
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

8-1-1988

Symbolic Analysis of Large-Scale Networks
M. M. Hassoun
Purdue University

P. M. Lin
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Hassoun, M. M. and Lin, P. M., "Symbolic Analysis of Large-Scale Networks" (1988). Department of Electrical and Computer
Engineering Technical Reports. Paper 611.
https://docs.lib.purdue.edu/ecetr/611

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages

■j—

—

■ ■

iiiiillilill
» s i » « i i i i » s

m m m m m m m m
W M m m im m m Z

Symbolic Analysis
of Large-Scale
Networks

M. M. Hassoun
P. M. Lin

TR-EE 88-30
August 1988

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Supported by National Science Foundation Grant
No. ESC-84-19841

ii ' A

TABLE OF CONTENTS

Page

LIST OF TABLES

LIST OF FIGURES

ABSTRACT

• • *•••••••-• ••»«••••»•••••• ••••••••• •• •• • • • • • •••••• • • • V ■

•••••••••••••••••••••••••••«• • •••*•• c • •« •••••••••• »• •• • • ••••••• "Sm

CHAPTER I - INTRODUCTION •••••••••••••••••••• >•••••••••••• »».* • • • •••••»••• ••• • • •

1*1 Intro^iuctioii ■ ••••»••••••••••••»•••••••••••••••••••••••«•••«••
1.2 The Network Approach

1.2.1 Circuit Partitioning
1.2.2 Terminal Block Analysis
1.2.3 Hierarchical Middle Block Analysis

1.3 Conventions ...

♦ • ♦ •• •••••••«••• • • • •• •• • I
•••«»•••••••••••••••••••«••••••• .7 ;

•••••••••••»••»•«••••••••••••••• 8

*•••••••••••••••••••••••••••••• 10
••••••••••••••••••••••©••••••A* 10

CHAPTER 2 - REVIEW: FLOWGRAPH ANALYSIS OF LARGE ELECTRONIC
NETWORKS

2*1 Introduction •••«••••••••••••••••••••••••••••••••••••••>•• •••• •».«»•«•«#
2.2 The Analysis Proeedure • ••••••••••• •*.«>• ' i :4 :

CHAPTER 3 - THE TERMINAL BLOCK ANALYSIS 19

3.1 Introduction. .
3.2 Overview...

♦ • X O
... 19

3.3 The Modified Nodal Analysis ... 22
3.4 The Reduced Modified Nodal Analysis Matrix (RMNA) 31
3.5 The Sparsity of the MNA M atrix .. 38
3.6 The iyotmg P r o h l e m 4 1 .

CHAPTER 4 - THE IDEAL OPERATIONAL AMPLIFIER IN THE MNA
AND THE RMNA MATRICES 43

434*1 Introduction ;
4.2 The Nullator, The Norator and The Nullor ... 43
4.2 The Ideal Opkmp Model 44

CHAPTER 5 - THE HIERARCHICAL MIDDLE BLOCK ANALYSIS 50

5.1 Introduction..
- 5.2 Middle Block Analysis M odel.. ^

CHAPTER 6 - THE GLOBAL ANALYSIS PICTURE AND THE EFFECTS
OF NETWORK PARTITIONING .. 61

6.1 Introduction
6.2 Tke Global Model
6.3 The Effect of the Tearing Nodes on the Analysis 62
6.4 The Advantages of Network Partitioning ...

CHAPTER 7 - PARTITIONING PREPROCESSING 69

7.1 Introduction..
7.2 ;]Nte1̂ brk'Topology"'...>...v....^

--Trees and Cotrees
7.2.2 Weighted Fundamental Loop Matrix .. 7^

7.3 Finding a Tree and its Weighted
Fundamental Loop Matrix ... 75

7.3.1 Finding an initial Tree Ti 75
7.3.2 Building the Weighted Fundamental Loop

Matrix B
7.3.3 Finding an Optimal Tree T0 ——

7.4 Implementation N otes... ®4

CHAPTER 8 - PARTITIONING ALGORITHM.. 85

8.1 Introduction........ *....... 85
8.2 The Loop Index and the Tearing Index ... 88
8.3 The Partitioning Criteria — 89
8.4 The Global A lgorithm ?Q
8.5 Execution Time M inimization... 91

■ ■ Ppge

8.6 The Binary Partitioning Algorithm .. . 95
 ̂8 .6.1 General Discussion 95
8.6.2 Left Weighted Fundamental Lpop Matrix B ; 96
8.6.3 Right Weighted Fundamental Loop Matrix B r 98
8.6.4 TheBinary Algorithm .l: ; . . . ; , 103

CHAPTER 9 - COMPARISONS AND EXAMPLES112

9.1 Comparison with the Flowgraph Method ... 112
^ ^ General Ie 12-3

CHAPTER 10- SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS 131

10.1 Summary and Conclusions 131
10.2 Recommendations .Vi, , 132

LIST OF REFERENCES ..135

APPENDICES

Appendix A: SCAPP Data Structures ... 141
Appendix B: SCAPP Users’ Manual152

VITA • • • • • •* • • • • • • •••• 158

Table

LIST OF TABLES

Page

sparsity of the MNA matrix40

9.1 The result of the flowgraph analysis 115

9.2 SCAPP result with manual partitioning.............. 119

9.3 Results for example 9.1 121

9.4 Partitioning table for block 0 (entire circuit) ... 126

9.5 Binary partitioning table of block 2 127

9.6 Binary partitioning table of block 3 ...128

9;7 Results for example 9.2

Appendix
Table ■; ■ ■

A.i struct subckt (the binary tree vertex) ...141

A .2 struct row (the branch structure) 143

A.3 struct ptr-llist (pointers to branches) ...144

A.4 struct nlist (the node structure) ... 145

A.5 struct nodeptr (Pointers to nodes) . 1 4 6

A .6 struct exp-llist (expression pointer) ..147

A.7 struct symboLtbl (symbol table elem ent)... 148

Appendix
Table

A .8 struct mna-ptr (MNA row)

A .9 struct mna—element (MNA entry) ...

A. 10 struct temp-exp (pointer to branch)

Page

149

150

151

vii

LIST OF FIGURES

Figure Page

1.1 Resistive ladder network 6

1.2 A partitioning binary tree 9

1.3 n-terminal block 11

2.1 A circuit, its Coates graph and its k-connections 16

2.2 Hierarcbicalanalysis.. 18

3.1 Circuit of example 3.1 24

3.2 Element stamps for the nodal analysis .. 26

3.3 Voltage source element stamp 28

3.4 VCVS element stamp 28

3.5 CCVS element stamp 30

3.6 CCCS element stamp 30

3.7 Circuit of example 3.2 32

3.8 Circuit of example 3.4 32

4.1 A nullator 45

4*2' A no ra to r... _______ 45

4.3 Anullor 46

4.4 An opamp circuit 48

Viii

Figure Page

5.1 Iilustratioli of middle block analysis........................... 51
eh

5.2 A partitioned netw ork.. *...............

5.3 Circuit of example 5.1 ...

6.1 Boardered block diagonal (BBD) m atrix ..

7.1 A pseudo-branch for a 4-terminal block ... 71

7.2 A band-pass active filter and its corresponding graph 74

7.3 a. local loop and a non-local loop .. 76

7.4 A linear tree and a star tree •...

7 5 A near-linear tree and a star-like tree .. 79
V./-’ . / V , ■■ vx-v.-v. v /.. . ,,v

7.6 The tree finding algorithm ... ■

7.7 The tree optimization algorithm .. —

8.1 Balanced and unbalanced binary trees ... 99

8.2 Partitioned graph of example 8.2 97

8.3 Left and right partitions of example 8.3 ... 99

8.4 New tree and cotree of the right partition

8.5 Graph of example 8.5

8.6 Left and right partitions of example 8.5 ..449

9.1 Band pass filter [25]113

9.2 Coates graph representation of example 9 .1 .. H 4

9.3 Block interconnections for manual partitioning117
- ■;■■■". -j n

9.4 A single block

ix

Figure Page

9.5 The binary tree model of example 9 .1 118

9.6 Circuit of example 9.2 124

9.7 The binary tree model for example 9.2 124

9.8 Input to SCAPP for circuit of example 9.2 125

9.9 B matrix for block 0 (entire circuit) 126

X

ABSTRACT

A new approach to the problem of symbolic circuit analysis of large-scale

circuits is presented in this report. The methodology has been implemented in

a computer program called SCAPP (Symbolic Circuit Analysis Program with

Partitioning). The method solves the problem by utilizing a hierarchical net

work approach and the sequence of expressions concept rather than a topo

logical approach and the single expression idea which have dominated symbolic

analysis in the past. The method employs further modifications to the

modified nodal analysis (MNA) technique by allowing ideal opamps in the

matrix formulation process and introducing the reduced modified analysis

matrix (RMNA). The analysis algorithm is most efficient when network parti

tioning is used. A node-tearing binary partitioning algorithm based on the con

cepts of loop index and tearing index is also presented. The partitioning tech

nique is very suitable for the hierarchical network analysis approach.

I

C H A P T E R !
IN T R O D U C T IO N

1.1 In tro d u c tio n

The process of simulating the electrical behavior of a circuit using
specially developed computer programs is referred to as circuit analysis or
circuit, simulation. The development of circuit analysis techniques and their
computer implementation started taking a new role in the circuit design
process during the sixties. The sixties were the turning point because they
introduced the concept of integrated circuits (IC’s). Before integrated circuits,
circuits were built with discrete components on PC boards. The process of
verifying the design was to physically build the circuits and test them as the
design progressed; the time and financial cost was relatively small. However,
the cost and time of building IC test circuits to verify the design grew
considerably. Another mean was needed to verify the designs. This is where
circuit simulation started realizing its importance. *

The growth in the scale of integration from Small-Scale Integration (SSI)
to Medium-Scale Integration (MSI) and Large-Scale Integration (LSI), resulted
in the circuit size growth from tens of components to thousands of
components. This lead to the development of what is referred to as second
generation circuit simulation techniques [9,12] in the seventies [10]. Second
generation programs that implement these techniques like SPICE2 [21] and
ASTAP [36] are still the "standard" used for circuit analysis. With the arrival
of the Very Large-Scale Integration (VLSI) era in the eighties with circuit sizes
in the tens of thousands of components, third generation analysis techniques,
namely relaxation techniques and mixed mode simulation techniques
[37,38,39], emerged. These techniques try to make use of the computer
hardware advancements in the form of multiprocesser and array processor
machines. So they involve the idea of partitioning the problem into several
smaller problems that could be distributed over several processors. The
implementation of these algorithms in programs like SPLICE [38] and DIANA
[39] resulted in much faster and more realistic simulation times for VLSI

circuits. However, they have not yet found wide commercial use because of
convergence problems resulting from analog circuits with tight feedback loops.

The approaches in developing all of the above mentioned simulation
techniques is a numerical approach. The circuit designer assigns numerical
values to all the circuit components and then the circuit is simulated using the
analysis program. For LSI and VLSI circuits the simulation times exceed 48
hours of continuous simulation. The numerical results produced are then
analyzed and some circuit component values are adjusted and another
simulation is run. A large number of iterations is needed to achieve the design
goals. This occupied a great deal of time from the designers and the
computers.

An alternative approach to the problem is symbolic circuit analysis. The
aim here is to eliminate the iterations through the simulator from the design
process. The idea is that some or all of the circuit components remain as
symbols throughout the entire simulation. That is, no numerical values
assigned to them. Numerical results can then be obtained by evaluating the
results of the symbolic analysis at a specific numerical point for each symbol.
So only one iteration is needed for the simulation itself and successive
evaluations of the results replaces the need for any extra iterations through
the simulator.

Symbolic circuit analysis is performed in the frequency domain where the
results are in terms of the frequency variable s. The main goal of performing
symbolic analysis on a network is to obtain a symbolic transfer function of the

form N V
TvLspcy :

f f (s ,X) —
Z)(s,X)

(I - ')

where
- T ^ X ^ y ^ (L2)

The expression is a function of the complex frequency variable s, and the
variables X1 through xn representing the variable network elements, where n
is the number of variable network elements and nall is the total number of
network elements. D C analysis results are obtained by evaluating the resulting
transfer function or functions at zero frequency. AC analysis can be
performed by evaluating Iff(M X) | for different values of w without the need
to rerun any iterations through the simulator.

3

Several methods have been proposed to address the problem of symbolic
circuit simulation. The early work was to produce a transfer function I I (s)
with the frequency variable s being the only symbolic variable. P ro g ram s w ith
these capabilities include: CORNAP [43] and NASAP [44].

The more general case is when some or all of the circuit elements are
represented by symbolic variables. The methods developed for this type of
analysis all fall under one of the following categories [14]:
1) The tree enumeration method:

Several programs have been produced based on this method [45,46]. The
process is based on the concept of finding the determinant of the node
admittance matrix [7] by finding the sum of all tree admittance products.
2) The signal fiowgraph method:

The methods developed here are based on the idea developed by Mason
[47,48] in the 1950’s. Formulation of the signal fiowgraph and then the
evaluation of the gain formula associated with it (Mason’s formula) is the
basis for symbolic analysis using this method. This method is used in the
publically available programs NASAP [44] and SNAP [17].
3) The interpolation method:

This method is best suited for when s is the only symbolic variable in the
determinant. It requires the finding of the coefficient of the determinant’s
polynomial by evaluating it at different values of s. It has been deemed
though [49] that using real values for s leads to ill-conditioned equations and
leads to inaccurate solutions. Therefore it is best to use complex values for s.
Also the Fast Fourier Transform is used to find the coefficients,
4) The parameter extraction method:

This method was introduced in 1973 by Alderson and Lin [2]. Other
variations on the method were proposed later in [19,50,51]. The advantage of
the method is that it is directly related to the basic determinant, properties of
widely used equation formulation methods like the modified nodal method [12]
and the tableau method [9].

