
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

12-1-1988

Edge Detection by Cost Minimization
Hin Leong Tan
Purdue University

Edward J. Delp
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Tan, Hin Leong and Delp, Edward J., "Edge Detection by Cost Minimization" (1988). Department of Electrical and Computer
Engineering Technical Reports. Paper 628.
https://docs.lib.purdue.edu/ecetr/628

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages

llllllllllllll

WMmMrnmmmm

Edge Detection by
Cost Minimization

Hin Leong Tan
Edward J. Delp

TR-EE 88-49
December 1988

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

EDGE DETECTION BY COST MINIMIZATION

Hin Leong Tan

Edward J. Delp

School of Electrical Engineering

Purdue University

West Lafayette, Indiana 47906

TR-EE 88-49

December 1988

ii

ACKNOWLEDGMENTS

The authors would like to thank Professor Saul B. Gelfand for his many
insightful comments and suggestions relating to the contents of this report.

TABLE OF CONTENTS

' ' Page

LIStf OF TABLESw...........w..... yi

LIST OF FIGURES..

ABSTRACT.................. xii

CHAPTER I - INTRODUCTION..I

1.1 Overview of Edge Detection........................ I
1.2 Some Recent Techniques in Edge Detection.......... .4
1.3 Edge Detection by Cost Minimization..........................7

CHAPTER 2 - A COMPARATIVE COST FUNCTION APPROACH
V TO EDGE DETECTION 9

2.1 Introduction................ .9
2.2 Concept of An Edge........;......................;.................,,. ,...,,..,.9
2.3 A Comparative Cost Function..12

2-3.1 Valid Edge Structures................................,.............,................i3
2.3.2 Region Dissimilarity13
2.3.3 The Comparative Cost Function... 19
2.3.4 The Cost Factors............................ 24

2.4 A Heuristic Search Algorithm... ...32
2.4.1 Selecting the Weights

2.5 Computing the Cost..34
2.6 Relaxation Techniques39
2-7 M Absolute Cost Function..................... ;.,.;,.,4l
2.8 Summary..................3, . , 4 3

CHAPTER 3 - AN ABSOLUTE COST FUNCTION APPROACH
TO EDGE DETECTION........... ..44

3.1 Introductipn.................... 44

.7 iv '
Page

3.2 A Mathematical Description of Edges45
3.2.1 Preliminary Definitions.......................................47
3.2.2 Definition andPropertiesofE dges..................49

3.3 A Cost Function for Evaluating Edges......................................s.,„,.....59
3.3.1 Determining Region Dissimilarity.,—*.*....... *64
3.3.2 D efiningtheC ostFactors...... 68
3.3.3 Computing the Cost....................... 73

3.4 Analysis of Minimum Cost Configurations...................... 80
3.4.1 Form ationofT hinE dges......... 82
3.4.2 M inim um LengthofEdges.............85
3.4.3 Dissimilarity Values at the Endpoints89
3.4.4 General Considerations in Selecting the Weights......................91

3.4.4.1 Thresholding........93
3.4.4.2 Edge Linking.........96

3.5 Summary..—100

CHAPTER 4 - SIMULATED ANNEALING....*...101

4.1 Introduction 101
4.1.1 Markov Chains102
4.1.2 The Metropolis Algorithm —104

4.2 Temperature Variation and Simulated Annealing..................108
4.3 Edge Detection Using Simulated Annealing................. I l l

4.3.1 Method of Generating Next States..................... 112
4.3.2 TemperatureVariation........................... 120

4.3.2.1 An Additional Cost Factor........... .̂....123
4.3.2.2 Estimating An Upper Bound on d127
4.3.2.3 Temperature Schedule136

4.3.3 Parallel Implementation137
4.3.4 StateSpace Reduction................ 138

4.4 Summary...................................... ...140

CHAPTER 5 - EXPERIMENTAL RESULTS...,.,..141

5.1 Introduction*......141
5.2 Experiments with Artificial Images...................................143

5.2.1 Vertical Step Image... 148
5.2.2 Rings Image..........153
5.2.3 Temperature Variation and Parallel Implementation157

5.3 Experiments with Real Images164
5.4 Other Dissimilarity Measures............... 164
5.5 Computation ^fime and. hhnal C^osts ...,...,..,..•,,♦•,••,.,••..,...•.•.•...,,,.*•,,•.175

. : v . Page

5.6 Use of 5 Cost Factors ____ _____________
'5.7 Summary......_______ __________________ ____................................187

CHAPTER 6 - SUMMARY Aj>© CONCLUSIONS......................................188

6.1 Summary of Results>.....,....188
6.2 Suggestions for Further W ork............... ,,...,.,.,,......189

LIST OF REFERENCES...,.,.191

vi

LIST OF TABLES

Table Page

3.1. Curvature cost at pixel I..71

5.1. Detection performance of various detection techniques............................150

5.2. Computation time for minimizing the ACF using
Simulated Annealing............................ 177

5.3. Cost of the final state in the annealing process..............................179

LIST OF FIGURES

Figure P age

1.1. Examples of intensity edges............................... ...2

2-1. Valid 2-neighbor edge structures..................... 14

2.2. An invalid edge structure..14

2.3. The 8 valid 3-neighbor structures.. 15

2.4. Examples of edge structures... 16

2.5. An example of a poorly defined ideal edge for a square......... 17

2.6. Edges resulting from the definition of the ideal edge
in Figure 2.5..18

2.7. Ideal edges for a square and a hexagon..20

2.8. Edges resulting from the definition of the ideal edge
in Figure 2.7...21

2.9. The 12 valid 2-neighbor edge structures, the (circled) edge pixel
which they are centered around, and their associated regions of
interest on each side of the edge............. 22

2.10. Extended regions of interest on each side of the edge...................23

2.11. A monotonic mapping function........... ..26

2.12. A strictly monotonic mapping function... ...26

2.13. Shifting edge positions for non-maximal suppression..............................29

vii

yiii

2.14. Thick edges. • •......30

2.15. Cost assignment for edge continuity................................... 31

2.16. Computation of cost factors using a decision tree35

2.17. Direct computation of ACjc(SjjSj) using a decision tree. 3 8

2.18. Continuity cost for different edge configurations....................................42

3.1. An edge with its corresponding planar graph representation.46

3.2. An edge configuration on a 10X10 Iatticewhich
contains 4 Components....................50

3.3. An edge which contains a unique path between pixels A and B.............50

3.4. An example of an edge which contains multiple links............................52

3.5. A cycle of length three*......... 52

3.6. Tliick and thin edges. .. .— 54

3.7. The 16 thin edge structures in a 3X3 lattice..................56

3.8. The 8 thin edge structures in a 3X3 lattice...57

3.9. The only thin edge structure on a 3X3 lattice which contains
five edge pixels............... 57

3.10. A block diagram of the cost minimization approach to
edge detection... 63

3.11. The angle of turn at a point.70

3.12. An edge pixel that is the connection point of 3 pairs of
straight edge segments.............. 70

3.13. Computation of point cost Cp(SkjZ) using a decision tree.76

3.14. Computation of ACc.84

Figure Page

3.15. Computation of ACf....................../84

ix '
Figure Page

3.16. A cycle of 4 distinct edge pixels.

3.17. Two examples of extended edge segments........

3.18. A minimum cost configuration containing a single thin edge.....

3.19. An example of edge linking.....................................

3.20. An example of edge linking across a region where the
dissimilarity values are equal to 0.............

3.21. An example of edge linking across a region where the
dissimilarity values are non-zero.......................................

4.1. The fourteen edge structures in Wj(Sp) and their corresponding
transformations in Wj(Sn) using strategy M3.

4.2. The ten edge structures in Wj(Sp) and their corresponding
transformations in Wj(Sn) using strategy M4.

4.3. Examples of possible transitions using the five different
strategies of generating next states......................... .

4.4. Decision tree for computing the six different cost factors............

4.5. An edge configuration that contains no edge pixels.................. .

4.6. An edge configuration that contains two short false edges........ .

4.7. An edge that spans only a portion of the optimal edge position..

4.8. An edge that is just slightly displaced from the optimal
edge position......................

4.9. Displaced edge.h........

4.10. A sequence of states of lower cost. ..

4.11. Example of partitioning L into disjoint subsets................

..... 90

.....90

.....95

.....95

.....97

.....99 :

...114

. - i f
...116

..>118

...125

..129

..129

..131

..131

..133

..134

..139

5.1. Step images..............................145

5.2. Edges of noisy step image detected using the thresholded VG
operator without non-maxima suppression...............•...... 146

5.3. Improvement in detection performance by preprocessing noisy raw
image with Gaussian smoothing prior to edge detection.......................147

5.4. Comparison of edge detector performance using vertical step edge
with SNR=O.25...- 149

5.5. Comparison of edge characteristics for noisy vertical step image........ 151

5.6. Edges detected using only CcJ and Ce of the A C F.152

5.7. Effect of changing the weights for curvature and fragmentation. 152

5.8. Costm inim izationprocessforverticalstepim ageusing
Simulated Annealing.................154

5.9. Examples of state space reduction...155

5.10. Comparison of edge detection performance using noisy rings image
with SNR=I-O... -156

5.11. Comparison of edge detection performance using noisy rings image
with SNR=O.574.. 158

5.12. Rapid cooling in Simulated Annealing.. ...159

5.13. Intermediate edge configurations in annealing process......................... 161

5.14. Comparison of parallel and sequential implementations...............162

5.15. Edges obtained using three different methods of implementing
Simulated Annealing. 163

5.16. House image. 165

5.17. Comparison of various detection techniques on house image....... 166

5.18. Airport image........................... 168

Figure Page

Figure Page

5.19. Airplanes image......--- --------------- ------------------------ -------

5.20. Piecewise linear function g(/3) used in the definition of m(d,/?).....

5.21. Edges of airplanes image detected using a priori information about
the features of interest.

5.22. Texture edge detection,..............„v

.170

.173

.174

.176

5.23. Detected edges and annealing process of vertical step image
using 5 cost factors of the ACF.180

5.24. Detected edges and annealing process of rings image (SNR= 1.0)
using 5 cost factors of the ACF. ___ ___ ________ ___ ___ ____181

5.25. Detected edges and annealing process of rings image (SNR =0.574)
using 5 cost factors of the ACF.182

5.26. Detected edges and annealing process of house image
using 5 cost factors of the ACF.183

5.27. Detected edges and annealing process of airport image
using 5 cost factors of the ACF. 184

5.28. Detected edges and annealing process of airplanes image
using 5 cost factors of the ACF.............................

5.29. Detected edges and annealing process of texture box image
using 5 cost factors of the ACF.

.......185

.......186

xii

ABSTRACT

Edge detection is cast as a problem in cost minimization. This is achieved

by the formulation of two cost functions which evaluate the quality of edge

configurations. The first is a comparative cost function (CCF), which is a

linear sum of weighted cost factors. It is heuristic in nature and can be applied

only to pairs of similar edge configurations. It measures the relative quality

between the configurations. The detection of edges is accomplished by a

heuristic iterative search algorithm which uses the CCF to evaluate edge qual- j

ity.

The second cost function is the absolute cost function (ACF), which is

also a linear sum of weighted cost factors. The cost factors capture desirable

characteristics of edges such as accuracy in localization, thinness, and con­

tinuity. Edges are detected by finding the edge configurations that minimize

the ACF. We have analyzed the function in terms of the characteristics of the

edges in minimum cost configurations. These characteristics are directly

dependent of the associated weight of each cost factor. Through the analysis

of the ACF, we provide guidelines on the choice of weights to achieve certain

characteristics of the detected edges.

Minimizing the ACF is accomplished by the use of Simulated Annealing.

We have developed a set of strategies for generating next states for the anneal-

ing process. The method of generating next states allows the annealing process

to be executed largely in parallel.

xiii

Experimental results are shown which verify the usefulness of the CCF

and ACF techniques for edge detection. In comparison, the ACF technique

produces better edges than the CCF or other current detection techniques.

CHAPTER I
INTRODUCTION

1.1 Overview of Edge Detection
Tlje detection of edges in an image is an important task in image

processing. Its importance cannot be over-emphasized as it is often the front
end processing stage in object reconstruction and image understanding systems
[1, 2]; the accuracy in which this task can be performed is a crucial factor in
determining the overall system performance. Edge detection is sometimes
viewed as the dual of image segmentation; edges are boundaries between
regions that have significantly different characteristics. The measure of
difference in characteristics may be based on texture involving statistical [3] or
structural properties in the gray levels, or they may be based on changes in the
image intensity profile of the scene. A great deal of literature has been written
on edge detection (see [4-6] for an overview) and the majority of these have
concentrated on detecting edges that are caused by changes in the image
intensity profile. They have defined edges to be located at points of intensity
discontinuity in the image and have traditionally defined three categories of
ideal edges; these are the step, ramp and roof edges as shown in Figure 1.1.
Detection algorithms based on intensity discontinuity usually result in
estimating the degree of slope in the intensity profile at each point in the
image.

The classical edge detectors emphasize the use of difference operators
which are the digital approximations to the derivative operators in the
continuous domain. A major difficulty with differentiation is that it is not
robust with respect to noise and the end result of applying difference operators
to real images inevitably produce a high degree of false and fragmented edges,
Torre and Poggio [7,8] showed that differentiation is an ill-posed problem (in
the sense of Hadmard) and that it can be transformed to a well-posed problem
by applying regularizing filters to the image prior to differentiation. The
regularizing filters are essentially low pass filters that minimize a given
stabilizing functional. There is a good intuitive basis for this since low pass

2

(a)

Figure 1.1. Examples of intensity edges, (a) Step edge, (b) Ramp edge, (c)
Roof edge.

3

filtering essentially suppresses high frequency noise in images, and will tend to
produce better edges at the differentiation stage.

Optimal filtering techniques have been used in the design of filters for
edge detection. Dickey and Shanmugam [9] defined an edge to be a step
discontinuity and showed that the ideal bandlimited filter to optimally localize
its response about the edge is given by a prolate spheroidal wave function.
Oanny [10] approached the problem of detecting edges by designing one
dimensional optimal filters that satisfy a set of performance criteria. The
optimal filter was then approximated by the first derivative of a Gaussian
function. It was implemented by convolving the image with a Gaussian
operator and then finding the gradient of the smoothed image. Instead of the
gradient, Marr and Hildreth [11] used a rotationally invariant second derivative
operator, the Laplacian, on Gaussian smoothed images. The edges were found
by locating the zero crossings in the output of the V2G operator. A detailed
discussion of the motivation for using the V2G operator is given by Marr [12].

Other approaches have used surface fitting techniques to find changes in
the image intensity profile. These techniques are based on the use of various
Sets of basis functions to describe the shape of the intensity surface. Each
basis function has an associated weight and the goal of surface fitting is to
estimate the weight values such that the sum of the weighted basis functions
produce a minimal error analytic description of the intensity surface of the
image. The presence of edges is based on the obtained description. Some of the
classical digital derivative operators are based on derivatives of best surface fit
models [13]. Hueckel [14] fitted ideal step edges to the image intensity and
minimized the error of fitting by using a set of 8 basis functions defined on a
circular disk. Haralick [15-17] used a model in which he fitted polynomial
surfaces over small neighborhoods of each pixel, and derived expressions for the
directional second derivative based on the polynomial coefficients. The pixel at
the center of the fitted neighborhood was declared to be an edge if a negatively
sloped zero crossing of the second derivative (taken in the direction of the
gradient from the pixel center) is found within the pixel area. Nalwa and
Binford [18] looked for significant step edges by fitting one dimensional
hyperbolic tangent functions over every possible fixed square neighborhood in
the image.

Other approaches to edge detection include the use of moment operators
[19,20]. However, these were shown to be essentially equivalent to the standard
gradient operators. Sequential techniques for contour tracing or edge
linking [21-23] have been used. Such techniques usually involve tracing along a

4

path in an image in search of thin continuous edges. They have been shown to
be fairly insensitive to noise. Nevatia and Babu [24] extracted linear features
in an image by convolving the image with masks corresponding to ideal step
edges in different directions. The output was then thresholded and thinned and
approximated by piecewise linear segments.

1.2 Some Recent Techniques in Edge Detection
We now describe in more detail four of the more recent approaches to

edge detection. They are samples from the optimal filtering, surface fitting
and sequential edge detection techniques mentioned above.

Derivative o f Gaussian

The derivative of Gaussian operator [10], denoted by VG, has been
proposed as an approximation to the optimal filter for detecting ideal step
edges. The optimality is based on a set of three performance criteria: (l) good
detection, (2) good localization, and (3) single response to an edge. This
method of detecting edges involve smoothing the image with a Gaussian
function

G(x,y) = k exp
2 I 2x - + y '
2a2

(1.1)

where k is a normalization constant usually chosen so that all the nonzero
values of G sum to one.

After smoothing, the gradient at each point in the image is computed by
taking the partial derivatives in the x and y directions;

D = V(G * I) .

where * denotes convolution, I is the original image, and D is the gradient of
the smoothed image. An edge pixel is defined to be a local maximum of the
magnitude of D in the direction of the gradient. The magnitude of D represents
the edge strength at any edge point. Thresholding the edge strength is required
to reduce false edge points. The smoothing parameter a is application
dependent. Larger values of a results in better noise insensitivity at the expense
of reduced image resolution.

L aplacianofG aussian

Tbe Laplacian of Gaussian is a rotationally invariant operator for the
detection of intensity edges. Theoperatoris of the form

where k is a scaling constant.

V2G = k X2 + y 2 X2 + y2)
2 a2 - 1 v.)

exp
2 a2k /

(1-2)

The edges in an image are detected by convolving the image with the V2G
operator, and then finding the zero crossings at the output. To reduce false
detection , the edge points are often detected by thresholding the slope at the
zero crossings.

Facet model approach

The fact model [17] approach to edge detection uses surface fitting
techniques to find ideal step edges in an image. It assumes that in each
neighborhood of the image, the underlying intensity function / takes on the
parametric form of a cubic polynomial in the row and column coordinates;

/ (r>c) = kx + kjjr + k3c -f- k4r2 + k5rc + k6c2 +

k7r3 + k8r2c + k9rc2 + k10c3. (1.3)

A pixel is marked as an edge if, based on / , in the pixel’s immediate
neighborhood there is a zero crossing of the second directional derivative taken
in the direction of the gradient. The coefficients kj of Equation (1.3) are
estimated by fitting the intensity data values with discrete orthogonal
polynomials. The second directional derivative at point (r,c) on the line in the
direction a is given by

f " — 6[k7sin3 a + k8sin2 acos a + k9sin acos2 a + k10cos3 a]p -f

2[k4sin2 a + k5sin acos a + k6cos2 a],

where

p — V r 2 + c2.-

CM)

If for some p, where the magnitude of p is less than the length of the side
of a pixel, / (p)<[0, T 7(P)=O and / / (/5)t̂ 0> then there is a negatively sloped
zero crossing, and the center pixel of the neighborhood is marked as an edge
pixel. To reduce false detection, the edge pixels are detected only if the slope
exceeds a certain threshold.

6

Sequentia lE dgeL inking
Eichel and Delp [23] proposed a sequential edge detection scheme called

Sequential Edge Linking to find intensity edges in an image. The algorithm
constructs a sequence of nodes (pixels) m called a path, where

Htl - IXIq j IHj j • • • • j IIlj1 •

This path is a candidate edge path in the image. The path is assumed to be
modeled as a Kth order Markov chain. That is, if we let

s i = nrjI - (K— l) >

then assuming m0 is given,

Pr(m) = Pr(mj, m2,...., mn)

= Pr(sn/sn-i)Pr(sn_ i/s n_ 2).-P r (si/s0).

The image is modeled as a two-dimensional random field. At each node x,
the conditional probability under the hypothesis that it corresponds to an edge
pixel is

Pi(fx = y) = Pr(fx = y / x is an edge node).

Sim ilarlyjtheconditionalprobabilityunderthenullhypothesisis

p0(fx = y) = Pr(fx = y /x is a random node).

The algorithm searches for the paths that correspond to edges in the
image based on a derived path metric of the form

r(m ,f)
n

= E
i=l

P l(f Ini) , , N
— — + In Pr(si/si_1)
PolfHiJ

(1.5)

The first component of the path metric is a function of the image data. It
is usually estimated from the output of gradient operators on the original
image. The second component is a measure of the a-priori probability that the
edge path proceeds in the given path direction. Using a sequential tree
searching algorithm, the edges are detected by finding the paths that have high
path metrics.

Despite the tremendous amount of research that has been done in edge
detection, finding the edges in an image that correspond to true physical
boundaries remain a difficult problem. Part of the reason lies in the fact that

7

we really do not know explicitly what we are looking for in searching for edges.
Although an edge has often been modeled as a unit step, it is a simple fact that
ideal step edges hardly ever occur in real images. Furthermore, such a narrow
concept of an edge ultimately restricts the applicability of the detection
algorithm. For instance a detection algorithm which assumes that edges are
ideal steps are invariably ineffective in finding roof edges or texture edges.

A second difficulty in many detection techniques is that the decision on
the presence (or absence) of an edge is made without considering the local edge
structure in the neighborhood of the pixel. This is particularly true of non­
sequential detection algorithms. This is a drawback since there is definitely
some information from the neighborhood edges that can be exploited in the
decision process. For instance, noise in an image causes many detection
algorithms to produce fragmented edges; an algorithm that exploits local edge
continuity information will be able to use this to reduce the amount of
fragmentation. Two bther problems often encounted are the detection of thick
edges and the detection of false sporadic edges caused by noise. Here again,
local edge information can be used to reduce false detection and find only thin
edges.

Sequential techniques have been effective in countering the problem of
fragmentation and thick edges. However, computation time may be an
inhibiting ,; factor because of the sequential nature of the processing.
Furthermore, they are applicable mostly in contour tracing tasks where the
scene does not contain an excessive number of edges. Since they are usually
based on the output of feature enhancement operators, their performance is
very, much dependent on the operator used.

1.3 Edge D etection by Cost M inimization
We cast edge detection as a problem in cost minimization. We define a

cost function over the domain of all possible edge configurations on a square
lattice. The edges are detected by finding the configuration that minimizes this
function. While most of the other detection techniques previously mentioned
can also be viewed as some form of cost minimization, this approach is unique
in tbe way the cost function is defined. The function not only uses information
from image data, but it also exploits information from local edge structure. It
takes the form of a linear combination of weighted cost factors. These cost
factors capture the desirable characteristics of good edges such as edge
thinness, continuity and well localization. By appropriately adjusting the
weights of the cost factors, we can selectively emphasize the relative

8

importance of the different edge characteristics in the detection process.

There has been little attempt to formulate the problem of edge detection
as one of cost minimization where the function is dependent on edge structure.
By this we mean that the function takes into account not only the pointwise
presence of edges in an image, but also the local shape and continuity aspects
of the edge. Two major difficulties arise in such an approach to edge detection.
T hi first is in the difficulty of defining a suitable cost function for edges. The
second is that the minimization of such a function inevitably results in one
that belongs to the class of non-deterministic polynomial time complete (NP-
complete) problems. The search space for the minimum cost solution is
extremely large as the number of possible solutions is equal to 2K, where K is
the number of pixels in the image.

There are a number of advantages of using the cost minimization
approach described in this report. The first is that it assumes no preconceived
concept of an edge except that it is a boundary separating dissimilar regions.
Hence the approach is flexible in terms of being able to detect Various types of
edges. Second, it uses edge structure information such as edge continuity and
thinness, and consequently the algorithm is more capable of detecting edges
that are well localized, continuous and thin. Also, it will be seen that the
algorithm has edge linking capabilities. Third, unlike sequential techniques, the
detection algorithm can be implemented largely in parallel.

, In Chapter 2, we present the first cost minimization approach to detect
edges based on a comparative cost function. This function is a heuristic cost
function for evaluating edges. In Chapter 3, we present a second approach
based on an absolute cost function. This a well defined function over the set of
all possible edge configurations for an image. We will present a mathematical
description of edges and analyze the characteristics of edges that will be
produced by minimizing this function. In Chapter 4, we will describe
Simulated Annealing and show how it can be used to find low cost edge
configurations for an image. In Chapter 5j we present experimental results of
the application of both the comparative cost function and absolute cost
function approaches to edge detection. Finally, in Chapter 6, we conclude by
listing several potential areas of further research.

CHAPTER 2
A COM PARATIVE COST FUNCTIO N APPROACH

TO EDGE DETECTION

2.1 Introduction
The main objective of this work is to formulate edge detection as a

problem in cost minimization. We will present two approaches to' the
formulation. The first approach uses a comparative cost function to evaluate
the relative quality of pairs of similar edge configurations. It is heuristic in
nature and the function can only be applied to edge configurations that are
almost identical. In contrast to this, the second approach uses an absolute cost
function Which can evaluate the relative quality of any pair of different edge
configurations. In this chapter, we will present the comparative cost approach
and describe an iterative algorithm to find edges in an image. We will also
discuss the similarities and dissimilarities of this algorithm with relaxation
techniques/

Central to both approaches is the formulation of a cost function to
evaluate edges. In order to accomplish this, we first have to specify what We
mean by an edge. Unfortunately, the concept of an edge is a difficult one to
define precisely; in the next section, we will present our concept of an edge in
order to establish common ground for discussing edge detection.

2.2 Goncept o f An Edge
A precise notion of an edge is crucial to the formulation of a cost function

for evaluating edges. However, it is a difficult task to explicitly define what
constitutes an edge in an image. The perception of edges by the human visual
system is ait extremely complex process that is strongly influenced by prior
knowledge. There are a number of visual paradoxes in which an edge is clearly
perceived when none physically exists (see for instance [12] p. 51). Every
individual has an intuitive notion of what edges are, but this notion varies
from person to person. Indeed, if two individuals are given identical images
and asked to find the edges, they may well produce similar looking but non­

10

identical edges. Consequently, no absolute definition of an edge exists, and the
performance of edge detection algorithms are only as good as their inherent
assumption of what edges are.

Edges in an image can generally be divided into two categories; intensity
edges and texture edges. Intensity edges are those edges that arise from abrupt
changes in the intensity profile of the image. Examples of these are the step,
roof and ramp edges as shown in Figure 1.1. Texture edges are boundaries of
texture regions that are invariant to lighting conditions. A number of texture
edges are usually defined relative to image models [25]. A number of detection
algorithms adopt a narrow concept of edges and are devoted to finding only
specific kinds of edges in an image. A weakness of such algorithms is that they
are invariably ineffective in detecting edges outside of their scope.

For our purpose, we will define an edge in a general sense so as to include
a wide variety of edge types. However, we will restrict our attention to those
edges that are evident from the image data itself and not from higher level
human cognitive processes. With this in mind, we define an edge to be a
boundary in an image that separates two regions that have significantly
dissimilar characteristics; the regions are assumed to lie on either sides of the
edge, The cause of the dissimilarity may be due to a combination of several
factors, such as the geometry of the object, surface reflectance characteristics,
viewpoint and illumination. The term “dissimilarity” is used in its broadest
sense to include any form of difference in the structure of the intensity values
that is evident in the image. Clearly, this definition includes both intensity
and texture edges. For instance, the well known step edge is a boundary
separating two regions that are dissimilar in the sense that they have different
constant intensity values. In the same vein, texture edges are boundaries
separating regions having different textural properties.

In addition to the fundamental property that edges separate
nonhombgeneous regions, our concept of edges is also governed by certain
structural characteristics that edges should possess. These characteristics
determine the shape and position of the edges in an image. We list four
desirable characteristics that edges should have.

(I) Accurate localization

It is desirable that an edge should lie in a spatially accurate position,
partitioning the dissimilar regions in the best possible way. In many real
images, the position of an edge may be ambiguous. This is often the case when

a collection of closely adjacent boundaries will separate the same pair of
dissimilar regions. Since each boundary in the collection has a unique spatial
location, the degree of dissimilarity between the regions on either sides of the
boundary will vary for each boundary in consideration. We say that an edge is
accurately localized when it coincides with the boundary that results in the
maxipmm degree of dissimilarity.

(2) Thiness

Since edges are boundaries, it is desirable that they form thin lines in the
image. Ideally, they should be only one pixel wide in the direction that is
perpendicular to the edge direction.

(3) Continuity

.̂ •jvEdges.shotiM exhibit a continuity that reflects the nature of the boundary
in the physical environment. Most physical boundaries of interest are
continuous in nature. It is desirable that correct edges should also possess this
property. However, we do not constrain edges to form closed boundaries in an
image. We will use the term fragmentation to describe edges that aie
sporadically discontinuous.

(4)Length

Noise and fine texture may cause the appearance of short scattered edges
of one or two pixels in length. We will omit from our consideration such short
edges and restrict our concept of edges to those that are at least 3 pixels long.

In practice, there is often a tradeoff between the different desirable
characteristics of an edge. Due to conflicting edge requirements, there are many
situations where it is not possible to simultaneously achieve two or more
characteristics. For instance, requiring every edge in an image to be long
and continuous may result in poor localization and the appearance of false
boundaries. Hence, it is appropriate to associate a measure of importance with
each desirable edge characteristic so that situations involving conflicting edge
requirements may be resolved. It will be seen in the formulation of the
comparative cost function that the importance of each characteristic is
emphasized by attaching a weight to its associated cost factor.

2.3 A C O M PA R A T IV E C O ST FU N C T IO N

The goal of edge detection is to find the pixels in an image that satisfy the
concept of an edge as described in the previous section. The edges should be
detected with minimum error, where the error corresponds either to missing
edge pixels, or edge pixels that do not satisfy the edge criteria. To find the
edges, it is of crucial importance to use information from both local and global
edge structure in the detection process. The reason for this is that the Critefia
for an edge includes characteristics such as thinness, continuity and length
which are based solely on the structural nature of the edge. These structural
properties are not evident from the image data itself; they have to be
determined by examining the structure of the edge configuration. Hence, an
important key to good detection is to incorporate edge structure information in
the detection process. As an example, consider the case of a fragmented edge
that is the result of noise in the image. A detection algorithm that uses
information from local edge structure will be able to improve the edge
continuity by linking together locally disconnected edge segments. Similarly,
thick edges can be made thin by the removal of excess edge pixels. It will be
seen that the comparative cost function approach to edge detection uses edge
structure information in the detection process.

The comparative cost function approach to edge detection is essentially an
iterative algorithm that makes pointwise (pixel by pixel) decisions on the
presence of edges in the image. The heart of the decision making process is the
comparative cost function. The function mathematically captures the intuitive
concept of an edge. It compares two edge configurations by considering their
edge structure and the image data. The decision process consists of choosing
the better edge configuration and iterating the procedure.

