
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

12-1-1988

3D-POLY: A Robot Vision System for Recognizing
Objects in Occluded Environments
C. H. Chen
Purdue University

A. C. Kak
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Chen, C. H. and Kak, A. C., "3D-POLY: A Robot Vision System for Recognizing Objects in Occluded Environments" (1988).
Department of Electrical and Computer Engineering Technical Reports. Paper 627.
https://docs.lib.purdue.edu/ecetr/627

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages

1 .

:|811| | l l | l | l

'

3D-POLY: A Robot Vision
System for Recognizing
Objects in Occluded
Environments

C. H Chen
A. C. Kak

;

TR-EE 88-48
December 1988

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

3D-POLY: A ROBOT VISION SYSTEM FOR
RECOGNIZING OBJECTS IN OCCLUDED ENVIRONMENTS

C. H. Chen and A. C. Kak

R obot V ision Lab
School of Electrical Engineering

Purdue University
W. Lafayette, IN 47907

Technical Report TR-EE 88-48
December 1988

ABSTRACT

The two factors that determine the time complexity associated with model-driven
interpretation of range maps are: I) the particular strategy used for the generation of
object hypotheses; and 2) the manner in which both the model and the sensed data are
organized, data organization being a primary determinant of the efficiency of
verification of a given hypothesis. In this report, we present 3D-POLY, a working sys­
tem for recognizing objects in the presence of occlusion and against cluttered back­
grounds. The time complexity of this system is only O(n2) for single object recogni­
tion, where n is the number of features on the object. The most novel aspect of this sys­
tem is the manner in which the feature data are organized for the models. We use a data
Structure called the feature sphere for the purpose. We will present efficient algorithms
for assigning a feature to its proper place on a feature sphere, and for extracting the
neighbors o f a given feature from the feature sphere representation. For hypothesis
generation, we use localfeature sets, a notion similar to those used before us by Bolles,
Shirai and others. The combination o f the feature sphere idea for streamlining
verification and the local feature sets for hypothesis generation results in a system
whose time complexity has a polynomial bound.

In addition to recognizing objects in occluded environments, 3D-POLY also
possesses model learning capability. Model learning consists of looking at a model
object from different views and integrating the resulting information. The 3D-POLY
system also contains utilities for range image segmentation and classification of scene
surfaces.

TABLE OF CONTENTS

Page

INTRODUCTION..............

CHAPTER I MODELING AND CALIBRATION OF
STRUCTURED LIGHT SCANNERS............

L I Introduction......................... . .
1.2 Projective Geometry......................

1.2.1 One Dimensional Projectivity...........
1.2.2 Two Dimensional Projectivity...........

1.3 Solving for the Conversion Matrix...........
1.4 A Procedure for Automatic Calibration ...
1.5 Linear and Rotational Scanning.......

1.5.1 Formulation
1.5.2 Analysis of Range M aps............. .

1.6 Experimental Results and Conclusion......

......................5
.....................8

..14
....................... 19
.................... 20
.................... 22
..22

.27
27

CHAPTER 2 EXTRACTION OF PRIMITIVE FEATURES FROM
RANGE IM AGES.............

2.1 Introduction*.....31
2.2 Computing Surface Normals via Adaptively Located Window...........................34
2.3 Range Image Segmentation...... 44
2.4 Classification of Surfaces... "

*......• •••....... ——•45

CHAPTER 3 3D-P0LY: A ROBOT VISION SYSTEM FOR RECOGNIZING
3-D OBJECTS IN LOW-ORDER POLYNOMIAL TIME.

3.1 Introduction..............
3.2 Problem Statement....,
3.3 RelatedLiterature.....,

.......... ••••••••••••••.•••.........54
............- - - - . -S g

.64

' Page

3.4 Features for Object Recognition.........73
3.4.1 Attributes of Features...........74
3.4.2 Principal Directions of Model Features.. 77
3.4.3 Criteriafor FeatureM atching.................79

Ql
3.5 Matching Strategy...........»i

3.5.1 Hypothesis Generation and Verification......................»B2
3.5.2 How to Constrain the Selection of Model Features.......................................86

3.5.2.1 Using Constraints Derived from Shape Attributes............................. ...89
3 5.2.2 Using Constraints D erivedfrom Relation Attributes............................90
3.5.2 3 Using Constraints Derived from Position/Orientation A ttributes91
3.5.2.4 Conclusion Regarding the Choice of Constraints.........94

3.5.3 Local Feature Sets for Hypothesis Generation..95
3.5.4 Feature Sphere for Verification.......... -100

3.6 A Data Stracture for Representing Feature Spheres... 1OS
3.6 I Previous Approaches To Data Structuring of Sphere Tessllations105
3.6.2 Tessellating a Unit Sphere...106
3.6.3 A Spherical Array for Representing the Tessellation...-..--..--..v.v...v..v......108

3.6.3.1 The Find-Neighbors Function-112
3.6.3.2 Directions of Sampling Points......,....................—— —..... ——114
36.3 .3 TheTessel-Assigm entFunction.. —— 116
3 .6.3 4 Building Feature Spheres on the Spherical A rray............ 117

3.7 Recognition of Objects in the Presence of Occlusions........................118
3.8 E xperim en ta lR esu lts ...--120

3.8.1 The M odels.....— ... -120
3.8.2 T h e D a t a - - .. — 121
3.8.3 Hypothesis Generation...............-—121
3.8.4 Verification.. — — 125

3.9 Conclusions............—— 129

CHAPTER 4 LEARNING 3-D MODELS FROM
MULTIPLE VIEWS OF O B J E C T S —........ — — —.......131

4.1 Introduction ,——131
4.2 General Strategy and System Overview....——— 133
4.3 Determination of Transformations —— - —136
4.4 Model Initiation in the First V iew— 141

4.5 U pdatingtheM odel.....
4.6 Experimental Results....

4. 6.1 Initiating the Model
4.6.2 Updating the Model

4.7 Discussions............

chen/kak

Rage

.....142

....,144

.....144

.....154

.....157

CONCLUSIONS 163

LIST OF REFERENCES 164

APPENDICES

Appendix A: Determination of Transformation....
Appendix B: Initial Guess for Tessel Assignment

INTRODUCTION

The goal of this research is to develop a robot vision system that bah recognize
and locate objects randomly positioned and oriented hi 3-D space, possibly occurring in
heaps. Idealy, the capability of such a vision system should approximate that o f the
human vision system [Met -82], which can perform recognition of a wide variety of
objects in real time even under poor lighting condition. While computer vision research
in the last 25 years or so has only proved that such a real-time general vision system
remains a distant goal, by using active sensors it is possible today to design systems that
can hideed identify objects and compute their poses and do so with a measure of robust­
ness in occluded environments.

In general, one must address the following issues when designing a robot vision
system:

• Ihlage acquisition:
The question here is what types of images one should use and how they should be
acquired.

• Feature extraction:
What features should be extracted from an image in order to describe the shapes and
geometrical relation of the object surfaces seen in the image.

• Model representation:
How one should represent object knowledge that would allow efficient retrieval of
model data.

• Matching algorithm:
Here the issue is how image features should be matched with object features.

It should be emphasized that these four main issues are highly interrelated, in the sense
that the representations and methods used for one have a bearing on the representations
and methods used for others. The reason for this interdependence is the fact that in most
cases the overall flow of control in the recognition process corresponds to what is
shown in Fig. 0.1. Clearly, how features are extracted depends to some extent on the
type of acquiredidata.

chen/kak2

/next model

matching

feature

model
library

feature
extraction

image
acquisition

Figure 0.1. A system diagram of the four basic components of an object recognition

system.

Glearlyj object recognition calls for the extraction o f scene features, measurement
of their attributes, such as shape and other geometrical characteristics, and the relation­
ships of the features to one another. Since features play a pivotal role in recognition,
we must choose those features that can be detected reliably from images and that pos­
sess sufficient discriminatory power for distinguishing between objects. In addition,
since we also need to locate the objects, i.e. to determine their positions and orienta­
tions, the set o f features should also provide spatial information about the o b je c t For
these reasons, 3D-POLY uses geometric features that constitute the shapes of objects.
Geometric features include surfaces, edges and points, and each of them is specified by
a set of attributes such as shape, relation and position/orientation.

It stands to reason that the data acquired about a scene must allow us to extract
these geometric features. For various reasons, 2-D reflectance images can not be used
and one must take recourse to range maps, where each data element in the image is a
quantized representation of distance to an object point from a reference plane or point.
An extensive survey of various techniques for acquiring range images can be found in
[Ka -85 , Be -87]. In 3D-POLY, range images are generated by using structured light
scanning.

A structured light range sensor consists of a light projector and a camera; the pro-
Jector casts a stripe of light onto object surfaces and the camera detects the illuminated
stripes. The range to any illuminated surface point is computed by using triangulation
formulas. In the first chapter of this report, we show how perspective geometry can be
used to derive a 4x3 calibration matrix that directly converts an image point into its
corresponding 3-D coordinates. We also present a simple to use experimental pro­
cedure that yields this calibration matrix. We will use the phrase ‘range m ap’ to also
refer to the (x,y,z) data obtained for all the illuminated points in a scene.

ft is necessary to go through several processing and detection steps before
geometric features can be extracted from a range map. These are presented in Chapter
2. We first describe a procedure for the computation of surface normals from range
images. Over smooth surfaces this procedure works like the traditional ones in that a
surface normal is computed by fitting a planar patch to the range map over a small win­
dow. However, in the vicinity of edges between different surfaces, our procedure has
the virtue of placing the windows adaptively in such a manner that the surface normal
computation does not get corrupted by attempting to fit a planar patch across an edge
between two different surfaces. In Chapter 2, we also discuss the detection and the
classification o f three primitive surface types, namely, planar, cylindrical and conical.

Chapter 3 presents the heart of 3D-POLY. There we have discussed how the sys­
tem generates and verifies hypotheses about object identities and poses. Thehypothesis

3 chen/kak

generation and verification strategies presented there reduce the otherwise exponential
time complexity to a low-order polynomial bound. For hypothesis generation surface
features are grouped around vertices into local feature sets. For verification, 3D-POLY
uses a special feature called principal direction that posses a separate definition for each
different type o f feature. Principal directions are used to organize the model data into a
data structure called the feature sphere. It will be shown that using local feature sets for
hypothesis formation and feature spheres for verification allows 3D-POLY to recognize

objects with very low time complexity.

To be complete, an object recognition system must have the means to Ieam object
models. 3D-POLY posses such capability, which is described in Chapter 4. We
describe there a multi-view integration procedure for synthesizing die shape of an
object. The major issue in model multi-view integration for shape synthesis is the
detection of feature common to different views, a problem that is made especially
difficult by die fact that the attribute values for the same feature may be different in dif­

ferent views.

4 chen/kak

chen/kak

CHAPTER!
MODELING AND CALIBRATION OF STRUCTURED LIGHT SCANNERS

In this Chapter we have used projectivity theory to model the process of structured
light scanning for 3D robot vision. The projectivity formalism is used to derive a 4x3
transformation matrix that converts points in the image plane into their corresponding
3D world coordinates. Calibration of the scanner consists of computing the coefficient
of this matrix by showing to the system a set o f lines generated by suitable object edges.
We end this paper by showing how the matrix can be used to convert image pixel loca­
tions into the world coordinates of the corresponding object points using two different
scanning strategies.

LI. Introduction

Structmed light scanning is a rugged approach to range mapping a scene for 3D
robot vision. In order to take full advantage o f the flexibility for viewpoint selection
made possible by a six-degree-of-freedom robot, we use a portable structured light unit
that can be picked up by the robot when it wants to gather 3D vision data (Fig. 1.1).
Within the constraints imposed by manipulator kinematics, the unit can then be oriented
in any direction deemed desirable by the robot for the task at hand, and scanned either
in a translational or a rotational mode for data collection.

A structured light unit consists basically of a light projector and a camera. The
light projector throws a plane of light in the direction of the scene. The intersection of
this plane with an object creates a stripe of illuminated points on the object surface, the
stripe being recorded in the camera image plane. If the unit is properly calibrated,’ the
world coordinates of the illuminated points can be calculated by using triangulation for­
mulas, as has been done by Agin [Ag -82]. Agin used a 4x3 collineation matrix to write
down a geometric relationship between the illuminated pixel coordinates and the world
coordinates o f the corresponding object points. The coefficients of this matrix are expli­
cit functions o f the camera and projector parameters. Calibration of the system implies
determination of the coefficients of this matrix, which requires that the camera and the
projector parameters be precisely known - these parameters being positions and orien­
tations of the camera and the projector, and the internal magnifications of the camera

projector

camera

cradle for'
the 3-D
vision scanner

Figure 1.1 Robot engaged in scanning a scene with a detachable structured-light
scanner.

lens system. Because of the explicit dependence of the matrix coefficients on such
parameter?, Again had to first calibrate the robot joints so that the required positions
could pinned down precisely, and then he had to individually calibrate the camera aim,
camera scale and the projector aim.

In this report, we look at the calibration problem from a different point Of view.
The basic ^oal o f structured-light calibration is to find a formula that converts the 2-D
coordinates of a recorded pixel in the image plane to the world coordinates of the
corresponding object point. Our position is that it should be possible to obtain this rela­
tionship for a structured light system without having to worry about such low-level
details as the precise locations and aiming vectors for the camera and the projector.
However, we do not believe that it is possible to do away with the requirement that the
robot itself be mechanically calibrated before it can be used in conjunction with a struc­
tured light system. In fact, the accuracy of the methods to be proposed in this report will
be no better than the absolute accuracy of the robot.

Note that the problem of deriving formulas that take us from 3-D world coordi­
nates to 2-D image coordinates and vice versa also arises in straightforward camera
imaging. As is well known [D&H-73], it is possible to write down a 3x4 homogeneous
transformation matrix that for a given object point yields uniquely its corresponding
image point; but, if we desire a transformation in the reverse direction, viz, from the
image to the world, it is only possible to calculate the direction to the object point -
and not its location — by using a similar matrix.

In Section 2, we will show that for the case of structured light imaging if we apply
the theory of projectivity to relate the points in the light plane with the corresponding
points in the image plane, it is indeed possible to derive a 4x 3 homogeneous transfor­
mation matrix that is reversible. This implies that fo r each object point of a priori
known location, we can uniquely determine its camera image plane coordinates; and for
each image point we can uniquely determine the world coordinates of the correspond­
ing object point.

As we will show, the transformation matrix derived from the projectivity theory
makes unnecessary the precise calculations of the locations o f the camera and the pro­
jector and their aiming angles. Therefore, it is no longer critical that the robot joints be
calibrated precisely, at least from the standpoint of enhancing the accuracy of range
mapping.

We will also show that although from a purely theoretical standpoint only four
object points at known locations are required for calibration - meaning the computation
of the elements of the transformation matrix - the practical difficulty consisting o f

chen/kak

knowing where exactly the object points are located has caused us to seek other
approaches. We will describe our procedure which consists of showing to the robot at
least six lines generated by suitable object edges in the scene. In this procedure, it is not
necessary to know the exact locations of the beginnings and the ends of the lines, as
long as their relative separations are known. Section 3 presents a procedure for com­
puting the optimum values of the calibration matrix when more than six lines are shown

to the robot.

Once a structured light system is calibrated, the process of scanning for the pur­
pose of range mapping a scene can take various forms. We will talk about two
methods: rotational scanning and linear scanning. In Section 4, we will formulate coor­
dinate transformations for both methods.

Finally, in Section 5, we will show some calibration results and compare our tech­
nique with the two-plane calibration method.

g chen/kak

1,2* Projective Geometry

First, we will define the notation used in this report.

X v U ; p , M - ' -
An italic upper case letter refers to a point which may be on a line, on a plane, or
in 3D space. Usually, X, Y, Z are points in space, and U, V are points in the

image plane.

• * * - . :
An italic upper case letter with a subscript also refers to a point, but m this case
the homogeneous coordinates of the point are also specified. The subscript
denotes the coordinate frame in which the point is defined.

Xb,Xs, ‘ * • '"v .
Bpld italic upper case letters with subscripts are used to denote the regular coordi­

nates of a point.

r, s, t,
A bold italic lower case letter is used to denote a line or a plane.

Pis, Fb ,’ " . . \
Letter F with a subscript is used for representing a coordinate frame. The sub­
script 2 specifies a two dimensional coordinate frame.

Tcb’ • ’ ‘
Letter T with a subscript represents a transformation from one coordinate system
to another. The first letter of the subscript denotes the original coordinates system,

while the second letter denotes the destination coordinate system,

1-2.1. One Dimensional Projectivity

chen/kak

On a plane, given a center of projection P and any two lines * and r not passing
through P , as shown in Fig. 1.2, a one-dimensional projectivity is defined as follows:
U tX b e a point on Hne s, its projective image X ' on line r is the intersection of line PX
with r. Let A,B, C,D be any four distinct points on line s, the cross ratio of A B with
respect to C, D is

Let on line r be, respectively, the image points o f A, B, C, D under the
projectivity shown. An important property that follows from projectivity is the invari­
ance of the cross-ratio. This invariance can be expressed as

(A,5;C,D) = (A D') (u _a)
or

AC BD _ A 'C ' B ,D '
BC AD T B 'C ' A 7D 7 (L L b)

With this relation established between s and r, we can find the image point X ' o f X
under this projectivity by substituting X for D, and X ' for D

(A,fl;C,X) = (A ',5 ';C ',X 0 (1.2)

It ̂ is obvious that the two corresponding sets of triplets, {A, B, C) and
{A , B , C }, completely describe the projectivity on s and r from the projection center
P. ■ One may raise the following questions at this point: Can we always find a projec­
tivity on a plane which converts a set of points on one line to a set of points on another
Ime ? Is this projectivity unique? Answers to these questions, which are crucial to the
main theme of this paper, are provided by the following theorem [Ay —67]:

TheFundamentaiTheoremof Om Dimensional Projectivity
Given three distinct points on a line and another three points on a second line,

there is one and only one projectivity which carries the first three points respec­
tively into the second three points.

To illustrate the theorem, we first locate three points A, B, C at arbitrary places on a
Ime s and another three points A', B \C ' on a l in e r (Fig 1.3-a). For finding the unique
projectivity, we will fix the line s in the plane and move around the line r on the plane

JO chen/kak

I / /W I / 7

Figure 1.2.
One dimensional projectivity is illustrated here.

chen/kak

A B c
Tl - ■ ■

Figure 1.3.

a) Three points defined on each of the two lines that will be used for demonstrat­
ing projectivity. b) If we fix line s of (a) and move around line r shown there,
there Will exist only one projectivity for which AA', BB' and CC' will meet at a
point.

12 chen/kak

until the three lines AA', BB', C C meet at one point (Fig 1.3-b); this common point of
intersection is the projection center of the projectivity. A more difficult case is shown
in Fig. 1.4-ay in which the corresponding points on lines s and r are ordered differently.
The projectivity for this case is shown in Figure 1.4-b.

For representing a point on a line, we need to define a coordinate system to
express its position on the line. The familiar coordinate system on a line is established
by selecting on the line a point O from which all measurements along the line are made,
a unit o f measure, and a sense of direction, Essentially, this consists of selecting a point
Oi called the origin, and U, called the unit point; to these two points we assign the coor­
dinate values 0 and I respectively. The coordinate x of a point X on the line is then the
directed distance of X from 0 . If on the other hand, a homogeneous coordinate system
is desired, that can be done by assigning coordinates (0, 1) to 0 , (1, 1) to U, and (x i, * 2)
to any p o in tX such th a tx 1 I x 2 =x. It is obvious that ap o in t does not have a unique
representation in a homogeneous coordinate system.

Let’s say that we have chosen an origin O and a unit point U to define a coordinate
system for a lin e s Also, let O' and U' define a coordinate system for another line r.
We do not require that the unit length OU on line s be equal to the unit length C U ' on
line r. W e also do not require that the points O' and U' be the images of the points O
and U under any projectivity. In fact, equation (1.2) is independent of the coordinate
sy stems defined on either lines in the projectivity; this is a consequence of the following
theorem that we present without proof:

tern established on the line.

Given a point x on, say, the line s, it is a simple matter to derive a formula for the
corresponding point on line r. With respect to the coordinate System on line s, let the
points A, B, C, X have coordinates a, b, c, x respectively. Similarly on line r, let the
points A', B', C', X ' have coordinates a', b', c ',x ' respectively. Then equation (1.2)

can be rewritten as:

, (a ' - c ') 0
= a m l W ^ = p , w e

(1.3)

13 chen/kak

A B C s

B ’ C ’ A ’
rr—-- — — — r

(a)

Figure 1.4.

a) An example similar to that of Figure 3a except that the order of the three points
on line r is opposite to the order on line s. b) The unique projectivity that
corresponds to the case shown in (a).

14 chen/kak

f l u X + « i 2
x = -—---------------

- a 2\ X + a 22

where a n = a a '~ $b', a 12 = ab'$ - a'ba, a 21 = a - $, a 22= a $ - ba. In terms of
homogeneous coordinates, we have, by settings = X1 / x 2, and jc =x \ I x 2,

Xf1 O11X1 +(Iy2X2
---— ------------—--- -
x '2 a 21x 1+ a 22x 2

p x \ = a IiX i + « 12*2
px'2 = O 21X 1 + a 22x 2 , p*0

In matrix form, we have

d i i a 12

«21 «22

Xi

X 2
(1.4)

Note that the existence of the free variable p. Since a point in homogeneous coordi­
nates does not have a unique expression, that is, x =X1 / X2 = p x i / px2> With the help
of this free variable, we are ensured that regardless of the homogeneous coordinates
chosen, the above expression for the projectivity solution will always satisfy equation
(1.4). Also note that the roles of X and X ' are exchangeable. W e could consider X as
the image of X ', and we will get the same form of matrix equation as (1.3).

1.2.2. Tw oD im ensionalProjectiv ity

We can establish a formalism for two dimensional projectivity in 3D space that is
similar tp the one dimensional projectivity in a plane. Let s and r be two planes in
space and let there be a point P, which is neither on s nor on r, to be used as the center
of projection (Fig. 1.5), For each point X on j , its image point X ' on r is the intersec­
tion o f line PX with plane r. It is obvious that the invariance of the cross-ratio is still
valid for any four collinear points on s and their images point on r. Also, for any col-
linear points on s, their image points are also collinear. Extending the fundamental
theorem of one dimensional projectivity, we have:

The Fundamental Theorem of Two Dimensional Projectivity

Given four distinct non-collinear points on a plane and another four distinct non-
COllinear points on the other plane, there is one and only one projectivity which
carries the first four points respectively into the second four points.

15 chen/kak

\ \TJ

Figure 1.5.
Elements of two dimensional projectivity.

16 chen/kak

A homogeneous coordinate system can also be established on a plane by a simple
extension of what was done for line projectivity. Suppose we choose a point (0, 0, I)
as the origin in a plane and use two orthogonal unit points, (I, 0, I) and (0, I, I), to lay
out a coordinate frame in the plane. The homogeneous coordinates of any point in the
plane are given by (xi X2 xs) with x 3 * 0; (x i/x 3, X2Ix2,) are the regular coordinates of
the point. Analogous to the derivation of equation (1.4), we can get a 3x3 conversion
matrix which converts a point X on plane s to its image point X on plane r, both points
being expressed using homogeneous coordinates:

x 'l a 11 #12 fll3 Xi

x '2 = 021 022 023 ♦ ‘ ' X2

x's 021 022 033 Xs

It is easy to verify that this equation preserves collinearity and invariance of the cross-
ratio Again, if we switch the roles of X and X ', the above generic equation is still valid,

i.e.,

■ ' ' " VV:'; . • X i «11 «12 «13 x 'i

p X2 = «21 «22 «23 * x '2
v; *3 «21 «22 «33 I---

- H

(1.5)

A stmctured light scanner can be modeled by using 2D projectivity as follows. We
use the camera-focus as the center of projection Py and Ueat the light stripe plane as
plane s and the camera image plane as plane r. [This model is only valid under the con­
dition that it be possible to use the pin-hole model for the camera (Fig. 1.6).] Although
the coordinate system on the image plane can be arbiuary, a convenient definition con­
sists of using the row index u and column index y of the digitized image as its two coor­
dinates, and choosing the center of image plane as the origin. W e will denote this coor­
dinate frame on the image plane by F 2c. A point U in the image plane then has coordi­
nates (u, v) or, in a homogeneous coordinates system, (u, v, I) with respect IoF 2c.

We also need to define a coordinate system on the light stripe plane. By virtue of
the previous theorem, which says that the cross-ratios are independent of the choice of
the coordinates system, we have considerable latitude in how we go about setting up
this coordinate frame, We therefore choose one that can be easily related to the three
dimensional base coordinate frame Fb for the robot. We will use x, y,z to represent the
three orthogonal axes in Fb. Then a point Xb defined in the frame Fb will have homo­
geneous coordinates w (x, y, z, I) = (wx, wy, wz, w). Im ag ineattansla tionandaro ta-
tion that brings Fb to a coordinate frame Fs whose center is on the plane s and whose xy
plane is aligned with the plane s. Since Fs is defined with respect to the base

Figure 1.6. This figure shows that the structured light imaging process can be fit pre­
cisely into 2-D projectivity. We can consider the light stripe plane as
plane s and the camera image plane as plane r in drawing correspondence
with Figure 5. The camera focus center becomes the center of projection.

18 chen/kak

coordinate frame Fb, Fs contains all the information regarding the translation and rota­
tion. Inheriting the coordinate system defined on the xy plane of the frame Fs, we can
define a two dimensional coordinate frame F 2s on the plane s. Suppose a point X on
plane s is assigned homogeneous coordinates (x Ii X2, X3) with respect to F 2s, where
Jc3 0. With respect to the frame Fs, which is three dimensional, the homogeneous
coordinates of the same point are U i t X i 0, jc3). The conversion of X from its two
dimensional homogeneous coordinates in F 2s to its three dimensional homogeneous
coordinates in Fs can then be written as

-

*2
0
*3

1 0 0
0 I 0
0 0 0
0 0 I

JCi

x 2

X3

(1.6)

Now IetX s be the homogeneous coordinates of X with respect to the frame Fs. We can
convert Xs to the homogeneous coordinates representation Xb with respect to the base
frame Fb by multiplying Xs with F s , that is

Xb =Fs -Xs (1*7)

Here Fs is a 4x4 matrix.

Substituting (u,v, I) for (x \ , x 'x '3) in equation (1.5) and combining equations
(1.6) and (1.7), we get a 4x3 conversion matrix Tcb that converts a point U in camera
image plane to a light stripe point XbTn the robot base coordinate frame.

Xb =Tcb-U

or

t i l *12 * 13

*21 *22 *23
U

V
*31 *32 *33

X
*41 *42 *43

(1,8)

Note that we use subscript b to denote that Xb is in homogeneous coordinates with
respect to the base coordinate frame F fc. Again, we use the free variable p to account
for the non-uniqueness of homogeneous coordinate expressions.

1.3. Solving for the Convereion Matrix

We have shown that eq. (1.5) captures the general essence of two dimensional pro-
jectivity. For our particular case of transformations between the camera image plane
and the light plane, the relationship represented by eq. (1.8) is however more suitable.

chen/kak

nsQiMously^ the conversion matrix Tcb in eq. (1.8) depends upon both the positio:
^nd the orientations of the camera and the light plane projector. The purpose of calibra
fton is to find this matrix without recourse to actually measuring these positions and
orientations. Note that because of the free variable p in equation (1.8), we can set /43 in
Tcb equal to I and the equation still holds. Our calibration is to determine the eleven
unknown coefficients in Tcb.

We carry put our calibration by finding the 2-D projectivity that exists between the
era image plane and the light plane. By the fundamental theorem presented in Sec-

tion 2.2, we can find this projectivity— in principle at least - by using four coplanar but
non-col Ii near nrnnte in the* IirrVii- __..._____ . .1 • . ; .

— — py usm-g.iQur;qopi.anar,Dut ■
non-collinear points in the light plane and their corresponding points in the image
plane. By choosing four illuminated object points as calibration points, assuming that
their 3-D coordinates and their cooresponding image coordinates can be measured
correctly, we should be able to solve for the matrix Tcb. We will now show how one

P ' _
X T i

y — T i
z

, .■
n

1 T 4

and eliminating the free variable p, we have

X = T 1 V / T4 V

y = T2 V I T4 V

Z = T 3 V / T4 V

or equivalently,

T 1 V - X T 4 V = O

T2 V - y T4 V = O

T3 V - Z T 4 V = O

(1.9)

(1. 10)

Thus each calibration point produces a set of three linear equations in terms of the
eleven coefficients of Tcb. Four calibration points would therefore lead to a set of
twelve equations for the eleven unknowns. This number is one more than what we
need. Since we could pick any eleven equations out of the twelve and get a solution for
Tcb, we could ostensibly get different Tcfc5S depending on the choice of the eleven equa­
tions; this would evidently be in contradiction to the uniqueness implied by the funda­
mental theorem of projectivity. However, we should note that the fundamental theorem

requires the four calibration points to be coplanar. Therefore, the twelve 3-D coordi­
nate values of the four points are not independent of one another, and, in fact, they obey
the constraint of the co-plane equation:

d e t [X l x l X 3bX4b] = 0

That is, Otte of the twelve coordinates is determined by the other eleven values. Since
the above co-plane constraint is in fact implicit in equation (1.8), one of the twelve
equations generated by the four calibration points is redundant. As a consequence, we
can use any eleven equations and arrive at the same unique solution for Tcb.

1.4. A Procedure for Automatic Calibration

In practice, using four Object points at a priori known locations for computing
the matrix Tcb is beset with difficulties for the following reasons:

1) There are always some errors associated with the measurement of locations of the
four calibration points in the robot base frame. On account o f such errors, their
cbplanarity can not be completely guaranteed.

2) It is unrealistic to assume that the camera can be modeled perfectly by a pin-hole.
A pin-hole model is of questionable validity, especially when zoom lenses are
used. When the pin-hole approximation breaks down, there may be no unique
center of projection.

3) Because of the non-zero thickness of the illumination stripe and other digitization
aspects of camera imaging, there will always be some non-zero error associated
with the location of the image point corresponding to an object point.

Since for these reasons Tcb can not be found exactly, our best hope is to estimate it
by minimizing some error criterion in an over-determined system of linear equations.
In other words, given more than 4 calibration points, we want to find the Tcb which best
fits those calibration points. The Tcb that best fits equation (1.10) can be found by solv­
ing a linear least square problem, similar to the solution of camera calibration in
[B & B -82]*

At this point the reader probably has the impression that, in order to calibrate a
structured light system, One must first install in the robot work area a. set of object
points at a a priori known locations. However, that is not the case in practice. Since the
robot is programmed to move the structured-light unit in discrete steps, i t is possible
that the light planes emitted from any of the allowed positions of the scanner will not

* Alternatively, one can use the squared sum of the error distances of the calibration points in
world coordinates for the error criterion.

20 chen/kak

illuminate the object points. One way to get around this difficulty is to use extended
objects in the work area, the objects being of such a shape that at least four nQn-
collinear points are illuminated by the light plane emitted from the projector. After the
vision data is collected, the world coordinates of these object points are measured by
moving to their locations the robot end-effector. Clearly, this method would only work
if the mechanical calibration of the robot is accurate. This method is hard to automate.
By automating a vision calibration procedure we mean the following: We want to place
certain objects at strategic locations in the robot work area; then by simply having the
robot record structured-light data on these objects at any time a calibration i§ desired, it
should be possible for the associated computer to figure out the calibration parameters.

We will now propose a procedure that is easier to automate. A flat trapezoidal
object is located permanently in the work area. The object is shaped in such a manner
that no two edges of the top-surface are parallel to each other. The end coordinates of
the top edges of these objects are known to the robot; therefore, one might say that the
equations that define the lines corresponding to these edges are known. Consider one
such line: Since a line can be defined as the intersection of two planes, it is described by
the following two equations corresponding to the two planes.

