Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
7-1-1988

Improving Cache Performance by Selective Cache

Bypass

Chi-Hung Chi

Purdue University, chi@ec.ecn.purdue.edu

Henry Dietz
Purdue University, hankd@ee.ecn.purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Chi, Chi-Hung and Dietz, Henry, "Improving Cache Performance by Selective Cache Bypass" (1988). Department of Electrical and
Computer Engineering Technical Reports. Paper 617.
https://docs.lib.purdue.edu/ecetr/617

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/220146555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages

Improving Cache
Performance by
Selective Cache Bypass

Chi-Hung Chi
Henry Dietz

TR-EE 88-36
July 1988

School of Electrical Engineering |
Purdue University
West Lafayette, Indiana 47907

Improvmg Cache Performance by -

SeleCthe CaChe Bypa,ss Che el

Chl-Hung Chl o - Henry Dletz

School of Electrlcal Engmeermg School of Electrlcal Englneerlng

... Purdue University. - . . Purdue University = .0
‘West Lafayette; IN 47907. . West: Lafayette, IN- 47907
'~ch1@ec ecn.purdue. edu. . hankd@ee ecn. purdue edu -

(317) 4943353° ' (317) 494 3357

L

In tradltlonal cache—based computers, all memory references are made through :

' 'cache However, a. s1gn1ﬁcant number of items which are referenced in a program are ' - o
referenced so- 1nfrequently that other cache traflic is certain to “bump ‘these items from '~

“¢ache before they are referenced agaln “In such cases, not only is there no benefit in plac-

~ ing the item in cache, but there is the additional overhead of “bumpmg -some other item -
“out of cache to- make room for this useless cache entry ‘Where a cache line is larger than'
a processor ‘'word, there is an additional penalty in loading the entire line from memory - -
into cache, whereas the reference could have been satisfied with a single word fetch..
Simulations have: shown that ‘these effects typically degrade cache-based system perfor- o
‘mance (average reference time) by 10% to 30%. : '

‘This performance loss is- due to cache pollutlon, by simply forclng pollutlng refer-‘:-'
ences to directly reference main memory — bypassmg the cache — much of this perfor-
mance can be regained. The technique proposed in this paper 1nvolves the use of new."

hardware, . called a Bypass-Cache, which, under program control, will determine - -
whether each reference should be through the cache or bypassing the cache and referenc-. -

ing main memory directly. Several i 1nexpens1ve heurlstlcs for the compller to determlnev '
how to make each reference are glven -

Keywordr ' hypass;'cache, cache-polluti_on, cache, '.’comnilerfanalysis,_ : .cobrr_’_ipile';;'_f»' .

o optlmlzatlon, executlon-tlme

Presentatlon materlals needed overhead prOJector

mailto:hankd@ee.ecmpurdue.edu

' : Pnrdne University, TR-EE 88-36

1. Introductlon

Advances in. supercomputmg and semiconductor technologles have made it p0331ble
to design and build hlgh_performance_ computer systems with many processors. However,
the performance of these systems is often limited by memory reference bandwidth. While -
the execution of each operation has become very fast, the t1me to fetch each datum fromv
main memory (or from another processor’s local memory) is at least an order of magni-
tude longer than the processor operation time — also an order of magmtude longer than
the reference time from on-chlp or local memory Use of a cache seems.a natural way to

v atta.ck thls mismatch.-

It is w1dely accepted that cache memory is a cost eﬁ'ectlve way to 1mprove systemv-

performance by ‘using locality propertles to improve apparent. average Mmemory ‘access

~ time. Slgmﬁcant ‘reductions in theaverage:: data/lnstructlon access time have. been,

achleved using = very 81mple -cache placement/replacement policies implemented i
_ hardware [Bel74]. If anythmg, the success of cache has been too complete; the des1rab111ty,_
of cachlng items is rarely questloned and basic research on cache des1gn generally. has

been reduced to the level of benchmarkmg and fine-tuning a few well- known parameters

- For example, since cache referen_ce time is so much less than main memory reference
time, it is commonly held that as many data as possible should be placed in cache. One
typically' measures the efficacy of a cache design by determining the cache hit ratio — the
fraction of memory references which are satisfied by cache entries. The problem is simply
that it is not always beneficial to fetch a line into the cache on a cache-miss even if the
cache is infinitely large — mcreaszng cache hit ratio’ sometimes reduces system perfor-
mance' Other criteria like memory trafﬁc have occasmnally been used lnstead of cache
hit ratlo, but these measures are also somewhat i 1mpreclse and indirect. If one wants to
' minimize total memory reference time, then that is the obvious measure by which cache
performance should be judged. Throughout this paper, cache performance is measured in

terms of the effect on total memory reference time."