We now introduce some notation which will be used in the definition of
the comparative cost function. An image G is a two-dimensional array of
pixels g(m,n), I < m < mmax, I < n < nmax, where each pixel g(m,n) has
gray level in the range I < g(m,n) < 255. For simplicity, we will assume that
the images are square with mmax = nmax = N. Similarly, we define an edge
configuration Si to be a two dimensional array of pixels S[(m,n),l < m,n < N,
where each pixel takes on a binary value 0 or I. If Sj(m,n) == I, the pixel
s^myn) is called an edge pixel; otherwise it is a non-edge pixel. We denote as S,
the set of all possible edge configurations on an N x N square lattice. Since
every site in the lattice can have one of two possible edge labelings, the number
of elements in S is equal to 2N . Even for extremely small images, this number

13

is so large that it is impossible to implement any exhaustive search algorithm
to find the best edge configuration. The comparative cost function and search
procedure is a heuristic technique for finding edge configurations according to
the edge criteria.

2.3.1 Valid Edge Structures

Jn order to define the cost function, we have to first specify what is meant
by valid edge structures. Using an 8-neighbor representation, every edge pixel
has a maximum of 8 neighboring edge pixels in a 3x3 neighborhood. Valid
edge structures are defined as follows. An edge pixel that has O or I other
neighboring edge pixel is a valid edge structure. An edge pixel that has 2 other
neighboring edge pixels is a valid edge structure if the pixels are arranged such
that the resulting edge structure is continuous and does not turn by more than
45 degrees. We call this a valid 2-neighbor edge structure. Figure 2.1 shows 4
valid 2-neighbor edge structures. Figure 2.2 is an invalid edge structure since
the edge makes a 90 degree turn to the right. Taking into account rotations of
the edges in Figure 2.1, there is a total of 12 possible valid 2-neighbor edge
structures. An edge pixel that has 3 other neighboring edge pixels is a valid (3-
neighbor) edge structure if the edge pixels form one of the 8 structures shown
in Figure 2.3. Although there are 56 different structures involving an edge
pixel with 3 neighbors, only the 8 in Figure 2.3 allow for the possibility that
each of the neighboring edge pixels can form valid edge structures with other
pixels'in its neighborhood. An example of this is shown in Figure 2.4. Edges
with 4 or more neighboring edge pixels are defined to be invalid structures.

2.3.2 Region Dissim ilarity

In order to find edges (or boundaries) that separate regions that are
dissimilar, we need to specify the regions of interest on either sides of an edge.
This is done by first defining the position of an ideal edge with respect to a
given object. The position of this edge must be correctly defined so as to
accurately reflect the geometry and size of the object. This is important when
high precision measurements are required. Figure 2.5 shows a square object
with a corresponding ideal edge. In this case, the position of the ideal edge is
poorly defined as it does not accurately depict the relative size of an object. We
illustrate this fact by looking at the image of a pair of embedded boxes as
shown in Figure 2.6(a). Consider the spacing between the vertical portions of
the edges; this figure indicates that the distance between the edges
corresponding to the vertical sides of the smaller square is 5 units, while the

Figure 2.1. Valid 2-neighbor edge structures.

X X

X

Figure 2.2. An invalid edge structure.

15

Figure 2.3. The 8 valid 3-neighbor edge structures.

Figure 2.4. Examples of edge structures, (a) An example of a valid 3-
neighbor edge structure. Notice that pixel Z1 is part of a valid 3-
neighbor structure in a 3x3 window neighborhood indicated by
the dotted lines. Pixel Z2 which is a neighbor of Z1 also forms a
valid edge structure with its neighbors, (b) An example of an
invalid 3-neighbor edge structure. Notice in this structure that it
is not possible for the pixel at Zj or the pixel at I2 to fo rm a. valid
edge structure with its neighboring edge pixels because of the
invalid 2-neighbor structure in its neighborhood.

xl X X X

X
X Xl XTX

X
IX X

Boundary of square

Ideal edge

Figure 2.5. An example of a poorly defined ideal edge for a square.

18

X l X X m X m X m X m X m X m X m Xm X m X m X X X X X
X X
X ■ X
X .. X
X X
X X X X m X m X m X X X
X x \ : X X
X X X X
X X X X
X X X X
X X r X X
X _ X X £ YIT x_ X r X
X . X
X X
X X
X X

X X X X X X X X X X X X
X X X , X
X X X X
X X X X
X X X X
X X X X
X X X X X X X X X X X X

Figure 2.6. Edges resulting from the definition of the ideal edge in Figure
2.5. (a) Edges of a pair of embedded boxes, (b) Edges of a pair of
adjacent squares. Notice that the edge positions are either
ambiguous or the relative distance between the edges is incorrect.

19

distance from the edge on oner side of the smaller square to the corresponding
edge of the larger square is only 4 units. This is of course incorrect as both the
measurements should be 5 units. Figure 2.6(b) illustrates another difficulty
with the above definition of the ideal edge for a square. Although the dividing
line between the adjacent squares is clearly defined in the image, the position
of the ideal edge is ambiguous for the vertical edge in the center. Besides these
difficulties, the defined edge is also undesirable because it contains invalid edge
structures at the corner regions of the square.

A better definition of the ideal edges for a square and hexagon is shown in
Figure 2.7. These are thin edges that satisfy our concept of an edge. Figure
2.8 shows the corresponding edges for the embedded boxes and the pair of
adjacent boxes of Figure 2.6. Notice that these edges do not suffer from the
difficulties of the previous example in Figure 2.6. Based on Figure 2.7, we
define for each valid 2-neighbor edge structure, a pair of regions on either sides
of the edge. The regions are chosen with the intuitive notion that edges
separate regions which are non-intersecting, and that these regions lie in a close
vicinity to the edge. These regions, which shall be labeled B i and R2 for each
edge structure, are the regions of interest on which a dissimilarity measure will
be applied. The 12 valid 2-neighbor edge structures, the (circled) edge pixel
which they are centered around, and their associated regions are shown in
Figure 2.9. Depending on the application and the specific measure of
dissimilarity used, larger (or smaller) regions for R l and R2 could be defined.
For example, the regions of interest could be extended as shown in Figure 2.10.

• ' . " "■ >' ' . • : '■ - ' ;

2.3.3 The Com parative Cost Function
Given a pair of nearly identical candidate edge configurations Si and S-

that differ only at one pixel location I =(m ,n), we define the comparative cost
function C(Sj5Sj) as: -

- C f e S jJ = I > k [Ck(SjlZ) - Ck(SbI)] (2.1)

= E wIcACk(Sj5Sj) (2.2)
. . I c = I v "/V ' ■

where wk > 0 and 0 < Ck < I.

The function is a weighted sum of the difference of 5 cost factors. Each of
the weight values are given by wk. It should be noted that I is any location
within the square array of pixels. For ease of notation, we will write C(Si5Sj) as

yDOur

L i
X X X X

Boundary of hexagon
Ideal edge

X X X X X
X X

X X
x X

X X
X X
X X
X X
X X
X X

X X
X .. X

X X
X X

X X
X X X X ;

Figure 2.7. Ideal edges for a square and a hexagon.

X X X X X X X I x X X X X X X
X : X
X X
X X
X X
X X X X X X
X X X X
X X X X
X . X X Ixi
X X X X
X X X X X X
X : X
X ... X
X X
X X

X X X X X X X X X X X X X X

X X X X X X X X
X X X
X X X
X X X
X X X

X X x | x X XI-X X

Figure 2.8. Edges resulting from the definition of the ideal edge in Figure
2.7. (a) Edges of a pair of embedded boxes, (b) Edges of a pair of
adjacent squares. Notice that the edges do not suffer from the
difficulties of the previous example in Figure 2.6.

22

\ X
®

X

S

/
X

®
I X

X x I^
® ®RS

X X

X
®
X

Ss SS
SS SS ® X

X ® X

SS SS SS
X ® SSi

X

Figure 2.9. The 12 valid 2-neighbor edge structures, the (circled) edge pixel
which they are centered around, and their associated regions of
interest on each side of the edge.

23

2 2 2 2 2
Z 2 2 2 A
Y, 4 2 Z
2 2 2 2 2
2 Z 2 2 2

X © X;:
;>•

.

;.v

M 2 V.

2' 2 2 2 2
■■ ■ X 2 2 2 2 2

® 2 2 2 2 2
X 2 2 2 2 2

2 2 2 2 2

YPjJ

kI 7AV,
222 2
:2

X

I I i S S i
IQSSiSwmx
XOXV
WOrAO

22 -
22 %22
22 22 2

2 2 2 2 2
2 2 2 2 2
2 2 (?) X

x

Figure 2.10. Extended regions of interest on each side of the edge.

24

Cjj or, when no confusion occurs, simply as C. Also, we shall refer to the pixel
at location I, simply as pixel /. Now, we specify that

> ' 0
< 0

=> Sj is a better configuration
:> Sj is a better configuration (2.3)

This implies that we try to minimize the sum of the weighted cost factors Cjc.

The motivation for making Cjj a weighted sum of cost factors Cjc is that
each of the factors should, in some way, capture a desirable characteristic of
edges. Ideally, each cost factor should affect one and only one characteristic so
that the relative importance of each can be appropriately emphasized by its
corresponding weight Wjc. In practice* this is difficult to achieve as the different
characteristics often exhibit some form of dependency on each other. For
instance, minimizing fragmentation may well result in poor localization and
the appearance of false boundaries.

2.3.4 The Cost Factors

The square grid of an edge configuration is visualized as an overlay on the
image; the cost factors are computed by examining the local structure of the
edge configuration about pixel I, and the underlying image data. In the
following paragraphs, we define the value of each cost factor Clc which is used
in Equation (2.1).

I) Cd: Cost for region dissimilarity.

The cost for region dissimilarity is based on a function fc(Rl,R2) that
measures how different region R l is from R2. Large values of fc(Rl,R2)
correspond to large dissimilarity. This measure could be a simple difference of
gray level averages in R l and R2, or it could be a more complicated measure
based on other properties of the gray levels. Depending on the application and
the features of interest in an image, there are numerous possibilities for the
definition of fc(Rl,R2). As previously mentioned, to find the ideal step edges in
an image, we could define the dissimilarity measure to be the difference of
constant gray levels in the regions R l and R2. For detecting texture edges, we
could define fc(RI,R2) based on statistical or structural properties of the gray
levels in the different regions. It is clear that there is great flexibility in such an
approach to edge detection as we do not restrict the nature of the dissimilarity
between the nonhomogeneous regions. This is in contrast to many detection
algorithms that assume some specific nature of edges and are devoted to

finding only such edges.

Nop-maximal suppression is important in ensuring the accurate
localization of an edge point in an image. In practically all real images, the
dissimilarity measure has the tendency to enhance the points in the vicinity of
the true boundary in addition to enhancing the boundary itself. This is
undesirable as a large number of false boundary points are enhanced. One
approach to mitigate this tendency is to employ non-maximal suppression
when computing the dissimilarity. However, an undesirable side effect that
results from using non-maximal suppression is that some true boundary points
may also be suppressed together with the false points. This may increase the
amount of fragmentation in the boundary. It will be seen that the cost factor
for continuity will compensate for this effect by linking together locally
disconnected edges;

In our implementation, fc(Rl,R2) is computed as follows. Let d be the
magnitude of the difference of gray level averages in R l and R2, i.e.,

d - I R i I S e(U) -
(i,j)€Rl IR 2 1 E g(i.j)

(i,i)€R2

where I R l j , |R 2 j denotes the number of pixels in R l and R2 respectively.
Note that 0 < d < 255. Let m(d) be a piecewise linear function that maps d
onto the unit :
dissimilarity, i.e.,

interval [0,1]. We use m(d) as our measure of region

fc(Rl,R2) = m(d).

Suppose
c ;; ■

v ' - ■
m(d) =

d
‘■2tr ’

I ,

0 < d < 2t,.

otherwise . (2.5)

This is a piecewise linear monotonic function that is comprised of a ramp
followed by a flat region of constant value equal to one, as shown in Figure
2.11. The parameter tr, which we shall call the threshold, is application
dependent. It determines the slope of the ramp. The flat region causes
undesirable effects when non-maximal suppression is applied to the value of
fcCR'ljR'^). Since values of d greater than 2tr are mapped to the same value,
rank order information that is useful in the suppression process is lost. To
avoid this, we choose the strictly monotonic mapping function shown in Figure

Figure 2.11. A monotonic mapping function

Figure 2.12. A strictly monotonic mapping function

27

2.12. It is formed by tbe concatenation of 2 ramps; the first ramp rises to a
maximum value of 0.9 while the second rises from 0.9 to I. The function is
specified by the following equation:

/

1(d) =

d
2t„ ’

0*9 -f- (d — 1.8tr)
255 - 1.8L

0 < d < 1.8L

otherwise.
(*■«)

The cost for Region dissimilarity C^Sj,/) penalizes non-edge pixels by
assigning to them a cost value that is proportional to the dissimilarity at the
pixel location. If I is an edge pixel, no penalty for dissimilarity is made; this is
achieved by assigning to edge points a dissimilarity cost value of zero. The
cost for region dissimilarity is computed by first examining the edge structure
of Si in a local 3 x 3 window neighborhood centered at pixel L If the pixel at I
is an edge pixel, we set Cd(SijZ) = 0. If the pixel at I is not an edge pixel, we
proceed as follows. Observe that there are 12 possible valid 2-neighbor edge
structures that could fit in a 3 x 3 window region centered at I. The best
fitting edge structure is chosen according to the following cases:

Case I: There are exactly 2 neighboring edge pixels which will form a valid
2-neighbor edge structure with an edge pixel at I. This valid structure
is the best fitting edge structure.

Case 2: There are more than 2 neighboring edge pixels, one or more pairs of
which will form valid 2-neighbor edge structures with an edge pixel
at Z. Amongst these valid edge structures, the one which results in the
maximum value of fc(Rl,R2) is chosen as the best fitting edge
structure.

Case 3: If the local edge structure does not satisfy cases I or 2 above, then
amongst the 12 possible valid 2-neighbor edge structures that could fit
in a 3 x 3 window region centered at /, the one which results in the
maximum value of fc(Rl,R2) is chosen as the best fitting edge
structure.

Next, we perform non-maximal suppression by shifting the location of the
best fitting edge structure in a direction determined by the edge structure. For
straight vertical, horizontal and diagonal edge structures, the shifting is
performed by moving the edge location by one pixel in each of the opposite
directions perpendicular to the edge. For all other edge structures, the shifting

28

is done by moving the edge one location in each of the four directions: up,
down, left and right. Figure 2.13 shows how the edges are shifted for three
edge types. If the maximum value of fc(Rl,R2) over the shifted edge structures
is greater than the value of fc(Rl,R2) for the unshifted edge structure, we set
Cd(Sj,/)=0; otherwise C(i(Si,Z)=fc(Rl,R2) for the unshifted edge structure.

2) Cf1:' Cost for edge thickness.

Using an 8-neighbor representation of the edge, we define a thick edge to
be an edge structure that has multiple links between 2 or more of its edge
pixels. A thin edge is an edge that is not thick. A thick edge pixel is defined to
be an edge pixel whose presence causes multiple links between its neighboring
pixels. The cost for edge thickness is determined by considering pixel I in edge
configuration Si. If / is a thick edge pixel, then Ct(SijZ) — I; otherwise
Ct(SijZ) = 0. Examples of thick edges are shown in Figure 2.14. The edge in
Figure 2.14(a) is thick because there are multiple links between several of the
edge pixels. For instance, pixel X1 is connected to pixel X5 by two links; the
first is through pixels X2 and X4, and the second is through pixel X3. The edge
in Figure 2.14(b) is also a thick edge because there two links between pixels X1
and X3; the first is a direct link between the two, and the second is through
pixel X2.

3) Cc: Cost for edge continuity.

This cost factor reduces the occurrence of single missing edge pixels that
result in a disconnected edge. Cc(SvI) is computed by examining Si in a local
5 x 5 window neighborhood centered at pixel Z. If pixel I is not an edge pixel,
and there are 2 short edges less than 3 pixels each that could be connected by
pixel Z to form a thin edge that is at least 4 pixels long, we set Cc(SijZ) = I;
otherwise Cc(SijZ)=O- Examples of cost assignment for edge continuity is
shown in Figure 2.15.

4) C1: Cost for edge length.

This cost factor reduces the occurrence of short edge pixels that are less
than 3 pixels long. If pixel Z is part of an edge that is less than 3 pixels long,
we set C1(SijZ) = I; otherwise C1(SijZ) = 0.

29

(j) (k)

Figure 2.13. Shifting edge positions for non-raaximal suppression, (a) Vertical
edge and shifting directions, (b) and (c) are the shifted edge
positions of the edge in (a), (d) Diagonal edge and shifting
directions, (e) and (f) are the shifted edge positions of the edge in
(d). (g) An edge that turns by 45 degrees, (h) to (k) are the four
shifted edge positions.

30

X4 X 5

CM
X

CO
X

X 1

CM
X

CO
X

X 1

Figure 2.14. Thick edges, (a) Thick edge of 5 pixels, (b) Thick edge of 3 pixels.

31

location /

\ X
X

V ::
X \
■

N\

location I

X
\ X

1X
x

/

location I

X
x X

X
¥ I .

/
K

Figure 2.15. Cost assignment for edge continuity, (a) Cc(SijZ)=I. (b)
^c(SijZ)=O. (c) Cc(Sj,/)=0.

32

5) Ce: Cost for number of edge pixels.

Tbe cost factor Cd for region dissimilarity Will favor the placement of edge
pixels at all points where the measure of dissimilarity fc(Rl,R2) is non-zero.
This causes an excessive number of edges to be detected. To suppress this, we
assign a cost for each additional edge pixel detected. If pixel I is an edge pixel,
we set Ce(SijZ) = I; otherwise Ce(SijZ) = 0.

The comparative cost function is a weighted sum of the above cost
factors. It should be noted that the cost factor Cd uses both image data and
edge structure information, while Cc, Ce, C1 and Ct uses only edge structure
information. The utilization of this function to detect edges is based on a
heuristic search procedure which is the subject of the following section.

2.4 A HEURISTIC SEARCH ALGORITHM
In this section, we describe an iterative algorithm that uses the

comparative cost function to find a good edge configuration for the image. As.
previously described in Section 2.3.3, the cost function compares two very
similar edge configurations and produces a value that indicates which of the
configurations is better. To use this function, we will need some means of
generating new configurations. The method of generating a new configuration
is to take the previous best configuration and complement the edge label of one
of its N x N pixels. Clearly, there are a possible of N2 new configurations that
can be generated from the previous best configuration. Basically, the
algorithm begins by selecting any arbitrary edge configuration and calling it
the best. It then recursively generates new configurations that are compared
with the previous best by means of the cost function. The algorithm is as
follows:

(1) Begin by selecting any arbitrary edge configuration Si and any location I
=(m ,n), where I < m,n < N.

(2) Define a new edge configuration Sj such that it is identical to Si except at
pixel I (where it is the complement).

(3) Compute C iJ and select the better of the two configurations according to:
■ . V-

^ 0 = > Si is a better configuration
< 0 = > Sjis abetterconfiguration

Label the selected configuration Si.

(4) Pick a new location I =(m ,n), where I < in,h < N
(5) If stopping criterion is not satisfied, Repeat from step (2).

The algorithm terminates either when no better configuration can be
found after every possible new configuration has been tried, of when a suitable
stopping criterion is satisfied. A simple stopping criterion is based on the
number of better configurations found after K iterations. If this number does
not exceed a certain minimum, the algorithm stops. Each new location / may
be selected either in a deterministic or random manner; comparisons have been
made and experimentally it has been found to have little effect on the final
result. However, it is essential that every possible pixel location be selected at
least once. Consequently, it has been found to be computationally more
efficient to choose new values of I by sequentially stepping through the image
in a raster scan fashion. When this, is done, typically 3 to 5 iterations through
the image is sufficient for the algorithm to converge according to the stopping
criterion.

The algorithm described above begins with a random edge configuration
and attempts to change the edge labeling at every pixel in a sequential manner.
The comparative cost function is used to decide if the change is successful.
When viewed in this way, the algorithm is a sequential pointwise edge
detection process that uses information from image data, information from
local edge structure, and information from past decisions at neighboring pixels.

2.4.1 Selecting the weights

Many edge detection algorithms do not use local edge structure
information in the detection process. Those that do can usually be classified as
some type of curve or boundary tracing technique. The comparative cost
function approach to finding edges is unique in the way it attempts to
incorporate edge structure information in the detection process; the edge
information is captured in the cost factors. By altering the weights Wjc
associated with the cost factors, we can change the amount of emphasis placed
on each factor. Consider the situation where all the weights are zero except for
wd and we. The edge detection process then becomes similar to the
straightforward thresholding approach to edge detection; information about
local edge structure, such as thinness, continuity and length is not used. It
should be noted that scaling all the weights by a constant will produce the
same results as using the unsealed weights.

34

For our implementation, we used the values WcJ = 2.0, wt = 1.1, wc = 1.1,
we = 1.0, and W 1 = 1.1. First, let us just consider the cost factors for region
dissimilarity and number of edge pixels. When we use the weight values of 2.0
and 1.0 for WcJ and we respectively, edge pixels will be detected at all points
where Ccl Si: 0.5. However, when we take into consideration all 5 cost factors
and their associated weights, the interaction of the different factors will result
in several constraints on the detection process. First, thick edges will be
disallowed; even if Ccl= I for a thick edge pixel at location /, the weight values
of 1.1 and 1.0 for wt and we, respectively, will always favor the removal of the
edge pixel. Similarly, fragmentation will be reduced as edges that are separated
by only one pixel will be connected together by the weight value of 1.1 for wc.
Since the cost factor C1 removes short edges, the weight value of 1.1 for W1 will
ensure that edges that are less than 3 pixels long will not be detected. When
large values (greater than 0.5 approximately) for W 1 are used, it is necessary to
set W1 initially to zero for the first several iterations, and then to its correct
value for the remaining iterations. This is to avoid certain undesirable local
minimum states that are possible. For instance, if the initial state contains no
edge pixels, then a weight combination of 2.0, 1.0, 1.1 for wd, we, wj
respectively, will produce no edges regardless of how many iterations are made.
This is because the combined value of we and W1 exceeds that of wd, preventing
transition to any Other state from the initial state.

2.5 COM PUTING THE COST
Since the comparative cost function is used repetitively in the detection

algorithm, most of the computation is in determining the value of Cjj-From a
computational standpoint, it is of major importance that this Value can be
determined in an efficient way. One approach to determine Cjj would be to
compute each cost factor independently, and then sum the difference as
specified in Equation (2.1). However, this is a naive approach that does not
take into account the interdependence of the cost factors. For instance, an edge
that is a valid 2-neighbor structure is thin, continuous and at least 3 pixels
long; the fact that it is a valid structure allows us to determine 3 of the 5 cost
factors immediately. A great deal of reduction in computation time can be
achieved by pooling together information affecting each of the different factors
and organizing it in a form that will allow for efficient computation. This is
achieved by a decision tree structure as shown in Figure 2.16. The structure
allows for the simultaneous computation of several cost factors by traversing

35

C S= C S= Cy = O

T=3 ^

1Ct = o
C# = 0

T = 1

Qt = 0 Ct = 1 CC1 = 1
Cy =0 Ci = 0

Figure 2.16. Computation of cost factors using a decision tree.

36

the tree from root to leaf following the relevant path. The tree is 5 levels deep.
At each node, the decision as to which branch to take is governed by
conditions that are assigned to each branch. These conditions are exhaustive
and mutually exclusive; traversal to the next node is made by following the
branch where the condition is satisfied. The conditions, which are abbreviated
by labels, are summarized as follows:

LABEL DESCRIPTION

E The pixel at I is an edge pixel.

E The pixel at I is not an edge pixel.

T=n The total number of edge pixels T, in a 3 x 3 neighborhood about I
is equal to n. This total does not include the pixel at /.

V2 The two neighboring edge pixels will form a valid 2-neighbor edge
structure with an an edge pixel at I.

V2 The two neighboring edge pixels will not form a valid 2-neighbor edge
structure with an an edge pixel at I.

V3 The three neighboring edge pixels will form a valid 3-neighbor edge
structure with an an edge pixel at /.

V3 The three neighboring edge pixels will not form a valid 3-neighbor
edge structure with an an edge pixel at I.

EV2 Some pairs of neighboring edge pixels will form a valid 2-neighbor
edge structure with an edge pixel at I.

EV2 No pair of neighboring edge pixels will form a valid 2-neighbor edge
structure with an edge pixel at I.

CE An edge pixel at I will link 2 short segments, each less than 3 pixels,
to form a thin continuous edge segment that is at least 4 pixels long.

CE An edge pixel at I will not link 2 short segments to form a thin
continuous edge segment that is at least 4 pixels long.

L3 The edge pixel at / is part of an edge that is at least 3 pixels long.

L3 The edge pixel at I is not part of an edge that is at least 3 pixels long.

CT The 3 neighboring edge pixels are either clustered together forming an
“L” shaped region in one corner of the 3x3 window, or lined up

straight along one of the 4 straight borders of the window.

CT The 3 neighboring edge pixels are neither clustered together forming
an “L” shaped region in one corner of the 3x3 window, nor lined up
straight along one of the 4 straight borders of the window.

fn This is the non-maximal suppressed value of fc(Rl,R2); the edge
structure used to compute fc(Rl,R2) is the one obtained by using case
"n” of the best fitting edge rule (discussed in Section 2.3.4).

A further reduction in computation time (by approximately half) is
achieved by observing that configurations Si and Sj differ only at pixel location
/, and consequently that CiJ can be determined simply by considering Si. We
need not compute Ck(SijZ) and subtract it from Ck(SjjZ); we can compute
ACk(SitSj) directly by considering Si or Sj in the neighborhood of I. The
decision tree for this is shown in Figure 2.17, This tree is similar to that shown
in Figure 2.16; traversal from one node to the next is governed by the
conditions assigned to each branch. The value of Cij is determined by
appropriately traversing the tree from root to leaf following the relevant path.
This tree assumes that configuration Si does not have an edge at I while Sj
does. If the opposite is true, then Cij is determined by first computing Cji
using this tree, and then negating the result. The cost function has the
property that CiJ ==—Cji.

It has been previously mentioned in Section 2.4 that the heuristic search
algorithm can be viewed as a procedure where we sequentially try to
complement the edge labeling at every pixel location in the image. It is
important to note that each cost factor Cjc(SivZ) is only dependent on the value
of the pixels in a neighborhood that is no larger than a 5 x 5 window about
location /. Consequently, the decision of the edge labeling at pixel I1 can be
made independently of the labeling at Z2, if Z1 and Z2 are 2 or more pixels
apart. Hence, although the algorithm is sequential, the processing can be
implemented to a large extent in parallel if the pixel locations are chosen such
that any pair are at a distance of at least 2 pixels apart. We could, for
instance, attempt to change the pixel labeling of every third pixel in a T Q V f at
every third row. For an N x N image, there are approximately N2/9 such
locations. The processing at each location can be done in parallel and the
decisions on the edge labeling can be made simultaneously. This is significant
as it results in a reduction of the number of sequential processing steps by a
factor of N2/9.

38

T*0

A C t = 0 A C t = O

A G i = 1AC I = 0
AC, = 0

CE L3 CT CT

-1 A C c = O A C . = 0 ^ 0 / 1 - f c ACy

ACw.-U

7 V
AC(- 0 AC(- 1

Figure 2.17; Direct computation of AClc(SiJSj) using a decision tree.

2.6 R elaxation Techniques
Relaxation [4,26-28] is an iterative approach to segmentation that makes

“probabilistic decisions” at every point in parallel at each iteration; These
decisions are then adjusted at successive iterations based on the decisions made
at past iterations. In this section, we will discuss some similarities as well as
dissimilarities of the heuristic search algorithm with relaxation techniques.

Consider the task of classifying a set of n objects A1,.....An into m classes
g I,-....Cm. The basic approach of probabilistic relaxation is to assign to each
object A;, a vector of probabilities pjj, I < j < m where each element of the
vector is indicative of the likelihood that object Ai belongs to class Cj. The
elements of the vector are assumed to sum to one:

SPij = 1 •

For each pair of class assignments, AiG Cj and Ah6 Ck, there is a quantitative
measure of the compatibility of the pair, denoted by c(i,j; h,k). We assume
that c(i,j; h,k) lies in the range [-1,1] with larger values indicating good
compatibility and low values indicating poor compatibility; zero represents the
“don’t care” situation. Based on this compatibility function, the probability
vectors are altered in parallel using an iterative scheme. There are no fixed
rules as to how the vectors are altered; numerous heuristic methods exist.
Intuitively, we would like to increase the probability pjj if the class assignment

G Gj is highly compatible with AilG Cic, and Pilic is large. Conversely, we
would like to decrease it if the assignments are incompatible, and phk is large.

Tf Phk is l°w, we do not want to alter PiJ very much regardless of the value of
the compatibility function. One possible method of updating the vector based
on this intuition is to use the product

c(i,j; h,k) . phk .

The updating process at the (r+1) iteration is given by:

r+l PiK1 + ^)
1U = ~m

S P y(1 Tqij)
j=i

(2.7)

where

40

(n-1) E
h = i
h * i

E c0»j; h>k) • Phk
k=i

(2.8)

Notice that qjj is simply the average over the sum of all increments due to
the product of c(i,j; h,k) and Pilk. The denominator in the equation Of piJ+Vis
just a normalizing constant ensuring that the elements of the vector sum to
one. Ideally, the goal is to iterate until every vector converges to the state
where only one of its elements is non-zero. Practically, however, this is difficult
to achieve and the process is terminated typically after a number of iterations.

Comparing, we see that there is some resemblance of the heuristic search
technique with probabilistic relaxation. Both techniques are heuristic iterative
processes; at each iteration, new decisions are made based on past decisions.
Both are for object classification. Specifically, in the case of edge detection,
there are two classes; edge or no edge. However, there are also several distinct
differences in the two techniques. First, the heuristic search algorithm is
essentially a sequential technique where new decisions are made one object
(pixel) at a time. Although it can be implemented to a large extent in parallel,
the technique is essentially a sequential process. In contrast, the relaxation
technique is a parallel process where all the probability vectors are altered
simultaneously at each iteration. Second, the classification process of the
heuristic search technique is not probabilistic in nature. At each iteration, firm
decisions are made as to whether a pixel is, or is not, an edge. This again is in
contrast to relaxation which, for each pixel, assigns a vector of probabilities
that is incrementally adjusted at successive iterations. Third, the comparative
cost function is not equivalent to the compatibility function. In a sense, the
heuristic search algorithm can be viewed as a degenerate form of relaxation
where there are only two classification classes, and the elements of the
probability vectors are binary valued, 0 or I. The comparative cost function is
then analogous to a complex “compatibility function” of the form

c{ I>jJ hpk].; h2,k2;.... h2̂ ,k2̂) ,

where each of the 24 objects are the neighboring pixels in a 5 x 5 window
about the Object (pixel) Ai. A closer examination will reveal that this function
is different not only in form, but also in usage from the usual compatibility
functions in relaxation.