All of the methods previously proposed have severe network size
limitations. The network size limits for the the most efficient of those methods
are in the range of 50 nodes. In todays VLSI world these methods are not very
useful. A single chip, as mentioned earlier, could contain thousands of
components and in turn thousands of nodes which makes symbolic simulation
of these chips impossible using these methods. There main problem is the

exponential growth of lhe number of terms involved in the expression for the
transfer function, equation (Li), as the network gets larger. The impedance
function for a simple ladder network with only 100 resistors, figure (.),
■would produce 7.QxlO20 terms for equation (I.I). A storage problem beyond
the capabilities of any present or future computer. This problem is solved by
utilizing the sequence of expressions concept.

The solution lay in a total departure from the traditional procedure of
trying to state the transfer function as a single expression directly in terms of
the network variables. Instead a sequence of expressions procedure is taken.
The idea is to produce a succession of small expressions with a hierarchical
dependency on each other. That is, the first expression is a function of the
second which in turn is a function of the third expression, etc. The growth of
the number of expressions in this case is simply linear, which is very
reasonable compared to the impractical exponential growth of the
conventional iiiethods.

The advantage of having the transfer: function stated in a single;
expression lays in the ability to gain insight to the relationship between the
transfer function and the network elements by inspection [15]. For large
e x p r e s s i o n s though, this is not possible, and the single expression loses: that
advantage: Example L I fully illustrates the advantages that a sequence of
expressions has.

jEzarhple l . l
Consider the resistance ladder network in figure (Li). The goal is to

obtain the input impedance function of the network, (Zin)•

The single expression methods for up to 4 resistances would produce

R i ■
I ■' —L-.'-y' / 'V: L

(R i + R 2) ^

Z n
R zR 1 -I-RiR 2
R 1 4 E 2 T jR3

(P)

(1-4)

(1-5)

5

(1-6)
. ^ _ ^ 4-^1 + ^ 4 ^ 2 + + ^ 3 ^ 2

R i T R 2 “I- R 3

The number of terms in the numerator and denominator are given by the
Fibonacci numbers satisfying the following difference equation [14]:

y{k+2) = y(k+ l) + y(k) k = 0,1,2,.... (I.7)

with y(0) = 0, y.(l) = 1

An explicit solution to the above equation is :

I 1+ V 5
n

1- V 5
V F 2 2 (1.8)

~ 0.168 x 1.618” for large n

The solution shows that the number of terms in Zn increases exponentially
with n. This is the best that can be achieved using any of the traditional
methods [3,17]. The single expression transfer function has this inherent
limitation.

Now using the sequence of expressions procedure the input impedance can
be obtained from the following expressions:

Z 1 = R 1 (1-9)

Z 2 = R 2 "f- Z^ (1.10)

„ R 3Z 2
(' l l)Zt O :--

^3+^2

Za = R a + Zi

R §Z A

(1.12)

Z s = — —
R 5"F̂ 4

(1.13)

It is obvious for each additional resistance added the sequence of expressions
R-Z-

will grow by one expression, either of the form Ri -YZ^1 or — * *-1 ■ . The
R i+ Z i-i ,

number of terms in the sequence of expressions can be given by

^ 2n
\AAA- WSA

•'8
WSZy— '

Figure 1.1 : Resistive !adder network

y(n)*= 2.5 n —2
2.5n—1.5

, for n even
, for n odd (I-M)

which exhibits a linear growth with respect to n.

So, to find the input impedance of a 100 resistor ladder network the single
expression methods would produce 7.9xl020 terms which requires unrealisticly
huge computer storage capabilities. On the other hand, the
sequence of expressions method would produce only 248 terms, which is even
within the scope of some desk calculator these days.

Another advantage of the sequence of expressions is the number of
mathematical operations needed to evaluate the transfer function. To evaluate
Zg for the above ladder network, the single expression methods would require
302 multiplications and 87 additions. The sequence of expressions method
would only require 8 multiplications and 8 additions, a huge reduction in
computer evaluation time. All this makes the concept of symbolic circuit
simulation of large-scale networks very possible.

A topological analysis method for symbolic simulation of large-scale
circuits has been proposed by Starzyk and Konczykowska in [25]. The analysis
utilizes the sequence of expressions idea to obtain the transfer functions. A
description of this method is presented in chapter 2, and comparisons are
made with some of the results from this project in chapter 8.

1.2 The Network Approach

The symbolic analysis methodology proposed in this report is based on a
hierarchical network partitioning and recombination approach to the problem.
It is aimed at analyzing large circuits in the size range of thousands of nodes.
The result of this project is the production of a Symbolic Circuit Analysis
Program with Partitioning (SCAPP). This consisted of the development of the
methodology and the algorithms for the analysis and implementing them in a
computer program in C language [40], One of the main issues that was kept in
perspective is the utilization of multiprocessor computer systems. This
required the design of parallel algorithms that will allow the analysis to be
performed concurrently on several parts of the circuit. The process is divided
into the following parts:

1) Circuit partitioning. ^ V ^
2) Subcxrcuit analysis, referred to as terminal block analysis.
3) HierarcHcal analysis, referred to as middle block analysis.

The input to SCAPP is a description of the circuit elements by and
element and their interconnections (the circuit topology). The elements
allowed are resistors, capacitors, inductors, current and voltage controlled
current and voltage sources, and ideal operational amplifiers (opamps).
SCAPP also allows for user defined subcircuits.

Appendix B is the user’s manual for SCAPP. It illustrated the usage and
syntax for the input language tp SCAPP.

1.2.1 Circuit P artition ing
After parsing the circuit elements, the automatic partitioning is optional.

The user may specify their own partitions using the .subckt and .ends options,
request SCAPP to perform the partitioning controlling the process through a
collection of options using the .options command or choose to perform the
analysis on the entire circuit without any partitioning. The partitioning
algorithm, which is really a collection of algorithms that would result in the
best partitioning suitable for the analysis, is a highly parallelizable hueristic
binary process that is based on the concepts of near-optimal tree and
loop index [29]. The process is modeled using a binary tree [1], figure (1.2).
The leaves of the tree represent the final subcircuits and each non-leaf vertex
represents a binary partitioning operation. The process attempts to minimize
the number of nodes and the size of each partition. The development and
implementation of the partitioning algorithms are fully explained m chapters 6

:■ and 7. ,■ _

i;2 .2 T erm in a l Block A nalysis
Each subcircuit (terminal bldck) produced by the partitioner has to be

m o d e le d as an n-terminal block, figure (1.3). Each block is generally
characterized by an (n m X matrix Y, where h is the number of
tearing nodes for this block and m is the number of extra current variables
needed in order to characterize controlled voltage sources plus the number of
extra current variables requested by the analysis, if any. The Y matrix is a
Reduced Modified Nodal Admittance (RMNA) matrix. This terminal block
analysis process is totally independent for each subcircuit; it is not an iterative
procedure. So each subcircuit may be processed in a different processor on a

9

Figure 1.2 : A partitioning binary tree

multiprocessor machine. The result of the terminal block analysis is an RMNA
matrix for each subcircuit. The theory and development of the RMNA matrix
is presented in chapter 3 and the terminal block analysis implementation is
explained in chapter 4.

1 .2 .3 H ie ra rch ica lM id d le B lock A nalysis
In a physical sense this involves the upward hierarchical combination of

the n -terminal blocks representing the subcircuits to produce the final result.
In an analytical sense it is the binary combination of the RMNA matrices to
produce one final RMNA matrix Y 0 with dimensions (n0 +m 0 x n0 +m 0),
where n0 is the number of node voltages requested by the user, and m0 is the
immber of current variables requested by the user or irreducible by the
analysis (section 3.6). The combination process traces the same but opposite
path of the binary tree that models the partitioning, figure (1.1). It traces up
the binary tree. Every time two subcircuits are combined, the leaves
representing these subcircuits are deleted from the binary tree making their
parent vertex a leaf itself. The process is continued until only the root vertex
is left. Again the parallelism is very obvious in this analysis. However the
scheduling of the processes must be handled with extreme care because of the
dependencies generated by the structure of the partitioning. The middle block
analysis process is presented in chapter 5.

1.3 Conventions
These are several conventions that are adopted throughout this report:

1) Both subtraction and division operations are counted as addition and
multiplication operations, respectively, when calculating the total numbers
of mathematical operations a certain method performs. This convention
simplifies and makes clearer the comparisons between the different
methods. :■

2) When comparing different sequence of expressions to each other, the
measure of goodness is the number of multiplications and the number of
additions in each sequence, the number of equations is not considered
significant at all. This is justified because for computer evaluation of the
expressions, an equation is simply an assignment operation which ̂has
minimal or ho cost compared to an addition or a multiplication operation.

3) Since a modification of the nodal admittance matrix is used (chapter 3),
all elements are represented by their admittance value.

11

« n-1

Figure 1.3 : n-terminal block

4) All resistors with an impedance value represented by the symbol R will
have an admittance value represented by the symbol G. So it is always

understood that G =='”jr> r. .. K , . ..
5) For the purpose of symbolic analysis, as mentioned earlier, the entire

analysis is performed in the frequency domain with the aid of the complex
frequency variable s. The Laplace transform representation of the value of
any circuit element is therefore used in the equation formulation process.
It is beyond the scope of this report to explain the conversion into the
frequency domain. A detailed explanation of the conversion is presented in
[35]. A resistor with impedance value R in the time domain has an

admittance value of in the frequency domain, or, by the previous

convention, simply G. The complex frequency variable s is not involved
because a resistor is not a charge storage device. For charge storage
devices; a capacitor with time domain impedance value of C has a
frequency domain admittance value of sG and an inductor of time domain

impedance value of L has a frequency domain admittance value of — .

, . CHAPTER 2
REVIEW; FLOW GRAPH ANALYSIS OF

LARGE ELECTRONIC NETW ORKS

2.1 Introduction

Symbolie circuit simulation usage has been mostly limited to universities
and research institutions. They have not yet found their way into the
industry. This is mainly due the limitation that all existing symbolic circuit
analysis software can only handle very small circuits. That is, networks in the
range of 50 nodes.

A recent approach to the problem of symbolic simulation of large-scale
circuits has been proposed by Starzyk and Konczykowska [25]. The method is
based on the topological analysis of electrical networks. The basic idea is to
represent a certain network, which is to be analyzed, by a flowgraph that fully
describes the elements of the network (flowgraph branches) and their
interconnections (flowgraph nodes). The result desired from a symbolic
topological analysis is a rational function of a specific output variable to a
specific input variable. That is,

N (s ,X|,Z2,...<)
(2 . 1)

D (s

The expressions obtained above are functions of the complex frequency
variable s, and the variables X1 through xn representing the values of the
network elements, where n is the number of variable network elements. For
large networks the above expression could become very complex, specially as n
gets larger. Storing and evaluating such a complex expression using a
computer would become highly impractical and in some cases even impossible.
Starzyk and Konczykowska [25] solved the problem by decomposing the
flowgraph into several smaller graphs and then performing an upward
hierarchical graph analysis technique [13]. This would produce a
sequence Qf expressions which would exhibit an upward hierarchical
dependency.

For the construction of a flowgraph that represent a network, the Coates
flowgraph representation [8] was chosen by the Starzyk and Konczykowska,
though their method could be modified to suit other flowgraph
representations.

2 ;2 T h e Analysis Procedure
For the Coates’ graph, the resulting transfer function is expressed as the

ratio of the graph’s 1-connection, which is dependent on the input variable
and the output variable selected, to the graph’s O-connection, which is global
to all the network’s transfer functions (ie. independent of the I/O variables
selected) [8]. A generalization of Coates’ 1-connection and O-connection is
referred to as a k-connection [25]. To illustrate the concept of a k-connection
the proper definition of a directed graph must be presented first [I].

Definition 2.1

A directed graph G ={V,E) consists of a finite, nonempty set of vertices V
and a set of edges E which are ordered pairs ef=(t>,-,) of vertices; Vi is called
the tail and U1- the head of edge e,-. Each edge e,-C£ has a weight W1-

associated with it.

: Definition 2.2 [25] ,

A k-connection (multiconnection) of a graph G with n nodes, is a subgraph Pj
with n nodes, a node-disjoint directed edges, /3 isolated nodes and X node-
disjoint directed loops, where k^a+ fi. The weight of a k-connection is given

by

r i p y ' ;v

and the weight of a set of multiconnections P is given i>3rv--

\P I = Y sign Pj (2*3)
Pj€P

where

Sijrn P = - ,»t) • or<l(M,, • • • ,ut) (2.4)

Ordlq1

I when the number of
permutations order
ing the set is even

—I otherwise

(/p number of loops in multiconnection p).

