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ABSTRACT

‘Edge detéction is cast as a problem in cdst minimization. This is achieved
by the formulation of two cost functions which evaluate the quality of edge
conﬁguratibns. ‘The first is a comparative cost function (CCF), which is a
l‘inear, sum of weighted cost factors. Tt is heuristic in nature and can be applied |
‘only to pairs of sim‘ilar: edge configurations. It measures the relative quality
be’tween the configurations. The detection of edges is accorﬁplished by '%1
heuristic iterative search algorithm which uses the CCF to evaluate edge qual- |
ity. |

The second cost function is the absolute cost function (ACF ), which is
also iab linear sum of weighted cost factors. The cost factors capture desirable
chafacteristics of edges such as accuracy in localization, thinness, and con-
tinuity. Evdges are detected by ﬁnding the edge configurations that minimize
the ACF. We have anélyzed the fﬁn,ction in terms of the characteristics of the
edges in minimum cost conﬁguratidns. These characteristics are diréctly
dependent of the associated weight of each cost factor. Through the analysis
of the ACF, we provide guidelines on the choice of weights to achieve certain

characteristics of the detected edges.

Minimizing the ACF is accomplished by the use of Simulated Annealing,
We have developed a set of strategies for generating next states for the anneal-
ing process. The method of generating next states allows the annealing process-

to be executed largely in parallel.
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Experiméntal results are shown which verify the usefulness of the CCF
and ACF techniques for edge detection. In comparison, the ACF technique

produces better edges than the CCF or other current detection techniques.



'CHAPTER 1
INTRODUCTION

1.1 Overview of Edge Detection

4 The detection of edges in an image is an important task in 1mage
process1ng Its importance cannot be over-emphasized as it is often the front
end processing stage in object reconstruction and i image understanding systems

-{1,2]; the accuracy in which this task can be performed is a crucial factor i in~

determlnlng the overall system performance. Edge detection is sometimes
viewed .as the dual of image segmentation; edges are boundarles between
regions that have 31gn1ﬁcantly different characteristics. The measure of
difference in characteristics may be based on texture involving statistical [3] or
‘structural properties in the gray levels, or they may be based on changes in th’

image 1nten81ty profile of the scene. A great deal of literature has been ertten
on edge detection ( see [4-6] for an overview) and the majority of these have -
concentrated on detecting edges that are caused by changes in the image
1nten51ty proﬁle They have defined edges to be located at points of intensity
dlscontlnulty in the image and have traditionally defined three categories of
ideal edges; these are the stép, ramp and roof edges as shown in Figure 1.1.

Detection algorithms based on intensity discontinuity usually result in
estimating the degree of slope in the 1nten31ty profile at each pomt in the
| image.

The classwal edge detectors emphasize the use of difference operators
which are the digital approximations to the derivative operators in the
continuous domain. A major difficulty with differentiation is that it is not,‘
robust with respect to noise and the end result of applying difference operators
to real i images inevitably produce a high degree of false and fragmented edges,
Torre and Poggio [7, 8] showed that differentiation is an ill-posed problem (in
the sense of Hadmard) and that it can be transformed to a well-posed problem
by applylng regularizing filters to the 1mage prior to differentiation. The
.regularlzmg filters are essentially low pass filters that minimize a given
stablhzmg functlonal There is a good 1ntu1t1ve basis for this since low pass



Figure 1.1. Examples of intensity edges. (a) Step edge. (b) Ramp edge. (c)
' Roof edge.



. ,ﬁlterlng essentlally suppresses hlgh frequency noise in 1mages, and will tend to
produce better edges at the dlﬂerentlatlon stage. - B

_ Optlmal ﬁlterlng technlques ‘have been used in the deslgn of ﬁlters for
»edge detection. chkey and. Shanmugam (9] defined an edge to be a step
v_dlSCOIltlIlUlty and showed that the ideal bandlimited filter to optlmally localize
its response about the edge is given by a prolate spheroidal wave function.
Canny. [10] approached the problem of detecting edges by de51gn1ng one
,dlmensmnal optimal filters that satisfy a set of performance cr1ter1a The :
optlmal filter was then approxlmated by the first. derlvatlve of a Gausslan -

ffunctlon ‘It was implemented by convolvmg the 1mage with a Gausslan. :

:'operator and then finding the gradient of the smoothed i image. Instead of the
'gradlent Marr and Hildreth [11] used a rotationally invariant second derlvatlve‘
,operator, the Laplac1an, on Gaussian smoothed images, The edges were found ‘

by locating the zero crossings in the output of the V2G operator. A detalled a
- vdlscuss1on of the motlvatlon for using the V2G operator is given by Marr [12] |

"Other approaches ‘have used surface- fitting techmques to find changes in

'-the image intensity profile. These techniques are based on the use of various :
sets of bas1s functions to describe the shape of the intensity surface. Eachr ’

'basxs functlon has an associated weight ‘and the goal of surface ﬁttlng is to -
»estxmate ‘the weight values such that the sum of the weighted basis functlons .
produce a minimal error analytic description of the intensity surface of the ,
image. The presence of edges is based on the obtained description.. Some of the.
classical d1g1tal derivative operators are based on derivatives of best surface fit
models- [13] ‘Hueckel [14] fitted ideal step edges to the image: 1ntens1ty and

: "m1n1m1zed the error of fitting by using a set of 8 basis functions: defined on a o

“circular disk. Haralick [15-17] used a model 1n which he. ﬁtted polynomlal
surfaces over small neighborhoods of each pixel, and derived expressions for the
dlrectlonal second derivative based on the polynomial coefficients., The pixel at
the center of the fitted neighborhood was declared to be an edge if a negatively

sloped zero crossing of the second derivative (taken in the direction of the ‘

gradient from' the pixel center) is found within the plxel area. Nalwa -and
- Binford [18] looked for significant step edges by fitting one dlmenslonal
' hyperbollc tangent functlons over every pos51ble fixed square nelghborhood in
" the image.. ' : ' ‘

_ Other approaches to edge: detectlon include the use of moment operators:

[19 20] However, these were shown to be essentially equlvalent to the standard -
gradient’ operators. Sequential techniques for contour trac1ng or  edge
»l1nk1ng[21 23] have been used Such technlques usually 1nvolve trac1ng along a .



_”path in an 1mage in search of thin contlnuous edges. They have been shown to
_ be fairly insensitive to noise. Nevatia and Babu [24] extracted linear features
in an image by: convolving the image with masks corresponding to ideal step
edges i in different directions. The output was then thresholded and thlnned and
. approx1mated by piecewise hnear segments.

1 2 Some Recent Technlques in Edge Detectlon

We now describe in more detail four of the more recent approaches to
edge detection. They are samples from the optimal filtering, surface ﬁttlng»
and sequentlal edge detection technlques mentloned above. .

, Derlvatlve of Gaussian

The derivative of Gaussian operator [10], denoted by VG has been
proposed as an approximation to the optimal filter for detecting : 1deal step
edges. The optimality is based on a set of three performance criteria: (1) goOd‘ '
detectlon, (2) good localization, and (3) single response to an edge. _This
 method of detectlng edges involve smoothlng the image w1th a Gauss1an
' functlon

: Xz' 4 y?
207

where kis a normahzatlon constant usually chosen so that all the nonzero

G(x,y) ='_k exp

, . :*:Uﬂ

values of G sum to one.

.. After smoothing, the gradlent at each point in the i 1mage is computed by
taklng the partlal derlvatlves in the x and y directions;

D=V(G*T).

where * denotes convolutlon, Tis the original image, and D is the gradlent of J
the smoothed image. An edge plxel is defined to be a local maximum of the‘
B magnltude of D in the direction of the gradient. The magmtude of D represents
‘the edge strength at any edge point. Thresholdlng the edge strength is' requlredA
: to- reduce false edge points. The smoothlng parameter o is application’
dependent Larger values of o results in better noise insensitivity at the expense
of reduced i 1mage resolutlon

'La;plai:ian of Gaussian g _
‘The Laplaclan of Gauss1an is a rotatlonally invariant operator for the
detectlon of 1ntensrty edges The operator is of the form ' : ’
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‘Where kisa scalmg constant

The edges in an image are detected by convolvmg the image with the VzG
\operator, ‘and ‘then ﬁndmg the zero crossings at the output. To reduce. false
, ‘detectlon the edge pomts are often detected by thresholdlng the slope at the ,
-'zero crossmgs o S :

Facet model approa.ch

The fact model [17] approach to edge detectlon uses surface ﬁttlng '
' 'techmques to. find ideal step edges  in an image. It assumes that in. each .
: nelghborhood of the i image, the underlying intensity function f takes on the
~ parametric form of a cubic polynomlal in the row and column: coordmates, o

(r,c) ky + kor + k3c + k4r + k5rc + kgc? +

k7r + kgr? c+k9rc +k10c - L o (1 3)v' .

'A plxel is marked as an edge if, based on f, in the plxel’s nnmedlatef
nelghborhood there is a zero crossmg of the second directional derlvatlve taken

in ‘the direction of the gradient. The coefficients k; of Equatlon (1. 3) are

- estlmated by fitting the 1nten51ty data values with dlscrete orthogonal B
polynomlals The second directional derivative at pomt (r c) on the lme in the =
, dlrectlon ais glven by : : ‘ '

f = 6lkysin® o + kssinz'ozcos o+ kgsin acos? ‘ozb + kjgcos® ofp +

2[k4s,in2. @ + kgsin acos o + kgcos® al, l' . S (1.4)
where o D | |
p= Vit + ¢% _
If for some p, Where the magmtude of p is less than the length of the 51de |

of a pixel, f 7 (p)<o, (p)—O and f’(p)#0, then there i is a negatxvely sloped
_zero crossing, and the .center pixel of the neighborhood is marked as an edger v

pixel. To reduce false detection, the edge p1xels are detected only if the slope - |

-exceeds a certain threshold



| Sequentlal Edge Llnklng

. Eichel and Delp [23] proposed a sequentlal edge detectlon scheme called
Sequentlal Edge Linking to find intensity edges in an image. The algorlthm -
constructs a sequence of nodes (pixels) m called a path, where: :

m Mgy Myyeeesy My

. vThlS path is a candldate edge path in the lmage The path is assumed to be
modeled as a Kth order Markov chaln ‘That is, if we let ’ -

8 = mn ml-—l”"‘ 1—(K—1) ’
then assumlng mo is given,

Pr(m) Pr(ml, m2, ,mn)

= Pr( n/Sn—1)P1‘ n—l/sn—2) Prf 51/30
, “The i 1mage is modeled as a two—dlmenswnal random field. At each node-x,
- the condltlonal probablllty under the hypothes1s that it corresponds to an edge
_‘plxel is _ , '
| pl(f —y)= Pr f =y/x is an edge node).
: Slmllarly, the condltlonal probablllty under the null hypothes1s is ~
| po(f = y) Pr(f = y/ x is a random node).

The algorlthm searches for the paths that correspond to edges in the
~image based on a derived path metrlc of the form ‘

l(m)

Tmt) = 5 Pl

+}ln Pr( 1/51—1) | - - (1.5)

The first component of the path metnc is a function of the image data. It

is’ usuall}r estlmated from the output of- gradient operators on the orlglnal

~image. The second component is a measure of the a-priori probability that the

edge path proceeds in the given path direction. Using a sequential tree

_ searchlng algorlthm, the edges are detected by ﬁndlng the paths that have hlgh_ :
path metrlcs )

Desplte the tremendous amount of research that has been done in edge

detectlon, finding the edges in an image that correspond to true physical
boundarles remain a dlfﬁcult problem Part of the reason lies in the fact that .



we reall}r do not know explicitly what we are- looking for in searchrng for edges
AJthough an. edge has often been modeled as a unit step, it is a simple fact that
ideal step edges hardly ever occur in real i images. Furthermore, such a narrow

~concept of an edge ultimately restricts the applicability of the detection
algorithm.. For -instance a detection algorithm which assumes that edges are
_1deal steps are invariably ineffective in ﬁndmg roof edges or texture edges '

A second dlfﬁculty in many detection techniques is that the decision on

- ,the presence (or absence) of an edge is made without considering the local edge

‘structure in the neighborhood of the pixel. This is particularly true of non-
sequentlal detection algorithms. This is a drawback since there . is deﬁnltel}r
some information from the neighborhood edges that can be explorted in the
decision process. For instance, noise in an image causes many detection
algorithms to produce fragmented edges; an algorithm that exploits local edge
- continuity information will be able to use this to reduce the amount of
fragmentatlon Two other problems often encounted are the detection of thxck' -
edges and the detection of false sporadic edges caused by noise. Here again,
rlocal edge 1nformat10n can be used to reduce false detection and ﬁnd only thrn o
vedges ’ g

Sequentlal techmques have been effective in counterrng the problem of -
fragmentatlon and thick edges. However, computation time may be an
inhibiting . factor because of the sequential nature of the processmg
Furthermore, they are applicable mostly in contour tracing tasks where  the
scene does not contain an excessive number of edges. Since they are usuall}r _
“based on the output of feature enhancement operators, their performance is .
very much dependent on the operator used. o

1 3 Edge Detectlon by Cost Mlnlmlzatlon

We cast edge detection as a problem in cost minimization. We deﬁne a -
cost function over the domain of all possible edge configurations on a square
lattice. The edges are detected by finding the configuration that minimizes this
function. While most of the other detection techniques previously mentioned
can also be viewed as some form of cost minimization, this approach is unique
‘in the way the cost function is defined. The function not only uses information
from image data, but it also exploits information from local edge structure. It
takes the form of a linear combination of weighted cost factors. These cost:
factors capture the desirable characteristics of good edges such as edge
thmness, continuity and well localization. By appropriately adJustlng the .
Werghts of the cost factors, we can selectively emphasme the relatwe""



1mportance of the different edge characterlstlcs in the detection process.

There has been little attempt to formulate the problem of edge detectlon
as one of cost minimization where the function is dependent on edge structure.
| By this we mean that the function takes into account not only the: pothlse :
presence of edges in an image, but also the local shape and contmulty aspects
of the edge. Two major difficulties arise in such an approach to edge detectlon
The first is in the difficulty of defining a suitable cost function for edges The
“second is that the minimization of such a function inevitably results in one
that belongs,to the class of non-deterministic polynomial time complete (NP-'
complete) problems. The search space for the minimum cost solution is
extremely large as the number of possible solutions is equal to 2K, where K is

the number of pixels in the image. ‘

There are a number of advantages of using the cost minimization
approach described in this report. The first is that it assumes no preconceived
concept of an edge except that it is a boundary separating dissimilar regions. -
Hence the approach is flexible in terms of being able to detect various types of
edges Second, it uses edge structure information such as edge. continuity and
: thlnness, and consequently the algorithm is more capable of detectlng‘ edge_s
that are well localized, continuous and thin. Also, it will be seen that the
- algorithm has edge linking capabilities. Third, unlike sequential technlques, the '
detectlon algorlthm can be implemented largely in parallel. ‘ « o

I .,C}hapter 2, we present the first cost minimization approach‘. to_det_e'ct
'edges based on a comparative cost function. This function is a heuristic cost
, function for evaluating edges: In Chapter 3, we present a second approach'
based on an absolute cost function. This a well defined function over the set of
all pos51ble edge configurations for an image. We will present a ‘mathematical
descrlptlon of edges and analyze the characteristics of edges that will be
produced by minimizing this function. In Chapter 4, we will - descr1be:
Simulated Arnnealing and show how it can be used to find low cost edge
‘conﬁgur’a‘tiOns for an image. In Chapter 5, we present experimental results of _
the application of both the comparative cost function and absolute cost
functlon approaches to edge detection. Finally, 1n Chapter 6, we conclude byf'
llstmg several potential areas of further research -



: CHAPTER 2 o
A COMPARATIVE COST FUNCTION APPROACH
' ~TO EDGE DETECTION '

2.1 Introductlon

The maln obJectlve of this Work is to formulate edge detectlon as a\ o

problem in cost minimization. We Wlll present two approaches to. -the

formulatlon The first approach uses a comparative cost function to evaluate o

- the relative quality of pairs of similar-edge conﬁguratlons It is heur1st1c 1n"
nature and the functlon can only be applied to edge conﬁguratlons that are
'almost 1dent1cal In contrast to this, the second approach uses an absolute cost‘ ;
, -‘functlon Wthh can evaluate the relative quahty of any pair of dlﬁerent edge
_ conﬁguratlons In. th1s chapter, we will present the comparatlve cost approach

‘and descrlbe an iterative algorithm to find edges in an image.. We Wlll also

. dlscuss the 51mllar1t1es and d1ssrm11ar1t1es of this algorlthm w1th relaxatlon

_technlques

' Central to both approaches is the formulatlon of a cost funct1on to

,evaluate edges. In order to accomphsh this, we first have to. specify what we AR

vmean by an edge. Unfortunately, the concept of an edge is a d1fﬁcult one to
“define preclsely, in the next sectlon, we will present our concept of an edge in
order to establlsh common ground for dlscussmg edge detectlon , '

2.2 Concept of An Edge

A preclse not1on of an edge is crucial to the formulat1on of a cost functlon“f '

- for ‘evaluating edges. However, it is a difficult task to explicitly define Whatl, -

constitutes an edge in an image. The percept1on of edges by the human v1sual_ .
system is an extremely complex process that is strongly 1nﬂuenced by prior

- knowledge. There are a number of visual paradoxes in which an edge is clearly»' 8 : l

perceived When none physically exists (see for instance. [12] p. 51). Every
individual has ‘an intuitive notlon of what edges are, but this notion varies .
~ from person to ‘person. Indeed, if two 1nd1v1duals are given 1dent1cal images
and asked to ﬁnd the edges, they may well produce similar looklng but nom- -
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“identical edges. Cons’equentlj’, no absolute definition of an edge exists,x and the
performance of edge detection algorlthms are only as good as the1r 1nherent
assumptlon of What edges are.

‘ Edges in an unage can. generally be d1v1ded into two categorles, intensity
edges and texture edges. Intensity edges are those edges that arise from abrupt. '
changes in the intensity profile of the image. Examples of these are the step,
' v-roof afid ramp ‘edges as shown in Figure 1.1. ‘Texture edges are boundarles of
texture regions that are invariant to hghtlng conditions. A number of texture
edges are usually defined relative to image models [25]. A number of detection »
, algorlthms adopt a narrow concept of edges and are devoted to ﬁndlng only
".speclﬁc kinds of edges in an image. A weakness of such algorithms is that theyv

© . are 1nvar1ably 1neﬂ'ect1ve in detectlng edges outside of the1r scope.

For our purpose, we Wlll define an edge in a general sense so as to include-
a wide varlety of edge types. However, we will restrlct our attention to those :
: edges that are ev1dent from the image data itself and not from hlgher level )
, | human cognltlve processes. With this in mind, we deﬁne an edge to be a -
fboundary in an' image that separates two regions that have s1gn1ﬁcantly
dissimilar characterlstlcs, the regions are assumed to he on either sides of the
,edge ‘The cause of the dissimilarity may be due to a combination ‘of several
factors, such as the geometry of the object, surface reﬂectance characterlstlcs,‘
, v1ewp01nt and 1llum1nat10n The term “d1ss1m11ar1ty is used in its broadest
~ sense to include any form of difference in the structure of the: 1nten51ty values
that is evident in the image. Clearly, this definition includes both- intensity
and “‘texture edges. For instance, the well known step edge is a boundary.
separatlng two regions that are d1ss1m11ar in’ the sense that they have different
~ constant 1ntenS1ty values. In the-same vein, texture edges are boundarles-
~-separating regions hav1ng different textural propertles Lo
" In addition. to the.  fundamental property - that ‘edges separate.
nonhomogeneous regions, our “concept. of edges is also governed by certain .
structural characterlstlcs that “edges should possess. These characterlstlcs
'determlne the shape and position of the edges in an image. We hst four "
desrrable characterlstlcs that edges should have ‘ : '

| (1) Accurate locahzatlon

_ It is des1rable that an edge should lie in a spatlally accurate p051tlon,’
'partltlonlng the d1ss1mllar reglons in the best possible way. In many real .
1mages, the posrtlon of an edge may be amblguous This is often the case When .

o
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a collection of closely adJacent ‘boundaries Wlll separate the same pa1r of
dlssumlar regions. Since each boundary in the collection has a unique spatlal
'locatlon, the degree of dissimilarity between the regions on elther sides of the
boundary will vary for each boundary in consideration. We say that an edge is.
. accurately locahzed when it coincides with the boundary that results in’ ‘the
: maxunum degree of dissimilarity.

(2) Thmess

Slnce edges are boundaries, it is de31rable that they form thin' hnes in the
.1mage ‘Ideally, they should be only one plxel wide in the d1rect10n that is
‘perpendicular to the edge d1rectlon , :

(3) Contlnulty

Edges should exhibit a contlnulty that reflects the nature of the boundary
‘i ‘the physical efivironment. Most physical boundaries of interest are
: contlnuous in nature. It is desrrable that correct edges should also possess “this
property However, we do not constram edges to form closed ‘boundaries in an
image. We will use the term fragmentation to descrlbe edges that ax‘e’
’ sporadlcally d1scont1nuous ' :

: (4) Length ,
Noise and fine texture may cause the appearance of short scattered edges ,

of one or two pixels in length. We will omit from our consideration such short

edges and restrict our concept of edges to those that are at least 3 pixels long.

In practice, there is often a tradeoff between the d1ﬁ”erent des1rab1e
characterlstlcs of an edge. Due to. conﬁlctmg edge requirements, there are many
situations where it is not p0351b1e to simultaneously achieve two or more
characteristics. For instance, requiring every edge in an 1mage to be long
and continuous may result in poor localization and the appearance of false
boundaries. Hence, it is appropriate to associate a measure of importance with
~ each des1rable edge characteristic so that situations 1nvolv1ng conflicting edge
requirements may be resolved. It will be seen in the formulatlon of the
. comparatlve cost. function that the importance of each characterlstlc 1s-‘
‘ ~empha,smed by attaching a Welght to its assocrated cost factor ' ' '
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2.3 A COMPARATIVE COST FUNCTION :

‘ The goal of edge detection is to find the pixels in an image that satisfy the
, convcept of an edge as described in the previous section. The edges should be
detected with minimum error, where the error corresponds either to missing
edge pixels, or edge pixels that do not satisfy the edge criteria. To find the
edges, it is of crucial importance to use information from both local and global
edge striicture in the detection process. The reason for this is that the eriteria
for an edge includes characteristics: such as thinness, continuity and length
‘ whlch are based solely on the structural nature of the edge. These structural
properties are not evident from the image data itself; they have to be
determined by examining the structure of the edge configuration. Hence, an
~ important key to good detection is to incorporate edge structure information in
the detection process. As an example, consider the case of a fragmented edge
that is the result of noise in the image. A detection algorithm that uses
information from local edge structure will be able to improve the edge
- continuity by linking together locally disconnected edge segments. Similarly,
thick edges can be made thin by the removal of excess edge pixels. It will be '
~ seen that the comparative cost function approach to edge detectlon uses edge
structure information in the detection process.

- The comparative cost function approach to edge detection is essentially an
iterative algorithm that makes pointwise (pixel by pixel) decisions on the
presence of edges in the image. The heart of the decision making process is the
comparative cost function. The function mathematically captures the intuitive
concept of an edge. It compares two edge configurations by considering their
edge structure and the image data. The decision process consists of choosmg
the better edge configuration and 1terat1ng the procedure.

' We now introdice some notatlon which will be used i in the deﬁmtlon of
‘the’ comparatlve cost, functlon An image Gis a two—dlmensmnal array of
plxels‘ g(mn), 1 < m =< mg,, 1 = 0 =< ng,, where each pixel g(m,n) has
graj' level in the range 1 < g(m,n) < 255. For simplicity, we will assume that
the images are square with mp,, enmax N. Similarly, we define an edge
conﬁguratlon S; to be a two dimensional array of pixels s;(m,n),1 < m, n < N,
where each pixel takes on a blnary value 0 or 1. If s(m,n) = 1, the pixel

(m n) is called an edge pixel; otherwise it is a non—edge pixel. We. denote as S ‘
the set of all possible edge configurations on an N x N square lattice. Since
~ every 51te in the lattice can have one of two possible edge labelings, the number
of elements in Sis equal to 2N, Even for extremely small i images, th1s number
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is so large that it is 1mp0831ble to implement any exhaustive search algor1thm»
- to find the best edge configuration. The comparative cost function and search
procedure is a heurlstlc techmque for finding edge configurations accordlng to
‘the edge criteria. '

2.3.1 Valid Edge Structures B v‘

In order to define the cost function, we have to ﬁrst specify What is meant .
vby valld edge structures. Using an 8-neighbor representation, every edge pixel
‘has a maximum of 8 nelghborlng edge pixels in a 3x3 nelghborhood Valid
edge structures are defined as follows. An edge pixel that has 0 or 1 other
ne1ghbor1ng edge pixel is a valid edge structure. An edge pixel that has 2 other
: nelghborrng edge pixels is a valid edge structure if the pixels are arranged such
that the resultrng edge structure is continuous and does not turn by more than
.45 degrees. We call this a valid 2-neighbor edge structure. Figure 2.1 shows 4

“valid 2-neighbor edge structures. Figure 2.2 is an invalid edge structure smce_ e

the edge makes a 90 degree turn to the right. - Taklng into account rotatrons of
the edges in Figure 2.1, there is a total of 12 possible valid 2—ne1ghbor edge "

structures. An edge pixel that has 3 other neighboring edge pixels is a valld (3-' , -

nelghbor) edge structure if the edge pixels form one of the 8 structures shown '
in. Frgure 2.3. Although there are 56 different structures 1nvolv1ng an edge
pixel w1th 3 neighbors, only the 8 in Figure 2.3 allow for the possrbrhty that

each of. the ne1ghbor1ng edge pixels can form valid edge structures wrth other -

- 'vplxels in 1ts neighborhood. An example of this is shown in Figure 2.4. Edges-' B

w1th 4 or more nerghborlng edge pixels are defined to be invalid structures o

7 2.3.2 Region DisSimilarity k ‘
In order to find edges (or boundarles) that separate regions that are

~ dissimilar, we need to specify the regions of interest on either sides of an edge : B
This is done by first defining the position of an ideal edge with respect to a

given object. The position of this edge must be correctly defined so as to
accurately reflect the geometry and size of the object. This i is important when

high precision measurements are requlred Figure 2.5 shows a square obJect .

with a corresponding ideal edge In this case, the position of the ideal edge is
poorly defined as it does not accurately deplct the relative size of an object. We o

illustrate this fact by looklng at the image of a pair of embedded boxes ‘as

shown in Figure 2.6(a). Consider the spacing between the vertical portlons of

the edges; this - figure indicates that the distance between the- edges'
correspondlng to the vertical sides of the smaller square is 5 units, whlle the -
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Figure 2.1. Valid 2-neighbor edge structures.

F igure 2.2. An invalid edge structure.
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7 Figure' 2.3. The 8 valid 3-neighbor edge structures.
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Examples of edge structures. (a) An example of a valid 3-
neighbor edge structure. Notice that pixel l, is part of a valid 3-
neighbor structure in a 3x3 window neighborhood indicated by
the dotted lines. Pixel I, which is a neighbor of l; also forms a

- valid edge structure with its neighbors. (b) An example of an

invalid 3-neighbor edge structure. Notice in this structure that it
is not possible for the pixel at Iy or the pixel at I, to form a valid
edge structure with its neighboring edge pixels because of the.
invalid 2-ne1ghbor structure in its neighborhood.
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Figure 2.5. An example of a poorly defined ideal edge for a square.
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'Figure 2.6. Edges resulting from the definition of the ideal edge in Figure
' 2.5, (a) Edges of a pair of embedded boxes. (b) Edges of a pair of

- adjacent squares. Notice that the edge positions are either

ambiguous or the relative distance between th.evedges is incorrect.
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-'dlstance from the edge on one- 31de of the smaller square to the correspondmg o
edge of the larger square is only 4 units. This is of course incorrect as both the
- measurements should be 5 units. Figure 2. 6(b) 1llustrates another difficulty

1W1th the above definition of the ideal edge for a square. Although the dividing -
~ line between the adJacent squares is clearly defined in the image, the position

of the ideal edge is ambiguous for the vertical edge in the center. Besides these
: .»‘dlfﬁcultles, the deﬁned edge is also undesirable because it contalns 1nvahd edge o

structures at the corner regions of the square.

CA better definition of the idea] edges for a square and hexagon is shown in

Figure 2. 7 These are thin edges that satlsfy our concept of an edge. Fi 1gure b, .

2.8 shows. the corresponding edges for the embedded boxes and - the pair of

adJa.cent boxes of Flgure 2.6. Notice that these edges do not suffer from the - |

v':'dlfﬁcultles of the previous example in Figure 2.6. Based on Flgure 2.7, We _
. '}deﬁne for each valid 2-neighbor edge structure, a pair of regions on either 31des

i v'of the edge. The regions are chosen with the intuitive notlon that edges

separate regions which are non-intersecting, and that these regions lie in a close
- vicinity to the edge These regions, which shall be labeled R1 and R2 for each

- edge structure, are the regions of interest on which a d1$Slmllar1ty measure W11

be ‘applied. The 12 wvalid 2-neighbor edge structures, the (c1rcled) edge plxe }
which they are centered around and their associated regions are shown in

A, Figure 2.9. Depending on the a.pphcatlon and the specific measure of

d1s51m11ar1ty used, larger (or smaller) regions for R1 and R2 could be deﬁned : :
‘For exa.mple, the reglons of interest could be extended as shown in Flgure 2. 10 ‘

2.3.3 The Comparative Cost Functlon

' leen a pa1r of nearly identical candidate edge conﬁguratlons S and S;
~ that differ only at one pixel location l ==(m,n), we deﬁne the comparatlve cost
vfunctlon C(S,,SJ) as: o ' -

oS8 = zwk[ck(sj,z) ash] ey
- %EsjkaC;k(Si;Sr) , A -;:' | , v. (22) -
- k=1 . N _

Where 'W’kt?_'l 0 and 0=C, =1

The functlon isa welghted sum of the difference of 5 cost factors Each of h
the welght values are given by Wy. It should be noted that I is any location
. W1th1n the square array of pixels. For ease of notation, we Wlll wrlte C(SI,S ) as
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‘adjacent squares. Notice that the edges do not suffer from the "

o dlfﬁcultles of the prev1ous example in Flgure 2.6. '
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C;; or, when no confus1on occurs, 31mply as C. Also, we shall refer to the plxel
at locatlon l 51mply as pixel 1. Now, we spec1fy that ‘
C 1 ="0 = Si is a better conﬁguration '} - 2v 3

g < 0 => 'Sfis a better conﬁguration»' ( 3)

ThlS 1mphes that we try to minimize’ the sum of the welghted cost factors Ck

The motivation for making &F a welghted sum of cost factors Ck is that
‘each of the factors should, in some way, capture a desirable characteristic of -
edges: Ideally, each cost factor should affect one and only one charactenstlc S0

_ “that ‘the relative 1mportance of each can be appropriately emphas1zed by its

‘correspondmg weight wy. In practice, this is difficult to achieve as the different
.characteristics often exhibit some form of dependency on each other. For
1nstance, minimizing fragmentation may well result in poor localization and
’the appearance of false boundarles "

A 2.3 4 The Cost Factors

The square grid of an edge conﬁguratlon is vrsuallzed as an overlay on the
image; the cost factors are computed by examining the local structure of the
- edge conﬁguratlon about plxel I, and the underlylng image data. In the
followmg paragraphs, we deﬁne the value of each cost factor -Cy whlch is used
m Equatlon (2 1).. ' a ' ’

‘1) Cd Cost for region d1$Slm11ar1ty

‘ The cost for region dlss1m11ar1ty is based on a function f (Rl R2) that
‘measures how different reglon Rl is from R2. Large values of f(R1,R2)
correspond to large dissimilarity. This measure could be a simple difference of
gray. level averages in R1 and R2, or it could be a more complicated measure
based on other properties of the gray levels.. Dependlng ‘on the apphcatlon and
the features of interest in an image, there are numerous possibilities for the

- , deﬁnltlon of f (Rl R2) As previously mentioned, to find the ideal step edges i 1n‘ﬂ

an - 1mage, we could define the dissimilarity measure to be the dlfference of
constant gray levels in the regions R1 and R2. For detecting texture edges, we ,.
could deﬁne f.(R1,R2) based on statistical or structural properties of the gray
'levels in the dlfferent regions. It is clear that there is great flexibility in such an
approach to edge detection as we do not restrict the nature of the d1ss1m11ar1ty
between the nonhomogeneous regions. This is in contrast to many detection
algorlthms that assume some specrﬁc nature of edges and are devoted to
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: ﬁnding only such edges.