We conclude that the heuristic search algorithm is not a relaxation process
because of the fundamental differences listed above. It is an iterative process

41

which can be appropriately viewed as a heuristic cost minimization approach
to detect edges. This view will be further justified by the formulation of an
absolute cost function which will be described in the next chapter.

2.7 An A bso lu te C ost F unction

The comparative cost function given in Equation (2.1) is defined only for
pairs of similar edge configurations; it measures the relative quaity between the
configurations. This function can be modified to yield an absolute cost
function which is applicable to individual edge configurations. The resulting
cost of each configuration is indicative of its quality. One possible definition of
an absolute cost function is

C7(Si) E
all I

E WkCkIsi,;)
k = l

(2-9)

Where the cost factors CjcfS are the Same as those of the comparative cost
function. In this case, two configurations Sj and Sj can be compared by
computing the difference in the cost values. This is given by the difference
function

ACf(SijSj) = Cr(Sj) — CT(Sj) :(2,10)

= E E wk[ck(Sj,/) - Ck(SijZ)] .
all I [k= l

Notice that A c f(SijSj) <[0 if and only if Sj is a lower cost configuration that
Si. The difference function ACf(SijSj) is similar in form to C(SijSj) of Equation
(2.1). ■//,.

When used in accordance with Equation (2.1) of the comparative cost
function, the cost factors together define a function th a t ' mathematically
captures the intuitive idea of an edge. However, when the same cost factors
are used in Equation (2.9) to define an absolute cost function, the result is a
function that is not consistent with our concept of an edge. In other words,
lower cost configurations may result in poorer edges. This is particularly
evident in the case of edge continuity. An example of this is illustrated in
Figure 2.18. The figure shows five hypothetical edge configurations S0 to S4 S0
contains a fragmented edge; there are three missing edge pixels which, if
present, would make the edge continuous. Based on Equation (2.9), the total
continuity cost for an arbitrary edge configuration Sm is given by:

42

Figure 2.18. Continuity cost for different edge configurations. Cc(S0) = 3wc.
Cc(S1) = Cc(S2) = Cc(S3) = Cc(S4) = 0. Although,
configurations S2 to S4 have a lower value for continuity cost
than S0, it is clearly noticeable that they have a higher degree of
fragmentation.

43

Cc(Sm) E
all I

wcCc(Sr ,0]

According to the definition of the cost for edge continuity in Section 2.3.4, this
implies that

Cc(S0) = 3wc

The continuous version of S0 is S1. Clearly, this edge configuration has an
associated continuity cost Cc(S1) = 0. An examination of the edge structures in
configurations S2, S3 and S4 reveals that they also have zero continuity cost;
i.e., Cc(S2) = Cc(S3) — Cc(S4)= O . However, it is clearly noticeable that
configurations S2 to S4 have a higher degree of fragmentation than S0.
Consequently, we see that the cost for continuity may not reduce
fragmentation when used in the manner specified by Equation (2.9). In fact, as
seen in the above example, it has a greater tendency to increase than to
decrease fragmentation.

A better definition of an absolute cost function will be given in the next
chapter. It takes the form of Equation (2.9); the cost factors are appropriately
redefined to capture desirable edge characteristics.

A .. V. -' 2 . 8 Summary
In this chapter, we have shown how edge detection can be cast as a

problem in cost minimization. We first described our concept of an edge which
is based on criteria such as accurate localization, thinness, continuity and
length. Based on this description, we formulated a comparative cost function
th a t mathematically captures the intuitive ideas of an edge. The function uses
information from both image data and local edge structure in evaluating the
relative quality of pairs of edge configurations. Computation of the
comparative cost function is performed efficiently by organizing the
information in the from of a decision tree. Edges are detected using a heuristic
search algorithm based on the comparative cost function. The detection
process can be implemented largely in parallel. Ah extension of this approach
to deteqt f$ges would be to formulate an absolute cost function that assigns an
absolute cost value to any given edge configuration. The best edge
configuration would be the one that achieves the global minimum of this cost
function. The formulation of the absolute cost function is presented in Chapter
3.'.:

CHAPTER 3
■' " "Van absolute cost function approach

TO EDGE DETECTION

3.1 Introduction
In the previous chapter, we have presented a comparative cost function

that evaluates the relative quality of pairs of very similar edge configurations.
Although fairly good results have been achieved using this function, two
difficulties arise in its, use.

First, the comparative function measures only relative quality.
Furthermore, the pairs of configurations that it compares are constrained to be
almost identical, differing at only one pixel site. This is rather restrictive
because for any given edge configuration, only a relatively small subset of all
possible configurations can be used for comparison. A practical consequence of
this is that the heuristic search algorithm is sometimes trapped in undesirable
local minimum states.

Second, the heuristic iterative search algorithm based on the comparative
cost function is difficult to analyze. The goal of analysis is to determine
specific properties or characteristics of the edges in the output of the
algorithm. For instance, we would like to know if there are any thick edges in
the output, the minimum length of each edge, and how well the edges are
connected. Except for superficial analysis, it is difficult to track and analyze
these characteristics in the comparative cost function approach to edge
detection.

A solution to the difficulties mentioned above is to modify the
comparative cost function approach to one that uses an absolute cost function
which i§ Ijxathematically well grounded. As the terminology suggests, it is §
function that measures absolute instead of relative quality. The function is
applicable to individual edge configurations and the resulting cost of each
configuration is indicative of its quality; lower cost implies better edges. This
chapter deals with the formulation and analysis of the absolute cost function.
From here on, we will use the term cost function to refer to the absolute cost

45

function. Three things are required in formulation of a cost function for
evaluating edge quality:
(1) A precise concept of an edge.

(2) A mathematical description of edges and their related properties.

(3) A suitable cost function which captures the above concept of an edge.

The concept of an edge has already been described in detail in Section 2.2
of the previous chapter; we use the same concept as that of the comparative
cost function. We draw attention to the fact that it is not the concept of an
edge but the approach to edge detection that is different when comparing the
absolute and comparative cost function techniques. A mathematical
description of edges is essential as it enables us to state a precise description of
the intuitive concept of an edge. Its primary purpose is to provide a basis for
unambiguous definition and analysis of the cost function. The goal of the
formulation is to find a suitable cost function which, when minimized, will
yield edges that are consistent with the above concept of an edge. The ultimate
test of its validity is in its performance in finding good edges in an image.

3.2 A M athem atical Description of Edges
The intuitive concept of an edge has been described in Section 2.2 of the

previous chapter. We now describe in mathematical terms the ideas presented
in the concept. Based on this description, we will be able to state the precise
definition of a cost function and perform a detailed analysis of edge structures.

We will describe edges in terms similar to graph theoretic terms because
of the close analogy between edges and planar graphs [29]. In fact, any edge
structure can be considered to be a planar graph where each vertex in the
graph corresponds to an edge pixel, and each arc in the graph corresponds to
adjacent pixels in the edge structure. An example of this is shown in Figure
3.1. One approach to describe edges using graph terminology is to first
transform the edges into their corresponding planar graphs. However, because
of the need to keep track of the one to one correspondence between the edge
pixels and the vertices, it seems unnecessarily cumbersome to describe edges in
terms of planar graphs. In view of the analysis in the following Sections, there
seems to be no specific advantage in using a description based entirely on
graphs. Instead, we will describe edges in their own context, using a number of
terms that are similar to those in graph theory. The definition of these terms
follow closely to their graph theoretic counterparts, but they apply directly to
edge pixels and their corresponding edge structures.

X
X
X

= X
X X
X
X • .
X ’ ;

Figure 3.1, Au edge with its corresponding planar graph representation, (a)
An edge, (b) Planar graph representation of the edge.

47

3.2.1 Prelim inary Definitions

In this section, we begin with some preliminary definitions of images and
edge configurations. We will also define some basic terminology that will be
frequently used, such as neighborhood, window, connection, path and cycle.
Based on these definitions, we will state a proposition about the pixels in an
image.

An image G is a two-dimensional array of pixels
G = { g(i, j) ; I < i < imax, I < j < Jmax } ,

where each pixel g(i,j) is assumed to have gray level in the range
0 < g(i, j) ' < 255. For simplicity, we will also assume that the images are
square with imax'= Jmax = N. That is, the pixels occupy the sites of an N x N
uniform square lattice.

An edgeconfiguration Sm is also a two-dimensional array of pixels

Sm = { s m(i , j); I < i , j < N } ,

where each pixel takes on a binary value 0 or I. If sm(i, j) == I, the pixel
sm(i, j) is called an edge pixel; otherwise it is a non-edge pixel.

An edge configuration can be considered to be a binary image where the
gray levels take on values of either 0 or I. As seen in the definitions, we will
always denote images by uppercase letters and their pixels by the
corresponding lowercase letters. We shall denote as S, the set of all possible
edge configurations on an N x N square lattice. Since each pixel in the lattice
can have one of two possible edge labelings, and since there are N2 pixels in a
configuration* the number of elements in S is equal to 21N . Sometimes, we will
refer to an edge configuration Sm simply as S, with the understanding that we
are referring to any arbitrary edge configuration. The pixels of S are denoted
by the corresponding lowercase letters s(i, j).

As observed in the definition, each pixel in an image or edge configuration
is uniquely specified by the pair of indices (i, j) representing the location of its
site in the lattice. We shall denote as L, the set of all pairs of indices for an
N x N lattice of sites:

L = { (i , j) ; I < i , j < N } .

Definition 3.1: The neighborhood of a pixel s(i. j) € S is the set of 8 pixels

48

specified by:

Nij(S) = I s(m>n) : m -i < I < I , and (m,n) ^ (i, j) J

where denotes the absolute value. This is the typical “8-neighborhood”
representation of connectivity in images. Notice that s(i, j) 4 Ni j(S); a pixel is
not a member of its own neighborhood. If s(m,n) € Ni j(S), then s(m,n) is a
neighbor of s(i,j), and s(m,n) is said to be adjacent to s(i,j).

It is straightforward to observe that adjacency is a symmetric relation;
s(i, j) is adjacent to s(m,n) implies that s(m,n) is adjacent to s(i, j). However,
it is not reflexive since a pixel is not a neighbor of itself and hence cannot be
adjacent to itself. When the exact location of the edge pixel s(i, j) is not of
importance, for ease of notation, we will sometimes denote s(i, j) simply as ek,
for some integer value of k.

D efinition 3.2 The window Wi j(S) is the set of 9 pixels contained in a 3 x 3
region centered at pixel s(i, j):

Wij(S) s(m,n) : m—i < I and n-J < I

Fact 3.1: ; Wij(S) = Nij(S) U s(i, j)
This is easily seen from the definition of window and neighborhood, and it is
always true that Nij(S) C Wij(S).

A walk is a non-null sequence of edge pixels W = ex, e2, e3 ek such that ej is
adjacent to ei+1 for all I < i < k—I. The ends of the walk are C1 and ek, and
W is a (e^ ek)—walk. The origin of the walk is e1} the terminus is ek, and the
internal pixels are e2,.., ek_v The length of the walk is equal to k.

A path is a walk in which every edge pixel is distinct. Intuitively, a path is a
walk that does not intersect or merge with itself.

Two edge pixels eh, ek are connected if there is a (eh) ek)—path.

Fact 3.2: Connection is an equivalence relation.

49

(1) eb is connected to Cjc implies that ek is connected to eb.

(2) Cll is connected to Cll.

(3) eb is connected to ek which is connected to e] implies that eh is connected
X' to Cj. ...

A collection of edge pixels M — (C1, e2, em} is connected if for any eb,
ek E M, there is a (eh, ek)—path in M.

Let Se C S be the set of all the edge pixels of edge configuration S. There
is a partition of Se into non-empty subsets Se1, Se2, Sew such that eb and ek
are connected if and only if they belong to the same subset. The subsets Se,
I < i < CO, are the components of S (or Se). Clearly, the components are

connected. In Figure 3.2, we show an example of an edge configuration on a
10 x 10 lattice that contains 4 components. Notice that one of the components'
contains only one isolated pixel.

P ro p o sitio n 3.1: In any connected set M, such that || M || > I, every edge
pixel has at least one other edge pixel in its neighborhood.

Proof: Consider any pixel ea £ M; it is always connected to some other pixel
eb £ M by an (ea, eb)—path. If the path has a length that is greater than 2, its
first internal pixel is in the neighborhood of ea. If the length is equal to 2, then
eb is in the neighborhood of ea.

: V. . □
A cycle C is a walk such that:

1) the origin and internal pixels are distinct,
2) the origin and terminus are the same,
3) there is at least I internal pixel.

The length of a cycle is the length of the corresponding walk minus I.

Let A be any collection of pixels. The size of A is the number of distinct edge
pixels in A, and is denoted by IlA 11.

3.2.2 Definition and Properties of Edges

Most of the definitions in the previous section involve edge pixels and their
associated structures. Up to this point, we have not yet specified what edges
are, and how they relate to edge pixels. In this section, we will specify what is
meant by an edge (of S), and a segment of an edge. The term “thick” edges

Figure 3.2, An edge configuration on a IOxlO lattice which contains 4
components.

B

Figure 3.3. An edge which contains a unique path between pixels A and B.

t-

51

has often been used without clearly defining the meaning of the term thick. We
will give explicit definitions of thick and thin edges, and state several
propositions concerning the structure of thin edges.

D efinition 3.3: An edge E is a component of S.

D efinition 3.4: A segment of an edge E is a subset of E that is connected.

Again referring to the example in Figure 3.2, based on Definition 3.3,
there are 4 edges in the configuration. It should be clear from this that when
we refer to an edge, we are always referring to a maximal collection of
connected edge pixels. However, this collection may be just a single pixel as in
the case when a component is comprised of only one isolated edge pixel.

According to the edge concept, the edges in an image should be thin.
Intuitively, we know what thinness means, but mathematically, it is a term
that is difficult to describe. As in the case of the cost factor for thickness in the
comparative cost function, we will use the idea of multiple links to describe
edge thickness. Consider an edge E that joins pixel A to pixel B in an image; E
contains a path from A to B. We will say that the edge is thin when this path
is unique. This is shown in Figure 3.3. However, when the path is not unique,
we say that the edge is thick. A path that is not unique implies that there
could be a collection of closely adjacent paths in E that would join the same
pixels A and B. This collection of closely adjacent paths form what we call
multiple links between A and B. An illustration of an edge containing multiple
links is shown in Figure 3.4. As multiple adjacent lines form a thick line, so
multiple links form a thick edge. We therefore choose to describe thin edges as
edges that contain no multiple links between any of its edge pixels.

Based on an 8-neighbor representation of edges, an examination of edge
structures reveals that the cycle of length three can be considered to be the
basic building block of multiple links. An example of this can be seen in Figure
3.1. Notice that in the planar graph representation of the edge shown in the
figure, the huddle left portion of the edge contains a triangular region which is
a cycle of length three. This cycle is the source of multiple links in the edge.
Consequently, in the following definitions, thin edges are those that contain
none of these cycles. Figure 3.5 shows a cycle of length three; notice that each
pixel of the cycle is multiply linked by 2 paths to the other pixels within the
same cycle. For instance, if we represent the cycle as {e1? e2, e3, e ^ , the first
path between ex and e3 is C1C2C3, and the second path is C1C3. All cycles of

X

X X

X X

X x

®

B

l®l

®

X ®
X

X

X

®

; , ' X ®
X ; •

X
■■

J-,

X

® " : v

Figure 3.4. Au example of an edge which contains multiple links, (a) An
edge E joining pixels A and B. (b), (c) and (d) are three possible
paths contained in E that join the same pixels.

Figure 3.5. A cycle of length three.

53

length three have a characteristic L shape, differing only in orientation and
position.

D efinition 3.5: An edge pixel that is not contained in any cycle which has a
length equal to three is called a thin edge pixel; otherwise, it is called a thick
edge pixel.

D efinition 3.6: An edge that contains only thin edge pixels is called a thin
edge; otherwise, it is called a thick edge.

It is clear that edge pixels are either thick or thin. Since an edge is thick if
and only if it contains one or more thick edge pixels, a thick edge can be
transformed into a thin edge by the removal of the thick edge pixels. In Figure
3.6, we show several examples of thick edges, and the possible transformations
of these edges into thin ones. The definition of thick and thin edges also apply
to edge segments; an edge segment is thin if and only if it contains only thin
edge pixels.

We now state several facts and propositions concerning cycles and the
structure of thin edges which will be frequently used in the analysis of later
sections.

Fact- 3.3: If ek E E is contained in any cycle C of length three, then C is
contained in E.
This is a simple yet important observation from the fact that all the pixels in a
cycle are connected and must belong to the same component.

P ro p o sitio n 3.2: E is a thick edge if and only if E contains a cycle of length
three.

Proof: If E is a thick edge, then from the definition, it must contain a thick
edge pixeTwhich is contained in some cycle of length three. By Fact 3.3, this
cycle is contained in E. Conversely, if E contains a cycle of length three, then
each pixel of the cycle is a thick edge pixel, and hence by definition, E is a
thick edge.

' □

P ro p o sitio n 3.3 If C is a cycle of length three that contains the edge pixel
sm(i, j) E Sm then C is completely contained in the window Wjj(Sm).

X •' ■; ■ ■. " .. X
" ■;

X (e) X I

x X :

X X ; X
; X - X

X X

X X X X
X X (f) X X
X x X X
X X •

X X
X X X X

X X 1
X ;; (g) X
x X X X X ■ ■ X XX X
X I- ■ ' X
X \ ■■ X

- -

X ; >. . X X . X
X .. X X (h) X X

X X X X XX
XX X
X r**:

X ; ■
X X
X X

Figure 3.6. Thick and thin edges. The edges on the left, (a) to (d), are thick
edges. Those on the right, (e) to (h) are thin edges obtained by
the removal of several) thick edge pixels from the corresponding

^iges on the left.

55

Proof: Let the cycle be represented by C = . sm(i, j), e1? e2, sm(i, j). Since C is
a walk, the edge pixels C1 and e2 musty be adjacent to sm(i, j), and
consequently, they must be contained in Njj(Sm). Since Njj(Sm) C W jj(Sm)
(by Fact 3.1), we conclude that C C Wjj(Sm).

From Proposition 3.2, we conclude that one way to determine if E is a
thin edge is to look for a cycle of length three in E. If one cannot be found,
then E is a thin edge, otherwise it is a thick edge. Proposition 3.3 tells us that
if we wish to determine whether a pixel ek is thick or thin, we only have to
consider the pixels in the window centered about ek. That is, the pixels outside
of the window do not affect the thickness or thinness property of the center
pixel.

The following 5 propositions relate to the structure of thin edges in a
3 x 3 square lattice. They list the different kinds of thin edge structures that
can exist in the lattice.

P ro p o sitio n 3.4: Any edge E such that || E || < 2 is a thin edge.

Proof: The proof is trivial since for E to be a thick edge, it has to contain a
cycle of at least 3 distinct edge pixels. This is impossible since E has at most 2
pixels. ■

□

Proposition 3.5: The only possible thin edge E contained in a 3 x 3 square
lattice such that the center is an edge pixel and || E || = 3, is one of the 16
structures shown in Figure 3.7.

Proof: By construction and use of Proposition 3.2. Of the 28 structures
satisfying the above condition, only these 16 contain no cycle of length three.

. O

P ro p o sitio n 3.6: The only possible thin edge E contained in a 3 x 3 square
lattice such that the center is an edge pixel and || E || — 4, is one of the 8
structures shown in Figure 3.8.

Proof: By construction and use of Proposition 3.2. Of the 56 structures
satisfying the above condition, only these 8 contain no cycle of length three.

X

X

] X

Figure 3.7. The 16 thin edge structures in a 3x3 lattice. Each of the
structures has 3 edge pixels.

X
X

X X

X X
x

X

Figure 3.8. The 8 thin edge structures in a 3x3 lattice. Each of the structures
has 4 edge pixels.

Figure 3.9. The only thin edge structure on a 3x3 lattice which contains five
edge pixels.

P ro p o sitio n 3.7: The only thin edge E contained in a 3 x 3 Sqnarfe lattiee
such that the center is an edge pixel and Il E || = 5, is the structure shown in
Figure 3.9.

Proof: By construction and use of Proposition 3.2. Of the 70 structures
satisfying the above condition, only this contains no cycle of length three.

Any edge E contained in a 3 x 3 square lattice such that
the center is an edge pixel and H E Il > 5 is a thick edge.

Proof: By construction and use of Proposition 3.2. Each of the 98 edge
structures satisfying ’the above condition contains at least one cycle of length
three. ■

Z ■' - : □
■v::: jthfe/^boye propositions' hold only for small lattices of size 3 x 3, and may

seem irrelevant as they cannot be directly applied to real images of larger size.
However, their importance is seen when they are used in conjunction with
Proposition 3.3 and the next proposition. These propositions together provide
the basis for an alternative method of determining whether an edge pixel is
thick or thin.

Proposition 3.9: Let E be an edge contained in the window Wj j(S) such that
the center pixel s(i, j) is an edge pixel. Then E is a thick edge if and only if
s(i, j) is a thick edge pixel. Similarly, E is a thin edge if and only if s(i, j) is a
thin edge pixel. _

Proof: I fE is a thick edge, then by Proposition 3.2 it must contain a cycle of
length three. By construction, every cycle of length three contained in a 3 x 3
lattice must include the center pixel. Hence, the center pixel must be a thick
edge pixel. Conversely, if the center pixel is a thick edge pixel, then it must
belong to E. Thus by definition E is a thick edge. The proof of the second
statement follows trivially from the first.

□ :

To determine if s(i, j) is a thin/thick edge pixel, by Proposition 3.3, we
simply have to consider the pixels in the window Wy(S). But by Proposition

59

3.9, this is the same as determining if the edge E in Wy(S) is a thin/thick
edge. All the possible thin edges in a 3 x 3 square lattice are given in
Propositions 3.4 through 3.8. Hence an alternative method of determining if
s(i, j) is a thin/thick edge pixel is to see if the edge structure in Wy(S) is
identical to any one of the thin edge structures listed in Propositions 3.4 to 3.8.
If it is, then s(i, j) is a thin edge pixel; otherwise, it is a thick edge pixel. We
will make use of this fact in Section 3.3.3 to reduce the amount of computation
required to determine the value of the cost function.

3.3 A C ost F unc tion for E v alu a tin g Edges.
Having established the necessary mathematical preliminaries and

definition of edges in the previous sections, we now turn our attention to the
formulation of a cost function for evaluating edges. As mentioned in the
introduction to this chapter, we seek to use an absolute cost function that
measures absolute quality of edges instead of relative quality. The function
should be applicable to individual edge configurations by assigning a cost value
to each configuration. The configuration with the lowest cost corresponds to
the best configuration in the sense that it is most consistent with our concept
of an edge.

The motivation and approach to the formulation of the absolute cost
function is very similar to that of the comparative cost function. In fact, we
will employ essentially the same form of the cost function, using a linear
combination of weighted cost factors. As in the comparative cost function, each
cost factor captures a desirable characteristic of edges. However, it will be seen
that the definition of the absolute and comparative and cost functions differ in
several important aspects. First, the absolute cost function is defined using
only one single edge configuration as its argument, while the comparative cost
function uses two configurations. Second, although they have the same form,
the definition of four out of five of the cost factors are different for the two
functions.

We will first describe the general form of the absolute cost function, and
then describe the cost factors. We will also state a number of propositions that
will aid us in the computation of the cost.

Again, let Sm € S be an edge configuration and L be the set of all pairs of
indices for an N x N lattice of sites: L — { (i, j) ; I < i, j < N }.

Definition 3.7: The point cost of Sm at site I — (i, j) £ L is defined as the

60

following linear sum of weighted, cost factors:

Cp(Sm, /) = [wcCc(Sm) /) + wdCd(Sm, I) + weCe(Sm, I)

-h wfCf(Sm, /) + wtCt(Sm, /) J ;

= E wkCk(Sm, /) (3.1)
' k=l .

where wt > 0 and 0 < Ck < I . :

Definition 3.8: The total cost of edge configuration Sm is the sum of the
point cost at every point in the image:

m ,) : = ECp(Sm, 0 (3.2)
/..I. ■

or equivalently,

J f(Sm):= S
leh

E wkCk(Sm, I)
k-1

This total cost is the absolute cost function for evaluating edges. We will
often omit the term absolute and refer to this simply as the cost function when
there is no confusion with that of the comparative cost function. Notice that
the cost function is the sum of the point cost at every site in the image, and
also takes the form of a linear sum of weighted cost factors.

Definition 3.0: For any pair of edge configurations Sm, Sn £ S, the
incremental cost from Sm to Sn is given by

AF(Sm,Sn) = F(Sn) - F(Sm) (3.4)

: ^ = E C p (S n, 0 - E c p (s m, 0
leh /eL

— E Jj ®p(3n.> 0 p̂fSin, /)1 (3.5)
l e h L J

61

= E E wkek(sn,/) - E wkck(sm,/)
ZeLk=I k=l

-

AF(S01S1) = S w k.
' k=l

Alternatively, we can write the incremental cost given in Equation (3.6) as a
sum of five incremental cost factors, ACk.

AF(S01S1) = S w kACk(L i S0 1 Sn) (3.7)
■ k=l

where ACk(L ; Sm, Sn) = E
zeL

For notational simplicity, we will often write AF(Sm,Sn) simply as AFm n.
Notice that while Equation (3.4) is the basic definition of the incremental cost,
Equation (3.5) expresses it in terms of the point cost, and Equation (3.7)
expresses it in terms of the incremental cost factors. A comparison of Equation
(3.7) with Equation (2.2) shows that the two equations are very similar in form.
However, because of the difference in the definition of the cost factors, the
results produced using the two equations are significantly different. The
incremental cost AFm n gives the cost difference between configurations Sm and
Sn. If it is negative, then Sn has a lower cost than Sm, and is consequently a
better configuration. Conversely, if it is positive, then Sm is better.

P ro p o sitio n 3.10: Let (Sl j S2J - - S m) C S be any collection of edge
configurations. The incremental cost from S1 to Sm can be written as the sum

m—I
AFl,m= E afU-H

ck(sn) 0 - ck(sm, /)]

E
ZeL

Ck(S11Z) - Ck(Sml 7) (3.6)

Proof:
m—I
E i+1 = ^ 1 , 2 + ^ 2 , 3 + ^ 3 , 4 —• + AFm-I,
I==I'

F(S2) - F (S 1) + F(S3) - F (S 2)

62

+ P(Sj) - P j S 3) -I F f S J - F i S c ,)

= F(Sm) - F (S 1)

: = A F i im

V'/' " ■ □
Tliis proposition provides an indirect method of computing the

incremental cost from S1 to Sm. This indirect method is very useful, especially
when it is difficult or computationally inefficient to determine the incremental
cost value directly. In most of our applications, this method of computing the
incremental cost will be used. This proposition is also useful in analysis; in
Section 3.4, we will use this property of the incremental cost in the proof of a
number of other propositions.

Figure 3.10 shows a block diagram of our cost minimization approach to
edge detection. The fundamental property of edges is that they separate
regions that are dissimilar. The first step in the detection process is to enhance
those points in an image that satisfy this fundamental property of edges. These
points serve as good candidates for edge points. The enhancement is based on a
given dissimilarity measure and a enhancement scale factor. We refer to this
processing stage as dissimilarity enhancement. In this stage, we also attempt to
ensure that the enhanced points satisfy the desirable edge property of accurate
localization. It will be seen that this property will be achieved by using non-
maximal suppression for the dissimilarity values.

Instead of using the original image directly, the cost function is defined in
terms of the enhanced image. Desirable characteristics of edges such as thinness
and continuity that are difficult to capture in the dissimilarity enhancement
stage are embedded into the cost function. The edges are detected by finding a
suitably low cost solution to the cost function. Simulated Annealing will be
employed as a technique of finding low cost solutions. As seen in Equation
(3.3), the cost function is a weighted sum of five cost factors. The choice of
weights for the cost factors is application dependent, and it determines the:
nature of the edges which will be detected.

In the following sections, we will elaborate on dissimilarity enhancement
and the definition of the cost function. We will also analyze the cost function
and provide guidelines on the choice of weights to achieve specific
characteristics in the detected edges.

63

image G
Low cost
edge
configuration

Figure 3.10. A block diagram of the cost minimization approach to edge
detection.

64

3.3.1 Determ ining Region D issim ilarity
We have mentioned in Section 2.2 that an edge is a boundary in an image

that separates regions that are dissimilar. In this section, we focus on the task
of enhancing the points in an image that are good candidates for edge points.
The enhancement procedure is very much dependent on how dissimilarity is
defined in an image. For instance, we could model an edge as an ideal step and
define dissimilarity to mean that the region on each side of the edge has
different constant gray levels. In this case, a possible method of enhancement
is to convolve the image with a gradient operator to obtain the enhanced
image.

Dissimilarity based on the ideal step is only one of a myriad of possible
region dissimilarities that could exist in an image. Instead of focusing on one
specific kind of dissimilarity, we will give a general definition of region
dissimilarity in the form of a dissimilarity function. We will describe a
procedure that uses this function to enhance the points in an image that have a
high degree of dissimilarity in its neighboring regions. These points are good
candidates for edge points based on the criterion that edge points separate
dissimilar regions. However, for reasons to be stated in the following
paragraphs, we emphasize that region dissimilarity itself provides insufficient
information for good edge detection.

Referring again to Figure 3.10, the first step in the detection process is to
obtain an enhanced image from the original image. The edges are then
detected by finding the edge configurations that minimize the cost function.
Thresholding the enhanced image can be considered to be the simplest form of
cost minimization where the cost function does not take into account edge
structure information. The required complexity of the cost function and the
subsequent minimization procedure is very much dependent on the
performance of the dissimilarity enhancement stage. For instance, if we could
have perfect performance at the enhancement stage in the sense that the
dominant features in the enhanced image follow closely to our concept of an
edge, then the edges could be detected by a simple thresholding operation.

However, in practice, it is impossible to have perfect performance in
dissimilarity enhancement so that high quality edges can be obtained by simple
thresholding. This is because of two main reasons. First, region dissimilarity
based on the original image data often provides insufficient information for
edge detection. Good edges are those that exhibit the desirable characteristics
of accurate localization, thinness, continuity, and sufficient length. Some of

65

these characteristics, particularly the last three, are structural characteristics of
edges that are difficult to determine directly from the image data. They are
embedded in the structure of the edge configuration. Second, dissimilarity
enhancement is a process that is usually sensitive to noise. Noise processes will
cause many points to be incorrectly enhanced as potential edge points. Except
for artificial images, noise is always present in an image.

The above discussion leads us to conclude that it is necessary to exploit
information from local or global edge structure to aid in the detection process.
Our approach to detect edges is to attempt to achieve the best we can at the
enhancement stage. Desirable edge characteristics that are not captured in the
enhanced images are embedded into the cost function. The cost minimization
procedure will then find the edges which exhibit the characteristics that are
consistent with our concept of an edge.

