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ABSTRACT

The two factors that determine the time complexity associated with model-driven 
interpretation of range maps are: I) the particular strategy used for the generation of 
object hypotheses; and 2) the manner in which both the model and the sensed data are 
organized, data organization being a primary determinant of the efficiency of 
verification of a given hypothesis. In this report, we present 3D-POLY, a working sys
tem for recognizing objects in the presence of occlusion and against cluttered back
grounds. The time complexity of this system is only O(n2) for single object recogni
tion, where n is the number of features on the object. The most novel aspect of this sys
tem is the manner in which the feature data are organized for the models. We use a data 
Structure called the feature sphere for the purpose. We will present efficient algorithms 
for assigning a feature to its proper place on a feature sphere, and for extracting the 
neighbors o f a given feature from the feature sphere representation. For hypothesis 
generation, we use localfeature sets, a notion similar to those used before us by Bolles, 
Shirai and others. The combination o f the feature sphere idea for streamlining 
verification and the local feature sets for hypothesis generation results in a system 
whose time complexity has a polynomial bound.

In addition to recognizing objects in occluded environments, 3D-POLY also 
possesses model learning capability. Model learning consists of looking at a model 
object from different views and integrating the resulting information. The 3D-POLY
system also contains utilities for range image segmentation and classification of scene 
surfaces.
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INTRODUCTION

The goal of this research is to develop a robot vision system that bah recognize 
and locate objects randomly positioned and oriented hi 3-D space, possibly occurring in 
heaps. Idealy, the capability of such a vision system should approximate that o f the 
human vision system [Met -82], which can perform recognition of a wide variety of 
objects in real time even under poor lighting condition. While computer vision research 
in the last 25 years or so has only proved that such a real-time general vision system 
remains a distant goal, by using active sensors it is possible today to design systems that 
can hideed identify objects and compute their poses and do so with a measure of robust
ness in occluded environments.

In general, one must address the following issues when designing a robot vision 
system:

•  Ihlage acquisition:
The question here is what types of images one should use and how they should be 
acquired.

•  Feature extraction:
What features should be extracted from an image in order to describe the shapes and 
geometrical relation of the object surfaces seen in the image.

•  Model representation:
How one should represent object knowledge that would allow efficient retrieval of 
model data.

•  Matching algorithm:
Here the issue is how image features should be matched with object features.

It should be emphasized that these four main issues are highly interrelated, in the sense 
that the representations and methods used for one have a bearing on the representations 
and methods used for others. The reason for this interdependence is the fact that in most 
cases the overall flow of control in the recognition process corresponds to what is 
shown in Fig. 0.1. Clearly, how features are extracted depends to some extent on the 
type of acquiredidata.
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Figure 0.1. A system diagram of the four basic components of an object recognition 

system.



Glearlyj object recognition calls for the extraction o f scene features, measurement
of their attributes, such as shape and other geometrical characteristics, and the relation
ships of the features to one another. Since features play a pivotal role in recognition, 
we must choose those features that can be detected reliably from images and that pos
sess sufficient discriminatory power for distinguishing between objects. In addition, 
since we also need to locate the objects, i.e. to determine their positions and orienta
tions, the set o f features should also provide spatial information about the o b je c t For 
these reasons, 3D-POLY uses geometric features that constitute the shapes of objects. 
Geometric features include surfaces, edges and points, and each of them is specified by 
a set of attributes such as shape, relation and position/orientation.

It stands to reason that the data acquired about a scene must allow us to extract 
these geometric features. For various reasons, 2-D reflectance images can not be used 
and one must take recourse to range maps, where each data element in the image is a 
quantized representation of distance to an object point from a reference plane or point. 
An extensive survey of various techniques for acquiring range images can be found in
[Ka -85 , Be -87]. In 3D-POLY, range images are generated by using structured light 
scanning.

A structured light range sensor consists of a light projector and a camera; the pro- 
Jector casts a stripe of light onto object surfaces and the camera detects the illuminated 
stripes. The range to any illuminated surface point is computed by using triangulation 
formulas. In the first chapter of this report, we show how perspective geometry can be 
used to derive a 4x3 calibration matrix that directly converts an image point into its 
corresponding 3-D coordinates. We also present a simple to use experimental pro
cedure that yields this calibration matrix. We will use the phrase ‘range m ap’ to also 
refer to the (x,y,z) data obtained for all the illuminated points in a scene.

ft is necessary to go through several processing and detection steps before 
geometric features can be extracted from a range map. These are presented in Chapter 
2. We first describe a procedure for the computation of surface normals from range 
images. Over smooth surfaces this procedure works like the traditional ones in that a 
surface normal is computed by fitting a planar patch to the range map over a small win
dow. However, in the vicinity of edges between different surfaces, our procedure has 
the virtue of placing the windows adaptively in such a manner that the surface normal 
computation does not get corrupted by attempting to fit a planar patch across an edge 
between two different surfaces. In Chapter 2, we also discuss the detection and the 
classification o f three primitive surface types, namely, planar, cylindrical and conical.

Chapter 3 presents the heart of 3D-POLY. There we have discussed how the sys
tem generates and verifies hypotheses about object identities and poses. Thehypothesis
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generation and verification strategies presented there reduce the otherwise exponential 
time complexity to a low-order polynomial bound. For hypothesis generation surface 
features are grouped around vertices into local feature sets. For verification, 3D-POLY 
uses a special feature called principal direction that posses a separate definition for each 
different type o f feature. Principal directions are used to organize the model data into a 
data structure called the feature sphere. It will be shown that using local feature sets for 
hypothesis formation and feature spheres for verification allows 3D-POLY to recognize 

objects with very low time complexity.

To be complete, an object recognition system must have the means to Ieam object 
models. 3D-POLY posses such capability, which is described in Chapter 4. We 
describe there a multi-view integration procedure for synthesizing die shape of an 
object. The major issue in model multi-view integration for shape synthesis is the 
detection of feature common to different views, a problem that is made especially 
difficult by die fact that the attribute values for the same feature may be different in dif

ferent views.

4 chen/kak
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CHAPTER!
MODELING AND CALIBRATION OF STRUCTURED LIGHT SCANNERS

In this Chapter we have used projectivity theory to model the process of structured 
light scanning for 3D robot vision. The projectivity formalism is used to derive a 4x3 
transformation matrix that converts points in the image plane into their corresponding 
3D world coordinates. Calibration of the scanner consists of computing the coefficient 
of this matrix by showing to the system a set o f lines generated by suitable object edges. 
We end this paper by showing how the matrix can be used to convert image pixel loca
tions into the world coordinates of the corresponding object points using two different 
scanning strategies.

LI. Introduction

Structmed light scanning is a rugged approach to range mapping a scene for 3D 
robot vision. In order to take full advantage o f the flexibility for viewpoint selection 
made possible by a six-degree-of-freedom robot, we use a portable structured light unit 
that can be picked up by the robot when it wants to gather 3D vision data (Fig. 1.1). 
Within the constraints imposed by manipulator kinematics, the unit can then be oriented 
in any direction deemed desirable by the robot for the task at hand, and scanned either 
in a translational or a rotational mode for data collection.

A structured light unit consists basically of a light projector and a camera. The 
light projector throws a plane of light in the direction of the scene. The intersection of 
this plane with an object creates a stripe of illuminated points on the object surface, the 
stripe being recorded in the camera image plane. If the unit is properly calibrated,’ the 
world coordinates of the illuminated points can be calculated by using triangulation for
mulas, as has been done by Agin [Ag -82]. Agin used a 4x3 collineation matrix to write 
down a geometric relationship between the illuminated pixel coordinates and the world 
coordinates o f the corresponding object points. The coefficients of this matrix are expli
cit functions o f the camera and projector parameters. Calibration of the system implies 
determination of the coefficients of this matrix, which requires that the camera and the 
projector parameters be precisely known -  these parameters being positions and orien
tations of the camera and the projector, and the internal magnifications of the camera
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Figure 1.1 Robot engaged in scanning a scene with a detachable structured-light 
scanner.



lens system. Because of the explicit dependence of the matrix coefficients on such 
parameter?, Again had to first calibrate the robot joints so that the required positions 
could pinned down precisely, and then he had to individually calibrate the camera aim, 
camera scale and the projector aim.

In this report, we look at the calibration problem from a different point Of view. 
The basic ^oal o f structured-light calibration is to find a formula that converts the 2-D 
coordinates of a recorded pixel in the image plane to the world coordinates of the 
corresponding object point. Our position is that it should be possible to obtain this rela
tionship for a structured light system without having to worry about such low-level 
details as the precise locations and aiming vectors for the camera and the projector. 
However, we do not believe that it is possible to do away with the requirement that the 
robot itself be mechanically calibrated before it can be used in conjunction with a struc
tured light system. In fact, the accuracy of the methods to be proposed in this report will 
be no better than the absolute accuracy of the robot.

Note that the problem of deriving formulas that take us from 3-D world coordi
nates to 2-D image coordinates and vice versa also arises in straightforward camera 
imaging. As is well known [D&H-73], it is possible to write down a 3x4 homogeneous 
transformation matrix that for a given object point yields uniquely its corresponding 
image point; but, if we desire a transformation in the reverse direction, viz, from the 
image to the world, it is only possible to calculate the direction to the object point -  
and not its location — by using a similar matrix.

In Section 2, we will show that for the case of structured light imaging if  we apply 
the theory of projectivity to relate the points in the light plane with the corresponding 
points in the image plane, it is indeed possible to derive a 4x 3 homogeneous transfor
mation matrix that is reversible. This implies that fo r each object point of a priori 
known location, we can uniquely determine its camera image plane coordinates; and for
each image point we can uniquely determine the world coordinates of the correspond
ing object point.

As we will show, the transformation matrix derived from the projectivity theory 
makes unnecessary the precise calculations of the locations o f the camera and the pro
jector and their aiming angles. Therefore, it is no longer critical that the robot joints be
calibrated precisely, at least from the standpoint of enhancing the accuracy of range 
mapping.

We will also show that although from a purely theoretical standpoint only four 
object points at known locations are required for calibration -  meaning the computation 
of the elements of the transformation matrix -  the practical difficulty consisting o f
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knowing where exactly the object points are located has caused us to seek other 
approaches. We will describe our procedure which consists of showing to the robot at 
least six lines generated by suitable object edges in the scene. In this procedure, it is not 
necessary to know the exact locations of the beginnings and the ends of the lines, as 
long as their relative separations are known. Section 3 presents a procedure for com
puting the optimum values of the calibration matrix when more than six lines are shown 

to the robot.

Once a structured light system is calibrated, the process of scanning for the pur
pose of range mapping a scene can take various forms. We will talk about two 
methods: rotational scanning and linear scanning. In Section 4, we will formulate coor
dinate transformations for both methods.

Finally, in Section 5, we will show some calibration results and compare our tech
nique with the two-plane calibration method.

g chen/kak

1,2* Projective Geometry

First, we will define the notation used in this report.

X v U ; p , M - ' -
An italic upper case letter refers to a point which may be on a line, on a plane, or 
in 3D space. Usually, X, Y, Z are points in space, and U, V are points in the

image plane.

• * * - . :
An italic upper case letter with a subscript also refers to a point, but m this case
the homogeneous coordinates of the point are also specified. The subscript
denotes the coordinate frame in which the point is defined.

Xb,Xs, ‘ * • '"v  .
Bpld italic upper case letters with subscripts are used to denote the regular coordi

nates of a point. 

r, s, t,
A  bold italic lower case letter is used to denote a line or a plane.

Pis, Fb ,’ "  . . \
Letter F with a subscript is used for representing a coordinate frame. The sub
script 2 specifies a two dimensional coordinate frame.

Tcb’ • ’ ‘
Letter T with a subscript represents a transformation from one coordinate system 
to another. The first letter of the subscript denotes the original coordinates system,



while the second letter denotes the destination coordinate system,

1-2.1. One Dimensional Projectivity

chen/kak

On a plane, given a center of projection P and any two lines * and r  not passing 
through P , as shown in Fig. 1.2, a one-dimensional projectivity is defined as follows: 
U tX b e  a point on Hne s, its projective image X ' on line r  is the intersection of line PX
with r. Let A,B, C,D be any four distinct points on line s, the cross ratio of A B with 
respect to C, D is

Let on line r  be, respectively, the image points o f A, B, C, D under the
projectivity shown. An important property that follows from projectivity is the invari
ance of the cross-ratio. This invariance can be expressed as

(A,5;C,D) = ( A D' ) ( u _a)
or

AC BD _ A 'C ' B ,D '
BC AD T B 'C ' A 7D 7 (L L b)

With this relation established between s and r, we can find the image point X ' o f X  
under this projectivity by substituting X  for D, and X ' for D

(A,fl;C,X) = (A ',5 ';C ',X 0  (1.2)

It  ̂ is obvious that the two corresponding sets of triplets, {A, B, C) and 
{A , B , C }, completely describe the projectivity on s and r  from the projection center 
P. ■ One may raise the following questions at this point: Can we always find a projec
tivity on a plane which converts a set of points on one line to a set of points on another 
Ime ? Is this projectivity unique? Answers to these questions, which are crucial to the 
main theme of this paper, are provided by the following theorem [Ay —67]:

TheFundamentaiTheoremof Om Dimensional Projectivity 
Given three distinct points on a line and another three points on a second line, 

there is one and only one projectivity which carries the first three points respec
tively into the second three points.

To illustrate the theorem, we first locate three points A, B, C at arbitrary places on a 
Ime s and another three points A', B \C '  on a l in e r  (Fig 1.3-a). For finding the unique 
projectivity, we will fix the line s  in the plane and move around the line r  on the plane
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Figure 1.2.
One dimensional projectivity is illustrated here.
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A B c
Tl - ■ ■

Figure 1.3.

a) Three points defined on each of the two lines that will be used for demonstrat
ing projectivity. b) If we fix line s of (a) and move around line r  shown there, 
there Will exist only one projectivity for which AA', BB' and CC' will meet at a 
point.
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until the three lines AA', BB', C C  meet at one point (Fig 1.3-b); this common point of 
intersection is the projection center of the projectivity. A more difficult case is shown 
in Fig. 1.4-ay in which the corresponding points on lines s and r  are ordered differently.
The projectivity for this case is shown in Figure 1.4-b.

For representing a point on a line, we need to define a coordinate system to 
express its position on the line. The familiar coordinate system on a line is established 
by selecting on the line a point O from which all measurements along the line are made, 
a unit o f measure, and a sense of direction, Essentially, this consists of selecting a point 
Oi called the origin, and U, called the unit point; to these two points we assign the coor
dinate values 0 and I respectively. The coordinate x of a point X on the line is then the 
directed distance of X from 0 . If on the other hand, a homogeneous coordinate system 
is desired, that can be done by assigning coordinates (0, 1) to 0 , (1, 1) to U, and (x i, * 2) 
to any p o in tX such th a tx  1 I x 2 =x. It is obvious that ap o in t does not have a unique 
representation in a homogeneous coordinate system.

Let’s say that we have chosen an origin O and a unit point U to define a coordinate 
system for a lin e  s Also, let O' and U' define a coordinate system for another line r. 
We do not require that the unit length OU on line s be equal to the unit length C U ' on 
line r. W e also do not require that the points O' and U' be the images of the points O 
and U under any projectivity. In fact, equation (1.2) is independent of the coordinate 
sy stems defined on either lines in the projectivity; this is a consequence of the following 
theorem that we present without proof:

tern established on the line.

Given a point x on, say, the line s, it is a simple matter to derive a formula for the 
corresponding point on line r. With respect to the coordinate System on line s, let the 
points A, B, C, X have coordinates a, b, c, x respectively. Similarly on line r, let the 
points A', B', C', X ' have coordinates a', b', c ',x '  respectively. Then equation (1.2) 

can be rewritten as:

, (a ' - c ') 0
= a m l W ^ = p , w e

(1.3)
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A B C s

B ’ C ’ A ’
rr—-------------------------------------------------------------- — — —  r

(a)

Figure 1.4.

a) An example similar to that of Figure 3a except that the order of the three points 
on line r  is opposite to the order on line s. b) The unique projectivity that 
corresponds to the case shown in (a).
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f l u  X + « i 2  
x  = -—---------------

- a 2\ X  +  a 22

where a n = a a '~  $b', a 12 = ab'$ - a'ba, a 21 = a - $ , a 22= a $ - ba.  In terms of 
homogeneous coordinates, we have, by settings = X1 / x 2, and jc =x \ I x 2,

Xf1 O11X1 +(Iy2X2 
---— ------------—--- -
x '2 a 21x 1+ a 22x 2

p x \  = a IiX i + « 12*2 
px'2 = O 21X 1 + a 22x 2 , p*0

In matrix form, we have

d i i  a 12 

«21 «22

Xi

X 2
(1.4)

Note that the existence of the free variable p. Since a point in homogeneous coordi
nates does not have a unique expression, that is, x =X1 / X2 = p x i / px2> With the help 
of this free variable, we are ensured that regardless of the homogeneous coordinates 
chosen, the above expression for the projectivity solution will always satisfy equation 
(1.4). Also note that the roles of X  and X ' are exchangeable. W e could consider X  as 
the image of X ', and we will get the same form of matrix equation as (1.3).

1.2.2. Tw oD im ensionalProjectiv ity

We can establish a formalism for two dimensional projectivity in 3D space that is 
similar tp the one dimensional projectivity in a plane. Let s and r  be two planes in 
space and let there be a point P, which is neither on s nor on r, to be used as the center 
of projection (Fig. 1.5), For each point X  on j ,  its image point X ' on r  is the intersec
tion o f line PX with plane r. It is obvious that the invariance of the cross-ratio is still 
valid for any four collinear points on s and their images point on r. Also, for any col- 
linear points on s, their image points are also collinear. Extending the fundamental 
theorem of one dimensional projectivity, we have:

The Fundamental Theorem of Two Dimensional Projectivity

Given four distinct non-collinear points on a plane and another four distinct non- 
COllinear points on the other plane, there is one and only one projectivity which 
carries the first four points respectively into the second four points.
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\ \TJ

Figure 1.5.
Elements of two dimensional projectivity.
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A homogeneous coordinate system can also be established on a plane by a simple 
extension of what was done for line projectivity. Suppose we choose a point (0, 0, I) 
as the origin in a plane and use two orthogonal unit points, (I, 0, I) and (0, I, I), to lay 
out a coordinate frame in the plane. The homogeneous coordinates of any point in the 
plane are given by (xi X2 xs)  with x 3 *  0; (x i/x 3, X2Ix2,) are the regular coordinates of 
the point. Analogous to the derivation of equation (1.4), we can get a 3x3 conversion 
matrix which converts a point X  on plane s to its image point X  on plane r, both points 
being expressed using homogeneous coordinates:

x 'l a  11 #12 fll3 Xi

x '2 = 021 022 023 ♦ ‘ ' X2

x's 021 022 033 Xs

It is easy to verify that this equation preserves collinearity and invariance of the cross- 
ratio Again, if we switch the roles of X  and X ', the above generic equation is still valid,

i.e.,

■ ' ' " VV:'; . • X i «11 «12 «13 x 'i

p X2 = «21 «22 «23 * x '2
v; *3 «21 «22 «33 I---

- H

(1.5)

A stmctured light scanner can be modeled by using 2D projectivity as follows. We 
use the camera-focus as the center of projection Py and Ueat the light stripe plane as 
plane s and the camera image plane as plane r. [This model is only valid under the con
dition that it be possible to use the pin-hole model for the camera (Fig. 1.6).] Although 
the coordinate system on the image plane can be arbiuary, a convenient definition con
sists of using the row index u and column index y of the digitized image as its two coor
dinates, and choosing the center of image plane as the origin. W e will denote this coor
dinate frame on the image plane by F 2c. A point U in the image plane then has coordi
nates (u, v) or, in a homogeneous coordinates system, (u, v, I) with respect IoF 2c.

We also need to define a coordinate system on the light stripe plane. By virtue of 
the previous theorem, which says that the cross-ratios are independent of the choice of 
the coordinates system, we have considerable latitude in how we go about setting up 
this coordinate frame, We therefore choose one that can be easily related to the three 
dimensional base coordinate frame Fb for the robot. We will use x, y,z to represent the 
three orthogonal axes in Fb. Then a point Xb defined in the frame Fb will have homo
geneous coordinates w (x, y, z, I) = (wx, wy, wz, w). Im ag ineattansla tionandaro ta- 
tion that brings Fb to a coordinate frame Fs whose center is on the plane s and whose xy 
plane is aligned with the plane s. Since Fs is defined with respect to the base



Figure 1.6. This figure shows that the structured light imaging process can be fit pre
cisely into 2-D projectivity. We can consider the light stripe plane as 
plane s and the camera image plane as plane r  in drawing correspondence 
with Figure 5. The camera focus center becomes the center of projection.
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coordinate frame Fb, Fs contains all the information regarding the translation and rota
tion. Inheriting the coordinate system defined on the xy plane of the frame Fs, we can 
define a two dimensional coordinate frame F 2s on the plane s. Suppose a point X on 
plane s is assigned homogeneous coordinates (x Ii X2, X3) with respect to F 2s, where 
Jc3 0. With respect to the frame Fs, which is three dimensional, the homogeneous 
coordinates of the same point are U i t X i  0, jc3 ). The conversion of X  from its two 
dimensional homogeneous coordinates in F 2s to its three dimensional homogeneous 
coordinates in Fs can then be written as

-

*2
0
*3

1 0  0 
0 I 0 
0 0 0 
0 0 I

JCi 

x 2 

X3

( 1.6)

Now IetX s be the homogeneous coordinates of X with respect to the frame Fs. We can 
convert Xs to the homogeneous coordinates representation Xb with respect to the base 
frame Fb by multiplying Xs with F s , that is

Xb =Fs -Xs (1*7)

Here Fs is a 4x4 matrix.

Substituting (u,v, I) for ( x \ , x 'x '3) in equation (1.5) and combining equations 
(1.6) and (1.7), we get a 4x3 conversion matrix Tcb that converts a point U in camera 
image plane to a light stripe point XbTn the robot base coordinate frame.

Xb =Tcb-U

or

t i l  *12 * 13

*21 *22 *23
U

V
*31 *32 *33

X
*41 *42 *43

( 1,8)

Note that we use subscript b to denote that Xb is in homogeneous coordinates with 
respect to the base coordinate frame F fc. Again, we use the free variable p to account 
for the non-uniqueness of homogeneous coordinate expressions.

1.3. Solving for the Convereion Matrix

We have shown that eq. (1.5) captures the general essence of two dimensional pro- 
jectivity. For our particular case of transformations between the camera image plane 
and the light plane, the relationship represented by eq. (1.8) is however more suitable.
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nsQiMously^ the conversion matrix Tcb in eq. (1.8) depends upon both the positio: 
^nd the orientations of the camera and the light plane projector. The purpose of calibra 
fton is to find this matrix without recourse to actually measuring these positions and 
orientations. Note that because of the free variable p in equation (1.8), we can set /43 in
Tcb equal to I and the equation still holds. Our calibration is to determine the eleven 
unknown coefficients in Tcb.

We carry put our calibration by finding the 2-D projectivity that exists between the 
era image plane and the light plane. By the fundamental theorem presented in Sec- 

tion 2.2, we can find this projectivity— in principle at least -  by using four coplanar but
non-col Ii near nrnnte in the* IirrVii- __..._____ . .1 • . ; .

—  — py usm-g.iQur;qopi.anar,Dut ■
non-collinear points in the light plane and their corresponding points in the image
plane. By choosing four illuminated object points as calibration points, assuming that 
their 3-D coordinates and their cooresponding image coordinates can be measured 
correctly, we should be able to solve for the matrix Tcb. We will now show how one

P ' _
X T i

y — T i
z

, .■
n

1 T 4

and eliminating the free variable p, we have 

X = T 1 V  / T4 V  

y = T2 V  I T4 V  

Z = T 3 V  / T4 V  

or equivalently,

T 1 V - X T 4 V  = O 

T2 V  - y  T4 V  = O 

T3 V - Z T 4 V  = O

(1.9)

( 1. 10)

Thus each calibration point produces a set of three linear equations in terms of the 
eleven coefficients of Tcb. Four calibration points would therefore lead to a set of 
twelve equations for the eleven unknowns. This number is one more than what we 
need. Since we could pick any eleven equations out of the twelve and get a solution for 
Tcb, we could ostensibly get different Tcfc5S depending on the choice of the eleven equa
tions; this would evidently be in contradiction to the uniqueness implied by the funda
mental theorem of projectivity. However, we should note that the fundamental theorem



requires the four calibration points to be coplanar. Therefore, the twelve 3-D coordi
nate values of the four points are not independent of one another, and, in fact, they obey 
the constraint of the co-plane equation:

d e t [ X l x l X 3bX4b ] = 0

That is, Otte of the twelve coordinates is determined by the other eleven values. Since 
the above co-plane constraint is in fact implicit in equation (1.8), one of the twelve 
equations generated by the four calibration points is redundant. As a consequence, we 
can use any eleven equations and arrive at the same unique solution for Tcb.

1.4. A Procedure for Automatic Calibration

In practice, using four Object points at a priori known locations for computing 
the matrix Tcb is beset with difficulties for the following reasons:

1) There are always some errors associated with the measurement of locations of the 
four calibration points in the robot base frame. On account o f such errors, their 
cbplanarity can not be completely guaranteed.

2) It is unrealistic to assume that the camera can be modeled perfectly by a pin-hole. 
A pin-hole model is of questionable validity, especially when zoom lenses are 
used. When the pin-hole approximation breaks down, there may be no unique 
center of projection.

3) Because of the non-zero thickness of the illumination stripe and other digitization 
aspects of camera imaging, there will always be some non-zero error associated 
with the location of the image point corresponding to an object point.

Since for these reasons Tcb can not be found exactly, our best hope is to estimate it 
by minimizing some error criterion in an over-determined system of linear equations. 
In other words, given more than 4 calibration points, we want to find the Tcb which best 
fits those calibration points. The Tcb that best fits equation (1.10) can be found by solv
ing a linear least square problem, similar to the solution of camera calibration in 
[B & B -82]*

At this point the reader probably has the impression that, in order to calibrate a 
structured light system, One must first install in the robot work area a. set of object 
points at a  a priori known locations. However, that is not the case in practice. Since the 
robot is programmed to move the structured-light unit in discrete steps, i t  is possible 
that the light planes emitted from any of the allowed positions of the scanner will not

* Alternatively, one can use the squared sum of the error distances of the calibration points in 
world coordinates for the error criterion.
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illuminate the object points. One way to get around this difficulty is to use extended 
objects in the work area, the objects being of such a shape that at least four nQn- 
collinear points are illuminated by the light plane emitted from the projector. After the 
vision data is collected, the world coordinates of these object points are measured by 
moving to their locations the robot end-effector. Clearly, this method would only work 
if the mechanical calibration of the robot is accurate. This method is hard to automate. 
By automating a vision calibration procedure we mean the following: We want to place 
certain objects at strategic locations in the robot work area; then by simply having the 
robot record structured-light data on these objects at any time a calibration i§ desired, it 
should be possible for the associated computer to figure out the calibration parameters.

We will now propose a procedure that is easier to automate. A flat trapezoidal 
object is located permanently in the work area. The object is shaped in such a manner 
that no two edges of the top-surface are parallel to each other. The end coordinates of 
the top edges of these objects are known to the robot; therefore, one might say that the 
equations that define the lines corresponding to these edges are known. Consider one 
such line: Since a line can be defined as the intersection of two planes, it is described by 
the following two equations corresponding to the two planes.

J  a \ x + b \y + c\z  = d\
a2x + b2y + c ẑ = $2 (1*11)

When the scanner projects a stripe intersecting this calibration line, it generates an 
illuminated point whose image coordinates are given by, say, U. While, of course, we 
can record the image coordinates of U, its world coordinates are unknown. In the pro
cedure being described, we have no need for the world coordinates of the illuminated 
object point on the line. By substituting the right hand side of equations (1.9) for the 
x,y,z in (1.11), we have

T Q\ T yU  + b\ T 2 ’U + Ci T yU  = d i T^-U
[ Ci2 T 1-U + b 2 T 2‘U + C2 T y U  = Ct2 T 4 U

It shows that each calibration line is capable of producing a set of two equations in 
terms of the 11 coefficients of Tcb. Therefore, if  we use at least six calibration lines, we 
will have a system of over-determined linear equation to estimate the conversion 
matrix. A s w e  will describe below, it is not necessary to use six different calibration 
lines, although one could certainly do so.

In our current implementation of this procedure, we use only two distinct object 
edges, which are not parallel, for generating two calibration lines from any single 
viewpoint. By moving the structured light unit to different heights above the table, we 
can record the image coordinates of the same two edges for generating as many
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equations as we like. W e will now describe a step-by-step description of the procedure. 
First note though that mounted in the robot work area is a flat object whose top surface 
is not parallel to the light plane of the scanner. After this initial setup, each time a cali
bration is carried out by the robot, it automatically carries out the following steps:

I) The robot moves the scanner to an initial position. The coordinate frame of the 
robot tool center is recorded.

2) The scanner makes projects a light plane onto the calibration block. This gen
erates bh the block a segment of the light stripe, whose two end points must lie on 
the two calibration lines respectively.

3) From the digitized image, record the image coordinates of the illuminated points 
corresponding to the two calibration lines. Substitute these image coordinates for 
JJ in the two line equations; this gives us four linear equations,

4) To acquire more calibration lines, use the robot to move the scanner by (dx,dy,dz) 
•'. ^KteH'h’itew'.position (Fig. 1.7). 'Now the line equations will' become

U1 T 1-U+ b 1 T1' U + C1 T3-U =

Jd1 -  a \dx -  b \dy -  c \dz) T^-U 

U2 T 1-U + b2 T 2‘U + c 2- T3-U =

(d2 - u 2dx - b 2dy - c 2dz) T4-U

Go back to step 2).
5) Minimize certain error criterion to find the best estimate of Tcb.

