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. ABSTRACT '

This paper presents the development of simplified manipulator dynamic models which 
satisfy the desired steady-state error specification in the joint-variable space or in the Cartesian 
space under a nonlinear decoupled controller. The formulae which relate the tracking errors of 
joint variables in the joint-variable space or the manipulator hand in the Cartesian space to the 
dynamic modeling errors are first developed. Using these formulae, we derive the maximum 
error tolerance for each dynamic coefficient of the equations of motion. Then each simplified 
dynamic coefficient of the equations of motion can be expressed as a linear combination of the 
product terms of sinusoidal and polynomial basis functions. To illustrate the approach, a com­
puter simulation has been carried Out to obtain two simplified dynamic models of a Stanford 
robot arm which satisfy the specified error tolerances in the joint-variable space and in the Carte­
sian space under respective nonlinear decoupled controllers. Finally, to measure the time com­
plexity of simplified models, the number of mathematical operations in terms of multiplication 
and addition for computing the joint torques is tabulated and discussed with the parallel compu­
tation result of Newton-Euler equations of motion.

This WOTk was supported in part by the National Science Foundation Grant CDR-8803017 and by a grant from the 
Ford Fund. Any opinions, findings, and conclusions or recommendations expressed in this article are those of the 
authors and do not necessarily reflect the views o f die funding agency.



-3

I. Ihtroductidn

Robot manipulators are highly nonlinear systems and their dynamic performance is directly 

dependent on the efficiency of the control laws and the dynamic model of the robot. Past work 

focused mainly on designing efficient and robust controllers for manipulators [7-9]. This paper 

focuses on the inverse problem and addresses the issue of how much manipulator dynamics 

information should be included in the manipulator dynamic model for a nonlinear decoupled 

controller such that the controlled robotic system satisfies the desired steady-state system perfor­

mance in the joint-variable space or in the Cartesian space . We further show the efficiency of 

simplified models by considering the computational complexity of the controllers based on these 

simplified models.

The analysis and design of robot motion control strategies require the development of 

efficient closed-form dynamic equations. Two competing approaches [1],[13] have been 

developed for handling the mathematical complexities involved in the dynamic model of robot 

manipulators. In the first approach, the emphasis focuses on the formulation of the dynamic 

model in an efficient recursive inverse dynamics form for generating the required generalized 

forces/torques for a given set of generalized coordinates, their time derivatives, and physical and 

geometric parameters of the robot arm [13]. One of the major drawbacks of these recursive 

dynamic equations is that they do not show the details of dynamic characteristics of robot mani­

pulators in explicit terms for control system analysis, design, and synthesis. In the second 

approach, the emphasis is on the formulation of explicit state equations for manipulator dynam­

ics, expressing the relationship between the generalized forces/torques and the generalized coor­

dinates with the system parameters explicit in the equations [I]. This is motivated by the grow­

ing interest in applying advanced control theory to robot manipulators [7-9]. Unfortunately, the 

generation of these state equations by hand (or even by a computer) for most industrial robots is 

a lengthy and tedious process. Furthermore, these lengthy state equations may exhibit too many 

insignificant details of dynamic characteristics of the manipulator, resulting in excessive compu­

tations in real time. Thus, the development of efficient schemes/algorithms for obtaining a



simplified model that reveals the dominant dynamics without introducing significant errors into 

the dynamic model is essential for the advanced control of robot manipulators.

Various schemes/algorithms have been proposed for simplifying robot arm dynamic model

[1].[2],[4],[12]. Their approaches fall into one of the following categories:

(1) The reduction-rule and basis-function techniques which eliminate relatively insignificant 

inertial, Coriolis and centrifugal, and gravity terms to arrive at an approximate model based 

on the relative importance of their forces/torques as compared to the complete equations of 

motion [1],[2].

(2) A projection algorithm which, based on a least-square criterion, minimizes the Z2 norm 

error between the approximant and the nonlinear robot manipulator model [4]. One of the 

drawbacks of this method is the requirement to testing all the terms of a specific dynamic 

coefficient exhaustively for their significance.

(3) The expression of each dynamic coefficient is expressed as a linear combination of the basis 

functions and a minimax curve-fitting technique is used to provide an approximate model

All the above existing simplification schemes described various methods of obtaining 

simplified dynamic models as compared to the complete Euler-Lagrange (EL) formulation. But 

all of them did not analyze the effects of the simplified dynamic model on the manipulator sys­

tem performance. That is, they did not describe the effect and the relationship between the 

modeling error in the equations of motion and the controlled system performance. Recently, 

Chang and Lee [3] developed a multi-layered minimax simplification scheme which obtains a 

simplified dynamic model in symbolic form based on the desired manipulator steady-state error 

system performance in the joint-variable space under a proportional-plus-derivative (PD) con­

troller. Thisminimax simplification scheme constructs the simplified dynamic coefficients using 

the basis functions. Each simplified dynamic coefficient is expressed as a linear combination of 

the product terms of sinusoidal and polynomial functions of the manipulator’s joint variables. 

Furthermore, the robot system under a PD controller using the simplified dynamic model



satisfies the desired steady-state system performance in the joint-variable space. However, since 

the manipulator is a serial-chained mechanism, a small error in each joint variable in the joint- 

variable space control may propagate the error through the chain and cause a moderate error of 

the manipulator end-effector in the Cartesian space [9]. As a result, the simplified dynamic 

model derived in the joint-variable space and based on the steady-state error specification in the 

joint-variable space may cause a moderate steady-state error in the Cartesian space. Since the 

dynamic behavior of the manipulator end-effector in the Cartesian space is one of the most 

significant characteristics in evaluating the performance of the manipulator [8],[9], we shall 

develop methods for deriving simplified dynamic models for satisfying the tracking error in the 