Why are the ‘more commonly used cache performance crlterla inaccurate measures
of system performance? There i is always an overhead assoclated w1th fetching a line from
memory into cache. If the benefit gained from having that: hne in cache is not greater
than the overhead that loading the cache line implies, then it is faster to reference the

data of that line directly from main memory. This is true even if the cache is infinitely

large — but even more dramatlcally true with smaller caches. If some mechanlsm can be -

» used. to selectlvely dlsable or bypass the cache for those references which cache cannot
improve:

[1] - the cost of loadlng the cache with these llnes is saved and

[2] * for finite-size caches, more cache space becomes available to other references and the ‘
~ probablhty of accldentally replacmg useful lmes (those hnes that can help 1mprove-

Page 2

~

Purdue University TR-EE 88-36

B system performance) is reduced — there w1ll be less cache pollutlon

Slmulatlon results, reported in Sectlon 4, strongly support this view. An average of 1 07
to 30% reductzon in total reference time can be achleved s1mply by usmg the proposed

cache bypass mechanlsm

. Section 2 of th1s paper presents a survey of current cache de51gns and -bypass con- ‘, :
cepts ~ Section 3 discusses the cache bypass mechanism and how the cache bypass control
» lnformatlon can’ be implemented in practical hardware. Section 4 presents simulation

results. Contmulng.research on the cache bypass mechanism is described in Section 5. ’

2. Current Cache Desxgns and Bypass Concepts

- Before 1nvest1gat1ng the mechanism for, and benefits of selectlve cache bypass, it is
useful to briefly survey exrstlng cache management pohc1es, in part, this highlights where
the extra performance comes from, but it also clarifies: the constraints these traditional
policies impose on the cache bypass mechanism. Examples illustrate why some con-
stralnts imposed by prevrous cache replacement Ppolicies often cause a Iarge decrease in
system performance, as well as how eliminating some of these constraints can regaln 2

much of the lost performance.

Thls d1scuss1on serves the purpose of 1llustrat1ng the 1mportance of cache bypass and
of glvmg motivation to research thls topic. In the last part of this- sectlon, we brleﬁy
: descrlbe the cache bypass mechanism used in the C1. m1nlsupercomputer manufactured by :

»Convex Computer Corporatlon [Con86] Although the strategy used for cache bypass in
‘the C1 is very hmlted, it does demonstrate the 1mportance of 1ncorporat1ng a bypass'

' mechanlsm

2.1. Traditional Replacement Policies

Replacement policy is defined as the set of rules by which. the choice of wh1ch cache
line to replace is made when the cache is full and a new line is to be fetched from the
main memory into the cache [HwB84]. Replacement policies such as LRU (least recently
used), random replacement, FIFO (first-in first-out), etc., ‘are commonly used in current
cache designs. - :)
-+ "Although each of these traditional ‘cache replacement policies has its own uniqué
technlque for placlng and/or replaclng cache lines, the option of decxdlng not. to put the
requested line in cache was not con51dered In-all conventlonal cache replacement pol1c1es,
lmmedlately after each reference, the line referenced is in cache This implies that when-
ever there is a cache miss occurred the missed line needs to be fetched into the cache and
this line fetch is 1ndependent of whether the fetched line would brlng lmprovement to sys-

tem performance

- Page3-

: PurdueUnlvers1ty TR-EE88-36

v ’ The main argument for this constraint is that' since reference time'of data in cache
is much’ smaller than that from main memory and with spatlal and temporal behavior of
program references [Sp177], havmg the current referenced line in - cache has a hlgh proba—

~bility: to- bring 1mprovement in system performance. Wh1le this argument is. generally :
~true, it is possible to predlct with good certainty exactly which lines will not contrlbute to
1mprov1ng performance w1thout such prediction, it is easy to envision scenarios where the
" cache would replace hnes it should have kept with lines that will never agam be refer-
enced. This leads to a worst-case scenarlo in which a machine runs slower with cache
than. withoutit Bypassmg the cache, hence av01d1ng th1s pollution, th1s worst-case

' scenar1o is averted ’ ' e

"An example of thls problem is eas11y constructed Suppose there is ' a fully-j
bassoc1at1ve cache of size two, line size one,, and the memory reference strlng is 1 23 1 23
' ,(It is 1nterest1ng to note that this example is ‘exactly the kmd ‘of reference sequence one
would get in executlng a typical loop which references more data than there are cache
‘ cells — which is well-known ‘to the worst-case for LRU. } With the cost of dlﬂerent types
of memory references shown in- Table 1 (and the line-style used to represent each), the
’ cache content after ‘each reference with random replacement LRU and modlﬁed LRU»
. Wlth cache bypass mechanlsm are shown in Flgures 1,2, and 3.

Purdue University TR-EE 88-36

Line Pattern

Cost (Time) | Type of Reference

. none 1 —
Tc- - Reference from
R ' Cache
Tr Reference from
U | Main Memory
Tc + T Reference through
- P Cache (with Fetch
- to Empty Cache
- ' Line)
T, +2(T) | Reference through
— . P" 1 Cache (with
: — Replacement of a
a—

Cache Line)

Table 1: Cost for Each Type of Memory Reference

Page 5

Purdue University TR-EE 88-36

—~—

refi1 " ref. 2 ref. 3 _ 'ret".bl o ref 2 ref. 3.