The transfer function of a network with input variable W1 and output
variable v2 is therefore,

Î 3I-connection, Î
H (s,X1,X2,...) = 1 2 (2.5)

I--O- connection I

The 1—Cdnneettonv is the set of all !-connections that include a directed
path (a set of directed edges) that connect graph nodes V1 to v2.

Example 2.1

Y f .As an example consider the circuit in figure (2.1). To find the

l —c0nhecttpnVî V2 is needed. Only one such subgraph exists, figure (2.1b).
However the Q—connection set has two members illustrated in figure (2.1c), so

\ P ! —connection, ̂I
H{s,VvV2T VnnCvC2)

\P o- connection I
(2.6)

_ —{~sC2 + Vm)
. ̂ (Sr2H-SC2) '

The above described Coates’ graph technique was utilized by Starzyk and
Konczykowska to develop their topological analysis algorithm [25]. The main
steps to the algorithm are :

1) Construction of the Coates’ graph for the network.

2) Decomposition of the graph into several smaller subgraphs referred
to as terminal blocks. There are several decomposition techniques
that could be used at this stage. These terminal blocks must be of
a size that would allow the Coates’ graph analysis method to be
applied without producing expressions for the k-connections that

C2
■■ • ' :■ •. -K --Ii--- — T !

V
•• i X' V Jg1 == C1 *2

T I:' ; -T-:—-I a. A

g + sICj+Ĉ l — _92̂ _sC2

t A

(c) !-connection

o s <&

(d) 0-connections

Figure 2.1 : A circuit, its Coates graph and its k-connections

are too complex resulting in huge memory requirements and slow
evaluation times. The problem of graph partitioning is an
N P —complete problem [I]. Therefore finding an optimal algorithm
to partition large graphs in reasonable time is impossible. However,
there exists sub-optimal algorithms that would result in efficient
enough partitions for this specific analysis purpose in reasonable
time. One such efficient algorithm has been proposed in [24].

3) Analysis of the terminal blocks. This step is basically finding the
Coates’ graph multiconnections for all the terminal blocks.

4) Analysis of the middle blocks. A middle block is the union of two
blocks which could be any combination of terminal and middle
blocks. The process of analyzing a middle block consists of
combining the k-connections obtained in step 2. This is where the
method gets its upward hierarchical analysis label. The best way to
represent this combinational analysis technique is by the use of a
binary tree. Figure (2.2) illustrated a binary tree for a graph
decomposed into five subgraphs. Terminal blocks 8 and 9 are
combined to produce middle block 4, then middle block 4 and
terminal block 7 are combined to produce middle block 3. The
process of analyzing a middle block consists of combining the k-
connections for its two descendants to find the k-connections for
the subgraph represented by the union of these two block. The
process is continued until block I is reached, At that point the 0-
connection and the 1-connection expressions are found, and the
transfer function would then be the ratio of the two.

Chapter 8 illustrates a detailed example of the above method. It
compares the results of the analysis to the network approach method
developed in this project.

Figure 2.2 : Hierarchical analysis

CH APTERS
THE TERMINAL BLOCK ANALYSIS

3.1 Introduction

Terminal block analysis is the analysis of a circuit represented by an n-
: terminal block in order to characterize its electrical behavior. For the symbolic
analysis methodology presented in this report and implemented in SCAPP,
the characterization is done in terms of the block’s terminal node voltages and
some extra branch currents. This chapter presents the terminal block analysis
methodology.

3.2 Overview

The heart of any circuit simulator, symbolic or numeric, is the circuit
analysis methodology used to obtain the mathematical equations that
characterize the behavior of the system. The circuit must satisfy these
equations. These equations are of three kinds, Kirchoffs Current Law (KCL),
KirchofPs Voltage Law (KVL), and the Branch Relationship equations (BR)
[7]. These laws are defined as follows :

KCL: The algebraic sum of currents traversing each cutset of the network must
always equal zero. Always a set of linear equations. Cutset analysis
[7,21] makes use of this law. Considering a special case of cutsets: an
isolated node, would enable the restatement of KCL in its more
commonly known form, which is:
The algebraic sum of currents leaving any node of the network must
always equal to zero. Nodal analysis [7] makes use of this special case of

; the KCL. '
KVL: The algebraic sum of voltages around each loop of the network must

always equal zero. Always a set of linear equations. Loop analysis [7,21]
makes use of this law.

BR — For independent branches, a branch relationship defines the branch
current in terms of the branch voltages. The most common independent
branches are resistors, capacitors and inductors. For the case of

dependent branches, the branch current or voltage is defined in terms of
other branchs’ currents or- voltages. The four com m ontypes of
dependent branches are the four types of dependent sources: voltage
controlled voltage source (VCVS), voltage controlled current source
(VdGS), current controlled voltage source (CCVS) and current
controlled current source (CCCS). A linear element would produce a
BR equation that is linear, and a nonlinear element would produce a
nonlinear BR equation. The scope of this report is only concerned with
linear elements, therefore, the discussion herein will be limited to that
subset of elements. If a nonlinear element is to be included in the
circuit, a collection of linear elements could be used to closely model
the behavior of that element over a certain frequency range [7]. BR
equations are not used on their own to formulate a system of equations
to characterize the network. They are however used in conjunction
with KCL or KVL equations to produce a more complete set of
etpiations to characterize Iihe network. Hybrid analysis [7] uses a large
set of BR equations in its formulation.

A system of equations to solve for the circuit variables: a collection of node
voltages and branch currents, does not need to include all of the above
equations. Several analysis methods are based on these equations or a, subset
thereof. Mathematically speaking, an equal number of circuit unknowns and
linearly independent equations ia required in order for a solution for the

system to exist.
The most common analysis methods used in circuit simulators are: _

I) A modification of nodal analysis [7,12] as used in the numeric circuit
simulators SPICE2 [21], and SLIC [52], and in the formulation of the
symbolic equations in [2]. Nodal analysis [7] uses KCL to produce the set
of equations that characterize the circuit. Its advantage is ita relatively
small number of equations which results in a smaller matrix which is very
desirable in computer implementations. I t’s limitation however, is that it
only allows for node4 o-datum voltages as variables. No branch current

; variables are allowed. Also the only type of independent power sources it
allows are independent current sources. However, voltage sources are
handled by using their Norton equivalent [35]. A further limitation to this
method is that only voltage controlled current sources are allowed, none of
the other dependent sources are allowed in the analysis. To overcome
these limitations, the Modified Nodal Analysis (MNA) method was

proposed in [12]. It allows branch current as variables in the analysis,
which in turn led to the ability to include voltage sources and all four
types of controlled sources in the analysis. The MNA method is described
in more detail in the next section because it is used in SCAPP after
further modification to it. These modifications are necessary in order for
the analysis to accept ideal opamps in the analysis, and to produce an ri
te rminal block characterization matrix. This matrix is referred to as the
Reduced MNA (RMNA) matrix.

2) Hybrid analysis [7] is used in the numeric simulators ASTAP [36] and
ECAP2 [53]. The method requires the selection of a network tree (section
6.2) and its associated cotree. It uses cutset analysis (KCL) and loop
analysis (KVL) to formulate the set of equations. TLe equations produced
solve for the branch voltages and branch currents. The method is able to
accommodate voltage sources and all four types of dependent sources. It
utilizes a much larger matrix than the nodal analysis methods; however, it
is a very sparse matrix (lots of zero entries). The main drawback is that
the behavior of the equations is highly dependent on the tree selected. A
bad tree could easily result in an ill-conditioned set of equations. Some
methods of tree selection Can guarantee a well-conditioned set of hybrid
equations [21]. Therefore special rules must be observed in the tree
selection process. That constitutes a large additional overhead on the
analysis;.

3) Sparse tableau analysis [9] has been used in symbolic analysis to employ
the parameter extraction method (section 1.2). It uses the entire set of
circuit variables: node voltages, branch voltages, branch currents, for the
symbolic formulation in addition to capacitor charges and inductor fluxes
in the case of numeric simulations. This results in a huge set of equations
and in turn a very large matrix but a very sparse one. This method uses
all the above stated equation formulation methods, KCL', KVL and the
BK. The entire system of equations is solved for all the circuit variables.
The disadvantage of the method is its inherent problem of ill-conditioning
[2i].
It has been found that the sparse tableau method only produces a very
minor improvement in the number of mathematical operations over the
nodal analysis methods despite its large overhead, stemming from a large
matrix and the large and rigid set of variables that have to be solved for.
The MNA method gives the choice of what branch current variables to be
solved for and equations are added accordingly. The tableau method

would always have a fixed size matrix and produce unneeded information
to the user.
For the purpose of symbolic analysis, as mentioned earlier in chapter I,

the entire analysis is performed in the frequency domain with the aid of the
complex frequency variable s. The Laplace transform representation of the
value of any circuit element is therefore used in the formulation. Also, since a
modification of the nodal admittance matrix is used, all elements are
represented by their admittance values. It is beyond the scope of this report
to explain the conversion into the frequency domain. A detailed explanation of
the conversion is presented in [35]. A resistor with impedance value R in the

time domain has an admittance value of in the frequency domain, or, by

the convention of section 1.3, G. The complex frequency variable s is not
involved because a resistor is not a charge storage device. For charge storage
devices, a capacitor with time domain impedance value of C has a frequency
domain admittance value of sC and an inductor of time domain impedance

value of L has a frequency domain admittance value of — .

3.3 T he M odified N odal A nalysis
The initial step of MNA is to formulate the nodal admittance matrix Y

[7] from the circuit. The circuit variables considered here are all the node-to-
datum voltages, referred to simply as node voltages; there are nv of them.
They are included in the variable vector V. So V has the dimensions of
(n„xl). The vector J, also of dimension (n„xl), represents the values of all
independent current sources in the circuit. The ith entry of J represents a
current source enering node i. The nodal linear system of equations can be
represented in the following matrix form:

Y V = J (3.1)

Row t of Y represents the KCL equation at node i. Y is constructed by
writing KCL equations at each node except for the datum node. The ith
equation then would state that the sum of all currents leaving node * is equal
to zero. The equations are then put into the matrix form of equation (3.1).
The following example illustrates the process.

23

Example 8.1

Consider the circuit in figure (3.1). Collecting the node voltages would
produce the following V:

V v2
vZ

(3.2)

Considering all the current sources in the circuit, the vector J becomes:

J
J I
Ja
0

(3.3)

Notice the last entry of J is a zero because no independent current sources are
connected to it.
N ow w riting KCL equations at the three non-datum nodes produces:

G2^1 + G3(U1-U 2) + I
S Lr j (yI-^s) = J I (3-4)

G5^2 + G3(U2-U 1) + sG6(u2—U3) = Z4 (3.5)

sG6(u3 v2) + ^ {vz ~ yi) + — 0 (3.6)

Substituting Vr & = U1 — u2 in the above three equations and rearranging their
variables results in:

(G2+ G 3H-—)uj — G3U2 - --j—u3 = J 1
S h 7 S b r j

— G3U1 + (G3+G 5-t-sC6)u2 — sG6u3 - J 4

{ 9 z ~ ~ j ~ ') v l ~ (fi,8+ s ^6)y 2 + (“T _ + sG6) u3 = 0

(3.7)

(3.8)

(3.9)

Now realizing the form of equation (3.1) would yield the nodal admittance
matrix of this circuit Y.

24

Figure 3.1 : Circuit of example 3*1

25

G^^rGg^
SJj 7 S L 7

- G 3 Gs+Gs+sCq —sCq

Sb" —{9b+ sC6) sC6 4
sL k

V1

V2
v3

J i
J a
O

(3.10)

An automatic technique to construct the nodal admittance matrix is the
element stamp method [12]. The method constitutes going through each
branch of the circuit and adding its contribution to the nodal admittance
matrix in the appropriate positions. It is a very nice and easy way to illustrate
the impact of each element on the matrix. Figure (3.2) shows the element

stamp for any conductance (G , s C or ~), for an independent current Source
SJu

and for a voltage controlled current source (VCCS). These are the only types
of elements allowed by the nodal analysis. Resolving example 3.1 using the
element stamps would produce exactly the same Y matrix, V vector and J
vector as in equation (3.10). In the computer implementation for this project,
the element stamp method was not used. A more efficient modification of it
was used because of the sparse matrix storage programming technique
implemented (appendix A). The technique requires building the matrix row by
row. An element stamp could require accessing up to three rows to enter its
contribution into the matrix. This Would severly impede the efficiency of the
program. The reason element Stamps continue to be discussed here is because
of their great illustration power of the concept of building the admittance
matrix.

The modified nodal analysis technique introduced in [12] expands on the
above nodal analysis in order to readily include independent voltage sources
and the three other types of controlled sources: VCVC, CCGS and CCVS.
This is done by introducing sothe branch currents as variables into the system
of equations which in turn allows for the introduction of any branch current
as an extra system variable. Each extra current variable introduced would
need an extra equation to solve for it. The extra equations are obtained from
tbe branch relationship (BR) equations for the branches whose currents are
the extra variables. The effect on the nodal admittance matrix is the deletion
of any contribution in it due to the branches whose currents have been
declared as variables. This matrix is referred to as Y n. The addition of extra
variables and a corresponding number of equations to the system results in the
need to append extra rows and extra columns to Y n. The augmented Y m

26

i
< I

©

3

- Y

i' not a variable y

- Y -I

iy a variable

(a) A conductance branch

i j RHS

t

3

i k
-(b) A current source

k I

3

9m 9m

~9m 9m

(c) AVCCS

Figure 3.2 : Element stamps for the nodal analysis

27

matrix is referred to as the MNA matrix. The new system of equations, in
matrix form, is:

Y» B][v l F jf
C D j I ~ E (3-H)

where I is a vector of size re,- whose elements are the extra branch current
variables introduced, E is the independent voltage source values, and C and D
correspond to BR equations for the branches whose currents are in I.

