Examples of the output of low 
resolution detection for state space reduction is shown in Chapter 5, Section 
5.2.1. •

4.4 S um m ary

In this chapter, we have presented Simulated Annealing as a technique in 
cost minimization. It has been shown that the annealing algorithm is a 
stochastic optimization technique based on non-stationary Markov chains; the 
chain will converge in probability to the set of global minimum states of the 
cost function. We have described the asymptotic convergence properties of the 
algorithm and discussed the use of various temperature schedules suitable for 
convergence.

We used the Simulated Annealing algorithm to find low cost solutions to 
the cost function for edges described in Chapter 3. First, we showed how to 
generate next states in the annealing process based on a set of five strategies 
for changing the edge structure in a given configuration. Second, we devised a 
suitable temperature schedule by estimating a relatively tight upper bound on 
the maximum depth of all local minimum states which do not correspond to 
the global minimum. Third, we showed that although the annealing process is 
sequential in nature, it can be implemented largely in parallel by a proper 
choice of next states. Finally, we proposed the use of state space reduction to 
reduce the computation time for the annealing process.



141

CHAPTER 6
EXPERIM ENTAL RESULTS

5.1 In tro d u c tio n

In this chapter we present experimental results of detecting edges using 
the comparative cost function (CCF) and absolute cost function (ACF) 
techniques described in the previous chapters. The ultimate test of any 
detection technique is in its ability to find edges that correspond to true 
boundaries in an image. Comparison of the detection performance is made with 
four other recent techniques mentioned in Section 1.2; derivative of Gaussian 
(VG), Laplacian of Gaussian (V2G), facet model approach, and Sequential 
Edge Linking (SEL). It should be noted that the VG and facet model are 
techniques which are optimized for the detection of step edges. Nbn-maximal 
suppression for the VG technique was performed by quantizing the edge 
direction of the VG operator output into one of eight possible directions and 
suppressing the non-maximum magnitude values in a direction perpendicular 
to the edge direction. The SEL technique used the VG operator (without non- 
maximal suppression) as the edge enhancement operator.

M  described in Section 2.4.1, the CCF used the weight values we= 1.0, 
"ŝ d wt—L I, Wj-1.1 and wc= l . I. For the ACF, we first assigned values for
the weights wc, wd, we and wf according to the desired emphasis on each cost 
factor. Then, to avoid the detection of thick edges, wn and wt were chosen 
based on Propositions 4.1 and 4.2. In all examples using SimulatedAnnealing, 
the value of d (in Hajek’s Theorem) was estimated using Equation (4.32). 
Except for the examples in Section 5.4 and parts of Section 5.6, the measures 
of dissimilarity, fc(Rl,R2) and fa(Rl,R2), were based on the difference of gray 
level averages in R l and R2. That is, fc=m(d) as specified in Equation (2.6), 
and fa—d where d is as defined in Equation (2.4).

For both the heuristic search technique and Simulated Annealing, it is 
necessary to generate new edge configurations by iterating through each pixel 
locatipn in the image. Assuming that the image is of size N x N, a single 
iteration through the image represents the generation of N2 new edge
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configurations. Typically, the CCF approach required 3 to 5 iterations through 
an image. The ACF approach required between 50 to 200 iterations. In all 
examples, the probabilities p; in Equation (4.21) were:

300
P2= -------2 1024

200 
P3 1024

200
P 4 _ 1024 ’

and

124 '
■■ Ps . 1024 * ;

The temperature schedule for the annealing process was based on Equation 
(4.33):

T - =  c 
k log(nks +  2)

where

The value of ks was selected based on the criterion that Tk should be 
approximately 0.3 at the final iterations through the image. This value of 0.3 
was chosen empirically based on the observation that as the temperature 
decreased toward 0.3, the processes approached a point of “freezing” where 
very few uphill climbs were made. In the final 2 iterations, the process was 
quickly“ frozen” by dropping the temperature suddenly towards zero. This was 
achieved by setting the temperature to a value of 0.01, and allowing for 
transitions based only on strategies M1 and M3 (described in Section 4.3.1).

A thorough experimental analysis and comparison of different edge 
detection techniques would require taking into account a number of different 
factors. Some of these are: (I) the test images used, (2) the characteristics of 
the detected edges (in terms of continuity, thinness, and well localization), (3) 
the operator size, (5) computation time, (6) the difficulty of implementation, 
and (7) the flexibility of the detection algorithm in detecting various edge
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types. There is a trade-off between the different factors; for instance, one 
usually has to sacrifice computation time for improvement in the 
characteristics of the detected edges. We will examine the performance of the 
detection algorithms with respect to several of these factors.

5.2 Experiments with Artififcial Images
We compare the performance of the different techniques by first showing 

examples of the detected edges for artificial images. Evaluation of the 
detection performance is based on the accuracy in localization of the detected 
edges, and the form of the edges in terms of thinness and continuity. However, 
it is difficult to define a performance measure that correctly evaluates the 
detection performance for all cases of the detected edges. A method of 
evaluating edge detection performance is the P ra tt figure of merit [60] which is 
denoted by the symbol P :

I d

£Im i=i I +  alj2
100

where

;V : Im =  max ( IdjIi),

Il — number of ideal edge points,

Ip number of detected edge points,

Ii -  displacement of the ith detected edge point from the ideal edge, and 
a  =  scaling factor.

