Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
7-1-1988

Analysis of Image Sequence Data with Applications
to Two-Dimensional Echocardiography

C.Henry Chu
Purdue University

Edward J. Delp
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Chu, C. Henry and Delp, Edward J., "Analysis of Image Sequence Data with Applications to Two-Dimensional Echocardiography”
(1988). Department of Electrical and Computer Engineering Technical Reports. Paper 613.
https://docs.lib.purdue.edu/ecetr/613

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages

The Analysis of Image
“Sequence Data with

Applications to

Two-Dimensional
‘Echocardiography

|| C.Henry Chu
Edward J. Delp

TR-EE 88-32
July 1938

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907



THE ANALYSIS OF IMAGE SEQUENCE DATA WITH

~ APPLICATIONS TO TWO-DIMENSIONAL EC_HOCARD_IOGRAPHY

| CheeQHung Henry Chu
~ Edward J. Delp

~ School of Electrical Engineering
Purdue University

. West Lafayette, Indiana 47907

TR-EE 88-32

July 1988



ii

This pagé intentionally left blank.



i -

ACKNOWLEDGMENTS -

o | The authors would hke to thank Dr Andrew J. Buda, Professor Charles
- Meyer, and Mr Edwm Wolfe, all of the: Umversnty of Michigan Medical School

- for thelr help in the acquisition of the echocardlographlc data and for their

suggestlons and comments." They would. also like to thank thelr colleague Pro-".":
_ fessor Mlchael Zoltowsk1 for ‘his help and suggestlons ' '



iv

TABLE OF CONTENTS

: R . Page
TLIST OF TABLES ocvooocveomvesnssiiosssnsssseoiesssieessmeesnseesssssseesessseesses ¥
LIST OF FIGURES.cccvcvrerssrsrsespesssssssssssssssessssosssssssssss R
) ABSTRACT ........ T S
CHAPTER 1- INTRODUCTION ................................................................... 1
1. 1 Dlgltal Two—Dlmenswnal Echocardxography ................ S, |
1. 2 Overv1ew of a Computer Vision Approach.....ccciceecrircnerensssveescessenes w3
CHAPTER 2- DETECTING ENDOCARDIAL AND EPICARDIAL ‘
, BOUNDARIES ............. 9
S 21 Introduct.lon ........ eseamianseesesesessenmmssassostsbeiremisassessetissones iieiaviniensissenens 9
2.2 Detecting Intensity Edges in Echocardlograms.........;.’..~...................;..10 B
2.3 A New Algorithm ...coeeeerueenerrenrenncenennene TP SN 14
2.4 Verification of Detected Bounda.rles cecosetssssisessessnsreersasessossaseaatreresesnes 25
2.5 SUMMATY.ciitiritiiiisissassasessisanssisasenssresssissessssssissesssssessess acersesses w25
CHAPTER 3- lM.AGE SEQUENCE ANALYSIS.c.cciiiienionnnciinnsinnaasarasasnanns 28
3.1 IDEEOQUEHON cerverreveeecersesseseneresseis ........ SRT——— L
3.2 Region Based Approach ........... eesssessessssessessareessassanaare vessisisssessenesasannie 35
3.3 Transformation Approach cisreessesssossaiosnrarsrnssessessassdS

3.4 Image Flow ApProach .......cccieeivessuscsinivssssecsisenesesnse cesseresaneserenasedO



Page
CHAPTER 4- TOTAL LEAST SQUARES BASED IMAGE o S
FLOW ANALYSIS...cccoovsivnsninnnensancnns reieacisnnssanisseesaasiansonses 42 _
.:4 1 Estxmatlng D1splacement Vectors......;.................‘............a.,‘;...;....;".,,'.;4'2 '
4.2 Estimating the Spatial and Temporal Gradlents.........» ........... vereeeenned8
4.3 'An Algorithm for Estimating Dlsplacement Vectors.....‘....'.'_..,.r..'..'..' ....... 49
4.3.1 Total Least Squares Method ....... esivierarivsesssisrsnses TN PPN .3 B
- 4.3.2 Application of the TLS Method to. Estlmatlng ‘ o
. Displacement Vector ......cc.ivvuivieiinnniiinsionnsiniosines ST I
4.3.3 Rank Deficient Cases.............. OO R TR SOOI IS SORY 1. S
.~ 4.3.4 Measure of FAEINE vvierieeivaesranrierrsanne vesesiisieserrivessees eerenresesrneisenieDB
4.4 Experimental Results .....cccivveirerenens iivreeiinisesisnnene veeesiteshesnteasetenees .56
4.5 Concluding REMIATKS 1ocevruviiereiinrieeesesivnsseesssnsesssasessasasessntossssassossasssn w81
CHAPTER 5 - ELECTROCARDIOGRAM SIGNAL PROCESSING ........ b4
5.1 Introductlon ........ eeeeerenanns ........ ........... ....64
5.2 Morphological Operators..f..v;...,........."....;.,..., ................ eeseiserrees iverreensenniB5
= -.5.2.1 Erosion and Dilation......c...ccceeeuininne esesriseeses vesineriransaninssases ceerni 86
© 5.2.2 Opening and CloSing.......cccueiemverersirerenseasnse veesaesis eeseveinsnepaiis einB7
5.3 A New Algorithm ......ccivuviviiiivirunnerinens websismeniiiin PR ieesieeienies 69
+5.4 Experiments with a Known Slgnal crebersusessinisiesmereenessebrsnss ERURTSTRRONY (- S
- 5.4.1 Test Results....c.tvicvniieisunniennnes eteeenteeeseenserebessasusnsasasivasisnere82
, 5 Noise Suppressmn PerfOITANCE. cuvuveierieveierircssssivesesresesesisessnssesesiseresns8T
- 5.6 Experiments with a Parameterlzed Structunng Element verveerraiesensesad8
5.7 Sinusoidal Response.....ccovevuerervesneivivininns rieteenivisenaanes Coessraessnnsnnnnnens 1100
5.8 Experiments with Acquired Data...., ....... rieiveesacesrsisaessansssesnnesaseresns 1197
: 5. 9 Concludlng Remarks eveetsinsiansiosssensie ..... rieerenens128
' CHAPTER 6 - CONCLUSIONS AND FUTURE WORK ........... ceviverensinienc129

LIST OF REFERENCES.......',..-.' ..... ettt 131



vi ’ _

LIST OF TABLES

Table . ) . | | Page
5.1. Noise suppression performance as measured by d, ........... 90
5.2. Noise suppression performance as nieasured by d_2 cesisessressrreresiviannes .....-..9_2
5.3. Néise suppression performance as‘measur'ed DY dg ereervrecvnnnrrannrananes 94
5.4. Amount of modification of sampled sinusoidal iﬁput as

measured by dj.......cc..... 00000000 senasnssnsennenesisessrntasessssiietasssrararaanes w113
5.5. Amount of modification of sampled sinusoidal input as |
’ mMeasured bY dg..ccueecnreiniiiiniiniiineciniiniecnneenecneesnreesaesssessnraees vl

5.6. Amount of modification of sampled sinusoidal input as . ,
- measured DY d o, «oovviiiiniiiniiiiiieciiniereenteeenneenreesereeessreessseesssasessssnne 117



- vil

'LIST OF FIGURES

F ig‘ure, - ' : _ : Page

1.1. Typlcal conﬁguratlon of a computer vision system for locatlng o
object bounda.rles cesesssrasssierernssessesssisessssniones eetseitesenssssrasasasasnesisasessantesesld

2.1. Overv1ew of the algorithm for detectlng inner and outer heart

Wall boundaries in echocardlograms....;..' ..... ereseseeerenarrreseseseanararessenee . L
22 -Sign map of applyin’g a V2G operator. ......... vessereeeseisanaresssaanane : cereeeseieenas 16
2.3. Detected borundariesviin Idhantoxt_t. ................. ......... ST 18» '
v 24 bétet:ted bbundaries in _“baseline” dog study ............... 19
2.5. .Detééted bbundarieé in “post occlusion” dog study ..... ........... 20
26 Dlstance-angle plots for phantom study................. eresereaseenaserersaseranssesaas 21
2.7. Dlstance-angle plots for dog study.......ceeuee ....... 22
2.8. Boundaries found after sécond‘ary searc'h‘...'....,............-.-..........t.'.i ............. 24

2.9. Comparing experimentally obtained phantom dlameters

to known dimensions. ......ccceereereeeienneeneenne 26

- 3.1 Detecting mOvidg edges. ciiviieriieerienanies .......................... cressessnesieanes 31
‘>‘3.2. The aperture effect..._....; .............. ..... seassriiassrsrasese _ ........'3.6
4.1. 'One.dlmensmnal view of the image ﬂow equation.;....f.'...;.......,_...;.........;44
>.A4.2. Conétraining the true velocity. eeveseeniisemes et ensenseaniaias eeresbosessaarases -,..46

4.3. .T'WO dimensional view of TLS method compai'ed to
' LS methOd. L T Y Ry R P Y P TP YT PP YT PP TR 53 :



- viii

' 'Flgure v = N o o o Page
_ 44 4 Ima.ge veloclty estimation usmg ‘test image sequence 57 B

 4;5. ‘ Hlstogram of the estlmated velocltles usmg : SEEEE
o TLS ﬁttmg ........................ esrenisceseness Cesesisisasessansissnsassssesnaios .

4.6: Hlstogram of the estlmated velocltles usmg . SR :
- LS fitting. cooeivernenenneenenienns eressresesreserniersesrasnrns T NI PRI

47, "Histogram of the estimated ve_locities_ using TLS o
B ﬁtting and different neighborhood SIZES. crveeesrnvsrreroveraneass ciresresrsessnsions80

. 4.8. Estlmated velocities of an echocardiographic i image ‘
sequence ‘with synthes1zed motion......... seisasssissisesesssisssiasoes sescniasnassinasesesB2

4,9, Estlmated velocltles of a real echocardlographlc image

- SQUENCE..ccieusinensinee “eenensasesetseenencatseststetttass tesesesnseinerion ....... ’763
5.1, ‘Example of erosion. .......... et . 68 ,
52 Example of‘_dﬂati_éﬁ. ..... SRR ¥
5_.3/‘.>'E;"cample':of opepiag; 70 |
| 54 “Example‘,v6f'closin.g.;.;;.’..,...f..:. ...... " .......... 7(‘)‘
55 Overv1ew of the algorlthm for sﬁppressmé 1mpuls1§re nelse _ ,
and normahzmg background drift. eensesseust ettt s 71
, 5;6. Block diagram of the 1mpulswe n01ee sup_pressmn algorlthm_. 72 |
5.7. Block diagram ef the -baekgroﬁnd nofm'alization .a‘lgo_l.'ith>r_1_1.....~....‘.'..‘ ...... 74

5.8, Block diagram‘of the overall algorithm for éuppressing

‘impulsive noise and normalizing background drift. ........... viersisnssieseennenn 6.
59 A‘»di.git'ize_d EKG signal sequence from an aﬁalbg EKG simulator. TR & ( 1
’ 5.10: A s'ample noise sequence....;..’......' .......... roeemssesimessiasinasessins ........ 79

. 5 11. An EKG signal corrupted by addltlve noise and basehne drlft
(512 data pomts SHOWN).vierereesarrereesivoriossenssivenens seessiusasisusiosssssssiseseasses80



ix

f‘Flgure L SRR B R _ o ' P:a_g_ev

5. 12 An EKG SIgnal corrupted by addltlve nmse and basellne drlft I
(3072 data pomts shown) terereri s sasasssa s sesssesesssresetnrsaseserenes 8 1

5 13 Structurlng element used in the 1mpulswe n01se suppress1on PR
algorlthm ............ cosnssisbieese eesssserseetesseiosesrtatstsriessnranereane BT ST 83

o 514 Structurlng element used in the background normahzatlon - o :
R algor1thm for removmg peaks ....... s s aeas eevesesavasiereneseres 84

” 515 Structurlng element used in the background normahzatlon

algorlthm for ﬁlhng plts ..... sevsesseesnacnse 84
516 ,Result after processing the lnput data shown 1n‘F1gure 5. >11 | _ , . S
o ‘(512 data points shown)......‘ ....... S vossasserenee ssesssstsrsasnessansasasaiiess 85
5,17, Result after processing the lnput data shown in Flgure 5.12 ‘ .
S (3072 data points shown) ...... 86 |
518 A.n EKG mgnal corrupted by 1ncreased addltlve noise and basellne ,

. _drlft (3072 data pomts shown) ...... cerererereasans etismasennes SO oo 88 |
519 'Result after processing the 1nput data shown in Flgure51889 - :
| 520 N01se suppresswn performance as measured by d191 ':

- 521 Norse suppression perforrnance as measured by d,....... 93
, _,5;22' :Noise.‘sup‘pression performance as measured' by doo95 )"
» 5.».23. EKG siénal hearily corrupted by impulsiue»noise. 96
524 ~Result of processmg the data shown in Flgure 5. 23 ........ ..... v"_;":._ ..... 97 o
525 »Structurlng elements with dlﬂ'erent ’7 ‘Yaluesf ..... 99

.'7-5_.'26. “Noise suppression performance_ as measu-red’by‘ dy of the o
’ parametric structuring element with - set at 0.5. sesserssessssiessasishisartes 101

- . 527 N01se suppresswn performance as measured by d, of the , ‘
P parametrlc structuring element with -y set at 0. Buvrreeranes cevsireeriesnrinsens 102



o } 529 N01se suppress1on performance as measured by dl of the

CFigawe ... Page

5'.2,8.>jN01se suppressmn performance as measured by d of the’ DRI ,
o _parametrlc structurlng element with -~y set at’ 0 5 103 »

104

- ,parametrlc structurlng eleme_nt Wlth N set at 3. .
' .5».30-.- rN01se supPressmn performance as measured bY dy °f the o
A parametrlc structurmg element Wlth N set at 3 .,.'o~-_‘~--_-?»--:cb’-'v---":;‘4-'-'?-j',-:-'.~,~,"'105 |

5.31. Noxse suppress1on performance as measured by do of the . ” o ‘
, parametrlc structurmg element Wlth N set at K J ‘.....;...,._;"._'..}'._.},4.;106 S

B 5.32. N01se suppressmn performance as measured by d, of the JEE S A
R .parametrlc structurlng element with. ¢(N) set ab 5ueevririiensiererieniennn 107

5.",.’33." 'N01se suppress1on performance as measured by dz of the IR TR
‘parametrlc structuring element with q(N ) set at 5. '"»‘°";“."','-""-"-:°°"" ...... 108 -

- 534 | Norse suppress1on performance as measured by d, of the = o ‘
o parametrlc structurlng element W1th q(N ) set at 5.........;'..'.:.'.:,..vr.‘.-;;._‘..,_,.,109__ Lo

- 535 Amount of mod1ﬁcatlon of sampled smus01dal 1nput as o
S ‘measured by dy plotted against input frequenc1es T e
'and sampllng rates...............‘.v.,...r..,......‘.._,., ........ v.,.'......_.v.:.._'...‘;‘.‘;..'.._.-.,V_.‘f.‘..".}.'.-.‘;..’.1‘1‘4

536 Amount of modification of sampled smusmdal input: as.
B " measured by d, plotted agamst 1nput frequencles - e ,
S and sampling rates...‘..'.'v...‘.’...“.v ..... , ......... cesevereeseisearanesse 116

’ 537 vAmount of modlﬁcatlon of sampled s1nus01dal 1nput as -
measured by .d, plotted agalnst 1nput frequencles o R
j.--and samphng rates ..... ..... siisrerisessnsisssrenrissideisiesiors 118

o 538 A sequence of EKG s1gnal class1ﬁed as of excellent quahty, » : NS
from Tape 117 of the MIT-B]H Database wiieseisnsnrenesssrsnosesn ..»,...,;.‘:.,,;.,_..';.'.Y1I2_0 ,

’ 539 A sequence of EKG 31gnal classrﬁed as of excellent quallty, , .
- from Tape 219 of the MIT-B]H Database ivecesisensiiraeastonens ,....;;;.5‘;,.'.;..121 '




Figure ‘

xi

5. 40 Result of noise suppressmn on the data sequence shown in e

Figure 5. BBttt a e s soes 122
5.41. Result of noise suppress1on on the data sequence shown in 4 ,

Flgure 5.301ciieniiennirneionecnresorsaseseriersssentannnnsens sresasestessassssasssssasisarssaaise 123
5.42. Result after baseline correction and noise suppresswn on the

data sequence shown in Flgure 5.38. cerirerenneniiinenenneenie sessessaesans ceeee124
5.43. Result after baseline correction and noise suppressmn on the -

- data sequence shown in Flgure 5.39. cereirercnninniiniiees SR e 125

5.44, A sequence of EKG signal shQWing baseline Wander, from Tape 111

of the MIT-BIH DatabaSe. ceesssisressssinnnttsssssirrananasennasssnssrenai svseseisesreres 126
5.45. Result after baseline correction and noise suppression on the

data sequence shown in Flgure 544, civeeiiereririnereeneserassnrsesnssssessnnaneens 127



xii

ABSTRACT

D-igital 'two—dimensional echocardiography is an ultrasonic imaging teeh-
nique that is used as an increasingly important noninvasive technique in the
comprehensive characterization.of the left ventricular structure and function.
Quantitative analysis often uses heart Wa_ll motion and other shape attributes
such as ;the heart wall thickness, heart chamber area, and the variation of these
| ;attribvutes throughout the cardiac cycle. These analyses require the complete
-deterrnination of the heart wall boundaries. Poor image quality and large
,arnount;of. noise- makes computer detection of the boundaries difficult, :

' An .'aigorithm to detect both the.’inner and outer heart Walﬁl boundaries is
, presented.'-} The algorithm was applied to images acquired froni animal ,stvudies»
and from a tissue equivalent phantom to verify the perforrnance. “Different
approaches to exploiting the temporal redundancy of the image data without_
making use of results from image segmentation and scene interpretation are
explored. A new approach to perform image flow analysis is developed based
on the Total Least Squares method The result of this processing is an esti-
mate of the velocities in the image plane In an image understanding system,
| 1nformat10n acquired from related domains by other sensors are often useful to
| the analySIS of i 1mages Electrocardlogram 81gnals measure the change of electr-.
) .'1ca1 p_o_tentlal changes in the heart muscle and prov1de 11mp_ortant 1nformat_10n

~such as the timing data for image sequence analysis; Thes‘e. 'signals:‘ are



xiii

frequently plagued by impulsive muscle noise and background drift due to
patient movement. A new dpproach to solving these problems is presented
using mathematical morpho_logj. Experiments addressing various :;épécts of
the broblem, such as algorithm pér_formance, choice of operator paraméters,

and response to sinusoidal inputs, are reported.



CHAPTER 1
INTRODUCTION

' 1.1. Digital Two-Dlmensmnal Echocardlogra.phy

, Dlgltal two-dimensional echocardlography is used as an 1ncreasmgly _
important noninvasive technique in the comprehenswe characterization of the

left ventrlcular structure and function. Two-dimensional echocardiograms are
| ultrasonic images depicting cross-sectional views of the heart. The cross-
vsection"s are. taken either longitudinally, commonly referred to as the long-azis
view, Or. latltudmally, commonly referred to as the shori-azis view. The
short—ax1s view is frequently used to monitor the left ventricle, which is the
maln pumpmg chamber of the heart [Bri83]. The wall of the left ventricle in
- a ‘short-axis view is defined by an inner endocardial boundary and an outer .
epicardial boundary. Under normal conditions of the heart, the left
Ventricular wall contracts and relaxes uniformly from diastole to systole back
to: dlastole At end systole, or full contraction, up to 80% of the ’inher
: chamber area as measured at end diastole is ejected. The motlon is'such that
the inner ‘boundary contracts more than the outer boundary, resulting in a
thickening of the ventricular wall as it contracts. When a heart is ‘diseased,
such as after myocardial infarction, the left ventricle demonstrates irregular
motion due to parts of the heart wall moving much less than other parts. The
significance of this irregular heart wall motion and decreased ejected volume
or area is that théré is insufficient blood supplied to the circulation system.
To cons1der the effects of therapy or drug treatment, for example, momtormg
of the left ventricle throughout the cardiac cycle is required.