According to [12] the MNA current variables should include all branch
currents of independent voltage sources, controlled voltage sources and all
controlling currents. In this project however, with some extra manipulations
for CCVS’s and CCOS’s, the number of extra current variables required by
the MNA could be reduced, in turn reducing the size of the MNA matrix.
Each of the new elements that the MNA allows over the nodal analysis is
examined in the following steps. These elements, as mentioned earlier, are:

1) Independent voltage source (figure 3.3). tvGL is the extra current variable
and the extra equation is the BR provided by the independent voltage
source, which is :

V1 - V 2 = V (3.12)

So V becomes an entry in E. Also iv will appear in the KCL equations at
nodes I and 2. The element stamp for an independent voltage source is
illustrated in figure (3.3).

2) Voltage controlled voltage source, VCVS (figure 3.4). is the extra
current variable and the extra equation is the BR provided by the VCVS,
which is :

V1 - V 2 = fxVy

Since Vy = V3 - u4, equation (3.13) becomes

v I - V 2 - fJ-v3 + (J,v4 = 0

The element stamp for a VCVS is illustrated in figure (3.4).

(3.13)

(3.14)

3) Current controlled voltage source, CCVS (figure 3.5). The MNA proposed
in [12] would require that both the dependent voltage source current icevs
and the controlling current iy be included as variables. That is however
unnecessary. Recognizing that iy = Y(v3- v 4) would enable the
elimination of iy from being an extra variable, therefore reducing the size

2 8

V ■ ■ ’ ;

M - :

' ^ : M " ' M - ' '

M v v -

i :: . 3 ■
i
trV

R H S

: ' v

. . . ■ ' : .
r I V . . - V . ■■■

■ .

- I - V v v ; ' " ' :

m r m

of the MNA matrix. So, JccosGI is the only extra current variable and the
extra equation is the BR provided by the CCVS and the controlling
branch, which is :

yi - y2 = riy (3.15)
Since iy — Y(v3 — v4), equation (3.15) becomes

vi ~ v2 ~ rYvz + rYv4 = 0 (3.16)

The element stamp for a CCVS is illustrated in figure (3.5).
4) Current controlled current source, CCCS (figure 3.6). The MNA

proposed in [12] would require that the controlling current iy be included
as variables. That is however unnecessary. Recognizing that
ly = ^Ty3 —yJ would enable the elimination of iy from being an extra
variable, therefore introducing no extra variables to the MNA matrix. So
the CCCS’s current can be expressed as

W = W y3 - yJ (3.17)

and immediately entered in the MNA matrix in that form. The element
stamp for a CCCS is illustrated in figure (3.6).

Example 8.2

As an example of a MNA matrix formulation, consider the circuit of
figure (3.7). The extra current variables are the branch current of the
independent voltage source (branch I) and the CCVS (branch 5). They are
referred to as J1 and V5 respectively. Using element stamps, the MNA system
of equations becomes:

I G2 - G 2

2

3

4

- G 2 G2+G3+G4+ —
sL 8

AgG2 - G 4- AgG2

-A jG2 — j—+AgG2
sL 8

5

x l
x2

0

I
0

0

0
- fSG3

0 0 0 I 0

- G 4 I
8

0 0 0

G ̂ -{-s C j —sC7 0 0 I

- s C 7

0

0
I

G8TsG7T - : 0 0 0
S lrg

0 Gio 0 —I
0 0 0

- I 0 0
0
0

Figure 3.5 : CCYS elem ent stamp

k I

p Y : -J3Y;

Figure 3.6 : CCCS element stamp

31

V1
0

. . . \ 0
' . ■ v 3 0

• v 4 = ^ l l
. ■ ‘ iI . v B 0

*1 V-I
— :: '■ • ' . H _ 0

(3.18)

3.4 T he Reduced Modified N odal A nalysis M atrix (RMNA)

T he goal here is to characterize a netw ork in term s o f a subset of th e set
o f circuit variables. The M NA approach explained in the previous section
characterizes the network in term s of all the circuit variables: node voltages
and. som e branch currents. For the hierarchical analysis process in SC A P P the
goal of the analysis is to obtain the transfer functions of som e circuit variables
w ith respect to others. These variables are the subset o f circuit variables th at
the network is to be characterized in term s of. The options available in
SC A PP enable the analysis to be perform ed on the w hole circuit w ith ou t
partition ing it. In w hich case the analysis reduces to sim ply a process o f the
term inal block analysis of one big n -term inal block.. The term inal nodes w ill
be the nodes w hose voltages are involved in the transfer functions requested.
For the case where partitioning is used, user defined or au tom atic, each
term inal block is m odeled as an n -term inal block (figure 1.3), w here the
term inals o f the block represent the tearing nodes associated w ith th at specific
block in addition to any nodes requested by the analysis th at are part o f th is
block. So the desire here is to produce a m atrix th a t characterizes th e circuit
in terms o f these tearing nodes and the extra current variables requested by
the analysis. T hese variables are referred to as external variables.

This is done by additional m odification to the M N A m atrix to produce
the R educed M odified Analysis M atrix (RM NA) Y R th a t characterizes the n-
term inal block.

The m odification to be perform ed is the suppression o f all node voltages
and current variables th at are local to the term inal block. T h ey are referred to
as internal variables. The local (non-tearing) nodes are referred to as internal
nodes and the local currents (not requested by the analysis) as internal
currents. T he system of equations that describes the term inal block in term s o f
the external variables can be w ritten as,

Figure 3.7 : Circuit of example 3.2

Figure 3.8 : Circuit of example 3.4

33

Y 1
(3.18)

Where Y ^ is the reduced node admittance submatrix, Br is the reduced
contributions of the external currents to KCL equations, C r and
represent the reduced BR equations, V e is the vector of external node
variables and Ie is the vector of external current variables. The ith entry of
the J e vector represents the currents entering the n-terminal block through
the ith terminal, or in other words entering the ith node from another block
or a power source. The J r and the vectors represent the contributions of
the independent current and voltage sources, respectively, internal to the
block.

The process of suppressing an internal node or an internal branch current
in mathematical terms means solving for the variable in terms of the other
system variables. The goal here was to find a suitable method for computer
implementation. A process to solve for a variable in terms of the other system
variables can be done by using a single step of the Gauss elimination method
[3l]. Each step of the Gauss elimination method consists of reducing a system
of n linear equations in n unknowns to a system of n —I linear equations in
n —I unknowns by using one of the equations to eliminate one of the
unknowns from the remaining n — I equations. The best way to illustrate the
method is to consider an example.

Example 3.8

Consider the following system of three linear equations and three
unknowns:

(- 0 ^ l l x I T b 12*2 T ^13X3 =

(2) &2i* i + b22x2 + b 23X3 = I2 (3.19)

(*0 ^31*1 ~k ^32*2 ~k ^ Z Z x Z = ^ Z

The general matrix form for a linear system of equations can be written as:

B X = L 0 (3.20)

Therefore equations (3.19) can be rewritten as follows:

34

&11 ^ 12 ^ 13 Xi V

 ̂21 ̂22 ̂23 X 2 = h

^31 ^32 ^33 I--

--- H CO

----1
CO

i

(3.21)

Now the process of eliminating equation X2 form the system requires the use of
one of the three equations to do so. Without any loss of generality and in
order to maintain a certain symmetry in the process, the second equation is
chosen. The process is equivalent to eliminating the second row and second
column of B and the second entry in both X and L.
First x2 must be eliminated from the first equation. This is done by

multiplying the second equation by - 11 and subtracting it from the first
b 22

equation. The next step is to eliminate x2 from the third equation. This is

done by multiplying the second equation by and subtracting it from the

third equation. The result is:

bin 1̂2 , % , ^12 .
(1) ‘“ ‘ 22 2

boO , 3̂2 , x , 3̂2 .

(2) (63. - 6 ^ 6 ,,)*l + (‘ 33-» M !S) l3 - 3 ‘ 22 2

(3.22)

What has happened here is that the second equation was used to express x 2 in
terms of X 1 and x 2. In matrix form the process of suppressing the second row
and second column of B and the second entry in both X and L to produce
B fl, Xfl and L r , respectively, can be expressed as:

Bfl = B c r - C 2R 2
°22

(3.23)

Lfl = L cr — , C 2R 2
°22

(3.24)

where C 2 is the second column of B with &22 removed, R 2 is the second row of
B with &22 removed, B cr is B with the second column and the second row
removed and L cr is L with the second entry removed. X # is simply X with X 2

removed since it has been suppressed by equations (3.23-3.24).
The new system of linear equations can be written in general terms as:

B j = ĵ R ^
and for this specific example as:

(3.25)

(3.26)

The above procedure can be generalized for any system of linear
equations in the form of equation (3.20) to be reduced to the form of equation
(3.25) where the variable xy is to be suppressed. The suppression equations
become:

B R = B e r - Y - C yR y (3.27)
0Ji

L e = L e t - - I - C j Ij (3.28)
bU

where Cy is the jth column of B with 6yy removed, R y is the jth row of B
with bjj removed, Ber is B with the jth column and the jth row removed and
L cr is L with the jth entry removed. X r is simply X with xy removed since it
has been suppressed by equations (3.27-3.28).

The effect of equation (3.27) on each element of B, or in other words the
effect of reducing the variable i y on any element of B, can be expressed as:

' bpj .
bpqn = bpq ~ T ~ hjq p & and 9^3 (3.29)

b)i
The effect on the members of L can be expressed as:

bvi .. .
hfa (p ~ i h' p ^ (3.30)

b)i
The matrix entry 6yy is referred to as the pivot, the entry bpj is referred to as
the column pivot and the entry 6y? is referred to as the row pivot. Each
column pivot is unique for each row in B and each row pivot is unique for
each column in B and

A convention has been adopted in order to simplify the analysis operation
and to make equations (3.28 and 3.30) unnecessary. The convention is that all
independent sources must remain external to the n-terminal block. The nodes

they are connected to always remain as tearing nodes and therefore they are
never suppressed throughout the analysis. Direct numeric or symbolic
substitutions for their values is then possible at the end of the analysis as will
be evident at the end of the middle block analysis (chapter 5). This convention
results in the fact that the J r and E 5 in equation (3.18) are both 0. So, since
the entries in J e in equation (3.18) are zeros except at the locations
corresponding to the external nodes, the entry /y in equations (3.28 and 3.30),
where j is always an internal node, is always 0. This all means that the entire
reduction operation now has no effect on the right hand side of the system of
equations at all.

For the computer implementation of the method, where the matrix is
operated on row by row, and in order to minimize the number of
mathematical operations for the process, the first operation performed is the

division of the column pivot by the pivot; that is, —— is performed first and
0H

stored in a new variable. This new variable is then used in equations (3.29-
3.30). This saving might seem trivial for small size matrices, but when dealing
with matrices of dimensions in the range of 1000x1000, the prospect of saving
999,000 (999x1000) multiplications becomes quite appealing.

The Gauss elimination step explained above is applied directly to the
MNA matrix developed for the n -terminal block. The result is the RMNA
matrix characterizing the n-terminal block in terms of its external variables
oifiy* AU the internal variables have been suppressed by the successive
application of the Gauss elimination step. A simple example will serve to
illustrate and easily verify the formulation of the RMNA matrix*

Example S.4
Gonsider the circuit in figure (3.8). Treating it as a 3-terminal block,

nodes I and 3 become the external nodes. The assumption is that all current
variables are to remain internal; in this case t2. Using element stamps the
MNA matrix for this circuit is expressed as:

37

I
t'l

'C l - G 1
W3
0

*2
<T

2 —Gi G1-HsC3 -S C 3 i
3 0 —sC3 CO 0

x I _ ° 1 - t h 0

(3.31)

To produce the RMNA matrix in terms of V1 and v3 only, all the other
variables must be suppressed. The anticipated results is a (2x2) RMNA
matrix.
Notice that an attempt to reduce the current variable J2 first would cause a
problem. The reason being the pivot is zero. Therefore it is deferred to the
end. The reason is fully explained in the next section (section 3.6).
So the first step is to suppress the internal node 2. The pivot is G1H-SC3.
Performing equation (3.27) the MNA matrix of equation (3.31) yields:

G1 0 0

0 sC3+ G 4 0

0 -[I2 0

V1 V3 J2 _
 ̂ G1SG3 G1SC3 G1

G1-HsC3 ~ G1-HsC3 G1-HsC3

G1SC3 G1SC3 ^ sC3
G1H-SC3 G1H-SC3 4 G1H-SC3

x — -L _ f£ i_ I
G1H-SC3 2 G1H-SCs G1-HsC3

G1-HsC3

-G 1
-sC3
I

-G1 - s C , I

(3.32)

Notice what happened here, the suppression of node 2 which is one of the
nodes of the branch whose current is a variable produced a fill in the pivot
position for row X1. This now allows for the suppression of the internal current
variable *2. Equation (3.27) is applied again to the matrix of equation (3.32)
and results in:

G1SC3 G1SC3
G1-HC3 G 1+sC3

G1SC3 G1SC3 ^
■ ■ ■— . V1'".. — ---- +Cr4

G1-I-SC3 G1H C 3 '.H

+ (G 1+ 5 C3)

After canceling some terms and some mathematical manipulation of the
matrix of equation (3 .3 3), the resulting RMNA system characterizing the 3-

G 1 H C 3

s C 3

G 1 H C 3

j I
G 1 H C 3

~p2+'
«c.

