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ABSTRACT

This paper presents the development of simplified manipulator dynamic models which
satisfy the desired steady-state error specification in the joint-variable space or in the Cartesian
space under a nonlinear decoupled controller. The formulae which relate the tracking errors of
joint variables in the joint-variable space or the manipulator hand in the Cartesian space to the
dynamic modeling errors are first developed. Using these formulae, we derive the maximum
error tolerance for each dynamic coefficient of the equations of motion. Then each simplified
dynamic coefficient of the equations of motion can be expressed as a linear combination of the
- product terms of sinusoidal and polynomial basis functions. To illustrate the approach, a com-
puter simulation has been carried out to obtain two simplified dynamic models of a Stanford
robot arm which satisfy the specified error tolerances in the joint-variable space and in the Carte-
sian space under respective nonlinear decoupled controllers. Finally, to measure the time com-
plexity of ‘simpliﬁcd models, the number of mathematical operations in terms of multiplication
and addition for computing the joint torques is tabulated and discussed with the parallel compu-
~ tation result of Newton-Euler equations of motion.

This work was supported in part by the National Science Foundauon Grant CDR-8803017 and by a grant from the
Ford Fund. Any opinions, findings, and conclusions or recommendations expressed in thls article are thosc of the
authors and do not necessanly reflect the views of the fundmg agency. : :



1. Introduction
7 " Robot 'manipulators are highly nonlinear systems and_ their dynamic performance’is directly
‘dependent on the efficiency of the control laws and the'dynamic model of the robot.l, Past work

focused marnly ‘on designing efficient and robust controllers for manipulators [7-9]. This paper

focuses on ‘the inverse problem and addresses the issue of how much manipulator dynamics
information sh_onld be i‘ncluvdedv in the ‘manipulator dynamic model for a 'nonlin"ea_r_ decoupled
controller-such "that the controlled robotic system sati-sﬁes the desired steady-sta.te s__yste_m perfor- _

mance in the joint-variable spaceor in the 'Cartesian space We further show the- efficiency of 3

simplified models by considering the computatmnal complexrty of the controllers based on these

srmphﬁed models |

- The ana_lysis and design of robot motion contr_ol strategies require the develop’m'ent _of"
efficient closed-form dynamic equations. | ‘Two competing approaches [1],[13] have been
developed for handlmg the mathematical complexmes involved in the dynamic- model of robot.
mampulators In the first approach, the emphasis focuses on the formulation of the dynamrc
model in'an efﬁcrent recursive inverse dynamics form for generating the required gener_ahzed_ _
,forces/torques for a given set of generalized coordinates, their time derivatives, and phy"sical and
geometric parameters of the robot arm [1‘3] One of the major drawbacks of these' ’recursiye .
dynamic equatlons is that they do not show the deta11s of dynam1c characteristics of robot mam-.
- pulators in exphc1t terms for control system analysis, deS1gn and synthe31s In the second
approach the emphasrs is on the formulation of exphcrt state equations for mampulator dynam-
ics, expressmg the relationship between the generalized forces/torques and the generahzed coor-
-dlnates w1th the system parameters explicit in the equatrons [l] This is motrvated by the grow-
‘ ‘,mg mterest in applymg advanced control theory to robot manipulators [7-9]. Unfortunately, the
generanon of these state equations by hand (or even by a computer) for most mdustnal robots 1s'
a lengthy and tedrous process Furthermore, these lengthy state equatlons may exh1b1t 100 many
1ns1gn1ﬁcant detaxls of dynarmc characteristics of the manipulator, resultmg in excessive compu-

- tations 1n real t1me Thus, the development of efﬁcrent schemes/algonthms for obtalmng a
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S1mp11ﬁed model that reveals the dommant dynamlcs thhout 1ntroduc1ng 51gn1ﬁcant errors into

the dynarmc model is essential for the advanced control of robot mampulators

Various. schemes/algorithms have been ‘proposed for 51mpl1fy1ng robot arm dynarmc model

[1], [2] [4] [12] The1r approaches fall into one of the following categories:

(1) The reducuon-rule and bas1s-funcuon techmques wh1ch eliminate relatively 1ns1gn1ﬁcant
1nert1a1 Coriolis and centnfugal and gravity terms to amve atan approx1mate model based-
on the relatwe unportance of their forces/torques as compared to the complete equatlons of

”motlon [l] [2]

2 A prOJectlon algonthm which, based on‘ a least-square cntenon minimizes- the 12 norm
_ error between the approximant and the nonlinear robot rnampulator model [4]. One of the
v 'd‘rawbacks of this method is the requirement to testing all the terms of a speciﬁci .-dynamic
coefﬁcie_nt exhaustively for their significance. | |

3) The_“e)_tfpression of each dynamic coefficient is eXpressed as a linear combination of the basis
.lfunc_tions‘vand a minimax cnrve-ﬁtting technique is used to provide an approximate»model

- [1'2];:»,;. o
. All the above existing simpliﬁcation schemes described various methods of obtaining
c simpliﬁed dynamlc models as compared to the complete Euler-Lagrange (EL) forr_nnlation. But
all of them did: not analyze the effects of the simplified dynamic model on the manif)nlator sys-
tem performance That is, they de not describe the effect and the relatlonshlp between the
modehng error 1n the equanons of motion and the controlled system performance. Recently,'
Chang and. Lee [3] developed a multi-layered minimax simplification scheme wh1ch obta1ns a
s1mp11ﬁed dynarmc model in symbohc form based on the desired manipulator steady-state error
system performance in the Jomt-vanable space under a proportional-plus-derivative (PD) con-
troller ThlS nnnlmax s1mp11ﬁcatlon scheme constructs the simplified dynamic coefﬁc1ents us1ng _
the bas1s funcuons Each simplified dynarmc coefficient i 1s expressed as a linear combmauon of
the product. terms of sinusoidal and polynomial funcnons of the mampulator S Jomt vanables' '