J a \ x + b \y + c\z = d\
a2x + b2y + c ẑ = $2 (1*11)

When the scanner projects a stripe intersecting this calibration line, it generates an
illuminated point whose image coordinates are given by, say, U. While, of course, we
can record the image coordinates of U, its world coordinates are unknown. In the pro­
cedure being described, we have no need for the world coordinates of the illuminated
object point on the line. By substituting the right hand side of equations (1.9) for the
x,y,z in (1.11), we have

T Q\ T yU + b\ T 2 ’U + Ci T yU = d i T^-U
[Ci2 T 1-U + b 2 T 2‘U + C2 T y U = Ct2 T 4 U

It shows that each calibration line is capable of producing a set of two equations in
terms of the 11 coefficients of Tcb. Therefore, if we use at least six calibration lines, we
will have a system of over-determined linear equation to estimate the conversion
matrix. A s w e will describe below, it is not necessary to use six different calibration
lines, although one could certainly do so.

In our current implementation of this procedure, we use only two distinct object
edges, which are not parallel, for generating two calibration lines from any single
viewpoint. By moving the structured light unit to different heights above the table, we
can record the image coordinates of the same two edges for generating as many

21 chen/kak

22 chen/kak

equations as we like. W e will now describe a step-by-step description of the procedure.
First note though that mounted in the robot work area is a flat object whose top surface
is not parallel to the light plane of the scanner. After this initial setup, each time a cali­
bration is carried out by the robot, it automatically carries out the following steps:

I) The robot moves the scanner to an initial position. The coordinate frame of the
robot tool center is recorded.

2) The scanner makes projects a light plane onto the calibration block. This gen­
erates bh the block a segment of the light stripe, whose two end points must lie on
the two calibration lines respectively.

3) From the digitized image, record the image coordinates of the illuminated points
corresponding to the two calibration lines. Substitute these image coordinates for
JJ in the two line equations; this gives us four linear equations,

4) To acquire more calibration lines, use the robot to move the scanner by (dx,dy,dz)
•'. ^KteH'h’itew'.position (Fig. 1.7). 'Now the line equations will' become

U1 T 1-U+ b 1 T1' U + C1 T3-U =

Jd1 - a \dx - b \dy - c \dz) T^-U

U2 T 1-U + b2 T 2‘U + c 2- T3-U =

(d2 - u 2dx - b 2dy - c 2dz) T4-U

Go back to step 2).
5) Minimize certain error criterion to find the best estimate of Tcb.

Note that the estimated conversion matrix is with respect to the scanner at the ini­
tial position only. W e will remove this constraint in the next section.

L5. Linear and Rotational Scanning

1.5.1. Formulation

If the range map of a scene is desired, the scene must be scanned in some manner
with the structured-light unit. Linear scanning and rotational scanning are the two
schemes used in our lab. In linear scanning, the orientation of the scanner is fixed, only
its position is changed equally between successive light stripe projections, as shown in
Figure 1.8. In rotational scanning, the robot holds the scanner at a fixed position, but
rotates the scanner in equal angular increments about the axis of the wrist joint. The
movement of the scanner is specified by the position and orientation o f its end effector
on which the tool-center is defined. Let us define the coordinate frame of the tool-
center as Ft such that the z axis of Ft aligns with the axis of the robot’s wrist joint. For

23

calibration line I

calibration line 2

<ru,I 1
' <U'o

im age plane

image plane

Figure 1.7. To acquire more calibration lines, the robot moves the scanner by
(dx ,dy ,dz) to a new position and makes projection.

R O TA TIO N A L
SCAN

Figure 1.8. a) In linear scanning shown here, the orientation of the scanner is kept
fixed while the scanner is translated along a line, b) In rotational scan­
ning, while holding the scanner at a fixed position the robot rotates the
scanner in equal angular increments about the axis o f the wrist joint.

the ease of linear scanning, we will express the translational movement from projection
to projection by D = (dx ,dy ,dz). This movement can be written as a translation
transformation matrix:

/■ cheh/k^

I .0 0 .4 .

0 I 0 dy
0 0 I dz
0 0 0 I

Similarly, for rotational scanning, if the angular increment between Successive lota-
tional positions of the scanner is 8, we can write down the following for a rotational
transformation matrix

cosS -sind 0 0
„ sinS cosS 0 0
K r =

0 0 I 0
0 0 0 I

The conversion matrix Tcb, as obtained from the calibration process, is defined in
the base coordinate frame Fb with the scanner at a specific position. Let the tool-center
coordinate frame used for calibration be Ftc. When scanning a scene, the position and
orientation of the scanner will differ from those used during calibration. Therefore,
during scanning, the tool-center coordinate frame, as represented by Ft, will be dif­
ferent from Ftc. As a result, the Tcb matrix obtained from calibration can not be
plugged directly in equation (1.8) for the purpose of computing the range map of a
scene.

To get over this problem, we can convert the matrix Tcb to a matrix Tct, which is
defined in the tool-center coordinate frame Ftc. This is done by

Tct = (Ftc) 1 -Tcb (1.12)

This relation is depicted in Fig. 1.9. Thus Tct converts an image point U into the
corresponding object point in homogeneous coordinates with respect to frame Ft. Let
Ffo the tool-center coordinate frame at the beginning of a scan and let / denote the
Jth projection in a scan. In linear scanning, we have

Ftj = F 0 • (Hdy

Therefore, we get

Xi=Ft l -Tct U

=Fttj- {Hyy -Tct - u n 131

Figure 1.9. Relatiph among coordinate frames for linear scanning.

Similarly, for rotational scanning, we have

Xb=Fto- (R t f -Tc t^U ■ (L14)

1.5.2, AnaIysi^df RarigeMaps

Equations (1.13) and (1.14) provide us with formulas for computing the range map
of a scene; For each light stripe projection during scanning, we record the column
index v of the sampled illuminated object point in each row of the camera image. By
applying equation (1.13) or (1.14), for each row indexed by u we have the 3-D coordi­
nates [x(n), y («), z(«)J of the object point. These 3-D coordinates are then collected
into a fangie map.

At this time, a few comments about the parametrization of the object surface are in
Order. Let row index of the scene range map be the same as the row index ii of camera
image plane; and let its column index be the index j associated with successive projec­
tions o f the light stripes. Thus the range map can be expressed as
[x(u,j),y(u,j), z (u ,j) l For example, if the camera image plane is o f 480x512 resolu­
tion, and there are 80 projections in a scan, we will have a range map of size 480x80.
Now consider the range map of a scene as the sampling of a visible surface, and assume
that the surface is expressed as f = \ f x, f y, f zl Its range map
/ (u,j) = [fx(u, j), f y(u, j), f z(u, j)] is the quantized parametrization of this visible sur-
face. Note that the direction represented by the j index is directly related to the move-
meni Of the scanner from projection to projection. We want this ‘ ‘movement direction"
to be perpendicular to the column direction of the camera image plane so that (u j) will
form an orthogonal parametrization of the surface. This can be important for later pro-
cessinS of the range map. For example, most 3-D edge detection operators are derived
M th the assumption of orthogonal parametrization.

1.6. Experimental Results and Conclusion

The structured light scanner used in our experiment consists of a Sony DC-37
CCD camera and an infrared projector. For conducting a calibration experiment, the
calibration block is placed on the table and the scanner is moved to its initial position,
which is about 20 inches abbve the table. A scan is then conducted along a line that is
horizontal M th respect to the work table; during the the calibration block is illuminated
by three stripes. This process is repeated at four different heights, - 20, 14, 8 and 2
inches - above the work table, leading to range data on a total of 12 stripes. This data
leads to 48 linear equations for the computation of the conversion matrix. The total
time expended in the collection of calibration data is about a minute and the computer
time for processing this information is about 3 seconds.

Although ultimately the evaluation of a calibration procedure must be carried out
by determining the absolute accuracy of the system, for many purposes it is sufficient to
compute the relative accuracy. By absolute accuracy we mean the precision with which
the system locates a point with respect to the origin in the robot base coordinate system;
and by relative accuracy we mean the precision with which the system makes a dimen­
sional measurement of an object feature located in the robot area. In our experimental
evaluation of the procedure described in this paper, we will only use relative accuracies.
This is primarily owing to the fact that absolute accuracy tends to be a fiihction of the
accuracies of both the vision calibration and the robot arm calibration, meaning that a
measurement of absolute accuracy may or may not tell us about the performance of a
vision calibration technique.

After calibration, the relative accuracy of the procedure is evaluated by the com­
puting the dimensions W and H of a block, like the one shown in Fig. 1.10. As
expected, ouf experimental results show that the accuracies with which these two meas­
urements can be made depend upon the distance of the block from the structured-light
unit and the orientation of the block with respect to the scan direction. For the results
reported here, the long axis of the block was kept approximately parallel to the scan
direction. The results are shown in Table I.

The reader might note that we have not taken into account any nonlinear lens dis­
tortions in our development of the calibration procedure. W e have seen that these dis­
tortions become important for object points that are far away from the camera lens, usu­
ally farther than two feet. Lens nonlinearities may be taken into account by a variety of
techniques presented by Tsai [Tj - 86].

28 chen/kak

29

L J

Figure 1.10. The width and the height of the block are computed from the range data in
order to test the relative accuracy of calibration.

chen/kak30

Table L I Relative accuracy test results

d 8 inch 14 inch 20 inch

— <0.04 inch <0.05 inch

Hs <0.03 inch <0.14 inch <0.30 inch

d: distance form the scanner to the block top surface
Ws : difference between the computed width and the real width
Hs : difference between the computed height and the real height

W = 5.66 inch H = 6 inch

' CH APTER 2 ;
EX TRACTION O F PR IM ITIV E FEATURES FR O M RANGE IM AGES

In this chapter we describe the processing steps that are invoked for extracting
features from range images. As will be clear from the more precise definition in
Chapter 3, a feature in our system is an analytically continuous surface, a straight o r a
curved edge, or a vertex. Each feature is characterized by a set of attribute-value of
pairs. Featinie extraction is basic to the recognition of objects and estimation of their
poses; it is also basic to the “ learning by showing" approach to the construction of
object models, as discussed in Chapter 4.

There are three main processing steps described in this chapter. T hefirstuses an
adaptive window technique for accurate surface normal computation; our approach here
is particularly accurate in the vicinity of boundaries between different surfaces. In the
adaptive window technique, a window, used to compute the best local surface normal
by fitting a plane to the local range points, is located adaptively depending upon a
weighted planar-patch fitting error. Our second step describes how to segment a range
image into smooth surface regions based on range and surface normal discontinuities.
Finally, we present a scheme to classify segmented regions into three types o f primitive
surfaces, planar, cylindrical and conical, by fitting planes to the mappings of the surface
normals onto Gaussian spheres.

2.1. Introduction

Our system uses the following three steps for feature extraction:
(a) Preprocessing; compute surface normals. The surface normal associated with a

range point is computed from the equation of a best fit tangent plane to a small
cluster of range points in the vicinity of the point in question.

(b> Segmentation: segment a range image into regions, each representing a smooth
surface. Segmentation is accomplished by first extracting range and surface nor­
mal discontinuity points and then performing a connectivity analysis on the rest of
the range map.

(c) Classification: classify segmented surfaces into the three primitive types. The
classification of a surface is accomplished by first projecting the surface normals
corresponding to a segmented surface onto a Gaussian sphere and then fitting a
plane to the distribution of points on the sphere so obtained. The location of the
plane from the center of the sphere is used for characterizing the object surface.

32 chen/kak

Since in our system both segmentation and surface classification rely on surface
normals, accurate surface normal computation is crucial to the performance of feature
extraction* By definition, the surface normal at a point is the unit vector normal to the
tangent plane at the point. This surface normal can be computed from the cross product
of two independent tangent vectors at the point; this straightforward approach has been
used by Parvin and Medioni [P&MS6] and Besl and Jain [B&J-86]. The major
drawback of this approach is its sensitivity to noise due to the differentiation involved
in the computation. Another method for computing surface normals consists of fitting
planar patches to small clusters of points within a window and using for the surface nor­
mal the normal to the planar patch; see, for example, [M&B— 80], ■ [H&J— 87],
[Y&K^-89] However, this approach, too, suffers from undesirable distortions, such as
the “ smoothing" of surface normals in the vicinity of boundaries between surfaces,
because at such locations the window for computing the planar patch usually straddles
the two surfaces. To overcome this shortcoming, we have modified this technique by
using a notion first proposed by Nagao and Matsuyama [N&M —79] in the context of
adaptive smoothing in 2-D image processing. They showed how the placement of a
smoothing window near a region boundary should be made to depend upon extent of
smoothness accomplished withing the window. In Section 2, we will apply this idea to
surface normal computation.

A number of contributions have been reported on the subject of extracting primi­
tive surfaces from a range map. Milgrim and Bjorklund [M&B-80], Bhanu[B/i-84],
Boyter[B<?-84], Parvin and Medibni [P&M—86], and Yang and Kak [7&AT-86,
Y&K-S9] extract planar surfaces on the basis of the similarity of surface normals.
Detection of cylindrical surfaces in range maps has been reported in [A&B-73],
[iV&B-77] and [B&F- 8 1]. Faugeraus et al. [F&et-83] and Besl and Jain [B & /-88]
show how analytically continuous surfaces of rather arbitrary shape can be extracted
from range maps by fitting quadric and higher order surface functions to range data.
Another method, similar in spirit to the approach presented in this chapter, is reported
by Sethi and Jayaramamurthy [S& /-84]; in their scheme characteristic contours are
used to distinguish between spheres, cylinders and cones (a characteristic contour being
the locus of constant dot products between surface normals and any fixed vector). The
characteristic contours of a sphere, a cylinder and a cone are a set of concentric circles,
a set of parallel lines, and a set of intersecting lines, respectively. In the method of

Sethi and Jayaramamurthy, a decision tre e is used to recognize thep a ttem of the
characteristic contours in a Hough space.

The EGI (Extended Gaussian Image), which in the past has been used by [Ik -83J,
and tffo -8 4] for object representation in 3-D vision, can also be used for ciassifying
surfaces. It is rather well known that the EGI of planar, cylinderical and conical sur­
faces form special patterns on the Gaussian sphere; in the planar case, it is a small patch
on the surface of the sphere, for a cylindrical surface, the points on the sphere lie on a
great circle and, finally, for a conical surface, the points on the sphere lie on a m inor

circle. Printz [E r-87] has shown how by analyzing the EGI pattern for approximate
symmetries one can estimate the axis of a cylindrical or a conical surface. He expands
the EGI distribution by expressing it as a sum of spherical harmonics and then estimates
the symmetry axis by computing the enginvectors of a matrix whose elements are func­
tions of the coefficients of the spherical harmonics representation. This method, though
theoretically elegant, requires a large amount of computation and tends to be inaccurate
because only finite terms of spherical harmonics can be used. [Printz did not show that
the neglection of higher order terms in a spherical harmonic expansion of an EGI distri-
bution did not degrade the accuracy of calculations.] Hebert and Ponce [H&P-XZ] pro­
pose using Hough transform to detect the three EGI patterns corresponding to the three
primitive surfaces. Their Hough space has two parameters which are the two spherical
angles of surface orientation (a surface orientation is defined for planar surfaces to be
the direction of the normal to the planes, and for cylindrical and conical surfaces to be
the direction of the axes of such surfaces). It is not clear how they can distinguish all
the three EGI patterns on a 2-D Hough space since according to their formulation a
cone needs three parameters, two for the axis and one for the angle of the cone. More-
over, the accuracy of the computed surface orientation will be limited by the resolution
of the Hough space, let alone the overhead of constructing the Hough space.

While our aim is also to detect and classify the three EGI patterns corresponding
to the three primitive surface types, we have avoided the use of Hough transforms. The
method is based on the observation that planar and cylindrical surfaces are actually two
special cases of a conical surface, especially from the standpoint of the EGI patterns
they produce, th e re are two ways to look at this observation. A planar surface pro­
duces a small patch on the Gaussian sphere, whereas the EGI points corresponding to a
general conical surface lie on a minor circle and, finally, for a cylindrical surface on a
major circle. Therefore, if we fit a plane to the EGI points for all three cases, for the
case of a planar object surface the fitted plane would have to be tangential to the Gaus-
sian sphere and hence its perpendicular distance from the center of the Gaussian sphere
would equal I. On the other hand, the fitted plane for a conical object surface would be
located at a distance between O and I. And, finally, for a cylindrical object surface, the

33 chen/kak

34 chen/kak

fitted plane would must pass through the center of the Gaussian sphere. This observa­
tion allows us to construct a unified approach to the classification of primitive surface
types. This unified approach will be presented in Section 4 of this chapter.

22* C om puting Surface N orm als via Adaptively Located W indow

In general, a range map of a scene, generated by a structured light scanner, can be
represented by the parametric form pij = p(i,j), where/? stands for the [x,y,z] coordi­
nates b f the Object point illuminated by the ith stripe, the index j standing for sampling
index along that stripe.

Since the surface normal at a surface point is a unit vector normal to the tangent
plane at the point, the surface normal may be computed by

dp x dp_
di dj

l ^ - x
' 3/

dp
dj

Finite difference operators can be used to compute the two partial derivatives and
- ’ ; - . ■ ‘ . ->• ' •

— . The major difficulty with this method is that it is very sensitive to noise due to the
dj

differentiation operation. In order to overcome the noise problem, the range data usu-
ally has to be smoothed extensively [B&J—86], which in many cases tends to distort the
range data, especially in the vicinity of edges.

An alternative method, which is less noise-sensitive, is to estimate the tangent
plane at each surface point by fitting a plane equation to the surface points in a neigh­
borhood of the point in question. The equation of the fitting plane can be expressed as

f(x,y,z) = ax + by■■+ c z - d = 0.

with a 2+b2+c2 = I. The normal vector to the plane, denoted by /i is [q,h,c]; The
neighborhood over which the plane is fitted by this method is usually an NxN window
centered at Pij . We will denote the window by Wij . The best fit plane is found by
minimizing the fitting error:

I t /(XkJ r y ^ z kj) 1 (2.1)
WeWij .

= E (n p h - d) 2
.. : / WeWu

with the constraint a 2+b2+c2 = I, where p kj - [xkj , y ^ , zkj]. This constrained
m in im iz a t io n can be accomplished by taking the partial derivatives of the following

chen/kak

Lagrange function:

X (n p ^ i - d f + X (I - H n t)
WeWij

with respect to n, d and X and setting them to zero. Expanding out the expression fox L,
we obtain

L ~ E I n P i i P k j n t - I d PktlUt] + N 2 d 2 + X (I - U n t)
f k̂ wU ;

= « (E PtKlPKdnt - 2 d (X P * ,/) " ' + N 2 <i2 + 3 1 (1 - * « ')
V: ^ lewU KlsWiJ

D efin ean ew m atrix an d an ew v ec to ras

Q = X P tKlPKl
■ WeWiJ ;

- E Pki
KlsWiJ

L can therefore be written as

L = n Q Ut - I d q n t + N 2 d 2 + X (I - n Ht)

We now set the following partial derivative to zero:
dL '■ .

:= 2 n Q — 2 d q — 2 n X = O

= -2 n q l + 2 N 2 d = O

'■ aL „
W = 1 - " " = O

From (2.3), we have

-I td = - T f n q 1 -
■■ n2

Substituting this result in (2.2), we obtain

2 n Q ~ S r (n q f) q - 2 n X = 0
, N ,

or, equivalently,

n R = n X

where

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

R ^ N2 Q q ~ KleWi Pk'lPk'1 ~ PKl • X . ^KleWiJ KleWij

Equation (2.6) implies that the normal vector n to the best fit plane is an eigenvector of
the matrix R, and X is the corresponding eigenvalue. Since R is a 3x3 matrix and,
therefore, in general, will possess 3 eigenvectors, the question arises is which of these
corresponds to the desired n ‘7 It is easy to verify that the plane fitting error associated
with a particular eigenvector n is equal to the corresponding eigenvalue by substituting
d expressed by equation (2.5) in equation (2.1). Since we wish to minimize the fit error
E(Wi])’ the eigenvector to choose corresponds to the smallest eigenvalue.

Let [<*',£', o'] be the eigenvector so computed (assume it has been normalized too).
Since the estimated surface normal can take the value either [a',b\c’}1 or [- a ', - b ', - c '] f,
in order to resolve the ambiguity, we assign

J m j = [a',b',c'\ ifv[a',b',c']<Q
" HiJ = [-a '-b '-c '] else

where v is the viewing direction of the range sensor.

The performance of this plane fitting method depends on the window size NxN to
some extent. If the size is too small, say 3x3, the computed normal will be susceptible
to noise and quantization error associated with range values. On the other hand, large
sized windows cause smoothing distortions in the computation of surface normals,
especially when the windows straddle boundaries between two smooth surfaces; the
regions where such distortions occur are of size proportionate to the size of windows
used for computation. Fig. 2.1 illustrates three possible placements for a 5x5 window,
with the placements Wa and Wc located entirely within the smooth surfaces o f the
object, while the placement Wb is straddling the boundary between two surfaces. If
window placement is such that it is located entirely within a smooth surface of the
object, a plane fitting method should provide satisfactory surface normals, even when
the surface is somewhat curved. However, if the window lies across a jump or crease
boundary, the computed surface normal will be distorted because the fitted range data
actually come from two different surfaces. The effect of this distortion is that normals
will not be wholly discontinuous in traveling over an edge but will smoothly change.

This smoothing distortion can be virtually eliminated by adaptive placement of
windows in the vicinity of edges. The key idea is to adaptively position the fitting win­
dow around the range point in question such that the window encloses the point without
crossing any edges. To illustrate our point, consider the computation of surface normal
at a surface point Pij lying on the vicinity o f a crease edge by using a 5x5 fitting win­
dow as shown in Fig. 2.2. The crease edge divides the range pixels into two regions R i
and /?2 representing two different surfaces, the range pixel in question, p t j , being on
surface R i . With a window size of 5x5, there will be 25 windows,

36 chen/kak

37 chen/kak

jum p edge

distorted

surface normal

o o

o o o

Figure 2.1. Fitting window over a crease edge causes the "smoothing" distortion.

38 chen/kak

jump or crease edge

wrong window

r
r

I

i O

best fit window

Figure 2.2. The range pixel p i j has NyN candidate windows; the adaptive one should
lie entirely on region R i and be as close as possible top ij.

chen/kak

{wkJ I i-2<k<i+2, j-2<i<j+2},

that can enclose the range pixel p tj . In computing the surface normal of Pij , we want
to choose a window of its neighboring range pixels that best estimate the tangent plane
at PiJ- Obviously, any window that includes the edge, such as Wi j , will give a dis­
torted result because it would contain range pixels from the other surface R 2- To obtain
a meaningful result, we must insist that the fitting window lie entirely on the same side
of the crease edge with p ^ . Thus, in this example there are only five windows can be
considered for the computation of the surface normal at the range pixel (U), these win­
dows being W,+1>7_2, ^ + 2,7- 2» ^*+2,7- 1» ^»+2,7• To select from amongst
these windows, we bear in the mind the requirement that the center o f the selected win­
dow should be as close to range pixel (i j) as possible. On this consideration, of the five
windows, only qualifies. This strategy for window selection raises the ques-
tion Of how to put the two criteria into a mathematical form such that we Can evaluate
each candidate window accordingly, the two criteria being that the window ndt cross
any edges and that the center of the window be as close as possible to the range pixel in
question.

To develop this mathematical form for evaluating potential windows for surface
normal computation, we note that the planar patch fitting error is larger at those win­
dows which cross an edge compared to those windows which do not; this is in keeping
with the observation made by [B& F-81], Hence, the fitting error associated with each
Window can provide a indication of whether or not the window has run over an edge.
This observation translates into the following mathematical form for evaluating a win­
dow W^i for consideration at range pixel (i j)

w(i,j,k,l) E(Wkj) (2.7)

where w(i,j,Jc,l) is a weighting function inversely proportional to the distance between
the parameter space location (i,j), which corresponds to the range pixel pi j , and the
location (k,l) corresponding to the center o f window WKh and Z(Wkj) is the fitting error
over window Wkti. We choose that window that minimizes (2.7) among all such candi-
date windows, meaning all those windows that include the range pixel p(i,j). There are
several ways to define the distance between two pixels in a 2-D array (see [R&K-%2]).
In our implementation, we have chosen to use the city block distance, so the weighting
function w is defined as

W(UX l)
I

c+1i —k 1+1 j - l I o l

Here the constant c is chosen such that the distance weighting will be the dominant fac­
tor in the expression (2.7) if all the windows are within the same continuous object sur­
face. On the other hand, if the planar patch fitting error is large, we want the second

term in expression (2.7) to dominate. The algorithm in a pseudo language is sketched
below. ■

40 chen/kak

compute_surface_normal () {
for each i,j in the image array

compute E(WiJ) of the best fit plane
triij = normal of the best fit plane

for each i,j in the image array
among all k,l e Wij

find k, I that minimizes (w (i,j, k, I) e(W^ /))
nij = tn£i

Y

We can see that the first part of the algorithm is basically the conventional approach
except that the fitting errors, e(W), are recorded at all the range pixels, meaning for all
the windows. The second part of the algorithm then looks at a certain neighborhood of
each range pixel, and assigns that surface normal to it which corresponds to the
m inim um of the evaluation function. Note that the only overhead involved in this addi­
tional work, corresponding to the second part of the algorithm where the best window is
found, lies in the determination o f a minimum from amongst NxN values; this can be
done by making log2(NxN) comparisons.

We will now show on experimental data the improvements made possible with the
adaptive placement of windows. Fig. 2.3 shows a scene containing a wooden object
illuminated with 85 stripes. The resolution o f the camera used in this experiment was
480x512, resulting in a 480x85 array of offset data, with each Offset value between 0
and 511. Since the resolution in row direction is much higher than that in the column
direction, and since it really does not make much sense to work with unequal resolu­
tions in the two orthogonal directions, we compress every three rows of the array into
one and then compute a 160x85 range image from the resulting data; the details on how
the offset information is converted into a range map are described in \C&K-%1] and
can be found in this report in Chapter I. Note that although the array size is ‘rectangu­
lar’, being made of 160 rows and Only 85 columns, the spatial resolution is approxi­
mately the same in both directions, the reason being that the camera looks at ‘longer’
extent space in the direction that corresponds to columns.

■urn

w

Figure 2.3. A stripe image of an object taken with 85 scans by a structured light range
sensor.

To compare surface normal computation results with and without the adaptive
technique, we show a needle diagram in Fig. 2.4 obtained with 5x5 windows using the
traditional approach (the non-adaptive approach). On the other hand, when the adaptive
approach is used, we get the needle diagram in Fig. 2.5. It is easy to see that the
smoothing distortions have been virtually eliminated with the adaptive method.

2.3. RangeImage Segmentation

In this section, we will present a region growing approach to the segmentation of
range images. Our algorithm is very similar to the one presented earlier by Snyder and
Bilbro [S&B-S5]*

A segmentation algorithm must segment a range image into regions that
correspond to smooth object surfaces. By definition, smooth surfaces are bounded by
crease edges where surface normal discontinuities occur. In a range image, smooth
object surfaces manifest themselves as regions of range pixels bounded by crease edges
and jump edges. Suppose we are able to detect a range pixel corresponding to one of
these surfaces in a given range image. To grow outwards from this pixel, we must pro­
vide termination conditions that indicate the occurrence of jump or crease edges. A
jump edge Occurs if there is a range discontinuity between two adjacent pixels. We can
detect a jump edge by using the following predicate:

Ip i j -PktI I > range Jhresholdt

Where Pk,i is adjacent to Pij. This range threshold should be a function of scanning
resolution (spacing between two adjacent scans) and should be chosen properly so that
two range points on a slanted surface would not be mistaken for a jump edge. We have
chosen the range threshold to be 3 times the scanning resolution.

A crease edge is where surface normals suddenly change directions in the range
image. In order to detect the occurrence of surface normal discontinuities, we must rely
on the change rate of surface normal from one pixel to the next. This change rate may
be regarded as a form of normal curvature measurement [0-66]. The following predi­
cate Captures the rate of change of surface normals and can be used as a stopping cri­
terion for the detection of crease edges.

We apologize to the reader for misusing the phrase ‘region growing.’ What we have done can
be simply implemented by first detecting edges in a range image, followed by connective analysis
of the non-edge pixels. The connectivity analysis could be implemented efficiently in the
parameter space .(Uj) directly. We felt compelled to use the phrase ‘region growing’ in
connection with our algorithm since our algorithm is very similar to the so-called region growing
method described in [S&B —85].

42 chen/kak

t u oh 2

?fl|i!!i!il!il! Sill

Figure 2.4. A needle image of the object, each needle represents the surface normal at
a range pixel computed by fitting a plane equation to a 5x5 window of
neighborhood. Notice the smoothing distortions in the vicinity of edges.

44

tuohS

* : :
✓ > » * ' *

> > : : : : : :: :
5§5| Iiiiii^unnhn
IllllllllllllllllliWi.''wmmmmzz'.zih.

I : : : : : : : ; ; ; ::

. . . . \ S\ \ NSSS . . . SS SS S
IiIiiiiH/ / /

/ ̂ / X
. i ::

! M l l I f I I I I f l h M

flIIilfiiik,
;555555555555555j.

: .

: 52555

Figure 2.5. A needle image of the object obtained by using the adaptive window
method. Notice the smoothing distortions have been virtually eliminated.

cos 1K / ; ” *,/)
lA j ~Pk,i I

> curvature threshold.

Theoretically speaking, as the points p i j and get closer the predicate approaches
the normal curvature at one of the two points. [Note that the normal curvature
corresponds to the curvature associated with the curve obtained by “ cutting" an object
surface with a plane. In the curvature measure shown here, the cutting plane is that
plane which passes through the points p wj andp KX on the object surface. The third con­
straint on the cutting plane is that the surface normal at either p i;j or p*./ also be con­
tained within the plane.] This curvature threshold used should exceed the maximum of
tiie maximal curvature o f any of the smooth surfaces expected to be encountered in the
scene. For example, assume that the most Curved surface in the scene corresponds to a
sphere of radius 3", then the curvature threshold should be no less than 1/3, the normal
curvature o f a sphere of radius r being I Ir.

Range image segmentation proceeds by growing a region in all directions by
recursively merging neighboring range pixels depending upon the two predicates
defined above. Segmentation results on the range image shown in the previous section
are illustrated in Fig. 2.6. In general, the performance of this growing procedure is
highly dependent on the quality of range data arid surface normals because only local
information is used. However, since our adaptive window technique is capable of pro­
ducing clear, nondistorted surface normals, this simple region growing method pre­
forms quite well for the types of scenes we have worked with in connection with this
research.

We can also extract vertices and edges from a segmented image. To do so, we
traCe the boundary of each segmented region clockwise and monitor the labels of its
neighboring regions. A change of the labels signals the presence of a vertex, and any
two adjacent vertices define an edge. The type (crease, occluding, or occluded) o f each
edge can be determined by comparing the range values on the two sides of the edge.
Only a crease boundary is regarded as a real edge. The adjacency relationships between
surfaces are also recorded during this boundary tracking.

