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ABSTRACT

We present a qﬁantum transnort equation derived under the s1mp11fy1ng assumpuon that'
the inelastic scattermg 1is caused by uncorrelated point scatterers, such as magnetlc 1rnpur1t1es .
Whlle thlS assurnptlon is not always realistic, we beheve that the model can be used to descnbe
miich of the esséntial physws of»quantum trafisport in mes'os’coplc sySternsn ‘Th1_'s ‘assumptl‘o'n—-. '
allows us to write 4 quanturm transport equation that involves only the diagonal elements of the
defisity miatrix which we use t6 definé a distribution function f(r; E). The kernel of this integral :
equation is calculatsd frdrri“the‘SCﬁf&Sdinger equation and contains all qUantnm interference'
~effects. We shorv that at equilibrium the distribution funetion relaxes to the Fermi-Dirac func-
tion with a constant cher'rli'cai potential eVéryWhere in the structure. Assuming loeal thermo-
dynamic equilibr’i-ufﬁ we thien derive a liﬁe‘ariie‘d transport e'quation which has the appearance of
a continuous version of the multiprobe Landauer formula. An alternative derlvatlon 1s prov1ded
for the 11nearrzed transport equation starting from the multlprobe Landauer forrnula Numencal
result§ are presented for» the conductivity of a disordered resistor with distributed inelastic
7 scattering. A clear transmon i"s- observed from weak to strong lbcalization as the inelastic
scattering time is increased. In the present work we restrict ourselves to steady state transpert

and neglect many?bodyeffeCts. o
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- FOREWORD

. The purpose ‘éf this 'repor"t' is to pfeseht’.é 'qﬁahtuni transport equation bdériyed 4unidér"t_he
51mphfy1ng éssﬁmp.iidﬁ'that-‘ the inelastic scaftériﬁg'isvi caused by uanrfglated point. scé‘ttercrs.
We believe thatthis equation will be u-s‘efulf‘in'descﬁbing both linear and non-linear quantum
trahsport‘vinggmest)s_copic' s"y,s‘t_cms;- The outline of the report is as fol_lows. Section 12 «prbvides
an chrViéW of the main: results, which are then derived systcmaﬁcﬁlly in 'Chap:.tcrs 2, 3-and 4
| _ Section’s': I3 and' 1.4 providé alternative de_n'vau'bﬁs for the linearized' transport equation wh'ich.
we c‘all: the'“Continuious-Probe Landauer Formuih; >> In Chapter 2 we describe the ' model that
we use for the inelastic scattcré and: compute the inelastic scattering rate from a model Hamil- -
| tonian using F‘emﬁ*'g golden rule. v The‘ general non-linear quantu,lln‘ transport ‘e‘q'uatiovn.is‘ derived | -
' in'Chapfte'rS;. Which‘Lis;vthen* linearized in Chapter 4 assuming local thermodynémicjch‘uilibﬁum. |
A fow examples are.;ai"so discussed in Chapter 4 illustrating the relationship between semiclassi-

'~ cal'and quantum transport.



' CHAPTER I: INTRODUCTION ~

':' 1 1 lackground
Much of our understandmg of electron transport in sohds is based on the Boltzmann Tran-

sport Equauon (BTE) At steady state (Wthh w111 be our prlmary concern in th1s paper)

Vv Vf(r,k)+—g— ka(r k)—Sopf(rk) o (11)'

, Here f(r k) is the drstnbutlon functlon in phase space that tells us the number of partlcles at r

w1th wavevector k Sop is the scatterrng operator which i is local in space

setebe3 [S<k K) f(k')[l - f(k)] . S<k' 9 10011 - f(k')]] o a2

SRR K i » T R
- The scattenng functlon Sk, k’) is commonly obtamed from Ferm1 s golden rule The BTE is
based ona s1mple semlclass1cal p1cture of transport Electrons are partlcles that obey Newton S
law 1n | an external electrrc ﬁeld (5) and are scattered occasmnally by phonons and 1mpur1t1es ‘

Desplte its 1mpress1ve successes, 1t suffers from an 1mportant 11m1tat10n it cannot descrrbe tran- ;

- sport phenomena in whrch the wave nature of electrons plays a cru01a1 role. A Vanety of such

o quantum effects have been dmcovered over the years, such as tunnehng [1], resonant tunnelmg

'[2] weak and strong locallzatlon [31, the quantum Hall effect [4], etc Slnce 1985 experrments ,
on mesoscoprc structures have revealed a wealth of new effects such as the Aharonov Bohm'
:effect conductance ﬂuctuat1ons non- local effects and the quantlzed conductance of pomt con-t’
. '.tacts [5 12} For ultrasmall structures- at low temperature, these - phenomena have clearly'
revealed that electron transport is dommated by wave 1nterference effects not unlike those
well- known in rmcrowave networks It has also become clear that i in mesoscoprc structures, _
' whose d1mensrons are comparable to the phase-breakmg length 1t is necessary to dlStlngUISh |
between sample-spemﬁc propertles and ensemble-averaged propertles, solid-state phy31cs in the o

'past had been almost excluswely concemed with the latter. -
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An 1mportant toplc of current theoretlcal research is to develop a quantum transport for- -

o mahsm that can be used to descnbe the sample-specific propertles of mesostructures A satls-

| factory theory must not only 1nc1ude ‘quantum interference effects, but also the effects of phase-
: breaklng processes (ansmg from scattering processes in which the scatterer changes its state)
 that are 1nev1tab1y present Thrs isin general a very difficult problem for it involves one of the
fundamental questions of physrcs How do 1rrevers1b111ty and d1s51patlon creep into’ a system
lthat is governed by revers1b1e mechamcs (i.e., the Schrodlnger equatlon or Newton s law)?
'There have been three separate approaches to quantum transport theory, each w1th its own sub-

tle technlque for 1ntroduc1n g 1rrevers1b111ty

1. "In the Kubo formalism, -linear --transport coefficients - such as »conductiv‘ity are
~-expressed in terms of correlation functions evaluated at equilibrium [13]. The con-
ductivity tensor ¢ at a frequency o is related to the current-current correlation func-

~-tion.
0o (r.rio)les = [Coy(r.r ooy — —— 8=y (1.3)

~where n is the electron density, m is the effective mass, 'Saﬁ is the Kronecker delta
and the subscripts o, run over x, y and z. The current-current correlation function

C]] is defined as

Cyri) = — [ e '< 'J(r,t) Ja,0) —'J(r',o)’J('r,o> - 14 |
. Iy ' : e Lo
where J(r,t) is the current density operator in the Helsenberg plcture and < >

denotes the ensemble-averaged expectatlon value ‘Egs. (1.3), (1 4) and relations
, denved from it have been the startlng pomt for much theoret1ca1 work on localization

[14 17]. Recently Lee and co-workers and Maekawa et. al. have used this approach
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to study quantum transport in mesostructures [18 23].. Inelastic ~processes vare
1nc1uded in this approach (also known as hnear response theory) by replacmg (—iw)

, w1th (1/1:1) where T; is the inelastic scatterlng time.

Ih“"thé ;Landauer f‘ormalt'sm, linear transport kCOeffivcients‘ are expressed in terms of the
scattenng propertJes of the structure [24- 28]. Usually 1t is assumed that 1ne1ast1c
: scattermg is negligible w1th1n the structure and occurs pr1mar11y in the contacts ‘
| ‘Under these condltrons the current I at lead iis related to the chermcal potentlal K

at lead j by the multlprobe Landauer formula (F1g 1.1 [29]
1 &2 , ' S
T = TZ {(To);i Hi_(TO)ij"uj} o ~ (1.5)
where
- _ ofy. '
- (To)j = [dB | === | T4(B)
- Ty(E) = Tr{tjE) t;(B)} el - (L6 |
(B ‘is'the transmission matrix from lead j to lead i for electrons with energy E and
f is ‘the Fermi-Dirac ‘distribution function. ‘It has been shown that the coefficients
(Tp);-are relate“d to thef\conductivitytens'o‘r (To)op by the"followmg,relation"j[30,3‘1].
| 2 _ ' o = '
== (To)y; = [d(S))e: [d(S))g [Oo(r,r )] - an

v Where%the vector S; is normal‘to -thecr_oss-section»of the lead i. ‘Eq. (1.5)”has been the

- startlng -point *f0r~much of the recent work on quantum transportv in. mesostructures-
[32-34]. _b Although the Landauer approach, in principle, can be applied more gen-,

S.er'ally 351, eqs (‘lv-'v6) can be used to compute the coefﬁcients (To);j only if ‘ineiasu'c.
scatterlng 1s 31gn1ﬁcant in the contacts and not within the structure D1ss1patlon and

J ?1rrevers1b111ty in this approach arise from the couphng to the contacts Wthh act as
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| reserv01rs, as often pomted out by Landauer [24 25 35] Buttlker 51mulated the"
| ";effects of 1ne1ast1c scatterlng w1th1n the. mam structure by connectmg ittoa contact'
&‘reservou through a 31de probe and settlng the current at th1s ﬁctltlous probe to zero |
| [36] The Landauer approach has 0 far been apphed only to- problems 1nvolvmg‘ :
: hnear response though in pnnc1p1e, 1t should be apphcable to non- 11near response as -

o f;well

v 3 The th1rd approach to quantum transport theory has been to develop transport equa- '
) -'tlons snmlar to the BTE [37]. Instead of the semlclassmal dlstnbutlon funcuon
| f(r k) such a Quantum Boltzmann Equatton (QBE) uses a. quantum d1str1but10n func-
tion wh1ch 1§t denved from the den51ty matnx p (r r ) For example the ‘Wigner dis-
| tnbutlon functlon f(R k) is obtained from the dens1ty matrix p(r,r’) by transforrmng |

';v'::?to center-of—mass (R (r+r')/2) and relatlve (r—r) coordlnates and’ then Founer

-litransformlng with respect to the relatlve coordlnate Dlss1pat10n is usually 1ntroduced o

‘us1ng a relaxation time approxrmatlon [38] or through an 1nﬂuence functlonal in the
. Feynman path 1ntegral techmque [39] Although the QBE may. prov1de a powerful
and general approach to quantum transport theory (1nc1ud1ng non 11near response) it
‘has not been used as w1dely as the Kubo or the Landauer formula Moreover quan-‘
4tum dlstrlbutlon functlons have counter—1ntu1t1ve propertles (such as not be1ng poshv:

- _.tlve deﬁnlte) and it 1s more dlfﬁcult to make 1ntu1t1ve approx1matlons

In the present work we assume that the 1ne1astlc scattenng is caused by a contlnuous dlstrl-
butlon of point osc1llators Every t1me an electron is 1ne1ast1cally scattered it leaves one of
these osc111ators inan exc1ted state, and energy is d1851pated 1nto the surroundlngs as the osc1lla-
’ tor relaxes back to 1ts state of thermodynamlc equ111br1um Slnce the oscﬂlators are assumed to
| be pomts in space each 1ne1ast1c scattenng event can be v1ewed as. a quantum measurement of

" the posztzon of the electron An observer who mon1tors the states of the: oscﬂlators w111 see a



( contact ) contact )

- Structure with »
no inelastic scattering i

V(r), A(r)

- contact |

Fig. 11 The multlprobe Landauer formula relates I; to uj assummg that all 1nelast1c

scattenng processes are conﬁned to the contact rcserv01rs .



vsen'esof flashes from different spatial locations. Transport can thus be viewed as a series of
B “‘hops”’ (F1g12) Each “hop” starts with one inelastic scattering event at some location r’ |
and vends with another at some 'l_ocation.r; in between, the electronpropagates without inelastic
scatteringT We use the Schro'dinger equation to obtain the probability P(r,,r’; E) that an electron,
| , having:an‘energy E after suffering'an inelastic scattering event at r’, will suffer its next inelastic -
- scattering event at r. This probability function P(r, r’; E) contains all'interference effects. Since
- all phaseinfornvmtion is lost at thefbeginning and atthe end of each “hop,” successive “‘hops™
| ,do‘not interfere. bThis 'allows us to Writeian integral‘transport equation describing the overall
transport of carriers. The kemel of this 1ntegra1 equatron depends on the probab111ty function
P(r,r’; ;E). and thus contams all the effects of quantum 1nterference L
'The're isa similarity bet‘ween this descrip_tion“and- the Landauer__- description._.:An inelastic
scattering. event can be ‘Viewed as an;exit into a reservoir‘ followedb by emission from the reser-
voir. It is as if there is acontinu'ous distribution of reservoirs connected to,the main structure by
side probes through wh1ch electrons are absorbed and re1nJected In fact when we. 11nearlze our
general transport equation assumlng local thermodynarmc equilibrium, we arrive at what looks
hke a continuous version of the multlprobe formula (eq (1 5)). For this reason we have named
the hneanzed transport equatJon the ”Contmuous-Probe Landauer Formula’ " [40]. In this sec-
tion we will prov1de two alternative denvatrons of this formula (a) using a simple physical argu—
ment (Section 1. 3) and. (b) startlng from the multlprobe Landauer formula and using hnear

response theory (Sectlon 1. 4) But first let us present a brief overv1ew of the main results of thls

paper (Section 1 2).