Furthermore, the robot system under a PD controller usmg the simplified dynamlc model .
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satisfies the desired steady-state system performance in the joint-variable space. However, since_ .
the manipularor is a serial-chained mechanism, a small error in each joint variable in the joint- .
variable v'space: ooutrol may propagate the error through the chain aud cause a moderate'_ 'error of
the'-mauipulator end-effector in the Cartesian space [9]. As a result, the simplified dynamic
model derived in the joint-variable space and based on the steady-state error specification m the
joint-\vari?ablefsPace may cause a moderate steady-state error in t_heCartesiau .s'p'ac:e,. Since the
dynamic .beha\jfior of the manipulator end-effector in the Cartesian space is one of the most
significant icharacteristios in evaluating rthe performance of the rhau»ipulator- [81,[9], we shall
deVeiop' metho_ds for deriving simplified dynamic models for satisfying the traokingerrorin.the '
Cartesian space as well as the joiut-variable space under respective nonlinearideooupl'ed oon-
trollers. | : |

In this paper, we extend the multi-layered mm1max simplification scheme ‘[3] o obtain a
simplified dynamlc model explicitly expressed ina symbohc form based on the desued mampu—
lator steady-state error spec1ﬁcatlon in the Jornt-vanable space or in the. Cartes1an space under
' re-specuve nonlmear decoupled co_ntrollers. We first derive the formulae whlch_relate the track-
ing error of each joint variable in the joinr-variable space or the 'mani'pulator hand in the Carte-
sian space to the dynamic modeling error Using these formulae, the maximum error tolerance
for each dynarmc coefﬁc1ent of the equauons of mouon is derived. These maximum error toler-
ance specrﬁcatlons are then used in the multl—layered mmrmax simplification scheme to obtain a
simplified dynarmc model Using the simplified dynamic model and under the control of non-
' 11near,decoup1ed 4contr011er, the controlled system will satlsfy the desired steady-state error con-
ditions in the joint-variable space or in the Cartesian space. A computer simulationt' was per4
formed on a Stanford arm to venfy the proposed simplification scheme. Fmally, to measure the
time complcxny of s1mphﬁed models, the number of mathematical operations in terms of multi-
phcatlon and add1t10n for computing the Jomt torques 1s tabulated and discussed with the parallel

computatlon result of Newton-Euler equauons of mot10n
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2, Relatlon of Steady-State Error of Joint Varlables and the Modelmg Error

In thlS sectron we shall derive the formulae which relate the tracking error of each Jomt
vanable in the joint-variable space to the dynamic modehng error under a nonhnear decoupled'
controller Thrs error relatronshlp will be used in the minimax simplification scheme in obtammg
a s1mphﬁed dynarmc model to be used for computing the nonlinear decoupled controller -The

robot system under the nonlinear decoupled controller using the simplified dynamrc model will

: satlsfy the control system performance ‘The cquatlons of motion of an n-]omted mampulator R

expressed in the Jomt-vanable space can be written as [l],[6]

| DO +H@D+g@=T®) W
where D(q) 1s the nxn kinetic energy matrix, q(¢) is the nxl vector of the generahzed coordr- o

' nates (or Jomt vanables) H(q,q) is the nx1 vector of the Coriolis and centnfugal force/torque,

g(q) is the n><1 vector of the grav1tatlona1 force/torque, and I'(z) is the nx1 apphed Jolnt

‘ force/torque vector. Expressmg the above equatron in its components, we have

Zdu‘b(t)"'Zzhuk‘b(t)%(f)‘*‘g;—‘cz(t) i=1,2,---,n )
: - j=lk=1 s
where d, j o h, Jk “and 8; are dynamic coefﬁclents of the mampulator equatlons of motlon A non- "

linear decoupled controller | to control the joint vanables of a mampulator in the Jomt-vanable __
space. has the followmg form [6] (see Flg 1) |
L =D, @) +K, &) +K, e®)] +H, (@, + 2@ N
where e(t) qd(t) q() and et)=q,@)- q(t) are, respectlvely, the tracking errors of _]Olnt :
position and Jomt velocuy in the Jomt-vanable space. K, and K, are, respectlvely, the veloclty
and - posmon feedback d1agonal matrix gams D, (q) H.(q,q) and g (@ represent the com-
puted values of D(q), H(q,q), and g(q), respectively, in (1). Mampulatlng equatlo_n (3), we
obtain”f“ | A |
LD @EO+K, 60+, e+ D @i+ K@D e @ @
- where. e(t) qd(t) q(t) is the trackmg error of Jomt acceleratlon in the Jomt-vanable space.

To achieve better rob_ustness, a high gain feedback to the nonhnear decoupled controller is added
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in (4) [15] (see Fig. 2). Then the computed torque I', of the nonlinear decoupled controller
becomes = - |

T =k D, (@ [§0) +K, é0)+ K, e(©)]+D, @i +H, (a0, +2. @ ®)
where kfv isa scalar gain, Substituting the computed controller from (5) into (1), we have

D(q)q+H(q Q)+ 2@ =k D,(q) [€(¢) +K, é() +K, e(t)]

SRR O +D, (@)d +H,(q,9) +g.@ R (6)
Mampulatmg equatlon (6) we obtam ’ ‘
kf D, (@) (é¢)+K, é0)+K, e(t) )= AD(q)q+AH(q +Ag@ o D
wherei\_ .
~ AD@AD@-D, @, o e
| AH@Q,)2H@Q,d-H. (. D, R R ).
Ag(@) 2 g(@) - £ (@ ' s a0
,Smce Dc (q) is mveruble, we have ' SR ‘ ‘
: e(r>+Kve(r)+K e(t)——;— -1<q)[AD<q)ii+AH<q«,;d)+Ag<q>]. Coan

~Ifno modehng error ex1sts, then the nght—hand-s1de of (1 1) vanishes, resulting in - :

) +K, 60+ K,e(t)=0, e : BN (1))
and if the values 'of K, and K are so chosen that the characten'stic roots of (12) have negative
real parts, then e(t) approaches zero asymptotically [14]. However, since it is 1mp0881b1e to
have an exact dynamlc model of a mampulator and the complete Euler—Lagrange equations of
motion may ‘also.have some modelmg errors, it is more cost-effective to use an approximate
' modei -}which‘ does nbt introduce signiﬁeant errors into the dynamic model and the controlled sys-
~ tem still satisfies the desired steady-state system pexformance. Using an approximate model, the
joint vaﬁable error e(t)in (11) may approach nonzero Value due to the dynamie modeling error. '
Thus (11) can be used to derlve the relation of the maximum error in the dynam1c coefﬁments
and the trackmg error in the Jomt-vanable space. Cons1der1ng the ith component of the vector'

equation in (11), we have

G Ay G0+ ()= kifw:l(q) i [AD@G+AH(q, ) +Ag@]  (13)



where
k,; = the i th diagonal element of K, , | o (14)
kp;'# the i th diagonal element of K, , ' S as)
[D;(q)]; = the ith row of D@l i=1,2,--- e (16)

and e; (t) €; (t), and ¢; (t) are the 1th component of the error vectors e(t) e(), and e(t ), Tespec-

tJvely. .