' ‘Fiéuire 1: Ran‘dOm‘Replac_ement Transactions.-for 123123

| Page 6

" Purdue University TR-EE 88-36

ref. 1 . . ref. 2 - S ref 30 ref. 1 . el 2, Y ref 3

i Figure. 2: LRU Transactions for 1 23 123

4 : ref."l o _- ref. 2 : ‘ .ref. 3 Tef. ,lu ref. 2. . _. ref. 3 '

»‘.Fignre 3: Modified LRU with Cache Bypass for 123123

.Cache Policy‘ N : " Cost - , Cost with C0sicache—poiiey | c;,sto-,,",.m, 1.
EE o | T, = T, = 10T, | = o ’

| Optimal - | 2T, +27, +4T, Cwr, | 1000

Random = | 7.05T, +8T, 83.5T, - 1.898

LRU | 1bT,, +6T, | - 1067, e 2.409

Ta.ble 2 Comparsmn of Execution Tlmes for 123 1 23

The total reference costs usmg these three pohcles are shown in Table 2 In this
table, it “can be seéen ‘that the ratio of C’ostR,md,,m / C’ostha,, is 1.898 and. the ratio of
) COStLRU /CO'StBypa" is 2.409. : ’

Notice that whlle placing data 1 and 2 in cache ean lmprove system performance,
placmg datum 3 in cache actually decreases the system - performance Unfortunately, if
bypass of the cache is not cons1dered the resulting performance is'the worst pos31ble —in.
‘ ‘fact it is worse than 1f no cache were present. With selectlve cache bypass, one might
simply reference datum - 3 d1rectly from main memory; yet the cache would speed-up

‘ ‘references to data 1 and 2

 Page?

' Purdue University TR-EE 88-36

2.2, Hlstory of Cache Bypass ‘

Although not cornrnonly accepted as part of tradltlonal cache design, cache bypass is

not entirely new.

Nearly all cache-based computers have some provision for dlsabhng the cache so
that memory-mapped I/ O transactions can take place. .However, the idea of
enabling/ disabling the cache for each memory reference is not well supported by most of
these systems (presumably the poss1b1hty had not been consuiered) These systems typi-
cally require an entire instruction to ‘be executed to change the cache enable state.
Despite this, such systems can be used to implement cache bypass where several. consecu- -

tive references should be bypassed

Some machlne de31gners also recognlzed that. the performance of cache could be
improved by simultaneously requesting each datum from both main memory and cache.’
In this scheme, if the item is found in the cache then the cached value is used and the
main memory request is cancelled or ignored. If not, the item is returned directly from
main memory to the processor, s1multaneously 1n1t1at1ng a cache update for that datum’s
line. This techmque does 1rnprove performance, but may require fairly expensive
hardware and does not avert cache pollution — it merely reduces the cost of referencing
“through” the cache

Somewhat closer in sp1r1t to. our approach, Convex Computer Corporatlon has
implemented a selectlve cache bypass mechanism in their Cl mlnlsupercomputer The
strategy employed is [Con86] '

Upon load or store, the physical control umt either writes the referenced data
into its cache or bypasses the cache and accesses main memory directly, leaving
the cache unmodified. All aligned 64-bit vector loads and stores result in cache
- bypass. Loads and stores of aligned, contiguous 32-bit vector elements bypass
-the cache as well. Since vector accesses dominate supercomputer-class applica-
tions software, cache bypass opportunities occur frequently
Apparently; the cache bypass mechanism is employed only on vector operatlons because
the C1 has a cache with a set size of one, hence, loading a vector register had the effect of
_ totally flushing the cache — obviously negating any benefits of caching. In any case, the
Convex scheme is quite reasonable, and was sufficiently new so as to be patented (patent
‘pending?); the problem is that it equates “yector’’ with “bypass,” and this isn’t really
correct.. Some vectors should be cached and some scalars shouldn’t be, but on the average

the Convex scheme is rlght often enough to yield a big 1mprovement

In contrast, the current proposal for cache bypass is t_ovuse a compile-time stati_c
- analysis of the reference behavior of each program to compute a “Cache/bypass”-‘tag for
each memory reference the compiled code makes. These tags are used at runtime to con-

trol a cache enable/disable line.

- Page“\8 |

‘Purdue University TR-EE 88-36

| 3 Implementmg Cache Bypass , S -
U As shown in' the example of Section. 2. 1 LRU referencmg of all data through the

. cache actually performed worse than if no cache were present.

v There are two main reasons for this phenomena. First, there is often a3 large time
' overhead 1mp11ed in moving lines of data between cache and main memory. This over-
head increases as the cache line size is increased. Consequently; fetchmg a line into_cache
can improve system performance iff the total number of references to data in. that- hne
(before that line is replaced) is such that the savmgs in referencmg ‘cache: outwelghs the .
overhead of moving that line between cache and ‘main memory.. If not, the total time to
make these references will be minimized by ignoring the cache — bypassmg to dlrectly N

reference main memory Even if the cache is infinitely large, this still holds..