Cartesian space as well as the joint-variable space under respective nonlinear decoupled con­

trollers.^

In this paper, we extend the multi-layered minimax simplification scheme [3] to obtain a 

simplified dynamic model explicitly expressed in a symbolic form based on the desired manipu­

lator steady-state error specification in the joint-variable space or in the Cartesian space under 

respective nonlinear decoupled controllers, We first derive the formulae which relate the track­

ing error of each joint variable in the joint-variable space or the manipulator hand in the Carte­

sian space to the dynamic modeling error. Using these formulae, the maximum error tolerance 

for each dynamic coefficient of the equations of motion is derived. These maximum error toler­

ance specifications are then used in the multi-layered minimax simplification scheme to obtain a 

simplified dynamic model. Using the simplified dynamic model and under the control of non­

linear decoupled controller, the controlled system will satisfy the desired steady-state error con­

ditions in the joint-variable space or in the Cartesian space. A computer simulation was per­

formed on a Stanford arm to verify the proposed simplification scheme. Finally, to measure the 

time complexity of simplified models, the number Of mathematical operations in terms of multi­

plication and addition for computing the joint torques is tabulated and discussed with the parallel 

computation result of Newton-Euler equations of motion.
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2. Relation of Steady-State E rror of Joint Variables and the Modeling Error

In this section, we shall derive the formulae which relate the tracking error of each joint 

variable in the joint-variable space to the dynamic modeling error under a nonlinear decoupled 

controller. This error relationship will be used in the minimax simplification scheme in Obtaining 

a simplified dynamic model to be used for computing the nonlinear decoupled controller. The 

robot system under the nonlinear decoupled controller using the simplified dynamic model will 

satisfy the control system performance. The equations of motion of an n -jointed manipulator 

expressed in the joint-variable space can be written as [1],[6]

D(q)q(r) + H (q,q) + g(q) = r(r) (I)
where D(q) is the nxn  kinetic energy matrix, q(f ) is the n x l vector of the generalized coordi­

nates (or joint variables), H (q, q) is the n x l vector of the Coriolis and centrifugal force/torque, 

g(q) is the n x l vector of the gravitational foice/toique, and r(r) is the n x l applied joint 

force/torque vector. Expressing the above equation in its components, we have

XdijQj(0 +XXhIjkij(*tiki*) + Si = t/(r) , i = 1,2, •• • , n (2)
•; 7=1 ' 'Ji=U=I ' .

where and g,- are dynamic coefficients of die manipulator equations of motion. A non­

linear decoupled controller Tc to control the joint variables of a manipulator in the joint-variable 

space has the following form [6] (see Fig. I)

Tc =D c(q ) [q ,(0  + Kv e(r) + Kp e(r)] + Hc(q,q) + gc(q) (3)
where e(r ) = q<i(r) -  q(r) and e(f) ='q</(f) ^ q (r) are, respectively, the tracking errors of joint

position and joint velocity in the joint-variable space. Kv and Kp are, respectively, the velocity

and position feedback diagonal matrix gains. Dc(q),H c(q,q) and g^q) represent the com­

puted values of D(q), H (q , q), and g(q), respectively, in (I). Manipulating equation (3), we 

obtain

Tc =D c(q)[e(t) + Kv e(r) + K , e(t)] + Dc(q)q + Hc(q ,q) + gc (q) (4)
where e(t) -  q^'(r>- q(r ) is the tracking error of joint acceleration in the joint-variable space.

To achieve better robustness, a high gain feedback to the nonlinear decoupled controller is added



in (4) [15] (see Fig. 2). Then the computed Iorque T c of the nonlinear decoupled controller 

becomes

where Ajr is a scalar gain. Substituting the computed controller from (5) into (I), we have

D(q)q + H (q , q) + g(q) = kf Dc(q) [e(f) + Kv e(0 + Kp e(f)l
+ Dc(q)q + Hc(q ,q) + gc(q) (6)

Manipulating equation (6), we obtain

kf  Dc (q) ( e(t) + Kv e(t) + Kp e(f) )  = AD(q)q + AH(q, q) + Ag(q) (7)

wherT; ;

AI)(q) = D(q) -  Dr (q), - (8>
A H (q ,q )4 l l(q ,q ) - I Ic (q,q), ^  (9)

A g(q)S g(q)-gc(q). (10)
Since Dc (q) is invertible, we have

e(f) + Kv e(r) + Kp e(f)=  7 - D J1Cq) [AD(q)q +A H(q,q) + A g(q)]. (11)
' K f  '

If no modeling error exists, then the right-hand-side of (I I) vanishes, resulting in

e(f) + Kv e(O + Kpe(O = 0 , (12)
and if the values of Kv and Kp are so chosen that the characteristic roots of (12) have negative

real parts, then e(r) approaches zero asymptotically [14]. However, since it is impossible to 

have an exact dynamic model of a manipulator and the complete Euler-Lagrange equations of 

motion may also have some modeling errors, it is more cost-effective to use an approximate 

model which does not introduce significant errors into the dynamic model and the controlled sys­

tem still satisfies the desired steady-state system performance. Using an approximate model, the 

joint variable error e(f) in (11) may approach nonzero Value due to the dynamic modeling error. 

Thus (11) can be used to derive the relation of the maximum error in the dynamic coefficients 

and the tracking error in the joint-variable space. Considering the ith component of the vector 

equation in (I I), we have

Ci (S )^k vi et (t) + kpiei(0  = j ~ [ D J !(q )[A D (q )q  +A H (q,q) +Ag(q>] (13)
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where

Icvi = the ith diagonal element of Kv , 
kpi= the i' th diagonal element of Kp ,

[D c1Cq)], = the i th row of [ D J1Cq) ], i = 1 ,2 ,

(14)

(15)
(16)

and•£/(*), e,(f)> and e)(t) are the /th component of the error vectors e(f), e(f), and e(f), respec­

tively.

3. Effectof SimplifiedModel on Steady-State E rror in the Joint-Variable Space

To deteraiine the steady-state error of the joint variables in the joint-variable space, (13) is 

transformed into its Laplace transform equivalence

Si (S)
E i (S) .