Non-maximal suppression is important in ensuring the ‘accurate

localization of an edge point in an image. In practically all real images, the

: dlssmnlanty measure has the tendency to enhance the points in the vicinity of
the ‘true ‘boundary in addition to enhancing the boundary 1tself This 1s
~ undesirable as a large number of false boundary points are enhanced. One
‘approach - to mitigate this tendency is to employ non-maximal suppress1on ‘

~when computing the dissimilarity. However, an undesirable side effect that

results from using non-maximal suppression is that some true boundary points
may also be suppressed together with the false points. This may increase the '
amount of fragmentation in the boundary It will be seen that the cost factor

for contlnulty will compensate for this effect by 11nk1ng together locally o

disconnected edges. ; |
In our 1mpler’nentation, f.(R1,R2) is computed as follows Let d be the'
magnitude of the d1ﬂ"erence of gray level averages in R1 and R2, i.e.,

1 1
5 g(ii) - )y g(l,J) ' (2 4)
i lRll IJERI lR2l (i,j)ER2. . o _
:Where IRl |, |R2| denotes the number of pixels in R1 and R2 respectlvely
Note that 0 = d < 255. Let m(d) be a piecewise linear function ‘that maps'd
onto “the unit interval [0,1]. We use m(d) as our measure of region -
dlss1m1lar1ty, Le., » R '

d=

rc(m,Rz) ; m(d).

Suppose | .
4 osd=oa,
' 1, ~otherwise . (2'5)

This is a p1ecew1se linear monotonic function that is comprised of a ramp'
- followed by a flat region of constant value equal to one, as shown in Figure
2.11. The parameter t,, which we shall call the threshold, is appllcatlon'
,dependent It determines the slope of the ramp. The flat - region causes’
undesirable effects when non-maximal suppression is applied to the value of -
- {(R1,R2). Smce values of d greater than 2t, are mapped to the same value, -
rank order information that is useful in the suppression process is lost. - To
av01d thls, we choose the strictly monotonic mapping function shown in Flgure
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Figure 2.12. A Striétiy monotonic mapping function.
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2.12. Tt is formed by the concatenation of 2 ramps; the first ramp rises to a
’maxrmum value of 0.9 while the second rises from 0.9 to 1. The functlon is
: spec1ﬁed by the following equatlon ' ‘

| 4 S 0=<d= 18t
: 2 o '
- m(d) = ; ! : . ' (2:6)
; 0. 9+ (d—1.8t,) ‘—_——255_1 8t , .,etherWise.-" _

The cost for region dlsSImllarlty Cq(S;,!) penalizes non-edge plxels by.
~assigning to them a cost value that is proportional to the dissimilarity at the
pixel location. If / is an edge plxel no penalty for dissimilarity is made; this is.
achieved by assigning to edge pomts a dissimilarity cost value of zero. The
cost for region dissimilarity is computed by first examining the edge structure -
of §; in alocal 3 x 3 window neighborhood centered at pixel I If the pixel at 1
is an edge pixel, we set Cy4(S;,!) = - 0. If the plxel at ! is not an edge pixel, we
proceed as follows. Observe that there are 12 p0551ble valid 2-neighbor edge
structures' that could fit in a 3 x 3 window region centered at I. The best
fitting edge structure is chosen according to the following cases: g

Case 1:' There are exactly 2 neighboring edge pixels which will form a :valid
‘ 2-ne1ghbor edge structure with an edge pixel at /. ThlS valid: structure
1s ‘the best fitting edge structure. g ‘

Case:2: - There are more than 2 neighboring edge pixels, one or more pairs of
- ~which will form valid 2-neighbor edge structures with an edge pixel

at L Amongst these valid edge structures, the one which results in the
maximum value of f.(R1, R2) is chosen as the best fitting edge |

structure.

Case 3: If the local edge structure does not satisfy cases 1 or 2 abdve, then -

' amongst the 12 p0551b1e valid 2-neighbor edge structures that could fit v

in a 3 x 3 window region centered at I, the one which results i in the

~ maximum value of f (R1, R2) is chosen as the best ﬁttlng ed_ge
structure. ' '

Next we perform non-maximal suppressmn by shifting the locatlon of the
best fitting edge structure in a direction determined by the edge structure. For
straight vertical, horizontal and diagonal edge structures, the shifting is
performed by moving the edge location by one pixel in each of the opposite
directions perpendicular to the edge. For all other edge structures, the shifting
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is done by moving the edge one location in each of the four directions: up,
down, left and right. Figure 2.13 shows how the edges are shifted for three
edge types. If the maximum value of f.(R1,R2) over the shifted edge structures
is greater than the value of f(R1,R2) for the unshifted edge structure, we set
Cd(Si,l)=0; otherwise Cy(S;,/)=f,(R1,R2) for the unshifted edge structure.

2) Cy: Cost for edge thickness.

Using an 8-neighbor representation of the edge, we define a thick edge to
be an edge structure that has multiple links between 2 or more of its edge
pixels. A thin edge is an edge that is not thick. A thick edge pixel is defined to
be an edge pixel whose presence causes multiple links between its neighboring
pixels. The cost for edge thickness is determined by considering pixe‘l‘l in edge
configuration §;. If | is a thick edge pixel, then Cy(S;,l) = 1; otherwise:
Cy(S;,!) = 0. Examples of thick edges are shown in Figure 2.14. The edge in
Figure 2.14(a) is thick because there are multiple links between several of the
edge pixels. For instance, pixel X, is connected to pixel Xz by two links; the
first is through pixels X, and X}, and the second is through pixel X3. The edge
in Figure 2.14(b) is also a thick edge because there two links between pixels X;
and Xj; the first is a direct link between the two, and the second is through
pixel X,. ' |

3) G Cost for edge continuity.

This cost factor reduces the occurrence of single mlssmg edge pixels that‘
result in a disconnected edge. C.(S;,/) is computed by examining S; in a local
5 x 5 window neighborhood centered at pixel . If pixel ! is not an edge pixel,

and there are 2 short edges less than 3 pixels each that could be connected by
| pixel / to form a thin edge that is at least 4 pixels long, we set C(S;,!) =1;
otherwise C((S;,!) =0. Examples of cost assignment for edge continuity is
shown in Figure 2.15. ‘

4) Cl Cost for edge length.

This cost factor reduces the occurrence of short edge pixels that are less
than 3 pixels long. If pixel ! is part of an edge that is less than 3 pixels long,
we set Cy(S;,/) = 1; otherwise C(S;,l) = 0.
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' Flgure 2 13. Shlftmg edge positions for non-maximal suppression. (a) Vertlcal

’edge and shifting directions. (b) and (c) are the shifted edge

‘positions of the edge in (a). (d) Diagonal edge and shifting

directions. (e) and (f) are the shifted edge positions of the edge in -

~ (d). (g) An edge that turns by 45 degrees (h) to (k) a‘g’re the four
- shifted edge p051t10ns SR
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Figure 2.14. Thick edges. (2) Thick edge of 5 pixels. (b) Thick edge of 3 pixels.
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| 5) Ce: Cost for number of edge pixels.

The cost factor Cq4 for reglon d1$$1m11ar1ty will favor the placement of edge
pixels at all points where the measure of dissimilarity f(R1,R2) is non-zero.
~ This causes an excessive number of edges to be detected. To suppress this, we

assign a cost for each additional edge plxel detected. If p1xel l is an edge pixel,
we set Ce(S;;!) = 1; otherwise C(S;,1) = 0. ‘ : '

The comparatlve cost function is a weighted sum of the above cost
factors. It should be noted that the cost factor Gy uses both i image data and
edge structure 1nformatlon, while C,, C,, G and C; uses only edge structure
1nformatlon The utlhzatlon of this functlon to detect edges is based on a
heur1st1c search procedure which is the subJect of the followmg sectlon

2 4 A HEURISTIC SEARCH ALGORITHM

~In ‘this- section, we describe an iterative algorithm that uses the
comparatlve cost function to find a good edge configuration for the i image. As.
~ previously described in Section 2.3.3, the cost function compares ‘two very

- similar edge conﬁguratlons and produces a value that indicates which: of the

conﬁguratlons is better. To use this function, we will need some means of
_generating new conﬁguratlons The method of generating a new conﬁguratlon ‘
is to take the’ prev1ous best configuration and complement the edge label of one
of its N'x N pixels. Clearly, there are a possible of N? new conﬁguratlons that
~can be- generated from- the prev1ous best configuration. ‘Basically, the‘
' algorlthm begins by selecting any arbitrary edge conﬁguratmn and calhng it
the best. It then recurs1vely generates new conﬁguratlons that are compared A
~ with the prev1ous best by means of the cost function. The algorlthm is as

follows: : ’

(1) Begm by selectlng any arb1trary edge conﬁguratlon S; and any locatlon l
| -v'--—(m n), where 1 < m,n < N.. ‘ - )

(2) Y:Deﬁne a new edge conﬁguratlon 5; such that it is identical to. S except at
’ i':plxel [ (Where it is the complement) - '

3t> | Compute C.: and select the better of the two configurations accordlng to:
N ij

c > 0 => 5 is a'better configuration
il <o => S; is a better configuration

- Label' the selected conﬁguration S;.
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(4) Pick a new locat1on l —(m n), where 1 < m;p < N
(5) If stopplng criterion is not satisfied, Repeat from step (2)

The algor1thm terminates either when no . better configuration can be
found after every possible new configuration has been tried, or when a suitable
stopping criterion is satisfied. A simple stopplng criterion is based on the
‘number of better configurations found after K iterations. If this number. does

- not exceed a certain minimum, the algor1thm stops. Each new locatlon ) may

~ be selected either in a deterministic or random manner; comparisons have been
made and experlmentally it has been found to have little. effect on the final
result. However, it is essential that every possible pixel location be selected at
least once. Consequently, it has been found to be computationally more
'efﬁc1ent to choose new values of [ by sequent1ally stepping through the image
~in a raster scan fashion. When this is. done, typically 3 to 5 iterations through
~ the i image is sufﬁc1ent for the algor1thm to converge according to the stopplng
cr1ter10n '

The algorlthm descrlbed above begins with a random edge conﬁguratlon
.and attempts to change the edge labeling at every pixel in a sequential manner
The comparative cost function is used to decide if the change is successful
When viewed in this way, the algorithm is a sequential pothISe edge
detection _process that uses information from image data, 1nformat10n from.
‘local edge structure, and information from past dec151ons at nelghborlng pixels..

2.4.1 Selecting the weights

Many edge detection algorithms do not wuse local edge structure
 information in the detect1on process. Those that do can usually be classified as
some ‘type of curve or boundary tracing technique. The comparative cost
function approach to finding edges is unique in the way it attempts to
incorporate edge structure information in the detection process; the edge
information is captured in the cost factors. By altering the weights w
~ associated with the cost factors, we can change the amount of emphaSJS placed
on each factor Consider the situation where all the weights are z€ero except for
wq and w,. The edge detection process then becomes sxmllar to the
’ stralghtforward thresholdmg approach to edge detection; 1nformat10n about
local edge structure, such as thinness, continuity and length is not used. It -
- should be noted that scaling all the weights by a constant Wlll produce the
same results as using the unscaled we1ghts :
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For our implementation, we used the values wy = 2.0, w, = 1.1, Wc = '1.1,‘
w, = 1.0, and w; = 1.1. First, let us just consider the cost factors for region
dissimilarity and number of edge pixels. When we use the weight values of 2.0
and 1.0 for wy and w, respectiir.ely, edgeé pixels will be detected at all points
~where Cg = 0.5. However, when we take into consideration all 5 cost fa.ctors‘,
and their associated Welghts, the interaction of the different factors will result
in’ several constraints on the detection process.  First, thick edges ‘will be
disallowed; even if Cy=1 for a thick edge pixel at location I, the weight values
“of 1.1 and 1.0 for w; and w,, respectively, will always favor the removal of the
edge pixel. Similarly, fragmentation will be reduced as edges that are separated
- by only one pixel will be connected together by the weight value of 1.1 for w,.
Since the cost factor C; removes short edges, the Welght value of 1.1 for W will
ensure that edges that are less than 3 pixels long will not be detected. When
large values (greater than 0.5 approximately) for wi are used, it is necessary to. |
set ‘w, initially to zero for the first several iterations, and then to its: correct
value for the remaining iterations. This is to avoid certain undesirable local
minimum states that are possible. For instance, if the initial state contains no
: edge pixels, then a weight combination of 2.0, 1.0, 1.1 for Wd, W, Wl.
: respectlvely, will produce no edges regardless of how many iterations are ma.de .
This is because the combined value of w, and w exceeds that of wy, preventmg
: transmon to any other state from the initial state.

2.6 COMPUTING THE COST

Smce the comparative cost: functlon is used repetltlvely in the detectlon-
algorlthm, most of the computa.tlon is in determlnlng the value of CIJ From a
computatlonal sta.ndpomt, it is of major importance that this value can be
determlned in an efficient way. One approach to determine C would be to
comput‘e _each cost factor independently, and then sum the difference . as
specified in ‘Equation  (2.1). However, this is a naive approach that does not
take into’accOuﬁt the interdependence of the cost factors. For instance, an edge:
that is a valid 2-neighbor structure is thin, continuous and at least 3 pixels
long; the fact that it is a valid structure allows us to determine 3 of the 5 cost
factors 1mmed1a.tely A great deal of reduction in computation time can be
achleved by pooling together information aﬁ'ectmg each of the different factors
and organizing it in a form that will allow for efficient computation. This is
‘achieved by a decision tree structure as shown in Figure 2.16. The structure
allows for the:simultaneous computation of several cost factors by traversing
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Figure 2.16. Computation of cost factors using a decision tree.
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' the'tree from root to leaf following the relevant path. The tree is 5 levels deep.
At each node, the decision as to which branch to take is governed by
‘conditions that are assigned to each branch. These conditions are exhaustive
and mutually exclusive; traversal to the next node is made by following the
“branch where the condition is satisfied. The condltlons, which are ahbrewated :

by labels, are summarlzed as follows:

: .LABEL DESCRIPTION

T—n

Ve o
e structure with an an edge pixel at I -

"EV2

CE

13
L3

or

- The pixel at l is an edge plxel

' The pixel at [ is not an edge plxel

The total number of edge plxels T in a3x 3 nelghborhood about l -

s equal to n. This total does not 1nclude the plxel at [

j The two ne1ghbor1ng edge pixels will form a vahd 2-ne1ghbor edge

h The two nelghborlng edge pixels will not form a valid 2-ne1ghbor edge,"vv
- structure with an an edge pixel at [ :

The three nelghbonng edge plxels Wlll form a valid 3-ne1ghbor edge
s structure with an an edge pixel at [. :

The ‘three neighboring edge plxels will not form a vahd 3-ne1ghbor
edge structure with an an edge plxel at L '

Some palrs of neighboring edge plxels Wlll form a vahd 2-ne1ghbor .

edge structure W1th an edge pixel at L

i No pair of nelghbormg edge pixels will form a vahd 2-ne1ghbor edge '
B structure W1th an edge pixel at I. .

'-An edge plxel at ! will link 2 short segments, each less than 3 plxels,
“to form a th1n continuous edge segment that is at. least 4 plxels long

AAn edge plxel at | Wlll not link 2 short segments to form a thm"
contmuous edge segment that is at least 4 plxels long. ‘

The edge p1xel at [ is part of an edge that is at least 3 plxels long
' Th:e edge pixel at 1 is not part of an edge that is at least 3 pixels long.‘_

' The 3 neighboring edge pixels are either clustered together forming an

“L” shaped region in one corner of the 3x3 window, or lined up
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_straight along one of the 4 straight borders of the window.

- CT .. The 3 neighboring edge pixels are neither clustered together formmg
. an “L” shaped region in one corner of the 3x3 window, nor lined- up
f stralght along one of the 4 straight borders of the window. '

1, o This is the non-maximal suppressed value of f (R1, R2), the edge
' structure used to compute f.(R1,R2) is the one obtained by usmg case
“n” of the best fitting edge rule (discussed in Section 2.3.4).

A further reduction in computation time (by approxxmately ha.lf) is
: achleved by observing that configurations S; and S; differ only at pixel locatlon '
1, and consequently that C;; can be determined sunply by considering S;. We
need not compute Cy(8;,!) and subtract it from Ci(S;j,!); we can compute
ACk(Sl,S) directly by considering S; or S; in the neighborhood of I. The ‘
‘-4de0151on tree for this is shown in Fi igure 2. 17 This tree is similar to that shown
in Figure 2. 16; traversal from one node to the next is governed . by the
conditions assigned to each branch. The value of C;; is determined by
approprlately traversing the tree from root to leaf following the relevant path
This- tree assumes that configuration S; does not have an edge at ! while Si
‘:does 1t the opp051te is true, then C;; is determined by first computing Ci;
usmg thls tree, and then negating the result. The cost function has the

property that G;; »C ie

It has been previously mentioned in Section 2.4 that the heurlstlc search
- algorithm “can be viewed as a procedure where we sequentially try to
complement the edge labeling at every pixel location in the image. It is
important to note that each cost factor. Ck(S;,1) is only dependent on the value -
of the plxels in a neighborhood that is no larger than a 5 x 5 window about
location 1. Consequently, the decision of the edge labeling at pixel l; can be
made independently of the labeling at Iy, if I; and I, are 2 or more pixels
- apart. Hence, although the algorithm is- sequential, the processing . can ‘be
1mplemented to a large extent in parallel if the pixel locations are chosen such
that any pair are at a distance of at least 2 pixels apart. We could, for
instance, attempt to change the pixel labeling of every third pixel in a row at
every third row. For an N x N image, there are a.pproxunately N2/9 such
locations. The processing at each location can be done in parallel and the
decisions on the edge labeling can be made simultaneously. This is significant
as it results in a reduction of the number of sequential processing steps by a
factor of N? /9 -
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Figui‘e 2.17. Direct computation of ACk(Si,Sj) using a decisibn tree.
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2.6 Rela.xatlon Techmques .

Relaxatlon [4,26-28] is an iterative approach to segmentatxon that makes
’ probablllstlc decisions’ at every point in parallel at each iteration. These
decisions are then adjusted at successive iterations based on the decisions made
at past 1terat10ns In this section, we will discuss some similarities as well as
‘dissimilarities of the heurlstlc search algorithm Wlth relaxation technlques

Consider the task of classifying a set of n objects A,,..... An into m classes
Cl’;.'.v...C’m. The basic approach of probabilistic relaxation is to assign to each
~ object. Al,"a vector of probabilities le; 1 = j < m where each element cf the
- vector is indicative of the likelihood that object A; belongs to class C The
: elements of the vector are assumed to sum to one: :

Epi_j =

For each pair of class assignments, A;E C and A€ Cy, there is a quantltatlve
measure of the compatlblllty of the pair, denoted by c(i,j; h k) We assume
that c(i,j; h,k) lies in the range [-1, 1] with larger values indicating good
compatlblllty and low values indicating poor compatibility;- zero represents the

“/don’t care” situation. Based on this compatibility functlon, the probability '
vectors are altered in parallel using an iterative scheme. There are no fixed
rules as to how the vectors are altered; numerous heuristic methods exist.
Intultlvely, we would like to increase the probability Pij if the class assignment
A;€ C; is highly compatible with A € C,, and Phk is large. Conversely, we

Would like to decrease it if the assignments are mcompatlble, and py is large.

If pyy is low, we do not want to alter pjj. very much regardless of the value of
the compatlblllty function.  One possible method of updating the vector based
on this 1ntu1tlon is to use. the product

( )J? h k) phk
The updatmg process at the (r+1) iteration is given by: -

pij(1 +q) T |
pl§+1 — 3 1) , o , (2.7)

Epiﬁ(l + qiljl
j=1

where
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= 5 [ Delnbl)ph| - (28
(n—l) h =1 k=1 . S |
hs=i

Notlce that qlJ is s1mply the average over the sum of all mcrements due to
the product of ¢(i,j; h,k) and py. The denominator in the equation of pr+1
just a normallzmg constant ensuring that the elements of the vector sum to
‘one. Ideally, the goal is to iterate until every vector converges to the state
where only one of its elements is non-zero. Practically, however, this is diffcult

to achieve and the process is terminated typically after a number of iterations.

Comparing, we see that there is some resemblance of the heuristic search
téchnique with probabilistic relaxation. Both techniques are heuristic iterative
proceéses; at each iteration, new decisions are made based on past decisions.
Both are for object classification. Speciﬁcally, in the case of edge detection,
there are two classes; edge or no edge. However, there are also several distinct
differences in the two techniques. First, the heuristic search algorithm is
essentially a sequential technique where new decisions are made one objecl;
(pixél) at a time. Although it can be implemented to a large extent in parallel,
~ the technlque is essentially a sequential process. In contrast, the relaxation
technique ‘is a parallel process where all the probability vectors are altered’
simultaneously at each iteration. Second, the classification process of the
heuristic search technique is not probabilistic in nature. At each 1terat10n, firm
decls1ons are made as to whether a pixel is, or is not, an edge. This again is in
_contrast to relaxation which, for each pixel, assigns a vector of probabilities
that is incrementally adjusted at successive iterations. Third, the comparative
cost function is not equivalent to the compatibility function. In a seﬁse, the
h‘e‘ﬁristic search algorithm can be viewed as a degenerate form of relaxation
where there are only two classification classes, and the elements of the

probability vectors are binary valued, 0 or 1. The comparative cost functlon is.

then analogous to a complex ‘“‘compatibility function’ of the form

o o 1j; hysky By kgsenns hygkay ) -
where each of the 24 objects are the neighboring pixels in a 5 X 5_':Wi‘nd(v>wvl
about the object (pixel) A;. A closer examination will reveal that this function
is different. not only in form, but also in usage from the usual compatlblhty
functions in relaxation. ’ ’

“We conclude that the heuristic search algorithm is not a rela,xatlon process
.because of the fundamental differences hsted above It is an 1terat1ve process'
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which can be appropriately viewed as a heurlstlc cost mlmmlzatlon approach
to detect edges This view will be further justified by the formulation of an
absolute cost, function whlch will be described in the next chapter.

2.7 An Absolute Cost Function v _
- The comparative cost function given in Equation (2.1) is defined only for
- pairs of similar edge conﬁgurations;_it measures the relative quaity between the
configurations. This function can be modified to yield an absolute cost
function which is applicable to individual edge configurations. The resulting
cost of each configuration is indicative of its quality. One possible definition of

an absolute cost function is | , _
CS) =3 [2 W C(Si,?) } y o | (2.9)
o alll] k=1 / o S
V.Whel"e_ the cost facters C,'s are the same as those of the comparative cost
function. In this case, two configurations S; and S; can be compared by
computing the differénce in the cost values. Th1s is given by the difference

,functlon | - | o a
CAC(SS;) = C(8) — C/(s)) | - (2.10)
5 .
= 2| S w[Cx(S;!) — Cy(S;,1))] } .
all /'] k=1 e S

Notice that AC’ (Sl,S) < 0 if and only if S; is a lower cost configuration that
S;- The difference function AC’(S,,S; ) is 51m11ar in form to C(S;,S;) of Equatlon
(2.3). |
' When used in accordance with Equat1on (2.1) of the comparative cost
‘functlon, the cost factors together define a function that " "mathematically
captures the intuitive idea of an edge. However, when the same cost factors
are used in Equation (2.9) to define an absolute cost function, the result is a
function that is not consistent with our concept of an edge. In other words,
lower cost configurations may result in poorer edges. ‘This is partlcu]arly'
evident in the case of edge continuity. An example of this is illustrated in
Figure 2.18. The figure shows five hypothetical edge configurations Sy to S;. S,
contams a fragmented edge; there are three missing edge pixels Whlch, if
present would make the edge continuous. Based on Equation (2.9), the ‘total
contmulty cost for an arbltrary edge configuration S is given by:
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Sl XXX |X|X x X I X |IX [ X[ X[X|x|x]|Xx
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, Figibtilre 2.18. Continuity cost for different edgev configurations. C(S;) = 3w,.
| C81) = OCS;) = CS3) = CS,)=0. Although

~ configurations S, to S, have a lower value for continuity cost

B than Sy, it is clearly noticeable that they have a higher degreevof

“fragmentation. -
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' Accordlng to the definition of the cost for edge continuity in Sectlon 2 3.4, thls
1mplles that

Ce(So) = 3w,

The contlnuous version of S, is S;. Clearly, this edge conﬁguratlon has an
assoc1ated continuity cost C.(S;) = 0. An examination of the edge structures in
'conﬁguratlons S,y S and S4 reveals that they also have zero continuity cost;
Le., CJS,) = C.(S3) = C(Sy) = 0. However, it is clearly noticeable that
configurations S, to. S; have a higher degree of fragmentation than So-
:Consequently, we see that . the cost for continuity may not reduce‘
‘fragmentatlon when used in the manner specified by Equation (2. 9) In fact, a.s '
seen in'the above example, it has a greater tendency to increase than to
. decrease fragmentatlon ' \

A better definition of an absolute cost function W1ll be given in the next
cha.pter It takes the form of Equatlon (2.9); the cost factors are approprlately
_‘redeﬁned to capture desirable edge character1st1cs : .

2.8 Summary

‘In- th1s chapter, we have shown how edge detectlon can be cast as a
‘problem in cost minimization. We first described our concept of an edge which
~is based on criteria ‘such as. accurate localization, thinness, continuity and
length. Based on this descr1pt10n, we formulated a comparative cost function
that mathematically captures the intuitive ideas of an edge. The function uses
information from both image data and local edge structure in evaluatmg the
relative quality of pairs of edge configurations. Computatlon of the
comparative cost. function is performed efficiently by organizing the
_ information in the from of a decision tree. Edges are detected ‘using a heuristic
search algorithm based on the comparatlve cost function. The detection
process can be implemented largely in parallel. An extension of this approach
to detect edges would be to formulate an absolute cost function that assigns an
absolute cost value to any given edge conﬁguratlon The best edge
conﬁguratlon would be the one that achieves the global minimum of this cost
functlon The formulation of the absolute cost funct1on is presented in Chapter
3. l v
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CHAPTER 3
AN ABSOLUTE COST FUNCTION APPROACH
TO EDGE DETECTION .

3.1 Introductlon

In the previous chapter, we have presented a comparatlve cost functlon
that evaluates the relative quality of pairs of very similar edge conﬁguratlons
' Although falrly good results have been achieved using this" functlon, tWO
difficulties arise in its use. ‘ ) ' ‘ » ‘

First, the  comparative function = measures only relative quality.
Furthermore, the pairs of configurations that it compares are constrairied to be
almost identical, differing at only one pixel site. This is rather restrlctlve
:because for any given edge configuration, only a relatively small subset of all
possible conﬁguratlons can be used for comparison. A practical consequence of
this is. that the heurlstlc search algorithm is sometimes trapped in undeSIrable
‘local mmlmum states o ‘

Second the heurlstlc iterative search algorithm based on the comparatlve
: cost function is difficult to analyze. The goal of analysis is to determine
specific . properties or characteristics of the edges in the output of the
algorlthm For instance, we would like to know if there are any thick edges in
the output, the ‘minimum length of each edge, and how well the edges are
connected. Except for superﬁclal analysis, it is difficult to track and analyze
these characterlstlcs in the comparatlve cost function approach to edge’
detectlon v ‘ ,
A solution to the difficulties mentioned above is to modify the
-comparative cost function approach to one that uses an absolute cost functlon
which is mathematically well grounded. As the terminology suggests, it is a
" function that measures absolute instead of relative quality. The function is
applicable to individual edge configurations and the resulting cost of each
configuration is indicative of its quality; lower cost implies better edges This
chapter deals with the formulation and analysis of the absolute cost function.
From here on, we w1ll use the term cost function to refer to the absolute cost
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function. Three things are required in formulation of a cost function for
evaluating edge quality:

(1) A precise concept of an edge. o o

(2) A mathematical description of edges and their related properties.

(3) A suitable cost function which captures the above concept of an edge.

The_COncept of an edge has already been described in detail in Section 2.2
-of the previous chapter; we use the same concept as that of the comparative
cost function. We draw attention to the fact that it is not the concept of an
edge but the approach to edge detection that is different when comparing the
absolute and comparative cost function techniques. A mathematical
description of edges is essentlal as it enables us to state a precise description of
the intuitive concept of an edge. Its primary purpose is to provide a basis for
unambiguous definition and analysis of the cost function. The goal of the
formulation is to find a suitable cost function which, when minimized, will
yield edges that are consistent with the above concept of an edge. The ultimate
test of its validity is in its performance in finding good edges in an image.

3.2 A Mathematlcal Descrlptlon of Edges

The 1ntu1t1ve concept of an edge has been descrlbed in Sectlon 2.2 of the
- previous chapter. We now describe in mathematical terms the ideas presented
in the concept. Based on this description, we will be able to state the precise
deﬁnltlon of a cost function and perform a detailed analysis of edge structures

" We w1ll describe edges in terms similar to graph theoretic terms because ‘
of the close analogy between edges and planar graphs [29]. In fact, any edge
structure can be considered to be a planar graph where each vertex in the
graph corresponds to an edge plxel and each arc in the graph corresponds to
adJacent plxels in the edge structure. An example of this is shown in Figure
3.1. One approach to describe edges using graph terminology 1s to first
transform the edges into their correspondlng planar graphs. However, because
of the need to keep track of the one to one correspondence between the edge
'pixels and the vertices, it seems unnecessarily cumbersome to describe edges in
terms of planar graphs. In view of the analysis in the following sections, there’
- ‘seems to be no specific advantage in using a description based entlrely on
graphs. Instead, we will descrlbe edges in their own context, using a number of’
terms that are similar to those in graph theory. The definition of these terms

. follow closely to their graph theoretic counterparts, but they apply dlrectly to.

edge plxels and thelr corresponding edge structures.
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x

| - Figure 3.1. An edge with its correspondmg planar graph representatlon (a) '
o - An edge. (b) Planar graph representatxon of the edge. '
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© 3.2.1 Preliminary Definitions »

“In this section, we begin with some preliminary definitions of "‘imageé and
edge configurations. We will also define some basic terminology that will be
frequently used, such as neighborhood, window, connection, path and cycle.
Based on these definitions, we will state a proposition about the pixels in an
image. '

- An image G is a two-dimensional array of pixels _
G ={g(i’j) ) 1 < 1 S lma.x’ 1 - J — Jma.x }’

where each pixel g(i,j) is assumed to have gray level in the range
0 < g(i, j) = 255. For simplicity, we will also assume that the images are
square with i,; = jn.x = N. That is, the pixels occupy the sites of an N x N
uniform square lattice. ' ' ' :

An edge conﬁguration Sp is also a ﬁwo—dimensional array of pixels

{ G,)); 1=<4L,j=<N}, |
Where each -pixel takes on a binary value 0 or 1. If sy(i, j) = 1, the pixei‘
sm(i, j)is called an edge pizel; otherwxse it is a non-edge pz:cel o

A_n edge configuration can be considered to be a bmary image ‘where the
gray levels take on values of either 0 or 1. As seen in the deﬁmtlons, we will -
always denote images by uppercase letters and their pixels by the
corresponding lowercase letters. We shall denote as S, the set of all possible
edge configurations on an N x N square lattice. Since each pixel in the lattice
can have one of two possible edge labelings, and since there are N? plxels in a
configuration, the number of elements in 8 is equal to 2V, Sometimes, we will
-refer to an edge configuration S, simply as S, with the understanding that we
~are referrmg to any arbltra.ry edge configuration. The pixels of S are denoted :
by the corresponding lowercase letters s(i, §)-

As observed in the deﬁnltlon, each pixel in an image or edge configuration
is uniquely specified by the pair of indices (i, j) representing the location of its
site in the lattice. We shall denote as L, the Set of all pairs of indices for an

‘N x N lattice of sites: ' '

L={(,j); 1<ij<N}.