Note that the estimated conversion matrix is with respect to the scanner at the ini
tial position only. W e will remove this constraint in the next section.

L5. Linear and Rotational Scanning 

1.5.1. Formulation

If the range map of a scene is desired, the scene must be scanned in some manner 
with the structured-light unit. Linear scanning and rotational scanning are the two 
schemes used in our lab. In linear scanning, the orientation of the scanner is fixed, only 
its position is changed equally between successive light stripe projections, as shown in 
Figure 1.8. In rotational scanning, the robot holds the scanner at a fixed position, but 
rotates the scanner in equal angular increments about the axis of the wrist joint. The 
movement of the scanner is specified by the position and orientation o f its end effector 
on which the tool-center is defined. Let us define the coordinate frame of the tool- 
center as Ft such that the z axis of Ft aligns with the axis of the robot’s wrist joint. For
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calibration line I

calibration line 2

<ru,I 1
' <U'o

im age plane

image plane

Figure 1.7. To acquire more calibration lines, the robot moves the scanner by 
(dx ,dy ,dz) to a new position and makes projection.



R O TA TIO N A L
SCAN

Figure 1.8. a) In linear scanning shown here, the orientation of the scanner is kept 
fixed while the scanner is translated along a line, b) In rotational scan
ning, while holding the scanner at a fixed position the robot rotates the
scanner in equal angular increments about the axis o f  the wrist joint.



the ease of linear scanning, we will express the translational movement from projection
to projection by D = (dx ,dy ,dz). This movement can be written as a translation 
transformation matrix:

/■ cheh/k^

I .0 0 .4 .

0 I 0 dy
0 0 I dz
0 0 0 I

Similarly, for rotational scanning, if the angular increment between Successive lota- 
tional positions of the scanner is 8, we can write down the following for a rotational 
transformation matrix

cosS -sind  0 0 
„ sinS cosS 0 0
K r =

0 0 I 0
0 0 0 I

The conversion matrix Tcb, as obtained from the calibration process, is defined in 
the base coordinate frame Fb with the scanner at a specific position. Let the tool-center 
coordinate frame used for calibration be Ftc. When scanning a scene, the position and 
orientation of the scanner will differ from those used during calibration. Therefore, 
during scanning, the tool-center coordinate frame, as represented by Ft, will be dif
ferent from Ftc. As a result, the Tcb matrix obtained from calibration can not be
plugged directly in equation (1.8) for the purpose of computing the range map of a 
scene.

To get over this problem, we can convert the matrix Tcb to a matrix Tct, which is 
defined in the tool-center coordinate frame Ftc. This is done by

Tct = (Ftc) 1 -Tcb (1.12)

This relation is depicted in Fig. 1.9. Thus Tct converts an image point U into the 
corresponding object point in homogeneous coordinates with respect to frame Ft. Let 
Ffo the tool-center coordinate frame at the beginning of a scan and let /  denote the 
Jth projection in a scan. In linear scanning, we have

Ftj = F 0 • (Hdy

Therefore, we get

Xi=Ft l -Tct U

=Fttj- {Hyy -Tct - u  n  131



Figure 1.9. Relatiph among coordinate frames for linear scanning.



Similarly, for rotational scanning, we have

Xb=Fto- ( R t f -Tc t^U ■ ( L14)

1.5.2, AnaIysi^df RarigeMaps

Equations (1.13) and (1.14) provide us with formulas for computing the range map 
of a scene; For each light stripe projection during scanning, we record the column 
index v of the sampled illuminated object point in each row of the camera image. By 
applying equation (1.13) or (1.14), for each row indexed by u we have the 3-D coordi
nates [x(n), y (« ), z(«)J of the object point. These 3-D coordinates are then collected 
into a fangie map.

At this time, a few comments about the parametrization of the object surface are in 
Order. Let row index of the scene range map be the same as the row index ii of camera 
image plane; and let its column index be the index j  associated with successive projec
tions o f the light stripes. Thus the range map can be expressed as
[x(u,j),y(u,j), z (u ,j) l  For example, if the camera image plane is o f 480x512 resolu
tion, and there are 80 projections in a scan, we will have a range map of size 480x80. 
Now consider the range map of a scene as the sampling of a visible surface, and assume 
that the surface is expressed as f = \ f x, f y, f zl  Its range map
/  (u,j) = [fx(u, j), f y(u, j), f z(u, j )] is the quantized parametrization of this visible sur- 
face. Note that the direction represented by the j  index is directly related to the move- 
meni Of the scanner from projection to projection. We want this ‘ ‘movement direction" 
to be perpendicular to the column direction of the camera image plane so that (u j)  will 
form an orthogonal parametrization of the surface. This can be important for later pro- 
cessinS of the range map. For example, most 3-D edge detection operators are derived 
M th the assumption of orthogonal parametrization.

1.6. Experimental Results and Conclusion

The structured light scanner used in our experiment consists of a Sony DC-37 
CCD camera and an infrared projector. For conducting a calibration experiment, the 
calibration block is placed on the table and the scanner is moved to its initial position, 
which is about 20 inches abbve the table. A scan is then conducted along a line that is 
horizontal M th respect to the work table; during the the calibration block is illuminated 
by three stripes. This process is repeated at four different heights, -  20, 14, 8 and 2 
inches -  above the work table, leading to range data on a total of 12 stripes. This data 
leads to 48 linear equations for the computation of the conversion matrix. The total 
time expended in the collection of calibration data is about a minute and the computer
time for processing this information is about 3 seconds.



Although ultimately the evaluation of a calibration procedure must be carried out 
by determining the absolute accuracy of the system, for many purposes it is sufficient to 
compute the relative accuracy. By absolute accuracy we mean the precision with which 
the system locates a point with respect to the origin in the robot base coordinate system; 
and by relative accuracy we mean the precision with which the system makes a dimen
sional measurement of an object feature located in the robot area. In our experimental 
evaluation of the procedure described in this paper, we will only use relative accuracies. 
This is primarily owing to the fact that absolute accuracy tends to be a fiihction of the 
accuracies of both the vision calibration and the robot arm calibration, meaning that a 
measurement of absolute accuracy may or may not tell us about the performance of a 
vision calibration technique.

After calibration, the relative accuracy of the procedure is evaluated by the com
puting the dimensions W  and H of a block, like the one shown in Fig. 1.10. As 
expected, ouf experimental results show that the accuracies with which these two meas
urements can be made depend upon the distance of the block from the structured-light 
unit and the orientation of the block with respect to the scan direction. For the results 
reported here, the long axis of the block was kept approximately parallel to the scan 
direction. The results are shown in Table I.

The reader might note that we have not taken into account any nonlinear lens dis
tortions in our development of the calibration procedure. W e have seen that these dis
tortions become important for object points that are far away from the camera lens, usu
ally farther than two feet. Lens nonlinearities may be taken into account by a variety of 
techniques presented by Tsai [Tj - 86].
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Figure 1.10. The width and the height of the block are computed from the range data in 
order to test the relative accuracy of calibration.
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Table L I Relative accuracy test results

d 8 inch 14 inch 20 inch

— <0.04 inch <0.05 inch

Hs <0.03 inch <0.14 inch <0.30 inch

d: distance form the scanner to the block top surface
Ws : difference between the computed width and the real width
Hs : difference between the computed height and the real height

W = 5.66 inch H  = 6 inch



' CH APTER 2 ;
EX TRACTION O F PR IM ITIV E FEATURES FR O M  RANGE IM AGES

In this chapter we describe the processing steps that are invoked for extracting 
features from range images. As will be clear from the more precise definition in 
Chapter 3, a feature in our system is an analytically continuous surface, a straight o r a  
curved edge, or a vertex. Each feature is characterized by a set of attribute-value of 
pairs. Featinie extraction is basic to the recognition of objects and estimation of their 
poses; it is also basic to the “ learning by showing" approach to the construction of 
object models, as discussed in Chapter 4.

There are three main processing steps described in this chapter. T hefirstuses an 
adaptive window technique for accurate surface normal computation; our approach here 
is particularly accurate in the vicinity of boundaries between different surfaces. In the 
adaptive window technique, a window, used to compute the best local surface normal 
by fitting a plane to the local range points, is located adaptively depending upon a 
weighted planar-patch fitting error. Our second step describes how to segment a range 
image into smooth surface regions based on range and surface normal discontinuities. 
Finally, we present a scheme to classify segmented regions into three types o f primitive 
surfaces, planar, cylindrical and conical, by fitting planes to the mappings of the surface 
normals onto Gaussian spheres.

2.1. Introduction

Our system uses the following three steps for feature extraction:
(a) Preprocessing; compute surface normals. The surface normal associated with a 

range point is computed from the equation of a best fit tangent plane to a small 
cluster of range points in the vicinity of the point in question.

(b> Segmentation: segment a range image into regions, each representing a smooth 
surface. Segmentation is accomplished by first extracting range and surface nor
mal discontinuity points and then performing a connectivity analysis on the rest of 
the range map.



(c) Classification: classify segmented surfaces into the three primitive types. The 
classification of a surface is accomplished by first projecting the surface normals 
corresponding to a segmented surface onto a Gaussian sphere and then fitting a 
plane to the distribution of points on the sphere so obtained. The location of the 
plane from the center of the sphere is used for characterizing the object surface.
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Since in our system both segmentation and surface classification rely on surface 
normals, accurate surface normal computation is crucial to the performance of feature 
extraction* By definition, the surface normal at a point is the unit vector normal to the 
tangent plane at the point. This surface normal can be computed from the cross product 
of two independent tangent vectors at the point; this straightforward approach has been 
used by Parvin and Medioni [P&MS6] and Besl and Jain [B&J-86]. The major 
drawback of this approach is its sensitivity to noise due to the differentiation involved 
in the computation. Another method for computing surface normals consists of fitting 
planar patches to small clusters of points within a window and using for the surface nor
mal the normal to the planar patch; see, for example, [M&B— 80], ■ [H&J— 87], 
[Y&K^-89] However, this approach, too, suffers from undesirable distortions, such as 
the “ smoothing" of surface normals in the vicinity of boundaries between surfaces, 
because at such locations the window for computing the planar patch usually straddles 
the two surfaces. To overcome this shortcoming, we have modified this technique by 
using a notion first proposed by Nagao and Matsuyama [N&M —79] in the context of 
adaptive smoothing in 2-D image processing. They showed how the placement of a 
smoothing window near a region boundary should be made to depend upon extent of 
smoothness accomplished withing the window. In Section 2, we will apply this idea to 
surface normal computation.

A number of contributions have been reported on the subject of extracting primi
tive surfaces from a range map. Milgrim and Bjorklund [M&B-80], Bhanu[B/i-84], 
Boyter[B<?-84], Parvin and Medibni [P&M—86], and Yang and Kak [7&AT-86, 
Y&K-S9] extract planar surfaces on the basis of the similarity of surface normals. 
Detection of cylindrical surfaces in range maps has been reported in [A&B-73], 
[iV&B-77] and [B&F- 8 1]. Faugeraus et al. [F&et-83] and Besl and Jain [B & /-88]
show how analytically continuous surfaces of rather arbitrary shape can be extracted 
from range maps by fitting quadric and higher order surface functions to range data. 
Another method, similar in spirit to the approach presented in this chapter, is reported 
by Sethi and Jayaramamurthy [S& /-84]; in their scheme characteristic contours are 
used to distinguish between spheres, cylinders and cones (a characteristic contour being 
the locus of constant dot products between surface normals and any fixed vector). The 
characteristic contours of a sphere, a cylinder and a cone are a set of concentric circles, 
a set of parallel lines, and a set of intersecting lines, respectively. In the method of



Sethi and Jayaramamurthy, a decision tre e is  used to recognize thep a ttem  of the 
characteristic contours in a Hough space.

The EGI (Extended Gaussian Image), which in the past has been used by [Ik -83J, 
and tffo -8 4 ] for object representation in 3-D vision, can also be used for ciassifying 
surfaces. It is rather well known that the EGI of planar, cylinderical and conical sur
faces form special patterns on the Gaussian sphere; in the planar case, it is a small patch 
on the surface of the sphere, for a cylindrical surface, the points on the sphere lie on a 
great circle and, finally, for a conical surface, the points on the sphere lie on a m inor 

circle. Printz [E r-87] has shown how by analyzing the EGI pattern for approximate 
symmetries one can estimate the axis of a cylindrical or a conical surface. He expands 
the EGI distribution by expressing it as a sum of spherical harmonics and then estimates 
the symmetry axis by computing the enginvectors of a matrix whose elements are func
tions of the coefficients of the spherical harmonics representation. This method, though 
theoretically elegant, requires a large amount of computation and tends to be inaccurate
because only finite terms of spherical harmonics can be used. [Printz did not show that
the neglection of higher order terms in a spherical harmonic expansion of an EGI distri- 
bution did not degrade the accuracy of calculations.] Hebert and Ponce [H&P-XZ] pro
pose using Hough transform to detect the three EGI patterns corresponding to the three 
primitive surfaces. Their Hough space has two parameters which are the two spherical 
angles of surface orientation (a surface orientation is defined for planar surfaces to be 
the direction of the normal to the planes, and for cylindrical and conical surfaces to be 
the direction of the axes of such surfaces). It is not clear how they can distinguish all 
the three EGI patterns on a 2-D Hough space since according to their formulation a 
cone needs three parameters, two for the axis and one for the angle of the cone. More- 
over, the accuracy of the computed surface orientation will be limited by the resolution 
of the Hough space, let alone the overhead of constructing the Hough space.

While our aim is also to detect and classify the three EGI patterns corresponding 
to the three primitive surface types, we have avoided the use of Hough transforms. The 
method is based on the observation that planar and cylindrical surfaces are actually two 
special cases of a conical surface, especially from the standpoint of the EGI patterns 
they produce, th e re  are two ways to look at this observation. A planar surface pro
duces a small patch on the Gaussian sphere, whereas the EGI points corresponding to a 
general conical surface lie on a minor circle and, finally, for a cylindrical surface on a 
major circle. Therefore, if we fit a plane to the EGI points for all three cases, for the 
case of a planar object surface the fitted plane would have to be tangential to the Gaus- 
sian sphere and hence its perpendicular distance from the center of the Gaussian sphere 
would equal I. On the other hand, the fitted plane for a conical object surface would be 
located at a distance between O and I. And, finally, for a cylindrical object surface, the
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fitted plane would must pass through the center of the Gaussian sphere. This observa
tion allows us to construct a unified approach to the classification of primitive surface 
types. This unified approach will be presented in Section 4 of this chapter.

22* C om puting Surface N orm als via Adaptively Located W indow

In general, a range map of a scene, generated by a structured light scanner, can be 
represented by the parametric form pij = p(i,j), where/? stands for the [x,y,z] coordi
nates b f  the Object point illuminated by the ith stripe, the index j  standing for sampling 
index along that stripe.

Since the surface normal at a surface point is a unit vector normal to the tangent 
plane at the point, the surface normal may be computed by

dp x dp_
di dj

l ^ - x  
' 3/

dp
dj

Finite difference operators can be used to compute the two partial derivatives and
- ’ ; - . ■ ‘ . ->• ' •

— . The major difficulty with this method is that it is very sensitive to noise due to the
dj

differentiation operation. In order to overcome the noise problem, the range data usu- 
ally has to be smoothed extensively [B&J—86], which in many cases tends to distort the 
range data, especially in the vicinity of edges.

An alternative method, which is less noise-sensitive, is to estimate the tangent 
plane at each surface point by fitting a plane equation to the surface points in a neigh
borhood of the point in question. The equation of the fitting plane can be expressed as

f(x,y,z) = ax +  by■■+ c z - d = 0.

with a 2+b2+c2 = I. The normal vector to the plane, denoted by /i is [q,h,c]; The 
neighborhood over which the plane is fitted by this method is usually an NxN  window 
centered at Pij .  We will denote the window by Wij .  The best fit plane is found by 
minimizing the fitting error:

I t /(XkJ r y ^ z kj) 1 (2.1)
WeWij .

= E  ( n p h - d ) 2 
.. : /  WeWu

with the constraint a 2+b2+c2 = I, where p kj  -  [xkj ,  y ^ ,  zkj]. This constrained 
m in im iz a t io n  can be accomplished by taking the partial derivatives of the following
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Lagrange function:

X  ( n p ^ i - d f  + X ( I - H n t)
WeWij

with respect to n, d  and X and setting them to zero. Expanding out the expression fox L, 
we obtain

L ~ E  I n P i i P k j n t - I d PktlUt] + N 2 d 2 + X ( I - U n t)
f  k̂ wU ;

= « (  E  PtKlPKdnt -  2 d  ( X  P * ,/) " ' + N 2 <i2 + 3 1 ( 1 - * « ')
V: ^ lewU KlsWiJ

D efin ean ew m atrix an d an ew v ec to ras  

Q = X  P tKlPKl
■ WeWiJ ;

-  E  Pki
KlsWiJ

L  can therefore be written as

L = n Q  Ut -  I d q n t + N 2 d 2 + X (I -  n Ht)

We now set the following partial derivative to zero:
dL '■ .

:= 2 n Q — 2 d q — 2 n X = O

= -2  n q l + 2 N 2 d = O

'■ aL „
W = 1 - " " = O

From (2.3), we have

-I td = - T f n q 1 - 
■■ n2

Substituting this result in (2.2), we obtain

2 n Q ~  S r  ( n q f) q  -  2 n X  = 0
, N  ,

or, equivalently,

n R  = n X

where

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

R ^  N2 Q q ~ KleWi Pk'lPk'1 ~ PKl • X .  ^KleWiJ KleWij



Equation (2.6) implies that the normal vector n to the best fit plane is an eigenvector of 
the matrix R, and X is the corresponding eigenvalue. Since R  is a 3x3 matrix and, 
therefore, in general, will possess 3 eigenvectors, the question arises is which of these 
corresponds to the desired n ‘7 It is easy to verify that the plane fitting error associated 
with a particular eigenvector n is equal to the corresponding eigenvalue by substituting 
d expressed by equation (2.5) in equation (2.1). Since we wish to minimize the fit error 
E(Wi ])’ the eigenvector to choose corresponds to the smallest eigenvalue.

Let [<*',£', o'] be the eigenvector so computed (assume it has been normalized too). 
Since the estimated surface normal can take the value either [a',b\c’}1 or [ - a ', - b ', - c '] f, 
in order to resolve the ambiguity, we assign

J  m j  = [a',b',c'\ ifv[a',b',c']<Q
" HiJ = [ -a '-b '-c ']  else

where v is the viewing direction of the range sensor.

The performance of this plane fitting method depends on the window size NxN  to 
some extent. If the size is too small, say 3x3, the computed normal will be susceptible 
to noise and quantization error associated with range values. On the other hand, large 
sized windows cause smoothing distortions in the computation of surface normals, 
especially when the windows straddle boundaries between two smooth surfaces; the 
regions where such distortions occur are of size proportionate to the size of windows 
used for computation. Fig. 2.1 illustrates three possible placements for a 5x5 window, 
with the placements Wa and Wc located entirely within the smooth surfaces o f the 
object, while the placement Wb is straddling the boundary between two surfaces. If 
window placement is such that it is located entirely within a smooth surface of the 
object, a plane fitting method should provide satisfactory surface normals, even when 
the surface is somewhat curved. However, if the window lies across a jump or crease 
boundary, the computed surface normal will be distorted because the fitted range data 
actually come from two different surfaces. The effect of this distortion is that normals 
will not be wholly discontinuous in traveling over an edge but will smoothly change.

This smoothing distortion can be virtually eliminated by adaptive placement of 
windows in the vicinity of edges. The key idea is to adaptively position the fitting win
dow around the range point in question such that the window encloses the point without 
crossing any edges. To illustrate our point, consider the computation of surface normal 
at a surface point Pij lying on the vicinity o f a crease edge by using a 5x5 fitting win
dow as shown in Fig. 2.2. The crease edge divides the range pixels into two regions R i 
and /?2 representing two different surfaces, the range pixel in question, p t j ,  being on 
surface R  i . With a window size of 5x5, there will be 25 windows,
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jum p edge
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surface normal
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Figure 2.1. Fitting window over a crease edge causes the "smoothing" distortion.
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jump or crease edge

wrong window

r
r

I

i O

best fit window

Figure 2.2. The range pixel p i j  has NyN  candidate windows; the adaptive one should 
lie entirely on region R i and be as close as possible top ij.
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{wkJ I i-2<k<i+2, j-2<i<j+2},

that can enclose the range pixel p tj .  In computing the surface normal of Pij ,  we want 
to choose a window of its neighboring range pixels that best estimate the tangent plane 
at PiJ- Obviously, any window that includes the edge, such as Wi j , will give a dis
torted result because it would contain range pixels from the other surface R 2- To obtain 
a meaningful result, we must insist that the fitting window lie entirely on the same side 
of the crease edge with p ^ .  Thus, in this example there are only five windows can be 
considered for the computation of the surface normal at the range pixel (U ), these win
dows being W,+1>7_2, ^ + 2,7- 2» ^*+2,7- 1» ^»+2,7• To select from amongst
these windows, we bear in the mind the requirement that the center o f the selected win
dow should be as close to range pixel ( i j )  as possible. On this consideration, of the five 
windows, only qualifies. This strategy for window selection raises the ques-
tion Of how to put the two criteria into a mathematical form such that we Can evaluate 
each candidate window accordingly, the two criteria being that the window ndt cross 
any edges and that the center of the window be as close as possible to the range pixel in 
question.

To develop this mathematical form for evaluating potential windows for surface 
normal computation, we note that the planar patch fitting error is larger at those win
dows which cross an edge compared to those windows which do not; this is in keeping 
with the observation made by [B& F-81], Hence, the fitting error associated with each 
Window can provide a indication of whether or not the window has run over an edge. 
This observation translates into the following mathematical form for evaluating a win
dow W^i  for consideration at range pixel ( i j )

w(i,j,k,l) E(Wkj) (2.7)

where w(i,j,Jc,l) is a weighting function inversely proportional to the distance between 
the parameter space location (i,j), which corresponds to the range pixel pi j ,  and the 
location (k,l) corresponding to the center o f window WKh and Z(Wkj) is the fitting error 
over window Wkti. We choose that window that minimizes (2.7) among all such candi- 
date windows, meaning all those windows that include the range pixel p(i,j). There are 
several ways to define the distance between two pixels in a 2-D array (see [R&K-%2]). 
In our implementation, we have chosen to use the city block distance, so the weighting 
function w is defined as

W( UX l )
I

c+1i —k 1+1 j - l  I o l

Here the constant c is chosen such that the distance weighting will be the dominant fac
tor in the expression (2.7) if all the windows are within the same continuous object sur
face. On the other hand, if the planar patch fitting error is large, we want the second



term in expression (2.7) to dominate. The algorithm in a pseudo language is sketched 
below. ■
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compute_surface_normal () {
for each i,j in the image array

compute E(WiJ) of the best fit plane 
triij = normal of the best fit plane

for each i,j  in the image array 
among all k,l e  Wij

find k, I that minimizes (w (i,j, k, I) e(W^ /))
nij = tn£i

Y

We can see that the first part of the algorithm is basically the conventional approach 
except that the fitting errors, e(W), are recorded at all the range pixels, meaning for all 
the windows. The second part of the algorithm then looks at a certain neighborhood of 
each range pixel, and assigns that surface normal to it which corresponds to the 
m inim um  of the evaluation function. Note that the only overhead involved in this addi
tional work, corresponding to the second part of the algorithm where the best window is 
found, lies in the determination o f a minimum from amongst NxN  values; this can be 
done by making log2(NxN) comparisons.

We will now show on experimental data the improvements made possible with the 
adaptive placement of windows. Fig. 2.3 shows a scene containing a wooden object 
illuminated with 85 stripes. The resolution o f the camera used in this experiment was 
480x512, resulting in a 480x85 array of offset data, with each Offset value between 0 
and 511. Since the resolution in row direction is much higher than that in the column 
direction, and since it really does not make much sense to work with unequal resolu
tions in the two orthogonal directions, we compress every three rows of the array into 
one and then compute a 160x85 range image from the resulting data; the details on how 
the offset information is converted into a range map are described in \C&K-%1] and 
can be found in this report in Chapter I. Note that although the array size is ‘rectangu
lar’, being made of 160 rows and Only 85 columns, the spatial resolution is approxi
mately the same in both directions, the reason being that the camera looks at ‘longer’ 
extent space in the direction that corresponds to columns.
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Figure 2.3. A stripe image of an object taken with 85 scans by a structured light range 
sensor.



To compare surface normal computation results with and without the adaptive 
technique, we show a needle diagram in Fig. 2.4 obtained with 5x5 windows using the 
traditional approach (the non-adaptive approach). On the other hand, when the adaptive 
approach is used, we get the needle diagram in Fig. 2.5. It is easy to see that the 
smoothing distortions have been virtually eliminated with the adaptive method.

2.3. RangeImage Segmentation

In this section, we will present a region growing approach to the segmentation of 
range images. Our algorithm is very similar to the one presented earlier by Snyder and 
Bilbro [S&B-S5]*

A segmentation algorithm must segment a range image into regions that 
correspond to smooth object surfaces. By definition, smooth surfaces are bounded by 
crease edges where surface normal discontinuities occur. In a range image, smooth 
object surfaces manifest themselves as regions of range pixels bounded by crease edges 
and jump edges. Suppose we are able to detect a range pixel corresponding to one of 
these surfaces in a given range image. To grow outwards from this pixel, we must pro
vide termination conditions that indicate the occurrence of jump or crease edges. A 
jump edge Occurs if there is a range discontinuity between two adjacent pixels. We can 
detect a jump edge by using the following predicate:

Ip i j  -PktI I > range Jhresholdt

Where Pk,i is adjacent to Pij. This range threshold should be a function of scanning 
resolution (spacing between two adjacent scans) and should be chosen properly so that 
two range points on a slanted surface would not be mistaken for a jump edge. We have 
chosen the range threshold to be 3 times the scanning resolution.

A crease edge is where surface normals suddenly change directions in the range 
image. In order to detect the occurrence of surface normal discontinuities, we must rely 
on the change rate of surface normal from one pixel to the next. This change rate may 
be regarded as a form of normal curvature measurement [0-66]. The following predi
cate Captures the rate of change of surface normals and can be used as a stopping cri
terion for the detection of crease edges.

We apologize to the reader for misusing the phrase ‘region growing.’ What we have done can 
be simply implemented by first detecting edges in a range image, followed by connective analysis 
of the non-edge pixels. The connectivity analysis could be implemented efficiently in the 
parameter space .(Uj) directly. We felt compelled to use the phrase ‘region growing’ in 
connection with our algorithm since our algorithm is very similar to the so-called region growing 
method described in [S&B —85].

42 chen/kak



t u oh 2

?fl|i!!i!il!il! Sill

Figure 2.4. A needle image of the object, each needle represents the surface normal at 
a range pixel computed by fitting a plane equation to a 5x5 window of 
neighborhood. Notice the smoothing distortions in the vicinity of edges.
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Figure 2.5. A needle image of the object obtained by using the adaptive window 
method. Notice the smoothing distortions have been virtually eliminated.



cos 1K / ;  ” *,/)
lA j  ~Pk,i I

> curvature threshold.

Theoretically speaking, as the points p i j  and get closer the predicate approaches 
the normal curvature at one of the two points. [Note that the normal curvature 
corresponds to the curvature associated with the curve obtained by “ cutting" an object 
surface with a plane. In the curvature measure shown here, the cutting plane is that 
plane which passes through the points p wj andp KX on the object surface. The third con
straint on the cutting plane is that the surface normal at either p i;j  or p*./ also be con
tained within the plane.] This curvature threshold used should exceed the maximum of 
tiie maximal curvature o f any of the smooth surfaces expected to be encountered in the 
scene. For example, assume that the most Curved surface in the scene corresponds to a 
sphere of radius 3", then the curvature threshold should be no less than 1/3, the normal 
curvature o f a sphere of radius r being I Ir.

Range image segmentation proceeds by growing a region in all directions by 
recursively merging neighboring range pixels depending upon the two predicates 
defined above. Segmentation results on the range image shown in the previous section 
are illustrated in Fig. 2.6. In general, the performance of this growing procedure is 
highly dependent on the quality of range data arid surface normals because only local 
information is used. However, since our adaptive window technique is capable of pro
ducing clear, nondistorted surface normals, this simple region growing method pre
forms quite well for the types of scenes we have worked with in connection with this 
research.

We can also extract vertices and edges from a segmented image. To do so, we 
traCe the boundary of each segmented region clockwise and monitor the labels of its 
neighboring regions. A change of the labels signals the presence of a vertex, and any 
two adjacent vertices define an edge. The type (crease, occluding, or occluded) o f each 
edge can be determined by comparing the range values on the two sides of the edge. 
Only a crease boundary is regarded as a real edge. The adjacency relationships between 
surfaces are also recorded during this boundary tracking.