The fundamental property of edges is that they separate dissimilar
regions. In dissimilarity enhancement, we concentrate on the following two
goals that relate to our concept of an edge.

(1) To signify those points in an image that possess the fundamental property
of edges.

(2) To ensure that those enhanced points are accurately localized.
The enhanced image

D = < I, j < X }

is a collection of pixels where each pixel value is proportional to the degree of
region dissimilarity that exists at that pixel site. The pixel values lie In the
range O < d(i, j) < I. Pixels with large values close to I are good candidates
for edge points in an image. Three things are required in order to enhance an
image according to the set goals:
...(X) Well defined regions of interest on either sides of an edge.

(2) A function that measures dissimilarity between the regions of interest.

(3) Non-maximal suppression as a method of ensuring accurate localization.
The regions of interest are defined with reference to a set of selected edge

structures. We call this set of edge structures the basis set. Within the scope of
this report, the basis set is constrained to be 3-pixel edge structures contained
in a 3 x 3 window region. In line with our concept of an edge, we also require
these structures to be thin. The basis set is thus selected from the 16 edge
structures given in Proposition 3.5. In most of our applications, we selected as

•: • •

our basis set the first 12 of the 16 structures shown in Figure 3.7. TThe regions
of interest on ether sides of each edge of the basis set are defined in the same
way as those for the comparative cost function in Section 2.3.2. These regions
are again labeled as R l and R2 for each edge structure in the basis set.
JFigures 2.9 and 2.10 show an examples of the basis set and the corresponding
regions of interest for each edge structure.

The function that measures the dissimilarity between regions R l and R2 is
denoted by fa(Rl,R2). This measure could be a simple difference of gray level
averages in R l and R2, or it could be more complicated measures based on
statistical or structural properties in the gray levels. Depending on the
application and the features of interest in an image, there are numerous
possibilities for the definition of fa(Rl,R2). As previously mentioned, to find
step edges in an image, we could define the dissimilarity measure to be the
difference of constant gray levels in the regions R l and R2. It is clear that
there is extreme flexibility in such an approach to dissimilarity enhancement as
we do not restrict the nature of the dissimilarity. This is in contrast to many
detection algorithms that assume some specific nature of edges and are devoted
to finding only those edges. At this point, we do not need to know the explicit
definition of the dissimilarity measure fa(Rl,R2) which will be used; we simply
assume that one exists.

Non-maximal suppression is important in ensuring the accurate
localization of an edge point in an image. In practically all real images, the
dissimilarity measure has the tendency to enhance the points in the vicinity of
the true boundary in addition to enhancing the boundary itself. This is
undesirable as a large number of false boundary points are enhanced. One
approach to mitigate this tendency is to employ non-maximal suppression in
dissimilarity enhancement. However, an undesirable side effect that results in
using non-maximal suppression is that some true boundary points may also be
suppressed together with the false points. This may increase the amount of
fragmentation in the boundary. It will be seen that the cost factor for
fragmentation will compensate for this effect by linking together locally
disconnected edges.

We now describe a procedure to obtain an enhanced image D from the
original image G. It performs non-maximal suppression by shifting the edge
structure in a direction perpendicular to the edge direction. The procedure is
as follows:

67

(1) Initially, all the pixels d(i, j) are set equal to zero.
(2) At each pixel site (i,j), we perform steps A and B.

A. Each of the edge structures of the basis set is fitted onto the site by
centering it on the location (i,j) in G. The corresponding paired
regions R l and R2 in G are determined for each structure, and the
value of fa(Rl,R2) is computed. The structure that results in the
maximum value of fa(Rl,R2) is chosen as the best fitted edge
structure.
Note that each edge structure of the basis set contains exactly three
edge pixels; we will denote the sites of the three edge pixels of the best
fitted edge structure in G as (i, j), (il9 j j , and (i2, j 2).

B. Next, we perform non-maximal suppression by shifting the location of
the chosen best fitted edge in a direction determined by the edge
structure. For vertical, horizontal and diagonal edge structures, the
shifting is performed by moving the edge location by one pixel in each
of the opposite directions perpendicular to the edge. For all other
edge structures, the shifting is done by moving the edge one location
in each of the the four directions: up, down, left and right. Figure
2.13 shows how the edges are shifted for three edge types. For each
shifted edge, we determine the new regions for R l and R2, and
compute the corresponding value of fa(Rl,R2).
One of the following two cases results:
(i) If no larger value of fa(Rl,R2) results from shifting the best fitted

edge structure, we set

S = a
fa(Rl,R2)

where fa(Rl,R2) is determined using the best fitted edge. The
factor a is called the enhancement scale factor. We then
increment the value of each of the pixels
dO, j), d(ii, Ji'),-and d(i2, j 2) by 6.

(ii) If there is a larger value of fa(Rl,R2) from one of the shifted edge
structures, we do not alter any pixel value.

(3) Finally, the values of the pixels d(i, j) at all sites are truncated to a
maximum of I.

Step (3) is performed essentially to ensure that the dissimilarity values lie
in the assumed range 0 < d(i, j) < I. The value of the enhancement scale

68

factor Oi is application dependent. It serves as a selection parameter in
determining the number of edge points that will be detected. Section 3.4.3
gives guidelines to selecting the value of or.

3.3.2 Defining th e C ost F ac to rs

The general form of the cost function has been given in Equation (3.3); it
is a linear combination of five weighted cost factors. Specifically, the five
factors are as follows.

(1) Costforcurvature
(2) Cost for region dissimilarity

(S)C ostfornum berofedgepoints
(4) Cost for fragmentation
(5) Cost for edge thickness

In this section, we will define each of these cost factors and discuss their
relevance to edge evaluation. Each of these factors affect a desirable
characteristic of edges. It will be seen that the cost for region dissimilarity is
the only one that is based on information from the image data; the others ar4
based on information from local edge structure. Ideally, each cost factor
should affect one and only one desirable characteristic so that the relative
importance of each characteristic can be appropriately emphasized by their
corresponding weight. In practice however, this is difficult to achieve as the
different characteristics often exhibit some form of dependency on each other.

The cost factors together give an objective measure of how well a given
edge configuration fits our concept of an edge. These factors are defined based
on the assumption that lower cost configurations are better edges.
Consequently, the best configuration is the one that achieves the global
minimum of the cost function. The ultimate test of the validity of the cost
function is in its performance in detecting edges. In Chapter 5, we will show
experimental results of detecting edges using this cost function.

In order to define the cost factors, we have to first specify what is meant
by a straight edge and an endpoint. These are given in the following two
definitions.

D efinition 3.10: An edge E (or segment of an edge) is straight if all its edge
pixels lie on a single horizontal, vertical or diagonal line of the lattice on which
it is defined.

69

D efinition 3.11: An endpoint is an edge pixel that has at most one other
edge pixel in its neighborhood.

Using the definition of straight edges and endpoints, we will now specify
what is meant by the angle of turn at a point. If ek is an edge pixel that is not
an endpoint, then it can be considered to be the connection point (or common
point) of at least one pair of straight edge segments. The direction of each
straight edge segment is uniquely specified by the straight line joining the site
of ek with the site of any other pixel of the segment. This is illustrated in
Figure 3.11. Let n be the maximum number of different pairs of straight edge
segments connected at ek, each pair being denoted by the label Pi, I < i < n.
Let 4>j be the larger of the two angles between the edge segments of pj. The
angle of turn between the pair of edge segments in p; is given by

9i — 180.
■ ’ ■ •. . /. ■ ■■ ■■■ ' . '

In Figure 3.12, we show an example of an edge pixel that is the connection
point of 3 pairs of straight edge segments.

D efinition 3.12: The curvature 9(1) at any site / G L of configuration S is
defined as follows:

(1) If s(/) is a non-edge pixel or an endpoint, then the curvature is equal to
p zero.

(2) If s(/) is an edge pixel that is not an endpoint, then the curvature is the
maximum angle of turn at that point:

W) - .

Assuming that the image lattice is uniformly spaced, the curvature at any
site can take on one of four possible values; 9 G { 0, 45, 90, 135 }. In the case of
the example in Figure 3.12, the curvature is 135 degrees.

Cosrt for curvature

The cost for curvature assigns a cost to each point in the edge
configuration according to the value of the curvature at that point. As /
previously mentioned, the curvature at any point can take on any one of the
possible values of 0, 45, 90, or 135 degrees. At site I of configuration Sm, the
curvature cost Cc(Sm, I) is given in Table 3.1.

(a)

pixel e k«
.. X x X X

X
kX

X

X
X X

pixel e k.
.

..

Y
; ‘
■ < r

Figure 3.11. The angle of turn at a point, (a) The pixel ek is a connection
point of a pair of straight edge segments, (b) The pair of straight
edge segments and the resulting angle of turn. In this case, the
angle of turn is 45 degrees.

I: -

(a)

P ix e lek,
X
X

X X
X X
X X

(c)

.. .

\

;

N
\

■i > S
;

Figure 3.12. An edge pixel that is the connection point of 3 pairs of straight
edge segments, (a) The pixel ek as part of the edge, (b) A pair of
segments with 0=0. (c) A pair of segments with 0=45degrees.
(d) A pair of segments with 0=135 degrees.

71

Table 3.1. Curvature cost at pixel Z

Curvature 6(1) Cost Cc(Sm, I)

O 0

45 0.5

90 1.0

135 1.0

The above assignment causes edges that have many turns to have a higher
curvature cost than those with relatively few turns. By appropriately choosing
the weight of the curvature cost, we can avoid excessive meandering and
turning of edges. This is particularly useful when, for instance, we know a
priori that the edges of interest are straight. Such edges often occur when We
are dealing with polygonal objects. This factor is also useful in the suppression
of noise effects. Noise in an image often stimulates the formation of jagged
edges which have high curvature cost. A sufficiently large weight for curvature
will tend to smooth out such edges.

C ost for region dissim ilarity
This cost factor is based on the enhanced image D. It assigns a cost to

non-edge pixels that is proportional to the degree of dissimilarity at that point.
In other words, a site that contains a non-edge pixel but has a high degree of
dissimilarity will have a high cost. On the other hand, if it has a low degree of
dissimilarity, then the cost is low. This factor is intended to be used in
conjunction with the cost for number of edge points. It will favor the
placement of edge pixels at points of high region dissimilarity. The definition
of the cost factor is as follows:

Cd(Sm, I) -
0 ,

4 (0 .
if sm(/) = I
if Sm(Z) = 0.

C o stfo r n u m b e r o fe d g e p o in ts

When used by itself, the cost for region dissimilarity will favor the
placement of edge pixels at all points in an image that have non-zero
dissimilarity values. This will result in an excessive number of edge pixels being
detected. To compensate for this, we assign a cost to each additional edge pixel
as follows:

72

if sm(/) = O
if Sm(Z) = I.

C ostforfragm en tation

This cost factor reduces fragmentation by assigning a cost to the
endpoints of an edge. It is based on the intuition that fragmentation causes the
formation of surplus endpoints. For example, a straight continuous edge
contains two endpoints; the same edge fragmented in two places will contain
six endpoints.

There are two kinds of endpoints. The first is an endpoint that is the
terminus of some segment or path. The second is an isolated endpoint. An
isolated endpoint can be considered to be a path that has shrunk in length to a
single point. In the process, the former two endpoints of the path are merged
into one single point. Hence, as will be seen in the definition, the cost of an
isolated endpoint is twice that of a path endpoints By assigning a cost to
endpoints, fragmentation will be reduced. This is because adjacent endpoints
which represents locally disconnected edges will be removed by linking the
edges together. The cost is defined in the following way:

Bet T be the number of edge pixels in the neighborhood of pixel Sm(Z) in
ConfigurationSm.

C f(sm, Z)
O , if sm(Z) is not an endpoint

• 0.5 , if sm(Z) is an endpoint and T = I
1.0 , if Sm(Z) is an endpoint and T = 0.

Our concept of an edge includes the property of m in im um length; edges
should be at least 3 pixels long. Although it is not obvious in the definition, it
will be seen later that the cost for fragmentation will guarantee th a t detected
edges are of a certain minimum length. Hence, unlike the comparative cost
approach, we do not need a separate cost factor for edge length to ensure that
edges are of a given minimum length. The minimum length property is
inherently embedded in the cost factor for fragmentation.

73

C o s tfo re d g e th ic k n e s s

Since thinness is a desirable edge property, we foster the formation of
thin edges by assigning a cost to thick edge pixels. This is achieved by the
following cost factor for edge thickness.

0 , if sm(/) is not a thick edge pixel
1 , if S m (Z) is a thick edge pixel.

In Section 3.4, the practical consequence of the above definitions of the
cost factors will be examined. We will also consider the choice of weights to
achieve specific characteristics in the detected edges. In the next section, we
concern ourselves with the question of how to compute the cost factors
efficiently.

C,(Sm) () =

3.3.3 C om puting th e C ost

The cost function is used to evaluate the quality of an edge configuration.
It will be seen in the minimization procedure that this function will be used
repeatedly in the search for low cost configurations. Hence, from a
computational standpoint, it is of major importance that this function can be
computed in an efficient way. By taking into account the interdependence of
the cost factors, a great deal of computation time can saved. We will now state
the first of several propositions that will aid us in finding an efficient procedure
to compute the cost.

P ro p o s itio n 3.11: The point cost C p(Sm jZ) is dependent only on the
dissimilarity value d(Z) and on the pixels in the window W /(Sm).

Proof: Since the point cost is the sum of 5 cost factors,

c „ (s m. O = S w kc k(sm. /)
k<=l

it suffices to show that each of the 5 factors is dependent only on W /(Sm) and
m - '

(I) Cc(S„, I)

Case I: sm(Z) is not an edge pixel. It follows trivially from the definition
that Cc is dependent only on Sm(Z) 6 Wj(Sm).

74

Case 2: Sm(Z) is an edge pixel that is an endpoint. Since an endpoint is
determined by considering a pixel and its neighborhood, it is seen easily for
this case that Cc is dependent only on sm(l) U Nz(Sm) — Wj(Sm).

Case 3: Sm(Z) is an edge pixel that is not an endpoint; it is the connection
point of n pairs of straight edge segments. Since the direction of each straight
edge segment is uniquely determined by the straight line connecting Sm(Z) with
any other pixel of the segment, we can choose the other pixel to be the one in
its neighborhood, Nj(Sm). This is always possible by Proposition 3.1. Hence,
the direction of each segment is uniquely determined by the pixels in N7(Sm).
The curvature at Z, the endpoint property (see Case 2), and consequently Cc,
are dependent only on the pixels in Nj(Sm) U Sm(Z) = Wy(Sm).

(2) Cd(Sm, Z)

From the definition, it is trivially seen that CcJ is dependent only on
s m (0 € Wj(Sm) and d(Z).

(3) Ce(Sm, Z) V

Again1Irom the definition, it is trivially seen that Ce is dependent only on
SJOeWz(Sm).

(4) c f(sm, Z)

This factor assigns a cost to endpoints. Whether a pixel is an endpoint is
determined solely by the pixel itself and its neighborhood Nz(Sm). Hence, this
factor depends only on Wz(Sm).

(5) Ct(Sm, Z)

This factor assigns a non-zero cost to thick edge edge pixels. An edge pixel
is thick if and only if it is contained in a cycle of length 3. According to
Proposition 3.3, this cycle, if it exists, is completely contained in Wj(Sm).
Hence the factor is dependent only on the pixels in Wj(Sm).

Since each of the 5 factors are dependent only on Wj(Sm) and d(Z), so the
lmear combination of them is also dependent only on these pixels.

■ - D 1'

75

C o m p u tir ig th e p o in tc o s t

From the above proposition, we only have to consider the pixels in the
3 x 3 window about a site to compute the point cost at that site. A
straightforward method of computing the point cost is to determine the values
of each of the cost factors independently. However, this is computationally
inefficient as we do not take into account the inter-dependence of the cost
factors. Our method of computing the cost function is based on the decision
tree show in Figure 3.13. This tree is obtained by pooling together all the
information affecting the different cost factors. It represents a compact
description of the cost factors, and it allows for the simultaneous computation
of several cost factors by traversing the tree from root to leaf.

As mentioned in Section 3.2.2, Proposition 3.9 gives an alternative method
of determining if a given pixel s(i, j) is a thin/thick edge pixel. All that is
needed is to see if the edge structure contained in Wy(S) is identical to any of
the thin edge structures in Propositions 3.4 through 3.8. If it is, then s(i, j) is a
thin edge pixel; otherwise it is a thick edge pixel. By using this method, we
avoid the need to trace an edge pixel to see if it belongs to a cycle of length
three. Contour tracing is time consuming compared to the alternative method
we have just described.

It is important to note that the decision tree in Figure 3.13 gives an
equivalent definition for each of the cost factors we have defined in the
previous section. The validity of this tree in representing the cost factors is
hinged on Propositions 3.3 to 3.9, and the following two propositions.

P ro p o sitio n 3.12: Every thick edge pixel has a corresponding curvature
greater than or equal to 90 degrees.

Proof: Every cycle of length three has a characteristic L shape. Hence at each
pixel of the cycle, there is a pair of straight edge segments that form either a
90 or 135 degree angle of turn. Since a thick edge pixel belongs to a cycle of
length three, it must have a curvature of at least 90 degrees.

. D

P ro p o s itio n 3.13: Every edge pixel with three or more neighboring edge
pixels has a corresponding curvature greater than or equal to 90 degrees,

Proof: It is sufficient to show that the above is true for the case of three

76

Cg=O Cc= 0.5 Cc= 1.0

n = Il Nj(Sk) Il

thin: The edge contained in Wi(Sk) is a thin edge,

thick: The edge contained in Wj(Sk) is a thick edge.

Figure 3.13. Computation of point cost Cp(Sk,/) using a decision tree.

77

neighboring pixels. The simplest proof is by construction; each of the 56 edge
structures which has 3 neighbors in a 3 x 3 window has a curvature of at least
90 degrees.

□

C om p u tin g th e increm en ta l cost
According to Equation (3.5), the incremental cost from Sm to Sn is

= >■; f c P(s„ , 0 - c f (sa , /)]
I e LL J

Since there are N2 sites in L, this represents a total of 2N2 times the point cost
has to be computed. This is a tremendous amount of computation, and even
for small images of size 128 x 128, the value of 2N2 is equal to 32,768. We will
show that by appropriately restricting the choice of Sn, the incremental cost
can be reduced to a summation over a small subset of L, i.e.

« = S f
/ GRl

where R is a small subset of L, containing only 9 sites. We essentially reduce
the summation of N2 terms to that of 9 terms. This is given in Proposition
3.14. Before stating it, we give several preliminary definitions and lemmas.

D efin ition 3.13: Let Wj(S) be the set of pixels of S whose windows contain
the pixel s(/). That is, for /, q € L,

W 1(S) = { s(q): S(I) e w , (S) }

C„(S„ I) - Cp(Sm, Oj ,

L em m a 3.1: For any /, q GL,

if and only if s(/) £ Wq(S) .

Proof: Let I = (i ,j) and q — (m,n). Then, from the definition of a window, the

pixel s(q) is a member of Wj(S) implies that i—m ^ l and j —n ^ I.
Since i is interchangeable with m, and j is interchangeable with n within the
absolute value signs, We conclude that s(q) £ Wj(S) implies that s(/) £ Wq(S).
In the same way, a simple change of variables will show that s(/) € Wq(S)
implies that s(q) E Wj(S).

□

78

Lemma. 3.2: For any / G L, Wi(S) = Wi(S).

Proof: We will show that the following holds for any I G L; Wi(S) £ Vft (S)
and W |(S)G W |(S). Let s(q)€W /(S), q G L By Lenima 3.1, we have
s(/) G Wq(S). From the definition of Wi(S), We see that s(q) € Wi (S), which is
true for every s(q) G Wi(S). Hence Wi(S) £ Wi(S))
Now, let s(q) G Wi(S), then from the definition of Wi, we know that
s(/) G Wq(S). Again, by Lemma 3.1, we have s(q) GW i (S), which is true for
every s(q) G Wi(S). Hehce Wi(S) C Wi(S).

' ' □

D efinition 3.14: The index set of A, I(A) is the collection of the pairs of
indices of the pixels in A. For example, if

■A- — { ®0ldl)> ®(^22)» -•••• ®0m*im) } >

then the index set of A is given by:

I(A) - { (i, j) : s(i, j) G A }

“ { O ldl)*'02*i2)> (*miim) } •

Note that I(S) is the set of all possible indices of the edge configuration S, and
is equal to L. For notational purposes, we will write IfWiJ(S)) as Wi y That is,
when the window is used without specifying its argument, we are referring to
the indices of the pixels in the window.

P ro p o sitio n 3.14: If Sm, Sn G S are edge configurations that have identical
edge labelings at every pixel site, except at site x=(y,z) G L, where they are
complementary, then

AFm,B= E [c p(Sn, /) - C p(Sm, /) l . (3.8)

Proof; From the definition of incremental cost in Equation (3.5), we essentially
have to show that

2 f O p(s„ /) - CP(S„, o l = S f Cp(sn, 0 - Cp(sn , o |
< a L 1 lew, L J

Let Wx = I (Wx(S)), and partition L into disjoint sets:

L = (L - W x) U W , .

We can write the incremental cost according to the definition in Equation (3,5)

A Fmja= E f C p(Sa) 0 - Cp(Sm, 1)1
16(L-WJl

+ E [c p(s a, /) - c p(s m, ()]
JeWx

For each I G (L-W 3t). it is easy to deduce that x ^ Wt. Since all the pixels of
Sm are identical to those in Sn except only at site x, therefore, the
corresponding pixels in the windows Wt(Sn) and Wt(Sm) have identical edge
labelings. Using this fact and Proposition 3.11, we conclude that

C p(Sn, I) - C p(Sm, I) for all / G (L-W x) .

Hence, the partial sum

E T c p(s a, /) - c p(s m> o l = o .
Ie(L-Wil)

By Lemma 3.2,

Wx= I (W x(S)) = I (W x(S)) = W x .

Thus, the expression for the incremental cost becomes

A Fa ia = E I C p(Sa, I) - C p(Sm, /)]

= E f c P(s n, i) - c p(s m, /)]
Jewx L J

F a c t 3.4: An equivalent expression for Equation (3.8) using incremental cost
factors is

A Fmm = E WkAcywx ; Sm, Sa) (3.9)
k=l

where ACk(Wx ; Sm, Sn) = £ [ck(Sn, /) - Ck(Sm, /)] .
Jewx L J

' r ' •- *"• V ••• V V-:

80

From the above proposition, we see that by restricting Sn to be an edge
configuration that differs from Sm at only one site x, the incremental cost can
be reduced to the form shown in Equation (3.8). This proposition in itself is
not very useful because of the restriction on Sn. However, it can be used in
conjunction with Proposition 3.10 to provide a very efficient method of
computing the incremental cost between any pair of configurations Sm and Sn.
For example, let Sm and Sn be configurations that differ at K sites. It is possible
to find a sequence of configurations {S0, S1,.... SK} such that S0 = Sm, Sk — Sn,
and any consecutive pair of configurations differ at only one site. Then
Proposition 3.10 can be used to express AFm n in terms of consecutive pairs of
configurations, and Proposition 3.14 can be applied directly to each of these
pairs. This is the indirect method of computing the incremental cost. It is
particularly efficient for values of K much less than N2. We will be using this
method of computing the incremental cost in our search of low cost
configurations.

3.4 Analysis o f Minimum Cost Configurations
In Sections 3.1 to 3.3, we have provided the necessary mathematical/

preliminaries and presented a cost function for evaluating edges. This cost
function is a linear sum of weighted cost factors which mathematically
captures our intuitive concept of an edge. The validity of this cost function for
evaluating edges is ultimately determined by its performance in detecting edges
that fit our edge concept.

The cost function has been formulated with the inherent assumption that
lower cost configurations are better configurations according to our concept of
an edge. The best configuration is the one that achieves the global minimum of
the cost function. Two important issues have to be addressed in using the cost
function for edge detection. First, we need to address the issue of how to find
low cost edge configurations. Second, we need to know the nature of the edges
in the low cost configurations. The method of finding low cost configurations
■will be discussed in chapter 4. We will use a stochastic optimization technique
known as Simulated Annealing to find suitably low cost configurations.

In this section, we focus on the second issue mentioned above, which is
analyzing the nature of edges in Ipw cost configurations. The goal of analysis is
to determine specific properties or characteristics of the edges that will be
produced. For instance, we are interested in knowing whether there are, any
thick edges in the low cost configurations, the minimum length of each edge,

81

and How well the edges are connected. Some of the results obtained from this
analysis will be used in the next chapter to prove certain bounds on the depth
of the cost function.

The nature of the edges in low cost configurations is necessarily related to
the set of weights chosen for the cost factors. For instance, if we set the weight
for thick edges to be very large, then low cost configurations will probably not
contain any thick edges. However, large values for the weights will tend to
cause the cost function to have many deep local minimums which are highly
undesirable. Deep local minimums are potential hazardous points which will
trap many algorithms in search of the global minimum. Hence, a judicious
choice of weights is essential in ensuring good performance for the cost
function. Our choice of weights will be based on several propositions which
will be presented in this section.

We will begin by formally stating the definitions of local minimum, global
minimum and neighborhood of a configuration. Based on this, we will state a
proposition which gives a sufficient condition on the choice of weights to ensure
that the detected edges will be thin. Also, we will analyze edges for other
properties such as their minimum length and certain characteristics of the
endpoints. Hypothetical examples will be given in the later part to provide a
better understanding of the nature of the edges in low cost configurations.

The cost minimization procedure which will be described in the next
chapter is based on Markov chains. Each state in the chain corresponds to a
possible solution to the minimization problem. For this reason, an edge
configuration is considered to be a state in the chain. In the following sections,
we will use the terms "state" and "edge configuration" interchangeably to mean
the same thing.

Again, let S represent the collection of all possible edge configurations on
an N x N square lattice.

D efinition 3.15: The neighborhood of a state Sm is a subset of S defined by
a neighborhood function H(Sm). If Sn G H(Sm), then Sn is a neighbor of Sm.

D efinition 3.16: A state Sq is a global minimum if it has the following
property:

F(Sg) < F(Sk) for all Sk £ S . .

Notice that the global minimum may not be unique; there may exist a set of

82

different states with the same minimum cost value.

D efinition 3.17: A state Sl is a local minimum if it has the following
property:

y F(Sl) < F(Sk) for all Sk G H(Sl) .

D efinition 3.18: The neighborhood function H 1(S) is the subset of S such
that for each state Sk E H 1(S), the edge labeling at every site is identical to
that of S, except at a single site Zk E L, where it is the complement. That is,

S = I sk(0 : sk(/) = s(0 for all / # Zk, I E L '
k } sk(0 = s(0 for Z = /k ’

where s(l) denotes the complement of s(/).

Since there are N2 different sites that could be specified by Zk, so there are N2
different states in H 1(S).

3.4.1 F o rm atio n of th in edges I
■ ■/. - ' v . v v ' : ■ ■ . •

An important aspect of our edge concept is that edges should be thin. By
a proper choice of weights, we can ensure that all the edges in any local or
global minimum state are thin. We do this essentially by placing a sufficiently
large weight for the cost of thick edge pixels. The following is a sufficient
condition for the formation of thin edges.

P ro p o sitio n 3.15: Assume that the neighborhood function is Hi(S).
If wt > (2wf + wd — we — wc), then there are no thick edges in any local or
global minimum state.

Proof: It is necessary and sufficient to show that there are no thick edge pixels
in any minimum state. Let S0 be any state that contains a thick edge pixel. If
the condition holds, we will show that we can always find a lower cost
neighboring state that has at least one less thick edge pixel than S0.

Since S0 has a thick edge, it contains a cycle of length 3;
C =? So(Z1)Sp(Z2)So(Z3)sO(Zi). Let Sn be the edge configuration that has identical
edge labelings as S0 except only at site Zlr Where it is a non-edge pixel. Notice
that this state is a neighbor of S0 and has one less thick edge pixel. From
Proposition 3.14 and Fact 3.4 the incremental cost can be written as

83

AF o,n E w kA c k(W x ; S0,
k=l

Sn)

= WcACc + WdACd H- WeACe + WfACf H- WtACt .

By taking into consideration the various edge structures in a 5 x 5 region
about site Z1, we obtain bounds for each of the above incremental cdst factors.
The incremental cost for curvature lies in the range —7 < ACc < —I. An
example of the edge structure for each of the limiting cases is shown in Figure
3.14. The incremental cost for region dissimilarity lies in the range
0 < ACd < 1 . The incremental cost for the number of edge points,
ACe = - I . The incremental cost for fragmentation lies in the range
0 < ACf < 2. Two examples of the edge structure for the upper limit is
shown in Figure 3.15. Similar to curvature, the incremental cost for edge
thickness lies in the range —7 < ACt < —1. From the above equation, we
have

max ̂AF0in] < E w k (max J ACk j j

= wc(- l) + wd(l) + we(—I) + wf(2) + wt(—I)

= 2wf H-wd - wc - we - wt

Assuming the condition of the proposition holds,

2wf H-wd - w c - w e - w t < 0 ,

We conclude that

max AFo n j < 0 .

This implies that Sn is a lower cost state than S0. Hence, we have shown that
for any state which contains a thick edge pixel, we can always find a
neighboring lower cost state by relabeling that pixel as non-edge. Therefore, in
any minimum state, there cannot be any thick edge pixels.

□

. X X XJ
x >

X X X

site/. (&) -si te/ .

Figure 3.14. Computation of ACc. (a) Removal of edge pixel at I1 results in
ACc=-7. (b) Removal of edge pixel at I1 results in ACc= - I .

Figure 3.15. Computation of ACf. Removal of edge pixel at Z1 of either (a) or
(b) results in ACf=2.

85

3.4.2 M inim um length o f edges

The cost for fragmentation increases the continuity of edges by assigning a
cost to the endpoints of an edge. Although it is not obvious from the definition,
this cost also guarantees that the detected edges are of a certain minimum
length. This length is dependent on the choice of the weights wf, wd and we. By
appropriately selecting the weights, we can ensure that the detected edges are
of an arbitrary minimum length.

Before stating the proposition relating the minimum length of edges to the
weights, we first state two lemmas and a related proposition.

L em m a 3.3: Let Sm(I) be any edge pixel of configuration Sm, and let Sn be
the configuration that has identical edge labelings as Sm at every site, except at
I where it is a non-edge pixel. Then, the incremental cost factor for curvature
ACc(L ; Sm, Sn) is always less than or equal to zero.

Proof: By using Proposition 3.14 and Fact 3.4, and setting all the weights to
zero except wc, it is straightforward to see that

ACc(L ;S 01SJ - ACc(W, ; SmlSJ .