G1 H C 3

(3.33)

terminal block becomes:
r

G1 — G 1 / ^ 2 t7I J I
0 sC 3 M2 V3 J ’t.

where Jn1 and J 2 are the currents entering terminals I and 3 from the external

world.

3,5 T h e S p ars ity o f th e M N A M atrix
The Gauss elimination method is appealing for the case of the MNA

matrix because of the high sparsity of the matrix in the real circuits world.
Makihg use of sparse matrix techniques enables SCAPP to only perform the
reduction on the nonzero elements of each row of the MNA matrix. The
number of nonzero entries in each row representing the KCL equations at the
circuit nodes is strictly dependent on the number of elements connected to
that node. For practical circuits each node will have at least a conductance
branch incident on it. The contributions of each type of element to the entries
of Y n and B of the MNA matrix (equation 3.11) is illustrated herein.

_Each Conductance incident on the node will contribute at least one entry at
the pivot (the row entry corresponding the node voltage variable) and
another entry if its other node is hot grounded, unless its current is a
variable and then only one entry is contributed to the row. This is readily
seen from the element stamps of figure (3.2). So b conductance branches
incident on a node will contribute 6 H entries to its corresponding row.

— All types of voltage sources will contribute only one entry in the column
corresponding to their extra current variable, figures (3.3-S.5).

— Current sources will contribute a maximum of two entries, figures (3.2,3.5).
By inspecting a collection of integrated and discrete, digital and analog

practical circuits, it has been found that a node has an average of about four
branches connected to it, only one of which is usually a controlled source.
Therefore the worst case number of entries contributed to a KCL row in the
MNA matrix is estimated at about eight nonzero entries.

The number of nonzero entries in the rows corresponding to the BR
equations for the extra current variables has an upper limit of four entries.
This can be readily seen from the element stamps of figures (3.2-3.6). The
contribution of different elements to the entries of C and D of the MNA
matrix (equation 3.11) is illustrated in the following list:

— For the case of conductance branches the BR row would have a maximum
of three entries (two if one of its nodes is grounded), figure 3.2.

— For the case of an independent voltage source the BR row would have a
maximum of two entries (one if one of its nodes is grounded), figure (3.3).
For the cases of a VCVS and a CCVS the BR row would have a maximum
of four entries (three if either the element or its controlling branch has a
grounded node and two if both have a grounded node each), figures (3.4-
3.5).

Therefore the worst case number for BR rows is four entries in each row.

Now assuming that that the average number of entries per row of the
MNA matrix is eight (worst case is four for the BR part so this is somewhat of
an overestimate but will clearly illustrate the point nontheless) and
considering a circuit with 50 nodes, the minimum dimension of the MNA
matrix is 50x50, which is 2500 matrix entries. This is a minimum because the
dimension of the matrix could be even larger because of the extra BR rows
due to the extra current variables. Therefore 2500 entries is an underestimate
of the size of the matrix. At an average of eight nonzero entries per row, the
number of nonzero entries in the matrix will be 50x8=400. Which says that
the MNA matrix for a 50 node circuit will, on the average, be only 16% full. A
very sparse matrix. Table (3.1) illustrates the sparsity of MNA matrices as a
function of the number of nodes in the matrix.

All the numbers in the last column of table (3.1) are an overestimate
because of the assumptions made earlier. The MNA matrix is usually larger
than the second column indicates because of the extra BR equations, and the
number of entries in them has a maximum of four rather than an average of
eight as in the rest of the matrix. So MNA matrices will even be sparser than

40

Table 3.1 : The sparsity of the MNA matrix

Number of
Nodes

Number of
Matrix Entries

Average Number of
Nonzero Entries % fullness

10 100 80 80%IU
90 400 160 40%
QH 900 240 26.7%0\J
40 1600 320 20%
50 2500 400 16%
100 10000 800 8%
500 250000 4000 1.6%
1000 1000000 8000 .8%

■ :■ .41

the table indicates but nontheless it gives an excellent feel of how sparse the
matrix becomes as the size of the circuit grows. The reason is the size of the
matrix grows quadratically with the size of the circuit, as indicated in column
two of table (3.1), and the number of nonzero entries in the matrix only grows
linearly, as indicated by the third column.

3.8 The P ivoting Problem

The process of reducing the MNA matrix using the Gauss elimination
steps is very dependent on the pivot element. Equation (3.27) illustrates that
quite clearly. A zero entry in the pivot position would produce a division by
zero which make equation (3.27) invalid and the variable in question
irreducible. Mathematically speaking, if a variable Xi is to be suppressed, any
of the system equations where the coefficient of Xi is not zero may be used to
reduCe it. In other words, the the process consists of suppressing the ith
column of the MNA matrix Y m using any of the rows of Y m with a nonzero
entry in tth column position. That nonzero entry is the pivot. In this project
the choice to use the ith row to suppress the variable Xi is not arbitrary.
There are several reasons for the choice. They are:

1) In general all real world practical circuits are Well behaved. A well
behaved circuit guarantees that any variable in the circuit may be
suppressed if only the ith row is used to suppress the ith column (see
definition 3.1 and rest of section for explanation).

2) The process of randomly selecting a row to eliminate a certain variable
could cause a change in the right hand side vector if one of the equations
corresponding to an external node is chosen. This has the undesirable
effect of introducing mathematical operations to the J e vector and some
nonzero terms in the 0 vector of equation (3.18) because Ij in equations
(3.28 and 3.30) is no longer zero. This would destroy the middle block
analysis initial step of reconnecting n-terminal blocks by reconnecting
their corresponding tearing nodes (chapter 5).

3) The much higher efficiency of the computer implementation of the
symmetric (non-random) process of suppressing the ith column and the
ith row.

Definition 8.1

A well behaved circuit is one for which every node has at least on
conductance element connected to it.

The claim in (I) above states that a well behaved circuit will have an
MNA matrix that has a nonzero diagonal or that a nonzero fill could be
produced on any point on the diagonal by a proper order of variable

elimination. V
W All the connection possibilities to a node will be considered here to

support the above claim.

1) The node i has at least one conductance whose branch current is not a
system variable connected to it. The element stamp of figure (3.2) clearly
shows that a nonzero entry in the pivot position will always be produced.

2) The node i has only one conductance whose branch current is a system
variable connected to it. The element stamp of figure (3.2) indicates that
the row corresponding to that node will have a zero pivot. However, notice
that the BR equation will have a nonzero pivot. Utilizing equation (3.29)
shows that eliminating the BR equation first will produce a fill at the
pivot of the ith equation. Node * may be reduced now. So the case where
the branch current is an external variable may force one or both the
voltage nodes of that branch to be carried along in the analysis as external

variables. _ Vv’:
3) The node i has a controlled voltage source connected to it (in addition to

at least one conductance by definition 3.1). From the element stamps of
figures (3.4 and 3.5), the BR equations for the current variable through
the voltage source will have a zero pivot. However, utilizing equation
(3.29) and case I or case 2 above (whichever applies) to eliminate node *
will produce a fill at the pivot for the BR row. The branch current
variable may now be eliminated. The case where both nodes of the
controlled voltage source are external nodes forces the branch variable to
be carried along as a variable throughout the entire analysis.

4) The node i has a controlled current source connected to it (in addition to
at least one conductance by definition 3.1). From the element stamps of
figures (3.2 and 3.6) this is simply a special case of cases I or 2 above.

43

C H A PT E R 4
T H E IDEAL O PE R A T IO N A L A M PLIFIER IN

T H E M N A AND T H E RM N A M A TRICES

4.1 In tro d u c tio n

Neither the nodal analysis, MNA, or RMNA approaches detailed in
chapter 3 account for ideal operational amplifiers (opamps) in their equation
formulation. The way opamps are usually handled in those analyses is by
modeling each opamp by a voltage controlled voltage source with a large gain
in order to attempt to characterize the infinite gain of the ideal opamp.

The ideal opamp is a 4-terminal device for which one of the terminals is
always assumed to be grounded. Since opamps are used extensively in the
building of a large number of analog circuits, specially analog filters, where
symbolic circuit simulators have found large applications in finding transfer
functions for the filters, it was deemed a necessity for SCAPP to handle ideal
opamps. This required the expansion of the element set of the MNA approach
and the RMNA matrix to include ideal opamps.

4.2 T he N u lla to r, T he N o ra to r and T he N ullor

Before the characterization of the ideal opamp is attempted the concepts
of the nullator, the norator and the nullor are explored [4]. They are not real
elements. They are tools to introduce some mathematical constraints into a
circuit. They are used as an aid to the development of insight into the
behavior of ideal devices like the ideal opamp.

The symbol for the nullator is illustrated in figure (4.1). A nullator is
defined as follows:

Definition 4-1

A nullator is a two terminal element defined by the constraints
Vi — v2 — O (4.1)

arbitrary

(4.3)

(44)

A norator in a circuit introduces freedom from some constraints on the nodes
it is connected to.

The combination of a nullator and a norator to produce a 4-terminal
block as shown in figure (4.3) is referred to as a nullor. The equations
characterizing this 4-terminal block are represented then by equation (4.1

through 4.4).

4.2 T he Ideal O pam p M odel
The two characteristics of an ideal opamp are:

1) An arbitrary current that the output node supplies, and
2) The zero voltage differential between its input nodes.

This can be modeled using a nullor (figure 4.3), with terminal 4 of the nullor
grounded.

The rules for writing the KCL equations and finding the MNA matrix
Y op for a circuit with ideal opamps is done by the following procedure:

1) Remove the nullor (the opamp) from the network leaving n nodes (plus
the reference node).

2) Write the MNA matrix Y m for this network.
3) For the nullator between nodes p and q, delete column q of Y m and

add column q to column p. If 9 is the reference node, simply delete
column q and the qth entry in the voltage variable vector V.

4) For the norator between nodes I and k, delete row / of Y m and add
row I to row k. If k is the reference node, simply delete row I and the
Ith entry in the right hand side current vector J.

The result is Yop.

45

O

i*

©

Figure 4.1 : A nullator

O

i*

Figure 4.2 : A norator

46

Figure 4.3 : A nullor

47

Example 4 1

Consider the 4-terminal block and its nullor model in figure (4.4).
Following the above procedure, first the Y to matrix is built:

I
1

2

3
4

5

V1+V2

- V 2

0
-J/l

0

2 3
2/ 2 0

Vz+Vz 0
0 0
0 0

-V z 0

(4.5)

By rule 3 above now column I is deleted and added to column 3 as follows:
2

1

2

3
4

5

-J/2

y2+vz
0
0

-V z

3 4

y\+V2 - y \
- y 2 '0

0 0
- y \ 2/i

0 0

5
0”

- y $

0
0

y *

w2
n
W4
W5

0
0
*3
*4

*5

(4.6)

By rule 4 deleting row 2, which is the KCL equation at the output of the
opamp which is a norator terminal produces:

2 3 4 5 1
I - 1/2 !/1+1/2 - ! /1 0 W2 0

3 0 0 0 0 W3 == *3

4 0 - V l

OtH5* W4
W5

*4
/5

5 - y 3 0 0 y_z

The result here is four equations in four unknowns: the node voltages. To
produce the RMNA system of equations that characterize the 4-terminal
block, that is, to complete the terminal block analysis, the internal node 2
must be suppressed. Since node 2 is the output terminal of an opamp, where
the KCL equation has been deleted because of the arbitrary current entering
that terminal, row I is used to reduce node 2 voltage variable, which always
will be the KCL at the negative terminal of the opamp. The process of
modeling the opamp using the nullor produces enough equations to solve fpr
all the system variables. So, the output terminals of opamps are always special
nodes. They are flagged in the analysis so that when they are to be suprpessed,

48

<D

Figure 4.4 : An opamp circuit

49

the row corresponding to their negative input terminal is used to suppress
them.

If the output terminal of the opamp is to remain a system variable
throughout the analysis, then the row corresponding to the negative terminal
of the opamp is carried along throughout the entire analysis.
Using equation (3.27) to reduce node 2 produces:

3 4 5
3 0 0 0 I 0 r
4 I O

- y 2
0

- y Z
Iyi Ty2 ~ y i 0

' 5 0 0 */3

_
0

- y 1
Vz .

- “ (2/1+ 2/2)
Vz

v 4 v 5

0
y I

Vz
- y I y Z

M)

The above RMNA matrix is the result of the block analysis of the 4-terminal
block of the opamp circuit, figure 4.4. The hierarchical middle block analysis
can then proceed normally if this terminal block is part of a larger circuit.

In the computer implementation in SCAPP of the opamp analysis, KCL
equations at nodes corresonding to opamp output terminals are never built.
That is, the rows corresponding to that output node are never included in the
MNA or RMNA matrix at all. This saves on the overhead of building and then
discarding that row. This is done by setting a special flag at every node that is
an output of an opamp.

