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The work described in this report is directed at understanding quantum transport 

phenomena in sub-micron heterostructure devices, at developing computational tech

niques for modeling such devices, and at applying these techniques to develop new dev

ice concepts. During the past year we have (l) applied a previously developed collision- 

less quantum device model (SEQUAL) and Monte Carlo model (DEMON) to the design 

and study of heterojunction bipolar transistors (Chapter 2); (2) developed a technique 

for the analysis of arbitrarily shaped quantum devices with elastic scattering (Chapter 

3); and (3) developed an approach for incorporating inelastic dissipative processes in 

quantum transport theory (Chapter 4). As a by-product of the research, several 

heterostructure device models have been developed: 1- and 2-D equilibrium models, 1- 

and 2-D drift-diffusion models, a I-D Monte Carlo simulator and a 1-D collisionless 

quantum device model. These simulation programs are being applied to advanced dev

ice analysis at a number of laboratories and are available to SRC members on request.
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Chapter I

PRO JECT OVERVIEW

1.1 In tf oduction

This research is directed at the development and application of advanced, physical 

device simulators. The physical device simulators now being used by the semiconductor 

industry are losing their ability to accurately describe the physics of sniall, sophisticated 

devices. New simulation techniques will have to be developed in order to model devices 

of the future. ;Our SRC-supported work is directed at the development of the advanced 

physical simulation techniques which will be needed to guide the development of future 

devices. Specific objectives of the program are: I) initiation of research directed at the 

development of a new generation of physical device models which account for the wave 

nature of carriers (quantum effects), 2) the development of a computationally manage

able yet physically accurate simulation strategy for treating hot carrier transport in 

bipolar transistors, and 3) the application of these evolving simulation tools to the 

exploration of advanced, post-shrink, devices which exploit hot carrier and quantum 

effects to enhance device performance.

The benefits of this research to SRC members include: I) an improved understand

ing of the device physics of small and ultra-small devices, 2) the demonstration of new, 

post-shrink device concepts and the identification and assessment of structures for
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improving the performance of conventional devices, and 3) the development of new dev

ice simulation strategies for advanced devices. During the course of this work, several 

numerical device simulation programs are being developed. The acquisition of this 

evolving "tool box" of advanced device simulators is, perhaps, the most tangible benefit 

that SRC-members realize. Copies of these simulation programs have been distributed 

for several years and are widely-used by the industrial, government, and academic 

research communities for advanced device work.

1.2 Background: Hot Electron and Q uantum  Effects

Device simulation programs are widely used in industry for the optimization of 

devices and for exploring new device structures [l]. Such programs will be even more 

important for the increasingly complex devices of the future. Semiconductor device 

dimensions are continually shrinking, and device stractures are becoming increasingly 

sophisticated (with the use of heterostructures, for example). Present simulation tech

niques, however, date back to the 1960’s and is not adequate for advanced devices. 

Conventional device modeling programs provide self-consistent solutions to the drift- 

diffusion equations and the Poisson equation subject to the appropriate boundary condi

tions on the carrier densities and the potential at the contacts. This approach has pro

vided an adequate description of electronic devices for the last three decades. However, 

with the continuing advancement of technology, devices have now shrunk to submicron 

dimensions and there is an increasing concern regarding the validity of this approach.

The familiar drift-diffusion theory is based on two assumptions:

I. Electrons are particles moving in an external electric field according to Newton’s 

law, and are scattered occasionally by phonons and impurities.



2. The electric field changes slowly over the scale of a mean free path, so that an elec

tron is scattered many times before the field changes significantly.

In many present day devices assumption 2 is violated, leading to transient hot electron 

effeeU such as velocity overshoot [2] which are described by the Boltzmann Transport 

Equation. These effects have been extensively modeled by ensemble Monte Gatlo tech

niques, but little work on engineering these effects to increase the speed bf devices has 

been reported. By contrast, very little work at all has been done in the area of quantum 

effects which arise when assumption I is violated. For devices with dimensions compar

able to the DeBroglie wavelength of carriers (typically 100-1000 A), electrons do hot 

behave as particles obeying Newton’s law; they must be regarded as waves propagating 

through the device according to the Schrbdinger equation. The relationship;between 

Newton’s law and Schrbdinger’s equation is analogous to that between geometricaland 

wave optics. A simple ray description is adequate only if the device dimensions are 

much larger than a wavelength; otherwise a wave description is necessary. It is believed 

that in future there will be an increasing number of devices that rely on quantum effects 

for their operation. Resonant tunneling devices pioneered by Tsu and Esaki [3-7] have 

attracted much attention lately. Device concepts based on the Aharonoy-Bohm effect 

and non-local effects (observed since 1985) are described in a review talk included in 

Appendix A.

Although the physics of hot carrier transport is now relatively well-understood, 

there is much work yet to be done in the application of this knowledge to improve dev

ice speed and performance. The development of a suitable simulation technique for 

advanced bipolar devices is also a high priority. The Monte Carlo method is particu

larly ill-suited to bipolar simulation, and the drift-diffusion approach; though versatile 

and powerful, does not provide an accurate description of transport in small devices.
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AVe are presently engaged in assessing the speed-limiting factors for bipolar transistors 

and in engineering hot-electron effects in order to improve speed. Tbis work makes use 

of our OyolVibg simulation tools. AVe are also exploring new simulation strategies to 

accurately describe both transport and recombination in a bipolar context.

Hot electron effects represent one thrust of our work. But our major emphasis at 

this time is on quantum mechanical effects. Compared to hot-electron effects, our 

understanding of quantum effects is primitive. The challenge here is not just to simu

late a well-known set of equations, but to find the proper set of equations that will pro

vide an accurate but tractable description for quantum transport in submicron devices. 

Our ultimate objective is to develop device engineering models that can be used not 

only to describe quantum effects in sub-micron devices but also to guide us in the 

development of new concepts for post-shrink devices. This work is only three years old, 

but much progress has been achieved. Our group has already developed a simple one- 

dimensional quantum mechanical device model which treats the collisionless propaga

tion of electron waves in their self-consistent electrostatic potential. This program 

(SEQUAL) has been released. AVe have developed a general technique for incorporating 

elastic scattering processes, such as impurity scattering and boundary scattering. 

Finally, a promising approach has been identified for handling the most challenging 

problem in this work, namely to incorporate irreversible dissipative processes into quan- 

turn device models.



1.3 "Visible By-products of the Research

In the course of this research, several heterostructure device models have been 

developed, I-D equilibrium models, I- and 2-D drift-diffusion models, a I-D Monte 

Carlo simulation program, and a I-D quantum device model. These simulation pro

grams, which are now in use throughout the country, are the most visible benefit of our 

research. Users have applied these simulation tools to devices in a Mde variety of 

material systems such as Si, Si-Ge, several IIRV’s, II-VTs, and even combinations of III- 

V and II-A  ̂semiconductors.

Another important by-product of the research is the development of new device 

concepts. Two years ago, we proposed a novel collector structure forTll-V heterostruc

ture bipolar transistors which was predicted to have a short collector transit time 

achieved by extending velocity overshoot. This device has recently been built and now 

holds the record fT for any transistor [8]. Quantum device concepts developed in our 

group (Appendix A) have generated much interest in the research community as evi

denced by our invited talks at three international research conferences this summer. To 

complement the SRC-supported theoretical work, we also have an experimental pro

gram whose objective is to demonstrate novel device concepts. A summary of the 

reports, conference presentations, journal articles and talks at SRC member companies 

which have resulted from this work are contained in Appendix B.



1.4 Overview of the Report

In our proposal we had identified three major steps in the development of a quan

tum device analysis program: (I) collisionless or ballistic quantum transport, (2) incor

poration of elastic scattering due to impurities, defects, boundaries etc. and (3) incor

poration of inelastic scattering or dissipative processes. The first step was completed 

earlier and a I-D ballistic quantum device model (SEQUAL) was released. During the 

past year we have applied this model to the design and study of heterojunction bipolar 

transistors. This work is described in Chapter 2. We had made some progress in 

incorporating elastic scattering processes last year; however, we were limited to devices 

with rectangular geometries. This year we have developed a technique for analyzing 

arbitrarily shaped structures. This work is described in Chapter 3. Finally in 

Chapter 4 we describe a new approach that we have developed for incorporating dissi

pative processes into quantum device models. This is an important breakthrough, since 

the incorporation of irreversibility into the description of quantum processes presents 

major conceptual hurdles. In Appendix A  we have included a preprint of a review of

quantum devices that was presented by us in an invited talk at the Fourth International 

Conference on Superlattices, Microstructures and Microdevices held at Trieste, Italy in 

August 1988. A variety of novel quantum device concepts that we have developed are 

described in this talk. Appendix B contains a list of SRC-supported publications and 

talks. Appendix C contains SEQUAL Release 2.1~a document explaining the recent 

additions to SEQUAL that have been made at the request of various users.
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Chapter 2

CONSEQUENCES OF VALLEY FILTERING ON  

A BR U PT JUNCTIO N A lG aA s/G aA s 

HETEROJUN CTIO N BIPOLAR TRANSISTORS

Electron transport across the emitter-base junction and across the quasi-neutral 

base of AlGaAs/GaAs heterojunction bipolar transistors is studied. Transport across 

abrupt emitter-base heteroj unctions is treated quantum mechanicaHy, and the Monte 

Carlo technique is used to study the transport through the base. The AlGaAs/GaAs 

heterojunction is found to prevent upper valley electrons from entering the base. This 

valley filtering enhances device performance by reducing base transit time, but quantum 

mechanical tunneling lowers the average energy of the injected flux which increases bash 

transit time. The design of a heterojunction bipolar transistor for minimum base trait- 

sit time involves a, trade-off between these competing factors. We examine the infiueUee 

of varying aluminum fraction and bias on base transport time. The results demonstrate 

that a moderately doped emitter with high aluminum mole fraction produces the shor

test base transit time.



2.1 Introduction

Heterojunction bipolar transistors (HBT’s) can broadly be classified into two types 

according to the nature of emitter-base junction: I) graded junction HBT’s with compo- 

sitionally graded emitter-base heterojunctions, aid 2) abrupt junction HBT’s with 

abrupt emitter-base heterojunctions. Since grading of the emitter-base heterojunction 

increases electron injection, compositional grading is commonly used to ensure high 

common emitter current gain [1-3] and a lower turn-on voltage. On the other hand, the

abrupt emitter-base heterojunction provides a launching ramp for electrons injected 

into the base and is therefore expected to improve both the base transit time [4] and

base transport factor [5]. Recent experimental [5] and theoretical studies [6] have shown 

that abrupt junction HBT’s can display higher common emitter current gains (/?) than 

graded-junction HBT’s when the current gain is limited by the base transport factor 

(o!t) instead of emitter injection efficiency ■('y) [7]. To ensure high common emitter 

current gain arid, high speed operation, the design of the emitter and. base of an abrupt 

junction HBT should be optimized to reduce the average base transit time.

For a uniform base HBT, the base transit time primarily depends on the average 

energy of carriers injected into the base and on the type of scattering carriers undergo 

during their passage through the base. A higher average injected energy tends to 

reduce the base transit time, whereas a higher number of momentum randomizing 

scattering events ( such as intervalley scattering) increases the base transit time [8]. 

The type and frequency of scattering events that minority carriers undergo during their 

transit through the base depends on the nature of the injected electron flux and on the 

structure of the base. For example, upper valley electrons present in the injected flux 

will increase the number of intervalley scattering events, and, in a highly doped base, 

plasmon scattering will dominate [9]. Issues concerning the design of the base and its 

impact on the base transit time, have been studied by previous researchers [9-10]. In



this paper we focus on the influence of injected electron flux on the base transit time for

IlBT s with compositionally abrupt emitter-base junctions.

This paper was motivated by the recent work of Ramberg et. al. [11] who sug

gested that the base transit time could be improved by filtering out upper valley elec

trons before they are injected into the base. Previous Monte Carlo studies have demon

strated that a small percentage of upper valley electrons in the injected flux can 

significantly degrade the base transit time [8], The filtering effect was to be achieved by 

properly designing the abrupt emitter-base heterojunction in order to enhance tunneling 

of I—Valley electrons through the conduction band spike. Since the P-Valley electrons 

are lighter than those in the L or X valley, they have a higher probability of quantum  

mechanically tunneling through the conduction band spike and, as a result, the electron

flux incident on the base will be rich in r  valley electrons.

We find that the valley filtering is due two separate mechanisms. Firstly,, the 

different band, offsets for the r, X and L valleys produce different barrier heights for 

electrons in these valleys which naturally lead to a filtering effect. Consider the energy 

band diagram for a typical emitter-base heterojunction as displayed in Fig. 2.1(a) (a 

conduction band discontinuity of 65% was assumed for the F valley [12]). This figure 

shows that the barrier for F-valley electrons, Vbr is much smaller than that for the X- 

valley, Vbx. The flux of electrons injected into the base should be correspondingly rich 

in T-valley electrons. The strong tunneling of F-valley electrons further reduces their

effective barrier height and additionally improves the filtering effect.

The second mechanism for valley filtering is illustrated by the energy band 

diagram for F and L valleys which is displayed in Fig. 2.1(b). The barrier heights for T- 

and L- valley electrons are nearly equal (Vbr~VbL), but the strong tunneling of the light 

F-valley electrons reduces the effective barrier for F-valley electrons and produces a 

filtering effect. This is effective mass filtering as described by Ramberg et al. [11]. We



Figure 2.1(a) Tlie band diagrams of F and X valley, of an abrupt AlGaAs/GaAs Np 

heteroj unction. Tlie emitter doping is 1.0xl018/cm3. Bias is fixed at 

1.2 V. The relevant material parameters are listed in Table 2.1.



Figure 2.1(b) The band diagrams of F and L valley, of an abrupt AlGaAs/GaAs Np 

heterojunction. The emitter doping is 1.0xl018/cm3. Bias is fixed at

1,2 Y. The relevant material parameters are listed in Table 2.1.



should stress that tunneling which enhances filtering in the first case and is responsible

for filtering in the second case, also loiyers the average energy of injected T-Valley elec

trons* The design of abrupt emitter-base heterojunction involves a trade-off; enhanced 

tunneling improves filtering but reduces the effectiveness of the heterojunction launch

ing ramp. The purpose of this paper is to examine this trade-off quantitatively.

The paper is organized into three sections. In the next section, the simulation tech

niques are described briefly, In section three, we describe and discuss the results of 

simulations of various HBT structures. Finally, the paper ends by summarizing the 

trade-offs involved in designing the emitter-base junction to minimize base transit time.

2,2 The Sim ulation Approach

To estimate the base transit time, carrier injection across the emitter-base 

heterointerface has to be considered in series with the transport of injected carriers 

across the quasi-neutral base. Electron transport across the heterointerface determines 

both the energy distribution of carriers injected into the base and the composition of 

the electron flux (the percentage of electrons in different valleys). We measure the 

extent of valley filtering in terms of the flux ratio which is defined as the ratio of the T- 

valley electron flux to the sum of the electron fluxes in T, L and X valleys. Once the 

energy distribution of the injected electron flux is found, the transport of those carriers 

through the quasi-neutral base is studied to estimate the average base transit time.

The electron injection (from T, L and X valleys of the AlGaAs emitter to the 

respective T, L and X valleys of the GaAs base) across the abrupt emitter-base hetero- 

junction is treated quantum mechanically by numerically solving Schroedinger’s equa

tion across the heterojunction as described in [6]. It was necessary to treat all three val

leys because high mole fraction AlxGa1̂ A s emitters contain significant proportion of F, 

L and X-valley electrons. The energy band profile for each of the three valleys was first



obtained from a conventional numerical simulation program [13]. Across the hetero

junction, a I-valley discontinuity of 65% of the 1-valley bandgap difference was 

assumed [12]. From the resulting conduction band profiles, such as those showed in 

Figs. 2.1(a) and 2.1(b), we then computed electron current injected into the base by 

assuming that the emitter contact launched electron waves which propagated without 

scattering through the structure. Since the probability of electron tunneling from one 

valley to a different valley across a heterojunction is small [14-15], we treated the pro

cess of electron injection across the heterojunction separately for F, L and X valleys. 

The significant assumption underlying the numerical model is the neglect of scattering 

(scattering is neglected only when the electron injection across the HJ is considered) 

which is not expected to comprise the accuracy as long as the distance over which the 

potential varies by 2kBT is greater than a mean free path [16].

After computing the electron flux injected into the base, a standard ensemble 

Monte Carlo program [17-18] was used to study the steady-state transport of electrons 

through the base. The initial energy of the electrons was chosen from the quantum 

mechanically computed energy distribution of the injected flux. The electron trajec- 

tories were then followed as they traversed the base under the influence of the scattering 

potentials. The first Monte Carlo simulations treating the difficult problem of minority 

carrier electron scattering in p+ GaAs were recently reported, but a number of uncer

tainties remain [19]. For our work, we employed a simple treatment of electron-hole 

scattering which has previously been used for Monte Carlo simulations of HBT’s [9].

This approach should serve well to illustrate the nature of the design trade-offs 

involved.

Scattering of electrons by hole plasmons was calculated after [20] with a cut-off 

wave vector taken to be the half of inverse of Debye length [21). Overlap factors and 

corrections due to non-parabolicity were taken into account appropriately. We
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neglected the coupling between hole plasmons and polar optical phonons which should 

be considered when the plasmon frequency and longitudinal optical phonon frequency 

are close. For the doping We chose to simulate, the heavy hole plasmon frequency was 

higher than the optical phonon frequency. So we expect that corrections to the scatter

ing rate due to plasmon-phonon coupling will not significantly change our conclusions

[Q]- ' . Y -  v

Due to high density of holes in the base, polar optical phonon (POP) scattering 

should be screened [9]. Figure 2.2 compares the screened POP scattering rate and the 

plasmon scattering rate. It is clear that plasmon scattering is the dominant mechanism

of inelastic scattering for the minority electrons in the p-type base. Scattering of minor

ity electrons by heavy holes was also taken into account by treating the heavy holes 

fixed in position like ionized impurities [22]. Strictly speaking electron-hole scattering is 

not purely elastic in nature and energy transfer from electrons to the hole system due to 

intra and inter-valence-band transitions should be taken into account [19,23]. However 

the rigorous treatment of electron hole scattering is complicated to implement in Monte 

Carlo simulations and is by itself a subject of some very recent studies [19]. In our case, 

the approximate treatment is not expected to change the conclusions of this paper since 

the primary mechanism of energy loss of minority electrons is through plasmon emis

sion. -/V : ■



Scattering Rate (/s)

o.ooo 0.250

Energy (eV)

Figure 2.2 Curve A: Plasmon scattering rate versus electron energy in the GaAs

y ; ;-'v base* Curv"e B: Unscreened Polar Optical Phonon scattering rate 

versus electron energy in the GaAs base. Curve C: Screened Polar 

^Optical Phonon scattering rate versus electron energy in the GaAs 

base. The base is doped at 1.0xl019/cm3.
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2.3 Simulation Results and Discussions

Details of the HBT structures that were simulated are displayed in Table 2.1. The 

simulations were made with emitter dopings of l.OxlO17/cm3 and 1.0xl018/cm3 at an 

emitter-base bias of 1.2 V. We begin by discussing the injection of electrons across the 

emitter-base heterojunction.

LAYER THICKNESS DOPING

A v cm

Emitter N AlsgGagsAs 2000

Base p GaAs 500 l.OxlO19

Collector n GaAs 3000 l.OxlO17

Table 2.1 The details of the HBT structure used in the simulation.

Figures 2.3(a) and 2.3(b) are plots of the flux of F-valley electrons injected into the 

base versus energy of the electrons for two different emitter dopings. The height of the 

conduction band spike AEc is 0.283 eV. Figures 2.3(a) and 2.3(b) show that tunneling 

is the dominant mechanism of carrier transport in the two HBT structures we con

sidered, since the average energy of the injected carriers is substantially lower than the 

height of the conduction band spike, AEc. For the highly doped emitter, the average 

energy of the injected F-valley electrons is about 0.1 eV, whereas for the lightly doped
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Injected Flux (Arb. Units) (x IO1)
4.000

3.000 -

2.000 -

AE„r = 0.283eV

1.000 -

0.000
0.000 0.125 0.250 0.375

Incident Energy (eV)

Figure 2.3(a) Injected Flux into the base from the emitter versus incident energy 

with emitter doped at 1.0xl018/cm3.
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0.283eV

0.375

0.2500.000
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Figure 2.3(b) Injected Flux into the base from the emitter versus incident energy 

with emitter doped at 1.0xl017/cm3.



emitter it is about 0.25 eV. This difference can be explained by the fact that for the

highly doped Emitter, the width of the band spike is narrower which enhances tunneling 

and reduces the average energy of the injected flux. On the other hand, the enhanced 

tunneling produces an injected flux that is richer in T-valley electrons which is beneficial 

for base transport.

Figure 2.4(a) displays the variation of flux ratio with aluminum mole fraction in 

AlxGa1 j_yAs: emitter. The number of upper valley electrons increases with the mole frac

tion and reduces the flux ratio in the emitter. Because of increased -Vallejr-filtering) .how-', 

everj the flux injected into the base is rich in F-valley electrons; the injected flux ratio is 

nearly unity and is almost independent of the emitter composition, A high mole frac

tion in the emitter is beneficial because it increases the average energy of injection as 

displayed in Fig. 2.4(b).

Next We examine how the emitter-base bias affects the valley filtering. AhThcrease 

in the emitter base bias reduces the tunneling current through the conduction band 

spike because the spike widens with bias. The reduced tunneling current for the F- 

valley electrons degrades the flux ratio after the junction. In Figs. 2.5(a) and 2.5(b), we 

plot the flux ratio versus emitter-base bias for two different emitter dopings. For a 

highly doped emitter, the decrease in the flux ratio is negligible with bias, but for a 

lightly doped emitter the proportion of upper valley electron flux is found to increase 

considerably with bias. The difference in the behavior with bias can be explained by 

examining the Fig. 2.5(c), which shows the ratio of the thermionic emission component 

to the total current for the two HBT’s. For the lightly doped emitter, the tunneling 

current, which provides the filtering effect, decreases more rapidly with bias which

decreases t%  population of T-valley electrons at high bias.

To illustrate how upper valley electrons increase the base transit time, we con

ducted the following Monte Carlo simulation. First, the electron flux from an emitter
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Figure 2.4(a)
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A

— ------— —r ----- ----------- i — r 1 : ! I
0.000 0.125 0.250 0.375 0.500

Aluminum Mole Fraction

Dependence of flux ratio on the aluminum mole fraction of the AlGaAs 

emitter. A: Injected flux; B: Bulk emitter flux. The GaAs base is 

doped p-type at 1.0xl019/cm3. The AlGaAs emitter is doped n-type at 

1.0xl018/cm3.



Average Eiiergy (meV) (x IO2)

2.700

0.000
0.125 0.250 0.500

Aluminum Mole Fraction

Figure 2.4(b) A: AEcr versus aluminum mole fraction in the emitter. B: Dependence 

of average energy of the electrons injected into the base from the 

emitter on the aluminum mole fraction of the emitter. GaAs base is 

doped p-type at 1.0xl019/cm3. The AlGaAs emitter is doped n-type at 

1.0xl018/cm3.
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Flux Ratio A

Figure 2.5(a) Dependence of flux ratio on the emitter base bias for an aluminum 

mole fraction of 35% with an emitter doping of 1.0xl018/cm3. A: 

Injected flux, B: Bulk emitter flux.
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Figure 2.5(b) Depeadence of flux ratio on the emitter base bias for an aluminum 

mole fraction of 35% with an emitter doping of I.Ox 1017/cm3. A:

Injected flux, B: Bulk emitter flux.
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Figure 2.5(c) The proportion of thermionic emission current in the total current 

across the emitter base junction for A: an emitter doping of 

1.0xl018/cm3, B: an emitter doping of 1.0xl017/cm3.
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SI.

No.

i INjEGTION 

. ENERGY

EMITTER

DOPING

FILTER

RATIO

TRANSIT TIME INT. VALLEY 

SCATTERING

■ uieY cm-3 a  ps V i M ;  A

i 99.0 I.OxlO18 0.99 0.36 0.32

; 2 . 99.0 I.OxlO18 0.76 0.66 8.47

3
■. ' ' '

250 I.OxlO17
.. .

0.86
■■ > ' . ' ,.