Using Fact 3.1, we can rewrite the incremental cost as

ACc(W, ; S01SJ = ACc(I ; So iSJ + ACc(N, ; S01SJ .

It is sufficient to show that ACc(I ; Sm,Sn) < 0 and ACc(N/ ; Sm,Sn) < 0.
From the definition of the curvature cost, it is easily deduced that the first
inequality is always true. For the second inequality, we observe that for each
x € N „

Il Njj(Se) | = | ! Nx(Sn) I - I .

Consequently, from the decision tree for computing the point cost shown in
Figure 3.13, we see that for each of the cases of the number of edge pixels in
the neighborhood of x,

Cc(Se1X) < Cc(SmlX).

Hence1 the sum

ExeN,
j c c(SE1x) - Cc(S01X)] < 0

□

86

L em m a 3 .4 : Let Ssa(Z) be any edge pixel of configuration Sm, a n d le t S be
the configuration that has identical edge labelings as Sm at every site, except at
I where it is a non-edge pixel. Then, the incremental cost factor for thick
edges ACt(L; Sm,Sn) is always less than or equal to zero.

Proof: Let Am be the union of the pixels in all possible cycles of length 3 in
Sm, and similarly, let An be the union for the cycles in Sa- The cost for edge
thickness assigns a cost value of one to each distinct edge pixel belonging to a
cycle of length 3, and hence,

I) = II An Il , and £ C t(Sm, /) = |l Am || . v
16L '• ■ Ial.

Since Sn is identical to Sm except that it has I less edge pixel, then every cycle
C = sn{li}sn(l2)sa{h)sa{h) contained in Sn must have a corresponding cycle
C = sm (^i)sm (/ 2)sm(/ 3)sm(/ 1) in Sm. Consequently, the size of An must be less
than or equal to that of Am, and so

£ct(sa, i)
IeL

ECt(sn; /) = H An ||
ieh

Am Il < O

D
LFsing the above lemmas, we now state a proposition that relates how the

cost for edge thickness and the cost for curvature change when edge pixels are
removed.

P ro p o sitio n 3.16: Let M be any collection of edge pixels in Sm, and let Sn be
the edge configuration that has identical edge labelings as Sm at every site,
except a t the sites of the pixels in M, where they are labeled as non-edge pixels!
Then, the incremental cost factors for curvature and thick edges,
ACc(L; Sm,Sn) and ACt(L; Sm,Sn), are always less than or equal to zero
Conversely, the factors ACc(L; Sn,Sm) and ACt(L; Sn,Sm) are always greater
than or equal to zero.

Proof: Consider any collection of edge configurations { S1 S2, Sk }. Using
Proposition 3.10 and Equation (3.7), and setting all the weights except wc equal
to zero, we see that

ACcP ^ S 11Si) - V 1 A C U L iS hSi .,)
i—I

By letting k = || M || + I, we can construct a sequence of configurations

87

beginning with the initial configuration S1 = Sm, and ending with Slc = Sn,
such that each consecutive configuration contains one less edge pixel of M.
That is, Si+1 is identical to Si except at a single site of M, where it is non-edge.
By Lemma 3.3, each of the terms ACc(L ; Si,Si+1) is less than or equal to zero,
and hence

■ k-1 "
ACc(L ; Sm,S J = £ ACc(L ; Si?Si+1) < 0 . /

■ i=0
From Equation (3.7),

ACc(L ; S3,. SJ = S [cc(Sn. /) - Cc(Sm, /)] < 0 ,

it is easily concluded that

ACc(L ; S3, Sm) = £ fcc(Sm, /) - Cc(S3, 1)1 ^ 0 .
■ /Cl. L j

The proof for the incremental cost for thick edges follows the same procedure
as for curvature, except that Lemma 3.4 is used instead of Lemma 3.3 above.

-I.□
Intuitively, the proposition tells us that when edge pixels are removed

from a configuration, the cost for curvature and the cost for thickness never
increase. Conversely, when edge pixels are added, the two cost factors never
decrease. This proposition is important as it gives us an intuitive idea of how
the cost factors affect the edges.

We now state an important proposition which gives the minimum length
of any edge in a global minimum state.

P ro p o sitio n 3.17: Assume that there are no thick edges in the global
minimum states. In a global minimum state, any edge E that contains at least
two endpoints has size

IIE II > wf
Wd -W e

where denotes the smallest integer greater than or equal to x.
If E contains less than two endpoints, then || E || > 4.

Proof: Let E be an edge in a global minimum state SG, and let Sn be the state
that has identical edge labelings as Sq a t every site except at the sites of E

88

where they are labeled as non edge pixels. Using Equation (3.7), the
incremental cost can be written as

E w kACk(L i S01S0)
k=l

= wcACc + WdACd + WeACe + wfACf + wtACt

The incremental cost factors have the following values:

Hence,

AGt = 0 , ACe = H E H , and ACd = £ -d (/) .
/GI(E)

— WcACc — X wdd(/) + WeI I E 11+ WfACf
/Gl(E)

= WcACc + X! [w e - wdd (/) J + WfACf .

Since 0 < d(/) < I,

n,G - WcACc + X fwe - W d I + WfACf
/CTrtN-L.- J/GI(E)

= WcACc + II E H (we - Wd) + WfACf .

From the fact that Sg is a global minimum state, we have AFn G < 0, which
implies that ’ - ^

Il E H (wd - w e) > WcACc +WfACf .

If E contains at least 2 endpoints, ACf > I. Using Proposition 3.16 we have
ACc > 0. Therefore, taking the minimum of the factors to the right of the
above inequality,

EU >
wd - we

The size of E is an integer, and using the ceiling notation, we have

EH />
wd - we

:■+

If E contains less than 2 endpoints, it must contain a cycle. Again, by
Proposition 3.15, the cycle must be thin. By construction, the smallest cycle

89

that is thin must have at least 4 distinct edge pixels as shown in Figure 3.16.

3.4.3 D issim ilarity values a t th e endpo in ts

Dissimilarity enhancement signifies with large values those pixels which
are good candidates for edge points. The following proposition gives a lower
bound on the value of region dissimilarity at the endpoints of an edge. It is
useful in estimating the value of the enhancement scale factor a used in
dissimilarity enhancement.

P ro p o sitio n 3.18: Assume that the neighborhood function is Hj(S). Let E be
a thin edge that is a path in a local or global minimum state, such that
Il E H >: 2. Then, the dissimilarity value at each endpoint of E located at
site / E (Z1, /2} must satisfy

d(/) > — . (3.10)
wd

Proof: Let S0 be a minimum state, and let Sn be a member of H(S0) such that
S0 and Sn differ only at site Z1 ; pixel S n (Z 1) is a non-edge pixel. From
Proposition 3.14 and Fact 3.4 the incremental cost can be written as

A Fn>0 - £ w kACk(Wx 5 Sn, S0)
k=i

= WcACc + WdACd + WeACe + WfACf + WtACt .

Since E is thin and S0(Z1) is an endpoint of a path, the incremental cost factors
must take on the values:

ACf = 0 , ACt = 0 , ACe = 1 , and ACd = ^ (Z 1) .

Hence,

WcACc — Wjjd(Z1) + w e

Since S0 is a minimum state, AFn o < 0. This implies that

d(/i) +
wd wd

By Proposition 3.16, ACc > 0, and hence

90

Figure 3.16. A cycle of 4 distinct edge pixels.

X X X X X X X X X X X X X X X

Vl y -':';." '■ ■

 ̂ JV

■ E1 ■

I*** X
C 1
A X

X X
/
X

Y
X

X X X X X X X X
X -

V1 J
V

: : : X T ’
X

Figure 3.17. Two examples of extended edge segments.

91

Wp

d('*>* v ; •

■ ' ' ■ D

Sinced(Z) is linearly dependent on the enhancement scale factor a (up to
a maximum of 1.0), the above proposition provides a guideline to selecting the
value of a. Essentially, edges can be extended by increasing a so that more
points satisfy Equation (3.10). The above weight ratio will be given a special
term called dissimilarity threshold which will be discussed in the next section.

3.4.4 General Considerations in Selecting the W eights
Selection of weights is of major importance as it determines the nature of

the edges and the number of edge points detected. In the previous sections, we
have given a sufficient condition for the weights to ensure that only thin edges
will be detected. Also, we have analyzed the minimum length of edges in terms
of the weights, and gave a lower bound on the values of the enhanced image at
the endpoints of an edge. Further insight is gained into the choice of weights
by considering the minimization of the cost function from the standpoint of
thresholding and edge linking. To do so, we have to first state an important
property of thin edges in a global minimum state. This property is given in the
following proposition. Several hypothetical edge structures will be used as
examples to provide additional insight into the weight selection process.

If E is a thin edge in any state S, we can partition E into non-empty
m

disjoint segments E 1(E2j Em such that E = U Ei. We define the extended

segments Ej as the set of edge pixels of E contained in the union of the
windows of the pixels in Ei. Two examples of extended segments are shown in
Figure 3.17. Note that if m = I, E1 = E = E 1, and if m > 2, Ej C Ei.

P ro p o sitio n 3.19: Let E be a thin edge that is a path or cycle in a global
minimum state SG. If E1, E2, Em are non-empty disjoint edge segments such

that E = U Ei, and Ej are the corresponding extended segments, then for eachi - l
segment, the following inequality holds:

Il E i H we + w c £ Cc(SG, I)

IeI(Ej)
w d E d(0 - w f

Iei(Ei)
(3.11)

Furthermore, if m = l , or if Ei contains an endpoint of E, then

92

Il Ei H we + w c £ Cc(SG, /) - w d £ d(0 < 0 . (3.12)
Zei(Ei) Zei(Ei)

Proof:
Case I: m > 2.

Let Sn be the state that has identical edge labelings as Sq at every site,
except at the sites of Ei, where they are labeled as non-edge pixels. The
incremental cost from Sn to Sg is

a f BiG = E w kACk(L ; SD, Sg) \
■ k=l

= WcACc + wdACd + WeACe + wf ACf + wtACt :.

Since E is a thin edge, ACt = 0, and ACe = || Ei ||. Therefore,

AFnjQ =W cACc -W d £ d (0 + WeII EiH +W fACf .
Zei(Ei)

The state Sq is a global minimum, and so AFn Q < 0. Thisimplies that

wcA^c — wd E d(0 + well EiH ^ -WfACf .
Zei(Ei)

The incremental costfor curvatureisA C c = £ Cc(SG, /).
Zei(Ei) '

We will refer to the segments containing the endpoints of a path as the end
segments. Segments that do not contain any end point are referred to as
interior segments. The incremental cost factor for fragmentation takes on one
of two possible values.

ACf
0, if E is a path and Ei is an end segment
-I, if E is a path and Ei is an interior segment
-I, if E is a cycle

Substituting these into the above equation and taking the upper bound of the
factor to the right of the inequality,

wc E Cc(SG, /) - w d £ d (/)+ w e|| Ei H < wf . :W
ze I(Ei) Zei(Ei)

It is easily seen that if Ei is an end segment, then ACf=O, and the inequality
becomes

93

Wc £ Cc(SG, O - wd £ d(/) + WeII Ei Il < Q-.
/GI(E1) /GI(E5)

Case 2: m = I.

We have E 1 = E = E 1. Again, let Sn be the state that has identical edge
labelings as Sg except with the corresponding pixels in E1 labeled as non-edge
pixels. Following the same procedure as in case I, we have

wc E Cc(SG> 0 ~ wd E d(0 + well E 1 Il < -WfACf .
/Gl(Ei) /Gl(Ei)

The incremental cost factor for fragmentation takes on one of the 2 values:

ACf 0, if E is a cycle
+1, if E is a path

Substituting this into the above equation and taking the upper bound of the
factor on the right of the inequality,

w c E Cc(SGv 0 - Wd E d (0 + w ell E i Il < 0 .
/Gl(E1) /GI(E1)

□

3 .4 .4 .1 Thresholding
Thresholding is the simplest form of edge detection based on an enhanced

image. It can also be considered to be a trivial form of cost minimization
where the cost function does not take into account edge structure information.
For the cost function which we defined, the edge structure information is
contained in the cost factors for curvature, fragmentation and thickness. By
setting their respective weights to zero, the cost minimization procedure
becomes a simple thresholding operation. From Equation (3.12) of Proposition
3.19, any edge E must satisfy

Wd £ d (/) > | |E | |w c + wc E Cc(SG, 0 . (3.13)
/61(E) /61(E)

I fE is a single edge pixel at /, then the following must hold:

d(0 s
We
Wd *

We call the above ratio the dissimilarity threshold, and denote it by

Using a thresholding approach, in the minimum cost state, dissimilarity
values tha t are greater than or equal to f will be labeled as edge pixels, while
those that are less than f will be non-edge pixels. The dissimilarity values are
Iihearly dependent on the enhancement scale factor a, up to a maximum value
of one. Hence, the number of edge pixels that are detected can be adjusted by
varying the value of oc. It is seen that a cost function comprising only of the
cost factors for dissimilarity and number of edge points, Cd and Ce, represents
the general class of edge detection by pointwise thresholding algorithms.
However, for reasons that we have already mentioned in Section 3.3.1,
pointwise thresholding algorithms do not perform well in finding edges that
suit our edge concept.

Consider a hypothetical minimum cost configuration S1 containing a single
thin edge E as shown in Figure 3.18. Let S2 be the edge configuration that
contains no edge pixels. If the cost function uses only the cost factors Cd and
Ce, then by considering A F12, S1 is a lower cost state if and only if the
foliowing inequality holds: .-v;; i:,

wd E d(0 ^ II E l|we . (3.15)
/61(E)

However, when the cost factors for fragmentation and curvature, Cf and Cc,
are included, the inequality becomes:

wd E d(0 - Il E ||we + w f + w c . (3.16)
/61(E)

A comparison of Equation (3.15) with Equation (3.16) shows that the sum
of the dissimilarity values for the litte r equation has to be larger than that of
the former. In this case, when the cost factors Cf and Cc are included into the
cost function, the lower bound of the sum of the dissimilarity values is
increased by wf + wc. Consequently, the edges that are detected for the case
using Equation (3.15) may not be detected for the case using Equation (3.16).
This is an example where we observe the influence of Cf and Cc in suppressing
short edges.

x X X X
X X ,

X X

Figtire 3.18. A minimum cost configuration containing a single thin
edge.

E0 E1A ^\ r
E2A

X X X X
X

X X X X X X
X

X

X X X X
X

X X
X

X •• . ■

Figure 3.19. An example of edge linking, (a) Configuration Sj which contains
an edge E comprised of the segments E0, E1, and E2. (b)
Configuration S2 which contains fragmented version of edge E by
the removal of segment E1.

96

3.4.4.2 Edge linking
We will now consider how the cost for fragmentation promotes edge

linking. Consider a minimum cost configuration S1 that contains a single thin
edge E as shown in Figure 3.19(a). Let E be partitioned into 3 disjoint
segments Eq, E 1 and E2. Now let S2 be the configuration that contains E but
with the edge pixels of the center segment E 1 relabeled as non-edge. This is
shown in Figure 3.19(b). Notice that the edges in S2 is actually a fragmented
version of edge E. The size of the fragmentation, or the fragmentation length,
is equal to || E 1 ||. By considering A F12, S1 is a lower cost state if and only if
the following relationship holds:

wd £ d (/) + wf > H E 1 Hwe + w c .
/GI(E1)

(3.17)

Notice in this case that if

Wf > H E 1 ||we -I-wc ,

then S1 will have a lower cost than S2 regardless of d(/); the continuous edge E
has a lower cost than the fragmented version of the edge. Assuming that the
weight for curvature wc is comparatively small, we can approximate the above
inequality by

wf > II E 1 IIwe .

If we let

AC =
W1
W„

(3.18)

(3.19)

where J is the floor function, we see that thin edges with a fragmentation
length of less than or equal to AC pixels will have a lower cost when they are
linked together. Stated in another way, endpoints which are less than or equal
to AC pixels apart have a lower cost when they are linked together. For this
reason, we will call Ac the fragmentation linkage length.

In arriving a t the value of AC given in Equation (3.19), we have not taken
into consideration the dissimilarity values; they were assumed to be zero. Whon
these values are taken into account, edges that have fragmentation lengths
larger than AC can also be linked together. This is illustrated in the following
two examples.

In the first example shown in Figure 3.20, we show a straight edge and the
dissimilarity values along the edge. Assume that the dissimilarity values are

X X X X X X X X X X X X X X X

(b) d(/)

Figure 3.20. An example of edge linking across a region where the
dissimilarity values are equal to 0. (a) A straight edge, (b) The
dissimilarity values along the edge.

98

zero at all other points. Notice that the edge contains a segment E 1 where all
the sites have dissimilarity values equal to 0. If the cost for fragmentation is
not included, only those points with dissimilarity greater than the dissimilarity
threshold f will be detected. This will result in a fragmented edge as the center
portion E 1 has dissimilarity values equal to 0. However, with the inclusion of
the fragmentation cost, fragmentation will occur if and only if the length of Os
in the dissimilarity values exceeds the fragmentation length /c. That is,
IIE1H

In the second example shown in Figure 3.21, we show another straight
edge and the dissimilarity values along the edge. Here again, fragmentation will
occur in the center region if the fragmentation cost is not included. In this case
however, since the dissimilarity values at the sites of E 1 are non-zero,
fragmentation may not occur even if the size of E 1 exceeds /c. In fact,
fragmentation will occur if and only if the following relation based on Equation
(3.17) holds:

If we let

wd £ d(/) + wf < | | E1 ||we
Zei(E1)

I

1
W0 wf + wd £ d(0

Zei(E1)
(3.20)

then fragmentation will occur if and only if

IIE1H > « ,

Using the property

IA + B J S; [aJ+|BJ ,
it can be deduced that

K > K +
wd

£ d(0
Zei(E1)

(3.21)

Note that K is always greater than or equal to k. Hence edges with
fragmentation length greater than k can be linked together. However, this
value of K only holds for straight edges. For general paths or other thin edge
structures, Equation (3.11) will have to be used to account for curvature costs.
From the above two examples, we can View the effect of the fragmentation cost
from another standpoint; for some regions that have dissimilarity values below

99

X X X X X X X X X X X X X X X

Figure 3.21. An example of edge linking across a region where the
dissimilarity values are non-zero, (a) A straight edge, (b) The
dissimilarity values along the edge.

the threshold f, the fragmentation cost lifts them above the threshold.

3.5 Summary

In this chapter, we have given a mathematical definition of edges using
terms that are similar to those in graph theory. Based on this definition, we
accomplished two things. First, we analyzed certain properties of edges and
stated several propositions governing the structure of edges in a 3 x 3 lattice.
Second, we formulated an absolute cost function that measures edge quality.
As the term suggests, this cost function is different from the comparative cost
function of the previous chapter in that it measures the absolute quality of an
edge configuration instead of the relative quality between configurations.

The absolute cost function is a linear sum of five weighted cost factors.
The cost factors are curvature, dissimilarity, fragmentation, thickness and the
number of edge points. Each of the cost factors captures a desirable
characteristic of edges. We have provided efficient methods of computing both
the cost of a configuration, and the incremental cost between configurations.
We have analyzed the cost function in terms of the nature of the edges that
will be detected. Based on this analysis, we have stated a number of
propositions which provide guidelines on the choice of weights to achieve
certain desirable characteristics in the detected edges.

101

C H A PT E R 4
SIM ULATED A N N EA LIN G

4.1 Introduction
The general problem of combinatorial optimization which we are

concerned with can be briefly stated as follows. Given a large but finite set of
states S, each state Sj € S having an associated cost defined by the cost
function C(Si), it is required to find the state with the minimum cost.
Depending on the specific nature of the problem, a variety of techniques [30]
exist for minimizing the cost. In this chapter, we focus on the use of Simulated
Annealing as a method of combinatorial optimization. In particular, we will
show how it can be applied to edge detection by minimizing the cost function
for edges which has been described in the previous chapter. ' I

Simulated annealing is a stochastic optimization! algorithm derived from
Monte Carlo methods [31] in statistical mechanics. Metroplois et al. [32]
originally proposed the algorithm as a simulation method for investigating the
behavior of substances consisting of interacting molecules. One of its many
later applications is in the study of properties of magnetic materials based bn
the Ising model [33-35]. The Metropolis algorithm has been used extensively to
simulate the behavior of substances in thermal equilibrium as the temperature
was slowly decreased to the point of crystallization; hence the term “Simulated
Annealing”. The goal of the annealing process is to find the ground states of a
substance which corresponds to the configurations of low energy in its
molecular structure.

Kirkpatrick et al. [36] and Cerny [37] independently observed that the
search for the low energy configurations in the annealing process could be
likened to the search for the low cost solutions in a combinatorial optimization
problem. The many different states that a system can exist in corresponds to
the many possible solutions of the optimization problem. The energy of a
particular state corresponds to the cost of a particular solution, and the ground
state corresponds to the lowest cost solution. A direct correspondence between
statistical mechanics and combinatorial optimization was thus drawn in the

102

following way.

StatisticalM edhanics C om binatorialO ptim ization
1) States (of system) Solutions (to problem)
2) Energy (of state) Cost (of solution)
3) Ground State OptimalSolution

Based on the above correspondence, the annealing algorithm of Metropolis
et al. was first applied to the optimization of wire routing in integrated circuits
[36], and the traveling salesman problem [37]. Good results comparable to
present heuristic algorithms were reported. Since then, the algorithm has been
successfully applied to a number of diverse optimization problems such as the
traveling salesman problem [38], wire routing[39], coding[40], speech
recognition[41], image processing[42,43], and logic optimization[44].

4.1.1 Markov Chains
The Metropolis algorithm is based on stationary Markov chains. The

definition and theory of such chains can be found extensively in the literature
on stochastic processes, such as [45-48]. We will give a brief description of
Markov chains concentrating only on those aspects that are relevant to
Simulated Annealing. We will state several properties and a theorem
concerning the limiting behavior of such chains.

Let Cl be a sample space and P be a probability measure on it. Let
X = (Xn; n £ N} be a stochastic process with a countable state space E. That
is, for each n £ N = {0,1,...} and ui £ Cl, Xn(w) is an element of the countable
set E . We will say that “the process is in state j at time n” to mean Xn = j.

D efinition 4.1: The stochastic process X = {Xn; n £ N} is called a Markov
chain provided that

P{x»+i=iAo. • • • • XJ = P ft.-HA=!
for all j £ E and n G N.

A Markov chain is thus a sequence of random variables such that for any
n» Xn+! is conditionally independent of X0, . . . , Xn_x given Xn. That is, the
next state Xn+1 is independent of the past states X0, . . . , Xn-1 provided that
the present state Xn is known. If the conditional probability

P{Xn+I = J A n = O = PO. j)
is independent of n, the process is a time-homogeneous or stationary Markov

chain; otherwise, if it is dependent on n, it is a time-inhomogeneous or
nonstationary chain. The probabilities P (i, j) are called the transition
probabilities' They can be arranged in a square array resulting in a transition
matrix of the form:

P (0,0) P(0,1) P (0,2)
P(l)O) P (l,l) P(l,2)
P (2,0) P (2,1) P(2,2)

If P(i, j) is not equal to zero, we say that state j is reachable from state!.
A set of s t a t e s is closed if no state outside of it can be reached from any state
in it. A Markov chain is irreducible if its only closed set is the set of all states.
A criterion for irreducibility is that a Markov chain is irreducible if and only if
all states can be reached from each other. The proof for this can be found in

A state j is said to be recurrent if and only if starting at j, the probability
of returning to j is one. Beginning from a recurrent state j at time n = 0 , let
n—R be the time of the first return to state j. Assuming that 8 > 2 is the
largest integer for which the probability that R is some integer multiple of 8 is
equal to one, then state j is said to be periodic with period 8. If no such 8
exists, then j is aperiodic. It can be shown [45] that for irreducible chains,
either all states are aperiodic, or all states are periodic with the same period 8.
It follows from this that if the chain is irreducible and if there exists some state
i for which P(i, i) ^ 0, then the chain is aperiodic.

L im itingd istribution
We now state a well know property of Markov chains relating to the

limiting distribution of a chain.

T heorem 4.1: If X is an irreducible aperiodic Markov chain with finitely
many states, then the system of linear equations

* (j)« J X O P (U) .' j e 'B , («)

has a unique solution that is strictly positive.

Proof: Refer to the text by Cinlar [45].

The probability distribution tt which satisfies Equations (4.1) and (4.2) is
called the invariant distribution of the Markov chain X, For simplicity in
notation, we will write 7r(j) simply as TTj.

4.1.2 The M etropolis A lgorithm
The Metropolis algorithm, first proposed in 1953, was a method of

simulating the behavior of substances at thermal equilibrium. The description
and analysis of the algorithm given here follows closely to that given by
Hammersley and Handscomb [31]. Let S = (S1, S2,....SK} be the finite set of all
possible states of a physical system. Each state Si has a corresponding positive
energy denoted by E(Si). In statistical mechanics, it is often desirable to
simulate the behavior of the system at thermal equilibrium at temperature T.
To do so, it is necessary to be able to sample the states with the following
probability density:

< i < K , (4-3)

where a is a positive scalar constant, and

Zx = XI exP
SiES

is a normalization factor which ensures that the sum of P(Si) over all possible
states is equal to one.

The denominator Zx of Equation (4.3) is unknown and cannot be
computed because the number of states, although finite, is very large. Hence,
although E(Si) is known, the probability P(Si) of Equation (4.3) cannot be
determined. As a result, it is not possible to generate the states according to
the given distribution using direct sampling methods. The Metropolis
algorithm achieves the above sampling requirement by constructing a finite
stationary Markov chain that has an invariant distribution which is identical
to that of Equation (4.3). That is, the chain has the set of all possible states of

105

the system as its state space, and its invariant distribution is given by:

H i) - P (S j) . (4.4)

The method of generating the Markov chain is as follows. Consider any
arbitrary chain with a symmetric matrix P* of transition probabilities; the
elements of this matrix must satisfy

Pij — 0 > SPij sbsI >' Pij = Pji ♦ . (4.5)
’ - /..-■■■ ■■ . . j . ;
We now define a new set of transition probabilities pjj using the known

quantities -7r̂ .
* 0) ■ ■.

If i ^ j we define

If i = j we define

Pij 7TjAi if TTjAi < 1

Pij if TTjAi ^ !•

Pu = Pii + ! A u ! 1 - TTjAi) >

(4.6)

(4.7)

y^here ^ is taken over all values of j such that 7Tj A i < I*
We will next prove that these Pjj are elements of a stochastic matrix and

that the Markov chain defined by these transition probabilities has tt as its
invariant distribution.

."Proof: . ■
We will denote as £)" the summation over all values of j such that j ^ i and
TTjAi ^ I.

(I) From Equation (4.3), each 7Tj > 0, and hence by Equations (4.5), (4.6) and
(4.7), all the Py satisfy

Pij ^ 0 . (4.8) 2

(2) The summation over all j of the quantities p,j can be written as

106

EPij — Pu + E /Pij(1—7rj / 7ri) + E^Pij7rjA i + E^Pij
j J j j '

= Ph + E 'py + E " pu
j j

= Pil + E pu

= E P i j = 1 * (49)
j " ' '

Thus by Equations (4.8) and (4.9), the Pjj are elements of a stochastic matrix.

(3) To show that the chain has an invariant distribution equal to 7r, we
essentially have to show according to Equation (4.1) that

7rJ ~ E 7rIPij *
i

First we observe that for any pair i and j such that 7Tj = 7Tj, we have by
Equations (4.5) and (4.6)

Pij = Pij = Pji = Pji >
and therefore, since 7Tj = 7Tj,

7rJPij = 7rJPji-
Next, if 7Tj < 7Tj, we have

Py = Pij7rjA — Pji7rjA i = Pji7rjA i t

(4.10)

which again gives Equation (4.10). Similarly, it can be shown that the same
equation still holds for TTi < ttj. Consequently, it holds for all values of i and j.
Finallyj W eseethat

E 71IPij = E 71jPji = 7̂ EPji = 7rJ *
i ■ i i . .

which completes the proof that the invariant distribution is n.
. □

Notice that by Equations (4.3) and (4.4), and the assumption that the
energy is finite, TTj > 0 for all j. Consequently the matrix P = [py] represents an
irreducible aperiodic Markov chain whenever P* = [py] does. Hence by
Theorem 4.1, a unique solution exists and is of the form defined in Equation
■(4.3). -

We now consider the implementation of Equations (4.6) and (4.7), which
essentially is the Metropolis algorithm. The algorithm begins by defining an
arbitrary transition matrix P over the state space. The restriction on P is that
it must be symmetric, aperiodic and irreducible, which are the assumptions
made in Equation (4.5). For a fixed temperature T, the algorithm proceeds as
follows.

Algorithm (Metropolis):

(1) Pick a random initial state, and set k = 0 .
(2) Call this the present state Sp.

(3) Based on transition matrix P, randomly select another state Sn.
(4) If (E(Sn) < E(Sp)) then

transition to state Sn

(5)

else

transition to state Sn with probability exp

Increment k, then go to step (2).

' -[E(S11)-E (S8)] ’
oT ̂ /

The algorithm loops from steps (2) through (5), and as the number of
repetitions k becomes very large, the process approaches it invariant
distribution. We have shown that the invariant distribution takes on the form
given in Equation (4.3). Similar results relating to the invariant distribution
are given in [49-51],

By making a simple substitution of the energy of a state E(Si) with the
cost C(Si) of a solution, the above algorithm generates a Markov chain with an
invariant distribution of the same form as that of Equation (4.3):

TT(Si) = I < i < K , (4.11)

where K is the total number of all possible solutions, and a is a positive scalar
constant. Z f is again a normalization constant. Assuming that C(Si) is non­
negative for all !, Equation (4.11) specifies that lower cost solutions Will have
higher probability of occurrence. Notice that if T is small, the distribution will
be concentrated about the low cost solutions. That is, when the Markov chain
achieves its invariant distribution at low temperatures, there is a high

108

probability that it is in a state corresponding to a low cost solution. As T
tends to zero, the distribution will be concentrated at the minimum cost states.
Hence the algorithm can be used in combinatorial optimization to find the
minimum cost solutions.

It is of interest to note that the Metropolis algorithm presented above
allows for uphill state transitions so that it does not get stuck in a local
minimum of the cost function. The temperature T can be interpreted as a
control parameter, and if it is set equal to zero, the algorithm is similar to the
steepest descent search method and will usually terminate in a local minimum.

4.2 Tem perature Variation and Simulated Annealing
In using the Metroplois algorithm for optimization, two related issues have

to be resolved. The first is in estimating the number of repetitions or
transitions sufficient for the Markov chain to reach its invariant distribution.
The second is in the devise of a sequence of temperature decrements to bring
the system to the states of minimal cost. This is known as the temperature
schedule. The schedule has to be efficient in the sense that it ensures that the
lowest cost states are reached rapidly.