Definition 3.1: The neighborhood of a pixel s(i, j) €S is the set Of's pixels
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speciﬁed by:

n—j

=<1, and (m,n)#(i,j)} )

N;;(8) = {s(m,n) : l m——i, =1,

denotes the absolute value. This is the typical *“8-neighborhood”

where

representation of connectivity in images. Notice that s(i, i) € N;;(8); a pixel is
not a member of its own neighborhood. If s(m,n) € N; i(S), then s(m,n) is a
neighbor of s(i,j), and s(m,n) is said to be adjacent to s(i,j)-

It is straightforward to observe that adjacency is a symmetric relation;
s(i, j) is adjacent to s(m,n) implies that s(m,n) is adjacent to s(i, j). However,
it is not reflexive since a pixel is not a neighbor of itself and hence cannot be
adjacent to itself. When the exact location of the edge pixel s(i, j) is not of
importance, for ease of notation, we will sometimes denote s(i, j) simply as ey,

for some integer value of k.

Definition 3.2 The window Wi ;(8) is the set of 9 pixels contained in a 3 x 3
region centered at pixel s(i, j): o

n——j' = 1} . -
Fact 3.1: =~ W;;(S) = N;;(S) U s(i, j)

This is easily seen from the definition of window and neighborhood, and it is
always true that N; ;(S) C W, ;(S).

W]}J(S) = {S(m,n) :v l m—i | <1 and

A walk is a non-null sequence of edge pixels W = ey, €, €3, .... €, such that ¢; is
adjacent to ei+i forall1 =i =< k—1. The ends of the walk are e; and e, and
W is a (e; e )—walk. The origin of the walk is e;, the terminus is e, and the
internal pizels are ey,.., e,_;. The length of the walk is equal to k.

A path is a walk in which every edge pixel is distinct. Intuitively, a path is a
walk that does not intersect or merge with itself.

Two edge pixels ey, ey are connected if there is a (en, e, )—path.

Fact 3.2: Connection is an equivalence relation.
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(1) ey is connected to e} implies that ey is connected to ey.
(2) & is connected to . |
(3) ey is connected to e, which is connected to ¢ implies‘that ey is connected

“to €. SRR
.7 A collection of edge plxels M= {el, €9; «ee €} IS connectéd i for any ‘eh,
e € M, there is a (e, €, )—path i in M. '

Let Se € S be the set of all the edge pixels of edge conﬁgurat1on S. There
is a partition of S, into non—empty subsets Se, 82 ... 8 such that ey and ¢
are connected if and only if they belong to the same subset. The subsets S'
1 =i = w, are the components of S (or S;). Clearly, the components- are
connected. In Figure 3.2, we show an example of an edge configuration on a
10 x 10 lattice that contains 4 components. Notice that one of the components'

contains only one isolated pixel.

Proposition 3.1: In any connected set M, such that || M || > 1 “every edge
pixel has at least one other edge pixel in its nelghborhood : ':

Proof:. Consider any pixel e, € M; it is always connected to some other pixel-i
e, € M by an (e,, ep)—path. If the path has a length that is greater than 2, its
first internal pixel is in the neighborhood of e,. If the length is equal to 2, then
ey is in the nelghborhood of e,. - ,
O
A cycle C is a walk such that:

1) the origin and internal plxels are distinct,

2) the origin and terminus are the same,

~ 3) there is at least 1 internal pixel.

The length of a cycle is the length of the correSponding walk minus 1.

Let A be any collection of pixels. The: size of A is ‘the number of distinct edge
pixels in A, and is denoted by IA || N ’

3 2.2 Definition and Properties of Edges

_ Most of the definitions in the previous section involve edge pixels and their
associated structures. Up to this point, we have not yet specified what edges
are, and how they relate to edge pixels. In this section, we will specify what is
meant by a'nde‘dge (of S), and a segment of an edge. The term “thick” edges
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Figure 3.2, An edge conﬁguratlon on a 10><10 Iattlce Whlch contams 4
‘ - components ) } o - |

—®

Figure 3.3. An edge which contains a unique path between pixels A and B.
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has often been used without clearly deﬁning the meaning of the term thick. We
will ‘give exphc1t definitions of thick and thin edges, and state several
proposmons concermng the structure of thin edges.

Definition 3.3: An edge E isa componenf of S.

Definition 3.4: A segment of an edge E is a subset of E that is connected. -
Again referring to the example in Figure 3.2, based on Definition 3.3,
there are 4 edges in the configuration. It should be clear from this that when
_ we refer to an edge, we are always referring to a maximal collection of N
. connectedv'edge pixels. However, this collection may be just a single pi'xe'lr as in
the case when a component is comprised of only one isolated edge pixel.

According to the edge concept, the edges in an image should be thin.
Intuitively, we know what thinness means, but mathematically',‘it is a term
that is difficult to describe. As in the case of the cost factor for thickness in the
comparative cost function, we will use the idea of multiple hnks to describe
edge thickness. Consider an edge E that joins pixel A to pixel B in an image; E
contains a path from A to B. We will say that the edge is thin when this path
is unique. This is shown in Figure 3.3. However, when the path is not unique,
we say that the edge is thick. A path that is not unique implies that there
could be a collection of closely adjacent paths in E that would. join the same
-plxels A and B. This collection of closely adjacent paths form what we call
multiple links between A and B. An illustration of an edge containing multlple
links is shown in Figure 3.4. As multiple adjacent lines form a thick line, so
mu’ltipl‘e links form a thick edge. We therefore choose to describe thin edges as
edges that contain no multiple links between a.liy of its edge pixels.

Based on an 8—neighbor representation of" 'edges, an examination of edge
: structures reveals that the cycle of length three can be con51dered to be the
basic building block of multiple links. An example of this can be seen in Flgure
3.1. Notice that in the planar graph representation of the edge shown in the
figure, the middle left portion of the edge contains a triangular region which is
‘a cycle of length three. This cycle is the source of multiple links in the edge
Consequently, in the following definitions, thin edges are those that contain
none of these cycles. Flgure 3.5 shows a cycle of length three; notice that each
pixel of the cycle is multiply linked by 2 paths to the other pixels within the
same"cyde; For instance, if we represent the cycle as {e;, ey, €3, e;}, the first
path between e; and e; is ejese;, and the second path is ejes. All cycles of -
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PP x| | E:

~ Figure 3.4. ~ An example of an edge Which contains multiple links. "(a)" An
o - edge E joining pixels A and B. (b), (c) and (d) are three possible -
- paths contained in E that join»the same pixels. ' -

Figure 3.5." A cycle of length three.
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length three have a characterlstlc L shape, differing only in orientation and
position. a

Deﬁnition 38.5: An edge pixel that is not contained in any cycle which has a
length equal to three is called a thin edge pizel; otherw1se, it 1s called a thzck
edge pzzel :

‘Deﬁnltlon 3.6: An edge that contains only thin edge p1xels is called a thm_
edge; otherwise, it is called a thick edge. -

It is clear that edge plxels are either thick or thin. Slnce an edge is thlck if

'and only if it contains one or more thick edge plxels, a thick edge can be

transformed into a thin edge by the removal of the thick edge pixels. In Figure

3.6, we show several examples of thick edges, and the possible 'transformations

of these edges into thin ones. The definition of thick and thin edges also apply
to edge segments, an edge segment is thin if and only if it contains only thm

. edge pixels. |

: We now state ‘several facts and propos1t10ns concerning. cycles and the;
structure of th1n edges Whlch will be frequently used in the analyS1s of later )
sectlons ‘

Fact 3.3: If ¢ EE is contained in any cycle C of length three, then Cis
p contained i in E. : :

vThlS is a S1mple yet important observation from the fact that all the p1xels ina
cycle are connected and must belong to the same component.

: Prop051t10n 3.2: E is a thick edge if and only 1f E contains a cycle of length '
three. ‘

Proof: If E is a thick edge, then from the definition, it must contdin a thick
edge pixel which is contained in some cycle of length three. By Fact 3.3, this
cycle is contained in E. Conversely, if E contains a cycle of length three, th'en
each pixel of ‘the cycle is a th1ck edge plxel and hence by deﬁnltlon, E is-a.
thick edge. o
Ll
Proposition 3.3 If C is a cycle of length three that contains the edge pixel
sp(i, j) E Sm ; then C is completely contamed in the window Wl (8 m) '
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- Figure 3.6. Thick and thin edges. The edges on the left, (a) to (d), are thick

- edges. Those on the right, (e} to (h) are thin edges obtained by - »
- the removal of several thick edge pixels from the corresponding .
- edges on the left. ‘ ‘
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- Proof: Let the cycle be represented by C = s_(i, j), €;, €, Sm(i, j). Since C is
a walk, the edge pixels e; and e, musty be adjacent to sy(i, j), and
consequently, they must be Vcontained_ in N;;(Sp). Since Nj;(Sy) CW;;(Sn)
(by Fact 3.1), we conclude that C C Wi,‘j(sm)~ RN
" From Proposition 3.2, we conclude that one way to determine if E is a
thin edge is to look for a cycle of length three in E. If one cannot be found,
then E is a thin edge, otherwise it is a thick edge. Proposition 3.3 tells us that
'if we wish to determine whether a pixel ey is thick or thin, we only have to
consider the pixels in the window centered about e,. That is, the pixels outside
of the window do not affect the thickness or thinness property of the center ’
' pixel. '

The following 5 propositions relate to the structure of thin edges in a
3x3 square lattice. They list the different kinds of thin edge structures that -
can exist in the lattice. » :

Proposition 3.4: Any edge E such that || E || < 2 is a thin edge.

Proof: | The proof is trivial since for E to be a thick edge, it has to contain’ a
cycle of at least 3 distinct edge p1xels This is 1mp0331ble since E has at most 2

: plxels _
d

Prop051t10n 3.5: The only possible thin edge E contained in a 3 x 3 square -
lattice such that the center is an edge pixel and || E || = 3, is one of the 16
structures shown in Flgure 3. 7

Proof: - Bjr construction and use of Proposition 3.2. Of the 28 structures
satisfying the above condition, only these 16 contain no cycle of length three.

Proposition 3.6: The only possible thin edge E contained in 2 3 x 3 squ‘a.re
lattice such that the center is an edge plxel and || E || = 4, is one of the 8
structures shown in Flgure 3.8. "

Proof: ‘By construction a.nd use of Proposition 3.2. Of the 56 structures
satisfying the ‘a‘bove condition, only these 8 contain no cycle of length three.
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Figure 3.7. The 16 thin edge structures in a 3><3 Iattlce Each of the
- structures has 3 edge pixels.
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Figure 3.8. = The 8 thin edge structures in a 3x3 lattice. Each of the structures
has 4 edge pixels. ‘

Figuré 3.9. The only thin edge structure on a 3x3 lattice which contains five ‘
. edge pixels. ’ ’ '
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0

Propomtlon 3.7: The only thln edge E contalned in a 3 X 3 square lattlcer ‘

such that the center 1s an edge pixel and || E || = 5, is the structure shown in
Flgure 3. 9 : L

.Proof By constructlon and use of Proposrt1on 3.2. Of the 70 structures

\,,satlsfylng the above condition, only this contains no cycle of length three

R :Proposxtmn 3. 8 Any edge E contained in a 3 x 3 square lattlce such that
the center is an edge p1xel and || Ell>51s a thick edge :

.Proof By constructlon and use of Proposrtlon 3.2. Each of the 98 edge
structures satisfying the above condition contalns at least one cycle of length
"three. »
. o
‘ The above proposmons hold only for small lattices of size 3 X 3 and may

seem 1rrelevant as they cannot be directly applied to real images of larger size.
_ However, their importance is seen when they are used in conjunction with
~ 'Proposmon 3.3-and  the next proposition. These propositions together prov1de
the basis for an alternatlve method of deterrnmmg whether an edge pixel is

o "thlck or thin.

Proposrtlon 3 9: Let E be an edge contamed in the window Wi 5(S) such that “
the center pixel s(i, j) is an edge pixel. Then E is a thick edge if and only if
s(i, j) is a thick edge pixel. Similarly, E is a thln -edge if and only if s(1, j)isa
thin edge pixel. . '

: Pr,oof:' If E is a thick edge, then by Proposition 3.2 it must contain a cycle of
length three. By construction, every cycle of length three contained in a 3 x 3

lattice must include the center pixel. Hence, the center pixel must be a thick - =

edge pixel, Conversely, if the center pixel is a thick edge pixel, then it must
_belong to E. Thus by definition E is a thick edge. The proof of the second
' statement follows tr1v1ally from the. ﬁrst :
' | | . o
To determlne if s(i, j) is. a thln/thlck edge plxel by Prop051t10n 3.3, we
' 51mply have to conSIder the plxels in the Wmdow W, (S) But by Proposition
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3.9, this is the same as determining if the edge E in W, i(S) is a thin/thick
edge. All the possible thin edges in a 3 x 3 square lattice are ‘given in
Propositions 3.4 through 3.8. Hence an alternative method of determining if
s(i, j)'is a thin/thick edge pixel is to see if the edge structure in W, 5(8) is
‘ 1dent1cal to any one of the thin edge structures listed in Propositions 3.4 to 3.8.
If it 1s, then s(i, j) is a thin edge pixel; otherwise, it is a thick edge pixel. We
will make use of this fact in Section 3.3.3 to reduce the amount of computatlon
requlred to determine the value of the cost function.

3.3 A Cost Function for Evaluating Edges.

Having established the —necessary mathematical preliminaries and
definition of edges in the previous sections, we now turn our attention to the
formulation of a cost function for evaluating edges. As mentioned  in the
introduction to this chapter, we seek to use an absolute cost function that -
measures absolute .quality of edges instead of relative quality. The function
should be applicable to individual edge configurations by assigning a cost value
to each configuration. The configuration with the lowest cost corresponds‘to
the best configuration in the sense that it is most consistent with our concept_ '
of an edge '

The motivation and. approach to the formulation of the absolute cost
functlon is very similar to that of the comparative cost function. In fact, we
will employ essentially the same form of the cost function, using a hnear‘
combination of weighted cost factors. As in the comparative cost function, each
cost factor captures a desirable characteristic of edges. However, it will be seen
‘that the definition of the absolute and comparative and cost functions differ in
several important aspects. First, the absolute cost function is defined using .
only-one single edge configuration as its argument, while the compa’rative cost
function uses two configurations. Second, although they have the same 'fofm; ,
‘the deﬁnltlon of four out of five of the cost fa.ctors are different for the two
functlons b

_ “We will ﬁrst describe the general form of the absolute cost functlon, and'
then describe the cost factors. We will also state a number of propositions that
will aid us in the computatmn of the cost. :

Agam, let S, € S be an edge configuration and L be the set of all palrs of ,
1nd1ces for an N x N lattice of sites: L = { (i, J) 1<iL,j=<N}

.Deﬁnition 3.7: The point cost of S at site | = (i, i) E‘L‘is defined as the
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: ‘ followmg hnear sum of Welghted cost factors

p(sm, 1) = [ 7S )+ wdod<sm, 1) +w ce(s )
B chf(sﬁv l) +,‘WtCt(Sm’ l) ]:
=3 wiCy(Spy 1) o (3
Where Wi = O‘and 0=< Ck <1.

Deﬁmtlon 3.8 The ‘total cost of edge conﬁguratlon S is- the sxi-rvn,-'of the -
pomt cost at every pomt in the i lmage s S

s F(S'm-):= Zcp(sm, oy
‘ el . : R - Lo

or equivelently,_' | ‘ . o

F(Sm) ~ Z [ pIg Wka( ms 1) ] | o : S (33)

leL | k=1 . | e

Thls total cost is the absolute cost function for evaluatmg edges We WIH»,'.

 often omlt the term. absolute and refer to this simply as the cost functlon when
-there is no confusion with that of the comparatlve cost function. Notice that

B the cost functlon is the sum of the point cost at every site in the 1mage, and« .

N g .'also takes the form of a hnear sum of Welghted cost factors.

Deﬁmtlon 3.9: For any palr of edge conﬁguratlons Sm, S, ES the.
,mcremental cost from S, to. S is given by '

AR(Su8) =F(S) -F(S) o :(.3:.‘,4);1

= Z,Gp(‘sm 1)— ZC ( 1)

I€L



61

-:AF(Sm‘QSn) = i Wk{ 2,[01((5,1,71)“—— Ck(sm, ,,)] } . - (39)

Alternatlvely, we can write the incremental cost glven in Equatlon (3 6) as a_'
. sum of five incremental cost factors, ACy. '

 AF(Sp,8,) = zymeLSWS) 6
k=1 o .
~ where AGy(L; Sy, 5;) = [ck(sn, 1) = Cy(S,, z)}
. IEL o

_ For notational simplicity, we will often write AF(8,,8,). simply as AFp, .
Notice that while Equation (3.4) is the basic definition of the incremental cost,
_ »Equatlon (3.5) expresses it in terms of the point cost, and Equation (3.7)

expresses it in terms of the incremental cost factors. A comparison of Equation’
(3.7) with Equation (2.2) shows that the two equations are very similar in form.
However, ‘because of the difference in the definition of the ‘cost factors, the -
result ts produced using the two equations are significantly different.. “The
incremental cost AFm o gives the cost difference between configurations S, and
Sy If it is negative, then S, has a lower cost than S, and is consequently a »
better conﬁguratlon Conversely, if 1t is positive, then S, is better. '

; Pll'o_prdsitiobn 3.10: Let {S1s Sgy «ee- Sm} :C S be any collection of edge
configurations. The incremental cost .from Sl to S, can be written as the sum
AF Z AFI il
) i=1
~ Proof: - S
ZAFI i1 = AF12+AF23+AF34 +AFm—1m

< i=1

=F@Qiﬂ&)+Fﬁo+ﬂ%)
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+ F(S) —f:F(ss) - m) F(Sm_l)
=F(E) T )
= AFl,m

0

, ThlS _proposition provides an 1nd1rect method of comput1ng the
1ncremental cost from S, to S_,. This 1nd1rect method is very useful, espec1ally»
When it 1s d1ﬁ'icult or computatlonally inefficient to determine the incremental - -

_ cost value drrectly In most of our apphcatlons, this method of computlng the

' _,1ncremental cost will be used This proposition is also useful in analy51s, 1n'
Section 3.4, we will use this property of the 1ncremental cost in the proof of : a
‘number of other propos1t1ons

r Frgure 3.10. shows a block dlagram of our cost mlnlmlzatlon approach to'
edge detection. The fundamental property of edges is that" they separate -
‘regions that are dlssumlar The first step in the detection _process is to enhance
those pornts in an image that satisfy this fundamental property of edges. Thesez ‘
pornts serve as good candidates for edge points. The enhancement is based on a
glven d1ss1m11ar1ty measure and a enhancement scale factor. We refér to this -

i process1ng stage as d1551m11ar1ty enhancement. In this stage, we also attempt to o

ensure that the enhanced points satisfy the desirable edge property of accurate
- locahzat1on It W111 be seen that this property will be: achreved by usmg non-
maxxmal suppression for the dlssxmllarlty values.

_ Instead of using the original image directly, the cost function is defined in
“terms of the enhanced image. Desirable characteristics of edges such as thinness -

"~ and- cont1nu1ty that are difficult to capture in the dissimilarity enhancement -

stage are embedded into the cost function. The edges are detected by finding a v v
suitably low cost solution to the cost function. Simulated Annealing will be

~employed as a technique of finding low cost solutions. - As seen in ‘Equation
- (3.3), the cost function is a weighted sum of five cost factors. The choice of -

weights for ‘the cost factors is application dependent, and it determxnes the‘,
nature of the edges which will be detected. o o

In the followrng sections, we will elaborate on dlssrmllarlty enhancement
and the definition of the cost function. We will also analyze the cost function
~and prov1de guidelines on the choice of weights to achleve spec1ﬁc

.characterlstlcs in the detected edges. ' o ’
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Dissimilarity |Enhanced | Cost Function Low cost

> Atibibe [— edge
Enhancement | jmage p | Minimization configuration

image G —>

dissimilarity measure, f(R1,R2) weights, w;
enhancement scale factor, o

Figure 3.10. A block diagram of the cost minimization approach to edge, ‘
~ detection. ' '
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3.3.1 Determlmng Region Dissimilarity

We have mentloned in Section 2.2 that an edge is a boundary in an 1mage
that separates regions that are dissimilar. In this section, we focus on the task
of enhancing the points in an image that are good candidates for edge pomts
The enhancement procedure is very much dependent on how d1ss1m11ar1ty is
defined in an image. For instance, we could model an edge as an ideal step and
‘define dlss1m11ar1ty to mean that the region on each side of the edge has
dlﬁerent constant gray levels. In this case, a poss1ble method of enhancement
is to. convolve the 1mage with ‘a gradlent operator to obta1n the enhanced
1mage ' , , e _
’ D1ss1m11ar1ty based on the ideal step is only one of a myrlad of pOSS1ble v,
region dissimilarities that could exist in an image. Instead of focusmg on one

o ,speclﬁc kind “of d1ss1m11ar1ty, we will give a general definition of reglon

dissimilarity in the form of a d1581m11ar1ty function. We will describe a
‘procedure that uses this function to enhance the points in an image that have a
~high degree of dlss1m11ar1t)r in its neighboring regions. These pomts are good
candidates for edge points based on' the criterion that edge points separate
~ dissimilar regions. However, for reasons to be stated in the followmg
, paragraphs, we emphasize that region dissimilarity 1tself prov1des 1nsufﬁc1ent
1nformat10n for good edge detection.

Referrlng again to Figure 3.10, the first step in the detectlon process isto.
‘obtaln an enhanced image from the original image. The edges are then
detected by finding the edge configurations that minimize the cost function. -
Thresholdmg the enhanced image can be considered to be the simplest form of
cost minimization where the cost function does not take into. account edge
structure information. The required: complexity of the cost function and the
subsequent minimization ~ procedure is very much dependent on the
performance of the dissimilarity enhancement stage. For 1nstance, if we could.
have perfect performance at the enhancement stage in the sense that the,
dominant features in the enhanced image follow closely to our concept of an
edge, then the edges could be detected by a simple thresholdlng operation,

However, in practice, it is 1mp0531b1e to have perfect performance 1n‘."‘
dissimilarity enhancement so.that high quality edges can be obtained by 51mple '
- thresholding. This is because of two main reasons. First, region d1ss1m11ar1ty

based on the original image data often provides insufficient 1nformatlon for.

edge detection. Good edges are those that exhibit the desirable characterlstlcs' -
of accurate locahzatlon, thinness, contlnulty, and sufficient length Some of
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these characteristics, particularly the last three, are structural characteristics of
| edges that are difficult to determine directly from the image data. They are
embedded in the structure of the edge configuration. Second, dissimilarity
enhancement is a process that is usually sensitive to noise. Noise processes will
cause niany points to be incorrectly enhanced as’ potential edge points. '.,EX‘ce‘pt'
for artlﬁclal images, noise is always present in an image. - ”
The above discussion leads us to conclude that it is necessary to exploit
1nformat10n from local or global edge structure to aid in the detection process.
.Our approach to detect edges is to attempt to achieve the best we can at the
enhancement stage. Desirable edge characteristics that are not captured in the
enhanced images are embedded into the cost function. The cost minimization
procedure will then find the edges which exhibit the characterlstlcs that are
consistent with our concept of an edge.

The fundamental property of edges is that they separate dlss1m11ar,
regions. 'In dlss1m11ar1ty enhancement, we concentrate on the followmg two
goals that relate to our concept of an edge

(1) To signify those points in an image that possess the fundamental property
- of edges ‘ ‘

| (2) To ensure that those enhanced points are accurately locahzed

The enhanced image
D {d(i,j);1 =145 =< N }

is a collectlon of plxels where each pixel value is proportional to the degree of
r.,egion dissimilarity that exists at that pixel site. The pixel values lie in the
r_ange 0 < d(i, j) = 1. Pixels with large values ¢lose to 1 are good candidates
for edge points in an image. Three things are required in order to enhance an
‘image according to the set goals:

) Well defined regions of 1nterest on either sides of an edge. ‘
(2) A function that measures dlssunllarlty between the reglons of 1nterest
(3) Non-maxunal suppressmn as a method of ensuring accurate locahzatlon

‘The regions of interest are defined with reference to a set of selected edge
structures. We call this set of edge structures the basis set. Within the scope of
thls_report , the basis set is constralned to be 3-pixel edge structures contained
in a 3 x 3 window region. In line with our concept of an edge, we also require
these structures to be thin. The basis set is thus selected from the 16 edge
structures given in Proposition 3.5. In most of our applications, we selected as
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‘our basis set the first 12 of the 16 structures shown ; in Figure 3. 7 The reglons
of interest on ether sides of each edge of the basis set are defined j in the same
way as those for the comparative cost function in Section 2.3.2: These regions
are again labeled as R1 and R2 for each edge structure in the ba51s set.
Flgures 2.9 and 2.10 show an examples of the ba31s set and the correspondlng
'reglons of interest for each edge structure. :

The function that measures the dissimilarity between regions R1 and R2 is
‘denoted by f 2(RL,R2). This measure could be a simple d1ﬁerence of gray level
averages in R1 and R2, or it could be more complicated measures based on
statlstlcal or structural properties in the gray levels. Dependlng on the
appl1catlon and the features of interest in an image, there are numerous
' p0551b111t1es for the definition of f,(R1,R2). As previously mentloned to ﬁnd:
step edges in an image, we could define the dissimilarity measure to be the
d1ﬂ'erence of constant gray levels in the regions R1 and R2. It is clear that
' there is extreme flexibility in such an approach to d1551m11ar1ty enhancement as.
we do not restrict the nature of the dissimilarity. This is in contrast to many
detectlon -algorithms that assume some specific nature of edges and are devoted.
_to ﬁndlng only those edges. At this point, we do not need to know the explicit
definition of the dissimilarity measure f (Rl R2) which will be used we 51mply .
assume that one exists. : :

Non-ma.x1mal suppresslon is 1mportant in ensurlng the accurate.
locallzatlon of an edge point in an image. In practlcally all real images, the
~ dissimilarity measure has the tendency to enhance the points in the vicinity of -
the true boundary in addition to enhancing the boundary itself. This is
undesirable as a large number of false boundary points are enhanced. One
approach to mitigate this tendency is to employ non-maximal suppression in
dissimilarity enhancement. However, an undesirable side effect that results in
using non-maximal suppression is that some true boundary pomts may also be
suppressed together with the false points. This may increase the amount of
~ fragmentation in the boundary. It will be seen that the cost factor for
fragmentation will compensate for this eﬁ'ect by linking together locally
dlsconnected edges '

We now describe a procedure to obtain an enhanced image D from the;v
'orlglnal image G. It performs non-maximal suppression by shlftlng the edge
structure in a direction perpendicular to the edge direction. The procedure is
as follows
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(1) Initially, all the pixels d(i, j) are set equal to zero.

(2) At each pixel site (i,j), we perform steps A and B.

A

‘Each of the edge structures of the basis set is fitted onto the site by
- centering it on the location (1,j) in G The corresponding palred
regions R1 and R2 in G are determined for each structure, and the

value of f,(R1,R2) is computed. The structure that results in the

“maximum value of f (Rl R2) is chosen as the best ﬁtted _edge

structure

‘Note that each edge structure of the basis set contains exactly three

edge pixels; we will denote the sites of the three edge pixels of the best
fitted edge structure in G as (i, j), (iy, j1), 2nd (ig, ja)- '

'Next, we perform non-maximal suppression by shifting the location of

the chosen best fitted edge in a direction determined by the edge

e structure. For vertical, horizontal and diagonal edge structures, the
- shifting is performed by moving the edge location by one pixel in each

of the opposite directions perpendicular to the edge. For all other

“edge structures, the shifting is done by moving the edge one location _'

in each of the the four directions: up, down, left and right. Figure
2.13 shows how the edges are shifted -for three edge types. For each
shlfted edge, we determine the new regions for Rl and R2, and

‘compute the corresponding value of f,(R1,R2).
[One of the following two cases results:

(1) If no larger value of f,(R1,R2) results from shifting the best ﬁtted;

.. edge structure, we set

1,(RLR2)
b=ar =,

where f,(R1, R2) is determined using the best fitted edge The
factor o is called the enhancement scale factor We: then'
-increment ~the value = of each of the "'pixels:‘

d(, 3), d(iy, 1), and di, j,) by &.

“ (ii) If there is 2 larger value of f,(R1,R2) from one of the shlfted edge

. structures, we do not. alter any plxel value.

(3) F 1nally, the values of the pixels d(j, j) at all sites are truncated to a

max1mum of 1.

Step (3) is performed essentially to ensure that the dissimilarity values lie
in the assumed range 0 < d(j, j) =< 1. The value of the enhancement scale
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factor ais apphcatlon dependent It serves as a selection parameter in
determining the number of edge points that will be detected. Section 3.4.3
gives guidelines to selecting the value of a.

3.3.2 Defining the Cost Factors

The general form of the cost function has been given in Equatlon (3. 3), it
is a hnear combination of five Welghted cost factors. Speaﬁcally, the five
factors are as follows. - ‘

(1) Cost for curvature

(2) Cost for region dissimilarity
(3) Cost for number of edge points
(4) Cost for fragmentation

(5) Cost for edge thickness

In thls section, we will deﬁne each of these cost factors and dlscuss their
relevance to edge evaluation. Each of these factors affect a desirable
characterlstlc of edges. It will be seen that the cost for region dissimilarity i is
the only one that is based on information from the image data; the others are
based on information from local edge structure. Ideally, each cost factor
should affect one and only one desirable characteristic so that the relative
importance of each characteristic can be appropriately emphasized by their
corresponding weight. In practice'héwever, this is difficult to achieve as the
different characteristics often exhibit some form of dependency on each other.

The cost factors together give an objective measure of how well a given
edge configuration fits our concept of an edge. These factors are defined based
on the assumption that lower cost configurations are better edges.
Consequently, the best configuration is the one that achieves the global
minimum of the cost function. The ultimate test of the validity of the cost
function is in its performance in detecting edges. In Chapter 5, we will show
experimental results of detecting edges using this cost function.

In order to define the cost factors, we have to first specify what is meant
by a straight edge and an endpoint. These are given in the following two
definitions. |

Definition 3.10: An edge E (or segment of an edge) is straight if all its edge
pixels lie on a single horizontal, vertical or diagonal line of the lattice on which
it is defined. |
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Deﬁnltlon 3.11: An endpomt is an edge pixel that has at most one other
edge pixel in its neighborhood.