0.28 "vv :': 6.67

Table 2.2 The details of the simulation of carrier transport in the base. The
width of the p-type base is 500A and doping 1.0xl019/cm~3. The 
Aluminum fraction of the emitter is 35%. The emitter-base bias is 1.2 
V. Injection energy implies average energy of the injected flux from 

■ the emitter to the base.

doped at 1.0xl018/cm 3 was injected into a 500A wide base, doped 1.0xl019/cm~3. The 

flux distribution Was that found by the quantum mechanical treatment described ear- 

lier. Next, we injected an unfiltered electron flux (the proportion of upper valley elec

trons in the flux was exactly same as it was in the emitter contact) from an energy ramp 

whose height was equal to the average longitudinal energy of the quantum mechanically 

computed flux. The results of these simulations are presented in Table 2.2, in row I 

and 2. The base transit time for the unfiltered flux was found to be twice that of 

filtered flux. The increase in the base transit time is mainly due to an increase in inter- 

valley scattering rate (from 0.32% in case of filtered flux to 8.47% in case of unfiltered
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flux) which randomizes the momentum and reduces the average velocity of the carriers 

passing through the base. It should be understood that the above example doesn t 

represent any physical situation, but it clearly displays the influence of effective mass 

filtering on the base transit time.

Next, we examined carrier transport across the same 500A wide base but the car

riers were injected from emitters with two different dopings, 1.0x10 /cm and 

1.0xl017/cm""3 at an emitter-base bias of 1.2V. The results are presented in Table 2.2, 

row I and row 3 respectively. The base transit time for the lightly doped emitter is 

shorter than for the highly doped emitter case. Enhanced tunneling in the heavily 

doped emitter provides better filtering but at the same time it reduces the average 

energy of injected carriers which increases the base transit time. These results demon- 

strate that the reduction in the base transit time achieved due to better effective mass 

filtering should be carefully weighed against the increase in base transit time due to the 

reduced energy of injected flux.

2.4 Conclusions

The conclusions of this study can be summarized in two respects, firstly the valley 

filtering across the heterojunction and second its influence on the base transit time. 

This study showed that due to different barrier heights for T, L and X-valley electrons, 

the filtering of injected flux at the emitter-base heterojunctions occurs even in the 

absence of tunneling. Tunneling additionally improves the filtering effect by allowing 

1-valley electrons to strongly tunnel to the base. Tunneling, however, reduces the aver

age energy of the injected flux. Our study also showed that the filtering of upper valley 

electrons is almost independent of the mole fraction of aluminum in the emitter.

The design of the emitter-base junction to minimize the base transit time involves 

a compromise; a junction designed to enhance tunneling of carriers will increase the
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effective mass filtering which is beneficial, but M l also lower the average energy of the 

injected flux which reduces the effectiveness of the heterojunction launching ramp. The 

best way to increase the average energy of the filtered electron flux is to use a higher 

aluminum mole fraction in the emitter, Our study showed that a moderately doped 

emitter (~1017) with high aluminum mole fraction (in the range of 30% to 40%) would 

have the shortest base transit time. Our simulations also established that a highly 

doped emitter provides the best filtering effect but its base transit time is longer com

pared to the lightly doped case due to the lowering of the average energy of the injected 

flux. The reduced emitter-base junction capacitance is another advantage for the 

lightly-doped emitter.
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Chapter 3

A N  EFFICIENT METHOD FOR  

THE ANALYSIS OF ELECTRON WAVEGUIDES

Aa efficient boundary element method for obtaining the scattering parameters of 

any general two dimensional electron waveguide is discussed. This method has a 

computational cost only proportional to L̂ , where L is the perinietef of the device to be 

modeled.

3.1 Introduction

Recently) devices have been built for the study of ballistic electron tralisport in 

which the elastic scattering from the geometry of the devices dominates that of the 

impurities [1,2]. These devices are made up of a network of guiding channels [1,3,4,5]. 

Such devices are expected to become more important in the future. This paper presents 

a set of powerful tools for analyzing electron waveguide networks in two dimensions. 

The extension to three dimensions is relatively straightforward.

The quantity of interest to device engineers and others is the conductance. 

Landauer [6] modeled one dimensional electron transport using a region of static 

potential sandwiched in between two reservoirs or contacts. The contacts are assumed 

to be perfectly absorbing so that any electron leaving a contact is either transmitted 

into the other contact or reflected back into the initial contact by the static potential in



between. The probabilities of transmission and reflection are calculated from 

Schrbdinger’s equation for the static potential in the middle. Each reservoir is assumed 

to be in local thermodynamic equilibrium. The dissipation of electronic energy expected 

in all resistors occurs in the contacts, not in between, since the potential between the 

contacts is static, allowing only elastic scattering in that region. Several generalizations 

to Landaner’s original formula have been suggested for multimoded systems [7,8]. One

of them, the two probe current voltage relation at finite temperature and applied bias is

I =  ^ J d E  Jt(B)- f ( B + q V p ) ]  £  I ^ jj(E) I* (3-1)

where q is the electronic charge, E is the electronic energy, h is Planck’s constant, f(E) 

is the Fernii-Dirac distribution function, and Vj) is the applied bias (the difference in 

chemical potentials between the two contacts); the sum is over transverse modes on the 

left and right, /? and ot respectively [9,10]. The factor of two arises from-the electron’s 

spin degeneracy. The Summand, | t^ (E ) | 2, is the probability that an electron in mode 

j3 on the left elastically scatters across-the statin potential into mode a  on the right. 

The difference, Jf(E) — f(E +  qVD)], arises because the total current is the difference 

between the current entering the device from the left contact and the current entering 

the device form the right contact. Experiments on electron waveguide devices are 

usually conducted with small drain voltages, VD, to minimize electron-electron 

scattering and at low temperatures to minimize electron-phonon scattering because both 

of these are inelastic events and cause the electron to lose its phase coherence. Under 

these conditions Eq. (3.1) may be simplified; the difference, 

Jf(E) — f(E +  qVD)] =  —qYD Mfd E, and at zero temperature M fd E  =  —<$(E—Ep) so that

<3 =  ^  = E I w (Ef) I 2 (3.2)
VD h «,/* .



Eq. (3̂ 2) highlights the importance of the scattering parameters, t,* [11] in the

calculation of the conductance.

Several methods have been employed to obtain the scattering parameters; they 

include; the transfer matrix method [12], the recursive Green’s function method [13];, and

abrupt junction methods [14,15]. The recursive Green’s function method uses a tight 

binding technique that also allows for on site disorder, but has a computational cost 

proportional to L , where L is the length/width of the device to be modeled. It has been 

a very popular method since its introduction in 1981. The transfer matrix method 

provides for disorder and is very efficient, having a computational cost proportional to 

L3J unfortunately, this method is numerically singular for all but small L. Another 

drawback is that all input and output waveguides must be in the same direction; for 

example, with this method it is not possible to obtain the scattering matrix of a 90 °

waveguide bend. Used in conjunction with Redheffer’s rule for cascading scattering 

matrices this method can include disorder [16], has a cost proportional to L3, and lacks 

the singularity problems of the transfer technique; unfortunately the restrictions on the

direction of the input and output waveguides remain.

In Sections 3.2 and 3.3 the details of a very powerful and practical boundary 

element method are presented. It can be used for both eigenvalue problems and 

scattering problems. The method is numerically efficient; having a computational cost 

proportional to L2 without disorder and proportional to L3 with disorder (when used in 

conjunction with Redheffer’s rule). There are no restrictions on the geometry of the 

junction to be solved with this method. In Section 3.4 a newly proposed quantum 

interference device is analyzed using the tools described in the previous sections (Fig. 

3.3). This device shows a large conductance modulation.
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3.2 The Boundary Elem ent M ethod

3.2.1 General M ethod

Shown in Fig. 3.1 is a general junction. The boundary of this junction is described, 

with a local coordinate system; T  is directed in a counter clockwise sense along the 

boundary and n is directed outward, perpendicular to T . The set of points on the 

boundary coincident with the ports are labeled P; the rest of the boundary points are 

labeled P.

We match the wave function and its normal derivative across the port boundaries,

P. On the remaining part of the boundary, P, we apply boundary conditions to the 

wave function and its normal derivative; Dirichlet boundary conditions [17] are most 

commonly used here.

We use a single particle, single band, effective mass Hamiltonian. In the ports the 

potential is only a function of f  and the Hamiltonian is separable

Hports =  Hn +  Hp

where 1: ' - V  '

' -n 2Hn =
Pn

*
2m 2m* Sn2

(3.3)

(3.4)

and

H r  = 2m*
+ V(P) -h2 a2

2m* aP
+ V(P) (3.5)

There the wave function may be written as

I V 1 S „  1 Xtt(P)Clko11

W + v r
(3.6)

where



Figure 3.1 A general semiconductor waveguide junction
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HfXa(P) = E a X n (Q) (3.7)

and

k2i,2

2 mf + £ « (S.8)

The X0(P) are eigenmodes of the transverse Hamilteniaa Hp. The term e lk̂ n

represents a wave incident on the boundary in mode ft. The terms Sa X̂a(J) )e 

represent waves scattered from the incident wave in mode 8  into out going waves in 

modes a; the factors I j 1S fk 3 and l / \ / k ^  are included to make each mode carry the 

same current. ^(j?,n) is the total wave function resulting from a wave incident on the 

junction in mode /?.

InsidetheboundarytheHamiltonianis

-h 2V 2 X':,
Hia =  +  V(x,y) =  - - T x  +  V(x,y)

2m 2m
(3.9)

In order to apply the boundary element method, eigenfunctions, (J)11, of the Hamiltonian, 

Hj11, must be previously known, and a linear combination of them must be the solution, 

■vj/g,Inside and on the boundary, due to an incident wave from the outside in mode ,8

'fyfoy) =  E  cm/j <Mx>y)
;■ V’’ :-'v . !<■ :?

(3.10)

Only knowledge of <J>hl and (.UlJ d n  on the boundary, P U P, is required; this makes it 

convenient to map (x,y) to (j? ,n). The total wave function and its normal derivative, on 

the boundary, due to a wave incident on P in mode 0, may be expressed in terms of the 

eigenfunctions of Hin, ^ l.

^ ( M n= 0 =  £  cKfi 0 1 & )  In=O
(3.11)
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sE E  cIifi
<%(f,n)

n=o „ dn n=0 (3.12)

<9̂~~f$
In the ports ^  and ^  are continuous along n =  0 so that

I
T T =rx^ )  +  E  K p - = W )  =  E cM  >°) • for 0 e  P (3.13) 
V icZ? a V^a M

and

-iV'k-'.O) H S  iV k A ^ ;)  = S  crf
1 1 = 0

for j? G(RM)

Our objective is to obtain the scattering parameters, Sft.̂ , so we eliminate c„s in the

next five steps [18]. Multiply Eq. (3.11) by -^  and then integrate along P to obtain

M i i t d l = ;s  ^-■ p /i- p

Multiply Eq. (3.12) by - ^ 1 and then integrate along P to obtain

-JU
<9̂ ' f .
dn -S JV- “<1{

/z p V11

dd
Multiply Eq. (3.1:3) by — -  and then integrate along P to obtain

(3.15)

(3.16)

/ ( “ i - ' . .  + S S«#~ ;)Q-
_1_

PvV k^ V> P

Multiply Eq. (3.14) by —</>7 and integrate along P to obtain

/ ( i V i ^ ^  - E  i \ / iE s ^ x a)^ d ( r
P Of /i P

(3.17)

(3.18)

Now add (3.15),- (3.16), (3.17) and (3.18). The result is
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/(%
P

# 7; m )d0 +

: i V; ; dd>~

p Vk/? « Vk« ■
+  </>7OVV*/? -  E  A / P w X a)}d0

S  cM/? ' 01
: v; ^ S 10 (3.19)

dcp d(j)
The integral, <$(<£,,— "̂  — </> — ^)dP, is shown to vanish in the appendix. Eq. (3.19) is

y ■■ • Sn . ' an -

the set of integral equations we solve; it includes one equation for each value of T* We 

wish to cast it in the form of a matrix equation for the scattering parameters, Sft̂ , and 

the unknown linear combination of ^  and dtypfdn on P . Ultimately we will solve the 

matrix equation corresponding to Eq. (3.19) on the computer. Rearranging terms leads

to ■ ■■■'. " •'

£ Sa/? J V(
V ka

I S^7 
Sn

: 84

p

V k V -M f I J V K
P.'

-J U - 1 . <V7 
Sn +  iV^s^-/) dP (3.20)

At this point We have done two steps in the ports which we have not done along the 

rest of the boundary. One step was applying the boundary conditions (Eqs. (13-14)). 

We will postpone this step in P for as long as possible to make it as easy as we can to 

apply any type of boundary condition desired. The other step was expanding the wave 

function in terms of the normal modes of the waveguides (Eq. (3.5)). Because of this, 

the integrals over P in Eq. (3.20) involve only known functions, which allows us to write 

Eq. (3.20) in the partial matrix form
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d&t
(ZL +  z o;)S +  -  Zo (3.21)

where

(ZL)7a = I - A V K x aM t (3.22)

(Zo)7a — J
p V k

(S)a^ = S Oip

Really we wish to express Eq. (3.20) completely as a matrix equation. We accomplish

■ - '.V ” ■ %  '. ■. / v .
this by expanding ^ (0 ,0 ) and _ in a complete set which spans P , §(0).,

^ ( W = E % f j ( 0 j  for 0 GP 
j '

(3.23)

fjty
n=0 S W ( J )  for 0 GP (3.24)

Using these expansions in Eq. (3.20) we obtain the equations for Sa/), Ajj9 and Bjj9,

;+ £  M i i - z r d« -  P j J f i M 9
. .1 ■ ; ’■ p uu : . p '

I  x K ( +  1 V m j  m  ; '(3-25)

and in matrix form



where

(Zt  +  Z0)S +  MA +  N B =  Zt  -  Z0

-v +  -

(3.26)

(3.27)

■' . . P ; V ',.'.V.. '■ • V \  . •: ■' - .. : .

(A)j/? =  Aj/? ,.-/..V-

0 ) j /? = %  ..

The next step is to apply the boundary conditions of the specific junction of interest to 

Eq. (3.26); below we examine several special cases.

3.2.2 All P ort Junctions

If the boundary consists entirely of ports (P has measure zero) then M =  O and 

N  =  0. In this case the solution for the scattering matrix has a form familiar from 

transmission line theory

S1=  (Zt +  Z0) \ Z L — Z0) (3.28)

3.2.3 Np Port Junctions

If the boundary has no ports so that Zt  =  0 and Z0- =  O, then Eq. (3.26) becomes

' I1 ]̂;  ̂ -V ' .. / . +

MA +  NB =  0 - (3.29)

Boundary conditions must be applied to Eq. (3.29). The most commonly used one is 

the Dirichlet boundary condition, which corresponds to hard walls caused by an infinite
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potential barrier just outside the boundary. With this boundary condition A  =  O and 

the eigenvalue equation (3.29) is reduced to

det[Bj (3.30)

th e  application of the boundary element method with no ports is discussed in Ref, 20.

3.2.4 The General Junction, an Analytical Example

As it stands, Eq. (3.26) allows the solution of a more general set of scattering 

problems where only part of the boundary corresponds to ports. We now provide an 

illustrative analytical example of this, applying Eq. (3.26) to a blocked waveguide (Fig. 

3.2). The results of this example, though quite obvious from a much simpler analysis,

are used in Section 4. The modal functions in the input port are

1/2
M jI

_2_

W
sin(-^L) 

1 W ; (3.31)

We choose for 4>7 the eigenfunctions corresponding to V(x,y) =  0 which already satisfy 

the boundary conditions, ^  =  0, along the top and bottom boundaries of the 

waveguide,

<̂ 7(x ,y) =  X7(y) e :hlklX (3.32)

This is just one of a number of possible choices for [21]. Since the boundary 

conditions along the top and bottom boundaries are already met, all integrals over them 

vanish and we label the right end as P (Fig. 3.2) where we demand that vFy =  0. We 

expand (Wy/dii in P as

■ d %  ,
(3.33)

Usingtheidentity



Figure 3.2 A blocked waveguide port.
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W

I
o . v (3.34)

along with Eqs. (3.22) and (3.27) we obtain

; :• , == iy/K^a'p ■

V : =  - * ±n%  :i: ’

Eq. (3.26) m a y  b e  W ritten  in c o m p o s ite  m a tr ix  fo r m  as

(3.35)

2 i V k 1XI„ o
0  _ p - ifc7%

; e S r
(3.36)

The first row of Eq. (3.36) comes from the forward traveling waves of Eq. (3.28) and the 

second row from the backward traveling waves of Eq. (3.28). The solution for the 

scattering matrix is Sft̂  =  —e “ Sa  ̂ as could be expected. Xa are normal modes of the 

waveguide, and so are uncoupled; each accumulates a phase shift of elk“L on the way 

down, suffers a reflection of - I  (so that the wave function is zero at the end, P) and 

then accumulates another phase shift of e âj on the way back. This simple example 

illustrates the basic method but not the power of the boundary element technique. In 

the next two sections We discuss points relating to a numerical solution of Eq. (3.26) and 

a non-trivial example.

3.3 Num efieal Considerations

3.3.1 Truncation Approxim ation

The real power of Eq. (3.26) lies in its approximate numerical solution on a digital 

computer. With the proper choice of eigenfunctions, (f>v  and expansion functions,



the series in Eq. (3,26) may be truncated to obtain an approximate equation for the 

most important scattering parameters.

' J max : ‘ v

■■■■■ +  Z f o aS e t  +  S ((M )7iAjfj- ( N ) ljBtf)

=  (Zlj -  Z0).,̂  for 7 €  {l,2,...,7max} ■ (3-37)

Eq. (3.37) has the same matrix form given in Eq. (3.26). The scattering matrix, S, is 

square and «max/jmax ~  length(P)/length(P). The number of equations is 

7max >  (ttmax +  Jmax) [22]. Zl and Z0 have dimensions (^inax x amax); M and N  have 

dimensions (7max x jmax).

Care must be used in choosing the eigenfunctions, {e\. | 7= l>2>.">7max}* ^he 

solution inside the device is a superposition of them and so only those eigenfunctions 

that are not important parts of the solution inside the device may be left out, for 

instance, in the previous example both positive and negative going waves must be 

included since the boundary, P, couples these strongly, making them both important 

inside the device. For a general two dimensional geometry including the origin, with a 

constant potential* the cylindrical harmonics are a good choice.

4>y =  Jm(kr)cos(m# +  7 —) (3.38)

where

k2 =  ^ - ( E  -  V) (3.39)

and

m l l n t ( i ± i )

and Jm is the mth Bessel function of the first kind.
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Care must also be exercised when choosing the set (£j(p) J j= l ,2;,..,Jinax) since

m *
^ (f ,0 )  and n=0 are approximated by a linear combination of these (j?). Ref. 20

gives two practical examples of this.

3.3.2 INTetwbrk Concepts

As in any electrical network, the interconnection of elements is extremely 

important. Redhelfer’s star product rule [23], alluded to previously, yields the 

composite scattering matrix from the individual scattering matrices of the junctions 

making up the network and from the knowledge how they are connected.

Often network concepts may be used to reduce the number of computations 

necessary to solve a given problem. For example, if a parameter corresponding to one 

piece of a waveguide network is to be swept through a range of values, it is usually 

more efficient to break the network into two pieces, one which changes with the 

parameter being swept and another which is independent of the parameter. These two

pieces are then connected using Redheffer’s rule. The advantage stems from the fact 

that the junction which must be recalculated for each parameter value is smaller than 

the complete network. This concept was used in the next example.

It is quite practical to construct a library of scattering matrices for elemental 

junctions and use these to simulate very complex waveguide networks. If this is done it 

is important to remember that it is easy to seal a port off using Redheffer’s rule, but it

is difficult to open one up.

Another application of the network concept is to the problem of disorder. Since 

the boundary is the only place disorder may be introduced with the boundary element 

method, an artificial boundary is introduced which coincides with the disorder; the two 

scattering matrices corresponding to the two junctions resulting from this bisection are



each calculated, using the boundary element method and then connected using 

Redheffer’s rule [16].

3.4 A  Num erical Exam ple

The device of Fig. 3.3(a) is a unique kind of field effect transistor. The gate is not 

positioned between the source and the drain. It is a quantum interference transistor 

whose principle of operation is based on the wave interference between incident and 

reflected waves from the gate region. The conductance between the source and drain is 

modulated by changing the phase of the reflection coefficient at the gate.

3.4.1 MbdeI

This device was modeled using the boundary element method to calculate the 

scattering matrix of a four way splitter (Fig. 3.3(b)). Redheffer’s rule was used to block 

two of the ports by connecting them to scattering matrices calculated in the analytical 

example of Section 2, one with length, L, equal to zero and the other (the gate port)

with a variable length, L, to obtain the two port junction of Fig. 3.3(c).

The device is three dimensional; however, it is  uniform and single moded in  z, so 

the two dimensional analysis may be applied with only a few minor modifications. 

Because the device is uniform in z, the z dependence of the wave function is the same 

throughout the device. Because we assumed hard walls and single modedness 

everywhere, this dependence has the form s in (7 r z /W z). The confinement in the z 

dimension changes the dispersion relation, Eq. (3.8), to

*2v2

2m
a W
~  +  e« +  —2m

(3.40)

The energy, E, we used corresponds to the Fermi energy in either the source or the
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Figure 3.3 The quantum reflection field effect transistor.
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drain waveguide at zero temperature with a surface carrier density of GxlO11Cni 2. The 

width, Wz, was set at IOOA.

The eigenfunctions used were those of Eq. (3.38). Sinusoidal modal functions, Xa, 

similar to those in the previous example were used in the waveguide ports. Eight modes 

were used in each of the four ports (amax =  32) and 32 eigenfunctions, 4>v  were used 

inside (Tmax =  32). The matrix elements of Eq. (3.22) were computed by Rhomberg 

numerical integration.

The effective termination condition of the gate port was changed by varying the 

parameter, L. Another way of doing this would have been to change k2 (Eq. (3.39)) in 

the gate region with an applied gate voltage. Two different channel widths are 

presented; the first, Wx =  Wy =  IOOA, allows only one propagating mode in each of the 

guiding channels; the second, Wx =  Wy =  40()A, allows two propagating modes in each 

channel. Landauer’s two probe formula, Eq. (3.2), was used to calculate the 

conductance from source to drain for both channel widths.

Convergence is estimated to be better than three significant figures. Current was 

conserved to eight decimal places. As a check the source port was also sealed off using 

Redheffer’s rule, yielding the blocked waveguide previously discussed. The resulting 

scattering matrix was correct to five significant figures.

3.4.2 Results

Figure 3.4(a) shows the source to drain conductance, normalized to 2q2/h, in the 

smaller channel device. The fractional conductance modulation is 100 percent due to 

the single modedness of the channels. The waveform is not sinusoidal due to the 

interference among the many multiple reflections between the gate barrier and the 

splitter. If the drain port could be regarded as a small perturbation to the source gate
i
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Figure 3.4 (a) Normalized conductance of the device having Wx =  Wy =  IOOA versus

the parameter L; and (b) ray diagram showing the direction of the plane 

wave components making up the guided wave in the channels.
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waveguide, the waveform would be sinusoidal. The transconductance of the device is 

an oscillatory function of the gate voltage, Vg- The first peak is slightly different from 

the others because evanescent waves from the gate barrier are still significant for small

Figure 3.5(a) shows the normalized conductance along with the dominant terms 

making it up, 1122 | 2, 1121 | 2 and 1112 | 2. | tn  | 2 was found to be less than IO-3 for

all L in the range of interest. The fractional conductance modulation was found to be 

82 percent, which is less than that of the single moded structure as expected. An 

interesting and at first counter-intuitive result is the reduction in average conductance 

as the device channels are widened. The reason for this is that the tight confinement 

gives the electron a high momentum in the direction perpendicular to propagation, 

making it much easier to enter the drain channel. (Compare Fig. 3.4(b) and Fig. 