3. Effect of7Si‘mpliﬁed Model on Steady-State Error in the Joint-Variable Space
To. deterrmne the steady-state error of the joint variables in the Jomt-vanable space, (13) is

transformed 1nto its Laplace transform equivalence
| C8(s) T . -
E(s)= | | _ 17)
v ks (s2+kys +kp,) ‘ B
- where - E;(s) and O;(s) are the ~Laplace twansforms of ¢;(tf) and

[D"l(q)]-[AD(q)ii+AH(q Q) +Ag(q)'],vrespectively If the desired path q,(¢) to each joint
vanable isa umt step (i.e. a constant dlsplacement), then the veloc1ty-re1ated and acceleration-
. related terms of the modeling error will disappear in the steady state because they are functlons A

of q and q. Thus, to compute the steady-state erToT, We need only to consxder the following

| j [(D“l(q) ); Ag(q)]e"‘ dt| < ﬂ [D"(q) i Ag@| e*dr. - (18)
Using the followmg convenient notations, | |
rij 8 maxI [D‘l(q) Lij| = maxl the uth element of [D‘l(q)] |, 19

l]_maxl [D‘l(q)]UI -max| the uthelementof[D 1(q)]| : (20)

the absolute value 1ns1de the 1ntegra1 in (18) becomes

| [D"(q) I Ag(q)l < zr,il g; (q)l
<Trlagla | @y
. o=l ' | ' ;
where TR '

L s@=18@, g @T @



|Ag,| ‘—maxl Ag,(q)l B <
, vand the superscnpt "T " denotes vector or matnx lranspose Thus, (18) reduces tov : '
| j[(D*(q)). Ag(q)]e'“drl <—zr.,| Ag,l Y ¢
. S =1 : L :
Applymg the ﬁnal value theorem 0 amn, and usmg (24), we have
L ess,, hme,(t)—hmsE (s)

1.,

e Agjl m 03
v kfakﬂ, kp;,—l 'J " ,‘ _ : T

- where kfa is larger than 1 and kﬂ, = ;f-—- Ifwe determme kfa such that for all i, j AR

a
1 1 cgri (26)
S ' kfa .'J’ -
 then the steady-state error is | | '
i e 2 v Z’ lAg | ‘, IR (27)
s-*'1’ iyl o8 B .

In the case that the modelmg error in the kinetic energy matnx D(q) 1s small kfa 1s approx1—4 '

: mately 1. The value of kfa is determmed such that the mequahty in (26) holds in the computer o

.s1mulauon If n steady-state error specrﬁcatlons essp of the mampulator are glven 1 <i<n,
and under the condltlon that the des1red path is a unit step, a sufﬁc1ent condltlon for the actual, o

'steady-state error to be less than or equal to- the etror spec1ﬁcat10n (ie. | esAp | < sp) is

SR kp kp: ,’i’v' 8gj| m Sely T o
Thus we have obtamed n lmear mequalmes for boundmg the maximum modehng error in each-'_ '
: gravrty dynarmc coefﬁcrent (ie., g; in (2)). Equatlon (28) mdrcates that the problem of ﬁndmgi
| ~the max1mum modehng error in each gravity coefﬁcrent is class1ﬁed as a hnear programrmng‘

| problem or a nonhnear programmmg problem dependmg on whether a lmear combmatlon ora
nonlmear comblnatlon of | Ag;| m» 18P Sn,is bemg used in the obJecttve functlon To optrm-‘ -

1ze the obJectlve functron, the problem can be solved by several methods [1 1] It is worth pomt-

ing out that some of the g;(q) may be zero or constant due to the mampulator structure R
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[11,I2], [16].’ For example, in a Stanford arm, g21(@ =0, g6(q) =0, we need only consider the
ob_]ectwe function consisting of a linear or nonlinear combination of | Ag; | m» 2 <i £5. Furth-

ermore, if we want to allow a larger error bound for some g;(q), we can use a particular objec-

tive functlon Wthh weights | Agi| heav1er

If the des1red path q,;(z) to each Jomt variable is a unit ramp (i.e., tracklng a statlonary
obJect ona movmg conveyor belt), then the acceleratlon-related terms of the modeling error will
dlsappear in the steady state. Thus, to compute the steady-state error, we need only to consider

~ the followmg
1 T (AH G )+ Ae(@)] etdt| @

<l (D@ AH@, @) +| (D@ );Ag@] Te~ dr .
< (D |

Taking the similar step as before, the ﬁrst a'bsolute'value term inside the integral becomes

I (D'l(q) ); AH(q Ol <Zf§l 3 3 A g (@i i |

,—1 k=1i=1
ZZI Ahjydrdr] m ' - (30)
‘ "l k 11=1 . v
where
| Ah qukqll -maxl i (@didr | - e (31)
Using (21) and (30), (29) becomes | o
| j @), (AH(q, §) +dg(@)] e™ dt | o o)

<—Zrt,[ZZI it dedi| m +IAg,|m]
9=l k=1l=1 .