Second smce all real caches are ﬁmte, placing one line in cache generally means that .
some other line cannat be in cache. - Herice, placing infrequently referenced llnes._lntp‘
cache not .only adds. a large overhead to total memory access ‘time, but also 'preyents
speed- -up ‘that - could have been gained if some other (more heav11y referenced) hne Were
placed in cache This effect is what we call ¢ cache pollution.” o

Since m1n1m1z1ng the total memory access. time is our goal in selectlve cache bypass
and the total access. time depends on both. the architectural design and the 1mp1ementa- :
tion technology: of the cache and main memory, some details must be supphed In the
_ remainder of this paper, we have chosen to discuss cache bypass assuming that the sup-
plied information is that of-a typical system;- this greatly simplifies the following discus-
sion and-reduces the number of graphs needed to support the rest of the paper. ‘For
.example, the simulations and ‘examples presented in this paper are based on the:as'sump-
tion that LRU is the bas1c cache management technlque and that “typlcal” CMOS or
_NMOS ICs 1mp1ement the relevant system components. This 1mp11es, for example, that a
main memory reference: takes about 10 times as long as a cache reference — in reality,
this ratio varies from about 2:1 to greater than 50:1. Of course, the use of spec1ﬁc‘
numbers in the examples and d1scuss1on is not indicative of the techmque requiring those
exact numbers: .. the techmque works for most reasonable cache organlzatlons, only the

percentage beneﬁt gamed varies.

" In Section 3.1, a brlef discussion -of current IC technologles ‘and their 1mpact on
memory ‘access time is given. Criteria or rules to determine whether a reference request

is gomg to bypass the cache and to reference directly from main memory are presented i in

Sectlon 3.2, Sectlon 3. 3 gives a very 51mp1e and cheap, yet efﬁment way to incorporate a -

cache bypass mechanism Wwith an LRU policy. Practical - 1mplementatlon schemes for

cache bypass control SIgnals to be added to ex1stmg systems are presented in Section 3. 4 :

Page 9

Purdue University TR-EE 88-36

3.1. Integrated Cu‘cuxt Technologles

Integrated circuit (IC) technology is one of the major parameters in the cr1ter1a for
cache bypass mechanism (discussed in‘the next section). Hence, a brief survey of current
dlfferent (Ic) technologles and its impact on off—chlp and ‘on-=chip memory reference tlme :
is necessary Table 3 gives the on-chlp and off-chip memory access times for some of the“
v current 1ntegrated c1rcu1t technologies [M1F86] From this table, we see that the ratlo of
off-chip to on—chlp memory access times is at least 10. Usmg this ratlo, an estimate of the

‘minimum reference frequency that a line needs to justify 1ts placement in"cache can be

obtalned

Typeof Access | Silicon OMOS/SOS | Silicon NMOS | GaAS

v».On-chip,mve_mo?ry vaccess : 1 | _10,2o;is'f, L 10- 20ns ’ “0..>5-424.0ns_
Ol’f—chip on-packa‘gei memory access | 40-80ns - | " 20-40ns " '4-10ns
Oﬁ-chip off-package memory access | ©100-200ns 100-200ns - | 20-80ns.-
Ratio of off—chlp on- package to B E » 'v4‘ i : " 2 :‘ ‘) 5-8
on-chlp memory access ' , ») DR RS B
-Ratlo of off-chlp oﬂ-package to o | ‘ | N B 10 - .10 Av 40
on-,chlpvmem_ory access . : - ’ o

.Tahle 3. Memory Access Time of Different IC Technologies :

- 3. 2 Crlterla for Cache Bypass Mechanlsm

Thoughout the current work, the main focus is the reductlon of total memory refer-
ence time for a program. Hence, criteria proposed here are based on the. comparsmn
‘between the time overhead involved in having a line in cache and the total reference time

saved by referencmg data in'a line in cache.

The time overhead of placing a line in cache is the transfer time for all data of that‘
line from main memory to cache. If any dlrty1 line is bumped out of cache us1ng a write-
- back cache, a similar transfer time to uptlme the main memory is also included in this
'overhead Since the amount of data transfer between main memory . and cache is: constant
for a cache design, this overhead is only architecture de51gn and 1mplementat10n technol-

ogy dependent ‘and is independent of program behav1or

1. A line in cache is considered dirty -1ff some protion of the value'it contain_s)
" does not match the value stored in the corresponding main-memory line.