Ei (S)

(17)

Si (I) and
kf  ( s 2 + kvis + kpi)

where E i (S)  and Si (S)  are the Laplace transforms of 

[ D J1Cq) ],• [ AD(q)q + AH(q, q) + Ag(q) ], respectively. If the desired path qrf(f) to each joint 

variable is a unit step (i.e. a constant displacement), then the velocity-related and acceleration- 

related terms of the modeling error will disappear in the steady state because they are functions 

of q and q. Thus, to compute the steady-state error, we need only to consider the following

I Jl(D ;1(q))i A g(q)]e-a d (| Sfl [D ^ q ) ] ,  Ag(q)| <r*> iif .
■ ■ O

Using the following convenient notations,

Tij A max I [D-1(q)],;-1 =m ax| the i/th  element of [ D-1 (q)]| , 
■ : q q

rfj = max| [D J1Cq)]^ | =max| the i/th element of [D J1Cq) ] ] , 
4 4

the absolute value inside the integral in (18) becomes

I [Dc- ‘(q)]i Ag(q)| S X 4 1 As>(q)l
/=1

^ S ^ l A g y I m 
, ;=i

(18)

(19)

(20)

(21)

where;

Ag(q) = [Ag1Cq) , • • • ,  Agn ( q ) f  , (22)
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| A g : \m = max| Ag,(q)| ,
<i

and the superscript T "  denotes vector or matrix transpose. Thus, (18) reduces to

(23)

I J[(DJX(q ))/ Ag(q)] e~* dt | Agj\ m .
o ■ 5 J=i ■

Applying the final value theorem to (17), and using (24), we have

e isp =  Iim  e / ( 0  =  IitasE i ( s )
^  t - X O Q  AT —

kfa^fb ^pij=I
I rU I AS j\  m

where kfa is larger than I and Icfl, = -j~—. If we determine kfa such that for all i J

I r r^ rV'Kfa
then the steady-state error is

(24)

(25)

(26)

I n j I Ag j \ (27)
,  ,  J mJ  - H  I — O  I I W I v  7

*fb *pi J=I

In the case that the modeling error in the kinetic energy matrix D(q) is small, kfa is approxi­

mately I. The value of kja is determined such that the inequality in (26) holds in the computer 

simulation. I fn  steady-state error specifications Ejsp of the manipulator are given, I ^ i-Zny. 

and under the condition that the desired path is a unit step, a sufficient condition for the actual 

steady-state error to be less than or equal tothe error specification (i.e., | | < Z1ssp) is

^fb ^pi J=I
I  ^  j  \ m ^  ŝsp (28)

Thus we have obtained n linear inequalities for bounding the maximum modeling error in each 

gravity dynamic coefficient (i.e., gt in (2)). Equation (28) indicates that the problem of finding 

the maximum modeling error in each gravity coefficient is classified as a linear programming 

problem or a nonlinear programming problem depending on whether a linear combination or a 

nonlinear combination of | Agi | m, I < i Zn  ,is  being used in the objective function. To optim­

ize the objective function, the problem can be solved by several methods [11]. It is worth point­

ing out that some of the gj(q) may be zero or constant due to the manipulator structure



[I].[2],[16]. For example, in a Stanford arm, g ^q) = 0, gg(q) = 0, we need only consider the 

objective function consisting of a linear or nonlinear combination of | Agi | m, 2 <i <5. Furth­

ermore, if we want to allow a larger error bound for some gj(q), we can use a particular objec­

tive function which weights | Agj | m heavier.

If the desired path qd{t) to each joint variable is a unit ramp -(Le.,. tracking a stationary 

object On a moving conveyor belt), then the acceleration-related terms of the modeling error will 

disappear in the steady state. Thus, to compute the steady-state error, we need only to consider 

the following

- 10-

oo '

I J [( Dc1(Q)). <AH(q ,q) + Ag(q))] e ^  dt | (29)

OO

S /ll (D c- 1Cq)),. AH(q,q)| + | (D -j Cq) ),Atfq)| ] « - » * .
O .

Taking the similar step as before, the first absolute value term inside the integral becomes 

I (D -1W ) i AH(q,q)| S X  r f  L  L z U ^ W ftq i I
j= l  : k=ll=l :

■' & L rij'L -L \ m (30)
/=1 k=u=I

where : .

I M j t t W i l  m =  m a x !  A h j u i q b q M  •
q.q

(31)

Using (21) and (30), (29) becomes

I J t ( D - 1W ) i (AH(q,q) +Ag(q))] e~* dt\
O

1 » + l  AS/I

(32)

;=i It=It=I
Applying the final value theorem to (17), and using (26) and (32), the steady-state error due to a 

unit raipp input becomes

essv ~ k t
n n

rL rIj I  L  E l  M j t t Q M  m +  I A g y i  m ]  • (33)
Kf b Kp i j =I Jfc=It=I

If n steady-state error specifications Ê sv of the manipulator are given, I < i < n, and under the



condition that the desired path is a unit ramp, a sufficient condition for the steady-state error to 

be less than or equal to the error specification (i.e., | e lssv \ < ejw) is

T i r Z rV I 2  Z l M ju qki , \ m + | ^ / |  „ ]  S e iv . (34)
Kfb Kpi j= l  Jk=IZ=I

In order to know the relative importance of each term of (34), we assume that the relative ratio 

of the maximum deviation to the corresponding maximum value of non-zero term in (34) is 

equal. [3] That is, for a fixed j , I £ j  < n ,

where, for I < k,l < n,

\ &8j \ m I A f y u l  m
I 8j  I m I hjkl I m

(35)

I 8j  I m = max] gj  (q)| (36)

and

I hjki\ Ot  = max I . (31)
J q 1 ’

Then

I Agj  I m ^  I Ahjkl I m

;; I 8 j \  m I ĵkL I m

n n
X E  l ^ j a m i  I m + \  &8j \ m
Jfc=IZ=I

n n
X X l  hJkiQM  m +\ 8 j\ m
Jt=IZ=I

(38)

where I hjUq M  m =max| /^ (q ^ M z l . The denominator in (38), | gj\ m and| hja 4 M  m>

can be found by a searching strategy in the manipulator workspace. Using (38), (34) can be 

written as

and
kfb kpi j~ i

yL rIj
I &8j \ m 

I 8j  I m
B { ^ (39)

where, for a fixed j ,

I ” , \ M jld\ m
k/b kpi j - i   ̂ I hjH I m

(40)

B {  -  X X l  hjldq M  m + 1  g j \  m
Jt=IZ=I

(41)
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As before, we have obtained n linear inequalities for bounding the maximum modeling error of 

the dynamic coefficients (i.e., hja and gj) in (39) and (40). To solve (39) and (40), we can 

define an objective function consisting of a combination of I Ag,| m and| Ahjia I m in (39) and 

(40), respectively. Similarly, we can use the structure of H (q,q) as well as that of g(q) 

[1],[2],[16] and if we want to allow a larger modeling error bound for some hjU (q), we can use a 

particular objective function which weights I Ahjkl \ m heavier.

