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A B S T R A C T

We present a quantum transport equation derived under the simplifying assumption that 

the inelastic scattering is caused by uncorrelated point seatterers, such as magnetic impurities. 

While this assumption is not always realistic,we believe that the model can be used to describe 

much of the essential physics of quantum transport in mesoscopic systems. This assumption 

allows us to write a quantum transport equation that involves only the diagonal elements of the 

density matrix which we use to define a distribution function f(r; E). The kernel of this integral 

equation is calculated from the Schrodinger equation and contains all quantum interference 

effects. We show that at equilibrium the distribution function relaxes to the Fermi-Dirac func

tion with a constant chemical potential everywhere in the structure. Assuming local thermo

dynamic equilibrium we then derive a linearized transport equation which has the appearance of 

a continuous version of the multiprobe Landauer formula. An alternative derivation is provided 

for the linearized transport equation starting from the multiprobe Landauer formula. Numerical

results are presented for the conductivity of a disordered resistor with distributed inelastic 

scattering. A clear transition is observed from weak to strong localization as the inelastic 

scattering time is increased. In the present work we restrict ourselves to steady state transport 

and neglect many-body effects.



FOREWORD

The purpose of this report is to present a quantum transport equation derived under the 

simplifying; assumption that the inelastic scattering is caused by uncorrelated point scatterers. 

We believe that this equation Will be useful in describing both linear and non-linear quantum 

transport in mesoscopic systems. The outline of the report is as follows. Section 1.2 provides 

an overview of the main results, which are then derived systematically in Chapters 2, 3 and 4. 

Sections 1.3 and 1.4 provide alternative derivations for the linearized transport equation which 

we call the "  Continuous-Probe Landauer Formula. ” In Chapter 2 we describe the model that 

we use for the inelastic scatters and compute the inelastic scattering rate from a model Hamil

tonian using Fermi’s golden rule. The general non-linear quantum transport equation is derived 

in Chapter 3, which is then linearized in Chapter 4 assuming local thermodynamic equilibrium. 

A few examples are also discussed in Chapter 4 illustrating the relationship between semiclassi- 

cal and quantum transport.



g m a fter  i: in t r o d u c t io n

1.1. Background

Much of our understanding of electron transport in solids is based on the Boltzmann Tran

sport Equation (BTE). At steady state (which will be our primary concern in this paper),

0
v ’,Vrf<r; k) + - Vkf(r; k) = Sop f(r; k) ( U )

Here f(r; k) is the distribution function in phase space that tells us the number of particles at r 

With wavevector k. Sop is the scattering Operator which is local in space.

Sopf(r;k) = £ S(k,k') f(k ')[l-f(k)J -  S(k',k) f(k)[l -  f(k')] ( 1-2)

The scattering function S(k,k') is commonly obtained from Fermi’s golden rule. The BTE is 

based on a simple semiclassical picture of transport: Electrons are particles that obey Newton’s 

law in afi external electric field (B) and are scattered occasionally by phonons and impurities. 

Despite its impressive successes, it suffers from an important limitation; it cannot describe tran

sport phenomena in which the wave nature of electrons plays a crucial role. A variety of such 

quantum effects have been discovered over the years, such as tunneling [1], resonant tunneling 

[2], weak and strong localization [3], the quantum Hall effect [4], etc. Since 1985, experiments 

on mesoscopic structures have revealed a wealth of new effects such as the Aharonov-Bohm 

effect, conductance fluctuations, non-local effects and the quantized conductance of point con

tacts [5-12]. For ultrasmall structures at low temperature, these phenomena have clearly 

revealed that electron transport is dominated by wave interference effects not unlike those 

well-known in microwave networks. It has also become clear that in mesoscopic structures, 

whose dimensions are comparable to the phase-breaking length, it is necessary to distinguish 

between sample-specific properties and ensemble-averaged properties; solid-state physics in the 

past had been almost exclusively concerned with the latter.
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An important topic of current theoretical research is to develop a quantum transport for

malism that can be used to describe the sample-specific properties of mesostructures. A satis

factory theory must not only include quantum interference effects, but also the effects of phase

breaking processes (arising from scattering processes in which the scatterer changes its state) 

that are inevitably present. This is in general a Very difficult problem, for it involves one of the 

fundamental questions of physics: How do irreversibility and dissipation creep into a system 

that is governed by reversible mechanics (i.e., the Schrodinger equation or Newton’s law)? 

There have been three separate approaches to quantum transport theory, each with its own sub

tle technique for introducing irreversibility.

I. In the•, Kulfa■ fdrhtalism,:-iintsix■ ■ -transport coefficients such as conductivity are 

expressed in terms of correlation functions evaluated at equilibrium [13]. The con

ductivity tensor a  at a frequency CD is related to the current-current correlation func

tion.

where n is the electron density, m is the effective mass, 8ap is the Kronecker delta 

and the subscripts a, P run over x, y and z. The current-current correlation function 

G jj is defined as

(1.3)

Cjj(r,r';co) = ±  J dt eicot ( J(r,t) J(r',0) -  J(r',0) J(r,t) ) (1.4)
n O

PO

(1.4)

where J(r,t) is the current density operator in the Heisenberg picture and )

denotes the ensemble-averaged expectation value. Eqs. (1.3), (1.4) and relations 

derived from it have been the starting point for much theoretical work on localization 

[14-17]. Recently Lee and co-workers and Maekawa et. al. have used this approach
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to study quantum transport in mesostructures [18-23]. Inelastic processes are 

included in this approach (also known as linear response theory) by replacing (—icb) 

With ( !/Ti) Where Ti is the inelastic scattering time.

2. In the Landauer formalism, linear transport coefficients are expressed in terms of the 

scattering properties of the structure [24-28]. Usually it is assumed that inelastic 

scattering is negligible within the structure and occurs primarily in the contacts. 

Under these conditions, the current Ij at lead ris related to the chemical potential (Lij 

at lead/by the multiprobe Landauer formula (Fig. 1.1) [29]

Ii = . ^ 2  (TOji Mi - ( T 0)ij^ )
j

(1.5)

where

(To)ij = JdE Tij(E)

Tij(E) =  Tr{tjj(E)tij(E)} ( 1.6)

ty (E) is the transmission matrix from lead j  to lead i for electrons with energy E and 

f0 is the Fermi-Dirac distribution function. It has been shown that the coefficients 

(T0)ij are related to the conductivity tensor (o0)ap by the following relation [30,31].

e
h (T0)ij = Jd(Si)a Jd(Sj)p [a0(r,r')]ap (1.7)

Wherefthe vector Si 'is normal to the cross-section of the lead i. Eq. (1.5) has been the 

starting point for much of the recent work on quantum transport in mesostructures 

[32-34]. Although the Landauer approach, in principle, can be applied more gen

erally [35], eqs. (1.6) can be used to compute the coefficients (T0)ij only if inelastic 

scattering is significant in the contacts and not within the structure. Dissipation and 

Irreversibility in this approach arise from the coupling to the Contacts which act as



reservoirs, as often pointed out by Landauer [24,25,35]. Biittiker simulated the 

effects of inelastic scattering within the main structure by connecting it to a contact 

reservoir through a side probe and setting the current at this fictitious probe to zero 

[36]. The Landauer approach has so far been applied only to problems involving 

linear response though, in principle, it should be applicable to non-linear response as 

well.

3. The third approach to quantum transport theory has been to develop transport equa

tions similar to the BTE [37]. Instead of the semiclassical distribution function 

f(r; k), such a Quantum Boltzmann Equation (QBE) uses a quantum distribution func

tion which is derived from the density matrix p (r,r'). For example, the Wigner dis

tribution function f(R,k) is obtained from the density matrix p (r,r ') by transforming 

to center-of-mass (R= (r+r')/2) and relative (r-r ')  coordinates and then Fourier 

transforming with respect to the relative coordinate. Dissipation is usually introduced 

using a relaxation time approximation [38] or through an influence functional in the 

Feynman path integral technique [39]. Although the QBE may provide a powerful 

and general approach to quantum transport theory (including non-linear response), it 

has not been used as widely as the Kubo or the Landauer formula. Moreover, quan

tum distribution functions have counter-intuitive properties (such as not being posi

tive definite) and it is more difficult to make intuitive approximations.

In the present work we assume that the inelastic scattering is caused by a continuous distri

bution of point oscillators. Every time an electron is inelastically scattered it leaves one of 

these oscillators in an excited state, and energy is dissipated into the surroundings as the oscilla

tor relaxes back to its state of thermodynamic equilibrium. Since the oscillators are assumed to 

be points in space, each inelastic scattering event can be viewed as a quantum measurement of 

the position o f the electron. An observer who monitors the states of the oscillators will see a
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Fig. LI: The mwltiprobe Landauer formula relates h to |ij assuming that all inelastic

scattering processes are confined to the contact reservoirs.



series of flashes from different spatial locations. Transport can thus be viewed as a series of 

“ hops” (Fig. 1.2). Each “hop” starts with one inelastic scattering event at some location r ' 

and ends with another at some location r; in between, the electron propagates without inelastic 

scattering. We use the SchrddingereqUation to obtain the probability P(r,r'; E) that an electron, 

having an energy E after suffering an inelastic scattering event at r', will suffer its next inelastic

scattering event at r. This probability function P(r,r'; E) contains all interference effects. Since 

all phase information is lost at the beginning and at the end of each “ hop,” successive “ hops” 

do not interfere. This allows us to write an integral transport equation describing the overall 

transport of carriers. The kernel of this integral equation depends on the probability function 

P(r,r'; E) and thus contains all the effects of quantum interference.