The value of P ranges from 0 to 100 with higher values indicating better 
detection performance. The value of 0.1 was used for a  which is 
approximately the same as that used in [61]. This figure of merit is usually 
applied to artificial images where the ideal edge positions are known. It 
penalizes edge pixels which are displaced from the ideal edge position according 
to the displacement distance and the value of a. It also penalizes missing edge 
pixels or an excessive number of detected edges. However, it does not take into 
account local edge coherence information such as continuity and edge 
thickness. A discussion of the shortcomings of this figure of merit is given 
in [62]. When using this figure of merit, it is important to bear in mind its 
inherent inadequacy in using local edge coherence information. We use the 
P ra tt figure of merit as a rough indicator of the performance of the different
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detection techniques. Two ideal step images which are shown in Figure 5.1 
were used; they were the vertical step image and the rings image. The vertical 
step image had a size of 256 x 256 pixels and was comprised of two tones of 
constant gray levels of values HO and 140. The rings image had a size of 
128 x 128 and was made up of concentric circles of gray levels 115 and 140, 
constructed in the manner described in [62]. The step heights of the ideal 
vertical edge and the rings image were consequently 30 and 25 respectively. 
The images were corrupted with additive zero mean independent identically 
distributed (Li.d.) Gaussian noise. The signal to noise ratio of the corrupted 
images is defined as

SNR (5.1)

where h is the ideal step height and <rn is the standard deviation of the 
Gaussian noise. The noise corrupted images are also shown in Figure 5.1.

: The P ra tt figure of merit is often applied to the vertical step image shown
in Figure 5.1. In Figure 5.2, we show an example of the difficulties that could 
arise in the use of this figure of merit. The VG operator without the use of 
non-maximal suppression was applied to the noisy vertical step image. The 
detected edges obtained by thresholding the output of the VG operator at 53 
and 35 have corresponding performance values P=78.2  and P=52.3  
respectively. It can be seen that if edge continuity and recovery of the complete 
boundary is of importance, the edge which corresponds to thresholding at 35 is 
better. Hence, when using this figure of merit, it is important to bear in mind 
its inherent inadequacy in using local edge coherence information.

N oise sm oothing

It is advantageous to preprocess a noise corrupted image by filtering prior 
to edge detection [7]. We used a Gaussian function to smooth the noise 
corrupted images. The function is the same as that in Equation (1.1). This 
smoothing prior to detection was performed only for the facet model, 
comparative cost function, and absolute cost function techniques; the VG and 
V2G operators have Gaussian smoothing inherently incorporated in thern. 
Except for the case of the house image, the standard deviation (<rG) of each 
Gaussian function was independently chosen for the different cases so as to 
optimize the performance of the various detection techniques. The value of crG 
was constrained to be some integer multiple of 0.5. Figure 5.3 shows 
experimental results of the improvement in detection performance of the
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Figure 5.1. Step images. Top left: Vertical step edge. Top right: Noisy step 
edge with SNR =  0.25. Middle left: Rings image. Middle right: 
Noisy rings image with SN R= 1.0. Bottom: Noisy rings image 
with SNR=0.574.
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Figure 5.2. Edges of noisy step image detected using the thresholded VG 
operator without non-maximal suppression. Left: Threshold at 53 
resulting in P=78.2. Right: Threshold at 35 resulting in P = 52.3.
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comparative cost function technique by preprocessing the image with Gaussian 
smoothing prior to edge detection. The detection algorithm was the CCF 
technique, and the test image used was the vertical step image at various signal 
to noise ratios. Using this test image, the results indicate that detection 
performance increases with the standard deviation of the smoothing function. 
However, it should be noted that this image contains a single isolated edge; if 
the image contains several adjacent edges, then large values for the standard 
deviation could cause the edges to be merged together resulting in degraded 
performance.

5.2.1 Vertical Step Image

The noisy vertical step edge with SNR=0.25 was used to compare the 
output of different edge detector techniques. The results are shown in Figure 
5.4. The figure shows the best edges (based on performance measure P) 
detected under the constraint that approximately 90% of the ideal edge should 
be detected. The VG technique used a value of 5.5 for the standard deviation 
of the Gaussian function. The V2G operator used a standard deviation of 10.0. 
SEL was based on the output of the VG operator with a standard deviation of 
4.0. For the CGF and facet model techniques, we preprocessed the image with 
a Gaussian smoothing operator with standard deviation 5.0. For the ACF 
approach, the image was p re-filtered with a Gaussian function of standard 
deviation of 5.5. The weights of the cost factors of the ACF were: wc=0 75, 

2.0, we= l .0, wf=3.0, wn =7.01, and ŵ . =0.583. A total of 200 iterations 
through the image were made. State space reduction was used to reduce 
computation time. The ACF implementation as described above required 1.28 
hours of CPU computation time on the VAX 11/780. Table 5.1 shows the 
corresponding performance of the various detection algorithms.