In order to ensure convergence to the global minimum states, temperature
variation has been incorporated into the Metropolis algorithm by changing the
temperature parameter T in step (4) so that it becomes time dependent. The
process generated by such such an algorithm is a non-stationary Markov chain.
A number of researchers [52-58] have proved the asymptotic convergence
properties of the chain and estimated various rates of convergence. The
general form of the Simulated Annealing algorithm for cost minimization is as
follows.

AJgorithm (Sim uIatedA nnealing):
(1) Pick a random initial state, and set k = 0 .

(2) Call this the present state Sp.

(3) Based on a transition matrix, randomly select another state Sn

(4) If (C(Sn) < C(Sp)) then
transition to state Sn

else ■ '

transition to state Sn with probability exp
' -IC(Sc)-C (Sp)]

Tk

109

(5) Increment k, then go to step (2).

In devising a temperature schedule, we will focus our attention on the
work of Hajek [58] where he states a theorem which gives a necessary and
sufficient condition on the j temperature schedule for the convergence of the
annealing algorithm to the set of global minimum states. We will also present
some related results of Geman and Geman [52], and Mitra et al. [54] in this

■area..'

Before stating Hajek’s theorem, some preliminary definitions are in order.
The problem is to minimize a function C defined on some finite set S. The set
of states in S at which C attains the minimum is denoted by S*. Assume that
for each state Si in S there is a neighborhood set H(Si) contained in S. In
addition, there is1 a transition probability matrix R over S such that
I^(Si)Sj) > 0 if and only if Sj is in H(Si). A state i is reachable from state j if
there is a sequence of states j= i0, 11, . . . , ip=i such that R(ik, ik+1) > 0 for
0 — k < p. (S, H) is irreducible when for any pair of states i and j, i is
reachable from j.

A state i is reachable at height E from state j if there is a sequence of
states j —i0, i1? . . . , ip=i such that

R(ik> ik+i) ^ 0 for 0 ■< k < p

and

C(ik) < E for 0 < k < p .

P ro p e r ty 4.1 (Weak reversibility): For any real number E and any two states
1 and j, i is reachable at height E from j if and only if j is reachable at height E
from i.

A state i is said to be a local minimum if no state j with C(j) < C(i) is
reachable from i at height C(i). The depth of a local miniimim i is plus infinity
if i is a global minimum. Otherwise, the depth of i is the smallest number E,
E > 0, such that some state j with C(j) < C(i) can be reached from i at height
C (i)+ E .

Let the temperature schedule T1, T2,.... be a sequence of strictly positively
numbers such that

T1 > T2 ^

and

(4.12)

HO

IimTk =O . (4.13)
k-+oo

Suppose that a discrete time non-stationary Markov chain X0, X1,.... on the
state space S is generated using the Simulated Annealing algorithm described
above. The convergence in probability of the chain to the set of globally
minimum cost states is given by the following theorem.

T heorem (Hajek): Assume that the Simulated Annealing based on (S, H, C) is
irreducible and satisfies weak reversibility, and that the temperature schedule
satisfies Equations (4.12) and (4.13). Then

Iim P [Xk E S] = 1
k—>>00

if and only if

OO

S exP
k=i

+OO ,

(4.14)

+ I S)

. £
where d is the maximum of the depths of all states which are local but not
global minima.

Proof: Refer to the paper by Hajek [58].

R em ark : If Tk takes on the parametric form

V ' ̂ T l = M S i j - '
then Equation (4.15) and hence Equation (4.14) holds if and only if c > d*.

Mitra et al. [54] showed that convergence can be achieved by a
temperature schedule of the form

Tk log(k + k0 + l) ’ ^ • 17^

where k0 is any parameter satisfying O < k0 < oo, and

V T ^ rP , ' ■■■
where r and p are defined below. Let S ' be the set of all local minima, then the
radius r is defined as

r = min max dfi, j) ,
i€(S—S') j€S V’ J ; ’

(4.18)

where d(i, j) is the minimum number of transitions from i to j. The parameter
p is the maximum change in cost across any transition, and is defined by

p = max max I C(j) — C(i) I
i6S j€H(i) A ' w 1

(4.19)

Geman and Geman [52] applied the annealing algorithm to Markov
random fields and image restoration, and proved its convergence based on a
temperature schedule of the form

T MA
k log(l + k)

The parameter A corresponds to the maximum difference in the cost for any
pair of states in S, and M is the number of pixels in the image. However, the
above schedule is not useful because the number of iterations k required to
reach a typical temperature of Tk=0.5 is far too large for any practical
implementation. For example, if M=20,000 and A = l, it would take
k = exp (40,000) iterations to reach a temperature of 0.5. In their
implementation, Geman and Geman concluded that the bound MA is far from
optimal and used an empirical value of 3.0 in place of the value MA.

To summarize, three things are required in the use of Simulated
Annealing for general problem solving:

(1) a cost function defined over the state space of all possible solutions,
(2) a method of generating next states (i.e. a suitable transition matrix), and
(3) an efficient temperature schedule.

4.3 Edge D etection Using Simulated A.nnealing
In Chapter 3 we have presented a cost function that evaluates the quality

of an edge configuration. This function mathematically captures the intuitive
ideas of an edge and serves as an objective measure of how well an edge
configuration fits a given image. It has been shown that when this function is
minimized, a number of desirable characteristics of good edges are achieved.
The goal is to find the configurations that achieve the global minimum of the
cost function. Since there are 2 possible edge configurations, it is not possible
to implement any exhaustive search approach because of the large number of
configurations to be considered.

We will use Simulated Annealing as a tool to find relatively low cost
solutions to the cost function. Although asymptotic convergence to the global
minima is guaranteed with the use of a suitable temperature schedule, the
finite time behavior of the annealing algorithm will often yield solutions that
are not global minima. However, they are local minimum of relatively low cost.
In the context of edge detection, we find that it is not necessary to achieve the
global minimum states; very satisfactory results are obtained from these
relatively low cost solutions. This is particularly evident from the fact that
many of the desirable characteristics of edges are achieved in low cost locally
minimum states which may not correspond to global minima.

Since we have already formulated a suitable cost function for the
annealing process, we proceed to discuss the remaining two requirements of
Simulated Annealing mentioned in the previous section. These are the method
of generating next states and the temperature schedule.

4.3.1 M ethod of G enera ting N ext S ta te s
The state space of the annealing process is S which is the set of all

possible edge configurations on an N x N square lattice. For each
configuration S E S, the cost of the configuration is given by F(S). Each
configuration corresponds to a state in the Markov chain generated by the
annealing algorithm; the terms “configuration” and “state” will be used
interchangeably to mean the same thing. At any state Sm, the potential next
state Sn is generated according to a transition matrix. Conceptually, the next
state is selected according to the probability distribution defined by the matrix.
Practically however, it is unnecessary to explicitly define a transition matrix
for the selection of potential new states; all that is needed is a method of
generating next states such that certain conditions on irreducibility and
reversibility are satisfied.

Our method of generating the next state is based on a combination of five
possible strategies. The first strategy generates the next state by
complementing a single pixel labeling in the present state. The second strategy
complements two pixel labelings in the present state. The third and fourth
strategies generate next states by shifting or perturbating the location of the
edges in the present state. The fifth strategy involves changing an arbitrary
number of pixel labelings in a window region. We now give the details of each
of these strategies and the method of combining them together. Again, we let L
denote the set of all pairs of indices of the pixels in a configuration. In each

case, we assume that / G L is a given parameter; the method of selecting / will
be discussed later.

S tra te g y I : Single pixel change

Sn = M i (S p , /) . '

In this strategy we generate the next state Sn by complementing the edge
labeling at I of the present state Sp. That is, for every pixel sn(x) 6 Sn, and
sp(x) G Sp such that x # /,

and for x = /,
sn(x) = sp(x) ,

sn (0 = Sp (Z) ->

where the bar notation denotes the usual binary complementation

S tra te g y 2: Double pixel change

Sn = M 2(Sp, /) .

This is the same as the strategy M1 except that we change the labeling of
two pixels in the window Wi (Sp). We first randomly select a neighboring pixel
of /, sp(r) G Ni(Sp). Then the new configuration is the state that is specified by

. sp(x), x GL, x £ {/, r)
Sp(x) > x G {/, r) .

S tra te g y 3: Single pixel shift

S n = M 3(Sp, /) .

This strategy of generating a new state is based on locally perturbating
the edge structure in the window Wi(Sp). The next state Sn has identical edge
labeling as Sp at every site except for the pixels in Wi(Sp). The pixels in Wi(Sn)
are labeled according to the transformation of the edge structure in Wi(S)
shown in Figure 4.1. If the edge structure in Wi(Sp) is one of the fourteen edge
structures shown in the figure, the edge structure in Wi(Sn) is the
corresponding structure shown on the right. Where there are two structures
possible for the transformation on the right, either of them are selected on an
equally likely basis. If the edge structure in Wi(Sp) does not correspond to one

114

W z (S p) W, (S n)
X

O RX X X X X X X
X

I . .
X

—
X

O R
. X

■■X X X
X X X

W, (S p) W y (S n)

X

X

Figure 4.1. The fourteen edge structures in Wy(Sp) and their corresponding
transformations in Wy(Sn) using strategy M3.

of the structures shown in the figure, then the structure in Wr(Sn) is made
identical to that in Wr(Sp). In doing so, we are actually setting Sn = Sp.

S tra te g y 4: Multiple pixel shift

S„ M4(sp, Z) .

This strategy of generating a new state is again based on locally
perturbating the edge structure in the window Wr(Sp). It is very similar to the
Strategy of M3 except that the perturbation is more significant. The next state
Sn has identical edge labeling as Sp at every site except for the pixels in Wr(Sp).
Tho pixels of Wr(Sn) are labeled according to the transformation of the edge
structure in Wr(Sp) shown in Figure 4.2. If the edge structure in Wr(Sp) is one
of the ten edge structures shown in the figure, the edge structure in Wr(Sn) is
one of the two corresponding structures shown on the right; either of the two
are selected on an equally likely basis. If the edge structure in Wr(Sp) does not
correspond to one of the structures shown in the figure, then the structure in

ettingWj (Sn) is made identical to that in Wr(Sp). In doing so, we are again s
Sn — Sp as in the case of Strategy 3.

S tra te g y 5: Window region change

Sn = M 5(Sp j Z).

In this strategy, the next state is generated by arbitrarily changing all the
pixel labelings in the window Wr(Sp). That is, for all sn(x) G Sn such that
sn(x) & Wi(Sn), sn(x) = sp(x), and for each sn G Wr(Sn), the pixels are labeled
randomly; each pixel in the window has equal likelihood of feeing an edge or
non-edge pixel. This strategy allows for as many as nine changes in the edge
labelings of Sp when generating the new state Sn. In fact, the edge labeling of
Sn and Sp are identical at every site except for a random number of K sites in
W h where O < K ^ 9. When K=Q, Sn and Sp are identical, i

The method of selecting the next state is a combination of the five
strategies mentioned above. Given Z, we randomly choose from one of the five
strategies to generate the next state. Mathematically, the selection process can
be expressed in the form

Sn =M x (SpjZ), (4.20)

where X is a discrete random variable taking on values in the set {l,2,...,5}.

116

Wr (Sp) W 7 (S n)
O R

O R

O R

Figure 4.2. The ten edge structures in W/(Sp) and their corresponding
transformations in Wi(Sn) using strategy M4.

The probability distribution of X is given by

P(X = i) = P i , i — 1,2,...,5 (4.21)

where

EPi = i- ■
'■ ; • ■ i=l

The specific values of Pi are application dependent; they determine the
frequency that each strategy will be used. Notice that given / and Sp, each
new state that can be generated using or M3 can also be generated using
M2. That is, the set of states that can be generated using M1 and M3 is a subset
of the states that can be generated using M2. Similarly, the set of states that
can be generated using M1, M2, M3 and M4 is a subset of the states that can be
generated using M5. Consequently, the total collection of states that can be
generated from a given state using the five different strategies is determined by
M5. Given 7 and Sp, there are 256 possibilities of generating the next state.
Given Sp only, there are approximately 256N2/9 different possibilities for the
next state. Figure 4.3 shows two examples of the various possible transitions
using the five different strategies.

The strategies M1 and M5 have a reversible property in the sense that
given 7, if Sa can be generated from Sb, then Sb can also be generated from Sa.
Since M5 will generate all states possible with the other four strategies, it can
be deduced that the method of generating new states using Equation (4.20)
also has this reversible property, provided that p5 is non-zero. This property
will be useful in the proof of the weak reversibility (Property 4.1) of the
annealing process.

At each iteration through the annealing algorithm, the value of 7 can be
chosen either in a random or deterministic manner. An example of a random
approach would be to select the 7 on an equally likely basis from the set L. An
example of a deterministic approach of selecting 7 is to to sequentially step
through each pixel site in the image in a raster scan manner. One guideline
that is used for the selection of 7 is that at low temperatures, every site should
be selected at least once before the termination of the annealing process. When
this is achieved, we have found experimentally that the results of cost
minimization obtained by both approaches are fairly similar. It should be
noted that using the above criterion that each pixel site should be selected at
least once, a random approach in selecting the value of 7 would require a

118

M9 or M

Figure 4.3. Examples of possible transitions using the five different strategies
of generating next states.

119

significantly larger number of iterations through the image than the
deterministic approach. For example, if the sites are selected on an equally
likely and independent basis, after K iterations, the probability that a given
site has not been selected,

IP (a given site has not been selected)

where N2 is the number of pixels in the image.
Consequently, the probability that it has been selected at least once,

9 I K
N2 - IP (a given site has been selected) = I -

Hence, the probability that every site has been selected after K iterations is

P (every site has been selected) I - N2 - I
(4.22)

For a 128 x 128 image, a value of K = ION2 iterations would yield
probability of 0.475 that every site has been visited at least once; a value of
K = 13N2 would yield a probability of 0.964. For a 256 x 256 image, it would
require K = 14N2 iterations to yield a probability of 0.947 that every site has
been visited at least once. A deterministic raster scan method of selecting I
requires only one iteration through the image to ensure that every site has been
selected. Hence, from a computational standpoint, it is far more efficient to use
a deterministic approach rather than a random approach in selecting /.

We will now show that the method of selecting the next state involving
the use of the five different strategies as given in Equation (4.20) results in a
Markov chain that is irreducible and has the property of weak reversibility. It
does not matter whether the above mentioned random or deterministic
approach in selecting / is used; both will result in irreducible and reversible
chains. We will assume that the value of p5 in Equation (4.21) is non-zero.

First we observe that using either the random or deterministic methods of
selecting I described above, if state Sm can be generated from Sn, then S0 cap
be generated from Sm. Consequently, for any sequence of next states
S0, S1, ..., Sm, there is a non-zero probability of generating another sequence of
states by backtracking the original sequence, which yields the sequence
Sm, Sm.! , ..., S0. Hence the process has the property of weak reversibility as
given in Property 4.1.

120

Let Sm and Sn be any pair of states that have different edge labelings at k
sites contained jn the set M={/1} . . . , /k}; 0 < k < N2. Assume that the
method of selecting I is the deterministic raster scan approach described above.
That is, / is selected by sequentially iterating through each site in the image.
Beginning from Sm, there is a non-zero probability of generating a sequence of
next states such that

(1) i f , M > then the next state is the same as the present state, and
(2) if / EM , then the next state is generated using M1.

Each next state generated using M1 has one less different edge labeling from Sn.
At most k intermediate next states are needed to arrive at state Sn. Hence
every state is reachable from any other state, and the chain is irreducible.

If the method of selecting I is random and equally likely in L, then it is
straightforward to observe that there is a non-zero probability that every
member of M will be selected. Hence, as in the previous deterministic case, it is
possible to generate a sequence of next states from Sm to Sn. This again results
in an irreducible chain.

4.3.2 Tem perature Variation
The selection of a suitable temperature schedule is important in the

annealing process because it governs in part the rate of convergence to the set
of global minimum states. The other governing factor in convergence is the
method of generating next states; we could conceively have a very “intelligent”
method of generating next states so that the minimums states would be
approached rapidly along a path of least cost. We will now focus on the use of
Hajek’s theorem in the device of a temperature schedule. In particular, we will
use a Schedule of the form given in Equation (4.16). For practical purposes, the
parameter c in the equation has to be kept as small as possible so that the
number of iterations can be held within a reasonable limit. For instance, if
c = 10, then to decrease the temperature to a typical value of 0.3 using
Equation (4.16) would require k = 300 x IO12 iterations. However, if c — 5, then
it would require only k = 17.3 x IO6 iterations. Since convergence is guaranteed
if and only if c > d , it is crucial to be able to find a relatively tight upper
bound on d . The remainder of this section deals with the analysis and
estimation of an upper bound on the value of d*.

We will estimate the upper bound of d* by first stating a theorem on the
maximum cost ascent necessary to reach the global minimum from a given
state S0. Based on this theorem, we will then give an estimate of the maximum

121

cost ascent necessary to reach the global minimum from any state. The
theorem is as follows.

T heorem 4.2: Let E = sg(î)sg(^2)-"* sg(̂ k) be any thin edge that is a path
or cycle in a global minimum state SG. Let M be the sites of the pixels
contained in the union of all the windows of each pixel site in E;

M = U W, . .
s(/)eE

Define a sequence of states S0, S1, . . . , Sk such that I

(I) S0 = {s0: / € L } is any state with S0(Z) = 0 for all I £ M ,

(2) Si
Si(Z) — S ^ 1(Z) ; I Zi
Si(Z) = I ; Z = Zi ,

for i = 1,2,...K.
Then for all 0 < m < n < K,

and

if E is a path
if E is a cycle ’

^ f OiK — 0 •

Notice that the construction of the sequence of states is such that each
consecutive state Si differ from the previous state Si_1 in that it contains one
additional edge pixel of E. The proof of the theorem follows.

Proof:
(A) Assume that E is s thin path. We will first show that AFp n < ^ f for
0 < n < K. Next we will show that A Fmn < wf for all I < m < n < K.
Based on these we can conclude that A Fm n < wf for all 0 < in < n < K.

(I) AF0 n < wf, 0 < n < K.
Let En — Isg(Z1),...., sG(Zn)} be a segment of E, and En be the corresponding
extended edge segment. From the construction of S0, it can be deduced that for
any state Sn, 0 < n < K, the incremental cost between S0 and Sn can be
written as

122

AF0in=W eIIEnII + w c S Cc(SG, /) - w d £ d (/)+ w f + w tACt .
Zel(En) Z6I(En)

Since E is thin ACt = 0. For each edge segment, En C E n. Using Proposition
3.19 and the fact that En contains an endpoint of E, it is straightforward to
conclude that

' A F 0 n < Wf . ;'

(2) AFm n < wf, I < m < n < K.
Let Emn = {sG(/m+1),...., sG(/n)} be a segment of E, and Emn be the
corresponding extended edge segment. Let

E 7mn- E mnU sG(/m) .

For &ny state Sn, I < m < n < K, the incremental cost between Sm and Sn be
written as

AFnit- w ,||En J | + w c S Cc(SG>0 - w d S d (0 + WtACt .
/CI-K „..S ICIIE1J

" ' : ' \ ■’ v ■
Again, since E is thin ACt = 0. For each edge segment E 7mn C Emn. Using
Proposition 3.19, we again conclude that

AFmin < wf .

Combining the results of steps (I) and (2) above, we see that

AFm n < wf for 0 < m < n < K .

(B) Now assume that E is a cycle. Following the same procedure as in (A)
above, we can conclude that

■; .u v + + ; . V (I) AF0 n < 2wf ; 0 < n < K, and

, -X ’ V (2) AFmjn < wf ; I < m < n < K

Hence, U- -■ . ,

; >• . •" ■ AFmjn < 2wf ; 0 < m < n < K .

(C) We will now show that AFo k < 0. Let Sn be the state that is identical to
Sg except with the edge E removed; that is,

123

. sn(/) = Sq(Z) Sg(Z)^ E
sn(/) = 0 sg(/)G E . ’

By the construction of S0, SK, and the use of Proposition 3.11, it can be
deduced that the incremental cost between S0 to Sjg is the same as that from
Sn to Sg ;

AF0)K — AFn G •

Since Sg is the global minimum, A Fn G< 0, and hence

AFo1K — °-

4.3 .2 .1 An A dd itiona l C ost F a c to r

□

For the purpose of estimating a tight upper bound on d*, we define an
additional cost factor in order to restrict the edges of m inim um cost
configurations to be either paths or closed cycles; edge pixels that connect three
or more edge segments are disallowed. This is necessary to limit the numerous
possible edge structures that need to be taken into consideration. It is achieved
simply by assigning a cost to edge pixels that have three or more neighboring
edge pixels. For typical images, this restriction affects the final output of the
edges only in a very minor way. In most images of interest, the number of
points where three or more edge points are connected are few. Furthermore, it
will be seen that at such points, the use of the additional cost factor will result
in a local discontinuity of usually only one or two pixels; if necessary, this can
be easily corrected by a post detection process.

The cost factor is labeled as Cn and is called the cost for number of
neighboring edge pixels. It has the following definition:

C JS in, /)
o , Sm(Z)=O
o , 11N/(Sin)JI < 3 and Sm(Z)=I

I > I IN/(Sm)I I ^ 3 and Sm(Z)=I.
(4.23)

The cost function is now a linear combination of six cost factors instead of
the previous five. That is,

124

F(Sm) = E
ieh

6
E

k=i
wkCk(Sm, /) (4.24)

= WcCc + wdCd + WeCe + WfCf + wtCt + wnCn ,.

where each of the other five cost factors have been previously defined in
Chapter 3. By a trivial modification of the cost tree of Figure 3.16, we obtain
the new cost tree shown in Figure 4.4 which includes the cost factor Cn. It is
clear that the factor Cn also depends only on the pixels in Wf(S), and
consequently, Proposition 3.11 also holds for the new cost function. By simple
modification of the proofs to include Cn, it can be shown that Propositions
3.14, 3,16, 3.17, 3.18, 3.19 and Theorem 4.2 also holds for the cost function
with 6 cost factors. The two functions are essentially the same except that in
the new cost function, we place a cost which tends to disallow edge pixels from
having more that two neighbors. We will now state two propositions relating to
this new cost function which governs how the weights wn and wt are to be
chosen to achieve certain characteristics in the detected edges.

P ro p o s itio n 4.1 Assume that the neighborhood function is H 1. If
wn > 2wf + w d — we, then in any local or global minimum state, every edge
pixel has at most two other neighboring edge pixels.

Proof: The proof is by contradiction. We will assume that there exists a local
or global minimum state Sq that has three or more neighboring edge pixels.
Assuming that the condition of the proposition holds, we will then show that
there exists a neighboring state that has a lower cost; this contradicts the
assumption that the initial state is a local minimum.

Assume that S0 is a local or global minimum with S 0 (I) = I for some /, and
that I I Nf(S0)JI = k, where k is greater than or equal to three. Let Sn be the
state that is identical to S0 at every site except at I where it is the complement.
Clearly, Sn £ H 1(S0). The incremental cost can be written as

^ o ,n = X > kACk(Wx ; S0, Sn)
' ic -r .

125

site I

Sk (7).- O

C c " Ge " C f * C n “ C t
Cd *= d (/)

c C - 0 Cc asO C | = 0
Cn=O

Cr * 1
Cf * V Cf « 0.5 Cf - O

Cn - 1Cn c n - o V
C1 = 0 Ct « 0 thin / \ thick A • ■ ;
.-I' ■"

; thin / \ thick ,*■■■. 4

c i = 0 Cc* 1
\ C1* 1

/ A
C1 * 0 C1 * 1

Nfl*90* ■ .. , .

v ^ e - 45* ■ . ' . ■ V

Cc“ ° Cc“ 0 01 O O N
V

b ■ ; -:k ' ■ ■ ' ■' ■A /■■■:.

H = IiNz(Sk) Il

thin: The edge contained in Wi(Sk) is a thin edge,

thick: The edge contained in Wi (Sk) is a thick edge

Figure 4.4. Decision tree for computing the six different cost factors.

126

= WcAGc + wdACd + WeACe + WfACf + WtACt + WllACj l .

The factor ACe= - I , and ACd = d(/). Hence,

AF0ill = wcACc + wdd(/) - We + WfACf + WtACt + WnACn .

Using the fact that the removal of a single edge point can result in at most
four additional endpoints we have ACf < 2. By Proposition 3.16, ACc < 0,
and ACt < 0. Since d(/) < I, we can conclude that

; AFoin - Wd - We + 2wf + WnACn .

It is clear from the definition of Cn that ACn < —I. Therefore

AF0 n < wd - we + 2wf - wn .

Assuming that the condition of the proposition holds,

wn > wd - we + 2wf ,

it is straightforward to conclude that AF0 n < 0, This implies that Sn is a state
of lower cost; we have a contradiction of the assumption that S0 is a local or
global minimum state. Hence, if the condition holds and S0 is a minimum
state, every edge pixel in S0 can have at most two other neighboring edge
pixels.

"" □

P ro p o s itio n 4.2: Assume the neighborhood function is H1 and
■vk > Wd we + 2wf. Let Sl be a local or global minimum state. If E is a thick
edge, then HE |I —3.

Furthermore, if Wt > — [wf + wd - We — 3wc], then there are no thick edge
. ■ ■ 3 ■

pixels in Sjj.

Proof:
(I) We will prove by contradiction that ||E || = 3. Assume that E is thick and
||E || > 4. Since E is thick, there must exist a cycle of length three comprising
of the pixels C = {ef, e2, e3} C E. Since | | E | | > 4, there exists a pixel
Cx € E such that e ^ C, and Cx is adjacent to one of the pixels in C. Refer to
this pixel in C as C1. Now et has three neighbors; e2(e3 and Cx. This
contradicts the fact that any edge pixel has at most two other neighboring edge
pixels according to Proposition 4.1. Hence ||E || < 4. Clearly, every thick edge

127

; ' . r ■ ■ • '•

must have at least three distinct edge pixels and so ||E || = 3.

(2) We will show that if the conditions hold and S0 contains a thick edge pixel,
we can always find a neighboring state Sn which does not contain that edge
pixel and F(Sn) <C F(S0). Consequently, any local or global mininiuin state
cannot contain a thick edge pixel.

• • / '

Assume wt > ~[w f + wd — we — 3wc], and S0 contains a cycle of length threeO
comprising of the pixels C = (S0(Z1), S0(Z2), S0(Z3)). Let Sn be the configuration
that is identical to S0 at every site except at Z = Z1 where it is non-edge.
Clearly Sn is a neighbor of S0 based on the H 1 neighborhood function. From
part (l), we know that C must be an isolated cycle of length three.
Consequently the pair of edge pixels (sn(Z2), Sn(Z3)) must also be isolated. The
incremental cost can be written as i

■ 6 ■■ I :
^ 0 ,»«= EWkACk(Wx i S01Sn)

k - l J

— WcACc + wdACd + WeACe + WfACf + WtACt + WnACn (

It is easily deduced that ACc = -3 , ACd = d(Zj), ACe = - I , ACf = I,
ACt == —3, and ACn = 0. Thisim pfiesthat

A Fon = —3wc + wdd(Zj) — We + Wf — 3wt .

Since wt > [wf + wd — we — 3wc], we have
O

A Fon < wd[d(Zi) — 1] ,

and since d(Z) < I, the incremental cost

AF0ill < 0.

Therefore, Sn is a state of lower cost than S0.
□

4.3.2.2 Estim ating the Upper Bound o f d*.
The parameter d in Equation (4.15) is by definition the maximum cup

depth of all states which are local but not global minima. We will now discuss
a method of estimating an upper bound on the value of this parameter. It is
important that this estimate should be fairly tight as it governs the rate at

128

which we cart decrease the the temperature of the annealing process. This
ultimately affects the rate of convergence to the set of globally minimum
states. Our approach in estimating the upper bound of d is to show by
construction that we can transition from one local minimum to another local
minimum of lower cost without having to encounter a maximum cost accent
greater than 8. Except for the global minimum, the maximum depth of each
local minimum is thus bounded to a maximum value of 8 and hence

.. d* < 5 . ' ■

Because of the complex nature of the interaction between the different
cost factors, and because of the large number of possible edge structures that
have to be taken into consideration, we are unable at this time to give a precise
theoretical upper bound on d which is tight. Instead, we estimate the value of
Abased on Proposition 3.19, Theorem 4.2, and an heuristic argument on edge
formation. Gur approach is to first estimate 8 for simple edge Structures and
their resulting local minimum states that are hot global minimum. We
progressively move from trivial to more complex forms of local m inim um
states. We will show heuristically by construction that even in extreme cases, it
is possible to transition from one local minimum to another local minimum of
lower cost without having to undergo a maximum cost climb exceeding 8,
where 8 = 2wf + wd —we.

In the following paragraphs, we will discuss six different cases of edge
structures and the corresponding estimates of 8 for each case. We will denote 8
for each case as 5, where i denotes the case number. In each case, the
corresponding figures depict an edge as a thin continuous line. The position of
the edge that corresponds to the global minimum state is represented by a
dotted line. We will refer to an edge that exists in the global minimum state
as ah “optimal” edge. We will assume for each of the cases that the weights of
the cost factors are chosen such that in any local minimum there are no thick
edges, and every edge pixel has at most two other neighboring edge pixels.

Case I '

The edge corresponding to the global minimum state is a path extending
from the top right to the bottom left region of the square lattice, as shown by
the dotted line of Figure 4.5. This is the “optimal” edge position. In this case,
the local minimum shown is a configuration that contains no edge pixel. We
estimate the value of S4 using Theorem 4.2; we can construct a sequence of
states where each consecutive state contains one additional pixel of the optimal

Figure 4.5. An edge configuration that contains no edge pixels. Ih e dotted
line indicates the optimum edge position.

Figure 4.6. An edge configuration that contains two short false edges.

130

edge, with the final state corresponding to the global minimum. The theorem
specifies that the maximum cost ascent is no larger than 2wf, and hence

S1 < 2wf . (4.25)

C ase 2 :

The local minimum in this case is a configuration that contains two edges
E1 and E2 that are displaced a distance away from the optimal edge position.
This situation is shown in Figure 4.6. Since neither E 1 nor any segment of it
exists in the global minimum, it is straightforward to deduce that for any
segment EsCE1,

^ d E d (Z) - W eIIEsII - wc £ C c(Sl , I) < w,..
/eE* ie Es

The same can be said for segments of E2. Consequently, beginning from an
endpoint, we can sequentially remove each pixel of E1 or E2 without exceeding
a cost climb greater than wf and arrive at lower cost states. Hence

A ^ wf . (4.26)

C ase 3 ■;

The local minimum in this case contains an edge that spans only a portion
of the optimum edge, as shown in Figure 4.7. We can construct a sequence of
states by extending the edge in this local minimum one pixel at a time along
the position of the optimal edge. Using Proposition 3.19, it can be concluded
that the maximum total cost ascent will not exceed wf. Hence for this case

S3 < w f . (4.27)

■ C ase 4 ■.