There is a similarity between this description and the Landauer description. An inelastic 

scattering event can be viewed as an exit into a reservoir followed by emission from the reser

voir. It is as if there is a continuous distribution of reservoirs connected to the main structure by 

side probes through which electrons are absorbed and reinjected. In fact when we linearize our 

general transport equation assuming local thermodynamic equilibrium, we arrive at what looks 

like a continuous version of the multiprobe formula (eq. (1.5)). For this reason we have named 

the linearized transport equation the ' ‘Continuous-Probe Landauer Formula’ ’ [40]. In this sec

tion we will provide two alternative derivations of this formula (a) using a simple physical argu

ment (Section 1.3) and (b) starting from the multiprobe Landauer formula and using linear

response theory (Section 1.4). But first let us present a brief overview of the main results of this 

paper (Section 1.2).

1.2. Overview of Main Results

In this report we present a quantum transport equation derived under the simplifying 

assumption that the inelastic scattering is caused by uncorrelated point scatterers, like magnetic 

impurities. While this assumption may not always be realistic, we believe that this model can 

be used to describe much of the essential physics of quantum transport in mesostructures. This
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Fig. 1.2: Transport is viewed as a series of “ hops.” EacK “ hop” starts with an inelastic



assumption allows us to write a quantum transport equation entirely in terms of the diagonal 

elements of the density matrix which we use to define a distribution function f(r;E). We then 

linearize the transport equation assuming local thermodynamic equilibrium. The resulting 

linear transport equation (eq. (1.27)) has the appearance of a continuous version of the mul

tiprobe Landauer formula (eq. (1.5)), as if the main structure were linked to a continuous distri

bution of reservoirs through side probes (Fig. 1.4). Either the full quantum transport equation or 

its linearized version can be used to describe linear and non-linear quantum transport in mesos- 

tructures. We make several assumptions in the present work that can possibly be removed in 

future extensions of the theory: (I) we restrict ourselves to steady state transport and many-

body effects are neglected, (2) the inelastic scattering events are assumed instantaneous so that 

the wiggly lines in Fig. 1.2 are vertical and (3) we assume that the inelastic scattering is weak 

enough that the broadening of energy levels can be neglected.

We consider any arbitrary structure in which the propagation of electrons is described by

the following one-electron effective mass Hamiltonian.

it _ (p -eA (r))2 + eV(r) ( 1.8)

The vector and scalar potentials A(r) and V(r) include external fields and self-consistent fields,

as well as all sources of elastic scattering such as impurities, defects, boundaries etc. Assuming

that the eigenfunctions <|>M(r) of Ho (eq. (1.8)) have eigenvalues Cm , the density of states 

No(r; E) per unit volume per unit energy is given by (we assume weak inelastic scattering)

N0(r; E) ^  £  I <t>M (r) I2 8 (E -  eM)
....M

(1.9)

At equilibrium the electron density (which is the diagonal element of the density matrix p (r,r')) 

is given by
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neq(r) = JdE N 0(r;E )f0(E)
J- - , '

JdE neq(^E) ( 1.10)

where fo(E) is the usual Fermi-Dirac function. We extend eq. (1.10) to non-equilibrium prob

lems to define a distribution function f(r; E).

n(r; E) == N0(r;E) f(r;E)

n(r) = JdEn(r;E)

( U l )

( 1. 12)

Note that the distribution function f(r; E) as defined above is not a semidassical concept but a 

well-defined quantum mechanical quantity. The electron density per unit energy n(r; E) can be 

written in terms of field operators as

n(r;E) = JdEe®1̂  (^ ( r^ x jr^ O )  ) (1.13a)

so that the total electron density n(r) is given by

; n(r) = JdE n(r;E) = ( ¥ V ;t)\|/(r ;0 )) (1.13b)

Ouf objective is to derive a transport equatidh that can be solved to obtain the distribution func

tion f(r; E), Or equivalently, the electron density per unit energy n(r; E). At equilibrium, with 

source terms set equal to zero, the distribution function relaxes to the Femii Dirac function 

fo(E) with a constant chemical potential, aS we might expect.

The inelastic scattering is modeled as a continuous distribution of independent oscillators, 

each Of whom interacts with the electron through a delta-function potential. We show in 

Chapter 2 that die inelastic scattering rate per unit volume per unit energy is equal to 

• -nd '̂-E)I 1Ziir; E>'where:-tlie inelastic scattering time %(r:; E). is given by •

: ' i  "
ti(f;E)

= JdE' [I -  f(r; E')] N0(r; E') J(r; E-E') (U 4)

J(r; Hco) is a function that describes the spectral density of the oscillators responsible for the ine

lastic scattering (eq. (2.6)). The net inelastic scattering current per unit volume per unit energy



is given by en(r; E)/Xi(r; E); using eqs. (1.11) and (1.14) we could write this quantity as

= JdE'is (r;E',E)
Ti(r;E) J

(1.15)

where

iS (r;E',E) = e J(E'-E) N0(E) No(E') f(E) [I -f(E')]j (1.16)

is (r; E',E)dE'dE is the inelastic scattering cuirent per unit volume from an initial energy inter

val dE to a final energy interval dE'; as we might expect, it is proportional to the electron den

sity at E (N0(E) f(E)) and to the “ hole” density at E' (N0(E') [I -f(E ')l). Note that the inelastic 

scattering rate at any point depends on purely local factors at the same point.

Now we can write down a master equation quite straightforwardly as follows.

en^ L lI  = I (r; E )+ Jd r 'Jd E ' is (r';E,E') P(r,r';E) (1.17a)
ti(r;E)

This equation is illustrated in Fig. 1.3. L etusforthe moment ignore the first term of the right- 

hand side and consider the second term. is (r';E,E') tells us the rate at which electrons are scat

tered at r ' from an initial energy E' to a final energy E; P(r,r';E) gives us the fraction of the 

electrons injected at r ' with energy E that suffer their next inelastic scattering event at r. 

Integrating is (r'; E,E') P(r, r'; E) over all r ' and E', we should obtain the net rate at which elec

trons with energy E are inelastically scattered at r, which is the quantity on the left-hand side 

e n(r; E) / Ti (r; E). The first term on the right-hand side I (r; E) is the current per unit volume per 

unit energy injected from external sources. Eq. (1.17a) can equivalently be written as

I(r; E) = Jd r 'Jd E '{ is (r ;E ',E )P (r ',r ;E ') - is (r';E ,E ')P(r,r';E)} (1.17b)

Eq. (1.17b) follows readily from eq. (1.17a) using eq. (1.15) and noting that by definition, for a 

probability function we must have Jdr' P(r',r;E) = I.

Using eqs. (1.11) and (1.16) we can write eq. (1.17a) in terms of the distribution function 

f(r;E).
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To other 
values of E

To other 
values of r

e n(r; E)

is (r';E,E') P(r,r';E)

Fig. 1.3: A schematic diagram illustrating the different terms in eq. (1.17a),



eNo(r;E) f(r;E) ~ e r r ~
— Ti(r E) . = i ^ e ) + |-Jd r'Jd E 'T (r ,r ';E ,E O f(r';E ')[l-f(r ';E )] (1.18)

Equivalently from eq. (1.17b) we obtain

I(r; E) = |-Jd r 'Jd E '{ f(r ',r ;E ',E )  f(r; E ) [ l - f ( r ;  E')]

T(r,r';E ,E ') f(r';E ') [ l - f ( r ';  E)]} (1.19)

It will be noted that there is a close similarity between the right-hand side of eq. (1.19) and the 

scattering operator in the Boltzmann equation (eq. (1.2)). One describes hopping processes in 

real space, while the other describes hopping processes in k-space. The energy variable does 

not appear explicitly in eq. (1.2) because the momentum states are assumed to be energy eigen

states; a given k has a unique energy Ek.

The kernel T of this integral equation is given by

T(r,r';E,E') = hP(r,r';E ) vs (r';E,E') (1.20)

where' v :

vs (r';E,E') = [ l(E -E ')  N0(E) N0(E')] ( 1.21)Ia tr ' ■'

We show in Chapter 3 that the probability function P(r,r';E) can be obtained from the Green 

function G(r,r'; E) of the time-independent Schrddinger equation modified to include an addi

tional imaginary potential ifi/2Xj(r; E).

h IG(r,r';E) I2P(r,r';E)

E -H o  +
2Xi(r;E)

where Hq is the Hamiltonian defined in eq. (1.8).

2it N0(r';E)Xi(r;E)

G(r,r';E) = S ( r - r ')

( 1.22)

(1.23)



The kernelT()r,f';E,E')-of the integral equation (1.18) thus contains all quantum interfer

ence effects through the Green function G(r, r'; E). Once the kernel has been computed we can 

solve eq: (1.18) to obtain the distribution function f(r;E) for a given external source function 

I(f; E); alternatively, we could specify f(r; E) in certain parts of the structure (like the contacts) 

and Cdnapiite theresultingI (r; E).

It should be noted that the assumption of point inelastic scatterers is crucial in arriving at 

such a simple description of non-linear quantum transport. Firstly, it allows us to write the 

scattering rate is (r; E'jE) in terms of purely local factors (eq. (1.16)). Secondly, it allows us to 

compute the probability function P(r,r'; Ej in a straightforward manner from the Green func

tion. This is possible because each inelastic scattering event is assumed to reinject the electron 

incoherently with a new energy at a single point; the initial condition for each elastic propaga

tion process (Fig. 1.2) is thus always a delta function. We believe that the assumption of point 

inelastic scatterers can only be relaxed at the expense of Considerable added complexity.

We show in Chapter 3 that at equilibrium with I(r; E) = 0, the distribution function f(r;E) 

relaxes to the Ferihi-Dirac function fo (E) with a constant chemical potential every where in the 

structure. To obtain the linearized transport equation (Chapter 4) we first simplify eq. (1.19) to 

the following form, under the assumption that the distribution function f(r;E) can be written as 

a Fermi-Dirac function with a local chemical potential fi(r) (see eq. (4.7)).