2.4. Classification of Surfaces

Giveu a processed range image, we want to classify each segmented region into
one o f three types of surfaces, namely planar, cylindrical or conical; o f course, if a
region does not fit the criteria for any of these three categories, w e would like the
region to be classified as unknown. Theoretically, by fitting a quadric function to the
range data of a segmented region and examining the coefficient of the best fit quadric
function, we can determine which type of surface the region is. However, as noted by

46

 ̂̂ ̂ >* ̂̂ ̂̂ -

Figure 2.6. The segmentation result from the needle image in Fig. 2.5

Hoffman and Jain [H&J 87], in practice, those coefficients are very sensitive to noise.
In this section we present an efficient method to classify segmented regions into the
three surface types based on the characteristics of their extended G aussian Irnageg

The extended Gaussian image of a surface is obtained by mapping the surface nor­
mal at every point of the surface onto a Gaussian sphere [/£-83] [H o-84]. For a planar
surface, the EGI is a small patch whose orientation on the Gaussian sphere corresponds
to the normal to the plane (see Fig. 2.7-a). For a cylindrical surface, its EGI is a great
cirde whose axis is parallel to the axis of the cylinder (see Fig. 2.8-a), by the axis of the
circle is meant a unit vector perpendicular to the plane of the circle and passing through
its center. And finally, for a conical surface, its EGI is a minor circle of radius less than
one, the axis of the minor circle being again parallel to the axis of the conical surface,
as shown in Fig. 2.9-a. In addition, as illustrated in Fig. 2.10, the distance from the
center o f the sphere to the plane containing the circle in each case is given by

d=sin(0)

whereas the radius of the circle is given by

r=cos(0), -

0 being the cone angle. It is useful to think of planar and cylindrical surfaces as two
special cases of a conical surface. We can easily visualize a cone becoming a plane by
letting the cone angle 0 approach nil. To see how a cone deforms into a cylinder of
radius r, we first fix an orthogonal section of the cone where the radius equals r and
then let 0 approach 0 by pulling the tip of the cone away from the section. The effect of
deforming a cone into a cylinder or a plane can can also be seen in its EGI. As the cone
angle 0 approaches 0, the circle on the Gaussian sphere becomes a great circle, and as 0
approaches tc/2 the circle shrinks to a point. In other words, we can regard the EGFs of
planar and cylindrical surfaces as the two extreme cases of the EGI of a cone.

Based on the above observation, we can classify a region of range data by using
the procedure sketched-below. First, we test whether the EGI of the region fits a "gen­
eric circle* If it doesn’t, the region should be classified as unknown surface; otherwise,
we compute d, the distance of the plane containing the circle from the center of the
sphere, and classify the region into one of the three types according to the distance. Of
course, in practice, for any of the three surface types, points on the sphere may not be
available everywhere on the circle. Therefore, an assumption in our work is that a
sufficiently large arc segment of the circle is available in order that we may find the
plane that contains the circle.

Clearly, our procedure for surface classification requires that we determine
whether or not the points on the EGI fall on a circular arc and, if they do, then we must

48 chen/kak

The surface normals are mapped onto

a small patch on the Gaussian sphere

A planar surface

with its surface normals

Fitting a plane to the points

on the Gaussian sphere

Figure 2.7. The EGIs of a planar surface and the fitting plane on the Gaussian sphere.

49 chen/kak

A cylindricalsuiface The surface normals are mapped onto

with its surface normals a great circle on the Gaussian sphere

A

K \

Fitting a plane to the points

on the Gaussian sphere

Figxire 2.8. The EGIs of a cylindrical surface and the fitting plane on the Gaussian
sphere.

50 chen/kak

A cone with its surface normals the surface normals are mapped onto

a small circle on the Gaussian sphere

Fitting a plane to the points

on the Gaussian sphere; here, 0<d<l

Figure 2.9. The EGIs of a conical surface and the fitting plane on the Gaussian sphere.

51 chen/kak

Figure 2.10. The radius Of the circle, which is the EGI of a conical surface, is equal to
cos(0); the distance from the sphere center to the center of the circle is
given by sin(O), where 0 is the cone angle.

chen/kak

compute the distance of the plane containing that circle from the center of the sphere.
Observe that any point n of a perfect circle on a Gaussian sphere with axis a and per­
pendicular distance d must satisfy the following equation :

n -a - d = 0. (2-8)

This turns out to be a plane equation with normal a and distance from the center equal
to d. Thus the circle can be interpreted as the intersection of the plane with the Gaus­
sian sphere. Therefore, if we fit a plane to the EGI points for all three cases, for the
case of a planar object surface the fitted plane would have to be tangential to the Gaus­
sian sphere and hence its perpendicular distance from the center of the Gaussian sphere
would equal I, as shown in Fig. 2.7-b. On the other hand, the fitted plane for a cylindri­
cal object surface must pass through the center of the Gaussian sphere (see Fig 2.8-b).
And, finally, for a conical object surface, the fitted plane would be located at a distance
between Q and I (see Fig. 2.9-b). To accomplish this plane fitting, we minimize the fol­
lowing error function

e - £ (n i j ’ a - d)2
i,je region

At this point, the reader would note that this minimization problem is exactly the same
as the plane fitting problem discussed in Section 2. Again, a and d can be found by
solving the eigenvector of a matrix R which is a function of j as defined in Section 2.
I f the EGI of a surface is indeed an arc on a circle, then the estimated a and d should
yield very small fitting error e. On the other hand, if the EGI of the region is not part of
a circle, meaning that the surface is none of the three primitive types, we can expect a
significantly larger fitting error e. Thus by properly thresholding the perpendicular dis­
tance d we can determine whether or not the region is a generic cone. The complete
algorithm in pseudo language is given below:

classify_region (/ ?*){
find a, d which minimizes e = £ (n i , j ' a ~ d) 2

UipRk.

compute e
A£

if ——— > unknown threshold
V / m

return (unknow-type)
else if d > plane_threshold

normal =a
return (plane)

else if d < cylinder_threshold

53 chen/kak

cylinder_axis = a
return (cylinder)

else
cone_axis = a
cone_angle = sin-1 (d)
return (cone)

}

Note that the conditions we use for surface categorization are necessary but not
sufficient. For example, a major circle on an EGI will be produced not only by a
cylinder but also by a ruled surface.

CHAPTER 3 '
3D-P0LY: A ROBOT VISION SYSTEM FOR RECOGNIZING

3-D OBJECTS IN LOW-ORDER P O L Y ^ M iAL T M e

3.1. Introduction

The task at hand is to locate and identify instances of known model objects in a
range image. The objects are assumed to be rigid. This task can, in general, be accom­
plished by matching features extracted from the image (scene features) with those
describing models (model features). We will assume that the features are geometric in
nature and can be characterized by shape, position and orientation; such features may
include surfaces, edges, points, etc.

What are the desirable traits of a good system for object recognition and location?
Clearly, it should be robust enough to work in multi-object scenes where the objects
may be occluding one another. The complexity o f the system should exhibit a low-
order polynomial dependence, on, say, the number of features involved. The system
should also be easy to train, meaning that it should be amenable to "learning by show­
ing." In our context, that means that if we showed the system an object in all its external
entirety then the system should automatically extract the relevant information that it
would subsequently use for recognition and location determination.

A system with these traits is in operation in the Robot Vision Lab at Purdue. The
system, called 3D-POLY, has been tested on scenes consisting of mutually occluding
objects; Fig. 3.1 is an example of such a scene which is made of two different types of
objects shown in Fig. 3.2. Evidently, these objects, whose surfaces are of planar and
conical types in convex and concave juxtapositions, do not exemplify the most difficult
that can be found in the industrial world; however, their recognition in occluded
environments represents a significant advance in our opinion. The various frames in
Fig. 3.3 illustrate a successful determination of location and identification of one o f the
objects whose surfaces are sufficiently visible in the scene of Fig. 3.1, and the manipu­
lation of this object by the robot. For the objects in the heap, the models were automati­
cally generated by the system — we call this learning by showing — by placing each
object in a computer controlled scanner; each object was shown in many different

55

Figure 3.1. A scene of a pile of objects.

(a)

Figure 3.2. The two objects that make up the pile in the scene shown in Fig 3.1.

-CO .3. A sequence of frames shows the robot successfully picking up a recog­
nized object.

configurations so that the system could build an integrated "whole view" model of the
object. The details of the "learning" system will be presented in Chapter 4.

The aim of this chapter is not to describe the entire system that results in the type
of sensor-guided manipulation shown in Fig. 3.3, but only those aspects that deal with
strategies for hypothesis generation and the manner in which the model information is
organized to facilitate verification. In the next section, we will state more formally the
problem of determining the identity and location of an object. Against a background of
this problem statement, in Section 3 we will discuss the literature related to our
research. Finally, the rest of this chapter will then present the main theme of this article.

3.2. ProblemStatement

Before we formally state the problem of object recognition, we would like to
define the more important symbols used in our presentation.

• S or Si'. A scene feature will be denoted by S. When more than one feature is under
discussion, the i th feature will be denoted by S,-.

• M ox Mj will denote model features.

• Os will denote a scene object. For the purpose of explaining our hypothesis genera­
tion strategies and verification procedures, we will assume that the scene consist of
a single object. However, as will be pointed out in Section 7, the entire method is
easily generalizable to multi-object scenes. (Of course, its success in multi-object
scenes would depend upon the extent to which an object is visible.)

• Om will denote a candidate model object. Selection of a model object from the
library of objects available to the system is part of hypothesis generation.

• n will denote the number of features extracted from the scene object.

• m will denote the number of features in the model object.

• Tr will represent the location (orientation and position) of the scene object; it is in
fact a transformation consisting o f a rotation R and a translation The transforma­
tion takes the object from the model coordinate system to its actual location in the
world coordinate system (see Fig 3.4). Actually, the model coordinate system is the
same as the world coordinate system, the only difference being that in the former all
model objects are supposed to reside at the origin in some standard orientation.
When we say a model object resides at the origin, we mean that some reference
point on the object is coincident with the origin.

t We will also use Tr to denote the set of all possible solutions for the location of an object
given the currently known constraints. The type of usage should be clear from the context.

58 chen/kak

59 chen/kak

A scene object

A model object

/ object-centered
j coordinate system

world copminate^.

Figure 3.4. The relation between the object-centered coordinate system for the model
data, the world coordinate system used for the scene data and the transfor­
mation that specifies the pose of object.

• c Will denote a one-to-one mapping function between the scene features and the
model features. In this paper, we will assume a one-to-one mapping between the
scene features and the model features. Although there can certainly be situations
where a one-to-one mapping may not be appropriate — for example, when scene
edges are broken, one may have to map more than one scene edge to the same
model edge — Our segmentation algorithms do manage to produce features at
almost the same level of connectivity as the model features, at least for the types of
scenes depicted in Figs. 3.1. For example, Fig. 3.5 shows the edge and surface
features of the objects in a heap.

With this notation, a scene object may be represented by

Os = ISi I i =

and a model object by

Om = {Mj \ j = 1 , . . . ,m)

where the ordering of the features is unimportant at this time; we will have more to say
about the subject of ordering later, since it plays an important role in the interpretation
of multi-object scenes.

Since all objects will be assumed to be rigid, if object Os is an instance of model
Om placed at location Tr in 3-D space, then every observed scene feature of Os must be
ah instance of some model feature of Om transformed by the rotation and translation
specified by Tr. One may now state our problem more formally by saying that the aim
of our system is to find a model object, Om, determine its position and orientation
transform Tr and establish a correspondence c : Os-^Om such that

Si <=> Tr • Mc(i) (3.1)

for all Si e Os. Here <=> symbolizes a match between the two features Si and Mc(i).
The criteria under which two features may be considered to match will, in general,
depend on factors such as the types of features used, capabilities of the sensor, occlu­
sion, noise, etc., and will be addressed later. Fquation (3.1) provides a framework for
discussing the problem of feature matching in general terms.

The problem of recognition and localization of a scene object may be decomposed
into the following three subproblems:

(a) Select a candidate model Om from the library; this generates the object
identification hypothesis.

(b) Determine (estimate) the location Tr, this is the location hypothesis.

(c) Establish a correspondence c between Os and Om that satisfies equation (3.1).
Such a correspondence constitutes verification of the hypothesis.

60 chen/kak

61

p i l e 5

3

Figure 3.5. This processed range map of the scene of Fig. 3.1 shows the segmented
regions. The needle orientations show the computed local orientations of
the surfaces.

chen/kak

The size of the solution space for the first subproblem is proportional to the number of
model objects in the model library. For the second subproblem, one has to contend
with the six degrees of freedom associated with the transformation Tr, three of these
being associated with the position vector t and the other three with the orientation
matrix R. If we use R Tr to denote the solution space associated with the second sub-
problem, it is given by

■ [. / [; = 2R3x[0, 2 ji] x [0 , 2 tc] x [0 , tc]

where R stands for the real line, and, therfore, R 3 stands for the solution space
corresponding tp all possible solutions for the translational vector t. The solution space
associated with the third subproblem is obviously of size m ", since, in general, one
must a|low for all possible ways in which the n scene features can be matched with the
m model features. Therefore, we can write the following expression for the solution
space associated with the problem represented by equation (3.1):

jy f jnodels x R Tr x m n

We do not wish to give the reader an impression that strategies for range image
interpretation must be founded on the problem decomposition shown here, only that it
is a preferred approach for us (and a few other researchers in other laboratories).
Approaches that do not conform to our problem decomposition do exist and some of
these have been extensively investigated. In our literature survey in Section 3, we have
alluded to these competing approaches.

fit general, any solution to the problem of matching a scene object Os with a can­
didate model Om can, for the purposes of analyzing complexity and efficiency related
issues, be conceived of as a tree search, as for example shown in Fig. 3.6. A traversal
through the search tree may be referred to as a recognition process, each arc in the
traversal representing an attempt at scoring a match between a scene feature and a
model feature. Each node in a traversal may be considered to represent the current state
of the recognition process, where the current state is specified by (c*,Tr*) with c*
being a partial correspondence list established so far and Tr * representing the partial
solution to the determination of object location. Clearly, the initial state of tree search,
represented by the root, should be (c* = 0 , Tr* = R l r). Through the tree search, we
incrementlyconstruct the correspondence c* on the one hand and contract the solution
space of Tr on the other. A model object is considered to be an acceptable interpreta­
tion o f a scene object if the traversal reaches one of the terminal nodes. Since reaching
a terminal node merely means that all o f the n scene features have been matched, it
clearly does not constitute a sufficient condition for object recognition; all that can be
said is that the model is an acceptable interpretation. If no traversal in the tree search is
able to arrive at a terminal node then the candidate model object must be rejected. Note

63 chen/kak

s: scene feature

m: model featurestart

sl=m i sl=m nsl=m 2s l= m l

s2=mns2=m2s2=m l

Figure 3.6, Data driven tree search.

■ 64' . chen/kak

that the tree search depicted in Fig. 3.6 represents data-driven approach to the recogni­
tion process, the search being data driven because the sequence of matches is controlled
by the order o f the scene features. Alternatively, the recognition process may be cast in
a model-driven framework, as shown in Fig. 3.7, where the sequence of matches is com
trolled by the order in which the model features are invoked. The time complexity
associated with model-driven search is 0 (nm). For recognizing isolated single objects,
since n will be approximately equal to m il, reflecting the possibility that only half the
features would itt most cases be visible from a viewpoint, and since m js jess than
(m /2)w, one can argue that for such cases a data-driven search might be more efficient
than a model-driveh search.

Going back to the data-driven tree search shown in Fig. 3.6, since each path in the
tree corresponds to a possible solution to the correspondence c, and since in the worst
case the search may have to sweep through the entire space (via, say, backtracking),
and since the total number of nodes in the space is of the order o f m ”, the time com­
plexity of an exhaustive search on the tree is equal to O (m"). This exponential com­
plexity, which is unacceptable for practically all applications, can be substantially
reduced by using constraint propagation, o f which hypothesis-and-verify is one exam-
ple. In this paper, we will show that it is possible to establish a hypothesis-and-verify
approach in such a manner that the time complexity reduces from the e x p o n e n tia l to a
low order polynomial.

3.3. Related Literature

Oshima and Shirai [O&S -83] [S/t -87]represent both the scene and the models by
graphs whose nodes represent planar or smoothly curved surfaces together with their
attributes, and whose arcs represent relations between surfaces, the relations being of
type adjacency, convexity or concavity of common edges, dihedral angles, distance
between the centroids, etc. The attributes of the surfaces at the nodes include perimeter,
area, mean region radii, etc. In fact, for the models a separate graph m ay be used for
each "typical view of the object;" the authors do not make clear what they mean by a
"typical view." Given a range image of unknown objects, their system first selects a
"kernel", which consists of one or two most reliable surfaces for recognition, then per­
forms an exhaustive search of all model graphs to find all compatible model kernels.
Finally, file system performs a model-driven depth first search and attempts to find a
correspondence between the remaining scene surfaces and the model surfaces. This
approach is an example of hypothesis generation and verification, a hypothesis being a
model object in a pose corresponding to what they call a typical view.

chen/kak

s: scene feature
m: model feature

m l=si m l=nilm l= s2m l= s l

P V N

m2=nilm2=s2m2=sl

Figure 3.7. Model driven tree search.

Fan, Medioni and Nevada [F&et - 88] present a scheme for establishing the
correspondence of objects and object surfaces between two range images representing
two views of the objects. Note that this problem is similar to the one addressed by
OsMma and Shirai, in which a model is actually a typical view of its eotrespohdihg
object. They also describe scenes by graphs as Oshima and Shirai did. HbweveivTh
their approach, before feature matching starts, each graph is segmented, into a set of
subgraphs, each subgraph representing a candidate object to be matched. This object
segmentation is done by grouping surfaces mainly linked by convex and concave boun­
daries. Besides, they use a richer set of surface descriptors, such as average principal
curvatures, 3-D areas, etc., and use transformation constraints, which are global con­
straints, in addition to the inter-surfaces constraints for graph matching

Tonaita and Kanade \T&K— 84] present an edge-based vision system for recogni­
tion and localization of 3-D objects. An input range image is segmented into planar or
conic surfaces and each surface is then descibed by its boundary segments. Each object
model is described in the same manner from range images acquired during a learning
phase. By matching boundary components through an exhaustive search, a transforma­
tion is then hypothesized. The candidate transformation is then tested by matching the
OthCT boundary segments for verification, the matching invoked during the verification
phase being controlled by reliability, plausibility, etc.

Bolies arid Horaud [B&H— 86] in their 3D P0 system emphasize the importance of
feature ordering in reducing the complexity of matching. Their matching strategy starts
with a distinctive edge feature, and then grows a match by adding compatible features,
one at a time. Once a sufficient number of compatible features has been detected to
allow a hypothesis to be formed, the verification procedure evaluates it by comparing
the measured range data with the data predicted according to the hypothesis. The ord­
ering of features to be matched is predetermined by an interactive feature-selection pro­
cess, the ordering being done on the basis of uniqueness, cost of detecting it, likelihood
df its detection, etc. Selection of a branch at a node o f the search tree is hard-wired in
this system. In other words, the sequence in which the scene and object features are
matched is precompiled by the human operator.

Dceuchi [/£-87] presents a procedure for determining the unknown attitude of an
object from 3-D measurements; the procedure uses an interpretation tree to guide the
process of matching scene features with model features. Upper levels of the interpreta­
tion tree seek to categorize the attitude of the object with respect to one on its aspects
(with respect to a given viewpoint, an aspect is a grouping all the attitudes that appear
topologically similar from that viewpoint). Attitude categorization takes into account
visible dominant surfaces and their interrelationships. Starting with the knowledge of

the aspect lower levels of Ikeuchi’s interpretation tree then try to calculate more pre­
cisely the object attitude. In the work reported in [Zfc-87], the interpretation tree was
specified by a human; however, we believe, it is now possible to compile it automati­
cally from the CAD models of an object. The reader should note the important differ­
ence between an interpretion tree and the search tree shown in Fig. 3.6. Whereas the
latter is a search space associated with the pairings of scene and model features, the
former is a delineation of the steps of a procedure that must be invoked for interpreta­
tion, the alternative choices of the steps of the procedure being conveniently
represented by the branching of a tree.

Hansen and Henderson [/M tf -87] also propose a method for the automatic gen­
eration of recognition algorithms, also in the form of interpretation trees, based on the
geometric properties o f object shapes. They select and order features in the interpreta­
tion tree based on four qualities, namely, rarity, robustness, computational expense ,
completeness, and consistency. The synthesized interpretation tree has two parts, the
first part is for matching the strongest set of view independent features; the second part
then finds corroborating evidence in support of the hypothesis generated by the first part
and thus completes the determination of the object’s pose.

Faugeras and Hebert [/M tf -83], [F & //-86] present a 3-D object recognition and
localization System based on geometrical matching between primitive Surfaces. Primi­
tive surfaces in a scene are segmented by region growing based on planar or quadric
surface fit. Each model object is also represented by a list of primitive surfaces. The
recognition process consists of first selecting from the model object a feature, such as
an edge or a surface; then they look for a scene feature to match the selected model
feature. The next step consists o f the selection of another model feature, such that this
apd the previous model features completely constrain the pose of the model object
(clearly, if the two model features are edges, they cannot be parallel; or, if one model
feature is a cylindrical surface and the other a planar surface, the principal axes of the
two cannot be orthogonal). The system looks for a scene feature to match the second
model feature. The two scene features thus found generate a hypothesis for the tranfor-
mation matrix for the scene object. The verification of the hypothesis consists of match­
ing the remaining model features with the available scene features taking into account
the position transformation. The verification stage carries out the minimization of an
error measure, the measure being a sum of the errors between the predicted positions
and orientations of the model features and their actual positions and orientations in the
scene; The construction of this error measure is facilitated by organizing the scene
features on a unit sphere which captures the relative orientations of the features and
allows quick comparison with the transformed model features.

67 chen/kak

Grimson and Lozano-Perez [G&L— 84] address the task of matching a set of
observed range points, together with the measured local surface normal, with the sur­
faces o f polyhedral objects. Matching consists of assigning observed points to object
surfaces under the constraints corresponding to the upper and lower bounds on parame­
ters such as the distances between two observed points, the angles between their
assigned surfaces, etc. When a given set of surface assignments satisfies all the local
constraints, a feasible interpretation of the measurements is generated — a feasible
interpretation is like a hypothesis that must be verified subsequently. Local constraints
constitute necessary but not sufficient conditions for the correct assignment of surfaces
to the measured range points. Another way of expressing the same idea is that even if
local constraints 'are. satisfied, there may not exist a valid global transformation that
agrees with the generated assignments o f surfaces to the measured points. This is illus­
trated by Fig. 3.8, The measured points P 1, P 2, and P 3 can satisfy all the usual local
constraints with regard to assignments (Pi J l) , (P2,/ 2) , (P3J 3), w h e re /x, / 2, and /3
are three model surfaces. However, there does not exist a global transformation that
would agree with the assignment During verification phase, for every two measured
points and the normals of their assigned surfaces, a rotation matrix is estimated; and,
eventually, the centroid of all such rotation matrices is calculated to serve as a rotation
transformation to bring the model and the scene objects into coincidence. In a similar
manner, from every three measured points, a translation matrix is computed and, even­
tually, the centroid of all such translation matrices found. The average rotation and
translation matrices thus computed are applied to transform the model object into the
scene space. Finally, the validity of the average transformations is computed by project­
ing the measured points onto the corresponding model surfaces. During this process, the
system calculates the normal distance between a measured point and its assigned sur­
face; and, also, the system projects the point onto the assigned surface to carry out an
“ inside-outside" computation. If the projection is found to be outside the assigned sur­
face, that is an indication that the feasible interpretation under test may not be so feasi­
ble after all.

In a more recent report, Grimson and Lozano-Perez have reported an extension of
their system in which constraint propagation is used in conjunction with the local con­
straint satisfaction [GAL-87]. The basic idea here will be explained with the help of
Fig. 3.9. We will assume that we have two range measurements and the associated sur­
face normal measurements, as represented by the points P l and P2 in Fig. 3.9. From
these measurements, we can compute the distance d and the angle 0. Let us further
assume that on the basis of the measured surface normals we have selected the two
model surfaces shown in the figure. In the model database, we will associate a “ base
point" with each surface, as depicted by the points BI and B2 in the figure. One can
now show that the two measured points Can occupy only particular positions with

69 chen/kak

fl

model

scene

Figure 3.8. th is figure shows that satisfying local constraints does not guarantee
global transformation between the model object and the scene object.

70 chen/kak

Viewpoint for making

range measurement

Figure 3.9. If we know the range values to the two points, P l and P2, shown in the
figure and the local surface normals, we can then compute the distance d
and the angle 0. These two parameters are used in a constraint propaga­
tion approach to object interpretation.

respect to the base points on the respective surfaces. In other words, after the measured
point P l is assigned a location on surface I with respect to base point B I, then on sur­
face 2 the measured point P2 must lie at a fixed location with respect to base point B2
-—- strictly speaking, this being true only in the absence of noise. In the presence of
noise, one could predict an interval in which the second measurement must lie. Xhe idea
in constraint propagation is to compute this permissible interval as one goes down the
interpretation tree and, of course, when the permissible interval for any assignment goes
to zero, one need go no further along that path in the tree. W e believe that this very
elegant idea is quite complex to implement for the case of 3-D objects because of the
algebraic difficulties with the representation of arbitrary shaped polygons in terms of
parameters that can be bounded for the purposes of constraint propagation. However,
basically, the idea is powerful and merits further investigation.

In their object recognition approach, Besl and Jain _B&J—86] use the idea that a
smooth surface can be characterized by its Gaussian and mean curvatures, which are
invariant to rotations and translations. Bach surface point is classified into one of eight
categories according to the signs of its Gaussian and mean curvatures. Their recogni­
tion procedure first extracts critical points from a range image, a critical point being
defined by the intersection of zero-crossings of the two partial first derivatives of a
range map with respect to the two parameters of surface parametrization. Only critical
points with positive Gaussian curvature are used. Finally, a critical point together with
its neighborhood, which carries the signed information about the Gaussian and mean
curvatures, is used as a shape descriptor for the purpose of object characterization. Ori­
ginally; the aim of these authors was to use such shape descriptors as view-independent
features, since, after all, the Gaussian and mean curvature computations are view
independent. However, as the authors now realize [Ja —88], the choice of the critical
points is extremely sensitive to viewpoint selection. For that reason, this strategy may
not yield acceptable results in practice.

Bhanu [Bh -84] uses stochastic relaxation for labeling the surfaces in a range map.
Object surfaces are approximated by convex polygon faces, and the neighbors of each
face are ranked according to their areas. Fundamental to any relaxation labeling is the
definition of a compatibility measure which measures the appropriateness of assigning a
model label to a scene surface given a label assignment at a neighboring surface. In
BhanuV Work, this measure is defined as a function of the distances between the cen­
troids of th£ scene surfaces on the one hand and between their assigned labels on the
other; of ratios of the areas of the surfaces computed in a similar fashion; etc. Compu­
tation consists of two iterative stages. In the first stage, only a pairwise compatibility
function is used, meaning, for example, that the compatibility function is a function of
some attribute o f two neighboring surfaces and their two corresponding labels. In the

71 chen/kak

second stage, the compatibility function depends upon three object surfaces and their
three corresponding labels at the same time. In each stage, at the end of the iterative
computation, those labels are retained that maximize the overall compatibility of the
assigned labels.

Another interesting approach called "pose clustering" or "generalized Hough
transform is proposed by Stbcknaan [Sit—87]. He uses a Hough space of 12 parameters
which are the 12 unknowns of a 4x4 transformation matrix. The basic idea in this
approach is as follows: Suppose we match a planar scene surface with a similar model
surface, in general this would not generate a unique transformation because of the
remaining three degrees Of freedom, meaning that after the two surfaces are brought
into coincidence, it will still be possible to translate and rotate one with respect to the
other. Although a unique transformation is not generated, such a match does constrain
the possible transformations; implying that in the parameter space such a match would
lead to a subregion which must contain the correct transformation. By dividing the
parameter space into bins and keeping track of contributions made to each bin by dif­
ferent matchesi, and retaining the bin with a maximal entry, it should theoretically be
possible to determine the correct transformation. In practice, a direct implementation of
this idea is difficult because of bin counting in high dimensional spaces. To get around
this difficulty, Stockman matches a pair of non-coplanar edges from the scene with a
pair of edges from the model, such a match generating a single point in the parameter
space, since there Can only exist one transformation matrix capable o f taking two non-
coplanar edges from the scene into two non-coplanar edges from the model. Stockman
then applies a clustering algorithm to the resulting points in the parameter space to find
the most plausible tranformation. The clustering algorithm consists of examining every
point generated in the parameter space, constructing neighborhood around such points,
and counting the number o f neighboring such points in each neighborhood. The point
with the largest number of neighbors is the desired unique transformation. The impor­
tant issues in this computation are those that deal with the choice of the size o f neigh­
borhood, and the thresholds to be used for rejecting the most dense neighborhoods.

In the literature citations above, all the researchers have first extracted features,
such as edges, planar, quadric and other surfaces, etc., from range images and then
matched these features with those of models. There do exist other methods in which
matching is not preceded by feature extraction. For example, in the extended Gaussian
image approach of Horn [Ho-S4] and Ikeuchi [/£-83], surface normals measured from
a scene are mapped directly onto a unit sphere and the resulting EGI is then compared
with that o f the model. The EGI approach has also been used in [MAT- 86] and
[y<£AT-86] for determining the identify, position and orientation of the topmost object
in a pile of simple-shaped objects.

Then, there exist approaches where for every possible viewpoint an integrated
value of some geometrical parameter is represented on a unit sphere for comparison
with a similar representation of a model. For example, in the work of Fekete and Davis
[F&D -84] and Kom and Dyer [K&D-87], an integrated value of some surface pro­
perty seen from different viewpoints is recorded on a sphere and used for the estimation
of object pose. Note that the feature sphere idea advanced in our work here bears no
resemblance to this prior work. Another interesting approach, called geometric hash­
ing, is proposed by Lamdan and Wolfson [L&W-88]. In that approach, every model
feature is made accessible through a hashing table, the hashing function being derived
from the positions/orientations of the features in relation to a coordinate system defined
on a base which consists of a minimal set of features for determining an object pose.

Finally, there are many approaches designed for the recognition of 3-D or 2-D
objects Using 2-D imagery, e.g. the ruled-based ACRONYM system [Br-83], the
characteristic views approach [C&F -82], and the automatic programming approach
[Go -83], just to name a few. The reader is referred to the review articles by Chin and
Dyer [C&D - 86] and Besl and Jain [B&J-S5] for general surveys of the subject.

3.4. Features for Object Recognition

The Concept of a feature normally implies some saliency which makes it espe­
cially effective in describing objects and in matching. Since the recognition of objects
will be solely based on shape, o f primary interest are geometric features, such as edges,
vertices, surfaces together with their mathematical forms, etc. Such features specify
three dimensional shape, in contrast with features like surface texture, color, etc. These
latter features, although important for recognition of objects by humans, will not be
addressed in this paper, since they can not be detected in range images. In 3D-POLY
we consider only those geometric features with which we can associate positions or
orientations. For example, a vertex feature has associated with it a position vector,
which is the vector from the origin to the vertex. Similarly, a Cylindrical-surface
feature has associated with it an orientation, which is the unit vector parallel to the axis
of the Cylinder. We will categorize the geometrical features into three different classes:
primitive surfaces, primitive edges, and point features.

Primitive surfaces include planar surfaces, cylindrical surfaces and conic surfaces,
which are three special cases o f quadric surfaces. Primitive edges refer to straight-line
features or ellipsoidal-curve features. Point features consist mainly of object vertices
and those surface points that have distinctive differential-geometrical properties; sur­
face points falling in the latter category exhibit maximal or minimal curvatures or can
be saddle points. These three classes of features are effective in describing the shape of

73 chen/kak

an object, and, what is more, they can be reliably extracted from range images. Note
that we are only using simple geometrical features, as compared to more complex ones,
like generalized cylinders [N& B-ll] and primitive solids [ke -80], that are often
difficult to extract from range imagery.