Us1ng the definition of straight edges and endpoints, we will now specify
what is meant by the angle of turn at a point. If ey is an edge pixel that is not
an endpoint, then it can be considered to be the connection point (or common
pomt) of at least one pair of straight edge segments. The direction of each‘
‘stralght edge segment is uniquely specified by the straight line joining the site
of e, with the site of any ‘other pixel of the segment. This is illuStrafed in
Figure 3.11. Let n be the maximum number of different pairs of straight edge
segmeuts connected at e, each pair being denoted by the label p;, 1 < i < n.
- Let ¢; be the larger of the two angles between the edge segments of p;- The
angle of turn between the pair of edge segments in p; is given by

6 = ¢, —180.

In F igure 3.12, we show an example of an edge pixel that is the connection.
poirit of 3 pairs of straight edge segments. ' '

Deﬁnltlon 3.12: The curvature (1) at any site | €L of conﬁguratlon S is
defined as follows: : :

(1) If s( ) is a non-edge pixel or an endpoint, then the curvvature‘ is :eq‘ual, to
7, zero : ' R

(2) If s(l ) is an edge pixel that is not an endpoint, then the curvature is the,i
' maximum angle of turn at that point: -

oy = ™ {@(z)} .

Assuming that the image lattice is uniformly spaced, the curvature at any .
si‘vtev can take on one of four possible values; 8 e { 0, 45, 90, 135 } In the case of
the example in Figure 3.12, the curvature is 135 degrees.

' Cost for curvature

The cost for curvature assigns a cost to each point in the edge
conﬁguratlon accordlng to the value of the curvature at that pomt As .

prev1ously mentioned, the curvature at any point can take on any one of the

p0551b1e values of 0, 45, 90, or 135 degrees. At 31te l of conﬁguratlon S th .
curvature cost Cc(Sm, [) is given in Table 3.1. ~ :
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pixel e, X[ 1| ~ pixele, [ |/

Figure 3.11. The angle of turn at a point. (a) The pixel e, is a connection
- 'point of a pair of straight edge segments. (b) The pair of straight
edge segments and the resultmg angle of turn. In this case, the
angle of tufn is 45 degrees

® ®» @ @

ixel e, | X] | |
P ke\( ' : - &l
X 1 ‘

x
o

X
x

»Fxgure 3.12. An edge pixel that is the connection point of 3 pairs of stralght B
edge segments. (a) The pixel ey as part of the edge (b) A pair of

.. 'segments with 6=0. (c) A pair of segments with 0—45degrees

(d) A palr of segments with 0—135 degrees. :
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Table 3.1. Curvature cost at pixel {

Curvature 0(!) | Cost | C(Sms !)
0 | o
45 0.5 |
900 1.0
135 | 1.0

" The above assignment causes edges that have many turns to have a higher
"curvature cost than those with relatively few turns. By appropriately choosing
the weight of the curvature cost, we can avoid excessive meandering and
turhing of edges. This is particularly useful when, for instance, we know a
priori that the edges of interest are straight. Such edges often oceur when we
are dealing with polygonal objects. This factor is also useful in the suppression
of noise effects. Noise in an image often stimulates the formation of jagged
edges which have high curvature cost. A sufficiently large weight for curvature
will tend to smooth out such edges.

Cost for region dissimilarity

This cost factor is based on the enhanced image D. It assigns a cost to
non-edge pixels that is proportional to the degree of dissimilarity at that point.
~ In other words, 2 site that contains a non-edge pixel but has a high degree of
dissimilarity will have a high cost. On the other hand, if it has a low degree of
dissimilarity, then the cost is low. This factor is intended to be used in
conjun>ction with the cost for number of edge points. It will favor the
ﬁlacem‘ent of edge pixels at points of high region dissimilarity. The definition
of the cost factor is as follows: - ' ' '

L ) 0 if s (I)=1

CaSm 1) = {d(l’) . if 3:((1))= 0.

Cost for number of edge points

When used by itself, the cost for region dissimilarity will favor the
placement of edge pixels at all points in an image that have non-zero
dissimilarity yvalues This will result in an excessive number of edge pixels being
detected. To compensate for this, we assign a cost to each additional edge plxel :
as follows' ‘ '
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0, if sy(l)=0

| Ce(sm _’) ={ 1, if sy(l) =1

Cost for :fragmentation , _ :

A N Thls cost factor reduces fragmentatlon by ass1gn1ng a cost to the
endpomts of an edge. It is based on the intuition that fragmentatlon causes the
formation of surplus endpoints. For example, a straight contlnuous edge-‘
, \,contalns two endpoints; the same edge fragmented in two places will contaln
'.su{ endpornts = '

_ There are two kinds of endpornts The ﬁrst is an endpomt that is. the
terminus of some segment or path. The second is an isolated endpornt ‘An
~ isolated endpomt can be considered to be a path that has shrunk in length to. a:

~ single point. In the process, the former two endpoints of the’ path are merged :
“into one single p01nt Hence, as will be seen in the definition, the cost of an

. isolated ‘endpoint is twice that of a path endpoint. By assrgmng a cost to

- endpomts, fragmentatlon will be reduced. This is because -adjacent endpornts '
“which represents locally disconnected edges will be removed by hnklng thq-
edges together The cost is deﬁned in the followrng way ' :

Let T be the number of edge plxels in the nelghborhood of pxxel s (l) 1ng"
conﬁguratlon Spe

S 0, ifs (l ) is not an endpomt .
Ci(8my 1) =4 0.5, if s(I) is an endpoint and T = 1
' |10, 1f Sm(l) is-an endpomt and T = 0

Our concept of an edge 1ncludes the property of mlmmum length edges
should be at least 3 plxels long. Although it is not obvious i in the definition, it
will be seen later that the cost for fragmentation will guarantee that detected

edges are of a certain minimum length. ‘Hence, unlike the comparative cost

approach we do not need a separate cost factor for edge length to ensure that

edges are of a given minimum length. The minimum length property is

mherently embedded in the cost factor for fragmentation.
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;Cost for edge thickness - Co
Since thinness is a desirable edge ‘property, we foster the formation.of
‘thin~ edges by assigning a cost to thick edge plxels This Ais'achie‘ved‘“ by the .
.followmg cost factor for edge thickness. PR

C S )= 0, ifsy(l)is not a thlck edge plxel
ColSm» 1) ~ |1, ifsy(l)is athick edge pixel. .

' In Section 3.4, the practical consequence of the above definitions' of the
~cost factors will be examined. We will also consider the choice of weights to
achieve specific characteristics in the detected edges. In the next section, we"
concern ourselves Wlth the questlon of how to. compute the cost factors
efﬁcrently '

3 3.3 Computlng the Cost

The cost functlon is used to evaluate the quality of an edge conﬁguratlon
,It will be seen in the minimization procedure that this function will be used
‘repeatedly in the search for low cost configurations. Hence, from a
d computatlonal standpoint, it is of major importance that this function can be
- computed in an efficient way. By taking into account the interdependence of
- the cost factors, a great deal of computation time can saved. We will now state
_ the first of several propositions that will ard us in finding an efficient procedure
to compute the cost ' ' o

Proposrtron 3 11. The pornt cost Cp(Sm, l) is dependent only on the
dlssrmllarrty value d(l ) and on the plxels in the window W,(Sp,). '

' Proof: Since the point cost is the sum’ of 5 cost factors,
p(sm9 I) = kE Wka(Sm’ ) ,
k=l '

it suﬁices to show that each of the 5 factors is dependent only on W,(Sm) and -
| vd(l) |

: (1) Cc(sm’ ) S . L , .
- Case 1: 8,(1) is not an edge pixel. It follows trwrally from the: deﬁmtlon
that C is dependent only on s (I )€ W,( m) o
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- Case 2: s (1) is an edge pixel that is an endpoint. Since an endp01nt is
- determined by considering a pixel and its nelghborhood it is seen eas1ly for
‘this case that C, is dependent only on s (1) U Nj(S,) = W;(Sp)- \

- Case 3: sp(!) is an edge plxel that is not an endpoint; it is the connectlon .
~ point of n pairs of straight edge segments Since the direction of each stralght
,edge segment is unlquely determined by the straight line connectlng Sm(!) with
any other pixel of the segment, we can choose the other pixel to be the one in
its nelghborhood N,( m)- This is always possible by Proposition 3.1. Hence,
the direction of each segment is uniquely determined by the pixels in Ny (S m)
The curvature at I, the endpoint property (see Case 2), and consequently C,,
~are dependent only on the p1xels in Ni(Sm) U sy(l) = Wi(Sp).

(2) Cd(sm, ) ‘
From the deﬁmtlon, it is tr1v1ally seen that Cy is dependent only on
m(l) € Wz( ) and d(!). .

5) CuSan 1) | |
i

Agaln, from the definition, it is trivially seen that C.is dependent only on

(1 )€ Wz( m)- B ‘

(4) Cf( wl) o : .

This factor assigns a cost to endpomts Whether a pixel is an endpomt is
determlned solely by the pixel itself and its nelghborhood N,(S ). Hence, this
- factor depends only on W,(Sm) " :

(5) Cy(Ss 1)

This factor assigns a non-zero cost to thick edge edge pixels. An edge pixel
is thick if and only if it is contained in a cycle of length 3. According to
Prop051t10n 3.3, this cycle, if it exists, is completely contalned 1n W, (S m)_‘
- Hence the factor is dependent only on the pixels in W;(S m)

Slnce each of the 5 factors are dependent only on W,;(S,) and d(! ), so the‘ '

| linear comblnatlon of them i is also dependent only on these pixels.- -
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Computlng the pomt cost

‘From the above proposition, we only have to consider the pixels in the
'83x 3 window about a site to compute the point cost at that site. A
-stralghtforward method of computing the point cost is to determine the values
of each of the cost factors independently. However, this is computationally :
inefficient as we do not take into account the inter-dependence of the cost
factors. - Our method of computing the cost function is based on th’e‘_deci‘sionv
tree show in Figure 3.13. This tree is obtained by pooling together all the
information affecting the different cost factors. It represehts a compact ,
description of the cost factors, and it-allows for the simultaneous computatlon
of several cost factors by traversmg the tree from root to leaf.

'As mentioned in Section 3.2.2, Proposition 3.9 gives an alternative method
of determining if a given pixel s(i, j) is a thin/thick edge pixel. All that is
needed is to see if the edge structure contained in W;;(S) is identical to any of
the thin edge structures in Propositions 3.4 through 3.8. If it is, then s(i, j) is a
thin edge pixel; otherwise it is a thick edge pixel. By using this method, we
- avoid the need to trace an edge pixel to see if it belongs to a cycle of length
three. Contour tracing is time consuming compared to the alternatlve method ‘
we have just described. '

It is important to note that the decision tree in Figure 3.13 gives an
equlvalent definition for each of the cost factors we have defined in the
prev1ous section. The validity of this tree in representing the cost factors is
hmged on Proposrtlons 3.3 t0 3.9, and the following two propositions.

Prop051tlon 3.12: Every thick edge pixel has a correspondmg curvature
greater than or equal to 90 degrees. '

Proof: Every cycle of length three has a characteristic L shape Hence at each
"p1xel of the cycle, there is a pair of straight edge segments that form either a
90 or 135 degree angle of turn. Since a thick edge pixel belongs to a cycle of

length three, it must have a curvature of at least 90 degrees »
‘ O

Proposition 3.13: Every edge .pixel with three or more neighboring edge
- pixels has a'corresponding curvature greater than or equal to 90 degrees. -

Proof: It is sufficient to-show that the above is true for the case of _th-ree.
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n=IN(S) Il I
thin: The edge contained in W;(S,) is a thin edge. -
thick: The edge contained in W;(Sy) is a thick edge.

Fi:gur'e 3.13. Computation of point ecost Cp(SkJ) using a decision t"r"é;e'.- o
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- neighboring pixels. The simplest proof is by construction; each of the 56 edge
structures ‘which has 3 nelghbors ina3 x 3 window has a curvature of at least
,90 degrees o

Computlng the mcremental cost -
Accordlng to Equation (3.5), the incremental cost from S, to S is
APy = 3 [ Cyl8u 1)~ Cylsm )]
| e | | B
Since there are N? sites in L, this represents a total of 2N? times the point cost
has to-be computed. This is a tremendous amount of computation, and even
for small images of size 128 x 128, the value of 2N? is equal to 32,768. We will
'show that by appropriately restricting the choice of S,, the. 1ncremental cost
can be reduced to a summation over a small subset of L, i.e. ' :
U AFg, =Y [cp(sn, 1) — Cy(Sms 1)]
: ’ - leR*

- where R is a small subset of L, containing only 9 sites. We essentially reduce
' the summation of N? terms to that of 9 terms. This is given in Proposition
3.14. 3Bef6re stating it, we give several preliminary deﬁnition's and lemmas. R

Deﬁnitlon 3. 13. Let W,(S) be the set of plxels of S Whose W1ndows contain
the pixel s(l) That is, for I, q € L, :

Wz(S) {S(q) (1) € W S)}

_-‘Lernma 3 1. For any l,q€ L 7 v
(q) € Wy(S5) if and only: 1f s(l) € W q«8) -

Proof Let 1= (i,d) and q= (m n). Then, from the deﬁmtxon of a window, the
pixel s(q) is a member of W,(S) implies that |i—-m| <1 and | =<1
Since i'is mterchangeable with m, and j is interchangeable with n wi.th‘in the
absolute value signs, we conclude that s(q) € W;(S) implies that s(I) € W(S).
' In the same way, a simple change of variables w1ll show that s(l) € Wq(S) .

lmplxes that s(q) € W, (S)
_ o
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Lemma 3.2: For any [ €L, W,(S) = W,(s).

Proof We will show that the followmg holds for any I € L; W;(S) € W,(S)
and W;(S) CW,(S). Let s(q) € W,(S) q€L. By Lemma 3.1, we have
s(I) € Wy(S). From the definition of W,(S), we see that s(q) € W,(S) Whlch is
‘true for every s(q) € W,(S). Hence W,(S) C W,(S)) _
Now, let . s(q) € W,(S), then from the definition of W,, we know that i
: (l) EW, q(S). _Again, by Lemma 3. 1, we have s(q) € W,(8S), whlch is true for
every s(q) E Wl (S) Hence W,(S) C W,(8). ‘
O

Definition 3.14: The indez set of A I(A) is the collection of the pairs of
"mdlces of the plxels inA. F or example, if ’ :

, A= { 11’31)’ (12’32)’ S(im’jm) }’
then the 1ndex set of A is glven by:

(A)"'_‘{(I’J)- s(i, ) EA}

‘=,' { _(ilajl)a (i2552)’ oo (im’jm) } :

~ Note that.._I‘(S) is the set of all possible indices of the edge configuration S, and
is equal to“L For notational purposes, we will write I(W,; i(8)) as W, ;. That is,
when the window is used without specifying its argument, we are referrmg to
the 1nd1ces of the pixels in the window. '

PropOsition 3.14: If Sm; S, €S are edge configurations that have identical
edge labehngs at every pixel sxte, except at site x=(y,z) € L, where they are
complementary, then ,

M- 3 [GED-G6].

Proof F rom the deﬁmtlon of incremental cost in Equatlon (3 5), we essentlally

o have to show that

- JeL lew,

=] ctn -yt ] = 3 [0 0 - Oyf6m 1]
| Let W —I ( L/ (S) ) and partltlon L into dlsJomt sets: |
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L=(L-W,) UW,
We can write the incremental cost according to the definition in Equation (35)
as ,
AF .= ¥ [ — Cy(Sm )]
e(L—W,)
+ 5 [c (S 1) —cp.(sm, z)]
- 1w, .
For each | € (L—-VV it is easy to deduce that x ¢ W,. Since all the pixels of
Sm !
corresponding pixels in the windows W;(S,) and W,(S) have identical edge

‘are identical to those in S, except only at site x, therefore, the

' labelings.’ Using this fact and Proposition 3.11, we conclude that
| Cp (S, 1) = Cp(Smy 1) for all I € (L— V,) .
Hence, the partial sum '
> [C n —Cp(sm’ 1)] =0 .
IE( —wx) .
B& Lemma 3.2,
W, =T (Wy(S)) =T1(Wy(S))=W.
Thus, the expression for the incremental cost becomes

: ‘AFm,.n.= )y [Cp(sn, 1) — Cp(Sps 1)]

leW,

lew,

=3 ‘[Cp»(sn, - Cylsm 1] -

Fact 3.4: An equivalent expression for Equgtion (3.8) using incremental cost

factors isv » |
AF,, 5; kack(wx,sm, sn), - O (3.9)
k=1 .
where Ack(w,,sm, s,) = [ck(’s,,, ) — Cy(Sy, z)]’.

N GW,
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o From the above proposition, we see that by restricting S, to be an edge
configuration that differs from S_, at only one site x, the incremental cost.can
~ be reduced to the form shown in Equation (3.8). This proposition in itself is .
not very useful because of the restriction on S,. However, it can be used in
conjunction” with Proposition 3.10 to provide a very efficient ‘method of ,
computlng the incremental cost between any pair of configurations S_, and S,.
For example, let S, and S, be configurations that differ at K sites. It i is poss1ble
to ﬁnd 2 sequence of configurations {Sg, Sy,-.. . Sk} such that Sy = Sy SK Sqs
a,nd any consecutive pair of configurations differ at only one site. Then
Propos1tlon 3.10 can be used to express AF m,a 1D terms of consecutlve palrs of
conﬁguratlons, -and: Proposition 3.14 can be applied dlrectly to each of these
pairs. ‘This is the indirect method of computing the incremental cost It is
particularly efficient for values of K much less than N We will be usmg this:
method of computing the incremental cost in’ our search of low cost
configurations. -

3.4 Analysis of Minimum Cost Configurations

In Sectlons 3.1 to 3. 3, we have provided the necessary mathematlcal“

, prehmmanes and presented a cost function for evaluating edges. This costl '
function is a linear sum of weighted cost factors which mathematlcally

captures our intuitive concept of an edge. The validity of this cost function for
evaluatlng edges is ultimately determined by its performance in detectmg edges
that fit our edge concept. :

" The cost function has been formulated with the inherent assumption that :
lower cost configurations are better configurations according to our concept of
an edge. The best configuration is the one that achieves the global minimum of
- the cost function. Two important issues have to be addressed in using the cost
~ function for edge detection. First, we need to address the issue of how to find
low cost edge configurations. Second, we need to know the nature of the edges’
in the low cost conﬁgurations The method of finding low cost configurations
will be discussed in chapter 4. We will use a stochastic optimization techmque '
known as Simulated Annpealing to find suitably low cost configurations.

_ In this sectlon, we focus on the second issue mentioned above, whlch is
“analyzing the nature of edges in low cost configurations. The goal of analys1s is
to determine specific properties or characteristics of the edges that will be
produced. For instance, we are interested in knowing whether there are any
thick edges in the low cost configurations, the minimum length of each edge,
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and how well the edges are connected. Some of the results obtained from this
analysis will be used in the next chapter to prove certaln bounds on the depth
of the cost function. '

“The nature of the edges in low cost configurations is necessarily related to
the set of weights chosen for the cost factors. For instance, if we set the weight
for thick edges to be very large, then low cost configurations will probably not
:contai‘n any thick edges. However, large values for the weights will tend to -
cause the cost function to have many deep local minimums which -are highly
undesirable. Deep local minimums are potential hazardous points which will
trap many algorithms in search of the global minimum. Hence, a Jjudicious
choice of weights is essential in ensuring good performance for the cost
function. Our choice of weights will be based on several proposmons whlch'
will be presented in this section.

We will begin by formally stating the definitions of local minimum, global
' rmmmum and neighborhood of a conﬁguratlon Based on this, we will state a
proposrtlon which gives a sufficient condition on the choice of weights to ensure
~that the detected edges will be thin. Also, we will analyze edges for other
properties such as their minimum length and certain characteristics of the
endpoints. Hypothetlcal examples will be given in the later part to prov1de a
'better understanding of the nature of the edges in low cost conﬁguratlons

~The cost minimization procedure which will be described in the next
chapter is based on Markov chains. Each state in the chain corresponds to a
possible solutlon to the minimization problem. For this reason, an edge
conﬁguratlon is considered to be a state in the chain. In the following sectlons,
we will use the terms “state” and ' edge conﬁguratlon 1nterchangeably to mean
the same thlng , ‘

Agarn, let S represent the collectlon of all possible edge conﬁguratlons on
an N x N square lattice. '

Deﬁmtlon 3.16: The ne:ghborhood of a state S is a subset of S deﬁned by
a nelghborhood function H( m) If S, € H(S,), then S is a nelghbor of Spe

Deﬁnltlon 3 16: A state Sg is a global mintmum if it has the followrngl
property '
F(Sg) < F(S,) forallS, €S .

Notice ,th"at the global minimum may not be unique; there may exist a set of
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‘di‘ﬁ’erent states :With the same r‘ninimum cost value,

' »Deﬁmtlon 3.17: A state Sy, is a local minimum 1f it has the followmg
property : ‘
(SL) (Sk) for all §, € H(SL) .

vDeﬁmtlon 3.18: The neighborhood function HI(S) is the subset of S such
‘that, for each state Sy € Hy(S), the edge labeling at every site is identical to
.that of S, except at a single site I} € L, where 1t is the complement. That i is,

S _ Sk(l): si(1) =s() foralll;élk,IEL
kT  s(0) =5() forl=1, ’

i where 5(/) denotes the complement of s(l).

Since there are N? different sites that could be speclﬁed by lk, so there are N?
dlﬂ'erent states in H,(S). : ' : |

3.4.1' Formation of thln edges L

An 1mportant aspect of our edge concept is that edges should be thin. By,

a proper ch01ce of weights, we can ensure that all the edges in any local or

- global mmlmum state are thin. We do this essentially by placing a sufﬁclently

large weight for the cost of thick edge pixels. The following is a sufficient
‘ ‘condltron for the formation of thin edges. o ’

Propomtlon 3.156: Assume that the neighborhood function is H(S).
If w, > (2w; + wyg — W, — W), then there are no thick edges in any local or

g]obal minimum state.

\’P’roofﬁ It is necessary and sufficient to show that there are no thick edge pixels
‘in any minimum state. Let S, be any state that contains a thick edge pixel. If -
the condition holds, we will show that we can always find a lower‘ cost
‘ nelghborlng state that has at least one less thick edge pixel than S,.

‘ Smce So has a thick edge, it contains a cycle of length 3
C =s5 (Il)so(lz)s (13)so(11). Let S, be the edge configuration that has identical
edge labelings as S, except only at site /;, where it is a non-edge plxel Notice
that this state is a nelghbor of S, and has one less thick edge pixel. From
Proposmon 3.14 and Fact 3 4 the mcrementa] cost can be wrltten as
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5
AFo,n = EWkACk(Wx 5 Sor Sn)
k=1

= WCACC + WdACd + WeACe + WfACf + WtACt .

By taking into consideration the various edge structures in a 5 X 5 region
about site l;, we obtain bounds for each of the above incremental cost factors.
The incremental cost for curvature lies in the range —7 < AC, < —1. An
example of the edge structure for each of the limiting cases is shown in Figure
3.14. The incremental cost for region dissimilarity lies in the range
0=< ACd < 1. The incremental cost for the number of edge points,
AC,=—1. The incremental cost for fragmentation lies in the range
0 < AC; < 2. Two examples of the edge structure for the upper limit is
shown in Figure 3.15. Similar to curvature, the incremental cost for edge
thickness lies in the range —7 < AC, < —1. From the above equation, we
have

ma.x‘[ AF, , ] = k%l‘Nk [max [ ACy ] J

= wel—1) + we(1) + we(—1) + wi(2) +wi(~1)

= 2W; + Wg — We — W, — W,

Assuming the condition of the proposition holds,
‘2Wf +Wd — W, _We'_‘Wt <0 ,
we conclude that

max [ AF, , ] <0.

This implies that S, is a lower cost state than S;,. Hence, we have shown that
for any state which contains a thick edge pixel, we can always find a
neighboring lower cost state by relabeling that pixel as non-edge. Therefore, in

any minimum state, there cannot be any thick edge pixels. ,
o
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Figure 3.14. Computation of AC,. (a)-RemOvé] of edge pixel at [, results in
 AC=—7. (b) Removal of edge pixel at I, results in AC =—1.

@[

(b)

- site /4

x‘

- site /4

Fi 1gure 3. 15 Computatlon of AC;. Removal of edge pixel at I1 of elther (a) or -
(b) results in AC,=2. '
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3.4.2 Minimum length of edges

The cost for fragmentatlon increases the continuity of edges by assxgnlng a
cost to the endpoints of an edge. Although it is not obvious from the definition,
this cost also guarantees that the detected edges are of a certain minimum-
length. }This length is dependent on the choice of the weights w;, wy and w,. By

~appropriately selecting the weights, we can ensure that the detected edges are
of an arbitrary minimum length. ‘ ,

Before stating the proposition relating the minimum length of edges to the -

weights, we first state two lemmas and a related proposmon

Lemma 3.3: Let sy(I) be any edge pixel of configuration S, and let S, be
the configuration that has identical edge labelings as S, at every site, except at
!l where it is a non-edge pixel. Then, the incremental cost factor for curvature
AC (L SmsSy) is always less than or equal to zero. | '

: Proof By using Proposition 3.14 and Fact 3. 4 and settmg all the welghts to
zero except w,, it is stralghtforward to see that

AC (L ; Sm,Sn) AC(W 5 Sp,Sa) -
Usmg Fact 3 1, we can rewrite the incremental cost as
 AC( W, ;8,,8,) = AC( 1 ; S5,8,) + AC(N; ; sm,sn)
It is suﬁiclent to show that AC/(1; S.,S,) < 0 and AC (N, ; Sm,Sn) <0

From the definition of the curvature cost, it is easily deduced that the first
inequality is always true. For the second mequahty, we observe that for each

XGNI, v
Il Ny(So) Il =1l N. (Sm) I —1.

Consequently, from the decision tree for computing the point cost shown in
Figure 3.13, we see that for each of the cases of the number of edge pixels in
the nelghborhood of x,

< ) Cc(Sn’x) = Cc(sm,X)..
Hé;iee, the sum |

. x€EN;

= '[Cc(é.ﬂ’*) i_“ ¢c(5m,%)]_;_s 0.'.. |
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“Lemma 3.4: Let':s (l) be any edge pixel of conﬁguratlon S m and let S be

~the conﬁguratlon that has identical edge labelings as S at every site, except at |
l where it is a non-edge pixel. Then, ‘the incremental cost factor for thlck‘ '
edges ACt(L Sm,Sn) is always less than or equal to zero.. ' ’

'Proof Let A be the unjon of. the plxels in all poss1ble cycles of length 3 in 8
.8 ms - and 51mllarly, let A be the union for the cycles in Sp- The cost for edge
?_ﬁthlckness assigns a cost value of one to each dlstlnct edge plxel belonglng to a.

" cycle of length 3, and hence, - : S

EC;(SD, l)—HA H, and. zct( - 1)_11 Am u

| -Smce S,1 is 1dent1cal to. Sm except that it has 1 less edge- plxel then every cycle 3
C= (1)3 (12)sa(l3)s,(14) contained in S, must have a correspondlng cycle
C = sm(ll)s (13)sm(l3)s5(!y) in S, Consequently, the swe of A must be less

: 'than or equal to that of Am, andso o o ~ R
ECt( w ) EC( ms 1) -H A H ‘H‘Amll‘SO o

: . _ ' ' R

Usmg the above lemmas, we now state a proposmon that relates how thef
cost for edge thlckness and the cost for curvature change when edge plxels are
-removed ' A

Propomtlon 3. 16' Let M be any collect:on of edge pixels in Sm, and let S ‘be -

' the edge conﬁguratlon that has identical edge labehngs as S, at’ every srte,

except at the sites of the pixels in M, where they are labeled as non-edge pixels.
- Then, the - incremental cost factors for - curvature and “thick edges,v
- AC o(L; Sm:Sp) and AC(L; S,,,8,); are always less than or equal to zero.
Conversely, the factors AC(L; Sn,S m) and ACt(L Sn,Sm) are always greater.
than or equal to Zero. '

| Proof Consider- any collectlon of edge conﬁguratlons { Sy, Sz, .. Sk } Usmg'_ )
Proposrt1on 3.10 and Equatlon (3 7), and settlng all the welghts except W, equal»
to zero, we see that - _ 5 :
AC (L Shsk) = E ACc( L SnSl+1)
: i=1

By"letting k = H M H + 1, we can construct a sequence of conﬁguratlons-
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beglnmng w1th the 1n1t1al conﬁguratlon S; =S, and endlng w1th Sk —S
such that each consecutive conﬁguratlon contains one less edge pixel of M.
That i is, S;;, is identical to S; except at a single site of M, where it is non-edge,
' By Lemma 3.3, each of the terms AC (L 8,,S;41) is less than or equal to zero, :
and hence I - © o
i S k-1 | § o
AC (L‘»;; SmySp) = %ACC( L;8Si11) = 0.
PR T .

From Equatxon (3.7 ) » ,
BG5S 8) = X [CdSw = ClSm D] <0,
o leL - - LT
’ it is easily concluded that N .
A‘C (L S Sm) =. Z [Cc(srn: l) . ( 0 1)]
- lel

The proof for the 1ncremental cost for th1ck edges follows the same procedure_
as for curvature, except that Lemma 3.4 is used instead of Lemma 3.3 above o
| ' o
Intultlvely, the proposition tells us that when edge pixels are removed
from a- conﬁguratlon, the cost for curvature and the cost for thickness never
increase. Conversely, when edge-pixels are added, the two cost factors never
decrease This proposition is important as it gives us an 1ntu1t1ve 1dea of how
" the cost factors aﬁect the edges B

We now state an important propos1t10n whlch nges the mlnlmum length -
, of any edge in a global minimum state.

Proposxtlon 3.17: Assume that there are no thlck edges in the global :
minimum states. In a global mlnxmum state, any edge E that contalns at least
two endpomts has s1ze - '

| E Il = | >
] Wd VVe 1
| where [ ] denotes the smallest mteger greater than or equal to X X.

IIE contalns less than two endpomts, then H E || 4.

Proof Let E be an edge in a. global minimum state Sg, and let S, be the state o
‘that has 1dent1cal edge labehngs as Sg at every site except at the s1tes of E -
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where they are labeled as non - edge pixels. - Using Equ”ation‘ (3.7), ‘the
. incremental cost can be written as v ' B

5 a
AF, g = YL wiACL(L ; 8, Sg)
k=1 S

= WAC, + WaAC, + W AC, + WA + w,AC,

The incremental cost. factors have the'following values: -

. AC,=0, AC,=[IE|l, and ACy= ¥ —d(i) .
‘ SN c y ) o : IEI(E) v ‘
'_Hence, - _ .
| AFye =wAC ~ 3 wad(l) + wll E || + wAC
- o aE) ST

. = WCACC + E '[We -_ de(l)] + WfACf .
IEI(E) SR

Since 0 < d

)=1,

(= | o
- AF, g = wcACc + ¥ [We _'WdJ + wiAC;
N S oapl |

= WAC+ | E || (we = w) + wAC, .

~ From the fact that S¢ is a global minimum state, we have AFn,G =< 0,'.which o
‘implies that e e B ' '
‘ ”E “ (Wd—We) = WCACc‘l‘WfACf . ‘
- If E contains at least 2 endpoints, AC; = 1. Using Proposition 3.16 we have
AC, = 0. Therefore, taking the minimum of the factors to the right Of the
above inequality, ” | I
| | _ Wi
TEN =
: Wg — We

‘ Thlé size of E is an integer, and using the ceiling notation, we have

| o
NE| = [———‘ l
: ’ Wq —/W,

If E contains less than 2 endpoints, it must contain a cycle. _Again, by
Proposition 3.15, the cycle must be thin. By construction, the smallest cycle

’ 27
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that is thin must have at least 4 distinct ‘edvge‘ pixels as shown in Figure 3.16.