'1(f) '=  ^  Jdr'JdE [T(r',r; E) f(r; E) -  T(r,r'; E) f(r';E)] (1.24)

where

T(r,r';E) h2 IG(r,r'; E) I2 
Xi(F5E)Ti(^ E )

(1.25)

I(r) is the total current (over all energies) that is injected per unit volume at r from external

sources. We also show that (eq. (3.15))
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Eq. (1.26) ensures that at equilibrium with I(r) = 0, the distribution function f(r; E) relaxes to a 

constant fo(E) with a constant chemical potential Po throughout the structure. In linear response 

theory we assume that the local chemical potential p(r) deviates only slightly from the equili

brium chemical potential Po- Using a Taylor series expansion for f(r; E) we obtain the linear

ized transport equation (see eq. (4.11)).

Jdr'[T (r',r;E )-T (r,r';E )] = O (1.26)

Kr) = - |-J d r ' {To(r',r) p ( r ) -T 0(r,r') p(r')} (1,27)

where

T0(r,r') = JdE T(r,r';E) (1.28)

Ohce again the kernel To(r,r') contains all quantum interference effects through the Green 

function G(r,r';E). We believe that either the non-linear transport equation (eq. (1.19)) or its 

linearized version (eq. (1.27)) can be used to describe quantum transport in mesostructures of 

arbitrary size and shape.

In principle, eqs. (1.19) or (1.27) should be solved self-consistently with the Poisson equa

tion; the self-consistent potential which enters the one-electron Schrodinger equation affects the 

kernels (T(r,r';E,E') or T0(i\r')) appearing in these equations. However, in linear response 

theory we can use the coefficients T(r,r';E) obtained (self-consistently) under equilibrium con

ditions. This is because the first-order change in the right-hand side of eq. (1.24) due to a small 

change ST in the coefficient T

Jdr' JdE f0(E) |8T(r',r; E) -  8T(r,r'; E)]

is zero on account of the relation (eq. (1.26)) that must be satisfied by T. This means that for 

small applied bias the current is not affected by the self-consistent readjustment of charges 

within the structure. This, however, may not be true if there are sharp resonances in T; second-



order terms (~ 8T Sfo) may hot be negligible in that case.

Eq. (1.27) can be viewed as a continuous version of the multiprobe Landauer formula 

stated earlier (eq. (1.5)) and we call it the " Continuous-Probe Landauer Formula.” It is as if 

wp have added a continuous distribution of reservoirs connected through probes to the main 

structure (Fig. 1.4). A single reservoir whose coupling can be varied has been used in the past 

to simulate the effect of inelastic scattering [36,41]. A better model for distributed inelastic 

scattering processes is a continuous distribution of reservoirs that repeatedly absorb and reinject 

electrons. From this point of view eq. (1.27) would seem to be an obvious extension of the mul

tiprobe Landauer formula to include inelastic scattering within the structure. What is not obvi

ous, however, is how the kernel To(r,r') is to be calculated in a given structure. In view of the 

importance of eq. (1.27) we will now provide two alternative derivations for it — one using a 

simple physical argument (Section L3) and the other starting from linear response theory (Sec-, 

tion 1.4).

■1,3.' Simple Derivationof the Linearized Transport Equation

We can obtain the linearized transport equation at zero-temperature directly by starting 

from a simplified version of eq. (1.17a).

en(r) _ T/_v , C ^' e n(r')I(r) + Jdr P(r,r') (1.29)
Xi(r) "XT/ J " Ti(r')

The physical basis for this equation is very similar to that for eq. (1.17a), and is illustrated in 

Fig. 1.5. Here we are assuming that all the transport occurs within a narrow range of energies 

right around the Fermi level, and n(r) is the total electron density in this energy range. We have 

suppressed the energy E is the probability function P(r,r';E), which is assumed to equal the 

Fermi energy. The net rate at which electrons are inelastically scattered at r' is given by 

n(r')/Xj(r'); of these, a fraction equal to P(r,r') suffer their next inelastic scattering event at r. 

Integrating over aU r ' and adding the externally injected current (I(r)/e) we obtain the net rate 

at which electrons are inelastically scattered at r, which is the term on the left-hand side,



Reservoir with chemical 
potential jx(r)

Perfectly ordered 
lead connected 

to dr

Fig. 1.4: Eq. (1.27) can be viewed as a generalization of the multiprobe Landauer formula to a

structure with a continuous distribution of probes linking each volume element dr to 

a conceptual reservoir of carriers.
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To other 
values of r

>  • • •

Fig. 1.5: Schematic diagram illustrating the different terms in eq. (1.29).



n(r)/tj(r). Once again using the property of probability functions Jd r 'P (r ',r)  = I, we can 

write eq. (1.29) as ' '

I(r) = Jdr' en(r) P (r> ) -  ^  P(r,r ')
Xi(r ) Xi (r') (1.30)

Writing n(r) = e N0(r) p(r), where e |i(r) is the chemical potential measured from some refer

ence energy near the Fermi energy, we obtain from eq. (1.29),

eN0(r) e2_____ — Ilfi^ = -L
Xi (F)

|t(r) = I(r) + -T- Jd r ' T(r,r') p(r') (131)

where

, . , '■A hN^rO Pfr.r') 
T(r’r ) = — ^ ( r ;)

(1.32)

Using eq. (1.22) for P(r,r') it is easy to check that T(r,r') is given by the same expression as 

stated earlier (eq. (1.25)). Note that in this section we have suppressed the energy E which is 

assumed to equal the Fermi energy; this is because we are restricting our attention to linear tran

sport at zero-temperature.

Again, starting from the alternative form given in eq. (1.30) we obtain the alternative ver

sion of eq. (1.31),

Kr) = -T- Jd r ' {T (r',r)p (r)-T (r,rO  p.(r')} (1.32)

1.4. Linearized Transport Equation from the Multiprobe Landauer Formula

As we discussed in Section 1.2, the linearized transport equation (eq. (1.27)) is an obvious 

extension of the multiprobe Landauer formula (eq. (1.5)). What is not obvious is how we obtain 

the kernel Tp (r,r'). In this section we derive T(r,r';E) starting from the Kubo formula for the 

conductivity 0(r, r'; E) (eq. (1.3)) and using the Lee-Fisher formula (eq. (1.7)) to obtain T from 

a. As shown in the Appendix, eq. (1.3) can be simplified to yield
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ao(r,r') = JdE
dfo a(r,r';E) (1.34 a)

where

a ap(r?r'; E) = —  £  [Jnm(F).® J mn(r Olop Gm (E) G&(E)
Z7t N1M

JnmW
iefi v,

[(V(J)n ) <1>m — ^ n (V(|)m )]

(1.34b)

(1.35)

Gm(E)
I

(E -  eM + iTj)
(1.36a)

GjJi(E) = I
(E -  £M -  iTj)

(1.36b)

(J)M (r) are the eigenfunctions of H0 (eq. (1.8)); the corresponding eigenenergies £m of H0 are 

purely real. Tj is an infinitesimal positive quantity. The problem now is to include the effect of 

inelastic scattering in the Green functions G ^ a(E). One approach that has often been used to 

incorporate inelastic scattering processes is to let

Tj, = fr/2Xi (1.37)

where’tj is the inelastic scattering time, assumed to be constant everywhere. This is equivalent 

to adding an imaginary potential ih/2tj to the Hamiltonian Ho so that the eigenenergies eM 

acquire ah imaginary part. It is easy to show that the “ Schrodinger” equation

ilT
2tj (1.38)

leads to a continuity equation of the following form for the probability density (p/e) and the 

probability current density (Jf/e).

V- J  = -  ^
" .

(1.39)

Thus by identifying Tj with fi/2tj we are effectively describing particles that decoy with a
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lifetime Tj. This is clearly not an accurate representation of the scattering process which 

involves not only the decay from an initial state but also the subsequent reinsertion into another 

state. Now, it is well-known that if we assume the eigenstates to be plane wave states, k, and 

identify ri with B/2t where x is the total (elastic as well as inelastic) scattering time

G P (E )
I

E - e k ±ifi/2x
(1.40)

then we obtain the correct Boltzmann conductivity from eq. (1.34b) only if the scattering is iso

tropic; any scattering event then causes a complete decay of the momentum and the subsequent 

reinsertion into another state (which we neglect) has no effect on the current-current correlation. 

But for anisotropic scattering processes it is well-known that this simple procedure is inade

quate [13]. What we are trying to do here is to include inelastic scattering processes in a 

Boltzmann-like manner while treating the elastic processes quantum mechanically by using the 

exact eigenstates <|>m  (r) (rather than the plane wave states elk’r). Since the inelastic scattering 

processes have been assumed to be isotropic we can include them simply by identifying Tj with 

lT/2Xj in eqs. (1.25a,b) as noted by Thouless and Kirkpatrick [17].

GK(E)

GK(E)

"/-I
E -  Em + ih/ 2tm

.'.-■I - , - v

(1.41a)

(1.41b)
E —£m  ~  i h / 2 t M

Since the inelastic scattering time Xj (r; E) is not a constant Tj but can vary spatially (eq. (1.14)), 

we have used different lifetimes Tm for the different eigenstates; in principle, these may be 

obtained from the imaginary parts of the eigenenergies Em obtained from eq. (1.38). However, 

we assume that the imaginary potential ifi/2Tj(r; E) is small enough that we can neglect any

complication due to the non-orthogonality of the eigenfunctions ^ ( r )  obtained from eq. (1.38). 

We obtain from eq. (1.34b) using eqs. (1.41a,b),



CJctp (r,r';E) [JnmCf ) ® Jmn (rOlap (1.42)
2it NjM (E Em + 111/2xm ) (E En ifT/2xN)

Next, w<3 USe the Lee-Fisher formula linking T to o  (eq. (1.7)). Since each probe has an 

infimteSimal cross-section we can write

^  W  '- E id  d ' = - i  -y  fi(r) dr) ĈmnCrO * n(r') dr')
h T(r,r ; ) r r  ^  ^  (E- em + ih/2tM) (E- eN- ih/2tN) (1.43)

where n(r) is the unit vector normal to the probe at r  (Fig. 1.2). But J  • n is the current entering 

the probe at r  due to inelastic scattering; by definition, it must equal p/Xi.