1.2. Overview of Main Results -
In this report we present a quantum transpOrt equation »derived under the simplifying
as sumption that the 1ne1astic scattenng 1s caused by uncorrelated pomt scatterers like magnetic

_1mpur1t1es While th1s assumptlon may not always be reahstlc, we beheve that th1s model can

_be used to descnbe much of the essent1al phys1cs of quantum transport in mesostructures This



nAANAN Inelastlc Scattermg
Elastlc Propagatlon

Energy

/ IS r’; E E' P(T;'r,; E)

—
»

v r  Posion

.F1g 12 Transport is v1ewed as a series of “hops >’ Each “hop” starts w1th an 1nelastlc :

scattermg event. and ends w1th one :



‘ assumptlon allows us to wnte a quantum transport equation entirely in terms of the dlagonal o

elements of the densrty matrix which we use to deﬁne a distribution function f(r E) We then o

lmeanze the transport equation assuming local thermodynam1c equillbnum The resulting

v hnear transport equatlon (eq. (1. 27)) has the appearance of a continuous versron of the mul-

t1probe Landauer formula (eq (1.5)), as if the main structure were llnked toa contlnuous dlStI‘l- _'
bution of reservorrs through side probes (Fig.‘ 14) Either the full quantum transport equation-or
its linearized version Canbe"uSed to describe Iinear and non-li'near, quantum transport:in.me'sos-_ |
tr'uctures We make 'several assumptions in the present work that can possibly be removed in
future extensions of the theory (1) we restrict ourselves to steady state transport and many-
body effects are neglected (2) the 1nelastic scattering events are assumed 1nstantaneous SO that
the w1ggly lines in Fig. 1.2 are vertlcal and (3) we assume that the 1nelast1c scattering is weak
| yenough that the broadening of energy levels can be neglected |
- We cons1der any arbitrary structure in Wthh the propagation of electrons is descnbed by -
-the followmg one- electron effective mass Hamiltonian | | |
, HO: (pi_gi(r))z +eV(r) B .. :r . '(1;3) |
’l‘he vector and scalar,potentials A(r) and V() »include, external ﬁelds and self-con_sistent\ﬁelds,
as well as all sources of elastic scatteringvsuchv as impurities; defects boundaries etc. Assuming
~ that the eigenfunctions ¢M(r) of Hy (eq (1 8)) have elgenvalues eM, the dens1ty -of states

No(r; E) per unit volume per unit energy is glven by (we assume weak 1nelastic scattering)
No'(r;E)’-—f»‘Zlq)M(r)lz S(E—em) | B (i.9)'

At equihbrium the electron dens1ty (Wthh is the diagonal element of the dens1ty matrix p (r r')) ‘

s glven by



| Ta® = [ENGE foE)

where fo (E) is the usual Ferrm-Dlrac functlon We extend eq (1. 10) to non- equ111br1um prob-
e lems to deﬁne a d1str1but10n functlon f(r; E) | |

| s E) No(r E) £(r; B ,(’1.11’) :

n(r) jdEn(r B T (1 1)

: bNote that the d1str1but10n functlon f(r E) as deﬁned above is not a sermclasswal concept but a

- well deﬁned quantum mechanlcal quantlty The electron dens1ty per unit energy n(r, E) can be :

| wntten 1n terms of ﬁeld operators as o |
n(r E) = ——-jdE e‘E"H <\|IT(r t)\v(r O)> o (1133)
.- so* that the total electron dens1ty n(r) is glven by | |
o | _, n(r) = jdEn(r E) = (qﬂ‘(rt)w(r 0)) o . »‘(1-.135)"-
Our ébjééuvé 1s to denve a transport equatlon that can be solved to obtarn the dlstnbutlon func- -
tron f(r E) or equlvalently, the electron dens1ty per un1t energy n(r E) At equ111br1um w1th‘5

' source terms set equal to- zero, the d1str1but10n function. relaxes to- the Ferml Dlrac funct10n 1

: fo (E) w1th a constant chemlcal potent1a1 as we nnght expect

The 1ne1astxc scatter1ng is modeled as a contlnuous d1str1but10n of 1ndependent osclllators ‘

' ':each of whom 1nteracts w1th the electron through a delta-funct1on potent1al We show in

e Chapter 2 that the 1ne1astlc scatterlng rate per . unit volume per un1t energy is equal to» o

vn(r E) / 't < (15 E) where the melastlc scattermg time T (r E) is glven by

1
1:(rE)

J (r Hco) isa functlon that descrlbes the spectral dens1ty of the oscﬂlators respons1ble for the ine-

: ’.1ast1c scattenng (eq (2 6)) The net 1ne1ast1c scatterrng current per un1t volume per: un1t energy :
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is g1ven by e n(r E)/ T (l‘ E); us1ng egs. (1. 11) and (l 14) we could write th1s quantlty as

| ————en(r,E) = ( 1 - R’/ ' o a | V .
wnE) | dE_lls}(r,E E) RENIE (1 15)
where

atr -
ig(r; E/ E) dE’dE is the 1nelast1c scattenng current per unit volume from an 1n1t1a1 energy mter-ﬁ
‘val dE to a ﬁnal energy 1nterval dE’; as we mlght expect, 1t 1s proportlonal to the electron den-
s1ty at E (No E) f(E)) ‘and to the “hole”’ den51ty at E’ (NO EH[1- f(E OD. Note that the 1nelast1c
scattenng rate at any pomt depends on purely local factors at the same pomt o N
. : Now"we can write down a master equatlon quite stralghtforwardly as_follows.

 ennB)
. G(rE)

= B+ far Jae'ss EEEIRESE AT
ThlS equat1on 1s 1llustrated in Fig. 1 3 Let us for the moment 1gnore the ﬁrst term of the nght-
" hand side and cons1der the second term ls (r E E") tells us the rate at wh1ch electrons are scat-
’tered at' r’ from an 1n1t1a1 energy E'toa ﬁnal energy E P(r r’; E) nges us the fractlon of the
electrons injected at r’” ~with energy E that suffer their next 1nelast1c scattenng- event-at T.
‘Integrating: 15 @ E E') P(r r’; E) over all r -and E’, we should obtarn the net rate at which elec-
trons with energy E are inelastically scattered atr, Wthh is the quantlty on the left-hand side

e n(r° E)/T (r° E).. The first term on vthe nght—hand s1de I (r E) is the current per unit volume per

unit energy mJected from extemal sources. Eq (1 17a) can equlvalently be written as

I(r E) jdr jdE {13(1‘ E' E) P(r r; E')—ls(r E E)P(r r’; E)} ‘ (1.17b)
Eq (1 l7b) follows read11y from eq (1. 17a) usmg eq (l 15) and not1ng that by deﬁmtlon for a
probablhty functlon we must have jdr P(r r; E)-l At : ‘ o

Usrng eqs (l 11) and ( 1 16) we can wnte eq (1 17a) i 1n terms of the dlstnbutron functlon

fﬂf(r 5.
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To other

| | enmiE) f | valuesof E
~ X Th(hE)
(xS EY) =2 — )\ j F
B - . 's(r EE)
en(r;E) .

(r; E

)
I(r;E) ﬂ@——>

T

To other .
values ofr

. iS (rl; E, E/) P(l’, P’: E)

Fig. 1.3: A schematic diagram illustrating the different terms ineq. (1.17a). <
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e No(r; E) £(r; E)
' Tx(l' E)

_ 1”(;; E) + ﬁ- far | dE T EE)f(r E) [1-(0'; E)] (118)
| Equ1va1ently fromeq. (1. 17b) we obtaln

(6 = % j drf j-dE'{i”"(r*,r; £,5) _f(r;‘E> (-t Y
‘ “"T(M”?'_;,'E,E’) CERO-B)  (19)

It will be noted that there isa close s1rm1ar1ty between the right-hand s1de of eq. (1.19) and the
scattermg operator in the Boltzmann equatlon (eq. (1.2)). One descnbes hopping processes in'
- real space, wh11e the other descnbes hopping processes in k-space The energy variable does
" not appearexphcltly_‘ln eq. (1.2)_because the momentum states are assumed to be energy eigen-

| states; a given k has a umque energy Ek
The kernel T of this 1ntegral equatlon is given by
- T(r,’rv; E,E’)' = hP(r;r E) vs(:E,E) N o ’(1.2‘0)
where o

vs(r';E,Ef) _=-.[J(E—E')No(E)No(E’)], ey

atr
We show in Chapter 3 that the probab111ty functlon P(r r; E) can be obtained from the Green
functlon G(r,r’; E) of the t1me-1ndependent Schrodlnger equatlon modJﬁed to include an addi-
'tlonal 1mag1nary potentlal it/ 2'r.1(r E) '

i IG(r,r;E)l2
21t No(r E) T;(r; E)

P(r v iE) = (1.22)

[E Ho_‘ l(, E)]G(r,r E)—8(r. r') - (.23

"where Ho is. the Harmltonlan deﬁned in eq (1 8)
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The kemel T(r r E E ) of the mtegral equatlon (l 18) thus contains all quantum 1nterfer-
ence effects through the Green functlon Gfr, r’;E). Once the kemel has been computed we can

solve eq» (1 18) to: obtam the drstrlbutron function f(r; E) for a glven external source functron |
| I(r E); alternatlvely, we could spec1fy f(r; E) in certain parts of the structure (hke the contacts)
" » and compute the resulting I (r E) |

B (3 should be noted that the assumptlon of point 1nelast1c scatterers is: cruclal in arr1v1ng atv

‘such a s1mple descrlptlon of non- llnear quantum transport.- Firstly; ,1t allows us to wr1te the.

scattermg rate is(r; B E) in terms of purely local factors (eq (1. 16)) Secondly, it allows us to' v

» compute the’ probablhty functron P(r r’;E)ina stralghtforward manner from the Green func- )

tron Th1s is poss1ble because each 1ne1ast1c scatterlng event is assumed to rernject the electron
1ncoherently w1th a new energy at a s1ngle p01nt the initial COIldlthIl for each elast1c propaga—'
- tlon process (Flg 1 2) is thus always a delta functlon We belleve that the assumptlon of p01nt :