Applymg the ﬁnal value theorem to (17), and using (26) and (32), thc steady-state error due to av
unit ramp 1nput becomes | g

essy S ):r,,lzzl uqqul + Agjl 1. 03

SSV
' kfb kpt j=l k==l
If n steady-state error spec1ﬁcatlons em, of the mampulator are given, 1 <i <n, and under the
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~ condition that the desii'od path is a unit ramp, a sufficient condition for the ostea_dy-stétvé error to |

" be less than or .equal to thé error Speciﬁoaﬁon (e.,} e',i,,, | <el)is

: P fb pi J"l k=1l=1 ' :
In order to know the relatlve 1mportance of each term of (34) we assume that the relatlve ratio

of the max1mum dev1auon to the corrcspondmg maxunum value of non-zero term in (34) is

equal [3]Thatls,foraﬁxedj 15] <n,

| Ag;l | il
Talw Th |

. 3sy
where, for 1<kl <n, |
| 8 m =max] g@ e
| | , =max| ,d(q)l e
L >'i>":| ivitl n+] 86,

' ldek(II +| Ag;
| Agjl m | | == ]': ”

C Talw Thale  EET o -

goosEm o »ZZ| dequll m +] 8j|
wherol,h.,dq:kqiil , =max|fh-,d(q)q',k(j,|_. The denominator in (38),| gJ| andI ,quqll m> -

9.4

@8

~can be found by a searchmg strategy in the mampulator workspace Usmg (38), (34) can be‘ :
wntten as o ' ' .
. s Ag: .' —. ’ v :.» o n
B ij—l‘*g-"—m-B{ Sgg Yy
L ka1 gilm SISTUR L
1 ”,r;. | Ahjg|

kg kpij=1 Y | higl m

| B{<ef, @0

- B{ Z):I uqqul +|g,-|,,.;‘ @)
' k=1=1 . , : ,
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As before, we have obtained n linear ineciualities for -bOunding the maximum modeling error of
the dynamic coefficients (i.e., h]-,d and g j) in (39) and (40). To solve (39)‘and (40), we can

deﬁhe an objective function consisting of a combination of | Ag;| ,, and | Ah, i /| in (39) and

(40), respecuvely Similarly, we can use the structure of H(q,q) as well as that of g(q)

[1] [2], [16] and 1f we want to allow a larger modeling error bound for some A ik _(q), we can use a

partlcular objective function which weights| Ahjy | ,, heavier.
- If the desired path g, (z) to each joint variable is a parabolic, > then we have

| 8;()] =| JI(D;XQ)); (AD(Q{ +AH(q, ) + Ag(Q) )] e~ dr |
!

< i (D;'@ ) AD@] +] (D7{@ ) AH(Q, ®| +| (D7 (@ )Ag@] 1e™ dr . (42)
i

Taking ;the sir'nilar step as before, the first absolute value term inside the integral becomes . -

| (D'I(Q) )i AD(Q)(H < Z";ﬂ ZA e (@ |

j=1 k=1 - -
Zn: Z_H MGl m o @)
,whefe'”uw”" i e | RN
l MGy p=max| Ady (@l . AR (“4)
Usmg (21) (30) and (43), (22(; becomes | h
' .| ;)| < er;,[kZJ Ady G| m +k2'_l',u_2n',l| Ay idr| m +| Agil m1. (45

Applying the final value theorem to (17), and using (26) and (45), the steady-state error duetoa
parabolie‘_input_:becomes | = |
| | 1 ‘nn . F: .
el S Y Z’q[ Z| Ady G| m + T X! A Gidr| +| Agil m1.  (46)
‘ P Kpij=1 = k=1 - k=11=1 '
Ifn steady-state error specifications €., of the manipulator are given, 1 <i < n and under the

' condmon that the desired path is a parabohc, a sufficient condmon for the steady -state error to

be less than or equal to the error specification (i.e. | el <ei)is
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k Z"g [ ZI Ad qul + ZZI Ahjadrdi!| m + Ag,l m]<8ssa N
fb pl]-l k=1l=1

As before, if we assume that the relative ratio of the maximum deviation to the coxrespondmg

maximum value of the non-zero term in (47) is equal, then we obtain n 11near 1nequa11t1es for
. 'boundingv the maximum modeling error in each of the dynamic coefficients (i.e., dj , hjy, and

g;)in (47).

LS 1.V 71 R S
—— Y ————B), <€} g , - (48)
kﬂ) kpij-'l Ullgjlr e o
_ 1 Ahjy e
k Z ij I _] | Bé <€ ssa : 49
fb p; l jki | . L :
k . . o
o , jb pz] m ' ‘
where, for a fixed j, '
. . n . : o » )
B} =kZ | dikdi| m + ZZl qukqll +| gilm- - 6D
=1 k=1i=1 :

Applying the similar method as before, we can obtain the maximum error bound in each

dynamic coefficient.

-4, _“Effect" of Siihpliﬁed Model on Steady-State Error in the Cartesian Space

- In this section, we shall derive the formulae which relate the tracking error of the manipula-
- tor haﬁd in ‘tvh,_e:Cartesian space to the dynamic modeling error under a nonlinear decbupled con-

troller. For ease of discussion, we shall assume that the manipulator under coritrol_ is nonredun-

dant (n: = 6) and is always at a nonsingular configuration. The equations of motion of the mani- |
pulator cnd-cffeétor can be expressed in the Cartesian space as [8],

A ()% + 1 (x5) +p %) =F(r) | | 52)
x(t) = J(Qq@t) ' - (33)

where x(t) is the 6x1 vector of the Cartesian variables describing the position and orientation of
| the mampulator hand J (q) is the 6x6 Jacobian matrix, A(x) is the 6x6 kinetic energy matrix of

the mampulator,

A®=I"@ D@ T @, )
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K(x,X) is the 6x1 vector of the Coriolis and centrifugal force,

e R=IT@QHeO-IT@DP@ I @Wie.dd. 65
P(x) is the 6x1 vector of the gravitational force, ‘ '
px) =J7 (9 g(@, | - 66
F(z) is the 6x1 vector of the generalized force and is related to the joint torques through the -
manipulator Jacobian, | | '
TO=T@F®), 6D

X(z) and ii(t)vg‘re, the first and second time derivatives of x(¢), respectively.