3.5(b).) Figure 3.5 also shows that higher order modes transmit best around the corner 

into the drain channel. This could be expected, again because these modes have more 

momentum in the direction perpendicular to propagation (Fig. 3.5(b)). There is a large 

spike in the transmission probability 1122 | 2 at L — 0; this is because the angle of the k2 

vector is 44 ° with respect to the propagation direction so that it is almost a perfect 

bounce into the drain channel with L =  0 (Fig. 3.5(b)). The conductance as a function 

of L in the larger channel device is structurally more complicated than in the single 

moded device. A js the number of propagating modes is increased there is a transition to 

the regime of universal conductance fluctuations which has received much attention in 

the literature [16,24,25,26].
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3.5 Summary

We have presented a very powerful and general set of tools for analysis of electron 

waveguide networks. This set of tools has been applied to a new device, and the results 

have been discussed.
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Appendix

Given the set of solutions, (J)rf, to the Helmholtz equation

V V 7 +  kV 7 =  Q (3. Al)

where

,2 =  2m_ 
S2

(E -  V(x,y)) (3A2)

we show

(3.A3)

Refer to Fig. 3.1. Since (J)fl and (J)rf satisfy the Helmholtz equation

0 - - ^ J d s

/ ( V 7V 1 -  4>,vV„)ds

. <V7 d<f>u
=  (3-A4)

The last equality is a consequence of Green’s theorem [27]. Eq. (3.A4) leads directly to 

Eq. (3.A3).
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INELASTIC SCATTERING IN QUANTUM  TRANSPO RT

Over the years, the semiclassical viewpoint has been the foundation for our under

standing of electron transport in solids. Within this framework, electrons are treated as 

charged particles obeying Newton’s laws of motion. For many phenomena, semiclassical 

descriptions based upon either drift-diffusion or the Boltzmann transport equation are 

sufficient. By neglecting the wave nature of matter, however, the semiclassical 

viewpoint fails miserably when confronted with tunneling [1], resonant tunneling [2], 

localization [3,4], and the quantum Hall effect [5], to name but a few examples of quan

tum phenomena. Since 1985, experiments on mesoscopic structures have revealed a 

wealth of new effects, including the Aharonov-Bohm effect [6], conductance fluctuations 

[7-9], and non-locality [10,11]. The term “mesoscopic” refers to structures whose overall 

dimensions are less than or about equal to the inelastic mean free path. In this regime, 

the electronic wave function remains coherent over large regions of a sample, and tran

sport processes are strongly influenced by the electron’s wave nature. As a result, these 

“quantum” devices bear a striking similarity to microwave networks [12-14]. In the 

absence of phase-breaking scattering, they can be described as such; however, some 

degree of scattering is present in any sample. It is the introduction of scattering into 

quantum transport theory that is the subject of this article. Our intent is to build upon



existing formalisms [15,16], which allow for phase-breaking processes to some degree, to 

provide a theory which accounts for distributed inelastic scattering.

The organization of this article is as follows. Section 4.1 provides an overview of 

existing transport theories, namely the Kubo formalism and the Landauer approach. In 

Section 4.2, we show how the Landauer formula can be extended to describe structures 

with distributed inelastic scattering. This is done by introducing a continuous distribu

tion of probes, connecting each point in a structure to a conceptual reservoir of carriers 

in which inelastic processes can occur. A physical interpretation, relating the results of 

this section to the parameters of Brownian motion, is presented in Section 4.3. In Sec

tion 4.4, we demonstrate our formalism in some simple cases, including a numerical 

analysis of localization. Finally, in Section 4.5 we discuss possible extensions of the for

malism to account for spatially correlated scattering processes, finite temperature and 

non-linear response.

4.1 Introduction

4.1.1 Linear Response Theory and the Kubo Formula

In the semiclassical picture, current is commonly expressed in terms of drift and

diffusion [17]: ’ ' ;

Ji =  CTjjEj +  eDjjVjn , (4.1.1)

where a summation convention is implied by the repeated indices. For small driving 

forces (linear response regime) the two terms can be combined, to express the current 

density in terms of the chemical potential /i,
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Ji — CTijVj/i . (4.1.2)

O f course, E q. (4 ,1 .2) has been derived from a viewpoint which neglects the electronic 

wave nature. In the absence of strong phase-breaking scattering, the electron wave



function can remain coherent oyer large regions of a sample. Consequently, the current 

density must be inherently non-local:

: ■' ' (4.1,3)

Coupled with the Kubo formula for the conductivity, this is the starting point for many 

linear response calculations [18-21].

The Kubo formula is a specific application of the more general fluctuation- 

dissipation theorem [22], which relates the equilibrium properties of a system to the 

nonequilibrium response. A familiar example is the Einstein relation, which expresses 

the diffusion coefficient D in terms of the mobility //, for a particle experiencing 

Brownian motion:

D =  /ikBT , (4.1.4)

where kg is the Boltzmann constant and T is the absolute temperature. In this case, 

diffusion is a measure of the fluctuations in a particle’s velocity.''' Mdbtfity' is' a measure 

of the dissipation of potential energy supplied by the driving force. Fluctuations and 

dissipation depend on the same physical properties of a system, and therefore the quan

tities are related. It is instructive to rewrite Eq. (4.1.4) as

A. =5 < u(°) »■ u(t)> ?
B x O

(4.1.5)

where u(t) is the velocity of the particle at time t, and the brackets <  ; >  represent the 

canonical correlation. (For a precise definition, see Ref. [22]. For our present purposes, 

it is sufficient to recognize this as an ensemble average.) Here, the diffusion has been 

written explicitly as an average of correlations in the velocity of a particle.

In the same manner, the conductivity of a sample can be expressed as an average 

of correlations between current operators. Assuming an excitation source with fre

quency OJ [23],
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<r(o/') J dt e-iwt <J(0) ; J(t)>  . (4.1.6)
a  kBT I

Tliis is the Kubo conductivity for a bulk medium, where CL is the volume of the sample. 

In practice, this expression is expanded in terms of the eigenmodes [15,24,25] or the 

Green functions [21,26] for a given Hamiltonian. We defer the details of such an expan

sion [15] to Appendix A. In the limit of zero temperature and dc measurements (w—K)),

[-M r) 0  - M rOlij

A (Ef — Ep +  .-V )(Ef — Ea )
(4.!.7)

2rj 2rj

where

2m
l .(r) e 4 (4.1.8)

Tj is the inelastic scattering time, and Ef is the equilibrium Fermi potential.

Evaluation of the conductivity has been approached both numerically [21,27] and 

analytically [7,20,28] using the Green function expansion. Given a particular 

configuration of impurities. Green functions can be calculated numerically from a recur

sive technique [21], used in conjunction with the Anderson tight-binding model [29]. By 

generating and evaluating a large number of random samples, statistics for various 

moments of conductance can be compiled. This .ensemble-averaging can also be per

formed analytically, if the conductivity is expanded in a diagrammatic series [7,20,28].

4.1.2 The Landauer Approach

In 1957, Landauer [30] approached the problem of determining conductance from a 

different perspective, that of a scattering problem. He proposed that current, rather 

than voltage, be fixed at the contacts. Near reflective obstacles, a pile-up of carriers 

would produce a charge imbalance, which would alter the electrostatic potential
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through Poisson s equation. The resulting potential drop could be used in conjunction 

with the known current to define a conductance. This is the essence of his argument, 

although the details are somewhat different. Specifically [31], he considered a stream of 

electrons incident upon an obstacle in one dimension. Reflection from that obstacle 

produces a gradient in the carrier concentration: Electron density is increased on one 

side of the obstacle (i.e., the incident side), and decreased on the other. From this den

sity gradient and the incident current, he defined a diffusion coefficient, which can be 

related to the conductance through the Einstein relation. The resulting conductance in 

one dimension is given by

2e2 T
h R (4.1.9)

where T and R are the transmission and reflection, coefficients, respectively. Although 

the argument was presented with a single obstacle in mind, there is no reason why the 

formula should change for a string of obstacles. Any such string can always be 

represented by its overall transmission T and reflection R, so that Eq. (4.1.9) is valid for 

more complicated structures. Because of its dependence on T and R, this conductance 

has the behavior one naively expects in two limits: For highly reflective samples, 

T —* 0 and conductance is zero; for samples with no reflection, R —► 0 and conductance 

is infinite.

It should be noted that the arguments leading to Eq. (4.1.9) are quite general, and 

can be applied to a variety of similar transport problems [32], For all subsequent dis

cussion, however, we choose to limit ourselves to the following physical picture. In the 

Landauer approach, as we refer to it, a device is composed of contacts (or reservoirs) 

separated by regions in which transport is purely elastic (see Fig. I). All inelastic (or 

phase-breaking) scattering is confined to the reservoirs, which are assumed to be “black 

bodies” with respect to electrons. All electrons which enter a reservoir are absorbed,
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only e l a s t i c  
scattering
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ordered leads

Figure 4.1 In the literature of mesoscopic structures, the Landauer approach assumes 

that all inelastic scattering processes are confined to contact reservoirs, 

between which transport is purely elastic.



and all electrons leaye with completely random phases. This is the popular conception 

[15,24-26,33] of the Landauer approach in the literature of mesoscopic devices.

Starting from the Kubo formula, Economou and Soukoulis [24] obtained a similar 

expression for the conductance in one dimension,

" =  V t  ' ■' (4-l*l°)

Although the two conductance formulas agree in the limit R —► I, the other limit, 

R —» 0, aroused controversy [34,35]. In the absence of reflection (R —► 0, T -H' I), the 

naive expectation is that conductance is infinite; Eq. (4.1.10), however, predicts a finite 

value. Because of this discrepancy, Eq. (4.1.10) was initially rejected, although recently 

a number of authors [15,36,37] (including Landauer himself) have explained the finite 

value of Conductance as a contact resistance. For the physical picture described above, 

the conductance measured is that of the entire structure-contacts included. Eyen if 

propagation is purely ballistic in the region between contacts, there is a resistance asso

ciated with the transition of electrons from the contacts into the device. In particular, 

Imry [37] viewed the contacts as three-dimensional containers of a Fermi gas, connected 

by a one-dimensional pipe. Although there may be no reflections within the pipe, there 

will still be a resistance measured between containers. This is simply the spreading 

resistance associated with the flow of carriers from the containers into the pipe.

From the preceding discussion, it would appear that Eqs. (4.1.9) and (4.1.10) are 

equally plausible. It is important to clarify the circumstances in which each is valid. In 

fact, each can be likened to a particular experimental measurement. For the original 

Landauer formula, Eq. (4.1.9), the voltage was determined by a density gradient in the 

immediate vicinity of the obstacle. This corresponds to a four-probe measurement, for 

which a current is maintained between two contacts, and the resulting voltage is meas

ured in a smaller region of the sample. From the previous discussion of contact
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resistance, however, it is clear that Eq. (4.1.10) depends on the voltage applied between 

the contacts. This corresponds to a two-probe measurement, for which both current 

and voltage are measured between the same set of contacts.

It is interesting to consider whether the physical assumptions used to derive Eq. 

(4.1.10) correspond to a two-terminal measurement. To simulate the effect of “black 

body” contacts in a linear response calculation, Economou and Soukoulis connected 

in f in ite ly  long, perfectly conducting leads onto either side of their device. Conditions of 

infinite extent and perfect conduction (T —* I) guarantee that any electron entering a 

lead is “absorbed.” Moreover, because the leads are perfect conductors, any voltage 

applied in the “contacts” appears only across the region of interest. Iff this case, the 

voltage used to define the conductance is the same as that applied to the entire sample, 

so that the measurement is indeed two-terminal.

Perhaps the clearest illustration of the four-probe assumptions buried in 

LandaUerff original arguments has been provided by Engquist and Anderson [35]. 

Objecting to the measurement of voltage in terminals supplying current, the authors 

introduced two separate voltage probes into their model, thereby analyzing a four-probe 

structure explicitly. The resulting conductance was the Landauer formula of Eq. 

(4.1.9). A critical assumption in their model, however, was that the voltage probes were 

weakly coupled t o th e  structure, so that the voltage could be measured without 

significantly disturbing the initial transport problem. In experiments on thin wires, this 

condition appears to be difficult to achieve [11-13]. Consequently, Eq. (4.1.10) and its 

generalizations are more appropriate for practical calculations [15].

In spite of the subtle differences between Eqs. (4.1.9) and (4.1.10), both are recog

nized in the literature as the “Landauer approach.” Because Eq. (4.1.10) appears to

better describe experiment, we restrict ourselves to this form, and describe its generali

zations. Two important generalizations have been proposed, to account for one



dimensional wires with finite width, and to allow for many contacts. Starting fro 

linear response theory, and following an approach similar to that of Economou and 

Soukoulis, Fisher and Lee [26] derived a conductance which included the interaction 

between transverse scattering channels:

(4.1.11)

where t is a matrix whose elements represent transmission from one transverse channel 

into another. Buttikef [33] extended the approach to include multiple contacts, by writ

ing the current in any lead f  as a function of all applied potentials:

~  {^ij/b — Tji^i} i (4.1.12)

where /tj is the chemical potential in contact i, and Tjj represents the transmissioh from 

lead y  4fttd; lead i. For leads with a finite width, Tij can be written as the sum of 

transmissions between all transverse channels,

ty} , ; (4.1.13)

where a; and ft index the transverse channels in leads i and j, respectively. In this 

manner, Eq. (4.1.11) can be viewed as a simplification of the multi-probe Landauer for

mula of Eq. (4.1.12), in the limit of two contacts.

The Landauer approach, embodied by Eqs. (4.1.11) and (4.1.12), represents an 

enormous simplification (if only conceptual) in the calculation of conductance. It relates 

conductance between any two contacts to the transmission coefficient, a quantity -\yhich 

can be obtained from random matrix theory [38,39] or transfer-matrix calculations 

[26,40,41]. Furthermore, it has been shown [15,26] that Eqs. (4.1.11) and (4.1.12) can be 

derived rigorously from linear response theory, putting the Landauer approach on equal 

footing with the Kubo formalism. With this foundation, we proceed in the following
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sections to incorporate the effects of distributed inelastic scattering, by further general

izing the Landauer formula.

4.2 A  Continuous-probe Landauer Formula

For a conventional analysis with the Landauer formula, all inelastic scattering 

within a device is confined to the contact regions (see Fig. 4.1). This greatly simplifies 

the problem, because transmission coefficients are easily calculated for the elastic propa

gation between contacts. For many phenomena (e.g., resonant tunneling, localization, 

etc.), it is important to include the effects of inelastic scattering in the region between 

contacts. To account for this, Buttiker [16,42] introduced an additional reservoir into 

his analysis, connected to his structure by a perfectly conducting probe. This reservoir, 

simply a conceptual tool, was introduced as a source of inelastic scattering. Carriers 

diverted into the probe would enter the reservoir and experience phase randomization; 

however, the probe carried no net current, so that the reservoir was not a “contact” in 

the physical sense. To demonstrate the model, Buttiker [42] analyzed resonant tunnel

ing in a double-barrier structure, with his conceptual reservoir connected to the quan

tum well region. By varying the fraction of carriers diverted into the reservoir, he was 

able to demonstrate a transition from coherent resonant tunneling to sequential tunnel

ing. In the following sections, we propose an extension of this idea-a uniform distribu

tion of probes leading to many such reservoirs-to simulate the effects of distributed ine

lastic scattering.



. -  66 -  ■.

4.2.1 Extension of the M ulti-probe Landauer Form ula

In the following analysis, we restrict ourselves to the linear response regime and 

zero temperature, to avoid unnecessary complications. These restrictions can be 

removed, however, as discussed in Section 4.5. In assuming zero temperature \ve have 

confined pur attention to electrons with a single energy Ef , residing on the surface of a 

Fermi sphere. For linear response, we have neglected the effects of carrier heating, so 

that all electrons remain at the energy Ep. From this standpoint, we reconsider the 

multi-probe Landauer formula discussed in the previous section:

. ■■■ )■ e2 - ■ ' V . ■ ■; ■
1I =  Y s  T̂ij ĵ “  Tji^^ * I (4.2.1)

Within any structure, we introduce a uniform distribution of probes; each probe con

nects an infinitesimal volume to a conceptual reservoir, in which inelastic processes can 

occur (see Fig. 4.2). For simplicity, all reservoirs are assumed to be independent of one 

another, so that inelastic scattering events are spatially uncorrelated. This restriction is 

unnecessary, however, and will be removed in Section 4.5. Keeping in mind this physi

cal picture, we extend Eq. (4.2.1) to account for the distribution of infinitesimal probes:

{T(^r0Mr0 ^  T( ^ rM r)} • (4.2.2)

Although this generalization is straightforward, it is of little value unless we can clarify 

the coupling of each probe to the device. Specifically, the fraction of electrons diverted 

into each probe must be defined. In Buttiker’s model, this was an adjustable parame

ter? however, we seek a definition based upon the physical properties of a system.

We assume that each probe is weakly coupled to the device, so that a large number 

of electrons introduced at any point would leak out—little by little—as they propagate 

through the device. Such a distribution can be described in terms of the Green function 

G(r,r') for the Schrddinger equation:
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Figure 4.2 Distributed inelastic scattering is represented by a continuous distribution 

of probes, linking each volume element dr to a conceptual reservoir of

carriers. '■ w



(4.2.3 a)
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Ef -  H + it
2r; G(r,r') =  6(r-r') ,

TT (p—eA)2 , , r/ ,
H =  2m* + e V (r) •' (4.2.3b)

where T i is the inelastic scattering time, which is assumed to be constant. The quantity 

j G(r,r') I 2 represents the probability that an electron, introduced at position r', will 

propagate to r before entering a probe and suffering an inelastic collision. In general, 

an imaginary potential (such as it/2Tj) causes the probability density to decay: 

V-J +  dp/dt =  p/ tj. In steady state, this divergence of current represents absorption 

of electrons by the weakly coupled reservoirs. Therefore, the current entering a probe is 

e n(r) /ri, where n(r) is the electron density at position r. Of course, the reservoirs 

inject an equal current (of phase-randomized electrons) back into the device, so that 

overall, carriers are conserved.

Intuitively, one would expect that the transmission probability T(r,r') should be 

proportional to the square of the propagator G(r,r'). What remains is to determine the 

constant of proportionality. For this, we return to the “continuous-probe” Landauer 

formula in Eq. (4.2.2), written in thp form of an integral equation:

1W  +  Y 'M r) / dr' T(r',r) =  -^ - /d r 'T(r,r')MrO (4.2.4)

The second term on the left-hand side represents the current injected back into the dev

ice from a reservoir at r. From the arguments presented above, this current is,

/dr' T(r',r) =  . (4.2.5)

If the electron density varies slowly with the chemical potential, we can approximate n 

as /i(<9n/ctyi); at low temperatures, dnjdji =  eN0, where N0 is the density of states.
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Substituting this into Eq. (4.2.5), we obtain the normalization condition for T (r',r),

Jdr' T(r',r) =  — V, (4.2.6)
■ V: ■ -  ; ri ; ' V ■ . .. : ' ■ ■■ ■

This, in turn, defines the constant of proportionality between T(r',r) and | G(r',r) | 2,

T(r',r) m
Jdr' I G(r',r) |

I G(r',r) I (4.2.7)

We can simplify this expression dramatically, by recognizing that for constant Ti, the 

Green function can be expanded in terms of an orthonormal set of basis functions [43],

G(r,r') = S
'4 (rW ( r')

Ef- Eft.+ih/2rj

From this definition, it is shown in Appendix 4.A2 that,

(4.2.8)

Jdr I G(r,r') | 2 =  27rriNo(r')^ , (4*2*9)

w h e r e  N 0(r ') is the density of states at the Fermi level, expressed as

/■ ■ //; No(r') =  E I W )  12 ^(Ep-Eft) • (4-2‘10)

Substituting Eq. (4.2.9) into Eq. (4.2.7), we obtain a simplified expression for the 

transmission probability. We present this result below, together with Eq. (4.2.4):

T(r,r') =  ^  I G(r’r') I 2 ’ (4.2.11a)
■ "■'■.■■■ V . T\ ; ; . VV ; / / / / '  : /  .

I(r) +  ^ r K r) N0(r) =  “ / dr' T(r,r') /z(r') . (4.2.11b)

In the regime of linear response and zero temperature, the above equations form 

the basis for our analysis. For a given Hamiltonian, the Green function defined by Eq. 

(4.2.3) can be calculated, and used to determine the transmission probability T(r,r')



according to Eq. (4.2.11a). After specifying soihe combination of l(i’) and /̂ (r) as a 

boundary conditiolij ^i(r) at all remaining points can be calculated from Eq (4,2.1 lb). 

As an example of the boundary condition, we suppose that some external source fixes 

the chemical potential /i(r) at several points rn, where n indexes the boundary positions. 

At all other points, the current I(r) in each probe must be zero, for conservation; of car

riers. Given ^  chemical potentials at all remaining positions chii be

determined by solving:

h N0(r)
IJ,(r) -  =  /dr' T(r,r') ^(r') for T^rn . (4.2.12)

The current at each position rn is non-zero, and can be calculated from the 

“continuous-probe” Landauer formula of Eq. (4.2.2). Alternatively, we might suppose 

that the current is fixed at positions rn, and that the chemical potentials ^(rn) must be 

determined. Both approaches are equivalent. For each bohhdary position rn, either 

I(rn) or K rn) is specified, and the remaining quantity must be determined, At all other 

positions, I(r) is zero, and /u(r) is calculated from Eq. (4.2.12).

4.2.2 Connection to  the Kubo Formalism

To supplement the arguments presented above, a rigorous justification of Eq. 

(4.2.11a) can be derived from the Kubo formula for the conductivity (see Ref. [15] and 

Appendix 4.A1):

a  Vp pA _  v-i [Jq:ft(r) 0  (rQlmii
"  ’ 27r3 (E F-E^+m/2ri)(Ep- E a-m/2Ti) " (4.2.13a)
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(4.2.13b)
2m

and (R) represents the direct product of vectors Ja  ̂ and JVa, to form a tensor indexed 

by m and n. This conductivity can be related to tbe conductance between leads i and j

by integrating over the cross sections of each lead [20],

Kj =  Jd(Si)m P ( S 1j)n OmnM ')  , 7 (4.2.14)

where the vector Si is normal to the cross section. We can identify the conductance ĝ  

with the transmission probability Tjj, by rewriting the multi-probe Landauer formula

(Eq. (4.2.1)), and by taking /Zi =  0 as a potential reference,

‘ ii =  S s i jMj =  T - s  n v ' i - v s  (4-2-15a)
V s v,-' i :.\.;V;. j h J V . . V V'. . . ^ V  V -

gij =  -^-Tij for . (4.2.15b)

Returning to the limit of a continuous distribution of probes, we combine Eqs. (4.2.13a), 

(4.2.14) and (4.2.15b), to obtain

T(r,r') =  JdS JdS'
ft [Ja.i?(r),^(r)3 [J/Zr,(r/),fl(rQ]
2tt %  (EF-E^+m/2ri)(EF- E a-m /2ri)

(4.2.16)

where the integrals with respect to S and S' are performed over the infinitesimal cross 

sections of probes at r and r', respectively. To show the vector nature of dS explicitly, 

we have written dS =  dS n, where n(r) is the unit normal for the cross section of the 

probe at r. Now, J*n integrated over the cross section of a probe defines the current 

entering that probe; this current was previously assumed to be e n(r)/rj. Hence, we can 

write Eq. (4.2.16) as
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Tfr rn =  ^  ^ ( ^ ( r ) ^ ( r ^ ( r Q
(4.2.17)

Recalling the expansion of the Green function in a complete set of basis functions (Eq. 

(4.2.8)), we arrive at our proof:

T(r,r') = I G(r,r') I 2 .
T\

(4.2.18)

4.2.3 D issipation o fP ow er

Irreversibility has been introduced into our model through the phase-randomizing 

action of the reservoirs. Because of this, our system is open, and capable of dissipating 

power. In the following discussion, we will obtain an expression for the conductance of 

a sample, based upon a calculation of dissipated power. As a prelude to this, we recon

sider our expression for current:

1M -  ■ |~/dr' (T(r,r,)M(r/) -  T(r',r)^(r)} 

We have changed nothing by writing this as

(4.2.19)

where

1M =  T-Zdr' {Ss(r,r')[Mr') -  K r)] + SA{r >r') lKr ') +  Kr)]} > (4.2.20a)

Ss(r,r') e
h

T(r,r') +  T(r',r)
(4.2.20b)

gA(r,r') T(r,r') -  T(r',r)
(4.2.20c)

From these equations we can show that the current I(r) is identically zero in equili

brium, as it must be. In equilibrium, the chemical potential fi is a constant, so that the

: I"
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first term in Eq. (4.2.20a) vanishes. The second term, however, requires more careful 

consideration. In the absence of a magnetic field, we have a detailed balance between 

points r and r',

T(r,r') =  T(r',r) —► gA(r>r') =  0 for B =  0 •

This can be understood by expanding | G(r,r') | 2 in a complete set of basis functions:

|G ( r , r ') |2 ■ E
a,p

4 ( r)V^(r0 ^ (r )^ (r ')
Ep- E a-Fih^ri J EP-E^-ih/2rj

(4.2.21)

In the absence of a magnetic field, the eigenstates can be chosen to be real, since and 

are degenerate [44]. Because of this, Eq. (4.2.21) is unaltered by an interchange of r

a n d  r', p r o y in g  t h a t  gA(r ,r ')  =  0  in  th is  ca se .