Figure 5.4 Comparison of edge detector performance using vertical step edge 
SNR==0.25. Top left: VG, P=73.1. Top right: V2G, 

P=44.5 . Middle left: Facet model technique, P=71.1. Middle 
rieht: SEL, P=65.4. Bottom left: CCF approach, P=73.7. 
Bottom right: ACF approach, P=78.4.
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Table 5.1. Detection performance of various detection techniques.

Detection technique P ratt figure of merit P
VG 73,1
V2G 44.5

Facetmodel 71.1
SEL 65.4
CCF 73.7
ACF 78.4

A comparison of the performance based on P shows that except for V2G, 
the different techniques yield approximately the same performance. We 
extracted the detected edges and placed them alongside each other for more 
detailed comparison. This is shown in Figure 5.5. A visual examination shows 
that the VG and the facet model techniques produced edges which are thick 
along many portions of the edge. The CCF and ACF techniques produced 
edges which are thin. The best performance in terms of continuity and edge 
thinness is achieved by the ACF technique.

In Figure 5.6, we show the effect of using only the cost factors Cd and Ce 
of the ACF; the other cost factors were discarded by setting their 
corresponding weights equal to zero. This method corresponds to a simple
thresholding approach to detect the edges. By altering the value of the

we
dissimilarity threshold ----- (see Section 3.4.4.1), we can arbitrarily select the

total number of edge points to be detected. Several important observations can 
be made from comparing the detected edges shown in Figure 5.4 and Figure
5.6 using the ACF approach. First,-based on a cost function that uses only Cd 
and Ce, it is not possible to detect a thin continuous edge for the noisy step 
image. Second, there are no thick edge pixels when the cost factor Ct was 
included, and the corresponding weight wt was appropriately chosen according 
to Proposition 4.2. Third, the inclusion of the fragmentation cost Ct forces 
adjacent edges to be continuous. At the same time, Cf also suppresses short 
sporadic edges which are visible in Figure 5.6, but not in Figure 5.4.

In Figure 5.7, we demonstrate the effect of changing the weights of the 
curvature and fragmentation costs in the absolute cost function. For the 
detected edge in Figure 5.7(a), the weights of the cost factors were wc=0.2,



Figure 5.5 Comparison of edge characteristics for noisy vertical step image 
Extreme left: VG. Center left: Facet model approach. Center 
right: CCF. Extreme right: ACF.
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Figure 5.6 Edges detected using only Cd and Ce of the ACF. Left: Low

dissimilarity threshold. Right: High dissimilarity threshold.

Figure 5.7 Effect of changing the weights for curvature and fragmentation.
(a) wc=0.2, wf=2.0. (b) wc=0.5, wf=2.0. (c) wc=0,75, wfH). (d) 
wc=0.75, wf=3.0.



^ = 2 .0 ,  We=LO, wf-2.0, wn^5.01, and wt=0.81. For the detected edge in 
Figure 5.7(b), the weight for curvature was altered so that wc=0.5. The 
remaining weights were kept the same, except for wn and wt which were 
altered according to Proposition 4.2 to ensure that all edges remained thin. 
?he resulting weight values were: wc=0.5, wd=2.0, we=1.0, wf=2.0, wE=5,01, 
and wt=0.51. Notice that because of the increase in the weight of the curvature 
cost, the detected edge has a smoother boundary than in the previous case. 
This is particularly evident when comparing the portions of the edges slightly 
below the mid-section. For the edge in Figure 5.7(c), the cost for fragmentation 
was removed by setting Wf =  O; the weight values were: wG=0;75, wd=2.0, 
we=1.0, wf=0.0, wn=1.01, and wt=0.01. Fragmentation is clearly visible in this 
case. In Figure 5.7(d), the cost for fragmentation was increased to 3.0. The 
weights were: wc=0.75, wd=2.0, w =1.0, wf=3.0, wn=7.01, and wt=0.583. 
Notice that because of the increase in wf, the fragmented edge in the upper 
region has been made continuous. In Figure 5.8, we show the cost 
minimization process using Simulated Annealing for the case of the detected 
edges shown in Figure 5.7(d). The plot was obtained by sampling the 
annealing process after every 10 iterations through the image. Assuming the 
the image has size N x N, each iteration represents N2 attempts in 
transitioning to new states based on the annealing algorithm.

In Figure 5.9, we show examples of the use of state space reduction (SSR) 
which has been described in Section 4.3.4. Edges were constrained to lie only 
m the bright regions. The regions were obtained by thresholding the 
dissimilarity values and dilating the image with square 3 x 3 and 5 x 5
structuring elements using mathematical morphology [59].