3.4.1. Attributes of Features

We represent a feature by a set of attribute-value pairs, each pair being denoted by
<a :v >, where a is the name of the attribute and v its value. The value of ah attribute
can be a number, a symbol, a set o f labels of other features, or a Ust of some of these,
depending on the nature of the attribute. For example, the surface feature s i o f the
model object in Fig. 3.10 may be described by

< sw facejyjk:
<radius: 3>,
<axis: (0.0, 0.0, 1.0)>,
<area: 3>,
<point_on_axis: (0.0, 0.0, 0.0) >,
<adjacent_region: { s i, $3, ^4}>, • • •

The attributes of a feature, according to their geometric and topological characteristics,
can be categorized on the bases of shape, relations and position/orientation. Fach of
these categories will be discussed in greater detail below. •

• Shape attributes:
A shape attribute, denoted by sa, describes the local geometric shape of the feature,
For example, "surface_type", "radius", and "area" are some of the possible shape
attributes of surface feature s 2. Ideally, a shape attribute should be transformation
invariant, i.e. independent of the object’s position and orientation, in practice when
a feature is seen through a sensor, some of its shape attributes may "look" different
from different viewpoints. Therefore, we make a distinction between two different
types of shape attributes, those that are viewpoint independent and those that are
not. For example, the area of a surface and the length of an edge are viewpoint
dependent, because they may vary with viewing direction due to occlusion. On the
other hand, the attributes surface-type and radius are viewpoint independent. [Of
course, we do realize that in high-noise and high-occlusion situations, a precise esti­
mation of, say, the radius of a cylindrical surface may be difficult and may even
become viewpoint dependent.] Clearly, when comparing shape attributes for
matching a scene feature to a model feature, we should take this viewpoint-
dependency into consideration.

74 chen/kak

75 chen/kak

A scene object

A model object

Figure 3.10. Labels of the primitive surfaces, primitive edges and the vertices of the
object shown in Fig 3.4.

. 76 chen/kak

• Relation attributes:
A relation attribute, denoted by ra, indicates how a given feature is topologically
related to other features. For example, for the surface feature s2, the attribute
"<adjacent_to: {s I, s 3, $4}>" indicates its adjacency With three Other surfaces.
Relation attributes should also be independent of transformation. An attribute
"<°n_top_of: s l> ” is not a proper relation attribute for feature s2 because it
depends oh t y pbsC of the ofejeci.

• Position/orientation attributes:
A position/orientatioh attribute, denoted by la, specifies position and/Or orientation
of a feature With respect to some coordinate system. In general, the
position/orientation attributes of U scene feature are measured With respect to a
world coordinate system, and those of a model feature are measured with respect to
a model-centered coordinate system. As with shape attributes, some
pdsitioh/briehtatioh attributes may be viewpoint-dependent, such as the centroid of
a surface, or the midpoint of an edge; while others may be viewpoint-independent,
as with the attributes surface-normal of a planar surface, or the axis of a cylindrical
surface, etc. The viewpoint-dependent position/orientation attributes should be
avoided in the estimation of Tr during hypothesis generation (see next section),
however, they can be useful for rapidly eliminating the unmatched features during
the verification process.

Since a feature may possess more than one shape attribute — for example, the
feature s 2 in Fig. 3.10 possesses the shape attributes surface-type, area, radius, etc. —
we will use the symbol SA to denote the set o f shape attributes associated with a
feature. Similarly, we Will use symbols RA and LA to denote the sets of relation and
position/orientafidh ItM butes of a feature, respectively. Therefore, the feature edge e2
of the object in Fig. 3.10 may be described'by

SAie 2) = [<shape: straight >,<length: 3>, • • • },

LA ie2) = {<direction: (0.0,1.0,0.0)>,<pom/_£)n_edge: (1.0,0.0,3.0)>, • • • },
and

RA(e2) = [<(thd_veriex\v 1>, • • • }.

In practice, we may not need to use all the three categories of atMbutes but only those
useful fo ra particular application. For example, Faugeras and Hebert in their geomeMc
matching approach \F&H-%6] have used only shape and position/orientation atMbutes.
The set o f atMbutes used in describing features should also depend on the sensor capa­
bility and the performance of the feature extractors. Using atMbutes which can not be
reliably detected or measured by a sensor will not conMbute much to solving the prob­
lem of object fCCognitidn. Inany event, a minimal requirement in deciding which atM­
butes to use for describing features is that no two features in an image or in a model be

allowed to have the same set o f attribute-value pairs. This, of course, does not imply
that a, model or a scene not contain multiple instances of a particular feature type. To
elaborate, the vertex features v I and v 2 for the model object in Fig. 3.10 are identical,
but their attribute-value pairs will be different because of the differences in their
position/orientation attributes.

3.4.2. Principal Directions of Model Features

Empirical observations show that an important characteristic associated with an
object feature is what we call its principal direction. In an object-centered coordinate
system, the principal direction of a feature gives us a fix on the directional position
and/or orientation of the feature with respect to the other features on the object. Since,
one must first establish an object-centered coordinate frame, a principal direction can
only be assigned to a model object, or to a scene object which has been embedded in an
object-centered coordinate frame via prior matches with some features.

In Section 5, we show how a useful data structure — we call them feature spheres
__can be defined using the concept of principal directions. Here, we will define the
principal directions more formally and make the reader aware of the fact that the
manner in which such definitions are made are different for different classes of features,
and Within each class, for different types of features. As was mentioned before, dif­
ferent classes of features correspond to primitive surfaces, primitive edges and primi­
tive points. Within the class primitive surfaces, we may have different types of features
such as cylindrical, planar, spherical surfaces, and so on. While for some class and type
of features, the principal direction represents their orientations, for others it represents
their directional position on the object.

W e Will now formally define the prinicpal direction, denoted by O, for the three
classes of features and for types within each class:

(I) Primitive surfaces:

• Planar surface:
O = The direction of the outward surface normal

• Cylindrical surface or conic surface:
= TTie direction o f the axis. The 180° ambiguity associated with this direc­

tion is resolved by choosing; that direction which subtends an acute angle with
the positive z-axis. For axes that are perpendicular to the z-coordinate, that
direction is retained which is closest to the x-coordinate. And, the axis is per­
pendicular to both z and x, then we choose the +y direction.

• Spherical surface:
Let o be the position vector to the center of the sphere in the object-centered

77 chen/kak

78 chen/kak

coordinate system. The principal direction is defined by the normalized form
o f this position vector:

® =
o

ToT

Note that this principal direction is different in character from that defined for
a cylindrical surface. We choose this form for because it is not possible to
associate an Orientation vector with a spherical surface.

•Quadric surface:
A quadric surface has the form x'Ax+x-B+C = 0.

aP

where ap is the principal eigenvector of the matrix A.
In general, eigenvector associated with the largest eigenvalue is the principal
eigenvector of A and the direction associated with this eigenvector usually
defines the major axis o f a surface. Since a quadric description includes the
cases of planar, cylinderical and spherical surfaces defined above; the
definition of the principal axis here must be used with care. The quadric
definition is used only if a surface cannot be classified as being either planar,
cylindrical or spherical.

(2) Primitive curves:

• Straight line:
i s tine direction

The 180° ambiguity associated with the direction of a line is resolved using the
same criterion as for the axis of a cylinder.

• Circular or ellipsoid curve:
O = surface normal o f the curve's plane
The 180° here, too, is resolved as for the case of the axis of a cylinder.

(3) Point features:
Let p be the position vector o f a point feature with respect to the object-centered
coordinate system. The principal direction is defined by normalizing the position
vector:

The important thing to note is that the parameters used in the definitions of princi­
pal directions are all extracted with relative ease from range maps. For example, if from
a given viewpoint in a range map about 40 percent of the round part of a cylindrical

surface is visible, in most cases it is possible to make a good estimate of the direction of
the axis of the cylinder.

3.4.3. Criteria for Feature Matching

W e will how provide matching criteria for the matching problem expressed in
equation (3.1) and express these in terms of the three attribute classes. In other words,
We will express the conditions for each attribute class, conditions that must be satisfied
for a scene object to match a model object. Our conditions are applicable strictly only
under the noiseless case. For actual measurements, the comparisons implied by our con­
ditions would have to treated in relation to some user specified thresholds, the magni­
tudes of the thresholds depending upon the noise and other uncertainties in the system.

• Matching Criteria for Shape Attributes:
The reader will recall that we have two different types of shape attributes, those that
are viewpoint independent and those that are not. A viewpoint independent shape
attribute sa of a scene object feature is said to match the corresponding shape attri­
bute of a model object feature if

sa (Si) = Sa(McQ)). (3.2)

where the function sa(.) returns the value of the attribute sa for the feature that is its
argument; Si is a feature from the scene and Mc^ is the candidate model feature
that is under test for matching with the scene feature. The above equality must be
satisfied for each saeSA (Si). For viewpoint dependent shape attributes, clearly we
cannot insist upon an equality in the above equation. In general, for such attributes,
we require

Sa(Si) <sa(Mc(i))-
Note that since all the viewpoint dependent shape attributes are numerical in nature,
we only have to use numerical inequalities and not, say, subsets, as would be case
for Symbolic features. For example, we would expect the length of a scene edge be
equal to or less than the length of the corresponding model edge due to possible
occlusion, therefore, the matching criterion for this attribute can only be expressed
as

edgelength (Si) < edgelength (McQ)),

• Matching Criteria for Relation Attributes :
Relation attributes are also transformation invariant, thus if a scene feature Si has
relation ra with, say, scene feature S/, then the model feature Mc^) must have the
same relation ra with the model feature McQy More precisely, for every
ra e RA(Si)

79 chen/kak

Cira(Si)) ^ ra(Mc(i)). (3.3)

Tojustify the nature o f this comparison, consider that the model object is as shown
in Fig. 3.10. Further, suppose that in the scene the model surfaces s2 and s3 are visi­
ble and have been labeled as, say, Sa and Sb, respectively. Then, from the model
(ie^ription, w ehave

adjacentjo(s3) = {s2 ,s A}

and, from the scene information,

adjacentJo (S b) = [Sa]

Let’s say that during the hypothesis generation phase, an estimate was made for the
transformation that takes the model object into the scene object. Let’s further say
that using this tranformation, we have already established the correspondence off the
scene surface Sa with the model surface s 2, and, now, we are testing the eorrespon-
dence of the scene surface Sb with the model surface 53. We see that since
Odjacentjo(Sb) = Sa, and since c(Sa) = s 2, a substitution in equation (3.3) yields
for ra = adjacent to

{$ 2 } £ {^2, 54 }

which being true implies that the scene surface Sb can indeed be matched with the
model surface s 3 , at least from the standpoint of satisfying relational constraints.
The point to note is that in the matching criterion o f equation (3.3) the features par­
ticipating in a relation at a given scene feature Si should be a subset of the features
participating at corresponding model feature Mc^y, it is not possible to replace the
"subset" comparison with a strict equality because not all o f the model surfaces may
be visible in the scene.

• Matching Criteria for Position/Orientation Attributes:
For a viewpoint independent position/orientation attribute la, such as the location of
a vertex or the direction of an edge, the matching criterion is described by

yy Ia(Sj) =-R'la.(Mc(i)) if la is an orientation vector, (3.4-a)

Id(Si) =R-la(Mc(/>) + * \ f la is a position vector. (3.4-b)

for every la e LA(Si). These criteria play a vital role in the localization of a scene:
object. Recall that the matching process starts withTr=M7r and should end up with
a unique solution which is the location of the scene object, else it should fail.
Before Tr has converged to a unique solution equation (3.4-a) or (3.4-b) provide a
system of equations to solve for Tr., but after that, they are nothing but two predi­
cates which confirm or reject a match between the scene and model features.

80 chen/kak

Maiiy important position attributes are not viewpoint independent, yet they are
important. For example, the position attributes point_on_axis and point_on_edge
shown in Section 4.1 are both viewpoint dependent since these points can be at arbitrary
locations along their respective directions. Despite their arbitrary locations, these points
play a vital role during the verification phase of matching. For illustrating this impor­
tant point, let’s say a scene edge is under consideration for matching with a model edge
under a given pose transformation. Now, if the directions of the two are identical, that’s
not a stiffidient criterion for the match to be valid, since the identity of directions
merely implies that the scene edge is parallel to the model edge. To impose the addi­
tional constraint that the two edges be collinear, we need the point_on_edge attribute
even if the point is arbitrarily located on the edge in the model space. The
po in tonedge attribute is used in the following fashion: First the difference vector
between the vector to point_on_edge and a vector to some arbitrary point on the scene
edge is computed. Then the cross-product of the difference vector with the direction
attribute of, say, the model edge is calculated. The magnitude of this cross-product
should be close to zero for the match to be acceptable. Note that while the cross-product
being zero guarantees the collinearity of the model and scene edges, it still allows one
degree-of-ffeedom between the two. It is impractical to completely constrain this
remaining degree-of-ffeedom since in the presence of occlusions the model edge may
not be completely visible in the scene.

Before concluding this subsection, we should mention that, in a manner similar to
edges, the position attribute associated with a planar surface, specified by giving the
coordinates of an arbitray point on the surface, can be used to make sure that a model
surface is coplanar with the corresponding surface from the scene; again, the identity of
surface orientations is not sufficient, and to cope with occlusions, it. is not possible to
constrain the two any further.

3.5. MatchingStrategy

As mentioned in the introduction, the recognition method employed in 3D-POLY
is based on hypothesis generation and verification. In this section, we will explain how
hypotheses are generated and then how each hypothesis is verified.

In what follows, we will first show that if hypotheses are generated by exhaustive
search, meaning that a scene feature is tested against every possible model feature, then
the time complexity of the recognition procedure is 0 (nxm (/l+1)), where n is the
number of scene features, m the number of model features, and h the number of features
used for the hypothesis generation. Unfortunately, this complexity reduction is not
sufficient for most practical purposes. We then proceed to show how by using the

81 chen/kak

82 chen/kak

notion o f local feature sets for generating hypotheses and using thefeature sphere Hata
Stnieture for verification, the complexity can be improved to O (nxm xh !). Finally, we
will show that when we use the vertex features to organize the local feature sets, the
complexity is further improved to 0 (n 2).

3.5.1. Hypothesis Generation and Verification

It is rather well known that only a small number of features is necessary to esti­
mate the tranformation matrix Tr that gives the pose of a scene object in relation to the
corresponding model object [Sr- 86, Bo -84]. In our work, this small number of
features will be referred to as a hypothesis generation feature set (HGF). Clearly, it is
the position/orientation attributes for the features in an HGF that must be used for the
estimation of Tr. We have shown some possible HGF sets and the position/orientation
attributes used for determining Tr in Table 3.1. Note that the table is not an exhaustive
listing of all possible HGF sets, but only those which are rather frequently used. How
exactly a Tr may be constructed from the position/orientation attributes of the different
possible HGF sets may, for example, be found in [Sr- 86, Bo -84 , G&L-84, F & H -86];
each of these references discusses the method used to calculate a Tr for the type of HGF

. used. ./

Let’s assume that a recognition procedure needs a maximum of h features to con­
struct a hypothesis for the pose transform Tr for a candidate model object. We will
further assume that we have somehow selected a subset of cardinality Ti of the scene
features, this subset will constitute the HGF set and will be represented by
{S u $ 2r~ ..,Sfc}; we wish to generate hypotheses by using the features in this subset.
We may then divide the search tree in Fig. 3.6 into two parts as shown in Fig. 3.11, the
division occurring at level h on the tree. Note that at the first level of the tree, we try to
match the scene feature S \ against all possible model features from the candidate
object. Then, at the second level, at each node generated by the first level, we try to
match the scene feature S 2 with every possible model feature; and so on.

As depicted in the figure, after a hypothesis is formed with h features, we use the
remaining n -h features for verification. In principle, if a hypothesis is correct, i.e. the
scene object Os is indeed an instance of the candidate model Om at location Tr, we
should then be able to find all the remaining n-h matched feature pairs using the
transformation Tr. This implies that in the verification phase the scene feature at each
level will match with exactly one model feature. This uniqueness is guaranteed by the
requirement that no two features of a model have the same description. To reiterate
what was said in Section 4, on account of the different position/orientation attributes
this requirement is easily met even for those features that might otherwise be identical,

Table 3.1 Summary of HGF sets

83 chen/kak

Configuration of features Position/orientation attributes

Three unique, noncollinear
points.

The three positions vectors associated with the three
points.

One straight edge & one non­
collinear point.

The orientation attribute associated with the direction
of the edge, the position attribute associated with a
point on the edge, and the position attribute associated
with the noncollinear point.

One ellipsoidal edge & one
noncollinear point.

The orientation attribute associated with the edge, the
position attribute associated with a point on the axis of
the ellipsoidal edge, and a position attribute associated
with the noncollinear point.

Two primitive surfaces Sc
one point.

The two principal directions associated with the two
surfaces, and a position attribute associated with the
extra point

Three non-coplanar primitive
surfaces.

The orientation attributes associated with any two of
the surfaces, and three position attributes associated
with some three points, one on each surface,

NOTES ON TABLE I:

The reader might like to note that for each HGF set, the position!orientation attri­
butes shown constitute the least amount of information that is required for the cal­
culation o f the pose transform using that set. That this is so should be obvious for
the first set. For the second set, we need to know the coordinates of at least one
point that is arbitrarily located on the straight edge. Without this extra informa­
tion, the rotation transform computed from just the edge directions would not also
‘move’ the edge from its model space to the scene space; the point on the straight
edge helps us make the model edge become collinear with the scene edge. Then, we
can use the extra non-collinear point to constrain the rotation of the object around
the edge. The same argument applies to the third HGF entry. The attributes listed
for the fourth HGF set should be obvious, especially in light of Appendix A.
Finally, for the last HGF set, while two orientation vectors are sufficient to give us
the rotation transform, coordinates to three points, located on each of the surfaces,
are needed to constrain the translation vector. Note that these three points can be
at arbitrary locations on the surfaces in the model space, the same being true in the
scene space, (See the end o f Section 4 for how a point located arbitrarily can be
used to constrain the location of a surf ace.)

84

verified

failed feature match

successful feature match

backtracking from verification to hypothesis generation

Figure 3.11. The data driven search tree is divided into two parts at level h on the tree.
The first part represents the hypothesis generation stage while the second
part represents the verification stage.

O
O

O

O
O

85 chen/kak

say, by virtue of their similar shapes.

On the other hand, if any one of the remaining n -h features can not be matched to
a model feature, that implies the current hypothesis is invalid, because either Om is not
the right object model or Tr is not the correct transformation. Therefore, when a scene
feature, say, Sic, k>h, does not match any model features under the candidate Tr, it
serves no purpose to backtrack to level k -1 or higher. Instead, the system should go
back into the hypothesis generation phase, by backtracking over the first h levels, and
try to generate another hypothesis for Tr, as illustrated by arc A in Fig 3.11. Clearly, if
repeated backtracking over the first h levels fails to produce a valid Tr, the candidate
model object should be discarded and new tree search begun with a new candidate
object. In the rest of this subsection, we will explore the time complexity associated

with this type of search.

This search process is exhaustive oyer the model features in the sense that at every
node shown in Fig. 3.11, a scene feature must be compared with all the features of the
Candidate model object. Therefore, at each node, the complexity is proportional to rtt,
the number of features in the model objects. The number m is also the fan-out at each
node encountered during the hypothesis generation phase, i.e., in the first h - I levels of
the search space. However, the fan-out in the verification phase equals I because o f our
requirement that a match failure during verification implies going back into hypothesis

generation.

Since backtracking is allowed to be exhaustive during the hypothesis generation
phase, the time complexity associated with hypothesis generation is Oimh). The time
complexity associated with the worst case verification scenario can be estimated by not­
ing that each verification path has at most n -h nodes, and, since at each node we must
make w comparisons, the complexity of verification is Oimxn). Therefore, the overall
complexity associated with this recognition process is

Oipth) x Oimxn)

which is the same as

0 (nxm A+1)

For rigid objects, /tw ill typically be equal to 3, although its precise value depends upon
how carefully the HGF sets are constructed. Therefore, the expression for the complex­
ity function becomes

Oinxrn4)

Although one may consider this complexity function to be a substantial improvement
over the Oimn) function associated with the search tree of Fig. 3.6, it is still not

acceptable for practical applications. In the next subsection, we will show how by con­
straining the selection o f model features for matching we can make further reductions
in the complexity.

3.5.2. How to Constrain the Selection of Model Features

In this subsection, we will explore the question of what constraints one should
invoke to select model features for matching with a scene feature. Given that the com­
parison of attribute values plays a central role in the matching process, the constraints
we are looking for should be derivable from the attributes. But, since we have three dif­
ferent kinds of attributes, namely, shape, relation, and position/orientation, the question
that arises is which of these attributes are best suited for the required constraints.

To answer this question, we will take the reader through a two-dimensional exam­
ple shown in Fig. 3.12. With the help of this example we will convince the reader that
the attributes used for constraining the selection of model features should depend upon
whether or not we know the tranform Tr. In other words, the constraints used in the
hypothesis generation phase must, of necessity, be different from those used in the
verification phase. We will show that for hypothesis generation phase, we must take
recourse to an idea suggested and used by other researchers: the model feature that is
invoked for comparison against a scene feature should depend upon its relations with
the previous model features in the path traversed so far in the search space of Fig. 3.6.
And, for the verification phase, we show that remarkable reductions in computational
complexity can be achieved by using constraints derived from the principal directions
of features — recall that the principal direction of a feature is derivable from its
position/orientation features. We will then show that the invocation of constraints on
the principal directions is greatly facilitated if the features are organized according to a
special data structure we call the feature sphere.

To help explain our points, in Fig. 3.12 is shown a 2-D range image of a polygonal
object. The viewpoint is from the top, as illustrated. Range mapping is orthogonal,
meaning that the lines of sight for the determination of range values are parallel; for
example, the range at scene point I is equal to the distance d l, and d l is parallel to d 2,
the range at scene point 2. The model polygon is shown in Fig. 3.13. The problem is to
recognize and locate the polygon in Fig. 3.12 given its model in Fig. 3.13. We will
assume that the recognition system is using only vertex features (an example of primi­
tive point feature type). Scene vertices will be denoted by integers I, 2, 3, • • • , and
those pf the model by letters, a, b, c, • • •. From the viewpoint shown, only the model
vertices a, b, c, d, e, / , g, h, k, I are visible to the sensor. For the sake o f argument,
we will assume that of these vertices, the model vertex d is not detectable; therefore, its

86 chen/kak

87 chen/kak

^ view point

Figure 3.12. A 2-D range image of a polygon. The range values are proportional to the
perpendicular distance from line AB. For example, the range correspond­
ing to scene point I is equal to the distance d l.

88 chen/kak

Figure 3.13. The model of the polygon shown in Fig. 3.12.

correspondent in Fig. 3.12 has not been given a label. The undetectability of d in the
sensor data could be due to the fact that the angle defining that vertex is not very sharp.
As a result, feature extraction from the sensor data will only yield the vertices
I, 2, 3, 4, 5, 6, 7, 8, 9. For the viewpoint shown, we must further assume the unavaila­
bility of angle measurements at vertices 1 ,7 and 9.

We will subject the recognition of the polygonal object in Fig. 3.12 to the kind of
hypothesis and verify approach depicted in Fig. 3.11, except that we will add con­
straints on the selection of model features at each node. We will first examine the possi­
bility of using constraints derived from shape attributes.

3.5.2.I. Using Constraints Derived from Shape Attributes

Let’s say each scene feature is characterized by the following set of shape
attribute-value pairs:

SA = <scii, V1->

In the absence of uncertainties, perhaps the most straightforward way of constraining
the selection of model features in the matching process is to invoke only those model
features whose sa,- values are the same as v,-. For the 2-D example, say that at a node in
the search space the scene vertex 2 is under consideration. Now, a possible shape attri­
bute for a 2-D vertex is the dihedral angle 0 shown for one of the vertices in Fig. 3.13.
Let’s say the measured dihedral angle at the scene vertex 2 is 02. Given this shape
information, it should be necessary to invoke only those model vertices whose dihedral
angles, denoted here by 0*, satisfy the constraint

{x: I 0 jc—02 I
where e represents the uncertainty in angle measurement. Given a judicious choice for
e, such a constraint might only invoke the model vertices b and k — a considerable
im p r o v e m e n t o v e r having to compare, in the worst case, of course, — the scene vertex
2 with all the 16 model vertices.

A practical implementation of the above idea Would require that we organize the
model features according to the shape attributes. One could do so, for example, by sort­
ing the model features by the values of the attributes. Then given a desired attribute
value for a scene feature, the candidate model features could be retrieved by a binary
search. Another way is to use an array with each array cell representing an interval of
the attribute value; a model feature could then be assigned to an appropriate cell on the
basis of the value of the attribute. The latter method would, in general, be more
demanding on memory requirement, but the retrieval of candidate model features for a
given scene feature attribute value would be more efficient.

89 chen/kak

Although, in some cases, it would certainly be possible to benefit from the ideas
outlined in the previous two paragraphs, we have chosen to not use shape attributes for
constraining the selection of model features. Our most important reasons are that the
viewpoint independent shape attributes, for the most part, do not contain sufficient
discriminatory power for adequately constraining the selection of model features; and
the viewpoint dependent shape attributes are too prone to getting their values distorted
by occlusion and, of course, the change in viewpoint.

For example, planarity of a surface is a viewpoint independent shape attribute.
Now consider the example illustrated in Fig. 3.10 and assume that we are matching
scene surfaces with model surfaces using planarity as a shape attribute. Clearly, all the
model surfaces but s2 would become candidates for scene surface sb, and there would
be almost no gains in the computational complexity. On the other hand, a viewpoint
dependent shape attribute, like the area of a surface would obviously be useless because
the problems that could be caused by occlusion. For another illustration of the
difficulties caused by using viewpoint dependent shape attributes, lets go back to the
matching of vertices in Fig. 3.12. Although it may not seem so, the dihedral angle is
viewpoint dependent, as, for example, evidenced by the vertices I, 7 and 9. The
dihedral angles at these vertices can not be measured from the viewpoint shown in Fig.
3.12 because of self-occlusion. Therefore, it would be impossible to use the most obvi­
ous shape attribute —- the dihedral angle — for constraining search, as any of the nodes
could suffer from self-occlusion, depending upon the pose of the object.

3.5.2.2. Using Constraints Derived from Relation Attributes

L e ts say a scene feature S has the following relation attribute-value pair
C ra r lS 1, S 2 , • . • , S*}>, meaning that the scene features S 1, S 2,, S* are participat­
ing with S in the relation named ra. We will assume that of S 1, S 2,...., S*, the features
S 1 through Sp, p<k, have already been matched with model features. Then we may
consider only those model features for matching against S that enter into relation ra
with the model features that match S 1 through Sp. More formally, a model feature M
will be selected for matching with S provided one of the relation attribute for M is
<ra:{M c(1), Mc(2), • • • , Mc(p)}>. Remember, the mapping function c gives us the
correspondences between the scene features and the model features.

In the example o f Fig. 3.12, assume that the scene vertices 4 and 5 have already
been matched with the model vertices € and /", and that the scene vertex 6 is now under
test for possible match with a model vertex. Since vertex 6 has relation attribute
<adjacentjo : {5, 7}>, a candidate model feature for matching with vertex 6 should
posses the relation attribute <adjacent_to: {/, *} >, where we have used an asterisk to

90 chen/kak

act as a place-holder for the yet unknown corresponding model vertex of vertex 7. For
symmetric relations, such as adjacent_to, a search for those model features that satisfy
the desired constraint can be easily conducted by examining the relations at the vertex
fi we may thus conclude that the model vertex g is a candidate model feature for the
scene vertex 6. For non-symmetrical relations, unless care is exercised in organizing
the model feature with respect to their relations, in the worst case one may have to
search through all the model features to determine those which satisfy the required con­
straints, However, even with such a search, one would gain from the subsequent savings
in not having to match all the model features with a scene feature. In addition to having
to search for the model features, there are other issues that play an important role in
matching scene features with model features under relational constraints, especially
when one also has to contend with the uncertainties associated with real data. Over the
years, much has been done in this area and the reader is referred to [S&H— 81,
K & et-Sl, W&L-&3] for father details.

91 chen/kak

Although what we have said so far in this subsection may be construed as imply­
ing the appropriateness of relational constraints, the reader beware. We will now show
that there can be situations when relational constraints may not help at all with the
pruning of model features, and, further, in some cases they can lead to results that may
be downright incorrect

Going back to our example of Fig. 3.12, we just showed how the prior matches at
scene vertices 4 and 5 help us constrain the search at vertex 6. One may similarly show
that the matches at the vertices 5 and 6 help us with the selection of candidate model
vertices at 7. Now, let’s say, that the scene vertex 7 has been successfully matched with
the model vertex h. Ouf next task is to find a list of candidate model vertices for the
scene vertex 8. However, because o f self-occlusion, there does not exist at vertex 8 the
relation attribute KadjacentJo :..,7,..>. This means that prior matching history along
the path being traversed in the search space would not help us at all at the scene vertex

r V - V v / - . ; . V V ' ; . . ' : : - - .. , ... V - ;
Now to show that relational constraints may lead to erroneous matches, consider

the scene vertex 3, where we have the relation <adjacentjo :2,4>. We will assume
that the vertex 4, being closest to the viewpoint line AB, has already been matched with
model vertex e. The candidate model vertices for the scene vertex 3 must satisfy the
relation <adjacentjo :*,e>, since e is the correspondent of 4 and since the vertex 2 has
not been matched yet. This constraint would cause 3 to be matched with the model ver­
tex d — an obviously incorrect result which would eventually cause an erroneous rejec­
tion of the model object.

3.5.23; Using Constraints Derived from Position/OrientationAttributes

If a scene feature possesses a position/orientation attribute-value pair <la :v >,
then it follows from equations (3.4-a) and (3.4-b) that a potential candidate model
feature must be characterized by the either or both o f the following position/orientation
attribute-value pairs

<la:R~1-v> if v is an orientation vector (3.5-a)

<la:R~l '(y-t)> if v is a position vector (3.5-b)

where R and t are the rotation and translation components, respectively, of the tranfor-
mation Tr that takes the model object into the scene object. Clearly, an estimate o f the
tranforinatiori Tr is required before a location constraint can be invoked.

We must again address the issue of how one might organize model features in
order to efficiently invoke the location constraints. One approach would be to partition
the space of all possible locations into cells and to assign model features to appropriate
cells based on their locations. Since it takes three parameters to specify an orientation,
two to specify the direction of the axis of rotation and another one to specify rotation
around this axis, the location space for orientation vectors will consist o f either the
volume of a unit sphere, or, using the quaternion notation, the surface of a four­
dimensional unit sphere. On the other hand, the location space for position vectors will
be the 3-D Cartesian space.

While it would indeed be possible to use the position/orientation constraints in this
manner to prune the list of candidate model features, difficulties arise in practice on
account of the fact that it may not be possible to develop a unified organization of
model features on the basis of position/orientation information, since some features
may have only position attributes, other only orientation attributes, and still others both.

Fortunately, there is a way out of this impasse, by the use of principal directions
defined in Section 4. For every feature, as shown in that section, we can derive its prin­
cipal direction from either the position information or the orientation information. The
principal direction can then be used, by the method discussed below, to organize the
model features for efficient retrieval subsequently. In the rest of this subsection, we
will use the 2-D example of Fig. 3.14 to introduce the idea of a feature circle, which is
a means to organize, on the basis of their principal directions, the model features for the
2-Dcase. \

For the 2-D example, we first compute the principal direction of each model ver­
tex according to the definition in section 3-2. Since the space of direction vectors in 2-
D space is a circle, we organize the model vertices along a unit circle as shown in Fig.

93 chen/kak

N...... J

Figure 3.14. The vertices of the model polygon axe pushed out to a unit circle which is
the feature circle of the model.