To control the :manipﬁlator end-effector to track a desiréd motion _trajéctory,’ we use a non-
linear deédﬁpled con&ollgr in tﬁe Cartesian space, which is similar to (5) (See Fig. 3). The com-
puted generalizéd force of thc_nonlinear decoupled controller is |

F, )=k A, ) (§0) +K, é0)+ K, e0)) +A, X+, G D +p.® (8)
where e(t)= X4 (t) X(¢) is the 6x1 error vector of the position and orientation of the manipula-
tor hand in the Cartesian space. K, and K, are, respectlvely, the velocuy and posmon feedback'
dlagonal matnx gains, ky is a scalar gain. A, (x), B, (x), and p.(x) represent, respectively, the
computed values of the A(x), u(x, i); and p(x) in (52) e (X), K (X), And P, (x) have similar ,
relatlons to D, (q) H_.(q,q), and g, (q), respectively, as in (54)-(56). From (54)- (58), the com-
puted torque I' of the nonlinear decoupled controller is '

I'c ?kf. »c(Q) I Q(Er) +K, e(t)+K,, e(i))

D@ T @(E- I DD+ H @ D+ g @ O
Substituting the computed torque from (59) into (1), we have S

D(q)q+H(q @) + (@) =k D (@) I (@) e(t)+K et)+K, e(t)) -
R +D,(@ I @)X -3, DD +H (0, D+ (60)
Taking ihc time derivative of (53) and manipulating the resulted equation, we havc o
‘ £-J@.94=Jod ~ 6)
and substltuung it into (60) and manipulating the equation, we obtain ’

kf c(q)J‘ 1(q)(e(t)+K e(t)+K e(t))=AD(¢q)g + AH(q, q)+Ag(q) - 62)



-15-
Since D, (q) is invertible, we have

D +K, &) +K, et) = é J(@) D;'(@) [AD(Q)§ + AH(q, §) + Ag(q)]. (63)
In deriving (63) ‘we assume that the manipulator is nonredundant and always at a nonsingular
location.- In fact in the case of a redundant manipulator with a full rank of the Jacoblan matrix,
~ the same relatlon holds (See the Appendlx) However, in the singular case or non- full rank of the
‘Jacoblan matrix, further i 1nvest1gat10n is necessary. It is 1nterest1ng to note that (11) and (63) are

in the same form except the absence of the Jacobian matrix in (11).

If no modehng error exists, then the right-hand-side of (63) vanishes, resulting in
€0)+K, &)+ K,e(t)=0, - (64
and 1f the values of K,, and K, are so chosen that the charactenstlc roots of (64) have negative
real parts, then e(t) approaches zero asymptotically. Using an approximate model the Cartes1an
error e(t) in (63) may approach nonzero value due to the dynamic modelmg erITor. Thus (63) can
be used to denve the relation of the maximum error in the dynamic coefﬁc1ents and the steady- v
state error of the manipulator hand in the Cartesian space. Cons1der1ng the i th component of the

error vector in (63), we have

&) +hy &) +kpi (1) = 7;— [J@ D' (@1; [AD(@){ + AH(q, §) + Ag(@) 1(65)
where | |

-~ N@DI@) =theithrow of J@ D' @ i=1,2,-:-,n  (66)
and e; (t’), €;(t), and ¢;(¢) are the i th component of the error vectors e(t), é(t), and €(t), respec-

tively.
Companng ( 13) w1th (65), the same approach and method in Section 3 can be apphed We
only need to change (19) and (20) to determine the maximum modeling error of each dynaxmc

coefficient, - |
riy &max| (3@ D@1y | =max| the ijth element of [J(g) D™ (@1 , 7).

rf _maxl [J@ D @)1, | —max! the uthelement of[J(q) D@1 .  (68)

Then if we are» glven steady-state error spec1ﬁcat10ns es s €4, and em of the manipulator,
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kf s Kv and K in the Cartes1an space, the same method can be appl1ed as 1n the Jomt-vanablef

space _ '

: 5 Determmatlon of Maxnmum Modelmg Errors based on System Performance

In the above denvauon of steady-state errors in the joint-variable space or the Cartesmn :
space for unrt step, un1t ramp, and parabohc mputs we can deterrmne the max1mum error toler-
'ances (or maxzmum modelmg errors) of the dynamic coefﬁcrents SO that the mampulator control
system us1ng a sunphﬁed model under a nonhnear decoupled controller can still achleve the
_ desrred steady-state error speC1ﬁcatlons Slnce most inputs cons1st of a hnear combmatron of
 these three standard test 51gnals the maximum error tolerances for the dynamlc coefﬁc1ents of

the equauons of monon must be selected accordmg to

Bminte,p a1, em<g,).em<g,» - e

"'—mm(emw,k) W) a0
ed = ssa( ) - : ’ L L v(71)‘

- where essp() ess,,() and € sa() are, respectively, the maxnnum modelmg errors of () due to
unit: step, unit ramp, and parabohc mputs The derivation and analyucal expressmn in prewous

‘ sectlons relatmg the maximum error tolerances of the dynamic coefficients to the steady-state _'
; error specrﬁcatlons of the mampulator control system leads us to an 1nterest1ng questlon Gtven o
' the des1red manlpulator steady-state error speclﬁcatlons under a nonlinear decoupled controller,
how can we determme the complexity of the manipulator dynarmc model such that the mampu-'
lator control system can still achieve the desired performance‘7 Thus, the complex1ty of thev
s1mp11ﬁed dynarmc model depends on the steady-state error specification of the mampulator sys-
B tem An efﬁclent minimax s1mp11ﬁcatlon scheme for reducing the cost of obta1n1ng the dynarmc‘
coefﬁcrents of the srmphﬁed dynarmc model to satisfy the desired steady-state error. '
specrﬁcanons has been proposed 31 Followmg therr approach and usmg the above denved
. max1mum error tolerances of the dynamlc coefﬁcrents a simplified dynamic model can be
obtamed that satlsﬁes the desxred mampulator steady-state error spemﬁcauons under a nonhnear: '

decoupled,co,_ntrol-_ -
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6. Computer‘Simulation :

The multi-layered minimax si’mpliﬁcation procedui'e in the joint-varieble space 'has been
implemented in a “C” program [3] and can be used to generate the simpliﬁed ‘dynamic
coefficients for any mampulator with prismatic and/or rotary joints. Here we used the software
package for generatmg the 31mp11ﬁed dynamlc coefficients of the equations of motion based on
the s,teady—state: error specifications i in the joint-variable space or the Cartesian space to satlsfy
the system"performanCe under a nonlinear decoupled controller. | The Stanford arm which con-
sists of rotatlonal and translational joints is used as an example to verify the mmphﬁcatlon algo-"
nthm Some of the parameters of the Stanford arm used in the computer s1mu1atlon are listed in
~ Table 1. In order not to excite the resonant frequency of the manipulator under -a nonlinear
decoupledControllef in the joint-variable space [6], the position feedback diagonal matrix gain