In the presence of a magnetic field, however, we do not have detailed balance, 

although any outflow from r' in one direction must be balanced by an inflow in another.

T o  sh o w  th is ,  w e  m u s t  e v a lu a te  th e  in te g r a l  o f  g ^ r , ^ ) ,

/d r  gA(r,rO =  ^ /dr ( I G(r,rO I 2 -  I G(r',r) I 2 . (4.2.22)
J 4 Trri A

We consider the first term on the right-hand side, written in terms of its expansion from 

Eq. (4.2.21). As a consequence of completeness,

Jdr /^*(r) V (̂r) =  Safi , (4.2.23)

so that the sum over /3 can be performed, and the first term simplifies to

i/;*(r'>A*V) (4.2.24)

Following a similar procedure to simplify the second term in Eq. (4.2.22), we write the 

total,



J dr  gA(r,r') K(rQt2-  I A ( r ' )  I 2
(Ep- E a)2 +fe2/ ^ 2

(4.2.25)

This result is unchanged if we integrate with respect to r'. In general, therefore,

/d r g A(r,r') =  /dr' gA(r ,r ')= 0  , ^(4.2.26)

Sothatthetotalcurrentflowingoutpfahypointiszeroj Ineqtiilibriuni.

To calculate the power dissipated in a sample, we sum the losses between pairs of 

“terminals” r and r'. We confine our attention to the case of no magnetic field, so that 

SACrJrO =  The total power P0 dissipated in a sample can then be expressed as

p O -  - J d r Jdr' gs(r,r,)[^(r') -  /i(r)]2 . (4.2.27)

It is evident that in the absence of magnetic field, we can represent any medium as a 

continuous network of resistors. As shown in Figv 4.3, any two volume elements dr7 and 

dr are connected by a conductance gs(r,r,)dr,dr. If a small potential difference A p  is 

impressed across a pair of terminals, then the conductance g0 seen from the terminals is

obtained by equating g0(A/x)2 to the total power P0 dissipated in the network,

^ J dr /dr' gs(r,r') f4r') -  i4r) 
A / j, (4.2.28)

For two-terminal measurements, this equation can be used to compute the conductance 

of any arbitrary structure with distributed inelastic scattering. Of course, it requires a 

knowledge of the chemical potential /x(r), everywhere within the device. Unless we 

assume a forth for fj,(r), this requires a solution of Eqs. (4.2.11a) and (4.2.11b), as 

described previously. Nevertheless, this is a convenient starting point for conductance 

calculations, as we shall see in the following sections.



Structure with distributed 
inelastic scattering

+  A /z

Figure 4.3 In the absence of magnetic fields, any medium can be represented as

network of;T.eslstors ; - ^



4.3 A  Physical Picture of the Transport Process

4.3.1 Derivation

We will now reproduce the results of the previous section, ba;sed upon a new con

ceptual approach to inelastic scattering. If we assume that inelastic scattering processes 

are delta-correlated spatially, we can view every inelastic scattering event as a quantum 

measurement of the position of the electron. We can then view the transport of elec

trons as A  ̂series of “hops.” A “hop” from r' to r starts- with one -inelastic scattering 

event at r', and ends with another at r; between r ! and r the electron propagates elasti

cally with a fixed energy. We can write

V”J =  1Cr) =  e/dr' {^r,r') n(r') -  v(r',r) n(r)} , (4.3.1)

where n(r) is the electron density, and v(r,r') is the hopping frequency between r/ and r. 

The function ^ r 5Fr) is determined from the Schrddinger equation, and contains all 

quantum interference effects.

From this point of view, the problem of quantum transport can be conceptually 

divided into two separate problems on two different length scales. On a scale greater 

than the inelastic diffusion length (L;), we have a problem of Brownian motion. In this 

limit, Eq. (4.3.1) can be viewed as a substitute for the classical drift-diffusion equation. 

But this macroscopic motion is influenced by the microscopic dynamics through the 

function which is determined quantum mechanically. On a length scale shorter

than Lj, the function i (̂r,r') accounts for the electronic wave nature, so that quantum 

effects can be observed.

To obtain the hopping frequency we assume (as we did in Section 4.2.1)

that the number of electrons inelastically scattered in a volume element dr' per unit 

time is given by dx-' n(r')/rj. Jf we assume that a fraction P(r,r')dr will suffer their next 

inelastic event in the volume element dr, then
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h(r,r'j =P(r,r'J/7y . - y d y : .  ^   ̂ ; (4.3.2)

!•jr.r'l is the probability that an electron injected at r' will propagate to r w i t h o u t  

suffering another i n e l a s t i c  s c a t t e r i n g  e v e n t .  From this definition, we recognize that 

Pfr.r1) must be proportional to | G(r,r-) | 2. where (l(r.r') is the Green function of the 

Schrodinger equation, defined by Eq. (4.2.3). Noting that /d r  P(r,r') must equal one,

we can write

I G(t ,t>) I
'■''r-r ,) ‘' Jdr I G ( W ) I 5 •

It is shown in Appendix 4.A2 that

J dr I G(r,r') | 2 =  27rriN0(r')/h , 

where N0(r') is the density of states at the Fermi level, given by

N0(r') =  E  I I 2 ^ F - E J  •

(4.3.3)

(4.3.4)

(4.3.5)

Combining Eqs. (4.3.3) and (4.3.4), we obtain the desired expression for the hopping fre

quency l{r,r%

d \  : 2jrN0(r')ri2
(4.3.6)

Finally, we will show that Eq. (4.3.1) is equivalent our previous result (Eq. (4.2.2)). 

If the electron density varies slowly with the chemical potential, we can approximate n 

by i J . { d n / d n ) - ,  at low temperatures, d n / d f i  =  eN0, so that Eq. (4.3.1) can be written as

I(r) =  e2 /dr' {i/r,r') No(r') ft(r') -  v{r',r) N0(r) //.(r)} . (4.3.7)

From Eq. (4.3.6) and the definition of T(r,r'),



T(r,r') =  hN0(rXr,rO =  | G(r,r') | 2 , (4.3.8)

which leads to our previous result;

=  f " / dr,{T(r’r'M r') “  T(r',r)/i(r)} . (4.3.9)

Although somewhat arm-waving, this derivation presents an alternative viewpoint 

which is helpful in clarifying our physical assumptions. Moreover, a connection to sem- 

iclassical transport theory can be established by studying the moments of the distribu

tion of hopping frequencies, as we shall see in the following section.

4.3.2 M oments of the Hopping Frequency D istribution Function

In the physical picture described above, transport was viewed as a series of “hops” 

between inelastic scattering events. Buried in the distribution of hopping frequencies 

M.r,r') is the quantum mechanical behavior of the electron. By considering moments of 

this distribution function, we will obtain obtain expressions for drift and diffusion which 

also account for the wave nature of electrons. As a Starting point, we consider a bulk 

homogeneous medium with a uniform potential drop along x. We recall the expression 

for the dissipated power from Section 4.2.3,

Po = J  Jdr I dr'Ss(r,r') (x—X 1)
{  } dx (4.3.10)

Because gs(r,r') depends only on the difference r—r' (the Green function has this pro

perty in the absence of a magnetic field), it is convenient to make a change of variables,

r O
n 2

dfi
dx

'12
/d (r-r') (x-x')2 gs( | r -r ' | ) (4.3.11)

since the integration over (r-fr') simply yields the volume Ti. For convenience, we



choose the origin of our coordinate system such that r' =  0. Recalling Eq. (4.3.8) and 

the definition of gs(r,r'), we can express the dissipated power in terms of the distribu

tion of hopping frequencies,

2

Jd rx2 N0
; 2

djx
<9x

.lX'TiO) +  ^ 0 ,r ) (4.3.12)

where we have assumed that N0(r) =  N0, a constant independent of position. This is 

strictly correct only in an ensemble-averaged sense, which is the spirit of our present 

analysis. Equating (P0/H) to a{dfJ,/dxf we obtain the conductivity <7.

<r =  C2N0D =  - N 0 Jdr X2
Ur\6\ +  v{0 ,r) 

2
(4.3.13)

From this, we can identify the diffusion coefficient D as the second moment of the hop

ping frequency distribution,

z/fr.O) +  ^(0,r)
D =  | / d r x 2 (4.3.14)

This relationship is well-known in the study of ordinary Brownian motion [45], and 

thereby gives support to our physical interpretation of the transport process. We define 

the x-component of the drift velocity as the first moment of the hopping frequency dis

tribution,

V fr ,0 )4 4 0 ^ )(vd)x = Jdrx (4.3.15)

In the present analysis, we have not only made contact with semiclassical drift-diffusion, 

we have indicated how it can be extended. By computing from the Schrddinger

equation  ̂ we have incorporated quantum mechanical effects into the calculation of D 

and vd. .



4.4 Simple Examples

4.4.1 Analytiical Examples Using Classical Dynamics

Before considering a more complicated numerical example, we present some simple 

results obtained by using classical dynamics. Assuming a constant inelastic scattering 

time 7j, we can describe the hopping distribution by

°° j I
H r >°) =  i^0,r) =  J - J  # ( r - r0(t)) e_t/n , (4.4.1)

o ri

where rp(t) describes the classical trajectory of the electron, as obtained from Newton’s 

laws. The damping exponential represents the effect of the imaginary potential ih/2rj in 

the Schrodinger equation. As discussed in Section 4.2, electrons propagating through a 

device are continuously lost to perfectly absorbing reservoirs, thereby suffering an ine

lastic collision. For convenience, we have assumed that r0(t=0) == 0. In general, we will 

be concerned with moments of the hopping frequency distribution,

. . - 80 - .

n n j ,
E„{x»} =  J d r ^ r )  =  Jdr fj" 0  «(r-r„(t)) . (4.4.2)

If we interchange the order of integration and use the delta function to our advantage, 

this simplifies to

E,{xn} 7  feoftF -Vri
i  Ti2 nl e

(4.4.3)

where Xo(t) is the x-component of the trajectory r0(t). In the following discussion, we 

will evaluate this expression for a few simple classical trajectories, to determine the drift 

velocity vd and diffusion coefficient D, according to the definitions justified in Section 

4.3.2: - . .



(v d)x =  E ^{X)  V.
(4.4.4a)

D E= E17(Xz) -v r.v v \;-V (4.4.4b)

To start with, we consider a classical electron moving without any influence from 

electric and magnetic fields. Assuming the particle has an initial velocity vx in the x- 

direction, the x-component of the trajectory is x0(t) =  vxt. Because we are interested in 

the collective behavior for an ensemble of electrons, we must average over all possible 

initial states. We assume that the initial velocity of an electron is uniformly distributed 

over all directions in a sample, due to the action of scattering processes. With these 

assumptions, we evaluate Eqs. (4.4.4a) and (4.4.4b):

<(vd)x> = ( /-% W* e tAi) = <W> = 0 >
o n

- tAi ' (4.4.5a)

< D >  =  7 v |t 2 e t/r‘)  =  < v | r i > # 0
' ' 0 ri .

(4.4.5b)

where we have used the angle brackets <C*̂ > to denote ensemble averaging. Without the 

influence of fields, the drift velocity of an ensemble of electrons is zero; diffusion, how

ever, is not.

As a second example, we consider the effect of an electric field in the x-direction, 

causing an electron to accelerate: Xo(t) =  vxt +  a t̂2̂ ,  where ax =  eE/m* is the

acceleration due to the field. We evaluate the drift velocity, and obtain,

S t̂2
<(vd)x> = ( /-r(wt + ^ r ) e t/n) = <w> + <wa> * (4.4.6)

After averaging over all initial velocities, we again find that <vx>  =  0. Because of the

acceleration, however, the drift velocity is not zero,
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er= .
< ( v d )x >  -  — E.X (4.4.7)

Finallyj we assume a magnetic field along the z-axis, and an electric field in the x-y 

plane. In Appendix 4.A3, the x-component of the classical trajectory is shown to be?

sinwct — — t , (4.4.8)

where we have introduced the cyclotron frequency for an electron Wt. =  | e |  B/m*. Sub

stituting Eq. (4.4.8) into Eq. (4.4.3) and performing the necessary integrals, we obtain 

the drift velocity,

x0(t) = _+c_ _ Zl (I — coswct) +
( \ 
Zl ,Z lO *"I Wc- J W2 Wc J

(v d)x
WC*i

I +  WcVi2
+

+ V xwc I +  Wc2Ti2 w„ (4.4.9)

If we average over all initial velocities, Avx i> and Avy>  vanish, leaving only the terms 

involving acceleration. By substituting in the acceleration due to the electric field,

< ( v d )x >
e7Y Ey WcTi

(4.4.10)
. ! + W c2Tj2 I - I - W c2Ti2

This velocity defines the x-component of the drift current, which we can use to deter

mine conductivity:

(4.4.11a)

x7 :

e n  (v d)x a O

E x Ey=O I  -|- W^Tj2

' I Z Z ■ \

e n  (v d)x

E y ■ Ex=O °  I  +  W2Ti2
(4.441b)

Following a similar derivation for the y-component of the drift velocity, we can define 

<ryx and (Tyy , and produce the usual magnetoconductivity tensor [46],



a
I +

i

w j i

WJi
I

(4.4.12)

Tn sum m ary, wo. have shown that some familiar results can be .obtained by assuming a 

classical motion of electrons. Having developed some confidence, we proceed to demon

strate quantum mechanical effects in a numerical example.

4,4.2 Num erical Exam ple of Localization

In recent years, considerable attention has been given to the effects o f disorder on 

electron transport [3,4]. In particular, Anderson has shown [47] that for a sufficiently 

high degree of disorder, and in the absence of inelastic scattering, conductance can 

decrease exponerdially with length. Electron wave functions become spatially localized, 

having envelope functions that decay exponentially with distance. As the overlap 

between localized states decreases, the conductance vanishes. In the presence of inelas

tic scattering, however, electrons interacting with phonons can “hop” between localized 

states. For this rare circumstance, inelastic scattering actually improves the conduc- 

tance. /. '"v‘

A illustration of this effect is well suited to our model. In principle, We can calcu

late the conductivity for any chain of randomly spaced impurities. We consider the 

average conductivity of many such chains, as a function of the inelastic scattering time 

Ti, We will show that, as Ti increases, conductivity falls off exponentially. Furthermore, 

if we neglect interference effects, the localization behavior is destroyed, and conductance 

is constant for large Ti. In the following sections we describe our numerical solution in 

detail. We derive an expression for the conductivity of a quasi one-dimensional wire, 

which must be evaluated numerically. A scattering matrix technique is presented for 

the calculation of the Green function, and we summarize our results.



4.4 .2 .I Conductivity For a Quasi One-dimensional Wire

In  p r e v io u s  d isc u ss io n , w e  d e v e lo p e d  a n  e x p r e s s io n  fo r  th e  c o n d u c t iv i ty  b y  Consnb- 

er in g  th e  p o w e r  d is s ip a te d  w ith in  a  S am ple:

2 ■' ■" . ■ / ^ V - ; . . ' ; . .  '
p O =  f f i r  fdr' ( x - x f

dfi
^sfopO > (4.4.13a)

where

iT:r.r') I X l/.r); . (4.4.13b)

We return to this derivation, restricting our attention to a quasi one-dimensional wire: 

a two-dimensional electron gas whose width is smaller than an inelastic length Li. As a 

result of confinement, the allowed values of the transverse momentum are quantized. 

Transport can be described in terms of a finite number of transverse scattering channels 

or modes. In effect, we are describing an electron “wave guide.’’ From this standpoint, 

we choose a mode-based representation for T(r,r'),

Tfor') <-> Tmn(x,x') , (4.4.14)

which represents the probability that an electron introduced into mode n at position x' 

will arrive in mode m at x before being inelastically scattered. In the absence of mag

netic field, we have detailed balance, so that Tmn fox') is the same under an interchange 

of x and x', and m and n. In this mode-based representation, the dissipated power Can 

be expressed as,

12 ' ' ' ' ■■ . ' ■ " ! :: : ■
e2

P n - - ^
djx
dx E  I  dx Jdx' (x-x')2 Tmn fox') , (4.4.15)

mn

where we have included an extra factor of 1/2 to avoid doxible-counting between pairs 

of modes. From a property of the Green function, Tmn(x,x') is dependent only on the
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difference (x—x'). It is convenient to change our variables of integration to (x x7) and 

(x+x'), - ' ; ; '-V

r o e* 
L _  4h

!.V

dp
dm

Y2
S Id(x-x') (x -x ')2 Tij(x-x') , (4.4.16)
mn

where L is the length of the wire. For convenience, we choose m1— 0 (equivalent to 

another change of variables), and equate P0/L to o{dp/dmf. By averaging over all pos

sible impurity configurations, we write the ensemble-average conductivity as,

<cr> /d x x 2 ( S  Tmli(X) ) (4.4.17)

We assume that in an ensemble-average sense, the transmission function can be charac

terized by an exponential decay length Ld. For classical transport, this decay length is 

simply the inelastic length Li; it represents the decreasing probability that an electron 

will travel farther than Li before being inelastically scattered. For quantum transport, 

however, Lp must be determined by explicit calculation. We intend to show that for 

strong disorder, Ld becomes the localization length. In any event, we define

_  rp - M  /Lr{ E  Tmn(x)} =  T0 e"
mn

(4.4.18)

where T0 is a constant chosen to satisfy the normalization of the ensemble-averaged 

function as follows. In Section 4.2.1, we defined the normalization of T(r,r') as,

fdr'  T(r',r)
n .

(4.4.19a)

For our mode-based representation, this becomes,

£  Jdx T mn(X)
hNn

n
(4.4.19b)

where N0 n is the density of states for mode n, evaluated at the injection point x'=0. By



our normalization condition,

’ (4.4.20)
■mn 'i n

which we equate to the integral of the function defined by Eq. (4.4.18), to determine the 

COnstantT0,

summing over all injected modes n, we determine

(4.4.21)

We can now evaluate the ensemble-averaged conductivity from Eqs. (4.4.17) and 

(4.4.18). If we assume that the wire is sufficiently long,

OO

<(f> / d x x 2 e‘ |x|/Lt> e l  T L2J1 1O Lp

and substituting in the definition of T0 from Eq. (4.4.21), we obtain our final result:

< o >  — e2 E N 0jll
n

1I" -  2̂ N0 D ,
Ti V-

(4.4.23)

which is the usual expression for conductivity; however, the details of a quantum 

mechanical solution have been buried in the calculation of Ld. Qur numerical solution, 

therefore, will proceed as follows. Given a chain of randomly spaced impurities, we cal

culate the Green function of the Schrbdinger equation, and sum the function TInn(x)

over all modes. This composite function is then fit to a decaying exponential on either 

Side of the injection point, and the decay length Ld is determined. By averaging over 

many random samples, we determine an average decay length <LD> . A final concern is 

the averaging process used to determine this quantity. Because of the random impurity 

spacing, values of Ld will fluctuate from sample to sample. In the localized regime, this 

fluctuation can be quite large. Anderson et. al. [48] have shown that the inverse of the 

localizatioh .length has a well behaved distribution. For this reason, we compute the



mean of I /Ld and invert it, to determine our average <LD>. With this result, we com

pute the average conductivity from Eq. (4.4.23).

4.4.2.2 Numericai Evaluation o f thb Green Function

We now seek a numerical solution for the Green function of the Schrodinger equa

tion, defined by

H +  —
: 2tj

G(r,r') =  £ ( r - r') , (4.4.24a)

II =  —^ rV2 +  eV(r) . V (4.4.24b)

Because our quasi one-dimensional wire bears a striking resemblance to a wave guide, 

we will borrow from the solution techniques developed for the analysis of microwave 

networks. In particular, we recognize that the confining potential in the transverse 

direction gives rise to a set of modes m, so that the wave function in the regions 

between scatterers can be represented as [49],

#-(x,y;km) =  <i>m(y) e±lk,rpc , (4,4.25)

where the +  signs represent propagation in the positive and negative x-directions, 

respectively (see Fig. 4.4a). For simplicity, we assume that each mode has a parabolic 

dispersion relation,

‘ em +
t V n

*
2m

(4.4.26)

where! Cr̂1 is the minimum energy of mode m. Because em increases as m increases, there 

will only be a finite number of modes which are allowed to propagate at a given Fermi 

energy Ep. A natural representation of the wave function, therefore, is a column vector 

at each point x whose M elements specify the (complex) amplitude of each mode. The
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Chain of Impurities:

* * * , -Sk
>

V ^ V V

[P u -1] [Pn]

I

[Pn+l]

N N M [»i]

(a)

W - 2} W - j} W }  W +1}

{&-*} Wl.-1} {it} {fcj
(b)

Figure 4.4 (a) A quasi one-dimensional chain of impurities is represented by a series

of scattering matrices, which couple the amplitudes of transverse modes, 

(b) By combining scattering matrices for each impurity and an adjacent 

region of free propagation, the problem is simplified.
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effect of an impurity is to couple the amplitudes of different modes, a process which can 

be described by a scattering matrix:

(4.4.27)

where } is an M xl column vector of amplitudes for waves traveling in the positive 

(negative) direction, at a position xn. The elements of the scattering matrix ([r], [t], [r;], 

[t*]) are themselves MxM  matrices.

Any sample can be modeled with a series of scattering matrices, representing colli

sions with elastic scatterers and free propagation in the regions between. In general, the 

scattering matrix for each impurity should be different, depending on the impurity 

strength, position in the transverse direction, etc. We avoid this complication, however, 

and define the scattering matrix for each impurity as [49],

M ij: -  Aj +  f (4.4.28a)

where

ff
2iMa — I

2M
(4.4.28b)

and M  is the number of modes. The parameter a  is related to the scattering strength, 

so that the elastic mean free path can be determined from

I - M l f f l 2
A„el = (4.4.29)

Ml f f i 2

We also require a scattering matrix to represent the regions of free propagation between 

impurities. Although there is no coupling between modes in these regions, each mode 

acquires a phase shift proportional to the length of the region, so that the scattering 

matrix is
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[Pnlij =  e' J n , (4.4.30)

where dn is the length of propagation region n. The wave vector kj for mode j  is 

defined by

kj
2m
H2

Ef — £j +
Jh
2ri

1/2
(4.4.31)

Because of the complex potential ih/2Tj in Eq. (4.4.24a), kj will be complex. This 

accounts for the loss of electrons into the continuous distribution of reservoirs, as dis

cussed in Section 4.2.1.