Tr ' Ei = g2 Y pNM(r) PMN(r0/*i(F;E) Xi(r'; E)
(r’r ’ . ■ ' e2 N^ (E -£M +ifr/2xM) (E -£N-ifT/2xN)

Silice Pn m (r ) =  e  <t>N(r ) ^ m Cr ) ,  we have

K2

(1.44)

T(r,r';E) =
<>N(r) <J>n(f0 t  4>m (f ) ^ mCfO 

Zj t7  ̂ ZdXi(r; E) xi(r';E) ^  E —En — ih/2xN M E -£ M+itT/2xM
(1.45)

Eq. (1.25) follows from eq. (1.45) if we note that,

G(r,r';E) = £
^mCf ) ^mCfO 

E -£ M + iH/2xM
(1.46)
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CHAPTER 2: THE MODEL FOR INELASTIC SCATTERERS

In Section 1.2 we outlined the derivation of the non-linear quantum transport equation. 

Two “ details” were not discussed in Chapter I, namely, (I) how the expression for is (eq. 

(1.16)) is obtained and (2) how the expression for P (eq. (1.22)) is obtained. We will discuss the 

second point in Chapter 3. Our objective in this chapter is to describe the model that we use for 

the inelastic scatterers and to derive expressions for the inelastic scattering rate starting from a 

model Hamiltonian.

2.1. Model Hamiltonian

We consider any arbitrary structure in which the propagation of electrons is described by 

the following one-electron effective mass Hamiltonian.

H0 = (P~ ^A^ 2 +eV(r) (2.1)Zxn

The vector and scalar potentials A(r) and V(r) include external fields and self-consistent fields, 

as well as all sources of elastic scattering such as impurities, defects, boundaries etc. For the 

inelastic scattering we adopt the following model: we assume a continuous distribution of 

oscillators whose interaction with the electrons is described by the Hamiltonian

Hj = ^  ^  Umj0l 8 (r —rm) (am ot + Bm a ) (2.2)
m a

Here Um a (dimensions ~eV—A3) is the interaction potential between the electron and the oscil

lator a  at the location rm, whose creation and annihilation operators are am>ot and am ct respec

tively (Fig. 2.1). We will assume that the number of oscillators per unit volume with frequen

cies lying between CO and CO + do) is given by some function J0 (r;fico) d(Sco).

-22-



Fig. 2.1:

Reservoir of 
point oscillators /  * Jq (r, to )

Structure with distributed 
inelastic scattering

Inelastic scattering is modeled with a continuous distribution of point scatterers. The 

number of oscillators per unit volume with frequencies lying between CO and co+dco is 

equal to Jq (r; ffco) d(Rco).



2.2. Scattering Rate from Fermi’s Golden Rule

Consider an electron with energy E having the wave function

¥ (r ,t) = <D(r)e-iEt/fi (2.3)

Assuming that the eigenfunctions <j)M(r) of Ho (eq. (2.1)) have eigenvalues £m , we can write the 

inelastic scattering rate Vi from Fermi’s golden rule as follows.

Vi = ~ E Z i u m.ai2 E
n m a M

«t>M(r) 18(r-rm) I d>(r)>
2

{Nm,a S(E £m hCOm,a) F (Nm,a + I) 8 (E £m ^®m,a) } (2.4)

Here Nmi0t is the number of “phonons” occupying the oscillator m,a. We now convert the 

summations over m,(X into integrals, assuming that the number of oscillators in a volume dr 

with energies lying betweeti h© and K(oM-dco) is given by Jo (r; Ko)) dr d(KoD).

Vi = -£L Jd r HB(r) I 2 Jd(Hco) J0 (r;Hco)IU(r; Hco) l ;

£  I <t>M (r ) 12 {N(r; ficO) 8 (E -  £m  + Hco) + (N(r; Kco)+1) 5 (E -  £m  -  TTco) } (2.5)
M

We can write eq. (2.5) in a more compact form by defining

J(r; Hco)
IU(r;Hco)l? Jo(r;Kco)(N(r;Hco)+l) , Hco >0  

n

-—  I U(r; -Rco) 12 J0 (r; —Hco) N(r; —Hco) , Rco < 0 
H

Note that J(r; Hco) has the dimensions of A3/sec.

Vi = Jdr IO(r) I2 Jd(Hco) J(r;Hco) No(r;E-Hco)

(2.6)

(2.7)

where No(r; E) is the electronic density of states which is written in terms of the eigenfunctions 

4M;(r) as follows.
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N0(r;E) = £  i^m (F)I2 S (E -e M) (2.8)

It will be noted from eq. (2.7) that the inelastic scattering rate at a point r is proportional to 

the local electron density n(r) = I O(r) 12 and involves only local factors such as J(r; Kco) and 

N0(r;Kco). It is this property of point inelastic scatterers that we exploit in this paper to develop 

a simplified description of quantum transport. In deriving eq. (2.7) we assumed that all elec

trons have the same energy E. In general, we can integrate over the distribution of electrons 

n(r; E) per unit energy per unit volume.

Vi = Jdr JdEn(r;E) Jd E 'N 0(r;E') J(r;E-E') (2.9)

2.3. Distribution Function

We now define a distribution function f(r; E), so that the density of n(r) can be determined 

by summing the contributions at all energies.

n(r) = JdEn(r;E) = JdE N0(r;E) f(r;E) (2.10)

The distribution function f(r; E) relaxes to the Fermi-Dirac function at equilibrium. In the next 

chapter we will derive a transport equation that can be solved to obtain f(r; E) when the struc

ture is driven away from equilibrium; however, for our present purpose, eq. (2.10) can be used 

to simplify eq. (2.9) to the form

Vi = Jd rJ d E jd E 'v s(r ;E ',E )f(r;E )[l-f(r ;E ')]

Jdr JdE JdE' [vs(E',E) f(E) [I -  f(E')j] (2. 11)

where



(2.12a)

We have added the factor [I -  f(E')] in eq. (2.11) to account for the exclusion principle, which 

was not considered earlier. The inelastic scattering current is(r;E',E) used in Section 1.2 is 

given by the integrand in eq. (2.11) multiplied by the electronic charge.

is (r;E',E) = evs (r;E',E) f(r;E) [ l-f(r ;E ')] (2.12b)

Note that in eq. (2.11) the integrand VS(E',E) f(E) [I -  f(E')] is a local function and

can be interpreted as the inelastic scattering rate per unit volume, per unit energy range of initial

states (E), per unit energy range of final states (E'). The function vs(E',E) is the product of 

three terms (eq. (2.12a)): the density of initial states No(E), the density of final states Nq(E') 

and the coupling J(Km) between the electrons and the oscillators that comprise the inelastic 

scatterers (eq. (2.6)). It can be seen from eqs. (2.6) and (2.12a) that if the system of oscillators 

is in equilibrium so that the number of “phonons” N(Kco) is given by the Bose-Einstein func

tion then we have the following relationship

vs(r;E',E) -  vs(r;E,E0 e(E E')/kfiT (2.13)

since ' r ’

J(E -E ') = J (E '-E )e (E_E')/kBT (2.14)

2,4. Inelastic Scattering Time

Finally we will derive an expression for the inelastic scattering time Tj (r; E). As discussed 

in Section 1.1, the inelastic scattering rate per unit volume per unit energy depends only on the 

local properties of the system, and can be expressed as .n(r; E)/ii(r;E)’./ Equating this to the 

result from eq. (2.11),



= TdE' [vs(E',E) f(E) [I — f(E')] 
Xi(r;E) 1 L

Using eqs. (2.10) and (2.12a) we obtain

(2.15)

I
X;(r; E)

J d E '[ [ l- f (E ') ]N 0(E')J(E-E')] (2.16)



The derivation of the non-linear quantum transport equation has already been outlined in 

Section 1.2 (eqs. (1.18) - (1.22)).

eN0(r;E)f(r;E)

CHAPTER 3: NON-LINEAR QUANTUM TRANSPORT EQUATION

x(r;E)

or equivalently,

I(r;E) +; | 1 dr' J dE' T(r, r'; E, E') f(r'; E') p  -  f(r';E)] (3.1)

I(r; E) = | -  Jdr' JdE' {T(r',r; E',E).f(r; E) [I -  f(r; E')]

-  T(r,r'; E,E') f(r'; E') [I -  f(r'; E)]}

where

T(r,r';E,E') =,hP(r,r';E) vs (r';E,E')

(3.2)

(3.3)

Two “ details” that were not discussed in Chapter I, namely, (I) how the expression for Vs (eq. 

(1.21)) is obtained, and (2) how the expression for P (eq. (1.22)) is obtained. The first item has 

already been discussed in Chapter 2. In this chapter we will address the question of how the 

probability function is obtained (Section 3.1). This function is also used in the simplified 

derivation of the linearized transport equation presented in Section 1.3. In Section 3.2 we will 

show that at equilibrium the distribution function f(r; E) relaxes to the FermEDirac function 

with a constant chemical potential.