2.4. Classification of Surfaces

Giveu a processed range image, we want to classify each segmented region into 
one o f three types of surfaces, namely planar, cylindrical or conical; o f  course, if  a 
region does not fit the criteria for any of these three categories, w e  would like the 
region to be classified as unknown. Theoretically, by fitting a quadric function to the 
range data of a segmented region and examining the coefficient of the best fit quadric 
function, we can determine which type of surface the region is. However, as noted by
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Figure 2.6. The segmentation result from the needle image in Fig. 2.5



Hoffman and Jain [H&J 87], in practice, those coefficients are very sensitive to noise. 
In this section we present an efficient method to classify segmented regions into the 
three surface types based on the characteristics of their extended G aussian Irnageg

The extended Gaussian image of a surface is obtained by mapping the surface nor
mal at every point of the surface onto a Gaussian sphere [/£-83] [H o-84]. For a planar 
surface, the EGI is a small patch whose orientation on the Gaussian sphere corresponds 
to the normal to the plane (see Fig. 2.7-a). For a cylindrical surface, its EGI is a great 
cirde whose axis is parallel to the axis of the cylinder (see Fig. 2.8-a), by the axis of the 
circle is meant a unit vector perpendicular to the plane of the circle and passing through 
its center. And finally, for a conical surface, its EGI is a minor circle of radius less than 
one, the axis of the minor circle being again parallel to the axis of the conical surface, 
as shown in Fig. 2.9-a. In addition, as illustrated in Fig. 2.10, the distance from the 
center o f the sphere to the plane containing the circle in each case is given by

d=sin(0)

whereas the radius of the circle is given by

r=cos(0), -

0 being the cone angle. It is useful to think of planar and cylindrical surfaces as two 
special cases of a conical surface. We can easily visualize a cone becoming a plane by 
letting the cone angle 0 approach nil. To see how a cone deforms into a cylinder of 
radius r, we first fix an orthogonal section of the cone where the radius equals r  and 
then let 0 approach 0 by pulling the tip of the cone away from the section. The effect of 
deforming a cone into a cylinder or a plane can can also be seen in its EGI. As the cone 
angle 0 approaches 0, the circle on the Gaussian sphere becomes a great circle, and as 0 
approaches tc/2 the circle shrinks to a point. In other words, we can regard the EGFs of 
planar and cylindrical surfaces as the two extreme cases of the EGI of a cone.

Based on the above observation, we can classify a region of range data by using 
the procedure sketched-below. First, we test whether the EGI of the region fits a "gen
eric circle* If it doesn’t, the region should be classified as unknown surface; otherwise, 
we compute d, the distance of the plane containing the circle from the center of the 
sphere, and classify the region into one of the three types according to the distance. Of 
course, in practice, for any of the three surface types, points on the sphere may not be 
available everywhere on the circle. Therefore, an assumption in our work is that a 
sufficiently large arc segment of the circle is available in order that we may find the 
plane that contains the circle.

Clearly, our procedure for surface classification requires that we determine 
whether or not the points on the EGI fall on a circular arc and, if they do, then we must



48 chen/kak

The surface normals are mapped onto 

a small patch on the Gaussian sphere

A planar surface 

with its surface normals

Fitting a plane to the points 

on the Gaussian sphere

Figure 2.7. The EGIs of a planar surface and the fitting plane on the Gaussian sphere.
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A cylindricalsuiface The surface normals are mapped onto

with its surface normals a great circle on the Gaussian sphere

A

K  \

Fitting a plane to the points 

on the Gaussian sphere

Figxire 2.8. The EGIs of a cylindrical surface and the fitting plane on the Gaussian 
sphere.



50 chen/kak

A cone with its surface normals the surface normals are mapped onto 

a small circle on the Gaussian sphere

Fitting a plane to the points

on the Gaussian sphere; here, 0<d<l

Figure 2.9. The EGIs of a conical surface and the fitting plane on the Gaussian sphere.
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Figure 2.10. The radius Of the circle, which is the EGI of a conical surface, is equal to 
cos(0); the distance from the sphere center to the center of the circle is 
given by sin(O), where 0 is the cone angle.
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compute the distance of the plane containing that circle from the center of the sphere. 
Observe that any point n of a perfect circle on a Gaussian sphere with axis a and per
pendicular distance d  must satisfy the following equation :

n -a -  d  =  0. (2-8)

This turns out to be a plane equation with normal a and distance from the center equal 
to d. Thus the circle can be interpreted as the intersection of the plane with the Gaus
sian sphere. Therefore, if we fit a plane to the EGI points for all three cases, for the 
case of a planar object surface the fitted plane would have to be tangential to the Gaus
sian sphere and hence its perpendicular distance from the center of the Gaussian sphere 
would equal I, as shown in Fig. 2.7-b. On the other hand, the fitted plane for a cylindri
cal object surface must pass through the center of the Gaussian sphere (see Fig 2.8-b). 
And, finally, for a conical object surface, the fitted plane would be located at a distance 
between Q and I (see Fig. 2.9-b). To accomplish this plane fitting, we minimize the fol
lowing error function

e -  £  (n i j ’ a - d )2
i,je region

At this point, the reader would note that this minimization problem is exactly the same 
as the plane fitting problem discussed in Section 2. Again, a and d  can be found by 
solving the eigenvector of a matrix R  which is a function of j  as defined in Section 2. 
I f the EGI of a surface is indeed an arc on a circle, then the estimated a and d  should 
yield very small fitting error e. On the other hand, if the EGI of the region is not part of 
a circle, meaning that the surface is none of the three primitive types, we can expect a 
significantly larger fitting error e. Thus by properly thresholding the perpendicular dis
tance d  we can determine whether or not the region is a generic cone. The complete 
algorithm in pseudo language is given below:

classify_region ( / ?*){
find a, d  which minimizes e = £  (n i , j ' a  ~ d ) 2

UipRk.

compute e
A£

if ——— > unknown threshold
V / m

return (unknow-type) 
else if d >  plane_threshold 

normal =a 
return (plane)

else if d  < cylinder_threshold
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cylinder_axis = a 
return (cylinder)

else
cone_axis = a 
cone_angle = sin-1 (d) 
return (cone)

}

Note that the conditions we use for surface categorization are necessary but not 
sufficient. For example, a major circle on an EGI will be produced not only by a 
cylinder but also by a ruled surface.



CHAPTER 3 '
3D-P0LY: A ROBOT VISION SYSTEM FOR RECOGNIZING 

3-D OBJECTS IN LOW-ORDER P O L Y ^ M iAL T M e

3.1. Introduction

The task at hand is to locate and identify instances of known model objects in a 
range image. The objects are assumed to be rigid. This task can, in general, be accom
plished by matching features extracted from the image (scene features) with those 
describing models (model features). We will assume that the features are geometric in 
nature and can be characterized by shape, position and orientation; such features may 
include surfaces, edges, points, etc.

What are the desirable traits of a good system for object recognition and location? 
Clearly, it should be robust enough to work in multi-object scenes where the objects 
may be occluding one another. The complexity o f the system should exhibit a low- 
order polynomial dependence, on, say, the number of features involved. The system 
should also be easy to train, meaning that it should be amenable to "learning by show
ing." In our context, that means that if we showed the system an object in all its external 
entirety then the system should automatically extract the relevant information that it 
would subsequently use for recognition and location determination.

A system with these traits is in operation in the Robot Vision Lab at Purdue. The 
system, called 3D-POLY, has been tested on scenes consisting of mutually occluding 
objects; Fig. 3.1 is an example of such a scene which is made of two different types of 
objects shown in Fig. 3.2. Evidently, these objects, whose surfaces are of planar and 
conical types in convex and concave juxtapositions, do not exemplify the most difficult 
that can be found in the industrial world; however, their recognition in occluded 
environments represents a significant advance in our opinion. The various frames in 
Fig. 3.3 illustrate a successful determination of location and identification of one o f the 
objects whose surfaces are sufficiently visible in the scene of Fig. 3.1, and the manipu
lation of this object by the robot. For the objects in the heap, the models were automati
cally generated by the system —  we call this learning by showing —  by placing each 
object in a computer controlled scanner; each object was shown in many different
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Figure 3.1. A scene of a pile of objects.



(a)

Figure 3.2. The two objects that make up the pile in the scene shown in Fig 3.1.



-CO .3. A sequence of frames shows the robot successfully picking up a recog
nized object.



configurations so that the system could build an integrated "whole view" model of the 
object. The details of the "learning" system will be presented in Chapter 4.

The aim of this chapter is not to describe the entire system that results in the type 
of sensor-guided manipulation shown in Fig. 3.3, but only those aspects that deal with 
strategies for hypothesis generation and the manner in which the model information is 
organized to facilitate verification. In the next section, we will state more formally the 
problem of determining the identity and location of an object. Against a background of 
this problem statement, in Section 3 we will discuss the literature related to our 
research. Finally, the rest of this chapter will then present the main theme of this article.

3.2. ProblemStatement

Before we formally state the problem of object recognition, we would like to 
define the more important symbols used in our presentation.

•  S or Si'. A scene feature will be denoted by S. When more than one feature is under 
discussion, the i th feature will be denoted by S,-.

•  M ox Mj  will denote model features.

•  Os will denote a scene object. For the purpose of explaining our hypothesis genera
tion strategies and verification procedures, we will assume that the scene consist of 
a single object. However, as will be pointed out in Section 7, the entire method is 
easily generalizable to multi-object scenes. (Of course, its success in multi-object 
scenes would depend upon the extent to which an object is visible.)

•  Om will denote a candidate model object. Selection of a model object from the 
library of objects available to the system is part of hypothesis generation.

•  n will denote the number of features extracted from the scene object.

•  m will denote the number of features in the model object.

•  Tr will represent the location (orientation and position) of the scene object; it is in 
fact a transformation consisting o f a rotation R  and a translation The transforma
tion takes the object from the model coordinate system to its actual location in the 
world coordinate system (see Fig 3.4). Actually, the model coordinate system is the 
same as the world coordinate system, the only difference being that in the former all 
model objects are supposed to reside at the origin in some standard orientation. 
When we say a model object resides at the origin, we mean that some reference 
point on the object is coincident with the origin.

t  We will also use Tr to denote the set of all possible solutions for the location of an object 
given the currently known constraints. The type of usage should be clear from the context.

58 chen/kak



59 chen/kak

A scene object

A model object

/ object-centered 
j  coordinate system

world copminate^.

Figure 3.4. The relation between the object-centered coordinate system for the model 
data, the world coordinate system used for the scene data and the transfor
mation that specifies the pose of object.



•  c Will denote a one-to-one mapping function between the scene features and the 
model features. In this paper, we will assume a one-to-one mapping between the 
scene features and the model features. Although there can certainly be situations 
where a one-to-one mapping may not be appropriate —  for example, when scene 
edges are broken, one may have to map more than one scene edge to the same 
model edge —  Our segmentation algorithms do manage to produce features at 
almost the same level of connectivity as the model features, at least for the types of 
scenes depicted in Figs. 3.1. For example, Fig. 3.5 shows the edge and surface 
features of the objects in a heap.

With this notation, a scene object may be represented by 

Os = ISi I i = 

and a model object by

Om = {Mj \ j  = 1 , . . .  ,m )

where the ordering of the features is unimportant at this time; we will have more to say 
about the subject of ordering later, since it plays an important role in the interpretation 
of multi-object scenes.

Since all objects will be assumed to be rigid, if object Os is an instance of model 
Om placed at location Tr in 3-D space, then every observed scene feature of Os must be 
ah instance of some model feature of Om transformed by the rotation and translation 
specified by Tr. One may now state our problem more formally by saying that the aim 
of our system is to find a model object, Om, determine its position and orientation 
transform Tr and establish a correspondence c : Os-^Om such that

Si <=> Tr • Mc(i) (3.1)

for all Si e  Os. Here <=> symbolizes a match between the two features Si and Mc(i). 
The criteria under which two features may be considered to match will, in general, 
depend on factors such as the types of features used, capabilities of the sensor, occlu
sion, noise, etc., and will be addressed later. Fquation (3.1) provides a framework for 
discussing the problem of feature matching in general terms.

The problem of recognition and localization of a scene object may be decomposed 
into the following three subproblems:

(a) Select a candidate model Om from the library; this generates the object 
identification hypothesis.

(b) Determine (estimate) the location Tr, this is the location hypothesis.

(c) Establish a correspondence c between Os and Om that satisfies equation (3.1). 
Such a correspondence constitutes verification of the hypothesis.
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Figure 3.5. This processed range map of the scene of Fig. 3.1 shows the segmented 
regions. The needle orientations show the computed local orientations of 
the surfaces.
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The size of the solution space for the first subproblem is proportional to the number of 
model objects in the model library. For the second subproblem, one has to contend 
with the six degrees of freedom associated with the transformation Tr, three of these 
being associated with the position vector t  and the other three with the orientation 
matrix R. If we use R Tr to denote the solution space associated with the second sub- 
problem, it is given by

■ [ . / [ ; =  2R3x[0, 2 ji] x [0 ,  2 tc] x [0 ,  tc]

where R  stands for the real line, and, therfore, R 3 stands for the solution space 
corresponding tp all possible solutions for the translational vector t. The solution space 
associated with the third subproblem is obviously of size m ", since, in general, one 
must a|low for all possible ways in which the n scene features can be matched with the 
m model features. Therefore, we can write the following expression for the solution 
space associated with the problem represented by equation (3.1):

# jy f  jnodels x R Tr x m n

We do not wish to give the reader an impression that strategies for range image 
interpretation must be founded on the problem decomposition shown here, only that it 
is a preferred approach for us (and a few other researchers in other laboratories). 
Approaches that do not conform to our problem decomposition do exist and some of 
these have been extensively investigated. In our literature survey in Section 3, we have 
alluded to these competing approaches.

fit general, any solution to the problem of matching a scene object Os with a can
didate model Om can, for the purposes of analyzing complexity and efficiency related 
issues, be conceived of as a tree search, as for example shown in Fig. 3.6. A traversal 
through the search tree may be referred to as a recognition process, each arc in the 
traversal representing an attempt at scoring a match between a scene feature and a 
model feature. Each node in a traversal may be considered to represent the current state 
of the recognition process, where the current state is specified by (c*,Tr*) with c* 
being a partial correspondence list established so far and Tr * representing the partial 
solution to the determination of object location. Clearly, the initial state of tree search, 
represented by the root, should be (c* = 0 ,  Tr* = R l r ). Through the tree search, we 
incrementlyconstruct the correspondence c* on the one hand and contract the solution 
space of Tr on the other. A model object is considered to be an acceptable interpreta
tion o f  a scene object if  the traversal reaches one of the terminal nodes. Since reaching 
a terminal node merely means that all o f the n scene features have been matched, it 
clearly does not constitute a sufficient condition for object recognition; all that can be 
said is that the model is an acceptable interpretation. If no traversal in the tree search is 
able to arrive at a terminal node then the candidate model object must be rejected. Note
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s: scene feature 

m: model featurestart

sl=m i sl=m nsl=m 2s l= m l

s2=mns2=m2s2=m l

Figure 3.6, Data driven tree search.
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that the tree search depicted in Fig. 3.6 represents data-driven approach to the recogni
tion process, the search being data driven because the sequence of matches is controlled 
by the order o f the scene features. Alternatively, the recognition process may be cast in 
a model-driven framework, as shown in Fig. 3.7, where the sequence of matches is com 
trolled by the order in which the model features are invoked. The time complexity 
associated with model-driven search is 0  (nm). For recognizing isolated single objects, 
since n will be approximately equal to m il, reflecting the possibility that only half the 
features would itt most cases be visible from a viewpoint, and since m js jess than 
(m /2)w, one can argue that for such cases a data-driven search might be more efficient 
than a model-driveh search.

Going back to the data-driven tree search shown in Fig. 3.6, since each path in the 
tree corresponds to a possible solution to the correspondence c, and since in the worst 
case the search may have to sweep through the entire space (via, say, backtracking), 
and since the total number of nodes in the space is of the order o f m ”, the time com
plexity of an exhaustive search on the tree is equal to O (m"). This exponential com
plexity, which is unacceptable for practically all applications, can be substantially 
reduced by using constraint propagation, o f which hypothesis-and-verify is one exam- 
ple. In this paper, we will show that it is possible to establish a hypothesis-and-verify 
approach in such a manner that the time complexity reduces from the e x p o n e n tia l to a 
low order polynomial.

3.3. Related Literature

Oshima and Shirai [O&S -83] [S/t -87]represent both the scene and the models by 
graphs whose nodes represent planar or smoothly curved surfaces together with their 
attributes, and whose arcs represent relations between surfaces, the relations being of 
type adjacency, convexity or concavity of common edges, dihedral angles, distance 
between the centroids, etc. The attributes of the surfaces at the nodes include perimeter, 
area, mean region radii, etc. In fact, for the models a separate graph m ay be used for 
each "typical view of the object;" the authors do not make clear what they mean by a 
"typical view." Given a range image of unknown objects, their system first selects a 
"kernel", which consists of one or two most reliable surfaces for recognition, then per
forms an exhaustive search of all model graphs to find all compatible model kernels. 
Finally, file system performs a model-driven depth first search and attempts to find a 
correspondence between the remaining scene surfaces and the model surfaces. This 
approach is an example of hypothesis generation and verification, a hypothesis being a 
model object in a pose corresponding to what they call a typical view.
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s: scene feature 
m: model feature

m l=si m l=nilm l= s2m l= s l

P V  N

m2=nilm2=s2m2=sl

Figure 3.7. Model driven tree search.



Fan, Medioni and Nevada [F&et - 88] present a scheme for establishing the 
correspondence of objects and object surfaces between two range images representing 
two views of the objects. Note that this problem is similar to the one addressed by 
OsMma and Shirai, in which a model is actually a typical view of its eotrespohdihg 
object. They also describe scenes by graphs as Oshima and Shirai did. HbweveivTh 
their approach, before feature matching starts, each graph is segmented, into a set of 
subgraphs, each subgraph representing a candidate object to be matched. This object 
segmentation is done by grouping surfaces mainly linked by convex and concave boun
daries. Besides, they use a richer set of surface descriptors, such as average principal 
curvatures, 3-D areas, etc., and use transformation constraints, which are global con
straints, in addition to the inter-surfaces constraints for graph matching

Tonaita and Kanade \T&K— 84] present an edge-based vision system for recogni
tion and localization of 3-D objects. An input range image is segmented into planar or 
conic surfaces and each surface is then descibed by its boundary segments. Each object 
model is described in the same manner from range images acquired during a learning 
phase. By matching boundary components through an exhaustive search, a transforma
tion is then hypothesized. The candidate transformation is then tested by matching the 
OthCT boundary segments for verification, the matching invoked during the verification 
phase being controlled by reliability, plausibility, etc.

Bolies arid Horaud [B&H— 86] in their 3D P0 system emphasize the importance of 
feature ordering in reducing the complexity of matching. Their matching strategy starts 
with a distinctive edge feature, and then grows a match by adding compatible features, 
one at a time. Once a  sufficient number of compatible features has been detected to 
allow a hypothesis to be formed, the verification procedure evaluates it by comparing 
the measured range data with the data predicted according to the hypothesis. The ord
ering of features to be matched is predetermined by an interactive feature-selection pro
cess, the ordering being done on the basis of uniqueness, cost of detecting it, likelihood 
df its detection, etc. Selection of a branch at a node o f  the search tree is hard-wired in 
this system. In other words, the sequence in which the scene and object features are 
matched is precompiled by the human operator.

Dceuchi [/£-87] presents a procedure for determining the unknown attitude of an 
object from 3-D measurements; the procedure uses an interpretation tree to guide the 
process of matching scene features with model features. Upper levels of the interpreta
tion tree seek to categorize the attitude of the object with respect to one on its aspects 
(with respect to a given viewpoint, an aspect is a grouping all the attitudes that appear 
topologically similar from that viewpoint). Attitude categorization takes into account 
visible dominant surfaces and their interrelationships. Starting with the knowledge of



the aspect lower levels of Ikeuchi’s interpretation tree then try to calculate more pre
cisely the object attitude. In the work reported in [Zfc-87], the interpretation tree was 
specified by a human; however, we believe, it is now possible to compile it automati
cally from the CAD models of an object. The reader should note the important differ
ence between an interpretion tree and the search tree shown in Fig. 3.6. Whereas the 
latter is a search space associated with the pairings of scene and model features, the 
former is a delineation of the steps of a procedure that must be invoked for interpreta
tion, the alternative choices of the steps of the procedure being conveniently 
represented by the branching of a tree.

Hansen and Henderson [ /M tf -87] also propose a method for the automatic gen
eration of recognition algorithms, also in the form of interpretation trees, based on the 
geometric properties o f object shapes. They select and order features in the interpreta
tion tree based on four qualities, namely, rarity, robustness, computational expense , 
completeness, and consistency. The synthesized interpretation tree has two parts, the 
first part is for matching the strongest set of view independent features; the second part 
then finds corroborating evidence in support of the hypothesis generated by the first part
and thus completes the determination of the object’s pose.

Faugeras and Hebert [ /M tf -83], [F & //-86] present a 3-D object recognition and 
localization System based on geometrical matching between primitive Surfaces. Primi
tive surfaces in a scene are segmented by region growing based on planar or quadric 
surface fit. Each model object is also represented by a list of primitive surfaces. The 
recognition process consists of first selecting from the model object a feature, such as 
an edge or a surface; then they look for a scene feature to match the selected model 
feature. The next step consists o f the selection of another model feature, such that this 
apd the previous model features completely constrain the pose of the model object 
(clearly, if the two model features are edges, they cannot be parallel; or, if one model 
feature is a cylindrical surface and the other a planar surface, the principal axes of the 
two cannot be orthogonal). The system looks for a scene feature to match the second 
model feature. The two scene features thus found generate a hypothesis for the tranfor- 
mation matrix for the scene object. The verification of the hypothesis consists of match
ing the remaining model features with the available scene features taking into account 
the position transformation. The verification stage carries out the minimization of an 
error measure, the measure being a sum of the errors between the predicted positions 
and orientations of the model features and their actual positions and orientations in the 
scene; The construction of this error measure is facilitated by organizing the scene 
features on a unit sphere which captures the relative orientations of the features and 
allows quick comparison with the transformed model features.
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Grimson and Lozano-Perez [G&L— 84] address the task of matching a set of 
observed range points, together with the measured local surface normal, with the sur
faces o f polyhedral objects. Matching consists of assigning observed points to object 
surfaces under the constraints corresponding to the upper and lower bounds on parame
ters such as the distances between two observed points, the angles between their 
assigned surfaces, etc. When a given set of surface assignments satisfies all the local
constraints, a feasible interpretation of the measurements is generated —  a feasible 
interpretation is like a hypothesis that must be verified subsequently. Local constraints 
constitute necessary but not sufficient conditions for the correct assignment of surfaces 
to the measured range points. Another way of expressing the same idea is that even if 
local constraints 'are. satisfied, there may not exist a valid global transformation that 
agrees with the generated assignments o f surfaces to the measured points. This is illus
trated by Fig. 3.8, The measured points P 1, P 2, and P 3 can satisfy all the usual local 
constraints with regard to assignments (Pi J l ) , (P2,/ 2) ,  (P3J 3), w h e re /x, / 2, and /3 
are three model surfaces. However, there does not exist a global transformation that 
would agree with the assignment During verification phase, for every two measured 
points and the normals of their assigned surfaces, a rotation matrix is estimated; and,
eventually, the centroid of all such rotation matrices is calculated to serve as a rotation 
transformation to bring the model and the scene objects into coincidence. In a similar 
manner, from every three measured points, a translation matrix is computed and, even
tually, the centroid of all such translation matrices found. The average rotation and 
translation matrices thus computed are applied to transform the model object into the 
scene space. Finally, the validity of the average transformations is computed by project
ing the measured points onto the corresponding model surfaces. During this process, the 
system calculates the normal distance between a measured point and its assigned sur
face; and, also, the system projects the point onto the assigned surface to carry out an 
“ inside-outside" computation. If the projection is found to be outside the assigned sur
face, that is an indication that the feasible interpretation under test may not be so feasi
ble after all.

In a more recent report, Grimson and Lozano-Perez have reported an extension of 
their system in which constraint propagation is used in conjunction with the local con
straint satisfaction [GAL-87]. The basic idea here will be explained with the help of 
Fig. 3.9. We will assume that we have two range measurements and the associated sur
face normal measurements, as represented by the points P l and P2 in Fig. 3.9. From 
these measurements, we can compute the distance d and the angle 0. Let us further 
assume that on the basis of the measured surface normals we have selected the two 
model surfaces shown in the figure. In the model database, we will associate a “ base 
point" with each surface, as depicted by the points BI and B2 in the figure. One can 
now show that the two measured points Can occupy only particular positions with
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Figure 3.8. th is  figure shows that satisfying local constraints does not guarantee 
global transformation between the model object and the scene object.
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Viewpoint for making 

range measurement

Figure 3.9. If  we know the range values to the two points, P l and P2, shown in the 
figure and the local surface normals, we can then compute the distance d 
and the angle 0. These two parameters are used in a constraint propaga
tion approach to object interpretation.



respect to the base points on the respective surfaces. In other words, after the measured 
point P l is assigned a location on surface I with respect to base point B I, then on sur
face 2 the measured point P2 must lie at a fixed location with respect to base point B2 
-—- strictly speaking, this being true only in the absence of noise. In the presence of 
noise, one could predict an interval in which the second measurement must lie. Xhe idea 
in constraint propagation is to compute this permissible interval as one goes down the 
interpretation tree and, of course, when the permissible interval for any assignment goes 
to zero, one need go no further along that path in the tree. W e believe that this very 
elegant idea is quite complex to implement for the case of 3-D objects because of the 
algebraic difficulties with the representation of arbitrary shaped polygons in terms of 
parameters that can be bounded for the purposes of constraint propagation. However,
basically, the idea is powerful and merits further investigation.

In their object recognition approach, Besl and Jain \_B&J—86] use the idea that a 
smooth surface can be characterized by its Gaussian and mean curvatures, which are 
invariant to rotations and translations. Bach surface point is classified into one of eight 
categories according to the signs of its Gaussian and mean curvatures. Their recogni
tion procedure first extracts critical points from a range image, a critical point being 
defined by the intersection of zero-crossings of the two partial first derivatives of a 
range map with respect to the two parameters of surface parametrization. Only critical 
points with positive Gaussian curvature are used. Finally, a critical point together with 
its neighborhood, which carries the signed information about the Gaussian and mean 
curvatures, is used as a shape descriptor for the purpose of object characterization. Ori
ginally; the aim of these authors was to use such shape descriptors as view-independent 
features, since, after all, the Gaussian and mean curvature computations are view 
independent. However, as the authors now realize [Ja —88], the choice of the critical 
points is extremely sensitive to viewpoint selection. For that reason, this strategy may 
not yield acceptable results in practice.

Bhanu [Bh -84] uses stochastic relaxation for labeling the surfaces in a range map. 
Object surfaces are approximated by convex polygon faces, and the neighbors of each 
face are ranked according to their areas. Fundamental to any relaxation labeling is the 
definition of a compatibility measure which measures the appropriateness of assigning a 
model label to a scene surface given a label assignment at a neighboring surface. In 
BhanuV  Work, this measure is defined as a function of the distances between the cen
troids of th£ scene surfaces on the one hand and between their assigned labels on the 
other; of ratios of the areas of the surfaces computed in a similar fashion; etc. Compu
tation consists of two iterative stages. In the first stage, only a pairwise compatibility 
function is used, meaning, for example, that the compatibility function is a function of 
some attribute o f two neighboring surfaces and their two corresponding labels. In the
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second stage, the compatibility function depends upon three object surfaces and their 
three corresponding labels at the same time. In each stage, at the end of the iterative 
computation, those labels are retained that maximize the overall compatibility of the 
assigned labels.

Another interesting approach called "pose clustering" or "generalized Hough 
transform is proposed by Stbcknaan [Sit—87]. He uses a Hough space of 12 parameters 
which are the 12 unknowns of a 4x4 transformation matrix. The basic idea in this 
approach is as follows: Suppose we match a planar scene surface with a similar model 
surface, in general this would not generate a unique transformation because of the 
remaining three degrees Of freedom, meaning that after the two surfaces are brought 
into coincidence, it will still be possible to translate and rotate one with respect to the 
other. Although a unique transformation is not generated, such a match does constrain 
the possible transformations; implying that in the parameter space such a match would 
lead to a subregion which must contain the correct transformation. By dividing the 
parameter space into bins and keeping track of contributions made to each bin by dif
ferent matchesi, and retaining the bin with a maximal entry, it should theoretically be 
possible to determine the correct transformation. In practice, a direct implementation of 
this idea is difficult because of bin counting in high dimensional spaces. To get around 
this difficulty, Stockman matches a pair of non-coplanar edges from the scene with a 
pair of edges from the model, such a match generating a single point in the parameter 
space, since there Can only exist one transformation matrix capable o f taking two non- 
coplanar edges from the scene into two non-coplanar edges from the model. Stockman 
then applies a clustering algorithm to the resulting points in the parameter space to find 
the most plausible tranformation. The clustering algorithm consists of examining every 
point generated in the parameter space, constructing neighborhood around such points, 
and counting the number o f neighboring such points in each neighborhood. The point 
with the largest number of neighbors is the desired unique transformation. The impor
tant issues in this computation are those that deal with the choice of the size o f neigh
borhood, and the thresholds to be used for rejecting the most dense neighborhoods.

In the literature citations above, all the researchers have first extracted features, 
such as edges, planar, quadric and other surfaces, etc., from range images and then 
matched these features with those of models. There do exist other methods in which 
matching is not preceded by feature extraction. For example, in the extended Gaussian 
image approach of Horn [Ho-S4] and Ikeuchi [/£-83], surface normals measured from 
a scene are mapped directly onto a unit sphere and the resulting EGI is then compared 
with that o f the model. The EGI approach has also been used in [MAT- 86] and 
[y<£AT-86] for determining the identify, position and orientation of the topmost object 
in a pile of simple-shaped objects.