Quantitative analysis of cardiac function ma.kes use of the shapes of the .

boundarles, the: heart wall thickness, the area enclosed by the inner boundary, :
“and monitors their changes throughout the cardiac cycle [Eat79]. These and
other apphcatlons such as three—dlmensmnal organ modehng of the left
‘ventricle [Gei82] require the detection of the inner and outer boundarles of
.the left ventrlcular wall from. two-dlmenswnal echocardlograms



. Current studies in this area often require the tedious and time-
consuming ‘process -of having - expert operators outline the - boundaries.
Frequently, only the end-systolic and end-diastolic images are processed by
human operators for analysis. This is unsatlsfactory since dlﬁ'erent parts of

| the ‘ventricle have slightly different peak contraction points in the cardiac

¢ycle, and- the differences are even more pronounced when regional ischemia
occurs [Col86]. The problem associated with the arbitrary selection of an
“end-systole frame, together with the need for a description of the systolic and
dlastohc wall motion pattern, require that every frame of the cardiac cycle be
analyzed. Other applications of this labor intensive process to trace the heart

wall boundarles include surface reconstruction in organ modehng when a

‘number of images taken from different angles have to be processed to obtaln |
points in three-dimensional space. Automatic determination of the boundaries
by computers is thus needed. Furthermore, automatlng the process would
" 1mprove the rehablllty of the quantitative analysis by ehmnnatlng the

i F1nd1ng boundarles in echocardlograms automatlcally by computers 1s'
'often difficult because of the poor quality of the images. None of the attempts '
at automatlng the image segmentatlon process is rehable enough to replace the

e human ‘operator comp]etely [Br183] Problems such as low 1mage 1ntensxty"

_contrast, dropouts in the image, and boundary discontinuity in any given |

' 71mage are due to the intrinsic limitations of echocardlographlc 1magmg Anl .

'echocardlogram is formed by first sending a pulse along a ray from a
transducer towards the organ that is being imaged. Compared to other‘,
imaging techmques, the pulse used in echocardiography is of relatlvely low
‘,energy and low- frequency. When the pulse hits a medium w1th an acoustlc

' .1mpedance different from that of the medium in which it is travehng, a copy

of the pulse with reduced energy is reﬂected while the remanmng portlon
travels on. The amount of energy that is reflected back is a measure of the’
drﬂ'erence of the acoustic impedance across the boundary The transducer acts

T asa recelver after transmlttmg the pulse and measures the time it takes the
- pulse in transut to compute the distance of the boundary. The accuracy w1th‘
- which an echocardlographlc system can measure the dlstance traveled by a

: pulse, or the resolution attamable by that partlcular pulse, increases wnth the
frequency of the pulse. In practice, since the energy of the pulse dlmlmshes as
it travels, the postprocessmg of the reflected srgnal includes time: gain control ;

o - that compensates for the attenuatlon of the signal over time. The amount of
ey energy attenuatron decreases wrth the frequency of the pulse Hence, a




'tradeoﬂ' is necessary between the amount of energy loss and the resolutlon of o
. the image acquisition system {Br183] ‘ S

S Assumlng the pulse travels at a s1ngle speed in the body, and by ta,klng ’
'dlﬂerent .Tays across a plane, a two-dimensional record of the recexved energy.
7 in spatxal coordinates represents a cross-sectronal view of the organ Dropouts

v "m the echocardlograms are caused by reverberatrons of the pulse bounclng - kR

;between the boundaries of the heart wall, and by speckle noise- caused by the

;backscatterrng ‘of the incident wavefront after it hits the tlssue

' mlcrostructures Another limitation of this' imaging technlque is that the ‘
‘reﬂectlo 1 is not very pronounced when the angle between the boundary of the :

. '-organ and the ray that the pulse is traveling along is small. Hence the lateral S

parts of the heart wall boundarles are usually not very well deﬁned in the
| ‘lmages [Bud85] ' - '

L 2. Overvxew of a Computer Visron Approach

A computer vrslon system extracts lnformatlon of a scene from g
observatlons made in the form of images. The information loss i in ‘the i 1mag1ng -
v 'process that produces the two-dimensional images has to be compensated for
by some other means. Thls problem is further comphcated by the presence of
noise or by 1mages that are of low quality. A widely used method. is to use
,vdomam speclﬁc knowledge to constrain the solution in 1nterpret1ng the 1mages '
~This'is. possrble in situations where the variety of contents in an image is

- restrlcted and more 1mportantly, where the objects in a scene ‘can . be_

_descrlbed in‘a form suitable for computers. An example of such srtuatrons is
machine - vision in industrial settings, where computer-aided" desxgn ‘
information of machine parts is available and can be readily incorporated in a
computer vision system. The descrrptlon of objects in natural scenes is less
’well understood making specifying a prwra knowledge more difficult. '

, Other passive methods for disambiguating images are more deslrable than
_those using directly specified knowledge because the passive methods are
potentially applicable to a wider range of situations. An almost intuitive
approach to resolve ambiguities in the interpretation process is to i increase the.
amount. of observed data in the hope of including more information albelt ‘at
the expense of more processing work. More data can be observed by vmvmg '

the scene from different viewpoints, referred to as stereo vision, or by viewing 3

' the scene for a period of time, referred to as dynamic scene analysss The . “

challenge here is to ensure that more 1nformatnon is in fact included in the -

: ,_,extra data, and that there is a known way to recover them.. As we shall see,



- ‘thls" is by’ no' means trivial. In most sltuatlons, the 1nterpretatlon process;f |
cannot be solved by a slngle method LT

Computer vision has been applled to machlne parts mspectlon, remotef_ '

‘ ‘sensing -and - photo lnterpretatlon ‘Each appllcatlon has “its: own: o
. characterlstlcs, in medical image understandlng, ‘the ‘‘scene”- or- “world”

'restncted to known normal and abnormal anatomy [Bri83]. Forelgn objects ~
are not expected to appear in these images very often. On the other hand,

| j,_j.rs trueof other natural scene understandlng problems, natural objects such’ as'j |

human organs ‘and anatomlcal relations are difficult to describe preclsely o

- Very. few human faces are 1dent1cal for example, desplte havrng the same R

' components. B

Current echocardlography studles often make use of very tradltlonalv .

1mage processing methods [Gar85], and . some hlghly problem-speclﬁc image - -

. analysxs algorlthms that lmphcltly ‘make use of heart anatomy knowledge’ .
- Flndlng the heart wall boundaries in' echocardiographic images, in terms of a

o _?computer vision system, is an ob]cct detection problem, which is one: of ﬁndmg

o . covered in the followmg chapters

" the. boundary of a region on an’ image plane that corresponds to the i image of

an’ object ‘In thls section, the detectlon of heart wall boundarles is- cast 1n‘_'” S

= terms of a hlgh level computer VISIOD system A computer vision system for':j ‘

= a control strategy for hlgher level analysxs to determlne the obJect lo at n A o

typlcal conﬁguratlon of such a system is shown in Flgure 1.1.

Image processmg algorlthms are mostly numerical’ operatlons and thelr-: S

’ j main goal is to transform the image data so that a symbolic" representatnon' _b
can ‘be produced for interpretation processes. Algonthms that detect spatlal’ o

features such as intensity edges, and those that detect temporal events such as

: 1mage motlon, can provrde mformatlon for ‘the extractlon of heart wall '

= boundarles “Attributes of detected features and events are also. useful in
’ mterpretatlon processes.. The attrlbutes of an edge segment mclude edge‘

, strength local orientation, length and. vanatxon of local orientation along 1ts"»
length The detection of edges and image motlon m echocardlograms w1 -be

: A_"f control strategy mampulates output from the 1mage ossmg .

algorxthms to determine the boundary: location. An example of the’ operatlons»v '

- taken by the control strategy is the classxﬁcatlon of each detected i 1mage edge o
segment as elther part of the inner heart wall (endocardlal boundary), part of S
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the paplllary muscle, part of the outer heart wall (eplcardlal boundary), or an »
artifact due to ‘noise. o S

High level analysis is used in a computer vision system to. 1ntegrate'
multxple sources of information to form an estimate of the heart wall location -
in the image plane. Sources of information include specific knowledge about
the heart a.natomy and results obtalned from the image data by image
processing algorithms. The two ‘most 1mportant functions for high level -
* analysis in object detection are classification of detected 1mage features and |
: mterpolatxon to form a complete boundary estimate. '

Classification is the process by which detected image features such as
edge segments are assrgned semantic labels, such as parts of heart wall
paplllary muscle, Or an noisy artifact. This mapping is useful for recognizing
the image contents, and for eliminating norsy artxfacts from being included in
the mterpolatlon of missing points based on detected data. An 1nd1v1dual :
‘ edge segment is typically labeled based on its measured attrlbutes, specific
knowledge about the scene, and, in the case of feedback systems, partxal ’
results obtained from a previous classification [Ten77]. Saied Tad

. The form of knowledge representation plays an 1mportant role in
determlmng the choice’ of algorithms used in higher level analysls I the

C obJect boundary can be represented by exact mathematical forms, curve

fitting methods can be used to determine how well an image curve- fits the
ob_]ect boundary 'While an exact representation of the heart wall boundary is
often unavallable, these methods can be used for approx1matxon of the
_ boundary by curves such as circles or ellipses. ' :

Hough transform methods [Bal81] are another class of algorlthms that
make use of a set of parameters to describe a contour. A parameter space
”hlstogram of the observed data is formed, and a peak in the hlstogram
: corresponds to the set of parameters that is the best fit for the contour

Dlsadvantages of these methods are that ‘histogram formmg and the o

subsequent peak finding can get unwreldy when the number of parameters

~ grows, and that the spatial structure of the data is often ignored [Low84] o
Again, whlle an exact representation of the boundary curve may not be
" available, Hough methods ‘can be used to approxxmate the boundary curve by:
ellxpses or circles, or by using a boundary found in a previous frame as a
template. Those data points that correspond to parameters that dev1ate
‘subst_antrally from the peak can be treated as noise and rejected. R



If the @ priori knowledge can be represented as rules governing. the
_appearance of an image, a rule-based system can be used for high level
analysis. A rule is an antcccdent-consequcncc pair [Nil80]: the anteccdcnt
describes a condition of the observed data, and the consequence descnbes
,actlons that will be taken if the antecedent was met. The actions taken can
be a deCISIOD making or some further processing by image. processing
algorlthms Rule based analysis has been applied to angiograms [Sta86] and
aerial i 1magery [McK85] for object detection. More recently, there have been
:attempts a.t using expert systems concepts for recognizing segmented reglons
in echocardlographlc images [Tuc85]. These attempts have limited success
due to the assumptlon that the images can be segmented successfully. |

There are different ways to organize a computer vision system An
'obvmus approach to search for the heart wall boundaries is to use image
processmg methods such as edge detectors to detect image edge segments
followed by a clasmﬁcatlon scheme that makes use of @ priors knowledge to
locate the heart wall boundaries from the detected edge segments. This is
commonly referred to as a data-driven system. Depending on such factors as
the 51gnal-to-n01se ratio of the observed data, the degree of precision of the
know]edge representation of the object and its background, other choices such
as a goal-dlrected approach may be more suitable [Oht85]. For example, in
“the presence of a large amount of noise, the control strategy in a data-driven
system w1ll have to search for the correct boundary from a large number of
, candldate segments, most of which are false responses to noise.

A goal-directed system uses the problem specific knowledge both for
detectmg ‘edges, and the subsequent classification of the detected edge
segments. A feedback system also uses the knowledge of the heart anatomy
~both for detecting edges and in classifying the detected edge segments.
Furthermore, any information gathered after an initial classification is fed
back to the edge detection step to improve the detection. Since only edges
that are likely to be heart wall boundary segments are detected initially, the
control strategy in these systems can be made relatively simpler. The
disadvantage is that problem specific edge detectors are usually not stable
with respect to noise or imprecise knowledge representation.

A nonpurposive-segmentation feedback system uses edge detectors that do
not make use of a priori knowledge to perform the initial edge detection
[Oht85]. High level knowledge is used to further classify the detected edge
segments. Information derived from an initial classification is fed back to the
classification scheme itself or to the attribute measurement step to improve



“the performance

‘The problem of detectmg heart wall boundaries in the echocardlograms is
dlscussed in Chapter 2. It can be seen that while some success can be
expected from processing a single frame by itself, much of the mformatlo,n in
therdata'lie in the temporal redundancy. The use of image sequencebalilalysis‘
‘techniques is presented in Chapter 3. A new approach based on Total Least -
Squares method for image flow analysis is presented in Chapter 4.
Electrocardiogram signals is often used to provide timing information for
- echocardiogram data acquisition and for assisting the image sequence:
‘analysis. ‘A new approach to perform impulsive noise suppression and
_ background normalization of electrocardiogram signals is presented in Chapter

5. Future work and conclusions are covered in Chapter 6.



CHAPTER 2
DETECTING ENDOCARDIAL AND EPICA.RDIAL BOUNDARIES

2.1. Introduetlon

In thls chapter, algorlthms for detectmg heart wall boundarles in
echocardlograms are surveyed. Algorithms reported in recent computer v131on
and 1mage processrng hterature are surveyed, and their sultablhty for
‘processing echo images is discussed. A new algorlthm developed for detectlng :
heart - wall boundarles in a single frame of an echocardlogram sequence 1s
' presented '

A typxcal heart wall boundary detectlon procedure in echocardlography .

studies has three steps [Sko85): (1) preprocessing by smoothing, (2)
enhanclng the image so that areas with high intensity variations would have
hlgher values whereas areas with more or less constant 1nten31t1es would have'
'lower values, a.nd (3) identifying the smgle contour that represents “the
boundary of interest from the enhanced image. In terms of the model shown ‘
_1n Figure 1. 1 steps (1) and (2) are image processmg algornthms, ‘while step (3) '
is the control strategy. :

Image processmg step is- typlcally performed by using 3X3 operators such
~ as the Sobel or the Laplacian- operators. After the image processing step,
strategles ‘that have been used for extracting the the heart wall boundary
contour include [{Sko85]: radial search, binary image forming with subsequent
contour tracklng, and ‘prior constraints’” of an operator-assigned_ starting -
border. . ' ' : ' S .
In cOntour tracking methods, all potential edge points are 'marked
initially; a procedure for tracking the border would then sequentially look for
the edge points making up the boundary in the marked pixels. In the “prior
comtta;nts” driven methods, the boundary in the initial frame is outlined by’
an operator Boundaries in subsequent frames are then found by using ‘the
initial boundary and other a priors knowledge such as the shape of the

ventricle, or the maximum rate of wall motion. |



Radral search methods start from a pomt mSIde the heart chamber and

T ,search radlally for the endocardlal border These methods are: attractlve o
ﬁ because the most promlnent image feature in the echocardlographrc 1mages s o -

“ - ) gradrent magmtude

= often the i inner chamber. Due to the physrcal reason that there is no trssue to
- reflect the ultrasonlc pulse, the i 1mage 1ntensrty for ‘the heart chamber has a _
: :g-somewhat consrstent typlcally low, _value The problem of havmg to pICk the o

' ‘contour out from among the many detected edge segments i is also avorded :

Other control strategy functlons that have been used for postprocessmg- :
"are mamly used for filling in ‘missing pomts by 1nterpolat1ng nelghbors, "
- [Zha84], linking and smoothing detected boundaries [Tams85, Chu86] A cost
o 'functron could be used to evaluate. every detected boundary pomt to remove

C responses due to noise [Eze85] e R J

. o 2 2. Detectmg Intenslty Edges in Echocardlograms

- An lmportant class of lmage processing algorlthms for detectmg heart; RN
o »wall boundarles are those that detect edges. Since the heart wall b°11ndar1es.i : =
are 1maged as 1ntensrty edges, any attempt at detectlng these boundarles :

wo ld necessarlly incorporate an edge’ detection step Heart wall boundarlesf

L ‘aged in echocardlograms as mtensrty edges, whrch are pomts where the: S
. image 1ntensrty changes from one level to another ‘In the contmuous' domaln, R

e ':ﬁndmg edge pomts is done by locatmg ‘the - signal drscontmurtres ‘ot by." e
drﬁ’erentlatlng the signal and. markmg the points where the derrvatl" es' have: -
SaE large values When dlgltal 1mages ‘are processed ‘these methods ‘have’ to' be

: ’apprOxrmated by taking ﬁmte drﬁ'erence of . nelghbor values. Flmte drﬁerence

- ~ methods usually produce a large number of false responses whlle mlssmg L

- "v.kchanges that vary-less abruptly

S A typlcal enhancement/ threshold type edge operator enhances the“ S "
o orlgmal 1mage at each plxel by using a finite dlfference method to estmate the

gradlent magnltude The ﬁmte difference operators ‘are usually 1mpl‘ entedj.

as 3X3 or 5X5 masks to produce edge strength values, which “are. _then"' :

’thresholded to form edge pornts ‘An example of this type of edge op : s
_the Sobel operator, which. has been used to process echocardrograph1 im: ges»,~ -
.[Sk081] “The Sobel operator estimates the directional derivative in two.
"'-orthogonal drrectxons and measures the edge strength by the estrmate f ‘the ,

LR Thresholdmg gradlent magmtude maps results m thlck edges,
o : locatlon of_‘ boundarres amblguous Postprocessmg such as edge vthmnxng 1s ‘_

making the” B
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v :::needed to produce smgle pixel wxde edges Nonma.xxmum suppresswn of '
: gradlent magmtude, or lateral inhibition [B1n81], essentially redeﬁnes the edge
‘as the local maximum of the gradient magnltude Since the local maximum of

: '”a functlon corresponds to a zero-crossing of the derivative of that functlon,__ .

- applylng a Laplacian operator followed by detectmg zero-crossmgs has been
, used to detect edges [Eze85]. : ,

Slnce nonse is accentuated by. takmg ﬁnlte dlﬂerences, 1mages are often ‘

-preprocessed by a linear smoothmg operation. Torre and Poggio: [Tor86] B

~consider numerical differentiation as an lll-posed ‘problem and show that it

.’:QShOllld be ‘preceded by a ﬁltermg step. The combination of smoothmg and
'dlfferenclng steps results in larger operator 51zes Shanmugam et al. [Sha79]
',develop an optimum filter in the sense that it produced maxlmum energy
7wnthm a resolutlon interval of specified width in ‘the vicinity of the edge Marr o
'and Hildreth [Mar79] use a filter with the shape of a V2G functlon, where V2

is the Laplaclan operator and G is a Gaussian function. Edges are found by

‘detectlng the gero-crossings of the Laplaclan of the image smoothed by a
Gaussmn shaped filter. Canny’s operator [Can86] is designed to maximize the
detectablhty while minimizing the displacement of the detected edge segments ,
- _Thls operator is shown to be well approxlmated by the derivative of Gaussxan -'
, /operator Edges are detected’ by smoothing an image by large Gaussxan-,-
. 'shaped masks ‘before detecting gero-crossings of the second derivative along

the dlrectlon of the gradient of the smoothed image. All of these recentlyr'

\developed operators are much larger than the. 3><3 or 5X5 operators commonly :
, employed in echocardiography studies. ' :

“'The facet-model ‘based methods con51der image intensities to be noxsy .
'observatlons of a signal that can be expressed as a linear sum of a set of basis
functions, ‘The values of the derivatives of the signal are estimated by fitting
the derivatives of the basis functions to the observed data [Har84] A set of
cubic polynomxals with two variables are chosen as the basis functlons and the
- ﬁttlng is done on local 11X11 neighborhoods. An edge point was detected by
ﬁndmg the gero crossing of the second directional derivative along the__
dlrectlon of the gradient. It should be noted that despite their phllosophncalf
: dxﬂ'erences, the facet model based method and the window operator ba.sed‘»

methods such as the V2@ operator or Canny’s operator, are equwalent from" ‘

- .a data processnng point of view.

An lmportant issue when enhancing the images with wmdow operators is

to determme the size of the operator to use. Operator size can range from the

.usual 3X3 to 11X11 [Har85, Har84] or even up to 35)(35 [Gr185] The questlony



| ‘F;of what can be rehably detected from a noisy 1mage is. central to the problem‘.:‘. =
-of locatlng or identifying. obJects in the i image plane. This has a partlcularlyf

, ' _sxgnlﬁcant 1mpact on the choice of the size of edge detectors For the purpose o
wooof using the edge points to achleve obJect location later on, only spatlally-
S slgnlﬁcant features should be detected lnltlally, even if there are relatlvely few

o L 'such ponnts ' Features that are detected based on. lnformatlon from a large D

, area »of image plane or over some srgmﬁcant tlme perlod are less hkely to have'f
beeni ,.caused by false responses of the detector to noise. Even théugh there . -

o dlﬁ'iculty 1n formulatlng rules for rejectlon and deductlon

may be “features that ‘are of smaller scale that can be detected after an

‘estimate of the scene has been established, the initial recogmtlon process.;' o

’ should certamly not be based on all small scale features that may be found.