5.2.2 Rings Image
We show examples of the detected edges for the rings image shown in 

Figure 5.1. The image was corrupted with additive zero mean i.i.d. Gaussian 
noise with signal to noise ratio as defined in Equation (5.1). Figure 5.10 shows 
the detected edges for the noisy rings image with SN R= 1.0. For the VG, V2G 
and SEL techniques, the standard deviation of the Gaussian function was 4.0
4.5 and 3.0 respectively. For the facet model, CCF and ACF techniques, the 
image was pre-filtered using a Gaussian smoothing function with a standard 
deviation of 3.5. The ACF technique used state space reduction and the 
following set of weights: wc=0.5, wd=2.0, we=1.0, wf=3.0, wn=7.01, and 
wt=0.833. A total of 200 iterations through the image was performed.
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Figure 5.8 Cost minimization process for vertical step image using 
Simulated Annealing. Plot obtained by sampling annealing
process at every 10 iterations through image.



Figure 5.9 Examples of state space reduction. The bright regions -Vvere 
obtained by thresholding the enhanced images and performing 
the morphological operation “dilation” on each binary image. 
Edges were restricted to lie only in the bright regions. Left: State 
space reduction for noisy vertical step image. Right: State space 
reduction for noisy rings image (SNR= 1.0).
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Figure 5.10 Comparison of edge detection performance using noisy rings 
image with SNR=LO. Top left; VG. Top right: V2G. Middle 
left: Facet model approach. Middle right: SEL. Bottom left: 
CCF. Bottom right: ACF.



Computation required 1.24 hours of CPU time on the VAX 11/780 
minicomputer. A subjective evaluation of the different detection; techniques 
shows that in terms of edge continuity, the ACF, the facet model, and the VG 
techniques produced the best results. In terms of edge thinness, th6 ACF, CCF 
and  SEL techniques produced the best results. It is observed that the contour 
tracing nature of SEL produces some false boundaries. Figure 5.11 shows the 
edges detected for a slightly noiser image with SNR=0.574. For the VG, V2G 
and SEL techniques, the standard deviation of the Gaussian function was 4.0, 
5.0 and 3.5 respectively. For the facet model, CCF and ACF techniques, the 
image was pre-filtered using a Gaussian smoothing function with a standard 
deviation of 4.0. The ACF technique used the same set of weights as in the 
previous case of the noisy image with SNR=LO. The subjective evaluation of 
the detected edges is similar to the previous case, except that there is a slight 
increase in false boundaries.

5.2.3 Tem perature Variation and Parallel Im plem entation
Simulated Annealing is a minimization algorithm that allows for uphill 

cost climbs while searching for the minimum cost states. The amount of “hill 
climbing” activity is controlled by the temperature Tk, where k denotes the 
kth iteration through the algorithm. If the temperature is set equal to zero, no 
hill climbing is allowed and the algorithm corresponds to a steepest descent 
search algorithm. This approach usually causes the algorithm to terminate in 
an undesirable local minimum that is of relatively high cost. A physical 
analogy of such an annealing process is the rapid cooling of a system, causing it 
to freeze in a meta-stable state. In Figure 5.12, we show an example of the use 
of rapid cooling in Simulated Annealing. The test image used was the rings 
image with SNR=LO. The lower curve shows the cost minimization process 
using the logarithmic temperature schedule given in Equation (4.33). The 
upper curve shows the results for a temperature schedule which remains 
constant at a value of 0.01 throughout the annealing process. For both 
temperature schedules, the ACF technique used state space reduction and an 
identical set of weights: wc=0.5, wd=2.0, we=1.0, wf=3.0, wn=7.01, and 
wt=0.833. In each case, 200 iterations through the image was performed. 
These parameters are exactly the same as those of the rings image example in 
Section 5.2.2. Two important observations can be made. First the process 
based on the logarithmic schedule converges to the set of low cost states much 
more quickly than that based on the constant temperature schedule. Second, 
the final state for the logarithmic schedule has a much lower cost than the final
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Figure 5.11 Comparison of edge' detection performance using noisy rings 
image with SNR=G.574. Top left: VG. Top right: V2G. Middle 
Ieftr Facet model approach. Middle right: SEL. Bottom left: 
CCF. Bottom right: ACF.
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Figure 5.12 Rapid cooling in Simulated Annealing. Squares denote the data 
points for the annealing process which uses a logarithmic
temperature decrement schedule. Circles denote the data points
for the annealing process which uses a constant temperature
schedule, with Tk=0.01 for all k.



state based on rapid cooling. In this case, the cost of the final states for the 
logarithmic and constant temperature schedules were 2815 and 2859 
respectively.

Figure 5.13 shows the intermediate edge configurations of the annealing 
process which used the logarithmic temperature schedule. The test image was 
the noisy rings image (SNR=1.0), and 200 iterations through the image were 
made. No SSR was used. As mentioned in the introduction, in the last 2 
iterations, the process was “frozen” by dropping the temperature to zero. 
Iterations 198 and 200 in the figure correspond to the states of the system just 
before and after freezing. It can be seen that after approximately 50 to 100 
iterations, comparatively good edges were obtained. For most applications, it 
has been found that about 100 iterations are sufficient to produce edges which 
are thin and well localized. For the purpose of standardization and comparison, 
we used 200 iterations in all except one of the examples contained in this 
chapter.