: 1nelast1c scatterers can only be relaxed at the expense of cons1derable added complexlty

' We show in Chapter 3 that at equ111br1um with I(r E) 0, the d1stnbut10n functlon f(r E)
v_relaxes to the Ferml D1rac functron fo (E) w1th a constant chermcal potentlal everywhere in the'
) structure To obta1n the 11nearrzed transport equatlon (Chapter 4) we ﬁrst s1mp11fy eq (1. 19) to. |
the followmg form, under the assumptlon that the dlsmbutlon functlon f(r E) can be written as

. a Ferrm—Dlrac functlon w1th a local chemzcal potentzal u(r) (see eq (4 7))
=< © far fae [T(vrv",r'; BieE-TorB e (128

‘where

B IG(r,r;E)1?
% E) w(E)

L : : T(r,r"’;E)' _ o (125) t

. ._‘._I(r) is the total current (over all energles) that is 1nJected per unit volume at r from extemal" B

sources We also show that (eq 3. 15))



-14-

@[T, B) -Te Bl =0 (1.26)
1 Eq. (1 -26) ensures that at equilibrium with I(r) =0, the distribution function f(r; E) relaxes' to a
constant fo(E) with a constant chemical potential 1, throughout the structure. In 11near response.
- theory we assume that the local chemlcal potential u(r) deviates only shghtly from the equili--
brium chem1ca1 potentlal Mo Us1ng a Taylor senes expans1on for f(r; E) we obta1n the linear-

iized transport equatlon (see eq. @. 11))

10 = Sfar (MEDRO-TeOue) 42

where
T (} r) = jdﬁ —ai T(rrE) - | (1'28)
ey OE | ‘» B

Once»'again the kemel T()(r r’) contains 'all quanturn interference effects through the Gr'een :
function G(r r’; E) We believe that e1ther the non-linear transport equanon (eq (1. 19)) or its
b'llneanzed version (eq. (1.27)) can be used to descnbe quantum transport in mesostructures of
arbrtrary size and shape. - ‘

In principle, €gs. (1.19) or }(1.27) should be SOlved self-consistently with the Poisson equ_a-
tron; the self-consistent potential which enters the one-electron Schrodinger equation affects the
'k‘ernels (T(r,r; E,E') or To(r,r’)) appe.aring in these equations. However, in linear response‘
theory we can use the coefficients T(r,r’;E) obtained (self-’consistently)' under equivlibrium.co:n-
ditions. This is because the ﬁrst—order change in the right-hand side’of eq. ( 1.24) due to a srnall |

change T in the coefficient T . -
= Jar’ [dE fo(®) (5Tt B) - ST(r,v’;E)]
18 Zero on account of the relation (eq. (1.26)) that must be satisfied by T. This means that for

small apphed b1as the current is not affected by the self-conslstent readJustment of charges

! w1th1n the structure Th1s however may not be true 1f there are sharp resonances in T second—
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order terms (-~ 8T Sfo) may not be negligible in that case

Eq (1. 27) can be v1ewed as a contlnuous vers1on of the multiprobe Landauer formula
stated earher (eq ( 1 5)) and we call it the' “Contmuous-Probe Lana’auer Formula * It is as if
We have added a continuous dlSti‘lbuthH of reservoirs connected through probes to the mainl
structure (Fig 14). A s1ng1e reservoir whose. coupling can be varied has been used in the past
S to srmulate the effect of 1ne1ast1c scattering [36, 41] A better model for distributed inelastic
scattenng processes is a continuous distribution of reservoirs that‘ repeatedly absorb and reinject
' electrons. From this point of i/iew eqt (1.27) would seem to be an obvious extension of the mul-
tiprobe Landauer formula to include inelastic scattering within the structure. What is not 'obvii—

ous, however, is how the kernel To(r,r’) is to be calculated in a given structure. In view of the

importance of eq. (1.27) we will now provide two alternative derivations for it -- one using a-

simple physical argument (S.ection__1;3) and the other'starting from linear response theory (Sec- .

. tion 1.4).

1.3 *Simple 'DerivatiOn‘of the Linearized Transport.Equation
We can obtam the hnearized transport equation at zero- temperature directly by starting .
from a s1mp11ﬁed version of eq. (1.17a). | | R

e n(r)

T(r)

= I(r) + jdr’ en((r)) P(r r) . : ‘ v» “ e | (129)

The physical basis for this equation is very similar to that for eq. (1.17a), and is illustrated in -

Fig. 1.5. Here we are assuming that all the transport occurs within a narrow range of energies
right around the Fermi level, and n(r) is the total electron density in this energy range. We have
suppressed the-energy E is the probability function P(r, r" E), Which is assumed to. equal the
Fermi energy The net rate at which electrons are inelastically scattered at r’ is given by
-n(r’)/ 1:1(1') of these, a fracuon equal to P(r r’) suffer their next 1ne1astic scattering event atr.
Integrating over all r’ and adding the externally 1njected current (I)/e) we obtain the net rate L

at Wthh e_lectrons are inelastically scattered at r, which is the term on the left-hand side,



=16 - 7

Reservo:r with chemlcal &
potentlal Wr) :

Perfectly ordered
lead connected-
todr

o

, Structure w1th dlstrlbuted
| melastlc scattenng |

. F1g 1. 4 Eq (1. 27) can be v1ewed asa generahzauon of the mulnprobe Landauer formula to a
structure w1th a contmuous dlstnbunon of probes lmkmg each volume element dr to

a conceptual reservou' of carners
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To other
values of r

Fig. 1.5: Schematic diagram illustrating the different terms in eq. (1.29).
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‘ n(r)/ ’tl(r) Once again using the property of probab111ty functions jdr P(r r=1, we canu ‘_

‘ "wnte eq. «a 29) as

e n(r) “en(r’)

I = Jar 1:()P( ) e a0

Wr'itingn(r) = eNo'(r)bu(r)‘,' :w'here éu(r)l is the chernicayl’p%)tential measured from some refer-
- ence enefgy near the Fermi cnérgy, welobtain from eq. (1.29), | |

No(r)

Tl(l‘) (r) = I(r) + —J'dr Tr,r)wr) | | (1.31) |
where
o , JhNo(r’)‘P(r',r’)’ o o S
,.T(r,r) S T ey | | (1.32) ‘_

Using eq. (1.22) for P(r,r’) it is éasy.to check that T(r, i'f) is given byv the same expression as:
stated eaﬂier (eq. (1.25)). Not¢ that 1n this section we ha{ré suppreSsed tne energy E whiéhi_s
assumed to equal the Ferml energy; this“is because;we are restricting our attention to linear tran-
"s'port at zero-temperature. |

| Again, starting from the alternatlve form glvcn in eq (1. 30) we obtam the alternatlve ver-

sion of eq. (1 31)

Ir) = % Jar’ {T@',r) p) = Ta,r) wr)) - (3

D

1.4. Linearized Transport Equai:ion frorn the Multiprobe Landauer Formnla

- As we discussed in Section 1.2, the linearized transpbn équation (eq. (1.27)) is an obvious
-extension of the multiprobe Landauer formula (eq. (1.5)). :What. is-not obvidus is how we obtain
‘ the kei'nel TO (r,r’). FIn this section we derive T(r r’; E)k starting from the Kubo formula for the
,conduct1v1ty o(r,r’; E) (eq (1. 3)) and using the Lee Fisher formula (eq (1. 7)) to-obtain T from
c. As shown in the Appendlx eq. (1. 3) can be simplified to yleld



-19-

o - -Z-H— I JNM(r)@Jm(r'naa CR®GA® (3
1eH S
JNM(I') = 5= [(V¢N) oM — ¢N(V¢M)] | S (1-35) :
GM(E) m --;(1'363)
N SR ‘ .(1.-36b)‘
(E EM — iT'l')‘ -

GM (E) =

: . (I)M (r) are the elgenfunctlons of Hy (eq (1 8)) the correspondmg e1genenerg1es eM of HO are

. purely real n 1s an 1nﬁn1tes1rna1 posrtlve quantlty The problem now is-to 1nc1ude the effect of

1nelasuc scattenng 1n the Green functmns G A(E) One approach that has often been used to

‘ mcorporate 1ne1astlc scattermg processes is to let ‘
| n,=ﬁ/zr~ a3
) Where 'c is the 1nelast1c scattenng tnne, assumed to be constant everywhere Th1s is equlvalent' -

S to addlng an, 1mag1nary potent1a1 111/21:l to the Ham11ton1an Ho SO that the elgenenergles &M |

acqulre an 1mag1nary part Iti 1s easy to show that the “Schrodmger equatlon .

[H"T]“’ S em

Lo leads to a cont1nu1ty equatlon of the followmg form for the probab111ty dens1ty (p/ e) and theV

probablhty current dens1ty (J/ e)

g e T
VITTm o g e 0

© Thus by identifying n with /2t; we are effectively describing particles that decay with a



B 11fet1me 1: Th1s is clearly not an accurate representatlon of the scattenng process ‘which

N 1nvolves not only the decay from an 1n1t1a1 state but also the subsequent re1nsert10n 1nto another

R state Now, 1t is well known that if we assume ‘the e1genstates to be plane wave states, kK, and o

‘ 1dent1fy n w1th H/Zt where T 1s the total (elast1c as well as 1nelast1c) scattenng t1me .

1
E ek ;trh/21:

GR A(E) | (1.40)

,then we obtam the correct Boltzmann conductrvrty from eq. (1. 34b) only zf the scatterzng is iso- . .
tropzc, any scatterrng event then causes a complete decay of the momentum and the subsequent”

: remsertron 1nto another state (Wthh we neglect) has no effect on the currcnt-current correlatron .
But for an1sotrop1c scattermg processes it is well-known that th1s srmple procedure is 1nade- Ny
quate [13] What we are trymg to do here 1s to 1nclude 1nelastlc scattermg processes in a |

Boltzmann like manner whrle treatlng the elastrc processes quantum mechanlcally by using the

‘ ‘exact e1genstates <|>M(r) (rather than the- plane wave states e‘k l') Slnce the 1nelast1c scattering

processes have been assumed to be 1sotrop1c we can 1nclude them s1mply by 1dent1fy1ng 11 w1th" B

h / 21'.l in eqgs. (1 25a ,b).as noted by Thouless and K1rkpatr1ck [17]

g e R S B B e
| 9‘?’@* Eeyrii/ony, 4@
GM(E) E eM 1H/21:M SR "“(1‘41b) :

Smce the 1nelast1c scattermg time *cl (r E) 1s not a constant 1:1 but can vary spatrally (eq (1 14))
we have used d1fferent hfetlmes tM for the d1fferent elgenstates, in pnncrple these may be
vobtarned from the 1mag1nary parts of the ergenenergles sM obtamed from eq (1 38) However ,
- we assume that the 1mag1nary potent1a1 1H/ 21:l(r E) is small enough that we can neglect any

i ‘ | ‘compl1cat1on due to the non- orthogonahty of the ergenfunctlons ¢M (r) obtamed from eq (1. 38)

Wc obtam from eq (1 34b) usmg eqs (1 41a b), -
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uprrE) = " [ () ® Jwn ()]ap
ob 2 ZM (E—ey +ih/27y) (B~ EN—IH/Z’EN)

(1.42)

Next we use the Lee-Flsher formula linking T to (4] (eq (1. 7)) Smce each probe has an

1nﬁn1tes1mal Cross- sectlon we can wrlte

e? h Inm(r) - ) dr) Jun () * A dr)

- _T E drdr’ = — 3}
. (”' ) rdr 2n oy (B—em +if/2Ty) (E—en —il/2T)

(1.43)

where fi(r) is the unit vector normal to the probe at r (Fig. 1.2). But J- n is the current entering

- the probe at r due to inelastic scattering; by definition, it must equal p/t;.