Smoothlng by small w1ndows tends to result ina lot of false detectlons: -

. due to: 1nsuﬁc1ent noise suppressnon, while smoothmg by large wmdows tends .
" to result i in a lot of true edges being mlssed It should be noted that human

X observers may prefer the results obtained by ‘using small window. operators L

o }smce human vision systems are very proﬁclent at reJectlng false detectlons and

deduclng ‘structures. Computers have not matched human performance in . L
" these two areas due to the sometimes overwhelming amount of data and the_:- SR

‘ The wmdow size chosen for preprocessing -the echocardlographlc 1mages -
can be much larger than the 3)(3 or 5X5 windows commonly reporte

o ; v.f_i»'For example, the window size is 41X41 for the results reported in Section 2.3 .
RERE There mlght be : some concern about using such a large wmdow when the edgesv s
i 'v_ﬂare vxsnbly ‘washed out.” A large window ‘should be used preclsely becausef' ’

.. ‘the signal is weak 80’ that more information i is available to make a declslon

S The dxsadvantage of using a large ‘window is that nearby edges may be_

o merged ‘thus resultmg in dlsplaced detected edges

" The. detectors dlscussed thus far are malnly concerned wrth ‘dev1smg'
_ elaborate schemes to accurately estlmate the- derlvatlves of an mpu age‘."'
'After the estlmates are obtained;. the decision of whether an edge is present or

- not i is made based on relatlvely slmple decision strategles such as thr esholdrng' ,

B the gradlent ‘magnitude at local maxlma of gradlents The dlsadvantage of

R 'usmg such a sunple strategy that only local mformatlon is. used More e
. sophlstlcated declslon strategles are ‘usually based on employmg 'global,ﬁ',

o 'mformatlon and are thus more desrrable in low slgnal-to-nmse sltuatlo‘

The amount of mformatlon used to detect an edge is limited by the slze' |

N j :v._of the operator As the snze of the operator mcreases, more globally sxgnlﬁcantj -

: k085] o
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edge‘segment's are detected, at the expense of missing finer details in the
image, and possibly at the expense of displacing an edge due to the me_rg‘ingf of
tvéo nearby edges. Thus, detecting edges at multiple resolutions is desirable -
for ’detecting accurate and significant edges. Integrating the results from
: dlﬂ'erent resolutions, however, remains difficult. The Marr-Hildreth scheme
[Mar79] detected edges at five different levels and combined the results by the

heurlstlc that edges found at two successive levels are marked as true edge ,' :
points. S

l : A.n operator with a' large spatial support makes no dlscnmmatlon
:between 1nformatlon that is relevant to the edge detection process and :
1nformatxon that is not. Sequentlal edge detection methods [Eic85] improves
on. thls by gathering more information in the decision strategy through

*collectlng mformatlon along an edge segment instead of around an arbitrary _' :

large nelghborhood Since the additional data points taken into account by"
the decision strategy have more relevant information, the performance of
sequentlal edge detection is improved. Unfortunately, sequential edge '
_'detectlon has not enjoyed as much success in echocardiographic 1mages as
'compared to other cardiac imaging appllcatlons [Eic86]) due largely to ‘the
sxgnal dropouts in echocardiographic images. :

oo AllL of the operators discussed thus far detect intensity edges w1thout
speclﬁc consxderatlon as to whether they are on the heart wall boundary. As
noted in  Section 1.2, a goal-directed system uses specific problem domain
information in the detection of edges. Schudy and Ballard detect boundary
- points using the a priori knowledge of the heart chamber shape [Sch79]. The
heart  chamber surface is modeled as a linear sum of spherical harmonics,
which are generalizations of the Fourier functions to the surface of a sphere.
The boundary points are found by fitting the basis function to the image data.
"Another example of detecting edges in echocardiograms by using specific
- problem’ domain knowledge are those procedures that use a one-dimensional
difference operator to detect edge points along each search ray starting from a
point inside the heart chamber [Del82, Tam85]. These one-dimensional
methods necessarily ignore the information provided by the two-dimensional
spatial structure of the images. In the presence of a large amount of noise, it
is partlcularly important that all the information be used for detectmg edgeg B
or other i image features. o



“

2.3.. A New A.lgorrthm _

A new algonthm for detecting both endocardial and epicardial boundanes'- o
' ‘1n echocardlographlc images is now presented. This algorithm serves two} —

s purposes -besides extracting high level tokens for interframe matchmg, we .‘
also lnclude a linking and interpolation process to 1nvest1gate how Well smgle :

 frame processing can perform. The algorithm is based on the nonpurposwe_ o .

segmentation approach. It consists of three steps: (1) edge detecting by a
general edge detector, (2) radial search for. initial edge- estimates, and (3) '
_ ,nonhnear]y processing the edge estimates to compensate for dropouts and poor -
-’_'contrast An overview of the algorithm is shown in Figure 2.1. Part:al results

' at various steps are used to guide further searches for missing points. -

Echo data are acquired from animal studies and from a t1ssue-equ1valent ’
: phantom with known measurements. Samples are collected in polar’
" .coordinates along 98 different 'rays scanning a horizontal cross-section of the
left ventricle of the heart. Each ray consxsts of 288 samples wrth 6 blts of

gray-level information per sample. The mtersample distance is 0.5 mm Each —

study con31st1ng of a sequence of 36 images (3 cardiac cycles), an image is

1nterpolated into rectangular coordlnates before the portion' W1th slze 256)(256. P

that contalns the regxon of mterest is extracted for processlng

The enhancement step is performed by applying a window W1th Gaussmn"
.-_wenghtmg to the images. ‘As noted in Section 2.2, the window slze used 1s__-
: 41)(41 for the results shown below.. After the smoothing operatlon, the
dlscrete approx1matlon of the ‘Laplacian operator is apphed to the entlre

o image. “This step, together with the smoothing operation, can be comblned as .

a smgle VzG operatlon, ehmmatmg the need for a separate approxlmatron of .
“the Laplaclan operator [Mar79]. Figure 2.2. shows the sign of the VzG
’operator after it has been apphed to an image. Those pornts where the
"Laplaclan value changes sign from posntlve to negative are ‘considered to be '

| boundary points. Instead of detectmg the edge point based solely on. the o
: mformatlon along ‘each ray as in Del82, Tam85], the zero-crossing pomts. -
, found here are based on the mformatlon derived from a much larger wo-

dlmensmnal nelghborhood

A.fter all the edge points are found by the nonpurposlve segmen 3
step, a rad1a1 search is used to find the endocardial boundary by locatlng the’
. zero-crossmg points. Since there are not enough intensity: variations in some,._'
. parts of the image, only part of the boundary will be detected mxtlally Thls,}.' a
, 'of course, was in part due to the wmdow size used in the enhancement step
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Figure 2.1. Overview of the algorithm for detecting inner and outer heart

wall boundaries in echocardiograms.
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Figure 2.2. Sign map of applyi.%s s V2G operator. Left: Original image.
: Right: Sign of the V°G operator after applied to the original

image. Bright regions correspond to positive values and dark
regions correspond to negative values. .
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The advantage of using a large window is that the detected segments are very
reliable, since they are due to significant gray level contrasts. The search
center is defined by a human operator. To avoid detecting the epicardial
boundary while looking for the endocardial boundary, a limit is set for the
search distance along each ray. A different set of limits is subsequently used
for detecting the epicardial boundary using a similar radial search. The
search limits are typically set at 20 pixels.

After the radial search, if there are no edge points found for a particular
ray, edge points are searched for in the original picture. The search area is
defined by the neighbor edge points that are found in the initial radial search.
Figures 2.3 to 2.5 show some typical results of the edge points detected using
this technique. -

After the initial detection of the edge points, further processing had to be
done to remove the false edge points and to fill in missing edge regions. The
distance of each edge point from the search center is plotted against its
angular displacement from a reference axis. This plot is shown in Figures 2.6
and 2.7 for both the inner and outer boundaries found in Figures 2.3 and 2.4,
respectively. A one-dimensional median filter is used to remove spurious

impulses contained in this distance-angle plot. For the examples shown, the -

window size is set at 5. Median filtering is knowt to be effective at removing

impulse noise while retaining the original values of the signal when the noise is
relatively low in value {Gal81]. To avoid using an overly large window to fill
in drop-outs, or missing points, that occur for a large number of successive
rays, the missing points are linearly interpolated by the neighboring values
before the median filtering operation. This processed distance plot defines a

new reconstructed boundary. The processed distance plots are shown in

Figures 2.6 and 2.7. Figures 2.3 to 2.5 show the results of the reconstructed
boundaries. _

Although the radial search method significantly simplifies the detection
and classification steps, one major weakness in this method is that part of the
boundary can be missed when the search ray is almost parallel to the
boundary since it is difficult for the search to look for either gradient or local
maximum. Such a situation occurs, e.g., when the curvature of the boundary

goes from convex to concave, such as in the region when the papillary muscle 7

protrudes into the heart chamber. In extreme cases, part of the boundary
might be occluded by the protrusion (see Figure 2.8).

\
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Figure 2.3. Detected boundaries in phantom. Upper Left: Original image of
phantom. Upper Right: Detected raw edge points. Lower Left:
'Edge boundaries after processing. Lower Right: Detected
boundaries superimposed on the original image. ‘
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Figure 2.4. Detected boundaries in “baseline” dog study. Upper Left:
Original image. Upper Right: Detected raw edge points. Lower
Left: Edge boundaries after processing. Lower Right: Detected
boundaries superimposed on the original image.



Figure 2.5.
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Detected boundaries in “post occlusion” dog study. Upper Left:
Original image. Upper Right: Detected raw edge points. Lower

- Left: Edge boundaries after processing. Lower Right: Detected

boundaries superimposed on the original image.



Figure 2.6.
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Distance-angle plots for phantom study. Starting from the top:
Distance-angle plot of the inner boundary in Figure 2.3.
Distance-angle plot of the outer boundary in Figure 2.3.
Processed distance-angle plot of the inner boundary in Figure

2.3. : '



22

Figure 2.7. Distance-angle plots for dog study. Starting from the top:
| Distance-angle plot of the inner boundary in Figure 2.4,
Distance-angle ‘plot of the outer boundary in Figure 2.4.

Processed distance-angle plot of the inner boundary in Figure

2.4. Processed distance-angle plot of the outer boundary in

|  Figure 24. N
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To improve the estimate, 2 secondary search is conducted whenever the
distance between successive endocardial boundary points is above a threshold,
which is set at 5 in our experiments. This simple secondary search is not
intended to be a general purpose linking procedure and does not guarantee a
resulting connected boundary linking the two points. Instead, it is restricted
to our application by assuming that only a small portion of the endocardial
boundary is missing, and that the missing portion has a simple shape. As
discussed before, after processing the original image by an edge detector, such
as the V?G operator, there is an initial edge map marking the edge segments.
In the discussion that jollows, we assume the edge detector is the Avlel
operator and will refer to the edge segments as the sero-crossings. The
secondary search algorithm works on the edge map and always extends the
endocardial boundary along gero-crossings. By doing this, the search is quite
conservative in that it either terminates or is not conducted in areas where the
intensity variation is too weak.

The algorithm seeks to link up two points, at least one of which is
assumed to lie on a sero-crossing segment, although they may not necessarily
be linked by a single sero-crossing. We shall denote the two end points where
a gap exists on the endocardial boundary as A and B. If neither A nor B lies
on 8 sero-crossing, the search is pot conducted. We can now assume A is
initially a sero-crossing point. The algorithm attempts to track from A to B
by moving A, point by point, along the sero-crossing segment. A move is
made if it will bring A closer to B. The algorithm stops if A is moved to B,
or if A cannot be moved any closer to B. The search terminates if B is not 2
gero-crossing point; otherwise, the algorithm tries to move B closer to A. This
repeats alternately until neither A nor B can be moved any closer to each
other, or until they are linked to each other.

The limitation of moving the two end points closer to each other at all
times is justified since we do not want the searching path to wander too far '
from the initial boundary. A direct result of this constraint is that the angle
between the line segments AB and AA' is never larger than /4, where A
denotes the point to which A is to be moved. This is consistent with the goal
of linking A and B by the simplest and shortest possible path guided by the
sero-crossings. Figure 2.8 shows the result of conducting this secondary
search to extend the endocardial boundary. .
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Figure 2.8.

Boundaries found after secondary search. Upper Lefi: Original
image. Upper Right: Detected raw edge points for endocardial
boundary. Lower Left: Endocardial boundary after secondary
search. Lower Right: Detected endocardial boundary
superimposed on the original image.
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L 2.4, Veriﬁcgtioh of Detected Boundaries , o
L V?Iidating the accuracy of ‘the detected boundaries from the edge
: detectioq, algorithm is difficult to perform because it is impossible to directly
~ measure the left ventricular boundaries sn vivo. Different methods cof
validating results obtained by computer processing of echocardiograms include
- _comparing. the» results with those hand-traced by trained experts, and with )
direct measurements made from excised hearts [Col8s)]. ‘ SRR
| A’n:,'glt’ernative method of verification is to process images of a tissue-
,equi‘v'.arlei;t; phantom with known dimensions. However, even in this case, the

__ac_gpx{acy_fof the results, as determined by comparing them ‘with known o

di_xng_ﬁs_iogs, is limited by the accuracy of the imaging system that acquires thgi.‘-:
_ _da,taj.; "I_‘/hg;.-: algorithm was applied to 16 images of a phantom with incr_eésix_;é s
i‘mi_ér‘_aﬁdf,puter' diameter to simulate an image sequence depicting a }Ca}’diaé-_’
‘qycl:q.f jTl;e;;diameter of the automatically determined boundaries gorrélz}ted :
hlghly with the known phantom dimensions. For the inner bouﬁdafi, the

correlation coefficient was 0.995 with a 0.88 mm. root-mean-squared error over "

a range “of 30 to 50 mm. true diameter. For the outer bourid'a_i"y,-"‘jthe'
correlation coefficient was 0.997 with a 3.83 mm. root-mean-squared error over
'a;"_r,aipgé'bf” 60 to 72 mm. true diameter. Figure 2.9 shows a pl'ot::of"_f_ﬁe

dia;inétei's‘(ibtained experimentally compared to known dimensions.

- e 2.5. Summafy o s
},Vg‘A._qu‘.blj:igﬁyv'summarize, a new algorithm based on the use L of _e‘a;r'l)?
processing methods to detect features, subsequent processing such as

classification and interpolation to correct the expected errors in the early o

detection, and a further secondary search Process to ensure an accurate

- estimate was presented. We have also overviewed the computer vision area
‘and .discussed the efficacy of applying some of the techniques to identify the -
left ventricular wall. ' : ' PR

. For the results shown, a V2@ operator is used for early detection of I

edges. Other operators such as the directional zero-crossing detector [Har84]_;
had also been used and equally satisfactory results were obtained. :Us'ing
window operators larger than the conventional small windows allows multiple -

resolution methods to be incorporated in the edge detection procedure. The e
algqrithm can be developed into a multiple resolution Processing scheme by )
using a large window smoothed image for initial detection of major edge

segmegtg‘,:-ffquOWed by smaller and smaller windows until a complete bou dary .
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'1s found

‘The algorlthm presented in Sectlon 2.3 has 1ts llmltatlons, although lt
__could form the basis for further advances in methods of boundary detection in
echocardiograms. As it is basically extended from the radial search method

- ;the algorlthm incorporated much of the limitations, such as the needs for

,,operator-asmgned search centers and search .limits." The lmprovements' .
;prlmanly come from more advanced image processing procedures, in the form- B
- of the: larger VviG operator which provides more reliable initially detected
edge pomts, an effective postprocessing procedure to reject noise points; and a
secondary search necessitated by the limitations of the radial search. ’

_ The hmltations can be overcome by using the results obtamed in pre’viOus:l-
frames to establish the search center and hmlts for the current frame. Tt
should also be noted that even the ideal 1mage gray level ‘edge does- not

always correspond to the true left ventrlcular boundary. The solution to

~achieve a completely automatic segmentatlon of the echocardlographlc 1mages-5' ‘

is through the use of hlgh level symbolic reasoning. The work reported here =

should ‘be considered as the first step of the 51gnal-to-symbol translatlonz
_ process that is essential to the bulldmg of the overall system for 1dent1fy1ng, '
" the left ventricular wall from its background. To be successful, such a system -

N needs to exploit the temporal redundancy of the image data, which requlres-_‘

. that it establish the attributes of image features, such as their velocities in the -
: 1mage ‘plane. In the next chapters, we shall be considering the determmatlon '
of such mformatlon from an 1mage sequence
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CHAPTER3
IMAGE SEQUENCE. ANALYSIS

- 8.1, Intrcductvlon

. Informatlon such as the motion pattern of the ventrlcular walls 1n an
echocardlogram sequence is inherently dynamic, necessitating the processing of
a sequence of echocardlograms Furthermore, extracting information from an
image sequence is particularly useful in situations where the 51gnal-to-n01se B
ratio of each image frame is low; this is similar to the approach taken in
’ classrcal ‘detection theory that seeks to improve the performance at low
srgnal-to~n01se ratio by increasing the number of observations contnbutlng to
the decision. In this chapter, we shall first examine past work in processrng ’
echocardlogram sequence, followed by a broader view of image sequence _
analysis in computer vision. Our concentration will be on the extraction of
motion information without using results from image segmentatxon or scene.
mterpretatlon

A ‘straightforward way to reduce noise in echocardiograms is to take the
average ‘of several i image frames. Due to the gross motion of the heart walls,
averaging several successive frames [Eze85] tends to smooth out edges that are
moving. An alternative is to average several image frames taken from the
same location of the cardiac cycle [Sko81, Bud83]; aligning the image frames
is dlfﬁcult to implement accurately in practice, however. Moreover, the heart
is moving in a three-dimensional space, with lateral motion across the i image
plane and vertical motion. This would introduce errors when taking averages
of several image frames, oﬂsettmg the advantage gained by noise suppression.