50

C H A PT ER 5
T H E HIERARCHICAL MIDDLE BLO CK ANALYSIS

5.1 In tro d u c tio n

Middle block analysis is the process of combining the electrical
characterization of two n -terminal blocks to produce a characterization for a
new rc-terminal block which physically is the interconnection of the initial two
blocks. Figure (5.1) illustrates the idea of middle block analysis. Blocks B 1
and B2 are both n-terminal blocks that will be characterized by two separate
RMNA matrices, Y \ and Y |, respectively. The new n-terminal block B 12
that results from the interconnection of blocks B 1 and B 2 will be characterized
by a new RMNA matrix YJi'2. The process of producing Y^’2 is the middle
block analysis.

5.2 M iddle Block A nalysis Model

Consider the general interconnection of a group of n-terminal blocks
shown in figure (5.2a). The n-terminal blocks represent the final subcircuits
which are the result of the partitioning process, manual or automatic. Each
one of these blocks is referred to as a terminal block. Figure (5.2b) shows the
binary tree that models the binary partitioning process. The tree has p
leaves, each corresponding to one of the terminal blocks. The partitioning is
done utilizing a node tearing technique (chapter 8); therefore the terminal
blocks share some common nodes between each other. These tearing nodes are
referred to as external nodes. Appropriately, the nodes local to a block is
referred to as internal nodes. Combining two of the terminal blocks as
illustrated in figure (5.1) produces a new n-terminal block. This block is
referred to as a middle block. After the characterization of the middle block
has been achieved using the middle block analysis proposed herein, it behaves
as a terminal block throughout the rest of the analysis. A better
understanding of the concept can be achieved by studying the middle block

x analysis of the two terminal blocks in figure (5.1).

51

10

(a) A middle block

(b) Binary tree model

Figure 5.1 : Illustration of middle block analysis

52

• • •
• • #

(a) The network

O

Figure 5.2 : A partitioned network

53

In order to establish the terminology used in describing a block, terminal
or middle, a typical n-terminal block is considered: block B i - N 1 is the set of
all the nodes of block i. It is defined as follows:

N 1 = N j U Ng I5-1)

where N} is the set of internal nodes to the block, and N | is the set of
external nodes. There are n1 total nodes in N |. n1 is defined as:

n ' = n } + nh > 2)

where n\ is the number of elements in N], and n lE is the number of elements
in Njg- The complete set of tearing nodes for the entire circuit is TN . The
tearing nodes between two or more blocks are always a subset of T N . This
subset, T N liji*'" C T N is defined as follows:

T N 1 ,y’*- = Njg n n | n n | n * (5*3)

F o r the s i m p l e e x a m p l e of f i g u r e (5.1),

N 1 = {1,2,3,4,5,6,7,10,11} W1=O n |= 6 n /= 3

N | = {1,2,3,4,10,11} N) = {5,6,7}

N 2 = {3,4,8,9,10,11,12} »2= 7 n j —5 n /= 2

N | = {3,4,10,11,12} N | = {8,9}

T N 1i2 = {3,4,10,11}

TN = {1,2,3,4,10,11,12}

Notice that always N} H N | = 0 -
The process of performing a symbolic analysis on the network in figure

(5.2) follows the following steps:

1) Partitioning the network into the terminal blocks B t-, K i <p, and
obtaining the binary tree model illustrated in figure (5.2b) (chapters 7

and 8).
2) Performing the terminal block analysis on each block B t- (on each leaf

of the binary tree) and obtaining a RMNA matrix Y | characterizing
each one (chapter 3).

54

3) Successively performing the middle block analysis in a hierarchical
binary fashion by traversing the partitioning binary tree upwards
starting with the leaves until the vertex is reached. The final result is
one RMNA matrix characterizing the entire network in terms of the
defined input and output variables specified by the user.

5.3 M iddle Block A nalysis

After steps I and 2 are performed above, the network in figure (5.2a) is
characterized by p RMNA matrices in terms of the variables that are the
members of the set T N in addition to the extra current variables requested
from the analysis. Consider the connection of any two terminal blocks,
namely blocks B,- and By. The RMNA equations describing each are:

[vi,}

The two blocks share the tearing nodes in the set T N lij = TN* f) T N j
Also N*-y = N | U N |.

The following middle analysis steps are followed in order to produce the
RMNA matrix corresponding to a middle block:

v ; j ;
. i / . 0 M)

V/"
I /

= J I
0 (5.5)

I) Combine the vector of external variables for the two blocks by lettii

V i j = Y ie U Y i (5.6)

Ii i = I l u i ; (5.7)

where the vectors V and I are the node voltages and current variables of
the middle block B i-- respectively.

2) Combine the RMNA matrices to produce a temporary intermediate matrix
Y Rt such that:

Yj t 0

0 Yj t (5.8)

and also to produce the following temporary right hand side vector RBISi

(5.9)

3) Add the columns and rows of Y fij that corresponds to the tearing node
voltage variables shared between the two blocks, that is, the bodes that
are members of the set T N ,,J . Mathematically, adding the columns in this
step reflects the fact that the voltage at a tearing node is equal in all
blocks. The concept of adding the rows is not as simple. Each row
corresponding to a tearing node represents the sum of the currents
entering the block from that node. The corresponding entry in the RHS
vector symbolizes the current entering that node from the rest of the
network (a more detailed explanation of this concept in section 6.1).
A tearing node shared between the two blocks falls under one of three
categories:

3.1) The tearing node is only an element of N fi and N |. So it is a local
tearing node for block B i j and therefore is an internal node to
B i j and a member of the set N)’;.

3 .2) The tearing node is also an element of N fi k ^ i and k Tflat is,
it is shared by more than the blocks B i and By. This dictates that
it must remain as a tearing node, ie. its row and column not
suppressed. lt is therefore an external node to B i y and a member
of the set N fî .

3.3) The tearing node voltage variable is requested by the analysis in
which case it becomes a member of N fî .

So When adding the rows of a node corresponding to 3.1 above the entry
in R H Si Will become zero. This is because the current entering block B i
from the rest of the network through the tearing node (only By in this
case) is equal to the negative of the current entering block By from the
rest of the network (only B i in this case).
However, when adding the rows of a node corresponding to 3.2 and 3.3
above, the entry in J e1'2 becomes simply a symbol indicating the current
entering that node from the rest of the network (outside B f>y).

4) Suppress all the internal variables to block B f y in order to obtain the
RMNA matrix characterizing the block in terms of its external variables.
After step 3 is completed the sets N /’J and N fî become completely

56

defined and the intermediate RMNA system of equations can be written

The suppression of the tearing nodes shared between the two blocks and
corresponding to case 3.1 above will reduce the V *’-7 vector to the external
voltage variable vector V e'1-7. To understand the entries of V ’j branch
current variable reduction a look at how a current variable reaches a
middle block analysis stage is considered. A branch current variable is
always an internal variable unless is has been requested by the analysis or
has had a pivoting problem and was unable to be reduced earlier (see
section 3.6), in which case it has been labeled as an external variable.
Conceptually though it can never be an external variable. Blocks do not
share branch currents, they share node voltages; because the partitioning
is a node tearing technique. Therefore, an attempt to reduce a current
variable that has not been requested by the analysis must be made. The
current variables considered here all have a pivot problem. The pivot
problem might have been resolved by the creation of a fill at that position
because of the suppression of the now internal nodes that control the
pivot of the current variable. If not, the variable is not suppressed and its
row and column are carried along further up the middle block analysis
binary tree. So I e'-7 = I 1 unless the suppression of one or more "healed"
variables was successful, in which case I p C T ,J .

The final result of the middle block analysis of blocks B t- and By is the
RMNA matrix characterizing middle block B tj in terms of its external
variables. The RMNA system of equations is written as:

The current variables are grouped at the bottom of the variable vector strictly
for cosmetic reasons and has no effect whatsoever on the analysis.

An example will serve to illustrate the above middle block analysis steps.

Example 5.1

The circuit in figure (5.3) is partitioned into two terminal blocks: B 1 and
B 2. The binary tree in figure (5.1b) can be used to model the analysis. The

as:

y r! ’3\ = R H S (5.10)

(5,11)

57.

terminal block analysis of each block was performed in example 3.4. rPhe
result is the following RMNA matrices:

Y l

Y 2r

v:i _
— Gr I

0 5 C 3 + G 4~" «5

r V . l

rC l (5.12)

J>. 3 , i;5

G 5 ""G5Zi6 (5.13)

0 sC-j-\-Gg

Notice that T N ,,J ={3} and node 3 is local to the middle block B 12- Tberefore
]\j ^_ 13j. and N | ’?={1,5}. Concatenating Y r and Y r and adding the rows
and columns Corresponding to the tearing node results in:

.V .'-'t -kv ' V 1 - ; ., V 3 y ; ;...

G 1 - G 1 Zi2 ^
O s G3 + G 4 s G2 ZU2 d" G 5 G5 z%
O O sC 7+ G 8—sC7fx6

The final step of the middle block analysis is to delete the row and column
corresponding to the internal variable V3- The result is the following RMNA

matrix characterizing the middle block B , 2:

R1

I

3

"S'-

(5.14)

Y R’2 - I

U1
F—

G
G1M2

■*: SG2TG ĵ SG6ZJ2T-G6

O s G 7 - j- G g—s C-jfJfi

G 5ZU6 (5.15)

5.4 T he BlierarehicaI A nalysis
The process of successively applying the above middle block analysis up

the binary tree of figure (5.2b) at each non-leaf vertex (middle block) will;
produce one final R M N A matrix characterizing the network in terms of the
variables requested by the analysis. The terminal block analysis is performed
on the leaves of the tree and p R M N A matrices are produced. At the second
level of the binary tree, the middle,block analysis is performed on pairs of

terminal blocks. The process will produce ^ RMNA matrices representing the

£- middle blocks. As illustrated earlier, physically a middle block is a
2 -d-v; ■ -.' - : . .. a a ;,

58

Figure 5.3 : Circuit of example 5.1

5 9

subcircuit. It is the result of interconnecting two closely coupled smaller
subcircuit. So terminating the hierarchical analysis at this point will yield a

characterization of the ^ subcircuits represented by the middle block. At this

point the leaves are no longer of any use to the process. They may be deleted
after the middle block analysis at their parent vertex has been performed. The

JL middle blocks and their RMNA characterizations become the leaves of the
2
new reduced binary tree. They can be treated as terminal blocks and the
middle block analysis repeated at the next level up. The process is a recursive
one. It can be illustrated by the following function:

analyze(parent) /* Recursively Manage the Terminal and Middle Block
Analyses */

{
if (no left-child) { /* If there is a left child then a

right one must exist */
analyze(left-child) ;

i ana.lyze(right_child);
middle(parent); /* Perform middle block analysis */

Y : 'y : ' ' ' - J / . I '
else { /* A leaf has been reached */

terminal(parent); /* Perform terminal block analysis */

}

The analysis process is started by a call to the recursive function analyze {root)
at the top of the binary tree. The function will traverse the binary tree in an
postorder fashion [I]. The functions terminal^) and middle{) return RMNA
matrices to analyzeQ.

The structure of the binary tree is dictated by the partitioning (chapter
8). So depending on the partitioning, the structure of the binary tree will
range between a balanced binary tree and a totally unbalanced binary tree
(figure 8.1). A balanced binary tree is a highly desirable structure and is
essential for the case where the hierarchical analysis is performed on a
multiprocessor computer.

60

The above algorithm is very parallelizable. Each terminal block analysis
is a totally independent process. Each middle block analysis is only dependent
on its children. Examining figure (5.1b) will show that block B 1 2 3 4 has to
wait for blocks B 1 2 and B 3 4 to finish before it can be processed, which in turn
requires all four blocks B 1, B2, B 3 and B 4 to finish. This is the hierarchical
dependency of the process. The vertices on the same level are always totally
independent processes. They may be analyzed concurrently.

A couple of big examples of illustrating the hierarchical middle analysis
process are presented in chapter 9 .

6 1

C H A PT E R 6
T H E GLOBAL ANALYSIS P IC T U R E AND

T H E E F F E C T S OF N E T W O R K PA R T IT IO N IN G

6.1 In tro d u c tio n

The goal in this chapter is to obtain a model that globally explains the
symbolic analysis process proposed in this report. This model will be used to
illustrate the advantages of partitioning. For the case where the network is
partitioned, the symbolic analysis process consists of first the terminal block
analysis of each terminal block, followed by the hierarchical middle block
analysis. The case where no partitioning is performed, the entire network is
considered as one large terminal block and the terminal block analysis is
performed only once to obtain the solution.

6.2 The Global Model

The model is developed after two steps have already been performed on
the network. They are:

1) The network has been partitioned into the terminal blocks B, , l< j '< p ,
figure (5.2).

2) The first step of the terminal block analysis has been performed which
is finding the MNA matrix characterization for each terminal block.
No suppression of any internal variables is performed.