K

p is set such that the undamped natural frequency of each joint is less than one-half of the

structural reSohant frequency, and the velocity feedback diagonal matrix gain K, is set to have a
critically damwd or anoverdamped system, In a Cartesian nonlinear decoupled controller, K,
s set such thatf the undamped natural frequency of each decoupled Cartesian subsyStem is equal
 to 2Hz [17], and the velocity feedback diagonal matrix gain K, is similarly set as in the joint-
variable space.' We selected the same steady-sfate error specifications in the joiht—variable space
~as in [3]. The '§ieady¥state error specifications in the Cartesian space can be generated from the
steady;state‘ verror specifications in the joint-variable space through the Jacobian matrix (see
Table 2). kg, is setto 1.2 to validate the inequality in (26) and k; is set to 30 for both noulineér
decoupled controllers. In a linear or a nonlinear progfamming problem under constraints (28),
- (39), (40) and (48) (50), we can define some objective functions and solve the problem to
optlmlze each obJectlve function. As an example, an objective function consxstmg of the pro-.
ducts of the maximum modehng errors can be deﬁned tofind € ssp (g; j) 1<j<n,

' f(l Agllm’l AgZIm' ’I Agnlm)éHIAgi|m° ' . (72)

o i=1
‘Under the constraint of (28) for i = 1, the maximum value of the objective funcﬁou is achieved
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| Ag;l m b1 Ecp - 3

’ for all Jo 1 < _] < n. Repeating for the otheri, 2 <1 Sn, € (g), 1 is set to the minimum among

all the values | Agll that are determmed by the same process as (73) for all 1,151 . Afterv
that, each €, (g J) for 2<j<n is set to the minimum among values | Ag;| ,, that are determined

as followmg for all i,1<i<n

i | 'A8j| G_J*lfl_)r.( kK pi €ssp — Z Ta€up@)). . (49
In fact smce the above solutlon was derived by con81der1ng each constraint successrvely rather v
than sunultaneously, it is not optimal but suboptimal. If some of the g;(q) are zero’ or constant
due to the manipulator structure, then we exclude those terms in (72) and apply the similar
method. Similarly, we found the other maximum modeling error bounds for the remaining
dynamic c_oefﬁcients. ' | | k

The ratio betwee‘n the maximum force/torque contributed by a specific dynamic .coefﬁcient
(such as d i s g or huk) and the total maximum force/torque (such as B { or Bﬂ) is a criterion
which. can determme the relative significance of that dynamic coefficient. From our computer'
s1mulat10ns, it was discovered that there are many dynamic coefficients that are insignificant, ;‘_
Table 3 and Table 4 hst the significant dynamic coefficients of the simplified dynamic models' .
whlch satlsfy the steady-state error spec1ﬁcat10ns in the joint-variable space and in the Canesmn‘
space, respectlvely, under each respective nonlinear decoupled controller As dlscussed in the
prevrous sectlons, the maximum modehng error in each dynamic coefficient depends on the
posmon gam matrix K, which relates to undamped natural frequenc1es, the hlgh feedback galn
ke and the steady-state error specification. Thus under respective nonlinear decoupled controll-‘
-~ ers, the trme complex1ty of the s1mphﬁed model depends on the steady-state error specxﬁcatlon
A larger steady-state error specification will result in simpler dynamic coefﬁments wrth lesst

number of ba51s functron terms. - Slm11arly, by adjusting the posmon gam matnx and the high

feedback gam vanous complex1ty of the dynamic coefﬁments can be obtamed Although a



-19-

lar'g'e.magnitude of the high feedb.ackvgain ic desirable to achieve simpler dyn»amic coefficients,
hoWeVer, in practice:we cannot increase the high feedback gain without bound sihce a large
: magnitude of 'the high feedback gairl will reduce the manipulator bandwidth. The trade-off must
be consrdered [15] A ma_]or bottleneck in computing respectlve nonlinear decoupled controllers
G.e. (5) and (59)) is to compute the dynamic terms | |

- | c(q)q+Hc(q Q+e.@. 9
This computatlon is equlvalent to the robot inverse dynamics computauon [6]. Since various
‘parallel algonthms have been developed to compute the robot inverse dynam1cs based on the
Newton-Euler equat10ns of motion [10], the efficiency of the s1mp11ﬁed dynamxc model(s) can be
gauged by comparmg the required number of mathematical operations in terms of muluphcatxon
and addltlon w1th those stated in [10]. Table 5 compares the time complexity of calculatlng (75)
‘ona umprocessor computer using simplified models with the parallel computauon of Newton-
Euler equauons of motlon ona multlprocessor system [10]. Table 5 shows that the computatlon
of s1mphﬁed dynarmc models on a uniprocessor has about the same amount of computat1on as

the parallel algonthms ona multlprocessor system with six microprocessors [10]

7. Conclusion [
E ‘Thiv’s p‘aper .oresents the derivation of the formulae which relate the steady-state error in the
joint,-varijablef, space or the manipulator‘ end-effector steady-state error to the modelihg error
under'respectiVe vnonlirlear decoupled controllers. From the formulae, we could obtain the max-
imum admissible modeling errors in the dynamic coefficients while satisfying the desired
steady-state error performance. Usmg the multi-layered minimax s1mp11ﬁcat10n algonthm we
obtalned the srgmﬁcant dynamic coefficients of the snnphﬁed models of a Stanford arm. The
-v complexlty of computmg a simplified dynamic model on a uniprocessor is qulte comparable to '
| those parallel algonthms on a multiprocessor system with six microprocessors. Furthermore,
| simplified dynarmc models obtained from the minimax simplification scheme also satisfies the‘

desired steady-state error specification under a nonlinear decoupled controller.
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Appendix
Derivation of Relation of Cartesian Space Error and

Modeling Error for Redundant Manipulators

The equations of motions of an 7 -jointed redundant manipulator in the Cartesian space can

be written kas"[8]

A, (X)X + L, (x,%) + p,(x) =F (A1)
where :

xe R™ | A2)

A®=[J@D Y (@I e R™" (A3

o0 =Y (@HQD - A, ® X, D e R (A4)
p,(0=T () g(@ e R™ (AS5)

J@=D"'q ) (@A, xR (A6

rank [J(@) J=m ‘ (A7)
JQeR™* (n>m) | o (A8) -

(J (q) is actually a generalized inverse of the Jacobian matrix.)