In [Zha84], an image frame is thresholded to locate areas with image
motion for detecting edges. A loeal threshold is determined for an 1mage :
_region from a temporal cooccurrence matrix, which is a matrix defined for a
pair of image frames. The (¢,5)th entry of a temporal cooccurrence matrix is
the number of pixels that has, at the same location, intensity value ¢ in the

first frame and intensity value j in the second frame. The threshold 6 is
selected by maximizing '



P(e) S E M+ E S M,

1=1.4>0 >0 ]=l

C where‘M § 1s the (5,7 )th entry of the temporal cooccurrence matrlx, and K lS-

_the maxlmum image intensity- level All p1xels with values - below this S 3

threshold 9 represent stationary points, while points above the threshold :

represent movxng points. This ‘method is sensitive to drop—outs and spurlou’s o

o noise that often plague echo images largely because thresholdmg, as is true of 5
' all other pointwise image processmg operatlons, 1gnores the two—dlmensmnal_;_'; o
- spatlal information of an 1mage : e

= Most other efforts at usmg the temporal information in processmg‘
. echocardlographlc 1mages have been ad hoc in nature, such as ‘treating a

" binary ‘ultrasonic image sequence as three-dimensional data and applylng_'r N
. nonlinear processrng techniques for removing noise and filling in dropouts; o

[Ver79], using edge points found in the neighboring frames to fill i in dropout )

‘edge points. [Zha84]; and frame differences to aid edge searching [Bud83]

These techniques have often failed due to the gross motlon of the heart caused
: by temporal undersampllng : ’ :

Smce edge detectlon is percelved as an 1mportant step of unage-

'v processmg, a natural extenslon to edge detectors that operate ina srngle 1mage{ , .'

s frame is an enhancement operator that finds time varylng edges, whlch are
) edges that have moved from one frame to another. In [Her78] a three-

: dlmenslonal edge detector is used as a time varylng edge detectors by treatlngﬁ o
’the temporal axis -as the third - axis. Since the edge model used by this -
o perator ‘does not dlﬁerentxate between the temporal dlmenswn and spatlal o

dlmenswns, the operator tends to produce two responses when- the mtensrtyj
-~ jump across time frames is larger than the intensity jump in the spatxal o
coordinates. When the movement of the edge is larger the spatlal edger

strength, the operator produces responses at two dxﬁ'erent locatlons where the e

| ~edge was’ mltlally, and where the edge ended up after the motion - [Hay
' Thls makes it difficult to d1st1nguxsh between the above scenario and the
" where there are actually two movmg edges. SRR

In [Hay83], moving edges are found by combining the temporal dlﬂ‘erence

;and the edge strength in a single frame by a logical AND operator Thxsg", _

operator is implemented in practlce by forming the product of a dlﬂ'erencef_
picture for two frames and. the spatial gradxent magnitude map for one of the
~ frames. . While thls is. an improvement to using a three-dlmenswnal ‘edge
v 'detector, lt can be problematlc when the edge is not well formed in one frame._
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A pair of echocardiograms are shown in the top half of Figure 3.1. Moving
edges are detected by forming the product of a difference picture and a Sobel
edge magnitude map. The product map is shown in the lower left of Figure
3.1. The pair of images are also processed by smoothing using a 21X21
Gaussian shaped filter prior to the moving edge detection. The result of this
processing is shown in the lower right of Figure 3.1. The temporal difference
alone may not be enough evidence to allow the detection of the moving edges,
as can be seen in Figure 3.1. '

There have been increasing interest in image sequence analysis for general
computer vision. Analysis of an image sequence can be conducted at different
levels of 2 vision system [Nag83a]. Motion information extracted from a
sequence of images provides important cues for processes at different levels in
a vision system. At the signal level, motion information is useful to augment
processes such as image segmentation; at a higher level, processes such as
scene interpretation will benefit from information such as the three-
dimensional structure of objects as recovered by analyzing their motion. One
of the goals of image sequence analysis is to establish the motion parameters
of objects in a scene. Image sequence analysis, in general terms, shares a
surprisingly large number of issues encountered by other vision tasks such as
feature detection and object identification. For example, instead of matching'
subimages to special features such as edges, or matching objects in a scene to
a machine part stored in a library, image sequence analysis matches items
found in an image to those found in another image. After such matches are
established, the motion parameters can be computed. Depending on the level
that the analysis is operating on, the matching item could be pixel values,
image features, or parts of a scene object. The search for matches in an image
plane prior to recognition of scene contents is commonly known as the
correspondence problem.

There are at least two ways of detecting motion: following landmarks in
an image sequence, and deducing motion in scenes without explicit landmarks.
Correspondingly, there are two mechanisms in human vision systems for
image sequence analysis: a long range and a short range mechanism [Un179).
Landmark tracking is done by first detecting edges or gray level corners
[Nag83b] from each image and matching them from frame to frame [Roa79].
The immediate problem of applying these processing in echocardiogram
sequences is the lack of gray level corners in the images. More importantly,
unlike images containing man-made objects, gray level corners in different
echocardiographic images do not necessarily correspond to the same point in



Figure 3.1.
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Detecting moving edges. Upper Left: First frame of original
image pair. Upper Right: Second frame of original image
pair. Lower Left: Detected moving edge from image pair.
Lower Right: Detected moving edge from image pair after
smoothing by 21X21 window. Moving edges were detected by
forming the product of a difference picture and a Sobel edge
magnitude map. :
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lthe scene The matchlng rules for features are obvmusly dependent on the'v-.
level of the features High level features are easxer to match, but they cannot:
- be. detected rellably in echocardiographic images. Examples of higher lew'el"i

eratures are ‘the tip of the papillary muscles (defined to be. the point w1th_ :
' 'maxlmum curvature along the boundary, for instance) and ponnts ‘where: the' o
‘paplllary muscles meet the endocardial boundary. As we progress to hlghera‘ '

level feature matchlng, problems such as an approprlate data structure,g;_
?rellablhty of feature ‘detection, formulatlng matchlng rules would have to be

addressed - The boundaries between motion analysm, image segmentatlon and o

'scene 1nterpretatlon are less. deﬁned at this stage; it is reasonable to assume »
'that th‘ = _i:.:processes would mutually benefit each other in a complete system

he long range. mechamsm by tracking landmarks or tokens, is. used m.
human ision- system primarily for malntamlng the perceptual 1dent1ty of
A _:movxng obJects” [Ull79] The problem of determlmng structure from ‘motion -

_ 1s almed at recoverlng the three-dimensional relationship of object parts based '
,on analyzmg the obJect motion in. the image plane [Tsa84] The
,correspondence problem -is cons1dered to have been solved by some other -
methods; the application of these long range methods to echocardlograms 1s f‘.
"obvxously llmlted ' :

7 The 1ssues assoclated w1th the correspondence problem in" lmage motlonv '_
analysm are encountered in another image analysis domain, mage rcgtstratzonb
and. mappmg, whlch is concerned with images of the earth surface taken from -
~high altitude by elther satellites or aeroplanes. In remote sensing, matchmg is

: performed on images taken -at different times. In photogrammctry, the i

i matchmg is performed on 1mages taken from dxﬂ'erent viewing angles. Other.,v
apphcatlons include matching observed lmages to a reference map. ‘In ‘a

survey of image registration and mapping techmques [KasS3], it was

‘concluded that syntactic, or landmark based, methods are more sulted fOl"p _»
_hlgh sxgnal—to—nmse ratio images while statlstlcal methods are more suited for -

low: srgnal-to-nonse ratio images. An equivalent view is that there is a lower v,
~bound of "signal-to-noise ratio for the reliable detection of landmarks.
Furthermore, it was concluded that no one technique is universally apphcable

and that a mixture of both methods are needed i in most apphcatlons Smce,-;;;;;-,

one of the ‘motivations of analyzing an image sequence is to handle situations

where - scene mterpretatlon or image segmentation cannot be - performed»],;: _'
_,rehably, 1mage sequence analysis is most important at the early stages of 2~ -
vision system. In the remainder of this chapter, we shall analyze the problem T

of deter mg ‘motion 1nformatlon without usmg the result of 1magev -




f'segmentatron or scene lnterpretatron

The d:splaccmcnt vcctor of a poxnt on an 1mage plane is the posltlon‘:

change of the projection of an obJect point due to the change of vxewmg angle. -

.between the sensor and-the obJect point. A change in the: vrewmg angle canf
,}lﬂbe caused by the dxsplacement of the sensor, or the movement of the obJectr .
~point, or both. The displacement vector is thus an approxxmatlon to the_ .
iveloclty of the image point. At the signal level, the processing performed'-'to N
estnmaté the veloclty is based on the assumptlon that the intensity Val that -

o correspond toa reglon in a scene do not change drastlcally from one frame to o '

‘another This assumes, among other. thmgs, that the lighting condltlon stays, '

o 'vv.the same in general computer vision. In echocardlography, this- means that P
- the time gam compensation settmg has to remain unchanged durmg the entlre. PR
' q-_»-data acqu1s1tlon perlod ' RO n SRR

Dlsplacement vectors are determmed by matchlng image pomts obtarned :

e 'm dlﬁ'erent image frames. Since- the intensity: values are not, rehable enough;» SRR

vfor pomtw:se matchmg, the matchlng is based on ‘a local nelghborhood of the'_;

pomt Estimators of this nature cannot have arbltrarrly high accuracy and
. resolvxng power srmultaneously Performance of any estlmatron procedure can..”

o '_ "be measured by the resolutlon capablhty and ‘the accuracy of the result o .

Lo ‘Accuracy is determmed by how close the computed dlsplacement vector valuesf_,

are to. the ¢orrect values. Resolution refers to how well two dlﬂ‘erentf{. :

o ‘_'dlsplac ment vectors can be resolved In practlce, resolution amounts.,to .how o

C "vahd’a ‘constant velocity can be’ assumed for a patch on the i 1mage plane_

:f"'The correspondence problem can be v1ewed by consrdermg the followmg:- ',

Iz(i') P(S(D(?))),

'object that generates the'i 1mage mtenslty values In a general vision’ problem, :'_l
it would be the reﬂectance of the object surface that is being illuminated. In )

o echocardlography, it is the amount of energy that is bemg reﬂected',;_”'ac];. to” . '

the - receiver at ‘a partxcular pomt of the orga.n P is the operator -thati’ :

pR »-represents how S is mapped onto the image plane D is the operator that

-~ represents the deformatlon that S'is undergoxng In general ':E’ and Wll];"-': e
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‘have different dimensions. Since echocardiograms are cross-sectiona‘l ‘views,
they are both of dimension two, however. Equation (3.1) can be simplified to

| Lfzy)=S(Ey) +mizy) 0 (32a)
| Lz y) =SP@Ey) +nley) - (32)

Here, we assumed the image projection operator P only adds nmse, A
‘represented by n, and n, A further assumption is that we are conSIdenng
‘cross-sectlonal views or parallel progectlon, where the distance of ‘the object
from the 1mage plane does not affect its appearance, or its pro,]ectlon, on the
1mage plane ‘We have also used z and y to represent locations both on the
image plane and in the scene. The problem then becomes: recover D by
observmg I i and I, in the presence of noise.’

D is generally modeled as an affine transform, which can represent rigid :
body rotatlon and translation. An affine transform D that maps pomts in R2 ;
‘ to po:nts in l'n?.2 where R is the set of real numbers, can be written as ' '

bl

(z y,) > z-—l 2 represents two points on the R? plane. Aisa 2)(2 matrlx and :
it represents the linear transformatlon component of D, constrained by the
‘fact that 1ts determlnant is nonzero. Denoting the ¢,jth entry of A as a,,, if -
(1) 011—022, (2) ay5=—ay,, and (3) the determinant of A is equal to 1, A
represents a rotational matrix. If only conditions (1) and (2) are met, A
represents a rotational matrix with a scale factor equal to the determinant of
A. The translation component is represented by (¢, ,)T An affine
transform is known for mapping lines to lines, collinear points to collinear
* points, and noncollinear points to noncollinear points. These properties make
it a suitable choice to represent rigid body motion in a plane that is parallel to

I
Y1

the image plane. Rigid body motion here refers to the case where different o

parts of the body having the same image plane motion parameter.
Deformatxon of obJects can be approxlmated as locally rigid [Web83]

In general without a good model of the image formation process, i.e. .o
’ wnthout knowmg how S maps 7 into intensity values, it is difficult to- mvert v
the process Hence, the solution is usually limited to searching for two i 1mage ,
' regnons w1th sxmllar variation characteristics. R



Sy Intultlvely, matchmg based on local nelghborhoods has to depend on the Bt e
' fmformatlon in the form of mtenslty variations in a partlcular nelghborhood S
S ‘Moreover, in a two-dnmensronal ‘setting, a match is only posslble in’ the'f
. dlrectlon where there is enough varlatlon In the vrclnlty of an 1deal edge

'f","fwhere the only intensity varlatlon is along the gradlent dlrectlon, only ‘one. 1 - |

o ~component of the displacement can- be estlmated ‘This is referred to as ‘the

aperture effect [un7g). In Flgure 3.2, we see a square being translated. When,: L
' .f:consldenng a local nelghborhood ‘as. represented by the elhpse, only one} o

- component of the true velocity can be obtained. It can also be seen that the

only pomts with enough 1nformatlon to recover the true veloclty are: the four: . L
~corners, hence the promlnence of gray—level corners in 1mage sequence analyslsi R

L [Na383b]'-if:i- e

3 2. Reglon Based Approach

o The ’:i__eglon based approach selects a sublmage contamlng the 01

o which '1t is: computlng the dlsplacement vector It then searches i in ’the second,f :

| “;unage a sublmage ‘that best fits the first subimage accordmg to certam{

L _crlterlon The most commonly used criterion is the mean squared error, whlch';_ .

) leads ‘to the correlation of a subimage with a larger search area for matches.

S Correlatlon methods have’ been used in other computer vision. appllcatlons_“i ,_ |

o ;'such as stereo matchlng [Yak78]. Common eriticisms include - [Arn83]: "
g utatronal expense, 1ncorrect results when dealing with. occluswn,” poor-\'_ Lo

e accuracy ‘when compared to feature based methods, and lack of guldelm to';ib{.‘; . =
o choose matchmg nelghborhoods Typlcally a constant sxze, such as 88, L
N wmdow is used for correlatlon The use of the. autocorrelatlon functlon is

o *‘noted for being helpful in evaluatmg the suitability of a sublmage for

= :‘matchmg [Yak78] In [Mor77], an interest pornt detector, which evaluates the -
. directional sampled variance of a sublmage, is ‘used to find sultable points- for:'v_’
N estabhshmg matches between two dlﬂ'erent frames of an image sequence "

Itis mterestmg to note that except for the dlmenslon of ther.,

o correspondence problem slmllar to. the orlglnal echocardlographlc data';‘_‘ )
| "-__acqmsltron or the radar slgnal Pprocessing problem As we have mentloned in
R V. Chapter 1 in. radar or. echocardlographlc systems, a signal is- transmltted and' .
o van echo 1s recelved after bouncmg oﬂ' a target The receiver has to detect thef' E
T exxstence of a returned signal . from the observed data and in’ some‘"; ‘

o fiapplxcatnons, to cstlmate relevant parameters of the returned sngnal?

fef ren

of the ‘model represented by Equatxon 3.2, ny is ldentxcally zero",.f: i1
; ce;slgnal is known It is. the aspect of detectmg a known slgnal
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Figﬁre 3.2. The aperture effect.
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~ that is similar to the correspondence problem. Due mainly to the a.ssumptioh

of white Gaussian noise, correlation is established in radar signal processing as
the optimal method for detection. Radar signals are designed based on their
ambiguity functions [Fra8l], which, in the time-domain, are the
autocorrelation functions of the radar signal. The problem of choosing a
subimage for matching by correlation can then be viewed as choosing, from a
large collection of signals, the suitable ones based on the radar signal de51gn
criteria. '

~We can look to other signal processing disciplines to find issues similar to
those facing correspondence problems. In sonar signal processing, the
correlation method is used to determine the time delay between signals
received at two spatially separated semsors in the presence of uncorrelated
noise [Kna76]). This problem, which conforms to the model represented in
Equation 3.2, appears to-be even more similar to the correspondence prcblem
than does the radar detection problem; after all, the radar sngnal is itself
noiseless while both received sngnals in sonar are noisy. The main emphams in
sonar thus far has been on tackling the noise problem by the design - of
preﬁlters to accentuate the signal passed to the correlator at frequencles for
which the signal-to-noise ratio is highest and SImultaneously to suppress the
noise power. -On the other hand, the major obstacle in correlating sublmages
is not noise, but rather that one of the subimages is frequently a rather
' severely distorted version of the other.

Perhaps the major factor for restricting the use of correlation techmques
- -in image motion analysis is the problem of rotation of portions of an image.

In [Mos81], optimum windows are found for registering two images based on
two-dlmensmnal correlation. Geometric distortions included in the analyms is
modeled by a linear transform of the coordinate axes, which include” rota.tlon
and’ scalmg of the coordinate axes. Performance measures used to denve thef
optimum windows include a peak-to-sidelobe measure and regxstratlon €error.
Maximizing the peak-to—mdelobe measure improves the detection of peaks in
the correlatxon function; minimizing the registration error improves the
accuracy of the match after the true peak is found. A small amount of
rotation (up to 5°) is considered to be tolerable in in choosing optlmal
wmdow One possible solution to larger scale rotation might be to use a bank
of matchmg signals, each of which is a rotation of the original subimage, to
match in the second image. The number of such matching signals is
dependent on the tolerance of each to rotation dnstortlon, or equlvalently, the’
number is dependent on the performance demanded. : '
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Correlatlon methods is claimed to produce incorrect results in areas
where occlusion occurs [Arn83] To be specific, consider the situation when a
portion of an object which is occluded in one image is uncovered in another
image. Suppose the subimages that are to be matched were chosen such that
.one of the subimages contained the_ uncovered portion. Since parts of the two
subimages are indeed different, the correlation method will fail. This has been
used as a convincing example of why a feature based method should be used.
It is usually claimed that since occlusion occurs in areas with edges, by
detecting edges and subsequently matching them, feature based methods are
immune to the occlusion problem. On closer examination, however, the
'performance of the correlation method is degraded, but it does not actually
break down

Suppose the first signal is made up of a nominal part and an occluded
part, and the second signal comprises the same nominal part and a different
occluded part. The correlation of the two signals is the sum of the correlation:
of the nominal part, the cross correlation of the nominal signal with the two
occluded parts, and the cross correlation of the two different occluded Pparts.

" The degradatlon of the performance can be viewed in terms of the cross -
vcorrelatlon terms, and is also dependent on the ratio of the extent of the
nommal part to the occluded part in each signal. It is important to note that
the cross correlation terms are constrained by the fact tha.t the typical case
mvolves the occluded parts and the nominal signal being on opposite sides of -
an edge Hence the correlation function will be ﬁattened since the nommal
part will not have much intensity variation; yet there is a limit to the
- degradation of the performance since the peak will still be in the vicinity that

corresponds to a correct match. This is further justified by the fact that
- without such constraints, other methods such as feature based methods Would
also fail due to insufficient information for feature detection.

3.3. Trangformation Approach

The transformation approach computes the motion parameters that by
ché.ra.cterizing the difference between two image regions. Unlike the region
based approach, the transformation approach does not explicitly search for
matching subimages. One of the image regions is assumed to be a deformed
version of the other, and the nature of the deformation is either known or is
modeled by some known distortions. The deformation is commonly modeled
as translation, rotation, or scale change. Here, scale change refers to the
dlstortlon of the coordinates, not the scaling of the image intensity values.
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Parameters of the deformatlon is related to the motion parameters, and they:
are. computed by transforming the two regions into an approprlate domam‘
where the ‘parameters of the deformation are made expllclt For example, if
'the deformatlon is translatlon, the translation component can be easlly
determmed by using the Fourier transform and its well known relatlonshlp of
-spatlal translatlon and frequency phase shift. R '

In [Ja187], a complex logarithm transformatlon is used to normahze the '
rotatlon and scale factors to compute depth of objects from the sensor.: Image_*
‘ *'pomts in. rectangular coordinates, denoted by z and y, are converted to the

fcomplex loganthm space by first representlng (z,y) as a complex number'
‘z=1z 4+ jy. zisthen mapped to the complex logarlthm space. by w = log z,
where w = u + Jv ‘u and v are determined by: : : ' *

u(r,0) =logr
and % o
e Cu(rf) =6,
'where:-. ; A
R _ o reJ”

The transformatlon approach to the correspondence problem is srmllar to
the pattern recogmtlon problems, which frequently have to match observed_
srgnals toa reference signal in a pos1tlon, rotation, and scale invariant. domain.

- Itis 1nterestmg to note that computatlonally, the complex logarlthm mapplng
differs from the Fourier Mellin transform [Cas77] only by a last step of taking
,‘ the Founer transform along the logr coordinates. Indeed, this has been
~ conjectured in [Jai87] but was- dlsmlssed for lack of ev1dence that such a
N transform takes place in biological visual systems. ‘

~'The limitation of having to model the deformatlon as one of translatlon,f
’ _rotatlon, and scale change amounts to constraining the scene obJects to’ be‘:_i
’ undergomg rigid body motion. Moreover, a large number of pixels is needed '
- for the computation of the transformatlons Typically the the entire i 1mage, or

at least a mgmﬁcant part of it, is used to compute the motion parameter (see, -
~ e.g., [Jai87]). Hence it is further limited by the constraint that the motion -
‘ parameter which is to be computed is uniform over the entire 1mage region
that is transformed. This approach only allows one to determme 2 coarse”‘
estlmate of the global motlon parameter L a
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3.3 Image Flow Approach

' The 1mage flow approach evolves from the optlcal flow research which
orlglnally at least, addresses the situation where the sensor is in motion and -
‘the scene is statlonary [Mar82] The SIgnlﬁcance is that every point in the
1mage plane has a nonzero velocity, except for the focus of ezpansion, whlch is
the apparent origin of all velocity vectors in the image plane. The lmage flow
,approach is based on determining a velocity component from the
spatlotemporal gradients. This approach is based on an 1mpllc1t match,””
which assumes that the same intensity value is reglstered in the i image plane
at dlﬁerent frames for the same point in the scene. Hence, we can wrlte '

I(z,y5t) = I(z+d,,y+ stt+dy). o (3.3)

By usmg Taylor expansmn on the right hand sude of Equatlon (3.3) and
ignoring the hlgher order terms, the velocity information can be determlned_
~from an 1mage sequence by measurlng the spatlotemporal lntenSIty change~
[Fen79] :
Oz 0t Oy Ot _3t

where 1 represents the lntenmty as a function of spatial coordlnates z and Y
and time t. The left hand side of Equation (3. 4) can be lnterpreted as the

inner product of the veloclty vector

ot . ot
‘with the 's'patlal gradient vector v rv
o [31 3I

- By computing VI and 81 /Bt from the given images, the component of v

- along the direction of VI can be determined.