We can combine the effects of any two scattering matrices with the following law 

of composition: [s12] rr [ s j  (X) [s2] is defined by the sub-matrices

r12 -= T1 +  t Jr2 [I -  T1V2] 1 t x ,
’ ' i

(4.4.32a)

1̂2 =  *2 [I ~  1V1̂ ] 1 > (4.4.32b)

r \2 =  r2 +  *2 [I -  1Vr2P 1 T1V  , (4.4.32c)

t I2' =  t /  [I +  F2 [I -  F1V2J-1P1rI t 2' . (4.4.32d)

Therefore, the scattering matrix for a chain of impurities can be calculated by combin

ing the individual scattering matrices:

[s c] =  h ]  . 0  [p i] ®  [S1] <g> [p2] <g) • • - . . (4.4.33)

For subsequent analysis, we define the column vector {ip^} to represent the wave 

amplitudes at the end of interval n and to the immediate left of impurity n+1, as shown 

in Fig. 4.4b. We can combine the scattering matrices for each impurity and the adja

cent region of propagation into a single matrix,
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[sn] =  N  0  [Pnl > (4.4.34)

which connects column vectors {V ^i} an  ̂ }•

With an understanding of scattering matrices, we proceed to solve for the Green 

function of the Schrddinger equation, which we present in a simplified form,

_d*.
dx2

Gj (x) = <5(x) Slj (4.4.35)

where * is the injected mode. Near x =  0, we have two boundary conditions, th e  first 

is that the wave function must be continuous,

Gj(x=0 ) — Gj(x=0+) . (4.4.36a)

The second, obtained by integrating Eq. (4.4.35), describes the effect of injection into 

mode i,

Sii (4.4.36b)

On either side of x — 0, we represent the solution Gj(x) as:

Gj(x=0 ) =  {a+}j e'kjX +  Ia }j e 1 > (4.4.37a)

Gj(X=O+) =  {b+}j eikjX +  {b“}j e“lkjX , (4.4.37b)

where {a*} and {b1 } are M xl column vectors describing the wave function amplitude 

in each mode. Expressing the boundary conditions in terms of these column vectors, we 

obtain,

{a+} j+ {a  }j -  {b+} j+ { b  }j (4.4.38a)

ikj ({b+}j -  {b-)j -  K ) j  +  {a"}j) =  Aj (4.4.38b)

For an arbitrary chain with N  impurities, we can combine the scattering matrices to the



left and right of the injection point into two composite matrices,[SL] and [SR], as 

shown in Pig. 4.5. This greatly simplifies an expression of the remaining two boundary 

conditions. If we assume that the contacts at each end of the chain are perfectly 

absorbing, we can define {a+} and {b } by what is reflected from each half of the chain:

(4 .-1.39a)

(b_) =  [rR] {b+} . (4.4.39b)

We now have four equations to solve for our four unknown vectors {a*} and {b*}. Of 

course, these same equations must solved for injection into each mode i. To organize all 

of the column-vector solutions, we define the following matrices,

y [bSlI =  juk] ([I -  rR] +  [I -  rL'][I +.FlT ^ 1 +  rIi]) j_1 > J . (4.4.40a)

;' (4.4.40b)

where we have introduced the matrix [k]jj■"= kj^j. Each column i of the matrices [bs+] 

and [as ] is the solution vector for injection into mode i. In the same way, we can 

organize all of the column vectors (V ^ } for each node n into a matrix [V-JsJ1J. All subse

quent discussion will deal directly with these matrices.

What remains is to determine the amplitudes [VjsJn] aH other points in the chain. 

We restrict our attention to the left half of the chain, although the same analysis can be 

applied to the right half as well. In general, we consider waves incident from the right 

on two scatterers, as shown in Fig. 4.6. Assuming that the output on the left-hand side 

is completely absorbed by the contact, we can write the wave amplitudes between the 

two scatterers by summing the contributions from multiply reflected waves:



Perfectly absorbing contact

Inject here

Figure 4.5 (a) Scattering matrices on either side of the injection point can be 

combined into two composite scattering matrices, [sL] and [sr]. (b)

Simplified problem for Green function solution.
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Perfectly absorbing contact
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Figure 4.6 Given an incident wave amplitude {V,r_ I)} we can calculate the 

amplitudes {ip+) and {tp } between two scatters by summing multiply 

reflected paths.



[-IjJi l =  F1V ^ 1 -I- F1V 1VVi-*! +  r i V i V i '^ V t - i  +  ' • •

= r/[i -  r V l V ^ - i  , (4*4-41a)

-'-"'i:-■ ■;•■ (4-4-41b)

Similar expressions can be obtained (for analysis of the right-hand side), if we consider a 

wave incident from the left and absorbed on the right,

[V>'rl =  [I -  r/r,] H1VWr , :;v: ; (4.4.42a>

[ijf ] =  r2[I — F1V j ’̂ lVi—r . (4.4.42b)

Using these expressions, we can determine [t/;s~] at all remaining points with an iterative 

technique, which is illustrated in Fig. 4.7. We define the scattering matrix [cn] as the 

composite of all matrices up to the point where we will determine [^s n],

(4-4*43)

For the amplitude immediately left of the injection point, we have the solution [af], 

determined from Eq. (4.4.40b); this is our initial group of incident vectors We

can calculate [V̂sln] between matrices [cn] and [sn+1] from Eqs. (4.4.41). For the ampli

tudes at the next point, we use the group of incident vectors [4>~n] which we have just 

determined. We evaluate [t/>sV i]  from Eqs. (4.4.41), between matrices [cn_j] and JsJ. 

This solution, in turn, defines our next group of incident vectors, and the process 

repeats until all amplitudes have been determined.

Having calculated the amplitudes [4> \̂ at each node n, we can calculate the form

of the transmission function,

: S(x) m S I- [ ^ +  I fc l ij  l 2 -  S  Tijfc) - (4.4.44)
: : V  ij ■ ij ; : - 7

Proper normalization of this function is immaterial. On either side of the injection
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Perfectly absorbing contact

a3‘

[ ŝ,n—l]

Figure 4.7 The wave amplitudes at each node n can be determined from an

iterative technique. The initial incident wave [as—] is used to determine 

[tAstaf which in turn provides the next incident wave [tAs~n] for the solution 

at node n-1. The process is repeated until the wave function has been 

determined at all points.
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point, S(x)I is fit to a straight line on a logarithmic scale, and it is the resulting slope 

(i.e., I/Ld) which is physically meaningful.

Finally, we recognize that a semiclassical analysis can be performed by using 

squared-magnitudes in place of (complex) amplitudes,

[s l] lS l]ij I Wij I2 ’ (4.4.45a)

[Pn] lP n]ij — I [Pnlij I 2 > (4.4.45b)

[V-Cii] — > (4.4.45c)

where we have used capital letters to distinguish the probabilistic solution. In addition 

to the changes shown above, we must replace i[k] —»-Re{[k]} in Eq.(4.4.40a), and the 

transmission function is calculated as:

SM -  Sscl( X ) S  {[*,Iilij +  |4^]ii} • (4-4-46)

All other aspects of the solution, however, are identical. The ability to neglect phase

information allows us to properly demonstrate localization: For large inelastic scatter

ing times Ti, we will show that quantum mechanical solution exhibits localization, while

the semiclassical (probabilistic) solution does not.

4.4,2.3 Results and Conclusions

Using the model developed in the previous sections, we have numerically computed 

the Green function for many random samples, with a range of scattering times Ti- Each 

sample had five transverse modes and 400 impurities, and the injection point was

immediately left of the 200tb impurity. Impurities for each sample were randomly 

placed with a uniform distribution of spacings, and the impurity strength was chosen to 

be a  =  0.3, so that the elastic length Ael was 4 impurities. An estimate of the localiza

tion length [50] is Aloc =  MAd, where M is the number of modes. In this case M =  5, so



that samples should exhibit localization when the inelastic length Li exceeds 20 impuri

ties. Inelastic scattering times Tj were chosen between 10 ^ s  and 10 8 s, Cbrrespbnding 

to inelastic lengths between 0.2 and 95 impurities. All results were verified against 

longer chainsj. to ensure that absorption at the contacts had little effect on the analysis.

To provide some insight into the transmission function S (x) defined by Eq. (4:4.44)] 

we have plotted the results for two arbitrary samples, with different inelastic scattering 

times Ti . In Fig 4.8, we present the function S(x) for Ti. ■== 10 s, which corresponds to 

,an inelastic length Li of about 9 impurities; hence, this sample is in the so-called weak 

localization regime. Although the function is predominantly characterized by its 

exponential decay, small fluctuations are clearly visible. These fluctuations are direct 

evidence of quantum mechanical interference effects. If the same sample were analyzed 

using the semiplassieal procedure (Eq. (4.4.46)), the fluctuations would disappear, and 

only the exponential decay would remain. As the inelastic scattering time increases, the 

fluctuations become larger. In Fig 4.9, we present the function S(x) for Ti — IO-8 s, 

which corresponds to an inelastic length of about 95 impurities. Although the general 

character of exponential decay remains, the fluctuations have added considerable scatter 

to the decay length Ld.

Statistical averages of the decay length Ld were obtained by by averaging I/Ld for 

100 independent random samples. Both semiclassical and quantum results, obtained for 

a range of scattering times Ti, are shown in Fig. 4.10. For small Ti, the exponential 

decay of the function S(x) is dominated by inelastic scattering; consequently, semiclassi

cal and quantum results are in close agreement. As Ti increases, however, the semiclassi

cal decay length continues to increase, while the quantum result approaches a constant 

value. This limiting decay length is the localization length Aloc. We emphasize that the 

only difference between the two calculations is that the semiclassical analysis deals with 

probabilities, rather than probability amplitudes, so that all phase information is lost.



1.49225 2.98450 4.47675 5.969000.00000

Position (microns) (xlO2)

Figure 4.8 The function S(x) defined in Eq. (4.4.44), for an arbitrary sample with 

Ti =  IO-10 s. The injection point is in the middle of the sample.
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Figure 4.9 The function S(x) for an arbitrary sample with Ti =  10 8 s.
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Inelastic Scattering Time (s)

Figure 4.10 Average decay length Ld for semiclassical (O) and quantum (□) analyses.

As the inelastic scattering time increases, the quantum result approaches 

the localization length Aloc.



Therefore, the appearance of the localization length is a direct result of the interference 

effects included in a. quantum analysis.

Eyidence of localization is even more striking in a plot of the diffusion coefficient 

D =  presented in Fig. 4.11. Because the conductivity is directly proportional to

D (Eq. (4.4.23)), we will consider the two quantities interchangeably. For large Tj, the 

quantum diffusion coefficient vanishes exponentially. The semiclassical result, however, 

remains constant at the value dictated by the elastic length Aej. As T; decreases, inelas

tic scattering destroys the wave function coherence which is vital to localization. 

Although initially this improves conduction, the point is reached where inelastic scatter

ing dominates both semiclassical and quantum results. Beyond this point, conductivity 

decreases, and the two viewpoints converge to the same result.

In a quantum analysis with moderate inelastic scattering times, the electron wave' 

function can remain coherent over large regions of a sample. Effectively, the electron 

“sees” a larger area of the device than what is normally presumed from classical current 

paths. Evidence of this behavior can be seen in our model, if we consider the statistical 

fluctuations in Lp. Specifically, we consider the variance var(LD) =  < L |>  — <LD> 2 for 

two cases: injection into the same sample at different points, and injection into

different samples at the same point. Results of this calculation are presented in Fig. 

4.12. For Tj small, inelastic scattering dominates, and fluctuations in either case are 

small. For Tj large, however, the fluctuations obtained for different samples a.re clearly 

larger. This reflects a greater correlation amongst values of L0 obtained within the 

same sample, demonstrating the non-local nature of mesoscopic structures. We note 

that, as a consequence of averaging I/L0 , fluctuations become constant in the strong 

localization regime. This indicates that, as shown by Anderson and co-workers [48], the 

distribution of I/Lp is well behaved, even in strong localization.



Diffusion Coefficient (crrr/s)
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Inelastic Scattering Time (s)

Figure 4.11 Average diffusion coefficient D =  for Semiclassical (Q) and quantum

(□) analyses. As the inelastic scattering time increases, the quantum 

result vanishes exponentially. This is evidence of strong localization.
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Figure 4.12 Fluctuations in the decay length Lj5 obtained by injecting different 

samples at the same point (*), and by injecting the same sample at 

different points (+). Fluctuations are smaller for injection within the 

same sample, because of the non-local character of electrons in mesoscopic 

devices.
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4.5 Extensions o fth eF orm alism

In the preceding sections, we made some assumptions that greatly simplified our 

analysis. In particular, we assumed that inelastic scattering events were spatially 

uncorrelated processes, that our system was at zero-temperature, and that we were eli

citing a linear response. These restrictions can be removed, however, as indicated in 

this section.

In our extension of the multi-probe Landauer formula, we assumed a continuous 

distribution of probes, connecting each point in a sample to a conceptual reservoir of 

carriers (see Fig. 4.2), Inelastic scattering events occurred only within the reservoirs, 

and all reservoirs acted independently of one another. Because of the infinitesimal probe 

size and independent action of the reservoirs, all inelastic scattering events were spa

tially uncorrelated. This model is not entirely realistic, since phonon scattering 

processes are indeed correlated spatially. However, We can always find some basis in 

which scattering processes are uncorrelated. One possibility is a superlattice representa

tion, for which states are indexed by a combination of position and momentum vari

ables. In this case, the volume elements connected to each reservoir have a finite size, 

and states within each volume element are indexed by the modes (corresponding to 

periodic boundary conditions) of the probes. Scattering events between different modes 

are assumed to be uncorrelated, although they have a spatial correlation which 

corresponds to the size of the volume elements. Such a change of basis has little effect 

on our analysis. Although in Sections 4.2 and 4.3 we used a position representation, the 

Green function can be defined for any complete basis, so that the framework of our 

model is more flexible than we have previously indicated.

By restricting our analysis to zero-temperature, we confined our attention to elec

trons at a single energy, the Fermi energy Ef . At finite temperatures, however, elec

trons propagate within a spread of energies around the Fermi level. These energies



represent parallel channels of conduction, whose contributions must he weighted 

(according to occupation) and summed. In the limit of linear response, the occupation 

at each energy E is described the the Fermi-Dirac factor Ti(E). The subscript i reminds 

us that for each state i, the distribution function is characterized by a quasi Fermi 

potential fa. We have intentionally used the discrete index Tto avoid specifying a par

ticular basis. In light of previous discussion, i could well index both the modes and the

finite-size blocks in the superlattice representation. In any event, the current ^ j cJ1 was

previously expressed as

*i =  T-  E  (Tij fa ~  Tji Mi} > (4.5.1)

can be generalized to finite temperatures (and linear response) as:

[■ \ / ' IK' i' ' V f T  mHO f,(K'!: , (4.5.2a)

where ■ /

=  e(E—e/tO/k„T +  1 * (4-5-2b)

We can easily show that this extension reduces to Eq. (4.5.1) in the limit of zero- 

temperature. To do this, we consider the Taylor series expansion,

4? u* I , dfj j p i 2 d2fj ,
fJ = fi I Mi=O + V i I /I1=O +  2 dp,-2 +  * * * ‘ (4.5.3)

As temperature approaches zero, we can approximate df/d/i; by a delta function,

- ■ ; dfj : df: . . .
v . =  c ,ih - e^ - ^ )  :'w T - °  -

so that Eq. (4.5.2a) becomes,



I, -  " S [ JdE' f0(EO{Tg(EO -  Tji(EO)

+  e/dE' iTi;(K0/., ! ;H- IV)

+  .,2JJK' {T.jlEO/'; -  Tji(EOtt2}«'(E-EF) +  • (4.5.4)

where <$'(E) represents the derivative of a delta function, which can be evaluated from 

integration by parts,

JdE F (E )^ (E -E f ) =  (-1)"
dnF
dEn E=Ep

(4.5.5)

H Tjj(E) varies slowly with energy, we can neglect the second-order (and all higher 

order) terms of p, in Eq. (4.5.4). In addition, we can neglect the zero-order term, since

S  (Tij(E) -  Tij(E)J 0 , : l'-™ !
■ i ; / .  ' / - V ' "  ' ■■ ... ■■ 'V :

as shown in Section 4.2.3. This leaves only the first-order term, which reproduces Eq. 

(4.5.1). J /  . ■ , !■ /  \

Note that, aside from requiring an extra integration over energy, we have added 

little to the complexity of the problem. By assuming linear response, we have assumed 

the form of the distribution function, so that the number of unknowns (i.e., [X i for each 

state *) remains the same.

For non-linear response, we cannot assume that the distribution function is charac

terized by a single variable; on the contrary, the value of fjE) must be determined at all 

energies E, in addition to all states L To determine fj(E), we consider the current 

flowing in a (conceptual) probe. We will assume that the distribution function is known 

for all reservoirs connected to external sources. Therefore, we are concerned only with 

the unconnected reservoirs, so that the current flowing in the associated probe is zero.
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Current injected from the reservoir at a particular energy E will be proportional to the 

distribution function fj(E),

C t(E) =  7- £  Tji(E) Ij(E) . (4.5.7)
. j

All incoming current is absorbed by the reservoir, and redistributed in energy according 

to the detailed nature of the scattering processes. In this respect, scattering processes 

can be characterized by a function Fij(E,E'), which describes the probability that an 

electron entering the reservoir in a state i at energy E' will be scattered to the state j  

and energy E. Of course, the states t and j  are assumed to belong to the same reservoir 

(i.e., modes of the probe, in the superlattice representation). If states i and j  belong to 

different reservoirs, the value of rjj(E,E/) must be zero. Because carriers are conserved, 

the output current Ijout(E) depends on all of the input currents which have been redistri

buted in energy,

C 1 =  f -  E  E  JdE' IytE.E') Tjk(E0 fk(E') . (4.5.8)
n  j k

Together with Eq. (4.5.7), this yields a relationship for the distribution function,

fi(E) S  Tji(E) =  £  £  /dE' I’ijfE.E') Tjk(E') fk(E') , (4.5.9)
j j k

which embodies the solution for non-linear response.

One other source of non-linearity involves the electrostatic potential. To this 

point, we have treated electrons as non-interacting neutral particles; in general, how

ever, fluctuations in the electron density will induce changes in the electrostatic poten

tial, as dictated by the Poisson equation. Changes in the potential feed back into the 

solution for the Green function, thereby altering the electron density. Strictly speaking, 

a proper analysis requires a self-consistent solution for both electron density and elec

trostatic potential. For linear response, however, corrections due self-consistency may



be unimportant. To understand this, we consider the current in the absence of a mag

netic field,

I i f  > '  • (4.5.10)

As the structure is driven away from equilibrium, variation in the current can be 

expressed as,

' =  Y  E  ^ ij (/ij ~~ ^  +  Tij ^  ’ (4.5.11)
/_ . , :. v . . J ■ ' •' • ; ■

where ^Tij represents the influence of self-consistency. If the system is sufficiently close 

to equilibrium (as for linear response), the difference (/^—/4) will be small, so that self- 

consistent effects may be neglected. Although this is not a rigorous proof, it is an indi

cation that self-consistency is important only for non-linear response.
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Appendix 4.A1 The Kubo Form ula from Linear Response Theory

In Sections 4.1.1 and 4.2.2 we presented the Kubo formula for the conductivity,

?ii(r,rO . S
[Jgft(r) CBv Jgg(rQ]jj

27T :£p (EF-E^+ih/2ri)(EF- E a-ih /2ri) (4. Al. I)

which iwe will now derive from linear response theory. We assume that a magnetic vec

tor potential A(r,t) of a single frequency w is the driving force, eliciting a linear 

response from our system. The effect of this response is to introduce an additional term 

into the Hamiltonian,

~  /d r  J(r,t)*A(r,t) , (4.A1.2)

A result of linear response theory is that the response of the system measured by J(r,t) 

can be calculated from [22],

, (4. A l. 3)

W hereRjj(FitlrfJtr)Isth eresp on sefu n ction d efin ed b y,

: Hij(r,jt; rf,tf) =  <  [J(r,t), J(rf,tf)] >  . ; (4.A1.4)

Here, $(t) is the unit step function, and the brackets denote an averaging of the 

expectation values for all many-body states J # > . In general, we can choose a gauge 

for which the scalar potential is identically zero,

Ci

e M  =  -^ -A (r ,t )  =  -icyA(r,t) , (4.A1.5)

so that Eq. (4.A1.3) becomes,

Jifot) - Jdrf dtf Ojj(r,t ; rf,tf) Ej(rf,tf) , (4.A1.6)

where we have identified the conductivity tensor o (r ,t; rf,tf) with the response function 

R (r ,t; rf,tf) as follows:



: —iO/'<j(r,t ; r',t') =  R (r ,t; r',t') . (4.A1.7)

Our objective, therefore, is to evaluate the response function of Eq. (4.A1.4), to obtain 

the Kubo conductivity. If we assume a complete set of eigenstates (with energy E0.) 

for the unperturbed Hamiltonian, we can expand the current density as,

J(r,t) =  E  Jcvft,(r) a l(t)a a,(t) ,
• ■ :/. a a■ ;

(4. A l. 8 a)

where

^aa1 ~ [ ( V ^ a ' -  ,
2m

(4.A l.8b)

and a*(t) and acv(t) are the creation and annihilation operators acting on state a. Sub

stituting Eq. (4.A l.8a) into Eq. (4.A1.4), we obtain

R (r,r';t) =  E  Jcm'W <S>
a a1 ft ft

<  [4(t) aa'(t), aJ(O) a î(O)] >  , (4.A1.9)

where we used (x) to denote a direct product of vectors, yielding a tensor. For conveni

ence, we have taken t' =  0. The commutator above can be simplified [51],

, <  ]a|(t) aa,(t), aj(0) a^(0)] >  =  <aj(t) a^,(0)><aa,(t) aj(0)> -

<aj(0) aa, ( I ) X a r (O) aj(t)> . (4.A1.10)

We will consider only one of the ensemble-averaged terms above, although the same 

arguments can be applied to all four terms. As we pointed out earlier, the brackets 

< •>  denote averaging of the expectation values for all possible states | #>» We write 

this explicitly as,



< at(t) a/9,(0)> =  ( < ^  | a*(t) â r(O) j # >  V_ , (4.A1.11)

and the time evolution of the creation and annihilation operators is understood to be,
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aa(t) =  a«(0) e î tA e |t|/2n _  ^ 0) Ga(t) , (4.Al.l2a)

aa( )̂ =  aa(0) Ga(A) ~  aa(0) Ga(~^) > (4. A l. 12b)

so that Eq. (4.A1.11) becomes,

<sj(‘)v(°)>  =  G*(t) ( <4> I at(0) a#,(0) I 4>> } . (4.A1.13)

We recognize that the expectation value is zero, for Cu ^ /31. This is because the state 

vectors resulting from annihilation in two different states are orthogonal:

' < *  I a] a/?, j # >  =  <aa *  I &fil # >  =  0 f o r a # / ? ' .

We also recognize that, for operators acting on the same state C x -P f1 the operator 

aa aa is the number operator, yielding the number of electrons (0 or I) in state a. 

When we average over all possible state vectors | ^ > , this yields the probability of 

finding an electron in state a, which is the Fermi-Dirac factor fa:

< aa(t) a^’(0)> =  G*(t) ( I a* a* I # >  ^  Safj, =  Ga*(t) fa Safi, (4.A1.14)

In a similar manner, we can simplify the remaining terms in Eq. (4.A1.10). We note 

that, as a property of the creation and annihilation operators, aa a] =  I — a] a , giv

ing rise to factors (I — fa) after ensemble-averaging. Eq. (4.A1.10) simplifies to

<  [a](t) aQ,(t), a^O) aj0,(O)] >

=  8Cfil 8Pcc' G^t) Ga(-t)  [fa(l -  y  -  ffi(l -  fa)] . (4.A1.15)

Substituting this result into Eq. (4.A1.9), and performing the sums over oc' and P 11 we 

obtain the response function.



R (r,r'; t) =  >] ^  G^t) Ga(-t )  (fa ^  f )̂ [Ja/?(r) 0  J^(r')] , (4.A1.16)
a 8 ffi

where We have neglected terms (I — fa), which are unimportant for the electronic states 

that contribute to conduction. The response function is related to the conductivity 

through the frequency of our source (Eq. (4.A1.7)). Because of this, it is convenient to 

work in the frequency domain. The Green functions G^(t) and Ga.(—t) have Fourier 

transform counterparts,

G,(t) «  Gf(Ol) =  1w . ; (4-A1.17a)

<3«H) « •  G« M  =  h, ,  , f . . ; , ,  ’ . ■■■ . (4A1.17b)

Typically, the energy irj is a true infinitesimal [15], introduced only to define the Green 

functions for oj =  Ea/h. In our analysis, however, we can identify the imaginary energy 

i?/ with the loss term in the Schrddinger equation, This identification has been

made previously [21], with the observation that such a term simulates the effect of ine

lastic scattering, if scattering events are spatially uncorrelated; this is precisely the phy

sical picture presented in Sections 4.2 and 4.3. In the frequency domain, the product 

G/J(t) Ga(—t) can be represented by a sort of convolution integral,

R(r,r';w) =  £  ^  [Ja/?-Cr) ®  J/?a(r')]
afi 111 , ;

I  gJ(6Tw) G^(e) [fa — fy] • (4.A1.18)
. - O O 2 7 r

It is apparent from Eqs. (4.Al. 17) that, for Ti large (rj —► 0), the functions G^(w) and 

Gal(w) are quite peaked near frequencies O J =  Ea/h. Because these frequencies will dom

inate the integral over e, we can represent the Fermi-Dirac factors over the entire range 

of frequencies without significantly affecting the result:



- 114 -

R f r ,r »  =  £  .. !J . , ( r ) J.. .(rO'
aft

I  Zf  ««) -  f ( ^ ) l  Gf(e+ u) G*(e) .
- C O  zn

(4.A1.19)

Finally, we can relate the response function to the conductivity, by using Eq. (4.A1.7),

I
<r(r,r';oj) =  E  [J«/?W E> J/?a(r')]

aft

oo
J de f(e) — f(e+c4

G^e+co) G^(e) . (4.A1.20)

In the limit of dc conductivity (cu —► 0), 

f(e-Ho') -  ffg) dfIim
OJ—+0 OJ doj dE ’

and in the limit of zero temperature, -df/dE  —► <S(E-Ef ), so that the integral in Eq.