3.1. Deriyatiori of the Probability Function

The probability function P(r,r'; E) tells us the fraction of electrons injected at r ' with 

energy E (by inelastic scattering from some other energy) that suffer an inelastic scattering 

event at r without suffering any inelastic scattering event in the meantime. If this restriction (in 

italics) were absent, we would basically be calculating the diffusion propagator from r ' to r 

\yltich inclndes the possibility that an electron inserted at r ' ends up at r after suffering any



number of inelastic scattering events. However, because of this restriction, what we are calcu

lating is like one rung in a ladder series for the diffusion propagator, Inelastic scattering may be 

viewed as a two-step process involving a decay out of an initial energy E, followed by a reinjec

tion into a final energy E'. However, in calculating P(r,r'; E), the second step is irrelevant. We 

just want the probability that an electron injected at r' suffers its very next scattering event at r; 

the subsequent reinjection is a separate part of the problem that is already taken into account by 

the integral transport equation. Thus, for the purpose of calculating P(r, r'; E) we can ignore the 

reinjection process and assume that we are dealing with decaying particles having a decay rate 

of n /ij  per unit volume. The simplest way to describe decaying particles is to include an ima

ginary potential ih/2Xi(r; E) in the Schrodinger equation. More generally one could use an opt

ical potential derived from the one-particle self-energy. Since we have assumed point inelastic 

scatterers, an electron is injected as a point source by the inelastic scattering process. We can 

thus expect P(r,r'; E) to be proportional to the squared magnitude of the Green function 

G(r,r';E) of the Schrodinger equation modified to include an imaginary potential ih/2Xi(r; E), 

where Xi (r; E) is the inelastic scattering time defined by eq. (2.16).

E -H 0 M-
2Xi(r;E) G(r,r';E) = S(r-r')

Considef the continuity equation Obeyed by the probability density

n = IG(r,r'; E) I2

and the probability current density

J = ^ -  [ (VG)* G -  G*(VG) 2m L

(3.4)

(3.5a)

(3.5b)

that we obtain from the solution to eq. (3.4). It can be shown from eqs. (3.4) and (3.5a,b) that



V - J  + JL = ± § ( r _ r ')[G -G *] (3.6)
.Xj n

Integrating over all volume, using the divergence theorem and assuming that the boundaries are 

Iarawaysothatnocurrentflowsoutofthesurfacej Wehave

f I GQrjT7; E) 12
J Xj(r;E)

^ N 0(r';E) (3.7)

since ISfp(Jr- E) = -Im{ G(r,r;E) }/jt [13]. The integrand on the left in eq- (3-4) is the steady- 

state current due to electrons iost from the coherent state by inelastic scattering (eq. (2.15)); the 

term on the right is the total steady-state current injected at r ' (Fig. 3.1). The ratio of these two 

terms is equal to the probability function P(r, r'; E).

P(r,r';E) = ^ iG (r,r';E )l2 
2% No(r/;E)xi(r;E)

(3.8)

3.2. Equilibrium State

Close to equilibrium, the distribution function can be written in the form of a Fermi-Dirac 

function

f(r; E)= . + e(E—cji(r))/kBT

where |i(r) is the local chemical potential. At equilibrium, the chemical potential is constant 

everywhere in the structure. In this section we will show that the distribution function in eq. 

(3.9) with ji(r) = po (a constant) is indeed a solution to our transport equation (eq. (3.1)) with 

the external current I(r; E) set equal to zero; that is, we will show that

|  ] d r ' |d E 'T (r,r '; E,E') f0(E') [I (E)J-
eN0(r;E) To(E) 

Xj(r;E)
(3.10)

where



Position

Fig. 3.1: Sketch of the probability density I G(r,r'; E) I 2 calculated from eq. (3.4)
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fo(E):
1+ e

I
(E-e|Xo)/kBT (3.11)

(io being a constant. It is easily shown that

fo(E') [I -  f0(E)] = T0(E) [I -  f0(E')] e(E — E')/kBT (3.12)

It can be shown that (see Appendix)

J dE' T(r,r'; E,E') [I -  f(r'; E')] e'(E — E')/kBT

= K2 IG (r,r';E )l:
x;(r;E) Ti (r'; E)

T(r,r';E) (3.13)

Using eqs. (3.12) and (3.13) we can simplify the left-hand side of eq. (3.10) as follows.

|- J d r ' JdE' T (r,r '; E,E') f0(E') [I -  f0(E)]

= |- fo (E ) /d r :J d E 'f ( r ,r ';E 3 0  [ I -fo(E')] e(E' E')/kBT 

= |-fo (E )Jd r 'T (r,r ';E ) (3.14)

It is further shown in the Appendix that

Jd r ' T(r,r';E) = J d r 'T(r',r;E)
hN0(r;E)

ti(r;E)
(3.15)

Using eq. (3.15) in eq. (3.14) we obtain eq. (3.10), which is what we set out to prove.

It is thus fairly straightforward to calculate the equilibrium density of electrons in any 

structure. We first calculate the eigenfunctions (j>M (r) and eigenenergies £m ; these are then used 

to obtain the density of states Nq (r; E) from eq. (2.8). The electron density n(r) can then be cal

culated from



n(r) = J d E f0(E) N0(r;E) (3.16)

The chemical potential |i0 appearing in the Fermi-Dirac function f0(E) (eq. (3.11)) is adjusted to 

obtain the correct average density of electrons in the structure. In general, the electron density 

n(r) obtained from eq. (3.16) should be inserted into the Poisson equation to obtain a corrected 

potential; the eigenfunctions <|>M(r) and the eigenenergies £m should then be recalculated

including this potential, and iteration should continue until the solution is self-consistent.



In Section 4.1 we linearize the transport equation (eq. (3.2)) assuming local thermo

dynamic equilibrium, to obtain the “ Continuous-Probe Landauer Formula.” We then obtain an 

expression for the dissipated power in Section 4.2. In Section 4.3 we discuss the conditions 

under which the “ Continuous-Probe Landauer Formula” reduces to the drift-diffurion equa

tions that are used to describe classical Brownian motion. Finally in Section 4.4 we compute 

the diffusion coefficient in a few simple cases using the present approach. Numerical results are 

presented for the conductivity of a disordered resistor. When the inelastic scattering time is 

short, the semiclassical and quantum conductivities agree well. But as the inelastic scattering is 

reduced, the quantum conductivity approaches zero due tp strong localization while the semic

lassical conductivity becomes constant.

CHAPTER 4: LINEAR RESPONSE

4.1. Goiitinuoiis-Probe Landauer Formula

To obtain the linear transport equation we assume that the structure is in local thermo

dynamic equilibrium so that the distribution function f(r;E) can be written in the form of a 

Femn-Dirac function with a local chemical potential p.(r).

■ . If(r;E)
I + e(E^ea(D)Zk8T (4.1)

Provided that this assumption is true, the following relation is valid:

f(E ')[l-f(E )] f(E) [I -  f(E')] (E-E')/k„T (4.2)

Using eq. (4.2) we can simplify the non-linear transport equation (eq. (3.2)) as follows. First we 

integrate eq. (3.2) over E to obtain

I(r) = |- J d r '{ i ( r ' ,r ) - i ( r ,r ' ) } (4.3)

where
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'.'VV'. I(r) = J dE I(r; E)

i (r, r') = J dE JdE' i (r, r'; E,E')

= JdE J dE' T(r,r'; E5EO Kr'; E') [I -  f(r'; E)|

Next we use eq. (4.2) to write

i(r ,r ')  = JdE f(r';E )JdE 'T (r,r';E ,E ') [ I -f(r ';E ')]  e(E_E')/kBT 

Using eqs. (4.6) and (3.13) we can write eq. (4.3) as

I(r) = Jd r ' JdE {T(r', r; E) f(r; E) -  T(r, r'; E) f(r'; E)}

where

(4.4)

(4.5)

(4.6)

(4.7)

T(r.r';E) = #  V W f f 1* ' Ti(r;E)Ti(r;E)
(4.8)

I(r) is the total current (over all energies) that is injected per unit volume at r. At equilibrium, 

I(r) = 0 and the distribution function f(r; E) is equal to a constant f0(E) (eq. (3.11)) throughout 

the structure. It is easy to see that eq. (4.7) is satisfied under these conditions noting that (see 

eq. (3.15)) ■

Jd r '{T (r ',r ;E )-T (r,r ';E )}  = 0 (4.9)

Now in linear response theory we assume that the distribution function f(r;E) deviates only 

slightly from the equilibrium distribution f0(E), so that we can expand f(r; E) in a Taylor series 

about |i = Ko- Noting that 9/3|i = -e  9/3E, we obtain

-dfo
Kr; E) -  fo (E) + e (p.(r) -  Po) (4.10)
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Substituting eq. (4.10) into eq. (4.7) and using eq. (4.9) we obtain

(4.11)

where
• • • •

, - , •. . . . / :

T0(r,r') = JdE
-dfo
3E

T(r,r';E)

■ ■;

(4.12)

At low temperatures, -^ f0ZdE « S(E-Ep) so ,that

T0 (r, r') = T (r, r'; E = Ep) = fr-2 IG(r,r') I2
Ti(r) Ti(r') E=Ef

(4.13)

Eq. (4.11) can be viewed as a generalization of Biittiker’s multiprobe Landauer formula,

1I = -L-rL  (Tji M̂i — Tij Mj }
n j

(4.14)

to a continuous distribution of probes. For this reason we call it the “Continuous-Probe Lan- 

dauer Formula.’ ’ The coefficients T(r,r';E) have the same symmetry properties in a magnetic 

field, H as the coefficients T^. Namely,

T(r,r';E) T(r',r;E)
-H

(4.15)

This is shown in the Appendix.

In deriving eq. (4.11) from eq. (4.7) we have implicitly assumed that 

when we drive the system slightly away from equilibrium, the distribution function f(r;E) devi^ 

ates from the equilibrium value Of fq(E), but the coefficients T(r',r;E)rem ain fixed. Actually 

the coefficients T(r',r; E) will change because corrections to the electrostatic potential will 

change the preen function G(r',r;E), as well as the inelastic scattering times ti(r; E). In con

sidering variations <51, we have accounted for one term,



Jdr' Jd E Sf0(E) {T(r',r;E )- T(r,r';E)} 

It would seem that we should also have a term of the form

I  Jdr' JdE fb(E) {5T(r',r; E) -  5T(r,r'; E)}

- 3 7 -

where ST is the change in the coefficient T. This term is zero, however, because of the relation 

(eq. (4.9)) that must be satisfied by T(r',r;E). Consequently, in linear response theory we can 

use the coefficients T(r',r;E) obtained (self-consistently) under equilibrium conditions, and 

ignore corrections due to the modification of the electrostatic potential by the applied bias.