Then, there exist approaches where for every possible viewpoint an integrated 
value of some geometrical parameter is represented on a unit sphere for comparison 
with a similar representation of a model. For example, in the work of Fekete and Davis 
[F&D -84] and Kom and Dyer [K&D-87], an integrated value of some surface pro
perty seen from different viewpoints is recorded on a sphere and used for the estimation 
of object pose. Note that the feature sphere idea advanced in our work here bears no 
resemblance to this prior work. Another interesting approach, called geometric hash
ing, is proposed by Lamdan and Wolfson [L&W-88]. In that approach, every model 
feature is made accessible through a hashing table, the hashing function being derived 
from the positions/orientations of the features in relation to a coordinate system defined 
on a base which consists of a minimal set of features for determining an object pose.

Finally, there are many approaches designed for the recognition of 3-D or 2-D 
objects Using 2-D imagery, e.g. the ruled-based ACRONYM system [Br-83], the 
characteristic views approach [C&F -82], and the automatic programming approach 
[Go -83], just to name a few. The reader is referred to the review articles by Chin and 
Dyer [C&D - 86] and Besl and Jain [B&J-S5] for general surveys of the subject.

3.4. Features for Object Recognition

The Concept of a feature normally implies some saliency which makes it espe
cially effective in describing objects and in matching. Since the recognition of objects 
will be solely based on shape, o f primary interest are geometric features, such as edges, 
vertices, surfaces together with their mathematical forms, etc. Such features specify 
three dimensional shape, in contrast with features like surface texture, color, etc. These 
latter features, although important for recognition of objects by humans, will not be 
addressed in this paper, since they can not be detected in range images. In 3D-POLY 
we consider only those geometric features with which we can associate positions or 
orientations. For example, a vertex feature has associated with it a position vector, 
which is the vector from the origin to the vertex. Similarly, a Cylindrical-surface 
feature has associated with it an orientation, which is the unit vector parallel to the axis 
of the Cylinder. We will categorize the geometrical features into three different classes: 
primitive surfaces, primitive edges, and point features.

Primitive surfaces include planar surfaces, cylindrical surfaces and conic surfaces, 
which are three special cases o f quadric surfaces. Primitive edges refer to straight-line 
features or ellipsoidal-curve features. Point features consist mainly of object vertices 
and those surface points that have distinctive differential-geometrical properties; sur
face points falling in the latter category exhibit maximal or minimal curvatures or can 
be saddle points. These three classes of features are effective in describing the shape of
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an object, and, what is more, they can be reliably extracted from range images. Note 
that we are only using simple geometrical features, as compared to more complex ones, 
like generalized cylinders [N& B-ll] and primitive solids [ke -80], that are often 
difficult to extract from range imagery.

3.4.1. Attributes of Features

We represent a feature by a set of attribute-value pairs, each pair being denoted by 
<a :v >, where a is the name of the attribute and v its value. The value of ah attribute 
can be a number, a symbol, a set o f labels of other features, or a Ust of some of these, 
depending on the nature of the attribute. For example, the surface feature s i  o f the 
model object in Fig. 3.10 may be described by

< sw facejyjk:
<radius: 3>,
<axis: (0.0, 0.0, 1.0)>,
<area: 3>,
<point_on_axis: (0.0, 0.0, 0.0) >,
<adjacent_region: { s i, $3, ^4}>, • • •

The attributes of a feature, according to their geometric and topological characteristics, 
can be categorized on the bases of shape, relations and position/orientation. Fach of 
these categories will be discussed in greater detail below. •

•  Shape attributes:
A shape attribute, denoted by sa, describes the local geometric shape of the feature, 
For example, "surface_type", "radius", and "area" are some of the possible shape 
attributes of surface feature s 2. Ideally, a shape attribute should be transformation 
invariant, i.e. independent of the object’s position and orientation, in practice when 
a feature is seen through a sensor, some of its shape attributes may "look" different 
from different viewpoints. Therefore, we make a distinction between two different 
types of shape attributes, those that are viewpoint independent and those that are 
not. For example, the area of a surface and the length of an edge are viewpoint 
dependent, because they may vary with viewing direction due to occlusion. On the 
other hand, the attributes surface-type and radius are viewpoint independent. [Of 
course, we do realize that in high-noise and high-occlusion situations, a precise esti
mation of, say, the radius of a cylindrical surface may be difficult and may even 
become viewpoint dependent.] Clearly, when comparing shape attributes for 
matching a scene feature to a model feature, we should take this viewpoint- 
dependency into consideration.
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A scene object

A model object

Figure 3.10. Labels of the primitive surfaces, primitive edges and the vertices of the
object shown in Fig 3.4.
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•  Relation attributes:
A relation attribute, denoted by ra, indicates how a given feature is topologically 
related to other features. For example, for the surface feature s2, the attribute 
"<adjacent_to: {s I, s 3, $4}>" indicates its adjacency With three Other surfaces. 
Relation attributes should also be independent of transformation. An attribute 
"<°n_top_of: s l> ” is not a proper relation attribute for feature s2  because it 
depends oh t y  pbsC of the ofejeci.

•  Position/orientation attributes:
A  position/orientatioh attribute, denoted by la, specifies position and/Or orientation 
of a feature With respect to some coordinate system. In general, the 
position/orientation attributes of U scene feature are measured With respect to a 
world coordinate system, and those of a model feature are measured with respect to 
a model-centered coordinate system. As with shape attributes, some 
pdsitioh/briehtatioh attributes may be viewpoint-dependent, such as the centroid of 
a surface, or the midpoint of an edge; while others may be viewpoint-independent, 
as with the attributes surface-normal of a planar surface, or the axis of a cylindrical 
surface, etc. The viewpoint-dependent position/orientation attributes should be 
avoided in the estimation of Tr during hypothesis generation (see next section ), 
however, they can be useful for rapidly eliminating the unmatched features during 
the verification process.

Since a feature may possess more than one shape attribute —  for example, the 
feature s 2 in Fig. 3.10 possesses the shape attributes surface-type, area, radius, etc. —  
we will use the symbol SA to denote the set o f shape attributes associated with a 
feature. Similarly, we Will use symbols RA and LA to denote the sets of relation and 
position/orientafidh ItM butes of a feature, respectively. Therefore, the feature edge e2 
of the object in Fig. 3.10 may be described'by

SAie 2) = [<shape: straight >,<length: 3>, • • • },

LA ie2) = {<direction: (0.0,1.0,0.0)>,<pom/_£)n_edge: (1.0,0.0,3.0)>, • • • }, 
and

RA(e2) = [<(thd_veriex\v 1>, • • • }.

In practice, we may not need to use all the three categories of atMbutes but only those 
useful fo ra  particular application. For example, Faugeras and Hebert in their geomeMc 
matching approach \F&H-%6] have used only shape and position/orientation atMbutes. 
The set o f atMbutes used in describing features should also depend on the sensor capa
bility and the performance of the feature extractors. Using atMbutes which can not be 
reliably detected or measured by a sensor will not conMbute much to solving the prob
lem of object fCCognitidn. Inany event, a minimal requirement in deciding which atM
butes to use for describing features is that no two features in an image or in a model be



allowed to have the same set o f attribute-value pairs. This, of course, does not imply 
that a, model or a scene not contain multiple instances of a particular feature type. To 
elaborate, the vertex features v I and v 2 for the model object in Fig. 3.10 are identical, 
but their attribute-value pairs will be different because of the differences in their 
position/orientation attributes.

3.4.2. Principal Directions of Model Features

Empirical observations show that an important characteristic associated with an 
object feature is what we call its principal direction. In an object-centered coordinate 
system, the principal direction of a feature gives us a fix on the directional position 
and/or orientation of the feature with respect to the other features on the object. Since, 
one must first establish an object-centered coordinate frame, a principal direction can 
only be assigned to a model object, or to a scene object which has been embedded in an 
object-centered coordinate frame via prior matches with some features.

In Section 5, we show how a useful data structure —  we call them feature spheres
__can be defined using the concept of principal directions. Here, we will define the
principal directions more formally and make the reader aware of the fact that the 
manner in which such definitions are made are different for different classes of features, 
and Within each class, for different types of features. As was mentioned before, dif
ferent classes of features correspond to primitive surfaces, primitive edges and primi
tive points. Within the class primitive surfaces, we may have different types of features 
such as cylindrical, planar, spherical surfaces, and so on. While for some class and type 
of features, the principal direction represents their orientations, for others it represents 
their directional position on the object.

W e Will now formally define the prinicpal direction, denoted by O, for the three 
classes of features and for types within each class:

(I) Primitive surfaces:

•  Planar surface:
O  = The direction of the outward surface normal

•  Cylindrical surface or conic surface:
= TTie direction o f the axis. The 180° ambiguity associated with this direc

tion is resolved by choosing; that direction which subtends an acute angle with 
the positive z-axis. For axes that are perpendicular to the z-coordinate, that 
direction is retained which is closest to the x-coordinate. And, the axis is per
pendicular to both z and x, then we choose the +y direction.

•  Spherical surface:
Let o be the position vector to the center of the sphere in the object-centered
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coordinate system. The principal direction is defined by the normalized form 
o f this position vector:

®  =
o

ToT

Note that this principal direction is different in character from that defined for 
a cylindrical surface. We choose this form for because it is not possible to 
associate an Orientation vector with a spherical surface.

•Quadric surface:
A quadric surface has the form x'Ax+x-B+C = 0.

aP

where ap is the principal eigenvector of the matrix A.
In general, eigenvector associated with the largest eigenvalue is the principal 
eigenvector of A  and the direction associated with this eigenvector usually 
defines the major axis o f a surface. Since a quadric description includes the 
cases of planar, cylinderical and spherical surfaces defined above; the 
definition of the principal axis here must be used with care. The quadric 
definition is used only if  a surface cannot be classified as being either planar, 
cylindrical or spherical.

(2) Primitive curves:

•  Straight line:
i s  tine direction

The 180° ambiguity associated with the direction of a line is resolved using the 
same criterion as for the axis of a cylinder.

•  Circular or ellipsoid curve:
O  = surface normal o f the curve's plane
The 180° here, too, is resolved as for the case of the axis of a cylinder.

(3) Point features:
Let p  be the position vector o f a point feature with respect to the object-centered 
coordinate system. The principal direction is defined by normalizing the position 
vector:

The important thing to note is that the parameters used in the definitions of princi
pal directions are all extracted with relative ease from range maps. For example, if from 
a given viewpoint in a range map about 40 percent of the round part of a cylindrical



surface is visible, in most cases it is possible to make a good estimate of the direction of 
the axis of the cylinder.

3.4.3. Criteria for Feature Matching

W e will how provide matching criteria for the matching problem expressed in 
equation (3.1) and express these in terms of the three attribute classes. In other words, 
We will express the conditions for each attribute class, conditions that must be satisfied 
for a scene object to match a model object. Our conditions are applicable strictly only 
under the noiseless case. For actual measurements, the comparisons implied by our con
ditions would have to treated in relation to some user specified thresholds, the magni
tudes of the thresholds depending upon the noise and other uncertainties in the system.

•  Matching Criteria for Shape Attributes:
The reader will recall that we have two different types of shape attributes, those that 
are viewpoint independent and those that are not. A viewpoint independent shape 
attribute sa of a scene object feature is said to match the corresponding shape attri
bute of a model object feature if

sa (Si) = Sa(McQ)). (3.2)

where the function sa(.) returns the value of the attribute sa for the feature that is its 
argument; Si is a feature from the scene and Mc^  is the candidate model feature 
that is under test for matching with the scene feature. The above equality must be 
satisfied for each saeSA  (Si). For viewpoint dependent shape attributes, clearly we 
cannot insist upon an equality in the above equation. In general, for such attributes, 
we require

Sa(Si) <sa(Mc(i))-
Note that since all the viewpoint dependent shape attributes are numerical in nature, 
we only have to use numerical inequalities and not, say, subsets, as would be case 
for Symbolic features. For example, we would expect the length of a scene edge be 
equal to or less than the length of the corresponding model edge due to possible 
occlusion, therefore, the matching criterion for this attribute can only be expressed 
as

edgelength (Si) < edgelength (McQ)),

•  Matching Criteria for Relation Attributes :
Relation attributes are also transformation invariant, thus if  a scene feature Si has 
relation ra with, say, scene feature S/, then the model feature Mc^) must have the 
same relation ra with the model feature McQy More precisely, for every 
ra e  RA(Si)
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Cira(Si)) ^  ra(Mc(i)). (3.3)

Tojustify the nature o f this comparison, consider that the model object is as shown 
in Fig. 3.10. Further, suppose that in the scene the model surfaces s2 and s3 are visi
ble and have been labeled as, say, Sa and Sb, respectively. Then, from the model 
(ie^ription, w ehave

adjacentjo(s3) = {s2 ,s  A}

and, from the scene information,

adjacentJo (S b) = [Sa]

Let’s say that during the hypothesis generation phase, an estimate was made for the 
transformation that takes the model object into the scene object. Let’s further say 
that using this tranformation, we have already established the correspondence off the 
scene surface Sa with the model surface s 2, and, now, we are testing the eorrespon- 
dence of the scene surface Sb with the model surface 53. We see that since 
Odjacentjo(Sb) = Sa, and since c(Sa) = s 2, a substitution in equation (3.3) yields 
for ra = adjacent to

{$ 2 } £  {^2, 54 }

which being true implies that the scene surface Sb can indeed be matched with the 
model surface s 3 , at least from the standpoint of satisfying relational constraints. 
The point to note is that in the matching criterion o f equation (3.3) the features par
ticipating in a relation at a given scene feature Si should be a subset of the features 
participating at corresponding model feature Mc^y, it is not possible to replace the 
"subset" comparison with a strict equality because not all o f the model surfaces may 
be visible in the scene.

•  Matching Criteria for Position/Orientation Attributes:
For a viewpoint independent position/orientation attribute la, such as the location of 
a  vertex or the direction of an edge, the matching criterion is described by

yy Ia(Sj) =-R'la.(Mc(i)) if la is an orientation vector, (3.4-a)

Id(Si) =R-la(Mc(/>) + * \ f  la is a position vector. (3.4-b)

for every la e  LA(Si). These criteria play a vital role in the localization of a scene: 
object. Recall that the matching process starts withTr=M7r and should end up with 
a unique solution which is the location of the scene object, else it should fail. 
Before Tr has converged to a unique solution equation (3.4-a) or (3.4-b) provide a 
system of equations to solve for Tr., but after that, they are nothing but two predi
cates which confirm or reject a match between the scene and model features.
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Maiiy important position attributes are not viewpoint independent, yet they are 
important. For example, the position attributes point_on_axis and point_on_edge 
shown in Section 4.1 are both viewpoint dependent since these points can be at arbitrary 
locations along their respective directions. Despite their arbitrary locations, these points 
play a vital role during the verification phase of matching. For illustrating this impor
tant point, let’s say a scene edge is under consideration for matching with a model edge 
under a given pose transformation. Now, if the directions of the two are identical, that’s 
not a stiffidient criterion for the match to be valid, since the identity of directions 
merely implies that the scene edge is parallel to the model edge. To impose the addi
tional constraint that the two edges be collinear, we need the point_on_edge attribute 
even if  the point is arbitrarily located on the edge in the model space. The 
po in tonedge  attribute is used in the following fashion: First the difference vector 
between the vector to point_on_edge and a vector to some arbitrary point on the scene 
edge is computed. Then the cross-product of the difference vector with the direction 
attribute of, say, the model edge is calculated. The magnitude of this cross-product 
should be close to zero for the match to be acceptable. Note that while the cross-product 
being zero guarantees the collinearity of the model and scene edges, it still allows one 
degree-of-ffeedom between the two. It is impractical to completely constrain this 
remaining degree-of-ffeedom since in the presence of occlusions the model edge may 
not be completely visible in the scene.

Before concluding this subsection, we should mention that, in a manner similar to 
edges, the position attribute associated with a planar surface, specified by giving the 
coordinates of an arbitray point on the surface, can be used to make sure that a model 
surface is coplanar with the corresponding surface from the scene; again, the identity of 
surface orientations is not sufficient, and to cope with occlusions, it. is not possible to 
constrain the two any further.

3.5. MatchingStrategy

As mentioned in the introduction, the recognition method employed in 3D-POLY 
is based on hypothesis generation and verification. In this section, we will explain how 
hypotheses are generated and then how each hypothesis is verified.

In what follows, we will first show that if hypotheses are generated by exhaustive 
search, meaning that a scene feature is tested against every possible model feature, then 
the time complexity of the recognition procedure is 0 (nxm (/l+1)), where n is the 
number of scene features, m the number of model features, and h the number of features 
used for the hypothesis generation. Unfortunately, this complexity reduction is not 
sufficient for most practical purposes. We then proceed to show how by using the
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notion o f local feature sets for generating hypotheses and using thefeature sphere Hata 
Stnieture for verification, the complexity can be improved to O (nxm xh !). Finally, we 
will show that when we use the vertex features to organize the local feature sets, the 
complexity is further improved to 0 (n 2).

3.5.1. Hypothesis Generation and Verification

It is rather well known that only a small number of features is necessary to esti
mate the tranformation matrix Tr that gives the pose of a scene object in relation to the 
corresponding model object [Sr- 86, Bo -84]. In our work, this small number of 
features will be referred to as a hypothesis generation feature set (HGF). Clearly, it is 
the position/orientation attributes for the features in an HGF that must be used for the 
estimation of Tr. We have shown some possible HGF sets and the position/orientation 
attributes used for determining Tr in Table 3.1. Note that the table is not an exhaustive 
listing of all possible HGF sets, but only those which are rather frequently used. How 
exactly a Tr may be constructed from the position/orientation attributes of the different 
possible HGF sets may, for example, be found in [Sr- 86, Bo -84 , G&L-84, F & H -86]; 
each of these references discusses the method used to calculate a Tr for the type of HGF 

. used. ./

Let’s assume that a recognition procedure needs a maximum of h features to con
struct a hypothesis for the pose transform Tr for a candidate model object. We will 
further assume that we have somehow selected a subset of cardinality Ti of the scene 
features, this subset will constitute the HGF set and will be represented by 
{S u $ 2r~ ..,Sfc}; we wish to generate hypotheses by using the features in this subset. 
We may then divide the search tree in Fig. 3.6 into two parts as shown in Fig. 3.11, the 
division occurring at level h on the tree. Note that at the first level of the tree, we try to 
match the scene feature S \ against all possible model features from the candidate 
object. Then, at the second level, at each node generated by the first level, we try to 
match the scene feature S 2 with every possible model feature; and so on.

As depicted in the figure, after a hypothesis is formed with h features, we use the 
remaining n -h  features for verification. In principle, if a hypothesis is correct, i.e. the 
scene object Os is indeed an instance of the candidate model Om at location Tr, we 
should then be able to find all the remaining n-h  matched feature pairs using the 
transformation Tr. This implies that in the verification phase the scene feature at each 
level will match with exactly one model feature. This uniqueness is guaranteed by the 
requirement that no two features of a model have the same description. To reiterate 
what was said in Section 4, on account of the different position/orientation attributes 
this requirement is easily met even for those features that might otherwise be identical,



Table 3.1 Summary of HGF sets

83 chen/kak

Configuration of features Position/orientation attributes

Three unique, noncollinear 
points.

The three positions vectors associated with the three 
points.

One straight edge & one non
collinear point.

The orientation attribute associated with the direction 
of the edge, the position attribute associated with a 
point on the edge, and the position attribute associated 
with the noncollinear point.

One ellipsoidal edge & one 
noncollinear point.

The orientation attribute associated with the edge, the 
position attribute associated with a point on the axis of 
the ellipsoidal edge, and a position attribute associated 
with the noncollinear point.

Two primitive surfaces Sc 
one point.

The two principal directions associated with the two 
surfaces, and a position attribute associated with the 
extra point

Three non-coplanar primitive 
surfaces.

The orientation attributes associated with any two of 
the surfaces, and three position attributes associated 
with some three points, one on each surface,

NOTES ON TABLE I:

The reader might like to note that for each HGF set, the position!orientation attri
butes shown constitute the least amount of information that is required for the cal
culation o f the pose transform using that set. That this is so should be obvious for 
the first set. For the second set, we need to know the coordinates of at least one 
point that is arbitrarily located on the straight edge. Without this extra informa
tion, the rotation transform computed from just the edge directions would not also 
‘move’ the edge from its model space to the scene space; the point on the straight 
edge helps us make the model edge become collinear with the scene edge. Then, we 
can use the extra non-collinear point to constrain the rotation of the object around 
the edge. The same argument applies to the third HGF entry. The attributes listed 
for the fourth HGF set should be obvious, especially in light of Appendix A. 
Finally, for the last HGF set, while two orientation vectors are sufficient to give us 
the rotation transform, coordinates to three points, located on each of the surfaces, 
are needed to constrain the translation vector. Note that these three points can be 
at arbitrary locations on the surfaces in the model space, the same being true in the 
scene space, (See the end o f Section 4 for how a point located arbitrarily can be 
used to constrain the location of a surf ace.)
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failed feature match 

successful feature match

backtracking from verification to hypothesis generation

Figure 3.11. The data driven search tree is divided into two parts at level h on the tree.
The first part represents the hypothesis generation stage while the second 
part represents the verification stage.
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say, by virtue of their similar shapes.

On the other hand, if any one of the remaining n -h  features can not be matched to 
a model feature, that implies the current hypothesis is invalid, because either Om is not 
the right object model or Tr is not the correct transformation. Therefore, when a scene 
feature, say, Sic, k>h, does not match any model features under the candidate Tr, it 
serves no purpose to backtrack to level k -1  or higher. Instead, the system should go 
back into the hypothesis generation phase, by backtracking over the first h levels, and 
try to generate another hypothesis for Tr, as illustrated by arc A in Fig 3.11. Clearly, if 
repeated backtracking over the first h levels fails to produce a valid Tr, the candidate 
model object should be discarded and new tree search begun with a new candidate 
object. In the rest of this subsection, we will explore the time complexity associated 

with this type of search.

This search process is exhaustive oyer the model features in the sense that at every 
node shown in Fig. 3.11, a scene feature must be compared with all the features of the 
Candidate model object. Therefore, at each node, the complexity is proportional to rtt, 
the number of features in the model objects. The number m is also the fan-out at each 
node encountered during the hypothesis generation phase, i.e., in the first h - I  levels of 
the search space. However, the fan-out in the verification phase equals I because o f our 
requirement that a match failure during verification implies going back into hypothesis 

generation.

Since backtracking is allowed to be exhaustive during the hypothesis generation 
phase, the time complexity associated with hypothesis generation is Oimh). The time 
complexity associated with the worst case verification scenario can be estimated by not
ing that each verification path has at most n -h  nodes, and, since at each node we must 
make w  comparisons, the complexity of verification is Oimxn). Therefore, the overall 
complexity associated with this recognition process is

Oipth) x Oimxn) 

which is the same as

0 (nxm A+1)

For rigid objects, /tw ill typically be equal to 3, although its precise value depends upon 
how carefully the HGF sets are constructed. Therefore, the expression for the complex
ity function becomes

Oinxrn4)

Although one may consider this complexity function to be a substantial improvement 
over the Oimn) function associated with the search tree of Fig. 3.6, it is still not



acceptable for practical applications. In the next subsection, we will show how by con
straining the selection o f model features for matching we can make further reductions 
in the complexity.

3.5.2. How to Constrain the Selection of Model Features

In this subsection, we will explore the question of what constraints one should 
invoke to select model features for matching with a scene feature. Given that the com
parison of attribute values plays a central role in the matching process, the constraints 
we are looking for should be derivable from the attributes. But, since we have three dif
ferent kinds of attributes, namely, shape, relation, and position/orientation, the question 
that arises is which of these attributes are best suited for the required constraints.

To answer this question, we will take the reader through a two-dimensional exam
ple shown in Fig. 3.12. With the help of this example we will convince the reader that 
the attributes used for constraining the selection of model features should depend upon 
whether or not we know the tranform Tr. In other words, the constraints used in the 
hypothesis generation phase must, of necessity, be different from those used in the 
verification phase. We will show that for hypothesis generation phase, we must take 
recourse to an idea suggested and used by other researchers: the model feature that is 
invoked for comparison against a scene feature should depend upon its relations with 
the previous model features in the path traversed so far in the search space of Fig. 3.6. 
And, for the verification phase, we show that remarkable reductions in computational 
complexity can be achieved by using constraints derived from the principal directions 
of features —  recall that the principal direction of a feature is derivable from its 
position/orientation features. We will then show that the invocation of constraints on 
the principal directions is greatly facilitated if the features are organized according to a 
special data structure we call the feature sphere.

To help explain our points, in Fig. 3.12 is shown a 2-D range image of a polygonal 
object. The viewpoint is from the top, as illustrated. Range mapping is orthogonal, 
meaning that the lines of sight for the determination of range values are parallel; for 
example, the range at scene point I is equal to the distance d l, and d l is parallel to d 2, 
the range at scene point 2. The model polygon is shown in Fig. 3.13. The problem is to 
recognize and locate the polygon in Fig. 3.12 given its model in Fig. 3.13. We will 
assume that the recognition system is using only vertex features (an example of primi
tive point feature type). Scene vertices will be denoted by integers I, 2, 3, • • • , and 
those pf the model by letters, a, b, c, • • •. From the viewpoint shown, only the model 
vertices a, b, c, d, e, / ,  g, h, k, I are visible to the sensor. For the sake o f argument, 
we will assume that of these vertices, the model vertex d is not detectable; therefore, its
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^  view point

Figure 3.12. A 2-D range image of a polygon. The range values are proportional to the 
perpendicular distance from line AB. For example, the range correspond
ing to scene point I is equal to the distance d l.
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Figure 3.13. The model of the polygon shown in Fig. 3.12.



correspondent in Fig. 3.12 has not been given a label. The undetectability of d  in the 
sensor data could be due to the fact that the angle defining that vertex is not very sharp. 
As a result, feature extraction from the sensor data will only yield the vertices 
I, 2, 3, 4, 5, 6, 7, 8, 9. For the viewpoint shown, we must further assume the unavaila
bility of angle measurements at vertices 1 ,7 and 9.

We will subject the recognition of the polygonal object in Fig. 3.12 to the kind of 
hypothesis and verify approach depicted in Fig. 3.11, except that we will add con
straints on the selection of model features at each node. We will first examine the possi
bility of using constraints derived from shape attributes.

3.5.2.I. Using Constraints Derived from Shape Attributes

Let’s say each scene feature is characterized by the following set of shape 
attribute-value pairs:

SA =  <scii, V1->

In the absence of uncertainties, perhaps the most straightforward way of constraining 
the selection of model features in the matching process is to invoke only those model 
features whose sa,- values are the same as v,-. For the 2-D example, say that at a node in 
the search space the scene vertex 2 is under consideration. Now, a possible shape attri
bute for a 2-D vertex is the dihedral angle 0 shown for one of the vertices in Fig. 3.13. 
Let’s say the measured dihedral angle at the scene vertex 2 is 02. Given this shape 
information, it should be necessary to invoke only those model vertices whose dihedral 
angles, denoted here by 0*, satisfy the constraint

{x: I 0 jc—02 I
where e  represents the uncertainty in angle measurement. Given a judicious choice for 
e, such a constraint might only invoke the model vertices b and k —  a considerable 
im p r o v e m e n t  o v e r  having to compare, in the worst case, of course, —  the scene vertex 
2 with all the 16 model vertices.

A practical implementation of the above idea Would require that we organize the 
model features according to the shape attributes. One could do so, for example, by sort
ing the model features by the values of the attributes. Then given a desired attribute 
value for a scene feature, the candidate model features could be retrieved by a binary 
search. Another way is to use an array with each array cell representing an interval of 
the attribute value; a model feature could then be assigned to an appropriate cell on the 
basis of the value of the attribute. The latter method would, in general, be more 
demanding on memory requirement, but the retrieval of candidate model features for a 
given scene feature attribute value would be more efficient.
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Although, in some cases, it would certainly be possible to benefit from the ideas 
outlined in the previous two paragraphs, we have chosen to not use shape attributes for 
constraining the selection of model features. Our most important reasons are that the 
viewpoint independent shape attributes, for the most part, do not contain sufficient 
discriminatory power for adequately constraining the selection of model features; and 
the viewpoint dependent shape attributes are too prone to getting their values distorted 
by occlusion and, of course, the change in viewpoint.

For example, planarity of a surface is a viewpoint independent shape attribute. 
Now consider the example illustrated in Fig. 3.10 and assume that we are matching 
scene surfaces with model surfaces using planarity as a shape attribute. Clearly, all the 
model surfaces but s2 would become candidates for scene surface sb, and there would 
be almost no gains in the computational complexity. On the other hand, a viewpoint 
dependent shape attribute, like the area of a surface would obviously be useless because 
the problems that could be caused by occlusion. For another illustration of the 
difficulties caused by using viewpoint dependent shape attributes, lets go back to the 
matching of vertices in Fig. 3.12. Although it may not seem so, the dihedral angle is 
viewpoint dependent, as, for example, evidenced by the vertices I, 7 and 9. The 
dihedral angles at these vertices can not be measured from the viewpoint shown in Fig. 
3.12 because of self-occlusion. Therefore, it would be impossible to use the most obvi
ous shape attribute —- the dihedral angle —  for constraining search, as any of the nodes 
could suffer from self-occlusion, depending upon the pose of the object.