In Section 4.3.1, we mentioned that in minimizing the ACF, there are a 
number of methods of generating next states. One method is based on selecting 
I by sequentially stepping through each pixel location in a raster scan manner. 
This method does not allow the annealing process to be implemented in 
parallel. However, in Section 4.3.3, we have shown there is a method of 
selecting I that would allow the Simulated Annealing algorithm to be 
implemented largely in parallel. Using the same test image and the exact same 
parameters for the ACF as in the example of Figure 5.10, we implemented the 
algorithm using the method that would allow for parallel execution. The 
results are shown in Figure 5.14. In this figure, we both the the cost curves for 
the annealing process that can be implemented only sequentially, and the 
process that can be implemented in parallel. The curves are very close to each 
other and intersect at a number of points. The tail ends of the curves are 
almost merged together implying that in the final iterations, both the processes 
arrived a t states that have approximately the same cost values. The results 
indicate that in terms of cost minimization, both the methods gave 
approximately the same performance. When parallel processing is available, it 
is clearly more advantageous in terms of computation time to implement the 
algorithm th a t allows for parallel implementation. Figure 5.15 shows the 
detected edges for the noisy rings image (SNR= 1.0) using the three different 
methods of implementing Simulated Annealing; the method of rapid cooling, 
sequential implementation, and parallel implementation.
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Figure 5.13 Intenpediate edge configurations in annealing process.
(a) Iteration I, Cost=16l90. (b) Iteration 5, C ost=  6954. (c) 
lteratJon 10> Cost=5217. (d) Iteration 20, Cost=3714. (e) 
Iteration 50, Cost=2864. (f) Iteration 100, Cost=2833. (g)
Iteration 198, Cost=2827. (h) Iteration 200, C ost=2810.
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Figure 5.14 Comparison of parallel and sequential implementations. Squares 
denote the data points for the annealing process that can only be 
implemented sequentially. D iam ondsdeno te thedatapo in tsfo r 
the annealing process that can be implemented in parallel, (a) 
Plot of cost vs the number of iterations through image, (b) Same 
plot on expanded scale.



Figure 5.15 Edges obtained using three different methods of implementing 
Simulated Annealing. Test image used was the noisy rings image 
with SN R= 1.0. Top : Edges detected by rapid cooling (see 
Figure 5.12). Bottom left: Edges detected using annealing 
process that can only be implemented sequentially (see Figure 
5.14). Bottom rights Edges detected using annealing process that 
can be implemented in parallel (see Figure 5.14).
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5.3 Experim ents with Real Images

In this section we show two examples of the detected edges for general 
scenes. Both images were of size 256 x 256.

Houseimage
In this example, we show the detected edges for both the original and 

noisy image of a general outdoor scene. The house image is shown in Figure 
5.16. The image was corrupted with additive zero-mean i.i.d. Gaussian noise 
of standard deviation 35. In each case of the detected edges, the detection 
parameters were selected so that the different techniques produced 
approximately the same number of edge points, and the edges were visibly 
similar. The choice of parameters is quite subjective as it is difficult to 
quantify edge quality for general scenes. After determining the necessary 
parameters for the noiseless image, the same parameters were then used to 
detect edges in the noisy image. In all cases except one, the standard deviation 
of the Gaussian function was set at 2.0. The V2G operator used a standard 
deviation of 2.5. For the ACF technique, the weights of the cost factors were: 
^c=^-75, wd=2.0, we= l .0, wf=3.0, wn=7.01, and wt=0.583. No state space 
reduction was used and 100 iterations through the image were made. The 
detected edges are shown in Figure 5.17.

Airport im age

In Figure 5.18 we show the detected edges for an airport image using the 
ACF technique. The weights of the cost factors were: wc=0.5, wd=2.0, we=1.0, 
wf=3.0, wn—7.01, and wt=0.833. A total of 200 iterations through the image 
were made.

5.4 Other D issim ilarity Measures
In the previous examples, we have detected edges using dissimilarity 

functions fc and fa which measure the difference of gray level averages of the 
regions on either sides of the edge. In this section, we will show examples of 
detected edges using other forms of dissimilarity measures. In the first example, 
we show how a priori information can be incorporated into the measure so as 
to detect specific kinds of edges. In the second example, we show how the 
measure can be defined to find texture edges based on second order statistical 
properties of the regions of interest.
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Figure S.16 House image. Top: Original house image. Bottom: House image 
corrupted with additive zero-mean i.i.d. Gaussian Boise of 
standard deviation 35.
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each case, the figure on the left shows the detected edges for the 
noiseless house image while the figure on the right shows the 
edges for the noisy image, (a) VG. (b) V2G. (c) Fae4t model, 
(d) SEL. (e) CCF. (f) ACF.
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Figure 5.17, continued
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Airplanes image

_ ^  Figure^ S 19; shows an image containing ten airplane*. T ie  important
j ?  ° 'U e, eS* m l ',:s lmaSe are the airplanes, the two large buildings on

u s l l t l ^ r h  ^  “ d P°rti0nS °f th" tar:“-w - The edges detected
^m g the CCF. ACF, the facet model, and the VG operator techniques are also