4.2. Power Dissipation and Circulating Currents

In general, we can solve eq. (4.11) for the potential distribution |i(r) in any structure. At 

equilibrium, p.(r) is equal to a constant P0, and I(r) is equal to zero. Under these conditions it 

can be seen that eq. (4.11) is satisfied since (from eqs. (4.9) and (4.12))

Jdr'{T0(r',r)-T 0(r,r')} = 0 (4.16)

Also, we note that (from eqs. (4.15) and (4.12)),

T0(r',r) T0(r,r') (4.17)

In the absence of magnetic fields (H=O), T0(r',r) = T0(r,r') so that at equilibrium the integrand 

in eq. (4.16) is zero, and there is detailed balance between any two points r' and r. But in the 

presence of a magnetic field this is not true. There can be circulating currents, even at equili

brium. However, the net current out of any point is zero, as evident from eq. (4.16). Any 

outflow in one direction is balanced by an inflow from another.

We can rewrite eq. (4.11) in the form

Kr) = - ^  Jdr' {Ts (r',r) [p(r) -  M.(rO] + TA(r',r) [ |i(r )+ ^(r')]} (4.18)

where



Ts(r',r) = Y  [To(r',r) + T0(r,r')] (4.19a)

TA(r'>) = -i[To(r',r)-To(r,r')] (4.19b)

The power Po dissipated in the structure arises solely from the first term.

2 'i.
pO = Ih  I dr l dr' Ts(r'’r) [P (r)-P (r')]2 (4.20)

The net power dissipation due to the second term is zero.

' 2
| ~ j d r  Jd r ' TA(r',r) Ip2(F) - p V ) J  = 0 (4.21)

Eq. (4.21) follows readily if we note that from eqs. (4.9) and (4.12)

Jdr'TA(r',r) = JdrT A(r',r) = 0 (4.22)

- 3 8 -  / ' . .

The circulating currents that are present even under equilibrium conditions thus dissipate no 

power. From the point of view of power dissipation we can represent any structure by a con

tinuous network of conductors; any two volume elements dr' and dr are connected by a conduc

tance equal to (e2/h )fs (r ',r )d r , dr (Fig. 4.1). If we have two external probes with a potential 

difference Ap. between them, the conductance go seen from the terminals can be obtained by 

equating the total power dissipated in the network P0 to go (Ap)2. From eq, (4.20) we obtain the 

following expression for the two-probe conductance go-

(4.23)

One may adopt a variational approach to calculating p(r): choose a trial function and then 

minimize the power dissipated.

g° = | j - | d r  Jd r 'T s(r ',r)
p(r) -  p(r') 2

Ap
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Structure with distributed 
inelastic scattering

Fig. 4.1: Neglecting the circulating currents due to magnetic fields, any structure can be

represented by a continuous network of conductors; any two volume elements dr' 

and dr are connected by a conductance equal to (e2/h) Ts (r', r) d r'd r.



4.3. Relation to Classical Brownian Motion

Eq. (4.7) can be written in a slightly different form in terms of the electron density per unit 

energy n(r; E) = N0 (r; E) f(r; E).

I(r; E) = ej dr' [V (r',r; E) n(r; E) -  v (r,r';E) n(r';E)] (4.24)

where

v (r',r; E) T(r',r;E) (4.25)
hN0(r;E)

Eq, (4.24) has a simple physical interpretation. v (r ',r ;E )d r ' tells us the fraction of electrons

per unit time that “ hop” from r to r '.  The first term on the right of eq. (4.24) is the total 

number of electrons hopping per unit time out of the volume element dr while the second term 

is the number of electrons hopping per unit time into the volume element dr. The net hopping 

frequency Vq is equal to the inelastic scattering rate; using eqs. (4.25) and (3.15) we have

V0 = fd r 'v (r ',r ;E )  = l / t i ^ E )  (4.26)

Quantum transport is thus much like classical Brownian motion with a distribution of hopping 

lengths v (r',r; E) that is determined quantum mechanically. In the absence of any externally 

injected current I(r; E) we can write eq. (4.24) in the following form.

: Jd r'C (r,r ';E )n (r';E ) = 0 (4.27)

- where

V C(r,r';E) = ^  ~ v (r,r ';E ) (4.28)
■ti(r ;E)

The obvious question to ask is under what conditions does eq. (4.27) reduce to the drift- 

diffusion equation

-DijViVjnH-VdjVjn = O (4.29)

Here D is the diffusion coefficient (tensor), Vd is the drift velocity (vector) and summation Over 

repeated indices is implied (x, y and z).



To get from eq. (4.27) to eq. (4.29) we first assume that we are dealing with ensemble- 

averaged quantities (denoted by a bar on top) so that the coefficient £ (r,r'; E) depends only on 

the difference coordinate.

C (r,r'; E) = ~  8 (r - r ')  -  v ( r - r ';E )  
. -  *i

(4.30)

Next we assume that Cn = ^n so that eq. (4.27) becomes a convolution integral.

Jd r 'C (r-r ')n (r ')  = 0 (4.31)

We have suppressed the argument E for simplicity. Fourier transforming eq. (4.31) we obtain

C(q)n(q) = 0

Now we expand C (q) in a Taylor series up to the quadratic term.

(4.32)

C(q) -  C(O)-Iqj Vdj- q iq jDij (4.33)

The coefficients in this expansion are obtained readily from the moments of the function 

C (r-r ')  in real space. ..

C(O) = JdpC(P) (4.34)

v dj =  | d p  Pj V (P )

Dij = 4 - Jdp pi pj V (p)

(4.35)

(4.36)

where we have written p for r - r '.  Using eq. (4.26), (4.30) and (4.34) it is easy to show that 

C (0) = 0. Hence, inserting eq. (4.33) in eq. (4.32),

Ciqj Vdj -Hqjqi Dij) n(q) = 0 > (4.37)

Fourier transforming to real space we obtain the drift-diffusion equation (eq. (4.29)).

Eqs. (4.35) and (4.36) may be used to compute the drift velocity and diffusion coefficient 

from the ensemble-averaged hopping function v (r-r'). In general we also need to average over 

the energy E, though at low temperatures we could let E equal the Fermi energy Ep. It should



be noted that a number of approximations have been made in deriving eqs. (4.35) and (4.36). 

We feel that in general eq. (4.11) is a better starting point for the computation of sample specific 

properties that vary rapidly in space. However, for slowly varying ensemble-averaged proper

ties eqs. (4.35) and (4.36) are more convenient (see Section 4.4 for a few examples).

4.4, Siitiphe Examples

In this section we will consider two simple examples where the electron density varies 

slowly enough that we can use eqs. (4.35) and (4.36) to calculate the drift velocity and diffusion 

coefficient respectively. First we consider the semiclassical magnetoresistance of a free elec

tron gas with isotropic scattering described by an inelastic scattering time In this case we 

Obinpute tlie function v (p) directly from the classical trajectory and use it in eq. (4.35) or 

(4.36). The results obtained agree with the well-known semiclassical results. Next we consider 

a disordered resistor with delta function elastic seatterers distributed randomly, We compute 

the function v (p) numerically, ensemble-average it and Obtain the diffusion coefficient D from 

eq. (4.36) for different values of the inelastic scattering time Ti (assumed constant everywhere). 

For small values of Ti, we find that the semiclassical and quantum values of the diffusion 

coefficient D agree very well while at large values of Ti the two values differ significantly due to 

quantum localization.

4.4.1. SemicIassteal Magnetoresistance

Consider an electron injected with energy E at r ' = 0 and following a certain classical tra

jectory I4Q (t). The probability P(r,0;E)dr that it will suffer its next inelastic scattering in the 

volume element dr is given by (Ti is the inelastic scattering time, assumed constant)

P(r,0;E) = j  —  8 ( r - r 0(t))e 
o Ti

-t/t; (4.38)

We note from eqs. (3.15) and (4.25) that



Since v(r,0; E) is proportional to P(r,0; E) and the latter is normalized to one, we must have

Jdr v(r,0;E ) = I f x i (4.39)

v (r,0; E) = J 8 ( r - r 0(t)) e—t/Xi (4.40)
6 xf

Using eqs. (4.35) and (4.36) we obtain

Vdx
dt —t/xj

1 % .0  X
Xo (t)

1 f dt ^  x t oc  M l

2 I xf 6

(4.41)

(4.42)

where xo(t) is the x-component of the trajectory r0(t). The other components may be evaluated 

similarly.

Next we need the classical trajectory xo(t). To start with, we consider a classical electron 

moving without any influence from electric and magnetic fields. Assuming the particle has an 

initial velocity vx in the x-direction, the x-component of the trajectory is xo(t) = vxt. Because 

we are interested in the collective behavior for an ensemble of electrons, we must average over 

all possible initial states. We assume that the initial velocity of an electron is uniformly distri

buted over all directions in a sample, due to the action of scattering processes. With these 

assumptions, we evaluate eqs. (4.41) and (4.42):

( v* >  = = ( vx )  = 0
0 X

(Dxx) = ( j  4 v 5 t 2e-,/,1> = ( v 5 n )  * 0
' 6 x?

(4.43)

(4.44)

where we have used the angle brackets (  • • • ) to denote ensemble averaging. Without the 

influence of fields, the drift velocity of an ensemble of electrons is zero; the diffusion coefficient
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As a second example, we consider the effect of an electric field in the x-direction, causing 

an election to accelerate: xo(t) = vxt + where ax = e£/m is the acceleration due to the

field, We evaluate the drift velocity, and obtain,

“x*2
, r (vx t + —
6 tf

■<v*) = = (V1 ) + I a x Xi ) (4.45)

After averaging over all initial velocities, we again find that ( v x ) =0. Because of the 

acceleration, hhwever, the drift velocity is not zero,

(  Vdx ) (4.46)

Finally, we assume a magnetic field along the z-axis, and an electric field in the x-y plane. 