3.5.2.2. Using Constraints Derived from Relation Attributes

L e ts  say a scene feature S has the following relation attribute-value pair 
C ra r lS 1, S 2 , • . • , S*}>, meaning that the scene features S 1, S 2, ...., S* are participat
ing with S in the relation named ra. We will assume that of S 1, S 2,...., S*, the features 
S 1 through Sp, p<k, have already been matched with model features. Then we may 
consider only those model features for matching against S that enter into relation ra  
with the model features that match S 1 through Sp. More formally, a model feature M 
will be selected for matching with S provided one of the relation attribute for M  is 
<ra:{M c(1), Mc(2), • • • , Mc(p)}>. Remember, the mapping function c gives us the 
correspondences between the scene features and the model features.

In the example o f Fig. 3.12, assume that the scene vertices 4 and 5 have already 
been matched with the model vertices € and /", and that the scene vertex 6 is now under 
test for possible match with a model vertex. Since vertex 6 has relation attribute 
<adjacentjo : {5, 7}>, a candidate model feature for matching with vertex 6 should 
posses the relation attribute <adjacent_to: {/, *} >, where we have used an asterisk to
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act as a place-holder for the yet unknown corresponding model vertex of vertex 7. For 
symmetric relations, such as adjacent_to, a search for those model features that satisfy 
the desired constraint can be easily conducted by examining the relations at the vertex 
fi we may thus conclude that the model vertex g is a candidate model feature for the 
scene vertex 6. For non-symmetrical relations, unless care is exercised in organizing 
the model feature with respect to their relations, in the worst case one may have to 
search through all the model features to determine those which satisfy the required con
straints, However, even with such a search, one would gain from the subsequent savings 
in not having to match all the model features with a scene feature. In addition to having 
to search for the model features, there are other issues that play an important role in 
matching scene features with model features under relational constraints, especially 
when one also has to contend with the uncertainties associated with real data. Over the 
years, much has been done in this area and the reader is referred to [S&H— 81, 
K & et-Sl, W&L-&3] for father details.
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Although what we have said so far in this subsection may be construed as imply
ing the appropriateness of relational constraints, the reader beware. We will now show 
that there can be situations when relational constraints may not help at all with the 
pruning of model features, and, further, in some cases they can lead to results that may 
be downright incorrect

Going back to our example of Fig. 3.12, we just showed how the prior matches at 
scene vertices 4 and 5 help us constrain the search at vertex 6. One may similarly show 
that the matches at the vertices 5 and 6 help us with the selection of candidate model 
vertices at 7. Now, let’s say, that the scene vertex 7 has been successfully matched with 
the model vertex h. Ouf next task is to find a list of candidate model vertices for the 
scene vertex 8. However, because o f self-occlusion, there does not exist at vertex 8 the 
relation attribute KadjacentJo :..,7,..>. This means that prior matching history along 
the path being traversed in the search space would not help us at all at the scene vertex

r V -  V v / - . ; .  V V ' ; . . ' : : - -  .. , ... V - ;
Now to show that relational constraints may lead to erroneous matches, consider 

the scene vertex 3, where we have the relation <adjacentjo :2,4>. We will assume 
that the vertex 4, being closest to the viewpoint line AB, has already been matched with
model vertex e. The candidate model vertices for the scene vertex 3 must satisfy the 
relation <adjacentjo :*,e>, since e is the correspondent of 4 and since the vertex 2 has
not been matched yet. This constraint would cause 3 to be matched with the model ver
tex d —  an obviously incorrect result which would eventually cause an erroneous rejec
tion of the model object.



3.5.23; Using Constraints Derived from Position/OrientationAttributes

If a scene feature possesses a position/orientation attribute-value pair <la :v >, 
then it follows from equations (3.4-a) and (3.4-b) that a potential candidate model 
feature must be characterized by the either or both o f the following position/orientation 
attribute-value pairs

<la:R~1-v> if  v is an orientation vector (3.5-a)

<la:R~l '(y-t)>  if  v is a position vector (3.5-b)

where R  and t  are the rotation and translation components, respectively, of the tranfor- 
mation Tr that takes the model object into the scene object. Clearly, an estimate o f  the 
tranforinatiori Tr is required before a location constraint can be invoked.

We must again address the issue of how one might organize model features in 
order to efficiently invoke the location constraints. One approach would be to partition 
the space of all possible locations into cells and to assign model features to appropriate 
cells based on their locations. Since it takes three parameters to specify an orientation, 
two to specify the direction of the axis of rotation and another one to specify rotation 
around this axis, the location space for orientation vectors will consist o f either the 
volume of a unit sphere, or, using the quaternion notation, the surface of a four
dimensional unit sphere. On the other hand, the location space for position vectors will 
be the 3-D Cartesian space.

While it would indeed be possible to use the position/orientation constraints in this 
manner to prune the list of candidate model features, difficulties arise in practice on 
account of the fact that it may not be possible to develop a unified organization of 
model features on the basis of position/orientation information, since some features 
may have only position attributes, other only orientation attributes, and still others both.

Fortunately, there is a way out of this impasse, by the use of principal directions 
defined in Section 4. For every feature, as shown in that section, we can derive its prin
cipal direction from either the position information or the orientation information. The 
principal direction can then be used, by the method discussed below, to organize the 
model features for efficient retrieval subsequently. In the rest of this subsection, we 
will use the 2-D example of Fig. 3.14 to introduce the idea of a feature circle, which is 
a means to organize, on the basis of their principal directions, the model features for the
2-Dcase. \

For the 2-D example, we first compute the principal direction of each model ver
tex according to the definition in section 3-2. Since the space of direction vectors in 2- 
D space is a circle, we organize the model vertices along a unit circle as shown in Fig.



93 chen/kak

N...... J

Figure 3.14. The vertices of the model polygon axe pushed out to a unit circle which is 
the feature circle of the model.
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3.14. TMs constitutes the feature circle for the model object. Suppose that the orienta
tion I? and position t  o f the scene polygon has been hypothesized by matching vertices 
4 and 5 to model vertices e and / ,  respectively. Now, suppose we want to find the candi
date model vertices for the scene vertex 3. Using equation (3.5-b), the position vector 
of a candidate model vertex for possible matching with the scene vertex 3 should be

P = R 1 p i - t  , r . - '

Theprincipaldirectionassociatedw iththispositionvectoris

We can then access the feature Circle of Fig. 3.14 and pull out those model features 
whose principal directions lie in the interval [ O - e , O+e], where e depends upon the 
magnitude of uncertainty in the sensed data.

Of course, for the 3-D case, the organization of the model features would not be as 
simple as what is shown in Fig. 3.14, since the features would now have to be mapped 
onto the surface o f a sphere on the basis of their principal directions. To handle the 
resulting complications, in Section 6, we will introduce the notion o f a feature sphere 
which used a special indexing scheme for the tessellations on the surface of the sphere. 
The indexing scheme chosen reduces the complexity associated with f in d in g  the neigh
bors o f a particular cell on the surface of a sphere.

3.5.2.4. Conclusion Regarding the Choice of Constraints

Before we present our complete feature matching strategy, we would like to sum
marize the conclusions that can be drawn from the preceding three subsections.

•  Relatively speaking, shape attributes are not that useful for the purpose of selecting 
candidate model features because, when they are view independent, they often do 
not carry enough discriminatory power, and, when they are view dependent, they 
cannot be used for obvious reasons.

•  When the pose transformation Tr is unknown, relation attributes can provide strong 
constraints for selecting model features; however, extraction of relation attributes 
may be too prone to artifacts.

•  When the pose transformation Tr is given, the principal direction attribute, which 
can be derived from the position/orientation attributes, probably provides the best 
constraint for selecting model features. We use the adjective "best" to emphasize, in 
a qualitative sense admittedly, the fact that this attribute can be calculated in a fairly 
robust manner for most features, and, to emphasize its ability to provide strong 
discrimination amongst competing model features.



These conclusions form the foundation of Out overall matching strategy, which we now 

present:
During hypothesis generation:

In this phase, we will use constraints on relation attributes to prune the 
list of model features. To get around the problems associated with 
exhaustive backtracking in the upper h levels of the search space shown 
in Fig. 3.11, we will group immediately related model features into sets, 
to be called Local Feature Sets (LFS). Each LFS will be capable of gen
erating a value for the transformation matrix Tr. The idea of using 
feature sets for constructing hypotheses about pose transformations is 
akin to the local feature focus idea used by Bolles and Cain [B& C-827 
for the 2 -D case and to the notion of kernel features used by Oshima and 
Shirai [0& S-S3] for the 3-D case.

During verification:
In this phase, we will use the principal direction constraint to select 
model features. For efficient retrieval on the basis of their principal 
directions, the model features will be organized on feature Spheres.

In the next subsection, we will elaborate on the notion of Local Feature Sets for 
hypothesis generation. In the following subsection, we will then present a formal 
definition o f the feature sphere data structure and present expressions for the complex
ity functions associated with our matching strategy.

3.5.3. Local Feature Sets for Hypothesis Generation

Ideally, an LFS is a minimal grouping of features that is capable of yielding a 
unique value for the pose transform which takes the model object into the scene object. 
The features in such a minimal grouping could, for example, correspond to one of the 
rows in Table 3.1.

More practically, it is desirable that the features in an LFS be in close proximity to 
one another, so that the probability of their being simultaneously visible from a given 
viewpoint would be high. In our implementation, we have found useful the following 
variation on the above idea, which seems to lead to particularly efficient hypothesis 
generation strategies for objects that are rich in vertices, such as the objects of Fig. 3.2. 
We allow our LFS’s to be larger than minimal groupings and insist that each grouping 
contain a vertex and all the surfaces meeting at that vertex. [It would be equally easy to 
use edges in place of surfaces.] In Fig. 3.15, we first show labeled features for one of 
the objects of Fig. 3.2. For that object, the LFS’s generated with this specification are
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a

Figure 3.15. The labels of surfaces and vertices of the object in Fig 3.2 (a).



shown in Table 3.2. To explain the advantages of our approach, consider the LFS 
corresponding to the vertex d of the object in Fig. 3.15. The data record for this LFS 

will look like
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Vertex c 
flag :-I 
xyz: ##
surfaces: 2 10 3 
adjacent_vertices: a e d 
edge_type: v v c

The flag value o f - I  means that one of the three edges meeting at the vertex is concave. 
The variable! xyz is instantiated to the coordinates of the vertex in the model coordinate 
system. In edge_type, v denotes convex and c concave, as there are two concave and 
one convex edges meeting at this vertex. This LFS subsumes at least three minimal 
feature groupings that are also capable of generating a unique value for the pose 
transform. For example, the grouping consisting of the surfaces 2 and 10, together with 
the coordinates of the vertex a, can yield a unique value for Tr. To answer the question 
why we use this particular construction for LFS’s, we will first define a completely visi
ble vertex.

In the scene, a vertex will be called completely visible if no occluding edges meet 
at the Vertex. An example of a completely visible vertex is shown in Fig. 3.16-(a), while 
(b) shows the same vertex when it is not completely visible. Note that occluding edges 
in a range map are characterized by range discontinuities.

We believe that a completely visible vertex in a scene provides the strongest con
straints for calculating the Tr associated with an object in a scene. Of course, theoreti
cally, any two of the non-parallel surfaces coming together at the vertex, in conjunction 
with the vertex itself, are capable of specifying uniquely the Tr associated with a scene 
object. Therefore, theoretically at least, for the vertex shown in Fig. 3 .16-(a), any two of 
file surfaces, together with the coordinates of the vertex, can yield Tr. However, in prac
tice, it is difficult to calculate with great precision the position of the vertex itself, pri
marily because o f the nature of discontinuities of some o f the spatial derivatives at such 
a point, therefore, our approach is that if a completely visible vertex can be found in a 
scene, it should immediately be used to calculate a Tr.

Of course, it is entirely likely that we may not find any completely visible vertices 
in a scene, meaning that for a vertex like the one shown in Fig. 3.16-(b), because of
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Table 3.2 Local feature sets (LFS) of the object in Fig 3.15.

vertex surfaces

a 1 ,9 ,2

b : . 1 ,2 ,8

C ■ 2 ,1 0 ,3

d 2 ,3 ,8
/

e 3 ,1 0 ,4

■’ ’ f  -■ 3 ,4 ,8

g 7 ,1 2 ,4
h 7 ,1 0 ,1 2

4 ,1 0 ,7

j 4 ,7 ,8
k 1 ,8 ,9

■ i 9, 8 ,12
m 1 ,9 ,1 0
n 10 ,9 ,12
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Figure 3.16. A completely visible vertex o f a object in one view becomes partially visi 
ble in another view.
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self-occlusion we may be able to see only two o f the three surfaces. In such a  ease, the 
LFS for the vertex can still be used by assigning appropriate labels to the scene surfaces 
from the entries in the LFS. In general, i f  h surfaces meet at a-vertex and only it of these 
are visible in a scene, then there are only h possibilities for matching the it scene sur
faces, this happens because of the rotational adjacencies that have to be maintained. For 
example, again as illustrated in Fig. 3.16, the vertex a  is formed by three Surfaces I, 10 
and 2, if we see only two of the surfaces a  and (3 as in (b), there are only three different 
labeling patterns for die two surfaces, namely,

{(1 10 >J3, 2 »m7), (10—MX, 2—>|3, I —mil), (2—><x, I —>(i, 10—tnil)}.

In each of these patterns, the labels must maintain the same adjacencies that are in the 
model. Therefore, we can say that in matching k scene features with the h features of 
an LFS, the overhead is k, which is incurred in matching the k scene features with the 
potential correspondents from the LFS. Since this can only be done in h ways, the 
overall complexity associated with matching with an LFS is Oihxk).

Therefore, the complexity associated with generating hypotheses for an object 
which has Nlfs LFS’s is NLFs'xOihxk). In practice, Nlps = 0(m), where m is the total 
number of model features. Therefore, the overall complexity associated with generating 
all the hypotheses is

Oimxhxk) = Oim)

Before we conclude this subsection, we would like the reader to note that the gains 
achieved with the use LFS’s as non-minimal feature groupings is at the cost of more 
complex flow of control during hypothesis generation. While with m in im a l groupings, 
it is possible to institute uniform control, with non-minimal groupings special cases 
must be handled separately depending upon how many of the features in an LFS can be 
matched with the scene features.

Also, we have said nothing about the mathematics of how to actually compute a Tr 
given that we have a match between some scene features and model features. In Appen
dix A, we provide formulations for estimating the transformation based on quaternion 
representation.

3.5*4.Feature Sphere for Verification

We want to organize model features of an object such that, given a candidate prin
cipal direction O  computed from a scene feature, all the model features with the princi
pal direction O  can be accessed efficiently. Since a particular direction corresponds to 
a unique point on the surface of a unit sphere, similar to the way of organizing vertices 
on a circle in the 2-D example, a natural way is to record the model features on a unit
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sphere as a function of their principal directions. We shall call such a sphere a feature 
sphere. rITiere can, of course, be multiple number of features corresponding to a given 
point on the feature sphere, especially if more than one feature class is used for describ
ing models. In our experience, programming becomes more efficient if a separate 
feature sphere is used for each class, meaning that we represent all the primitive surface 
features on one sphere, all the primitive edge features on another sphere, and all the 
primitive point features on yet another. Fig. 3.17 shows the vertex feature sphere and 
the surface feature sphere for the 3-D model object in Fig. 3.10.

After a hypothesis about the object’s location Tr is generated, we want to verify or 
reject the hypothesis by matching the rest of the scene features to model features under 
Tr. Of the different scene features which will be used for verification, consider a scene 
feature S. According to equations (3.4-a) and (3.4-b), a model feature that is a candi
date for matching with the scene feature S should be characterized by a principal direc

tion O  that is equal to the following for the different types of S.

•  If S is a primitive surface (spherical surface excluded) or a primitive curve:

& = /?-1 *v(S), (3.6-a)

where R  is the rotation component of Tr, and v (S) is the orientation direction of 
feature S, defined similarly as its principal direction but with respect to the world 
coordinate system.

•  If S is point feature or a spherical surface:
L etp (S ) be the position vector of feature S with respect to a world coordinate sys

tem.

p = Tr~1 *p(S) = R -1 *(p(S)-t) ; (3.6-b)

where t  is the translation component of Tr.

As previously mentioned, principal directiomprovide a very strong constraint for 
selection of candidate model features, i.e. each candidate principal direction computed 
from equation (3.6-a) or (3.6-b) will lead to a small number of candidate features. This 
is especially true for point features as we observed in the 2-D example in which a can
didate principal direction addresses to only one candidate model vertex. For primitive 
surface or primitive edges, that number may depend on the configuration of object sur
faces. In general, we may assume that the principal directions o f a model’s features are 
randomly distributed over the unit sphere. Although, the probability of any two features 
occupying the same spot on the unit sphere will be very low, for the sake of argument 
we may assume that on the average there will be k features for each principal direction,
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Surface feature sphere Vertex feature sphere

Figure 3.17. The surface and vertex feature spheres of the model object.



where k<£m. Then the worst case time complexity for matching for verification will be 
0{nxk) = 0(n). W hen combined with the complexity of hypothesis generation, as dis
cussed in Section 5.3, this implies an overall complexity level of 0(mn). Since, 
m _  o  in), we can then conclude that the overall complexity with our approach for sin

gle object recognition to be O(n 2).

In the next section we will present the implementation of feature sphere in com
puter in detail. It is interesting to note that if a model object is a convex polyhedron 
then its surface feature sphere representation is equivalent to its EGI (extended Gaus
sian image) [Ho-84], [Ik -83], and if a primitive curved surface is allowed to be added 
to a polyhedron then the surface feature sphere is similar to CSG-EESI representation 
proposed by Xie and Calvert [X&C -88]. In addition, if every surface point is regarded 
as a point feature, then the point feature sphere of a star-shape object is equivalent to 
the well-tessellated surface representation proposed by Brown [B r-79].

3.6. A Data Structure for Representing Feature Spheres

In order to implement feature spheres in a computer, we first need to tessellate the 
sphere and then create an appropriate data structure for representing the tessellations. 
In our case, each cell on the sphere will be represented by its center point, and the pur
pose of the data structure will be to allow us to efficiently access these points. In what 
follows, we will use the term tessel to refer to both a cell created by tessellating a 
sphere and to the central point of the cell. Before a data structure can be created for 
representing the tessels, we must bear in mind the following two kinds of operations 
that Will be performed on the data structure for the purposes of feature matching.

First, d u r in g  the model building process model features must be assigned to their 
respective tessels on the bases of their principal directions. Clearly, it is unlikely that 
the direction corresponding to one of the tessels would correspond exactly to that of a 
feature For a given model feature, we must, therefore, locate the nearest tessel. In 
other words, we need a tessel assignment function, which will be denoted by L(O), that 
should return the label of a tessel to which a model feature of principal direction O  is
assigned.

Second, given a scene feature S in the verification process, we want to examine 
whether there is a corresponding model feature with direction O  = Tr ^O (S )) in the 
model under consideration. Assuming the hypothesis is correct, idealy, we should be 
able to find such a model feature at L (0*) on the feature sphere of the model. How- 
ever, due to noise and other artifacts associated with the estimation of Tr, O  will only 
be accurate to within some uncertainty interval. This directional uncertainty associated 
with O* can be expressed as a cone whose axis is the computed direction itself, as



shown ini Fig. 3.18. This implies that potential model features for matching with S 
Should be all those that are within this cone. If we could assume the error processes 
associated with die uncertainties in <&* to be of zero-mean type, from within the cone 
one would first select that feature which was closest to L (<!>*), and, if that match were 
to fail, select the next closest, etc. Clearly, this is a breadth first search rooted at L(&*), 
and the depth of Search (the farthest neighbors to examine) should correspond to the 
maximal allowable directioh uncertainty.

It should be obvious that for implementing the above strategy for the selection of 
model features, we need a function that would be capable of direcdy accessing the 
immediate neighbors of a given tessel; we consider two tessels to be neighbors if they 
share a common edge irt the tessellation. This function will be called find-neighbors 
function and will be denoted by N. So, we want

N(L0) {Llt ^2> • • • > Lk}

where L 1, L 2, . . . ,  Lk are the labels of the immediate neighbors of the tessel labeled
U -  : V /

3.6.1. Previous Approaches To Data Structuring of Sphere Tessellations

In their work on EGI representation, Horn [l/<?-84] and Ikeuchi [/£-83] have dis
cussed a hierarchical tree structure for representing a tessellated sphere based on 
icosahedron or dodecahedron. A drawback of this hierarchical data structure is that the 
adjacency relationship between neighboring tessels is not preserved. To get around this 
difficulty, Fekete and Davis [F&D -84] used a fairly complex labeling scheme, in this 
scheme each tessel is labeled by the pathname of its corresponding node in the tree. 
The neighbors Of a tessel within one of twenty main icosahedral triangles are found by 
examining the pathname of the tessel, symbol by symbol, and synthesizing the path
names of its neighboring tessels by the use of complicated state-transition rules and 
lookup tables. This procedure requires at least O (n) operations, where n is the number 
of levels in the hierarchy. When the neighbors lie in an adjacent triangle, a different 
procedure is needed. Kom and Dyer [K&D -87] have also proposed a data structure for 
a tessellated sphere with a fixed number Of subdivision levels. Twenty one-dimensional 
arrays, each of size 4", are used to represent the sampling points on the sphere, which 
implies that a sampling point is labeled by a number from O to 4”- l .  Their find- 
neighbors algorithm is essentially the same as that of Fekete and Davis.

In this section we will present a new data structure for representing a tessellated 
sphere based on icosahedron. Its main merit is that logical adjacency between elements 
of the data structure corresponds to physical adjacency between sampling points on the 
sphere. We will show that the neighbors of a given tessel can be found with a constant
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' ■ ■ . -s|t

Figure 3.18. A cone represents directional uncertainty of the computed direction O  , 
and the sampling points on the sphere lie within the uncertainty cone.



time complexity algorithm, regardless of sampling resolution. Furthermore, by using 
the find-neighbors function, the tessel-assignment function L  can be implemented 
efficiently, too,

3.6.2. TesselIating a Unit Sphere

In this subsection, we will present the tesselations on which Otur data structuring is 
based.Subsequently, it should become evident to the reader that the regularity of the 
neighborhood patterns in the tesselations used allows us to devise a simple scheme for 
neighbor finding. However, first we will quickly review the considerations that go into 
the design of tesselations.

When a sphere is tesselated into cells, ideally we would like the cells to be sym
metrical, be identical in shape, and possess equal areas; also, ideally, the tesselation 
scheme should maintain these attributes over a wide range of cell resolutions. How
ever, it is well known that a tesselation scheme with these attributes does not exist. The 
best one can do is to use the techniques of geodesic dome constructions [Ke-16], 
[Fm- 76]; these techniques lead to triangular cells that are approximately equal in area 
and shape. The geodesic tesselations are obtained via the following three steps:

(1) Chose a regular polyhedron, which usually is an icosahedron or a dodecahedron,
and inscribe it in a sphere to be tessellated. If a dodecahedron is used, each of its 
pentagonal faces is divided into five triangular faces around its center to form a 
pentakis dodecahedron. Thus each face of the regular polyhedron will be a trian
gle. ;

(2) Subdivide each triangular face of either the icosohedran or the pentakis dode
cahedron into subfaces by dividing each edge of a triangular face into Q sections, 
where Q is called the frequency of geodesic division. As a result, each triangular 
face is divided into Q 2 triangular subfaces. Finer resolution can be obtained sim
ply by increasing the frequency of geodesic division. Usually, Q is a power of 
two.

(3) Project the subdivided faces onto the sphere. In order to make the projected trian- 
gle sizes more consistent, the edges of the triangles should be divided into sections 
such that each section subtends the same angle at the center of the sphere; as a 
consequence the lengths will be the same for the edge sections after they are pro
jected onto the sphere \Ke -76].

To generate the tesselations used by us, we start out by implementing the above 
approach with an icosahedron. The geodesic polyhedron thus produced contains 20 Q2 
cells and 10Q2+2 vertices. Fig 3.19 shows an icosahedron and a tessellated sphere 
based on the icosahedron with frequency Q=4 o f geodesic division.
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Our next step is to construct a dual of the geodesic polyhedron produced by the 
above method. Note the dual of a polyhedron is also a polyhedron whose vertices 
correspond to the faces of the original polyhedron and whose faces correspond to the 
vertices o f  the original polyhedron. For example, a pentagon is the dual of ah 
icosahedron. The dual geodesic polyhedron thus produced consists of 10 Q2+2 cells, of 
which 10 0 2 2 -  I) are hexagonal and the rest 12 are pentagonal. The 12 pentagonal 
cells of the dual polyhedron correspond to the 12 vertices of the original icosahedron. 
H iis dual polyhedron is then projected onto the unit sphere to ptoduee the desired tesse^
lationS. As shown in Fig. 3.20, the center of each tessel serves as the sampling point for 
that tessel for the purpose of discretization. It is important to note that these sampling 
points correspond to the vertices of the original polyhedron, the one before the dual was 
constructed. This fact will prove to be most important to our derivations later.

As illustrated in Fig. 3.20, our tessels can be either pentagonal or hexagonal, the 
former has five neighbors, and the latter six. The average area of a tessel is given by 
47t/(10 Q 2+2). The radial angle between adjacent sampling points, which is an indica
tion of sampling resolution, can be roughly estimated by

atan(2) I Q

where atan(2) is the angular spread of an icosahedron’s edge.

3.6.3. A Spherical Array for Representing the Tessellation

We will now present a spherical array data structure for the computer representa
tion of the tesselation. This array will lead to easy and efficient implementations of the 
find-neighbors function N  and tessel-assignment function L. The data structure will be 
constructed by first noting that the vertices of the geodesic polyhedron are the sampling 
points of the dual polyhedron; flattening out, as shown in Fig 3.21, the 20 triangular 
faces of the underlying icosahedron; and, finally, paralleling the development of the 
geodesic polyhedron on this flattened form. The flattened-out representation of the 
icosahedron consists of five connected parallelograms, each of them consisting of four 
triangular faces, each triangular face corresponding to one of the 20 triangles on the 
icosahedron. Each parallelogram is subdivided into AxQ2 triangular cells using Q for 
the frequency of geodesic division (Fig. 3.22). The vertices shown in Fig. 3.22 
correspond to the vertices of the geodesic polyhedron, and also, therefore, to the sam
pling points of our tesselation for the case of Q — 4. The flattened-out representation, of 
which Fig. 3.22, is an example, will be referred to as the spherical array.

Each parallelogram in a spherical array consists of (<2+l)x(2<2+l) vertices. Obvi
ously, the vertices in each parallelogram separately could be represented by a two 
dimensional array; however, note that the vertices on the border of the parallelograms
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Figure 3.20. The dash lines indicate part of the dual polyhedron; the sampling points 
are defined at the vertices of the original polyhedron outlined by solid 

. lines.
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I a

Figure 3.21. The original icosahedron is flattened out to form five connected parallelo
grams, each of them consisting of 4 triangular faces.
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Figure 3.22. The assignment of the elements of a Q xlQ  array on a parallelogram.



are shared, meaning, for example, that the vertices a and a ’ on the edges A and A ’, 
respectively, are really the same vertex on the geodesic polyhedron. In other words, 
before the icosahedron is unfolded to form the spherical array, edge A is connected to 
edge A', edge B to edge B', edge E to edge £ ', and so on (Fig. 3.21).

The fact that each border vertex should appear only once in an overall indexing 
scheme for the vertices in a spherical array implies that the size of the index array for 
representing each parallelogram need only be Qx2Q. For example, for the case shown 
in Fig. 3.22, each parallelogram need only be represented by a 4x8 array. The assign
ment of array indices for the parallelograms is depicted in Fig 3.22 for the Q = 4  case. 
The index i specifies a parallelogram and the indices j and k specify a vertex within the 
parallelogram. Clearly, we have five QxlQ  arrays, for a total of IO xg2 indexed points 
on the spherical array, this number being two less than the total IO xg 2+2 vertices on 
the geodesic polyhedron. The two missing vertices correspond to the two common ver
tices o f the five parallelograms, one at the top and the other at the bottom. We shall 
allocate two additional distinguished sets of indices to represent these two vertices and 
referred to them as the the zenith and the nadir (see section 6.3.2 for explanation) of the 
tessellated sphere.

The proposed indexing implies the following ranges for i, j  and k:

h  *] l < £ / £ 5 ,  l < j < Q ,  \ < k £ 2 Q .

The zenith and the nadir are assigned the distinguished indices [0, 0, 0] and [-1 , 0, 0], 
respectively.

3.6.3.1. T heF ind-N eighborsF unction

As pointed out before, the simplicity of the proposed data structure lies in its 
preserving the physical adjacencies between the tessels. We will now show that simple 
relationships exist that yield a tessels’s neighbors, regardless o f the location of the 
tessel, and, more important, regardless of whether the tessel possesses six or five neigh
bors. Most tessels posses six neighbors, except for the 12 that correspond to the 12 ver
tices of the original icosahedron, each of latter type possessing five neighbors only. In 
general, the six neighbors of a tessel [/, j, k] that is not on the border of any of the five 
parallelograms are given by:
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[i, j ,  k+1],
[I, 7+1, *],

 ̂ [i, y'+l, £-1], 
[U j ,  k - 1],

\ i , j - 1, *.+!]•
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(3.7)

Therefore, for the above set of indices to give us the neighbors, the indices j and km ust 
obey the constraints 1< j  <Qandl<k<2Q. If also used to find the neighbors of a border 
tessel, some of the above indices would take out of range values, implying that those 
neighboring tessels are vertices shared by another parallelogram and should really be 
assigned to the array for that parallelogram. To convert the out-of-range labels to the 
legitimate ones, we apply the following substitution rules:

[U.j, 0] => [f—I"*5, I, 7 = 1» •» Q
[I, (2+1. k] => [ I - I w5, I, Q+k] k = 0, ..., Q

IU Q + h k ]  =» [ I - I w5, k-Q , 2Q] k = (2+1, •••» 2Q
[i, 0, k] => [ i+ lw5, k -1 , 1] k=2 ,  ..., Q

[i, 0, k] => [ i+ lw5, Q, k-Q] k = (2+1, ...» 2(2+1

[i, j ,  2(2+1] => [i+ Iw5, Q , j + Q + 1] j  = I , ...»(2.-1
[i, 0, 1] => [0, 0, 0] . . ’. ■ - ...
[i, Q, 2(2+H /=> [ -1 ,0 ,0 ]

fo r i = I, ...,5 , where imS = (i-Y)mod(5) + I

Except for the zenith and the nadir tessels, it can be verified that equations (3.7) 
and (3.8) are also applicable to 10 of the 12 five-neighbor tessels. At a five-neighbor 
tessel, two of the six labels returned by equation (3.7) will turn out to be identical after 
applying the substitution rales in (3.8). The five neighbors for the zenith and the nadir 

■are.