Page 10

" Purdue University TR-EE 88-36

On the other hand, the time savings for placing a line in cache accumulatesevery
time‘ data in that line is referenced. Hence, the savings are, in addition, program depen-
dent. SR - T i

. There -are add1t10na1 factors which’ can mfluence the costs and the savings of
placmg/replacmg a line in cache, resulting in slightly different cache bypass decisions of
references in 'a program. For example, if a reference is gomg ‘to bypass the ‘cache and‘
d1rectly reference mam memory, the average probablhty of bumpmg a lme from cache

decreases, and cache space could also be viewed as available to other llnes

' These effects are easrly recogmzed and advantageously used ‘in the cache bypass v

mechamsm In fact, a complete analytlcal model of the cache bypass mechanlsm for com-.

mon cache replacement policies to take all these factors into consideration can easﬂy be -

derlved from the compiler-driven cache (SCP). model [ChD87] [ChD88]. While the SCP
model can fully account for cache bypass, and can promise optzmal performance, the com--
plete SCP model does entall relatlvely complex analysis and compller technology, hence, v
the techmque presented here is a sub-optimal, but quite eﬂectlve and simple, approxima-
tion to the SCP model?.

To deﬁne an. algorlthm for determmmg when to bypass the cache for 'a’ pa.rtlcular

reference, some deﬁnrtlons and notatlons are’ useful

overhead(z) = time overhead of placmg/replacmg line ¢ in cache
samng(z) = tlme saving of havmg lme ¢in cache before it i is replaced

n[z) = total number of referenclng line i in cache before it is replaced
>W1th the cost notat1ons deﬁned in Table 1, the overhead{z) and scwmg[z) are as follows

If no dlrty llne is bumped out of cache, the overhead is:
overhead(i) = T,
If a dirty line is replaced (bumped) from the cache, then the overhead is:.
overhead(i) =2 * R o
The savings for havmg lme iin cache (before it is replaced) is:
» savmg(z}z n(i) * (T - T,) '

In order for a reference line ¢ to bypass the cache, the overhead overhead{z} must be

greater or equal to the total time savmgs samng(z) Only 1n this case can the placement

© 2. “In" fact, if the SCP model. is tsed. with more radically‘redesigned cache,
performance .is much better than using a Bypass-Cache and' the analysis is

“essentially the same. Hence, we feel that if one wants to achieve optimal
performance, one should ‘be willing to make the more drastic hardware and

 software changes to support:it — here, we have simply g1ven a techmque _
‘whereby ‘only trivial hardwaré and software changes result- in -large, but
sub-optimal; performance gains. :

_ jPage»ll

Purdue University VTR-_E'E 88-36
ofline icontribute to improve system performance. ‘

3.3. Algorlthm for LRU Bypass Ca.che

~In this section, 'LRU (least recently used) cache replacement is chosen as the bas1c .
scheme and the ‘cache bypass control is added on top of this policy. ‘We have choosen to'
d1scuss an LRU Bypass-Cache because the basic LRU policy is probably the most com-
monly used. and most commonly trusted to yleld good performance Hence, the -compar- -

- sions of s1mulated performance with/without cache bypass. (in Section -4) are very good
estlmates of -the expected: improvement derived by convertmg commonly avallable com~ _

puters to use Bypass—Cache 1nstead of trad1tlonal cache

In this sectlon, a fast, s1mple, efﬁc1ent (yet sub optimal). algorlthm to determlne.-
when a reference should bypass.the cache is proposed The algorithm is based on the con-
cept of a trace, as discussed in trace scheduling techmques used for automatic parallel-'
izing comp1lers [El185]. ' The procedure to. determine, for each reference in the program,
whether to bypass or to reference through the cache is: o _' ' ‘_ S
1. ‘Perform traditiorial ﬁow analysis and build the program flow graph (This s'tep‘

should be considered ‘“‘free’’. because any good compller will use this same analysrs to
aid in generatmg efficient code.) ,

2. For each trace (a p0551ble control ﬂow path wh1ch has not yet been - processed) d
the following: : o

“a. Mark all references in this trace as “cachable” (put in cache).

b. Scan this trace keeping track of which items would be resident in cache assum-'

“ing that all 1tems marked as cachable are always referenced through the cache

and that LRU is used to. determine which item.is bumped from cache when line

replacement occurs. As the references are scanned, the time overhead and sav-

1ngs realized for each cachable line are accumulated As a s1mple heuristic, the
savmgs for referencing an item within a loop is multiplied by a factor of 103

c. At the end of the trace, mark all references which have a larger overhead than
- savings as ‘““non-cachable”.

d. The above set of marklngs can be somewhat 1mproved although not made
optimal, by repeating steps 2b and 2c. Such repetition is, however, completely
optional. All the simulation results given in this paper used only a single pass..