2 Pl vy ) /(B T B)

T(r, 1" B
(” )= 7 & G e FiV200) (B ey —i/200)

Sitice Py (r) = € O (1) Oy (1), we have

2 onm) on() oM () oM (r)

2

‘T ,’ “E) = ; k "
. (r r. ) 7;(r; E) t;(r"; E) % E-en—ili2ty 3] E—em+il2ty

Eq. (1.25) follows from eq. (1.45) if we note that,

SO om(r) du(r)
G(r,r’;E) = %1: E—gp +ifi/ 2ty

| (1.44)

(1.45)

(1.46)
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CHAPTER 2: THE MODEL FOR INELASTIC SCATTERERS

In Section 1.2 we outlined the derivation of the non-linear quantum tranéport equation.
Two “‘details” were not discussed in Chapter 1, namely, (1) how the expression for ig (eq.
(1.16)) is obtained and (2) how the expression for P (f;q. (1.22)) is obtained. We will discuss the
second point in Chapter 3. Our objective in this chapter is to describe the model that we use for
the inelastic scatterers and to derive expressions for the inelastic scattering rate starting from a

model Hamiltonian.

2.1. Model Hamiltonian
We consider any arbitrary structure in which the propagatlon of electrons is described by

the followmg one- elcctron effective mass Hamiltonian.

o 2 '
Hy = @meA®Y |y @.1)
» 2m

The vector and scalar potentials A(r) and V(r) include extemal fields and self-consistent fields,
as well as all sources of elastic scattering such as 1mpur1tles dcfects boundaries etc. For the
inelastic scattering we adopt the following model: we assume a continuous distribution of

oscillators whose interaction with the electrons is described by the Hamiltonian

H = ¥ ¥ Uno 8 —rm) (amo + ama) 2.2)

m o
Here Uy, o, (dimensions ~eV—A3) is the interaction potential between the electron and the oscil-
lator o at the location ry,, whose creation and annihilation operators are aj, o and ap, o respec-
tively (Fig. 2.1). We will assume that the number of oscillators per unit volume with frequen-

cies lying between o and ® + dw is given by some function Jy(r; iw) d(fie).



.23

- Reservoir of
~point oscillators

Structure with distributed
inelastic scattering

Fig. 2.1:  Inelastic scattermg is modeled thh a contmuous distribution of point scatterers The

number of oscxllators per unit volume thh frequenc1es lymg between ® and o+dw is

equal to Jo(r H(o) d(Hco)
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2. 2. Scattermg Rate from Ferm1 S Golden Rule

Con51der an electron w1th energy E havmg the wave funct:lon o
(e, = o) c-*E"ﬁ R 2.3)

' 'A‘sSum‘ing' that the eigenfunet_ions ¢M () ef Ho (eq: (2.1)) »haVe ei-genvalnes eM, We can’ write the
| inelastic seatter‘iﬂng..,rate vl ',from Fermi’s golden rule as"follows. '
V=TT U l? Y | <oM D) 18-r,) 1D(r)> |
:,H,‘_‘mot o M L e

{NmaS(E 8M+Hmma) + (Nma+1)5(E —&M Hcoma)} . V.',(2-'.4);», |

vHere Nm o 1s the number of phonons occupymg the oscﬂlator m,o.. We now convert'»the
‘summatlons over m, oz 1nto 1ntegra1s, assummg that the number of oscﬂlators ina volume dr ‘

= w1th energles lylng between Hco and H((o+dco) is g1ven by Jo (r hw) dr d(ﬁ(o) |
v= ZHE fdr 1) 12 [ ddtio) Jo(r; Bw) 1U(r; ) 12
T 1o 1? (NG o) § (B - ey + 1) + (NG TopH) 8 E—ey —Fo))  (2.5)

We can wnte eq. _(2.5): in a more compact form by defining |

ey H(o)IZJO(r fw) (NG H(o)+1) w0
| .J(r;ﬁco)_—ﬁ o (2.6)
S o —m)l2 Jo(r; —Hoo) N(r; —Hco) <0 - L
‘ ._Note'that J(r;_.H(p) ’h‘avs' the__dime’nsions o‘ng'/sec. :
= [drio(r) l? [ vd(ﬁo)) J(r;H(o) No(r_‘;‘E,—Hmv)‘ R (2.7)»

where No(r; E) i’ the electromc densuy of states Wthh is wntten in terms of the elgenfunctlons

:‘»¢M (r) as follows
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CNoBE) = 3 Iou®I28E-en) @28

It will be noted from- eq. (2.7) that the inelastic scattering rate at a p_oint r,is'rproportional_to o
the local eléctronv density n(yr) = ICD(r) 12 and involves only local faCtors:suoh as J(r; Aim) and -
 No(r: Bo). Tt rs this property of point inelastic scatterers that uve exploit 1n this paper to develop
a s1mp11ﬁed descrlptlon of quantum transport In deriving eq. (2.7) we assumed that all elec-
trons have the same energy E. In general, we can integrate over the dlstnbutlon of electrons |
n(r; E) per unit energy per unit volume.

,+°°

jdrjdEn(r E)j'dE’No(r E) IO E—-E) | _‘ Q9

2.3. ’Distribution Function
We now define a dlstnbutlon functlon f(r E) SO that the den51ty of n(r) can be determined o

:by summmg the contnbutlons at all energles S | :
n(r) = jdE n(r E) jdE N(;('r; E) f(r;"E)' A (2.10)
. The dlStI‘lbuthIl functlon f(r E) relaxes to the Fermi- D1rac function at equ111br1um In the next
chapter we w111 der1ve a transport equatlon that can be solved to obtam f(r E) when the struc-

ture is driven away from equlhbnum however for our present purpose, eq. (2.10) can be used

to srmphfy €q- (2 9) to the form L

jdrjdEjdE vs(r E’ E) f(r E) [1 —f(r E’)]

tr -

'"—jdrjdEjdE’ [vs<E E)f(E)[l-f(E')]] e

- where
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v-s(r;‘E',E)v= JE-E) No(E") NO(E) . o e

We have added the factor [1 - f(E")] in eq (2.11) to account for the exclusion prineiple which |
. ‘'was not con31dered earlier. The inelastic scattering current ig(r; B E) used in Sectlon 12 is

g1ven by the 1ntegrand in eq (2 11) mu1t1p11ed by the electromc charge.

| 1s(r E E) = evs(r E",E) f(r; E) [1— f(r ) '(2.'12b)‘

Note that in eq‘. (2.11) the integrand v(E’,E) f(B) [1 - fE)] o is a local functien and
' 'eanv be interpreted as theinelasti'c seattering rate per unit volume, per unit energy range of initiel
states (E), per vunit energy ra,nge ’of ‘ﬁnal states (E'). The fu‘ncjtion Vs(E,E) is the product of
three terms (eq. (2.121a)):" the density of initial states Np(E), the density Qf final states Ny(E") B
and the couplitlg J(ﬁ(o) 'betWeen the electrons and the oscillators that compﬁse the inelastic
'scatterers (eq. (2.6)). It can be seen from egs. (2.6) and (2.12a) that if the system of oScijllators'
is ifnfeqililibrium 1 so that the number of “‘phonons’” N(hw) is given by the Bese—Einsteih func-
tion then we have the following relétionship ’ | | o
Vi E'B) = V(5 EE) B E/bT @B
:sinc’e | o

J(E E) = JE-E)e®" B)/lT ,‘ o @14

24 Inelastic Scatteriltg Tinte 3

Finally we will derive 'an eXpression for the inelastic seatteﬁrig time'ri(r' E). As discussed |
» vm Section 1.1, the 1nelastlc scattermg rate per unit volume per unit energy depends only on the
local properties of the system and can be expressed as n(r E)/t;(r; E). Equating this to the

result from eq. (2.1 1),
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n(r; E)
T;(r; E)

Using eqs. (2.10) and (2.12a) we obtain

- [aE [VS(E',E) f(E) [1 - f(E')]}

atr -

1
T;(r; E)

- o’ [[1 — £(E)] No(E) J(E——E’)]

atr

(2.15)

- (2.16)
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'CHAPTER 3: N(‘_)N-LINEA,R QUANTUM TRANSPORT EQUATION

The der1vat10n of the non- 11near quantum transport equatlon has already been outhned 1n'

Sectlon 1.2 (egs. (1.18) - (1 22))

 eNo( B E)
~ UBE)

= IB) + = [ar [ Te. EENAWSEN(1- 6B G

Qr:'equivale_ntly,
I:E) = = [ar' [dB (T,r:E\E) f(riB) (1 - £ EY]
-for: E E.E) 10 E) [1 w62

where

- #@,r;EE) = hP(r,r';E) vs(r; E,E) O 33)
Two “detalls” that were not d1s(:ussed in Chapter 1, namely, (1) how the expression for vs (eq f
' (1.21)) is obtalned, and (2) how the expressmn for P (eq. (1.22)) is obtamed. The first 1tem has
already been discussed in Chapter 2. In this chapter we will address the question of how s‘t_he"
probability function is ’obtaine‘d (Section 3.1). This function is also used in the simpljﬁed
dértv%_tibn of the linearized transport equation presented in Section 1.3. In Section 3.2 we' 'w.ill'r B

shew that at equilibrium the distribution function f(r; E) relaxes to the _Fermi—Dira'e funetien. a

~ with a constant chemical potential.

3.1 Denvatlon of the Probablllty Functlon

The probablhty function P(r,r’; E) tells us the fraction of electrons 1nJected at r’ w1th
~ energy E (by inelastic scattering from some other energy) that suffer an inelastic s_catter_lng' |
event at r withottt suﬁ‘ering any inelastic scattering event in the meantime. If this‘ re'stn'etion (inl'
1tahcs) were absent ‘we would bas1cally be calculatmg the diffusion propagator from r tor o

which 1ncludes the poss1b1hty that an electron inserted at r ends up at r after suffermg any 7_



9.
.number of 1nelast1c scatterlng events However, because of this I‘CStI‘lCthIl what we are calcu-
lating is 11ke one rung in a ladder series for the diffusion propagatort Inelastic scattering may be
’ v1ewed asa two step process 1nvolv1ng a decay out of an 1n1t1al energy E followed by a relnjec-
“tion 1nto a ﬁnal energy E’. However in calculatmg P(r r’; E), the second step is irrelevant, 'We |
just want the probabrllty that an electron 1nJected at 1’ suffers its very next scattermg eventatr;
~the snbsequentfreinjection is a separate part of the problem that is ‘alr‘eady taken into_ ac_count by
) the integral transport equation.i Thus, for the purpose of calculating P(r,r’; E) we can ignore the
reinjection process and assume that we aredealing with decaying particles having a decay rate
of n/ "ci per unit volume. The simplest ‘way‘ to describe decaying particles 1s to include an ima-
ginary potential if / 27;(r; E) in the Schrodinger e_quation. More generally one could useﬁ an opt-
-ical potential derived from the one-particle self-energy.v Since we have assumed point inelastic
}scatterers, an 'electron is injected as a point source by the inelastic scattering process. We can
_thus_ expect P(r,r’;E) to be proportional to the squared magnitude of _thev Green function
G(r, i'"?'E)'Qf the Schrodinger equation modified to -'include .an_ imaginary potential il/27;(r; E), o

where 7;(r; E) is the inelastic. scat’_teringtirne defined by eq. (2.16). -

B ik,
[E'H‘) )

: Cons1der the cont1nu1ty equat1on obeyed by the probab111ty dens1ty ‘
| n= IG(rr E)|2 o SUEE -; (3;55)
and the probabrhty current dens1ty o N | o
J=% [(VG)’."G-’—G*(VG)] '::, : ; i . (5b)

,that we obtain from the solution toeq. (3.4). Itcanbe shown from egs. (3.4) and (3.5a,b) that

Ga,r; E) Be-ry | (34
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Taedepened e

' 'Integratmg over. all volume, using the d1vergence theorem and assuming: that the boundanes are-

,--far away' 50 that no current flows. out of the surface, we have

' 2
"_fdr lG(rr BE)l<

Cice E) n N"( B '. o (3~7)

' 's1nce NO(r E) ——Im{ G(r r; E) }/n [13]. The 1ntegrand on the left in eq. (3 4) 1s the steady-
- state: current due to electrons lost from the coherent state by inelastic scatterlng (eq. (2 15)) the
term ‘on the nght is the total steady-state current 1nJected at r (F1g 3. l) The rat10 of these two

"terms is. equal to the probab111ty funct1on P(r r; s E).