. t 2 ' 'If the desired path qd(r) to each joint variable is a parabolic, — , then we have
Zr

OO

I Si(*Xl =I j[( Dc 1Iq)), (AD(q)q +AH(q,q) +Ag(q))]e-® dt |
0

00
s j l l  ( Dc- 1Iq) )f AD(q)q| + | ( DcT1Iq )), AIIcq1 q)| +| ( D ^fq) ),Ag(q)| ] eT” dt . (42)

0

Taking the similar step as before, the first absolute value term inside the integral becomes 

I (D c- 1Iq)), AD(q)q| S £ r§ | £ Arfj t (q » t  |
7=1 Jt=I

s £ r § i |  M jM  m (43)
j = I  *=1

where

\ M jkqk \ n =™ x\ A^*(q)<7*| • (44)
q.q

Using (21), (30), and (43), (42) becomes

I S j- ( S ) I  S S - i r J t  £ |  M jkqk \ m + £  £ |  AhjklQ M  * + l  Asj- I m ] .  ( 4 5 )
s J =I It=I Jt=IZ=I

Applying the final value theorem to (17), and using (26) and (45), the steady-state error due to a 

parabolic input becomes

i s - r r £<•«[ £ l  »  + £ £ |  Mjuqkq,\ m+\ Asy I (46)
Kfb * p i j= l  Jt=I k=Il=I

If n steady-state error specifications E1ssa of the manipulator are given, I Z i Z n  ,and under the 

condition that the desired path is a parabolic, a sufficient condition for the steady-state error to 

be less than or equal to the error specification (i.e. j essa \ Z Essa) is



-:«■
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Jr 1Jr E ty  [ E  I 'Mjktik I m + E  E l ^ ja ik Q i  I m -+I Agj  I m ] <e*sa. (47)
Kpi j= l  * = I * = 1 /= 1

As before, if we assume that the relative ratio of the maximum deviation to the corresponding 

maximum value of the non-zero term in (47) is equal, then we obtain n linear inequalities for 

bounding the maximum modeling error in each of the dynamic coefficients (i.e., djk , hja , and 

£y) in (47).

where, for a fixed j ,

kfb kpi j=l  

I
kfb kpi j - i

I

E ty

kfb kpi j = iE ty

I Ag j I m

I S j  I m

I hhjttl m
I hjU I m 
I A d  j k j OT

I 4jk \  m

H  ^ eLa 

- H ^ e L a

(48)

(49)

(50)

B {  ~ E  I dj k 4k\  m + E  E  I m +1 g j \  m • (51)
&=1 &=1/=1

Applying the similar method as before, we can obtain the maximum error bound in each 

dynamic coefficient

4. Effect of Simplified Model on Steady-State Error in the Cartesian Space

In this section, we shall derive the formulae which relate the tracking error of the manipula­

tor hand in the Cartesian space to the dynamic modeling error under a nonlinear decoupled con­

troller. For ease of discussion, we shall assume that the manipulator under control is nonredun- 

dant (/i = 6) and is always at a nonsingular configuration. The equations of motion of the mani­

pulator end-effector can be expressed in the Cartesian space as [8],

A (x)x + |X (x,x) + p (x) = F(r) (52)

x (0  = J(q)4(0 (53)
where x(f) is the 6x1 vector of the Cartesian variables describing the position and orientation of 

the manipulator hand, J(q) is the 6x6 Jacobian matrix, A(x) is the 6x6 kinetic energy matrix of 

the manipulator,

A(x) = r r (q)D(q)J-1(q), (54)
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p(x , x) is the 6x1 vector of the Coriolis and centrifugal force,

ji(x , x) = J t (q) H (q, q) — J r  (q) D(q) J~\q) J (q , q)q, (55)
p(x) is the 6x1 vector of the gravitational force,

p(x) = J -7’(q)g(q), (56)
F(f) is the 6x1 vector of the generalized force and is related to the joint torques through the

manipulator Jacobian,

r(t) = J r (q)F(0, (57)
x(t) and x(f) are the first and second time derivatives of x(f), respectively.

To control the manipulator end-effector to track a desired motion trajectory, we use a non­

linear decoupled controller in the Cartesian space, which is similar to (5) (See Fig. 3). Tlie com­

puted generalized force of the nonlinear decoupled controller is

¥c( t ) - k f  Ap(X)(Zit) + ^  e(f) + Kp e(f)) + Ac(x)x + pc (x,x) + pc(x) (58)
where e(f) = Xait) -  x(f) is the 6x1 error vector of the position and orientation of the manipula­

tor hand in the Cartesian space. Kv and Kp are, respectively, the velocity and position feedback 

diagonal matrix gains, kf  is a scalar gain. Ac (x), pc(x), and pc(x) represent, respectively, the 

computed values of the A(x), p(x,x), and p(x) in (52). Ac(x), pc(x), and pc(x) have similar 

relations to Dc (q), Hc(q , q), and gc(q), respectively, as in (54)-(56). From (54)-(58), the com­

puted torque Fc of the nonlinear decoupled controller is

Tc =kf  Dc(q)J_1(q)(e(t) + Kv e(t) + Kp e(t))
+ Dc( q ) r 1(q ) (x - j(q ,q )q )  + Hc(q,q)-l-gc(q) (59)

Substituting the computed torque from (59) into (I), we have

D(q)q + H (q , q) + g(q) = kf  Dc(q) J - ^qX e(r) + Kv e(t) + Kp e(t) )
+  Dc (q) J - HqXx -  j ( q , q)q) + Hc (q , q) + gc (q) (60)

Taking the time derivative of (53) and manipulating the resulted equation, we have

x - j ( q ,q ) q  = J(q)q, (6 l|
and substituting it into (60) and manipulating the equation, we obtain

kf Dc (q) J -1(q) ( e(f) + Kv e(r) + Kp e(f) )  = AD(q)q + AH(q, q) + Ag(q). (62)



Since Dc (q) is invertible, we have

e(0  + Kv e(0  + K e(r) = ~  J(Q)Dc- 1Cq) [AD(q)q +AH(q,q) +A g(q)]. (63)kf
In deriving (63), we assume that the manipulator is nonredundant and always at a nonsingular 

location. M fact, in the case of a redundant manipulator with a full rank of the Jaeobiah matrix, 

the same relation holds (See the Appendix). However, in the singular case or non-full rank of the 

Jacobian matrix, further investigation is necessary. It is interesting to note that (I I) and (63) are 

in the same form except the absence of the Jacobian matrix in (I I).