3.4.3 Dlselmllanty values at the endpoints

, DlSSlmllal‘lt}' enhancement sxgmﬁes with large values those plxels whlch
are good candidates for ‘edge points. The following proposition gives a lower
" bound on the value of region dissimilarity at the endpoints of an edge. It is
useful in estlma.tmg the value of the . enhancement scale factor o used 1n’
dissimilarity enhancement.

Proposition 3.18: Assume that the neighborhood function is Hj(S). Let E be
~a thin edge that is a path in a local or global minimum state, such that
JIE|l = 2. Then, the dissimilarity value at each endpoint of E located at
site l E {l 1» I3} must satisfy

iy = = . R .. (3.10)

Proof: Let Ss be a minimum state, and let S, be a member of H(S ) such that
S, and S, differ only at site I;; pixel s,(I;) is a non-edge pixel.  From
Proposxtlon 3.14 and Fact 3.4 the mcremental cost can be wrntten as

3 AFn,o = EkaCk(Wx 5 Spy So)
k=1 » .

=w,AC, + wqACy + wAC, + wiAC; + w,AC; .

Since E is thin and s,(l,) is an endpoint of a path, the incremental cost factors
must take on the values: ' » : :

AC; =0, ACt =0, AC,=1, and ACd = —d(ll)
Hence, .
AF, , = wAC, — wad(ly) + w,
Since S, is a rninimum state, AF,, < 0. This implies that

> — ——AC
(’1) wg =+ wa

By Proposition 3.16, AC, = 0, and hence



90

x|

Figﬁre 3v.v17:.>. Two examples of extended edge segments.
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d(;) =

O

Since d(!) is linearly dependent on the enhancement scale factor o (up to
a maximum of 1.0), the above proposition provides a guideline to selecting the
‘value of o. Essentially, edges can be extended by increasing o so that more
points satisfy Equation (3.10). The above weight ratio will be given a special
term called dissimilarity threshold which will be discussed in the next section.

3.4.4 General Con51derat10ns in Selectmg the Weights

Selection of weights is of major importance as it determines the nature of
the edges and the number of edge points detected. In the previous sections, we
have given a sufficient condition for the weights to ensure that only thin edges
will be detected. Also, we have analyzed the minimum length of edges in terms
of the weights, and gave a lower bound on the values of the enhanced image at
the endpoints of an edge Further insight is gained into the choice of weights
by considering the minimization of the cost functlon from the standpoint of
thresholding and edge linking. To do so, we have to first state an important
pi'operty of thin edges in a global minimum state. This property is given in the
following proposition. Several hypothetical edge structures will beb used as
examples to provide addltlonal insight into the weight selection process.

IfE 1s a thin edge in any state S, we can partltlon E into non-empty
disjoint segments E, E, .... Ey such that E = UE We define the extended

segments~'Ei -as the set of edge pixels of E contamed in the union of the
windows of the pixels in E;. Two examples of extended segments are shown in
Figure 3.17. ‘Note that if m =1, E; =E =E;,and if m = 2,E; CE; -

Prdf)osition 3.19: Let E be a thin edge that is a path or cycle in a global
’ mlmmum state Sg- If Eq, Ey, .... E are non-empty disjoint edge segments such

that E UE,, and E are the corresponding extended segments, then for each

Cim=]
segment the following inequality holds: , -
NE N wetwe T ClSe ) —wg ¥ d)) = w . (3.11)
leE) 1€I(E) : : .

' FUrthermore, if m=1, or if E; contains an endpoint of E, then |
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n E; || we+w, 3 CSeD)—wa S d(l) < 0. (3.12)
leff) IEI(E) R

| Proof
Case 1 m= 2.

Let S “be the state that has identical edge labehngs as SG at every site,
except at the sites of E;, where they are labeled as non-edge plxels The
| 1ncremental cost from S to Sg is " ' '

- frbAFnG = EWkACk(L Sn’ SG)

L = W AC + WdACd + W AC + WfACf + WtACt

Slnce E is a thin edge, ACt = 0 and AC = H E l l Therefore, ,

AFnG —W AC '—Wd d(l) +We” El” +WfACf
ST

The state. SG 1s a global mlmmum, and 1) AFn G = 0 ThlS 1mphes that -

WAC, — A1) +wll Bl < —wAC; .

| : zeuE) o o

- The ,incremental cost for curvature is AC =3¥cC oS¢, 1)
: o v I€I(E) .

' ’We w111 refer to the segments contalmng the endpomts of a path as the end i »
segments Segments that do not contaln ‘any end point are referred to as
interior segments. The incremental cost factor for fragmentatlon takes on one

of two p0551ble values ‘

'} 0, ifE is a path and E; is an end segment o
: 5’»“—1, if E is a path and E; is an interior segment
f—i, 1f Eisa cycle :

| Substltutlng these into the above equatlon and taklng the upper bound of the - L

factor to the ‘right of the inequality,

W, 3 CulSqy ) —wg (0+WJEH
leuEJ ' IEHEJ -

It is easxly seen that 1f E; is an end segment then AC,=0 and the 1nequahty> .
becomes ' :
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W, 3 ClSq 1) —Wg 3 (l) +w B ]l =
lel(E) IEI(E)

'Case 2m=1 '
| “We. have E,=E= E1 Again, let S be the state that has identical edge

labelings-as Sg except with the correspondlng pixels in E; labeled as non-edge
plxels Followmg the same procedure as in-case 1, we have - o

W S CdSe ) —w B A0+l Byl < —wf.Ac'ff.- .

Iel(E,) ; zeI(El)

The 1ncremental cost factor for fragmentatlon takes on one of the 2 values

Al ] 0, ifE 1sacycle‘ ‘
AG = {+1’ i B is a path

: vSubstltutlng this 1nto the above equatlon and, taklng the upper bound of the

factor on the rlght of the inequality, ’

W Y ClSer ) —wq 3 d(1)+Well Ell =
o lelB) _‘ - leE)

3.4.4.1 Thresholdxng

: Thresholdlng is the 51mplest form of edge detection based on an enhanced
image. It can also be considered to be a trivial form of cost minimization
where the cost functlon does not take into account edge structure mformatlon
For the cost function which we defined, the edge structure information is
contained in the cost factors for curvature, fragmentation and thickness. By
setting theu' respective welghts to ‘Z€ro, - the cost minimization procedure |
becomes a simple thresholding operatlon From Equatlon (3 12) of Propos1t10n
3.19, any edge E must satlsfy : ,

a(n) = n B iw, W, D CSe D). (1)
IEI(E) : - _1€el(E) : _
If E isa snngle edge p1xel at i, then the followmg must hold

a =

We eal_l the above ratio the 'dissvimilan"ty threshold, and denote it by | :
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=L '(éfi‘x‘) |

Usmg a thresholdlng approach in the minimum cost state, dlss1m11ar1ty
., values that are greater than or equal to ¢ will be labeled as edge pixels, while
those that are less than ¢ will be non-edge pixels. The d1s51mllar1ty values are

o hnearly dependent on the enhancement scale factor o, up to a maximum value

of one. Hence, the number of edge pixels that are detected can be adjusted by
varylng the value of c. It is seen that a cost function comprising only of the -
cost, factors for dissimilarity and number of edge points, Cq and C,; represents
, the general class of edge detection by pointwise thresholding algorlthms
' However, for reasons that we have already mentioned in “Section 3.3.1,
| poxntwrse thresholding algorithms do not perform well in ﬁndlng edges that‘ |
su1t our edge concept

Cons1der a hypothetlcal minimum cost conﬁguratlon Sy conta1n1ng a smgle
thln edge E' as shown in Figure 3.18. Let S, be the edge conﬁguratlon that
' contalns no edge pixels. If the cost function uses only the cost factors Cd and '
Ce, then by considering AFl 9 Sy is a lower cost state if and on]y if thev ,

follow1ng lnequahty holds: ‘ _ o S e
‘ wg D d() = ||Elw, . '*“@m-
, - I€l(E) S '
,However, when the cost factors for fragmentatlon and curvature, C,- and C -
. are 1nc1uded the 1nequahty becomes: ' ' o

-qu)znmm+m+m;j j,(m®f'
Cola® . S

A comparlson of Equation (3.15) with Equatxon (3. 16) shows that the sum |
of the dissimilarity values for the latter equation has to be larger than that of

 the former In this case, when the cost factors C; and C, are included into the = |

cost functlon, ‘the lower bound of the sum of the dissimilarity values is
1ncreased by w; 4+ w,. Consequently, the edges that are detected for the case
us1ng Equation (3.15) may not be detected for the case using Equatlon (3 16)
This i is an example where we observe the influence of Cf and C.in suppressmg
_ short edges ' S
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Flgure318 " A minimum cost conﬁguratlon contalmng a smgle thln.
RS edge. o
B E,

A

{ N N . R

@ [ , T Ix[x]x]x

N o e R R

'Fxgure 3 19. An example of edge hnkmg (a) Conﬁguratxon Si which contamsv‘

an edge E comprised of the segments Eg, E;, and E,. (b)
Configuration S, which contams fragmented version of edge: E by '
‘the removal of segment E,.. '
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3.4.4.2 Edge hnkmg
We Wl]l now con51der how the cost for fragmentatlon promotes: edge
linking. Consider a minimum cost conﬁguratlon S, that contains a single thin
edge E as shown in Figure 3. 19(a). Let E be partitioned into 3 disjoint -
segments Eg, E, and E,. Now let S, be the configuration that contains E but
with the edge pixels of the center segment E; relabeled as non-edge. This is
shown in Figure 3.19(b). Notice that the edges in S, is actually a fragmented
:verswn of edge E. The size of the fragmentation, or the fragmentation length,
is equal to || E, |l. By considering AF, 2 Sy is a lower cost state if and only if
the fo]]owmg relationship holds: , _
wa 3 Al +w = || Eyllwe+w, . (3.17)
L el } : A
Notice in this case that if _
w = || Elv”We +we

then S; will have a lower cost than S, regardless of d(I); the continuous edge E
has a lower cost than the fragmented version of the edge. Assummg that the
~ weight for curvature w, is comparatively small, we can approximate the above‘
v "mequahty by o , o
| B Wz IE v, . 1y
CHwelet = |

We

k=1 y’ S ; (3.19)
where [ J is the floor function, we see that thin edges with a fragmentation

length of less than or equal to x p1xe]s will have a lower cost when they are
llnked together. Stated in another way, endpoints which are less than or equal
. to K pixels apart have a lower cost when they are linked together. For this
reason, we will call k the fragmentation linkage length.

In arriving at the value of & given in Equation (3.19), we have not taken
into consxderatxon the dissimilarity values; they were assumed to be zero, When -
these values are taken into account, edges that have fragmentation lengths
larger than k can also be hnked together. ThlS is illustrated in the followmg
two examples. ' »

In the first example shown in Figure 3.20, we show a stralght edge and the '
dlsmmxlarlty values along the edge. Assume that the dlsslmllarxty values are,'



97 .

| | Ey
@ XXXXXXXXXXXXXXX
S 4 | , '

(B de ) ' . .9‘ | .1t
5 S O N I O S B 5 I O PN
g 4 iy

s oo —
E
1

Figure 3.20. An example of edge linking | across a region where the
- dissimilarity values are equal to 0. (a) A straight edge. (b) The
dissimilarity values along the edge.
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zero at all other points. Notice that the edge contains a segment E; where all
the sites have dissimilarity values equal to 0. If the cost for fragmentation is
not included, only those points with dissimilarity greater than the dissimilarity
threshold ¢ will be detected. This will result in a fragmented edge as the center
portion E; has dissimilarity values equal to 0. However, with the inclusion of
the fragmentation cost, fragmentation will occur if and only if the length of 0s
in the dissimilarity values exceeds the fragmentation length k. That 1s,

HE,]| > «.

In the second example shown in Figure 3.21, we show another straight
edge and the dissimilarity values along the edge. Here again, fragmentation will
occur in the center region if the fragmentation cost is not included. In this case
however, since the dissimilarity values at the sites of E, are non-zero,
fragmentation may not occur even if the size of E; exceeds . In fact,
fragmentation will occur if and only if the following relation based on Equation
(3.17) holds:

wg Y d(l) +w; <|| E; [|w,
IEI(EI) v

If we let
- 1 |
= | =

e

wi+wg Y d(l)] , - - (3-20)
I€I(Ey) ' ~

then fragmentation will occur if and only if

[|Ey]l > &.
Using the property
la+8 ]2 [a]+]z],
it can be deduced that '
Rz g+ |— 3 d() . (3.21)
We JeIE)

Note that K is always greater than or equal to x. Hence edges with
fragmehtation length greater than k can be linked together. However, this
value of K only holds for straight edges. For general paths or other thin edge
structures, Equation (3.11) will have to be used to account for curvature costs.
From the above two examples, we cas view the effect of the fragmentation cost
from another standpoint; for some regions that have dissimilarity values below
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Flgure 3. 21 An example of edge linking across a region where the
dissimilarity values are non-zero. (a) A straight edge. (b) The
dissimilarity values along the edge.
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the thres’hold‘lg, the fragmentation cost lifts them above the threshold. »

‘3.6 Summary

In this chapter, we have given a mathematical definition of edges using
terms that are similar to those in graph theory. Based on this definition, we
'accomplxshed two things. Fi 1rst we analyzed certain properties of edges and
stated several propositions governing the structure of edges in a 3 x 3 lattice. -
Second, we formulated an absolute cost function that measures edge quality.
As the term suggests, this cost function is different from the comparative cost
function of the previous chapter in that it measures the absolute quality of an
edge configuration instead of the relative quahty between configurations.

The absolute cost function is a linear sum of five weighted cost factors.
The cost factors are curvature, dissimilarity, fragmentation, thickness and the B
number of edge points. Each of the cost factors captures a desirable
characteristic of edges. We have provided efficient methods of computing both
the cost of a configuration, and the incremental cost between configurations.
We have analyzed thé cost functlon in terms of the nature of the edges that‘
“will be detected. Based on this analysis, we have stated a number o
proposmons which provide guidelines on the choice of weights to achieve
certaln desirable characteristics in the detected edges. ’
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'~ CHAPTER 4
SIMULATED ANNEALING

4.1 Introduction

The general problem of combinatorial optimization which we a.re;

concerned with can be briefly stated as follows. Given a large but finite set of

states. S, each state 5, €8 havmg an associated cost defined by the cost
function C( i)y it s required to find the state with the minimum cost.
Depending on the specific nature of the problem, a variety of techniques [30]"-
exist for minimizing the cost. In this chapter, we focus on the use of Simulated
Anneahng as a method of combinatorial optimization. In particular, we will
show how it can be applied to edge detection by minimizing the cost functlon'
for edges which has been described in the previous chapter.- ' ok

, Slmulated annealing is a stochastic optlmlzatlon algorithm’ derlved from, o _
‘Monte Carlo methods [31] in statistical mechanics. Metroplois et al. [32]

or1g1nally proposed the algorithm as a simulation method for 1nvest1gatmg the
behavior of substances consisting of interacting molecules. One of its many |

later applications is in the study of properties of magnetic materials based on

the Ismg mode] [33 35]. The Metropolis algorithm has been used extensively to :7,'
simulate the behavior of substances in thermal equilibrium as the temperature -
was slowly decreased to the point of crystallization; hence the term “Simulated

'A_nnea.hng The goal of the anneahng process is to find the ground states ofa

substance which corresponds to the conﬁguratlons of low energy in 1ts'__
molecular structure

Klrkpatrlck et al. [36] and Cerny [37] independently observed that the
search for the low energy configurations in the annealing process could be
likened to the search for the low cost solutions in a combinatorial optimization
problem. The many different states that a system can exist in corresponds to
‘the many possible solutions of the optimization problem. The energy of a
particular state corresponds to the cost of a particular solution, and the ground

state corresponds to the lowest cost solution. A direct correspondence between o

statlstlcal mechanics and comblnatorlal optlmlzatlon was thus drawn in the
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following way.

Statistical Mechanics - Combinatorial Optimization
1) States (of system) ’ » Solutions (to problem)

2) Energy (of state) , Cost (of solution)

3) Ground State : Optimal Solution

Based on the above correspondence, the annealing algorithm of Metropohs
et al. was first apphed to the optimization of wire routing in 1ntegrated circuits .
[36], and the traveling salesman problem [37]. Good results comparable to
present heuristic algorithms were reported. Since then, the algorithm has been
successfully applied to a number of diverse optimization problems such as the
traveling salesman problem([38], ~ wire routing[39), coding[40], speech
recogniti’on [41], image processing[42, 43, and logic optimization[44]. o

4.1.1 Markov Chains

The Metropohs algorithm is based on stationary Markov chalns The
deﬁnltron and theory of such chains can be found extensively in the literature
on stochastic processes, such as [45-48]. We will give -a brief description of
Markov chains concentrating only on those aspects that are relevant to
Slmulated Annealing. We will state several properties and a theorem

concernlng the limiting behavior of such chalns o
’_ Let ) be a sample space and P be a probability measure on it. Let
{Xn, n € N} be a stochastic process with a countable state space E. That
is, for each n € N ={0,1,...} and w € {), X (w) is an element of the countable
set E. We will say that ‘“‘the process is in state j at time n” to mean X B

Deﬁmtlon 4 1. The stochastlc process X={Xy;n€ N} is called a Markov
chain provided that R R :
o _P{Xn+1=j/X0, R Xn} = P{Xn+i=j/)cn}

foralljEEandn €N. |

- A Markov chain is thus a sequence of random variables such that for any
n, X, ., is conditionally independent of X, . .., X;_; given X, Tha't‘is,' the
next state X, is independent of the past states X, ..., Xy, provrded that _'
the present state Xn is known. If the conditional probability -

P =ifX =i} =P(j)

is independent of n, the process is a time-homogeneous or stationary Markov
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" chain; otherwise, if it is dependeht on n, it is a time-inhomogeneous or
nonstationary chain. The probabilities : P(i, _]) are called the transition
probabilities. They can be arranged in a square array resulting in a tran51tlon'
matrix of the form: :

P(0,0) P(0,1) P(0,2) .. |
P(1,0) P(1,1) P(L,2) -
P(2,0) P(2,1) P(22) ..

L

If P(l, J) is not equal to zero, we say that state j is reachable from state i 3 
A set of states is closed if no state outside of it can be reached from any state '
in it. A Markov chain is irreducible if its only closed set is the set of all states.
A criterion for irreducibility is that a Markov chain is irreducible if and only if -

all states can be reached from each other ‘The proof for this can be found in

[45]-

A state j is said to be recurrent if and only if starting at j, the probablhty o

of returmng to j is one. Beginning from a recurrent state j at time n=0, let
n=R be the time of the first return to state j. Assuming that 6 = 2 is ‘the
‘largest integer for which the probability that R is some integer multiple of §is
equal to one, then state j is said to be periodic with period §. If no such &
exists, then j is aperiodic. It can be shown [45] that for irreducible chains,

either all states are aperiodic, or all states are periodic with the same period .

It follows from this that if the chain is irreducible and if there ex1sts some state B

i for which P(i, i) # 0, then the chain is aperiodic. ‘

Limiting distribution

We now state a well know property of Markov chams relatmg to the
limiting distribution of a ‘chain.

Theorem 4.1: If X is an 1rreduc1ble aperiodic Markov chain w1th ﬁmtely
' many states, then the system of linear equations '

() = L ()PG, i), JE€EE , S (4-1) |
: ieE ’ ; o
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.ng(j)=1 | R .(4'.2)‘_'

. has a unique solution that is strictly positive.

_ Proof: Refer to the text by Cinlar [45]. S
| The probability distribution 7 which satisfies Equations (4.1) and (4.2) is
called the jnvariant distribution of the Markov chain X. For simplicity in
notation, we will write 7(j) simply as ;. B

4.1.2 The Metropolis Algorithm

, The Metropolis algorithm, first proposed ‘in 1953, was a method of
simulating the behavior of substances at thermal equilibrium. The descrip_tion.
and analysis of the algorithm given ‘here follows closely to that given by -
Hammersley and Handscomb [31]. Let § = {81, Sg,....Sk} be the finite set of all -
possible states of a physical system. Each state S; has a corresponding positive
energy: denoted by E(S;). In statistical mechanics, it is often desirable to
simulate the behavior of the system at thermal equilibrium at temperature T.
To do sb, it is necessary to be able to sample the states with the following

probability density: ' '

(-E(s) ]

exp[ : v

. oT , . _

P(S;) = - 7 1=isK, | (4.3)
. &eT

where o is a positive scalar constant, and

Zy = Y exp [———_E(Si) ] .
SE€S of ) |

is a normalization factor which ensures that the sum of P(S;) over all possible
states is equal to one. - N
v The denominator Zy of Equation (4.3) is unknown and cannot be

computed because the number of states, although finite, is very large., Hence,
althbtigth(Si) is known, the probability P(S;) of Equation (4.3) cannot be
determined.'Avs a result, it is not possible to generate the states according to
the given distribution using direct sampling methods. The MétrOpolis
algorithm achieves the above sampling requirement by constructing a finite
stationary Markov chain that has an invariant distribution which is identical
to that of Equation (4.3). That is, the chain has the set of all possible states of
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the system as its state space, and its'invariant distribution is given ?by’:

(i) = P(S;) - - B CE

The method of generating the Markov chaln is as follows «Consider any
arbitrary chain with a symmetric matrlx P’ of transition probabilities; the
- elements of this matrix must satisfy ' ‘

*

* * s ‘: | o
pj= 0, ,Epij =1, pj=pj - | (4.5)

‘We now deﬁne a new set of transmon probablhtles plJ using the known
(i)
()’

If i #j we define

‘quantltles

) plj 7rj/7ri ' lf 7T/7r <1 .
Pp=1 (4.6)
' le ] lf Ur / T
Ifi =‘j,we deﬁn_e
' Pii Pu + 2 pu J/7T : (47)

where Y is taken over all values of j su,ch that 7; Jm < 1.

" We will next prove that these p;; are elements of a stochastic matrix and =
that the Markov chain defined by these trans1tlon probabllltles has 7 as its .
* - invariant distribution. '

_“Proof: o - o
We will denote as Y7’/ the summation over all values of j such that j #i and

7rJ! /7r; >

(1) From Equation (4.3), each 7, Z 0, and hence by Equations (4. 5), (4. 6) and
(4 7); all the plJ satisfy o

Pz 0. (49

(2) The summation over all j of the quantities p;; can be written as
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' _ * R , - *
¥y = pi + X'py(1-7y/m) + X' pymi/m 4+ B p;
i j i j

- * *
=pii + 3'pij T X' Pij

*' ¥
=Pii + 2Pjj
i S
= ¥b; : | o (49)
j
Thus by Equatlons (4.8) 8) and (4 9), the pj are elements of a stochastic matrix.

(3) 'I‘o show that the chain has an invariant distribution equal to , we
essentially have to show according to Equation (4.1) that

Ty = 3.MiPjj -
. l N N

First we observe that for any pair i and j such that T =T, We have by
Equations (4.5) and (4.6) ‘ . :

*

. R v
Pij = Pijj = Pji = Pji »
- and therefore, since m; = 7,
TiPij = T;DPj; - | - (4.10)
Next, 1f ™M < 771, we have

Pij pu 1/71'- = le J/ﬂ" = p_|1 J/ o
which again’ gives Equation (4.10). Slmllarly, it can be shown that the same
equation still holds for m; < M. Consequently, it holds for all values of i and j.
Finally, we see that ‘

Z pu 2 iPji. = WjZPji?”j 3
i i ,

which completes the proof that the invariant distribution is 7.

Notice that by Equations (4.3) and (4.4), and the assumption that the
energy is finite, m; > 0 for all j. Consequently the matrix P= [pu] represents an
irreducible aperlodlc Markov chain whenever P'= [p,J] does. Hence by
Theorem 4.1, a unique solutlon exists and is of the form defined in Equatlon

3.
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We now consxder the unp]ementatlon of Equations (4.6) and (4 7), which
essentlally is the Metropolis algorithm. The algorithm begins by defining an
arbitrary transition matrix P over the state space. The restriction on P is that
it must be symmetric, aperiodic and irreducible; which are the assumptions

made in Equatlon (4.5). For a fixed temperature T, the algorithm proceeds as
follows. '

Algorithm (Metropolis): »
: (1) Pick a random initial state, and set k=0.
(2) Ca]] this the present state S,
(3) | Based on transition matrix P, randomly select another state S..
(4) If(E(S,) <E(S,) ) then | |
.. transition to state S
else

—[E(sn)+E(sp)J,]
oT )

»_transitiOn to state S, with probability exp [

(5) Incrernent k, then go to step (2).

The algorithm loops from steps (2) through (5), and as the number of
repetltlons k becomes very large, the process approaches it 1nvar1ant
distribution. We have shown that the invariant distribution takes on the form
given in Equation (4. 3) Similar results relatmg to the 1nvar1ant dlstrxbutlon
are given in [49-51]. ' ‘

By making a sxmple substitution of the energy of a state E(S;) with t_he '
- cost C(S;) of a solution, the above algorlthm generates a Markov chain with an
invariant distribution of the same form as that of Equation (4.3):

. [ ~C(s) ]
. oT

ﬂ-(si) = : ZT ’
Wher‘e K is the total number of all possible solutions, and a is a positive scalar
constant. Zp is again a normalization constant. Assuming that C(S;) is non- .
negative for all i i, Equation (4.11) specifies that lower cost solutions will have
higher probability of occurrence. Notice that if T is small, the distribution will
be concentrated about the low cost solutions. That is, when the Markov chain
achleves its invariant distribution at low temperatures, there is a high

1<is<K, | (4.11)
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probability that it is in a state co_rresponding to a low cost solution. As T
tends to zero, the distribution will be concentrated at the minimum cost states.
- Hence the algorxthm can be used in combinatorial optlmlzatlon to find:the
mlmmum cost solutions. o

It is of interest to note that the Metropolis algorithm. presented above
allows for. uphill state transitions so that it does not get stuck in a local
minimum of the cost function. The temperature T can be interpreted as a
control paraniete_r, and if it is set equal to zero, the algorithm is similar to the
steepest descent search method and will usually terminate in a local minimum.

4.2 ‘Temperature Variation and Simulated Annealing

In using the Metroplois algorithm for optimization, two related issues have
to be resolved The first is in estimating the number of repetitions or
transitions sufficient for the Markov chain to reach its invariant distribution.
The second is in the devise of a sequence of temperature decrements to bring.
the system to the states of minimal cost. This is known as the temperature
schedule. The schedule has to be efficient in the sense that it ensures that the
lowest cost states are reached rapidly. }

In order to ensure convergence to the global minimum states, temperature;
'varlatlon has been incorporated into the Metropolis algorithm by changing the
temperature parameter T in step (4) so that it becomes time dependent. The
process generated by such such an algorithm is a non-stationary Markov chain.
A number of researchers [52-58] have proved the asymptotic convergence
properties of the chain and estimated various rates of convergence. The
general form of the Simulated Annealing algorithm for cost minimization is as
follows. ' :

Algorithm (Simulated Annealing):
(1) Pvi‘ck a random initial state, and set k=0.
(2) Call this the present state Sp-
(3) Based on a transition matrix, randomly select another state S,.
(4) H(C(S,) <C(Sp) ) then
© . transition to state S,
else '

—{C(S)—C(S,)] ] .

- ‘transition to state S, with probabilityvexp [ T
: 1y
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(5) Increment k, then go to step (2).

In de{rising a temperature schedule, we will focus our attention on the
work of Ha_]ek [58] where he states a theorem which gives a necessary and
sufficient condition on the;  temperature schedule for the convergence of the
anneallng algorithm to the set of global minimum states. We will also present
some related results of Geman and Geman [52], and Mitra et al. [54] in this
area. k 7
v Before stating Hajek’s theorem, some preliminary deﬁmtlons are in order.
" The problem is to minimize a function C defined on some ﬁmte set S. The set
of states in 8 at which C attains the minimum is denoted by S*. Assume that
for each state S; in S there is a neighborhood set H(S;) contained in S. In
“addition, there is' a transition probability matrix R over S such -thatt
| R(Si,Sj_) > 0 if and only if §; is in H(S;). A state i is reachable from state j if
‘there is a sequence of states j=iy, ij, ..., i,=i such that R(i, i41) >0 for
0<k <p (S, H) is irreducible when for any pair of states i and j, i is
reachable from j. - : :
A state i is reachable at height E from state j 1f there is a sequence ot‘ _

states j—lo, iy . y 1p=i such that

Riy, i) >0 for 0 < k<p
| Ci) <E for 0<k<p . |
Property 4.1 (Weak reversibility): For any real numben E and any two states
iandj,iis reachable at height E from j J if and only if j is reachable at height E -

from 1.

A state iis sald to be a local minimum if no state j w1th C(j) < C(i) is
reachable from i at height C(i). The depth of a local minimum i is plus infinity
if i is a global minimum. Otherwise, the depth of i is the smallest number E,
E > 0, such that some state j with C(j) < C(i) can be reached from iat helght

C(i) + E.
Let _the temperature schedule T,, T,,.... be a sequence of strictly positively
numbers such that | B |
| T, 2 T, = .. (41

and
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im Ty, =0 . o (413)
k—oo .

Suppose that a discrete time non-stationary Markov chain Xos Xq,---- on the
state space S is generated using the Simulated Annealing algorithm’descrlbed
above. The convergence in probability of the chain to the set of globally
mlnlmum cost states is given by the following theorem. -

Theorem (Hajek) ‘Assume that the Simulated Annealing based on (S H, C) is
~irreducible and satisfies weak reversxblhty, and that the temperature schedule
satisfies Equations (4.12) and (4.13). Then ‘

imP[X, €8] =1 i  (4.14)
’ k—o0 : o .
if and only if
o [_g* - ‘ L
E exp’ =400, B -(4.15)
k=1 Ty -

- where d" is the maximum of the depths of all states whlch are local but not
',global minima. : _

Proof: Refer' to the paper by Hajek [58].

Remark: If Ty takes on the parametric form
: .
Ty=7—"—"—
ST 7 log(k+1) |
then Equation (4.15) and hence Equation (4.14) holds if and only if ¢ = d°.
Mitra et al. [54] showed that convergence can be achieved by a
temperature schedule of the form . :

(4.16)

| Y Sy
T , ‘ 4.17
» kT log(k + ko + 1) | P ( )
where ko is any parameter satisfying 0 < ko =< 00, and
Y= 1o,

where r and p are defined below Let S’ be the set of all local mmlma, then the
radlus T is defined as S
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r= min max d{i o 4.18)
o i€(s-8") jes (’J)’ T ’ ( )
.Where d(1, J) is the mlnlmum number of transitions from i to j. The parameter
pis the maxrmum change in cost across any transition, and is deﬁned by
' = max max | C(j) — C(i)| . _ S (aae
p,lESJEH(l 0-col. . ,’(.,),
 Geman and Geman [52] apphed the anneahng algorlthm to Markov"
“random fields and image restoration, and proved lts convergence based on a;
vtemperature schedule of the form )
T, = MA
o | - log(1 +k) - |
"The parameter A corresponds to the maximum difference i 1n the cost for: any
- pair of states in S, and M is the number of pixels in the i 1mage However, the
~above schedule is not useful because the number of iterations k required to -
~reach a typlcal temperature of Tk=0 5 is far too large for any practlcal
',rmplementatlon For example, if - M=20, 000 and A—l it - would take‘
k = exp(40 000) iterations to reach a temperature of 0.5. In thelr
rmplementatlon, Geman and Geman concluded that the bound MA is far from}
'optlmal and ‘used an empirical value of 3.0in place of the value MA.