S t h e d  h fl^ e- . F”  the CCF “ 4 ACF techniques, the image Was 
smoothed by a Gaussian function of standard deviation 1.0 prior to edee
detection. The VG technique also used a value of 1.0 for S M d S  
evia lop, n each case, the thresholds and relevant parameters were chosen so 

as ,o recover as much of the boundaries of the airplanes and the large 
in mgs as possible, without introducing an excessive number of false edges, 
or all four techniques, it was found that selecting a threshold low enough to 

recover the boundaries of the large buildings resulted in a high degree of false 
edges being detected. Hence, by thresholding alone, it is not possible to obtain 
a good set of edges representing the features of interest.

ft can be seen that the important features of interest in the image 
genera y ave a lighter shade than the background, corresponding to higher 
image mtensity vaJues. We use this a priori information by incorporating it 
into the ,dissimilarity measures fc and f ,  We specify that regions have high 
d i s s , Iariiy ubeu tuo conditions hold: (I) the average intensity values are
significantly different, and (2) the average intensity value for One of the regions
is sufficiently high. This is different from the previous definition of dissimilarity

‘h e  ̂latter condition. For the comparative cost 
function, tins new definition Of dissimilarity is mathematically captured simply

y specifying the dissimilarity measure to b e  f c ( U l , R 2 ) = t h ( d , . i ) .  T h e  f u n c t i o n  
m is defined as:  ̂ ^

m(d,£) =m(d)  • g(/3) ,

Where m(d) is as defined in Equation (2.6), 0  is the larger of the average 
intensity values of the two regions, and g is the piefcewise linear function ShoMi
in Figure 5.20. For the absolute cost function, this definition is captured by 
specifying the measure to be

fa(Rl,R2) =  d • g ($  ,

where d Ls as given in Kqualion (2.4). and g(.V) is the same function defined 
above. The weights of the ACF were: w„=0.2, wd=2,0, we=1.0, w,=2.0, 
Wn- 5.01, and wt=0.81. The annealing process made 200 iterations through the 
image. Using these new definitions of region dissimilarity, the detected edges



Figure 5.19 Airplanes image. The important features of interest are the
airplanes, the two large buildings on the left, and portions of the
tarmac, (a) Intensity image, (b) Facet model. (c) VG. (d) CCF.
(e) ACF.



Figure 5.19, continued
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Figure 5.20 Piecewise linear function g(/?) used in the definition of m(d,/?).
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Figure 5.21 Edges of airplanes image detected using a priori information 
about the features of interest. Top: CCF approach. Bottom: 
ACF approach.



are shown in Figure 5,21. Notice that the edges of the large, buildings, the 
airplanes, and the boundary region of the tarojac on the lower right portion of

Bp3C te x tu re  im age

FigUre 5.22 shows an image of size 128 x 128 containing two texture 
regions. The average intensity value was approximately the same throughout 
the image. However, the variance of the intensity values within the box region 
was higher than the variance of the background. This image whs constructed 
by adding zero-mean i.i.d. Gaussian random noise to an image of constant gray 
evel equal to 128. Within a 64 x 64 box region, the noise standard deviation 

was 30; outside of the box region, the noise standard deviation was 10. Since 
the boundary of the box does not correspond to a step or a ramp, it is not 
possible to use the VG or facet model methods to detect the edges of the box.

The cost function approach can be used to detect the boundary of such 
texture regions by the use of an appropriate measure for region dissimilarity. 
In this example, a suitable measure of dissimilarity is the difference of the 
standard deviation of the pixels in the regions of interest. We show an example 
of this using the absolute cost function. Let m l and m2 be the gray level
averages of the pixels in R l and R2 respectively. The dissimilarity measure is 
defined as:

f„(Rl,R2) =  I .t. -  I ,
rwhere'

I R i  I E
(U)GRl

feOJ)

and o-2 is similarly defined. Figure 5.22 shows the detected edges using the 
following weight values: wc=0.75, wd=2.0, we=1.0, wf=4.0, wn=9.01, and 
wt=0.917. The annealing process made 200 iterations through the image.

5.5 C o m p u ta tio n  T im e and  F inal C osts

In this section, we summarize some of the results of using the ACF 
approach in terms of the computation time required and the cost of the final 
edge configurations achieved by the annealing process. In Table 5.2, we 
tabulate the computation time required to detect the edges of the different test
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Figure 5.22 Texture edge detection. Box image and detected edges using 
ACF approach.
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Table 5.2. Computation time for minimizing the ACF 
using Simulated Annealing.