If no modeling error exists, then the right-hand-side of (63) vanishes, resulting in

e(*) + Kw -e(f) + Kpe(t) = O', (64)
and if the values of Kv and Kp are so chosen that the characteristic roots of (64) have negative

real parts, then e(f) approaches zero asymptotically. Using an approximate model, the Cartesian

error e(t) in (63) may approach nonzero value due to the dynamic modeling error. Thus (63) can

be used to derive the relation of the maximum error in the dynamic coefficients and the steady-

state error of the manipulator hand in the Cartesian space. Considering the i th component of the

error vector in (63), we have

ei(t)+ K i ei(t) + k .ei(t) = -±- [J (q )Dc-^q)],. [AD(q)q +A H(q,q) + Ag(q)](65)

where

[ J(q) ! ^ ( q )  ](- = the ith row of [J(q) Dc *(q) ], i = 1 ,2 , • • • , n (66)
and Ci (r), Ci (f), and e)(t) are the i th component of the error vectors e(r), e(r), and e(t), respec­

tively.

Comparing (13) with (65), the same approach and method in Section 3 can be applied. We 

only need to change (19) and (20) to determine the maximum modeling error of each dynamic 

coefficient,

■■■■. r«;.imax| [ J(q) D_1(q) ];.• | = max) the ij th element of [ J(q) D_1(q) ] | , (67)
q q

rfj 4max| [ J(q )D Jl(q)]« | = max| the ijth  element of [ J(q) Dc_1(q)] | . (68)
q q

Then if we are given steady-state error specifications ej^,, ejw, and e*sa of the manipulator,



kf , Kv, and Kp in the Cartesian space, the same method can be applied as in the joint-variable 

space.

5. Determination of Maximum Modeling Errors based on System Performance

In the above derivation of steady-state errors in the joint-variable space or the Cartesian 

space for unit step, unit ramp, and parabolic inputs, we can determine the maximum error toler­

ances (oxmaximum modeling errors) of the dynamic coefficients so that the manipulator control 

system using a simplified model under a nonlinear decoupled controller can still achieve the 

desired steady-state error specifications. Since most inputs consist of a linear combination of 

these three standard test signals, the maximum error tolerances for the dynamic coefficients of

the equations of motion must be selected according to

^  im in C e ^ (g i), Bssv(g iX  Zssa(g i)) (69)

• (70)

Zdii^ s s a V ij) (71)
where e^ (-) , EssvC*), and CssbO  are, respectively, the maximum modeling errors of Q  due to

unit step, unit ramp, and parabolic inputs. The derivation and analytical expression in previous 

sections relating the maximum error tolerances of the dynamic coefficients to the steady-state 

error specifications of the manipulator control system leads us to an interesting question: Given 

the desired manipulator steady-state error specifications under a nonlinear decoupled controller, 

how can we determine the complexity of the manipulator dynamic model such that the manipu­

lator control system can still achieve the desired performance? Thus, the complexity of the 

simplified dynamic model depends on the steady-state error specification of the manipulator sys­

tem. Anefficient minimax simplification scheme for reducing the cost of obtaining the dynamic

coefficients of the simplified dynamic model to satisfy the desired steady-state error 

specifications has been proposed [3J. Following their approach and using the above derived 

maximum error tolerances of the dynamic coefficients, a simplified dynamic model can be 

obtained that satisfies the desired manipulator steady-state error specifications under a nonlinear 

decoupled control.
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6. Computer Simulation

The multi-layered minimax simplification procedure in the joint-variable space has been 

implemented in a “ C” program [3] and can be used to generate the simplified dynamic 

coefficients for any manipulator with prismatic and/or rotary joints. Here we used the software 

package for generating the simplified dynamic coefficients of the equations of motion based on 

the steady-state error specifications in the joint-variable space or the Cartesian space to satisfy 

the system ’performance under a nonlinear decoupled controller. The Stanford arm which con­

sists of rotational and translational joints is used as an example to verify the simplification algo­

rithm. Some of the parameters of the Stanford arm used in the computer simulation are listed in 

Table I. In order not to excite the resonant frequency of the manipulator under a nonlinear 

decoupled controller in the joint-variable space [6], the position feedback diagonal matrix gain 

Kp is set such that the undamped natural frequency of each joint is less than one-half of the 

structural resonant frequency, and the velocity feedback diagonal matrix gain Kv is set to have a 

critically damped or an overdamped system. In a Cartesian nonlinear decoupled controller, Kp 

is set such that the undamped natural frequency of each decoupled Cartesian subsystem is equal 

to 2Hz [17], and the velocity feedback diagonal matrix gain Kv is similarly set as in the joint- 

variable space, We selected the same steady-state error specifications in the joint-variable space 

as in [3]. The steady-state error specifications in the Cartesian space can be generated from the 

steady-state error specifications in the joint-variable space through the Jacobian matrix (see 

Table 2). kfa is set to 1.2 to validate the inequality in (26) and kf is set to 30 for both nonlinear 

decoupled Controllers. In a linear or a nonlinear programming problem under constraints (28), 

(39), (40), and (48)-(50), we can define some objective functions and solve the problem to 

optimize each objective function. As an example, an objective function consisting of the pro­

ducts of the maximum modeling errors can be defined to find Essp ( g j ) , l£ j< n ,

/ ( I A g 1I ml I Ag2I ml  ,1 Ag„| m) ^ n l  Ag1I m . (72)
J = I

Under the constraint of (28) for i = I, the maximum value of the objective function is achieved
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I Agj  I -kjb kp i EssP (73)

for jdl j  , I < j  < n. Repeating for the other i ,2 < i  <,n, Essp (g j), is set to the minimum among 

all the values I Ag1] m that are determined by the same process as (73) for all i,l<i<n. After 

that, each Essp (gj), for 2<j<n is set to the minimum among values I--Agjf | m that are determined 

as following for all i ,!</ <rt,

I . O -DI Agj  I m =  . ... ( k p  kpi Eggp — 2 ,  TilEggpigl ) )
(n-j+LjFij i- 1

(74)

In fact, since the above solution was derived by considering each constraint successively rather 

than simultaneously, it is not optimal but suboptimal. If some of the g; (q) are zero or constant 

due to the manipulator structure, then we exclude those terms in (72) and apply the similar 

method. Similarly, we found the other maximum modeling error bounds for the remaining 

dynamic coefficients.