B 1G(r,r;E) 2 B

P E)r o No(r E) G(rE)

- "’,3 2. qullllbl‘lllm State
Close to equ1l1br1um the d1str1but10n functlon can | be written in the form of a Ferm1—D1rac'

»-functton o

vf(l';E),= i+ 'v.’v‘(E-’eu(li‘))/-,kBT.

- where u(r) is the local chem10al potent1al At equ111br1urn the chermcal potentlal is. constant-

a-everywhere in- the structure In this sect10n we w1ll show that the d15tr1but10n function 1n eq ‘

'- 3. 9) with u(r) llo (a constant) is 1ndeed a solut1on to our transport equatlon (eq (3 1)) w1th o

» the external current I(r E) set equal to zero; that is, we will show that

| , eNo(r E)fo(E) S
»——J‘dr jdE T(r,r EE)fO(E)[l fo®)] = e (310)

where



PO;S>I'[IOI"I-
l l l l l l l l l l l |
lG(r(r))l dr

Fig. 3.1:  Sketch of the probability density IG(r,r’; E)| 2 calculated from‘eq. (3;4).
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. o
fo(B)= 7 (EcR/GT (3.11)
ity being a constant. It is easily shown that
fo(E") [1 - fo(B)] = fo(E) [1 ~foE)] e® )T (3.12)
It can be shown that (see Appendix)
JdB T, i BB [1 - £ B B BT
|G(r,r";E)1? -
= Hz =T , I, E ' 3'13
%(r; E) 7, (s E) r r ) G139
Using egs. (3.12) and (3.13) wé can simplify the left-hand side of eq. (3.10) as follows.
€ ’ ’ - ’ ’r
o/ ar’ [dE Tr.r; EE) fo(B) [1-foB)]
= Zfo(B) [ar’ [dB' T, EE) [1 - fo @) &~/
€ ’ 4 » .
=+ o) [ar’ T(r,r; E) (3.14)
It is further shown in the Appendix that
, . s hNy(r; E)
Jar' T(,r’sB) = [dr’ T(',r;E) = T oN (3.15)

Using eq. (3.15) in eq. (3.14) we obtain eq. (3.10), which is what we set out to prove.

It is thus fairly straightforward to calculate the equilibrium density of electrons in any
sfru_cture. _We first cal,cublate the eigenfunctions ¢y (r) and eigenenergies €y; these are then used
to obtain the density of states Ny (r; E) from qu (2.8). The electron density n(r) can then be cal-

culatéd from
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n(r) = [EfE)No(:E) (3.16)
" The chémicai' potential 1y appearing in the »Fe'i_mi-Dirac function fo(E) (eq. (3.11)) is adjusted to -
obtain the correct average density of e‘lecﬁ‘ons in the structure. In genefal, the electron density
v n(r) obtainedfjrb’m eq. (3.16) should be inserted into the Poisson equatioh'to‘ obtain a corrected
potAe'ntial; the eigenfunctions q)M(r)‘ and the eigenenergies €y should t}h'enk be recalculated

" including this potential, and iteration should continue until the solution is self-consistent.



-34-

~ CHAPTER 4: LINEAR RESPONSE

In Section ,4;1 »wezblineariz‘e the. transport equation (eq. (3.2)) assuming local thermo~
dynarmc equlhbnum to obtam the *‘Continuous-Probe Landauer Formula We then obtain an
express1on for the d1851pated power in Section 4.2. In Sectlon 4.3 we discuss the condltlons
_ under which the “Contlnuous-Probe Landauer Formula” reduces to the drift-diffusion equa-
trons that are used to descnbe classical Brownian motion. Finally in Sect1on 4 4 we compute
.,the diffusion coefﬁ01ent in a few s1mp1e cases using the present approach. Numerical results are
presented for the conduct1v1ty of a drsordered resistor. When the 1nelast10 scattering trme is
short the semlclass1cal and quantum conductivities agree well. But as the inelastic scattenng 1s‘
" reduced the quantum conduct1v1ty approaches zero due to strong locahzatlon wh11e the semic-

lass1ca1 conduct1v1ty becomes constant

4.1. Continuous-Probe Landauer Formula
To obtain the linear transport equation we assume that the structure is in local thermo-
-dynamzc equtlzbrmm so that the dlstnbutlon functlon f(r; E) can be written in the form of a

Fermi-Dirac functlon with a local chemical potent1a1 u(r).

1

f(r; E‘.)’ = 1 _'_é(E—eu(r))/kBT' : | (41) ;
Provided that this assumption is true, the following relation is valid:
fE) [(1-fB) |, = E) [1-fE)] BBV kT 4.2)
Y catr . atr : .

» Usmg eq. (4 2) we can s1mp11fy the non-linear transport equation (eq (3.2)) as follows. Flrst we

vilntegrate eq. (3 2) over E to. obtaln

where
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'no#jmﬁﬁm
| 1tr§) jdEjdE'l(rr EE')‘
| C= j dE | j dE’ T(r,r'; EE) f(r;; E’) & - " )] - |

Next we use eq (4 2) to wrlte -

1(rr) = jdEf(r E)jdE’T(rr EE’)[I 05BN €
Usmg eqs (4 6) and (3.13) we can WI'ltC eq (4.3) as | |

I(r) —jdr jdE (T(',5; E) f(r; E) T(r,r’; E) f(r’; E)}

 where

|G(r,r’; E) 1?2
%(r; E) T;(r; E)

T(r,r’;E) = B

(E E)/kBT |

4.4)

- @45)
4.6)

@7

4.8)

_ I(r) is the total currcnt (over all encrgles) that i is mJected per unit volume at r. At equilibrium,

I(r)=0 and the d1str1but10n functlon f(r E) 1s equal to a constant fo (E) (eq (3 11)) throughout

‘the structure.” It is easy to see that eq. (4.7) is satisfied under these conditions noting that (see-

‘eq. (3.15))

[dr" {T(,5; B) - T(r,r’;E)} = 0

(4.9)

Now in linear response theory we éssume that the distribution function f(r; E) deviates only

 slightly from the equilibrium distribution fo(E), so that we can expand f(r; E) in a Taylor series

 about jL= 1. Noting that /2y = —¢ /JE, we obtain

-afo
. H(E) = fo(E) + { =E ]C(H(l’)—llo) ‘

- (4.10)
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-~ Substituting eq. (4.10) into eq. (4.7) and using eq. (4.9) we obtain

I = = [@ (T .0 pm -To@er)pe)) | @D
_ 1 — S R
%Gﬂ—j@[aEJTUrE -:".yyj,yf}@p)

i

At low temperatures, —dfp/0E S(E—;EF) SO ,that -

|G(r,r) 12
TeriBs E)‘A B O 50 |

i

‘ TO (l', rl) (4‘ 1 3)

Eq_.”(‘4.1 1) can be viewed as a generaliiation of Biittiker’s multiprobe Landauer formula,
= T Z J p‘l ij uj}, v _ (414)

toa ‘?O‘ntinuo‘us1 distribution of probes. For this reason we call it the *‘Continuous-P‘robe-.Laﬁ-' o

dauer' Fo’fmula The coefﬁments T(r r’; E) have the same symmetry propemes ina magnetlc,

ﬁeld H as the coefﬁments Ty. Namely,
'Tmmm g = T@nE| s f@UXi
. This is ‘shown‘ ~in the Appendix
K Self conszstency In denvmg eq. (4 11) from eq. (4 7) we have 1mphcltly assumed that
‘ when we dnve the system shghtly away from equilibrium, the d1stnbut10n functlon f(r; E) deV1—' :
ates from the equilibrium value of fo(E), but the coefﬁments T, r; E) remain ﬁxed Actually:
'»the coefﬁ01ents T@',r; E) will change because corrections to the electrostatlc ~potent1a1 Wlll", B

change the Green functlon G(’,r; E), as well as the 1nelastlc scattenng tlmes 7 (r; E) In con-' '

‘ sidering variations 8 I, we have accounted for one term,
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%Jﬁﬁ&mﬁénuﬂﬁm—unﬁm} 
Tt would seemﬁ tha»‘t-‘wt’a shOuid also have a term ot the form |
o % fdr’ jdE fo (VE)"{‘SVVTi(r’, r; ﬁ) —8 T(lvr,,r,’; E)) "

where 8 T 1s the change in the coefﬁcrent T This term is zero, however because of the relatlon
 (eq. (4. 9)) that must be satlsﬁed by T(r’,r; E). Consequently, in hnear response theory we can'
use the coefficients T(r r; E) obtained (self-consistently) under equilibrium condltlons and

-ignore corrections due to the modlﬁcatlon of the electrostatlc potential by the applied bias. -

4. 2 Power DlSSlpatton and Clrculatmg Currents
In general we can solve eq. (4 11) for the potentlal distnbutlon u(r) in any structure At
’ equ111bnum, u(r) is equal to a constant o, and I(r) is equal to zero. Under these conditions it-

can be seen that eq. (4.11) is satisfied since (from egs. (4.9) andy (4’:.12')) |
[ (M@ -Toer) =0 @16
Also, we note that (from eqs. (4.15) and (4.12)),

To(r’,r) | H = To(r,r’) i @
In the absence of magnetic fields (H=0), To(r’,r) = To(r,r’) so that at equilibrium the integrand_
in eq. (4.16) is zero, and there is detailed balance between any two points r’ and r. But in the
presence of a magnetic ﬁeld this 1s not true. There can ‘be circulating currents even at equili-
bnum However the net. current out of any pomt 1s zero as’ evrdent from eq (4.16). ‘Any -

outﬂow in one d1rect10n is balanced by an inflow from another

We can_rewnte eq.‘(4.1'1).1n the form |
,'I(?)? Eh—fdl" {Ts(f",*i‘_)'[}l(l")'_‘_H(l_")J +_:TA(I"_J‘) () + (@]} -~ 4.18)

where
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Tsn) = 5 [Toon) + To(r.r)]

TAG'0) = o [To(r';n) = To(r;r)]-

The power Py dissipated in the structure arises solely from the first term.

Po = —— [dr [dr’ Ts(’,r) [u) — p@))*
The net power dissipation due to the second term is zero.