In the same way as the nonredundant, select

F.(t)=k; A () ( €0)+K, &)+ K, e(t)) + A (OX + e X, %) + P (0) (A9)
where A, (X) , K, (X), and p,. (x) represent the calculated value of A, (x), W, (x ,X) and p, (x)

respectively. Then a torque which generates F, is

T, = @F, =k I (@ Ac®) (80)+ K, &0)+K, e(r))
+J7(Q) (Are X + iy (X, %)+ Pre (X)) (A.10)
" Then substituting the computed values from (A.10) into (1), we have

D(q)q +H@,d) +g@=k iy @ A, x) (€0) +K, &) +K, e(t))
+ 31 (@) (A, OX+ 1y, x, X) + P, (X)) (A.11)
- Mulnplymg each side by J(q) D\ (q),

J(@) DY (q) [D(q)d + H(g, 9 + (@)
- =k J@D; @) (@A, ® (&N +K, &) +K, e(r)) |
+J@ D@ I (@) (Ap XX+ (X, %) + Pre (X)) - (A12)
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From (A 1)-(A. 6),

J@ D (g JT(q)A re (%) = J @@ =T,
and .
J(q) D (g JT<q) My (X, %)
=N D @) @I @H.(q,9-J@ D; (@) V@A J@.4)q
- =I@DI @V @[ A ® @ D@1 H @, - Ja.dd
o =[J@D; @ I @A, A, ®1J@ D{@H(q,d- J@.04q
- =l@DY@H.(@,9-J@dd
Similarly,

- J@D @ J (@ p.®=J@D;'(9 2@
Using (61), (A.13), (A.14) and (A.15), (A.12) becomes

"J@ D“(q) [D(@)q + H(q, Q) + g(@)]

(A.13)

(A.14)

(A.15)

=ky (e()+K, e(t) +K, e(t))+X - J(q,q)q+J(q)D“(q) Hc(q Q9 +J(q) D‘l(q)gc(q)

=ks (&1)+K, &) +K, e(t)) +J( @4 +J@ D (@ H.(q, 9 + J((l) D@ g (@
—kf (e(r)+K, e(t)+K e(t))
+J(@) D;'(@) (D ()i + Hc(q, ) +2. (@) -
Finally, we obtain the same formula as the nonredundant manipulator, that is,

§+K, 64K, e= - J@ D@ (D@ -+ AH@. i) + 8¢@)

(Al6)

| (A.17)
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Manipulator
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Figure 1. Nonlinear decoupled controller in joint-variable space.

D.(@)d +H, (q,q) +q, (q)

‘.

De(a)

(O
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Figure 2. Nonlinear decoupled controller with a high feedback gain.
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De(a)a +H, (a9 +q, (@)
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ot X
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~ Figure 3. Nonlinear decoupled controller in the Cartesian space with a high feedback gain.
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Table 1. Some Parameters and Values for -

N Evah’latihg'Maximum Error Tolerance

Joint — Jh of  ldilme | dilma

 (umber) (g'm) (radisec) (radisec) (radisec?)

1 s 2'5.1‘33 y 49

‘3‘ g  125.664 | ‘_‘1;5 : '5.631 -
4 o1 o s >‘37f07-‘

5 ol 94248 5 3061

6 004 125664 8 645

, 1 The joint veloc-ity' and acceleration for joint 3 are in m/sec and m/sec 2 Tespec-.

: tiizely, :
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Table 2. Maximum Steady-State Errors
in the Joint and Cartesian Spaces

Maximum steady-state error in the joint-variable space

"essp in rotational joint = = 0.01 (degree)

€p in translational joint = 1. 0x107> (meter)

&, in rotational joint = 1 (degree per second)
&5y in translational joint = 1.0x1072 (meter/sec)
!em in rotational joint = 1 (degree/s?)

€54 in translational joint = 1.0x107> (meter/s2)

Corresponding Maximum Steady-State Errors in the Cartesian Space

€gp along x-axis = 3. 61800x107* (meter)
€, along y-axis = 3.51176x10™* (meter)
€g5p along z-axis = 3. 58713x107* (meter)
€, about x-axis = 4.89395x10™* (rad)
Egp about y-axis = 4.89401x10™* (rad)
€5, about z-axis = 5.63476x10~* (rad)

ssp

=

S

€45y along x-axis = 3.61800x1072 (meter/sec)
€y along y-axis = 3.51176x1072 (meter/sec)
€5, along z-axis = 3.58713x1072 (meter/sec)
€, about x-axis = 4.89395x1072 (rad/sec)
€5y about y-axis = 4.89401x1072 (rad/sec)
€5y about z-axis = 5.63476x1072 (rad/sec)

€., along x-axis = 3.61800x1072 (meter/s 2)
€4a along y-axis = 3.51176x1072 (meter/s 2)
€, along z-axis = 3.58713x10™ (meter/sz)
€45q abOUL X-axis = 4.89395x1072 (rad/s?)
€5, about y-axis = 4.89401x1072 (rad/s?)
€sa about z-axis = 5. 63476x10‘2 (rad/s?)
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Table 3. Slgmﬁcant Dynarmc Coefficients of the Simplified Dynamlc Model of the Stanford
' Arm undcr a Nonlinear Decoupled Control in the Joint-Variable Space :