To summarlze, three thlngs are required in the use of Slmulated
"A.nneahng for general problem solvrng : R

‘ (1) a cost functlon defined over the state space of all possrble solutlons,
(2) a method of generating next states (i.e. a sultable transltlon matrlx), and

(3) an eﬁ‘iclent temperature schedule

4 3 Edge Detection Using Slmulated Annea.hng

In Chapter 3 we have presented a cost function that evaluates the quahty
of an edge configuration. This funection mathematically captures the intuitive
ideas of an edge and serves -as an obJectlve measure of how ‘well an edge
conﬁguratlon fits a given image. It has been shown that when' this. functxon is
minimized, a number of desirable characteristics of good edges are achleved
The goal isto find the conﬁguratlons that achieve the global minimum of the

cost function. Smce there are 2V possxble edge configurations, - lt is not possrble-
to implement any exhaustwe search approach ‘because of the large nunber of
conﬁguratlons to be consrdered ' i '
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We will' use Slmulated Annealing as a tool to ﬁnd relatlvely low cost
.solutlons to the cost function. Although asymptotic convergence to the global
_minima is guaranteed with the use of a suitable temperature schedule, the
ﬁmte time behavror of the annealing algorithm will often yleld solutions that

. are not. global m1n1ma However, they are local minimum of relatlvely low cost.

In the context of: edge detectlon, we find that it is not necessary to achieve the

“global minimum- states; very satlsfactory results are obtained from these
relatlvely low cost solutions. This is particularly evident from the fact that'
many of the desirable characteristics of edges are achieved in low cost locally :
minimum states whlch may not correspond to global minima. ' '

Slnce we have already formulated a suitable cost functlon for the
annealing process, we proceed to discuss the remaining two requirements of
: Slmulated Anneahng mentioned in the previous section. These are the method
of generatlng next states and the temperature schedule

4 3.1 Method of Generating Next States

, The state space of the anneallng process is S which is the- set of-. all
poss1ble edge conﬁguratlons on an N x N . square lattice. For each -
conﬁguratlon S €S, the cost of the configuration is given by F (S) Each -

- configuration corresponds to a state in the Markov chain generated by. the

~ annealing algorithm; the terms “configuration” and “state” will ‘be used-

' 1nt_erchangeably to mean the same thing. At any state S, the potential next
state S, is generated according to a transition matrix. Conceptually, the next
state is selected according to the probability distribution defined by the matrix.
Practically however, it is unnecessary to explicitly define a transition matrix
for the selection of potential new states; all that is needed is a method of

‘generatlng next states such that certain condltlons on 1rreduc1b111ty and

1 rever51b1hty are satisfied. ' |

_ Our method of generating the next state is based on a combxnatxon of ﬁve __
poss1ble strategies. The first strategy generates the next ‘state by
_ complementlng a single pixel labeling in the present state. The second strategy
: complements two pixel labelings in the present state. The. third and fourth
strategxes generate next states by shifting or perturbating the locatron of the
edges in the present state. The fifth strategy involves changlng an arbltraryb
" ‘number of plxel labelings in a window region. We now give the details of each
of these strategies and the method of combining them together. Again, we let L
'denote the set of all pairs of indices of the pixels in a configuration. In each
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: case, we assume that lEL i 1s a'given parameter, the method of selectmg 1 w1ll

be dlscussed later

Strategy 1. Slngle plxel change
‘ S = Ml(S l).

In thls strategy we generate the next state S by complementlng the edge_ .

‘labehng at { of the present state Sp. That is, for every plxel Sp(x) E 8 ny and o

(x) €S8, such that x ;é l

A Sn(x).= Sp(x) ’

and for x =1, ' '
(1 ) =5, (1) ,

where the- bar notatlon denotes the usual binary complementatlon o

Strategy 2 Double plxel change » ‘ SR
' | S =My(S,, ). - R ;_. o
Thls 1is the same as the strategy M; except that we change the labehng of -

two plxels in the window. W, (S ) We first randomly select a nelghbormg pixel
"vof I s (r) E N,(S ,( »)- Then the new conﬁguratlon is the state that is specxﬁed by -

(x) (x), x€L, x¢ {I,1}
8p(x) , x €l 1 I

vv N ‘Strategy 3: Single pixel shift ‘
o s,

- This strategy of generatlng a new state is based on locally perturbatlng' ,

" the edge structure in the window W,(S;). The next state S, has identical edge ™

labeling as S, at every site except for the pixels in W, (Sp)- The pxxels in W;(S,)
are labeled accordmg to the transformation of the edge structure in- W,(Sp)]
' shown in Figure 4.1. If the edge structure in W,(S p) is one of the fourteen edge

: structures shown in the figure, the edge structure in- W, (Sn) is . the -
corresponding structure shown on the right. Where there are two structures
~ possible for the transformatlon on the right, either of them are selected on an‘
. equally hkely bams If the edge structure in W,(S p) does not correspond to one
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Flgure 4 1 " The fourteen edge structures in- W, (Sp) and their correspondxng
transformatxons in W;(S,) using strategy M;. - :
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~ of the structures shown in- the ﬁgure, then the structure in Wy(S,) is made |
1dent1cal to that in W;(S,). In doing so, we are actually setting Sy = Sp.

, Strategy 4: Multiple pixel’Shift
' ' Sy =M,(S,, ).

ThlS ‘ strategy of generating a new state is again based on locally
perturbating the edge structure in the window W(S o) It is very similar to the
strategy of M; except that the perturbation is more significant. The next state ’
Sy has 1dent1cal edge labeling as S, at every site except for the pixels in W(S).
The p1xels of W,(S,) are labeled accordlng to the transformation of the edge
structure in W,(S p) shown in Figure 4.2. If the edge structure in W,(S,) is one
of the ten edge structures shown in the figure, the edge structure in W,( n) is
one of the two corresponding structures shown on the right; either of the two
are selected on an equally likely basis. If the edge structure in W,(S ) does not
- correspond- to one of the structures shown in the figure, then the structure in
v~WI( L) is made identical to that in W,(S,). In doing so, we. are again ‘settlng
Sy = S as 1n the case of Strategy 3. ~ :

Stratejg_y 5 Window region change ,
| Sp =M;(Sp, 1) .

In this strategy, the next state is generated by arbltrarlly changlng all the
pixel labelings in the window W,(S p) That is, for all s;(x) €S, such that -
su(x) € W;(S,), s,(x) = 5(x), and for each s, € W(S,), the pixels are labeled
randomly; each pixel in the window has equal likelihood of bemg an edge or
non-edge pixel. This strategy allows for as many as nine changes in the edge
labelings of S, when generating the new state Sp. In fact, the edge labehng of
Sy and S, are 1dent1ca1 at every site except for a random number of K 51tes in
Wy, where 0 < K = 9. When K=0, S, and Sp are identical. '

The method of selecting the next state is a comblnatlon of the five
strategies mentioned above. Given I/, we randomly choose from one of the five
strategies to generate the next state. Mathematically, the selectlon process can
be expressed in the form : '

S, =Mx(Sp, 1), | (& 20)

where X is 2 dlscrete random varlable takmg on values in the set {1 2,..,5}.
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W, (Sp) W,(Sp)
X : XX X
X| | X] OR {X
X X XiX
X] x| [IXIX
X] | —— X] OR [X
X X{X X
X XIX]
X| | — X] OR X
X X
_ X
XIX| | —|X] OR [X] IX
X : X. X
X X
X| | —»[X OR X
X XIX
X X X
XIX| ——t X] OR X[ IX
X
X[ 11 [XIX
X | —a|X OR 1 X
X X X
X X X
XIX] | = | X OR ([X] IX
X
X X X
Xl | —— X] OR [X] .
X XX
XX e X] OR |[XI IX
X X X

| Figure 4.2. The ten edge structures in W;(S;) and their correspondmg
= transformatlons in W,(S,) using strategy M,. . ’
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The probability distribution of X is given by

PX=i)=p;, i=12..,5 T (a2)
‘where " V
5
Z‘pi =].
i=1

‘The specific values of p; are application dependent; they determine the
frequency that each strategy will be used. Notice that given / and Sp, each
new state that can be generated using M; or M; can also be generated using
M,. That is, the set of states that can be generated using M, and M; is a subset
of the states that can be generated using M,. Similarly, the set of states that
can be generated using M;, M,, M; and M, is a subset of the states that can be
generated using M;. Consequently, the total collection of states that can be
generated from a given state using the five different strategies is determined by
M;. Given ! and Spy there are 256 possibilities of generating the next state.
Given Sy only, there are approximately 256N2/9 different p0551b111t1es for the
- next state Figure 4.3 shows two examples of the various possrble tran51t10ns
: usmg the five different strategies. ' ' '

.~ The strategies M, and M; have a reversible property in the sense that
‘g1ven 1, if S, can be generated from Spy then Sy, can also be generated from Sa:
'Smce M5 will generate all states possible with ‘the other four strategies; it can
,be deduced that the method of generating new states using Equation (4.20)
also has this reversible property, provided that ps is non-zero. This property
will be useful in the proof of the weak reverSIblhty (Property 4 1) of the
annealing process. ‘
_ At each iteration through the annealing algorithm, the value of I can be
chosen either in 2 random or deterministic manner. An example of a random
approach would be to select the I on an equally likely basis from the set L. An
example of a deterministic approach of selecting [ is to to sequentially step

through each pixel site in the image in a raster scan manner. One guideline e ‘
that is used for the selection of ! is that at low temperatures, every site should

be selected at least once before the termination of the annealing process. When
this is achieved, we have found experimentally that the results of cost
minimization- obtained by both approaches are fairly similar. It should be
noted that using the above crlterlon that each pixel site should be selected at
least once, a random approach in selecting the value of | would requ1re a
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M

X X X
X M, X My X
X - X > X
) Xl . . - )(X
XLt o X M
X Ms X i X
X X Ix

Figure 4,3 Examples of possible transitions usmg the five different strategxes
’ of generatxng next states. S
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' “signiﬁcantly larger number of iterations ‘through the image than ~the
deterministic approach. For example, if the sites are selected on an equally -
likely and independent basis, after K iterations, the probablhty that a given

- site has not been selected,

P(a given site has not been selected) =

NE—11"
NZO)
: where N2 is the number of pixels in the image.
Consequently, the probablhty that it has been selected at least once,

K
VN2-1._

N2

P (a given site has been selected) =1 —

B !

Hence, the probablhty that every site has been selected after K 1teratlons is
K IN2 '
: ] a2

For a 128 x 128 image, a value of K = 10N? 1teratxons would yield 'a
probablhty of 0.475 that every site has been visited at least ‘once; a value of
K = 13N? would yield a probability of 0.964. For a 256 x 256 1mage, it would
; requlre K = 14N? iterations to yield a probability of 0.947 that every site has
been visited at least once. A deterministic raster scan method of selectxng l
requires only one 1terat10n through the image to ensure that every site has been
selected. Hence, from a computational standpoint, it is far more efficient to use
a deterministic approach rather than a random approach in selecting 1.

N2 -1

- P (»elvery site has been selected) = [ 1—

We will now show that the method of 'seleeting the next state involving-
the use of the five different strategies as given in Equation (4.20) results in a
Markov chain that is irreducible and has the property of weak reversibility. It
does not matter whether the above mentioned random or deterministic’
~ approach in selectmg l is used; both will result in 1rreduc1ble and reversible
chains. We will assume that the value of pg in Equation (4.21) is non-zero.’

~ First we observe that using either the random or deterministic methods of
-selecting [ described above, if state S, can be generated from Spy then §, can
be generatéd from S,. Consequently, for any sequence: of next states
Sos S15 +-es S, there is a non-zero probability of generating another sequence of
states by backtracking .the original sequence, which yields the 'sequence :
Sms Sm—15 -y So- Hence the process has the property of weak reversxblllty as
given in. Property 4.1.. ‘
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Let S, and S be any pair of states that have different edge labelings at k
sites contained in the set M={l},..., I,}; 0 <k < N% Assume that the
method of selecting / is the deterministic raster scan approach described above.
That is, [ is selected by sequentially iterating through each site in the image.
Beglnnlng from S_, there is a non-zero probability of generating a sequence of
next states such that -

(1) ifi¢ M, then the next state is the same as the present state, and
(2) ifle M then the next state is generated using M;. '
‘Each next state generated usmg M, has one less different edge labeling from S,.

At most k intermediate next states are needed to arrive at state S,. Hence
every state is reachable from any other state, and the chaln is irreducible.

If the method of selecting [ is random and equally llkely in L, then it is
straightforward to observe that there is a mnon-zero probability that every
member of M will be selected. Hence, as in the previous deterministic case, it is-
possible to’ generate a sequence of next states frorn Sp to S;. This agaln results
in an irreducible chaln

4.3.2 Temperature Variation

‘The selectlon of a suitable temperature schedule is important in the

annealing. process ‘because it governs in part the rate of convergence to the set

of global minimum states. The other governing factor in convergence is the
method of generating next states; we could conceively have a very “intelligent”’
method of generating next states so that the minimums states would be
approached rapidly along a path of least cost. We will now focus on the use of
Hajek’s theorem i in the device of a temperature schedule. In partlcular, we will
use a schedule of the form given in Equation (4.16). For practical purposes, the
parameter ¢ in the equation has to be kept as small as possible so that the
nurnber of 1terat10ns can be held within a reasonable limit. For 1nstance, if
¢ =10, ‘then to decrease the temperature to a typical value of - 0.3 using
'Equatlon (4 16) would require k = 300 x10'? iterations. However, if ¢ =5, then
it would require only k = 17.3 x 108 iterations. Since convergence is guaranteed
if and only 1f c=> d y it is crucial to be able to find a relatively tight upper
bound on d. The remainder of this sectxon deals with the analysxs and
, estha.tron of an upper bound on the value of d". Pl

We will estimate the upper bound of d by first stating a theorem on the
maximum cost ascent necessary to reach the global minimum from a given
state S,. Based on this theorem, we will then give an estimate of the maximum
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‘Hcost ascent necessary to reach the global minimum from any state The
theorem is as follows :

.Theorem 4.2: Let E = sG“( l)sG(lz) sa(/x) be any thin edge that is a pzith
or cycle in a global minimum state Sg. Let M be the sites of the plxels
: contalned in the union of all the windows of each plxel site in E;-

M— U WI
s(/)€E

]Deﬁné a sequence of states Sy, S, ..., Sk such that

| (1) So= {soz l€L } is any state with sy(/) =0 for all ! €M , -

@ 'Si_{ (l)) ”1(911‘#“[. L o

,;for1—12 K.
Then for all 0 < m<n =< K,

wy if E is a path
<
AF man = {2wf if E is a cycle

and -
. AFox < 0

- Notice that the construetion of the sequence of states is such that each
consecutive state S; differ from the previous state S, ; in that it contalns one
addltlonal edge plxel of E. The proof of the theorem follows '

Proof . o
(A) Assume that E is s thin path We. will first show that AFOn =< w; for

0 <n = K. Next we will show that Aan =< w; for all 1< m<n =<K
‘Based on these we can conclude that AFp, , < w;forall0 < m<n < K.

(1) AFOn = wf,O <n =K

Let E, = {sg(l1),--s 5g(I5)} be a segment of E and E be the correspondmg
extended edge segment From the construction of Sy, it can be deduced that for .
any state Sy, 0 <n = K, the incremental cost between So and S, can be
wntten as ' ; :
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AF,, = WéHEn” +we ¥ CSal) —wa ¥ d(l) +w; + WAC, .
I€1(E,) IEI(E N

Slnce E is thin ACt =0. F or each edge segment, E, C E Usmg Propos1tlon
3.19 and the fact that E; contains an endpomt of E, it is stralghtforward to
,conclude that : : i :

AF(,,D < w.

(2) AF,, < w,1<m<n <K
Let Epy = {sglm+1) Sg(ln)} be a segment of E, and E,, be the
corresponding extended edge segment. Let o

E’ mn Emn U SG(lm) N
For any state Sn, 1 = m <n = K, the incremental cost between S, and S, be
wrltten as -

.AFm,n=w;HEmn'+wc 5 CSel) =wa % d(l) +wAC, .
o : 1EE’ 1) IEI( mn)

Again, since E is thln AC, =0. For each edge segment E/ CEmrl Usmg |
Proposmon 3.19, we again conclude that

| AF, , < w;.
Qombinihg the're_sﬁlts of steps (1) and (2) above, we see that

AF,, , < wy for 0 = m<n =< K.

(B) Now assume that E is a cycle Followmg the same procedure as in (A)
above, we can conclude that

(1) AFOII = 2Wf, 0<n =< K and
(@) AF,, <w;l<m<n<K.
Hence, |

_ AFm,n>S'2'wf;_ 0=m<n=K.

’- (C) We will now show that AFO k < 0. Let S be the state that is identical to
SG except with the edge E removed that is, :
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- S _ {Sn(l).=sc(1) sg(l) ¢ E
. _'Sn(l)=0 (I)EE

.By the constructlon of So» Sk, and the use of Proposition 3. 11, it can be
deduced that the 1ncrernental cost between S, to Sk is the same as that from
S tO SG’ - ' e '

‘ AFD,K = AFn.G .
Since S is the global minimum, AF, = 0, and hence - =~ U

AFO,KS 0

4 3.2.1 An Additional Cost Factor ’ SR [
' For the purpose of estimating a tight upper bound on d we define an
additional cost factor in order to restrict the. edges of minimum cost
configurations to be either paths or closed cycles; edge pixels that connect three
or more edge segments are disallowed. This is necessary to limit the nuinerou#‘
‘possible edge structures that need to be taken into consideration’ It is achieved
simply- by assigning a cost to edge plxels that have three or ‘more. nelghbormg
edge plxels For typical images, this restriction affects the final output of the
edges only in a very minor way. In most images of interest, the number of
“points where three or more edge points are connected are few.-Furthermore, it
will be seen that at such points, the use of the additional cost factor will result
in a local discontinuity of usually only one or two pixels; if necessary, thls can
be easily corrected by a post detectlon process.

The cost factor is labeled as C, and is called the cost for number of
nelghborlng edge plxels It has the followmg definition: :

_ | 0, sy()=0 SR
Ca(Sms ) =130, IN,( ol < 3 and sg()=t  (4.23)
L 1, |INy(S m)]l = 3 and s, (l)-—l : '

“The cost functlon is now a hnear comblnatlon of six cost factors instead of -
kthe previous five. That is, - S
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(4.24).

FS.)=% [ 5 Wi.Cy(Sa 1

leL | k=1
=wgC, +wdCd +w,C, +waf +wtCt +W,Cy

where each of the other five cost factors have been previously defined in
~Chapter 3. By a trivial modification of the cost tree of Figure 3.16, we obtain
~the new cost tree shown in Figure 4.4 which includes the cost factor C,. It is
clear that the factor C, also depends only on the plxels in W;(S), and
consequently, Proposmon 3.11 also holds for the new cost function. By simple

‘modlﬁcatlon of the proofs to include Cn, it can be shown that Propositions

3.14, 3,16, 3.17,.3.18, 3.19 and Theorem 4.2 also holds for the cost function
with 6 cost factors The two functions are essentially the same except that in
the new cost function, we place a cost which tends to disallow edge pixels from
having more that two neighbors. We will now state two propositions relating to
this new cost function which governs how the weights w, and w; are to be
chosen to achieve cer_tain characteristics in the detected edges.

, Proposxtlon 4. 1 Assume that the neighborhood function is Hl If
W, > 2wf +wd "W, then in any local or global minimum state, every edge'
plxel has at most two other nelghborlng edge pixels. SR

- Proof: The proof is by contradiction. We will assume that there exists a local
or global minimum state S, that has three or more neighboring edge pixels.
Assuming that the condition of the proposition holds, we will then show that
there ‘exists a nelghbormg state that has a lower cost; this contradlcts the”
assumption that the initial state is a local minimum. ‘ :

Assume that Sy is a local or global minimum with so(l)=1 for some l and -
that | INI (So)ll =k, where k is greater than or equal to three. Let S; be the
state that is identical to S at every site except at ! where it is the complement
Clearly, S, € HI(SO) The 1ncremental cost can be Wntten as

AF EkaCk(Wx ’ SO’ S )
k=1
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C=0 C =05  Cg=10

n=IN(S) I |
thin: The edge contained in W;(S,) is a thin edge.
thick: The edge cbnﬂt‘ained in W;(S;) is a thick edge.

Figu:e'4,4. - Decision tree for computing the six different cost i_féctbr_s. :
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e w AC, + wyACy + W AC, + Wf'ACf +‘WtACt +wAC, .

The factor AC ——1 and ACd = d(l ). Hence,
AFOn =wAC, + wdd(l) w, + w;AC; + thCt + Wy AC
Us1ng the fact that the removal of a single edge point can result in at most

four additional endpoints we have AC; < 2. By Proposition 3.16, AC, = 0
and ACt =< 0. Since d(/) < 1, we can conclude that

: AFOBSWd—w +2wf+wAC :
It is clear from the definition of C, that AC, = —1. Therefore
AFOn < Wy — W + 2w; —
Assumlng that the condltlon of the proposmon holds,
' Wy > Wg — We + 2w,

it is stralghtforward to conclude that AF, , <O0. This 1mphes that S, is a state
of lower cost; we ‘have a contradiction of the assumption that S, is a local or
global minimum state. Hence, if the condition holds and S, is a minimum
state, every edge pixel in 5, can have at most two other nelghbormg edge

plxels o
, b

Proposition 4.2: Assume the neighborhood function is H, and
wy > Wy — W, + 2wg. Let Sy, be a local or global minimum state. If E is a thick
edge, then ||E|| = 3.

Furthermore, 1f w —1- Wi + wg — W, — 3w, then there are no thick edge
t 3 f d e

- prxels in SL

Proof o
(1) We will prove by contradiction that ||E|| =3. Assume that E is thlck and,_
|IE|| = 4. Since E is thick, there must exist a cycle of length three comprising
of the pixels C = {e;, &,, e3} C E. Since | |[IE] | = 4, there exists ‘a pixel
e, € E such that eé C, and e, is adjacent to one of the pixels in C. Refer to
this pixel in C as e;. Now e; has three neighbors; e, e; and e,. This
- contradicts the fact that any edge pixel has at most two other heighboring edge
pixels according to Proposition 4.1. Hence ||E|| <4. Clearly, every thick edge
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must have at least three distinct edge pixels and so ||E|]| =3.

(2) We will show that if the conditions hold and S, contains a thick edge plxel
we can always find a nelghbormg state S, which does not contain that edge
pixel and F(S )<F( o)- Consequently, any local or global minimum state
cannot contam a thick edge plxel '

Assume wy > [Wf +wq —w, — 3w, ] and S contalns a cycle of length three

rcomprlsmg of the pixels C = {so (11), so(ly)s so(l3)})- Let S, be the conﬁguratlon'
that is identical to S, at every site except at [ =, where it is non-edge.
* Clearly S, is a neighbor of S, based on the H, neighborhood function. From
~part (1), we know that C must be an isolated cycle of length three.
-Consequently the pair of edge pixels {s,(I,), sa(l3)} must also be isolated. The
‘incremental cost can be written as . - [

AF ZkaCk(Wx ) So’ Sn)
: k 1

=W AC +WdACd + w AC, +waCf+thCt+w ACn "

It is easﬂy deduced that AC,=-3, ACy=d(l}), AC,= -1, AC; =1,
ACt =3, and AC = 0. This implies that R

AFon = —3w, + wqd(l;) — w, +wf—-3wt
Smce W > _[Wf + wq — W, — 3], we have

o AF,, <wjd(l) 1],
and since d(!) < 1, the incremental cost |
AF, , <O.

“Therefore, S, is a state of lower cost than S,.

_ ' 4.3.2.2 Estimating the Upper Bound of d*. }

" The parameter d" in Equation (4.15) is by definition the maximum cup
depth of all states which are local but not global minima. We will now discuss
" a method of estimating an upper bound on the value of this parameter. It is
lmportant that thls estlmate should be falrly tight as it governs the rate at
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which we can decrease the the btemperature of the annealing process. This
ultimately affects the rate of convergence to the set of globally minimum
states.. Our approach in estimating the upper bound of d’ is to show by
construction that we can transition from one local minimum to another local
mlmmum of lower cost without having to encounter a maximum cost accent'
greater than 4. Except for the global minimum, the maximum depth of each
local minimum is thus bounded to a maximum value of § and hence ‘

d =<56.

~ Because of the complex nature of the interaction between the different
cost factors, and because of the large number of possible edge structures that
have to be taken into cons1deratlon, we are unable at this time to give a precise
theoretical upper bound on d* which is tight. Instead, we estimate the value of
0 based on Proposition 3.19, Theorem 4.2, and an heuristic argument on edge
formation. Our approach is to first estimate § for simple edge structures and
their resulting local minimum states that are not global minimum. We
‘kp'rc')gire's'sively move from trivial to more complex forms of local minimum
states. We will show heuristically by construction that even in extreme cases, it
is possible to transition from one local minimum to another local minimum of
lower cost without having to undergo a maximum cost climb exceeding‘ 4,
. where § = 2w; + Wy —Ww,. | '

In the following paragraphs, we will discuss six different cases of edge
structures and the corresponding estimates of & for each case. We will denote §
for each case as & where i denotes the case number. In each case, the
corresponding figures depict an edge as a thin continuous line. The position of
‘the edge that corresponds to the global minimum state is represented by a
dotted vliﬁe. We will refer to an edge that exists in the global minimum state
as an “optimal” edge. We will assume for each of the cases that the Weights’ of
‘the cost factors are chosen such that in any local minimum there are no thlck'
edges, a.nd every edge pixel ha.s at most two other neighboring edge plxels

Ca.se 1

‘The edge corresponding to the global minimum state is a path é“x‘»tgx‘iding\
from the top right to the bottom left region of the square lattice, as shown by
the dotted line of Figure 4.5. This is the “optimal” edge position. In this c'ase,,
the local minimum shown is a configuration that contains no edge pixel. We
estimate the value of §, using Theorem 4.2; we can construct a sequen,ce’ of
states where each consecutive state contains one additional pixel of the optimal
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» Figure 4.5. An edge conﬁguratlon that contains no edge plxels The dotted
hne indicates the optimum edge position.

Figure 4.6. An edge conﬁgurétion that contains two short falﬁé edges.
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| edge, with the final state corresponding to the global minimum. The theorem
specifies that the maximum cost ascent i is no larger than 2wy, and hence

5 = 2Wf . (4.25)

Case 2

The local minimum in this case is a configuration that contains two edges
E; and E, that are displaced a distance away from the opt1mal edge position.
-This situation is shown in Flgure 4.6. Since neither E; nor any segment of it
exists in the global minimum, it is stralghtforward to deduce that for any
segment E.CE;,

W4 E d(l) - e”E ” W E.CC(SL’ l) =
I€E, I€E,

The same can be said for segments of E,. Consequently, beglnnlng from an
~ endpoint, we can sequentially remove each pixel of E; or E, without exceeding
a cost climb greater than w; and arrive at lower cost states. Hence

5 < w; . - (4.26)

Case 3 ‘ _
: The local minimum in this case contains an edge that spans only a portlon

- of the optimum edge, as shown in Figure 4.7.. We can construct a sequence of

states by extending the edge in this local minimum one pixel at a time along

the position of the optimal edge. Using Proposition 3.19, it can be concluded

that the maximum total cost ascent will not exceed w;. Hence for this case

S < w.  (4.27)

Case 4 »

In Fignre 4.8, we show a continuous edge of a local minimum in which
‘part of the edge is just shghtly displaced from the position of the optimal edge.
" This is possibly the most common local minimum that will be encounted in the
' minimization process. It is possible to generate a sequence of states in Whlch

the edge pixels are sequentially locally shifted into the position of the optimal
‘edge without breaking the continuity of the edge structure. Consequentially, if
there are cost ascents, they will be dominated by curvature costs caused by
perturbatlon of the the edge position. The ascent will not exceed 2w, as the
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Figure 4.8. An edge that is just slightly displaced from the optimal edge
' - position. : -
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pixels are shifted into the positions of the optimal edge. Thus _
R 6 < 2w,. | - (4.28)

Typically, the \f’alue of w, is small compared to the other weights.

Case b

In Figure 4.9, we show a continuous edge of a local minimum S; in which
part of the edge is d1splaced some distance away from the position of the
) optimal edge. We denote the sites of the missing edge pixels of the optlmal'
‘edge as R, and the sites of the displaced edge as Ry. It is possible to generate a
sequence of states in the following way. First we generate S; by 1ntroduc1ng a -
local discontinuity in the edge as shown in the same ﬁgure The resulting
incremental cost is bounded by

AFLISWf-+Wd'— . . ) (429)
Next we generate a sequence of states from S; to S, by sequentlally;

addlng edge plxels in the positions of the optimal edge. By Proposition 3.19,
the maximum cost ascent required for the transitions given by this sequence is

no greater than Wf In addition, since we are constructing the optimal edge in

Sy, it is safe to assume that F(S,) < F(S,). As a result, the maximum cost
~ascent so far from Sy is still given by Equation (4.29). From the results Ca.se 2,

we deduce that it is possible to transition from S, to the global mmlmum S3
Wlthout encountermg a maximum cost ascent greater than w;. This is done by
sequentla.lly removmg the edge pixels in R3. An estimate for an extreme case
of the total cost ascent is given by takmg the sum of the maxxmum ascents of

AFLlandAF”, ) . ] ) .
85 =2w; + Wg — W, . . - (430)

'Case 6 ,
" The example shown in Fxgure 4.10 shows a local minimum S, that is a
vcoz.nbmatlon of several of the five cases discussed above. Each consecutive
state, Sl, Sy, S5 is a lower cost state with S, corresponding to the global
‘minimum. The maximum cost ascent required to reach the global mlmmum
from SL is the maximum of the § for the five cases above, and is glven by -

S Wit wy—we. o (a31)
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Displaced edge. Sy, is a continuous edge that has a portion that is
displaced some distance away from the position of the optimal
edge. Each consecutive state can be reached by a sequence of
transitions from the previous state. S; corresponds to the global

- minimum state.
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S3

Figure 4.10. A sequence of states of lower cost. S is a local minimum. Each
consecutive state has a lower cost and S; corresponds to the
global minimum state.
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Genera.l case

In the precedlng discussion; we have estimated by constructlon that for
minimum cost configurations containing a sohtary edge, the maximum depth
~of any local minimum is given by Equation (4. 31). It should be noted that the
estimate is quite conservative as the method of constructing a sequence: of low
_cost transitions i is based on assumptions corresponding to fairly extreme cases
of edge structure It is conceivable that for typical images, the maximum
ndepth is much smaller than the given bound. Given a specific 1mage and a : '

local mlnlmum state, it is very likely that one could construct a sequence of o

tran51t10ns to the global minimum with a total maximum cost ascent much less_
than the bound of Equatlon (4.31). However, when the specific i lmage is. not
- known, we are unable to devise a general method of constructing a sequence of
low cost transitions that has a lower maximum cost ascent. This is due mainly '
to the complexity of the interaction of the cost factors, the vast number of

p0551ble transmons, and the uncertainty in the values of the p1xels of 1nterest‘ s

in the enhanced image.

 As mentioned before, we have assumed that the weights of the cost factors
are chosen so that in a local or global minimum state, there are no thick. edges
and every edge pixel had at most two other neighboring edge plxels
Consequently, for a general image, the corresponding global minimum cost
configuration is simply a colle¢tion of non—1ntersect1ng edges. which are isolated
" paths or cycles. Each of these edges corresponds to an optimum edge In cases
1 to 6 discussed above, we have dealt only with images that have one single
optimum edge. The estimation of § for images containing more than one’
- optimum edge is similar to that for i images with only one edge The intuitive
notion is that using the technlques described in the different cases above, we
can sequentlally construct one edge at a time by appropna.tely chosen.
 transitions. This is repeated until we arrive at the global minimum
~configuration containing all the desired edges. Based on ‘this notlon, we
anticipate that thé maximum depth of any local minimum lS agam no larger
that that given in Equatlon (4.31). ‘That i is,

0 < 2w; +wyg — W, . : ':(4.32)
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4.3.2.3 Temperature schedule 7
The method of generatlng next states in the annealing algorlthm is glven

by Equatlon (4 20). The image is assumed to be of size N><N The
temperature schedule used is the the following: e

C

Iog(nk + 2) ’ (4 33)

‘where k isa scahng constant, and n is deﬁned using the ﬂoor functlon

nﬁl% -N? .