R Equatlon (3. 4) is derived based on the following assumptions [Fen79]
(‘aL) the _sa.me image intensity is registered for a fixed point of a physlc'a"l’-_ -

R “'.ob'ject from different viewing angles, hence a change in the intensity
1 'values over time at a fixed pixel location must equal the change over
 space- at. some fixed time; : ‘

(b) the i xmage intensities can be modeled as a linear function locally, '
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e (c) the 1mage motlon can be modeled as a linear functlon locally, ie., the B
R ob,]ect is undergoing rigid body translation on- the image plane

" Since only one component of the velocity vector can be determlned from

Equatlon (3.4), the component of the velocity vector that is perpendlcular (in:.

- the image plane) to the gradient direction has to be found using some other - |

~ information. Horn and Schunck [Hor81] assume that the velocities’ vary

"'smoothly and average the veloclty components over a nelghborhood to
calculate the velocity vectors Hlldreth [Hil83] computes the initial- velocxty' ’
Acomponents for points along a contour, and then estimates the. true veloclty‘

" vectors by minimizing the variation of the velocity along the contour. All of

, ,these ‘methods are computatlonally expensive, highly -dependent on Whether

- the . smoothness - of velocity variation assumption holds, and - cruclally'

dependent on the accuracy of the 1n1t1al estlmates of the veloclty components
) ;based on Equation (3.4). s S

| Besldes the dlfﬁculty of estlmatlng the mlssxng veloclty component there '
are other dlsadvantages of this method. In practice, - VI. is-- usually

o approx1mated by some numerical differentiation methods, while 91 /3t is

usually estimated by s1mply subtractlng one image from another. Numencal;_
[dlﬂ”erentlatlon of noisy data should be preceded by data smoothlng to
compensate for the accentuatmg effect of the differentiation step on: norse, as
- discussed in {Tor86). However, the temporal samphng rate is usually very low
51n echocardlography images, making averaging a large number of consecutlve‘ |

- frames 1mpract1cal ‘While the data can be spatlally smoothed by a relatlvely
' vlarge w1ndow, smoothmg the data over time, if performed at’ all is still

v '_hmlted to a very small number of frames, typlcally no more - than threer_”
‘.'frames We shall take a closer look at an 1mplementatxon of the 1mage ﬂow;
Vapproa.ch in the next chapter s ‘ :
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CHAPTER 4
TOTAL LEAST SQUARES BASED
IM.AGE FLOW ANALYSIS

4 1. Estimating Dlsplacement Vectors

 Estimating dlsplacement vectors in image sequence analysis is used to
derive velocity vectors on the image plane. One approach is to directly search
for matches from frame to frame; i.e., solve the correspondence problem. An _
alternative is to use the image flow approach, which assumesim;ilicitly a
match exists for every point on the image plane. This basic assumption means -
that any change in the intensity values over time at a fixed pixel location must
equal the change over space at some fixed time (Equation (3.3)). From this
simple assumption an image flow equation (Equation 3.4) can be derived
[Fen79]. A one dimensional example is shown in Figure 4.1 to illustrate the
principle of theA image flow equation. The graph of a line with slope m is
shown being displaced from left to right by an amount d, from time ¢, to ¢,.
Denoting the line at instances ¢, and tl as go and g,, respectlvely, it can be
seen that at a fixed point zy: o o
- m X d, =—( g;(z0) —'90(30)) - (41)
The linearity of g, and ¢; and the uniformity of translation is obviously
essential to the validity of Equation (4.1). The image flow equation relates the

spatial gradient of image 1ntensxty I to the temporal intensity gradient, and is
‘now restated as:

I v, + I, vy =—I (4.2)
. - oI a1 oI |
where I, = 32’ I, = Ta-;, I = L

. 0
v, = 6: and v,=—a-¥-.

It is not dlfﬁcult to visualize Equation (4.2) as an extension of Equatlon (4.1)
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to two dlmensmns Indeed Equatlon (4 )isa speclal case of Equatlon (4 2)_.

- in the vicinity of an ideal edge, i.e., one which has no intensity change in any
direction other than that of the gradlent direction. In general, Fxgure 4.1 stlll S

- depxcts correctly the cross—sectlon plane taken along the gradient dlrectlon ’

' Us1ng the same notation as in Chapter 3, we denote the spatlal gradlent |
ﬁeld of the image 1ntens1ty Tas . :

. "V’_ [ } |
)

By determxmng ‘the components I, I, and I, the component of the
dlsplacement vector in the direction of the local ‘intensity gradlent can. be»
.determlned The magmtude of thls component, vp, is given by

VIl A}
I - VI

By computlng only one component the esults computed usmg Equatlon (4 3)
have to be used in conjunction with other assumptions to recover the “lost” -
component ie:; “the component that is perpendicular to the gradient dlrectlon

~and the'v‘el‘ocity‘vector as -

u-'u " (;1 3).__-_

‘Computing lig, Il for individual points using Equation (4.3) have been

- known to produce noisy results [Ja187] and this has limited the apphcablhty SRR

of the results to any subsequent processing. There are many factors that

could contrlbute to the unsatisfactory results, such as the absence of a true

match due to the invalidation of the basic assumption by input image n01se,
" unstable - data acquxsltlon condltxons, or image areas being uncovered -or
obscured by scene object occlusion. Incorrect matches may exist when either
the spatial or temporal samphng rate is too low. Regardless of whether a
correct match exists, a numerlcal value computed according to Equatlon (4. 3)
s generated. Whereas in the region based approach, a search for a match can
result in an exphclt failure, either due to lack of potential matches or due to

. too many ambiguous matches, there is no such mechanism in the i 1mage ﬂow

approach ‘to. handle these: sltuatlons Either post-processlng will have to

dlstmgmsh between correct results and incorrect ones, or preprocessmg have o

: to be: performed to minimize the mcorrect matches. '
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Figure 4.1. One dimensional view of the image flow equation.
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The eﬂect of the temporal sa.mphng rate on the accuracy of the' '
lmphclt” match can be seen from the following simple example. Suppose the
1srgnal consists of a single sinusoidal s(z,t) = sin(27f,(z+vt)) and that we;—'

v f:observe § ﬁrst at =0 and then at t=T,. If we want a match to be correct o

7__'~the phase term f,vT, must be less than one; i.e., the ma.x1mum velocrty v
v that can be correctly computed must satisfy: ;

1

<7 P
It then follows that as the temporal samphng rate drops, the spatlal resolutlon__
has to decrease. Conversely, if* a high spatlal resolution is desrred the
‘maximum. veloclty range is hmlted for a fixed temporal samphng rate.
Analyses that are more rigorous or ‘those that do not appeal to smuso:dal_
- models of signals are hindered by the fact that alternatlve models of “real”, ‘
' 1mages are still lackxng : : ‘

An alterna.tlve view of Equatlon (4 2) is- T
| VI =-—I, o T (44)

. The spatlal gradlent VI becomes an operator that maps the veloclty v to form
the observed temporal gradlent value. The goal of the estimation problem is
~ to determme by observing I; and VI. ‘This formulation 1llustrates that the
problem is an inverse problem, and it is ill-posed in the Hadamard sense
: because the solution is not unique. Determining a smgle component of v only
constrains the true solution to lie on a line (see Figure 4.2) . Furthermore, in
the presence of noisy observations, the solution ~may not vary contmuously
wrth varymg ‘observed data. Estimation results of problems of this nature lSV

‘ »known to require tradeoffs between accuracy and resolution capabrhtles” '

‘[R0087] More speclﬁcally, one can expect a- proper approach is to
approxlmate the correct solu_tlon When a coarse approximate is established,
it may not contain fine details, but it does not deviate severely from the
~correct solution. As more details are resolved, individual estimates may start
to be severely corrupted Factors limiting the level of resolutlon to contamv _
_arbltrarlly high detail mclude srgnal-to-noxse ratro of the data and the error
: amount tolerated.. - ’ "

In’ Chapter 3, we descnbed the aperture eﬁ'ect when only local |

| mformatlon ~available to estimate displacement vectors; from the above' :

drscussron, 1t is obv1ous that the image flow approach, more than any ‘other

L mtroduced m Chapter 3, 1s especlally sensitive to thxs effect. As we. mentxoned
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-

Estimated velocity
component -

this line

S i . - ; 7 - ’vx o
‘ : 7 / - True velocity lies ,onx I

Figure 42 Constraining the true velocity.
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before, estimating a component of V" constrains the true solution to lie in a
line. If the scene object is undergoing rigid body motion, i.e., all parts of the
“object are moving with the same motion parameter, ¥, in the image plane, the

. true V' can be uniquely recovered by applying Equation (4.3) to two. points of

~the body that have different gradient directions. This solution obviously. has
~its hmltatlons natural scene obJects are not always rigid. MoreoVer, even
* bodies rigid in three dimensional space may have nonrigid (according: to the
‘above deﬁmtlon) motion in the image plane. A simple example is & golid plate_'
‘undergoing rotation about an axis that is not perpendicular to the image
plane. The corner of this plate that is nearest to the sensor would have a
: hlgher 1mage plane velocity than any other corners. :

In [Hor81] the velocity field is assumed to vary smoothly, i.e., veloclty_ .
~ vectors for neighboring pixels do not differ significantly. By essentlally_
averaglng the perpendicular component, a true velocity vector for every plxel'
1s sought In [Hil83], smoothing of the vector components is performed not

on an image plane neighborhood basis. Instead, the integrated value of the .

veloclty varlatlon magmtude along VZG zero-crossings is ‘minimized. One of
- ‘the motlvatlons is that zero-crossings usually represent object boundanes It

: ’,1s shown that velocities of blocks world type rigid polyhedral obJects will be_
correctly recovered It is also noted, however, that the solution is xncorrect in
the case of smooth curves undergomg general three d1mens10nal motlon |

| In both of the above solutlons, the assumptlon is that nelghbormg plxels
bave dlfferent gradient directions, hence allowing the true veloclty for a
’ nelghborhood to be solved. This is performed by first computing a single
component for individual pixels, followed by averaglng these md1v1dual
components The difference is in the choice of image pomts used in the

. averaging. An alternative to the explicit averaging is to combine the

temporal and spatial gradient estimates of all the points in a nelghborhood to
compute a least squares solution as the velocxty [Mar86] Thls approach w111
be examlned in more detail i m Sectxon 4.3.

The ‘spatiotemporal frequency approach [Jac87] is one that 1s 51m11ar
, conceptually to the image flow approach. Time varying image. data ‘are .
represented by their spatlotemporal frequency components Each component
‘ represents a- two dimensional sinusoidal gratmg spatially; this smusoxdal,
grating moves with a velocity determined by its temporal frequency The
spatial frequencxes of the two dimensional grating specifies a dxrectxon of
mot)on ‘as being perpendicular to its axis of constant 1ntensxty Hence, by -
. examining a neighborhood at different spatial frequency ranges, one can
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constram the true veloclty when spatial frequencxes with dlﬁerent dlrectxons
exxst i e., except for the case of an ideal edge. '

‘ To bneﬂy summarize, in the presence of ideal edge, no true solutlon can
be sought Nevertheless, all the previous work implicitly or explicitly assumes
,that in real images, gradient directions in any local nelghborhood vary so that :
a. true veloaty can be determmed ‘ LA

4 2. Estimating the Spa.tla.l and Tempora.l Gradlents

The veloclty estimates are computed using the spatial and temporal
, 'gradlents as input. Computing the spatial gradients in an 1ma.ge has been
‘ w1dely studled for the purpose of detectmg intensity edges We “have -
descrlbed m some detail the difficulties of determmmg spatial gradlents in -
‘ Sectlon 2. 3 ‘For purposes of detecting the presence of absence of edges, it is
acceptable even if the operators produce a function of the gradient, as long as
the functlon is monotonic. When using the gradient estimates as data for
further computatlon, however, results that are more precise are required.
Most of the reported results in optical flow estimation do not mention the
procedure for estimating spatial and temporal gradients, making comparisons
difficult. Our experience with finite difference operators are very discouraging,
partlcularly in estimating temporal gradient. Temporal gradients are typlcally '
computed using the difference of two images. Our experience has been that»
this is.inadequate and leads to unsa.tlsfactory results. .

- Instead of using a finite difference operator, or performmg numerlcal
dlﬁerentlatlon, we use a basis set of discrete orthogonal polynomla.ls to fit a
local neighborhood of image data. Both the spatial and temporal gradlents
are estlmated using a procedure similar to the facet model approach [ Har84).
Denoting d(z), z=1,...,M, as data points observed in a noisy environment, a :
set of polynomlals, P;, for i=1,...,N, is used to represent the data as: - o

d(z) = Ela P;(z), ‘ (4.4)

: . § ’ .
for zﬁl,...,M. o;, 1=1,...,N, are the fitting coefficients, and N is the order of
the fit. The fitting coefficients are chosen to minimize some criteria of '
difference between d and d. If the criterion is the mean squared difference,
and if the set of polynomials are normalized and are orthogonal to each other,
a simple procedure to determine the fitting coefficient ¢; is by computing the
inner product of d and P; [Fra8l). Since the right hand side of Equation
(4.4) is a finite sum, to compute the derivative of d with respect to z, 6d [0z,
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_,.one needs only to form the sum of the derivatives of individual P,, welghted;
by the correspondmg coefficient. It is noteworthy that the value of ad /81: can
be computed for any value of z. : : : »

A set of thlrd order polynomrals in two variables, srmllar to the one in
‘ [Har84], is- used to compute the spatial. gradlents Using a general three
' dlmenswnal gradient operator on time varying image data has not been
"satlsfactory because the temporal samphng rate is typically dlﬂ'erent from the
spatlal sampling rate. Hence, we use second order polynomials to fit the 1mage” v
data temporally.- By fitting the data with second order polynomlals"
temporally, at least three image frames are needed The time varying image
data is denoted as d(z,y;t), for z=—N/2,..,N/2,y=—N/2,...,N/2, and
k=0,1,..,K—1. Here, z and y are the spatlal variables and ¢ is the varlable. :
correspondmg to the frame number The data is represented as: o ‘

( :yat)'—‘z Z E a,:,kP (x)Q](y)Rk(t)a
g f=0 =0 k=0 _

* where P, ) for all t, QJ, for all 7, and Rk, for all k, are three sets of one

: dlmenslonal polynomlals . The temporal gradient at the point

z=0, y=0 and t=K -1 is computed For the results shown .in Sectlon 4 4 v

’ ‘ﬁve 1mage frames are used correspondmg to K =5. : |

4 3. An Algorlthm for Estlmatmg Dlsplacement Vectors

Estlmatlon based on multrple observations is frequently used to 1mprove'
the accuracy Since the estimation is of an inverse type, the dlscontmultles in
the ‘estitnated values are not necessarily introduced by the nmsy 1nput data. .
Moreover, - the gradient estlmates used ‘in Equation (4. 2) are themselves
 estimates based on numerlcal dlﬁ'erentlatlon of the input images, a well-known
- ill-posed procedure. [Tor86] that is highly sensitive to noise. Hence spatially

~ smoothing’ the image data will not improve the results [Sch85]. Along this

line of reasomng, since ‘the 1nstab1hty is largely introduced by the inverse

operatlon in the form of a direct d1v1s10n in Equation (4. 3), smoothlng the
’estlmated gradlents and then computlng the pointwise magnitude of the )
velocity component along the local gradlent using Equation (4 3) will not be

| | satlsfactory, either. Directly smoothing the values computed from. Equatlon

(4 3). only degrades the resolutlon of the estimates wnthout mprovmg the

- accuracy

-Equation (4.2) can be v1ewed 2s a line i in a two d1mens1onal v,-v space ‘_

R ) ’Nelghbormg plxels wrth dlﬂerent gradient values will have hnes mtersectlng at
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the same point, yielding an estimate of velocity. Alternatively, Equation (4.2)
represents a plane, parameterized by v, and vy, in the three dimensional
observation space formed by I, I,, and I;. The approach presented in this
section is that the estimation problem can be viewed as fitting a plane in this
three dimensional observation space.

~ By observing N points, a system of linear equations can be formed: :

Ilv, + Iylvy = -1},
(4.5)

Vv, + Ly, = -1,

Writing Equation (4.5) in matrix notation, the problem becomes estimating v
from

25 |v-%  (48)

~ « where T = (v, vy)T. |

The values of I, I, and —I; for the ith observed point correspond to the sth
elements of I—; ) f; , and I_t', respectively. Obviously all N points will have to
have the same velocity. While this imposes a constraint on the resolution of
the estimated vector, the accuracy will be improved.

~ The motivation for this formulation is that, except in the vicinity of a
motion boundary, the velocity is assumed to vary smoothly in a local region.
Suppose the velocity of the sth observed point, 17;, is in fact v + J,’ The
assumption is that there is a nominal velocity, ¥, that is prevalent in the
region and that the sth observed point has a deviation component ¢T:
Consider the vector d where the sth element is Iid} + I;d:; i.e., the
component of the deviation of the sth observed point along the local gradient
direction. Estimating the nominal velocity from Equation (4.6) based on
minimizing , ‘

| u[f,’ 1‘,’] v-Il
is equivalent to minimiging lidll, the length of d.
The solution in this formulation will yield the correct velocity if the scene
object is undergoing two dimensional rigid body motion, since the velocity

deviation is zero for every point. Furthermore, if more information about the
variation were available, such as knowing that the variation is along a certain
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‘dlrectlon, the problem can be formulated accordingly. In the absence of such
mformatlon, the general case is to minimize the mean squared norm of 4

The *true” velocity can be recovered from Equation (4.6) if there are
more than one gradient directions among the N observed points. To increase
the likelihood of including points with different gradient directions, and ‘t'o
inérease the number of observations to decrease the sensitivity to noise, N
‘should be large. However, when N is overly large, the assumption that all the
pdint§ ~have a prevalent nominal velocity will be less likely to “hold.
Equivalently, lidlt will be large. Hence, the tradeoff is again between resolution
“and accuracy. When N is large, the. resolution is poor, but ‘the overall
accuracy is better while ambiguities will be less.

A solution for v, and v, from the set of equations in Equation (4.5)
requires N to be 2. When the data are observed in noisy environment, N has
to be much larger, resulting in a set of overdetermined linear equa,tiohs. "An
exact solution does not exist for overdetermined linear equations; a classical
solution is by the least squares method. Using the conventional least squares
. method to solve the image flow problem, such as in [Ma.r86], only corrects
the errors in I; and does not account for errors in I and I as will be
discussed -in the next section. Noting that all three gradients are themselves
estlma,ted noisy values, an improved estimation procedure for ¥ is via the
Total Least Squares method [Gol83, Zol87]. In the Section 4.3. 1 key 1deas of
the Total Least Squares method are summarized.