The ratio between the maximum force/torque contributed by a specific dynamic coefficient 

(such as dtj , g f  or JiiJk) and the total maximum force/torque (such as B{ or B {) is a criterion 

which can determine the relative significance of that dynamic coefficient. From our computer 

simulations, it was discovered that there are many dynamic coefficients that are insignificant. 

Table 3 and Table 4 list the significant dynamic coefficients of the simplified dynamic models 

which satisfy the steady-state error specifications in the joint-variable space and in the Cartesian 

space, respectively, under each respective nonlinear decoupled controller. As discussed in the 

previous sections, the maximum modeling error in each dynamic coefficient depends on the 

position gain matrix K_ which relates to undamped natural frequencies, the high feedback gain 

kf and the steady-state error specification. Thus under respective nonlinear decoupled controll­

ers, the time complexity of the simplified model depends on the steady-state error specification. 

A larger steady-state error specification will result in simpler dynamic coefficients with less 

number of basis function terms. Similarly, by adjusting the position gain matrix and the high 

feedback gain, various complexity of the dynamic coefficients can be obtained. Although a
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large magnitude of the high feedback gain is desirable to achieve simpler dynamic Coefficients, 

however, in practice we cannot increase the high feedback gain without bound since a large 

magnitude of the high feedback gain will reduce the manipulator bandwidth. The irade-off must 

be considered [15]. Amajor bottleneck in computing respective nonlinear decoupled controllers 

(i.e., (5) and (59)) is to compute the dynamic terms

Dc(q)q + Hc(q,q) + gc(q). (75)
This computation is equivalent to the robot inverse dynamics computation [6]. Since various

parallel algorithms have been developed to compute the robot inverse dynamics based on the

Newtoh-Euler equations of motion [10], the efficiency of the simplified dynamic model(s) can be

gauged by comparing the required number of mathematical operations in terms of multiplication

and addition with those stated in [10]. Table 5 compares the time complexity of calculating (75)

on a uniprocessor computer using simplified models with the parallel computation of Newton-

Euler equations of motion on a multiprocessor system [10]. Table 5 shows that the computation

of simplified dynamic models on a uniprocessor has about the same amount of computation as

the parallel algorithms on a multiprocessor system with six microprocessors [10].

7. Conclusion

This paper presents the derivation of the formulae which relate the steady-state error in the

joint-variable space or the manipulator end-effector steady-state error to the modeling error 

under respective nonlinear decoupled controllers. From the formulae, we could obtain the max­

imum admissible modeling errors in the dynamic coefficients while satisfying the desired 

steady-state error performance. Using the multi-layered minimax simplification algorithm, we 

obtained the significant dynamic coefficients of the simplified models of a Stanford arm. The 

complexity of computing a simplified dynamic model on a uniprocessor is quite comparable to 

those parallel algorithms on a multiprocessor system with six microprocessors. Furthermore, 

simplified dynamic models obtained from the minimax simplification scheme also satisfies the 

desired steady-state error specification under a nonlinear decoupled controller.
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Appendix

Derivation of Relation of Cartesian Space E rror and 

M odelingErrorforRedundantM anipuIators

The equations of motions of an n -jointed redundant manipulator in the Cartesian space can 

be written as [8]

Ar (x)x + pr (x , x) + pr (x) = F (A.1)

where

X e R m xl. (A.2)
Ar (X) = [J(q) D-1Cq) J r  (q) T 1 e R mym (A.3)

Pr (x , x) = J r (q) H (q , q) -  Ar (x) j ( q , q)q e Rmxl (A.4)

pr (x) = Jr (q) g(q) e Rwxl (A.5)
J(q) = D_1(q) Jt (q) Ar (x) e R nym (A.6)

rank [ J(q) ] =m ( AJ )
; J(q )6  Rmxn ( n > m )  (A.8)

( J(q) is actually a generalized inverse of the Jacobian matrix.)

In the same way as the nonredundant, select

Fc(0  = it/ A rcIx) (e (0  + Kv e(r) + Kp e(r)) + Arc(x)x + prc(x,x) + prc(x) (A.9)
where Arc (x), p rc (x), and prc(x) represent the calculated value of Ar (x), pr (x , x) mid pr (x)

respectively. Then a torque which generates Fc is

Fc = J r (q)Fc =kf  J r  (q) Arc (x) CeCO-HKv e(0  + Kp e (0 )
+ Jt (q) ( Arc (x)x + prc (x , x) + prc (x)) (A.10)

Then substituting the computed values from (A.10) into (I), we have

D(q)q + H (q, q) + g(q) = kf J r (q) Arc(x)( e(0  + Kv eCO + K^ e (0 )
+ J r  (q) ( Arc (x)x + prc (x ,x) + prc (x)) (A.11)

Multiplying each side by J(q) DJ-1Cq),

J(q) D j1Cq) [D(q)q + H (q , q) + g(q)]
= kf  J(O )D j1Cq) JT(q)Arc(x )(e (0  + Kv e(f) + Kp e (0 )
+ J(q) D j1Cq) Jt (q) ( Arc (x)x + prc (x , x) + prc (x)) (A.12)
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From (A.1)-(A.6),