94 chen/kak

3.14. TMs constitutes the feature circle for the model object. Suppose that the orienta­
tion I? and position t o f the scene polygon has been hypothesized by matching vertices
4 and 5 to model vertices e and / , respectively. Now, suppose we want to find the candi­
date model vertices for the scene vertex 3. Using equation (3.5-b), the position vector
of a candidate model vertex for possible matching with the scene vertex 3 should be

P = R 1 p i - t , r . - '

Theprincipaldirectionassociatedw iththispositionvectoris

We can then access the feature Circle of Fig. 3.14 and pull out those model features
whose principal directions lie in the interval [O - e , O+e], where e depends upon the
magnitude of uncertainty in the sensed data.

Of course, for the 3-D case, the organization of the model features would not be as
simple as what is shown in Fig. 3.14, since the features would now have to be mapped
onto the surface o f a sphere on the basis of their principal directions. To handle the
resulting complications, in Section 6, we will introduce the notion o f a feature sphere
which used a special indexing scheme for the tessellations on the surface of the sphere.
The indexing scheme chosen reduces the complexity associated with f in d in g the neigh­
bors o f a particular cell on the surface of a sphere.

3.5.2.4. Conclusion Regarding the Choice of Constraints

Before we present our complete feature matching strategy, we would like to sum­
marize the conclusions that can be drawn from the preceding three subsections.

• Relatively speaking, shape attributes are not that useful for the purpose of selecting
candidate model features because, when they are view independent, they often do
not carry enough discriminatory power, and, when they are view dependent, they
cannot be used for obvious reasons.

• When the pose transformation Tr is unknown, relation attributes can provide strong
constraints for selecting model features; however, extraction of relation attributes
may be too prone to artifacts.

• When the pose transformation Tr is given, the principal direction attribute, which
can be derived from the position/orientation attributes, probably provides the best
constraint for selecting model features. We use the adjective "best" to emphasize, in
a qualitative sense admittedly, the fact that this attribute can be calculated in a fairly
robust manner for most features, and, to emphasize its ability to provide strong
discrimination amongst competing model features.

These conclusions form the foundation of Out overall matching strategy, which we now

present:
During hypothesis generation:

In this phase, we will use constraints on relation attributes to prune the
list of model features. To get around the problems associated with
exhaustive backtracking in the upper h levels of the search space shown
in Fig. 3.11, we will group immediately related model features into sets,
to be called Local Feature Sets (LFS). Each LFS will be capable of gen­
erating a value for the transformation matrix Tr. The idea of using
feature sets for constructing hypotheses about pose transformations is
akin to the local feature focus idea used by Bolles and Cain [B& C-827
for the 2 -D case and to the notion of kernel features used by Oshima and
Shirai [0& S-S3] for the 3-D case.

During verification:
In this phase, we will use the principal direction constraint to select
model features. For efficient retrieval on the basis of their principal
directions, the model features will be organized on feature Spheres.

In the next subsection, we will elaborate on the notion of Local Feature Sets for
hypothesis generation. In the following subsection, we will then present a formal
definition o f the feature sphere data structure and present expressions for the complex­
ity functions associated with our matching strategy.

3.5.3. Local Feature Sets for Hypothesis Generation

Ideally, an LFS is a minimal grouping of features that is capable of yielding a
unique value for the pose transform which takes the model object into the scene object.
The features in such a minimal grouping could, for example, correspond to one of the
rows in Table 3.1.

More practically, it is desirable that the features in an LFS be in close proximity to
one another, so that the probability of their being simultaneously visible from a given
viewpoint would be high. In our implementation, we have found useful the following
variation on the above idea, which seems to lead to particularly efficient hypothesis
generation strategies for objects that are rich in vertices, such as the objects of Fig. 3.2.
We allow our LFS’s to be larger than minimal groupings and insist that each grouping
contain a vertex and all the surfaces meeting at that vertex. [It would be equally easy to
use edges in place of surfaces.] In Fig. 3.15, we first show labeled features for one of
the objects of Fig. 3.2. For that object, the LFS’s generated with this specification are

95 chen/kak

96 chen/kak

a

Figure 3.15. The labels of surfaces and vertices of the object in Fig 3.2 (a).

shown in Table 3.2. To explain the advantages of our approach, consider the LFS
corresponding to the vertex d of the object in Fig. 3.15. The data record for this LFS

will look like

97 chen/kak

Vertex c
flag :-I
xyz: ##
surfaces: 2 10 3
adjacent_vertices: a e d
edge_type: v v c

The flag value o f - I means that one of the three edges meeting at the vertex is concave.
The variable! xyz is instantiated to the coordinates of the vertex in the model coordinate
system. In edge_type, v denotes convex and c concave, as there are two concave and
one convex edges meeting at this vertex. This LFS subsumes at least three minimal
feature groupings that are also capable of generating a unique value for the pose
transform. For example, the grouping consisting of the surfaces 2 and 10, together with
the coordinates of the vertex a, can yield a unique value for Tr. To answer the question
why we use this particular construction for LFS’s, we will first define a completely visi­
ble vertex.

In the scene, a vertex will be called completely visible if no occluding edges meet
at the Vertex. An example of a completely visible vertex is shown in Fig. 3.16-(a), while
(b) shows the same vertex when it is not completely visible. Note that occluding edges
in a range map are characterized by range discontinuities.

We believe that a completely visible vertex in a scene provides the strongest con­
straints for calculating the Tr associated with an object in a scene. Of course, theoreti­
cally, any two of the non-parallel surfaces coming together at the vertex, in conjunction
with the vertex itself, are capable of specifying uniquely the Tr associated with a scene
object. Therefore, theoretically at least, for the vertex shown in Fig. 3 .16-(a), any two of
file surfaces, together with the coordinates of the vertex, can yield Tr. However, in prac­
tice, it is difficult to calculate with great precision the position of the vertex itself, pri­
marily because o f the nature of discontinuities of some o f the spatial derivatives at such
a point, therefore, our approach is that if a completely visible vertex can be found in a
scene, it should immediately be used to calculate a Tr.

Of course, it is entirely likely that we may not find any completely visible vertices
in a scene, meaning that for a vertex like the one shown in Fig. 3.16-(b), because of

84 chen/kak

Table 3.2 Local feature sets (LFS) of the object in Fig 3.15.

vertex surfaces

a 1 ,9 ,2

b : . 1 ,2 ,8

C ■ 2 ,1 0 ,3

d 2 ,3 ,8
/

e 3 ,1 0 ,4

■’ ’ f -■ 3 ,4 ,8

g 7 ,1 2 ,4
h 7 ,1 0 ,1 2

4 ,1 0 ,7

j 4 ,7 ,8
k 1 ,8 ,9

■ i 9, 8 ,12
m 1 ,9 ,1 0
n 10 ,9 ,12

chen/kak

Figure 3.16. A completely visible vertex o f a object in one view becomes partially visi
ble in another view.

chen/kak

self-occlusion we may be able to see only two o f the three surfaces. In such a ease, the
LFS for the vertex can still be used by assigning appropriate labels to the scene surfaces
from the entries in the LFS. In general, i f h surfaces meet at a-vertex and only it of these
are visible in a scene, then there are only h possibilities for matching the it scene sur­
faces, this happens because of the rotational adjacencies that have to be maintained. For
example, again as illustrated in Fig. 3.16, the vertex a is formed by three Surfaces I, 10
and 2, if we see only two of the surfaces a and (3 as in (b), there are only three different
labeling patterns for die two surfaces, namely,

{(1 10 >J3, 2 »m7), (10—MX, 2—>|3, I —mil), (2—><x, I —>(i, 10—tnil)}.

In each of these patterns, the labels must maintain the same adjacencies that are in the
model. Therefore, we can say that in matching k scene features with the h features of
an LFS, the overhead is k, which is incurred in matching the k scene features with the
potential correspondents from the LFS. Since this can only be done in h ways, the
overall complexity associated with matching with an LFS is Oihxk).

Therefore, the complexity associated with generating hypotheses for an object
which has Nlfs LFS’s is NLFs'xOihxk). In practice, Nlps = 0(m), where m is the total
number of model features. Therefore, the overall complexity associated with generating
all the hypotheses is

Oimxhxk) = Oim)

Before we conclude this subsection, we would like the reader to note that the gains
achieved with the use LFS’s as non-minimal feature groupings is at the cost of more
complex flow of control during hypothesis generation. While with m in im a l groupings,
it is possible to institute uniform control, with non-minimal groupings special cases
must be handled separately depending upon how many of the features in an LFS can be
matched with the scene features.

Also, we have said nothing about the mathematics of how to actually compute a Tr
given that we have a match between some scene features and model features. In Appen­
dix A, we provide formulations for estimating the transformation based on quaternion
representation.

3.5*4.Feature Sphere for Verification

We want to organize model features of an object such that, given a candidate prin­
cipal direction O computed from a scene feature, all the model features with the princi­
pal direction O can be accessed efficiently. Since a particular direction corresponds to
a unique point on the surface of a unit sphere, similar to the way of organizing vertices
on a circle in the 2-D example, a natural way is to record the model features on a unit

101 chen/kak

sphere as a function of their principal directions. We shall call such a sphere a feature
sphere. rITiere can, of course, be multiple number of features corresponding to a given
point on the feature sphere, especially if more than one feature class is used for describ­
ing models. In our experience, programming becomes more efficient if a separate
feature sphere is used for each class, meaning that we represent all the primitive surface
features on one sphere, all the primitive edge features on another sphere, and all the
primitive point features on yet another. Fig. 3.17 shows the vertex feature sphere and
the surface feature sphere for the 3-D model object in Fig. 3.10.

After a hypothesis about the object’s location Tr is generated, we want to verify or
reject the hypothesis by matching the rest of the scene features to model features under
Tr. Of the different scene features which will be used for verification, consider a scene
feature S. According to equations (3.4-a) and (3.4-b), a model feature that is a candi­
date for matching with the scene feature S should be characterized by a principal direc­

tion O that is equal to the following for the different types of S.

• If S is a primitive surface (spherical surface excluded) or a primitive curve:

& = /?-1 *v(S), (3.6-a)

where R is the rotation component of Tr, and v (S) is the orientation direction of
feature S, defined similarly as its principal direction but with respect to the world
coordinate system.

• If S is point feature or a spherical surface:
L etp (S) be the position vector of feature S with respect to a world coordinate sys­

tem.

p = Tr~1 *p(S) = R -1 *(p(S)-t) ; (3.6-b)

where t is the translation component of Tr.

As previously mentioned, principal directiomprovide a very strong constraint for
selection of candidate model features, i.e. each candidate principal direction computed
from equation (3.6-a) or (3.6-b) will lead to a small number of candidate features. This
is especially true for point features as we observed in the 2-D example in which a can­
didate principal direction addresses to only one candidate model vertex. For primitive
surface or primitive edges, that number may depend on the configuration of object sur­
faces. In general, we may assume that the principal directions o f a model’s features are
randomly distributed over the unit sphere. Although, the probability of any two features
occupying the same spot on the unit sphere will be very low, for the sake of argument
we may assume that on the average there will be k features for each principal direction,

102

Surface feature sphere Vertex feature sphere

Figure 3.17. The surface and vertex feature spheres of the model object.

where k<£m. Then the worst case time complexity for matching for verification will be
0{nxk) = 0(n). W hen combined with the complexity of hypothesis generation, as dis­
cussed in Section 5.3, this implies an overall complexity level of 0(mn). Since,
m _ o in), we can then conclude that the overall complexity with our approach for sin­

gle object recognition to be O(n 2).

In the next section we will present the implementation of feature sphere in com­
puter in detail. It is interesting to note that if a model object is a convex polyhedron
then its surface feature sphere representation is equivalent to its EGI (extended Gaus­
sian image) [Ho-84], [Ik -83], and if a primitive curved surface is allowed to be added
to a polyhedron then the surface feature sphere is similar to CSG-EESI representation
proposed by Xie and Calvert [X&C -88]. In addition, if every surface point is regarded
as a point feature, then the point feature sphere of a star-shape object is equivalent to
the well-tessellated surface representation proposed by Brown [B r-79].

3.6. A Data Structure for Representing Feature Spheres

In order to implement feature spheres in a computer, we first need to tessellate the
sphere and then create an appropriate data structure for representing the tessellations.
In our case, each cell on the sphere will be represented by its center point, and the pur­
pose of the data structure will be to allow us to efficiently access these points. In what
follows, we will use the term tessel to refer to both a cell created by tessellating a
sphere and to the central point of the cell. Before a data structure can be created for
representing the tessels, we must bear in mind the following two kinds of operations
that Will be performed on the data structure for the purposes of feature matching.

First, d u r in g the model building process model features must be assigned to their
respective tessels on the bases of their principal directions. Clearly, it is unlikely that
the direction corresponding to one of the tessels would correspond exactly to that of a
feature For a given model feature, we must, therefore, locate the nearest tessel. In
other words, we need a tessel assignment function, which will be denoted by L(O), that
should return the label of a tessel to which a model feature of principal direction O is
assigned.

Second, given a scene feature S in the verification process, we want to examine
whether there is a corresponding model feature with direction O = Tr ^O (S)) in the
model under consideration. Assuming the hypothesis is correct, idealy, we should be
able to find such a model feature at L (0*) on the feature sphere of the model. How-
ever, due to noise and other artifacts associated with the estimation of Tr, O will only
be accurate to within some uncertainty interval. This directional uncertainty associated
with O* can be expressed as a cone whose axis is the computed direction itself, as

shown ini Fig. 3.18. This implies that potential model features for matching with S
Should be all those that are within this cone. If we could assume the error processes
associated with die uncertainties in <&* to be of zero-mean type, from within the cone
one would first select that feature which was closest to L (<!>*), and, if that match were
to fail, select the next closest, etc. Clearly, this is a breadth first search rooted at L(&*),
and the depth of Search (the farthest neighbors to examine) should correspond to the
maximal allowable directioh uncertainty.

It should be obvious that for implementing the above strategy for the selection of
model features, we need a function that would be capable of direcdy accessing the
immediate neighbors of a given tessel; we consider two tessels to be neighbors if they
share a common edge irt the tessellation. This function will be called find-neighbors
function and will be denoted by N. So, we want

N(L0) {Llt ^2> • • • > Lk}

where L 1, L 2, . . . , Lk are the labels of the immediate neighbors of the tessel labeled
U - : V /

3.6.1. Previous Approaches To Data Structuring of Sphere Tessellations

In their work on EGI representation, Horn [l/<?-84] and Ikeuchi [/£-83] have dis­
cussed a hierarchical tree structure for representing a tessellated sphere based on
icosahedron or dodecahedron. A drawback of this hierarchical data structure is that the
adjacency relationship between neighboring tessels is not preserved. To get around this
difficulty, Fekete and Davis [F&D -84] used a fairly complex labeling scheme, in this
scheme each tessel is labeled by the pathname of its corresponding node in the tree.
The neighbors Of a tessel within one of twenty main icosahedral triangles are found by
examining the pathname of the tessel, symbol by symbol, and synthesizing the path­
names of its neighboring tessels by the use of complicated state-transition rules and
lookup tables. This procedure requires at least O (n) operations, where n is the number
of levels in the hierarchy. When the neighbors lie in an adjacent triangle, a different
procedure is needed. Kom and Dyer [K&D -87] have also proposed a data structure for
a tessellated sphere with a fixed number Of subdivision levels. Twenty one-dimensional
arrays, each of size 4", are used to represent the sampling points on the sphere, which
implies that a sampling point is labeled by a number from O to 4”- l . Their find-
neighbors algorithm is essentially the same as that of Fekete and Davis.

In this section we will present a new data structure for representing a tessellated
sphere based on icosahedron. Its main merit is that logical adjacency between elements
of the data structure corresponds to physical adjacency between sampling points on the
sphere. We will show that the neighbors of a given tessel can be found with a constant

105 chen/kak

' ■ ■ . -s|t

Figure 3.18. A cone represents directional uncertainty of the computed direction O ,
and the sampling points on the sphere lie within the uncertainty cone.

time complexity algorithm, regardless of sampling resolution. Furthermore, by using
the find-neighbors function, the tessel-assignment function L can be implemented
efficiently, too,

3.6.2. TesselIating a Unit Sphere

In this subsection, we will present the tesselations on which Otur data structuring is
based.Subsequently, it should become evident to the reader that the regularity of the
neighborhood patterns in the tesselations used allows us to devise a simple scheme for
neighbor finding. However, first we will quickly review the considerations that go into
the design of tesselations.

When a sphere is tesselated into cells, ideally we would like the cells to be sym­
metrical, be identical in shape, and possess equal areas; also, ideally, the tesselation
scheme should maintain these attributes over a wide range of cell resolutions. How­
ever, it is well known that a tesselation scheme with these attributes does not exist. The
best one can do is to use the techniques of geodesic dome constructions [Ke-16],
[Fm- 76]; these techniques lead to triangular cells that are approximately equal in area
and shape. The geodesic tesselations are obtained via the following three steps:

(1) Chose a regular polyhedron, which usually is an icosahedron or a dodecahedron,
and inscribe it in a sphere to be tessellated. If a dodecahedron is used, each of its
pentagonal faces is divided into five triangular faces around its center to form a
pentakis dodecahedron. Thus each face of the regular polyhedron will be a trian­
gle. ;

(2) Subdivide each triangular face of either the icosohedran or the pentakis dode­
cahedron into subfaces by dividing each edge of a triangular face into Q sections,
where Q is called the frequency of geodesic division. As a result, each triangular
face is divided into Q 2 triangular subfaces. Finer resolution can be obtained sim­
ply by increasing the frequency of geodesic division. Usually, Q is a power of
two.

(3) Project the subdivided faces onto the sphere. In order to make the projected trian-
gle sizes more consistent, the edges of the triangles should be divided into sections
such that each section subtends the same angle at the center of the sphere; as a
consequence the lengths will be the same for the edge sections after they are pro­
jected onto the sphere \Ke -76].

To generate the tesselations used by us, we start out by implementing the above
approach with an icosahedron. The geodesic polyhedron thus produced contains 20 Q2
cells and 10Q2+2 vertices. Fig 3.19 shows an icosahedron and a tessellated sphere
based on the icosahedron with frequency Q=4 o f geodesic division.

108 chen/kak

Our next step is to construct a dual of the geodesic polyhedron produced by the
above method. Note the dual of a polyhedron is also a polyhedron whose vertices
correspond to the faces of the original polyhedron and whose faces correspond to the
vertices o f the original polyhedron. For example, a pentagon is the dual of ah
icosahedron. The dual geodesic polyhedron thus produced consists of 10 Q2+2 cells, of
which 10 0 2 2 - I) are hexagonal and the rest 12 are pentagonal. The 12 pentagonal
cells of the dual polyhedron correspond to the 12 vertices of the original icosahedron.
H iis dual polyhedron is then projected onto the unit sphere to ptoduee the desired tesse^
lationS. As shown in Fig. 3.20, the center of each tessel serves as the sampling point for
that tessel for the purpose of discretization. It is important to note that these sampling
points correspond to the vertices of the original polyhedron, the one before the dual was
constructed. This fact will prove to be most important to our derivations later.

As illustrated in Fig. 3.20, our tessels can be either pentagonal or hexagonal, the
former has five neighbors, and the latter six. The average area of a tessel is given by
47t/(10 Q 2+2). The radial angle between adjacent sampling points, which is an indica­
tion of sampling resolution, can be roughly estimated by

atan(2) I Q

where atan(2) is the angular spread of an icosahedron’s edge.

3.6.3. A Spherical Array for Representing the Tessellation

We will now present a spherical array data structure for the computer representa­
tion of the tesselation. This array will lead to easy and efficient implementations of the
find-neighbors function N and tessel-assignment function L. The data structure will be
constructed by first noting that the vertices of the geodesic polyhedron are the sampling
points of the dual polyhedron; flattening out, as shown in Fig 3.21, the 20 triangular
faces of the underlying icosahedron; and, finally, paralleling the development of the
geodesic polyhedron on this flattened form. The flattened-out representation of the
icosahedron consists of five connected parallelograms, each of them consisting of four
triangular faces, each triangular face corresponding to one of the 20 triangles on the
icosahedron. Each parallelogram is subdivided into AxQ2 triangular cells using Q for
the frequency of geodesic division (Fig. 3.22). The vertices shown in Fig. 3.22
correspond to the vertices of the geodesic polyhedron, and also, therefore, to the sam­
pling points of our tesselation for the case of Q — 4. The flattened-out representation, of
which Fig. 3.22, is an example, will be referred to as the spherical array.

Each parallelogram in a spherical array consists of (<2+l)x(2<2+l) vertices. Obvi­
ously, the vertices in each parallelogram separately could be represented by a two
dimensional array; however, note that the vertices on the border of the parallelograms

109 chen/kak

Figure 3.20. The dash lines indicate part of the dual polyhedron; the sampling points
are defined at the vertices of the original polyhedron outlined by solid

. lines.

no chen/kak

I a

Figure 3.21. The original icosahedron is flattened out to form five connected parallelo­
grams, each of them consisting of 4 triangular faces.

I l l chen/kak

Figure 3.22. The assignment of the elements of a Q xlQ array on a parallelogram.

are shared, meaning, for example, that the vertices a and a ’ on the edges A and A ’,
respectively, are really the same vertex on the geodesic polyhedron. In other words,
before the icosahedron is unfolded to form the spherical array, edge A is connected to
edge A', edge B to edge B', edge E to edge £ ', and so on (Fig. 3.21).

The fact that each border vertex should appear only once in an overall indexing
scheme for the vertices in a spherical array implies that the size of the index array for
representing each parallelogram need only be Qx2Q. For example, for the case shown
in Fig. 3.22, each parallelogram need only be represented by a 4x8 array. The assign­
ment of array indices for the parallelograms is depicted in Fig 3.22 for the Q = 4 case.
The index i specifies a parallelogram and the indices j and k specify a vertex within the
parallelogram. Clearly, we have five QxlQ arrays, for a total of IO xg2 indexed points
on the spherical array, this number being two less than the total IO xg 2+2 vertices on
the geodesic polyhedron. The two missing vertices correspond to the two common ver­
tices o f the five parallelograms, one at the top and the other at the bottom. We shall
allocate two additional distinguished sets of indices to represent these two vertices and
referred to them as the the zenith and the nadir (see section 6.3.2 for explanation) of the
tessellated sphere.

The proposed indexing implies the following ranges for i, j and k:

h *] l < £ / £ 5 , l < j < Q , \ < k £ 2 Q .

The zenith and the nadir are assigned the distinguished indices [0, 0, 0] and [-1 , 0, 0],
respectively.

3.6.3.1. T heF ind-N eighborsF unction

As pointed out before, the simplicity of the proposed data structure lies in its
preserving the physical adjacencies between the tessels. We will now show that simple
relationships exist that yield a tessels’s neighbors, regardless o f the location of the
tessel, and, more important, regardless of whether the tessel possesses six or five neigh­
bors. Most tessels posses six neighbors, except for the 12 that correspond to the 12 ver­
tices of the original icosahedron, each of latter type possessing five neighbors only. In
general, the six neighbors of a tessel [/, j, k] that is not on the border of any of the five
parallelograms are given by:

113

[i, j , k+1],
[I, 7+1, *],

 ̂ [i, y'+l, £-1],
[U j , k - 1],

\ i , j - 1, *.+!]•

chen/kak

(3.7)

Therefore, for the above set of indices to give us the neighbors, the indices j and km ust
obey the constraints 1< j <Qandl<k<2Q. If also used to find the neighbors of a border
tessel, some of the above indices would take out of range values, implying that those
neighboring tessels are vertices shared by another parallelogram and should really be
assigned to the array for that parallelogram. To convert the out-of-range labels to the
legitimate ones, we apply the following substitution rules:

[U.j, 0] => [f—I"*5, I, 7 = 1» •» Q
[I, (2+1. k] => [I - I w5, I, Q+k] k = 0, ..., Q

IU Q + h k] =» [I - I w5, k-Q , 2Q] k = (2+1, •••» 2Q
[i, 0, k] => [i+ lw5, k -1 , 1] k=2 , ..., Q

[i, 0, k] => [i+ lw5, Q, k-Q] k = (2+1, ...» 2(2+1

[i, j , 2(2+1] => [i+ Iw5, Q , j + Q + 1] j = I , ...»(2.-1
[i, 0, 1] => [0, 0, 0] . . ’. ■ - ...
[i, Q, 2(2+H /=> [-1 ,0 ,0]

fo r i = I, ...,5 , where imS = (i-Y)mod(5) + I

Except for the zenith and the nadir tessels, it can be verified that equations (3.7)
and (3.8) are also applicable to 10 of the 12 five-neighbor tessels. At a five-neighbor
tessel, two of the six labels returned by equation (3.7) will turn out to be identical after
applying the substitution rales in (3.8). The five neighbors for the zenith and the nadir

■are.

[i, I, 1] / = I , . . . ,5 and

[U Q,2Q] i = I , . . . , 5

respectively.

The following two examples will illustrate the neighbor finding scheme described
above. The example are for the case of Q =4.

114

Example I:
Find the neighbors of tessel [1,3,1]

[1,3,1]

[1, 3, 2]
[1 .4 .1]
[1 ,4 , 0] = [5, 1, 4]

* [I, 3, 0] = [5, I, 3]
[I, 2, 1]
[1. 2. 2] .

r

[I, 3, 2]
[1, 4, 1]

■ [5, 1 ,4]
' [5, 1 ,3]

[I, 2, 1]
[I, 2, 2]

chen/kak

Example 2:
Find the neighbors of tessel [2,4,5]

[2,4,5]

[2 ,4 ,6]
[2, 5, 5] = [I, I, 8]
[2, 5, 4] = [I, I, 8]

' [2 , 4 , 4]
[2 ,3 ,5]
[2, 3, 6]

'[2 ,4 ,6]

[I, I, 8]
« [2, 4, 4]

[2 , 3 , 5]
[2, 3, 6]

It is worth noting that [2,4, 5] happens to be a vertex of the original icosahedron and has
only five neighboring tessels, exactly what the rules returned.

3.6.3.2. Directions of Sampling Points

In order to specify the tessel-assignment function, we will need formulas for the
directions of the tessels, meaning the directions associated with each of the vertices on
the spherical array. For that purpose, we will take advantage of the s y m m e try of the
icosahedron and use a sphere-centered coordinate system whose positive z axis passes
the zenith at ([0, 0, 0]) and whose z-x plane passes an icosahedral vertex [I, Q, 1] as
shown in Fig 3.23. The direction of each tessel, denoted by 0 [/ , j, jfc] ■ in this coordi­
nate system will be expressed in terms of the longitude and latitude angles (<>, 0).
Because of the symmetry of the icosahedron, we have

e [/,y , ^] = e r z - i , y , k]

<(>[*', j, k] = + <|>r/-l, j, £]) mod (2n)

for i = 2, ...,5, j = I, ...,Q, k - l, ...,2Q.
therefore we only need to compute the direction of the tessels in the first parallelogram

chen/kak

Figure 3.23. A spherical coordinate system defined on the original icosahedron.

(array).

It is easy to see that the direction of the five vertices o f the first parallelogram are:
0[1, 0, I]* = (0, -)
0 [1 , 0 , 1] = {atari (2), 0)

^ [l , a 0 + l] >IC = (flta/i(2), -^ -)
' ■ 5 .. 1 .-v

^[l> Qj Q+l] = (K-atan(2), -^-)

0 [1 , 0, 2Q+1]* = (K-atan(2), -y -)

6» 2 e + l] = (it, -)

Recall that in the derivation of the geodesic polyhedron, we subdivided each edge of
the triangles of the inscribed icosahedron into Q sections of equal radial angle. When
Q=2r, the result is equivalent to recursively subdividing r times a triangle into four tri­
angles. Therefore, we can compute the direction o f a new tessel by taking the averages
of the known directions of the two tessels which are the end-points of the edge whose
division led to the formation of the new tessel. This procedure can be applied recur­
sively to compute the direction of every tessel. As an example, the three tessels which
are the midpoints of the three edges of the upper triangle have directions:

m , 1] = Mi dmX , 0» 1],0[1, 0 , 1])

° [i ’ Y + i] -M id (0 [i , o, e + i] , 'm , q , i])

0 [1 , 0, -|-+ l]=M /d(<D [l, o, 0 + 1] ,0 [1 , 0, I]).

Here Mid(GltG2) means to take the average direction of the two direction on the unit
sphere. To save runtime computation, we may pre-compute the direction for all the
tessels and store them in a lookup table.

3.6.3.3. The Tessel-Assignment Function

Given a particular direction O , its corresponding tessel in the spherical array
should be the one whose direction is closest to G*. The function L* will return the
indices o f this tessel.

* Note that these labels are not legitimate in the spherical array data structure; we use them just
to make the derivations clearer. The legitimate versions of these labels can be obtained by using
the substitution formulas in equation (3.8).

116 chen/kak

chen/kak

<D[L*] • O* = max (0[L] -O*)
Li

The finding of the tessel L* would thus involve a search process for the maximal dot
product. Because the dot product is a monotonically increasing function toward the
desired tessel, a local maximum must also be the global maximum. The local maximum
can be found by an iterative climbing method from any tessel guessed initially. Since a
good initial guess can reduce considerably the computations required to reach the max­
imum, we have provided in Appendix B

a linear approximation that translates a given O into a triple (i,j,k). Since the approxi­
mation has proved to be fairly good, the resulting indices are quite close to their actual
values. Starting with these indices, one can then find the actual ones by conducting
local search, as depicted by the following algorithm.

117

assign_tessel(0*) {
L 0 = get_initial_guess(O*)
L* = get_closer(L°,
return L * }

get_closer(L, O) {
among all V in N (L)

find L which maximizes (0(L ')

get_closer(L, O*)
else

return L }

O*)

3.6.3.4. Building Feature Spheres on the Spherical Array

Note that since a feature is described by sets of attributes, a frame structure is used
to store the attribute-value pairs. Each such frame structure is identified by a pointer
which is stored at the corresponding tessel in the spherical array. The tessel address, as
represented by the indices i,j, and k, is computed by applying the tessel-assignment-
function to the principal direction of the future. It may happen that two or more neigh­
boring features, neighboring in the sense of their possessing nearly identical principal
directions, may have their points assigned to the same tessel. This conflict can be
resolved by recording in the first registered feature a list of pointers for the features that
share the same tessel address.

3.7, Recognition of Objects in the Presence of Occlusions

The discussion presented so far could be used directly for the recognition of single
isolated objects. However, our main interest in 3D-POLY lies in recognizing objects
under occluded conditions, as would be the case when the objects are presented to the
sensory system in the form of heaps.

In general, when the range images to be interpreted are of scenes containing piles
of overlapping objects, one has to contend with the following two problems: I) The
number of features extracted from a scene will usually be very large; and, 2) since dif­
ferent objects may be made of similar features, it would generally not be possible to set
up simple associations between the scene features and the objects. To get around these
problems in dealing with multiple object scenes, researchers previously have either per­
formed object segmentation by exploiting range discontinuity information [F&et -8 8],
or have used a model driven approach to group together scene features belonging to
single objects [F&H-86], [B&H-86]. However, the former approach usually fails to
work especially when the juxatopositions of multiple objects are such that there are no
range discontinuities between them; and the latter is inefficient for reasons described in
Section 2.