Note that the temperature is monotone decreasing and is changed only E
after every N2 iterations through the annealing algorithm. It can be easily
verified that for any ﬁnlte and strictly positive value of k, greater than or equal
to 2, the temperature schedule satisfies Equation (4.15) if c = d. This lmplles
that convergence to the set of global mlnlmum states is guaranteed 1f c=d. ,
Our estimate of the upper bound on d’ is based on Equation (4. 32) Hence, in
our 1mplementat10n, we set ¢ =0 = 2w; +wy —w, for the temperature
schedule given in Equation (4.33). Hence, to ensure: that the process will
»converge asymptotically_,- the value of ¢ must be no less than 4. That is,

C= 2w Wy —W,. o o (4.34)

It is interesting to note that if we attempt to use the temperature schedule
of Mitra et al. given in Equation (4.17), the value of r is approximately N2/9
and a very conservatlve lower bound of p is-1. This implies that the value of ¥
Whlch is analogous to ¢ in the above equation is given by '

v= NJ9.

The schedule is impractical from ‘an implementation standpoint because it
would take far too many iterations to span even a small range of low
temperatures. As an example, consider a 128 x 128 image. Assume that k is
dsmall For.the temperature to be in the proximity of 0. 3 the value of k, will
have to be set approxxmately to

ko = exp(6000) .
From an xmplementatlon standpoint, this number is far too Iarge for computer :

representatlon Even if representation is possible, the temperature schedule
accordlng to Equatlon (4. 17) would then remain constant for any. practical
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range of the values of k.

= 4.3.3 Parallel Implementation - .
The Simulated Annealing algorithm described in Section 4.2 is essentially
- a sequential algorithm. We will now discuss a method of generating next states
','wihbic'h‘ will allow the algorithm to be to be implemented to. a large extent in
pvaralvlel;. In fact, we will show that the number of sequential computations can
be ‘rv’e'd'ﬁ{:fed by a factor of N2/9. That is, up to N2/9' computations can be made
"'simultan'e_ously in parallel. We will assume that given a present state 8, and a

- site l € L, the method of generating the next state is given by Equation (4.20);
: Sy =Mx(S,,!) . |

- Up to this point we have interpretedb the above equation as a métliod of
~ generating next states, and the Simulated Annealing algorithm as a method of
transitidning from one state to another. We now present another interpf‘etation
of Equation (4.20) and the énnealing process in the context of detecting edges
by cost mihimizatio’n. The above equation can be viewed as a method of
,altéring the local edge Structure in 2 window region céntered‘-at site 1. The
transition rules of the annealing algorithm correspond to a method: of -de:c:id'ihgv
if "the_“albterationv is to be accepted based on the change in cost caused by the

alteratién; The annealing process is thus a procedure where erirvepeatedly
attempt to alter the local edge structure at each site in an image ac'cér&'in\g' to
the rules of annealing. Since the annealing process is guaranteed to'cmi'v'erge,
the eventual result of the repeated chaﬁges is that the edges will take_ the form

of a minimum cost edge configuration.’

As mentioned in Section 4.3.1, the value of / can be 'se,lec‘ted éither in a
random or deterministic manner. We,‘wi'll" now present a detérministic method
of selecting ! which allows for parallel computation. If the raster scan approach
 mentioned in Section 4.3.1 is used, the annealing process can be viewed as a
procedure where we sequentially attempt to change the 'edge structure in a
window region as the window is shifted through each pixel in the image..
~ Clearly, this is a strictly sequential process as each decision on acéepting a
change is dependent on the immediate past decisions. Such a method of
selecting I does not allow for parallel execution. Lo

. By using Proposition 3.11, it is easy to deduce that if an edge strilc_ture-is
altered at a single site / according to Equation (4.20), then the resulting change
in cost is dependent at most on the pixels in a 5 x 5 window region about .-
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'Consequently, if {; and I, are two sxtes that are at least two plxels horlzontally
. or vertlcally apart (i.e. two pixels between them), the decisions to accept. any
: alteratlons of the edge structure i in W, and W, can be made 1ndependent1y

In fact for any set of sites {I, .. IM} in which every pair is at least two
: »,plxels apart, the decisions to accept alterations in the edge structure can be
: made 1ndependent1y of each other.

The set of all sites in the lattice denoted by L can be partltloned ints k
d15301nt subsets  where any pa1r of sites in the same subset are at least two
plxels apart; -

L=L, UL, U ... Ly o (4 35)

Iti is easy to deduce that at most 9 subsets are required to partltlon L in thlS"v
manner. This holds for images of any size. An example of this is shown in
Figure 4.11. K alterations in the local edge structure are made at any number
of sites belonging to the same subset, the decisions to accept each of the
alterations can be made independently. Consequently, it is always poss;b]e to
make 1 iteration through each pixel in the image in 9 sequential processmgv
steps, ‘where each step requires approximately N2/9 parallel computations.
Instead of making N? sequential decisions in altering the local edge stricture at
each site in the i image, the same can be achieved by simultaneous decisions in 9
- sequential steps. This of course is significantly more efficient in terms of the
- total required computation time. '

. .Assuming that the method of selecting the sites is such that every site will
be repeatedly selected in the annealing algorithm, it can be shown that the
correspondmg annealmg process which allows for parallel computation has the
property of irreducibility and weak reversibility. Hence this method of selectmg
l Wlll result in asymptotlc convergence to the global minimum. ’

N

4.3.4 State Space Reduction

Slmulated Annealing is a computationally intensive algorithm sultable for
mlmmlzmg complex optimization problems. In the context of edge detectlon,
the amount of computation time can be significantly decreased by reduclng the
state space of the annealing process. This is achieved by mtroducmg a
preliminary processing stage thch we call “low resolution detection’”. The
output of low resolution detection is a blnary image indicating where edge -
pixels can and cannot lie; ones indicate the possible positions of edge pixels,
‘and zeros indicate the positions where edge pixels cannot lie. By using this, we |

eﬂ'ectlvely reduce ‘the set of all possible edge conﬁguratlons by placmg a
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13 | 14 | 15 [[16 | 17 | 18
119 [ 20 | 21 |22 | 23 | 24
25 | 26 | 27 ||28 | 29 | 30
31 |32 |33 |34 | 35 | 36

L=L, UL, U - 14

L= {1,4,19,22}
- Ly=1{2,5 20,23}
Ly = {3, 6, 21, 24}

Ly = {15, 18, 33, 36}

| Figure"4.11"

- selecting corresponding pixels of different blocks.

Example of partitioning L into disjoint subsets. Any pair of pixels. .

'in the same subset is at least 2 pixels apart. The pixels 'qf the
‘above 6x6 image are labeled 1 through 36. The image is first

divided into blocks of 3x3 pixels. Partitioning is }then‘ achieved by
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- constraint on the conﬁguratlons that are taken into account. In other words,
the cost functlon is minimized subject to the- constraint that the edge
conﬁguratlons can contain edge pixels only in the regions spec1ﬁed by the low
resolutlon output.

There are a number of ways of performlng low resolution detection. We
chose to first threshold the enhanced image. Next we performed the
morphologlcal operatlon [59] “dilation” on the thresholded image using a
vsquare 3x3 or 5x5 structuring element. Examples of the output of low
resolutlon detectlon for state space reduction is shown in Chapter 5, Section
5.2.1. ‘ ‘

4.4 Summary

In this chapter, we have presented Simulated Annealmg as a technlque in
cost minimization. It has been shown that the annealing algorithm is a
stochastic optimization technique based on non-stationary Markov chains; the
chain will converge in probability to the set of global minimum states of the
cost function. We have described the asymptotic convergence properties of the
algorlthm and dlscussed the use of various temperature schedules sultable for'
convergence. '

We used the Simulated Annealing algorithm to find low cost solutlons to
the cost function for edges described in Chapter 3. First, we showed how to
generate next states in the annealing process based on a set of five strategles
for changmg the edge structure in a given configuration. Second, we devised a
suitable temperature schedule by estimating a relatively tight upper bound on
the maximum depth of all local minimum states which do not correspond to
the global minimum. Third, we showed that although the annealing process is
sequentlal in nature, it can be implemented largely in parallel by a proper
choice of next states. Finally, we proposed the use of state space reductlon to
reduce the computatlon time for the annealing process.
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CHAPTER 5
EXPERIMENTAL RESULTS

v ‘ 5.1 Introduction

Ih this‘chapter we present experimental results of detecting edges-ﬁsing
the comparative cost function (CCF) and absolute cost function | (ACF)
,-téchpiQueS' described in the previous chapters. The ultimate test of _any
_'déte'c:tio'nf technique is in its ability to find edges that cOrrespbnd to. true
:b‘ou'ndarie‘s in an image. Comparison'ovf the detection perfprmance is‘made _with
four othef recent techniques mentioned in Section 1.2; derivative of Gaussian
(VG), Laplacian of Gaussian (V2G), facet model approach, and Sequential
Edge Linking (SEL). It should be noted that the VG and facet‘mo‘dg;al are -
techniques which are optimized for the detection of Step edges. Non-maximal
suppression for the VG technique was performed by quantizing the edge
direction of the VG operator output into one of eight possible directions and
- suppressing the non-maximum magnitude values in a direction perpendicular
‘to the edge direction. The SEL technique used the VG operator (without non--
maxi-mal?-suppression) as the edge enhancement operator. . R
. As described in Section 2.4.1, the CCF used the weight values w,=1.0,
wy=2.0, wi=L.1, w;=1.1 and w_=1.1. For the ACF, we first assigned values for

the weights w., wy, w, and W; according to the desired emphasis on each cost
factor. Then, to avoid the detection of thick edges; w, and w; were chosen
based on Propositions 4.1 and 4.2. In all examples using Simulated Annealing; -
the value of d° (in Hajek’s Theorem) was estimated using Equation (4.32).
Except for the examples in Section 5.4 and parts of Section 5.6, the measures
of dissimilarity, f.(R1,R2) and f,(R1,R2), were based on the difference of gray
level avépéges in R1 and R2. That is, fo=m(d) as specified in Equation (2.6),
and f,=d where d is as defined in Equation (2.4). B

For both the heuristic search technique and Simulated Annealing, it 1s
necessary to generate new edge configurations by iterating through eaLch pixel
location in the image. Assuming that the image is of size N X N, a single
itération’fithrough the image represents the generation of N? new edge
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configurations. Typically, the CCF approach required 3 to 5 iterainns through
an image. The ACF approach required between 50 to 200 iterations. In all
examples, the probabilities p; in Equation (4.21) were: :

200
P1™ 7024 °
300
P2= 024 °
200
P3=7024
200
= d
p4 1024" an
o124
5 024

The temperature schedule for the anneahng process was based on Equatlon
(4.33): | i | '
’ c

T, = ————
k ~ log(nk; +2) ’

where

The value of k, was selected based on the criterion that Ty should be
approximately 0.3 at the final iterations through the image. This value of 0.3
was chosen empirically based on the observation that as the temperature
decreased toward 0.3, the processes approached a point of “freezmg” where
very few uphill climbs were made. In the final 2 iterations, the process was
quickly ‘‘frozen” by dropping the temperature suddenly towards zero. This was
achieved by setting the temperature to a value of 0.01, and allowing for
transitions based only on strategies M; and M, (descrlbed in Section 4.3.1).

A thorough experxmental analysis and comparison of different edge
detectlon techniques would require taking into account a number of different
factors. Some of these are: (1) the test images used, (2) the characteristics of
the detected edges (in terms of continuity, thinness, and well localization), (3)
the operator size, (5) computation time, (6) the difficulty of implementation,
and (7) the flexibility of the detection algonthm in »detectlng various edge
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types There is a trade—oﬁ” between the dlﬁ"erent factors, for 1nstance, ‘one”
" usually - has to sacrifice ‘computation time for improvement  in the
‘ characterlstlcs of the detected edges. We will examine the perforrnance of the
» detectlon algorlthms with respect to several of these factors.

5 2 Experlments w1th Artifieial Images :

We cornpare the performance of the dlﬁ'erent technxques by first showmg |
examples of the detected edges - for artificial images. 'Evaluation ‘of “the.
detectlon performance is based on the accuracy in localization of the detected »

: edges, and the form of the ‘edges in terms of thinness and contlnulty However, S

it is dlfﬁcult to define a performance measure that correctly evaluates the

. detectlon performance for all cases of ‘the detected edges ‘A method of_‘
evaluating edge detection performance is the Pratt ﬁgure of merlt [60] Whlch is
" denoted by the symbol P: ' : S

LR
Iy 31+ '
_;‘Where T
-‘:IM = max ( ID,II),
\II = number of ideal edge pomts, :
E ‘:'.":ID == number of detected edge pomts, ‘ : s
'_-I = dlsplacement of the 1th detected edge pornt from the 1deal edge, and

av l—— scahng factor.

The value of P ranges from 0 to 100 Wlth hlgher values 1nd1cat1ng better '
detection performance. The value of 0.1 was used for o which

approx1mately the same as that used in [61] This ﬁgure of merit is usually S

- applied to artificial - images where the -ideal edge posrtlons are known It
,penahzes edge plxels which are displaced from the ideal edge position accordlng '
" to the dlsplacement distance and the value of o. It also Ppenalizes m1ssrng edge
pixels or an excessive number of detected edges. However, it does not take lnto'
account local ‘edge coherence information such as contmulty and edge"
thlckness A dlscussmn of the shortcomlngs of thls figure of merit is glven -
‘m[62] ‘“When using this figure of merit, it is important to bear in mmd 1ts:_ .

~ inherent inadequacy in using local edge coherence information. We use the

| .Pratt figure of merit as a rough indicator of the performance of the dlﬂ'erent
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detectlon techmques Two ideal step images which are shown in Flgure 5.1
. 'were used they were the vertical step image and the rings image. The vertical
: Vvstep lmage had a size of 256 x 256 pixels and was comprlsed of two tones of
constant gray levels of values 110 and 140. The rings image had a- size of
128 x 128 and was made up of concentric circles of gray levels 115 and 140,
.,constructed in the manner described in [62]. The step helghts of the ideal

o vertlcal edge and the rings image were consequently 30 and 25 respectlvely

- The lmages were corrupted with additive zero mean independerit ldentlcally
ﬂdlstrlbuted (1. d) Gaussian noise. The signal to noise ratlo of the corrupted

images is deﬁned as , : , o _ ,
SNR = [—h—] . (s
v ol e

where h is the ideal step height and o, is the standard . deviation of the
: Gaussmn noise. The noise corrupted images are also shown in Flgure 5. 1

The Pratt figure of merit i is often applied to the vertical step image shown
'ln Flgure 51. In Flgure 5.2, we show an example of the difficulties that could.
arise in the use ‘of this figure of merit. The VG operator without' the use of
-non-max1mal suppression was applied to the noisy vertical step image. ‘The
detected edges obtained by thresholding the output of the VG operator at 53
~and’ 35 have correspondlng performance values P=78.2 and P= 52 3
respectlvely It can be seen that if edge continuity and recovery of the complete :
' boundary is of 1mportance, the edge which corresponds to thresholdlng at 35'is
" better. - Hence, when using this figure of merit, it is important to bear in mind

” 1ts mherent madequacy in using local edge coherence mformatlon '

N ois’e smoothing

Tt is advantageous to preprocess a noise corrupted image by ﬁlterlng prlor L
to edge detectlon [7]. We used a Gausman function to smooth the noise
. corrupted images. The function is the same as that in Equatlon (1.1). This
smoothmg prior to detection was performed only for the facet model, ;
) comparatlve cost functlon, and absolute cost function techniques; the VG and
VZG operators have Gaussian smoothmg inherently 1ncorporated in “them. :
Except for the case of the house image, the standard deviation (O'G) of each

- Gaussxan functlon was independently chosen for the different cases SO as. to-

‘ optlmlze the performance of the various detectlon technlques The value of [/
was' constralned to be some integer multlple of 0.5. Figure 5.3 shows "
experlmental results of the 1mprovement in - detection performance of the
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Figﬁre’.. 51 _Sfep images. Top left: Vertical step edge. Top right: Noisy step
EERNAE b'r:_::edge»with SNR = 0.25. Middle left: Rings image. Middle right:
- Noisy rings image with SNR=1.0. Bottom: Noisy rings image

* with SNR=0.574. |
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Figure 52 Edges of noisy step image detected using the thresholded VG
' e ‘operator without non-maximal suppression. Left: Threshold at 53
iresu]tlng in P—78 2. Right: Threshold at 35 resulting i in P=52.3.




147 -

SNR=2.25 -
SNR=1.0

X SNRL025 T

“Pratt figure of merit . o

20f

o - ' . I —_— . L ) "'ij : : -‘|‘, . ' N — G C
0 1 2 3 4 5 I Y -

Standard deviation of Gaussian»smoothing tun,ctien "

2 ..

'.'Figurr‘e' 53 Improvement in detectlon performance by preprocessmg n01sy
S raw image with Gaussian smoothing prior to edge detectlon. The"‘,
CCF technique was used on vertlcal step 1mages wzth dlﬂ'erent h

SNR values.
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comparatlve cost. functlon techmque by preprocessing the i image with Gaussian
smoothing prlor to edge detection. The detection algorlthm was the CCF
technique, and: the test i image used was the vertlcal step image at various signal
to noise ratlos Usmg this test image, the results indicate that detection
bperformance increases with the standard. devxatlon of the smoothing function.
-'However, it should be noted that this image contains a single isolated. edge; if
. the i image contains several adJacent edges, then large values for the standard
- deviation could cause the edges to be merged together resulting ln degraded‘

,.performance ' o ' ‘

5 2.1 Vertlcal Step Image

The n01sy vertlcal step. edge with SNR=0.25 was used to compare the
~output of different edge detector techniques. The results are shown i in Flgure
~ 5.4. The figure shows the best edges (based on performance measure. P)
’detected under the constraint that approximately 90% of the ideal edge should
be. detected ‘The VG technlque used a value of 5.5 for the standard deviation
of ‘the Gaussian function. The V2G operator used a standard dev1at10n of 10.0.
SEL was based on the output of the VG operator with a standard deV1atlon of

= 4. 0 For the CCF and facet model techniques, we preprocessed the i 1mage ‘with

‘a Gaussian smoothing operator with standard deviation 5.0. For. the ACF
approach the 1mage was pre-filtered with a Gaussian function of standard
dev1atlon of 5.5." The weights of the cost factors of the ACF were: W, =0. 75 |

wg=2.0, w.=L. 0 Wf—3 0, w,=7.01, and w,=0.583. A total of 200 ijterations
»through the image were ‘made. State space reduction was used to reduce
computation time. The ACF implementation as described above required 1.28

" hours of CPU computation time on the VAX 11/780. Table 5.1 shows the
| correspondmg performance of the various detection algorithms.



Figure 5.4
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'Comparlson of edge detector performance using vertlcal step edge
. with SNR=0.25. Top left: VG, P=73.1. Top  right: VG,
 P=44.5. Middle left: Facet model technique, P=71.1. Middle
" right: SEL, P=654. Bottom' left: CCF approach P-—? "'7;. Lo

) "'_"Bottom nght ACF approach P=178.4. ' _ S
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: Table 5.1. Detection performance of various detection techniques.‘

Detection technique | Pratt figure of merit P | |
Ve 734
vie | 44.5
Facet model v 711
- SEL~ 65.4
CCF | 737
~ ACF 78.4

A comparlson of the performance based on P shows that except for V2@,
the different techniques yield approximately the same performance. We -
‘extracted ‘the detected edges and placed them alongside each other for more
: detalled comparison. This is shown in Figure 5.5. A visual examination shows
‘that the VG and the facet model techniques produced edges which are thick
along many portlons of the edge. The CCF and ACF techniques produced
_edges which are thin. The best performance in ‘terms of contlnulty and edge
thinness is achieved by the ACF technique. EE

In Figure 5.6, we show the effect of us1ng only the cost factors Cd and C.
of the ACF; the other cost factors were discarded by setting their
correspondlng weights equal to zero. This method corresponds to a simple
thresholding approach to detect the edges. By altering the value of the

w,
dissimilarity threshold — (see Section 3.4.4.1), we can ar'bit’rarily select the
W4

total number of edge points to be detected. Several important observatlons canjv
be made from comparing the detected edges shown in Figure 5.4 and Figure
5.6 usmg the ACF approach. First, based on a cost function that uses only Cq
and Ce, it is not possible to detect a thin continuous edge for the noxsy step
‘1mage Second ‘there are no thick edge pxxels when the cost factor C; was
“included, and the corresponding weight w, was appropriately chosen accordxng.
to Proposxtlon 4.2. Third, the inclusion of the fragmentation ‘cost Gy forces
adjacent edges to be continuous. At the same time, C; also suppresses short
-sporadlc edges whlch are visible in Figure 5.6, but not in Figure 54.

In Flgure 5. .7, we demonstrate the eflect of changing the welghts of the

curvature a.nd fragmentation costs in the absolute cost function. For the': '

o 'detected edge in Flgure 5.7(a), ‘the welghts of the cost factors were w =0, 2
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Figure 5.5 -~ Comparison of edge characteristics for noisy vertlcal step 1mage. :
’ . Extreme left: VG. Center left: Facet model approach Center‘
+ right: CCF Extreme right: ACF.
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Figure 5.6 Edges detected using only Cy and C, of the ACF. _Left: Low
dissimilarity threshold. Right: High dissimilarity threshold.

Figure 5.77 T;E-'ﬁ‘eét of chénging the weights for curvature and fr'agnéeptation:
0 (a) we=0.2, w;=2.0. (b) we=0.5, w;=2.0. (c) w=0.75, w;=0. (d)
v.=0.75, w=3.0. i SR

w




Wg=2.0, W,=1.0, w;=2.0, Wp=5.01, and w;=0.81. For the detected edge in
F igure '5.7(b), the weight for curvature was altered so that w.=0.5. The
rémaining wéights were kept the same, except for w, and w; which were
alfe;ed according to Proposition 4.2 to ensure that all edges remained thin. "
: ,v-'The--i'esvvu'ltihg weight values were: w=0.5, wg=2.0, w,=1.0, w;=2.0, w;=5.01,
~ and w;=0.51. Notice that because of the increase in the weight of the curvature °
’cosf, the detected edge has a smoother boundary than in-the previous case.
ThlSIS particularly evident when comparing the portions of the edges slightly
’ beloW‘th_e mid-section. For the edge in Figure 5.7(c), the cost for,:'fragmentation
Vv‘va,'s removed by setting w; = 0; the weight values were: ‘Wc—f-0£75, Wd=_2,0,
w,=1.0, Ww;=0.0, w,=1.01, and w;=0.01. Fragmentation is clearly visible in this
case. In Figure 5.7(d), the cost for fragmentation was in¢reased to 3.0. The
weights were: w.=0.75, wy=2.0, w,=1.0, w;=3.0, w,=7.01, and w,=0.583.
Notice that because of the increase in wi, the fragmented edge _ir_i the Iupper
region has been made continuous. In Figure 5.8, we show the cost
, mihimization process using Simulated Annealing for the case of the detected
‘edges shown in Figure 5.7(d). The plot was obtained by sampling the
abnnéajlingbprocess after every 10 iterations through the image. Assuming the
‘the image has size N x N, each iteration represents = N? “attempts : in
"tran's‘i»tioh’ing to new states based on the annealing algorithm. S o
- In' Figure 5.9, we show examples of the use of state space red‘uctionh(SSR)
which has been described in Section 4.3.4. Edges were consﬁrainéd to lie only
in the bright regions. The’ regions were obtained ‘by “thresholding the:
dissimilarity values and dilating the image with square 3 x 3 vand 5x5
structuring elements using mathematical morphology [59]. | | ' ‘

5.2.2 Rings Image

We show examples of the detected edges for the fings image shown in

Figure 5.1. The image was corrupted with additive zero mean 11d Gaussian
' noise with signal to noise ratio as defined in Equation ’(5.1); 'Figu‘re' 5.10 shows
the detected edges for the noisy rings image with SNR=1.0. For the VG, VG
and SEL techniques, the standard deviation of the Gaussian:function was 4.0,
4.5 and 3.0. respecbti,vely. For the facet model, CCF and ACF techniques, the
image was pre-filtered using a Gaussian smoothing function with':af standard
deviation_of 3.5. The ACF technique used state space reduction and the
following set of weights: We=0.5, w4=2.0, w=1.0, ;=3.0, w,=7.01, and
w;=0.833. A total of 200 iterations through the image was performed.
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Figure 5.9 » |
. obtained by thresholding the enhanced images and performing

_E‘xamples of state space reduction. The bright fegions were

the morphological operation “dilation” on each binary image.

- Edges were restricted to lie only in the bright regions. Left: State

space reduction for noisy vertical step image. Right: State space -

- reduction for noisy rings image (SNR=1.O).' - N
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Flgure 5 10 Comparlson of edge detection performance using  noisy nngs
«‘*‘~a1mage with SNR=1.0. Top left: VG. Top right: VZG Middle

left: Facet model approach. Middle right: SEL. Bottom left:
_'CCF Bottom rlght ACF.
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Computatlon required 1.24 hours of CPU ‘time on the VAX 11 / 780
minicomputer. A subjective evaluatlon of the differént detection techniques
shows that in. terms of edge continuity, the ACF the facet model, and the VG -
technlques produced the best results. In terms of edge thinness, the ACF CCF
~and SEL technlques produced the best results. It is observed that. the contour
trac1ng nature of SEL produces some- false boundaries. Fi 1gure 5.11 shows the
_edges detected for a slightly noiser image with SNR=0.574. For the VG, V2

:'and SEL techmques, the standard deviation of the Gaussian functlon was 4 0,
5.0 and 3.5 respectively. For the facet model, CCF and ACF. technlques, the
1mage was pre—ﬁltered using a Gaussian smoothing function with a standard
dev1at10n of 4.0. The ACF technique used the same set of welghts as in the
previous case of the noisy image with SNR=1.0. The subJectlve evaluatlon of =
the detected edges is similar to the previous case, except that there 1s a sllght |
increase in false boundaries. - R '

5 2 3 Temperature Varlatlon and Parallel Implementatlon

Slmulated Anneahng is a minimization algorithm that allows for. uphlll- “
cost chmbs while searching for the minimum cost states. The amount of “hlll -
‘ _chmbmg act1v1ty is controlled by the temperature Ty, where k denotes ‘the
kth iteration through the algorithm. If the temperature is set equal to. zero, no
r._th chmblng is allowed and the algorlthm corresponds to a ‘steepest descent
'search algorlthm This approach usually causes the a]gorlthm to termlnate 1n ‘
an undesrrable "local minimum that is of relatively high cost, A phy51cal
analogy of such an anneahng process is the rap1d cooling of a system, causmg it
to freeze in a meta-stable state. In Flgure 5.12, we show an example of the use
of rap1d cooling in Simulated Annealing. The test image used was the rings
image with SNR=1.0. The lower curve shows the cost minimization’ process
using the logarithmic temperature schedule given in Equation (4. 33) The
‘upper curve shows the resilts for a temperature schedule which" remains
_constant at a value of 0.01 throughout the annealing process. For both
- temperature schedules, the ACF technique used state space reductlon and an-
identical set of weights: w,=0.5, wg=2.0, w.=1.0, w;=3.0, w;=7.01, and
w;=0.833. In each case, 200 iterations through the image. was performed
These parameters are exactly the same as those of the rings image example in -

Section 5. 2.2. Two important observations can be made. First the process

based on the logarithmic schedule converges to the set of low ‘cost states ‘much
more quxckly than that based on the constant temperature schedule.  Second,
'the final state for the logarlthmxc schedule has a much lower cost than the ﬁnal_' :
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: Flgure 5 11 Comparison of edge detection performance using noisy rings

: ~image with SNR=0.574. Top left: VG. Top right: VZG Middle
left Facet model approach. Mlddle right: SEL. Bottom left:
CCF Bottom nght ACF. :
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Figure 5.12 Rapid cooling in Simulated Annealing. Squares aenOte the data
| points for the va'nnealing process which wuses a logarithmic

- temperature decrement schedule. Circles denote the data points

for the annealing process which uses ‘a constant temperature

schedule, with T;=0.01 for all k.
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state based on rapid cooling. In this case, the cost of the final states for the
logarlthmlc and constant temperature schedules were 2815 and 2859
: respectlvely ' '

Flgure 5.13 shows the intermediate edge configurations of the anneahng
‘process which used the logarithmic temperature schedule. The test image was
‘the noisy rings image (SNR=1.0), and 200 iterations through the image were
made. No SSR was used. As mentioned in the introduction, in the last 2
1terat10ns, the process was “frozen’ by droppmg the temperature to zero.
Iterations 198 and 200 in the figure correspond to the states of the system just
. before and after freezing. It can be seen that after approximately 50 to 100
iterations,' comparatively good edges were obtained. For most applications, it
has been found that about 100 iterations are sufficient to produce edges which
are thin and well localized. For the purpose of standardization and comparison,
we used 200 iterations in all except one of the examples contalned 1n this ._
chapter g

- In Sectlon 4 3.1, we mentloned that in minimizing the ACF, there are a
number of methods of generating next states. One method is based on selectlng
! by sequentlally stepping through each pixel location in a raster scan manner. j'
" This method does not allow the annealing process to be implemented 1n_:
parallel. However, in Section 4.3.3, we have shown there is a_method of
selec ing I that would allow the Simulated Annealing algorlthm to be
1mplemented largely in parallel. Using the same test image and the exact same
parameters for the ACF as in the example of Figure 5.10, we 1mplemented the
algorlthm using the method that would allow - for parallel execution. The-
results are shown in Figure 5.14. In this figure, we both the the cost curves for
the annealing process that can be implemented only sequentially, and the
process that can be 1mplemented in parallel. The curves are very close. to. each -
other and intersect at a number of points. The tail ends of the curves are_'
almost merged together implying that in the final iterations, both the processes
arrived at states that have approximately’ the same cost values. The results
indicate that in terms of cost minimization, both the methods gave
approximately the same performance. When parallel processing is avallable, it
is clearly more advantageous in terms of computation time to implement the
algorithm ‘that allows for parallel implementation. Figure 5.15 shows the
detected. edges for the noisy rings image (SNR=1. 0) using the three different
methods of implementing Simulated Annealing; the method of rapld coohng,- -
sequentxal 1mplementatlon, and parallel implementation. : '
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Figure 5.15 Edges obtained using three different methods of implementing
Simulated Annealing. Test image used was the noisy rings image
with SNR=1.0. Top : Edges detected by rapid cooling (see
Figure 5.12). Bottom left: Edges detected using annealing -
process that can only be implemented sequentially (see Figure
5.14). Bottom right: Edges detected using annealing process that
can be implemented in parallel (see Figure 5.14). '
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5.3 Expernments with Real Images

‘In thls section we show two examples of the detected edges for general_
scenes. Both i images were of size 256 x 256.