62 , ’ 2 : 2 ’,

o Jdr [dr Ta,n) @) - @) = 0
Eqg. (4.21) follows readily if we note that from eqgs. (4.9) and (4.12) -

vfdr" Ta(r,r) 7= ""dr»TA(r",r)v:‘O '

(4.19a)

| (4.19b)

(4.20)

(421)

@42

The'circulating currents that are present even under equilibrium conditions thus dissipate no

power From. the pomt of view of power d1ss1pat10n we can represent any structure by a con-

t1nuous network of conductors any two volume elements dr’ and dr are connected by a conduc-

tance equal to (ez/h) Ts(r’,r)dr’ dr (Fig. 4.1). If we have two extemal probes with a potential

d1fference Ap between them the conductance go seen from the termmals can be obtalned by

equating the total power d1551pated in the network Py to go (Att)2 From eq. (4.20) we obtain the

) following express1on for the two-probe conductance go

| (4.23)

' _One may adopt a vanatlonal approach to calculatrng u(r) choose a tr1a1 functron and then-.- _

mnumlze the power dlsmpated
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Structure with distributéd .
~inelastic scattering

5 F1g 41 Neglectxng the c1rcu1at1ng currents due to magneuc ﬁelds any structure can be
represented by a contmuous network of conductors, any two volume elements dr’

| and dr are connected by a conductance equal to (ez/h) Ts(r’, r) dr dr
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4.3. Relation to Classical BrOwnian Motion
Eq. (4. 7) can be wntten ina shghtly dlfferent form in terms of the electron densuy per unlt'

energy n(r; E) NO(r E) f(r E)

i;E) = efdr’ V(.5 E) n(r; E) - v (5,7 E) n( B)] v(4-_24__)

where
s - T(',r;E) _ — A
5B = 2 @25
YRR = N B) e G2,

Eq. ,(4.;24) has a simple physical int’erpretation.v v (r’,r; E)dr’ tells u_s-the fraction of eleCtrons
pe,rv unit time that ‘v‘hovp”f from r to r’. The first terrn on the right of eq. (4.24) is the total
number of electrons hopping per unit time out of the volume element dr while the second- ferm
‘is the number of electfons h,op:pi‘ngv pef unittjme into the yolumeelement dr. The net hopping

frequency Vo is equal' to the inelastic sc_attei‘ing rate; using egs. (4.25) and (3.15) we have
Vo s farve,sB) = Unw® (4-.26)

Quantum transport is thus much like classwal Brownian motion w1th a distribution of hopplng

lengths v (r’,r; E) that is determlned quantum mechanically. In the absence of any externally

injected current I(r; E) we can write eq. (4.24) in the following form.

o .fdr7§(r,f’; E)yn(@;E) =0 4.27)
Whege |
IR ,’.7:’ O(r—r’) r) Cal e e LD
: ,}C (r,r,E) D E) —v(r,r’ E) . v(4.v28)

The obvious quest‘ion to ask is under what cond,it,ionsxdoes eq. (4.27) reduce to the drift-
diffusion equation - | | | |

| —Dijfv-v'n + vgVin = 0 S (429) |

Here D is, the d1ffus1on coefﬁc1ent (tensor), vd is the drift velocity (vector) and. summatlon over

| 'repeated 1ndlces is 1mphed (x y and z)



o get from eq (4 27) to eq 4. 29) we ﬁrst assume that we are deahng with ensemble- :
averaged quant1t1es (denoted by a bar on top) SO that the coefﬁcrent C(r r; E) depends only on'

- the dlfference coordmate

CTEHE) = 8¢t -VG-rE) . (430)

Next we assume that C_n - Tn so that'eq.‘ (4k.‘27‘) beeomes a convolution integrall.
JwTenmn=o @3
* We have suppressed the argument E‘for"simpli’city.v‘ Fourier transfonning eq. (4.31) we obtain
: t@i@=0 - @d»
' N ow we expand C (q) ina Taylor senes up to the quadratic term. |
o C(q) C(O)—lqjvdjy qiqu-- B | (433)' |

,The coefﬁc1ents in th1s expanslon are obta1ned readily from the moments of the function

§(r—-r ) i in real space ;

= fdopve) @35
Du=%fdp Pilij(P) , S f(4£36).__-

where we have wntten p for r—-r Usmg eq. (4 26) (4 30) and (4 34) it is easy to show that :

o= 0 Hence 1nsert1ng eq. (4 33) in eq (4 32), ‘

| (IQdej+ChqiDij)n(q)‘ =,‘0“ N X 1))

~ Fourier tran’sforming to real space we obtain the dn'ft—diffusion equation (eq. (4.29)).
- Egs. (4 35)-and (4. 36) 'maybe used 'to compute the drift Velocity and diffusion Coefﬁeient
~from the ensemble averaged hopplng function v (r—r ) In general we also need to average over

' the energy E though at low temperatures we could let E equal the Ferm1 energy Eg. It should .
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be rioted that a number of approximations have been made in deriving egs. (4.35) and (4.36).

We feel that in general eq. (4.11) is a better starting point for the computation of sample specrﬁc

,properties that vary rapidly in space However for slowly varying ensemble-averaged proper- o

ties egs. (4.35) and (4.36) are more convenient (see Section 4.4 for a few examples).

4.4. Simple Examples

| In th1s section we will consider two s1mple examples where the electron dens1ty varies
slowly enough that we can use eqs (4 35) and (4.36) to calculate the drift velocity and d1ffus1on.
coefﬁc1ent respectively First we con31der the semiclass1cal magnetoresistance of a free elec-
. tron gas w1th 1sotropic scattenng described by an melastlc scattermg time ;. In this case we

compute the function v(p) directly from the classical traJectory and use it in eq. (4.35) or

. 36) The results obtamed agree w1th the: well known semiclassical results Next we consider o

a disordered~ resis_tor 'w_1th' delta function elastic s_,catterers distributed randomly. - We compute -
the function .,v p) numeiically; ensemble~average it 'and obtain the diffusion coefficient D‘from
eq. (4’.36) for different values of the inelastic scattering time T; (asSumed constant everyviiyhe're).'
For small values of 1;, we find that the‘ semiclassical and quantum values of the diffusion |
7’ co‘efﬁcient D agree very well while at large values of t; the two values differ signiﬁcantly due _t_o_' |

quantuin localization.

4.4.1. S'emi‘claSsilc’al Magnetoresistance :

b Consider ‘an electron ‘injected with energy Eatr’=0and following a certain classical—-tra-'-"-‘- S

, Jectory ro (t) The probablhty P(r,0; E)dr that it will suffer its next inelastic scatterrng in the.

volume element dri is given by (%; is the inelastic scattermg time, assumed constant)

P(r,o;E); | %a(r—ro(t))e“‘”‘ - - '(4..'38).

We note from eqs. (3.15) and (4.25) that
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: J'dr v.(r',()‘;cE) =1 /'t:l L : ;(4.39)‘”
. 'Sinc'e.v' (r,0:E) is p_roportional to P(r,O;vE) and the latter_is nonnaliZed.to one, we must have

e v(r,fQ;E) = —d-z-a(r ro(t))e F,f . _(4.40)”'_ |

Using eqs. (4.35) and (4.36) we obtain

vao= [0 0 @a
0T

Dy = L& 2«) N

;where Xo(t) is the x-component of the t‘rajectory:ro(t). ‘The othercornpOnents‘rnay be evaluated
: sirn’ilarly:‘_» L L R e Lo : ‘

Next we- need the class1ca1 traJectory X0 (t) To start w1th we cons1der a classical electron
mov1ng w1thout any 1nﬁuence from e1ectr1c and magneuc fields. Assurmng the parﬂcle has an .
1n1t1a1 veloc1ty vx in the X- d1rect1on the x- component of the trajectory 1s xo(t) vxt Because
we are 1nterested in the collect1ve behav1or for an ensemble of electrons, we must average over
all possible 1n1t1a1 states We assume that the 1n1t1a1 veloc1ty of an electron is un1formly distri-

:'buted over all dJrectlons in-a sample, due to the act1on of scattenng processes Wlth these

: assumptlons we evaluate eqs (4 41) and (4 42) | | | |
<vdx> <J i "’> - < Vx> -0 ew
<Dxx> = (j e ‘”) =<v§rl> ;evo' | i ‘_’,:(’4;44)
‘ "‘Where We‘ have’ used the angle 'brackets < > to denote ensemble averagmg Without the

: 1nﬁuence of ﬁelds the drift veloc1ty of an ensemble of electrons is Zero; the d1ffus1on coefficient

k isnot. ~ -
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As a second example, we consider the effect of an electric field in the x-direction, causing
an electron to accelerate: xq(t) = vyt + a,t2/2, where ay = e€/m is the acceleration due to the

field. We evaluate the drift velocity, and obtain,
| 7 dt

o (Ve ) = <f—z(v
IR 0T

After averaging over all inifial velocities, we again find that . <Vx'> =(0. Because of the

) e_[/Ti: > = < Vy > + < ay T > | | (4.45)

acceleration, however, the drift velocity is not zero,

.<§dx> v=' et

Fin‘ally, we assume. a magnetic field along the ‘z-axis, and an elect_rie _ﬁe1d in the x-y plane.

 (4.46)

It can be shown [43] that the x-component of the classical trajectory is:

[ vy ‘(1 ) ay'+vx' - ",ayt_' (447)
O=|—=--= @ct) + |+ o= | sinect - —=t (4.

Xo(,) o2 ~ C0s, 0 o e T

.c~('0c c ¢ (o

where we have mtroduced the cyclotron frequency for an electron m, = lel B/m Substltutmg

a eq (4 47) 1nto eq (4 41) and performlng the necessary 1ntegrals we obtaln the drift Veloc1ty, '

o ) a o T | a 1 1 a' . i
gy = »—",evy et [ty —s = L o (448)
S L 1+ T L 1‘+ W T} @ o

If we average over aIl 1n1t1a1 velocmes, <vx> and <vy> van1sh leavmg only the terms
1nvolv1ng acceleratlon By substltutmg in the acceleratlon due to the electric ﬁeld
8, €, 0T

<dx> m 1+mcfcl 1+coc'cl . ’ R (4.49)

This Velbéi_ty deﬁnes‘ the x-cbmponent of the drift current, which we can use to determine con- -

-ductivity:
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e | e : S - (4.50
BT g vl R R T
X gy; ‘ | : . :
'_ envey | et
Oxy = —2—| T 00 -—"—53 o (450b)
R ,_"g_'y, l€,=0 ’1+,m°T‘ S e e e

Follovving a similar deﬁvation for the y-component of the drift velocity, we can’ define Oyx and ’
oy, and obtain_ theiusual magnetoconductivity tensor [42], | |
.G»__O___ e | S @Sy

1+(0ch coc'ci S R ‘ e

‘ We have shown that some famlhar results ‘can be obtained by assummg a classrcal motlon of

electrons We now proceed to demonstrate quantum mechamcal effects 1n a numencal example _

= 442 Numerical ExarnplevOf'IrOcaliiation .