We will now present a data-driven approach for aggregating from a complex scene
features belonging to single objects. The cornerstone of our approach is the idea that
only physically adjacent scene features need be invoked for matching with a candidate
object model. For this purpose, the notion of physical adjacency will be applied In the
image space as opposed to the object space, implying, for example, that two surface
regions sharing a common boundary, even if it is a jump boundary, will be considered
adjacent to each other. Using this idea, we will now describe the complete method:

The algorithms uses two sets, UMSFS and MSFS, the former standing for the
unmatched scene feature set and the latter for matched scene feature set. Initially, the
algorithm assigns all the scene features to the set UMSFS. The process of object recog­
nition starts with a local feature set (LFS) extracted from the UMSFS. The matching of
this scene LFS with a model LFS generates a hypothesis about object identity and a
pose transformation. The features in the scene LFS are then taken off from the UMSFS
and assigned to MSFS; note that MSFS keeps a record of all the scene features matched
so far with the current candidate model. Then during the verification stage, only those
scene features in the UMSFS that are adjacent to the features in MSFS are selected for
matching with the candidate model. During the verification state, if a UMSFS feature
W : 1 ■— ■ I '

To be contrasted with the data driven procedure to be described in this section.

does match the candidate model feature, the scene feature is taken out of the UMSFS
and added to the MSFS; otherwise the feature is marked as tested under the current
hypothesis and left in the UMSFS.

The verification stage terminates when MSFS stop growing. Once the verification
process terminates, the algorithm determines whether or not the features in the MFS
constitute enough evidence to support the hypothesis on the basis of some predefined
criterion. This criterion may be as simple as requiring a percentage, say, 30 %, of
model features to be seen in the MSFS; or, as complicated as requiring a particular set
of model features to appear in the MSFS; or, at a still more complex level, some combi­
nation of the two. If a hypothesis is considered verified, the features currently in MSFS
are labeled by the name of the model and taken out of further consideration; otherwise,
the hypothesis is rejected and every feature in the MSFS is put back into the UMSFS
and the process continued with a new LFS. The entire process terminates after all the
LFS’s have been examined. The algorithm is presented below in pseudo C language:

119 chen/kak

Inteiprete_scene (I) {
extract feature set {S} from I
UMSFS = (S)
while (there exists a local feature set LFSs in UMSFS)

for each LFSm in the model library
if (LFSs matches LFSm) {

estimate Tr by matching LFSs with LFSm
candidate model Om is the model corresponding Vb LFSm
MSFS=LFS
Verify (Om, MSFS, UMSFS, Tr)) }

Verify (Om, MSFS, UMSFS, Tr){
tagfor each untested St- in UMSFS adjacent to MSFS {

compute prinicipal direction O of Tr~l (St)
for each Mj registered in the neighborhood of L (O) on the feature sphere of Om

if (T r"1 (St) matches M;) {
add S1 to MSFS
go to tag }

else
mark St- tested

if (M SFS satisfies the recognition criterion) {
UMSFS =UMSFS-MSFS
label every S in MSFS by the name Om
w ritejresult (Offlj Tr)

120 chen/kak

return (true) }
else

return (fa lse)}

In OuT current implementation of this algorithm, the recognition Criterion requires
that at least 33% of a candidate model’s features be present in the MSFS for a
hypothesis to be considered valid. Note that the acceptance threshold can be no greater
than 50% for most objects, especially those that have features distributed all around,
since from a single viewpoint only half of an object will be scene. Therefore, 50% is a
loose upper limit on the acceptance threshold. On the lower side, the threshold can not
be set to be too low, since that would cause misrecognition of objects. We have found
33% to be a good compromise.

3.8. Experim ental Results

This section presents experimental results obtained with our matching strategy; the
results will also demonstrate in action the algorithm for recognizing objects in heaps.
Although we have done experiments on a large number of scenes with 3D-POLY, only
two such experiments will be presented to discuss the behavior o f the algorithms.

3.8.1. T heM odels

The model library used consisted of two object models shown in Fig. 3.2. The
Object in Fig 3.2-(a) is given the name "square" and the one in (b) "round". The model
knowledge was obtained by a “ learning system" consisting of a special scanner in
which die object is automifically rotated while illuminated by a number of translating
laser beams. The data thus generated from many viewpoints is integrated and directly
transformed into a feature sphere representation. Further details on the methods used for
viewpoint integration and the transformations involved are presented in Chapter 4. For
the two experiments discussed here, model data was generated by integrating six views
for square and five for "round". For "square" object this resulted in a feature represen­
tation consisting of 14 vertex and 12 surface features. The model representation derived
for "round" object consisted of 12 vertices and 10 surfaces.

Two feature spheres were derived for each model, one for surface features and the
other for vertex features. The frequency of geodesic division, Q, o f the spherical array
discussed in Section 6.3 was chosen to be 16; this gave a resolution o f about 4° per
tessel in the spherical array representation. The vertex and surface features were used
for the generation o f hypotheses, while only the surface features were used for
verification.

As described in Section 5.3, each object model must be associated with a list of
LFS’s for the purpose of hypothesis generation, an LFS being a set of surface features
meeting at a vertex. In this prototype system, we have chosen to organize LFS’s around
convex vertices only, that is those whose edges are all convex. For "square" object,
there are 12 LFS’s which correspond to the 12 convex vertices, and for "round" object
there are only four LFS’s corresponding to the convex vertices c, d, e, I.

3.8.2. T h eD a ta

For the results that will be shown here, we had 10 overlapping objects, five of each
type, in each o f the two scenes. The objects were placed in a tray and, before data col­
lection, the tray shaken vigorously to randomize the object placements. A typical scene
was as was shown earlier in Fig. 3.1. Range images of the two scenes, shown in Figs.
3.24 and 3.25, were acquired by using a structured-light range sensing unit which is
held by a PUMA robot for dynamic scanning; these images will be referred to as stripe
images. Each stripe image consists of 150 stripes, with the inter-stripe spacing being
0.1"; this spacing is the distance the robot end-effector travels between successive pro­
jections. ■ ! ■

Range maps for the scenes are obtained by converting each stripe point, which
exists in image coordinates, into world coordinates using a calibration matrix by the
method discussed in Chapter I . Features are extracted from the range maps by a battery
of low level procedures developed specifically for this research project. These pro­
cedures carry out surface normal computations, segmentations of surfaces of different
types, surface classifications, etc., and are discussed in greater detail in Chapter 2. The
output of preprocessing for the range map corresponding to the stripe image of Fig.
3.24 is shown in Fig. 3.5 in the form of a needle diagram and segmented surfaces, Fig.
3.26 shows the results for the stripe image of Fig. 3.25. Figs. 3.5 and 3.26 also display
the labels given to the different surfaces.

121 chen/kak

3.8.3. Hypothesis G eneration

For the purpose of hypothesis generation, each detected vertex in a scene is given
a rank depending upon the number of surfaces meeting at the vertex and the
convexity/concavity of the edges convergent at the vertex. Thp rank is greater, the
larger the number of surfaces meeting at a vertex. Also, since we only use convex ver­
tices for constructing the LFS’s o f a model, if a concave edge is found to be incident at
a vertex, the rank of the vertex is made negative.

To generate hypotheses, the system first chooses the highest positively ranked ver­
tex and then constructs an LFS by collecting all the surfaces meeting at the vertex. The

122

pileS

Figure 3.24. Stripe image of scene #1.

pile4

Figure 3.25. Stripe image of scene #2.

Figure 3.26. Result on feature extraction of scene #2.

scene LFS thus generated is matched with the LFS’s of all the models, one by one.
This matching between a scene LFS and a model LFS is carried out by a special pro­
cedure which tests the compatibility of the shape and relation attributes o f the
corresponding features in the two LFS’s. Note that the maximal number of surfaces in
an LFS for the objects in the experiments reported here is 3, thus there are three possi­
ble ways of establishing the correspondences between a scene LFS and a model LFS;
all the three possibilities must be tested, each accepted possibility will lead to a dif­
ferent pose hypothesis.

For a given match between a scene LFS and a model LFS, the viewpoint indepen­
dent position/orientation attributes of the features in the two LFS’s are used for generat­
ing a candidate pose Tr for the scene object; further details on how exactly this is done
can be found in Appendix A. For a candidate pose to translate into a pose hypothesis,
the system checks the fitting error computed from the estimation of TV; the error must
be less than a predefined threshold.

125 chen/kak

In the preprbcessed output shown in Fig. 3.5, there are 68 vertices, but only 36 of
them are o f convex type; in the output shown in Fig. 3.26 there are 22 convex vertices
out of a total of 49 vertices. So, supposedly, in the worst case one would have to check
36 LFS ’ s in the former case, and 22 in the latter. Since there are a total of 16 LFS ’ s in
the model library, 12 for "square" and 4 for "round", in the worst case one would have
to carry out 16x36x3 = 1728 LFS matches for the scene of Fig. 3.5, where the number 3
takes care of the aforementioned different ways of establishing correspondences
between a model LFS and a scene LFS. Similarly, in the worst case situation, there may
be 16x22x3 = 1056 LFS matchings to be tested for the scene of Fig. 3.26. In practice,
however, the number of LFS matches actually carried is far fewer on account of the fol­
lowing reason: An object hypothesis can be generated by any one of many LFS’s, and
when a hypothesis thus generated is verified, the system does not need to invoke any of
the other LFS’s for that object.

To give the reader an idea of die number of hypotheses generated, the system gen­
erated 156 hypotheses for the scene of Fig. 3.5, and 75 for the scene o f Fig. 3.26.

3,8.4. Verification

Given the pose transformation Tr associated with a hypothesis, verification is car­
ried out by computing the feature !Sphere tessel indices of those scene features that are
“ physically adjacent" to the LFS features, the notion of physical adjacency being as
explained before, and matching each such scene feature with a model feature assigned
to that tessel, assuming such a model feature can be found. [If more than one model
feature may be assigned to a tessel, the scene feature must be matched with all of them.]

126 chen/kak

Of course, since measurement noise and other artifacts will always be present to distort
the attribute values of a scene feature, the scene feature must be matched With all the
model features belonging to tessels within a certain neighborhood of the tessel com­
puted from the scene feature principal direction. The size of the neighborhood reflects
the uncertainty in the feature measurements. For most of our experiments, we use all
the model features within two tessels o f the tessel assigned to a scene feature,
corresponding approximately to a directional uncertainty of 8.0 °.

To Mustrate the behavior of the algorithm, Table 3.3 shows the hypothesis genera­
tion and verification procedure in action. Each fine entry, printed out upon the forma­
tion of a hypothesis, identifies the LFS used by the vertex Chosen, and shows the sur­
face correspondences established when the scene LFS was matched with a model LFS.
For example, for the first hypothesis, marked hyp#l in the table, the LFS matching esta­
blished correspondences between scene surface 7 and model surface 2; and between
scene surface 5 and model surface I. The number 2 at the end of the line in the table
indicates that the first hypothesis was failed during the verification stage after failures
along two different paths in the search space, each failure caused by a mismatch of a
scene feature, physically adjacent to one of the hypothesis generating LFS features, and
the model feature located within the uncertainty range of the tessel corresponding to the
scene feature. This is not to imply a fan-out of only 2 at the end of the hypothsis gen­
erating segment for hyp#l; only that for the other branches the scene features, again
physically adjacent to one of the LFS features, had no corresponding model features on
the feature sphere. This is also the reason for 0 at the end of many of the line entries in
the table.

As mentioned in Section 7, the acceptance of a hypothesis is predicated upon our
finding at least 33% of the model features from amongst those that are adjacent to the
features in an LFS. As shown in the table, from among the 75 generated hypotheses
only the hypothses #23 and #75 are verified and lead to the recognition of an instance of
“ square" in the first case, and to that of “ round" in the other. During the verification of
hypothesis #23, scene surface 16 fails to match model surface 3 of the square model,
although scene regions 18 and 21 do match model regions 4 and 5, respectively. As is
evident from the stripe image of Fig. 3.25, the difficulties with scene surface 16 are due
to problems with the robust detection of stripes over that surface; these problems are
probably caused by the rather very acute angle between the stripe projection direction
and the surface. It is entirely possible that the surface labeled 16 in the scene is made
of reflections o f the stripes seen in adjoining surfaces. In other words, surface 16 is
most likely a spurious surface and not matchable with its potential candidate model sur­
face 3. During the verification of hypothesis 75, scene region 23 is not matched to any
model region. This is because only a small portion (less than 25%) of the cylindrical

Table 3.3 Output listing of the interpretation of scene #2.

Verify hyp #1 Model: square Vert: 12 Reg: (7->2) (5 -> l) ... failed - 2
Verify hyp #2 Model: square Vert: 12 Reg: (7->l) (5->2)... failed - 2
Verify hyp #3 Model: square Vert: 12 Reg: (7->10) (5->4) ... failed - 2
Verify hyp #4 Model: square Vert: 12 Reg: (7->4) (5->8)... failed - 1
VCTify hyp #5 Model: square Vert: 12 Reg: (7->10) (5->12)... failed - 1
Verify hyp #6 Model: square Vert: 12 Reg: (7->4) (5->10)... failed - 1
Verify hyp #7 Model: square Vert: 12 Reg: (7->12) (5->9)... failed - 1
Verify hyp #8 Model: square Vert: 12 Reg: (7->9) (5->10)... failed - 1
Verify hyp #9 Model: square Vert: 12 Reg: (7->9) (5->12)... failed - 1
Verify hyp #10 Model: square Vert: 12 Reg: (7->12) (5->10)... failed - 1
Verify hyp #11 Model: square Vert: 12 Reg: (7->10) (5->9)... failed - 1
VCTify hyp #12 Model: round Vert: 18 Reg: (17->9) (l l -> 7) ... failed - 0
Verify hyp #13 Modeh round Vert: 18 Reg: (17->9) (11->1)... failed- O
Verify hyp #14 Model: round Vert: 18 Reg: (17->7) (l l -> 9) ... failed - O
Verify hyp #15 Model: round Vert: 18 Reg: (17->1) (I l-> 6)... failed - O
Verify hyp #16 Model: round Vert: 18 Reg: (17->6) (I l->7) ... failed - O
Verify hyp #17 Modeh round Vert: 18 Reg: (17->7) (l l -> 6) ... failed - O
Verify hyp #18 Model: square Vert: 18 Reg: (17->2) (11->1)... failed - O
Verify hyp #19 Modehsquare Vert: 18 Reg: (17->1) (11->10)

scene region 18 matched to model region 4 ... failed - 2
Verify hyp #20 Model: square Vert: 18 Reg: (17->10) (l l -> 2) ... failed - O
Verify hyp #21 Model: square Vert: 18 Reg: (17->8) (11->1)... failed - O
Verify hyp #22 Modehsquare VCTt: 18 Reg: (17->1) (l l -> 2) ... failed-O
VCTify hyp #23 Model: square Vert: 18 Reg: (17->2) (I l->8)

scene region 18 matched to model region 4
scene region 21 matched to model region 5 ... SUCCEED! H - 2

Verify hyp #24 Model: square Vert: 26 Reg: (19->4) (13->3)... failed -O
Verify hyp #25 Model: square Vert: 26 Reg: (19->3) (13->4)... failed - O
Verify hyp #26 Model: square Vert: 26 Reg: (19->7) (13->4)... failed - O
Verify hyp #27 Model: square Vert: 27 Reg: (13->4) (19->3)... failed -O
Verify hyp #28 Model: square Vert: 27 Reg: (13->3) (19->4) ... failed - O
Verify hyp #29 Model: square Vert: 27 Reg: (13->7) (19->4) ... failed - O
Verify hyp #30 Model: round Vert: 36 Reg: (24->7) (20->10)... failed - O
Verify hyp #31 Model: round Vert: 36 Reg: (24->10) (20->9)... failed - 2
Veiiify hyp #32 Model: round Vert: 36 Reg: (24->9) (20->7)... failed - O
Verify hyp #33 Model: round Vert: 36 Reg: (24->9) (20->l) ... failed - O
Verify hyp #34 Model: round Vert: 36 Reg: (24->l) (20->7)... faded - 2
Verify hyp #35 Model: round Vert: 36 Reg: (24->7) (20->9)... faded - O
Verify hyp #36 Model: round Vert: 36 Reg: (24->7) (2 0 -> l)... faded - O
Verify hyp #37 Model: round Vert: 36 Reg: (24->l) (20->6)... faded - 2
Verify hyp #38 Model: round Vert: 36 Reg: (24->6) (20->7)... faded - O
Verify hyp #39 Model: round Vert: 36 Reg: (24->6) (20->10)... failed - O
Verify hyp #40 Model: round Vert: 36 Reg: (24->10) (20->7)

scene region 28 matched to model region 4 ... failed - 3
Verify hyp #41 Model: round Vert: 36 Reg: (24->7) (20->6)... faded -O
Verify hyp #42 Model: square Vert: 36 Reg: (24->2) (20 -> l)... faded - O

Table 3.3 Continued

Verify hyp #43 Model: square Vert: 36 Reg: (24->l) (20->10)... failed - 0
Verify hyp #44 Model: square Vert: 36 Reg: (24->10) (20->2)... failed - 0
Verify hyp #45 Model: square Vert: 36 Reg: (24->8) (20->l) ... failed - 0
Verify hyp #46 Model: square Vert: 36 Reg: (24-> I) (20->2)... failed - 0
Verify hyp #47 Model: square Vert: 36 Reg: (24->2) (20->8)... failed - 0
Verify hyp #48 Model: square Vert: 36 Reg: (24->3) (20-> l0)... failed - 0
Verify hyp #49 Model: square Vert: 36 Reg: (24->10) (20->4)... failed - 0
Verify hyp #50 Model: square Vert: 36 Reg: (24->4) (20->8) ... failed - 0
Verify hyp #51 Modehsquare Vert: 36 Reg: (24->8) (20->3) ... failed - O
Verify hyp #52 Model: square Vert: 36 Reg: (24->12) (20->7)... failed - O
Verify hyp #53 Model: square Vert: 36 Reg: (24->7) (20->10)... failed - G
Verify hyp #54 Model: square Vert: 36 Reg: (24->10) (20->12)... failed - O
Verify hyp #55 Model: square Vert: 36 Reg: (24->4) (20->10)... failed - O
Verify hyp #56 Model: square Vert: 36 Reg: (24->10) (20->7)... failed -O
Verify hyp #57 Model: square Vert: 36 Reg: (24->9) (2 0 -> l)... failed - O
Verify hyp #58 Model: square Vert: 36 Reg: (24->l) (20-i>8)... failed - O
Verify hyp #59 Model: square Vert: 36 Reg: (24->8) (20->9)... failed -O
Verify hyp #60 Model: square Vat: 36 Reg: (24->12) (20->9)... failed - 0
Verify hyp #61 Model: square Vert: 36 Reg: (24->9) (20->8) ... failed - 0
Verify hyp #62 Model: square Vert: 36 Reg: (24->8) (20->12)... failed - O
Verify hyp #63 Model: square Vert: 36 Reg: (24->10) (20 -> l)... failed - O
Verify hyp #64 Model: square Vert: 36 Reg: (24->l) (20->9)... failed - 0
Verify hyp #65 Model: square Vert: 36 Reg: (24->9) (20->10)... failed - 0
Verify hyp #66 Model: square Vert: 36 Reg: (24->9) (20->12)... failed - 0
Verify hyp #67 Model: square Vert: 36 Reg: (24->12) (20->10)... failed - 0
Verify hyp #68 Model: square Vert: 36 Reg: (24->10) (20->9)... failed - 0
Verify hyp #69 Model: round Vert: 37 Reg: (20->7) (24->10)... failed - 2
Verify hyp #70 Model: round Vert: 37 Reg: (20->10) (24->9)... failed - 0
Verify hyp #71 Model: round Vert: 37 Reg: (20->9) (24->7)... failed - 0
Verify hyp #72 Modehround Vert: 37 Reg: (20->9) (24->l) ... failed -2
Verify hyp #73 Model: round Vert: 37 Reg: (20->l) (24->7)... failed - O
Verify hyp #74 Model: roupd Vert: 37 Reg: (20->7) (24->9)... failed - O
Verify hyp #75 ModehroUnd Vert: 37 Reg: (20->7) (24->l)

scene region 28 matched to model region 4
scene region 31 matched to model region 2
scene region 25 matched to model region 8 ... SUCCEED!!!- 6

Total number of feature matching tests for verification: 29
I*rocess completed
Recognized_objects:

square

surface is visible in the scene, and the computed radius is off too much from its correct
value to match to the candidate model region 5.

Note from Table 3.3 that most of the 75 hypotheses are rejected immediately dur­
ing verification, without the computational burden of any feature matching. For each
line entry in the table that ends in a 0, no features had to be matched during the
verification stage; the hypothesis failed simply because no model features could be
found in the vicinity of the tessels for the scene features used during verifications. In
fact, as depicted at the end of the table, for the scene of Fig. 3.26, only 29 features had
to be matched during the entire verification process. So, on the average, the system had
to match only 0.387 features during each hypothesis verification. The largest number of
features matched during any verification was 6, this was for hypothesis #75, confirming
our O (n) measure for the time complexity of verification.

This prototype system is programed in C language and runs on a SUN-3 worksta­
tion. The CPU time for interpreting a processed range image was 9 seconds for the
scene of Fig. 3.5 and 4 seconds for the scene of Fig. 3.26. The CPU time is approxi­
mately propotional to the number of generated hypotheses, which in turn depends on
the complexity of the scene.

3.9. Conclusions

In this chapter, we have presented feature matching and recognition strategies in
3D-POLY. For recognition, the System used an approach based on hypothesis genera­
tion and verification. The strategies used in the system lead to a polynomial time algo­
rithm for the interpretation o f range images.

The polynomial bound on the time complexity was made possible by two key
ideas, one for hypothesis generation and the other for verification. The key idea in the
former was the use of special feature sets, the spatial relationships between the features
in these Sets being such that the number of possible ways in which the scene feature
could be matched to these in the sets was substantially curtailed. The key idea in the
verification stage was the association o f a principal direction with a feature and, after
the establishment o f a pose tranform, comparing a scene feature with a model feature
only if the two agreed on the basis of their principal directions. This sharply reduced
the number of scene and model features that had to be actually matched, leading to
great savings in the computations involved.

To embed the notion of feature principal-direction in a computationally efficient
framework, we represented the model features on a feature sphere. We advanced a data
structure for feature spheres and presented efficient algorithms for finding

130 chen/kak

neighborhoods on the sphere and for assigning a tessel on the sphere to a measured
principal direction.

We showed how our object recognition framework should be applied to scenes
consisting o f multiple objects in a heap. Finally, we discussed experimental results vali­
dating our complexity measures.

131 chen/kak

C H A P T E R * ;;
LEARNING 34) MODELS FROM MULTlFlE VIEWS 6E OB|ECfiS

To be completely functional, a robot vision system must have access to a library o f
model representations of all possible objects that we want die system to recognize.
Models may be specified either via CAD descriptions or the system may be provided
with a capability to generate its own models “ by showing." In this chapter, we will
take the latter approach and present a procedure which consists o f placing an object in a
computer controlled structured-light scanner capable of generating range maps o f the
object from many different viewpoints. We will show how the surface information from
the different viewpoiiits is integrated into a full 3-D representation of the object. The
learned representation thus generated consists of a feature sphere, which can then be
directly used by the recognition procedure described earlier. In addition, it is also pos­
sible to draw wire-frame and full boundary representations from the feature spheres so
obtained, although in this chapter we will only show the former.

4.1. Introduction

The recognition strategy of Chapter 3 must have available to it models o f the
objects that we want the robot vision system to recognize, and these models should
preferably utilize the feature sphere representation. Of course, a superior goal would be
drive the recognition system directly from the available CAD models o f objects; how­
ever, CAD models cannot be used directly for vision applications because features that
one may be able to pull out of an image are not explicitly defined in such models.
Therefore, one must always install an intermediate representation to bridge CAD with
vision, a point that was eloquently made in [K&et-Zl].

For the purpose of this chapter, we will assume that we want our models to be in
the feature sphere form. Clearly, for someone to drive our recognition method with
CAD, they will have to write their own “ translator" to convert CAD data structures into
feature sphere data structures. Much work has been done by other researchers in
developing these types of translators, translators that convert CAD representations into
those which are more suitable for use by vision algorithms. The most notable work
along these lines was done by Bhanu and Ho [B<£//-87]; they have discussed

132 chen/kak

procedures for converting a CAD boundary representation into vision-oriented
representations such as EGI, octrees, etc. Similarly, Xie and Calvert [X&C —88] have
presented a rule-based system that can convert a boundary representation of an object to
their so called mCGS-EESI" (constructive geometric solid-extended enhanced spherical
image) representation. In the works of Hansen and Henderson [H&H-&7] and Dceuchi
[Ik—SI], an interpretation tree is built from a CAD model of the object.

As was mentioned before, the focus of this chapter is on presenting a technique in
which the model of an object is learned by showing, the learned model being directly in
the form that can be used in the recognition procedure. To construct a full 3-D model,
an object must be shown to the system in many different orientations and the informa­
tion obtained from all the orientations somehow integrated, leading to the notion of
viewpoint integration. At the simplest level, as was done by Oshima and Shirai
[(M S -8 3], viewpoint integration may consist q f simply collecting every possible view
of an object, each view being represented by a graph of the surface-features extracted
from that view. Sirmlar approaches for model construction are also typical of those
used in the recognition of 3-D objects from 2-D imagery. An obvious drawback of such
approaches is the large size of the resulting model library, which can degrade the per­
formance o f the recognition system.

At a more sophisticated level, learning a model consists of actually merging the
feature information gleaned from different viewpoints. As an example of this approach,
Baker [Ba-77] has presented a scheme for model building in which points of curvature
irregularity extracted from different views of an object are correlated. Martin and
Aggarwal [M&A -83] have presented a method in which a volumetric model of an
object is constructed by intersecting the bounding volumes, each such volume being
specified by the silhouette in a view. In the scheme advanced by PotmesD [P o-83],
bi-cubic surface segments from various views of an object are integrated into a com­
plete boundary representation of the object. Another scheme has been presented by
Herman and Kanade [H&K-S6] in which 3-D models of buildings are built incremen­
tally from sequences of stereo images. A similar approach has been presented by Xie
and Calvert [X&C-86] for generating 3-D models of office scenes. To the best of our
knowledge, the models constructed by all these methods were used only for displaying
the objects thus synthesized and not for driving a recognition system. In fact, it is not
obvious that it would at all be easy to use the model representations constructed in these
works for recognition. How the generated models may be used for recognition is more
obvious in the contributions made by Underwood and Coates [IM C -7 5] and Dane
[D a-82]. Underwood and Coates [CMC-75] have presented an agorithm for con­
structing graph representations of convex polyhedra from multiple views of the objects,
a node in the graph being a planar face and an arc expressing adjacency between two

133 ' . cfteii/fcak

faces; In the method of Dane [D a-82], viewpoint information is merged to generate
planar and quadric surfaces.

An important issue in multiview integration is the determination of whether a
feature seen in a new view has been seen in any previous views. Clearly, this problem is
a variation on the feature matching problem in object recognition. In [U&C-15] and
[D a-82], this type of feature matching is carried out by exhaustive search, meaning
that a feature seen in anew view has to be tested against every feature seen in all previ­
ous views. In this chapter we show that the highly efficient feature matching strategy
presented in Chapter 3 can be applied to this problem with little modification. Another
important issue in multiview integration is how to merge two pieces of information car­
ried by two features itt two different views when they are in effect the same feature. We
will propose solutions to both problems in this chapter.

The physical setup of our model learning system, shown in Fig. 4.1, consists of a
computer-controlled turntable and a structured light range scanner. The feature extrac­
tion component of this system is the same as that described for the object recognition
system described earlier. The feature matching and merging component is a
modification o f the feature matching routine employed earlier. In the next section, we
will give an overview of the setup and the system. Then in Section 3, we show how one
must establish ah object-centered coordinate system in which the 3-D model is ulti­
mately systhesized; the manner in which the coordinates are selected must take into
account considerations such as any wobble in the turntable. In Sections 4 and 5, we
will then discuss how to initiate a model from the first view of the object and, subse­
quently, how to update a partial model with data from successive views. Finally, in
Section 6, we will use an experimental example to illustrate the working of the entire
model learning system,

4.2. General Strategy and System Overview

In multiview integration for model building, the number of views from which an
object is viewed must satisfy two requirements, which we will now state. (As the reader
will notice, the second requirement will subsume the first.) For the first requirement, it
is necessary that every object feature be visible in at least one view. And, for the second
requirement, features must overlap between successive views for the purpose of estab­
lishing the adjacency relationships between the features. Obviously, if a given feature
was visible in only a single view, it would be impossible to discover what other features
the given feature might be adjacent to. The second requirement also points to the fun­
damental problem in model building by multiview integration, viz,, how to relate
features in one view to features in another view, keeping in mind the likelihood that

134 chen/kak

rotation

Figure 4.1. A model learning system. The image acquisition and the feature extraction
components of this system are the same as in Fig. 0.1.

extraction

partial

model

image

acquisition

feature matching

and merging

135 chen/kak

some of the features in the two views are the same. Our strategy to solving this prob­
lem is a modified version of the strategy for object recognition described in Chapter 3

■ and consists of the following steps: From the first view of the object, we first define an
object-centered coordinate system. We then establish a feature sphere (or, feature
Spheres, if more than one feature type is being considered) corresponding to this coordi­
nate system and assign the extracted features to the appropriate tessels on the sphere.
Each feature sphere is then incrementally updated by using features and their attribute-
value pairs gleaned from each successive view.

For incrementally updating a feature sphere, we first determine the transformation
between the fixed world coordinate frame in which each view is taken and the object-
centered coordinate frame which rotates with the object and in which the feature
spheres are built. For the most part, this transformation is easily derived from the rota­
tion of the turntable. However, if the object is manually turned upside down to integrate
in the information from the underside of the object, the system must automatically com­
pute this transformation. Once the transformation is known, the feature matching cri­
teria discussed in Chapter 3 Can be used to determine whether or not a feature was seen
in a previous view. If a feature in the new view is matched to a feature in the currently
known partial model, the system must merge the two features together; otherwise, the
partial model must be updated by the addition of the new feature.

The following pseudo-code represents this model learning strategy:

build_model (<9OT> {/)}) {
for each new view I in {/}

extract a feature set {5} from range image I
if (first view)

initiate_model ({5}, Om)
else

compute transformation Tr
update_model ({5}, Om, Tr)

for each new view I in {/}
collect LFS’s }

initiate_model ({5}, Om) {
define an object-centered coordinate system Trm
allocate a feature sphere for each class of feature
for each 5,- in {5}

add (7>ot (Si)) to Om }

else add (T r 1(Si)) to Om)

Note that in the last step in “ build_model" the system collects all the local featuresets
(LFS) from the synthesized 3-D model. In accordance with the discussion in Chapter 3,
these LFS’s play an important role in the object recognition system described there. In
particular, the LFS’s are used for generating pose transformation hypotheses.

Fig. 4.2 depicts the two essential elements of the model learning system, the turnt­
able and the structured-light unit. An object whose model is to be created is placed at
the center of a turntable and its range images are then taken for different rotational posi­
tions of the object; for each range image the structured light scanner is translated
linearly, as illustrated by the straight arrow in the figure, the direction o f motion
corresponding to the y-axis in the world coordinate system. The rotations o f the turnt­
able and the translations of the scanner are all under computer control and can be varied
depending upon the complexities of the object shape. (For simple objects, the different
rotational views can be as far apart as 90° and a 3-D model synthesized with just four
views.) The axis of the rotation of the turntable is approximately parallel to the +z
direction of the world coordinate system. To provide a good coverage of both the sides
and the top of the object, both the center of the laser beam and the optic axis of the
camera make angles that are roughly 45° with the z-axis.

Unless the object has a flat bottom, it often becomes necessary to also model those
surfaces that would be invisible when the object is first placed on the turntable due to
their being in contact with the table. To make a complete 3-D model for such objects,
after all the views are collected in the first position, the object is manually turned upside
down and scanning resumed. In general, just as many views are collected in the new
position as in the first. The important point to note is that the system automatically
computes the transform Tr that relates the object-centered coordinate frame for the
object in ah upside-down position to the world coordinate frame by matching common

4,3. Determination of Transformations

Clearly, the first thing that must be done in model learning is to establish a coordi­
nate system in which the model will be synthesized. For this purpose, we set up an

features.