[i, I, 1] / = I , . . .  ,5 and 

[U Q,2Q]  i = I , . . . , 5

respectively.

The following two examples will illustrate the neighbor finding scheme described 
above. The example are for the case of Q =4.
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Example I:
Find the neighbors of tessel [1,3,1]

[1,3,1]

[1, 3, 2]
[1 .4 .1 ]
[1 ,4 , 0] = [5, 1, 4] 

* [I, 3, 0] = [5, I, 3] 
[I, 2, 1]
[1. 2. 2] .

r

[I, 3, 2] 
[1, 4, 1]

■ [5, 1 ,4] 
' [5, 1 ,3 ] 

[I, 2, 1] 
[I, 2, 2]
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Example 2:
Find the neighbors of tessel [2,4,5]

[2,4,5]

[2 ,4 ,6 ]
[2, 5, 5] = [I, I, 8] 
[2, 5, 4] = [I, I, 8] 

' [ 2 , 4 , 4 ]
[2 ,3 ,5 ]
[2, 3, 6]

'[ 2 ,4 ,6 ]

[I, I, 8] 
« [2, 4, 4] 

[2 , 3 , 5 ]  
[2, 3, 6]

It is worth noting that [2,4, 5] happens to be a vertex of the original icosahedron and has 
only five neighboring tessels, exactly what the rules returned.

3.6.3.2. Directions of Sampling Points

In order to specify the tessel-assignment function, we will need formulas for the 
directions of the tessels, meaning the directions associated with each of the vertices on 
the spherical array. For that purpose, we will take advantage of the s y m m e try  of the 
icosahedron and use a sphere-centered coordinate system whose positive z axis passes 
the zenith at ([0, 0, 0]) and whose z-x plane passes an icosahedral vertex [I, Q, 1] as 
shown in Fig 3.23. The direction of each tessel, denoted by 0 [ / ,  j, jfc] ■ in this coordi
nate system will be expressed in terms of the longitude and latitude angles (<>, 0). 
Because of the symmetry of the icosahedron, we have

e [/,y , ^ ] = e r z - i , y ,  k]

<(>[*', j, k] = + <|>r/-l, j, £]) mod (2n)

for i = 2, ...,5, j  = I, ...,Q, k -  l, ...,2Q.
therefore we only need to compute the direction of the tessels in the first parallelogram
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Figure 3.23. A spherical coordinate system defined on the original icosahedron.



(array).

It is easy to see that the direction of the five vertices o f the first parallelogram are: 
0[1, 0, I]* = (0, -)
0 [1 , 0 , 1] = {atari (2), 0)

^ [ l , a 0 + l ] >IC = (flta/i(2), -^ - )
' ■ 5 .. 1 .-v

^[l>  Qj Q+l] = (K-atan(2), -^-)

0 [1 , 0, 2Q+1]* = (K-atan(2), -y -)

6» 2 e + l]  = (it, - )

Recall that in the derivation of the geodesic polyhedron, we subdivided each edge of 
the triangles of the inscribed icosahedron into Q sections of equal radial angle. When 
Q=2r, the result is equivalent to recursively subdividing r times a triangle into four tri
angles. Therefore, we can compute the direction o f a new tessel by taking the averages 
of the known directions of the two tessels which are the end-points of the edge whose 
division led to the formation of the new tessel. This procedure can be applied recur
sively to compute the direction of every tessel. As an example, the three tessels which 
are the midpoints of the three edges of the upper triangle have directions:

m ,  1] = Mi dmX ,  0» 1],0[1, 0 , 1 ] )

° [i ’ Y + i ]  -M id (0 [ i , o, e + i ] , 'm ,  q , i])

0 [1 , 0, -|-+ l]=M /d(<D [l, o, 0 + 1 ] ,0 [1 , 0, I]).

Here Mid(GltG2) means to take the average direction of the two direction on the unit 
sphere. To save runtime computation, we may pre-compute the direction for all the 
tessels and store them in a lookup table.

3.6.3.3. The Tessel-Assignment Function

Given a particular direction O  , its corresponding tessel in the spherical array 
should be the one whose direction is closest to G*. The function L* will return the 
indices o f this tessel.

* Note that these labels are not legitimate in the spherical array data structure; we use them just 
to make the derivations clearer. The legitimate versions of these labels can be obtained by using 
the substitution formulas in equation (3.8).
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<D[L*] • O* = max (0[L ] -O*)
Li

The finding of the tessel L* would thus involve a search process for the maximal dot 
product. Because the dot product is a monotonically increasing function toward the 
desired tessel, a local maximum must also be the global maximum. The local maximum 
can be found by an iterative climbing method from any tessel guessed initially. Since a 
good initial guess can reduce considerably the computations required to reach the max
imum, we have provided in Appendix B

a linear approximation that translates a given O  into a triple (i,j,k ). Since the approxi
mation has proved to be fairly good, the resulting indices are quite close to their actual 
values. Starting with these indices, one can then find the actual ones by conducting 
local search, as depicted by the following algorithm.

117

assign_tessel(0*) {
L 0 = get_initial_guess( O*) 
L* = get_closer(L°, 
return L * }

get_closer(L, O  ) {
among all V  in N (L)

find L  which maximizes (0(L ')

get_closer( L, O*)
else

return L  }

O*)

3.6.3.4. Building Feature Spheres on the Spherical Array

Note that since a feature is described by sets of attributes, a frame structure is used 
to store the attribute-value pairs. Each such frame structure is identified by a pointer 
which is stored at the corresponding tessel in the spherical array. The tessel address, as 
represented by the indices i,j, and k, is computed by applying the tessel-assignment- 
function to the principal direction of the future. It may happen that two or more neigh
boring features, neighboring in the sense of their possessing nearly identical principal 
directions, may have their points assigned to the same tessel. This conflict can be 
resolved by recording in the first registered feature a list of pointers for the features that 
share the same tessel address.



3.7, Recognition of Objects in the Presence of Occlusions

The discussion presented so far could be used directly for the recognition of single 
isolated objects. However, our main interest in 3D-POLY lies in recognizing objects 
under occluded conditions, as would be the case when the objects are presented to the 
sensory system in the form of heaps.

In general, when the range images to be interpreted are of scenes containing piles 
of overlapping objects, one has to contend with the following two problems: I) The 
number of features extracted from a scene will usually be very large; and, 2) since dif
ferent objects may be made of similar features, it would generally not be possible to set 
up simple associations between the scene features and the objects. To get around these 
problems in dealing with multiple object scenes, researchers previously have either per
formed object segmentation by exploiting range discontinuity information [F&et -8  8], 
or have used a model driven approach to group together scene features belonging to 
single objects [F&H-86], [B&H-86]. However, the former approach usually fails to 
work especially when the juxatopositions of multiple objects are such that there are no 
range discontinuities between them; and the latter is inefficient for reasons described in 
Section 2.

We will now present a data-driven approach for aggregating from a complex scene 
features belonging to single objects. The cornerstone of our approach is the idea that 
only physically adjacent scene features need be invoked for matching with a candidate 
object model. For this purpose, the notion of physical adjacency will be applied In the 
image space as opposed to the object space, implying, for example, that two surface 
regions sharing a common boundary, even if it is a jump boundary, will be considered 
adjacent to each other. Using this idea, we will now describe the complete method:

The algorithms uses two sets, UMSFS and MSFS, the former standing for the 
unmatched scene feature set and the latter for matched scene feature set. Initially, the 
algorithm assigns all the scene features to the set UMSFS. The process of object recog
nition starts with a local feature set (LFS) extracted from the UMSFS. The matching of 
this scene LFS with a model LFS generates a hypothesis about object identity and a 
pose transformation. The features in the scene LFS are then taken off from the UMSFS 
and assigned to MSFS; note that MSFS keeps a record of all the scene features matched 
so far with the current candidate model. Then during the verification stage, only those 
scene features in the UMSFS that are adjacent to the features in MSFS are selected for 
matching with the candidate model. During the verification state, if  a UMSFS feature
W : 1 ■— ■ I '

To be contrasted with the data driven procedure to be described in this section.



does match the candidate model feature, the scene feature is taken out of the UMSFS 
and added to the MSFS; otherwise the feature is marked as tested under the current 
hypothesis and left in the UMSFS.

The verification stage terminates when MSFS stop growing. Once the verification 
process terminates, the algorithm determines whether or not the features in the MFS 
constitute enough evidence to support the hypothesis on the basis of some predefined 
criterion. This criterion may be as simple as requiring a percentage, say, 30 %, of 
model features to be seen in the MSFS; or, as complicated as requiring a particular set 
of model features to appear in the MSFS; or, at a still more complex level, some combi
nation of the two. If a hypothesis is considered verified, the features currently in MSFS 
are labeled by the name of the model and taken out of further consideration; otherwise, 
the hypothesis is rejected and every feature in the MSFS is put back into the UMSFS 
and the process continued with a new LFS. The entire process terminates after all the 
LFS’s have been examined. The algorithm is presented below in pseudo C language:

119 chen/kak

Inteiprete_scene (I) {
extract feature set {S} from I  
UMSFS = ( S )
while ( there exists a local feature set LFSs in UMSFS) 

for each LFSm in the model library 
if ( LFSs matches LFSm ) {

estimate Tr by matching LFSs with LFSm
candidate model Om is the model corresponding Vb LFSm
MSFS=LFS
Verify (Om, MSFS, UMSFS, Tr) ) }

Verify (Om, MSFS, UMSFS, Tr){ 
tagfor each untested St- in UMSFS adjacent to MSFS { 

compute prinicipal direction O  of Tr~l (St)
for each Mj registered in the neighborhood of L  (O) on the feature sphere of Om 

if ( T r"1 (St) matches M; ) { 
add S1 to MSFS 
go to tag }

else
mark St- tested

if (M SFS satisfies the recognition criterion ) {
UMSFS =UMSFS-MSFS
label every S in MSFS by the name Om
w ritejresult (Offlj Tr)
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return (true) }
else

return (fa lse )}

In OuT current implementation of this algorithm, the recognition Criterion requires 
that at least 33% of a candidate model’s features be present in the MSFS for a  
hypothesis to be considered valid. Note that the acceptance threshold can be no greater 
than 50% for most objects, especially those that have features distributed all around, 
since from a single viewpoint only half of an object will be scene. Therefore, 50% is a 
loose upper limit on the acceptance threshold. On the lower side, the threshold can not 
be set to be too low, since that would cause misrecognition of objects. We have found 
33% to be a good compromise.

3.8. Experim ental Results

This section presents experimental results obtained with our matching strategy; the 
results will also demonstrate in action the algorithm for recognizing objects in heaps. 
Although we have done experiments on a large number of scenes with 3D-POLY, only 
two such experiments will be presented to discuss the behavior o f the algorithms.

3.8.1. T heM odels

The model library used consisted of two object models shown in Fig. 3.2. The 
Object in Fig 3.2-(a) is given the name "square" and the one in (b) "round". The model 
knowledge was obtained by a “ learning system" consisting of a special scanner in 
which die object is automifically rotated while illuminated by a  number of translating 
laser beams. The data thus generated from many viewpoints is integrated and directly 
transformed into a feature sphere representation. Further details on the methods used for 
viewpoint integration and the transformations involved are presented in Chapter 4. For 
the two experiments discussed here, model data was generated by integrating six views 
for square and five for "round". For "square" object this resulted in a feature represen
tation consisting of 14 vertex and 12 surface features. The model representation derived 
for "round" object consisted of 12 vertices and 10 surfaces.

Two feature spheres were derived for each model, one for surface features and the 
other for vertex features. The frequency of geodesic division, Q, o f the spherical array 
discussed in Section 6.3 was chosen to be 16; this gave a resolution o f about 4° per 
tessel in the spherical array representation. The vertex and surface features were used 
for the generation o f hypotheses, while only the surface features were used for 
verification.



As described in Section 5.3, each object model must be associated with a list of 
LFS’s for the purpose of hypothesis generation, an LFS being a set of surface features 
meeting at a vertex. In this prototype system, we have chosen to organize LFS’s around 
convex vertices only, that is those whose edges are all convex. For "square" object, 
there are 12 LFS’s which correspond to the 12 convex vertices, and for "round" object 
there are only four LFS’s corresponding to the convex vertices c, d, e, I.

3.8.2. T h eD a ta

For the results that will be shown here, we had 10 overlapping objects, five of each 
type, in each o f the two scenes. The objects were placed in a tray and, before data col
lection, the tray shaken vigorously to randomize the object placements. A typical scene 
was as was shown earlier in Fig. 3.1. Range images of the two scenes, shown in Figs.
3.24 and 3.25, were acquired by using a structured-light range sensing unit which is
held by a PUMA robot for dynamic scanning; these images will be referred to as stripe 
images. Each stripe image consists of 150 stripes, with the inter-stripe spacing being 
0.1"; this spacing is the distance the robot end-effector travels between successive pro
jections. ■ ! ■

Range maps for the scenes are obtained by converting each stripe point, which 
exists in image coordinates, into world coordinates using a calibration matrix by the 
method discussed in Chapter I . Features are extracted from the range maps by a battery 
of low level procedures developed specifically for this research project. These pro
cedures carry out surface normal computations, segmentations of surfaces of different 
types, surface classifications, etc., and are discussed in greater detail in Chapter 2. The 
output of preprocessing for the range map corresponding to the stripe image of Fig.
3.24 is shown in Fig. 3.5 in the form of a needle diagram and segmented surfaces, Fig. 
3.26 shows the results for the stripe image of Fig. 3.25. Figs. 3.5 and 3.26 also display 
the labels given to the different surfaces.
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3.8.3. Hypothesis G eneration

For the purpose of hypothesis generation, each detected vertex in a scene is given 
a rank depending upon the number of surfaces meeting at the vertex and the 
convexity/concavity of the edges convergent at the vertex. Thp rank is greater, the 
larger the number of surfaces meeting at a vertex. Also, since we only use convex ver
tices for constructing the LFS’s o f a model, if  a concave edge is found to be incident at 
a vertex, the rank of the vertex is made negative.

To generate hypotheses, the system first chooses the highest positively ranked ver
tex and then constructs an LFS by collecting all the surfaces meeting at the vertex. The
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Figure 3.24. Stripe image of scene #1.
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Figure 3.25. Stripe image of scene #2.



Figure 3.26. Result on feature extraction of scene #2.



scene LFS thus generated is matched with the LFS’s of all the models, one by one. 
This matching between a scene LFS and a model LFS is carried out by a special pro
cedure which tests the compatibility of the shape and relation attributes o f the 
corresponding features in the two LFS’s. Note that the maximal number of surfaces in 
an LFS for the objects in the experiments reported here is 3, thus there are three possi
ble ways of establishing the correspondences between a scene LFS and a model LFS; 
all the three possibilities must be tested, each accepted possibility will lead to a dif
ferent pose hypothesis.

For a given match between a scene LFS and a  model LFS, the viewpoint indepen
dent position/orientation attributes of the features in the two LFS’s are used for generat
ing a candidate pose Tr for the scene object; further details on how exactly this is done 
can be found in Appendix A. For a candidate pose to translate into a pose hypothesis, 
the system checks the fitting error computed from the estimation of TV; the error must 
be less than a predefined threshold.
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In the preprbcessed output shown in Fig. 3.5, there are 68 vertices, but only 36 of 
them are o f convex type; in the output shown in Fig. 3.26 there are 22 convex vertices 
out of a total of 49 vertices. So, supposedly, in the worst case one would have to check 
36 LFS ’ s in the former case, and 22 in the latter. Since there are a total of 16 LFS ’ s in 
the model library, 12 for "square" and 4 for "round", in the worst case one would have 
to carry out 16x36x3 = 1728 LFS matches for the scene of Fig. 3.5, where the number 3 
takes care of the aforementioned different ways of establishing correspondences 
between a model LFS and a scene LFS. Similarly, in the worst case situation, there may 
be 16x22x3 = 1056 LFS matchings to be tested for the scene of Fig. 3.26. In practice, 
however, the number of LFS matches actually carried is far fewer on account of the fol
lowing reason: An object hypothesis can be generated by any one of many LFS’s, and 
when a hypothesis thus generated is verified, the system does not need to invoke any of 
the other LFS’s for that object.

To give the reader an idea of die number of hypotheses generated, the system gen
erated 156 hypotheses for the scene of Fig. 3.5, and 75 for the scene o f Fig. 3.26.

3,8.4. Verification

Given the pose transformation Tr associated with a hypothesis, verification is car
ried out by computing the feature !Sphere tessel indices of those scene features that are 
“ physically adjacent" to the LFS features, the notion of physical adjacency being as 
explained before, and matching each such scene feature with a model feature assigned 
to that tessel, assuming such a model feature can be found. [If more than one model 
feature may be assigned to a tessel, the scene feature must be matched with all of them.]
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Of course, since measurement noise and other artifacts will always be present to distort 
the attribute values of a scene feature, the scene feature must be matched With all the 
model features belonging to tessels within a certain neighborhood of the tessel com
puted from the scene feature principal direction. The size of the neighborhood reflects 
the uncertainty in the feature measurements. For most of our experiments, we use all 
the model features within two tessels o f the tessel assigned to a scene feature, 
corresponding approximately to a directional uncertainty of 8.0 °.

To Mustrate the behavior of the algorithm, Table 3.3 shows the hypothesis genera
tion and verification procedure in action. Each fine entry, printed out upon the forma
tion of a hypothesis, identifies the LFS used by the vertex Chosen, and shows the sur
face correspondences established when the scene LFS was matched with a model LFS. 
For example, for the first hypothesis, marked hyp#l in the table, the LFS matching esta
blished correspondences between scene surface 7 and model surface 2; and between 
scene surface 5 and model surface I. The number 2 at the end of the line in the table 
indicates that the first hypothesis was failed during the verification stage after failures 
along two different paths in the search space, each failure caused by a mismatch of a 
scene feature, physically adjacent to one of the hypothesis generating LFS features, and 
the model feature located within the uncertainty range of the tessel corresponding to the 
scene feature. This is not to imply a fan-out of only 2 at the end of the hypothsis gen
erating segment for hyp#l; only that for the other branches the scene features, again 
physically adjacent to one of the LFS features, had no corresponding model features on 
the feature sphere. This is also the reason for 0 at the end of many of the line entries in 
the table.

As mentioned in Section 7, the acceptance of a hypothesis is predicated upon our 
finding at least 33% of the model features from amongst those that are adjacent to the 
features in an LFS. As shown in the table, from among the 75 generated hypotheses 
only the hypothses #23 and #75 are verified and lead to the recognition of an instance of 
“ square" in the first case, and to that of “ round" in the other. During the verification of 
hypothesis #23, scene surface 16 fails to match model surface 3 of the square model, 
although scene regions 18 and 21 do match model regions 4 and 5, respectively. As is 
evident from the stripe image of Fig. 3.25, the difficulties with scene surface 16 are due 
to problems with the robust detection of stripes over that surface; these problems are 
probably caused by the rather very acute angle between the stripe projection direction 
and the surface. It is entirely possible that the surface labeled 16 in the scene is made 
of reflections o f the stripes seen in adjoining surfaces. In other words, surface 16 is 
most likely a spurious surface and not matchable with its potential candidate model sur
face 3. During the verification of hypothesis 75, scene region 23 is not matched to any 
model region. This is because only a small portion (less than 25%) of the cylindrical



Table 3.3 Output listing of the interpretation of scene #2.

Verify hyp #1 Model: square Vert: 12 Reg: (7->2) (5 -> l) ... failed - 2 
Verify hyp #2 Model: square Vert: 12 Reg: (7->l) (5->2)... failed - 2 
Verify hyp #3 Model: square Vert: 12 Reg: (7->10) (5->4) ... failed - 2 
Verify hyp #4 Model: square Vert: 12 Reg: (7->4) (5->8)... failed - 1 
VCTify hyp #5 Model: square Vert: 12 Reg: (7->10) (5->12)... failed - 1 
Verify hyp #6 Model: square Vert: 12 Reg: (7->4) (5->10)... failed - 1 
Verify hyp #7 Model: square Vert: 12 Reg: (7->12) (5->9)... failed - 1 
Verify hyp #8 Model: square Vert: 12 Reg: (7->9) (5->10)... failed - 1 
Verify hyp #9 Model: square Vert: 12 Reg: (7->9) (5->12)... failed - 1 
Verify hyp #10 Model: square Vert: 12 Reg: (7->12) (5->10)... failed - 1 
Verify hyp #11 Model: square Vert: 12 Reg: (7->10) (5->9)... failed - 1 
VCTify hyp #12 Model: round Vert: 18 Reg: (17->9) ( l l -> 7 ) ... failed - 0 
Verify hyp #13 Modeh round Vert: 18 Reg: (17->9) (11->1)... failed- O 
Verify hyp #14 Model: round Vert: 18 Reg: (17->7) ( l l -> 9 ) ... failed - O
Verify hyp #15 Model: round Vert: 18 Reg: (17->1) (I l-> 6 )... failed - O
Verify hyp #16 Model: round Vert: 18 Reg: (17->6) (I l->7) ... failed - O
Verify hyp #17 Modeh round Vert: 18 Reg: (17->7) ( l l -> 6 ) ... failed - O
Verify hyp #18 Model: square Vert: 18 Reg: (17->2) (11->1)... failed - O 
Verify hyp #19 Modehsquare Vert: 18 Reg: (17->1) (11->10)

scene region 18 matched to model region 4 ... failed - 2 
Verify hyp #20 Model: square Vert: 18 Reg: (17->10) ( l l -> 2 ) ... failed - O 
Verify hyp #21 Model: square Vert: 18 Reg: (17->8) (11->1)... failed - O 
Verify hyp #22 Modehsquare VCTt: 18 Reg: (17->1) ( l l -> 2 ) ... failed-O 
VCTify hyp #23 Model: square Vert: 18 Reg: (17->2) (I l->8) 

scene region 18 matched to model region 4 
scene region 21 matched to model region 5 ... SUCCEED! H - 2

Verify hyp #24 Model: square Vert: 26 Reg: (19->4) (13->3)... failed -O 
Verify hyp #25 Model: square Vert: 26 Reg: (19->3) (13->4)... failed - O 
Verify hyp #26 Model: square Vert: 26 Reg: (19->7) (13->4)... failed - O 
Verify hyp #27 Model: square Vert: 27 Reg: (13->4) (19->3)... failed -O 
Verify hyp #28 Model: square Vert: 27 Reg: (13->3) (19->4) ... failed - O 
Verify hyp #29 Model: square Vert: 27 Reg: (13->7) (19->4) ... failed - O 
Verify hyp #30 Model: round Vert: 36 Reg: (24->7) (20->10)... failed - O 
Verify hyp #31 Model: round Vert: 36 Reg: (24->10) (20->9)... failed - 2 
Veiiify hyp #32 Model: round Vert: 36 Reg: (24->9) (20->7)... failed - O 
Verify hyp #33 Model: round Vert: 36 Reg: (24->9) (20->l) ... failed - O 
Verify hyp #34 Model: round Vert: 36 Reg: (24->l) (20->7)... faded - 2 
Verify hyp #35 Model: round Vert: 36 Reg: (24->7) (20->9)... faded - O 
Verify hyp #36 Model: round Vert: 36 Reg: (24->7) (2 0 -> l)... faded - O 
Verify hyp #37 Model: round Vert: 36 Reg: (24->l) (20->6)... faded - 2 
Verify hyp #38 Model: round Vert: 36 Reg: (24->6) (20->7)... faded - O 
Verify hyp #39 Model: round Vert: 36 Reg: (24->6) (20->10)... failed - O 
Verify hyp #40 Model: round Vert: 36 Reg: (24->10) (20->7)

scene region 28 matched to model region 4 ... failed - 3 
Verify hyp #41 Model: round Vert: 36 Reg: (24->7) (20->6)... faded -O 
Verify hyp #42 Model: square Vert: 36 Reg: (24->2) (20 -> l)... faded - O



Table 3.3 Continued

Verify hyp #43 Model: square Vert: 36 Reg: (24->l) (20->10)... failed - 0 
Verify hyp #44 Model: square Vert: 36 Reg: (24->10) (20->2)... failed - 0 
Verify hyp #45 Model: square Vert: 36 Reg: (24->8) (20->l) ... failed - 0 
Verify hyp #46 Model: square Vert: 36 Reg: (24-> I) (20->2)... failed - 0 
Verify hyp #47 Model: square Vert: 36 Reg: (24->2) (20->8)... failed - 0 
Verify hyp #48 Model: square Vert: 36 Reg: (24->3) (20-> l0)... failed - 0 
Verify hyp #49 Model: square Vert: 36 Reg: (24->10) (20->4)... failed - 0 
Verify hyp #50 Model: square Vert: 36 Reg: (24->4) (20->8) ... failed - 0 
Verify hyp #51 Modehsquare Vert: 36 Reg: (24->8) (20->3) ... failed - O 
Verify hyp #52 Model: square Vert: 36 Reg: (24->12) (20->7)... failed - O 
Verify hyp #53 Model: square Vert: 36 Reg: (24->7) (20->10)... failed - G 
Verify hyp #54 Model: square Vert: 36 Reg: (24->10) (20->12)... failed - O 
Verify hyp #55 Model: square Vert: 36 Reg: (24->4) (20->10)... failed - O 
Verify hyp #56 Model: square Vert: 36 Reg: (24->10) (20->7)... failed -O 
Verify hyp #57 Model: square Vert: 36 Reg: (24->9) (2 0 -> l)... failed - O 
Verify hyp #58 Model: square Vert: 36 Reg: (24->l) (20-i>8)... failed - O 
Verify hyp #59 Model: square Vert: 36 Reg: (24->8) (20->9)... failed -O 
Verify hyp #60 Model: square Vat: 36 Reg: (24->12) (20->9)... failed - 0 
Verify hyp #61 Model: square Vert: 36 Reg: (24->9) (20->8) ... failed - 0 
Verify hyp #62 Model: square Vert: 36 Reg: (24->8) (20->12)... failed - O 
Verify hyp #63 Model: square Vert: 36 Reg: (24->10) (20 -> l)... failed - O 
Verify hyp #64 Model: square Vert: 36 Reg: (24->l) (20->9)... failed - 0 
Verify hyp #65 Model: square Vert: 36 Reg: (24->9) (20->10)... failed - 0 
Verify hyp #66 Model: square Vert: 36 Reg: (24->9) (20->12)... failed - 0 
Verify hyp #67 Model: square Vert: 36 Reg: (24->12) (20->10)... failed - 0 
Verify hyp #68 Model: square Vert: 36 Reg: (24->10) (20->9)... failed - 0 
Verify hyp #69 Model: round Vert: 37 Reg: (20->7) (24->10)... failed - 2 
Verify hyp #70 Model: round Vert: 37 Reg: (20->10) (24->9)... failed - 0 
Verify hyp #71 Model: round Vert: 37 Reg: (20->9) (24->7)... failed - 0 
Verify hyp #72 Modehround Vert: 37  Reg: (20->9) (24->l) ... failed -2  
Verify hyp #73 Model: round Vert: 37 Reg: (20->l) (24->7)... failed - O 
Verify hyp #74 Model: roupd Vert: 37 Reg: (20->7) (24->9)... failed - O 
Verify hyp #75 ModehroUnd Vert: 37 Reg: (20->7) (24->l) 

scene region 28 matched to model region 4 
scene region 31 matched to model region 2 
scene region 25 matched to model region 8 ... SUCCEED!!!- 6

Total number of feature matching tests for verification: 29 
I*rocess completed 
Recognized_objects: 

square



surface is visible in the scene, and the computed radius is off too much from its correct 
value to match to the candidate model region 5.

Note from Table 3.3 that most of the 75 hypotheses are rejected immediately dur
ing verification, without the computational burden of any feature matching. For each 
line entry in the table that ends in a 0, no features had to be matched during the 
verification stage; the hypothesis failed simply because no model features could be 
found in the vicinity of the tessels for the scene features used during verifications. In 
fact, as depicted at the end of the table, for the scene of Fig. 3.26, only 29 features had 
to be matched during the entire verification process. So, on the average, the system had 
to match only 0.387 features during each hypothesis verification. The largest number of 
features matched during any verification was 6, this was for hypothesis #75, confirming 
our O (n) measure for the time complexity of verification.

This prototype system is programed in C language and runs on a SUN-3 worksta
tion. The CPU time for interpreting a processed range image was 9 seconds for the 
scene of Fig. 3.5 and 4 seconds for the scene of Fig. 3.26. The CPU time is approxi
mately propotional to the number of generated hypotheses, which in turn depends on 
the complexity of the scene.