In Figure 4.8, we show a continuous edge of a local minimum in which
part of the edge is just slightly displaced from the position of the optimal edge.
This is possibly the most common local minimum that will be encounted in the
minimization process. It is possible to generate a sequence of states in which
the edge pixels are sequentially locally shifted into the position of the optimal
edge without breaking the continuity of the edge structure. Consequentially, if
there are cost ascents, they will be dominated by curvature costs caused by
perturbation of the the edge position. The ascent will not exceed 2wc as the

131

Figure 4.7. Au edge that spans only a portion of the optimal edge position

An edge that is just slightly displaced from the optimal edge
position.

pixels are shifted into the positions of the optimal edge. Thus

S4 < 2wc . (4.28)

Typically, the value of wc is small compared to the other weights.
Case 5

In Figure 4.9, we show a continuous edge of a local minimum Sl in which
part of the edge is displaced some distance away from the position of the
optimal edge. We denote the sites of the missing edge pixels of the optimal
edge as R0 and the sites of the displaced edge as Rd. It is possible to generate a
sequence of states in the following way. First we generate S1 by introducing a
local discontinuity in the edge as shown in the same figure. The resulting
incremental cost is bounded by

a f LiI ^ Wf + w d - W e . (4.29)

Next, we generate a sequence of states from S1 to S2 by sequentially
adding edge pixels in the positions of the optimal edge. By Proposition 3.19,
the maximum cost ascent required for the transitions given by this sequencers
no greater than wf. In addition, since we are constructing the optim al edge in
S2, it is safe to assume that F(S2) X F (S 1). As a result, the maximum cost
ascent so far from Sl is still given by Equation (4.29). From the results Case 2,
we deduce that it is possible to transition from S2 to the global TninimnTn S3
without encountering a maximum cost ascent greater than wf. This is done by
sequentially removing the edge pixels in Rd. An estimate for an extreme case
of the total cost ascent is given by taking the sum of the maximum ascents of
AFl i and A F2 3 :

S5 = 2wf + wd - we . (4.30)

'Case 6

The example shown in Figure 4.10 shows a local minimum S0 that is a
combination of several of the five cases discussed above. Each consecutive
state, S1, S2, S3 is a lower cost state with S3 corresponding to the global
minimum. The maximum cost ascent required to reach the global rnmimnm
from Sl is the maximum of the 8 for the five cases above, and is given by

^ 2wf + wd - we . (4.31)

133

Figure 4.9. Displaced edge. Sl is a continuous edge that has a portion that is
displaced some distance away from the position of the optimal
edge. Each consecutive state can be reached by a sequence of
transitions from the previous state. S3 corresponds to the global
minimum state.

134

Figure 4.10. A sequence of states of lower cost, S0 Js a local minimum. Each
consecutive state has a lower cost and S3 corresponds to the
global minimum state.

General case

 ̂ In the preceding discussion, we have estimated by construction that fof
minimum cost configurations containing a solitary edge, the T n a y i m i i m depth
Of local minimum is given by Equation (4.31). It should be noted that the
estimate is quite conservative as the method of constructing a sequence of low
cost transitions is based on assumptions corresponding to fairly extreme cases
of edge structure. It is conceivable that for typical images, the maximum
depth i5 much smaller than the given bound. Given a specific image and a
local minimum state, it is very likely that one could construct a sequence of
transitions to the global minimum with a total maximum cost ascent much less
than the bound of Equation (4.31). However, when the specific image is not
known, we are unable to devise a general method of constructing a sequence of
low cost transitions that has a lower maximum cost ascent. This is due mainly
to the complexity of the interaction of the cost factors, the vast number of
possible transitions, and the uncertainty in the values of the pixels of interest
in the enhanced image.

As mentioned before, we have assumed that the weights of the cost factors
are chosen so that in a local or global minimum state, there are no thick edges
and every edge pixel had at most two other neighboring edge pixels.
Consequently, for a general image, the corresponding global minimum cost
configuration is simply a collection of non-intersecting edges which are isolated
paths or cycles. Each of these edges corresponds to an optimum edge. In cases
1 to 6 discussed above, we have dealt only with images that have one single
optimum edge. The estimation of 6 for images containing more than one
optimum edge is similar to that for images with only one edge. The intuitive
notion is that using the techniques described in the different cases above, we
can sequentially construct one edge at a time by appropriately chosen
transitions. This is repeated until we arrive at the global m i n i m u m

configuration containing all the desired edges. Based on this notion, we
anticipate that the maximum depth of any local minimum is again no larger
that that given in Equation (4.31). That is,

: S < 2wf + wd — we . (4.32)

136

4.3.2.3 T em p era tu re schedule
The method of generating next states in the annealing algorithm is given

by Equation (4.20). The image is assumed to be of size N x N. The
temperature schedule used is the the following:

log(nks + 2) (4.33)

where ks is a scaling constant, and n is defined using the floor function:

k
N2

Note that the temperature is monotone decreasing and is changed only
after every N2 iterations through the annealing algorithm. It can be easily
verified that for any finite and strictly positive value of ks greater than or equal
to 2, the temperature schedule satisfies Equation (4.15) if c > d*. This implies
that convergence to the set of global minimum states is guaranteed if c > d*.
Our estimate of the upper bound on d is based on Equation (4.32). Hence, in
our implementation, we set c = 6 = 2wf + wd — we for the temperature
schedule given in Equation (4.33). Hence, to ensure that the process will
converge asymptotically, the value of c must be no less than 8. That is,

c > 2wf + wd — we (4.34)

It is interesting to note that if we attempt to use the temperature schedule
of Mitra et al. given in Equation (4.17), the value of r is approximately N2/ 9,
and a very conservative lower bound of p is I. This implies that the value of 7
which is analogous to c in the above equation is given by

\ y > N2/9 .

The schedule is impractical from an implementation standpoint because it
would take far too many iterations to span even a small range of low
temperatures. As an example, consider a 128 x 128 image. Assume that k is
small. For the temperature to be in the proximity of 0.3, the value of Jc0 will
have to be set approximately to

k0 = exp (6000) .

From an implementation standpoint, this number is far too large for computer
representation. Even if representation is possible, the temperature schedule
according to Equation (4.17) would then remain constant for any practical

range of the values of k.

4.3.3 Parallel Im plem entation

T h e Simulated Annealing algorithm described in Section 4.2 is essentially
a « al ^1g0rithm- We willBOW discuss ^ method of generating next states
- hlV ^ I alIow the algorithm to be to be implemented to a large extent in
paralkh In fact, we will show that the number of sequential computations can
be reduced by a factor of N2/9. That is, up to N2/ 9 computations can be made
simultaneously in parallel. We will assume that given a present state Sp and a
site / € L, the method of generating the next state is given by Equation (4.20);

Sn = Mx(Sp,/).
Up to this point we have interpreted the above equation as a method of

generating next states, and the Simulated Annealing algorithm as a method of
transitioning from one state to another. We now present another interpretation
of Equation (4.20) and the annealing process in the context of detecting edges
by cost minimization. The above equation can be viewed as a method of
altering the local edge structure in a window region centered at site I. The
transition rules of the annealing algorithm correspond to a method of deciding
if the alteration is to be accepted based on the change in cost caused by the
alteration. The annealing process is thus a procedure where we repeatedly
attempt to alter the local edge structure at each site in an image according to
the rules of annealing. Since the annealing process is guaranteed to converge,
the eventual result of the repeated changes is that the edges will take the form
of a minimum cost edge configuration.

A s mentioned in Section 4.3.1, the value of / can be selected either in a
random or deterministic manner. We will now present a deterministic method
of selecting I which allows for parallel computation. If the raster scan approach
mentioned in Section 4.3.1 is used, the annealing process can be viewed as a
procedure where we sequentially attempt to change the edge structure in a
window region as the window is shifted through each pixel in the image.
Clearly, this is a strictly sequential process as each decision on accepting a
change is dependent on the immediate past decisions. Such a method of
selecting / does not allow for parallel execution.

By using Proposition 3.11, it is easy to deduce that if an edge structure is
altered at a single site I according to Equation (4.20), then the resulting change
in cost is dependent at most on the pixels in a 5 x 5 window region about /

138

Consequently, if Zj and Z2 are two sites that are at least two pixels horizontally
or vertically apart (i.e. two pixels between them), the decisions to accept any
alterations of the edge structure in W li and W l2 can be made independently.
In fact, for any set of sites (Z1, . . . , ZM} in which every pair is at least two
pixels apart, the decisions to accept alterations in the edge structure can be
made independently of each other.

The Set of all sites in the lattice denoted by L can be partitioned into k
disjoint subsets where any pair of sites in the same subset are at least two
pixels apart;

L = L 1 U L2 U-.... Lk . (4.35)

It is easy to deduce that at most 9 subsets are required to partition L in this
manner. This holds for images of any size. An example of this is shown in
Figure 4.11. If alterations in the local edge structure are made at any number
of sites belonging to the same subset, the decisions to accept each of the
alterations can be made independently. Consequently, it is always possible to
make I iteration through each pixel in the image in 9 sequential processing
steps, where each step requires approximately N2/9 parallel computations.
Instead of making N2 sequential decisions in altering the local edge structure at
each site in the image, the same can be achieved by simultaneous decisions in 9
sequential steps. This of course is significantly more efficient in terms of the
total required computation time. *

Assuming that the method of selecting the sites is such that every site will
be repeatedly selected in the annealing algorithm, it can be shown that the
corresponding annealing process which allows for parallel computation has the
property of irreducibility and weak reversibility. Hence this method of selecting
Z will result in asymptotic convergence to the global minimum.

4.3.4 S ta te Space R eduction
Simulated Annealing is a computationally intensive algorithm suitable for

minimizing complex optimization problems. In the context of edge detection,
the amount of computation time can be significantly decreased by reducing the
state space of the annealing process. This is achieved by introducing a
preliminary processing stage which we call “low resolution detection”. The
output of low resolution detection is a binary image indicating where edge
pixels can and cannot lie; ones indicate the possible positions of edge pixels,
and zeros indicate the positions where edge pixels cannot lie. By using this, we
effectively reduce the set of all possible edge configurations by placing a

139

I 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

L = L 1 U L2 U •

L1 = {1,4, 19, 22}
L2 = (2, 5, 20, 23}
L3 = (3, 6, 21, 24}

L9 = {15, 18, 33, 36}

Figure 4.11 Example of partitioning h into disjoint subsets. Any pair of pixels
m the same subset is at least 2 pixels apart. The pixels of the

_ above 6x 6 image are labeled I through 36. The image is first
divided into blocks of 3x3 pixels. Partitioning is then achieved by-
selecting corresponding pixels of different blocks.

140

constraint on the configurations that are taken into account. In other words,
the cost function is minimized subject to the constraint that the edge
configurations can contain edge pixels only in the regions specified by the low
resolution output.

There are a number of ways of performing low resolution detection. We
chose to first threshold the enhanced image. Next we performed the
morphological operation [59] ' ‘dilation” on the thresholded image using a
square 3 x 3 or 5 x 5 structuring element. Examples of the output of low
resolution detection for state space reduction is shown in Chapter 5, Section
5.2.1. •

4.4 S um m ary

In this chapter, we have presented Simulated Annealing as a technique in
cost minimization. It has been shown that the annealing algorithm is a
stochastic optimization technique based on non-stationary Markov chains; the
chain will converge in probability to the set of global minimum states of the
cost function. We have described the asymptotic convergence properties of the
algorithm and discussed the use of various temperature schedules suitable for
convergence.

We used the Simulated Annealing algorithm to find low cost solutions to
the cost function for edges described in Chapter 3. First, we showed how to
generate next states in the annealing process based on a set of five strategies
for changing the edge structure in a given configuration. Second, we devised a
suitable temperature schedule by estimating a relatively tight upper bound on
the maximum depth of all local minimum states which do not correspond to
the global minimum. Third, we showed that although the annealing process is
sequential in nature, it can be implemented largely in parallel by a proper
choice of next states. Finally, we proposed the use of state space reduction to
reduce the computation time for the annealing process.

141

CHAPTER 6
EXPERIM ENTAL RESULTS

5.1 In tro d u c tio n

In this chapter we present experimental results of detecting edges using
the comparative cost function (CCF) and absolute cost function (ACF)
techniques described in the previous chapters. The ultimate test of any
detection technique is in its ability to find edges that correspond to true
boundaries in an image. Comparison of the detection performance is made with
four other recent techniques mentioned in Section 1.2; derivative of Gaussian
(VG), Laplacian of Gaussian (V2G), facet model approach, and Sequential
Edge Linking (SEL). It should be noted that the VG and facet model are
techniques which are optimized for the detection of step edges. Nbn-maximal
suppression for the VG technique was performed by quantizing the edge
direction of the VG operator output into one of eight possible directions and
suppressing the non-maximum magnitude values in a direction perpendicular
to the edge direction. The SEL technique used the VG operator (without non-
maximal suppression) as the edge enhancement operator.

M described in Section 2.4.1, the CCF used the weight values we= 1.0,
"ŝ d wt—L I, Wj-1.1 and wc= l . I. For the ACF, we first assigned values for
the weights wc, wd, we and wf according to the desired emphasis on each cost
factor. Then, to avoid the detection of thick edges, wn and wt were chosen
based on Propositions 4.1 and 4.2. In all examples using SimulatedAnnealing,
the value of d (in Hajek’s Theorem) was estimated using Equation (4.32).
Except for the examples in Section 5.4 and parts of Section 5.6, the measures
of dissimilarity, fc(Rl,R2) and fa(Rl,R2), were based on the difference of gray
level averages in R l and R2. That is, fc=m(d) as specified in Equation (2.6),
and fa—d where d is as defined in Equation (2.4).

For both the heuristic search technique and Simulated Annealing, it is
necessary to generate new edge configurations by iterating through each pixel
locatipn in the image. Assuming that the image is of size N x N, a single
iteration through the image represents the generation of N2 new edge

142

configurations. Typically, the CCF approach required 3 to 5 iterations through
an image. The ACF approach required between 50 to 200 iterations. In all
examples, the probabilities p; in Equation (4.21) were:

300
P2= -------2 1024

200
P3 1024

200
P 4 _ 1024 ’

and

124 '
■■ Ps . 1024 * ;

The temperature schedule for the annealing process was based on Equation
(4.33):

T - = c
k log(nks + 2)

where

The value of ks was selected based on the criterion that Tk should be
approximately 0.3 at the final iterations through the image. This value of 0.3
was chosen empirically based on the observation that as the temperature
decreased toward 0.3, the processes approached a point of “freezing” where
very few uphill climbs were made. In the final 2 iterations, the process was
quickly“ frozen” by dropping the temperature suddenly towards zero. This was
achieved by setting the temperature to a value of 0.01, and allowing for
transitions based only on strategies M1 and M3 (described in Section 4.3.1).

A thorough experimental analysis and comparison of different edge
detection techniques would require taking into account a number of different
factors. Some of these are: (I) the test images used, (2) the characteristics of
the detected edges (in terms of continuity, thinness, and well localization), (3)
the operator size, (5) computation time, (6) the difficulty of implementation,
and (7) the flexibility of the detection algorithm in detecting various edge

143

types. There is a trade-off between the different factors; for instance, one
usually has to sacrifice computation time for improvement in the
characteristics of the detected edges. We will examine the performance of the
detection algorithms with respect to several of these factors.

5.2 Experiments with Artififcial Images
We compare the performance of the different techniques by first showing

examples of the detected edges for artificial images. Evaluation of the
detection performance is based on the accuracy in localization of the detected
edges, and the form of the edges in terms of thinness and continuity. However,
it is difficult to define a performance measure that correctly evaluates the
detection performance for all cases of the detected edges. A method of
evaluating edge detection performance is the P ra tt figure of merit [60] which is
denoted by the symbol P :

I d

£Im i=i I + alj2
100

where

;V : Im = max (IdjIi),

Il — number of ideal edge points,

Ip number of detected edge points,

Ii - displacement of the ith detected edge point from the ideal edge, and
a = scaling factor.

The value of P ranges from 0 to 100 with higher values indicating better
detection performance. The value of 0.1 was used for a which is
approximately the same as that used in [61]. This figure of merit is usually
applied to artificial images where the ideal edge positions are known. It
penalizes edge pixels which are displaced from the ideal edge position according
to the displacement distance and the value of a. It also penalizes missing edge
pixels or an excessive number of detected edges. However, it does not take into
account local edge coherence information such as continuity and edge
thickness. A discussion of the shortcomings of this figure of merit is given
in [62]. When using this figure of merit, it is important to bear in mind its
inherent inadequacy in using local edge coherence information. We use the
P ra tt figure of merit as a rough indicator of the performance of the different

144

detection techniques. Two ideal step images which are shown in Figure 5.1
were used; they were the vertical step image and the rings image. The vertical
step image had a size of 256 x 256 pixels and was comprised of two tones of
constant gray levels of values HO and 140. The rings image had a size of
128 x 128 and was made up of concentric circles of gray levels 115 and 140,
constructed in the manner described in [62]. The step heights of the ideal
vertical edge and the rings image were consequently 30 and 25 respectively.
The images were corrupted with additive zero mean independent identically
distributed (Li.d.) Gaussian noise. The signal to noise ratio of the corrupted
images is defined as

SNR (5.1)

where h is the ideal step height and <rn is the standard deviation of the
Gaussian noise. The noise corrupted images are also shown in Figure 5.1.

: The P ra tt figure of merit is often applied to the vertical step image shown
in Figure 5.1. In Figure 5.2, we show an example of the difficulties that could
arise in the use of this figure of merit. The VG operator without the use of
non-maximal suppression was applied to the noisy vertical step image. The
detected edges obtained by thresholding the output of the VG operator at 53
and 35 have corresponding performance values P=78.2 and P=52.3
respectively. It can be seen that if edge continuity and recovery of the complete
boundary is of importance, the edge which corresponds to thresholding at 35 is
better. Hence, when using this figure of merit, it is important to bear in mind
its inherent inadequacy in using local edge coherence information.

N oise sm oothing

It is advantageous to preprocess a noise corrupted image by filtering prior
to edge detection [7]. We used a Gaussian function to smooth the noise
corrupted images. The function is the same as that in Equation (1.1). This
smoothing prior to detection was performed only for the facet model,
comparative cost function, and absolute cost function techniques; the VG and
V2G operators have Gaussian smoothing inherently incorporated in thern.
Except for the case of the house image, the standard deviation (<rG) of each
Gaussian function was independently chosen for the different cases so as to
optimize the performance of the various detection techniques. The value of crG
was constrained to be some integer multiple of 0.5. Figure 5.3 shows
experimental results of the improvement in detection performance of the

145

Figure 5.1. Step images. Top left: Vertical step edge. Top right: Noisy step
edge with SNR = 0.25. Middle left: Rings image. Middle right:
Noisy rings image with SN R= 1.0. Bottom: Noisy rings image
with SNR=0.574.

146

Figure 5.2. Edges of noisy step image detected using the thresholded VG
operator without non-maximal suppression. Left: Threshold at 53
resulting in P=78.2. Right: Threshold at 35 resulting in P = 52.3.

. 100

90

80,
£ . t
* 70

. E
S 60

. - -■
I SO1

5 40 .
2o. 30 .

- : ; 20 .

'V::' 10 ,

0 _
0 2 3 4 5 6 7

Standard deviation of Gaussian smoothing function

f ig u re 5.3 Improvement in detection performance by preprocessing noisy
raw image with Gaussian smoothing prior to edge detection. The
CGF technique was used on vertical step images with different
SNR values.

148

comparative cost function technique by preprocessing the image with Gaussian
smoothing prior to edge detection. The detection algorithm was the CCF
technique, and the test image used was the vertical step image at various signal
to noise ratios. Using this test image, the results indicate that detection
performance increases with the standard deviation of the smoothing function.
However, it should be noted that this image contains a single isolated edge; if
the image contains several adjacent edges, then large values for the standard
deviation could cause the edges to be merged together resulting in degraded
performance.

5.2.1 Vertical Step Image

The noisy vertical step edge with SNR=0.25 was used to compare the
output of different edge detector techniques. The results are shown in Figure
5.4. The figure shows the best edges (based on performance measure P)
detected under the constraint that approximately 90% of the ideal edge should
be detected. The VG technique used a value of 5.5 for the standard deviation
of the Gaussian function. The V2G operator used a standard deviation of 10.0.
SEL was based on the output of the VG operator with a standard deviation of
4.0. For the CGF and facet model techniques, we preprocessed the image with
a Gaussian smoothing operator with standard deviation 5.0. For the ACF
approach, the image was p re-filtered with a Gaussian function of standard
deviation of 5.5. The weights of the cost factors of the ACF were: wc=0 75,

2.0, we= l .0, wf=3.0, wn =7.01, and ŵ . =0.583. A total of 200 iterations
through the image were made. State space reduction was used to reduce
computation time. The ACF implementation as described above required 1.28
hours of CPU computation time on the VAX 11/780. Table 5.1 shows the
corresponding performance of the various detection algorithms.

Figure 5.4 Comparison of edge detector performance using vertical step edge
SNR==0.25. Top left: VG, P=73.1. Top right: V2G,

P=44.5 . Middle left: Facet model technique, P=71.1. Middle
rieht: SEL, P=65.4. Bottom left: CCF approach, P=73.7.
Bottom right: ACF approach, P=78.4.

150

Table 5.1. Detection performance of various detection techniques.

Detection technique P ratt figure of merit P
VG 73,1
V2G 44.5

Facetmodel 71.1
SEL 65.4
CCF 73.7
ACF 78.4

A comparison of the performance based on P shows that except for V2G,
the different techniques yield approximately the same performance. We
extracted the detected edges and placed them alongside each other for more
detailed comparison. This is shown in Figure 5.5. A visual examination shows
that the VG and the facet model techniques produced edges which are thick
along many portions of the edge. The CCF and ACF techniques produced
edges which are thin. The best performance in terms of continuity and edge
thinness is achieved by the ACF technique.

In Figure 5.6, we show the effect of using only the cost factors Cd and Ce
of the ACF; the other cost factors were discarded by setting their
corresponding weights equal to zero. This method corresponds to a simple
thresholding approach to detect the edges. By altering the value of the

we
dissimilarity threshold ----- (see Section 3.4.4.1), we can arbitrarily select the

total number of edge points to be detected. Several important observations can
be made from comparing the detected edges shown in Figure 5.4 and Figure
5.6 using the ACF approach. First,-based on a cost function that uses only Cd
and Ce, it is not possible to detect a thin continuous edge for the noisy step
image. Second, there are no thick edge pixels when the cost factor Ct was
included, and the corresponding weight wt was appropriately chosen according
to Proposition 4.2. Third, the inclusion of the fragmentation cost Ct forces
adjacent edges to be continuous. At the same time, Cf also suppresses short
sporadic edges which are visible in Figure 5.6, but not in Figure 5.4.

In Figure 5.7, we demonstrate the effect of changing the weights of the
curvature and fragmentation costs in the absolute cost function. For the
detected edge in Figure 5.7(a), the weights of the cost factors were wc=0.2,

Figure 5.5 Comparison of edge characteristics for noisy vertical step image
Extreme left: VG. Center left: Facet model approach. Center
right: CCF. Extreme right: ACF.

152

Figure 5.6 Edges detected using only Cd and Ce of the ACF. Left: Low

dissimilarity threshold. Right: High dissimilarity threshold.

Figure 5.7 Effect of changing the weights for curvature and fragmentation.
(a) wc=0.2, wf=2.0. (b) wc=0.5, wf=2.0. (c) wc=0,75, wfH). (d)
wc=0.75, wf=3.0.

^ = 2 .0 , We=LO, wf-2.0, wn^5.01, and wt=0.81. For the detected edge in
Figure 5.7(b), the weight for curvature was altered so that wc=0.5. The
remaining weights were kept the same, except for wn and wt which were
altered according to Proposition 4.2 to ensure that all edges remained thin.
?he resulting weight values were: wc=0.5, wd=2.0, we=1.0, wf=2.0, wE=5,01,
and wt=0.51. Notice that because of the increase in the weight of the curvature
cost, the detected edge has a smoother boundary than in the previous case.
This is particularly evident when comparing the portions of the edges slightly
below the mid-section. For the edge in Figure 5.7(c), the cost for fragmentation
was removed by setting Wf = O; the weight values were: wG=0;75, wd=2.0,
we=1.0, wf=0.0, wn=1.01, and wt=0.01. Fragmentation is clearly visible in this
case. In Figure 5.7(d), the cost for fragmentation was increased to 3.0. The
weights were: wc=0.75, wd=2.0, w =1.0, wf=3.0, wn=7.01, and wt=0.583.
Notice that because of the increase in wf, the fragmented edge in the upper
region has been made continuous. In Figure 5.8, we show the cost
minimization process using Simulated Annealing for the case of the detected
edges shown in Figure 5.7(d). The plot was obtained by sampling the
annealing process after every 10 iterations through the image. Assuming the
the image has size N x N, each iteration represents N2 attempts in
transitioning to new states based on the annealing algorithm.

In Figure 5.9, we show examples of the use of state space reduction (SSR)
which has been described in Section 4.3.4. Edges were constrained to lie only
m the bright regions. The regions were obtained by thresholding the
dissimilarity values and dilating the image with square 3 x 3 and 5 x 5
structuring elements using mathematical morphology [59].

5.2.2 Rings Image
We show examples of the detected edges for the rings image shown in

Figure 5.1. The image was corrupted with additive zero mean i.i.d. Gaussian
noise with signal to noise ratio as defined in Equation (5.1). Figure 5.10 shows
the detected edges for the noisy rings image with SN R= 1.0. For the VG, V2G
and SEL techniques, the standard deviation of the Gaussian function was 4.0
4.5 and 3.0 respectively. For the facet model, CCF and ACF techniques, the
image was pre-filtered using a Gaussian smoothing function with a standard
deviation of 3.5. The ACF technique used state space reduction and the
following set of weights: wc=0.5, wd=2.0, we=1.0, wf=3.0, wn=7.01, and
wt=0.833. A total of 200 iterations through the image was performed.

153

CO
ST

154

3790.0

3312.3

3393.8

2800.0
0.000 25.00 90.00 73.00 100.0 125.0 I S (M) 173.0 lo o .o

Number o f i t e r a t i o n s

Figure 5.8 Cost minimization process for vertical step image using
Simulated Annealing. Plot obtained by sampling annealing
process at every 10 iterations through image.

Figure 5.9 Examples of state space reduction. The bright regions -Vvere
obtained by thresholding the enhanced images and performing
the morphological operation “dilation” on each binary image.
Edges were restricted to lie only in the bright regions. Left: State
space reduction for noisy vertical step image. Right: State space
reduction for noisy rings image (SNR= 1.0).

156

Figure 5.10 Comparison of edge detection performance using noisy rings
image with SNR=LO. Top left; VG. Top right: V2G. Middle
left: Facet model approach. Middle right: SEL. Bottom left:
CCF. Bottom right: ACF.

Computation required 1.24 hours of CPU time on the VAX 11/780
minicomputer. A subjective evaluation of the different detection; techniques
shows that in terms of edge continuity, the ACF, the facet model, and the VG
techniques produced the best results. In terms of edge thinness, th6 ACF, CCF
and SEL techniques produced the best results. It is observed that the contour
tracing nature of SEL produces some false boundaries. Figure 5.11 shows the
edges detected for a slightly noiser image with SNR=0.574. For the VG, V2G
and SEL techniques, the standard deviation of the Gaussian function was 4.0,
5.0 and 3.5 respectively. For the facet model, CCF and ACF techniques, the
image was pre-filtered using a Gaussian smoothing function with a standard
deviation of 4.0. The ACF technique used the same set of weights as in the
previous case of the noisy image with SNR=LO. The subjective evaluation of
the detected edges is similar to the previous case, except that there is a slight
increase in false boundaries.

5.2.3 Tem perature Variation and Parallel Im plem entation
Simulated Annealing is a minimization algorithm that allows for uphill

cost climbs while searching for the minimum cost states. The amount of “hill
climbing” activity is controlled by the temperature Tk, where k denotes the
kth iteration through the algorithm. If the temperature is set equal to zero, no
hill climbing is allowed and the algorithm corresponds to a steepest descent
search algorithm. This approach usually causes the algorithm to terminate in
an undesirable local minimum that is of relatively high cost. A physical
analogy of such an annealing process is the rapid cooling of a system, causing it
to freeze in a meta-stable state. In Figure 5.12, we show an example of the use
of rapid cooling in Simulated Annealing. The test image used was the rings
image with SNR=LO. The lower curve shows the cost minimization process
using the logarithmic temperature schedule given in Equation (4.33). The
upper curve shows the results for a temperature schedule which remains
constant at a value of 0.01 throughout the annealing process. For both
temperature schedules, the ACF technique used state space reduction and an
identical set of weights: wc=0.5, wd=2.0, we=1.0, wf=3.0, wn=7.01, and
wt=0.833. In each case, 200 iterations through the image was performed.
These parameters are exactly the same as those of the rings image example in
Section 5.2.2. Two important observations can be made. First the process
based on the logarithmic schedule converges to the set of low cost states much
more quickly than that based on the constant temperature schedule. Second,
the final state for the logarithmic schedule has a much lower cost than the final

158

Figure 5.11 Comparison of edge' detection performance using noisy rings
image with SNR=G.574. Top left: VG. Top right: V2G. Middle
Ieftr Facet model approach. Middle right: SEL. Bottom left:
CCF. Bottom right: ACF.

CO
ST

159

3700.0

3 5 7 3 .0

» 5 0 . 0

■g Hfr- a B -f r B O n

» 0 0 . 0 -H----- ----
0.000 25.00

130.0 175.0 200.0
Humber of i t e r a t i o n s

Figure 5.12 Rapid cooling in Simulated Annealing. Squares denote the data
points for the annealing process which uses a logarithmic
temperature decrement schedule. Circles denote the data points
for the annealing process which uses a constant temperature
schedule, with Tk=0.01 for all k.

state based on rapid cooling. In this case, the cost of the final states for the
logarithmic and constant temperature schedules were 2815 and 2859
respectively.

Figure 5.13 shows the intermediate edge configurations of the annealing
process which used the logarithmic temperature schedule. The test image was
the noisy rings image (SNR=1.0), and 200 iterations through the image were
made. No SSR was used. As mentioned in the introduction, in the last 2
iterations, the process was “frozen” by dropping the temperature to zero.
Iterations 198 and 200 in the figure correspond to the states of the system just
before and after freezing. It can be seen that after approximately 50 to 100
iterations, comparatively good edges were obtained. For most applications, it
has been found that about 100 iterations are sufficient to produce edges which
are thin and well localized. For the purpose of standardization and comparison,
we used 200 iterations in all except one of the examples contained in this
chapter.