So now the network is characterized by p MNA matrices. T N represents
the global set of tearing nodes and several of the terminal block MNA
matrices will have rows corresponding to the KCL equations at these nodes.
The collection of equations from the different MNA matrices corresponding to
a tearing node j do not constitute a mathematical redundancy. The system of
equations characterizing each block B ,-is:

u . f v . ' l J 1j C
I M k * 0

where the vector V e* contains the tearing nodes associated with B 1-, the

vector I / contains a subset of the current variables requested by the analysis
and are local to block B 2-, and the vector Je* represents the currents entering

B 1. :
Obviously the entries of .Je* are zero except for the entries corresponding

to the tearing nodes because they are the only contact B t- has with the
e x t e r n a l world. So, the equation in (eq. 6.1) corresponding to the tearing node
j represents the fact that the sum of all the currents leaving node j into block
B t- is equal to the sum of the currents entering the node from the rest of the
network. Therefore, adding all the rows corresponding to j from all the MNA
matrices will yield the fact that the sum of all the currents entering node j is
equal to zero.

Turning again to the network in figure (5.2a) and collecting all the rows
from each Y jl representing the tearing nodes and adding the corresponding
ones together would enable the network to be modeled using the boardered
block diagonal (BBD) matrix in figure (6.1). Notice that in order to do this,
the added rows and the rows corresponding to the current variables requested
by the analysis have been grouped together at the bottom of the matrix
(submatrices BE, the bottom border). Also the variable vector has been
rearranged so that the tearing node variables and I e are grouped at the
bottom of the vector (submatrices RB, the right boarder). Each of the
diagonal blocks B represent the KCL equations at the internal nodes of each
terminal block in addition to the BR equations corresponding to the current
variables local to that block and not requested by the analysis.

6>3 T he Effect of th e T earing Nodes on th e A nalysis
V ; The BBD matrix, in figure (6.1) is the MNA matrix representing the

network in terms of all its variables. The symbolic analysis methodology is to
suppress all the variables internal to the network. This corresponds to
suppressing the boarder blocks and all the diagonal blocks in addition to the
rows and columns of BP that correspond to variables that have not been
requested by the analysis.

In order to reduce the the boarder blocks BB and RB, and the diagonal
block B, a global reduction equation that is equivalent to equation (3.27) is
used to update the values of the matrix. The equation is:

63

B RB
BB B P

Figure 6 . 1 : Boardered block diagonal (BBD) matrix

64

B B D j = BBD_, O
BBi O RBj K i < p (6 .2)

where, B B D _ f is the BBD matrix with B f, B B r and RB; l< l< t, deleted. It
can be written as:

« i . ■ : R B i+>
B i + 2 RB.

BBD.

2

B p R B p

B_j RB ;

BB ,■ BP
(6.3)

BBi hl BB i + 2 • • • BBp B P

Multiplying out equation (6.2) and rewriting it in terms of the BBD

I < i < P (6.4)

Because of the structure of the BBD matrix, the only part of it that is
updated at each % is the submatrix BP. The rest of the matrix is never
affected by the process, as equation (6.4) illustrates. So the process can be
further compacted into the equation:

BP = BP - BBj*Bj_ 1 *RB, . (6-5)

B j RB j B j RB_, ©©

BB j BP
__

BB_, BP ■ 0 BBj-Bj ^R B j

The rest of the analysis consists of reducing the RB matrix itself until the
only rows and columns left are the ones corresponding to the variables
requested by the analysis. Successive application of equation (3.27) can be used
for this purpose. Since the tearing nodes Set is a very small subset of the total
hetvrork nodes, equation (6.5) is the bottleneck of the process.

Notice from equation (6.5) that the zero structure of the BBD remains
intact. That is, the process does not create fills in the zero areas of the matrix;
therefore not creating the need for any extra mathematical operations to
handle these fills. Because of the usually small ratio of number of tearing
nodes to the total number of network nodes, these zero areas are large
compared to the nonzero parts of the matrix. Creating fills in these areas
would lead to a great increase in the number of mathematical operations
needed to reduce the matrix. This is illustrated in the next section.

65

Equation (6.5) shows that the number of matrix entries manipulated has
a direct relationship to the size of BP. BP grows quadratically with the total
number of circuit tearing nodes and the number of current variables requested
by the analysis. However, the current variables have a neglegable effect
compared to the tearing nodes for two reasons:

1) For large circuits, the number of current variables requested by the
analysis is usually small compared to the number of tearing nodes.

2) These branch current variables are local to a terminal block and are
not shared by other blocks. Therefore, for each current variable, only
one BB, block and one R B t- block will have nonzero entries
corresponding to the row and column of the variable. This simply says
that out of the p successive applications of equation (6 .5) only one time
will the entries corresponding to the current variable in BP be
manipulated.

Since the number of tearing nodes has a direct effect on the dimensions and
therefore the size of BP, it is obvious from the structure of the BBD matrix
in figure (6 .1) that the number of tearing nodes also affect the sizes of the BB,-
and RB, blocks. Thus having a greater effect on the number of computations
equation (6.5) has to perform.

Conclusion

Minimizing the number of tearing nodes in the partitioning process will
have approximately a quadratic effect on increasing the efficiency of the
analysis.

6.4 T he A dvan tages of N etw ork P a rtitio n in g
From the previous discussion, partitioning the network has a great effect

on the shape of the BBD MNA matrix characterizing the network. That in
turn effects the efficiency of the symbolic analysis process. In order to explore
the advantages that network partitioning provides to the analysis over the
process of analyzing the entire circuit as a terminal block, the MNA matrix for
an unpartitioned network is considered. The symbol UP is used to indicate a
MNA matrix corresponding to an unpartitioned network. Some points about
UP are: 1 2

1) The dimensions of U P are the same as for the partitioned case because
partitioning has no effect on the number of network variables.

2) The UP matrix has no specific zero-nonzero structure as for the BBD

6 6

matrix. The arrangement of the rows is highly dependent on the order
in which the KCL and the BR equations where constructed. So it is a
random function of the process of numbering the nodes of the network.

3) The critical order of variable reduction for the UP matrix is a random
process. Selecting the wrong order rows and corresponding columns to
suppress first would result in a crippling explosion in the number of
mathematical reduction operations.

The reasoning behind 3 above can be easily seen by considering the U P
matrix The UP matrix and the BBD matrix are equivalent except for the
ordering of rows and columns. Assume that the random order of selection
required the suppression of submatrix BP first. The equation for this
reduction operation would be:

B - B - RB*B P "1*BB (6*6)

This displays the worst case choice of order. Notice that B has a very sparse
structure. The matrix RB-BP_1*BB does not have a sparse structure at all.
The result is, the updated B matrix will completely loose its sparse structure.
Fills will be created in all the zero patterns. Proceeding with the process by
reducing the rest of the rows and columns of B wiU require the manipulation,
not only of the B - diagonal blocks, but also of all the extra fills that have been
created. The explosion in the number of mathematical operations equation
(5 27) has to perform is quite evident. Equation (6.5) only would have needed
to operate on the diagonal blocks of B. Assuming that the dimensions of each
B- block is I i X l i the number of terms manipulated by equation (6.5) is:

For the case when equation (6.6) is used first, the fills created in B would
require the manipulation of the entire B structure. The number of terms to
be manipulated is given by:

y i *!

 ̂ P o P

- S '(J + 2 S
P

I . V /•

I - 1 i .l 1-1 >-•+1 .
(6 .8)

f rom tne previous uiowumjwu ---- ------ °
that /, C V Ii , which makes the ratio of equation (6.8) to (6.7) a large
■ " ■ • ■/ • t * I - ' .. .
one. Gonsider the case where 10 even partitions exist and J i ==10 I <» <P •
The ratio of equation (6,8) to (6,7) is 10. 9000 more terms have to considered

in the reduction process. This illustrates one of the advantages of partitioning
the network.

One footnote on the above analysis should be mentioned. The fact of the
matter is that not all of BP needs to be suppressed. A small subset of
variables requested for the analysis must remain for the final result. The fills
in the zero structure of the matrix however is the same as deduced above.

An example to illustrate the above is the network in example 9.2 (figure
9.6). A random selection of the reduction order resulted in 287 multiplication
operations in order to reduce the matrix. The partitioned network required 66
multiplication. A savings of about 77%. A more selective choice of the order
of suppression, that is, trying to suppress the densest rows and corresponding
columns of the matrix last required 102 multiplications. Still the partitioned
network had a savings of 35%.

So one way of dealing with the reduction of U P would be to sort its rows
so that the densest ones are reduced last. This is at best an O(nlogn)
algorithm [I). This still will not achieve the BBD matrix structure of the
partitioned network and equation (6.5) cannot be realized because B will not
have a diagonal block structure. The previous example illustrates the 35%
difference still between a somewhat ordered unpartitioned matrix and the
BBD matrix. A way of realizing the BBD matrix would be to explore the
patterns of zeros in the matrix. This is an 0(n~) process since every entry in
the matrix has to be checked, where n is the number of system variables. Sp a
partitioning process of O(n') or less would be much more advantageous
because of the other advantages of partitioning listed in this section.

Another advantage is in the time complexity of the implementation of the
algorithm. Performing the reduction procedure to produce the RMNA
matrices is an 0 (n 2) process, where n is the number of system variables.
Partitioning the network into p parts would mean that the process becomes

an 0 (p *(—)2) which is the same as 0 (—). A reduction in the time
P P

complexity by a factor of p. These order of complexities are obtained under
the assumption that no sparse matrix techniques are used. The purpose here is
merely to illustrate the advantages of network partitioning. Sparse matrix
techniques are employed however in the computer implementation of the
analysis.

A third advantage of partitioning is the multiprocessor application of the
analysis algorithm. Each terminal block analysis and each middle block

68

analysis are completely independent of each other. Consider the binary tree
model for the network in figure (5.2). The tree structure is defined by the
partitioning. It is very obvious that all the terminal block analyses at the
leaves of the tree can be performed concurrently with no restrictions on the
scheduling of these events once the terminal blocks have been reached. For the
middle block analyses at the non-leaf vertices, the scheduling becomes more
critical. Each vertex has to wait until both its children have been analyzed.
The task however is not a complicated one at all. Chapter 5 has more details
on the concurrency of the hierarchical middle analysis process.

A fourth advantage of partitioning is the ability to build libraries
containing symbolic RMNA matrices for basic building blocks. This is similar
to a standard cell design system. The terminal block analysis for all the
occurrences of this special block does not have to be performed. The library
will contain the RMNA matrix representing the block. Only simple symbolic
or numeric substitutions need to be performed for each call to the block. Even
for the case were a block is not in the library but has several occurrences in
the circuit, only one terminal block analysis need to be performed.

6 9

C H A PT E R 7
P A R T IT IO N IN G P R E P R O C E S S IN G

7.1 Introduction

The complete partitioning process is composed of several algorithms that
combine together to produce the partitioning algorithm. The first three
algorithms are described in this chapter. They are considered preprocessing
algorithms that take the raw input data from the input to SCAPP and
produces an input that is suitable for the partitioning algorithm. The reason
these algorithms are grouped here, is that they are highly related to the
subject of the network topology, a branch of graph theory. The partitioning
algorithm itself is introduced in chapter 8.

An overview of the subject of network topology and its application to this
project is first presented and then the. preprocessing algorithms are presented.
These algorithms are : 1

1) find—tree : Finds the initial tree and cotree from the raw input
■ ‘ data.
2) butld-B : Builds the initial weighted fundamental loop matrix B

given the initial tree and cotree.
3) opt—tree : Produces and optimal or near-optimal B 0 from an

initial B. B 0 is a matrix that is as sparse as possible.

7.2 Network Topology

Network topology is a very involved branch of graph theory that deals
with the interconnection properties of lumped networks. A few essential
concepts of network topology are used here and are slightly modified to suit
the purpose of this partitioning technique. This is done mainly to add
generality to the partitioning algorithm so it is able to accept user-defined
partitions (ie. user-defined subcircuits). These subcircuits are modeled in the
algorithm as multi-terminal black boxes and referred to as n-terminal blocks.
Transistors are modeled as 3 or 4-terminal blocks unless they are replaced by
their lumped circuit model before starting the partitioning procedure.

The topology of a circuit to be partitioned can be represented by a graph
G. The graph G is extracted from the circuit by replacing each two-terminal
element by a line segment, called a branch,, and replacing each n-terminal
block by an n-terminal box called a pseudo-branch, figure (7.1). This pseudo-
branch, as will be illustrated later in this section, is treated as a regular
bran cl/in the tree finding and weighted fundamental loop matrix construction
processes (section 7.3). The difference between a branch and a pseudo-branch
is that the latter may have more than two nodes associated with it. An n-
terminal block will have exactly n nodes associated with its pseudo-branch.

The resulting graph G will contain all the interconnection information
needed for the partitioning algorithm.

To the following discussions the graph G is assumed to be connected.
That is, a path can always be found connecting any two nodes of G. This is
justifiable because in order for a circuit to produce a disconnected graph, it
(the circuit) would have to be composed of more than one totally independent
(disconnected) subcircuits. These subcircuits are considered natural partitions
and the partitioning algorithm will recognize that,

7.2,1 T ree s and C btrees
The partitioning process involves finding a tree for the constructed graph

G. A tree is defined as follows:

Definition 7.1 [7] ’"T
A tree is a connected subgraph of graph G that contains all the nodes of

G and no loops.

- Each tree has associated with it a cotree. The cotree contains the
remaining branches of G that are not included in the selected tree. The cotree
branches are referred to as l i n k s . Pseudo-branches are not allowed to be links.
This is justified later in this section.