It can be shOwn [43] that the x-component of the classical trajectory is:

xo(t):
r ax _  Vy ' I  I , . '■ . ' ay vx '

COc COc
(I — COSCOc t) + 9 +

COc COc
Sincoc t (4.47)

where we have introduced the cyclotron frequency for an electron coc = Ie IB/m. Substituting 

eq. (4,47) intb eq. (4.41) and performing the necessary integrals, we obtain the drift velocity,

ax
■ -  Vv

I + CO2T2
+ Vy

I
I + COcTj2 c0C

(4.48)

If we average over all initial velocities,  ̂vx  ̂ and  ̂vy  ̂ vanish, leaving only the terms 

ihvoiviiig acceleration. By substituting in the acceleration due to the electric field,

( Vdx )
eXj
m

£ By COcXj 
I +  COcXi I +  cocx2

(4.49)

This velocity defines the x-component of the drift current, which we can use to determine con

ductivity:



' '■"/ - 45 -
' ■ ■. ■ ■' ■- '

Cnvdxsir — • Oo ■ /  -
a XX -  g

*  X £y=0 I + OJcT̂ V- 'V .■

e h  Vdxrrr ■ —
OJcTi

~ 0 
c y

I

X ...

(4.50a)

(4.50b)

Following a similar derivation for the y-component of the drift velocity, we can define Oyx and 

ayy, and obtain the usual magnetoconductivity tensor [42],

_ gO 
I + COcT-Il

I -OJcTi 
OJcTi I (4.51)

We have shown that some familiar results can be obtained by assuming a classical motion of 

electrons. We now proceed to demonstrate quantum mechanical effects in a numerical example.

4.4.2. Numerical Example of Localization

In recent years, considerable attention has been given to the effects of disorder on electron 

transport. In particular, Anderson has shown that for a sufficiently high degree of disorder, and 

in the absence of inelastic scattering, the conductance decreases exponentially with length. 

Electron wave functions become spatially localized, having envelope functions that decay 

exponentially with distance. As the overlap between localized, states decreases, the conductance 

vanishes. In the presence of inelastic scattering, however, electrons can “ hop” between local

ized states so that inelastic scattering actually improves the conductance.

A illustration of this effect is well suited to our model. In principle, we can calculate the 

diffusion coefficient D for any chain of randomly spaced impurities. We consider the average 

diffusion coefficient of many such chains, as a function of the inelastic scattering time Ti. We 

will show that as Ti increases, D rapidly approaches zero. Furthermore, if we treat electrons 

semiclassically (i.e., work with probabilities rather than probability amplitudes), localization 

behavior is destroyed, and D is limited by impurity scattering for large Ti. Our numerical solu

tion has been described in detail elsewhere [33,42]. In the following discussion, we focus more
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on the physical assumptions in our model, rather than the details of computing a numerical solu

tion.

To this point we have worked in die position representation, using a basis I r  >; we could, 

however, rephrase all previous discussion to correspond to another basis, say lk>, In this case, 

inelastic scatterers would be independent point-sources not ip position, but in momentum. Such 

a change of basis is convenient for modeling narrow wires, in which a confining potential in the 

transverse direction gives rise to a set of sub-bands or modes. From this standpoint, transport is 

analogous to electromagnetic waves traveling in a waveguide. Borrowing from the solution 

techniques used in microwave engineering, we will describe, transport using the basis 

IXr JCyjm>»wheremenumeratesmodes in the transverse (y) direction. In this basis, the hopping 

distribution v (r,r'; E) becomes

v (r, r'; E) Vmn (x, x'; H) ;

and is interpreted as the fraction of electrons per unit time that “ hop” from position x' and 

mode n to position x and mode m. We can evaluate the ensemble-averaged diffusion coefficient 

as described in Section 4.3 by determining the second moment of the distribution v(p)

D Xx,n ~  ~2 ^Jdpx P x ^mn(Px) (4.52)

where Dxx n represents diffusion due to electrons injected into mode n. We average the contri

butions of all possible injected modes to obtain

I
2M J dpx Px E  Vrim(Px)

m, n (4.53)

where M is the total number of propagating modes. In general, the function Vmn(Px) falls off 

exponentially away from px = Q, due to the imaginary potential ih/2Xi(r;E) in the Schrodinger 

equation (eq. (3.4)). Foreach configuration of impurities, however, Vmn(Px) will have a charac

teristic “ noise” superimposed on the exponential decay. In an ensemble-averaged sense, the 

“noise” components average to zero, and the remaining exponential decay can be characterized



by a decay length Lq ,

( E Vnm(Px) ) = V0 e"
I p x I Z L6 (4.54)

m, n

The constant Vo is determined so that the function is properly normalized:

' ' ' ' I
E  JdPx Vmn(Px) (4.55)

where >n is the inelastic scattering time for mode n. We assume for simplicity that the inelas

tic scattering time is a constant, independent of both position and mode number. In this case, 

the normalization condition for Vq becomes

JdPx (  X  Vmn(Px) ) = V - (4.56)
. m,n ■■ ' . ' 1

After determining Vo , we evaluate eq. (4.53) with the functional form stated in eq. (4.54).

4ti Ld
J dPx Px2 ~ I Px I / L6 Lfe

(4.57)

Our solution hinges upon determining the ensemble-averaged decay length Ld for the transmis

sion function within a long wire. The numerical solution proceeds as follows.

For each random configuration of impurities, we must determine the Green function of the 

Schrddinger equation:

d2
T T  + hm Gmn(X) -  8(x) 8„ (4.58)

where Gmn (x) represents the amphtude in mode m at position x for an electron injected in mode 

n at position x=0. Solutions for the wavefunction on either side of x=0 can be determined by 

ordinary means-for example, with the use of scattering matrices, as described in Ref. [33]. 

Each impurity is represented by a scattering matrix, which specifies coupling between the vari

ous modes introduced by a particular scattering potential. Regions between scatterers are 

represented by diagonal matrices, which account for the phase shift (and attenuation) acquired



by each mode while propagating through a given region. These individual scattering matrices 

can be combined to determine an overall scattering matrix, representing transmission through a 

given region. To connect the two solutions on either side of x=0, we introduce the following 

boundary conditions:

G U fx=^) = GnpCx=^) (4.59a)

^Gmn
dx X=O+

riGjnn
dx X=O (4.59b)

A semiclassical result can also be obtained using this method, if the elements of all scattering 

matrices are replaced with their squared magnitudes. In this case, the solution vector Gmn(X) is 

comprised of (real) probabilities rather than (complex) probability amplitudes. In any event, the 

solution of Gmn(X) for a particular impurity configuration determines the hopping distribution, 

which is fit to a decaying exponential (eq. (4.54)) to determine the decay length Lp. Decay 

lengths for a large number of random samples are then averaged, to determine the ensemble- 

averaged diffusion coefficient D = Ld /T1. A final concern is the averaging process used to 

determine Lp. In the localized regime, fluctuations in Ld from sample to sample can be quite 

large; however, Anderson et. al. [44] have shown that the inverse localization length Lq1 has a 

well behaved distribution. For this reason, we determine the average of L51 and invert it, to 

determine the ensemble-averaged Li).

We have applied this model to samples with five propagating modes and 400 impurities 

with an average spacing of 1.5 |im; the injection point was immediately left of the 200th impur

ity. AU impurities were characterized by the same scattering matrix, and the impurity strength 

was chosen so that the elastic scattering length AeJ was 4 impurities, ebtresponding to an elastic 

scattering time of to = 2.87xl0-11 s [33]. An estimate of the localization length is Aloc ». MAcl 

[45], where M is the number of propagating modes. For the present example, samples should 

exhibit localization when the inelastic scattering length A1 exceeds 20 impurities. Inelastic 

scattering times were chosen between IO-12 s and 10-8 s, corresponding to A1 between 0.2 and 

95 impurities. All results were verified against longer chains, to ensure that edge effects due to



the finite length of the chain were negligible.

To provide some insight into the arguments concerning the decay length-'Lp, we have plot

ted the hopping distribution for two arbitrary samples with different scattering times X\. These 

results are presented in Fig. 4.2 on identical logarithmic scales. For Ti = IO-10 s (Al = 9 impuri

ties), the sample is in the so-called weak localization regime. The distribution is predominantly 

characterized by its exponential decay, although small fluctuations are clearly visible. As the 

inelastic scattering time is increased, the fluctuations become larger. For Ti = ICT8 s (Aj == 95 

impurities), the general character of exponential decay remains, but the fluctuations have added 

considerable scatter to the decay length Ld-

In Fig. 4.3 we present the ensemble-averaged diffusion coefficient D for both semiclassical 

and quantum analyses. For small X 1 , inelastic scattering dominates, and both solutions are in

close agreement. As I, increases, however, the quantum mechanical solution rapidly 

approaches zero, while the semiclassical result levels off to the value dictated by impurity 

scatterers. This clearly demonstrates that localization must be understood in the context of 

quantum mechanics. Both semiclassical and quantum solution methods are identical, except 

that elements of the semiclassical scattering matrices are replaced by their squared magnitudes. 

By neglecting interference of the electronic wave function between successive scatterers, the 

semiclassical analysis cannot account for localization.



S  Vmn(Px) (arbitrary units) 
m, n

149.1 298.1
Position (jxm)

447.2 596.3

Fig. 4.2: The hopping distribution £  VmnCpx) for two arbitrary samples with different

inelastic scattering times t;. Both functions exhibit the general character of 

exponential decay.