7 Th1s algorlthm, although very crude and s1mple reaps speedups ranglng from a few
percent to a factor of nearly 100, depending on the cache _configuration and the bench-
mark - used. Speedups greater than 2 are not unusual for commonly used cache

: conﬁguratmns

3. Thls is a rough a.pprox1ma.tlon to welghtlng each reference in the trace by its o
" expected number of executions — it assumes each loop executes an a.vera,ge AR
- of 10 times.. If. the compiler has a better estimate, this can be used instead.
" Techniques for the compiler.to make more mtelllgent estimates of expected »
executxon frequencxes are discussed in [Die87]. - -

Page 12

' Purdue Il‘lniiversit}y TR-EE : 88-36 :

3 4 Implementatlon of Bypass Control

‘ W1th the results of compller analys1s of ‘a program (or with statlstical .I results
gleaned from prev1ous runs) “the bypass/cache questlon 1s easlly answered w1th good ‘
enough accuracy 50 as to permlt huge performance increases. However, thls 1nformat10n__)
must, be transmltted to the Bypass—Cache control log1c for each reference The 1nforma- -
_ tlon for each reference requlres only a s1ngle b1t —al means “bypass and 0 means “go
through the cache " The natural questlon is how does the compller get th1s one b1t of o

1nformatlon for each reference 1nto the Bypass-Cache control at runtlme? S

There are a number of alternatlve solutlons to th1s problem and each of these solu-",

L tlons trades off some resources or capablhtles

_ The conceptually easrest and most efficient way to transmlt thls cache bypass 1nfor--v
o matlon is to embed a bit in. each instruction for-each memory. reference the 1nstructlon
may: cause For new ‘machine. de31gn, this is falrly convenlent reservmg a control bit to -
vobtaln speedups of total memory access t1me by factors of 2 or more is v1rtually always
. worthwhlle Also, ex1st1ng machlnes w1th at least one currently unused blt 1n each
E 1nstructlon should probably use thls 1mplementat10n o ' L

Alternatlvely, the 1nstructlon set of the machlne can be. expanded to 1nclude exphcltf

- ‘Bypass-Cache control 1nstructlons In fact these 1nstructlons ex1st for v1rtually all com-

»puters which have cache. An extreme example of this" expllclt cache control is the IBMvV o

5 801 ‘where 1nd1v1dual cache lines can be exphcltly allocated and: deallocated most. systems f_
s1mply permlt the cache to be enabled/ disabled as a whole. Smce bypasses may come in

“clumps 'y even this crude bypass control can gam some improvement; however, bypasses .

“do not always ‘come 1n clumps By deﬁmng a new instruction spec1ﬁcally to 1mplement’ :
: ‘Bypass-Cache control,. one could permlt each cache control 1nstructlon to set the pattern
of bypass/cache decisions for the next n references, where n is somewhat less than the -
o machme word length. ‘Again, some performance would be galned but the hlgh frequencyv

of Bypass-Cache control lnstructlons would hmlt performance

Whlle all the above schemes have some mer1t there i is another scheme whlch both
'permlts a cache control bit to be assoclated with each 1nstruct10n and does not requu'e ‘

changes in the 1nstructlon set des1gn or encodlng In- current mach1ne des1gns, the

o addressable space is typlcally very large and programs: rarely use the entlre addressable

' space of the ‘machine. Thus, 1t is poss1ble to trade one’ address bit (eg, the most
»»Slgnlﬁcant bit of an address) for use as the control bit for the- Bypass-Cache In fact thls :
‘ solutlon is suggested by Intel in’ their 80386 programmer s reference manual [Int86] as a-

7 way to provrde a cache control bit for use in multlprocessor cache coherency control v

~Worst case, thls effectlvely reduces the addressable space by 50% Of course, it also-

4. The actual address space may not be affected because address mapplng
i mechamsms may be able to. cnrcumvent the loss :

Page 13°

| PurdueUn1vers1ty TR-EE 88-36 _

causes the compller wrlter a b1t of grlef in that not only must all addresses be correctly'
: tagged but the compller must also be careful about operatlons such as pomter ar1thmet1c-

. gOI' comparlsons

~Other. methods, such as; us1ng a separate cache controller to exphc1tly control the
- cache (s1m11ar to the remote PC idea [Rad83]) are also possible. However, the overhead :

and the synchronlzatlon cost mvolved may be too large to be practlcal

4 . Slmulatlon Results o

To measure the eﬁ'ect of cache bypass in reducmg total reference t1me, detalled’
s1mulat10n of the LRU Bypass-Cache was performed usmg the smgle—pass compller algo—
~ rithm. descrlbed above. - For comparison, the same: simulations were performed using a

conventlonal LRU cache with' the same conﬁguratlon as the Bypass—Cache

The benchmark ,programs. were. taken from. the DARPA MIPS. package, and are'
'w1dely used .as benchmarks of cache and/or system performance Data are glven for four

“of tHese: programs:.

Bubble - |
A typlcal bubble sort program, executed on a set of 500 random data

Puzzle : ' :
' “This is a compute-bound program from Forest Basket run w1th a size of 511.

Realmm i ,
- A program whlch performs a. matr1x multlphcatlon of two real matrlcles, each of
whlch is 40 by 40, : . S

- TovverThe standard recursrve tower-of—Hano1 solutlon, g1ven the problem of movmg 18
' disks. - » : R v : -

Each of the programs Was 51mulated for about 500 000 references of executlon, hence .

cold start” cache eﬂects are negl1g1ble

Smce our pr1mary concern is mlnlmlzmg the total reference t1me, rather than max- '
»1m1z1ng hit ratio, it was. also necessary to assume speclﬁc ratios of reference times for each
of the dlfferent types of reference The cost functions used for the data 1n this paper were‘ .

based on cost estrmates for a typlcal CMOS-based system o

Cost of referencmg data from cache is 1 time unit.