3.9. Conclusions

In this chapter, we have presented feature matching and recognition strategies in 
3D-POLY. For recognition, the System used an approach based on hypothesis genera
tion and verification. The strategies used in the system lead to a polynomial time algo
rithm for the interpretation o f range images.

The polynomial bound on the time complexity was made possible by two key 
ideas, one for hypothesis generation and the other for verification. The key idea in the 
former was the use of special feature sets, the spatial relationships between the features 
in these Sets being such that the number of possible ways in which the scene feature 
could be matched to these in the sets was substantially curtailed. The key idea in the 
verification stage was the association o f a principal direction with a feature and, after 
the establishment o f a pose tranform, comparing a scene feature with a model feature 
only if  the two agreed on the basis of their principal directions. This sharply reduced 
the number of scene and model features that had to be actually matched, leading to 
great savings in the computations involved.

To embed the notion of feature principal-direction in a computationally efficient 
framework, we represented the model features on a feature sphere. We advanced a data 
structure for feature spheres and presented efficient algorithms for finding
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neighborhoods on the sphere and for assigning a tessel on the sphere to a measured 
principal direction.

We showed how our object recognition framework should be applied to scenes 
consisting o f multiple objects in a heap. Finally, we discussed experimental results vali
dating our complexity measures.
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C H A P T E R * ;;
LEARNING 34) MODELS FROM MULTlFlE VIEWS 6E  OB|ECfiS

To be completely functional, a robot vision system must have access to a library o f 
model representations of all possible objects that we want die system to recognize. 
Models may be specified either via CAD descriptions or the system may be provided 
with a capability to generate its own models “ by showing." In this chapter, we will 
take the latter approach and present a procedure which consists o f placing an object in a 
computer controlled structured-light scanner capable of generating range maps o f the 
object from many different viewpoints. We will show how the surface information from 
the different viewpoiiits is integrated into a full 3-D representation of the object. The 
learned representation thus generated consists of a feature sphere, which can then be 
directly used by the recognition procedure described earlier. In addition, it is also pos
sible to draw wire-frame and full boundary representations from the feature spheres so 
obtained, although in this chapter we will only show the former.

4.1. Introduction

The recognition strategy of Chapter 3 must have available to it models o f the 
objects that we want the robot vision system to recognize, and these models should 
preferably utilize the feature sphere representation. Of course, a superior goal would be 
drive the recognition system directly from the available CAD models o f objects; how
ever, CAD models cannot be used directly for vision applications because features that 
one may be able to pull out of an image are not explicitly defined in such models. 
Therefore, one must always install an intermediate representation to bridge CAD with 
vision, a point that was eloquently made in [K&et-Zl].

For the purpose of this chapter, we will assume that we want our models to be in 
the feature sphere form. Clearly, for someone to drive our recognition method with 
CAD, they will have to write their own “ translator" to convert CAD data structures into 
feature sphere data structures. Much work has been done by other researchers in 
developing these types of translators, translators that convert CAD representations into 
those which are more suitable for use by vision algorithms. The most notable work 
along these lines was done by Bhanu and Ho [B<£//-87]; they have discussed
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procedures for converting a CAD boundary representation into vision-oriented 
representations such as EGI, octrees, etc. Similarly, Xie and Calvert [X&C —88] have 
presented a rule-based system that can convert a boundary representation of an object to 
their so called mCGS-EESI" (constructive geometric solid-extended enhanced spherical 
image) representation. In the works of Hansen and Henderson [H&H-&7] and Dceuchi 
[Ik—SI], an interpretation tree is built from a CAD model of the object.

As was mentioned before, the focus of this chapter is on presenting a technique in 
which the model of an object is learned by showing, the learned model being directly in 
the form that can be used in the recognition procedure. To construct a full 3-D model, 
an object must be shown to the system in many different orientations and the informa
tion obtained from all the orientations somehow integrated, leading to the notion of 
viewpoint integration. At the simplest level, as was done by Oshima and Shirai 
[(M S -8 3 ], viewpoint integration may consist q f simply collecting every possible view 
of an object, each view being represented by a graph of the surface-features extracted 
from that view. Sirmlar approaches for model construction are also typical of those 
used in the recognition of 3-D objects from 2-D imagery. An obvious drawback of such 
approaches is the large size of the resulting model library, which can degrade the per
formance o f the recognition system.

At a more sophisticated level, learning a model consists of actually merging the 
feature information gleaned from different viewpoints. As an example of this approach, 
Baker [Ba-77] has presented a scheme for model building in which points of curvature 
irregularity extracted from different views of an object are correlated. Martin and 
Aggarwal [M&A -83] have presented a method in which a volumetric model of an 
object is constructed by intersecting the bounding volumes, each such volume being 
specified by the silhouette in a view. In the scheme advanced by PotmesD [P o-83], 
bi-cubic surface segments from various views of an object are integrated into a com
plete boundary representation of the object. Another scheme has been presented by 
Herman and Kanade [H&K-S6] in which 3-D models of buildings are built incremen
tally from sequences of stereo images. A similar approach has been presented by Xie 
and Calvert [X&C-86] for generating 3-D models of office scenes. To the best of our 
knowledge, the models constructed by all these methods were used only for displaying 
the objects thus synthesized and not for driving a recognition system. In fact, it is not 
obvious that it would at all be easy to use the model representations constructed in these 
works for recognition. How the generated models may be used for recognition is more 
obvious in the contributions made by Underwood and Coates [IM C -7 5 ] and Dane 
[D a-82]. Underwood and Coates [CMC-75] have presented an agorithm for con
structing graph representations of convex polyhedra from multiple views of the objects, 
a node in the graph being a planar face and an arc expressing adjacency between two
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faces; In the method of Dane [D a-82], viewpoint information is merged to generate 
planar and quadric surfaces.

An important issue in multiview integration is the determination of whether a 
feature seen in a new view has been seen in any previous views. Clearly, this problem is 
a variation on the feature matching problem in object recognition. In [U&C-15] and 
[D a-82], this type of feature matching is carried out by exhaustive search, meaning 
that a feature seen in anew  view has to be tested against every feature seen in all previ
ous views. In this chapter we show that the highly efficient feature matching strategy 
presented in Chapter 3 can be applied to this problem with little modification. Another 
important issue in multiview integration is how to merge two pieces of information car
ried by two features itt two different views when they are in effect the same feature. We 
will propose solutions to both problems in this chapter.

The physical setup of our model learning system, shown in Fig. 4.1, consists of a 
computer-controlled turntable and a structured light range scanner. The feature extrac
tion component of this system is the same as that described for the object recognition 
system described earlier. The feature matching and merging component is a 
modification o f the feature matching routine employed earlier. In the next section, we 
will give an overview of the setup and the system. Then in Section 3, we show how one 
must establish ah object-centered coordinate system in which the 3-D model is ulti
mately systhesized; the manner in which the coordinates are selected must take into 
account considerations such as any wobble in the turntable. In Sections 4 and 5, we 
will then discuss how to initiate a model from the first view of the object and, subse
quently, how to update a partial model with data from successive views. Finally, in 
Section 6, we will use an experimental example to illustrate the working of the entire 
model learning system,

4.2. General Strategy and System Overview

In multiview integration for model building, the number of views from which an 
object is viewed must satisfy two requirements, which we will now state. (As the reader 
will notice, the second requirement will subsume the first.) For the first requirement, it 
is necessary that every object feature be visible in at least one view. And, for the second 
requirement, features must overlap between successive views for the purpose of estab
lishing the adjacency relationships between the features. Obviously, if  a given feature 
was visible in only a single view, it would be impossible to discover what other features 
the given feature might be adjacent to. The second requirement also points to the fun
damental problem in model building by multiview integration, viz,, how to relate 
features in one view to features in another view, keeping in mind the likelihood that
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rotation

Figure 4.1. A model learning system. The image acquisition and the feature extraction 
components of this system are the same as in Fig. 0.1.
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some of the features in the two views are the same. Our strategy to solving this prob
lem is a modified version of the strategy for object recognition described in  Chapter 3 

■ and consists of the following steps: From the first view of the object, we first define an 
object-centered coordinate system. We then establish a feature sphere (or, feature 
Spheres, if  more than one feature type is being considered) corresponding to this coordi
nate system and assign the extracted features to the appropriate tessels on the sphere. 
Each feature sphere is then incrementally updated by using features and their attribute- 
value pairs gleaned from each successive view.

For incrementally updating a feature sphere, we first determine the transformation 
between the fixed world coordinate frame in which each view is taken and the object- 
centered coordinate frame which rotates with the object and in which the feature 
spheres are built. For the most part, this transformation is easily derived from the rota
tion of the turntable. However, if  the object is manually turned upside down to integrate 
in the information from the underside of the object, the system must automatically com
pute this transformation. Once the transformation is known, the feature matching cri
teria discussed in Chapter 3 Can be used to determine whether or not a feature was seen 
in a previous view. If a feature in the new view is matched to a feature in the currently 
known partial model, the system must merge the two features together; otherwise, the 
partial model must be updated by the addition of the new feature.

The following pseudo-code represents this model learning strategy:

build_model (<9OT> {/)}) { 
for each new view I  in {/}

extract a feature set {5} from range image I  
if  (first view)

initiate_model ({5}, Om)
else

compute transformation Tr 
update_model ({5}, Om, Tr) 

for each new view I  in {/} 
collect LFS’s }

initiate_model ({5}, Om) {
define an object-centered coordinate system Trm 
allocate a feature sphere for each class of feature 
for each 5,- in {5}

add (7>ot (Si)) to Om }



else add ( T r 1(Si)) to Om )

Note that in the last step in “ build_model" the system collects all the local featuresets 
(LFS) from the synthesized 3-D model. In accordance with the discussion in Chapter 3, 
these LFS’s play an important role in the object recognition system described there. In 
particular, the LFS’s are used for generating pose transformation hypotheses.

Fig. 4.2 depicts the two essential elements of the model learning system, the turnt
able and the structured-light unit. An object whose model is to be created is placed at 
the center of a turntable and its range images are then taken for different rotational posi
tions of the object; for each range image the structured light scanner is translated 
linearly, as illustrated by the straight arrow in the figure, the direction o f motion 
corresponding to the y-axis in the world coordinate system. The rotations o f the turnt
able and the translations of the scanner are all under computer control and can be varied 
depending upon the complexities of the object shape. (For simple objects, the different 
rotational views can be as far apart as 90° and a 3-D model synthesized with just four 
views.) The axis of the rotation of the turntable is approximately parallel to the +z 
direction of the world coordinate system. To provide a good coverage of both the sides 
and the top of the object, both the center of the laser beam and the optic axis of the 
camera make angles that are roughly 45° with the z-axis.

Unless the object has a flat bottom, it often becomes necessary to also model those 
surfaces that would be invisible when the object is first placed on the turntable due to 
their being in contact with the table. To make a complete 3-D model for such objects, 
after all the views are collected in the first position, the object is manually turned upside 
down and scanning resumed. In general, just as many views are collected in the new 
position as in the first. The important point to note is that the system automatically 
computes the transform Tr that relates the object-centered coordinate frame for the 
object in ah upside-down position to the world coordinate frame by matching common

4,3. Determination of Transformations

Clearly, the first thing that must be done in model learning is to establish a coordi
nate system in which the model will be synthesized. For this purpose, we set up an

features.
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World coordinate system

Figure 4.2. The physical setup of the model learning system. The structured light 
range sensor is calibrated with respect to the world coordinate system.



object-centered coordinate system. The process of model synthesis is greatly facilitated 
if  this coordinate system is defined in such a manner that its z-axis is coincident with 
the axis of rotation of the turntable. It also helps to define the origin of this coordinate 
system at a point that is half way between the highest point on the object and the turnt
able. W hat follows is a procedure for defining such an object-centered coordinate sys
tem given the first view of the object. Note that this procedure relies solely on the read
ing of the range sensor of the system, and does not require any manual measurements.

The reader beware that we are making a distinction between the object-centered 
coordinate frame, in which all the views are pooled for model synthesis, and a world 
coordinate frame, in which sits the scanner. Therefore, it is the world coordinate frame 
in which we specify the scan directions. We will assume that the range sensor has been 
calibrated [C&RT-87] with respect to the world coordinate system. The origin of the 
world coordinate system can be anywhere.

Of course, since the scanner resides in the world frame, we must first establish the 
world coordinate system before we can set up the object-centered coordinates. The 
world frame is established essentially by the human operator. In our experiments, the 
world frame is as shown in Fig. 4.2, with the y-axis corresponding to the translational 
movement of the structured-light unit and the z-axis nominally perpendicular to the 
turntable.

Next, the object-centered coordinate frame must be established. We will now 
describe a procedure for doing so. The first step consists of determining the axis of rota
tion of the turntable, since this axis will serve as the z-axis of the object-centered sys
tem. The rotating axis can be specified by a unit direction vector, a. We will also 
assume the existence of a center of rotation, denoted by po; this will be a point on the 
rotation axis located at the intersection of the axis with the plane of the turntable. Note 
that the rotation center, as specified by Po, will not by itself be used for the origin of the 
object-centered system, but Only as an intermediate step toward obtaining that origin.

To determine a, we take two range images of the face (which is planar) of the 
turntable; for the second image the turntable is rotated by 180°. In each of these images, 
a plane is fit to the turntable range data, and the surface normals computed. Let the two 
surface normals be denoted by n 0 and n 180. If the surface of the turntable was per
fectly perpendicular to the rotation axis for all angular positions of the turntable, the 
two normals would be identical and parallel to a. In general, this condition is not 
satisfied because of the slight wobble that might be present when the turntable is 
rotated. In the presence of the wobble, the directions of the two normals are symmetric 
with respect to a. In either case, the direction of the rotation axis can be computed 
from
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The position vector p  q to the center of rotation can be found from a range image 
in which the center of the turntable is marked somehow. To be able to localize the 
center precisely, we usually place a rectangular box on the turntable with one of its 
comer touching the center. We then take a range image of the box and the turntable 
and detect the comer in the resulting data.

Since we want the origin of the object-centered coordinate frame to be about half 
way between the highest point on the object and the turntable, the system utilizes the 
first view of the object for locating this origin. If we denote by h the maximum height 
of any object point in the first view, the location of the origin of the object-centered 
coordinate system is then given by

0 = P o+(y) a

Since the object is placed roughly at the center of the turntable, for many objects this
origin will be roughly at the volume center of the object. We then specify as follows 
the three axes, x ’, y ’ and z ’, of the objeet-centered coordinate system

z ' = a

a x [ l  OOjt 
la x [1 0  0 ] 'l 

x ' - y ' x z '

where [I 0 Ojt represents the x axis of the world coordinate system. Thus the object- 
centered coordinate frame in the first view is related to the world coordinate frame by 
the following transformation

Tr0 =
X y y  y 2 y Oy

z y  z 2 z °z 
o o o I

For a given position vector in the object-centered frame for the first view, this transfor
mation helps us find its corresponding coordinates in the world frame. In other words, 
Tr q takes from the object-centered frame to the world frame. Therefore, TrQ1 takes us 
from the world frame to the object-centered frame for the first view. Suppose, in the 
range map for the first view -  the range map for every view will be defined in the fixed 
world frame -  we locate a feature at, say, the vector v, then the coordinates of this vec
tor in the object-centered frame will be given by Trn1V.



As the object is rotated on the turntable for a different view, the object-centered 
frame also rotates with the object; however, the range map is still in the same world 
frame. Let the angle of rotation of the turntable, measured counterclockwise in the xy- 
plane of the world frame, for the i th view be 0,-. The transformation that takes us from 
the fixed world frame to the object-centered frame for the i th view is given by TrJ1,

: where

Trl -  Tr q Rotz-(Qi) (4.1)

with Rot/ defined by

cosG,- -sinG,- 0 0 

sinGi cosG,- 0 0 

0 0 I 0
0 0 0 1

Note that the matrix Rot(Q) rotates a vector through an angle 0 counterclockwise in the 
xy-plane. Therefore, if in the i th range map, an object feature is found to be located at, 
say, the vector v, then the corresponding vector in the object-centered frame is TrJ1 v.

In the derivation of Equation (4.1), we have made use of the knowledge that the 
object undertakes a rotation around a known axis through a known angle from one view 
to the next. Clearly, when the object is flipped for generating information on its under
side, this transformation will cease to be valid. W e therefore must have recourse to 
some algorithm that can re-establish the transformation of the object in the new setting. 
The algorithm that is used for this purpose is very similar to the one used for generating 
pose-transformation hypotheses in the object recognition system described in Chapter 3. 
We will now describe how exactly we find the transformation that takes us from the 
world frame to the object-centered frame after the object is flipped.

Assume that in the first set of scans, before the object is flipped, the system has 
collected all the possible LFS’s from the partial model constructed so far. Further 
assume that at least one of these LFS’s is visible in the the first view after the object is 
flipped. The algorithm then proceeds as follows: Extract every LFS from the range 
image and try to find a matched LFS in the partial model built so far from the topside 
views. Each such match will, in general, lead to a different pose transformation for the 
object in its flipped position. For each such pose transformation, we count the number 
of features extracted from the range image that can be matched with the partial model. 
The pose transformation yielding the largest count is accepted as the transformation that 
takes us from the world frame to the object-centered frame. The algorithm for comput
ing this transformation is sketched below in pseudo language:
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reestablish_transform ( / ,  Om) {
extract featp^s {5} frpm range image /  

f  extract a ne\y LFSs from{S}
if (LFSs matches an LFS in Om)

;'">’;::''̂ "-'''̂ '''estimate'7>*
count #  of matching features between {5} and Om under Tr 

go to *
A,

return the Tr which yields the maximal c o u n t}

Once this transformation, denoted by Trt, is found, for subsequent rotations of the 
object the transformation that takes us directly from the fixed world frame, in which all 
range maps are constructed, to the object-centered frame are determined as before. In 
other words, if

Tri =Trt Rotz(Bi) (4.2)

then, Tri takes us from the fixed world coordinates to the object-centered coordinates 
for the i th view taken after the object is flipped. At the risk of being repetitious, we 
would like to elaborate by saying that if in the i th range map after the object is flipped, 
if a feature is located at the vector v in the world frame, then the corresponding vector 
in the object-centered frame is given by TrJ1V.

4.4. Model In itiation in the F irst View

Once the object-ceniered coordinate system is established, the procedure for ini
tiating a partial object model from the first view is rather straightforward. We first 
transform the position/orientation attributes of every detected object features in the 
image from the world coordinate system to the object-centered coordinate system by 
multiplying the attributes from the left by Tri1. In short, we perform the following 
feature translation:

Tri1 (Si) -*  Mc(i) (4.3)

where Si is a scene feature and Mc^  is the translated model feature relabeled as c(i).

As mentioned in Chapter 3, a feature can generally be described by three sets of 
attributes: shape, relation and position/orientation. Of these, only position/orientation 
attributes are transformation dependent. We thus can rewrite expression (4.3) in terms 
of the three sets of attributes as follows:

sa (Si) sa (MC(,)) for all sa e SA(Si)



c(ra (Si)) —» ra (Mc(t)) for all ra e  RA(Si)

Tr-1 Cla(Si))-*  la (Me(O) - fo ra // Ia sL A (S i)

Note that, as pointed out in Chapter 3, some of the shape attributes and 
position/orientation attributes are viewpoint dependent, i.e. the values of those attri
butes are subject to occlusion. Therefore when adding a feature to the model we must 
take note Whether the feature is occluded in the scene. For example, a surface region in 
an image may have been occluded by some other surfaces if any one of its boundaries is 
an occluded boundary; consequently, some of the attributes, say, area and centroid, of 
the region may not be accurate. If a feature in the image is found occluded, we must 
regard its viewpoint dependent attributes as ''Weak1Vattributes, meaning that their values 
will be overwritten or modified if a more complete version of the feature is detected 
again in any of the subsequent views of the object. In our current implementation, we 
do not explicitly mark attributes as “ weak" when occlusions are detected; or, one might 
say, we treat every attribute as “ weak." To explain, suppose from a given view the area 
o f a surface has been extracted, and then if for the same surface a larger area becomes 
available in a subsequent view, the larger value will overwrite the earlier smaller value. 
Of course, there are attributes that are not amenable to this “ overwrite" formula; more 
on this subject in the next section.

After the features extracted from the first range map are translated, pointers to 
them must be recorded on a feature sphere, or a set of features spheres if different 
classes of features are used. To accomplish this, the principal direction of each feature 
is calculated from its position/orientation attributes in accordance with the formulas 
presented in Chapter 3. From the principal direction of a feature, its corresponding cell 
on the sphere is found by using the tessel— assignment function, also described in 
Chapter 3.

4.5. Updating the Model

We will nOw discuss how the features extracted from a new view are used to 
update the partial model built from the previous views. This implies that the system 
must first decide whether a feature detected in the new view is indeed "new" to the par
tial model; if  it is, the system should add the feature to the partial model, otherwise the 
new information on what is an aleady existent feature must somehow be merged with 
the old information.

The newness/oldness of a feature, extracted from the new view, with respect to the 
partial model can only be determined by comparing the feature with those already 
stored in the partial model. Clearly, this comparison of features is the same as the 
feature matching problem discussed in Chapter 3. Recall that for each view of the

142 chen/kak



143 chen/kak

object, the transformation that takes us from the world coordinates, in which the scene 
features are extracted, to the object-centered coordinates used for the feature spheres is 
known to the system, as it can be calculated from equation (4.1) or (4.2). Given the new 
feature, we first translate it to the object-centered coordinate frame via 7V-1 by using 
the formulas shown earler; we then compute its principal direction. This principal direc
tion will correspond to a particular tessel on the feature spheres o f the model. The 
neighborhood of this tessel is searched for any registered model features to answer the 
question whether the new feature is the same as one of the old features. Clearly, the 
size of this neighborhood should depend on the uncertainty in the computation of the 
principal direction, and every model feature in the neighborhood is a candidate for test
ing against the new scene feature. As in object recognition, feature comparisons are 
made on the basis of three criteria —  shape, relation, position/orientation, If no candi
date features can be found in the neighborhood on the feature spheres, or if all the can
didate features in the neighborhood fail to match, the new feature is considered to be 
new information about the model, and is then added to the model as were the features 
during the model initiation stage in the first view.

On the other hand, if a feature extracted from the current view of the object can be 
matched to one of the features on the partial model, we must then decide what to do 
with the feature. Although, the simplest solution would be to totally ignore the new 
feature, one has to bear in mind the possibility that the new attribute values might be 
“ superior" to the old values, in the sense that they might be more free of occlusion, or 
may be less distorted due to noise and other artifacts. We therefore need some mechan
ism for “ combining" the old and the new attribute values in such situations.

For attributes that are viewpoint independent, the new and the old attribute values 
are best combined by taking an average of the two, assuming that we have as much 
confidence in the new attribute value as in the old. For example, if the attribute radius 
of a feature cylindrical-surface already exists in the partial model, and if from the 
current view a new value becomes available for this attribute, then, since this attribute 
is viewpoint independent, we should update the value of radius by averaging the two 
values. Similar updating would have to be done for other viewpoint independent attri
butes like the normal of a planar surface or the position of a vertex.

An entirely different strategy is required for viewpoint dependent attributes. In this 
case, if both the partial model and the new values are unoccluded, the system takes an *

* . ■ - ■■■ ■ ■
Of course, this is a very simple strategy that suffices when the same feature would not be 

seen in more than two or three views. For those features that might be visible in a large number of 
views, in any combination the new attribute values would have to given a weight that would be 
inversely proportional to the number of updates already made for that attribute value.



average of the two. On the other hand, if one of the values is occluded, we retain only 
the unoccluded one. And, if both are occluded, the system takes a weighted average of 
the two, each weight being proportional to the number of pixels visible to the sensor.

Note that the notion of averaging, weighted or unweighted, for updating the value 
o f an attribute can only be applied to numerical attributes. For non-numerical attri
butes, how the new information is combined with the old is decided on a case-by-case 
basis. For example, when merging two sets of features that are the values of two adja
cency attributes, we take the union of the two sets.

4.6. ExperimentalResults

This section will present an example for illustrating how the entire model learning 
process is carried out. The object used, displayed in Fig. 4.3, consists of thirteen planar 
faces and one conical surface. To give the reader a rough idea of the size of the object, 
the length and the width of the object are approximately 7" and 3.5", respectively; the 
height to the heighest point, in the middle of the object, is about 3". The model learn
ing example discussed here generates all the surfaces from only the top views; in other 
words, the object was not flipped. For modeling the underside, the system used the 
default assumption that the underside was a planar surface, which in this case happens 
to be a fact. The system was commanded to take six views of the object, 60 degree 
apart. The range image of each view consisted of 85 scans with 0.1" scan resolution, 
meaning that between successive positions of the structured-light unit during a transla
tion, the distance traveled by the unit along the y-axis of the world coordinate system 
was 0.1". Fig. 4.4(a-f) are the stripe images for the six views, and Fig. 4.5(a-f) are their 
segmented needle maps. The label of each segmented region is displayed near the 
center o f the region. The features extracted from each view consist of primitive sur
faces and vertices; the model representation will be based on these two classes of 
features. For clarity, we will focus our discussion mostly on surface features, though 
we will mention vertex features when relevant. Notice that region 5 of view I, region 4 
of vie\v-2, region 2 of view-3, etc. are the face of the turntable so they are excluded 
from the model learning process.

4.6.1. Initiatihg the Model

Before we start to process the first view, art object-centered coordinate system is 
defined according to the procedure described in Section 3 with respect to the world 
coordinate system in which the structured-light scanner is calibrated. Two spherical 
arrays with frequency-of-geodesic-division equal to 16, which leads to 2562 cells on 
each sphere, are then created to represent two feature spheres, one for surface features,
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Figure 4.4. Continued
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Figure 4.4. Gontinued
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Figure 4.5. Segmented needle maps of the six views of the object.
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and the other for vertex features. The two feature spheres form the bases for feature 
matching in this model learning process. As shown in Fig 4.5-a, 9 regions and 16 ver
tices, the vertices are not labeled, are detected in the first view. Region 5, which is the 
face o f the turntable, will not be considered as a surface feature o f the object, so only 8 
surface features are passed on to the learning process. Furthermore, we have chosen to 
disregard scene vertices formed between a curved surface and a planar/curved surface 
because they usually are spurious junctions caused by occlusion.

As was mentioned in Chapter 3, each feature is represented in the computer 
memory by a frame data structure. For example, the attribute frame for the region I 
extracted from the first view is as follows:
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Region I 
Type: planar 
Number_of_pixels: 743 
Number_of_adjacent_regions: 3 
Adjacent_regions: (2 9 4)
Type_of_edge_with_adjacent_region: (convex convex convex)
Vertices_between_adjacent_regions: ((1 ,2) (2 ,3) (12,11))

V--Ẑ NonnaJ::
Moment_direction: (0.33467 0.88405 0.32627)
Region_center: (-2.11130 17.15708 4.67800)

A couple of entries in the attribute set need clarification. To establish adjacency rela
tionships between regions, the bounding contour o f each region in a range map is traced 
in a clockwise direction and a record made of the common edges and vertices o f a given 
region with other regions. During boundary tracing, note is also made of the start-vertex 
and the end-vertex when a common edge is found with another region. For example, the 
list (I, 2) in the value of the attribute VerticesJ>etween_adjacent_region, I is the label 
of the start vertex of the common edge between regions I and 2; 2 is the label of the 
end vertexZ Also, note that the nature of this common edge is convex. Another attribute

sft '
Note that, in general, a vertex feature in a scene is defined either as a junction of three 

surfaces, or a junction of two surfaces and an occlusion. However, when an occlusion is involved 
and one or both of the surfaces meeting at a junction is curved, that vertex is ignored, because, 
usually, that is not a real vertex in the scene. Such false vertices become evident when, for 
example, a range map is made of a hole from above with the interior of the hole only partially 
visible.



that might bear some explanation is moment direction', the direction refers to the direc
tion of the line about which the moment of inertia is a minimum (in most cases, this is 
the direction along which the surface is most elongated). The attribute Normal applies, 
o f course, to only planar surfaces, which is the case here. For, say, a cylindrical surface, 
instead of Normal, the relevant attribute would be Axis, whose value would be the 
direction of the axis of the cylinder.

In a similar vein, the attribute frame for vertex I extracted from the first view is:

Vertex I
Position: (-3.9276 18.6921 5.2745) 
Belongs_to_regions: (2 I *) 
Adjacent_vertices: (2 * *)
Edge_type: (convex * *)

In the example here, we made the assumption that exactly 3 surfaces had to meet at a 
vertex. Since it is likely that for a vertex not all the converging surfaces may be visible 
in a given view, we must leave place-holders for those that are not. This has been 
accomplished by the use o f the symbol in the above frame. Therefore, ’*’ denotes an 
uninstantiated attribute value.

The reader has probably noticed that adjacency information about surfaces, ver
tices, and edge-type of common edges is redundantly recorded on the attribute frames 
of the surface features as well as the vertex features. The reason for th is  is t im e  

efficiency, especially when it comes to the use of adjacency and edge-type information 
on vertex features for the generation of LFS’s. The reader may recall from Chapter 3 
that LFS’s are used for hypothesis generation.