(4.A1.20) can be performed, to yield our final result,

p(p,r';w) =  —  E .[Jqjfr)- ^  JjqfrQ]
27r (EF—E/9+ih/2ri)(EF—Ea- ih/2r;) ’ (4.A1.21)

as was to be shown.

Appendix 4.A2 Norm alization of the Green Function  

In Section 4.3.1, we stated the following normalization,

/d r  |G (r ,r ') |2 =  ^ N 0(r') , (4.A2.1)

which we intend to prove in this appendix. We can expand the Green function in a 

complete set of basis functions ^0,, which are the eigenfunctions of the Hamiltonian [43],
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4 W ^ (r ')
<:|ry) 5  EF-E„+ifi/2n ’

so that the normalization integral becomes,

i, . . .  _  A M A M ^ W A M
/ dr I G(r.r') | 2 »  /.Ir >; ------------ — -------- —

/9

(4.A2.2)

’ —! rTT.„_F. -4-ffi/2T:¥F,t,-E  i—tfi/2T:)
(4.A2.3)

Because the functions lIpa form a complete set,

/ dr •?î (r)'0a.(r) == Sa  ̂ , (4.A2.4)

which is simply a statement of completeness. This is precisely the integral required by 

Eq. (4.A2.3), so that after summing over /3, our result simplifies to

Jdr I G(r,r') | =  — S  I ^a(r ) I (Ep- E a)2 +  (W2ri f  ' (4-A2.5)

If we define x = li/2rj and e =  Ef- E q,, we can better appreciate the form of this func

tion, ■

/d r  I G(r,r') | 2
X

e2 +  x2
(4.A2.6)

We recognize that one definition of the Dirac delta function is

Iim X j  =  TT 5(e) , (4.A2.7)
x—>o e2 + X 2

so that if the inelastic scattering time Ti is large,

/d r  I G(r,r') I2 =  -$-2 IAMl 2̂ Ep-E.) . (4.A2.8)

In the limit of zero-temperature, the density of states is defined as
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, ' N0(r) =  E  I I 2̂ Ef - ^ J  , -  (4.A2.9)

and we obtain our normalization condition Eq. (4.A2.1), as was to be shown.

Appendix 4*A3 Classical Trajectory in Electric and M agnetic Fields

In Section 4.4.1, we required the classical trajectory of an electron in the presence 

of uniform, constant electric and magnetic fields. This appendix contains a derivation 

of the trajectory, starting with an expression for the velocity from classical mechanics,

* dvF =  m e(E +  vxB) , (4.A3.1)

If we assume a magnetic field oriented along the z-axis, and an' electric field in the x-y 

plane, this simplifies to two coupled differential equations,

*d(v)x

d (v )j

eEx +  eB(v)y ,

eE -  eB(v)x ,

(4.A3.2a)

(4.A3.2bj

from which we eliminate (v)y, to obtain

d2(v)x
+  wC2(V)s ;2^y 

c B
(4. A3.3)

We have introduced the cyclotron frequency for an electron Wc =  | e j B/m* to simplify 

the constants. Solutions to Eq. (4.A3.3) are of the form,

E,:
(v)x =  a  sinwct +  (3 coswct +  ~ -

B
(4.A3.4a)

Substituting the solution for (v)x into Eq. (4.A3.2a), we obtain a corresponding solution 

for (v )r
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(v)y =  —O' coswct +  A sinwct — ^ (4.A3.4b)

We assume that the components vx and vy of the initial velocity are known, so that the 

constants a  and A are determined from Eqs. (4.A3.4) at t=0,

E,;
Vv A + ZL

B ’
(4 .AS. 5 a)

Vv - a  — (4 .A3.5b)
y B ,

Solving for a  and A an<l substituting the results into Eq. (4.A3.4a),we obtain the x-

component of velocity 

*x- sincuct + aV +Tx
ay

cosw.t — •—- ,
CU,

(4.A3.6)

where we have introduced a; as the acceleration due to the electric field, a j—eEj/m • 

The x-component of the trajectory can be determined from Eq. (4.A3.6) by integrating 

over time,

x0(t) = /  (v)x dt'
: O V'

(I — coswct) +
wC

since't — ——t , (4.A3.7)
co,

which is otir final result.
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A p pendixA

QUANTUM  DEVICES (A REVIEW)

The following is a text of the keynote lecture delivered at the session on Transport 

and Spectroscopy in 1-Dimensional Systems at the 4th International Conference on 

Superlattices, Microstructures and Microdevices, Trieste, Italy, August 8-12, 1988 (to 

appear in SuperlMfoces and Microstructures, Academic Press).

I. What is a quantum device?

Device analysis has traditionally been based on semiclassical transport theory 

(Boltzmann equation, drift-diffusion equation etc.) which views electrons as particles 

that obey Newton’s law in an external electric field and are scattered occasionally by 

phonons and impurities. Simply stated, a quantum device is one that can only be 

understood taking the wave nature of electrons into account. A variety of quantum 

effects in electronic transport have been observed and studied over the years such as 

tunneling, resonant tunneling, weak and strong localization and the quantum Hall 

effect. In this talk, however, we will concentrate on three interrelated quantum effects 

that have been observed since 1985: the Aharonov-Bohm effect, conductance fluctua

tions and non-local effects. We will review these exciting developments emphasizing 

their implications for electronic devices of the future.



2. Why aren’t quantum effects more common?

It is well-known that electrons possess Waye-Iike properties and show interference 

much like electromagnetic waves. Why is it that in dealing with microwave networks or 

integrated optics we routinely worry about interference and yet we ignore it completely 

in the analysis of conventional electronic devices? There are three distinct reasons. 

Firstly, the wave nature manifests itself only when the device size is comparable to a 

wavelength which is ^lcm. for microwaves, ~~l/im. for light and ~100A for electrons in 

semiconductors. As we know, geometrical optics is usually adequate for describing ordi

nary optical systems using lenses and prisms while wave optics is necessary only when 

the medium varies on the scale of microns as in a diffraction grating or in integrated 

optics. Similarly, Newton’s laws provide an adequate description of electronic motion in 

vacuum tubes or large semiconductor devices. But a wave description based on the 

Schrddinger equation can become necessary in describing electron transport in sub

micron structures. Secondly, inelastic processes due to phonons and other electrons 

within the device destroy phase coherence and interference phenomena. (Strictly speak

ing, phase-breaking is caused by any scattering process in which the scatterer changes 

its state. This includes scattering by a magnetic impurity if it changes its spin state, 

though the process may be elastic). Assuming an inelastic scattering time ~40ps. at 

T~1K and an average electron velocity ~2.5xl07 cm/sec. we obtain an inelastic mean 

free path ~10/mi. (This number will be significantly smaller at higher temperatures 

and for hot electrons. We will concentrate on ‘cold’ electrons near the Fermi energy.) 

Advances in microfabrication have now made it possible to build devices much smaller 

than a micron so that there is hardly any scattering within the device. In fact, the 

usual description of ‘quantum devices’ is based on the assumption that all inelastic
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scattering takes place in the contacts and not in the device. Under these conditions, we 

can expect electronic devices to behave more like microwave networks than like ordi

nary circuit elements.

Finally, it should be noted that while in electromagnetics monochromatic waves 

and single-moded waveguides are quite common, electron waves in solids commonly 

have a large spread in their energy (analogous to the frequency of classical waves) and 

electron waveguides are commonly multimoded (the ‘modes’ of an electron waveguide 

are commonly referred to as subbands.) This gives rise to a large spread in the 

wavelengths of the electrons which tends to wash out interference effects. It is for this 

reason that electron microscopists, who use the wave properties of electrons to deter

mine crystal structures, try to obtain a monoenergetic and well-collimated beam of elec

trons. At low temperatures and low voltages only electrons near the Fermi level contri

bute to the conductance so that the energy spread is small. The number of modes M is 

approximately equal to U31Z2W where ns is the areal density of electrons and W is the 

width of the device. A simple estimate shows that with ns =  3.6xlOn cm~2, a single- 

moded quantum wire needs to be ^200A. This may seem somewhat discouraging, but 

recent experiments have shown that semiconductor wires have a fairly wide depletion 

layer (3000-4000 A) surrounding the actual conducting channel, much like the cladding 

layer in an optical fiber. This means that with adequate process control it may be pos

sible to fabricate single-moded quantum wires with a physical width ^*4/xm. which is 

well within the reach of present-day technology [1-4]. Recently by using a gate to 

reduce gradually the width of a point contact, the number of transverse modes (and 

hence the conductance) was observed to decrease in discrete steps to one [4]. Such 

single-moded quantum wires raise the possibility of duplicating with electron 

waveguides many of the device concepts that are well-known in integrated optics.
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There is another point that we would like to emphasize. We usually regard mul- 

timodedness as an undesirable element that severely reduces interference effects. It is 

generally believed that if there are M different modes, then the magnitude of interfer

ence effects is ~ l/M . However, this is only true if the different modes have completely 

random phases. Experiments on metallic wires and rings indicate that in many physical 

configurations the different modes are not totally uncorrelated, leading to quantum 

interference effects far in excess of the l/M  estimate. For example, conductance oscilla

tions ~.1% due to the Aharonov-Bohm (A-B) effect were observed in metallic rings with 

M^1O5-IO 6 [5]. Conductance fluctuations ~e2/h have been observed in metallic and 

semiconductor samples with widely varying values of M [5-8]. This shows that multiple 

modes are often correlated despite the apparent randomness. More interestingly, with 

the present advances in microtechnology, it may be feasible to engineer structures where 

multiple modes are correlated in such a way as to produce large interference effects. 

For example, the device described in Section 5 is ideally expected to show nearly 100% 

interference effects even as M—oo. Of course, much experimental work remains to be 

done before we know the degree of correlation amongst the multiple modes that can 

actually be achieved with real semiconductor structures. This is an important con

sideration since a major concern about single-moded quantum devices is their low

current capability.

3. Theoretical Background

There are two types of device concepts that we will discuss. The first type is based 

on the Aharonov-Bohm effect where the current in a two-port quantum device (Fig. I) is 

controlled by changing the potential (vector or scalar) distribution within it. The 

second type is based on non-local effects where the current in a multi-port quantum dev

ice (Fig. 2) is controlled by changing the boundary conditions at one port.
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ContacTb'Contact 'a'

Lead 'b\

Device

Fig. I: Schematic diagram of an arbitrary device Connected to the contacts througl 

two leads; all inelastic scattering and dissipation is assumed to occur only in th< 

contacts and not within the device. In general, the problem is to calculate tht

scattering matrix S =
r t'
t Tt for the device, given the potentials V(r), A(r).



Device

Fig. 2: (a) Schematic diagram of a multiport (3-port) quantum device. As in Fig. I, it 

is assumed that inelastic scattering and dissipation takes place only in the 

contacts.

(b) Equivalent resistor network in zero magnetic field
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(a) Two-probe Landauer Formula

Before getting into specific structures, let us briefly state the basic approach, that is 

commonly used to describe the behavior of quantum devices [9-13]. The device is 

assumed to be connected to two contacts by perfect leads that allow electron waves to 

propagate freely without any scattering. Inelastic scattering processes (and hence dissi

pation) are assumed to take place only in the contacts and not within the device. Under 

these conditions we can describe the propagation of electrons with a fixed energy E from 

lead ‘a’ to lead ‘b’ using a scattering matrix (Fig. I).

Ia
Ib-

r(E) t'(E) 
t(E) r'(E)

a '
b+ ( I )

Here a+,a_(b+,b~) are the amplitudes of the incoming and outgoing waves respectively 

at lead ‘a’ (‘b’). The lead is viewed as a waveguide having a discrete set of modes or 

subbands. The amplitudes a+>a_ are both (Maxl) column vectors where Ma is the 

number of modes in lead ‘a’. Similarly r is an (MaxMa) matrix, t i s mi (MbxMa) matrix 

and so on. If we know the scattering matrix for a device, we can calculate the current I 

for a voltage V0 from the following expression. (Actually J tnm | 2 in eq. (2) should be 

replaced by (] tnm | 2 •+ J tmn j 2)/2. However, even though in a magnetic field | tnm | 2 

may not equal | tmn | 2 the two terms are equal after summing over n and m [14]).

Op -Ma Mb' ■.
I =  f-/d E [f(E ) -  f(E-HVD)] £  S l t lln(E)I2 (2)

n -.-In=In=I"

Here f(E) is the Fermi-Dirac factor. For small voltages we can simplify eq. (2) to

Vr
-JdE

m

M. Mi
S S IW E) I '

m=ln=l
(3a)

At low temperatures —df/dE  ~  (̂E—Ef ), so that we can further simplify eq. (3a).
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a 2 Ma Mt
- T -  E E I w (E f ) I 2 (3b)

m =ln=l

This formula is known as the two-probe Landatier formula; it reduces the problem 

of calculating the conductance to a scattering problem not unlike those encountered in 

microwave circuits or integrated optics. We will not go into the details but the scatter

ing matrix S
r t' 
t r'

can, in principle, be calculated from the Schrbdinger equation if

we are given the scalar and vector potentials V(r), A(r) in the device.

(p -eA )2
2m*

+  eY ^(r) =  E^(r) (4)

p is the momentum operator defined by p = —ihV. If there is no magnetic field present 

then the vector potential A  can be taken to be zero and eq. (4) simplifies to

Otyi* '
V2̂ f =  —̂ - ( E  -  eV)^ (5)

Ir

The scalar potential eV(r) includes any discontinuities in the band-edge due to hetero

junctions, band-bending due to space charge as well as any microscopic scattering 

potential due to defects, impurities etc. It will be noted that eq. (5) is very similar to 

Maxwell’s equation used in integrated optics.

V 2 B  =  - ' J f i e { r ) B  (6)

Here B  is the electric field, to is the radian frequency, f i  is the permeability and e is the 

spatially varying dielectric constant; we have assumed B  * Ve == O for simplicity. Com

paring eq. (5) to eq. (6) it is evident that electron waves moving through a medium with 

a varying potential V(r) is analogous to light moving through a medium with a varying 

dielectric constant (or refractive index). As we might expect, the quantum interference 

devices we will discuss have well-known optical or microwave analogs.



It is easy to see that eq. (2) when applied to a resonant tunneling diode [15], 

reduces to the familiar expression [10]. In a resonant tunneling diode, neglecting any 

impurities or defects, the potential V(r) varies only in the direction of propagation so 

that electrons are not scattered between different transverse modes.

W E )  = T m(E)fJ1nm ; m

Substituting eq. (7a) into eq. (I),

■/dE[f(E) -  f(E+eVD)]S  I Tin(E) | (7b)

Usually the cross-sectional area, A, is fairly large so that one can replace the sum over 

modes m by an integral over transverse wavevectors kt to obtain the familiar expression

A - JdElf(E) -  f(E+eVD) l / - i  I T(Ejkt) | 2 '(7c)’

We will not discuss this device further since it is very well-known and is the subject of a 

separate session. We mention it only to reassure ourselves that the conceptual frame

work we are discussing is only a generalization of concepts that we are quite familiar 

■with.: ’■''■■■ ;.

(b) Multi-probe Landauer Formula

So far we have discussed structures having only two leads (Fig. I). However, the 

same basic formalism can be extended to describe structures with multiple leads such as 

the one shown in Fig. 2a [13]. Such multiport planar networks have found extensiveuse 

in millimeter-wave integrated circuits and integrated optics [16]. We could calculate a 

(NxN) scattering matrix describing an N-port network, for electrons with energy E=Ef . 

At low temperatures and Iowr voltages only these electrons contribute to the conduc

tance (eq. (3b)). With N = 3, we have,
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Eacll BteMeiit of the scattering matrix is itself an (MxM) matrix if there are M modes in 

each lead. Biittiker [13] showed that the currents Ii(i=a,b,c) are related to the chemical 

potentials //i(i=a,b,c) by the relation (Fig. 2a)

Ii = IT  S TijMi -  Tjiflj (8b)
- h j=a,b,c

where

M
Tii= S KtiiWl2 (8C)

m,n=l .

In the absence of any magnetic fields, TiJ ■== Tji so that eq. (8b) can be written as

Ii =  -T" S  Tij(Zij -Mi) (9a)
h j=a,b,c

Eq. (9a) is basically the equation one obtains by applying KirchholFs laws to the three- 

node resistor network shown in Fig. 2b. The conductance Gai, connecting nodes ‘a’ and

‘b’ is given by

(9b)

Similarly Gac is given by

(9c)

and so on. In general this concept can be extended to model any N-port structure as a 

network with N nodes connected pairwise through N(N-l)/2 resistors, as long as there is



no magnetic field. A quantum device is thus non-local in character. A change in poten

tial at one node changes the currents at all other nodes.

(c) Continuous-probe Landauer Formula

In both Figs. I and 2 it is assumed that there is no inelastic scattering within the 

device; all the dissipation takes place in the contacts. Biittiker has applied the mul

tiprobe formula to simulate the effect of inelastic scattering within a structure by con

necting a side branch leading to a phase-randomizing reservoir. We have shown [17] 

that distributed inelastic scattering processes (provided the scattering rate depends only 

on the local electron density n(r) and is equal to n(r)/Vi where T i is the inelastic scatter

ing time) can be modeled with a continuous distribution of side branches, linking the 

main structure to reservoirs. Generalizing eq. (8b) to an infinite number of probes dis

tributed uniformly throughout the structure (not just at the boundaries) we can write

•2p2:
1C1Od r =  dr/dr'{T(r,r')At(r') -  T ^ r ^ r ) }  (IOa)

The problem is to determine T(r,r'). We have shownthat

T(r,r') =  I GF(r,r') | 2 (IOb)

GpCrJrO the Green function of the Schrbdinger equation including an imaginary 

potential ih/2rj.

. - 1 3 2 -

(Kk I I . !r r !! (10.-J

H =  (p — eA)2/2m* +  eV (IOd)

In the absence of any magnetic fields, T(r,r') =  T(r',r), so that we can view the struc

ture as a continuous network of resistors Every volume element dr' is connected to
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every other volume element dr by a conductance G^^^drdr' — (2e2/h) T(r,^,)drdr,. It
I ' ' ' ' - ' ' ■

can be shown that because of the imaginary potential ih/2Tj, the conductances G(r,r) 

only extend over a finite spatial range | r—T1 1 Lj where Lj is the inelastic mean free 

path. In general we have a continuous network where every point is connected to every 

other point within a radius equal to the inelastic mean free path; the individual conduc

tances are calculated from eqs. (10). The non-locality of quantum devices is thus res

tricted to a range equal to an inelastic mean free path.

4. Conductance Fluctuations

Consider a rather mundane device: a simple resistor with a random array of static 

scatterers (Fig. 3a). We can calculate its conductance G from eq. (3), once we have 

determined its scattering matrix. We will not go into the details of how we calculate 

the scattering matrix but suppose we move a single scatterer out of an array of 100 

scatterers and calculate the conductance G as a function of the location of the scatterer. 

As we might expect, the conductance fluctuates (Fig. 3b) because of interference 

amongst the many multiply reflected waves [18]. However, one would normally expect 

the size of the fluctuations to go down as —l/M . The surprising fact is that the size of 

the fluctuation AG is ~e2/h independent of M  [19,20]. Such ‘universal conductance 

fluctuations’ have been observed experimentally in metallic wires and narrow 

MOSFET’s as a function of the magnetic field and the Fermi level (this is more con

venient but is believed to be equivalent to moving one scatterer within the sample) 

[1, 6- 8] .

Another interesting fact is that if we neglect interference effects altogether and cal

culate the transmission probabilities semiclassically (such as by using Monte Carlo simu

lation) we obtain a larger value than we get quantum mechanically. The semiclassical 

conductance Gc is Iarger than the average quantum conductance < G >  by —2e2/h. A
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(Normalized to the wavelength of the lowest transverse mode)

Fig, 3? (fc) A resistor with an array of static scatters

(b) Conductance fluctuations as a function of the location of the middle 

scatterer. The remaining scatterers in the array of 100 are hot moved.
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small applied magnetic field destroys interference effects and causes the conductance to 

increase from < G >  to Gc . This is known as the weak localization effect and has been 

observed experimentally in thin metal films and MOSFET’s [21].

The two effects mentioned in this section - weak localization and conductance 

fluctuations - do not appear to have any device applications and were discussed mainly 

for completeness. However, both these phenomena illustrate an important point: even 

under apparently random conditions quantum interference effects may not decrease as 

1/M due to hidden correlations.

5. Aharonov-Bohm Effect

Most of the work done on the Aharonov-Bohm effect in solids [1,5] has utilized 

lithographically defined ring structures of the form shown in Fig. 4a. This structure 

provides two alternative paths between the two leads and seems like an obvious struc

ture for observing quantum interference. In fact an optical analog of this structure 

known as the Mach-Zender interferometer (Fig. 4) is used as an optical modulator in 

integrated optics [22]. The transmission of light through the structure is modulated by 

changing the phase difference between the two arms through their refractive indices; 

this makes the wavelengths in the two channels different for the same frequency. In 

view of the similarity between eqs. (5) and (6) we might expect that for electron waves, 

the phase difference between the two arms can be changed by changing the potential Y 

of one arm with respect to the other. This requires an electric field S in the plane of the 

ring and is known as the electrostatic Aharonov-Bohm effect which has not yet been 

clearly demonstrated in solids, though there is some preliminary experimental evidence 

[23]. What has been observed unequivocally in solids is the (magnetic) Aharonov-Bohm 

effect where the vector potential A  of one arm is changed with respect to the other by

applying a magnetic field B perpendtcu/ar to de plane o / t/ie rmff.



Channel 1

Channel 2

Fig. 4: (a) King structure commonly used in Aharonov-Bohm experiments in solids.

(b) An optical analogy: the waveguide Mach-Zender interferometer. The 

refractive index in Channel I is controlled with the gate voltage Vq 

through the electro-optic effect.

(c) Dispersion curves a^kx,ky =  0) for the lowest guided mode in the three 

regions.



Neglecting multiple reflections, we can write

W t e t W + t f f i  (Ila)

where the superscripts I and 2 represent the transmission amplitudes through the two 

arms of the ring in the absence of any external fields. Assuming that t ^  and t||^ have 

approximately the same magnitude but differ in phase by #nin we can write from eq.

(Ha),
I I 2 = 2 11£ I 2(1 + Cos^nm) (Hb)

A magnetic field changes the phase-shift 0nm and thereby modulates the transmission 

probabilities | tnm | 2. Assuming that the different transmission probabilities 11W | 2 

are nearly equal and that Anm(B) =  Anm(O) +  anmB we can write from eqs. (lib ) and

(3b) ,

G - G 0E  I  +  cos(Anm(0) +  CVnmB ) : ■'  ̂ ( 1 2 )
m,n :

Tf we assume that the coefficients anm are nearly equal then it is apparent from eq. (12) 

that the conductance will oscillate as a function of the magnetic field B with a period 

equal to 2n/a. If the zero field phase Anm(O) corresponding to different tnm are com

pletely random, it can be shown that the percentage conductance modulation 

AG /G ~ l /M, M being the number of modes [12]. However, as we have mentioned ear

lier, experiments on metallic rings have shown conductance modulations far in excess of 

1/M indicating that the zero field phases are partially correlated. Experiments have 

also revealed the importance of using rings whose thickness is small compared to the 

diameter. This can be understood as follows. It can be shown that the coefficients Ofnm 

are approximately equal to eA/ti where A is the area enclosed by the two arms of the 

ring. This means that there is a spread in the values of a'nm proportional to the 

difference in the areas enclosed by the inner and outer diameters. If this spread is large,
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there is no unique period to the Aharonov-Bohin oscillations and the conductance varia

tion appears more like random fluctuations [5].