Image Size SSR Iterations CPU time (hr)
Vertical step 256 x  256 200

V J

10.09
Verticalstep 256 x  256 Yes 200 1.28 V - ' :

Rings, SN R= 1.0 128 x  128 200 2.70
Rings, SN R= 1.0 128 x  128 Yes 200 1.24
House 256 x  256 100 5.32
Airport 256 x  256 Yes 200 7.77
Airplanes 256 x  256 Yes 200 3.59
Texture box 128 X 128

- 200 ' 2.42
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images. The cost minimization process using Simulated Annealing was 
implemented by sequential processing on the VAX 11/780. For purposes of 
comparison and standardization, the annealing process was implemented using 
200 iterations through each image, except for the house image. Typically, for 
general images, about 100 iterations is sufficient to bring the annealing process 
to a suitably low cost state. Table 5.2 shows a comparison of the computation 
time required for each image with and without the use of state space reduction 
(SSR)v1The results indicate that, depending on the scene content, computation 
time for the annealing process can be reduced by a factor of about I to 8 
times through the use of S SR. Generally, images that have smaller number of 
edges achieve greater reduction in computation time.

Table 5.3 shows a comparison of the cost of the final states for different 
cases of the annealing process. Two important observations can be made, First, 
the use of SSR results in edge configurations that have approximately the same 
cost as those configurations produced without it. Second, the annealing 
algorithm which can be executed in parallel produces edge configurations which 
have approximately the same cost as those configurations produced by the 
algorithm which can be implemented only sequentially. Based on these 
observations, we deduce that the most efficient method of producing edge 
configurations of low cost is to use SSR and parallel implementation.

5.6 Use of 5 Cost Factors
In all the previous examples of the absolute cost function approach, we 

used 6 cost factors in the definition of the cost function. The cost factor Cd 
described in Section 4.3.2.1 was included to constrain all edges to be either 
isolated paths or cycles; multiple edge segments linked at a single point were 
disallowed. The main reason for including this factor was to enable us to 
derive a tight estimate of the upper bound on the parameter d , as given in 
Equation (4.32).

In this section, we show the experimental results of minimizing a cost 
function that does not contain the cost factor CD. That is, the cost function is a 
a weighted sum of only 5 cost factors: Cc, Cds Ce, Cf and Ct. Figures 5.23 
through 5.29 show the detected edges for the previous test images using 5 cost 
factors for the ACF. The cost minimization annealing process is also shown. In 
each case, all the parameters except wt were chosen to be the same as those of 
the corresponding previous examples which used 6 cost factors. To avoid thick 
edges, the weight wt was chosen based on Proposition 3.15. We used the same



Table 5.3. Cost of the final state in the annealing process.

Image SSR Parallel Iterations Cost
I Rings, SN R= 1.0 •

200 2810
Rings, SN R= 1.0 Yes 200 2812
Rings, SN R= 1.0 Yes Yes 200 2815
Rings, SN R= 1.0 
(Rapid cooling)

Yes 200 2859

Rings, SN R =0.574 ■ . - ■' 200 3161
Rings, SNR=0.574 / Yes 200 3160
Rings, SN R =0.574 Yes Yes 200 3161
Vertical step 200 2876
Yerticalstep Yes . 200 2873
Yertieal step Yes Yes 200 2878
House • - . ;■■■ ■■■; 100 9253
House Yes 100 9244
Airport Yes 200 21771
Airport Yes Yes 200 21765
Airplanes Yes • . ' ’

200 7572
Airplanes Yes Yes 200 7567

r '  - : .... •



180

0 .M O  S . ' t O » . 0 0  73.00 S M .O 1 8 . 0  1 9 0 .0  1 7 3 .0  8 0 . 0

Huaber of i te r a t io n s

Figure 5.23 Detected edges and annealing process of vertical step image using
5 cost factors of the ACF. The weights were: wc=0.75, wd=2.0,
^e==̂ ,®> Wf~3 .0 , and w^=6.25. (Figure 5.4 shows the results using
6 cost factors).



I

*790.0 . ».'* -a., lt^  w o t7, t m, t
Nu*t»r of i te r a t io n s

Figwe 5.24 Detected edges end annealing process of rings image (SN R=I 0) 
osmg 5 cost factors of the A CF. The weights were; w =0 J
* d f ' ° ’ w'~ 1 0 > wr=3.0, and w,=6.5. (Fignre 5.10 shows the
results using 6 cost factors).



182

V l M  2 3 .0 0  9 0 .0 0  7 ? M  lo o ! o  1 2 5 .0  1 5 0 .0  1 7 9 .0  0 8 . 0

Number o f i t e r t t io n s

Figure 5.25 Detected edges and annealing process of rings image 
(SNR=0.574) using 5 cost factors of the ACF. The weights 
were: wc=0,5, wd=2.0, we=1.0, wf=3.0, and wt=6.5. (Figure 5.11 
shows the results using 6 cost factors).



Number of i te ra t io n s

Figure 546 Detected edges and annealing process of house image using 5 cost 
factors of the ACF. The weights were: wc=0.75, wd=2.0
we=1.0, wf=3.0, and wt=6.25. (Figure 5.17 shows the results’
using 6 cost factors).
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Figure 5.27 Detected edges and annealing process of airport image using 5 
cost factors of the ACF. The weights were: wc=0.5, wd=2.0,
we=1.0, wf=3.0, and wt=6.5. (Figure 5.18 shows the results using 
6 cost factors).
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m m i m
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Fi6' r e 5 '2 8 ; ^
* ' - 1 0  J lT o  ^  •»*«:
V ' ° ’ V 0: aT W,=4-81- <Fif!ure 5.21 shows the resultsusing 6 cost factors).
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Figure 5.29 Detected edges and annealing process of texture box image using 
5 cost factors of the ACF. The weights were: wc=0.75, wd=2.0,

wf=4.0, and wt=8.25. (Figure 5.22 shows the results
using 6 cost factors).



only slightly visible. Depending on the test image used, this alteration may 
improvei or degrade detection performance.