Cost of referencmg data from main memory is'10 t1me un1ts PR

o Cost of placing a lme in an empty or non—dlrty cache entry is 10 + (lme_s1ze - 1) *7
’ t1me unlts : : S
The fact that fetchmg/storlng n consecutlve data lnto/from cache in one request takes'
. less time than fetchmg/stormg n data i 1n n requests 1s reflected i 1n the above costs. We
were actually quite generous in this assumptlon, using a formula g1v1ng a 30% benefit for '
’ _multl-word fetch/store, however, this sxmply has the effect of - makmg the beneﬁt due to'
,Bypass-Cache appear smaller Lo e = &

.'."::Pagevil_tl,"

R ..Puf?lﬁélﬁrii’i?ﬁersity‘tTR-,E‘E, 8,"8-,'.36 |

To make the s1mulat10ns as.. complete as possrble, all poss1ble power-of-2 cache

'organlzatlons (e. 8- dlﬁ'erent line sizes, set smes) for a fixed cache: s1ze of" 128 words® were

» srmulated and are presented 1n this paper. The absolute reference t1mes for- the dlﬂ'erentf' ‘

benchmarks naturally drffer, however, the speedups and curve shapes are falrly cons1stent

‘across all the s1mulat10ns

Flgures 4 through 7. graph speedup of total memory reference trmes w1th Bypass-

Cache as compared to the same conﬁguratlon conventlonal cache Each curve,. 1n,vthe

L graphs is’ marked with the power- of-2 which was used ‘as the-associative set size. These -

‘ system performance

' graphs clearly demonstrate that the speedup 1n total memory reference time using
,Bypass-Cache is very large — 1n fact 1t is plotted on a log scale, and averages about 2.

. The. speedup with Bypass—Cache is usually smallest for -a- 11ne size of one or- two
Wlth an increase in line size (leaving cache size and set size fixed),. ‘the speedup wrth

v' Bypass—Cache increases greatly This agress with conﬁrms the argument glven in Section '
3. ThlS is because a larger llne size 1mp11es a larger overhead in- cache llne placement and

replacement Although the total number of references of'a llne w1th 1ncreas1ng llne

1ncreases, thls 1ncrease 1s much less than the 1ncrease 1n overhead Consequently, cache

more eas1ly becomes polluted and the Bypass—Cache becomes more crltlcal in. 1mprov1ng‘ ,

These curves also show that the speedup w1th Bypass—Cache is usually smaller for‘
cache ‘with small set size (ﬁxed cache size and line srze) Although the cause of this i is not

: yet known, we suspect that this is related to the increase in traffic seen by each cache set

(becuase there are fewer sets) Even though the speedup is much smaller in these cases, it

" is strll typlcally about 1.2 (1 e., 20 percent)

_ Flgure 8 shows the total refererice time for the Tower benchmark The dotted lines
mdlcate the times taken using conventlonal cache, whereas the: sohd lines show the times

' taken w1th Bypass—Cache

As1de from the obv1ous beneﬁt in using Bypass—Cache, th1s graph suggests an

-1nterest1ng general cache design rule. If the total memory reference time is to be
) mmlmlzed rather than the hlt-ratlo ma.xlmlzed it 1s usually better to choose ‘

. small line size and small set. sue. This makes perfect sense in that although large line

: s1zes 1ncrease h1t-rat10, they 1mply overhead increases wh1ch are greater than the hit-ratio”

lncreases — in- fact expotentlally greater That i 1ncreasrng set srze is not beneficial is less

1ntu1t1ve, ‘but probably is: related to: the mcreased trafﬁc per set and use of a poor"'

5 About 500 s1mulatlons were: performed encompassing -a wide varlety of

- cache sizes and conﬁguratlons However, all the simulation results obtained’
', ‘were very consistent, hence we have chosen to present only the data for the
. ilargest cache s1ze we examined — 128 words. Other simulation data are -
- avalable upon request ') L o :

s1ze E

Purdue University TR-EE 88-36

repia)cement algorithm (i.e., one cén do a whole lot better than LRU [ChD87]).

- For Bypass-Cache, the difference in total memory access time for different line sizes -
(with same cache size and size) is not as great as those for cache without bypass. This is
true because a lot of cache pollution can be avoided with Bypass-Cache. '

Page 16

Purdue_University TR-EE 88-36

Speedup
(log
scale

| - plot)

v10‘—‘ .