It seems that for device applications the electrostatic Aharonov-Bohm effect would 

be more suitable than the magnetic one. There is an important distinction between the 

magnetic and the electrostatic Aharonov-Bohm effects. It can be shown that for the 

electrostatic effect the phase-shift is proportional to the potential difference V12 between 

the two arms of the ring: n̂m(V12) =Vnm(O) +  Q̂ mV12. The coefficients a 'm are

approximately equal to ert/h where T t  is the transit time for an electron through the 

ring. This makes the electrostatic effect difficult to observe since under the usual condi

tions of diffusive transport since there is a large spread in the transit times [24]. The 

situation is analogous to the magnetic effect in rings with poor aspect ratios (=  inner 

diameter/outer diameter). For this reason it seems that ballistic structures with 

minimal multiple reflections which minimize the spread in transit times are more suit

able for observing the electrostatic effect. The structure that we have proposed as a 

possible design for a ‘Quantum Interference Transistor’ (QUIT) is shown in Fig. 5a [25- 

30]. It is basically an ordinary Field Effect Transistor (FET) with a barrier in the mid

dle of the channel. The length L is small enough that electrons travel bdllistically across 

it. The channels are narrow enough to be single-moded in the z-direction. One way to 

fabricate this structure may be to grow a barrier layer over the entire film, interrupt the 

growth to etch away the barrier where it is not needed and then continue the growth 

process. The major challenge lies in ensuring the quality of the regrown interfaces. At 

this stage it is not clear whether this structure or the lithographically defined ring struc

ture will eventually prove more suitable for device applications. An obvious concern 

about the structure in Fig. 5a is its poor aspect ratio. However, we believe that if the 

structure is single-moded in the z-direction, the aspect ratio is not very important. This 

is because every electron has a unique wavefunction in the z-direction (shown in Fig. 5a)
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Fig. 5: A proposed Quantum Interference Transistor. The structure consists of a 

conducting channel with a barrier in the middle. Also shown is the calculated 

conductance versus potential difference between the channels.



and hence a unique phase-shift in an electric or magnetic field; hence there is, theoreti

cally, no spread in 8.

Experiments on rings in high-mobility GaAs/Al GaAs heterostructures with M <C 

10 have shown, conductance modulations ~10% in a magnetic field. The obvious way to 

increase the percentage conductance modulation (AG/G) is to reduce the number of 

modes; however, this does not increase the absolute conductance modulation (AG). If 

we could ensure perfect symmetry between the two channels in the structure shown in 

Fig. 5a then it is theoretically possible to attain a 100% modulation in the conductance 

even if the structure is very wide in the y-direction so that M-^oc [25-30]. This is 

because the conditions of perfect symmetry, ballistic transport and single-modedness in 

the z-direction imply a perfect correlation among the different modes so that the zero 

field phases ^rm(O) are all zero, leading to a AG/G far in excess of the l/M  estimate. 

To what extent this perfect correlation can be implemented in real semiconductor struc

tures, only future experiments can tell.

Since we have assumed only a single mode in the z-direction the subscripts n,m in 

eq. (lie ) refer to modes in the y-direction. In a ballistic structure there is no scattering 

among these modes so that with the zero-field phases equal to zero we can write

G ~  G0£ ( l  +  coso4 v 12) (13)

To compute the phase-shift CvniV12 induced by a gate voltage we note that the disper

sion relations for the two channels can be written as,

E — C1. m +
H2Ie12
2m* (14 a)

'2,m +
tfkI
2m*

(14 b)

where Ic1 and Ic2 are the wave numbers in the x-direction and elm  and e2 m are the



energies at the bottom of subband lm’ in channels I and 2 respectively. Without a gate 

voltage, the two channels have been assumed perfectly symmetric so that eJ m — 2̂,nr 

But an applied gate voltage changes the average potential in channel I with respect to 

that in channel 2. It can be shown from lowest order perturbation theory that

. (15a)

where

V12 =  <1 I V(z) 11> -  <2 I V(z) I 2>  (15b)

11>. and I 2>  are the wavefunctions in the z-direction in channels I and 2 respectively 

as shown in Fig. 4a. Using eqs. (14a), (14b) and (15a) we have

; «mV12 =  (Ici-Ic2)L =  eV12L/hv V (16 a)

where

v =  h(k1-t-k2)/2m* (16b)

Xhe velocity v for a given energy E is different for different modes, m, since CljU, and 

e2 m are different (eqs. (14a,b)). Consequently, the coefficients am varies slowly from one 

mode to another. Fig. 5b shows the normalized conductance as a function of V12 calcu

lated for a structure that is assumed very wide in the y-direction so that the summation 

over m in eq. (13) can be replaced by an integral over ky. A conductance modulation

AG/G~90% is predicted even though M —*• oo! In this structure AG/G is far in excess 

of 1/M because we have deliberately engineered it to ensure that with V12 =  0, every 

mode m interferes constructively leading to a maximum in the conductance. Future 

experiments will show to what extent this perfect correlation amongst the modes can be 

implemented and how deleterious the inevitable asymmetries in real semiconductor 

structures will be. One way to get a large percentage modulation AG/G in the conduc

tance despite the asymmetries is to restrict the number of modes by making the
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structure narrower in y; the absolute magnitude of the conductance modulation AG, 

however, would decrease.

The attractive feature of this proposed Quantum Interference Transistor is the 

very small potential (~mV) that is required to operate it. This may result in large tran

sconductances and low power-delay products [28]. It seems that the speed of operation 

of this device should ultimately be limited by the transit-time across the two-channel 

region of length L. However, as L is decreased the potential difference V12 required to 

switch the device is increased and becomes comparable to the potential required to 

deplete the channel if L becomes comparable to the DeBroglie wavelength of electrons 

(kL^27r).

>From an applied point of view an important question is the temperature range 

over which the device can operate. Temperature affects the operation of the device in 

two distinct ways. Firstly, it increases the energy spread of the electrons so that the 

variation of SB over E (as well as ky) is important as we discussed earlier. Secondly, it 

increases the inelastic scattering in the device. It seems that even at 77K, L can be 

made small enough that inelastic scattering should not be excessive. However, only 

further experiments can answer these questions conclusively.

6. Non-local Effects

Consider the four-probe Hall bridge shown in Fig. 6a. Ordinarily we would expect 

(Vb-V a) to be some fraction of the voltage V applied across the structure. However, if 

inelastic scattering is negligible within the structure, then even this simple everyday 

structure holds some surprises. According to our discussion in Section 2 we could view 

this multiport quantum device as an interconnected network of resistors as shown in 

Fig. 6b. To calculate (Vb-V a) we can calculate a Thevenin equivalent as shown in Fig.

6c with
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A four-probe Hall bridge whose dimensions are much smaller than an inelastic 

mean free path.

(a) Configuration.

(b) Equivalent Resistor Network.

(c) Thevenin’s equivalent for the network in (b).
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Vt - V Gbc Ga
Gbc-HGw Gac-HGad

\

(17a)

1 +  1
Gbc+Gbd Gac-HGa

(ITb)

It is apparent from eq. (17a) that depending on the relative values of the different con

ductances Vt could even be negative as pointed out by Biittiker [30]. It is hard to 

’ rationalize a voltage drop that is opposite to the direction of current flow, though it fol

lows quite simply from our resistor network model. One way to ‘explain’ it is to say 

that the voltage probes are affected by everything within an inelastic mean free path 

and do not just measure the local potential. A variety of such non-local effects have 

recently been observed [2,3,7,8,31,32].

Multiport structures of the type shown in Fig. 2a can be used to implement transis

tors of a somewhat different type than that discussed in Section 8.2 [33,34]. Consider 

the 3-pOrt network shown in Fig. 7a; ohmic contacts are made to two of the ports while 

a Schottky gate is used to change the phase of the reflection coefficient at the third 

port. As every microwave engineer knows, the transmission between two ports is 

influenced by the load conditions at the third port. Thus, if we change the phase of the 

reflection coefficient at port 3 by changing the gate potential, it should affect the 

current that flows between ports I and 2 labeled source and drain. The surprising 

feature of this device is that the gate is not positioned between the source and the drain 

as we are accustomed to expect in electronic devices. It can be located anywhere within 

an inelastic mean free path. However, this ‘remote control’ is well-known in microwave 

networks, and may find useful applications in quantum devices of the future.

For a quantitative description of the operation of the device in Fig. 7a we need the 

scattering matrix describing the 3-way splitter.
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Fig, 7: (a) A proposed quantum transistor with a remote gate. The gate potential 

changes the phase difference between the two primary paths between the 

source and the drain.

(b) Normalized conductance as a function of the length L in wavelengths for a 

device with one propagating mode (M = I).

(c) Normalized conductance as a function of the length L in wavelengths (of 

the lowest mode having the shortest wavelength) for a device with eight 

propagating modes (M=8).
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/ \
S - r SS t SD t SG S+
D - ■ = t DS r DD t DG D +
G -\ / t GS t GD r GG ̂ /

G +\ j

(18a)

We have used Si , D i , Gi  to denote the incoming and outgoing wave amplitudes at 

the source, drain and gate respectively; if the leads are multimoded then the amplitudes 

are column vectors as we discussed earlier. If the wave amplitudes G+ and G-  at the 

gate are related by the reflection matrix R

. G+ - R G - . .  ■■ ' (18b)

we can show from eqs. (18a) and (18b) that

where

(19)

r  — ^SS^SdC1 -R fGg) l R t DS (20a)

^ =  ŜD+ ŜgC1 -^ G G ^ ^ G D  . (20b)

t  =  tps+tD^I—RrQG^Rtcg (20c)

r> =  rDD t̂DGCi- :RrGG^B^GD (20d)

It is apparent from eq. (20c) that the transmission t from the source to the drain (which 

determines the conductance) can be modulated by changing the reflection coefflcient at 

the gate (R). We can get some physical insight by expanding eq. (20c) in a geometric 

series as follows



t  .== tj)g “I” tpQ R tQ g +  tj)G R* rGG ^GS ^DgQ^^Gg) ®\^GS (21)

The first term on the right in eq. (31) is the amplitude for direct transmission from port 

I to port 2 while the succeeding terms are the amplitudes for transmission after one, 

two, three, ,., reflections at port 3. If rqc is small, then we can write approximately

* -  tfiS +  %G H (^ )

With this approximation, we could view the device in Fig. 7a as providing two primary 

paths from the source to the drain with the gate controlling their interference, much 

like the AharonoV-Bohm device. Figs. 7b, 7c show the calculated conductance for two

specific devices having one mode and eight modes respectively. We assume that the

reflection coefficient R is given by

k„„ =  Km eik”L (2:i!

where km is the wavenumber of the mth mode at the Fermi level and L is the effective 

distance of the gate from the junction. Fig. 7b shows that the conductance is modu

lated b y 100% as the length L is changed. On the other hand for a device with eight 

modes, the variation in the conductance with L looks more like conductance fluctua

tions ~ e 2/h. It seems that devices of the type shown in Fig. 7a will only be useful if the 

number of modes is small. Using single-moded quantum wires at low temperatures we 

can conceive of a variety of devices analogous to well-known microwave and integrated 

Optical devices. Even the polarization of electromagnetic waves has its analog in the 

spin of electrons. It may be possible to exploit this degree of freedom in narrow gap 

semiconductors - having a large spm-6rbit coupling that can be controlled with a gate 

potential [35],



7. Quantum Networks

The device in Fig. 7a utilized one port in a 3-port structure to modulate the con

ductance connecting the other two ports. We could go a step further and utilize one 

port in an (N-f-l)-port structure to control the network of N(N-l)/2 resistors formed by 

the remaining N ports. Consider for example the structure in Fig. 8a with four ports 

connected to the side branches of a main waveguide. The gate potential shifts the 

standing wave pattern in the main waveguide and thus alters the couplings between 

different ports. A strong coupling occurs when two ports are both located on the peaks 

of the standing wave pattern while a port located near a trough of the standing wave 

pattern is only weakly coupled to the other ports. The coupling between two ports 

determines the magnitude of the conductance connecting the corresponding nodes in the 

equivalent resistor network (eqs. (9b,c)). We thus have a programmable resistor net

work (Fig. 8b) rather than a single resistor as in a conventional transistor. By connect

ing each node to a non-linear device such as a resonant tunneling diode (this can be 

done Vertically without external connections), we could implement a highly intercon

nected pattern of non-linear elements. If we model this device as a capacitance C in 

parallel with a non-linear conductance described by V =  f(I) then Kirchoff’s law applied 

to the circuit in Fig. 8b yields

dVj
C— d - T i + Y i( S C ij) =  ^ C ijYj (25)

.. J ' i •

where Vj =  f(Ij). Eq. (25) is very similar to the dynamical equations used to describe 

neural networks [36]. Clearly major hurdles remain to be overcome before such exotic 

devices become practicable. But it should be noted that the true power and utility of 

quantum devices may eventually lie not in the implementation of conventional transis

tors with a source, a drain and a gate (where the low current capability is a major hur-



r -
i / \t \i/  %.# \ AAAAAAAA

^14
-AAAA-

G
h— v w

J - V W
W

*— VNAA- 
1 Gj2

AAAA- -V W v— -'
2 G23 3 ®34 ^

Fig. 8: A programmable multiterminal quantum network.

(a) Configuration.

(b) Equivalent circuit. The dotted lines also show a non-linear conductance 

connected to each node.



die), but in the implementation of programmable multiterminal quantum networks that 

may lead to. radically new concepts for electronic devices.

8. Summary

In summary, we have discussed theoretically the possibility of two types of quan

tum devices. : The first is a two-port quantum device with two alternative paths con

necting the ports. The current is modulated by controlling the interference between the 

paths through the potential distribution in the device. A very small potential is needed 

to turn off the current so that large transconductances and low power-delay products 

are expected.

The second type of device uses one port in an (N-l-l)-port structure to control the 

network of N(N-l)/2 resistors formed by the remaining N-ports. If N = 2  we have a 

transistor with a remote gate. If N>2 we have a programmable resistor network that 

could be used to implement neural networks. Alternatively we could implement com

plex logical functions with a source and a drain controlled by multiple gates.
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Appendix C

SEQUAL RELEASE 2.1

The following pages summarize recent enhancements to the program SEQUAL 

(Semiconductor Electrostatics by QUantum AnaLysis). At the request of various users, 

some commands have been added to allow better control over the analysis. These addi

tions are explained, and example calculations are presented, which illustrate the 

improvements.

I



SE Q U A Ij R elease 2.1

At the request of various users, several enhancements have been added to 
SE QUAL. The purpose of this document is to explain the additions, and to illustrate 
the use of new input keys in example calculations. Important changes are as follows:

O  A card kzgrid was added to the input deck, allowing the user to specify the 
mesh in kz-space (see SEQUAL User’s Manual, p. 8). Although the automatic 
(default) mesh is recommended for most purposes, it is sometimes desirable to 
"zoom-in" on a particular region of the transmission coefficient in energy 
space; an example of this use is presented near the end of this document.

O  A key ttvar was added to the solve card, allowing the user more control over 
self-consistent calculations. Previously, the current density was used to 
determine convergence: When the required number of significant figures had 
been attained (specified by prec on the solve card), iteration was terminated. 
For equilibrium calculations, an exact cancellation of oppositely flowing 
currents is difficult to achieve. In this case, the current density should not be 
used to control convergence. Furthermore, the current density is identically
zero for bound state calculations, and therefore provides no information. The
new key itvar allows the user to specify which program variable, current den
sity or electrostatic potential (or both), should determine convergence.

O  For SEQUAL 2.0, results of a self-consistent calculation were written only 
uPbB convergence of the final solution. Because the execution time for a 
self-consistent calculation can be quite long, the partial results from each
iteration are now written (and over-written), according to the output requests
of the user (see card output in the user’s manual).

O  Previously, it was assumed that starting position for any device (i.e., the first 
value specified for “z” in an input file) was zero; this restriction has been 
removed. For many practical devices, an “interesting” region of the



potential is surrounded by large regions over which the potential is constant. 
Because the length of a device can substantially affect the execution time of 
SE QUAL, it is prudent to trim the output from classical analysis programs. 
It is therefore convenient that the position-space grid be allowed to start 
from any value.

Q  A (small) hug in the solution of Poisson’s equation (subroutine POISS) was 
corrected. This particular problem occurred only when the electron density 
was zero at some node, since a necessary logarithm became undefined. This 
problem prevented a self-consistent calculation of bound states, because the 
bound state wave function vanishes at the ends of the device. An example of 
a self-consistent calculation for the bound states of a AlGaAs/GaAs interface 
is presented near the end of this document.

The remainder of this update contains the following. Changes necessary to 
upgrade SEQUAL for use with MSL 10.0 are presented below. A summary of the syn
tax for the kzgrid and solve cards is presented, followed by two example problems illus
trating their use. Example output is presented for analyses of a double-barrier resonant
tunneling device, and an AlGaAs/GaAs interface.

C o n v e r s io n to IM S L  10.0
Solution of the bound states in SEQUAL 2.1 requires a solution of the eigensystem 

for a real general matrix. A subroutine in the MSL library is used for this purpose. 
SEQUAL 2.1 is released to be compatible with MSL 9.2, although the most current ver
sion of MSL is 10.0. To upgrade SEQUAL for use with this version, the following
changes must be made:

■t if IMSL is unavailable, any comparable eigensystem solver could be substituted in the 
subroutine BSTATE. If no such alternative is available, the bound state solution must be
removed from the program (see the Sequal User’s Manual, p. 59).

2 SEQUAL Revision Notes September 21, 1988



Section I — SEQUAL Release 2.1

Immediately before the first executable line in the main program, insert the 
following:

c
c zzz zzz zzz MACHINE DEPENDENT CODE zzz zzz zzz 
c
c If IMSL version 10.0 is not available, comment out 
c the following lines: 
c

common / worksp/  rwksp 
real rwksp(l26022) 

c
c —-------------------------- ------------------------------
c Create workspace for IMSL eigenvalue solver...
c —---------- —-----------—-------------------------------
c

if (imsl) then 
call iwkin(l26022) 

end if

□ At the start of subroutine BSTATE, add:
external evcrg, epirg 
real epirg

□ In subroutine BSTATE, the call to IMSL subroutine "eigrf" must be changed to 
the following two IMSL calls:

c
C zzz zzz zzz MACHINE DEPENDENT CODE zzz zzz zzz 
c
c If IMSL routines are unavailable, comment out the 
c following 2 lines, so that SEQUAL can be compiled: 
c

call evcrg(nodes,matrix,zimax,val,vec,zimax)
bsperf =  epirg(nodes,nodes,matrix,zimax,val,vec,zimax)

September 21, 1988 SEQUAL Revision Notes 3



Input Deck: kzgrid

kzgrid specify kz-grid for propagating states

Default State:

kzgrid auto=true Dom=O-O to=-0.0 steps= I

auto The key auto is a switch controlling the kz-grid specification. If true,
the automatic (default) grid is selected, and all other kzgrid keys are 
ignored. If false, the remaining keys specify the kz-grid. Points in the 
user-specified grid are uniformly distributed in kz-spaee, and form the 
basis for isolating wavefunction maxima (see Sequal User’s Manual, p. 
8). Because the user-specified grid may not always be sufficiently dense, 
the automatic grid is highly recommended for typical calculations.

from

The energy range for the user-defined kz-space grid is specified by the 
values assigned to from and to, in units of eV. For a given computa
tion, only a single energy range is allowed; however, results from several 
energy ranges can be obtained by multiple assignments to these two 

- keys.

The interval of kz-space corresponding to the energy range defined by 
from and to is broken into an equal number of intervals, according to 
the value assigned to steps. As for the automatic grid, the step size is 
uniform with respect to kz, not energy. Both the user-defined and 
automatic grids form a skeletal grid, to which kz-nodes corresponding to 
wave function maxima are added. It is this composite grid which is 
used for output of the transmission coefficient. Hence, the number of 
points on this grid may be larger than the value assigned to steps, and 
the spacing (even in kz-space) may not always be uniform.

SEQUALRevisionNotes September 21, 1988



Input Deck: solve

solve specify parameters controlling the analysis

Default State :

solve prec=3 itmax=9 itvar==jV states—prop . .inject'—both

prec The number of significant figures desired for important quantities can
be assigned to the prec key of the solve card. “Important” quantities 
include the electron density, the current density, and the Fermi-level in 
each contact. Since SEQUAL will struggle admirably (at the expense of 
CPU time) to achieve whatever precision is specified, the value should 
be kept within reasonable limits.

itmax For % self-consistent analysis, SEQUAL solves iteratively for the elec
trostatic potential and the electron density. Convergence is achieved 
when the number of significant figures in some quantity (between itera
tions) settles down to the number requested. To avoid excessive use of 
CPU time in obtaining convergence, SEQUAL terminates iteration when 
the number of iterations exceeds the value assigned to itmax, Therefore, 
iteration can be suppressed by specifying zero as the maximum number 
of iterations. If results are written to output files (see description of the 
output card), iteration can be continued at any point, by using the out
put of a previous run as the input device description file (see Figure 4.2 
in the Sequal User’s Manual).

itvar Self-consistent calculations are terminated when the quantity specified
by itvar achieves the requested precision. This quantity can be current 
density, electrostatic potential or both:

Value Quantity which determines convergence

j Current density
v. Electrostatic potential

jy> vj Current density and electrostatic potential

For bound state and equilibrium calculations, current density is zero, 
and the electrostatic potential is the recommended quantity for deter
mining convergence.

September 21, 1988 SEQUAE Revision Notep 5



Input Deck: solve

states Both propagating and bound electronic states can be considered in the
solution of the Schrbdinger equation, according to the value assigned to 
states: ' r'' 'y.

Value Implication

prop Consider propagating electronic states
bound Cpnsiderboundelectronicstates

all Consider propagating and bound states

The default is to consider only the propagating states, since bound 
states do not contribute to current density. Furthermore, the popula
tion of bound states is correct only for devices in equilibrium. For small 
deviations from equilibrium, however, the bound-state result obtained is 
a reasonable approximation to the correct solution. The consideration 
of bound states is particularly important for a self-consistent solution. 
Because the electrostatic potential is determined from the electron den
sity, the bound-state contribution (even if it is only approximate) can 
significantly alter the final result.

inject In the solution of Schrbdinger’s equation for propagating states, elec
trons can be injected into the device from two contacts. Each contact 
provides a separate contribution to both electron density and current 
density. The value assigned to inject determines which of the contribu
tions will be calculated:

Value Implication
l-to-r Consider electrons propagating 

from left to right 
(inject from left contact)

r-to-1 Consider electrons propagating 
from right to left 
(inject from right contact)

both Inject from both contacts

Because the vast majority of devices require an analysis with injection 
from both contacts, the default value is “both.” In special cases,

6 SEQUAL Revision Notes September 21, 1988



Input Deck: solve

however, the contribution from one contact may be insignificant. Con
sider, for example, the calculation of electron current for a p-n junction. 
Injection from the p-type contact is unnecessary, since the current com
ponent would be negligible.

September 21, 1988 SEQUAL Revision Notes 7



Exam ple I

The following represents a typical example use of the kzgrid card. A double- 
barrier resonant tunneling structure is analyzed with the default kz-space grid, and 
the resulting transmission coefficient is shown in Fig. I below. Squares mark the 
actual points output from SE QUAL. These points are a combination of the uniform 
(automatic) grid and extra kz-points corresponding to wave function maxima. Near 
the first peak in the transmission coefficient, the kz-grid appears to be a bit sparse. 
SEQUAL uses considerably higher resolution for integration of the wavefunction, 
although these additional: points are not printed out for the transmission coefficient. 
Therefore, to increase the output resolution of the transmission coefficient, we are left 
with two alternatives. The first is to reduce the automatic step size by assigning a 
fraction to the kscale parameter (see detailed discussion of the maxima card in the 
Seqhhl User’s hlanual). Although this solves the problem, it is a tremendous waste of 
CPU time, since we are only interested in increasing the resolution in a narrow band 
of energy. Instead, we add a kzgrid card to original input deck, and obtain the output 
attached on the following pages. A plot of the transmission coefficient with enhanced 
resolution is shown in Fig 2.

8 SEQUAIj Revision Notes September 21, 1988



Section 2 Example I

Transmission Coefficient

0.00000 0.500000.375000.250000.12500

. Energy (eV)
Fig. I A plot of transmission coefficient for a resonant tunneling stfUetufe.