: = ̂  = ^  (A.13)
and

J(q) Dc_1(q) J r  (q) \irc (*>*)
= J(q) Dc- 1Cq) J r (q) F (q) Hc (q , q) -  J(q) D^Cq) J r (q) Arc (x) j(q,q)q 
= J(Q) D 'k q ) J r  (q) [ Arc (x) J(q) D ^ q )  ] Hc (q , q) -  j(q,q)q 
= [ J(Q)Dc- 1Cq) J r (q)Arc(x)] J(q) Dĉ q )  Hc (q , q) -  j(q,q)q 
=^J(Q) D^1Cq) Hc(q ,q )- j(q ,q )q  (A. 14)

Similarly,

J(q)D c-1(q) JT(q) pc (x) = J(q) Dc 1Cq) g(q) (A.15)
Using (61), (A. 13), (A. 14) and (A.15), (A.12) becomes

J(q) D '^ q ) [D(q)q + H (q, q) + g(q)]

■=*/ ( eV() + K„ e(») + K, e(r))  + i' -  j(q,q)q + J(q) D ;‘(q) He(q ,q) + J(q) Dc"Vq) & (q)
= kf (e (0  + K, e(I) + Kp e ( t ) ) + j(q)q + J (q )D ;‘(q )Hc(q , q) + J (q )D ;‘( q ) ( q )
=  kf  ( e ( / )  +  K v e C O  +  K p

+ J(q) D ;’(q) ( Dc (q)q + IIt.(q , q) + & (q )) (A.16)
Finally, we obtain the same formula as the nonredundant manipulator, that is,

e + Kv e + Kp e = j - J ( q ) D c- 1(q)(AD(q)q + AH(q,q) + Ag(q)) (A.17)
Kf



- 2 4 -
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Figure I. Nonlinear decoupled controller in joint-variable space.

Dc(q)q + Hc (q, q) + Pc (P)

Manipulator
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Figure 2. Nonlinear decoupled controller with a high feedback gain.
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Figure 3. Nonlinear decoupled controller in the Cartesian space with a high feedback gain.
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Table I. Some Parameters and Values for 

Evaluating Maximum Error Tolerance

Joint 4 I Qi I max I «il m»

(number) (kg -m) (rad I sec) (rad I sec) (rad Isec2)

I 5 25.133 4 4.9

2 5 37.699 2 12.16

3 7 125.664 i t 5.63t

4 0.1 94.248 5 37.07

5 0.1 94.248 : 5 30.61

6 0.04 125.664 8 64.5

$ The joint velocity and acceleration for joint 3 are in m l sec and m Isec 2, respec­

tively.
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Table 2. Maximum Steady-State Errors 
in the Joint and Cartesian Spaces

Maximum steady-state error in the joint-variable space

Essp in rotational joint = 0.01 (degree)
Essp in translational joint = l.OxlO-5 (meter)

Essv in rotational joint = I (degree per second) 
Essv in translational joint = LOxlO-3 (meter/sec)

Essa in rotational joint = I (degree/^2)
Essa in translational joint = l.OxlO-3 .(meter/s2)

Corresponding Maximum Steady-State Errors in the Cartesian Space

Essp along x-axis = 3.61800X10-4 (meter)
Essp along y-axis = 3.51176X10-4 (meter)
Essp along z-axis = 3.58713X10-4 (meter)
Essp about x-axis = 4.89395X10-4 (rad)
Essp about y-axis = 4.89401X10-4 (rad)
Essp about z-axis = 5.63476X10-4 (rad)

Essv along x-axis = 3.61800xl0-2 (meter/sec) 
Essv along y-axis = 3.51176xl0-2 (meter/sec) 
Essv along z-axis = 3.58713xl0-2 (meter/sec) 
Essv about x-axis = 4.89395xl0-2 (rad/sec) 
Essv about y-axis = 4.89401xl0-2 (rad/sec) 
essv about z-axis = 5.63476xl0-2 (rad/sec)

Essa along x-axis = 3.61800xl0-2 (meter/s2) 
Essa along y-axis -  3.51176xl0-2 (meter/s2) 
Essa along z-axis = 3.58713xl0-2 (meter/s2) 
Essa about x-axis = 4.89395xl0-2 (rad/s2) 
Essa about y-axis = 4.89401xl0-2 (rad/s2)
Essa about z-axis = 5.63476xl0-2 (rad/s2)



Table 3. Significant Dynamic Coefficients of the Simplified Dynamic Model of the Stanford 
Arm under a Nonlinear Decoupled Control in the Joint-Variable Space

Simplified expression Minimax error Maximum error tolerance

d n = 1.451 + 2351S% -  5.076S22<73 + 6.233S2V 32 0.0477t 0.0981
d n  -  4.671 0.324t 0.430
d 33 = 7.252 O-OOOt 0 .0 0 0

J 44 = 0.115 0.0663t 0.990
d 55 = 0.113 O-OOOt 0 .0 0 0

= 0.0203 O-OOOt 0 .0 0 0

d\2 ~ 0.44902 —l.Q50$3C2 + 0.119C2$3C455 0.0240 0.0840
d 13 = -1 .0475S2 0.113 0.190
d 14 =  O-IlOTStf3S4S5 + O-OnC2S52 0.0189 0.0207
d 15 = - O A m S t f 3C4C5 + O M S lS 2S s 0.0185 0.0233
d ^  = -0 .1150S4S 5 0.00583 0.098
dM = O -I ie^ 3C4S5 0.00873 0 .1 1 0

Ci7S = 0 .1 1 5 0 * 3 ^ 5 0.0160 0.0123
d 35 = -0 .11505s 0 .0 0 0 0.182
g 2 = “  27.01652 + 63.4525^3 + 1.233C25 455 0.748 0.968
g 3 = -6 3 .4 4 6 0 2 0 .0 0 0 2 .1 1 0

* 4  = LVIIS7CaS5 0.0572 0.420
g 5 = LVTJS7SaC 5+ L V n c 7S5 4.0X10T6 0.918

A11 2 = 2.763^2^2”  ^«20552^3 + 6.920C2iS2^3 0.124 0.258

A113 = - 2  72651 + 6 . 4 7 0 5 3 0.090 0.451
A ns = -  0.0l7C 4C5 + OJlSC2S 2^ 4C5

-  0 J1 5 S f$ 3S5 -  0.054852£ 3C45 5 0.0148 0.0170
A122 = —0.44952 + 1.052S2$ 3— 0J08S2$3C4S5 0.0242 0.105
A123 = -  0.984C2 + 0.33152 6-OxlOr6 0.116