137 chen/kak

World coordinate system

Figure 4.2. The physical setup of the model learning system. The structured light
range sensor is calibrated with respect to the world coordinate system.

object-centered coordinate system. The process of model synthesis is greatly facilitated
if this coordinate system is defined in such a manner that its z-axis is coincident with
the axis of rotation of the turntable. It also helps to define the origin of this coordinate
system at a point that is half way between the highest point on the object and the turnt­
able. W hat follows is a procedure for defining such an object-centered coordinate sys­
tem given the first view of the object. Note that this procedure relies solely on the read­
ing of the range sensor of the system, and does not require any manual measurements.

The reader beware that we are making a distinction between the object-centered
coordinate frame, in which all the views are pooled for model synthesis, and a world
coordinate frame, in which sits the scanner. Therefore, it is the world coordinate frame
in which we specify the scan directions. We will assume that the range sensor has been
calibrated [C&RT-87] with respect to the world coordinate system. The origin of the
world coordinate system can be anywhere.

Of course, since the scanner resides in the world frame, we must first establish the
world coordinate system before we can set up the object-centered coordinates. The
world frame is established essentially by the human operator. In our experiments, the
world frame is as shown in Fig. 4.2, with the y-axis corresponding to the translational
movement of the structured-light unit and the z-axis nominally perpendicular to the
turntable.

Next, the object-centered coordinate frame must be established. We will now
describe a procedure for doing so. The first step consists of determining the axis of rota­
tion of the turntable, since this axis will serve as the z-axis of the object-centered sys­
tem. The rotating axis can be specified by a unit direction vector, a. We will also
assume the existence of a center of rotation, denoted by po; this will be a point on the
rotation axis located at the intersection of the axis with the plane of the turntable. Note
that the rotation center, as specified by Po, will not by itself be used for the origin of the
object-centered system, but Only as an intermediate step toward obtaining that origin.

To determine a, we take two range images of the face (which is planar) of the
turntable; for the second image the turntable is rotated by 180°. In each of these images,
a plane is fit to the turntable range data, and the surface normals computed. Let the two
surface normals be denoted by n 0 and n 180. If the surface of the turntable was per­
fectly perpendicular to the rotation axis for all angular positions of the turntable, the
two normals would be identical and parallel to a. In general, this condition is not
satisfied because of the slight wobble that might be present when the turntable is
rotated. In the presence of the wobble, the directions of the two normals are symmetric
with respect to a. In either case, the direction of the rotation axis can be computed
from

138 chen/kak

139 chen/kak

WI0 1 /I ,8“y2
I (» “ + J11SII)/2I '

The position vector p q to the center of rotation can be found from a range image
in which the center of the turntable is marked somehow. To be able to localize the
center precisely, we usually place a rectangular box on the turntable with one of its
comer touching the center. We then take a range image of the box and the turntable
and detect the comer in the resulting data.

Since we want the origin of the object-centered coordinate frame to be about half
way between the highest point on the object and the turntable, the system utilizes the
first view of the object for locating this origin. If we denote by h the maximum height
of any object point in the first view, the location of the origin of the object-centered
coordinate system is then given by

0 = P o+(y) a

Since the object is placed roughly at the center of the turntable, for many objects this
origin will be roughly at the volume center of the object. We then specify as follows
the three axes, x ’, y ’ and z ’, of the objeet-centered coordinate system

z ' = a

a x [l OOjt
la x [1 0 0] 'l

x ' - y ' x z '

where [I 0 Ojt represents the x axis of the world coordinate system. Thus the object-
centered coordinate frame in the first view is related to the world coordinate frame by
the following transformation

Tr0 =
X y y y 2 y Oy

z y z 2 z °z
o o o I

For a given position vector in the object-centered frame for the first view, this transfor­
mation helps us find its corresponding coordinates in the world frame. In other words,
Tr q takes from the object-centered frame to the world frame. Therefore, TrQ1 takes us
from the world frame to the object-centered frame for the first view. Suppose, in the
range map for the first view - the range map for every view will be defined in the fixed
world frame - we locate a feature at, say, the vector v, then the coordinates of this vec­
tor in the object-centered frame will be given by Trn1V.

As the object is rotated on the turntable for a different view, the object-centered
frame also rotates with the object; however, the range map is still in the same world
frame. Let the angle of rotation of the turntable, measured counterclockwise in the xy-
plane of the world frame, for the i th view be 0,-. The transformation that takes us from
the fixed world frame to the object-centered frame for the i th view is given by TrJ1,

: where

Trl - Tr q Rotz-(Qi) (4.1)

with Rot/ defined by

cosG,- -sinG,- 0 0

sinGi cosG,- 0 0

0 0 I 0
0 0 0 1

Note that the matrix Rot(Q) rotates a vector through an angle 0 counterclockwise in the
xy-plane. Therefore, if in the i th range map, an object feature is found to be located at,
say, the vector v, then the corresponding vector in the object-centered frame is TrJ1 v.

In the derivation of Equation (4.1), we have made use of the knowledge that the
object undertakes a rotation around a known axis through a known angle from one view
to the next. Clearly, when the object is flipped for generating information on its under­
side, this transformation will cease to be valid. W e therefore must have recourse to
some algorithm that can re-establish the transformation of the object in the new setting.
The algorithm that is used for this purpose is very similar to the one used for generating
pose-transformation hypotheses in the object recognition system described in Chapter 3.
We will now describe how exactly we find the transformation that takes us from the
world frame to the object-centered frame after the object is flipped.

Assume that in the first set of scans, before the object is flipped, the system has
collected all the possible LFS’s from the partial model constructed so far. Further
assume that at least one of these LFS’s is visible in the the first view after the object is
flipped. The algorithm then proceeds as follows: Extract every LFS from the range
image and try to find a matched LFS in the partial model built so far from the topside
views. Each such match will, in general, lead to a different pose transformation for the
object in its flipped position. For each such pose transformation, we count the number
of features extracted from the range image that can be matched with the partial model.
The pose transformation yielding the largest count is accepted as the transformation that
takes us from the world frame to the object-centered frame. The algorithm for comput­
ing this transformation is sketched below in pseudo language:

140 chen/kak

jRot/(Bi) =

chen/kak

reestablish_transform (/ , Om) {
extract featp^s {5} frpm range image /

f extract a ne\y LFSs from{S}
if (LFSs matches an LFS in Om)

;'">’;::''̂ "-'''̂ '''estimate'7>*
count # of matching features between {5} and Om under Tr

go to *
A,

return the Tr which yields the maximal c o u n t}

Once this transformation, denoted by Trt, is found, for subsequent rotations of the
object the transformation that takes us directly from the fixed world frame, in which all
range maps are constructed, to the object-centered frame are determined as before. In
other words, if

Tri =Trt Rotz(Bi) (4.2)

then, Tri takes us from the fixed world coordinates to the object-centered coordinates
for the i th view taken after the object is flipped. At the risk of being repetitious, we
would like to elaborate by saying that if in the i th range map after the object is flipped,
if a feature is located at the vector v in the world frame, then the corresponding vector
in the object-centered frame is given by TrJ1V.

4.4. Model In itiation in the F irst View

Once the object-ceniered coordinate system is established, the procedure for ini­
tiating a partial object model from the first view is rather straightforward. We first
transform the position/orientation attributes of every detected object features in the
image from the world coordinate system to the object-centered coordinate system by
multiplying the attributes from the left by Tri1. In short, we perform the following
feature translation:

Tri1 (Si) -* Mc(i) (4.3)

where Si is a scene feature and Mc^ is the translated model feature relabeled as c(i).

As mentioned in Chapter 3, a feature can generally be described by three sets of
attributes: shape, relation and position/orientation. Of these, only position/orientation
attributes are transformation dependent. We thus can rewrite expression (4.3) in terms
of the three sets of attributes as follows:

sa (Si) sa (MC(,)) for all sa e SA(Si)

c(ra (Si)) —» ra (Mc(t)) for all ra e RA(Si)

Tr-1 Cla(Si))-* la (Me(O) - fo ra // Ia sL A (S i)

Note that, as pointed out in Chapter 3, some of the shape attributes and
position/orientation attributes are viewpoint dependent, i.e. the values of those attri­
butes are subject to occlusion. Therefore when adding a feature to the model we must
take note Whether the feature is occluded in the scene. For example, a surface region in
an image may have been occluded by some other surfaces if any one of its boundaries is
an occluded boundary; consequently, some of the attributes, say, area and centroid, of
the region may not be accurate. If a feature in the image is found occluded, we must
regard its viewpoint dependent attributes as ''Weak1Vattributes, meaning that their values
will be overwritten or modified if a more complete version of the feature is detected
again in any of the subsequent views of the object. In our current implementation, we
do not explicitly mark attributes as “ weak" when occlusions are detected; or, one might
say, we treat every attribute as “ weak." To explain, suppose from a given view the area
o f a surface has been extracted, and then if for the same surface a larger area becomes
available in a subsequent view, the larger value will overwrite the earlier smaller value.
Of course, there are attributes that are not amenable to this “ overwrite" formula; more
on this subject in the next section.

After the features extracted from the first range map are translated, pointers to
them must be recorded on a feature sphere, or a set of features spheres if different
classes of features are used. To accomplish this, the principal direction of each feature
is calculated from its position/orientation attributes in accordance with the formulas
presented in Chapter 3. From the principal direction of a feature, its corresponding cell
on the sphere is found by using the tessel— assignment function, also described in
Chapter 3.

4.5. Updating the Model

We will nOw discuss how the features extracted from a new view are used to
update the partial model built from the previous views. This implies that the system
must first decide whether a feature detected in the new view is indeed "new" to the par­
tial model; if it is, the system should add the feature to the partial model, otherwise the
new information on what is an aleady existent feature must somehow be merged with
the old information.

The newness/oldness of a feature, extracted from the new view, with respect to the
partial model can only be determined by comparing the feature with those already
stored in the partial model. Clearly, this comparison of features is the same as the
feature matching problem discussed in Chapter 3. Recall that for each view of the

142 chen/kak

143 chen/kak

object, the transformation that takes us from the world coordinates, in which the scene
features are extracted, to the object-centered coordinates used for the feature spheres is
known to the system, as it can be calculated from equation (4.1) or (4.2). Given the new
feature, we first translate it to the object-centered coordinate frame via 7V-1 by using
the formulas shown earler; we then compute its principal direction. This principal direc­
tion will correspond to a particular tessel on the feature spheres o f the model. The
neighborhood of this tessel is searched for any registered model features to answer the
question whether the new feature is the same as one of the old features. Clearly, the
size of this neighborhood should depend on the uncertainty in the computation of the
principal direction, and every model feature in the neighborhood is a candidate for test­
ing against the new scene feature. As in object recognition, feature comparisons are
made on the basis of three criteria — shape, relation, position/orientation, If no candi­
date features can be found in the neighborhood on the feature spheres, or if all the can­
didate features in the neighborhood fail to match, the new feature is considered to be
new information about the model, and is then added to the model as were the features
during the model initiation stage in the first view.

On the other hand, if a feature extracted from the current view of the object can be
matched to one of the features on the partial model, we must then decide what to do
with the feature. Although, the simplest solution would be to totally ignore the new
feature, one has to bear in mind the possibility that the new attribute values might be
“ superior" to the old values, in the sense that they might be more free of occlusion, or
may be less distorted due to noise and other artifacts. We therefore need some mechan­
ism for “ combining" the old and the new attribute values in such situations.

For attributes that are viewpoint independent, the new and the old attribute values
are best combined by taking an average of the two, assuming that we have as much
confidence in the new attribute value as in the old. For example, if the attribute radius
of a feature cylindrical-surface already exists in the partial model, and if from the
current view a new value becomes available for this attribute, then, since this attribute
is viewpoint independent, we should update the value of radius by averaging the two
values. Similar updating would have to be done for other viewpoint independent attri­
butes like the normal of a planar surface or the position of a vertex.

An entirely different strategy is required for viewpoint dependent attributes. In this
case, if both the partial model and the new values are unoccluded, the system takes an *

* . ■ - ■■■ ■ ■
Of course, this is a very simple strategy that suffices when the same feature would not be

seen in more than two or three views. For those features that might be visible in a large number of
views, in any combination the new attribute values would have to given a weight that would be
inversely proportional to the number of updates already made for that attribute value.

average of the two. On the other hand, if one of the values is occluded, we retain only
the unoccluded one. And, if both are occluded, the system takes a weighted average of
the two, each weight being proportional to the number of pixels visible to the sensor.

Note that the notion of averaging, weighted or unweighted, for updating the value
o f an attribute can only be applied to numerical attributes. For non-numerical attri­
butes, how the new information is combined with the old is decided on a case-by-case
basis. For example, when merging two sets of features that are the values of two adja­
cency attributes, we take the union of the two sets.

4.6. ExperimentalResults

This section will present an example for illustrating how the entire model learning
process is carried out. The object used, displayed in Fig. 4.3, consists of thirteen planar
faces and one conical surface. To give the reader a rough idea of the size of the object,
the length and the width of the object are approximately 7" and 3.5", respectively; the
height to the heighest point, in the middle of the object, is about 3". The model learn­
ing example discussed here generates all the surfaces from only the top views; in other
words, the object was not flipped. For modeling the underside, the system used the
default assumption that the underside was a planar surface, which in this case happens
to be a fact. The system was commanded to take six views of the object, 60 degree
apart. The range image of each view consisted of 85 scans with 0.1" scan resolution,
meaning that between successive positions of the structured-light unit during a transla­
tion, the distance traveled by the unit along the y-axis of the world coordinate system
was 0.1". Fig. 4.4(a-f) are the stripe images for the six views, and Fig. 4.5(a-f) are their
segmented needle maps. The label of each segmented region is displayed near the
center o f the region. The features extracted from each view consist of primitive sur­
faces and vertices; the model representation will be based on these two classes of
features. For clarity, we will focus our discussion mostly on surface features, though
we will mention vertex features when relevant. Notice that region 5 of view I, region 4
of vie\v-2, region 2 of view-3, etc. are the face of the turntable so they are excluded
from the model learning process.

4.6.1. Initiatihg the Model

Before we start to process the first view, art object-centered coordinate system is
defined according to the procedure described in Section 3 with respect to the world
coordinate system in which the structured-light scanner is calibrated. Two spherical
arrays with frequency-of-geodesic-division equal to 16, which leads to 2562 cells on
each sphere, are then created to represent two feature spheres, one for surface features,

146

■(({((({

Figure 4.4. Continued

148

Figure 4.4. Gontinued

149

Luuhl

3

Figure 4.5. Segmented needle maps of the six views of the object.

150

(c)

t uol u)

■ ,Jj

dU :

t U nh1I

___ LiU.-

Figure 4.5. Continued

151

.,Jj m ; ;

Figure 4.5. Continued

and the other for vertex features. The two feature spheres form the bases for feature
matching in this model learning process. As shown in Fig 4.5-a, 9 regions and 16 ver­
tices, the vertices are not labeled, are detected in the first view. Region 5, which is the
face o f the turntable, will not be considered as a surface feature o f the object, so only 8
surface features are passed on to the learning process. Furthermore, we have chosen to
disregard scene vertices formed between a curved surface and a planar/curved surface
because they usually are spurious junctions caused by occlusion.

As was mentioned in Chapter 3, each feature is represented in the computer
memory by a frame data structure. For example, the attribute frame for the region I
extracted from the first view is as follows:

152 chen/kak

Region I
Type: planar
Number_of_pixels: 743
Number_of_adjacent_regions: 3
Adjacent_regions: (2 9 4)
Type_of_edge_with_adjacent_region: (convex convex convex)
Vertices_between_adjacent_regions: ((1 ,2) (2 ,3) (12,11))

V--Ẑ NonnaJ::
Moment_direction: (0.33467 0.88405 0.32627)
Region_center: (-2.11130 17.15708 4.67800)

A couple of entries in the attribute set need clarification. To establish adjacency rela­
tionships between regions, the bounding contour o f each region in a range map is traced
in a clockwise direction and a record made of the common edges and vertices o f a given
region with other regions. During boundary tracing, note is also made of the start-vertex
and the end-vertex when a common edge is found with another region. For example, the
list (I, 2) in the value of the attribute VerticesJ>etween_adjacent_region, I is the label
of the start vertex of the common edge between regions I and 2; 2 is the label of the
end vertexZ Also, note that the nature of this common edge is convex. Another attribute

sft '
Note that, in general, a vertex feature in a scene is defined either as a junction of three

surfaces, or a junction of two surfaces and an occlusion. However, when an occlusion is involved
and one or both of the surfaces meeting at a junction is curved, that vertex is ignored, because,
usually, that is not a real vertex in the scene. Such false vertices become evident when, for
example, a range map is made of a hole from above with the interior of the hole only partially
visible.

that might bear some explanation is moment direction', the direction refers to the direc­
tion of the line about which the moment of inertia is a minimum (in most cases, this is
the direction along which the surface is most elongated). The attribute Normal applies,
o f course, to only planar surfaces, which is the case here. For, say, a cylindrical surface,
instead of Normal, the relevant attribute would be Axis, whose value would be the
direction of the axis of the cylinder.

In a similar vein, the attribute frame for vertex I extracted from the first view is:

Vertex I
Position: (-3.9276 18.6921 5.2745)
Belongs_to_regions: (2 I *)
Adjacent_vertices: (2 * *)
Edge_type: (convex * *)

In the example here, we made the assumption that exactly 3 surfaces had to meet at a
vertex. Since it is likely that for a vertex not all the converging surfaces may be visible
in a given view, we must leave place-holders for those that are not. This has been
accomplished by the use o f the symbol in the above frame. Therefore, ’*’ denotes an
uninstantiated attribute value.

The reader has probably noticed that adjacency information about surfaces, ver­
tices, and edge-type of common edges is redundantly recorded on the attribute frames
of the surface features as well as the vertex features. The reason for th is is t im e

efficiency, especially when it comes to the use of adjacency and edge-type information
on vertex features for the generation of LFS’s. The reader may recall from Chapter 3
that LFS’s are used for hypothesis generation.

Now we will describe a step that is particular to model learning. While the attri­
bute frames we showed above correspond to scene features in the object recognition
discussed in Chapter 3, for the purpose of model learning each scene feature must either
become a model feature or must be merged with one of the existing model features.
Since, we are at this time discussing the first view of the object, all scene features
become model features and are used to initiate the model. To convert a scene feature
into a model feature, we must translate its position/orientation attributes from the world
coordinate frame in which the data are taken into the object-centered frame in which
the model is built. During this process of translating features into the object-centered
coordinates, the features are also assigned new labels, this being done for purely
cosmetic reasons. For example, initially, as shown in Fig. 4.5(a), the extracted surfaces

are labeled I, 2, 3, 4, 6, 7, 8 and 9, with label 5 corresponding to the turntable. After
dropping region 5, and translating the remaining surface features into the object-
centered coordinates by multiplying the position/orientation vectors from the left by
TrJ1, the new surface labels as stored in the model become I, 2,... , 8. As an example,
model surface I has the following attribute frame:

154 chen/kak

Surface I
Type: planar
Nomal: (-0.0050 -0.3446 0.9387)
Moment_direction: 0.3347 0.8841 0.3263
Region_center: 0.0137 -1.7699 0.8990
Number_of_adjacent_regions: 3
Adjacent_regions: (2 8 4)

and corresponds to the scene surface I shown in Fig. 4.5(a). Similarly, all the vertex
features extracted from the scene in the first view are transformed and relabeled.

\ -i," . : . ■ ' : ' . " ■
After the conversion of scene !features into model features, the principal direction

o f each surface and vertex model feature is computed in the object-centered coordinate
system. On the basis of the principal direction, each feature is assigned a pointer on the
corresponding tessel on the appropriate feature sphere. Fig. 4.6 shows the surface
feature sphere constructed from the features gleaned from the first view. To help the
reader associate the different surfaces with the entries on the feature sphere, we have
shown in (a) the different surfaces of the object and their labels as generated by pro­
cessing the first view. Note that (a) is not a synthesized model, but only a means to
tr a n sm it to the reader the surface-label association at the end of view I.

4.6.2. Ujpdating the Model

Now as each new view o f the object is taken, W e can use it to update the model
initiated with the data from the first view and updated by all the previous views. If
there are any common features between the new view and the partial model built so far,
they must be discovered by matching. Of course, if there are no common features, then
all we need do is to merely add the new features to the feature spheres built from the
prior views. Consider, for example, view 2, which in the example under discussion is at
an angle of 60° clockwise from view I. Fig 4.5(b) shows that the range image for this
view is segmented into 8 regions; except for region 4 each of these regions represents a
surface features of the object visible from the view point corresponding to view 2. By

(a) The partial model built from view I

4r 3 /

(b) Surface feature sphere of the partial model

Figure 4.6. A partial model built from the features extracted from the first view, /"p n
159 for table

comparing with 4.5(a), one can immediately observe that region 6 is the only new sur­
face feature seen in view 2, while the remaining 6 are seen in the first view and should
already have been recorded in the partial model. The model learning process "learns"
this facts by matching features in view 2 with the partial feature sphere constructed
from view I. This learning process consists of transforming the position/orientation
information of each view 2 feature into the object-centered coordinate system via Tf^ ,
and then computing the principal direction associated with the feature. A small neigh­
borhood on the feature sphere centered at the tessel corresponding to the computed
principal direction is then searched for a compatible partial model feature. Currently,
this neighborhood is of radius 2 tessels which corresponds to an allowable uncertainty
of 8° in the principal direction.

Consider, for example, the region marked surface 5 in Fig. 4.5(b). On the basis of
its principal direction, this surface is found to match the partial-model surface 8 shown
in Fig. 4.6(a). For region I in Fig. 4.5(b), there are three candidate model features,
these are marked I, 4 and 6 in Fig. 4.6(a); all three of these partial-model features fall
into the same tessel on the feature sphere, as depicted in Fig. 4.6(b). In this case,
partial model surface 4 excluded from further consideration on the basis of the surface
types. Partial-model surface 6 is eliminated as a possible match for scene surface I on
the basis of the values of the normal distances of the surfaces involved in the matching
process. W hat is being said here is that if we take the dot product of normal to partial-
model surface 6 with the position vector to any point on the surface 6, we vuli obtain
the normal distance to the surface 6 (remember, that the point necessary for this calcu­
lation is stored as one of the attributes for planar surfaces). Now, if we carry out the
same calculation for view-2 surface I, the normal distance computed will be different
from that calculated for partial-model surface 6, making the two unmatchable. So, ulti­
mately, we can find that view-2 surface I must correspond to partial-model surface I.

Continuing the above matching process with each of the features in view 2, we
eventually conclude that Surface 6 in Fig. 4.5(b) is new and was not seen in view I.
Tins surface is added to the partial model and given the label 10 (not shown in figures).

Now consider surface 8 in Fig. 4.5(b). It is found to match partial-model surface 7
shown in Fig. 4.6(a). However, the area o f the surface in the second view is ihuch larger
than thatIn the first view. Therefore, in this case the process updating the partial model
consists of overwriting the value of the attribute area. After view-2 surface 8 is merged

Note that we could not have first computed the principal direction in the world coordinate frame
and then transformed the resulting vector into the: object-centered coordinate frame. The reason
for this is that principal directions are defined with respect to the origin of the object-centered
coordinate frame and therefore can only be computed in this frame.

156 chen/kak

with partial-model surface 7 in this manner, we recalculate the surface normal and the
region center associated With the updated model surface 7. We must also update the
adjacency information associated with the model surface 7, since the corresponding
view-2 surface 8 was found adjacent to view-2 surface 6, which is now partial-model
surface 10. This updating of adjacency information also takes place for partial-model
surfaces 2 and 3. The vertex features are updated the same way as the surfaces.

Eaph pf the remaining four views is used to update the partial model in the same
manner. The final surface labels are depicted in Fig. 4.7. Note, as was the case with
Fig. 4.6, this figure is only intended to help the reader associate labels with the surfaces
of I^e object, the underlying object itself was not synthesized from the final model.
Table 4.1 shows for each view the mappings from the view features to the partial-model
features.

157 chen/kak

4.7. Discussions

In order to display the final result obtained by integrating all the six views, we
derived a wire-frame representation of the object from the final feature sphere. This
wire-frame exists in three dimensions and can be rotated for display. Two views of the
wire-frame are shown in Figs. 4.8(a) and (b) together with vertex labels. Notwithstand­
ing the fact that some of the object vertices came out disjointed in the images of the
“ learned model" shown in Figs. 4.8(a) and (b), the wire-frame is constructed readily
from the vertex feature sphere. While the vertices 13 and 18 shown in Fig. 4.8
correspond to the same object vertex, they came out separated in the learned model
because of occlusions. The same is true of the vertices 14 and 21 in Fig. 4.8. This
difficulty could probably have been eliminated if we had used more views. It is impor­
tant to realize that the wire-frame shown is used only for display and plays no role in
any of the object recognition strategies, only feature spheres being used for that pur­
pose. .

The reader is probably curious about how we managed to show the curved edges
in the wire-frame in Fig. 4.8. An ad hoc algorithm had to be written for this purpose and
consisted of finding the intersection boundary of the planar and the conical surfaces,
these two surfaces existing on the surface feature sphere. Note that the intersection of a
cone and a plane forms an elliptic curve when the plan cuts through the cone, which is
the case when the normal to the plane close to being parallel with the axis of the cone.
The intersection would be hyperbolic when the plane makes a glancing cut of the cone.
Since in our case the former condition is satisfied, we need to determine the parameters
of the ellipse, from these parameters one could then generate a wire-frame representa­
tion of the ellipse. In general, a 3-D ellipse is described by its center, the plane it lies

158 chen/kak

Figure 4.7. The completely built model using all six views of the object.

159 ehenfek

Table 4.1 This table shows mappings from surface labels in each
view to the labels used for partial-model surfaces.

view mapping from scene features to partial-model; features
view I I -> I, 2 -> 2, 3 -> 3 ,4 -> 4 ,6-> 5 ,1 -> 6, 8 -> 7 ,9 -> 8

view 2 ; I => I, 2 -> 9, 3 => 2 ,5 => 8 ,6 -> 10,7 => 3, 8 => 7
view 3 I ~>9, 3 => 2 ,4 => 10, 5 ==> 7 ,6 -> 11

view 4 I => 2, 2 => 1 ,4 -> 12, 6 => 7 ,7 -> 13

view 5 I =>2, 2 => 12,3 => 5 ,4 => I, 6= > 13,7 => 4, 8=>6
view 6 I => 5, 3 => 1 ,4 => 4 ,5 => 6, 6 -> 14 '

NOTES: '

F ot the first view, the view-1 label 5 corresponds to the turntable and therefore has
no mapping to the partial model. The turntable labels for other views are also elim­
inated from mapp ing. While in the first view, the partial- model labels; correspond
mostly to the surface labels in the scene, for subsequent views, any mate kings
found between the surfaces in the view and surfaces in the partial-model determine
the mqppings shown in the table. Of course, when there are no matches, new labels
must be used for scene features. The distinctionbetween the two is brought out by
the use o f single-stemmed (->) and double-stemmed (—>) arrows, the former
corresponding to the case when a new partial-model labels must be used for a
scene surface, und the latter to the case when partial model label used is decided
by the existence of a match.

160

17

12

Hodel: Vwoh
H y p o t h e s i s # 0

Figure 4.8. Two views of a wire-frame representation derived from the built model.

on, its long axis, and its two radii. Clearly, the plane the ellipse lies on is the plane
making the intersection, and the center of the ellipse is the intersection point of the axis

Cqhe and the plane. The long axis of the ellipse lies on a plane surface that is
formed by the normal to the intersecting plane and the axis o f the cone; at the same
time, the long axis of the ellipse is perpendicular to the normal to the intersecting plane.
To determine the two radii, we first compute the length from the apex of the cone to the
center o f the ellipse, and the angle of intersection; the angle of intersection is defined as
the angle between the normal to the intersecting plane and the axis o f the cone. Then
the two radii can be computed approximately from the length, the angle of the cone and
the angle of the intersection. Given the parameters o f the intersecting ellipse, the
ellipse can be represented in a parametric form

p = v/r/cos(a) + vsrssin(a) + p0

where p is the position vector to a point on the ellipse, V/ and vs the unit vectors along
the major and the minor axes o f the ellipse, r/ and rs the two radii corresponding to the
major and the minor axes, Po the position vector to the center of the ellipse, and,
finally, a the angle for parametrizing the ellipse equation. The parametric form is
easily converted into a wire-frame representation by discretizing the angle a . For small
enqjigh intervals, h t qt, Iliei segments of the ellipse w ouldbelinear.

The final model, as shpwn in Fig. 4.8, consists of 15 surfaces and 22 vertices. Note
that the 22 vertices include only those that exist on the vertex feature sphere; the
artificial vertices introduced to give wire frame representations to curved edges are not
included. The number of surfaces in the generated model is one more than the number
of surfaces on the object. The extra surface in the model corresponds to the region
labeled 2 in view-2 image shown in Fig. 4.5(b). When the partial model is updated with
view-2, this region is not recognized to be the same as region 4 in view-1 shown in Fig.
4.5(a). The reason for this mismatch is that in view-2 it is not possible to obtain an
accurate estimation of the direction of the axis of the conical surface. In other words,
the cone axis direction computed for region 2 in view-2 is too different from the direc­
tion of the cone axis for region 4 in view-1. As a result, when the system sees region 2
in view-2, it treats the region as a new, feature, the pointer to this feature residing in the
tessel corresponding to the computed axis direction.

The original object had only 18 vertices, however our model found 22. These extra
vertices are quite visible in Fig. 4.8 and correspond to locations where object vertices
appear disjointed. As was mentioned before, these extra vertices are caused by occlu­
sion. In Fig. 4.5(b), for example, there is a vertex formed at the junction o f regions 6, 8
and the occluded region. (Note that in analyzing a scene, a vertex is defined as a junc­
tion formed by either three surfaces, or two surfaces and an occluded region.)

Evidently, this vertex is false since in a different view the occlusion present could shift
the location of this junction. We do do some topological reasoning to replace such
spurious vertices with real vertices during the updating process. W hat is being said here
is that if for the vertex formed by regions 6, 8 and occlusion we could in a later view
discover all three surfaces meeting at the real vertex, then the false vertex would be
replaced by the real vertex. Although, this reasoning was able to eliminate some of the
false vertices, it proved not be effective for some, including the one formed by the junc­
tion of regions 6, 8 and occlusion in Fig. 4.5(b), because the three surfaces meeting ih
the vicinity of that point are never visible simultaneously in any of the views used.

Clearly, the number of views used must be such that the resulting model is toplog-
icaliy consistent. Strictly speaking, because of disjointed vertices the model in Fig. 4.8
is not topologically consistent. Future research is planned to examine the generated
models for their topological correctness. If a learned model is found to be incorrect, that
should initiate a finer sampling of the viewpoint space.

For future research, one must also bear in mind that topological consistency while
necessary may not be sufficient for a learned model to represent a real object — the con­
dition of geometric consistency must also be satisfied. For example, as illustrated by the
truncated pyramid example shown in [Me —82], a three dimensional entity may be topo­
logically consistent, yet not geometrically so. Our future research will also aim at dis­
covering what reasoning strategies should be implemented for making checks on
geometric consistency.