5.7 Sum m ary

We have shown examples of the detection of edges using both the CGF 
and ACF^ approaches. Comparison of the detection performance has been 
made w.th four other recent edge detection techniques: derivative or Gaussian, 
Laplaciap of Gaussian, facet model, and Sequential Edge Linking. Both real 
and artificial images were used in evaluating the detection performance. Based
"" t^ rattZ gure ° f meritVit has been show that the detected edges of both 
the CCF and ACF techniques that are at least of comparable quality with 
Gtner current techniques.

For t te  ACF approach, we have shown that all detected edges are thin, 
provided that the weight W t  is properly selected based on Propositions 3.15, 4.1 
and 4.2. We have also demonstrated the usefulness of the cost factor for 
ragmentation in linking together fragmented edges, while at the same time 

suppressing short sporadic edges. This approach to edge detection is flexible in 
the sense that it allows for the detection of many different types of edges. In 
particular, we have shown examples of how the dissimilarity measure for the

ty p e s '1101100 Can be defined to detect texture edges or other specific edge



CHAPTER 6
SUMMARY AND CONCLUSIONS

6.1 S um m ary  o f R esu lts

The main CDlpiasis <,f lhis TOrk been to cast edge detection as a 
problem m cost minimisation. We have achieved this by the formulation of 
two cost functions that evaluate the quality of edge configurations. The first is 
a comparative cost function (CCF), which is a linear sum of weighted cost 
factors. I t is heuristic in nature and can be applied only to pairs of similar edge 
configurations. It measures the relative quality between the configurations. The 
detection of edges IS accomplished by a a heuristic iterative search algorithm 
which uses the CCF to evaluate edge quality.

The second cost function is the absolute cost function (ACF)1 which is also 
a linear sum of weighted cost factors. The cost factors capture desirable 
characteristics of edges such as accuracy in localisation, thinness, and 
W te n m ty ^ d g es  are detected by finding the edge configurations that minimise 
the A CF. We have analysed the function in terms of the characteristics of the 
edges in minimum cost configurations. These characteristics are directly 
dependent of the associated weight of each cost factor. Through the analysis of
the ACF, we have provided guidelines on the choice of weights to achieve 
certain characteristics of the detected edges.

Minimizing the ACF is accomplished by the use of Simulated Annealing. 
Specifically, we have developed a set of strategies for generating next states for 

e annealing process. The method of generating next states allows the
* * & ' f ? * * ' *  bc cxcZulcd ^  to parallel. We have also stated ah 
^ im a te  of Uie upper bound on the maximum cup depth of the cost function. 
Thia bound is useful in the design of an efficient temperature schedule for the 
annealing process.

j  ®*Pfnmental results are shown which verify the usefulness of the CCF 
an ACF techniques for edge detection. In comparison, the ACF technique 
produces better edges than the CCF or other current detection technique* A 
major difficulty with the annealing process is the large amount of computation
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time required to minimize the ACF.

6.2 Suggestions for Further Work

Minimizing the absolute cost function is a novel approach to edge 
detection. Its usefulness has been both theoretically and experimentally 
justified. The following is a brief list of further research that could be 
undertaken in pursuit of this approach to edge detection.

(1) The approach is capable of detecting various kinds of edges, provided that 
a suitable measure of dissimilarity fa(Rl,R2) can be defined. We could 
investigate the numerous possible ways of defining fa(Rl,R2), and show
how it can be applied to detect different edge types in real world 
situations.

(2) In this report, the basis set of edge structures for use in dissim ilarity 
enhancement was constrained to be thin edge structures of 3 pixels. 
Investigation could be made into the use of other basis sets, possibly 
comprised of larger edge structures. This investigation should be 
performed in conjunction with (I) above.

(3) More experiments with Simulated Annealing could be undertaken. Five 
areas of possible investigation are listed below.
(i) Choice, of the probabilities Pi as given in Equation (4.21). These 

probabilities govern the frequency each strategy of generating next 
states is used.

(U) Alternate methods of generating next states.
(Hi) Alternate temperature schedules. The reference [63] could be 

consulted.

(iv) Use of rapid cooling and different initial states.
(v) Parallel implementation.

(4) It is not apparent that Simulated Annealing is the best algorithm for 
minimizing the absolute cost function. Other minimization techniques 
could be investigated.

(5) The investigation of how a priori information can be best incorporated 
into the cost function. This can be achieved either by direct incorporation 
into the dissimilarity measure fa(Rl,R2), or by the inclusion of additional 
cost factors.
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(6) The use of additional cost factors to capture desirable edge characteristics 
tHat nave not already been mentioned.
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