A144 = 0.11652^3^4^5 0.0186 0.021
A145 = 0.00764C2+0.0067152-0.0132C2C4

+ 0,08475^ 3C4 + 0.007195254 + 0.85452̂ 35 4 0.0131 0.0133
A155 = 0.115652# 30^ 5 0.0186 0.0210
A21I = — 2.929C25 2 0.793 1.025

A214 = — 1.582025 2 0.434 0.546

A 2i5 = -  1>539C252 0.448 0.549
A 223 = — 2.712 + 6.47$3 0.0771 1.974

A 225 = — 0 .1139^35 s 0.0597 0.0828
A244 = — 0J167$3S4S5 0.0088 0.110
A245 = 0.0982$ 3C4 -  0.088454 0.0086 0.0616
A25S = — 0.1149$35 45 5 0.000 0.110

A3H = — 1.62352 ^3 2.676 4.390
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* 3 1 4  — ~ 0.9475 f # 3 1.245
* 3 1 5  =  -0 .9 0 2 S |4 3 1.333
*322 = "" 1.664^3 2.724
*324 = ~ 0.980^3 1.247
* 3 2 5  =  “ 0.9410.3 1.329
* 3 5 5  =  - O . I I 5 O C 5 0 .0 0 0

* 4 1 1  =  — 0.1161C252 0 3 ^ 4 ^ 5 0.0227

* 4 1 2  =  “ I - S S l C 2S  2 0.434
* 4 1 3  = 0.53 IS 2 1.761

* 5 1 1  =  O.131S220 35 5 0.0647

* 5 1 2  =  1*539(^2^2 0.448
* 5 1 3  = 0.9025 2 $  3 1.333
* 5 2 2  =  O . U 8 0 3 S 5 0.00756
* 5 2 3  = 0.532 '1.841

t  These minimax errors for da are in the sense of relative error.

2.171
2.264
4.367
2.172
2.265 
0.0115 
0.0688 
1.27
2.367 
0.1232 
1.277 
2.468 
0.129 
2.470
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Table 4. Significant Dynamic Coefficients of the Simplified Dynamic Model of the Stanford Arm under a Non­
linear Decoupled Control in the Cartesian Space

Simplified expression Minimax error Maximum error tolerance

d n = 1.416+ 1 .6 3 4 5 2  + 1 3 3 2 S $ q l 0 .2 2 2 t 0.347

d n  = 4.672 0.324t 0.544

d 33 = 7.252 o.ooot 0.000

^ 44 = 0.115 0.0663t 0.874

^55 = 0.113 o.ooot 0.000

^ 66 = 0.0203 o.ooot 0.000

d n  = 0.507C2-  1.105<?3C2 0.115 0.297

d l3 = -  1.047552 0.113 0.672

dl4 = 0.1305#3545 5 0.0354 0.0627

d\$ = — 0 .1  ITOS2^sC4C5 0.0158 0.0170

£*23 = -O .II 5OS4S5 0.00583 0.0781

£̂ 24 = 0.1167? 3C4S s 0.00873 0.0640

£/25 = 0.1150<73S4C5 0.0160 0.0674

^ 35 = -O .II 5OS5 0 .0 0 0 0.0473

g 2 = -27 .392S2 + 63.4535^3 1.125 1.310

g 3 = -63.446C 2 0.000 1.660

g 4 = 1.129S2C4S5 0.0572 0.0886

g 5 = 1.12752^4^5 + I.1 2 7 C2S5 4.0x10“® 0.0901

A112 = 1.677C2S2 + I^ M C 2S*? 3 0.534 0.913

A113 = -  2.7265 2 + 6.4705 \ q 3 0.0903 1.593

A115 = 0.0797^252^3^4^5 -  O -IllS22^3S5 + 0.0288S ̂ 3C4S5 0.0417 0.0600

A122 = -0 .5 5 1 5 2+ 1.1 4 9 5 2? 3 0 .1 2 2 0.371

A123 = ”  0.984C 2 0.331 0.410

A 144 = 0.116S#3C4S5 0.0188 0.0740

A145 = 0 .07475# 3C4 + 0.1055 3^4 0.0283 0.0468

A 155 = 0.115652# 3 ^ 45  5 0.0186 0.0743

A 211 = — 5.503C2S2#3 1.230 1.382

A 214 — ~ 2.845C 2^2$ 3 0.615 0.691

A2IS = — 2.735C2S2<|7:? 0.618 0.695

A223 == “  2.712 + 6.47^3 0.0771 2.500

A 225 = ^0.1139^355 0.0596 0.105

A 244 = “ 0.1167^35455 0.0088 0.131

A245 = 0.0982# 3C4 -  0.0884# 35 4 0.00864 0.0780

A255 -  —0.1149# 35 45 5 0 .0 0 0 0.0131

A3H = — 1*62352 ^ 3 2.676 3.4520

A3I4 = — 0.94752#3 1.2454 1.607

A 315 = — 0.902S2#3 1.333 1.676



*322 = “  1;6641?3. 2.724 4.057
*324 = ""0.980^3 1.247 1.610
*325 = 0.94 Ifl3 1.329 1.677
*355 = -0 .1150C 5 0.000 0.146
*411 ~ “  0.1 I^lC2S2A3^4$5 0.0227 0.0450
*412 = 1.582(7 2^2 0.434 0.508
A413 = -  i .3 I8 S | + 3.2355|^3 0.0454 0.967

*511 = +O.I3 .IS& 3S5 0.0647 0.076
*512 ,= 1 .5 3 9 C25 2 0.448 0.482
A5I3 = -  1.29251 + 3.2355^3 0.0827 0.910
A 522 = OTlStf3S5 0.00756 0.0643
A523 = -  1.294 + 3.235^3 0.0813 0.910

t  These minimax errors for d^ are in the sense of relative error.
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Table 5. Computational Complexity of Computing 

Joint Torques in a Stanford Arm.

Multiplication Addition

Parallel Computation ([10]) 213 200

Simplified Model I (Table 3) 254 99

Simplified Model 2 (Table 4) 238 89
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