Squares (□) mark the grid points obtained from an analysis using the 
default (automatic) grid.
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Transmission CoefRcient

0.120000.107500.095000.07000 0.08250

Energy (eY)

A plot of transmission coefficient in a small energy range near the first 
resonance. Squares (□) mark the grid points obtained from an analysis 
with a user-specified grid.
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Section 2 — Example I

--------  XXXX XXXXX XXXX XX XX XXXX XX
XX XX XX XX XX XX XX XX XX

-----XXX XXXX XX XX XX XX XXXXXX XX — ----------
XX XX XX X XX XX XX XX XX

XXXX XXXXX XXX X XXXXX XX XX XXXXXX ---------

SEQOAL 2 .1
-----------  Purdue U n iv e r s i t y

August 1988
------- ■------------------- ;------------ -

SEQUAL: in p u t  deck

★  *★  ★  * ** *:★  ★ *★ ★ **★ ★ *★ ★ *★ ★ ★ ★ ★ ★  .** ★ *★ **★ ** * + ** * *★  *•* *
** kzgrid example: resonant tunneling device **
** * *

. * * ' ■■ ' ; . ★  *
* * . . - : : j : : . : . '
* * gaas : algaas gaas : algaas : gaas **
★  * : x=0.3 : x=0.3 : * *-
** : v - : : * *
** : v ■' ” *★
*★ I I i I ★  *
★  * I - V  I I * *
* * V Y v  - r . - v  .. I I V .  I \  **
Vt ■ ■ ■ i I I I **
** I I I I V ★  *
★  * : : ' **

> * A > :< — — >:< ---------->. <— - - - - - - - > : <-— ---- --->■  **
* * 350 a 50 a 50 a 50 a 350 a **
* * ★  *
★  ★ -V 1 ** -
** : < - ——-  c o n ta c t  r e g io n s  —------ > : ★ ★

v ** <----— : <---------> **
* * 3 0 0  a : doped 1 . 0 e l 8  /cm**3 : 300 a **

■ ★ * ■/" . ** 
*************************************************** Tftr****

t i t l e  exam ple o f  manual k z g r id  s e l e c t i o n

» »  u se  o u tp u t  o f  p r e v io u s  s e l f - c o n s i s t e n t  a n a l y s i s  « «  
» > >  f o r  in p u t  i n  p r e s e n t  c a l c u l a t i o n .  « < <

in p u t  f i l e = r t d . z . . . k format=zev???dmk'

d e v ic e  te m p -3 0 0 .0  b ia s = 0 .0
s o l v e  itmax=0 prec^ 3  states=?prpp

» »  s e l e c t  manual k z -s p a c e  g r i d  to  zoom In on f i r s t  <<<< 
» »  q u a s i -b o u n d  s t a t e .  « «

k z g r id  a u t o - f a l s e  from =0.07 t o = 0 .12 S te p s sasSO

p r i n t  fo r m a tI=* fo r m a t2=* v e r b o s e —tr u e  1
ou tp u t  f i l e = r t d l  d a ta = d t

E x ecu t in g  a t o t a l  o f  I c a l c u l a t i o n (s) .
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SEQUAL 2.Icalculation I of I
page 2

Surnmary o f  Input In fo rm a tio n

l e f t  c o n ta c t  
I doping d e n s i t y :
! e f f e c t i v e  mass:  
t E f - E c r

0 .10000006E+19 /cm**3 ! 
0 .67000031E -01  mO ! 
0 . 41833043E-01 eV !

Nodes
watched::

0 >

, + - - --------+ < —
H  — —   Kf;!.
I/ / / / / / !  + <-
+----------+ '  !
! ! ! ! ! I !
! WW ! !

! ! :! i->r !
■■■' ! ' ! ! -V
V ! Y  'i" • -

I r - > l  ! !
-  • ! • - '• !

I A  A  A A  I I

; - im  i ;
101 > +--- ----+ ' !!//////! + <- ; ---- + '

0 .0  Angstroms

tem p era tu re :  
C r o s s - s e c t i o n a l  a rea :  

b i a s  a p p l i e d  t o  s t r u c t u r e :  
p r o p a g a t in g  e l e c t r o n  E t : 
i n t r i n s i c  c a r r i e r  c o n e . :

3 0 0 .0 0 0 0  K
1 .0 0 0 0 0 0 0  cm**2 
0.OOOOOOOOE+OO V

1 .0 0 0 0 0 0 0  Kb T0.17 90 0 0 0 OE+0 7 /cm* * 3

e l e c t r o n i c  s t a t e s  a re :  p r o p a g a t in g

8 5 0 .0  Angstroms

f '35 o p i n g ^ d e n s i t y r ' l " l 0 0 0 0 0 0 6 E + 1 9  /cm**3 ! 
I e f f e c t i v e  mass: 0 . 67000031E-01 m0 • 
i Ef -  E c : 0 .41833043E -01  eV _ v !

PROPAGATING Kz-GRID:

From en erg y :  
To e n e r g y : 

Number o f  s t e p s :

u s e r - d e f i n e d  en erg y  window;

0 . 70000052E-01 eV 
0 .1 2 0 0 0 0 0 6  eV

50

INPUT (ASCII ) 
r t d . z . . . k

fo r m a t :
zev???dmk

XX + - - —--— “ “T
XXXXXXXX I  
XXXXXXXXXX ! SEQUAL 2 .1  
XXXXXXXX !

XX + - — — — —

-+  XX OUTPUT (ASCII )
! XXXXXXXX r t d l . z . . . k 
! XXXXXXXXXX r t d l . t l r - e c  
!XXXXXXXX r t d l . t r l - e c  

— V v- XX
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Section 2 — Example I

ST AV h 1 1 ■ page 3c a l c u l a t i o n  I o f  I S t a t i s t i c s  and I t e r a t i o n  Data

example o f  manual k z g r id  s e l e c t i o n

WAVEFUNCTION FOR PROPAGATING ELECTRONS: Use o f  kz—sp a ce  nodes

I t e r a t i o n :  # 0

k z - s p a c e  nodes . . .  
used  in  i s o l a t i n g  maxima: 73

u sed  in  i n t e g r a t i o n :  288
m i s c e l l a n e o u s :  108

TOTAL: 469

WAVEFUNCTION FOR PROPAGATING ELECTRONS: I n t e g r a t i o n  co n ce rn s

I t e r a t i o n :  # 0

k ? -sp a c e  maxima found: 6

Average maxima s e p a r a t io n  
/  k z - s t e p

. . .  I e f t - t o - r i g h t : 3 .6 9 4 2

. . .  r i g h t - t o - l e f t :  3 .6 9 5 8

Number o f  k z - s p a c e  
i n t e r v a l s  i n t e g r a t e d :  12

G auss-Legendre i n t e g r a t i o n
h ig h e s t  o rd er :  10

lo w e s t  o rd er :  6
a v er a g e  o r d e r :  7
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SEQUAL 2 . 1calculation I of I
page 4

Comments on th e  C a lc u la t io n

example o f  manual k z g r id  s e l e c t i o n

TYPE REMARK SUGGESTION /  EXPLANATION

! W ifh ing  ! U s in g  a manual kz-grid f o r  ! E l e c t r o n / c u r r e n t  density I 
! ! i n j e c t i o n  o f  e l e c t r o n s  ! o b ta in e d  may be a f r a c t i o n  ! 
! ! in  p r o p a g a t in g  s t a t e s .  ! o f  th e  proper v a l u e .  !

SEQUAL Revision Notes September 14, 1988



example o f  manual k z g r id  s e l e c t i o n

SEQUAL 2.1
calculation I of I

Section 2 — Example I 

F inal R esults

C u r r e n t:

LEFT-to-RIGHT: - 0 . 490938E+04 A
RIGHT-to-LEFT: - 0 . 490959E+04 A

T o ta l  C urrent: 0 .210938E+00 A

V o l t a g e :

In Input F i l e :  0 .OOOOOOE+6(3 V
A p p l i e d B i a s :  O.OOOOOOE+gO V

T o ta l  V o l ta g e :  O.OOOOOOE+OO V

September 14, 1988 SEQUAL Revision Notes 15



Exatnple 2

As a demonstration of the itvar key, we perform a self-consistent analysis of 
bound states at an AlGaAs/GaAs interface. Because we are considering only bound 
states, current density is zero. In this case, the electrostatic potential alone should 
determine convergence. To specify this, we include itvar=v on the solve card. Out
put for this example is presented on pages that follow. (For a schematic view of the 
device, see output page I.)

The calculated sheet density for electrons confined near the interface is 
ns =  1.74x1012 cm-2. It is important to recognize that this density includes electrons 
in both AlGaAs and GaAs layers, as illustrated in Figs. 3 and 4. Fig. 3 presents the 
self-consistent conduction band profile, and F ig/4, the corresponding electron density, 
for a region of the structure near the interface. Although typically the AlGaAs layer 
is assumed to be depleted, in this case a substantial amount of the sheet density ns 
can be attributed to electrons in the AlGaAs layer.

Note that, according to SEQUAL, the device appears to be biased (see output 
pages 5 and 8 on the following pages). This is because the input structure was taken 
from FISHlD, a Semiclassical heterojunction analysis program. In FISHlD, all valleys 
(including F and X) are taken into account to determine the contact Fermi potentials, 
whereas only the F-valley is considered in SEQUAL. Therefore, a “bias” appears 
across the structure in SEQUAL, although the same structure is in equilibrium for 
FISHlD The “bias” can be removed in SEQUAL by applying additional bias to 
counteract it. However, in this example that is unnecessary. Bound states are popu
lated according to the Fermi level of the back contact, so this false ‘‘bias” can be 
ignored.

SE QUAL Revision Notes September 21, 1988



Section 3 — Example 2

Fig. 3

Energy (eV)
0.70000*

0.00000 0.05000 0.10000 0.15000 0.20000

Position (cm) ( x KT4 )

The self-consistent conduction band diagram for an AlGaAs/GaAs 
interface, obtained by considering only bound states.

Electron Density (/cm**3)

0.00000 0.05000 0.10000 0.15000 0.20000

Position (cm) ( x nr4)

Fig. 4 The total electron density in all bound states, for the region of the con
duction band shown above. Notice that the electron density in the 
AlGaAs layer (left hump) is substantial.
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_______ XXXX XXXXX XXXX XX XX XXXX XX — — ---------
XX XX XX XX XX XX XX XX XX

-------- XXX XXXX XX XX XX XX XXXXXX X X -------- — — --------
XX XX XX X XX XX XX XX XX

—  XXXX XXXXX XXX X XXXXX XX XX XXXXXX  ---------

SEQUAL 2 . I 
Purdue U n iv e r s i t y  

August 1988

SEQUAL: in p u t  deck

********************************************************
bound Statte exam ple: a lg a a s  /  gaas i n t e r f a c e* *  

* *  

** 
★  * 
* * 
* *  
*  *  
* *  

*  *  
*  ★  
* *  
*★  
** 
★  *

s c h o t t k y  b a r r i e r  I <—  p h i  -  0 .8 6

a l g a a s  ( x - 0 .3 )  I

I
I-
I _I I
I nd -  I . Oe18 /cm* * 3 I 

I gaas I
I nd = I . e l 4  / cm**3

I

I
v

I
V

500 a n g s t

9500 angst

** 
** 
* ★  
** 
** 
** 
** 
* * 
★  * 
** 
** 
** 
* * 
★  Hr

******** * * ****************** * * ******* * * * * ***************

t i t l e  b o u n d - s t a t e  exam ple: a l g a a s / g a a s  i n t e r f a c e

» »  o u tp u t  from f i s h l d  has p o s i t i o n  in  m icr o n s .  « «  
» »  s p e c i f y  s c a l e  f a c t o r  fo r  p rop er  l e n g t h  s c a l e . « «

in p u t  f i l e - i n . f i s h l d  form at»zvd??e???  
s c a l e  Cm=5I .  e4

m a tter  nodes=*5 0 /2 2 5  em ass—O.0 8 0 3 /0 .0 6 7  k rel=* ll  . 9 /1 2 .8 4 7  
doping n o d e s= 5 0 /2 2 5  nd+—I . e l 8 / l . e l 4

d e v ic e  tempss30d . 0 bias^O . 0

> > »  f o r  bound s t a t e s ,  t h e r e  i s  no c u r r e n t .  s e t  i t v a r - v  < « <  
» »  t o  u se  co n v er g en ce  o f  th e  e l e c t r o s t a t i c  p o t e n t i a l  < « <
>>>> as t h e  c r i t e r i o n  fo r  a s e l f - c o n s i s t e n t  s o lu t io n *  < « <

s o l v e  itm a x -1 0  p r e c -3  s ta t e s -b o i in d  i t v a r - v

p r i n t  fo r m a tI s=* fortnat2-*  verbose=5tr u e
ou tp u t  f i l e - i n t f a c e  d a ta -d b

E x e c u t in g  a: t o t a l  o f  I c a l c u l a t i o n (s)  .
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Section 3 — Example 2

SEQUftIi 2 . 1 , • p a g e  c
p r e l im in a r y  in fo r m a t io n  Summary o f  Input In form ation

b o u n d - s ta t e  exam ple:  a lg a a s / g a a s  i n t e r f a c e  ’

For a l l  c a l c u l a t i o n s ,  th e  f o l l o w i n g  assu m p tion s  a p p ly ,  
r e g a r d le s s  o f  d a ta  rea d  from in p u t  f i l e ( s ) .

, + — —

-------+ node 0
- - + ' I ' '

! !
! + node 50 

+ node 51 
!

■: ? J
! + node 225

, +----------- •• node 0
+ ---------+ '  !
! ! + node 50
+--------- +' + node 51+------- +' I
I ! + node 225

e f f e c t i v e  mass -  0 .8 0 3 0 0 1 E -0 1  mO
d i e l e c t r i c  c o n s ta n t  -  1 1 .9 0 0 0  eO

e f f e c t i v e  mass -  0 .6 7 0 0 0 0 E -0 1  mO
d i e l e c t r i c  c o n s ta n t  -  1 2 .8 4 7 0  eO

donor d op in g  d e n s i t y  * 0 .100000E+19 /cm**3

donor d op in g  d e n s i t y  •» 0 .100000E +15 /cm**3

+ -------------- + '
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b o u n d -s ta t e  ex a m p le : a l g a a s / g a a s  i n t e r f a c e

SEQOAL 2.1.calculation I of I
page 3

Summary o f  Input In fo rm a tio n

j E f - E c :  0 .3 0 0 8 7 0 0 9 E -0 1  eV !
Nodes ,+ — — — + <—
watched: !

!//////! + <-
0 > H——*—; —r*+' !

. ! 
I 
I 
! i
!
!

. I
!

0 .0  Angstroms

! !
I !
! !
! !
! I 
! !
! I 
! I  
I !
! +

tem p era tu re :  
c r o s s - s e c t i o n a l  area :  

b i a s  a p p l i e d  to  s t r u c t u r e :  
p r o p a g a t in g  e l e c t r o n  E t : 
i n t r i n s i c  c a r r i e r  c o n e . :

3 0 0 .0 0 0 0  K
1 .0 0 0 0 0 0 0  cm* *2 

0.00000000E+00 V
1 .0 0 0 0 0 0 0  Kb T

0 . 17900000E+07 /cm**3

225 > +-------— +' !
! / / / / / / !  ++ _;------- +/

e l e c t r o n i c  s t a t e s  a r e :  bound

< - 1 0 0 0 0 .0  Angstroms

<—  r i g h t  c o n t a c t  — ■—  ------------ - ZZ~~~r~ZZ~^~,
! d op in g  d e n s i t y :  0 . lOOOOOOlE+15 /cm**3 !
! e f f e c t i v e  mass: 0 . 67000031E-01 mO !
I E f -  E c : -0 .2 1 6 5 9 6 8 4  eV !

INPUT (ASCII ) -  XX
i n . f i s h l d  XXXXXXXX

xxxxxxxxxx
fo r m a t : XXXXXXXX
zvd??e??? XX

SEQUAL 2 .1

XX
XXXXXXXX
xxxxxxxxxx
XXXXXXXX

XX

OUTPUT (ASCII ) - —-----
i n t f a c e . z . . .k  
i n t f a c e . b s - e n
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Section 3 — Example 2

b o u n d -s ta t e  exam ple: a l g a a s / g a a s  i n t e r f a c e

SEQUAL 2.1
calcuiatipn I of I

page 4
S t a t i s t i c s  and I t e r a t i o n  Data

s a s a a s

I t e r a t i o n Current (A) S i g n i f i c a n t
Number F ig s  i n  Current

I 0 .0000000E+00 3
- 2 0 . 0000000E+00 3

3 O.OOOOOOOE+OO 3

Max Change S i g n i f i c a n t  
i n  V(z)  F ig s  i n  V(z)

0 . 946E-02  
0 .1 9 7 E -0 2  
0 . 509E-03

1
2

.. 3
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SEQUAL 2.1
calculation I of I

page 5
Comments on the Calculation

b o u n d -s ta t e  exam ple: a l g a a s / g a a s  i n t e r f a c e

TYPE REMARK SUGGESTION /  EJCP LANATI ON

Warning ! O b ta in in g  co n v erg en ce  in  a ! C o n ta c ts  sh o u ld  be more
! s e l f - c o n s i s t e n t  c a l c u l a t i o n ! h e a v i l y  doped th an  th e
! may be d i f f i c u l t . ! i n t e r n a l  d e v i c e  s t r u c t u r e .

C aution  I P o p u la t io n  o f  b o u n d - s ta t e s ! D e v ic e  must be in  (or near)
! may be i n c o r r e c t ,  s i n c e ! e q u i l ib r iu m  f o r  F erm i-D ira c
! d e v i c e  i s  under b i a s . ! s t a t i s t i c s  t o  a p p ly .
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Section 3 — Example 2

bound-state example: algaas/gaas in te rfa c e

SEQOAL 2.I page 6
1 Bound-State Calculation

NOTE: Confidence in  the bound-state so lu tio n  is  high

B o u n d -S ta te  E l e c t r o n D e n s .  O ccupation
Energy (eV) (/cm**2) (% o f  t o t a l )

-0 .2 3 3 4 6 7 1 0  0 . 78350470E+12 4 5 .0 18539
-0 .1 9 9 1 4 6 4 5  0 . 35672346E+12 2 0 .496582
-0 .1 8 5 7 2 9 0 3  0 . 19334090E+12 11 .108964
-0 .1 6 7 9 1 4 0 9  0 . 12185246E+12 7 .0 013876
-0 .1 5 9 7 0 1 4 7  0 . 77001327E+11 4 .4243374
-0 .1 4 2 9 7 8 4 3  0 . 41610449E+11 2 .3 9 0 8 4 9 1
-0 .1 3 4 7 4 4 8 2  0 . 34421989E+11 1 .9 7 78156
-0 .1 2 8 6 1 8 7 2  0 . 24305697E+11 1 .3 9 65540
-0 .1 1 8 9 0 6 3 8  0 . 16508072E+11 0 .948 5 1 9 2 3
-0 .1 1 0 6 5 4 0 0  0 . 12072239E+11 0 .6 9 3 6 4 5 6 6
-0 .1 0 3 9 5 4 5 5  0 . 95209677E+10 0 .547 0 5 4 7 7
- 0 . 99294603E-01 0 . 83339674E+10 0 .478 8 5 2 5 1
- 0 . 95357955E-01 0 . 69041439E+10 0 .396 6 9 7 5 8
- 0 . 90595961E-01 0 . 55891395E+10 0 .321 1 4 0 1 7
- 0 . 85954428E-01 0 . 46443397E+10 0 .2 6 6 8 5 4 1 1
-0 .8 1 7 0 1 3 9 8 E -0 1  0 . 39352571E+10 0 .226 1 1 1 6 5
- 0 . 77840924E-01 0 . 33894725E+10 0 .194 7 5 1 9 8
- 0 . 74338734E-01 0 . 29628815E+10 0 .1 7 0 2 4 1 0 0
- 0 .7 1 1 6 2 6 4 IE-OI 0 . 26251244E+10 0 .15083414
- 0 . 68283856E-01 0 . 23555379E+10 0 .135 3 4 4 2 7
- 0 . 65848231E-01 0 . 21486211E+10 0 .1 2 3 4 5 5 2 9
- 0 .6 3 8 l4 iD 4 E - 0 1  0 . 20005722E+10 0 .1 1 4 9 4 8 6 9
-0 .6 1 3 2 4 3 1 7 E -0 1  0 . 18459904E+10 0 .1 0 6 0 6 6 7 6
-0 .5 9 6 6 0 7 0 3 E -0 1  0 . 16749463E+10 0 . 96238911E-01
-0 .5 8 2 8 5 7 6 9 E -0 1  0 . 16415347E+10 0 . 94319165E-01
- 0 . 55165745E-01 0 . 14038211E+10 0 .8066064  IE-01
- 0 .5 4 8 3 5 8 0 4E-01 0 . 14185697E+10 0 . 81508040E-01
- 0 . 51128648E-01 0 . 12003448E+10 0 . 68969309E-01
-0 .5 0 7 5 0 0 1 7 E -0 1  0 . 12002565E+10 0 . 68964243E-01
- 0 . 47476452E-01 0 . 10425728E+10 0 . 59904065E-01
- 0 . 46183787E-01 0 . 10021391E+10 0 . 57580810E-01
- 0 . 44137236E-01 0 . 91646848E+09 0 . 52658349E-01
- 0 . 41250527E-01 0 . 82743885E+09 0 .47542900E-01
-0 .4 1 0 5 9 0 5 8 E -6 1  0 . 81377587E+09 0 . 46757862E-01
- 0 . 38195815E-01 0 . 72830413E+09 0 . 41846838E-01
-0 .3 6 0 3 7 4 3 4 E -0 1  0 . 67760666E+09 0 . 38933869E-01
- 0 .35514742E -01  0 . 65661005E+09 0 . 37727434E-01
-0 .3 2 9 8 3 7 6 9 E -0 1  0 . 59524966E+09 0 .34201797E -01
-0 .3 0 6 5 2 5 9 0 E -0 1  0 . 55390106E+09 0 .31825993E-01
-0 .3 0 5 7 8 1 5 1 E -0 1  0 . 54215910E+09 0 .31151343E-01
-0 .2 8 2 7 4 4 8 0 E -0 1  0 . 49596058E+Q9 0 .28496861E-01
-0 .2 6 0 5 4 0 1 4 E -0 1  0 . 45527603E+09 0 .26159197E-01
-0 .2 5 3 1 7 3 4 5 E -0 1  0 . 45730099E+09 0 .26275564E -01
- 0 .23898955E -01  0 . 41872691E+09 0 .24059173E-01
- 0 . 21793514E -01 0 . 38631347E+09 0 . 22196755E-01
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b o u n d -s ta t e  exam ple: a l g a a s / g a a s  i n t e r f a c e

SEQUAL 2.1
calculation I of I

page 7
Bound-State Calculation

B o u n d -S ta te  E le c t r o n  Dens. O ccu p ation
Energy (eV) ( / cm**2) (% o f  t o t a l )

- 0 .2 0 3 6 3 8 6 OE-OI 0 . 38428851E+09 0 . 22080414E -01
- 0 . 19726913E-01 0 . 35665690E+09 0 . 20492751E-01
- 0 . 17682794E-01 0 . 32975872E+09 0 . 18947251E-01
- 0 .1 5 6 5 1 1 7 8E -01 0 . 30423834E+09 0 . 17480899E-01
-0  15441049E-01 0 . 31453030E+09 0 . 18072255E-01
-0  13621282E-01 0 . 28147712E+09 0 . 16173095E-01
-0  11583120E-01 0 . 26009414E+09 0 . 14944464E-01
- 0 . 9766697 9E-02 0 . 24839613E+09 0 . 14272321E-01
- 0 . 95288977E-02 0 . 24009014E+09 0 . 13795078E-01
- 0 . 74497312E-02 0 . 22146555E+09 0 . 12724947E-01
- 0 . 53382628E-02 0 . 20421982E+09 0 . 11734042E-01
- 0 . 34537381E-02 0 . 19271066E+09 0 . 11072751E-01
-0  31791739E-02 0 . 18766365E+09 0 . 10782760E-01
-0  '. 81478781E-03 0 . 17179670E+09 0 . 98710805E-02

TOTAL: 0 . 17404044E+13 /cm**2 in  59 b o u n d - s t a t e s
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SEQUAL 2.1
calculation I of I

Section 3 — Example 2

pkije 8
Final Results

Current:
LEFT-tO-RIGHT: O.OOOOOOE+OO A
RIGHT-to-LEFT: O.OOOOOOE+OO A
Tpfal Current: O.OOOOOOE+OO A

Voltage:' "
In Input File: -0.888461E+00 V
Applied Bias: 0.000000E+00 V

Total Voltage: -0.888461E+00 V
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