1 0 100
' Line Size (log scale plot) ’ Ce

Figure 4: Speedup in: Total Reference Time for Bubble »

Page 17

50—

204

ik (PR | Speedup
o (log ,
scale
‘ plot) '

——

w0 100
Line Size (log scale plot) - » o

: Figureﬂ 5: Speedup in Tbtal-Reférehéé"l‘,imé"for Puzzle

 Pagels

Purdue University TR-EE 88-36 |

. 50

' 20‘_,..
TS
g7 Speedup

(log
scale

5 — plot)

2

1 - -

| . 7 , ' |
o1 o 10 - ’ S 100

- Line Size (log scale plot)

Figure 6: Speedup in Total Reference Time for Realmm

. "Page. 19

o .Purdile Uni’v.errsity»TR‘EEz 88-36

100

| speedup

(log -
| scale =
- plot)

S 10 100

~ Line Size (log scale plot)

- - Figure 7: Speedup ‘iI»_l',"Ifot}al Reference Time for?TOWér

Page"»'ZO' f | .

Purdue University TR-EE 88-36

1E+09 — -
0
...0..
@_-'-. ‘ - rl Time
s T | | (loi%.
.......-” 0..‘.."‘._. .‘1-‘ X | . . ‘ S(;a;; v
42 3 AU 3 plot
1E+07 —
1E+06 —__

T — B - - T - - ,. |
O DR 10 . 100
L : Line Size (log scale plot) »

Flgure 8:
L Total Reference Time WITH/WITHOU T Bypass for Tower
S - (WITH is solid lines, WITHOUT is dotted lines) -

5. Conclusmn v :

" In this paper, we present a new cache deslgn — Bypass Cache — Whlch is able to
"avert pollutlng the cache by bypassmg the cache for entries for which cachmg would not
result in- faster total executlon time. From our simulation results, we see that the
speedup is tremendous, ‘with an average of about 2. Various methods for 1mp1ement1ng
“the Bypass Cache’ architecture are presented as well as an outhne of the compller technol-' '

ogy requlred for its eﬁectlve use.

Page 21

- Purdue University TR-EE 88-36

Perhaps the most s1gn1ﬁcant result, however is that cache hit ratio is not neces-
~ sary related t\o, the total reference time. This will be d1scussed more deeply in a

' later. paper.

Acknowledgernents ’

“Thanks to the members of CARP (the Compiler- oriented Architecture .Research
: group at Purdue) for their useful comments ‘on this work. Spec1al thanks to George
Adams for his suggestlons concern1ng the presentatmn of the results and also for colnlng

the name Bypass-Cache

References

[A1B86] Allen, R Baumgartner, D Kennedy, K Porterﬁeld A “‘PT'OCL A
' o Seml-Automatlc Parallel Programm1ng Ass1stant ” 1.986 International
Conference on Parallel Processing, August 1986, pp- 164-170.

[Bel74] v Belady, L.A:, Palermo, F.P., “On-line Measurement of Paging Behavior by
v . the Multi- valued MIN Algorlthm,” IBM Research and Development 18, 1,
January, 1974, pp. 2-19. B

[BuCgﬁ] Burke, M., Cytron, R., “Interprocedural Dependence Analy51s and Paral-

lellzatlon,” SIG’PLAN Symposwm on Compzler Constructzon, 1986, 1)
- 613-641." ' ‘
" [Con86| “C1 Processor Series: Arch1tecture,” Convex Computer Corporatlon 1986.
[ChD87]. Chi, C.H., Dietz, H., “Compiler-Driven Cache Policy,” Technical Report
o EE-87-21, Purdue Un1vers1ty, May, 1987.
[ChD88] . Chi, C.H., Dietz, H., ‘“Register Allocation for GaAs Computer- Systems,

Proceedzngs of the 1988 Hawari International Conference on Systems S’cz—
ences, January 1988, pp. 266-274.

[Die87] Dietz, H. G., The Reﬁned—Language Approach To Compiling For Parallel
o Supercomputers, Ph.D. Dissertation, Polytechnic University, June 1987. -
[El185] Ellis, J. R., Bulldog: A Compiler for VLIW Architectures, 1985 ACM Doc-
- toral D1ssertatlon Award, MIT Press, 1986. ’
[HWBB4] Hwang, K., Briggs, F.A., Computer Architecture. and Parallel Processzng,
: McGraw Hlll Book Company, 1984.
[Int86] Intel Corporation, 80386 programmer’s reference manual, 1986, pp- 11-6.
- [Rad83] Radin, G., “The 801 Minicomputer,” IBM Journal of Research ‘and
, Development May 1983, pp. 237-246. R
[Smi82] Smith, A.J., “Cache Memories,” Computing Surveys, Vol 14 No. 3, Sep-
. L , .tember 1982, pp. 473-530. _
- [Spi77] - Spirn, J., Program Behavior: Models and Measurements, Elsev1er North

“Holland, NY 1977.

Page 22

	Purdue University
	Purdue e-Pubs
	7-1-1988

	Improving Cache Performance by Selective Cache Bypass
	Chi-Hung Chi
	Henry Dietz

	tmp.1542052450.pdf.V94_D