Diffusion Goefficient (cnrr/s)

Quantum Mechanical 
Semiclassical

Tq = 2.87x10

Inelastic Scattering Time (s)

Fig. 4.3: The ensemble-averaged diffusion coefficient as a function of Ti for both

semiclassical and quantum analyses. The quantum result decreases rapidly for large 

Ti, a demonstration of strong localization.



SUMMARY OF IMPORTANT RESULTS

The Model

Electron propagation is assumed to be described by the one electton Hamiltonian

"?■; : n ,  .  'P - e A ,r r r  ..eV |r, (2.1)

having eigenfunctions 4>M(r) with eigenvalues £m - Inelastic scattering is assumed to arise from 

a continuous distribution of point oscillators whose distribution per unit volume per unit energy 

is given by Jo(r; Kco).

J(r,Bco)
1 U(r; lTco) 12 J0(r; fico) (N(r; Urn) + I) , Bco > 0

• n ■; ' ' ; 7"." -
(2.6)

where N(r;Kco) is the number of phonons occupying an oscillator with frequency CO at r and
• •' (-■ 07'” ;■ : vOv ’ '7' ■’ 7’"' ,ri: ' 5 v * - '■ .7'' - ' 7‘ '■* ' 7. ; • ' ’

U(f; Bco) is the interaction potential between the electron and the oscillators.

Density of states, N q(r; E )

N0(r;E) = £  IOM(r)l2 8 (E -e M)
M

(2.8)

Distribution function, f (  r; E )

n(r) = JdEn(r;E) = JdE N0 (r; E) f(r;E) (2. 10)



Inelastic Lifetime, Tj(r; E)

I
Xi(r; E)

JdE' [ [ l- f (E ') ]N 0(E') J(E-E')] (2.16)

Transport Equation

eN0(r;E)f(r; E) 
T(r;E)

= I(r; E) + Jdr'JdE' f(r ,r ';E ,E ')f(r ';E ')[l -f(r';E )] (3.1)

I(r; E) = |- J d r 'd E ' {T(r',r;E',E) f(r;E) [ l- f ( r ;E ') ]

-  T(r,r'; E ,E ')f(r';E') [I -  f(r';E)]} (3.2)

Kernel, T ( T y - E tE f)

T(r,r';E,E') = hP(r,r';E ) vS (r'; E ,E) (3.3)

p (r)r , E ) = ^ .  lG (r ,r ';E ) |2
2% N0 (r'; E) Xi (r; E)

(3.8)

Vs (r; E',E) = J(E-E') N0 (E') N0(E) (2.12a)

Green Function, G(r,r ;E)

E - H 0 + 2ti(r;E) G(r,r';E) = S ( r - r ') (3.4)
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CJtJ)0!  ‘piudX

XB̂ /«j)-ri3-g)

I
3+ I

= (H-J)J

9J3qM

(O1)Tl Ca‘J ) ° X - (J)Tl (J V )0X] ,j P J = (J)I
Z

UopvribguodsuvujjPszuvouirJ
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Appendix: Derivations of Important Relations Used in the Text

I, Eqs. (1.34a,b):

o 0(r,r ) = JdE a (r,r';E)

o(r,r';E) =  - £ -  £  I"J n m C1") ®  J m n («*')1 G m (E ) G n (E ) 
2% * M L J

We start from eq. (1.4) in the text and write it as

Cjj = Cj -  C2 (A. I)

where C i(r,r'; co) = - M d te icot ( J(r,t) J (r ,0 ))
: '• ■ 11 0

(A.2a)

C2(r,r'; co) = ^  J dt eic6t ( J(r,0) J(r,t) ) (A.2b)

The current density operator can be written as

J ( r . t )  =  X  J N M (r ) a f t ( t ) a M(t) 
N,M

(A.3)

where JnmC1*) is defined in eq. (1.35) and aft, ^n are the creation and annihilation opera

tors for the eigenstate N. Substituting eq. (A.3) into eq. (A.2a),

Ci(r,r;co) = £  J nmC1*) Jn7M7Cf O
N1M1N71M'

i:
J dt eicot ( aft(t) aM(t) aft̂ (O) aM<0)) (A.4)

jf TkJffSince N, M, N', M' are eigenstates, the expectation value on the right hand side is zero 

unless N' = M and M' = N. Hence
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Ci(r,r';co) = 2  Jnm O*) Jmn (rO Hi(W)
N1M

where

Fi(W) = ^ J d t e ia* ( aftO) aN(0)) ( a M(t) Uj1(O))

(A. 5 a)

' f0(eN)Ll-fo(eM)3
KCO + £n -  £m + iTJ

T| is an infinitesimal positive quantity (T) =O+). Similarly it can be shown that

C2(r,r';o)) = £  JnmOO JmnOO F2 (co)
. ' N1M

(A.5b)

where F2(CO) fo(eM) [I ~ fo(eN)] 
Kco + eN -  eM + it|

Substituting eqs. (A.5a,b) and (A.6a,b) into eq. (A.I) we have

Cjj(r» o)) = £  JnmW  JmnO-O Fnm(Co)
..N1M

where Fnm (co) = F ^ -F 2 Fq(iBm) - J o(En)

(A.6a)

(A.6b)

(A.7a)

(A.7b)
Kco + eN -  eM + itl

We will now rewrite Fnm(Co) in a somewhat different form by proceeding as fol

lows.

Fnm(O)) = Jde
f0(e+Kco) 8 (e -e M+Kco) f0(e) 8 (e -e N)

e - e N-iri e - e M+Kco+ir| (A.8)

Usingtherelation

8 ( x )
I I

x-iT) x + it |

we obtain from eq. (A.8),
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F n m ( « )  =  f ^ [ - f o ( e + 1 T c o ) G A ( e ) [ G ^ ( 8 + l T c o ) - G g i ( e + ! l c o ) ]  
J 2 m  L

-fb (e) Gm (e+ fico) [Gn (e) -  GnIe)] ]

where

(4.9);

Gm(E) = 1

<3&(e) =

e - e M+itl

I
e - e M- i i1

(AJOa)

(AJOb)

For small CO, we can write eq. (A.9) ass

Fnm(CO) = icoaNM + [>nmK

where

(AJJa)

aNM , =  J  d e
3fo Gfo(e).Gft(e)

bNM = J de f0(e) [Gn (8) Gm(8) -  Gn(£) Gm (e)]

(A Jlb)

(A Jlc)

Usglng eqs. (A.7a), (A J  I) and (AJ2a,b) we obtain from eq. (1.3.)

2
[aD(r,r')]ap = A + (B -  — — 6(r-r') 8ap) (A.12a)

where A= X  [Jnm(E)®JMN(r0l«p aNM
NiMf-

B = 2  [Jnm( e) ® Jmn (rOlap b^M
N,M

(A.12b)

(A.12c)

It can be shown that A and B< are both real quantities so that the real part of the conduc

tivity, is.simply equal to A. From eqs. (A.l lb) and (A.12b). we obtain eqs. (1.34a,b):
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E  EJnm(r) ® Jmn(**0] G&(e)G$(e)
N,M :

(A.13)

2. Eq. (3.13):

JdE' T(r,r';E ,E ') [I -  f(r'; E')l e'(E-E')/kBT

_  2 IG(r,r';E)l2 „ T r, ,,,
Ti(H E )T i( ^ E )  - T<r ' r ’ E)

To prove the above relation we start with the; left hand side and use eqs. (3.3), (3.8) and 

(2.12a) to substitute for T.

J dE' T(r,r'; E,E') [I -  f(r'; E')] e(E_E')/kBT

=  B2 IG(r»r ; E_)ji TdE ' e (E-E')/kBT [  [I -  f(E')] No(E') J(E'-E)1
t|(r;E ) 1 L Jat r '

(A. 14)

Using eqs. (2.14) and (2.16),

JdE' e(E-E')/kBT [ [I -  f(E')] N0(E') J(E'-E)J 

= JdE' [ ri -  f(E')] N0(E') J(E—E')j 

. =TZtl(^E);;'

Using eq. (A. 15) in eq. (A. 14) we obtain the desired relationship.

atr'

(A. 15)



3. Eq. (4.15):

T(r,r';E) „ = T(r',r; E)
H -H

We know from eq. (3.13) that

T(r,r';E) = K-.2 IG(r,r';E)l2 (A. 16)
ti(r,E) Ti(^ E )

The above relationship (eq, (4.15)) follows from the well-known symmetry property of the 

Greeh function:

We showed in Chapter 3 that (see eq. (3.7))

12
Jdr IG(r,r ;E)IZ _ 2 k  ,

Ti(r; E) K 0V ’ \

Using eqs. (A.16) and (A. 18) we obtain

Jdr T(r,r';E)
hN0(r';E)

(A. 18)

(A. 19)
ti(r';E)

This proves half the desired result. To prove the other half we note that, using eq. (4.15) 

derived earlier,
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Jd r T (r',r;E) | r = Jd rT (r,r ';E ) 

hN0(r';E)

-H

Xi(r';E) -H
(using eq. (A. 18)) (A.20)

But we have by definition (eq. (2.8)),

N0(r; E) = £ K fe(F)I2 S ( E - eM) (A.21)

where <fe(r) are the eigenfunctions Qf H0 (eq. (2.1)) with eigenvalues eM. The reversal of 

the magnetic field H merely replaces each eigenfunction <fe(r) by its complex conjugate 

leaving the density of states Nq (r; E) intact. Hence

N0 (r; E) N0 (r; E) (A.22)

Another way to prove eq. (A.22) is to note that N0(r; E) = -Im{G(r,r; E)}/rc and to use eq. 

(A.18). Also from eqs. (2.16) and (A.22) we have

Xi(r;E) = tj(r;E)

Using eqs. (A.22) and (A.23) in eq. (A.20) we obtain

hN0(r';E)

H

Jdr T(r',r;E)
Xi(r';E)

' <
This completes our proof.

(A.23)

(A.24)

rv
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