It is important to realize that the learned model in Fig. 4.8, despite all its
deficiencies, is adequate for object recognition in difficult and cluttered scenes, such as
the one shown in Fig. 3.1 in Chapter 3. The data driven nature Of our recognition stra­
tegies makes them forgiving of small errors in the model information. To remind the
reader again, in a data-driven approach we select a feature from the scene at a time and
then try to confirm its presence on a model feature sphere. Suppose, an extra vertex or
an extra bit o f a surface appeared On the model feature sphere, it may hot necessarily
pose any difficulties, depending, of course, upon how much discrimination is required
between different object models. The accuracy requirements on model generation as a
function of the discriminatory power of a 3-D object recognition strategy is yet another
avenue for future research.

162 chen/kak

163 chen/kak

CONCLUSIONS

This report presented the 3D-POLY system for object recognition and model
learning. The report addressed the four main issues listed in the Introduction in connec­
tion with our discussion there on the design of a robot vision system.

We mathematically analyzed the process of structured light imaging. The result of
this analysis was a novel procedure for the calibration of structured light equipped
robots; the procedure yields in a straightforward manner a calibration matrix that
directly converts the image coordinates of an illuminated point in the scene into its
world coordinates.

The report presented in Chapter 3 a hypothesis generation and verification strategy
whose complexity possesses a low polynomial bound for single object recognition. It is
important to realize that the manner in which identity and pose hypotheses are formed
and verified is independent of what types of features are used for describing objects.
The features described in Chapter 3 and currently used in 3D-POLY merely serve to
illustrate how our hypothesis generation and verification scheme should be used. It is
very likely that the types of features we have discussed may not be appropriate to indus­
trial objects with shiny metallic surfaces, since the surfaces on such objects can not be
easily imaged with structured light scanners. It is possible that for such objects a recog­
nition strategy should be solely based upon lower level features such as vertices and
edges and should not employ surface type features.

An important key to hypothesis verification in 3D-POLY is the use o f spherical
(lata structures, these data structures were used to store pointers to feature frames on the
basis of the principal directions associated with the features. Of course, we could not
have used this data structure had we not been able to present constant rime. algorithms
for finding neighborhood over spherical tesselations. We believe the algorithms we
presented in connection with this data structure will also prove useful in other situations
where spherical representations are needed, for example, for aspect graphs for objects,
used primarily for grouping topologically similar viewpoints, and for the Hough space
for representing orientations.

164 chen/kak

LIST OF REFERENCES

[Ag-85] G. J. Agin, Calibration and use of a light stripe range sensor mounted on
the hand of a robot," The Robotics Institute, Carnegie-Mellon University
Tech. Rep. CMU-RI-TR-85-20,1985.

[A&B-73] (3. J. Agin and T. Q. Binford, "Computer description o f curved objects," in
Proc. 3rd lntl. Joint Conf . on Artificial Intell, pp. 629 640,1973,

[A&H-%2\ G. J. Agin and P. T. Highnam, "Movable light-stripe sensor for obtaining
three-dimensional coordinate measurements," in Proc. SPIE Int Tech
Symp., San Diego, CA, Aug 21-27, pp. 326-333,1982.

[A&et-87] K. S. Arun, T. S. Huang, and S. D. Blostein, "Least-squares fitting of two
3-D point sets," IEEE Trans, Pattern Analysis and Machine InteU., Vol. 9,
No. 5, pp. 698-700,1987.

[Ay-67] R. Ayres, Jr., Projective Geometry, Schaum Publishing Co., 1967.

[Ba-77] H. H. Baker, "Three-dimensional modeling," in Proc. 5th Inti. Joint Conf.
on Artificial Intell,, pp. 649-655,1977.

[B&H-87] B. Bhanu and C. C. Ho, "CAGD-based 3-D object representation for com­
puter vision," IEEE Computer, Vol. 20, No. 8,pp. 19-36, August 1987.

[B&B-82] D. H. Ballard and C. M. Brown, Computer Vision, Englewood Cliffs, NJ-
Prentice-Hall, 1982.

[Be-88] P. J. Besl, "Range imaging sensors," Research publication, CS Dept. Gen­
eral Motors Research Lab, GMR-6090, 1988.

[B&J-88] P. J. Besl and R. C. Jain, "Segmentation through variable-order surface
fitting," IEEE Trans, Pattern Analysis and Machine Intell., Vol. IOj No; 2,
pp. 167-192,1988. ’

[B&J-86] — , "Invariant surface characteristics for 3D object," Computer Vision
Graphics, and Image Processing, 33, pp. 33-80,1986.

[B&J-85] — , "Three-dimensional object recognition," Computing Survey,, Vol. 17
No. I, pp. 75-145, March 1985.

[Bh-84] B. Bhanu, "Representation and shape matching of 3-D objects," IEEE
Trans, Pattern Analysis and Machine Intell., Vol. 6, No. 3, pp. 340-350,
I y Orfi

[B&H-84] S. D. Blostein and T. S. Huang, "Estimating 3-D motion from range data "
1J l fJ roc- ls t Conf- Artificial Intelligence Application, pp. 246-250, Dec
1984.

[B&C-82]

[B&F-81]

[B&H-86]

[Bo-84]

[Br-83]

[Br-79]

[C&F-82]

[C&K-87]

[C&D-86]

[C&H-83]

[Da -82]

[D<£//-73]

[F&et-88]

[F&H-86]

[F&H-83]

R. C Bolles and R. A. Cain, "Recognizing and locating partially visible
objects: the local-feature-focus method," Inti. Journal of Robotics
Research, VoL I, No. 3, pp. 57-82,1982.

R. C. Bolles and P. Horaud, "A RANSAC-based approach to model fitting
arid its application to finding cylinders in range data," in Proc. 3rd Inti.
Joint Conf . on Artificial Intell., pp. 637-643,1981.

R. C. Bolles and P. Horaud, "3DP0: a three dimensional part orientation
system," Inti. Journal o f Robotics Research, Vol. 5, No. 3, pp. 3-26, Fall
1986.

B. A. Boyter, "Three-dimensional matching using range data," in Proc. 1st
Conf Artificial Intelligence Application, pp. 221-216, Dec 1984.

R. A. Brooks, "Model-based three-dimensional interpretations o f two-
dimensional images," IEEE Trans. Pattern Analysis and Machine Intell.,
Vol. 5, No. 2, pp. 140-149,1983.

C. M. Brown, "Fast display of well-tessellated surfaces," Computer &
Graphics, Vol. 4, pp. 77-85,1979.

I. Chakravarty and HvFreeman, "Characteristic views as a basis for three-
dimensional object recognition," in Proc. SPIE Conf on Robot Vision, Vol.
336, pp. 37-45,1982.

C. H. Chen and A. C. Kak, "Modeling and calibration o f a structure light
scanner for 3-D robot vision," in Proc. IEEE Inti. Conf on Robotics and
Automation, pp. 807-815, Apirl 1987.

R. T. Chin and C. R. Dyer, "Model-based recognition in robot vision,"
Computing Survey, Vol. 18, No. l,p p . 68-108, March 1986.

R. T. Chin a n d -C .'A. Harlow, "Automated inspection of printed circuit
board: a survey," IEEE Trans. Pattern Analysis and Machine Intell., Vol. 4,
No. 6, pp. 557-573,1983.

C. A. Dane III, "An object-centered three-dimensional model builder,"
Ph.D. dissertation, Computer and Information Science, Univ. of Pennsyl­
vania, 1982.

' V ' (

R. O. Duda and P. E. Hart, Pattern Recognition and Scene Analysist New
York: Wiley, pp. 379-423,1973.

T J . Fan, F. Medoni and R. Nevatia, "Matching 3-D objects using surface
descriptions" in Proc. IEEE Inti. Conf on Robotics and Automation, pp.
1400-1406, Apirl 1988.

O. D. Faugeras and M. Hebert, "The representation, recognition, and locat­
ing of 3-D objects," Inti. Journal o f Robotics Research, Vol. 5, No. 3, pp.
27-52,1986.

— , "A 3-D recognition and positioning algorithm using geometrical match­
ing between primitive surfaces," in Proc. 8th Inti. Joint Conf on Artificial
Intell., pp. 996-1002,1983.

164 chen/kak

[F&et-83] O. D. Faugeras, M. Hebert and E. Pauchon, "Segmentation o f range data
into planar and quadric patches," in Proc. 3rd Computer Vision and Pattern
Recognition Conf., pp. 8-13, 1983.

TF&D-84] Ch Fekete and L. S. Davis, "Property spheres: a new representation for 3-D
object recognition," IEEE workshop on Computer Vision, pp. 192-201,
I Sf «

[Go-83] C Goad, "Special purpose automatic programming for 3D model-based
vision," m Proc. o f the DARPA Image Understanding Workshop, pp. 94-
104, June 1983. -

[G&L-87] W. E. L. Grimson and T. Lozana-Perez, "Localizing overlapping parts by
searching the interpretation tree," IEEE Trans. Pattern Analysis and
Machine Intell., Vol. 9, No. 4, pp. 469-482,1987.

[G&L-84] — , "Model-based Recognition and localization from sparse range or tactile
data," In tl Journal o f Robotics Research, Vol. 3, No. 3, pp. 3-35, FallIQ SlA

.165 chen/kak

[Ha-69] W. R. Hamilton, Elements of Quaternions, New York: Chelsea Publishing

[H&H-87] C. Hansen and T. Henderson, "CAGD-based Computer V ision" IEEE
workshop on Computer Vision, pp. 100-105,1987.

[H&P-82] M. Hebert and J. Ponce, "A new method for segmentating 3-D scenes into
pprnitives," in Proc. 6th Inti. Conf on Pattern Recognition, pp. 836-838,

[H&K-86] M. Herman and T. Kanade, "Incremental Reconstruction of 3-D scenes
from multiple, complex images," Artificial Intelligence, 30, pp. 289-341,

I 1986.

[H&J-87] R. Hoffman and A. K. Jain, "Segmentation and classification of range
images," IEEE Trans. Pattern Analysis and Machine Intell., Vol. 9, No 5
pp. 608-620,1987. ’ ’

[Ho-84] B. K.^P. Ho[^ J Ê g ”d^ 8̂ aussian bnage," Proceeding o f IEEE, Vol. 72,

[H&et-88] S. A. Hutchinson, R. L. Cromwell, and A. C. Kak, "Planning sensing stra­
tegies in a robot work cell," in Proc. IEEE Inti. Conf on Robotics and
Automation, pp. 1068-1075,1988.

[Ik-87] K. Ikeuchi, "Generating an interpretation tree from a cad model for 30-
object recognition in bin-picking tasks," Inti. Journal o f Computer Vision
Vol. I, No. 2, pp. 145-165,1987.

[Ik-83] — , "Determining attitude of object form needle map using extended gaus-
sian Image," MIT Al Lab Memo No. 714, April, 1983.

[Ja-88] R. C. Jain, personal communication, September, 1988.

[Ka-85] A. C. Kak, "Depth perception for robots," in Handbook o f Indusrical
Robotics, Edited by S. Y. Nof, New York: Wiley, pp. 272-319, 1985.

[K&et-87] A. C. Kak, A. J. Vayda, R. L. Cromwell, W. Y. Kim, and C. H. Chen,
"Knowlege-based robotics," in Proc. IEEE Inti. Conf. on Robotics and
Automation, pp. 637-646,1987.

[Ke-76] H. Kenner, Geodesic math and how to use it, University of California
Press, 1976.

[K&J-86] T. F. Knoll and R. C. Jain, "Recognizing partially visible object using
feature indexed hypothesis," IEEE Journal o f Robotics and Automation,
RA-2, No. I, pp. 3-13,1986.

[K&D-87] M. R. Kom and C. R. Dyer, "3-D multiview object representations for
model-based object recognition," Pattern Recognition, Vol. 20, No. I, pp.
91-103,1987.

[L&W-88] Y. Lamdan and H. J. Wolfson, "Geometric hashing: a general and efficient
model-based recognition scheme," in Proc. 2nd Inti. Conf. on Computer
Vision, pp. — , Dec. 1988.

[Ma-82] D. Marr, Vision, New Yoik: Freeman, 1982.

[Mc-82] A. K. Mackworth, "Reasoning about surface orientations," in The Hand­
book of Artificial Intelligence, edited by P. Cohen & E. Feigenbaum, Vol.
3. pp. 173-182, Heuristech, Stanford, CA, 1982.

[AM er-81] H. A. Martin, J. R. Birk and R. B. Kelley, "Camera models based on data
from two calibration planes," Computer Graphics and Image Processing,
Vol 17, pp. 173-180,1981.

[M&A-83] W. N. Martin and J. J. Aggarwal, "Volumettic description of objects form
multiple views," IEEE Trans. Pattern Analysis and Machine Intell., Vol. 5,
No. 2, pp. 150-158,1983.

166 chen/kak

[M&B-80] D. L. Milgram and C. M. Bjorklund, "Range image processing: planar sur­
face extraction," in Proc. 5th Inti. Conf on Pattern Recognition, pp. 912-
919,1980.

[M&et-84] S. Mori, K. Yamamoto, and M. Yasuda, "Research on machine recognition
of handprinted characters," IEEE Trans. Pattern Analysis and Machine
Intell., Vol. 6, No. 6, pp. 386-405,1984.

[N&M-79] M. Nagao and T. Matsuyama, "Edge preserving smoothing," Computer
Graphics, and Image Processing, 9, pp. 394-407,1979.

[N&B-77] R. Nevatia and T. O. Binford, "Description and recognition of curved
objects," Artificial Intelligence, Vol. 8, No. I, pp. 77-98,1977.

[0-66] B. O ’Neill, Elementary Differential Geometry, New York: Academic,
1966.

[0&S-83] M. Oshima and Y. Shirai, "Object recognition using three-dimensional
information," IEEE Trans. Pattern Analysis and Machine Intel!, Vol. 5,
No. 4, pp. 353-361,1983.

[P&M-86] B. Parvin, and G. Medioni, "Segmentation of range images into planar sur­
faces by split and merge" in Proc. 6th Computer Vision and Pattern

Recognition Conf., pp. 415-417, 1986.

[Po-83] M. Potmesil, "Generating models of solid objects by matching 3D surface
segments," in Proc. 8th Inti. Joint Conf. on Artificial Intell., pp. 1089-1903,
1983.

[Pr-87] H. Printz, "Finding the orientation of a Cone or cylinder," IEMi workshop
on Computer Vision, pp. 94-99, 1987,

[Pu-76] A. Pugh, Polyhedra: a visual approach, Univ. of California Press, Berke­
ley, CA, 1976.

[Re-80] A. A. Requicha, "Representations for rigid solids: theory, methods, and
systems" Computing Surveys, Vol. 12, No. 4, pp. 437-465,1980. ;

[R&K-82] A. Rosenfeld and A. Kak, Digital Picture Processing, Vols. I and 2, New
York: Academic, 1982.

[S&J-84] L K. Sethi and S. N. Jayaramamurthy, "Surface classification using charac­
teristic contour," in Proc. 8th Inti. Conf on Pattern Recognition, pp. 438-
440, 1984.

[S&H-81] C. G. Shapiro and R. M, Haralick, "Structural descriptions and inexact
matching," IEEE Trans. Pattern Analysis and Machine Intell., Vol. 3, No.
5, pp. 504-519,1981.

[S&et-84] L. G. Shapiro, J. D. Mbriaty, and R. M. Haralick, "Matching three-
dimensional objects using relational paradigm" Pattern Recognition, Vol
17, No. 4. pp. 385-405,1984. V

167 chen/kak

[Sh-87] Y. Shirai, Three-Dimensional Computer Vision, Springer-Verlag, Berlin,
1987.

[S&B-85] W. E. Snyder and G. Bilbro, "Segmentation of three dimensional images,"
in Proc. IEEE Inti, Conf on Robotics and Automation, pp. 396-403,1985.

[St-87] G. Stockman "Object recognition and localization via pose clustering"
Computer Vision, Graphics, and Image Processing, 40, pp. 361-387,1987.

[Su-79] K. Sugihara "Range-data analysis guided by a junction dictionary,"
Artificial Intelligence, Vol. 12, No. I, pp. 41-69,1979.

\T&K— 84] F. Tomita and T. Kanade, "A 3D vision system, generating and matching
Shape descriptions in range images," in Proc. 2nd Inti. Sym.- c f Robotics
Research, pp. 35-42,1984

[Tr-86] R. Y. Tsai "An efficient and accurate camera calibration technique for 3D
machine vision," in Proc. ComputerVision and Pattern Recognition Conf.,
pp. 364-374,1986 J

[U&C-75] S. A. Underwood and C. L. Coates, "Visual learning from multiple views,"
IEEE Trans. Comput., Vol 24, No. 6, pp. 651-661,1975.

[W&L-83] A. K. C. Wong and S. W. Lu, "Representation of 3-D objects by attributed
hypergraphs for computer vision," in Proc. Inti. Conf. on Sys. Man
Cybern., pp. 49-53,1983.

[X&C-88] S.-E. Xie and T. W. Calvert "CSG-EESI: a new solid representation
scheme and a conversion expert system" IEEE Trans. Pattern Analysis and
Machine Intell., Vol. 10, No. 3, pp. 221-234,1988.

[X&C-86] — , "Constructing 3-D models of a scene from planned multiple views," in
Proc. SPIE Intelligent Robots and Computer Vision, Vol. 726, pp. 233-239,
1986. : . ; \

[Y&K-89] H. S. Yang and A. C K ak, "Edge extraction and labeling from structured
light 3-D vision data," in SelectedTopics in Signal Processing, ed.: S. Hay-
kin, Prentice-Hall, Inc. pp. 148-192,1989.

[Y&K-86] — , "Determination of the identity, position and orientation of the topmost
object in a pile," Computer Vision, Graphics, and Image Processing, 36,
pp. 229-255,1986.

[Y&K-86] — , "Determination of the identity, position, and orientation of the topmost
object in a pile: some further experiments" in Proc. 1986 IEEE Inti. Conf.
on Robotics and Automation, pp. 38-48,1986.

168 chen/kak

170 chenyicak

AppendixA
Determination of Transfnrm^tipn

In this appendix we will present the formulation for estimating the transformation
that brings a set of model features into a corresponding set of scene features. The
location/orientation attributes of the features will be used for this purpose. Clearly,
only those location/attributes can be used that are viewpoint independent; implying that
we should not use attributes like the surface centroid, mid-point of an edge, etc. Let us
denote a position attribute o f a feature by p , which is a position vector, and a orientation
attribute by a, which is a direction vector (unit vector). If a scene feature S is matched
to a model feature M, then under noise-free condition we should have

R 'Pm + t = Ps (A.I)

R = as (A.2)

where p m and p s, and am and as are the corresponding location attributes and orienta­
tion attributes of the model feature and the scene feature, and R and t are the rotational
and translational components of the transformation Tr, respectively. Note that both
equation (A.I) and (A.2) are in vector form. We will assume that I? is a 3x3 matrix and
t a 3-vector. Although the following form will not be used explicitly in our work, the
reader might find it informative to know that when a rigid body is rotated clockwise
through an angle 0 about an axis whose direction is given by the unit vector n, the
matrix R takes the form

n |+ c o s0 (l-n x) nxriy(l-cos0)-nzsin0 nznx(l-cosQ)+nysin0

nxny(l-cos0)+nzsin0 «J+ cos0(l-nJ) «ynz(l-co s0)-n xsin0

nznx(I -cosOl-ttySinO nynz(l-cos0)+nxsin0 n^+cos0(l-n^)

This matrix has three unknowns, the angle 0 and two of nx, ny, and nz, since the magni­
tude of n is unity.

I. Solution for the Transformation

Now given the correspondence between a set of scene features {5} and a set of
model features {M}, we want to determine (or estimate if noise is present) the R and t.
Without loss of generality we can assume the matching of {£} to [M) results in the
correspondences between p ls and p'm, i = I , . . . ,k, and between aJs to a jm, j = I,...,/.
Note that k does not have to agree with I since the number of position attributes in each
feature might be different from the number of orientation attributes. From equation
(A. I) and (A.2), we now have

171 chen/kak

R Pim +■*■= Pis (A.3)

for i = I, ...,k, and ■ ; ' -V . '

R aJm = a Js
■-■■ ■ - ■' i '; ' ,

(A.4)

fory' = I,...,/. .

Since R is present in only equation (A.4) while both R and t are present in equa­
tion (A.3), it is natural to decompose the problem of solving Tr into two Stages: first
solve for R by using equation (A.4) and then solve for t by using equation (A.3).

A question that arises here is that under what conditions can we gaurantee a
unique solution for R and t. Let us first investigate the case of R. Since each orienta­
tion vector a is a unit vector in 3-D space, it can be completely Specified by two param­
eters. Consequently, each instance of equation (A.4) can provide two independent
scalar equations in terms of R- Furthermore, as mentioned in Section 3, a rotation R has
three degrees of freedom. Therefore, in order to to completely solve R we need at least
two instances of equation (A.4), i.e. two corresponding pairs of orientation vectors, pro­
viding that the two vectors are not linearly dependent (parallel orientation vectors will
lead to linearly dependent equations). Given two equations of the type shown in (A.4),
we will actually have four equations for the three unknown of R. If the correspon­
dences between the scene surface orientations and the model surface orientations are
correct, then these four equations are not really independent because the orientation
Vectors must obey the following additional constraint:

Q m ' Q m ^ Q s ' Q s

In other words, this constraint must be derivable from the four equations. In practice,
this constraint is used to verify the accuracy of the surface correspondences prior to
solving the equations.

If 7, the number of orientation vectors in the correspondence, is greater than 2, then
the coiresponding orientation vectors must obey the following pairwise constraints: i.e.

Qm QL = Os' QjS for all i,j < I (A.5)

So, suppose by matching scene surfaces with model surfaces we have set up I
correspondences that satisfy the above costraints. Now, the question is what is the best
way to solve the / vector equations of the type shown in (A.4) for the unknown i?; One
could lump together all the / equations into the following composite form

R ' \ oL aL " ' \ = \ a l a 2s]

which could be written in a more compact form as

leading to the following least squares solution for/?

R = AsA 1m (A.6)

Supposedly, a correct least squares solution obtained in this manner should minimize
the metric

£l?AOT - A y j Aj j (A.7)

or, in other words, lead to a solution of the equation

gjj" ^ A m - As] [/?Aot - As j = 0 (A.8)

Unfortunately, the solution represented by the equation (A.6) and the rationale leading
up to it are faulty for the main reason that the metric in equation (A J) is really not an
error metric since it is a 3x3 matrix and not a scalar. What we really want to mini mi 7<*
is not what is shown in (A.6) but the following form

E 2 = * « 4 I2 (A.9)
v . M ■

In the next subsection, following a derivation originally given by Faugeras and Hebert
[F&H-S3] we will show how an elegant solution to the minimization o f E 2 can be
obtained by the use of quaternions. The reader should note that other methods also
exist for solving equation (A.9); see, for example, [A&et-%1, G&L -84].

We would like to make one more comment about the inappropriateness of (A.6)
for the solution we desire. Even if the equation in (A.8) made sense, the least squares
optimization would be with respect to all the nine elements of the matrix R. Since these
nine elements do not constitute independent variables - in fact, there are only three
independent variables involved amongst these nine elements - the solution obtained
may be entirely meaningless.

2. Estimation of the Rotation Matrix

We clearly want an R that would satisfy

BE2
dR 0 1R=R

Following Faugeras and Hebert, we will use quaternions to represent rotations, and
obtain a solution for R in the form of the principal eigenvectors of a matrix in terms of
as and am. A quaternion [Ha -69] is defined as

173 chen/kak

Q = (s,v)

where s is a scalar, and v is a vector of 3 elements. The conjugate of a quaternion Q is
denoted by Q and defined as

Q = (s,-v)

The multiplication of two quaternions Q and Q ' is also a quaternion and given by

Q * Q ' = (ss' - v Y , vxv ' + svf + s'v)

From the above two definitions, we have

Q * (y = (ss'- (-v)-(-v'), (-v)x (-v 7) + s(—v') + s'(—v))

■ = (s'S - v 'v , -(v 'x v + sv' + sv'))

= X T r Q

Let us assume that the rotation expressed by R is carried out along an axis n and
with angle 0. Then the rotation of a by R, given by the vector R a, can be represented
by

= QR * (0 , a) * (T (A. 10)

where we now have quaternions on both sides and where

Q r = (cos-|,sm |-/i).

and vector a has been written in the quaternion form (0, a). It is easy to verify that

Ifis I2 = Qrt * Q r = I
By substituting (A. 10) fori? • aJm in equution (A.9), we obtain

E2 = X K O ,a s) - Q R * (0 ,a m) * (T \ 2

Note, for the simplicity of notation we have dropped the superscript j on vectors am and
as. Since I Qr 12 = I, for any quaternion Qx, we have

I f i c l 2 = f i c * f i 7

= Qx * (UO)* &

- Q x * Q r * Q r * Q~x

= Qx * Qr * Q T Q ^

= l f i c * f i t f l 2 .

Therefore, we can post-multiply Qr with both terms in the above equation and obtain

174 chen/kak

X2 = T 1 I (0, as)*QR - Qr * (0, om) 12
j

(A. 11)

Now we can minimize S2, which has become a quadratic function of Qr , with respect
to

Qr = (a, I])

This minimization must satisfy constraint

a 2 + It i I2 = I

which is a consequence of Qr * Qr = I.

From the definition of quaternion multiplication, we can expand the term
(0, as)*QR - Q r * (0, am) in equation (A. 11) as

(0, as) * (a ,Ti) - (a ,Ti) * (0, am)

= [- a 5 -Ti , a a ^ + a p a i j - ^~am Tj , a 'flm + awxrjj - ■ .

- J^l • (om- a s), - a (Qm-Os) + (am+as)xt\ j (A. 12)

The above expression is a linear function of a and Ti; thus we should be able to express
the above expression in the form of matrix multiplication as

. (a,Tl) * B
• • ' ' i . . •

where 5 is a 4x4 matrix in terms of as and am.

Tliis is done by converting vector cross product to matrix multiplication as fol­
lows. Define a cross matrix X of a vector v = (x,y,z) as

X(v) =
0 z —y
- z 0 x
y -x 0

It is easy to verify that the cross product of two vectors v and Ti can be expressed in the
form of matrix multiplication as

V XTl =Tl 'X(V)

Note again that Tl is a row vector and not a column vector. In fact, all the vectors used
in the formulation presented here are row vectors, unless, o f course, stated otherwise.
The expression in (A. 12) can now be rewritten as

(Tl ‘ (am~as)> as) 4 “H 'X (O m-Hls))

which is the same as

v , T 0 -(om-as)

175 chen/kak

Thus we have

O -Cx -Cy —cz
cx O bz —by
Cy bz O ~bx
C2 by bx O

where

b = UrnjCas and

, C = Om -O s

Now equation (A. 12) can be rewritten as

E 2 = J d IQr B I2
j

= Z Q r B B t Q i
Vv I ■

= Qr A Q i

where
I

A = J ^ B B t (A. 13)
> 1 . .

The quaternion rotation Qr that and minimizes equation (A. 13) will be the eigenvector
associated with the minimal eigenvalue of the matrix A. Since the magnitude o f Qr is
unity, we must, of course, normalize the solution eigenvector. Assuming the computed
eigenvector after normalization is [a ,P ,y ,8], then the rotation angle

0 = 2 cos-1 (a)

and the rotation axis

n = (p,y,8) / sin(-|-)

In addition, the minimal enginvalue of the matrix A will be equal to the minimized
E 2, which is the fitting error. Hence, based on that enginvalue we can determine how
well the scene surfaces correspond to the model surfaces. If the enginvalue is greater
than some predefined threshold, we should reject the correspondences established, and,
therefore, reject the matching of {5} with {M}.

176 chen/kak

3. Estimation of the Translation Vector

After the rotation is determined, we can similarly estimate the translation by
minimizing the following error function

Et = 2 ^Ps ~ E ‘ Pm~t 12
J=I

k

(A. 14)

2 \p Js - R Pin - *] \p{ - R pin - f]

E 2
Setting the derivative 8-g-— to zero lead to the following solution

> = Z P i - R - (Z p L)
J= I j

The minimized fitting error can be readily calculated by plugging i into equation
(A. 14). Again, if this fitting error is greater than certain threshold, we should reject the
matching.

The reader will recall that pose transformation hypotheses are generated by first
extracting vertices from a scene and then matching a scene vertex, together with its
associated surfaces, with an LFS for the model. As was mentioned in Chapter 3, an LFS
is composed of a model vertex and all the surfaces that come together at that vertex.
The surface features in an LFS will always possess orientation attributes but may or
may not possess any position attributes, especially viewpoint independent position attri­
butes. (For example, the centroid of a surface won’t do since it is viewpoint dependent
due to the fact that its calculation is greatly influenced by the extent to which the sur­
face might be occluded.) This implies that in an LFS we may not have available to us
many location vectors such as p Jm. For this reason, the position attribute of the vertex
itself becomes of prime importance. For a scene vertex where three surfaces meet, the
coordinates of the vertex can be computed very robustly by finding the intersection the
three surfaces. For those vertices where only two surfaces meet, there does not exist a
reliable method of computing the coordinates; therefore, we simply use the nearest
range measurement from the structured-light data. In either of these cases, k equals I in
equation (A. 14) and therefore the translation vector is given by

t = Ps - R Pm .

177 chen/kak

A ppendixB
InitialGuessfbrTesseIAssignment

Given a principal direction in this appendix we show how its corresponding
tessel indices (ij,k) can be computed from a linear approximation. Note that the indices
thus computed are only supposed to place us in the vicinity of the true tessel As
explained ip Section 6.3.3, the approximately located tessel is used as a starting point
for getting the exact tessel corresponding to <&.

We Will present our approximation for the first of the parallelograms shown in Fig.
3.22, the approximations for the other parallelograms are identical in their j add k
dependences by virtue o f symmetry; the dependence on H s different and will be shown
below. .

The approximation for the first parallelogram in Fig. 3.22 actually consists of three
separate approximations, one for each of the three zones that we will now identify. The
first zone consists of the triangle marked I in Fig. 3.21, the second zone of the triangles
2 and 3, and the last zone of the triangle marked 4.

According to equation (9) in Section 7, the index i is independent of indices j and
k in the computation of 0 and <|) for a given triplet (ij,k). For a given (0,<Jj), we can
therefore separate the determination of index / from that of j and k. The procedure that
foUows consists of three steps:

(1) First determine the identity of the zone to which the direction belongs.
(2) Next, determine the index i corresponding to the parallelogram in which the direc­

tion (©,<()) lies.

(3) Estimate the indices j and fc.

For the first two steps, the following formulas are used: (Let K= x = atari (2) and

assume 0 S» 0 S Ti and 0 < <J> < 2tc,)

if (0 < 0 < x) /* O e zone I */

mod(5)

else if (x ^ 0 < ju- x) 7 * O e zone2*1
j»=<e-x)XK / (2TC-4x>|

IC

else /* zone3 */

K mod{S)

178 chen/kak

For step 3, we will allow j and it to take non-integer value in the following formu­
las. During computations, the non-integer values are truncated to yield the integer
values. First, let

<)>' = < H *-1)x2k

If O e zone I,

K

/ = 0 x Qix - k + I

If O e zone 2, assume

Q - a j + bk + c
<|)' = dj + e k + f

Solving for a,b,c,d, e,fsA the four comers p f zone 2, we have

e = (/ - h f e - l) ^ - + 3 x - 7 t

: 2Q 2

Then j and k can be obtained by

. . r (0+jc-3x) ' 2 #
J u ■ (lt-2x) V K

k = j + l + Q x (^ - - l)]
K

!)]

And for zone 3, we use the formulas similar to those of zone I , except that j and k are
swapped, and angles 0 and <|> are appropriately offset.

	Purdue University
	Purdue e-Pubs
	12-1-1988

	3D-POLY: A Robot Vision System for Recognizing Objects in Occluded Environments
	C. H. Chen
	A. C. Kak

	tmp.1542052450.pdf.pGsR2