In recent years, cons1derable attenuon has been g1ven to the effects of d1sorder on electron
transport In parucular, Anderson has shown that for a sufﬁc1ently h1gh degree of dlSOI'dCI’ and
in. the absence of 1nelast1c scattenng, the conductance decreases exponent1ally w1th length
'Electron wave funct1ons become spatlally locahzed hav1ng envelope functlons that decay
: exponentlally w1th drstance As the overlap between local1zed states decreases the conductance
| van1shes In the presence of 1nelastlc scattermg, however electrons can “hop” between local-

. 1zed states so that 1nelast1¢ scattenng actually lmproves the conductance

A 1llustrat1on of th1s effect is well surted to our model In pnnc1ple, we-can calculate the
: drffusron coefﬁcrent D for any cha1n of randomly spaced 1mpur1t1es We cons1der the average
) d1ffus1on coefﬁc1ent of. many such cha1ns as a functlon of the 1nelast1c scatterlng time ;. We
‘w1ll show that as T 1ncreases D rapldly approaches zero Furthermore, 1f we treat electrons v
"semlclass1cally (1 €., work w1th probab1ht1es rather than probab1l1ty amplztudes) locahzatron
behav1or is destroyed and Dis l1mlted by 1mpur1ty scattermg for large . Our numencal solu-

’ 7t1on has been descnbed in detall elsewhere [33 42] In the follow1ng d1scussron we focus more
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* on the phy_sical_ assumptions in our model, rather than the details of computing a nurnerical "s'olu-‘,
tion. | |
 To -this point we -haVe worked 1n the pOSition representation, usinga basis’ Ir > we could

however rephrase all prev1ous discussion to correspond to another basis, say Ik >. In thlS case,
1ne1astlc scatterers would be 1ndependent pomt-sources not in pos1t10n buti in momentum Such' '
a chan\ge .of basis is convenient for modeling narrow w1res, in which a conﬁnlng potentral in the
transverse direction gives rise to a set of sub-bands or modes. From this standpoint, tra_nsport is.
analogous to veIectromagn‘etic Waves -traveling in a waveguide. BOrrowing from the .so.luztion
technlques used 1n m1crowave englneerlng, we will describe. transport usmg the bas1s:
Ix ky m>s where m enumerates modes in the transverse (y) d1rect10n In this bas1s the hopplng _

d1str1but10n v (r r’; E) becomes
VEISE) 5 V(X3 E) |
and is 1nterpreted as the fraction of electrons per unit tlme that “hop from posmon x and

kmode nto pos1t10n x and mode m. We can evaluate the ensemble averaged d1ffus10n coefﬁc1ent

as descrlbed in Sectlon 4.3 by deterrmnlng the second moment of the dlstnbutlon v (p)
,i Dyxn = > Z [J.dpx Px an(px)] : 7‘ o B (4.52)

‘where Dy, , represents diffusion due to electrons injécted into mode n. We -average the contri-

butions of all »po’ssible injected modes to obtain

m,n

Dy = mjdpx p2 | Z Vm®x)| )

where Mis the total numbejr of propagating' modes. In general, the fUncti"onv an (px) fallsoff .
e)rponentially away from p, =0, due to the imaginary potential ifr/ 21:vi(r;' E)ln the Schrodinger
equ'atiOn (eq. (3.4)); For‘ each conﬁguration of impurities, however vmn(pg) WiH have a charac-
teriStic ""noise’ supenmposed on the exponentlal decay. In an ensemble—averaged sense the

n01se components average to zero, and the remaining exponential decay can be characterlzed



’:byadecay length LD, __':: - :
<2vm<px>> v sy

" The constant v is determined S0 that the function is-pr0per1y no'rrnaliz_cd:__ .
z I ox vmn(px) =— e
| ‘where ’cl n is the 1ne1ast1c scattenng t1me for mode n. We assume for 51mphc1ty that the 1ne1as- o

th scattermg t1me 1s a constant 1ndependent of both posmon and mode number In th1s case

' the 4normva11zat10n condition for Vo becomes‘ -
Joo (T vmP)) === @456
. myn . C 1 . R o

'After determining Vo, we eyalnate eq. '(‘4.53') _With the functionalv.forrn stated in eq._(4.54). -

Tooterme- e

xx 4"1.71 T »

—00

,Our solutlon hlnges upon deterrmnmg the ensemble-averaged decay length LD for the transmis-

' sron functlon w1thm a long wite. The numerlcal solutlon proceeds as follows."
For each random conﬁguratlon of i 1mpunt1es, we must deterrmne the Green functron of the -
Schrodln ger equatlon '

" +k | mn(x),_ 8(x)8 o S @58

‘ where Gmn(x) represents the amphtude in mode m at pos1t10n X for an electron 1n_]ected in mode

‘nat pos1t10n x—O Solutlons for the wavefunctron on e1ther 51de of x—O can be. deterrmned by

*ordmary means--for example, w1th the use of scattermg matnces as descrrbed in Ref. [33] ‘

B "Each 1mpur1ty 1s represented by a scattenng matrix, which' spec1ﬁes couphng between the vari-

' "‘ous modes 1ntroduced by a partlcular scattermg potentral Reglons between scatterers are' '

' represented by d1agona1 matnces, wh1ch account for the phase sh1ft (and attenuatlon) acqurred
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by each mode swhile ~propagating vthrough a given region. These individual scattering matrices
can be combined 10 deterrnlne an overall scattermg matrix, representmg transmissron through a

given reglon To connect the two solutrons on either s1de of x=0, we 1ntroduce the follow1ng

boundary condltions
Gun(x=0") = Gpp(x=0") O @45%)
4G | dGmm S |
dx x=0" - ——dx_ x=0- = 8mn v ‘ k S k (4.59p)

A semiclassical result cdn also be obtained using this method, if the elements of all scattering
matnces are r',epla‘c,:ed" w1ththe1r squared magnitudes. In this case, the solution vector Gpn(x) is
,comprised: of (real) ‘probabilities rather than (cornplex) probability amplitudes. In any event, the:
,solutron of- G mn(X) for a partlcular 1mpur1ty conﬁguratlon determines the hopping d1str1but10n
which i is fit to a decaying exponential (eq. (4.-54)) to ‘determine the de_cay length Lp. Decay.
lengths for a large number of random samples are then averaged, to determine the enSemble-
,ayev:ragedjdiffusion .co_‘efﬁcient D= L]23 /%. A final concern is the averaging process used to
determine Lp.. In _the loca»li;z\'edregime, ﬂuctuations in Lp from sample. to sample can be quite
- large, howeyer;; Anderson _et.: al. [44] have shown that the inverse localization length Lp' has a -
well behaved distribution. For this reas:o_n'»,‘ we determin_e the averag_ef of Lo and.vinyert it, to |
 determine .t'hekénscmb_lefavcrafged Lp. '
We have applied this model to samples with five propagating mo_d_es and]4fé() impuﬂties
with an ».average spacing of 1.5 ttm; the injection point was irnmediately left of the 200" impur- .
‘\ ity.' All 1mpur1t1es were char acterized by the same scattering matrix, and the impurity strength
.was ’Chosen so that the elastic ‘scattering length A.; was 4 impurities, COrresponding 'to van'elas,tic
i scattenng time of Tp = 2. 87><10_ S [3'3] An estimate of the localization length is Agoc ~ MAq
[45] where M 1 the number of propagating modes For the present example samples should
| exhibit localrzation when the 1nelastlc scattering length A, exceeds 20 1mpur1t1es Inelastic
:scattering times were chosen between 10 12, s and 1078 s, correspondmg to Ay between 0.2 and

95 1mpur1t1es All results were venﬁed agamst longer chalns to ensure that edge effects due to
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: the'ﬁnite length of the chain were »negligible.v, SRR

To prov1de some 1ns1ght into the arguments concemmg the decay length LD, we have plot-

| ted the hopplng d1str1but1on for two arbrtrary samples with drfferent scattenng trmes T- These j

L results are presented in F1g 4. 2 on 1dent1cal loganthmrc scales ‘For ‘l:l = 10 10 s (A 9i 1mpur1— o

tres) the sample is 1n the so called weak locahzatlon reglme The drstnbutlon 1s predormnantly a

: v»’-fcharactenzed by 1ts exponentral decay, although small ﬂuctuatrons are. clearly v1s1ble As the N
;vrnelastlc scatterlng time 1s 1ncreased the ﬂuctuatrons become larger For T = 10‘8 $ (A =95

'1mpunt1es) the general character of exponential decay remams, but the ﬂuctuatlons have added' 'j
cons1derable scatter to the decay length Lp. | ' | ‘ |
In F1g 4 3 we present the ensemble—averaged d1ffus10n coefﬁclent D for both sermclass1cal

, and quantum analyses For small 1:1, 1nelastrc scattermg dommates, and both solutlons are 1n |

,close agreement As 1:l 1ncreases, however the quantum mechanlcal solutlon raprdly o

) "_approaches zero, whrle the semrclass1cal result levels off to the value d1ctated by 1mpur1ty'~. :

.scatterers Th1s clearly demonstrates that locallzatlon must be understood in the context of -,

_:quantum mechanlcs Both sermclass1cal and quantum solut1on methods are. 1dent1cal except'
":that elements of the. semlclassrcal scattermg matnces are replaced by the1r squared magmtudes

' vBy neglectmg 1nterference of the electronic wave functlon between success1ve scatterers, the

semrclassrcal analys1s cannot account for locahzatlon
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)3h an(Px) (faﬁbiﬁtra;ruy units)

R

100

107203

=108

700 1491 2081 4472 5963

Position (um)

Fig. 42: The hopping distribution 3, Vmy(py) for two arbitrary samples with different

ivne;lastig‘ scattering times T;. Both functions exhibit the general character of

exponential decay.
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Diffusion Coefficient (cm?/s)
105 1

— Quantum Mechanical
1 ———~ Semiclassical

L

T = 2f_7x1 0's
10712 1071 10710 10° 108
| Inelastic Scattering Time (s)

102 T+

Fig. 4.3: The ensemble-averaged diffusion coefficient as a function of T; for both
semiclassical and quantum analyses. The quantum result decreases rapidly for large

T;, a demonstration of strong localization.
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SUMMARY OF IMPORTANT RESULTS

Electron Propagatlon is assumed to be described by the éne. electron Hamiltonian
having eigenfunctions yi(r) with eigenvalues ey Inelastic scattering s assumed to arise from
| acontmuous distribution of point oscillators whoéc 'dist,nf-bution per unit volume per unit energy
s given by Jo(f B).

| 2?” 'U(r H@):'Z To(r; o) (N3 ) + 1) , 1w >0

CMehe) =4, SRR o e
Lo ;—H’P-m(r —10) 12 Jo(r; =) N(r; —fiw)  , Fo <0

where N(r; i) is the number of phonons occupying an oscillator with frequency  at r and

Ur; i) is the interaction potential between the electron and the oscillators.

 Density of states, No(r; E)

No(r; E) = Zl@M(r)l28(E eM) S ey

 Distribution function, f(x, E)

n(r) = jdEn(r E) = jdENO(r E)fnE) | ,(2}10)
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- Inelastic Lif,etim'e, 't,-(r;'E )

. Tr’an;sport‘Equatioﬁ

eNO(r E) f(r; E)
t(r; E)

= it E) + = jdr jdE'T(rr EE’)f(r E’)[l B GO
B = & [ar &’ (T6r BB B [1 - K5 B
. —TeEERYGE)NI-fGB) 62

5 Kérnel, T(r,r'; EE’)

Fr,r;EE) = hPr.r;E)vs(;EE) L 33)

R IGLE)?

P r; E) - o No(r B 3B 38
| V(BELE) = JEE) No®) NoB) | | e
Green Function, G (v,x’;E)
E- Ho O |
) GrrB =8¢ G4



@

@y |

)

Sary

@D @D G
—re Y = (AL
"z g A DD [ \

@ADL [—OHJ—Z—J ) = (1oL

(A)0 owazy

| 'H’T/’(‘(J)ﬁlai_ 3)9 + | I

SR

oM
(T (aDOL - () (e 0)0L) pf = = (1
; ‘ E
uoyonby 140dsup4] pazumury

e 4 %



;55:

REFERENCES

C. B. Diike, “Tunieling in Solids,’” Academic Press, New York, 1969.

E«F Capasso, S Sen A C Gossard A L: Hutchmson and J H. Enghsh IEEE Electron -

o Dev. Lett EBL-7 573 (1986).