4.3.1. Total Least Squares Method

‘ | In this section, we shall be concerned with fitting a two dimensional
plane to N observed points in a three-dimensional space. Throughout thls
sectxon, we shall denote matrices G and M as:

o= £}
and |
- [r57]

G i is a N by 2 matnx, while M is 2 N by 3 matrix. Equation (4. 6) can be
rewrltten as Gv-—It A solution to this set of equations exists if G is of full
" Conventxonal Least Squares (LS) method, in solvmg for ¥ from Equatlon
(4. 5), pro_Je_cts I, onto the space spanned by I and I ; Le., I, is forced to be a
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linear- coinbination of f and 1?’ . This can be seen by noting" that the'_

_derlvatlon leadmg to the LS solutlon can be v1ewed as applying to both sxdes
of Equation (4.8) a projection operator Pg, where Pg is such that PGG G

- Thls has the effect of projecting the observed I, ‘onto the I,-1, plane before

the pseudo-mverse operator Gt = (GT G) IGT is apphed to obtaln the LS-.' .
solution. - -

Flttlng a plane to the N observed points by the LS method only _
* ‘minimizes the distance along axes that are parallel to the I, axis, This is
’ .suboptunal when all three gradient components used in Equatlon (4. 6) ‘are
'prone to errors and noise. A “best” fit should be based on minimizing the' :
sum of the shortest distances from every ‘point to the fitted plane. Af .
standard geometrxcal view of the fitting problem clarifies the motivation for
taking a Total Least Squares (TLS) approach Figure 4.3 shows the view for B
the case of fitting a line to points in two dimensional space. An LS solution in-
this case minimizes the vertical distance—the distance measured along lines

parallel to the y-axis from a point to the fitted line. This is acceptable if the o

x-coordinates of the observed points are noiseless; i.e., noise only perturbs ther
observatlons by dlsplaclng the points along the vertical direction. When noise
can dxsplace the observed points in both directions, the appropriate procedure'
to fit the line is to find a line that minimizes the perpendlcular distances from
observed points to the fitted line.

Conceptually, a TLS solutlon that fits M is sought by determlmng a -

, pro,]ectlon operator P that projects onto the ‘“‘best’’ two dimensional subspace o
| This crlterlon can be expressed as determlmng P such that the followmg is
v maxxmxzed ’ ' '

| PP + PP + PLE.
‘The solution of P is given by [Zol‘87‘] | ’

T

P= 1 u’z},'

~ where u; and %, are the two eigenvectors of MM7 associated with the two B o

largest elgenvalues The TLS solution is then given by
_ : vrLs = (GTPG)-IGTPI

U_'pon‘ Simpliﬁcation, - , : S

RN | vrLs =(ZGTG-02122)f1GT‘I_;, : = (47) “

where 1227'7is a 2X2 identity matrix and o® is the smallest eigenvalue o'__f the -
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Line fitted tc;.. o

» 7 observed
LS minimizes vertical distance o points
TLS minimizes perpendicular distances -
- —_ Prad k > x
Observed points /
Y
Figure 4.3. Two dimensional view of TLS method compared

’ method.

| to LS
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matrix ﬁMT M.

4. 3.2. Apphca.tlon of the TLS Method to Estlmatmg Dlspla.cement Vector

It is interesting to compare Equation (4.7) with the LS solutlon to
Equatlon (4 6) The LS solution is :

vLS—(GTG)"lGTI S (48)

Hence, the TLS solution improves on the LS solutlon by a “correctlng” term,
02 whlch can be shown to be the minimum average magnitude of the
spatlotemporal directional gradient as follows. Let @ be a directional unit
vector in the three dimensional (spatiotemporal) space. Consider a constrained
mlnlmlzatlon problem: : '

_ find @ that minimizes aTMTM" subJect tolgll=1. | (4.9)
Using,theLa_grange multiplier technique, E'quation (4. 9) can be rewritten as
| find @ that minimizes @?TM7 Ma + N1—a ) (4.10)
where )\ is the Lagrange multiplier. The solution to Equation (4. 10) is x :
M7M @ = X. 1)

Hence 1t can be seen from Equation (4 11) that, the Lagrange multxpher )\ is in
fact the smallest eigenvalue of the matrix M7 M, or \ =0 Furthermore,
recall that the associated eigenvector @ is a dlrectlonal vector. Consider the
‘ matrix MTM

FL LE RE)
MM = |DF L5 T
TAO P A0 A 0

" The quantity that is to be mlmmlzed in Equatlon (4 9), T al MTM", can be
expressed as v _
(-'T Vi r)2 | ‘ (4.12)

‘ 0-1 ‘ ' .

» where V,, repruents the three dlmensmnal spatrotemporal gradnent operator
at the sth observed point. Equation (4.12) then represents the average

, magnxtude of the spatiotemporal gradient along the direction of @. Hence o
is the minimum average magmtude among all directional spatlotempora.l
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gradien‘ts.‘ :

4. 3 3. Rank Deﬁclent Ca.ses

Slnce G has only two columns, it has elther rank 0 or rank 1 1f it does
. not have full rank. When it has rank 0, it corresponds to the case where the
L spatlal gradlent is gero in the nelghborhood Thus 1t is not surpnsmg that no
matchlng can be done. ‘ o i
When G has rank 1, the nelghborhood belng considered contalns an 1deal
ed ~This can be seen by noting that since I = cI,, I = cI‘ for some
constant c and forall i, 4 =1, 2 »N. Then e

§ . .
—%.‘=c forall oy 3

tan0- ‘_-_-,

where 9, is the gradlent direction of the sth observed pomt Hence, the

o gradlent dlrectlon for every ‘observed point is the same.

: The mlmmum norm solutlon is given by: o
i ”MTLS —oz(vu ”12) s o (48)
where o= —v13/(1—v13 ), and ' BRI N

; , ”1 = (”u V2 v13) ‘
is. the nght smgular vector assoclated ‘with the largest smgular value of M
The mlmmum norm result is the v VI component T

4 3.4. Mea.sure of Fnttmg

As discussed in Section 4.3, using the i image flow approach a match is
1mp11c1tly assumed and a numerical value is computed regardless of whether a
match is correct. Hence it is reasonable to evaluate the computed values byv :
" determlnmg the closeness of the TLS fit. One measure. of the fit is by
- computing the sum of distances of each observed point (in the spatlotemporal
gradient, space) to the plane ‘determined by the computed v,-v, values ‘By.
~ noting that the vector (v, v l)T is a normal vector of the plane, the
dlstance of any pomt (I;,I;,P) to that plane is glven by: I; 'v + I'v +I.
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4.4. Experimental Results
Test Images

Different types of test images have been wused to test the image flow
algorithms; examples are images with ramp and jump edges [Mar86],
geometric figures [Hil83], and sinusoidal gratings [Jac87]. A test image
containing two sinusoidals is used here to demonstrate the efficacy of the
method described in the previous section to compute the true velocity. The
images are noiseless, hence any input error to the velocity estimation
procedure originates from the gradient estimators. The test image has size
64<64, and has intensity values I(m,n) defined by:

I(m,n) =k + A cos(27f,(m+0,) + 27f, (n+6,))

+ A cbs(2%rf,(m+9,) —2nf, (n+6,)).

k and A are constants; f, and f y are functions of the spatial frequencies of
the sinusoidals and the Spatial sampling rates; 6, and 9; are the velocity
components that are to be recovered, assuming unit temporal sampling period.
The top row of Figure 4.4 shows a test sequence of five images; the parameters
used are:
f2=4/50; f,=9/50;0,=3;0, =2; k—A—60

A fitting neighborhood of 7)(7 was used in the TLS algonthm, and the
velocity map is shown in the center row of Figure 4.4. The bottom row of
Figure 4.4 shows the velocity map superimposed on the original five images.

The same image sequence is used to demonstrate the advantage of using
 the TLS fitting compared to LS fitting. Figures 4.5 and 4.6 show the
histograms of the estimated velocities using TLS and LS fitting, respectively.
The results estimated by both methods exhibit some spreading out effect, but
the TLS results are clustered around the correct values, whereas the LS results
-are biased to lower values.

The test sequence is also used to examine the effect of varying the fitting
neighborhood size. Since there is a unique motion parameter in the image,
increasing the neighborhood should always improve the performance. The
results for estimating v, corresponding to neighborhood sizes of 89, 13X13,
17X17, and 19X19 are shown in Figure 4.7. As expected, the estimated results
cluster sharpens as the neighborhood size is increased.
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Figure 4.4. Image velocity estimation using test image sequence.



Number of pixels

58

vy.m'-j[” :
b
SR
2s2
16?{';‘
126“ "

634 .

0 .b T T™ T - T o T r— 1 ., )
‘0.00000 .493750 .987499 1.4812S 1 L97500 2.46875 2.962%50 3.45625 ’_3,. 95000
e Estimated velocity

Figure 4.5. - Histogram of the estimated velocities using TLS ﬁttihg; i




3784

Numb_er of pixe lvis

59

LTI

3154

189

126

ea3q -

2s2{

0 t—
©0.00000

Figure:;‘i.ﬁ{ »

'193?50 98?"}99 1. '#8125 1 97500 2. ‘069?5 2. 96250 3. "65635 3. 95000

Estxmated uelocxtg

Histogram of the véstir»nated'.vielodties using LS fitting.



479 -

Number of pixels

. 1eeq

60

Figﬁre 4.7.

, 000000 mm .987499 t'ﬂlﬁ 197500 2.46878 em 3.43623 3”00

Estimated velocity

Histogram of the estimated velocities using TLS ﬁttlng and
different nelghborhood sizes.



Real Images

A sequence of real echocardlographlc images with syntheslzed motlon is
next used to test the algorithm. With a known motion ‘parameter, the
ablhtles of both the gradient estimators and the TLS algorrthm to handle real
~images are ‘tested. The synthesized motion is pure translation along the
' dlagonal from the lower right hand corner to the top left corner. The. orlglnal

‘sequence is shown in the top row of Figure 4.8. The images are first smoothed o

by a 21X21 Gaussian shaped filter, followed by the gradient estlmators‘ The_
' resultlng velocity map is shown in Figure 4.8. Some mistakes are made;
notably in the regions where the. spatial gradlents are low.

The algorlthm is also. applied to a real sequence of echocardlograms

~ depicting the left ventricular during diastole. The original sequence is shown

in the top row of Figure 4.9. The images are smoothed by a 35X35 Gaussian

shaped filter, followed by the gradient estimators. The resulting velocity map

is shown in Figure 4.9 and overlaid onto the original images at the bottom '

. row. Smce the motion pattern in the image sequence is quite compllcated itis
“difficult to judge the results. The diastole effect is not apparent, however, the
mdlcated velocltles do seem to agree with the intensity variations.

o 4. 5.'Concluding Remarks ‘

The problem of estlmatlng displacement vectors from an 1mage sequence
usmg the image flow approach was examined. Pointwise estimation results are
typxcally badly corrupted by noise, which limits their utlhty in subsequent
B processmg The estimation result at each pomt will be more reliable if it were
- based on more observed points. By assuming that the veloclty ﬁeld does not
,change abruptly, an- overdetermmed set of linear equations is formed to relate
the 1nten31ty changes 1n a local nelghborhood Conventlonal Least Squares
method ‘that has been used to solve for the local velocity does not account for
all of the | errors in the ‘estimated gradlent values. A Total Least Squares"
'method is dwcrlbed that will provide a more accurate estlmatlon The'
prrmary issue addressed in this chapter is that of instial veloclty estimation.’
, In certain areas of the image plane, especially in the absence of gradlents in

one or more dlrectlons, the estxmatlon is less: rehable T
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Figure 4.8.

Estimated velocities of an echocar
with synthesized motion.

diographic image sequence
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Figure 4.9. Estimated velqcitia of a real echocardiographic image
sequence.
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| CHAPTER &
ELECTROCARDIOGRAM SIGNAL PROCESSING

5.1. Introductibn

Except in a very well controlled environment, knowledge used in a
computer vision system cannot always be specified in the form of static a
priori knowledge. Information extracted by other semsors or from other
related domains are often useful to the extraction of information from images.
An important source of information in understanding an echocardiogram is
knowing the position of its acquisition time in the cardiac cycle. For example,
in echo image sequence analysis, knowing that the heart is going from diastole
to systole allows the direction of the heart wall motion to be predicted or
verified. Electrocardiogram (EKG) signals, which provide important timing
information for cardiac imaging, are measures of the changes in the electrical
potent1a1 of the heart muscle. They are frequently used to synchromze the
acquisition of digitized echocardiogram sequences.  “Gating’”  the
echocardiograms, or knowing that certain images are obtained at the same
point in the cardiac cycle, allows those images to be compared, or to be
‘averaged for reducing the noise in the images [Col86]. Furthermore, knowing
the cardiac rhythm allows a computer vision system to determine the
approximate range of image velocity.

A new approach to impulsive noise suppression and background
normalization of digitized EKG signals is presented in this chapter. EKG
signals are frequently plagued by impulsive noise, e.g., due to muscle activities
and power line interference [Moo84]. Moreover, background normalization is .
needed to correct the baseline drift of the signal caused by the respiration and
motion of the subject [Ah185]. An EKG signal consists of a number of lobes,
or waves, corresponding to the polarization actions of the heart muscle. The
most prominent waves are labeled as the Q, R, and S waves, and together they
form the QRS complez. Noise suppression is typically the first step performed
_in the processing of EKG signals [Pah87]. It is important to limit the
distortion of the EKG signal by noise suppression algorithms before such tasks
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“as QRS detection or temporal alignment. The main objeCti_ve in our
~ processing is to produce an output that can facilitate detection of the QRS
waves; hence, of primary importance in the processing is to preserve the main
'QRS complex. Other applications include real-time processing of EKG signals
acquired in “hostile” environments such as in ambulances or on board
spacecraft. We note that issues such as artifact suppression and preserving
the subtle notches and slurs in individual waves are significant for chmcal
diagnostics use.

The most common approach to noise suppression is by low-pass filtering
- [War70,Pah84], which is ineffective for reducing impulsive noise. Since the
baseline drift is assumed to have relatively low frequency, baseline correction
is typically performed by high-pass filtering the EKG data [Als85]. Effective
alternatives to conventional linear filtering, particularly when dealing with
impulsive n01se, are nonlinear operators such as median filtering [Ga181] or
other ranked ordering methods [Wen86]. S |

This chapter presents new algorithms that make use of a ‘class- of
nonlinear signal processing operators, known as mathematical morphology, for
processing EKG data. Morphological operators h_ave been used in the field of
image processing and are known for their robust performance in preserving
the shape of a signal while suppressing noise [Mar87a]. An introduction to the -
morphological operators' is given in Section 5.2. The new algorithm is
described in Section 5.3. Experimental results addressmg various aspects of
:the problem are presented in Sectlons 5.4 to 5.8. o

5.2. Morphological Operators

, Mathematlca] morphology, which is based on set operations, prov1des an
approach to the development of nonlinear signal processing operators that
incorporate the shape information of a signal [Ser82]. In mathematical
morphologlcal ‘operations, the result of a set transformed by another set
~ depends on the shapes of the two sets involved. The shape of a mgnal is
determined by the values that the signal takes on. The shape information of a
signal is extracted by using a struciurmg element to operate on a data
.sequence

Morphologxcal operators were developed in the image procwsmg ﬁeld for
machme vision a.nd medical imaging applications [Har87]. Operators’ that are
u_sed. to process the EKG data for noise suppression and background
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normalization as described in this chapter are known in the image processing
literature as gray-scale morphological operators [Har87]. Morphological
operators have been used in a limited way for background normalization of
biological signals [SkB85]. There are two basic morphological operators:
erosion and dilation. These operators are usually applied in tandem; opening
and closing are two derived operators that are defined in terms of erosion and
dilation. These operators are described in detail below. | -

5.2.1. Erosion and Dilation

_ Throughout this section, f and k denote two discrete functions defined
on F={0,1,.,N-1 } and K={ 0,1,..., M—1 }, respectively; i..,
[ :F —1and k: K — 1, where I denotes the set of integers. It is furthqr,
assumed that N > M.

"The erosion’ of a function J by another function &, WhICh we shall call |
the structuring element, denoted f &k, is defined as o

(f Ok)(m) = aeo, ™ us f (m+n)—k(n),
for m =0,..., N—M.

Erosion is a ‘“shrinking’’ operator in that values of f ©k are always less
than those of f. To determine the value of f @k at a point m, the
procedure is to:

(1) translate the structuring element to m,

(2) subtract the structuring element from the input sequence, and’

(3) find the minimum value of the differences.

An example of erosion is shown in Figure 5.1. The structuring element
has a length of 3 and a constant value of 1. The original data consists of a
sinusoidal signal corrupted by unwanted impulsive notches. The data is
shown marked with squares; the result after erosion is shown marked with -
circles.

The dilation? of [ by k, [Pk, is déﬁned as
(f @k)(m) = n-m-M+1 .., m f(n)+k(m _’n)’

t This definition of erosion is commonly called grayscale erosion in the literature.
This definition of dilation is commonly called grayscale dilation in the literature.
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form = M-—.i, M,.’.,,'N—-l_r.

‘ The dllatlon operatlon is an * expanSion operation in that the values of
/ @k are always greater than those of I. The procedure to determlne the
value of f @Dk at m is to . SRR
(1) left-right reverse the structurrng element k,
(2) translate the reversed structuring element to m, :
(3) add the reversed structuring element to the 1nput sequence, and
- (4) find the maximum value of the sums. L

_ An example of dilation i is shown in Figure 5.2. The structurlng element'
‘has a length of 3 and constant values of 1. The original signal is shown

o ~marked with circles. - The result. after dllatlon is shown marked with triangles.

The complexlty of an erosion or a dllatlon is comparable to that of
dlscrete convolutlon The role of a structurlng element is analogous to that of .
the window kernel of a convolutlon Within the window defined by the
' structunng element, instead of performlng a pointwise multlpllcatlon,_
_ p01ntw1se subtractlon or addltlon is performed. The resulting value for that
wrndow is- determlned by a ‘minimization or maximization 1nstead of a -

S summatlon

5.2.2. Opemng and Closmg

The two basic operations, erosion and dilation, are usually apphed in ;

tandem Opemng and closrng are two operations deﬁned in terms of the basrc
. 'operatlons .. Opening of a data sequence by a structurmg element is deﬁned as
erosion. followed by a dilation. Closing of a data sequence by a structuring
- elément i is deﬁned as dilation followed by an erosion. The opening of a data
- ‘sequence can be mterpreted as sliding the structuring element along the dataa

' sequence from beneath and the result is the highest points reached by any
part of the structuring element. Similarly, the closing of a data sequence can_
~ be mterpreted as shdlng a “flipped-over” version of the structuring ‘element
along the data sequence from above and the result is the lowest pomts reached

L by any part of the structuring element.

R "It ¢an be seen then that the shape of the output of either opemng or
'] : closlng is affected by the shape of the structuring element. Depending on the

: shape characteristics of the signal that is to be preserved, a specific structuring

‘ 'element has to be designed for processing the data. ‘In most applications,

- ;ope_mng is u_sed to suppress peaks while closing is used to suppress pits. “For
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10

Figure 5.1. Example of erosion. The structuring element, k, has length 3
and constant values of 1. The original signal, f, is marked with

squares; the eroded signal, f &k, is marked with circles.
a-

16

3 . 1 " * = 2% » »
Fxgures 5. 2 Example of dilation. The structuring element, k, has length 3
and constant values of 1. The onglnal signal, f’ , is marked with

circles; the dilated signal, f' @k, is marked with triangles. |
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e exemple,- the result of opening any sequence with a structuring element that
is flat and has a length of M will not contain any peak within any interval of

“length M—1; while the result of closing any sequence with such a structuring

element will not contain any pit within any interval of length M—1.

v Notlng that an opening opera.txon is an erosion followed by a dllatlon, the
examples of erosion and dilation described above can be seen as the two steps
~ that make up an opening operation example. The original data sequence
formed by a smusolda] signal corrupted by 1mpulsrve noise is shown in Flgure _
‘5.3 marked with squares. The data is shown in Figure 5.3 marked with
‘squares and is eroded and dilated by the same structuring element. The
~ partial result after erosion is shown in Figure 5.1. The result after opening,
with the spurious peaks suppressed, is shown in Figure 5.3 marked with
. triangles. Figure 5.4 shows an example of applying the closing operator to a :
_signal. The original data is shown marked with squares while the result after
closing 'is shown marked with triangles. It can be seen. tha.t the negatlve

. 1mpu151ve peaks are removed by the closing operation.

.3. A New A.lgonthm

The algorlthm uses two steps to process the EKG srgnal (1) 1mpulsrvef
'DOISe suppressmn, and (2) ba.ckground normahza.tlon The overvrew of the‘
. algorlthm is shown in Figure 5.5. R

’ Impulsrve noise suppressron is performed by processxng the da.ta through
‘a sequence of opening and closrng operators. The algorithm for noxse
suppression is shown in Figure 5.6. The EKG sxgnal as well as any ba.sehne_
drift, is estimated by processing the data using an opening operator followed '
by a closmg operator. A second estimate of the signal is formed by processrng '

L the data usrng a closmg operator followed by an opening operator. The result

from this step is the average of the two estimates. If the amount of processing
isa ‘concern, either one branch of the block dxagram can be deleted with some
‘ performa.nce degrada.tlon ' ’ : ’

- The design of the structurmg element depends on the shape of the sxgnal
_ that lS to be preserved. Since the opening and closing operations are mtended»
to remove 1mpulses, the structuring element must be designed so that the
~ waves m the EKG signal are not removed by the process. A structurmg'
 element is characterized by its ‘“‘shape,” width, and height. Its width, or
' length 1s la.rgely determmed by the duratlon of the major waves a.nd the" B
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10 .