Now we will describe a step that is particular to model learning. While the attri
bute frames we showed above correspond to scene features in the object recognition 
discussed in Chapter 3, for the purpose of model learning each scene feature must either 
become a model feature or must be merged with one of the existing model features. 
Since, we are at this time discussing the first view of the object, all scene features 
become model features and are used to initiate the model. To convert a scene feature 
into a model feature, we must translate its position/orientation attributes from the world 
coordinate frame in which the data are taken into the object-centered frame in which 
the model is built. During this process of translating features into the object-centered 
coordinates, the features are also assigned new labels, this being done for purely 
cosmetic reasons. For example, initially, as shown in Fig. 4.5(a), the extracted surfaces



are labeled I, 2, 3, 4, 6, 7, 8 and 9, with label 5 corresponding to the turntable. After 
dropping region 5, and translating the remaining surface features into the object- 
centered coordinates by multiplying the position/orientation vectors from the left by 
TrJ1, the new surface labels as stored in the model become I, 2,... , 8. As an example,
model surface I has the following attribute frame:
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Surface I 
Type: planar
Nomal: (-0.0050 -0.3446 0.9387) 
Moment_direction: 0.3347 0.8841 0.3263
Region_center: 0.0137 -1.7699 0.8990
Number_of_adjacent_regions: 3 
Adjacent_regions: (2 8 4)

and corresponds to the scene surface I shown in Fig. 4.5(a). Similarly, all the vertex 
features extracted from the scene in the first view are transformed and relabeled.

\ -i," . :  . ■ ' : ' . " ■
After the conversion of scene !features into model features, the principal direction 

o f each surface and vertex model feature is computed in the object-centered coordinate 
system. On the basis of the principal direction, each feature is assigned a pointer on the 
corresponding tessel on the appropriate feature sphere. Fig. 4.6 shows the surface 
feature sphere constructed from the features gleaned from the first view. To help the 
reader associate the different surfaces with the entries on the feature sphere, we have 
shown in (a) the different surfaces of the object and their labels as generated by pro
cessing the first view. Note that (a) is not a synthesized model, but only a means to 
tr a n sm it to the reader the surface-label association at the end of view I.

4.6.2. Ujpdating the Model

Now as each new view o f the object is taken, W e can use it to update the model 
initiated with the data from the first view and updated by all the previous views. If 
there are any common features between the new view and the partial model built so far, 
they must be discovered by matching. Of course, if there are no common features, then 
all we need do is to merely add the new features to the feature spheres built from the 
prior views. Consider, for example, view 2, which in the example under discussion is at 
an angle of 60° clockwise from view I. Fig 4.5(b) shows that the range image for this 
view is segmented into 8 regions; except for region 4 each of these regions represents a 
surface features of the object visible from the view point corresponding to view 2. By



(a) The partial model built from view I

4r 3 /

(b) Surface feature sphere of the partial model

Figure 4.6. A partial model built from the features extracted from the first view, /"p n  
159 for table



comparing with 4.5(a), one can immediately observe that region 6 is the only new sur
face feature seen in view 2, while the remaining 6 are seen in the first view and should 
already have been recorded in the partial model. The model learning process "learns" 
this facts by matching features in view 2 with the partial feature sphere constructed 
from view I. This learning process consists of transforming the position/orientation 
information of each view 2 feature into the object-centered coordinate system via Tf^ , 
and then computing the principal direction associated with the feature. A small neigh
borhood on the feature sphere centered at the tessel corresponding to the computed 
principal direction is then searched for a compatible partial model feature. Currently, 
this neighborhood is of radius 2 tessels which corresponds to an allowable uncertainty 
of 8° in the principal direction.

Consider, for example, the region marked surface 5 in Fig. 4.5(b). On the basis of 
its principal direction, this surface is found to match the partial-model surface 8 shown 
in Fig. 4.6(a). For region I in Fig. 4.5(b), there are three candidate model features, 
these are marked I, 4 and 6 in Fig. 4.6(a); all three of these partial-model features fall 
into the same tessel on the feature sphere, as depicted in Fig. 4.6(b). In this case, 
partial model surface 4 excluded from further consideration on the basis of the surface 
types. Partial-model surface 6 is eliminated as a possible match for scene surface I on 
the basis of the values of the normal distances of the surfaces involved in the matching 
process. W hat is being said here is that if we take the dot product of normal to partial- 
model surface 6 with the position vector to any point on the surface 6, we vuli obtain 
the normal distance to the surface 6 (remember, that the point necessary for this calcu
lation is stored as one of the attributes for planar surfaces). Now, if we carry out the 
same calculation for view-2 surface I, the normal distance computed will be different 
from that calculated for partial-model surface 6, making the two unmatchable. So, ulti
mately, we can find that view-2 surface I must correspond to partial-model surface I.

Continuing the above matching process with each of the features in view 2, we 
eventually conclude that Surface 6 in Fig. 4.5(b) is new and was not seen in view I. 
Tins surface is added to the partial model and given the label 10 (not shown in figures).

Now consider surface 8 in Fig. 4.5(b). It is found to match partial-model surface 7 
shown in Fig. 4.6(a). However, the area o f the surface in the second view is ihuch larger 
than thatIn  the first view. Therefore, in this case the process updating the partial model 
consists of overwriting the value of the attribute area. After view-2 surface 8 is merged

Note that we could not have first computed the principal direction in the world coordinate frame 
and then transformed the resulting vector into the: object-centered coordinate frame. The reason 
for this is that principal directions are defined with respect to the origin of the object-centered 
coordinate frame and therefore can only be computed in this frame.
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with partial-model surface 7 in this manner, we recalculate the surface normal and the 
region center associated With the updated model surface 7. We must also update the 
adjacency information associated with the model surface 7, since the corresponding 
view-2 surface 8 was found adjacent to view-2 surface 6, which is now partial-model 
surface 10. This updating of adjacency information also takes place for partial-model 
surfaces 2 and 3. The vertex features are updated the same way as the surfaces.

Eaph pf the remaining four views is used to update the partial model in the same 
manner. The final surface labels are depicted in Fig. 4.7. Note, as was the case with 
Fig. 4.6, this figure is only intended to help the reader associate labels with the surfaces 
of I^e object, the underlying object itself was not synthesized from the final model. 
Table 4.1 shows for each view the mappings from the view features to the partial-model 
features.
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4.7. Discussions

In order to display the final result obtained by integrating all the six views, we 
derived a wire-frame representation of the object from the final feature sphere. This 
wire-frame exists in three dimensions and can be rotated for display. Two views of the 
wire-frame are shown in Figs. 4.8(a) and (b) together with vertex labels. Notwithstand
ing the fact that some of the object vertices came out disjointed in the images of the 
“ learned model" shown in Figs. 4.8(a) and (b), the wire-frame is constructed readily 
from the vertex feature sphere. While the vertices 13 and 18 shown in Fig. 4.8 
correspond to the same object vertex, they came out separated in the learned model 
because of occlusions. The same is true of the vertices 14 and 21 in Fig. 4.8. This 
difficulty could probably have been eliminated if we had used more views. It is impor
tant to realize that the wire-frame shown is used only for display and plays no role in 
any of the object recognition strategies, only feature spheres being used for that pur
pose. .

The reader is probably curious about how we managed to show the curved edges 
in the wire-frame in Fig. 4.8. An ad hoc algorithm had to be written for this purpose and 
consisted of finding the intersection boundary of the planar and the conical surfaces, 
these two surfaces existing on the surface feature sphere. Note that the intersection of a 
cone and a plane forms an elliptic curve when the plan cuts through the cone, which is 
the case when the normal to the plane close to being parallel with the axis of the cone. 
The intersection would be hyperbolic when the plane makes a glancing cut of the cone. 
Since in our case the former condition is satisfied, we need to determine the parameters 
of the ellipse, from these parameters one could then generate a wire-frame representa
tion of the ellipse. In general, a 3-D ellipse is described by its center, the plane it lies
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Figure 4.7. The completely built model using all six views of the object.
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Table 4.1 This table shows mappings from surface labels in each 
view to the labels used for partial-model surfaces.

view mapping from scene features to partial-model; features
view I I -> I, 2 -> 2, 3 -> 3 ,4  -> 4 ,6-> 5 ,1 -> 6, 8 -> 7 ,9  -> 8

view 2 ; I => I, 2 -> 9, 3 => 2 ,5  => 8 ,6  -> 10,7 => 3, 8 => 7
view 3 I ~>9, 3 => 2 ,4  => 10, 5 ==> 7 ,6  -> 11

view 4 I => 2, 2 => 1 ,4 -> 12, 6 => 7 ,7  -> 13

view 5 I =>2, 2 => 12,3 => 5 ,4  => I, 6= >  13,7 => 4, 8=>6
view 6 I => 5, 3 => 1 ,4 => 4 ,5  => 6, 6 -> 14 '

NOTES: '

F ot the first view, the view-1 label 5  corresponds to the turntable and therefore has 
no mapping to the partial model. The turntable labels for other views are also elim
inated from mapp ing. While in the first view, the partial- model labels; correspond 
mostly to the surface labels in the scene, for subsequent views, any mate kings 
found between the surfaces in the view and surfaces in the partial-model determine 
the mqppings shown in the table. Of course, when there are no matches, new labels 
must be used for scene features. The distinctionbetween the two is brought out by 
the use o f single-stemmed (->) and double-stemmed (—>) arrows, the former 
corresponding to the case when a new partial-model labels must be used for a 
scene surface, und the latter to the case when partial model label used is decided 
by the existence of a match.
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Figure 4.8. Two views of a wire-frame representation derived from the built model.



on, its long axis, and its two radii. Clearly, the plane the ellipse lies on is the plane 
making the intersection, and the center of the ellipse is the intersection point of the axis 

Cqhe and the plane. The long axis of the ellipse lies on a plane surface that is 
formed by the normal to the intersecting plane and the axis o f the cone; at the same 
time, the long axis of the ellipse is perpendicular to the normal to the intersecting plane. 
To determine the two radii, we first compute the length from the apex of the cone to the 
center o f the ellipse, and the angle of intersection; the angle of intersection is defined as 
the angle between the normal to the intersecting plane and the axis o f the cone. Then 
the two radii can be computed approximately from the length, the angle of the cone and 
the angle of the intersection. Given the parameters o f the intersecting ellipse, the 
ellipse can be represented in a parametric form

p  = v/r/cos(a) + vsrssin(a) + p0

where p  is the position vector to a point on the ellipse, V/ and vs the unit vectors along 
the major and the minor axes o f the ellipse, r/ and rs the two radii corresponding to the 
major and the minor axes, Po the position vector to the center of the ellipse, and, 
finally, a  the angle for parametrizing the ellipse equation. The parametric form is 
easily converted into a wire-frame representation by discretizing the angle a . For small 
enqjigh intervals, h t qt, Iliei segments of the ellipse w ouldbelinear.

The final model, as shpwn in Fig. 4.8, consists of 15 surfaces and 22 vertices. Note 
that the 22 vertices include only those that exist on the vertex feature sphere; the 
artificial vertices introduced to give wire frame representations to curved edges are not 
included. The number of surfaces in the generated model is one more than the number 
of surfaces on the object. The extra surface in the model corresponds to the region 
labeled 2 in view-2 image shown in Fig. 4.5(b). When the partial model is updated with 
view-2, this region is not recognized to be the same as region 4 in view-1 shown in Fig. 
4.5(a). The reason for this mismatch is that in view-2 it is not possible to obtain an 
accurate estimation of the direction of the axis of the conical surface. In other words, 
the cone axis direction computed for region 2 in view-2 is too different from the direc
tion of the cone axis for region 4 in view-1. As a result, when the system sees region 2 
in view-2, it treats the region as a new, feature, the pointer to this feature residing in the 
tessel corresponding to the computed axis direction.

The original object had only 18 vertices, however our model found 22. These extra 
vertices are quite visible in Fig. 4.8 and correspond to locations where object vertices 
appear disjointed. As was mentioned before, these extra vertices are caused by occlu
sion. In Fig. 4.5(b), for example, there is a vertex formed at the junction o f regions 6, 8 
and the occluded region. (Note that in analyzing a scene, a vertex is defined as a junc
tion formed by either three surfaces, or two surfaces and an occluded region.)



Evidently, this vertex is false since in a different view the occlusion present could shift 
the location of this junction. We do do some topological reasoning to replace such 
spurious vertices with real vertices during the updating process. W hat is being said here 
is that if for the vertex formed by regions 6, 8 and occlusion we could in a later view 
discover all three surfaces meeting at the real vertex, then the false vertex would be 
replaced by the real vertex. Although, this reasoning was able to eliminate some of the 
false vertices, it proved not be effective for some, including the one formed by the junc
tion of regions 6, 8 and occlusion in Fig. 4.5(b), because the three surfaces meeting ih 
the vicinity of that point are never visible simultaneously in any of the views used.

Clearly, the number of views used must be such that the resulting model is toplog- 
icaliy consistent. Strictly speaking, because of disjointed vertices the model in Fig. 4.8 
is not topologically consistent. Future research is planned to examine the generated 
models for their topological correctness. If a learned model is found to be incorrect, that 
should initiate a finer sampling of the viewpoint space.

For future research, one must also bear in mind that topological consistency while 
necessary may not be sufficient for a learned model to represent a real object — the con
dition of geometric consistency must also be satisfied. For example, as illustrated by the 
truncated pyramid example shown in [Me —82], a three dimensional entity may be topo
logically consistent, yet not geometrically so. Our future research will also aim at dis
covering what reasoning strategies should be implemented for making checks on 
geometric consistency.

It is important to realize that the learned model in Fig. 4.8, despite all its 
deficiencies, is adequate for object recognition in difficult and cluttered scenes, such as 
the one shown in Fig. 3.1 in Chapter 3. The data driven nature Of our recognition stra
tegies makes them forgiving of small errors in the model information. To remind the 
reader again, in a data-driven approach we select a feature from the scene at a time and 
then try to confirm its presence on a model feature sphere. Suppose, an extra vertex or 
an extra bit o f a surface appeared On the model feature sphere, it may hot necessarily 
pose any difficulties, depending, of course, upon how much discrimination is required 
between different object models. The accuracy requirements on model generation as a 
function of the discriminatory power of a 3-D object recognition strategy is yet another 
avenue for future research.
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CONCLUSIONS

This report presented the 3D-POLY system for object recognition and model 
learning. The report addressed the four main issues listed in the Introduction in connec
tion with our discussion there on the design of a robot vision system.

We mathematically analyzed the process of structured light imaging. The result of 
this analysis was a novel procedure for the calibration of structured light equipped 
robots; the procedure yields in a straightforward manner a calibration matrix that 
directly converts the image coordinates of an illuminated point in the scene into its 
world coordinates.

The report presented in Chapter 3 a hypothesis generation and verification strategy 
whose complexity possesses a  low polynomial bound for single object recognition. It is 
important to realize that the manner in which identity and pose hypotheses are formed 
and verified is independent of what types of features are used for describing objects. 
The features described in Chapter 3 and currently used in 3D-POLY merely serve to 
illustrate how our hypothesis generation and verification scheme should be used. It is 
very likely that the types of features we have discussed may not be appropriate to indus
trial objects with shiny metallic surfaces, since the surfaces on such objects can not be 
easily imaged with structured light scanners. It is possible that for such objects a recog
nition strategy should be solely based upon lower level features such as vertices and 
edges and should not employ surface type features.

An important key to hypothesis verification in 3D-POLY is the use o f spherical 
(lata structures, these data structures were used to store pointers to feature frames on the 
basis of the principal directions associated with the features. Of course, we could not 
have used this data structure had we not been able to present constant rime. algorithms 
for finding neighborhood over spherical tesselations. We believe the algorithms we 
presented in connection with this data structure will also prove useful in other situations 
where spherical representations are needed, for example, for aspect graphs for objects, 
used primarily for grouping topologically similar viewpoints, and for the Hough space 
for representing orientations.
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AppendixA
Determination of Transfnrm^tipn

In this appendix we will present the formulation for estimating the transformation 
that brings a set of model features into a corresponding set of scene features. The 
location/orientation attributes of the features will be used for this purpose. Clearly, 
only those location/attributes can be used that are viewpoint independent; implying that 
we should not use attributes like the surface centroid, mid-point of an edge, etc. Let us 
denote a position attribute o f a feature by p , which is a position vector, and a orientation 
attribute by a, which is a direction vector (unit vector). If a scene feature S  is matched 
to a model feature M, then under noise-free condition we should have

R 'Pm + t  = Ps (A.I)

R = as (A.2)

where p m and p s, and am and as are the corresponding location attributes and orienta
tion attributes of the model feature and the scene feature, and R and t  are the rotational 
and translational components of the transformation Tr, respectively. Note that both 
equation (A.I) and (A.2) are in vector form. We will assume that I? is a 3x3 matrix and 
t  a 3-vector. Although the following form will not be used explicitly in our work, the 
reader might find it informative to know that when a rigid body is rotated clockwise
through an angle 0 about an axis whose direction is given by the unit vector n, the
matrix R  takes the form

n |+ c o s0 ( l-n x) nxriy(l-cos0 )-nzsin0 nznx(l-cosQ)+nysin0

nxny( l-cos0)+nzsin0 «J+ cos0(l-nJ) «ynz(l-co s0 )-n xsin0

nznx( I -cosOl-ttySinO nynz( l-cos0)+nxsin0 n^+cos0(l-n^)

This matrix has three unknowns, the angle 0 and two of nx, ny, and nz, since the magni
tude of n is unity.

I. Solution for the Transformation

Now given the correspondence between a set of scene features {5} and a set of 
model features {M}, we want to determine (or estimate if noise is present) the R  and t. 
Without loss of generality we can assume the matching of {£} to [M) results in the 
correspondences between p ls and p'm, i = I , . . .  ,k, and between aJs to a jm, j  = I,...,/. 
Note that k does not have to agree with I since the number of position attributes in each 
feature might be different from the number of orientation attributes. From equation 
(A. I) and (A.2), we now have
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R  Pim +■*■= Pis (A.3)

for i = I, ...,k, and ■ ; ' -V . '

R aJm =  a Js
■-■■ ■ - ■' i '; ' ,

(A.4)

fory' = I,...,/. .

Since R  is present in only equation (A.4) while both R  and t  are present in equa
tion (A.3), it is natural to decompose the problem of solving Tr into two Stages: first 
solve for R  by using equation (A.4) and then solve for t  by using equation (A.3).

A question that arises here is that under what conditions can we gaurantee a 
unique solution for R and t. Let us first investigate the case of R. Since each orienta
tion vector a is a unit vector in 3-D space, it can be completely Specified by two param
eters. Consequently, each instance of equation (A.4) can provide two independent 
scalar equations in terms of R- Furthermore, as mentioned in Section 3, a rotation R has 
three degrees of freedom. Therefore, in order to to completely solve R  we need at least 
two instances of equation (A.4), i.e. two corresponding pairs of orientation vectors, pro
viding that the two vectors are not linearly dependent (parallel orientation vectors will 
lead to linearly dependent equations). Given two equations of the type shown in (A.4), 
we will actually have four equations for the three unknown of R. If the correspon
dences between the scene surface orientations and the model surface orientations are 
correct, then these four equations are not really independent because the orientation 
Vectors must obey the following additional constraint:

Q m  '  Q m  ^  Q s  ' Q s

In other words, this constraint must be derivable from the four equations. In practice, 
this constraint is used to verify the accuracy of the surface correspondences prior to 
solving the equations.

If 7, the number of orientation vectors in the correspondence, is greater than 2, then 
the coiresponding orientation vectors must obey the following pairwise constraints: i.e.

Qm QL = Os' QjS for all i,j < I (A.5)

So, suppose by matching scene surfaces with model surfaces we have set up I 
correspondences that satisfy the above costraints. Now, the question is what is the best 
way to solve the / vector equations of the type shown in (A.4) for the unknown i?; One 
could lump together all the / equations into the following composite form

R ' \ oL  aL " '  \ = \ a l a 2s ] 

which could be written in a more compact form as



leading to the following least squares solution for/?

R  = AsA 1m (A.6)

Supposedly, a correct least squares solution obtained in this manner should minimize 
the metric

£l?AOT - A y j  Aj j  (A.7)

or, in other words, lead to a solution of the equation

gjj" ^ A m -  As] [/?Aot -  As j  = 0  (A.8)

Unfortunately, the solution represented by the equation (A.6) and the rationale leading 
up to it are faulty for the main reason that the metric in equation (A J )  is really not an 
error metric since it is a 3x3 matrix and not a scalar. What we really want to mini mi 7<*
is not what is shown in (A.6) but the following form

E 2 = * « 4  I2 (A.9)
v . M  ■

In the next subsection, following a derivation originally given by Faugeras and Hebert 
[F&H-S3] we will show how an elegant solution to the minimization o f E 2 can be 
obtained by the use of quaternions. The reader should note that other methods also 
exist for solving equation (A.9); see, for example, [A&et-%1, G&L -84].

We would like to make one more comment about the inappropriateness of (A.6) 
for the solution we desire. Even if the equation in (A.8) made sense, the least squares 
optimization would be with respect to all the nine elements of the matrix R. Since these 
nine elements do not constitute independent variables -  in fact, there are only three 
independent variables involved amongst these nine elements -  the solution obtained 
may be entirely meaningless.

2. Estimation of the Rotation Matrix

We clearly want an R  that would satisfy

BE2
dR 0  1R=R

Following Faugeras and Hebert, we will use quaternions to represent rotations, and 
obtain a solution for R in the form of the principal eigenvectors of a matrix in terms of 
as and am. A  quaternion [Ha -69] is defined as



173 chen/kak

Q = (s,v)

where s is a scalar, and v is a vector of 3 elements. The conjugate of a quaternion Q is 
denoted by Q and defined as

Q = (s,-v)

The multiplication of two quaternions Q and Q ' is also a quaternion and given by 

Q *  Q ' = (ss' -  v Y , vxv ' + svf + s'v)

From the above two definitions, we have

Q * ( y  = (ss'-  (-v)-(-v'), ( -v )x (-v 7) + s(—v') + s'(—v))

■ = (s'S -  v 'v , -(v 'x v  + sv' + sv'))

= X T r Q

Let us assume that the rotation expressed by R  is carried out along an axis n and 
with angle 0. Then the rotation of a by R, given by the vector R a, can be represented 
by

= QR * ( 0 , a ) * ( T  (A. 10)

where we now have quaternions on both sides and where

Q r  = (cos-|,sm |-/i).

and vector a has been written in the quaternion form (0, a). It is easy to verify that

Ifis I2 = Qrt * Q r = I
By substituting (A. 10) fori? • aJm in equution (A.9), we obtain 

E2 = X K O  ,a s) - Q R * ( 0 ,a m) * ( T \ 2

Note, for the simplicity of notation we have dropped the superscript j  on vectors am and 
as. Since I Qr 12 = I, for any quaternion Qx, we have

I f i c l 2 =  f i c * f i 7

= Qx * (UO)* &

-  Q x * Q r * Q r * Q~x

= Qx * Qr * Q T Q ^

= l f i c * f i t f l 2 .

Therefore, we can post-multiply Qr with both terms in the above equation and obtain
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X2 = T 1 I (0, as)*QR -  Qr * (0, om) 12 
j

(A. 11)

Now we can minimize S2, which has become a quadratic function of Qr , with respect 
to

Qr = (a, I])

This minimization must satisfy constraint 

a 2 + It i I2 = I

which is a consequence of Qr * Qr = I.

From the definition of quaternion multiplication, we can expand the term 
(0, as)*QR - Q r * (0, am) in equation (A. 11) as

(0, as) * (a ,Ti) -  (a ,Ti) * (0, am)

= [ - a 5 -Ti , a a ^  + a p a i j  -  ^~am Tj , a 'flm + awxrjj  - ■ .

-  J^l • (om- a s), - a  (Qm-Os) + (am+as)xt\ j (A. 12)

The above expression is a linear function of a  and Ti; thus we should be able to express 
the above expression in the form of matrix multiplication as

. (a,Tl) * B
• • ' ' i . . •

where 5  is a  4x4 matrix in terms of as and am.

Tliis is done by converting vector cross product to matrix multiplication as fol
lows. Define a cross matrix X of a vector v = (x,y,z) as

X(v) =
0 z —y 
- z  0 x  
y -x  0

It is easy to verify that the cross product of two vectors v and Ti can be expressed in the 
form of matrix multiplication as

V XTl =Tl 'X(V)

Note again that Tl is a row vector and not a column vector. In fact, all the vectors used 
in the formulation presented here are row vectors, unless, o f course, stated otherwise. 
The expression in (A. 12) can now be rewritten as

(Tl ‘ (am~as)> as) 4  “H 'X (O m-Hls))

which is the same as

v  , T 0 -(om-as)
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Thus we have

O -Cx -Cy —cz
cx O bz —by 
Cy bz O ~bx 
C2 by bx O

where

b = UrnjCas and 

, C = Om -O s

Now equation (A. 12) can be rewritten as

E 2 = J d IQr B  I2
j

= Z Q r B B t Q i
Vv I ■

= Qr A Q i

where
I

A = J ^ B B t (A. 13)
> 1  . .

The quaternion rotation Qr that and minimizes equation (A. 13) will be the eigenvector 
associated with the minimal eigenvalue of the matrix A. Since the magnitude o f Qr is 
unity, we must, of course, normalize the solution eigenvector. Assuming the computed 
eigenvector after normalization is [a ,P ,y ,8], then the rotation angle

0 = 2 cos-1 (a)

and the rotation axis

n = (p,y,8) / sin(-|-)

In addition, the minimal enginvalue of the matrix A  will be equal to the minimized 
E 2, which is the fitting error. Hence, based on that enginvalue we can determine how 
well the scene surfaces correspond to the model surfaces. If the enginvalue is greater 
than some predefined threshold, we should reject the correspondences established, and, 
therefore, reject the matching of {5} with {M}.
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3. Estimation of the Translation Vector

After the rotation is determined, we can similarly estimate the translation by 
minimizing the following error function

Et =  2  ^Ps ~ E ‘ Pm~t 12
J=I

k

(A. 14)

2  \p Js - R  Pin -  *] \p{ - R  pin - f ]

E 2
Setting the derivative 8-g-— to zero lead to the following solution

> = Z  P i - R  - ( Z p L)
J= I j

The minimized fitting error can be readily calculated by plugging i  into equation 
(A. 14). Again, if  this fitting error is greater than certain threshold, we should reject the 
matching.

The reader will recall that pose transformation hypotheses are generated by first 
extracting vertices from a scene and then matching a scene vertex, together with its 
associated surfaces, with an LFS for the model. As was mentioned in Chapter 3, an LFS 
is composed of a model vertex and all the surfaces that come together at that vertex. 
The surface features in an LFS will always possess orientation attributes but may or 
may not possess any position attributes, especially viewpoint independent position attri
butes. (For example, the centroid of a surface won’t do since it is viewpoint dependent 
due to the fact that its calculation is greatly influenced by the extent to which the sur
face might be occluded.) This implies that in an LFS we may not have available to us 
many location vectors such as p Jm. For this reason, the position attribute of the vertex 
itself becomes of prime importance. For a scene vertex where three surfaces meet, the 
coordinates of the vertex can be computed very robustly by finding the intersection the 
three surfaces. For those vertices where only two surfaces meet, there does not exist a 
reliable method of computing the coordinates; therefore, we simply use the nearest 
range measurement from the structured-light data. In either of these cases, k equals I in 
equation (A. 14) and therefore the translation vector is given by

t  = Ps - R  Pm .
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A ppendixB
InitialGuessfbrTesseIAssignment

Given a principal direction in this appendix we show how its corresponding 
tessel indices (ij,k ) can be computed from a linear approximation. Note that the indices 
thus computed are only supposed to place us in the vicinity of the true tessel As 
explained ip Section 6.3.3, the approximately located tessel is used as a  starting point 
for getting the exact tessel corresponding to <&.

We Will present our approximation for the first of the parallelograms shown in Fig. 
3.22, the approximations for the other parallelograms are identical in their j add k 
dependences by virtue o f symmetry; the dependence on H s different and will be shown 
below. .

The approximation for the first parallelogram in Fig. 3.22 actually consists of three 
separate approximations, one for each of the three zones that we will now identify. The 
first zone consists of the triangle marked I in Fig. 3.21, the second zone of the triangles 
2 and 3, and the last zone of the triangle marked 4.

According to equation (9) in Section 7, the index i is independent of indices j  and 
k in the computation of 0 and <|) for a given triplet (ij,k). For a  given (0,<Jj), we can 
therefore separate the determination of index / from that of j  and k. The procedure that 
foUows consists of three steps:

(1) First determine the identity of the zone to which the direction belongs.
(2) Next, determine the index i corresponding to the parallelogram in which the direc

tion (©,<()) lies.

(3) Estimate the indices j  and fc.

For the first two steps, the following formulas are used: (Let K= x = atari (2) and

assume 0 S» 0 S Ti and 0 < <J> < 2tc,)

if  ( 0  < 0 < x) /* O  e  zone I */

mod(5)

else if ( x ^  0 < ju- x) 7 * O e zone2*1
j»=<e-x)XK / (2TC-4x>|

IC

else /* zone3 */

K  mod{S)
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For step 3, we will allow j  and it to  take non-integer value in the following formu
las. During computations, the non-integer values are truncated to yield the integer 
values. First, let

<)>' = < H *-1)x2k

If O  e  zone I,

K

/  = 0 x  Qix -  k + I

If O  e  zone 2, assume

Q - a j  + bk + c 
<|)' = dj + e k + f

Solving for a,b,c,d, e,fsA the four comers p f zone 2, we have

e = ( / - h f e - l ) ^ - + 3 x - 7 t

: 2Q 2

Then j  and k can be obtained by

. .  r (0+jc-3x) ' 2 #
J u  ■ (lt-2x) V K

k = j  + l + Q x ( ^ - - l ) ]
K

!)]

And for zone 3, we use the formulas similar to those of zone I , except that j  and k are 
swapped, and angles 0 and <|> are appropriately offset.
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