House 1mage

In this example, we show the detected edges for both the orlglnal and
noisy image of ‘a general outdoor scene. The house i image is shown in Figure
5.16. The image was corrupted with additive zero-mean i.i.d. Gauss1an noise
- of standard deviation 35. In each case of the detected edges, the detection
parameters were selected so that the different techniques - produced
approximately the same number of edge points, and the edges Were visibly
similar. The choice of parameters is quite -subjective as it is difficult to
quantify edge quality for general scenes. After determlnmg the necessary
parameters . for the noiseless 1mage, the same ‘parameters were then used to
- detect edges in the noisy image. In all cases except one, the standard deviation
of the Gaussian function was set at 2.0. The V2G operator used a standard
- deviation of 2.5. For the ACF technique, the weights of the cost factors were:

w.=0.75, wd—2 0, w.=1.0, w;=3.0, w,=7.01, and w=0.583. No state space
reductlon was used and 100 iterations through the image were ma.de The
detected edges are shown in Figure 5 17. hw -

Alrport 1rnage

In Figure 5.18 we show the detected edges- for an airport image usmg the
ACF techmque The weights of the cost factors were: w.=0.5, wq=2.0, w.=1.0,
Wf—3 0, w,=7.01, and w=0.833. ' A total of 200 iterations through the 1ma.ge'

‘were made

5.4 Other D1551rnlla.r1ty Measures

In the prev1ous examples, we have detected edges using d1ss1m11ar1ty'
’ functlons f ~and f, which measure the difference of gray level averages of the
regions on either sides of the edge. In this section, we will show examples of
detected edges using other forms of dissimilarity measures. In the first example,_
we show how a priori information can be incorporated into the measure so as
to detect specxﬁc kinds of edges. In the second example, we show how the -

Ieasure can- be defined to find texture edges based on second order statistical
propert:es of the regions of 1nterest ‘



165

Figure 516 House image. Top: Original house image. Bottom:
_' corrupted with additive zero-mean
- standard deviation 35.

House image
iid. Gaussian noise of
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Figure 5.17 Companson of various detection techniques on house lmage In
- each case, the figure on the left shows the detected edges for the

."_.._'n01se]ess house image while the figure on the nght shows the
‘edges for the' noisy image. (a) VG. (b) VZG (c) Facet model.

© (d) SEL. (e) CCF (f) ACF.
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- Figure 5.17, continued
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Figui‘e 518 Airport image. Intensity image and edges detected usiﬁg ACF
” v approach. : s
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: Ail‘p-l_a,fle_s image' 7 2

Figure 5.19 shows an image containimg‘ ten airplanes. The_i‘mportént
_‘features of Aint'e‘ly'est' in this image are the airplanes, the two large buildings on
"t‘he_left-‘part of the image, and portions of the tarmac, The edges detected
USiiIg',vvthe CCF, ACF, the facet model, and the VG operator techniques are also

Shownv in ‘the figure. For the CCF and ACF techniques, the image was &

- 'smoothed by a Gaussian function of standard deviation 1.0 prior’ to edge
déi;jevctvidn. The VG technique also used a value of 1.0 for. the standard
deviatio_n. In each case, the thresholds and relevant parameters were chosen so
as to ch‘oi(elj as ‘much of the boiéndaries of the airplanes._.éh_d the large
buildings as pOSSi'ble,'-without 'introdtcing an excessive nﬁmber_of false ‘edgés.
For all iI'Oujr techniqlies, it was found that 'selecting a threshold low 2’eno‘11gh to
'k'rec_ovér the Bo_,}und"av.ri,e‘s of the large buildings resulted in a high "deg;‘e‘e of false

edges being ‘detected: Hence, by thresholding alone, it is nét possible to obtain |

a good;-‘s‘et of edge's-“representing the features of interest. = -

_ It can béw'seen that the important ,fea'tﬁres_ of interest in the image
-generally have a Ii-gh’tér shade than the background, 'COrrespéndin‘g'" to higher -
image intensity Vé.‘hies. We use this a priori information by incorporating it
into the diésimi_larityv'measures' f. and f,. We specify that regions have high
dissimilarity ‘when two_conditions hold: (1) the average intensity values are
‘significantly different, and (2) the average intensity value for-one of the Tregions
is'sufficiently high. This is different from the previous definition of dissimilarity
where we do ‘not include the latter condition. For the comparative cost
- function, this fiew definition ‘of dissimilarity is mathematically captured simply
by specifying the dissimilarity measure to be {(R1,R2)=m(d,). The function

m is defined as: :
. H(d,f) =m(d) - g(f),
- where m(d) is as defined in Equation (2.6), B is the larger -of the ‘average

" initensity values of the two regions, and g is the pietewise linear function shown

in 'Figvuvre»5.20. For} the absolu‘t‘e cost function, this deﬁni’tion’ is ’captu';'ed".,by
specifying the fnieasure to be o ' =

B B » ' fa(R11R2) =d- g(ﬁ) LR v
~where d is as given in Equation (2.4), and g(f) is the same function defined
~above. The weights of the ACF were: w.=0.2, Wg=2.0, w,=1.0, w=2.0,
‘ wn=501, and‘-wt=‘0.'8_1. The 'aLnne':‘i’li’ng process made 200 iterations‘ ;_thi-ouvgh the
image. Using these new definitions of region dissimilarity, the detected ‘edges
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F1gure 5 19 Alrplanes image. The lmportant features of mterest are the
’ alrplanes, the two large buildings on the left, and portions of the
~tarmac. (a) Intensity image. (b) Facet model. (c) VG. (d) CCF.

(e) ACF. . : -
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Figure 5.19, continued
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Figure 5.19, continued
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Figure 5.20 Piecewise linear function g(/) used in the definition of m(d,f8).
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Figure . 521 Edges of airplanes image detected usmg a priori information

. about the features of interest. Top CCF approach Bottom
ACF approach



175

are shown in Figure 5.21. Notice that the edvée‘si of the large. b,ﬁi-ldin‘gsv, the
airp‘lan‘gs_”, and the boundary region of the tarmac on the lower right portion of
the image are clearly visible. . S e -

Box texture image _
- ,Figufe 5.22 shows an image of size 128 x 128 vc_ontaini‘ng t,w'o’texturg

‘regions. The average intensity value was approximately the same thro’ughouﬁt'

~the image. However, the variance of the intensity values within the box r"eg»ign

was higher than the variance of the background. This image was constructed -

© by adding zero-mean i.i.d. Gaussian random noise to an image of constant gr'ay_ :
level equal to 128. Within a 64 x 64 box region, the noise st:indérd deviation -
was 30; outside of the box region, the noise standard deviation was 10. Since
the boundary of the box does not correspond to a step or a ramp, it is not

possible to use the VG or facet model methods to detect thé edges of the box.
‘The cost function approach can be used to detect thé boundaf;yi of such -

textute::regions by the use of an appropriate measure for region"dissi‘milarity._

-~ In th1s example, a suitable measure of dissimilarity is the difference of the

standard deviation of the pixels in the regions of interest. We show an example g

of this using the absolute cost function. Let ml and m2 be the grraiy level

averages of the pixels in R1 and R2 respectively. Thg dissimilarity meaéu;e is
defined as: | : ek
o LRLRY) = oy ~0p |,
-whéré '
1
2

)

—j1 _ | 12
o = { TR1] (i,j)EeRl[g(l’J) - ml] }

and Uz’is'similarly deﬁned. Figure 5.22 shows the detected edges ﬁsing the

followiﬁg; weight values: w_ =0.75, wy=2.0, w,=1.0, wi=4.0, w,=9.01, and
wy=0.917. The annealing process made 200 iterations through thé‘ ijm'age,.'v

. 5.6 Computation Time and Final Cols'ts‘ v
In 'this section, we summarize some of the results of u_sixig‘ the ACF
approach in terms of the computation time required and the cost of the final
edge conﬁgurations,achieved by the annealing process. In Table;_‘ :5*.2, we
-tabulate the computation time required to detect the edges of the different test
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Figure 5.22 ;;'Textui'e edge detection. Box image and detected edges ﬁsin_g
 ACF approach. '
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Table 5.2. Computation tlme for mlmmlzmg the ACF
using Slmulated Anneahng

- Image Size SSR | Iterations CPU tlme (hr) ‘
Vertical step 256 x 256 200 10.09 |
Vertical step 256 x 256 Yes 200 _ 1 284
Rings, SNR=1.0 | 128 x 128 200 270
Rings, SNR=1.0 | 128 x 128 | Yes 200 ' ;1,2'\4’._' |
House = 256 x 256 100 5.3
Airport 256 X 256 | Yes 200 Ra
Airplanes 256 x 256 | Yes 200 3. 59 e
Texturebox | 128 x 128 | 200 e
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images. The cost minimization process using Simulated Annealing was
implemented by sequential processing on the VAX 11/780 For purposes of
comparison and standardlzatlon, the annealing process was lmplemented usmg
200 iterations through each image, except for the house i image. Typically, for
- general images, about 100 iterations is sufficient to bring the annealing process -
to a suitably low cost state. Table 5.2 shows a comparison of the computatlon
time requlred for each image with and without the use of state space reductlon
(SSR) The results indicate that, depending on the scene content, computatlon :
time for the annealing process can be reduced by a factor of about 1 to 8
times through the use of SSR. Generally, images that have smaller number of
edges achieve greater reduction in computation time.

Table 5.3 shows a comparison of the cost of the final states for different
‘cases of the annealing process. Two important observations can be made. First,
the use of SSR results in edge configurations that have approx1mately the same
cost as those configurations produced without it. Second, the anneahng
algor1thm which can be executed in parallel produces edge conﬁguratlons which
have approximately the same cost as those configurations produced by the
algorithm which can be implemented only sequentially. Based on these
observations, we deduce that the most efficient method of producmg edge
conﬁguratlons of low cost is to use SSR and parallel 1mp1ementatlon :

5.6 Use of b Cost Factors

In all the previous examples of the absolute cost functlon approach we
used 6 cost factors in the definition of the cost function. The cost factor C,
described in Section 4.3.2.1 was included to constrain all edges to be either
isolated paths or cycles; multiple edge segments linked at a single point were
dlsallowed The main reason for including this factor was to enable us to
derlve a tight estimate of the upper bound on the parameter d , as given in
Equatlon (4 32) _

In thls section, we show the experimental results of minimizing a cost
functlon that does not contain the cost factor Cp. That is, the cost function is a
- a Welghted sum of only 5 cost factors:” C,, C4, Ce, C; and Ci. Flgures 5.23
through 5.29 show the detected edges for the previous test i images using 5 cost
factors for the ACF. The cost minimization annealing process is also shown. In
each case, all the parameters except w; were chosen to be the same as those of
the corresponding previous examples which used 6 cost factors. To avoid thick
edges, the weight w, was chosen based on Proposition 3.15. We used' the same
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- Table 5.3. Cost of the final state in the ann'ealing,proéeéé; 3

Image

'.ssR :

| Parallel

Iterations | :

200

2810 |

| Rings, SNR=1.0
| Rings, SNR=1.0

Yes

200

o812 |

: j;_R_ings,‘SNR=1.0

Yes

Yes ‘

200 |

2815 |

~|'Rings, SNR=1.0

| (Rapid cooling) = |

Yes

200

2859 |

| Rings, SNR=0.574

200

1o |

Rings, SNR:O.SM o

Yes |

200

Yes

| Rings, SNR=0.574

Yes

200

3160 |
3161 |

. Vertical step

200

| Vertical 'step

Yes

200

Yes

Yes-'

200

!
2878 |

| Vertical step

‘| House

100

| 9253 |

House

Yes

100

: Air>portﬂ‘

Yes

200

‘Airport‘ '

Yes

| 77 Yes

200

_,Ajrpblranes |

Yes |

200

o | \Ai'rplaﬁes

Yes
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Figure 5.23 . Detected edges and annealing process of vertical step image using
’ - & cost factors of the ACF. The weights were: w,=0.75, Wg=2.0,
‘We=1.0, w;=3.0, and w,=6.25. (Figure 5.4 shows the results using

6 cost factors).
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"Figu’re _5 .24 " Detected edges and annealing process of rings image (SNR=10) 3
e - using 5 cost factors of the ACF., The weights were: wc=05, :

- Wa=20, W=10, w=3.0, and wy=6.5. (Figure 5.10 shows the
results using 6 cost factors). e T
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Figure 5.25 Detected edges and annealing process of rings‘ “image
' ,.,f“:(_SﬂNR=0.574) using 5 cost factors of the ACF. The weights

- were: W=0.5, wg=2.0, w,=1.0, w;=3.0, and w;=6.5. (Figure 5.11
. shows the results using 6 cost factors). B
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Figure 5_.26 « Detected edges and 'annealing'process of house image using 5 cost
’ ! factors of the ACF. The weights were: w,=0.75, W4=2.0,
 We=1.0, w=3.0, and w,=6.25. (Figure 5.17 shows the results

_using 6 cost factors). : RRREIE
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Figure 5.27  Detected edges and annealing process of airport image using 5
- cost factors of the ACF. The weights were: w,=0.5, w3=2.0,
we=10, w;=3.0, and w;=6.5. (Figure 5.18 shows the results using

6 cost factors). E : '
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Flgure 5.28 Detected edges and annealing process of -airplanes i image usmg 5:" '-

cost factors of the ACF. The weights were: w. 0.2, wg=2.0,

w,=1.0, w;=2.0, and Wt—4 81. (Flgure 5.21 shows the res_ults_:_
using 6 cost factors) 3 .
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Figure 5.29 Detected edges and annealing process of texture box i lmage usmg
~ 5 cost factors of the ACF. The weights were: w.=0.75, w;=2.0,
| ‘we-l 0, wy=4.0, and w;=8.25. (Flgure 5.22 shows the results
- using 6 cost factors).
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estimate of d* based on Equation'(4.32). The results indicate that ‘the removal
of the cost factor C| alters the detected edges in a very minor way ‘Which is
on-ly‘slig'htly visible. Depending on the test image used, this ;éltera't'ion may
' 'iniprov’e or degrade detection performance. e o

N 5.7 Summary R

o _We have shown examples of the detection of edges uéing ‘bolth t,he!, CCF
and ACF approaches.. ‘Comparison of the detection performance has been
" made with four other recent edge detection techniques: derivative of Gaussi‘én‘,
Laplacian of Gaussian, facet model, and Sequential Edge Linking. Both real
and artificial images were used in evaluating the detection performance. Based
on the Pratt figure of merit, it has been show that the detected edges of both
the CCF and ACF. techniques that are at least of comparable quality with
other current techniques. : : ' U

» For the ACF approach, we have shown that all detected edges are thinv', v
provided. that the weight Wy is properly selected based on Pr’opositions 3.15, 4.1
and 4.2. We have also demonstrated the usefulness of the cost factor for.
fragmentation in linking fogether f_ragmeﬁted edgés, while at the same time
suppressing short sporadic edgés. This approach to edge detection is flexible in

the sense that it allows for the detection of many different types of edges. In
‘particular, we have shown examples of how the dissimilarity measure for the .
cost function can be defined to detect texture edges or other specific edge

types. h
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L ~_ CHAPTERG
~ . SUMMARY AND CONCLUSIONS

| . 6.1 Summary of Results . R
‘ The main emphasis of this work has been to .cast'edgé ‘.detecti’_‘dn;ggf a
problem in cost minimization. We have achieved this by the formulation of
_two cost, fu_i_:i_ctions_ that evaluate the quality of edge conﬁgux}ation_s{ The first is -
' "a, :compavrati"ve cost. function (CCF), which is a_l_in_ear sum of weighted cost
| factors. It is heuristic in nature and can be applied only to pairs of similar edge
¢9ﬁﬁgﬁrqi}ioqs. It measures the relative quality between the ¢Z§nﬁgurationss The
detectlon of edges is accomplished by a a heuristic iterative search algOg:iﬁhm '
~ which uses the CCF to evaluate edge quality. R
o The second cost function is the absolute cost function (ACF), which is also
almearsum of weighted cost factors. The cost factors - capture desirable
_characteristics of - edges such as accuracy in localization, thinness, and
‘¢.Qn§iniﬁtyijEdges are detected by finding the edge configurations that minimize -
the ACF. We have analyzed the function in terms of the'charactgristigé of the
| f:edges" m minimum cost configurations. These characteristics ~are: directly
'débe"nden't of the associated weight of each cost factor. Through the aﬁal&sis. of
~the ACF, we have provided guidelines on the choice of weights to achieve
“certain c,haracteris‘tics of the detectéd edges. ' ; .

Minimizing the ACF is ac(:omPlished by the use of Simjilategi Anﬁéaling._,~,

‘Specifically, we ‘hggyev developed a set of strategies for gepera,ti}_ilg- next states for .

the annealing process. The method of ‘generating next states allows the
annea.li_n'g',proéess; to be executed largely in parallel. We haﬁye also stated an
. gs]timQLte‘qf the upper bound on the max1mum cup depth of the cost filnctign;.
~ This b_Qund is 'uséfi;'l in the design of an efficient temperaturé- ,s,c_hed"ule'i for the
annealing process. B
- Experimental results are shown which verify the usefulness of the CCF-
and ACF techniques for edge detection, In’ comparison, the ACF technique
. prbducés better edges than the €CF or other current ’detectign. techniques. A
major difficulty with the annealing process is the large amount of computation
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~ time required to minimize the ACF .

6 2 Suggestlons for Further Work

e M1n1m1z1ng the absolute cost function is a novel approach to edge
: detection Its usefulness has been both theoretically and experlmentally

justified. The  following is a brief list of further research that could be
undertaken in ‘pursuit of this approach to edge detection.

W

The approach is capable of detecting various kinds of edges, provnded that
“a suitable measure of dissimilarity f,(R1,R2) can be defined. We could

_investigate the numerous possible ways of defining f,(R1, R2), and show

(2

‘how it can be apphed to . detect d1ﬁ’erent edge types in real World_

situations.

In this report the basis set of edge structures for use in d1s31mllar1tyr

f ‘v(_’enhancement was constrained. to be thin -edge structures of 3 pixels.

Investigation could be made into the use of other basis sets, possibly
comprised of larger edge structures. This 1nvest1gation should be
performed i in conJunctlon with (1) above. o

’ "More experlments with Simulated Annealing could be undertaken Flve -
. areas of possible investigation are listed below.

(1) ‘Choice, of the probabihtles p; as given in Equation (4 21) These

()

probabihtles ‘govern the frequency each strategy of generatmg next
states is used. S

(u) Alternate methods of generating next states

- (iii) Alternate temperature schedules - The reference [63] could be

: consulted

* (1v) Use of rapid cooling and dlﬁ'erent 1n1t1al states

(v) Parallel 1mplementat10n

It is. not apparent that Simulated Anneahng is the best algorlthm for
minimizing " the absolute cost functlon Other minimizatlon techmques

could be 1nvest1gated

()
1nto the cost function. This can be achieved either by direct incorporation
- into the dlss1milar1ty measure fa(Rl R2), or by the inclusion of additional'

The ‘investigation of how a pr10r1 1nformatlon can be best mcorporated |

- cost factors
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(6) The use of additional cost factors to capture desirable edge characteristics
that have not already been mentioned.



REFERENCES



1]

2

B

)
Bl

18]

191

REFERENCES

M. Bi‘ady, “Computational approaches to image." und

! . } | ,érstanding,”
: COmputmg Surveys, vol. 14, No. 1, pp. 3-71, March 1982. S

P. J. Besl and R. C. Jain, “Three-dimensional object" re06gnifi6n_,”

, Cg_mputing Surveys, vol. 17, No.» 1, pp. 75-145, March 1985.

v{L.jS.ﬁDavisb and A. Mitiche, “‘Edge detection in textures,” vCrompu,té'r‘"
- Graphics and Image Processing, vol. 12, pp. 25-39,1980. = - .

A {Rosénfeid and A. C. Kak, Digital ’Picture Processing. | NeW York:
Academic Press, 1982,1&2. S AR o

vT».-]Peli"and D. Malah, “A study of edge detection algorithin,s, " Cbmvb_.z‘z‘tver a
Graphicsvand»Image Processing, vol. 20, pp. 1-21, 1982... -

 L. S. vDa'vis, “A survey of edge detection techniques,v” C’o‘niputcfﬁ.G’zr}aphics_

*and Image Processing, vol. 4, pp. 248-270, 1975, ,}

7}

s

~ Appl. Opt., vol. 16 no. 1, pp. 145-148, Jan. 1977.

0]

V. ,:Tbrre.an'd‘ TA Poggio, “On edge‘detectibn,”.IE'E"E'v iTrVan‘s. »P‘a,tteir:h,

"Anal. Machine Intelligence’, vol. PAMI-S,:NO. 2, pp. 147-163, March 1986.

EOR

T Pdggib’, “Early vision":__ From computational struct_ﬁfé_ toalgonthms
and- parallel hardware,” Computer Vision, Graphics, and Image
Processing, vol. 31, pp. 139-155, 1985. = B S 2

F cl\f"?I;-'Difckey_and K. S. Shanmugam, “Optimum edge _detectiéﬁ filter,”

J. :' Canﬁy; -“A_"computationarnl appfoachA_to edge detectidﬁ,”"IE'E'E 'Trﬁ,,n,s.. |
Pattern .Anal. Machine Intelligence,’ vol. PAMI-8, No.. 6, pp. 679-698,

- November 1986.

g

g

ag)

114]

D. Marr and E. Hildreth, “Theory of edge dete.ctioﬁ,”-vProc; Royal Soc.
London, vol. B 207, pp. 187-217, 1980. L - . :

D. Marr, Vision. New York: W. H. Freeman and Company, 1982.

M J.“Brooks,' ,V‘“Rat,iona'lizir"ig. edge detectors,” Computerﬁ.Grdphip,s'énd :
Image Processing, vol. 8, pp. 277-285,1978. - . o E

M. H. Hueckel, “An operator ‘Which' locates edges in digjli'tized, ‘ﬁi‘é-tures,”

Journal of the Association Jfor. Computing Machinery, vol. 18, No. 1, pp.

- 113-125, January 1971.



[15]

I

s

o192

R. M. Hara]ick,‘ “Edge and region analysis for digital iihaée data,”"

- Computer. Graphics and Image Processing, vol. 12, pp. 60-73, 1980.

R. M. Hféralick and L. Watson, “A facet model fdr' image data,” ‘

~ Computer Graphics and Image Processing, vol. 15, pp. 113-129, 1981.'

R M Haralick, “Digital step edges from zero crossing’ of second

directional derivatives,” IEEE Trans. Pattern Anal. Machine Intelligence,
vol. PAMI-6, No. 1, pp. 58-68, IEEE, January 1984. SR o

V. Nalwa and T. .YO. Binford, ‘“On detecting édgeé,” IEEE T _rdn's.v'P_attern‘
Anal. Machine Intelligence, vol. PAMI-8, No. 6, pp. 699-714, November

~ 1986.

[19]

B. J. Schachter and A. Rosenfeld, ““Some new methods of detecting step
edges in" digital pictures,” Communications of the ACM, vol. 21, No. 2,

. Pp. 172-176, February 1978.

20]

‘R. Machuca and A. L. Gilbert, “Finding edges in noisy sceties,” IEEE

Trans. Pattern Anal. Machine Intelligence, vol. PAMI-3, No. 1, pp. 103- B

111, January 1981. :

2]

A. Martellli, “An application of heuristic search methods ‘to edge and -
contour detection,” Communications of the ACM, vol. 19, No. 2, pp. 73-

' 83, February 1976,

122

G. P. Ashkar and J.W. Modestino, “The contour extraction problem

. with biomedical applications,” Computer Graphics and Image Processing,

’Yo'l,. 7, pp. 331-355, 1978.

]

[24]

[25]

- [26)

121)

P H. Eich’él and E. J. Delp‘, ‘““Sequential edge detectioz_i in .cofrelated

Recognition Conference, pp. 14-21, San Francisco, June 1985.

random fields,” Proceedings of the IEEE Computer Vision and Pattern

R. Nevatia and K. R. B'abu, “Linear feature extraction and _déséfiptidn,”

Computer ‘Vz'sion and Image Processing, vol. 13, pp. 257-269, 1980. -

f‘A.:Rbéenfeld, Image Modeling. New York: -Academic Pj'éss, 198‘1f

A. Rosenfeld, “Iterative methods 'in image processing,” ] ‘Pattern

- Recognition, vol. 10, pp. 181-187, Pergamon Press Ltd., 1978. S

S. Ullman, “Relaxation and constrained optimizatidn by local processes,”

_C'dmpute_r' Graphics and Image Processing, vol. 10, pp. 115-125,1979. =



28]

193

S. Peleg, “A new probabilistic relaxation scheme,” IEEE Trahs. P_atte:rn

Anal. Machine Intelligence, vol. PAMI-2, No. 4, pp. 362-369, IEEE, July,

~1980.- '

[29)

f30]

J. A. Bondy and U. S. R. Murthy, Graph Theory With Applz'c‘atz'tz)ﬁé.‘
New York: North-Holland, 1976. : Lo

C. H Papadimitriou and K. Stéiglitz, Combz’nato'fz'al Optz'mz;zﬁtz'qn.'\ |
Algorithms and Complezity.  Englewood Cliffs, New Jersey: Pref_n"ti_ce— :

“Hall, Inc., 1982.

3]

[32]

JM Hammersley and D. .

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and B,
Teller, ‘““Equation of state calculations by fast computing machines,”. The

Journal of Chemical Physics, vol. 21, No. 6, pp. 1087-1092, June 1953.

C. J Thompson, Mathematical Statistical Mechanics. - New York: :

Macmillan Company, 1972.

54

35)

A. B. Brotz, M. H. Kalos, and J. L. Lebowitz, “A new algorithm for
Monte Carlo simulation of Ising spin systems,” Journal of Computational
Phys;'cs, vol. 17, pp. 10-18, 1975. : S

L Z. F isher, “Applications of the Monte Carlo method in statistical

physics,” Soviet Physics Uspekhi, vol. 2, No. 6, pp. 783-1012, Ju‘ne‘19‘6_0.‘

'S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

“simulated annealing,” Science, vol. 220, No. 4598, pp. 671-680, 13 May
1983, o R "

- [37]

38)

V. Cerny, “Thermodynamical approach to the traveling. salesman
problem: An efficient simulation algorithm,” Journal of Optimization
Theory and Applications, vol. 45, No. 1, pp. 41-51, January 1985.

C. C. Skiscim and B. L. Golden, “Optimization by simulated anﬁéaling:
A preliminary computational study for the TSP,” in Proceedings of the

1988 Winter Simulation Conference, IEEE, 1983, pp. 523-535.

9]

g

M. VFP. Vecchi and S. Kirkpatrick, “GloBa] wiring by simulated
annealing,” IEEE Transactions on Computer-Aided Design, vol. CAD-2,

. No. 4, pp. 215-222, October 1983. ,

A A, El Gavm’alv, L. A Hema,;g:andfa, I.’Shperling, and V. K. Wei, “Usirig
- simulated annealing to design good codes,” IEEE Trans. Inform. Theory,
~ vol. IT-33, No. 1, pp. 116-123, January 1987. . '

] Handscomb,‘ Monte CarlofMe._t/.wdé.- S
‘London: London: Methuen, 1964. et e



[41)
[42]

[43)

) 194

D. B. Paul, “Tfaining of HIVIM‘recogniz'ers by simulated anhealing,” in
Proceedings of the IEEE International Conference on Acoustics, Speech
.and Signal Processing, vol. 1, 1985, pp. 13-16. S '

P. Carnevali, L. Coletti, and S. Patarnello, “Image~procéssing bj
-simulated annealing,” IBM J. Res. Develop., vol. 29, No. 6, pp. 569-579,
November 1985. : LT

W. E. Smith, H. H. Barrett, and R. G. Paxman, “Reconstr‘u‘é_tion‘ of
objects from coded images by simulated annealing,” Optics Letters, vol.

- 8, No. 4, pp. 199-201, April 1983.

[44)

[45]

ja6]

[47]

[481

[49]

[50] ;
. simulated annealing at Berkeley,” in Proceedings of the IEEE

[51]

B2

H. Fleisher, J. Giraldi, D. B. Martiﬁ, R. L. Phoenix, and M. A. Tavel,
‘““Simulated annealing as a tool for logic optimization in a cad
environment,” in IEEE International Conference on Computer-Aided

~Design , 1985, pp. 203-205.

E. Cinlar, Introduction to Stochastic Processes. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1975. C e T

D. L. Isaacson and Richard W. Madsen, Markov Chains and Applications.
New York: John Wiley and Sons, 1975. SR

M ﬂIoSif'escu, Finite Markov Processes and Their Applz'cat'_i'o‘n}s.- New

- York: John Wiley and Sons, 1979. o

E. Wong and B. Hajek, Stochastic Processes in Engineering ':"Sy.évstevmsr. '

New York: Springer-Verlag, 1985.

F. ‘Romeo and Alberto Sangiovanni-Vincentelli, . “PrbbabiliStic hill
climbing algorithms: Properties and applications,” in 1985 Chapel Hill
Conference on VLSI, 1985, pp. 393-417. : : R

'F. Romeo, A. Sangiovanni-Vincentelli, and C. Sechen, ‘“‘Research on

Interngtional Conference on Computer Design: VLSI in Computers, 1984,
-pp. 652-657. S o . :

M. Lundy’ a.nd A. Mees, “Convergence of an annealing algorithm,_”:.
Mathematical Programming, vol. 34, pp. 111-124, 1986. R

S. Geman and D. Geman,b “‘Stochastic relaxation, Gibbs distributibﬁs, and
the bayesian restoration of images,”” IEEE Trans. Pattern Anal. Machine

. Intelligence, vol. PAMI-6, No. 6, pp. 721-741, November 1984.

3

' D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, ‘‘Convergence and

' ﬁniteftime behavior of simulated annealing,” in Proceedings. of 24th



195 -

.Conference on Decision and Control, 1985, pp. 761-767.

j54]
55

[s_fs] |

- D. Mitra, F. Roméo, and Alberto Sangi‘gvanni-Vincentelli, "‘,Convérgen_c.;e

and finite-time behavior of simulated annealing,” Adv. Appl. Prob., vol.
18, pp. 747-771, 1986. o . '

S. B. Gelfand and S. K. Mitter, “Analysis of simulated annealing for

-optimization,” in Proceedings of 24th Conference on -Deession and

Control, Ft. Lauderdale, FL., December 1985, pp. 779-786.

B. Gidas, “Nonstationary markov chains and ' convergence of . the
annealing algorithm,” Journal of Statistical Physics, vol. 39, Nos. 1/2, pp.

73-131, 1985.

- [57]
[58] .»
[59]

[60]

61)
(s

[63]

B. Hajek, “A tutorial survey of theory and applications of 's‘imulated'
annealing,” in Proceedings of 24th Conference on Decision and Control,
Ft. Lauderdale, FL., Decemnber 1985, pp. 755-760.

B. Hajek, “‘Cooling schedules for optimal annééling,” Mathematics of

Operations Research, vol. 13 No.2, pp. 311-329, May 1988.

J. Serra, Image Andlysis and Mathematical Morphology. New York:
Academic Press, 1982. ' . ' ' -

W. Pratt, Digital image Processihg. New York: Wiley, 1978. |

I. Abdou and W. Pratt, “Quantitativé design and evaluation of .
enhancement/thresholding edge detectors,” Proc. of IEEE, vol. 67, pp. -
753-763, May 1979. ' o o

L.»v Kitcﬁen and A. Rosenfeld, “Edge ev‘aluatioh using local edge
coherence,” IEEE Transactions on Systems, Man and Cybernetics, vol.
SMC-11, No. 9, pp. 597-605, IEEE, Sept. 1981. :

P. J. M. van Laarhoven and E. H. Aarts, Simulated Annealing: Theory |

and Applications. Dordrecht, Holland: D. Reidel Publishing Company,
1987. o o ,- .



	Purdue University
	Purdue e-Pubs
	12-1-1988

	Edge Detection by Cost Minimization
	Hin Leong Tan
	Edward J. Delp

	tmp.1542052450.pdf.4tJd8