3 Figvt,ire_zs.‘?».‘ Example of openmg The structuring element Ic has ]ength 3
-~~~ . and constant values of 1. The orlgmal signal, f , is marked with

squares; the result a.fter opemng, (f @k)@k, is marked W1th |

trlangles Slw
. * -t ‘

W

16 1

R v T % W ® = ®  ® »

Flgures 5 4 Example of closmg The structuring element, k, has length 3 and
constant values of 1. The original signal, ¢, is marked with
- squares; the result after closing, (g@k)@k, is marked with

tnang]es
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Figure 5.5.° Overview of the a.lgorlthm for suppressing 1mpulswe noxse and
'~ normalizing background drift. :
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Figure 5.6. Block diagram of the impulsive noise suppression algorithm.
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‘sampling rate. Denoting the duration of one of the waves as T sec, and the
samphng rate as S Hz, the number of samples that correspond to a wave is
then TXS. Thus, the length of the structuring element must be less than .
TXS. _ _ -
' The values of the structuring element determines the shape of the output' :
waveform. Since in practice the EKG signal is not an ideal deterministic
signal, we can only loosely classify the shape of its waves as triangular or
dome-like. Due to this imprecise classification, the structuring element in
practice has to be a lot shorter than T'XS samples. Many structuring element
implementations with the same width and height can be classified as dome-
like. In the next section, we shall use a dome-like structuring element model
'param'eteri'zed by its width, height, and “‘shape” to see how each of the .
parameters aﬂects the performance of the algorlthm ‘ ‘

/Background normalization is performed by estimating the drift in the
background and subtracting it from the incoming data. The algorithm for
'background normalization is shown in Figure 5.7. The background )drift 'is
‘estimated by removing the EKG signal from the data.. The data is first
' opened by a structuring element that removes peaks which results in a pit
“where the EKG signal is located. This pit is removed by a closmg operator
~using a larger structuring element The result is then an estlmate of the
basellne drlft ‘

"In thls step, two structurlng elements are used: one for removmg peaks
and the other for removing the pit left after the previous operatlon The
deslgn of the first structuring element is determmed by the duration of the

- waves in the EKG signal. As in the previous discussion, denote the duratlon
of one of the waves by T seconds, and the sampling rate by S Hz, the number
o of samples of a wave is I'XS. To remove the wave, a structuring element
- must have 1ts length L greater than TXS. The second structuring element is
used to remove the pit left: by the first operatlon, thus its length must be
”roughly 2L o B : - S

A second estimate can be made by first closing the data by a structurmg
element which results i m a hump where the EKG signal is located, followed by
.an openmg operator using a larger structurmg element. The two atlmates
are then averaged to form the baseline drift estimate. Correctlon of the
baseline roll and drift is then done by subtracting the basehne drlft estlmate

‘ from the result obtamed from the prevrous step ST
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B "Figure 57 - Blbck,diagram of the "bvackgroun'd norinalization ,a;lg,orvit:h»m'._
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The block diagram for the overall algorithm is shown in Figure. 5.8. .

5.4. Experiments with a Known Signal

A number of experiments were performed using test data formed by
“adding impulsive noise and baseline drift to a digitized signal from an analog
EKG simulator. Using a corrupted known signal as test data allows the
: performance of the algorithm to be evaluated by comparing the recovered
signal with the known signal. Moreover, the degree of corruption of the input
data can be seen, in part, by cons1der1ng the difference between the data
before and after the corruption.

- Anoisy sequence of EKG data is modeled as
r(n) - s(n) + :(n) + b(n),

where s(n) is the signal that includes the QRS waves, i(n) is the noise
: component and b (n) is the baseline drift. : |

~ Signal : e
A known EKG signal was obtained from a FOGG Model M310 ECG-
Simulator that generates a signal with 5 mV amplitude. The 31gnal was
sampled at 1 kHz and quantized to 12 bits (i.e., the digitized sample values
'~ range from: -2048 to 2047). The maximum and minimum values of the EKG ‘
signal are 1636 and -1722, respectively. Figure 5.9 shows a sequence ‘of the
dlgltlzed EKG signal with the heart rate at 100 beats per minute. The unit of
_the tlme-axls is1 / 1000 seconds. - : . |

Nosse

‘ Impulswe noise is generated by an e-mixture of Gaussmn noise that has a
;probabxllty dlstnbutlon function of '

Pi(y) = (1—'e)<1>(l) +ea(d)

- where @(y) is the probability distribution function of a Gaussxan random‘
variable w1th gero mean and unit variance. 0, is typically much larger than _
0y With probablhty (1—¢), the added noise for a sample, #(n), is a ‘Gaussian
random variable with standard deviation o, which simulates the background
~ noise; with probability €, {(n) is Gaussian with standard deviation o,, which
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Figure 5.8. Block diégram of the overall algorithm for sn_ppressing
: impulsive noise and normalizing background drift. '
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‘F‘igure 5.9. A digitized EKG signal sequen_ce- from an analog EKG simulator.
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simulates the impulsive noise. As o0; or 0, increases, the noise amplitude -
increases. As € increases, the frequency of impulse noise occurrence increases.
A sample of such a noise sequence with €=0.2, ;=65 and 0,=650 is shown in

Figure 5.10. " | |

Baselme dnft

- The. basehne drlft is simulated by adding a slanted lme toa smusmd
b(rn)=B +mXn + AXéos(Zw-j% + 9).

The period of the sinusoid, N, controls the severity of the baseline roll while

the slope of the line, m, controls the degree of upward or downward drift.
Using different values for ¢ allows different baseline drift sequences to be
generated with similar characteristics. The bias term B is set so that the
sequence values do not get out of range. Figures 5.11 and 5.12 shows test data
formed by ‘add‘ing an EKG signal to impulsive noise and a baseline drift
sequence. The unit of the time-axis is 1/1000 seconds. ' |

Performance Measurcs

Three metrlcs were used to measure the difference between two mgnals,
and §, assuming they each have L number of points:

dy(s,6) = L 5| s(n) — é()],

n=]

RL

n=1

dy(s,6) =71€ { gl s(n) —s(n)lz};

°(,(s,.fs)= B ,.-1, ,Ll s(n)—s(n)l

'dy is a measure of the root-mean-squared difference between two signals
and is the most commonly used metric. d; is a measure of the mean absolute
difference while d., is a measure of the maximum deviation of one signal from_
another. They are normalized by R, the peak-to-peak value of s.
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Flgure 5.10.. A sa.mple noise sequence. Generated by the e-mixture Gaussmn
noise model, with €==0.2, 0,=65 and 0,=650.
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5.4.1. Test Results _
" Data sequences corrupted by using different sets of noise parameters were *
- used to test the new algorithm. Throughout this section, s(n) denotes the
EKG srgnal r(n) denotes the corrupted data, and §(n) denotes the processed
result. : '

' The structurlng element used for noise suppressnon has length 5 and
values of (0, 1, 5, 1, 0) as shown in Figure 5.13. The two structuring elements
used in background normalization both have triangular shape. In the first
stage, ‘the structunng element has length 41 and values as shown in Figure
'5.14; the structuring element used in the second stage has length 81 and
values as shown in Figure 5.15.

"For the input data sequence deplcted in Flgures 5. 11 and 5. 12 the
parameters are:
© " e-mixture noise: € = 0.2, 0,=65 and 02—650

" baseline-drift: m=0.8, A =500, N=1000, and ¢=08

Based on 3000 data points, the dlﬁ'erences between s and r as measured by
the three metrics are: ‘ : ’
dl(s,r) = 0.2433, dy(s,r) = 0.2993 , doo(s.,r) = 0.9887 .
Results of applying the new algorithm to this signal are shown in Figures 5.16
and 5.17. ‘Figure 5.16 shows 512 points of the output, indicating the noise
suppressnon performance. Figure 5.17 shows 3072 points of the same output
sequence, illustrating the baseline correction capability of the new algorithm.
The performance measures on the processed 51gnal calculated based on 3000
data points, are:
dy(s,8) = 0.02652 , dy(s,§) = 0.04074, d_(s,5) = 0.2239 .
As measured by d,, for example, the deviation of the input data from the
‘ signal is 30% of the signal peak-to-peak value. This value is a measure of the
power of the noise and the baseline drift. The deviation was reduced to 4%
by the processing.

A different set of noise parameters that increased the noise level and
baseline drift was used to corrupt the signal, Figure 5.18 shows the mput data
sequence to the algorithm. The parameters for this signal are:

- é-mixture noise: ¢ = 0.25, 0;=75 and 0,=750 , 7

baseline-drift: m=1.4, A=500, N=800, and ¢=0.3 .

Based on 3000 data pomts the differences between s and r as measured by

the three metrics are: »
dy(s,r) = 0.3358, d,(s,r) = 0.3922, d(s,r) = 1.10155 .
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- The result of applyiﬁg the algorithm to this signal is shown in Figure 5.19.
The performa.nce measures were calculated based on 3000 data points to be:
dy(s,5) = 0.03087 , dy(s,§) = 0.04506 , d(s,5) = 0.2281 .

Even though the deviation of the input data from the ideal signal is increased
to 40% of the signal peak-to-peak value, the processed data still achieves a
low 4.5% deviation.

The effectiveness of the new algorithm in suppressing noise and correcting
baseline drift and roill can be seen through the empirical performance -
measures and by plots of the results. In the next section, we shall examine the
performance of noise suppression under a wider range of situations.

5.5. Nonse Suppress;on Performance

The structuring element with length 5 and values (0, 1, 5, 1, 0) was used
to study the noise suppression of the algorithm under a variety of noise
situations. Noise as modeled in Section 5.4 was used; the EKG. sngnal was
corrupted by noise with different ¢ and o, /oy values. The value of ¢ ranged
from 0.1 to 0.5, corresponding to an increasing probability of impulsive noise
occurrence. At € = 0.5, a sample has equal probability of being corrupted by
background Gaussian noise or by higher amplitude impulsive noise. The
standard deviation of background Gaussian noise, 0y, was set at 65. The
standard deviation of impulsive Gaussian noise, 0, ranged from 20, to 200y,
corresponding to the increasing impulse amplitudes. To consider the severity
of the impulsive noise, recall that the peak values of the EKG waves are 1636
and -1722. At 0, = 650, the impulsive noise amplitude is above 1300 with
probability 4.5%. At o, = 1300, the impulsive noise amplitude is above 1300
with probability 31.7%. The resulting values of the performance measures are
tabulated in Tables 5.1 to 5.3. These values are shown in Figures 5.20 to 5. 22.
As can be seen from the tables and the figures, the performance shows no
srgmﬁcant detenoratlon as the noise situation worsens. -The expected i mcreases
in all three measures as either € or 0, increases are gradual and exhlblt no
abrupt jumps or sharp rises. For example, at the worst case of € =0.5 and
0,/0; =20, d, is 0.11024. The input data and processed output for this case
are shown in Figures 5.23 and 5.24, respectively. While there are notches that ’

' remam in the waves, the QRS complex is isolated from noise.
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Table 5.1.  Noise suppression performance as measured by»v d;. 'Th'e variance
of background Gaussian noise, 0;, was set at 65.

'NoisevSuppression Performance as Measured by d;
g, || e=0.1 e=0.2 | €03 €=0.4 e=0.5

130 || 0.009048 | 0.009720 | 0.010283 | 0.010960 | 0.011654 |

| 195 || 0.009506 | 0.010936 | 0.012177 | 0.013695 | 0.015234 |
260 || 0.009928 | 0.012123 | 0.014118 | 0.016532 | 0.019000
325 ||0.010328 | 0.013372 | 0.016100 | 0.019457 | 0.022841
390 ||0.010742 | 0.014663 | 0.018134 | 0.022463 | 0.026778
455 {[0.011143 | 0.015952 | 0.020190 | 0.025450 | 0.030705 |
520 ||0.011531 | 0.017241 | 0.022255 | 0.028490 | 0.034674
585 [[0.011937 | 0.018549 | 0.024344 | 0.031592 | 0.038670 | .
650 {|0.012319 | 0.019813 | 0.026391 | 0.034661 | 0.042647 |
715 || 0.012685 | 0.021061 | 0.028413 | 0.037708 | 0.046608
780 || 0.013039 | 0.022291 | 0.030431 | 0.040751 | 0.050571 |
845 || 0.013396 | 0.023532 | 0.032476 | 0.043836 | 0.054566
910 || 0.013737 | 0.024760 | 0.034528 | 0.046920 | 0.058533 |
975 (| 0.014075 | 0.025987 | 0.036584 | 0.049998 | 0.062467
1040 |} 0.014416 | 0.027220 | 0.038642 | 0.053054 | 0.066364
1105 |{0.014754 | 0.028436 | 0.040679 | 0.056111 | 0.070229
1170 || 0.015085 | 0.029649 | 0.042696 | 0.059144 | 0.074086 |
1235 |/ 0.015399 | 0.030858 | 0.044687 | 0.062129 | 0.077891 |
1300 || 0.015704 | 0.032055 | 0.046654 | 0.065093 | 0.081683
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_ Noise uppressidn'performance as measured by d,. The

variance

- .of background Gaussian noise, 0;, was set at 65. .

o Figure.5.20;
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Table 5.2. N01se suppresswn performance as measured by d2 The vanance
n of background Gaussian noxse, 0y, was set at 65.

~Noise Suppression Performance as Measured by d,
o || e=01 | e=0.2 e=0.3 e=0.4 | e=05

1130 [{0.012477 | 0.013341 | 0.014018 | 0.014836 | 0.015616 |
~195 {1 0.013264 | 0.015143 | 0.016801 | 0.018661 | 0.020295
1260 {{0.014130 | 0.017164 | 0.019808 | 0.022704 | 0.025296
| 325 {|0.015072 | 0.019458 | 0.023000 | 0.026968 | 0.030488 |
-390 |]0.016132 | 0.021947 | 0.026351 | 0.031380 | 0.035869
455 || 0.017231 | 0.024509 | 0.029809 | 0.035787 | 0.041264 |
520 |} 0.018368 | 0.027103 | 0.033328 | 0.040314 | 0.046694
585 |[0.019598 | 0.029791 | 0.036921 | 0.044917 | 0.052127 |
650 {|0.020816 | 0.032418 | 0.040512 | 0.049532 | 0.057571
715 || 0.022009 | 0.035019 | 0.044117 | 0.054157 | 0.063024
780 || 0.023178 | 0.037609 | 0.047722 | 0.058809 | 0.068503
845 || 0.024389 | 0.040240 | 0.051362 | 0.063503 | 0.074009
910 {(0.025558 | 0.042881 | 0.055031 | 0.068191 | 0.079439
975 |[0.026759 | 0.045543 | 0.058728 | 0.072838 | 0.084777
1040 || 0.027979 | 0.048229 | 0.062353 | 0.077368 | 0.089989
1105 (] 0.029214 | 0.050925 | 0.065921 | 0.081878 | 0.095085
1170 || 0.030451 | 0.053630 | 0.069489 | 0.086375 | 0.100205
1235 |{0.031673 | 0.056345 | 0.072982 | 0.090742 | 0.105220
1300 |} 0.032883 | 0.059055 | 0.076457 | 0.095089 | 0.110236




93

~ Noise suppression performance as measured by d,. The vari

ance

of background Gaussian noise, 0y, was set at 65.

Figure 5.21.
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~ Noise suppressnon performance as measured by d The varlance

- of background Gaussian noise, Jy, was set at 65.

0.270607 | -

5 Noxse Suppresswn Performance as Measured by d.,

oy || e=01 | e=02 | =03 e=04 | =05

| 130 [ 0.075640 0.075640 | 0.075640 | 0.077725 | 0.087850 |

| 195 |} 0.075640 | 0.083979 | 0.083979 | 0.098868 | 0.114652

| 260 || 0.079809 | 0.100357 | 0.100357 | 0.122394 | 0.141453
/325 || 0.094401 | 0.116736 | 0.116736 | 0.146218 | 0.167362
390 |{0.108398 | 0.132519 | 0.133413 | 0.166766 | 0.193270

| 455 || 0.122990 | 0.148898 | 0:148898 | 0.166766 | 0.220071

| 520 ||0.136986 | 0.164681 | 0.164681 | 0.179571 | 0.232281 |
585 || 0.151876. | 0.181060 | 0.181060 | 0.196248 | 0.235855
650 |[0.158130 | 0.191781 | 0.197141 | 0.206671 | 0.239428
715 |[0.158130 | 0.191781 | 0.216796 | 0.225432 | 0.240917 | .
© 780 ‘|| 0.158130 | 0.191781 | 0.236450 | 0.246575 | 0.250447 |
845 [10.171828 | 0.191781 | 0.256105 | 0.267421

910 || 0.185229 | 0.202204 | 0.275759 | 0.288565 | 0.288565 |
975/ 0.198928 | 0.215307 | 0.295712 | 0.298987 | 0.307624 |
1040 || 0.212329 | 0.228708 | 0.305241 | 0.305241 | 0.317153 | -
1105 {[0.226027 | 0.241811 | 0.305241 | 0.305241 | 0.317153
1170. || 0.239428 | 0.254914 | 0.305241 | 0.305837 | 0.317153 |
1235 || 0.253127 | 0.268017 | 0.305241 | 0.309410 | 0.317153 |
1300 || 0.266528 | 0.281120 | 0.305241 | 0.309410 | 0.317153 |
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- Figure 5.22. Noise s\ippressibn performance as measured by do.. The variance -

* ' of background Gaussian noise, 0y, was set at 65.
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Figure 5.23. EKG signal heavily corrupted by impulsiVé noise. The noise
' parameters are: €=0.5, 0,=1300, and 0;=65. :
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5.6. Experiments with a Parameterized Structurmg Element

Unlike the design of linear filters, methods for structuring element de51gn .
in morphological signal processing is an open research problem [Coy88).
“this ‘section, we use a dome-like structuring element parameterized by it‘s _
" width, height, and ‘“‘shape’’ to examine these effects on the noise suppression
performance of the algorithm. The parametric structuring element is denoted
by ¢(n), for n=0,1,...,2N. N is the parameter that determines the width .of_' :
g. For n=0,1,...,N, let |

. g(n) =hX(1 — "),
and for»n;—-N+1,...,2N,,let . v
q(n) =q(2N —n).

The structuring element g is then symmetric with respect to the peak at

¢(N). The height of g is controlled by h; the actual height parameter we
used is the peak value g(N), which is related to h. The ‘‘shape” of ¢ is
controlled by a: which ranges from 0 to oo.  The parameter that we used
instead is ~y, which ranges from 0 to 1. 7 is related to o by

y=1—¢"N,

As’ v increases, g changes from thick and round to thin and sharp. Figure
5.25 shows a plot of ¢ with < varying from 0.01 to 0.99. To illustrate the
shape change, the peak value ¢(N) was set at 10 while the width parameter N
was set at 30. ‘

The parametric structuring element with different sets of parameters was
used in the noise suppression stage of the algorithm to process the known
signal corrupted by impulsive noise as described in Section 4. The parameters
for the e-mixture noise are €=0.2, 0,=65, and 0,=650. The different
parameter values for the structuring element used were:

~y . 0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1;
¢(N) : 1,3/57,8,11,13,15,17,19;
N . 1,3,5,7,9,11, 13, 15, 17, 19.