In Section 4.3.1, we mentioned that in minimizing the ACF, there are a
number of methods of generating next states. One method is based on selecting
I by sequentially stepping through each pixel location in a raster scan manner.
This method does not allow the annealing process to be implemented in
parallel. However, in Section 4.3.3, we have shown there is a method of
selecting I that would allow the Simulated Annealing algorithm to be
implemented largely in parallel. Using the same test image and the exact same
parameters for the ACF as in the example of Figure 5.10, we implemented the
algorithm using the method that would allow for parallel execution. The
results are shown in Figure 5.14. In this figure, we both the the cost curves for
the annealing process that can be implemented only sequentially, and the
process that can be implemented in parallel. The curves are very close to each
other and intersect at a number of points. The tail ends of the curves are
almost merged together implying that in the final iterations, both the processes
arrived a t states that have approximately the same cost values. The results
indicate that in terms of cost minimization, both the methods gave
approximately the same performance. When parallel processing is available, it
is clearly more advantageous in terms of computation time to implement the
algorithm th a t allows for parallel implementation. Figure 5.15 shows the
detected edges for the noisy rings image (SNR= 1.0) using the three different
methods of implementing Simulated Annealing; the method of rapid cooling,
sequential implementation, and parallel implementation.

161

Figure 5.13 Intenpediate edge configurations in annealing process.
(a) Iteration I, Cost=16l90. (b) Iteration 5, C ost= 6954. (c)
lteratJon 10> Cost=5217. (d) Iteration 20, Cost=3714. (e)
Iteration 50, Cost=2864. (f) Iteration 100, Cost=2833. (g)
Iteration 198, Cost=2827. (h) Iteration 200, C ost=2810.

162

(a)

3M30.0 ■

3200.0 *

.00 90.00 73.00 100.0 123.0 190.0 173.0 £00.00.000

Number of ite r a tio n s

(b)

0.000 £3.00 90.00 73.00 100.0 123.0 190.0 173.0 £00.0

Number of ite r a tio n s

Figure 5.14 Comparison of parallel and sequential implementations. Squares
denote the data points for the annealing process that can only be
implemented sequentially. D iam ondsdeno te thedatapo in tsfo r
the annealing process that can be implemented in parallel, (a)
Plot of cost vs the number of iterations through image, (b) Same
plot on expanded scale.

Figure 5.15 Edges obtained using three different methods of implementing
Simulated Annealing. Test image used was the noisy rings image
with SN R= 1.0. Top : Edges detected by rapid cooling (see
Figure 5.12). Bottom left: Edges detected using annealing
process that can only be implemented sequentially (see Figure
5.14). Bottom rights Edges detected using annealing process that
can be implemented in parallel (see Figure 5.14).

164

5.3 Experim ents with Real Images

In this section we show two examples of the detected edges for general
scenes. Both images were of size 256 x 256.

Houseimage
In this example, we show the detected edges for both the original and

noisy image of a general outdoor scene. The house image is shown in Figure
5.16. The image was corrupted with additive zero-mean i.i.d. Gaussian noise
of standard deviation 35. In each case of the detected edges, the detection
parameters were selected so that the different techniques produced
approximately the same number of edge points, and the edges were visibly
similar. The choice of parameters is quite subjective as it is difficult to
quantify edge quality for general scenes. After determining the necessary
parameters for the noiseless image, the same parameters were then used to
detect edges in the noisy image. In all cases except one, the standard deviation
of the Gaussian function was set at 2.0. The V2G operator used a standard
deviation of 2.5. For the ACF technique, the weights of the cost factors were:
^c=^-75, wd=2.0, we= l .0, wf=3.0, wn=7.01, and wt=0.583. No state space
reduction was used and 100 iterations through the image were made. The
detected edges are shown in Figure 5.17.

Airport im age

In Figure 5.18 we show the detected edges for an airport image using the
ACF technique. The weights of the cost factors were: wc=0.5, wd=2.0, we=1.0,
wf=3.0, wn—7.01, and wt=0.833. A total of 200 iterations through the image
were made.

5.4 Other D issim ilarity Measures
In the previous examples, we have detected edges using dissimilarity

functions fc and fa which measure the difference of gray level averages of the
regions on either sides of the edge. In this section, we will show examples of
detected edges using other forms of dissimilarity measures. In the first example,
we show how a priori information can be incorporated into the measure so as
to detect specific kinds of edges. In the second example, we show how the
measure can be defined to find texture edges based on second order statistical
properties of the regions of interest.

165

Figure S.16 House image. Top: Original house image. Bottom: House image
corrupted with additive zero-mean i.i.d. Gaussian Boise of
standard deviation 35.

166

each case, the figure on the left shows the detected edges for the
noiseless house image while the figure on the right shows the
edges for the noisy image, (a) VG. (b) V2G. (c) Fae4t model,
(d) SEL. (e) CCF. (f) ACF.

167

Figure 5.17, continued

169

Airplanes image

_ ^ Figure^ S 19; shows an image containing ten airplane*. T ie important
j ? ° 'U e, eS* m l ',:s lmaSe are the airplanes, the two large buildings on

u s l l t l ^ r h ^ “ d P°rti0nS °f th" tar:“-w - The edges detected
^m g the CCF. ACF, the facet model, and the VG operator techniques are also

S t h e d h fl^ e- . F” the CCF “ 4 ACF techniques, the image Was
smoothed by a Gaussian function of standard deviation 1.0 prior to edee
detection. The VG technique also used a value of 1.0 for S M d S
evia lop, n each case, the thresholds and relevant parameters were chosen so

as ,o recover as much of the boundaries of the airplanes and the large
in mgs as possible, without introducing an excessive number of false edges,
or all four techniques, it was found that selecting a threshold low enough to

recover the boundaries of the large buildings resulted in a high degree of false
edges being detected. Hence, by thresholding alone, it is not possible to obtain
a good set of edges representing the features of interest.

ft can be seen that the important features of interest in the image
genera y ave a lighter shade than the background, corresponding to higher
image mtensity vaJues. We use this a priori information by incorporating it
into the ,dissimilarity measures fc and f , We specify that regions have high
d i s s , Iariiy ubeu tuo conditions hold: (I) the average intensity values are
significantly different, and (2) the average intensity value for One of the regions
is sufficiently high. This is different from the previous definition of dissimilarity

‘h e ̂latter condition. For the comparative cost
function, tins new definition Of dissimilarity is mathematically captured simply

y specifying the dissimilarity measure to b e f c (U l , R 2) = t h (d , . i) . T h e f u n c t i o n
m is defined as: ̂ ^

m(d,£) =m(d) • g(/3) ,

Where m(d) is as defined in Equation (2.6), 0 is the larger of the average
intensity values of the two regions, and g is the piefcewise linear function ShoMi
in Figure 5.20. For the absolute cost function, this definition is captured by
specifying the measure to be

fa(Rl,R2) = d • g ($,

where d Ls as given in Kqualion (2.4). and g(.V) is the same function defined
above. The weights of the ACF were: w„=0.2, wd=2,0, we=1.0, w,=2.0,
Wn- 5.01, and wt=0.81. The annealing process made 200 iterations through the
image. Using these new definitions of region dissimilarity, the detected edges

Figure 5.19 Airplanes image. The important features of interest are the
airplanes, the two large buildings on the left, and portions of the
tarmac, (a) Intensity image, (b) Facet model. (c) VG. (d) CCF.
(e) ACF.

Figure 5.19, continued

172

173
... .w - ■

Figure 5.20 Piecewise linear function g(/?) used in the definition of m(d,/?).

. ' • I

174

Figure 5.21 Edges of airplanes image detected using a priori information
about the features of interest. Top: CCF approach. Bottom:
ACF approach.

are shown in Figure 5,21. Notice that the edges of the large, buildings, the
airplanes, and the boundary region of the tarojac on the lower right portion of

Bp3C te x tu re im age

FigUre 5.22 shows an image of size 128 x 128 containing two texture
regions. The average intensity value was approximately the same throughout
the image. However, the variance of the intensity values within the box region
was higher than the variance of the background. This image whs constructed
by adding zero-mean i.i.d. Gaussian random noise to an image of constant gray
evel equal to 128. Within a 64 x 64 box region, the noise standard deviation

was 30; outside of the box region, the noise standard deviation was 10. Since
the boundary of the box does not correspond to a step or a ramp, it is not
possible to use the VG or facet model methods to detect the edges of the box.

The cost function approach can be used to detect the boundary of such
texture regions by the use of an appropriate measure for region dissimilarity.
In this example, a suitable measure of dissimilarity is the difference of the
standard deviation of the pixels in the regions of interest. We show an example
of this using the absolute cost function. Let m l and m2 be the gray level
averages of the pixels in R l and R2 respectively. The dissimilarity measure is
defined as:

f„(Rl,R2) = I .t. - I ,
rwhere'

I R i I E
(U)GRl

feOJ)

and o-2 is similarly defined. Figure 5.22 shows the detected edges using the
following weight values: wc=0.75, wd=2.0, we=1.0, wf=4.0, wn=9.01, and
wt=0.917. The annealing process made 200 iterations through the image.

5.5 C o m p u ta tio n T im e and F inal C osts

In this section, we summarize some of the results of using the ACF
approach in terms of the computation time required and the cost of the final
edge configurations achieved by the annealing process. In Table 5.2, we
tabulate the computation time required to detect the edges of the different test

176

Figure 5.22 Texture edge detection. Box image and detected edges using
ACF approach.

177

Table 5.2. Computation time for minimizing the ACF
using Simulated Annealing.

Image Size SSR Iterations CPU time (hr)
Vertical step 256 x 256 200

V J

10.09
Verticalstep 256 x 256 Yes 200 1.28 V - ' :

Rings, SN R= 1.0 128 x 128 200 2.70
Rings, SN R= 1.0 128 x 128 Yes 200 1.24
House 256 x 256 100 5.32
Airport 256 x 256 Yes 200 7.77
Airplanes 256 x 256 Yes 200 3.59
Texture box 128 X 128

- 200 ' 2.42

178

images. The cost minimization process using Simulated Annealing was
implemented by sequential processing on the VAX 11/780. For purposes of
comparison and standardization, the annealing process was implemented using
200 iterations through each image, except for the house image. Typically, for
general images, about 100 iterations is sufficient to bring the annealing process
to a suitably low cost state. Table 5.2 shows a comparison of the computation
time required for each image with and without the use of state space reduction
(SSR)v1The results indicate that, depending on the scene content, computation
time for the annealing process can be reduced by a factor of about I to 8
times through the use of S SR. Generally, images that have smaller number of
edges achieve greater reduction in computation time.

Table 5.3 shows a comparison of the cost of the final states for different
cases of the annealing process. Two important observations can be made, First,
the use of SSR results in edge configurations that have approximately the same
cost as those configurations produced without it. Second, the annealing
algorithm which can be executed in parallel produces edge configurations which
have approximately the same cost as those configurations produced by the
algorithm which can be implemented only sequentially. Based on these
observations, we deduce that the most efficient method of producing edge
configurations of low cost is to use SSR and parallel implementation.

5.6 Use of 5 Cost Factors
In all the previous examples of the absolute cost function approach, we

used 6 cost factors in the definition of the cost function. The cost factor Cd
described in Section 4.3.2.1 was included to constrain all edges to be either
isolated paths or cycles; multiple edge segments linked at a single point were
disallowed. The main reason for including this factor was to enable us to
derive a tight estimate of the upper bound on the parameter d , as given in
Equation (4.32).

In this section, we show the experimental results of minimizing a cost
function that does not contain the cost factor CD. That is, the cost function is a
a weighted sum of only 5 cost factors: Cc, Cds Ce, Cf and Ct. Figures 5.23
through 5.29 show the detected edges for the previous test images using 5 cost
factors for the ACF. The cost minimization annealing process is also shown. In
each case, all the parameters except wt were chosen to be the same as those of
the corresponding previous examples which used 6 cost factors. To avoid thick
edges, the weight wt was chosen based on Proposition 3.15. We used the same

Table 5.3. Cost of the final state in the annealing process.

Image SSR Parallel Iterations Cost
I Rings, SN R= 1.0 •

200 2810
Rings, SN R= 1.0 Yes 200 2812
Rings, SN R= 1.0 Yes Yes 200 2815
Rings, SN R= 1.0
(Rapid cooling)

Yes 200 2859

Rings, SN R =0.574 ■ . - ■' 200 3161
Rings, SNR=0.574 / Yes 200 3160
Rings, SN R =0.574 Yes Yes 200 3161
Vertical step 200 2876
Yerticalstep Yes . 200 2873
Yertieal step Yes Yes 200 2878
House • - . ;■■■ ■■■; 100 9253
House Yes 100 9244
Airport Yes 200 21771
Airport Yes Yes 200 21765
Airplanes Yes • . ' ’

200 7572
Airplanes Yes Yes 200 7567

r ' - : •

180

0 .M O S . ' t O » . 0 0 73.00 S M .O 1 8 . 0 1 9 0 .0 1 7 3 .0 8 0 . 0

Huaber of i te r a t io n s

Figure 5.23 Detected edges and annealing process of vertical step image using
5 cost factors of the ACF. The weights were: wc=0.75, wd=2.0,
^e==̂ ,®> Wf~3 .0 , and w^=6.25. (Figure 5.4 shows the results using
6 cost factors).

I

790.0 . ».' -a., lt^ w o t7, t m, t
Nu*t»r of i te r a t io n s

Figwe 5.24 Detected edges end annealing process of rings image (SN R=I 0)
osmg 5 cost factors of the A CF. The weights were; w =0 J
* d f ' ° ’ w'~ 1 0 > wr=3.0, and w,=6.5. (Fignre 5.10 shows the
results using 6 cost factors).

182

V l M 2 3 .0 0 9 0 .0 0 7 ? M lo o ! o 1 2 5 .0 1 5 0 .0 1 7 9 .0 0 8 . 0

Number o f i t e r t t io n s

Figure 5.25 Detected edges and annealing process of rings image
(SNR=0.574) using 5 cost factors of the ACF. The weights
were: wc=0,5, wd=2.0, we=1.0, wf=3.0, and wt=6.5. (Figure 5.11
shows the results using 6 cost factors).

Number of i te ra t io n s

Figure 546 Detected edges and annealing process of house image using 5 cost
factors of the ACF. The weights were: wc=0.75, wd=2.0
we=1.0, wf=3.0, and wt=6.25. (Figure 5.17 shows the results’
using 6 cost factors).

184

Figure 5.27 Detected edges and annealing process of airport image using 5
cost factors of the ACF. The weights were: wc=0.5, wd=2.0,
we=1.0, wf=3.0, and wt=6.5. (Figure 5.18 shows the results using
6 cost factors).

185

m m i m

" 7 :■

9100.00 -

WOO .00 -

•TOO.00 *

« 00.00 A

g « 9 0 .0 0 ■
CJ

•100 .00 -

TMO .00

T300.00

Fi6' r e 5 '2 8 ; ^
* ' - 1 0 J lT o ^ •»*«:
V ' ° ’ V 0: aT W,=4-81- <Fif!ure 5.21 shows the resultsusing 6 cost factors).

186

Figure 5.29 Detected edges and annealing process of texture box image using
5 cost factors of the ACF. The weights were: wc=0.75, wd=2.0,

wf=4.0, and wt=8.25. (Figure 5.22 shows the results
using 6 cost factors).

only slightly visible. Depending on the test image used, this alteration may
improvei or degrade detection performance.

5.7 Sum m ary

We have shown examples of the detection of edges using both the CGF
and ACF^ approaches. Comparison of the detection performance has been
made w.th four other recent edge detection techniques: derivative or Gaussian,
Laplaciap of Gaussian, facet model, and Sequential Edge Linking. Both real
and artificial images were used in evaluating the detection performance. Based
"" t^ rattZ gure ° f meritVit has been show that the detected edges of both
the CCF and ACF techniques that are at least of comparable quality with
Gtner current techniques.

For t te ACF approach, we have shown that all detected edges are thin,
provided that the weight W t is properly selected based on Propositions 3.15, 4.1
and 4.2. We have also demonstrated the usefulness of the cost factor for
ragmentation in linking together fragmented edges, while at the same time

suppressing short sporadic edges. This approach to edge detection is flexible in
the sense that it allows for the detection of many different types of edges. In
particular, we have shown examples of how the dissimilarity measure for the

ty p e s '1101100 Can be defined to detect texture edges or other specific edge

CHAPTER 6
SUMMARY AND CONCLUSIONS

6.1 S um m ary o f R esu lts

The main CDlpiasis <,f lhis TOrk been to cast edge detection as a
problem m cost minimisation. We have achieved this by the formulation of
two cost functions that evaluate the quality of edge configurations. The first is
a comparative cost function (CCF), which is a linear sum of weighted cost
factors. I t is heuristic in nature and can be applied only to pairs of similar edge
configurations. It measures the relative quality between the configurations. The
detection of edges IS accomplished by a a heuristic iterative search algorithm
which uses the CCF to evaluate edge quality.

The second cost function is the absolute cost function (ACF)1 which is also
a linear sum of weighted cost factors. The cost factors capture desirable
characteristics of edges such as accuracy in localisation, thinness, and
W te n m ty ^ d g es are detected by finding the edge configurations that minimise
the A CF. We have analysed the function in terms of the characteristics of the
edges in minimum cost configurations. These characteristics are directly
dependent of the associated weight of each cost factor. Through the analysis of
the ACF, we have provided guidelines on the choice of weights to achieve
certain characteristics of the detected edges.

Minimizing the ACF is accomplished by the use of Simulated Annealing.
Specifically, we have developed a set of strategies for generating next states for

e annealing process. The method of generating next states allows the
* * & ' f ? * * ' * bc cxcZulcd ^ to parallel. We have also stated ah
^ im a te of Uie upper bound on the maximum cup depth of the cost function.
Thia bound is useful in the design of an efficient temperature schedule for the
annealing process.

j ®*Pfnmental results are shown which verify the usefulness of the CCF
an ACF techniques for edge detection. In comparison, the ACF technique
produces better edges than the CCF or other current detection technique* A
major difficulty with the annealing process is the large amount of computation

189

time required to minimize the ACF.

6.2 Suggestions for Further Work

Minimizing the absolute cost function is a novel approach to edge
detection. Its usefulness has been both theoretically and experimentally
justified. The following is a brief list of further research that could be
undertaken in pursuit of this approach to edge detection.

(1) The approach is capable of detecting various kinds of edges, provided that
a suitable measure of dissimilarity fa(Rl,R2) can be defined. We could
investigate the numerous possible ways of defining fa(Rl,R2), and show
how it can be applied to detect different edge types in real world
situations.

(2) In this report, the basis set of edge structures for use in dissim ilarity
enhancement was constrained to be thin edge structures of 3 pixels.
Investigation could be made into the use of other basis sets, possibly
comprised of larger edge structures. This investigation should be
performed in conjunction with (I) above.

(3) More experiments with Simulated Annealing could be undertaken. Five
areas of possible investigation are listed below.
(i) Choice, of the probabilities Pi as given in Equation (4.21). These

probabilities govern the frequency each strategy of generating next
states is used.

(U) Alternate methods of generating next states.
(Hi) Alternate temperature schedules. The reference [63] could be

consulted.

(iv) Use of rapid cooling and different initial states.
(v) Parallel implementation.

(4) It is not apparent that Simulated Annealing is the best algorithm for
minimizing the absolute cost function. Other minimization techniques
could be investigated.

(5) The investigation of how a priori information can be best incorporated
into the cost function. This can be achieved either by direct incorporation
into the dissimilarity measure fa(Rl,R2), or by the inclusion of additional
cost factors.

190

(6) The use of additional cost factors to capture desirable edge characteristics
tHat nave not already been mentioned.

REFERENCES

191

REFERENCES

M. Brady, “Computational approaches to image understanding ”
C o m p u t in g S u r v e y s , vol. 14, No. I, pp. 3-71, March 1982. g’

P. J. Besl and R. C. Jain, “ Three-dimensional object recognition ”
C p rn p u tx n g S u r v e y s , vol. 17, No. I, pp. 75-145, March 1985.

jT r ^ h i> avis,^nd A- Mitiche, “Edge detection in textures," Computer
GraphtCS and Image Processing, vol. 12, pp. 25-39, 1980.

A c a i m f / p r ^ i m , D < sita lP il: tu rc P ^ o s s in g . New York:

««IVDaV1SD <A SUr-Vey Ofl edSe detection techniques,” C o m p u te r G r a p h ic s
a n d I m a g e P r o c e s s in g , vol. 4, pp. 248-270, 1975. V

^ W ° ^ 1 " d T- ^ Pogg50’ '!cS edge detection,” I E E E T r a n s . P a t t e n
A n a l . M a c h in e In te l l ig e n c e , vol. PAMI-8, No. 2, pp. 147-163, March 1986.

T. Poggio, “Early vision: From computational structure to algorithms
and parallel hardware,” C o m p u te r V is io n , G r a p h ic s , a n d Im e Z
P r o c e s s in g , vol. 31, pp. 139-155, 1985.

F. M. Dickey and K. S. Shanmugam, “Optimum edge detection filter,”
A ppl Opt., vol. 16 no. I, pp. 145-148, Jan. 1977.

J. Canny, “A computational approach to edge detection,” I E E E T r a n s
Intelligence, vol. PAMI-8, No. 6, pp. &79~m,

[11] D. Marr and E Hildreth, “Theory of edge detection,” P r o c . R o y a l S o c .
L o n d o n , vol. B 207, pp. 187-217, 1980.

[12] D. Many V is io n . New York: W. H. Freeman and Company, 1982.

[13] M. J. Brooks, “Rationalizing edge detectors,” C o m p u te r G r a p h i c s a n d
I m a g e P r o c e s s in g , vol. 8, pp. 277-285, 1978. ■ ̂ ^ a n a

[1]

[2]

[3]

M

[5]

[6]

[7]

[8]

[9]

[10]

[M]

192

[15] R. M. Harahck, “Edge and region analysis for digital image data,”
Computer Graphics and Image Processing, vol. 12, pp. 60-73, 1980.

[16] R. M. Haralick and L. Watson, “A facet model for image data,”
Computer Graphics and Image Processing, vol. 15, pp. 113-129, 1981.

1171

[18] V. Nalwa and T. 0 . Binford, “On detecting edges,” IEEE Trans. Pattern
Anal. Machine Intelligence, vol. PAMI-8, N o.6 , pp. 699-714, November

[19] B. J . Schachter and A. Rosenfeld, “Some new methods of detecting step
eages^m^mgital^pictnres,” Communications of the ACM, vol. 21, No. 2,

[20] R. Machuca and A. L. Gilbert, “Finding edges in noisy scenes,” IEEE
irons. Pattern Anal. Machine Intelligence, vol. PAMI-3, No. I, 'pp. 103-
111, January 1981.

[21] A. Martellli, “An application of heuristic search methods to edge and
” Communications of the ACM, vol. 19, No. 2, pp. 73-

[22] G. P . Ashkar and J. W. Modestino, “The contour extraction problem
with biomedical applications,” Computer Graphics a n d Image Processing
vol, 7, pp. 331-355, 1978.

[23] P. H. Eichel and E. J. Delp, “Sequential edge detection in correlated
random fields, Proceedings of the IEEE Computer Vision and Pattern
Recognition Conference, pp. 14-21, San Francisco, June 1985.

[24] R. Nevatia and K. R. Babu, “Linear feature extraction and description ”
Computer Vtsion and Image Processing, vol. 13, pp. 257-269, 1980. *

[25] A. Rosenfeld, Image Modeling. New York: Academic Press, 1981.

[26] .A, Rosenfeld, “Iterative methods in image processing,” Pattern
Recognition, vol. 10, pp. 181-187, Pergamon Press Ltd., 1978.

f2]̂ S. Ullman,yRelaxation and constrained optimization by local processes,”
Computer Graphics and Image Processing, vol. 10, pp. 115-125, 1979.

M

[29]

[30]

[311

[32]

[33]

[34]

Graph Thtorv " M

:̂ h l ? &dT n i0n, * S^ e Iitz’ Combinatorial Optimization:
Han in t lOS^ C°mplexity- Englewood Cliffs, New Jersey:; Prentice-

J . Hammersley and D. C. Handscomb, Monte Carlo Methods.
Ij0Odon: London: Methuen, 1964.

N. MetropoHs A. W. Rosenbluth, M, N. Rosenbluthj A. H. Teller, and E.
Teller, Equation of state calculations by fast computing machines," The
Journal of Chemical Physics, vol. 21, No. 6, pp. 1087-1092, June 1953,

p ; Thompson, Mathematical Statistical Mechanics.
Macmillan Company, 1972. New York:

[33]

[36]

[37]

[38]

[39]

[40]

L Fisher, “Applications ° f the Monte Carlo method in statistical
physics, Soviet Physics Uspekht, vol. 2, No. 6, pp. 783-1012, June 1960.

:S w ,^ S S atrick’ ,?■ ? 'o ̂ elatt- M' P ' VeccU, “Optimization by simulated annealing,” Science, vol. 220, No. 4598, pp. 671-680, 13 May

™ M er“y,A “TJ,c™ody?amical approach to the traveling salesman
problem: An eflcient simulation algorithm,” Journal of Optimization
lheory and Applications, vol. 45, No. I, pp. 41-51, January 1985.

C. C Skiscim and B. L. Golden, “Optimization by simulated annealing:
f lHarY compubabional study for the TSP,” in Proceedings of the
1983 Winter Simulation Conference, IEEE, 1983, pp. 523-535.

S* Kirkpatrick, “Global wiring by simulated
annealing, IEEE Transactions on Computer-Aided Design,vol. CAD-2
No. 4, pp. 215-222, October 1983. ’ ’

^ r ^ io ? 1i 3amal,i^ ‘ A: Hemacbandra, I. Shperling, and V. K. Wei, “Using
— e4 aMneI ing ^ de^ f l ^ood codes>” IEEE Trans: Inform. Theory, vol. IT-33, No. I, pp. 116-123, January 1987.

[41] D. B. Paul, “Training of HMM recognizers by simulated annealing,” in
Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. I, 1985, pp. 13-16.

[42] P. Carnevali, L. Coletti, and S. Patarnello, “Image processing by
simulated annealing,” I B M J. R e s . D evelop ., vol. 29, No. 6, pp. 569-579,
November 1985. ’

[43] W. E. Smith, H. H. Barrett, and R. G. Paxman, “Reconstruction of
objects from coded images by simulated annealing,” O ptics L e tte rs , vol.
8, No. 4, pp. 199-201, April 1983.

[44] H- Fleisher, J. Giraldi, D. B. Martin, R. L. Phoenix, and M. A. Tavel,
“Simulated annealing as a tool for logic optimization in a cad
environment,” in IE E E In te r n a tio n a l C on ference on C o m p u ter-A id ed
D esig n , 1985, pp. 203-205.

[45] E. Cinlar, In tro d u c tio n to S to ch a stic P rocesses. Englewood Cliffs, New
■.".■Jersey:; Prentice-Hall, Inc., 1975.

[46] D. L. Isaacson and Richard W. Madsen, M arkov C hains and A p p lica tio n s .
New York: John Wiley and Sons, 1975.

[47] M. Iosifescu, F in ite M arkov P ro cesses an d T h e ir A p p lica tio n s . New
York: John Wiley and Sons, 1979.

[48] E. Wong and B. Hajek, S to ch a stic P ro cesses in E n g in ee r in g S ys te m s .
New York: Springer-Verlag, 1985.

[49] F. Romeo and Alberto Sangiovanni-Vincentelli, “Probabilistic hill
climbing algorithms: Properties and applications,” in 1985 Chapel Hill
C on ference on V LSI, 1985, pp. 393-417.

[50] F. Romeo, A. Sangiovanni-Vincentelli, and C. Sechen, “Research on
simulated annealing at Berkeley,” in P roceed ings o f the IE E E
In te rn a tio n a l C on ference on C om p u ter D esign: V L S I in C o m pu ters , 1984
pp. 652-657. ’

[51] M- Lundy and A. Mees, “Convergence of an annealing algorithm,”
M a th e m a tic a l P ro g ra m m in g , vol. 34, pp. 111-124, 1986.

[52] S. Geman and D, Geman, “Stochastic relaxation, Gibbs distributions, and
the bayesian restoration of images,” IE E E T rans. P a tte r n A n a l. M ach in e
In te llig en ce , vol. PAMI-6, No. 6, pp. 721-741, November 1984.

[53] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, “Convergence and
finite-time behavior of simulated annealing,” in P roceed in g s o f 2 1 th

195

Conference on Decision and, Control, 1085, pp. 761-767.

N) S r iflr ite W ° S “ d ^ ert? ^ew anni-V m centelli, '‘Convergence
U 1 ppJ tJm ?!, S simulated annealing,” A d v . A p p L P r o b , vol.

|SSI L f m i S l i ? ” “ d I ' K- Iifitter' “^ a lysis of Simulated annealing for
C o Z o f p T i I? ^ 0eeJrd m I s o f ^ th C on ference on D e e is io n a n d Control, Ft. Lauderdale, FL., December 1985, pp. 779-786.

[56] B. Gidas, “Nonstationary markov chains and convergence of the
73^1?l,1?985SO^lthm,” J°Urnal of statisticaI Physics, vol. 39, Nos. 1/2, pp,

[57] B. Hajek, “A tutorial survey of theory and applications of simulated
F f L a S d , ? v T ' ^ din9sU0f24th c ^h ro n ce on Decision and r t. Lauderdale, FL., December 1985, pp. 755-760.

{58] On,HT k’ pG00liD! sc^edules for 0Ptimal annealing,” M a th e m a tic s o f
O pera tions R esearch , vol. 13 No.2, pp. 311-329, May 1988. ■

|5#1 M o r p h o lo s , . New York:

[60] W. Pratt, D ig ita l Im age P rocessing . New York: Wiley, 1978

[61] I. Abdou and W. Pratt, “Quantitative design and evaluation of
' S t m ejlM j y m ^ holdillg edge detectors,” P r ° c - o f I E E E , vol. 67, pp.

1621 t o h e r a t '” i f f F jT lloseiIfeld' ““ ge evaluation using local edge

s ^ x EEE1nS f r s ^ n °n* csiernei^ vo1-

I63J S ; / 'a MVTaf - Laarh°T“ “ d 'B- H. Aarts1 S im u la t e d A n n e a l in g : T h e o r y
1887 ' Dordr* ht’ HoIla"d: D- Reidel Publishing C om p ly!

/

	Purdue University
	Purdue e-Pubs
	12-1-1988

	Edge Detection by Cost Minimization
	Hin Leong Tan
	Edward J. Delp

	tmp.1542052450.pdf.4tJd8