* " simplified expression

Minimax error

Maximum error tolerance

dy = 1451+2357S2 —5076S2Q3+6233SZQ3

. 'd22 = 4671

dyy o= 7252

dgy = 0115

d55 = 0. lvl‘3

dg = 00203 |
dyp = 0.449C;—1.0504;C,+0. 119C2q3C455
diz = -1.04755,

dig = 0.11075,9554S5 +0.017C,52
dis = —01160S2q3C4C5+00157S285
dy = =0.11508,Ss

dy =0. 1167.43.(:435

“dgs = 0.1150g55,Cs
d35 = —-01150S5‘

g8; = —27016S,+63. 452qu3+ 1.233C,5,Ss
g3 = —63446C,

84 = L12IS,C.Ss

1L1278,8,Cs + 1.127C,Ss -
- = 2.763C 52— 6205593 + 6.920C S .43
 hya = =2.7265% +6.47052q,

t WA

-

] .
wn

his = —0.017C,Cs +0.115C ;5 29554Cs

C o 20.11582¢58 s — 0.05488 ,95C.Ss

hiz = —0.4495;+1.0525,q5 — 0.1085295C.Ss
hiz = —0.984C,+0.3315,

higs = 0.11652¢5C,Ss

hiss = 0.00764C + 0.00671S , ~ 0.0132C,C,
- +0.08478,9,C, + 0.007195,8 4 +0. 854S2q384
. = 0.11565,45C.Ss

hair = —2.929C,S,

hyy = —1.582C58; -

o
o
o

o

has = —1.539C,S,
Ry = —2.712+647¢,
hags = —0.1139¢,S s
Choy = — 01167455,
hoss = 0.0982¢,C ,—0.0884S,,
hass = —0.1149¢55 S5

hsu_ = = 1-623S22q3

0.0477¢
0324+
0.000%
00663
0.000%

~ 0.000%

0.0240
0.113
0.0189
0.0185
0.00583
0.00873

- 0.0160
0000

0.748
0.000
0.0572
4.0x107¢
0.124
0.090

0.0148
0.0242
6.0x1078
0.0186

0.0131 -
0.0186
0.793
0434
0.448
00771
0.0597

0.0088
0.0086

0.000

- 2676

0.0981
0430
0.000

0990
0000
0.000

0.0840

- 0.190
. 0.0207

0.0233

0.098
10.110

00123
0.182

0968
-2.110
0420

0918

0258

0451

0.0170
0.105
0.116

. 0.021

0.0133
0.0210

1.025

10546
0.549

1974
00828

10.110

0.0616
0.110

©4.390.



h3ss
ha1
h412
ha13
hs1
hsiz
ks
hsx
hsx

= —0.94752,
= —0.90252g,
- 1.6649 4
-0.980g5 -
= —0.%41¢q;

= —0.1150Cs
—0.1161C,8,¢5C4Ss
-1.582C,S,
0.53157

= 0.13182%¢,Ss
1.539C,S,
0.9025 294

= 0.118¢5Ss
= 0.532

-29.

1.245
1.333
2.724
1.247
1.329
0.000
0.0227
0434
1.761
0.0647
0.448
1.333
0.00756
*1.841

2.171
2.264
4.367
2.172
2.265
0.0115
0.0688
1.27
2.367
0.1232
1.277
2468
0.129
2470

+ These minimax errors for d;; are in the sense of relative error.
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Table 4. Significant Dynamic Coefficients of the Simplified Dynamic Model of the Stanford Arm under a Non-
linear Decoupled Control in the Cartesian Space

: Simpl_iﬁ'ed expression Minimax error ~ Maximum error tolerance
dy = 1416+ 1.6345% +1.3325%¢7 0.222+ 0.347
dy = 4672 0.324% 0.544 -
dy =17252 0.000% 0.000
dy =0115 _ 0.0663+ 0.874
dss. = 0.113 0.000+ 0.000
de = 0.0203 , 0.000% 0.000
dy, = 0.507C,-1.105¢5C, : 0.115 0.297
di; = —1.04758, : 0.113 0.672
dig = 0.1305,935.45s 0.0354 10.0627
dis = —0.11705,95C4sCs 0.0158 0.0170
dyy = —0.11508,Ss 0.00583 0.0781
dy = 0.1167¢5C4Ss 0.00873 0.0640
dys = 0.1150¢354Cs 0.0160 0.0674
dsys = —0.115085 -0.000 0.0473
g; = —27.3925,+63.4535,q 1125 1.310
g1 = —63.446C, 0.000 . 1.660
g4 = 1.1298,C,Ss 0.0572 ~0.0886
gs = 1.1278,8,Cs+ 1.127C,Ss 4.0x1078 0.0901
hig = 1.677C38,+ 1.914C,S g7 0.534 0.913
his = —2.7265% +6.470S79, 0.0903 1.593
hiis = 0.0797C,829384Cs— 0112529, s + 0.0288533C4Ss  0.0417 0.0600
hip = —0.5518,+ 1.1495 g3 0.122 0.371
hiyy = —0.984C, 0.331 0.410
hiaa = 0.1168,95C4Ss 0.0188 - 0.0740
his = 0.07478,95C 4+ 0.1055 59354 0.0283 0.0468
hyss = 0.11568,93C4Ss 0.0186 0.0743
hyy = —5.503C,8,97 1.230 1.382
hya = —2.845C,8,97 0.615 0.691
hys = —2.735C 8,93 0.618 0.695
hypy = —2.712+6.47¢5 0.0771 2.500
hays = —0.1139¢5Ss 0.0596 0.105
hows = —0.11679:54Ss 0.0088 0.131
haogs = 0.0982¢,C4—0.08844,5 4 0.00864 0.0780
hyss = —0.1149,5,Ss ' - 0.000 0.0131
hayy = — 1.62352¢, 2676 3.4520
hay = —0.9475%q, » 1.2454 1.607

hys = —0.9025%q, 1.333 1.676
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hap.= —1.664q; - 2724 4.057
higy = —0980q; ‘ 1.247 1.610
hys = —0941g, o 1.329 1.677
hyss = —0.1150C5 ' 0.000 - 0.146
hyy = —0.1161C585¢5CaSs , 0.0227 0.0450
 hyp = 1.582C,S, , 0434, 0.508
has = —1.3185% +3.2355%¢, 0.0454 0.967
hsiy = +0.1315%¢4Ss ' 0.0647 0.076
hsiz = 1.539C,S, : 0448 0.482
hsiy = — 129282 +3.23582g, 0.0827 0.910
hsp = 0.118¢,S5 - 0.00756 0.0643
hsys = —1.294+3.235g, ' 00813 0.910

T These minimax errors for dj; are in the sense of relative error.
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Table 5. Computational Complexity of Computing
Joint Torques in a Stanford Arm.

Muldiplication | Addition
Parallel Computation ([10]) 213 200
Simplified Model 1 (Table 3) - 254 9
Simplified Model 2 (Table 4) - 238 89
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