. fP A Lee andT V Ramaknshnan Rev Mod. Phys 57 287 (1985)

”The Quantum Hall Eﬁ’ect ’” edlted by R. E Prange and S M G1rv1n Sprmger-Verlag, |

G Tlmp, A M. Chang, P Mank1ew1ch R Behnnger J. E Cunmngham T. Y Chang ands: _

 R.E: Howard, Phys. Rev. Leit. 59,732 (1987). | |
C.7. B. Ford T. J Thomton R Newbury, M. Pepper H Ahmed C T Foxon J T. Hams -
,andC Roberts J. Phys C Solid State Phys 21 1325 (1988) ’

. G. Tlmp, A M. Chang, J. E Cunmngham T:Y. Chang,P Mank1ew1ch R. Behrmger and

‘R.E Howard, Phys. Rev. Lett 58, 2814 (1987)

B. J van Wees, H van Houten C.W.1. Beenakker 1.G. W1111amson L P Kouwenho-

ven, Di-van-dér Marel and c T. Foxéi, Phys Rev. Lett. 60, 848 (1988), D. A. Wharam""

T I Thorniton, _R._Newbury,, M Pepper,“»H.» Ahmed,» J.E. F. Frost, D. G. Hasko, D. C. -'

Peacook D. A. Ritchic and G. A. C. Jones, J. Phys. C.: Solid State Phys. 21, 1L209

;(1988) R | o

The work on Aharonov-Bohm effect is reviewed in S: Washburn and R. A Webb Adv' i

. | S. Washburn, C P. Umbach, R. B. La1bow1tz and R A Webb Phys. Rev. B32 4789
(1985).

W. I Skocpol P. M. Mankiewich, R. E. Howard L. D Jackel, D. M. Tennant and A. D

B Stone, Phys. Rev. Lett 58 2347 (1987) A Benoit, C. P. Umbach R. B La1bow1tz and_

R. A Webb, Phys Rev Lett. 58, 2343 (1987)



12
13,
14.

15.
16.
17

18.

19.
20.
21.
.
| 23,
24.

26.

27.
28.
29.

30.

-56}7'

T. L. Thornton M. Pepper H. Ahmed D. Andrews and G J Dav1es Phys Rev Lett 56,

- 1198 (1986)

S. Doniach »and E. H. :Sondheimer, Green’s _FunetiOns Jor Solid State Physic’isis,

Benjamin-Cummings, 1974..

P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (-1985) and references

therem

'P A. Lee andD S. Flsher Phys. Rev Lett 47, 882 (1981)

G Czycholl andB Kramer Sol. St. Comm 32,945 (1979)

'D J. Thouless andS Klrkpatrlck J Phys C Sohd State Phys 14 235 (1981)

P A Lee A.D. Stone andH Fukuyama, Phys Rev. B 35, 1039 (1987) P. A Lee and A.

D Stone, Phys Rev. Lett 55 1622 (1985) |
S. Maekawa,Y Isawa andH Eblsawa,J Phys Soc Japan 56 25 (1987) _ | o

R A. Serota S. Feng, C L. Kane andP A Lee, Phys Rev 336 5031 (1987)

C. L. Kane R. A. Serota andP A Lee, Phys Rev B 37 6701 (1987)

C.L. Kane, P. Av.-,;Lee and D. P. D1V1ncenzo, ~Phys, Rev. B 38, 2995 (1988).

D. P. DiVincenzo and C. L. Kane, Phys. Rev. B 38, 3006 (1988).
R. Landauer IBM J. Res. Develop l 223 (1957)

R. Landauer Phllos Mag 21, 863 (1970),Z Phys B68 217 (1987)

“ P. W Anderson,.D. J, Thou_less, E. Abrahams and D. Flsher, Phys. Rev. B 22, 3519

(1980)

" P. W Anderson Phys Rev B 23 4828 (1981)

M. Butuker Y. Imry R Landuaer andS Pinhas, Phys Rev B 31 6207 (1985)

M Butuker Phys Rev Lett 57 1761 (1986)

' D S Flsher andP A. Lee, Phys Rev BZ3 6851 (1981)



-57-

PSR

s

' Un1vers1ty Technlcal Report TR -EE 88 47, Chapter 4 (1988)

Sl

- 40.

'A.D. Stone and A. Szafer, -fBMJ'Re‘s Develop. 32,384 (1988).

A.D. Stone, Phys. Rev Lett 54, 2692 (1985).

~M Cahay, M McLennan andS latta, Phys Rev.B 37, 10125 (1988)

H U Baranger, A D. Stone. andD P. D1V1ncenzo, Phys Rev B37 6521 (1988).

R Landauer IBM J. Res Develop 32, 306 (1988).

,‘G D Mahan Phys Rep 145, 251 (1987)

W R Frensley, Phys Rev. Lett 57(22), 2853 (1986)

‘R P Feynman and E. L Vernon Ir., Ann Phys 24 118 (1963), B. A. Mason and K
Hess prepnnt ' '

S. Datta, prcsented at the Fourth Intematlonal Confcrenccs on Superlattlccs, Microstruc-

»tures and M1crodev1ces held at Tneste, August 1988 (to appear in Superlattices and |

S,

45,

: ‘M i crostructures)

. H.L. Engqulst andP W. Anderson Phys. Rev. B 24, 1151 (1981).

M. J. McLennan and S. Datta, “Physws and Modehng of Submlcron Dev1ces Pnrdué ‘

,C Klttel lntroducnon to Solzd State Physzcs, p 155, John Wlley and Sons, Inc New : '
’York 1986 (SlXth Edltlon) : 2

P.W. Anderson D 7. Thouless, E. Abrahams and D. S. Flsher Phys Rev. B 22 35 19 -
(1980) :

D. J Thouless, Phys Rev. Lett 39, 11467 (1977)



' - 58 L

‘Appendix: Derivations of Important Relations Used in.thé Text

1. Egs.(1.34a,b);

. co(rr) —JdE

O'(rr E) . 2

g [me ® Jyintr )] Gl GN<E>'
T NM ’

“We start from eq. (1.4) in the text and write it-as

) Jer

where - Cy(rro) = .;Ei;f),dtc“’?‘ (Jeodeo) Rl

3

Cz(rrw) " f et (J(r 0) Jer, t)> SRR A%y

o

The currént density operator can be written as

) = vZ T () ati ) aM(t) R (A3)

'where JNM (r) 1s deﬁned in eq. (1. 35) and af, ay are the creatlon and anmhllatlen opera—f_

f‘tors for the ¢igenstate | N. Substltutmg eq. (A 3) intoeq.: (A 2a)

Cl(rr @ = T Ihu®Iew@)
o N M,N', M’ |

et (aNa) 510 85 0) w®)  @hH

‘ H

. Since N, M, N’, M’ are eigenstates, the expectation value on the right hand side is zero

-~ -unless N'= Mand M’ =N. ;ﬁeflée
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i) = z T ® er)Fl(co)
o : NM : )

- where

c>'——-."35‘-’. o

% el (aNa)aN(O)} (aMa)aM(O)}

e -] -
HO) + 8N EM + lT]

| 1‘| is an 1nﬁn1tes1ma1 pos1t1ve quantlty (1'] O*) Slmﬂarly itcan be shown that

Cz(rr o) = Z JNM(r) JMN(r)Fz(co)

f, (€M) [1 f (ﬁN)]
H(o+sN £M+m ’

| whére F2((!))
A Substltutlng egs. (A 5a,b) and (A 6a,b) 1nto eq (A 1) we have

' ' CJJ(I‘ o) = ¥ JNM(r) JMN(rs FNM«o)
; SRR NM o

B - 'fo(eM‘);fé(eN)'
where FNM(“)) = Fl F2 - H(o+eN——sM +i'n'

. | (AT55) |

e A

as)

(A.6b) -

(A7a)

(A;7b)_ |

- We w111 now rewrlte FNM ((o) in a somcwhat dlfferent form by proceedlng as. fol—

. lows

o (e 'ﬁ f _eny ]
‘--FNM,(m);Ide[ ot m)s(e —emtho) £ 3(E—en) }

- eN—m o e—gyq+ho+in |

Using the relation

E 8(x) [x-—m B x+inJ ‘

we obtain fr_bm _eqi.‘ (A8), g o i
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| G§4(£) (A.102).

For small @, we can wite.eq. (A:9)as.
n . e i (), = ianm,+ bNM o | (A lla) .

where

(A. 11b)

Using eqs. (A.7a); (A.11),and; (A.12a,b).we obtain fromeq. (1.3)

: [O'o(l’,l')]aB = A+1_0)_ (B‘ n—ni*- 5(T—r)5a|3) (A, 123) .

B= 3 U@ OThan@)lop b (A120)

Iy can: be: shown: that A and: B:are- both real: quantities so that the real. part-of the:conduc-

o tivityis, simply equal to.A. Fromegs. (A.11b) and (A.12b). we obtain-egs. (1.34a,b):
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R ‘ ~.afo‘ ‘ ST g o :
O, (r,1) = —2*1 [ae [- ] Y @ @Iun ()] GRi®) GRE) (A13)
U am Je NM - | n

2. Eq. (3.13):
: de’ T(r, v, E,E) [1 - £ E)] & 58T

_ 26w E)I2
7(r; E) ,(r’; E)

= T(r,r’; E)

- To prove the above relation we .stait with the left hand side and useveqs. (3.3), (3.8) and
(2.12a) to su'b_stitute for T. :: | ’

[T, EE) [1- £ ) B F T

C RIGEFE) [ ) EEyGT TR |
TG Jor'e '[[1: f(E")] No(E') JE E)] A

Using eqgs. (2.14) and (2.16),

tr

J e ET 11— )] No(E) JEE)]

fa | 11101 No®) 381 |

atr

meE  (A15)

Usin'g eq. (A.15) in eq. (A.14) we ob’tain the ,desircd rélationship.
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. Eq. (4.15): R |

TwE)| | = TEE)

We know from eq (3 13) that

G2
’tl(l‘ E) t;(r’; E)

T(r r E) H2

f AV(A.‘16) |

"The above relatlonshlp (eq (4 15)) follows from the well-known symmetry propercy of the

v »Green function:

 G(r,r;E) ,H“ = G(r',r;E)

. Eq. (3.15')': o

jdrT(rr E) ‘J'dr‘T(r HE) = : M |
-t E)y
We showed in Chapter 3 tﬁat (see eq. (37))
2 "
j’ dr M = N (r E)

T 4(E)
Uéihg eqsl’,(A._lG) and (A.18,) we obtai:n

ChNo(E)

| jdr T(;,r’; E) = _'c—(rE_) |

@A

@y

@19

' Th1s proves half the des1red result To prove the other half we note that us1ng eq (4 15) '

o denved earher
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SNl T ,‘.,‘;E .
J'drT(r,r,E)lH jdl‘ ,(l'l'b ),1 .

hNo(;B)

= W ey »(usk;ng}’eq.; (A}.1-8)’) | (A.20)
But we have by definition (eq; (2.8)), =
‘ No(r E) Z I¢M(r)I28(E eM) e - (A2

. where ¢M (r) are the eigenfimctiohs of 'HO (eq. (2.1)) with eigenvalues ey;. The reversal of
the magnetw field H merely replaces each elgenfunctlon oM (r) by its complex conjugate

leavmg the dens1ty of states N (r E) mtact Hence
muml-muml o (A22)

~ Another way to prove eq (A22)isto note that No(r; E) = —Im{ G(r r; E)}/ﬂ: and to use eq.
(A. 18) Also from eqs Q. 16) and (A. 22) we have ‘ |

'NrE‘ _q@Eﬂ  an

‘ Usmg eqs (A 22) and (A 23) in eq (A 20) we obtain

hNo(r E)
_ _———Tl 55) (A.24)

j dr T(ri ,T; E) | :H' —H

 This compl'etes"our proof.
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