The performance is evaluated by comparing the input to the output relative
to the three metrics. From the results, the only parameter that has a
significant effect on the performance is the width. Figures 5.26, 5.27, and 5.28
show the results for ~ fixed at 0.5. It can be seen that the performance
deteriorates with increasing N but shows mo change due to varying ¢(N).
Figures 5.29, 5.30, and 5.31 show the results for N fixed at 3. It can be seen
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10.0000 -

. Figure 5.25.. St}ucturing elements with different ~ values.
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that the performance shows no significant change with different values for
g(N) and ~. As there are not a lot of difference between structuring elements
with different ~ values when the width is as low as 7, it is understandable that

~y does not affect the performance. We show the results for N=3 because it *
~ achieves a performance of d,<0.03, compared to the 0.09 which is how much

the input data deviates from the signal. Figures 5.32, 5. 33, and 5.34 show the

results for q(N )=>5; again, it can be seen that the performance detenorates
with i 1ncreas1ng N but shows no change due to varying 7. :
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- Figure 5.26. Noise suppression. performance as measured by d, of the

 parametric structuring element with <y set at 0.5.
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B - Figure 5.28. NoiSe suﬁpréSSiOﬁj«performance‘ as' measured by d,, of the

" parametric structuring element with ~y set at.0.5.
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Noise suppression performance as measured by d, of the -

~ parametric structuring element with N set at 3.

1.00000 4

Figure 5.29.



. Flgure 5'.30'., Noise -supbr“esSiqi;f perf.grmancé as measured by dz of the

©. . parametric structuringf:eleipenp,.wi;th; N set at .3_‘.'_" :
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Noise sup’preSsibn‘ performance as measured by d. of the  :

1.00000 ¢

o '_parametric structuring element with N set at 3.

. Figure 5.31.
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_Figure 5.32. Noise suppression performance as measured by d, of the

* .., parametric structuring element 'ﬁifh‘q,(N) set at 5. o .
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Noise suppression perfofmance as measured by d, of the

1.00000 -

parametric structuring element with g(N) set at 5.

Figure 5.33.
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5.7. Sinusoidal Response

: Gu1dellnes have been established by the American Heart Assoclatlon for
EKG signal processing governing acceptable frequency response of linear filters
[Pip75]. It is difficult, however, to show that the method described in this
chapter conforms to these guidelines since nonlinear filtering cannot be
analyzed in terms of frequency responses. . Linear filtering, via the
_ superposition principle, allows frequency response analysis by decomposlng the
input and output into a sum of sinusoidals. The superposition prmclple does
_not apply to nonlinear ﬁlters, hence “bandwidth” is a meaningless quantlty
‘There is ongomg work in the theoretical analysis of morphological operators
based on a weaker form of superp031tlon prlnclple, known as threshold
decomposxtlon [Mar87 ..... , Wen86]. The general problem of investigating the i
response of morphological operators to a sinusoidal input remains an open
research problem [Nee88]. In this section, we address this problem by
‘ _examlnlng the sine wave response of the new algorlthm to study the extent’
that these signals are modified relative to the type of structuring element

Accordmg to the Amerlcan Heart Association committee report on
electrocardiography [Pip75], the recommended bounds to frequency response is
flat from 0.14 Hz to 50 Hz, reduced from unit gain by no more than 6%.
Since the morphological processing is discrete in nature, if a sinusoidal signal
~ with a certain frequency is unmodified, any signals with a lower ,‘,f_requency
would also be unmodified. ‘Sinusoidal signals at frequencies ranging,' from 0 Hz
to 180 Hz, sampled at rates ranging from 360 Hz to 1800 Hz were processed by
~ the algorithm described in Figure 5.6. The structuring elements used were as

shown in Figure 5.15. The processed result is compared to the original
sinusoidals using the performance measures described in Section 5.4. The
resulting values are tabulated in Tables 5.4 to 5.6 and are plotted in Figures
' 5.35 to 5.37. As the results indicate, increasing the sampling rate produces
better results. All three performance measures show steady rises as the
sampling rate drops and as the input frequency increases, eventnally flattening -
out. ' .

It should be emphasized that there is no direct relation between these
plots and the common amplitude frequency response plot used to describe
linear filterss. For example, from Table 5.5, a sampling rate in the range of -
1000 Hs is needed to obtain performance that achieves d,<0.1 for input with
a frequency of up to 50 Hz, which is the upper frequency limit for the flat
response required by the American Heart Association for “faithful
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Vv’reproductlon of the electrocardlographlc waveform '’ [Pip75). It'is diﬁcult - '

= : »_'to set.a general performance standard, since it depends on other factors such_‘
. as’ the 1ntended apphcatlon of the processed data. The choice of 0.1 here is

v’ :_fbased on the observation that for a ﬁxed samphng rate, d2 tends to rlse'

= "relatlvely qulckly after it reaches 0.1.

Slnce the processmg 1s dlscrete, the slgnal bandw1dth the samphng rate,

‘ and the structurlng element length are all related. The hlghest frequency of

‘the: sxgnal is usually dictated by the appllcatlon e.g., 50 Hz in EKG slgnal

' processing. leen that the signal- frequency is fixed, elther the structurlng, _
" element can be shortened or a higher sampling rate can be used to. minimize

‘the - dlstortlon of the waveform "The. mlnlmum length of the structurmg_

o l element is determlned by the nature and characterlstlcs of noise expected For.

' -example, for 1mpuls1ve noise, a typical choice of the minimum length is from 3

o to 5; for other artifact suppression, the mlmmum length mlght have to be o |

) mcreased dependmg on the situation.

The problem s examined below from the vlewpomt of determmmg the; L

. _' ;:'requlred sampling rate of the EKG data for a given required performance A

o _'structurmg element with length 2N+1 modifies a wave of an EKG signal by-f‘ .

R "truncatmg its top. The worst case is for a structuring element to have
L constant values of 0. Let the tolerated attenuation factor be 1-7; i, L. 'ﬁthe tlp'f

o reasonable estimate of f, is 50, since it then follows that the duratlon of a'-.'-

of the wave should not be truncated by a factor more than 7. Suppose we'
.f‘model ‘a wave by a raised cosine waveform wnth frequency fo ‘Hz :

'_ - vwave is 20 msec. Typically, a:QRS complex with three waves lasts from 80 to; -

S 100 msec It can easxly be shown that the sampllng rate f s can be found by

oemfN ‘b
f‘—jcos 1(1—'1') B (51)

-' _'For example, W1th N = 2 fo -50Hz, and 7'-—006 we found f, to be 1. 8 "

| - kHz. A.lternatlvely, we can model a wave by a Gaussran pulse wrth o® as its '

- variance. ' Denotlng the bandwidth of the mgnal as fo Hz, and notlng that the

. Fourler transform of a Gausman pulse is agaln a Gaussian pulse w1th varlance‘, i

.(27ra) 2, we see that the samphng rate f o c2D be determmed by S '
. o 2Wfo i .
(—2log(l - 'r))l/2

- ".,Usnng 1‘—i .06 f o —50Hz, N =2, we again obtam f , as L8 kHz From,'

: '--;;Equatlons (5 1) and (5 2), we see that the requlred samphng rate varles..
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directly with N and f,. It varies inversely and nonlinearly with 7; i.e.,.'with
increasing 7, f, drops off quite rapidly. Consequently, f, decreases rather
rapidly as 7 increases.
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Table 5.4. Amount of modification of sampled sinusoidal input as measured

by d,. ‘ o
Sinusoidal Input Modification as Measured by d,
Input Sampling Rate (in Hz) |
Frequency ) -
(n Hz) || 360 680 1000 1320 | 1560 /1800
0 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
5 0.00046 | 0.00004 | 0.00002 | 6.00000 | 6.00000 | 0.00000 |
10 10.00405 | 0.00055 | 0.00016 | 0.00005 | 0.00002 | 0.00003
15 0.01369 | 0.00296 | 0.00090 | 0.00024 | 0.00013 | 0.00008
20 [/ 0.03200 | 0.00483 | 0.00149 | 0.00063 | 0.00035 | 0.00022
25 0.08871 | 0.01390 | 0.00297 | 0.00190 | 0.00114 | 0.00046 |
30 0.10256 | 0.02334 | 0.00744 | 0.00218 | 0.00130 | 0.00083 |
35 0.22223 | 0.03791 | 0.01216 | 0.00532 | 0.00323 | 0.00207
40 [/ 0.31885 | 0.05638 | 0.01815 | 0.00783 | 0.00480 | 0.00308 |
45 0.30086 | 0.07800 | 0.02559 | 0.01092 | 0.00654 | 0.00297 |
50 110.31265 | 0.10383 | 0.02352 | 0.01527 | 0.00932 | 0.00405 |
60" - ||0.33264 | 0.16702 | 0.05703 | 0.01779 | 0.01083 | 0.00703
70 |{0.31120 | 0.25688 | 0.09098 | 0.04127 | 0.02550 | 0.01663 |
80 11033438 | 0.20842 | 0.13282 | 0.06082 | 0.03778 | 0.02480 |
- 90 0.24962 | 0.30601 | 0.18121 | 0.08222 | 0.05102 | 0.02352 |
100 0.30635 | 0.31826 | 0.16847 | 0.11314 | 0.07063 | 0.03200
110 0.32256 | 0.31344 | 0.30407 | 0.10256 | 0.09356 | 0.06202 |
120 0.49919 | 0.31371 | 0.29787 | 0.18912 | 0.12022 | 0.08043
130 0.32075 | 0.31108 | 0.30757 | 0.22976 | 0.10256 | 0.09974 |
140 - || 0.30604 | 0.31048 | 0.31730 | 0.27700 | 0.17978 0.12236 |
150 1}0.31100 | 0.31850 | 0.30878 | 0.30073 | 0.21457 | 0.10256 |
160 0.32185 | 0.32174 | 0.31471 | 0.30049 | 0.25670 | 0.17627 |
170-  |10.30069 | 0.24962 | 0.31518 | 0.30881 | 0.29757 | 0.20657 |
180 - |/ 0.49939 | 0.30574 | 0.31048 | 0.31275 | 0.29480 | 0.16847 |
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idal input as measured
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Table 5.5. Amount of modification of sampled sinusoidal input as measured

by d,. ‘ :
Sinusoidal Input Modification as Measured by d,
Input v ~Sampling Rate (in Hz)
‘Frequency | —T :
~ {in Hz) 360 680 1000 1320 1560 | 1800
0 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
5 0.00161 | 0.00021 | 0.00010 | 0.00004 | 0.00003 | -0.00003
10 0.01005 | 0.00188 { 0.00064 | 0.00022 | 0.00014 | 0.00014
15 0.02768 | 0.00759 | 0.00280 | 0.00093 | 0.00056 | 0.00036 |
20 0.05601 | 0.01157 | 0.00433 0400209 0.00127 | 0.00086
25 110.12754 - | 0.02751 | 0.00772 | 0.00520 | 0.00338 | 0.00161
30 0.14655 | 0.04240 | 0.01636 | 0.00598 | 0.00387 0.00265
35 0.27034 | 0.06312 | 0.02454 | 0.01232 | ©.00812 | 0.00559
40  |{0.37414 | 0.09077 | 0.0354¢ | 0.01767 | 0.01172 | 0.00810 |
45 10.35253 | 0.11456 | 0.04557 | 0.02254 | 0.01471 ' 0.00772__
50 0.34421 | 0.14527 | 0.04337 | 0.02969 | 0.01969 | 0.01005 1
60 0.35272 | 0.21495 | 0.08887 | 0.03438 | 0.02273 | 0.01590 |
70 |/0.35376 | 0.30421 | 0.13018 | 0.06775 | 0.04539 | 0.03182 |
80 0.36678 | 0.33788 | 0.17907 | 0.09417 | 0.06347 | 0.04472
90 || 0.35302 | 0.33522 | 0.22893 | 0.12015 | 0.08107 | 0.04337 |
100 0.34703 | 0.34708 | 0.22025 | 0.15577 | 0.1057¢ | 0.05601
110 11 0.35074 | 0.34488 | 0.34838 | 0.14655 | 0.13312 | 0.09490 |
120 0.49919 | 0.35257 | 0.33656 | 0.24531 | 0.16940 | 0.12178 |
130 0.35039 | 0.35287 | 0.33744 | 0.27775 | 0.14655 | 0.14025
140 0.35040 | 0.35113 | 0.34783 | 0.32334 | 0.22740 | 0.16595 |
150 0.35341 | 0.35286 | 0.34149 | 0.34284 | 0.26303 | 0.14655
160 [0.37052 | 0.35274 | 0.34404 | 0.33809 | 0.30442 | 0.22418 |
170 11 0.33785 | 0.35302 | 0.35129 | 0.33957 | 0.34225 | 0.25469 |
180 0.49939 | 0.34293 | 0.34981 | 0.33805 0.33606 | 0.22025 |
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~ Table 5.6. Amount of modlﬁcatlon of sampled smusmdal mput as measured

by d
v Smusmdal Input Modlﬁcatlon as Measured by d
{ Imput |~ - Sampling Rate (in Hz) _
| Frequeney {T——T1 ‘ ,
| (nHz) || 360 | eso | 1000 | 1320 1560 | 1800 |
.0 |[0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
-5 {{0.00606 | 0.00121 | 0.00061 | 0.00030 | 0.00030 | .0.00030 |
10 |{0.02880 | 0.00697 { 0.00273 | 0.00121 | 0.00091 | 0.00091 |
15 ||0.06547 | 0.02395 | 0.01091 | 0.00364 | 0.00243 | 0.00182
20 |{0.11549 | 0.03213 | 0.01425 | 0.00758 | 0.00485 | 0.00333 |
25 1/0.24098 | 0.07123 || 0.02304 | 0.01879 | 0.01334 - -0.00606 |
30 0.24856 | 0.09730 | 0.04516 | 0.01879 | 0.01303 |.0.00940
35 11043801 | 0.14004 | 0.06608 | 0.03789 | 0.02728 | 0.02031 |
40 || 0.57237 | 0.19046 | 0.09038 | 0.05194 | 0.03704 | 0.02762 |
45 ]]0.49864 | 0.22673 | 0.10943 | 0.05850 | 0.04153 | 0.02304 |
50 [[0.50024 | 0.26735 | 0.09307 | 0.07578 | 0.05426 | 0.02880 |
| 80 0.49864 | 0.35314 | 0.17581 | 0.07790 | 0.05577 | 0.04183 |
- 707 110.47408 | 0.47954 | 0.24886 | 0.14823 | 0.10761 | 0.08124 |
80 |/0.55892 | 0.51483 | 0.32058 | 0.19988 0.14602 | 0.11077 |
| 90 |/0.49924 | 0.48742 | 0.38921 | 0.22310 | 0.16338 | 0.09397 |
| 100 ~ |]0.54198 | 0.50561 | 0.34404 | 0.28190 | 0.20824 | 0.11549°| -
110 || 0.47348 |.0.47924 | 0.53653 | 0.24856 0.25614 | 0.19703
120 [/ 0.49919 | 0.46866 | 0.49574 | 0.41553 | 0.31129 | 0.24027 i
1130 |{0.49106 | 0.49197 | 0.47924 | 0.45438 | 0.24856 | 0.26857 |
- 140 0.51228 | 0.47135 | 0.52137 | 0.50197 | 0.38406 | 0.30039 |
150 - |]0.49894 | 0.53228 | 0.54380.| 0.51440 | 0.42377 | 0.24856
160 || 0.55236 | 0.51544 | 0.47322 | 0.48663 | 0.49332 | 0.39272 |
| 170 }{0.51016 | 0.49924 | 0.48681 | 0.47530 | 0.53289 | 0.42710 |
180 |{0.49955 | 0.51108 | 0.45953 | 0.47954 | 0.48469 | 0.34404 |
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119

- 5.8. Experiments w1th Acquired Data

EKG data from the MIT-BIH Arrhythmia Database [Ins82] were used to
evaluate the algorithm performance. Each set of data was digitized at 360 Hz
* without interruption from a single patient using a modified EKG “lead 2" in
which electrodes were placed at the right shoulder and the left abdomen of the
' patient [Ins82, Bas86). - |

o The processing is done usingv structuring elements as shown in Figures"v v
5.13, 5.14, and 5.15. The unit of the time-axis for the plots shown in Figures
 5.38 to 5.45 is 1/360 seconds. Figure 5.38 and 5.39 show two sequences that
were considered to be of “‘excellent quality” (Tapes 117 and 219 of the MIT-
~ BIH Database). Figures 5.40 and 5.41 show the result after noise suppresswn
processing, the onglnal signal is not significantly modified. Figures 5.42 and
- 5.43 show the result after background normahzatlon, the original signal is
‘modified to some degree, most notably in the areas of the ST segment. Due to
the nature of background normahzatlon, ‘the reference level of the sngnal is
' valso blased to zero. :

v : Flgure 5.44 shows a sequence that was labeled showmg bursts of “basehne :
o wander” (Tape 111 of the MIT-BIH Database). Figure 5.45 shows the result; '

after processmg Again, we see very slight modification of the slgnal ‘but the
background drift is corrected. The reference level of the slgnal is also blased'
to zero - ‘ - " ‘
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Figure 5.38 A sequence of EKG signal classified as “of excellent quality,”
' from Tape 117 of the MIT-BIH Database.
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Flgure 5 39 A sequence of- EKG 'signal classdied as ‘‘of excellent quahty, )
. from Tape 219 of the MIT BIH Database '
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- Figure 5.40 - Result of noise suppression on the data sequence shown in Figure -
. 5.38. '
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Figure 5.42 Result after baseline correction and noise suppression on the
' data sequence shown in Figure 5.38.
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| Figure 5.44 A sequence of EKG signal showing baseline wander, from Tape
111 of the MIT-BIH Database. '
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Fi igure 5. 45 Result after baseline correctlon and n01se suppressxon ‘on the
" data sequence shown in Figure 5.44.
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5.9. Concluding Remarks

A new approach to EKG signal processing is presented in this chapter
using mathematical morphological operators. The effectiveness of the new
»algorithm' in impulsive noise suppression and backgroundAnormaliza»tion’ w_és
first demonstrated by using a corrupted known signal and measuring the
difference between the known signal and the processed result. The
performance was further examined byvprocessing‘ clinically acquired EKG
data. : ’

The performance of the algorithm is dependent on three related factors:
amount of noise, choice of structuring element, and sampling rate of the
signal. Results in Section 5.5 show that a 5-element structuring element can
handle a large amount of impulsive noise. In Section 5.6, a structuring
element parameterized by its width, height, and shape was used to study the
effect of each of them on noise suppression performance. The most important
factor was found to be the length of the structuring element. This result is
consistent withthe use of median filters relative to EKG data [Yu85].

The morphological operators are also attractive for their relatively simple
computational demands: the computation is made up of addition,
subtraction, and logical comparison. It has been shown that these types of
algorthms can be implemented in VLSI for real-time processing [Coy86).
While morphological operators have not yet been as widely used in one-
dimensional signal processing as in image processing, they seem particularly
well suited for processing EKG data, since the signal components are well
characterized by their shapes.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

In the context of developing a system capable of monitoring the heart
‘wall motion and change in two-dimensional echocardlograms, we have
presented work in two different -areas: computer vision and morphologlcal
signal processing. In this chapter, we shall take a critical look at our work in
these two ﬁelds and suggest future work '

, Extensxons to the algorithm reported in Chapter 2 would be based on
symbolic manipulation. A natural extension would be to automatically search
for the boundaries in the next frame based on the detected boundaries in the
c»urrent‘fra.me. Some issues that need to be addressed are: given that the
boundary in the current frame may not be correct, how to evaluate the
boundary and store the information; how to handle conflicts between
boundaries detected in different frames. Although the amount of data that
would be needed will be increased substantially, it would probably be easier
for an echocardiogram understanding system to be concerned with the entire
image, instead of concentrating on the heart wall boundaries.

The work reported in Chapters 3 and 4 has much potential to be further
explored. Theoretical bounds to the performance of the TLS based image
flow approach is one of many topics worth considering. Our experience is that
although the TLS based algorithm is sensitive to the input image data, in part
through modeling the image data as polynomials in the gradient estimators,
the TLS fitting component of the algorithm is an appropriate tool for solving
the image flow equation. We note that none of the image flow results reported
in the literature have successfully demonstrated applications to real image
data with general motion. In the early processing stage of computer vision,
the solutions to many problems are tremendously underconstrained. It seems
‘almost inevitable that image segmentation and image motion analysis must
complement each other. It would be interesting to examine how each can
make use of results from the other.
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V Our work in processing the EKG data usmg morphologxcal operators has
: apphcatlons in a wide range of other domains. Some topics worth exploring
are: how to reconstruct a signal after it has been passed through dxﬁ"erent

' fmorphologlcal operators; how to use an adaptive structuring element one
perhaps similar to the parametric structuring element introduced in Chapter
- 5, to eventually change its shape as it adapts to the noise or sugnal

N characterlstlcs
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