One of the main properties of a tree and its associated cotree is that, each
link together with a unique subset of the tree branches form a loop. That
loop will be called the fundamental loop for that link [7]. For the case of a
pseudo-branch, a loop is completed by entering into any terminal of that
branch and exiting from any other terminal. Example 7.1 illustrated this

property.

71

Figure 7.1 : A pseudo-branch for a 4 -terminal block

As a convention, all touching user-dehned subcircuits, that is, having
common nodes between them, are considered as one pseudo-branch. This will
minimize the entries of the weighted fundamental loop matrix (section 7.2.2).

As mentioned above pseudo-branches are only allowed to be tree
branches. Because, by observation, if a pseudo-branch was allowed to be a link
it could produce more than one fundamental loop corresponding to that link.
This could cause, because of the hueristic nature of the partitioning algorithm,
a disconnected subcircuit as a terminal block (section 3.2), and that is highly
undesirable for the symbolic analysis of that terminal block. This is .almost
guaranteed to happen if the pseudo-branch is deeply embedded inside the

- circuit..
To show that pseudo-branches could always be chosen as tree branches,

the following argument is given: Since a tree has no loops, and no touching
pseudo-branches exist in the circuit, as stated above in this section, then
starting the tree finding process by picking the pseudo-branches as tree
branches will never create a loop. Therefore pseudo-branches can always be
chosen as tree branches.

Now definition 7.2 may be introduced. ;

D e f i n i t i o n 7 . 2

For a graph G with b total branches of which bs are pseudo-branches
and n nodes of which n s are pseudo-branches terminals, there are

bf = n —ns + 2&5 I (7.1)

tree branches. This of course implies that there are

bt = b — bt V

links and hence, b - b t fundamental loops.
Equation (7.1) is derived by observing that to span the nodes of G to

form a tree, the following number of branches are needed :

1) bs pseudo-branches to span n s nodes,

2) n —n s —I branches to span n - n , remaining nodes [7],

and A Zv \ : : ' A T -7; : . 7. -

3) bs branches to connect the subgraphes formed in I) and 2) above.
Adding these components would produce equation (7.1).

73

7.2.2 W eighted F u n d am en ta l Loop M atrix

The input data to needed for the partitioning algorithm is the tree, cotree
and . all the fundamental loops. This information could be compacted into
matrix form. This matrix is called the weighted fundamental loop matrix B.
The idea is a generalization of the network theory’s fundamental loop matrix
[7,26]. Here, the B is defined as follows :

Definition 7.3

The weighted fundamental loop matrix B for a graph G and a chosen
tree T with bt tree branches and b[links is a x bt matrix

B (7.3)

where

bH

1 if tree branch j is in the fundamental
loop of link i

2 if tree branch j is in the fundamental
loop of link i and j is a pseudo—branch

0 otherwise

(7-4)

Example 7.1

Figure (7.2a) is a band-pass active filter circuit. The opamp amplifier
circuit enclosed in a box and illustrated in figure (4 .3) is considered a 4 -
terminal block. The graph representation of the circuit with the 4-terminal
block considered a pseudo-branch and the chosen tree highlighted, is displayed
in figure (7.2b). The pseudo-branch S 7 is chosen as a tree branch in addition
to branches R ji, C6 and R 8. The weighted fundamental loop matrix is then

R a Ce, S 7 R 8

<v”0 0 2 d"IlPQ 0 0 2 0
ri 0 0 2 1
R 5 0 0 2 1

So a pseudo-branch has a higher weight in B than a regular branch. This
characteristic will help isolate user-defined subcircuits as separate entities in

74

C.

(a) A band-pass filter circuit

©I / /

(b) The corresponding graph G

Figure 7.2 : A band-pass active filter and its corresponding graph

7 5

the partitioning algorithm. Although, again because of hueristic nature of the
algorithm, this is not guaranteed for all circuits. A final partition (ie. a
terminal block) might consist of the user-defined subcircuit and a few regular
branches attached to it. In which case, an extra partitioning step is performed
where this terminal block is split into two terminal blocks, one that consists of
the user-defined subcircuit and the other of the rest of the regular branches
attached to it. The hierarchical symbolic analysis process then starts at these
new terminal blocks.

7.3 F ind ing a T ree and its W eighted F u n d a m en ta l Loop M atrix

7.3.1 F ind ing an in itia l T ree Ti

A preprocessing step for the partitioning technique is finding a tree for
the circuit in question. The choice of a tree is very crucial and has a great
effect on the speed and efficiency of the partitioning. A good tree, is a tree that
produces a sparse weighted fundamental loop matrix, or in other words,
produces local loops. Intuitively a local loop refers to a small loop that, in a
planar since, engulfs a minimum number of branches. Figure (7.3) illustrate
the concept.

Now the notion of the best tree possible for the purpose of this report,
referred to as the optimum tree, may be defined as follows:

Definition 7.4
. . . .

An optimum tree Tof is a tree that produces the sparsest possible
weighted fundamental loop matrix B 0.

The process of finding an optimum tree involves two steps:

I) F ind inganin itia ltree Tif

2) performing an iterative scheme to optimize Ti until an optimum tree is
found.

The choice of the initial tree Ti has a great effect on the speed of the second
step. Starting with a near-optimal tree reduces the number of iterations
needed in the optimization algorithm. The best Ti would be a star tree (in
this case Ti would be the optimum tree). The worst choice would be a linear
tree [26],

76

CD

©
(a) A local loop

(b) A non-local loop

Figure 7.3 : A local loop and a non-local loop

77

Definition 7.5

A linear tree is a tree that has only two incident branches on every node
in the graph G except for two node called the tip nodes. In other words, a
linear tree is a path between the tip nodes (figure (7.4a)).

Definition 7.6

A star tree is a tree which all its branches have one common node (figure
7.4b).

The existence of either a linear or a star tree for any practical circuit is
rare. So a reference herein to a linear tree indicates a tree that is as linear as
possible. This is illustrated in figure (7.5a). Also, a reference to a star tree
indicates a tree that is as star-like as possible. This is illustrated in figure
(7.5b).

The advantage of starting with a star tree is illustrated in section 7 .4 .
The recursive algorithm to find a star-like tree Tj is illustrated in figure

(7.6).

If a star-tree exists, the algorithm is guaranteed to find it, otherwise, a star-
like tree is found. The resulting tree in this case will not be the optimum tree.

The linear time complexity of the algorithm [l] can be found by solving
the recurrence equation that represents the execution time of the algorithm in
as a function of the input number of nodes. Let T(n) be the maximum
number of times loop I is executed, bn̂ be the average number of branches
incident on each node and n the number of nodes in the circuit. The
recurrence equation for T(n) can be written as

T(n)

which when solved produces

bMave n= 2
T (n —I) -f bnavt n > 2 (7.5)

T (n) = nK mi ~ K V, (7.6)

So the time complexity of the initial tree finding algorithm is on the order of
n n̂avtJ which is written as 0{nbn).

From the discussion in section 3.5, the average number of branches
incident on each node for real world circuits is a constant (approximately 4).
So the time complexity of fin<L.tree becomes a linear figure. That is, 0(n).

78

(a) A linear tree

CD

(h) A star tree

Figure 7.4 : A linear tree and a star tree

79

<D

(a) A near-linear tree

(b) A star-like tree

Figure 7.5 : A near-linear tree and a star-like tree

80

p rocedure find-tree(ground-node)

{
traverse(ground-node) ;
return T t- ;

}
p rocedure traverse(n)

{
if (nothing in n) return ;
/* indicates empty queue, which means all

nodes have been traversed (ie. tree complete). */

foreach branch b connected to n not yet in T j- {

if other-node of b never queued {
add b to T,- ;
enqueue(other-node);

)
}
traverse(dequeuef)) ;

Figure 7 . 6 : The tree finding algorithm

8I

7.3.2 B uilding th e W eighted F u n d am en ta l Loop M atrix B

It is known that every link along with a collection of tree branches
constitute a fundamental loop. So there are b, fundamental loops for a graph
G with links.

The procedure buil<LB constructs B by processing each link and
searching through the tree until a loop is found. Note that not every tree
branch must be in a fundamental loop, but every link has to be. R 4 and C6 in
Example 6.1 are tree branches not in a fundamental loop, that is why the
columns corresponding to them in B are zero columns.

When considering real circuits, the entire circuit usually is revolved
around the ground node. A very dense node. They are characterized by the
existence of local loops. The complexity of an exhaustive algorithm to find all
the loops of a general graph is exponential which is disasterous for the case of
large circuits. However, the unique property of circuits, having local loops,
reduces the complexity of building the B matrix to a linear process. It has
been observed (see section 8.5) that each of these local loops has an upper
limit average of 6 branches in them, a very small number compared to the
total number of branches in the circuit. Because of this property the search for
the loops of B is conducted in the local area of the link. So on the average
only a constant number of nodes are visited in order to find a local loop. This
produces an average complexity figure for buildJB when dealing with electrical
circuits rather than general graphs of 0(6/), which is linear.

7.3.3 F ind ing and O p tim al T ree T0

An algorithm to find the optimum tree T0 from an initial tree Ti is
adapted from a method proposed by Barbay and Zobrist [34]. Their method
guarantees finding what they define as an optimum tree (definition 7.7).

Definition 7.7 [SSj

The Barbay and Zobrist optimum tree is defined as the tree which results
in a fiowgraph with the minimum number of loops found.

This definition is more constrained than the optimum tree definition
herein (definition 7.4). Note that the Howgraph mentioned above and the
graph G are two entirely different entities. The latter is a representation of
the connectivity of the circuit versus the former is a representation of the

electrical characteristics of the circuit [7,26], (ie KirchofTs Voltage and
Current Laws [35]). For a detailed description of Barbay and Zobrist’s
algorithm see [33,34].

The goal here is to reach a tree that would minimize the number of non
zero entries in the weighted fundamental loop matrix B. An exhaustive
optimization algorithm for Ti has a high time complexity. For the
partitioning algorithm and the symbolic analysis presented in this report, a
near-optimal tree is sufficient to produce, for most cases, an optimum
partition. For all the cases tested only a near-optimum tree was needed to
produce the same solutions as the optimum tree. The reduction in the order of
complexity of the algorithm is substantial the reason being that this
optimization algorithm is the bottleneck of the partitioning process as a whole.
The order of complexity of the algorithm will be presented later.

Let qs be the number of non-zero entries in B; the optimization
procedure is illustrated in figure (7.7).

The worst case linear time complexity of the optimization procedure, to
within a constant, can be expressed as a function of the number of links b{ (ie.
number of fundamental loops, or number of rows in B), and the average
number of tree branches per fundamental loop btan. Let T (») be the total
linear computation time needed to perform the optimization. Assuming that it
takes constant time to perform steps (I), (2) and (3), T{n) can be expressed as
follows:

T(n) = cl (bi—l)btMeb,+c2+Cz+cAbl (7*7)

This is because it takes C1 units to perform step (I) which is executed 6,-1
times for every link other than /, this loop in turn is executed for every
branch in every fundamental loop, and this outer loop is called from opt-tree
bt times for every link in the tree (worst case). The extra overhead takes a
constant time plus a 6, loop to update the tree. Hence equation (7.7).

The order of complexity of the optimization algorithm can be then given
oo 0(b i2b*). This is a worst case figure for finding the optimal tree. However
to find a near optimal tree, the loop in procedure opt_tree is only run for I or
2 times, that is at worst a constant number of times. That was found to be
more than sufficient for the purposes of the partitioning process and the
symbolic analysis. This reduces the order of complexity to a quadratic figure
rather than a cubic one. It is given as O [^b tm). Also, from the discussion m
section 8,5.4, for practical circuits the value of bt^ has a constant ceiling of 4,

83

procedure opt-tree {

foreach link I while qs changing {
/ ie. This loop stops when no change in qs is observed */

link-branch(l) ;

}
}

procedure link—branch {

foreach branch b in loop I {
/* Each link completes a unique fundamental loop */

temporarily switch I with b
foreach link other than I {

calculate effect of switch on qs ; (I)
/* The switch reconfigures the loops that intersect

b y
}

}
permanently switch I with b that produce (2)

the minimum qs ;
update qs ; (S)
update B ; (Jj)

Figure 7.7 : The tree optimization algorithm

84

which makes it a constant independent of the size of the circuit. This reduces
the complexity of opt-tree here to a simple 0(6,).

7.4 Im p lem en ta tion N otes
F o r the partition ing im plem entation in SC A P P , it is sufficient to run

opl-tree only once. U sing a near optim al tree rather than an optim al one w as
found to have very little effect on the partition in g algorithm and the sym bolic

analysis m ethodology.
Another note is that in SCAPP the way user-defined subcircuits have

been handled is by completely deleting the pseudo-branch corresponding to
them in G and considering their terminals as tearing nodes. This process
could result in a disconnected graph, but the partitioning algorithm, as
already mentioned, and is capable of recognizing such natural partitions. This
was implemented instead of allowing the pseudo-branches in the trees because
of the simplicity of programming the handling of a regular fundamental loop
matrix (with only ones and zeros, no weights), Also, the flexibility of the
symbolic analysis process does restrict the contents of the partitions (like
requiring a controlled branch to be in the same subcircuit as its controlling

branch).

85

C H A PT E R 8
PA R T IT IO N IN G A LG O R ITH M

8.1 In tro d u c tio n

The circuit information needed for this part of the partitioning process is
the tree, cotree and the fundamental loops of that circuit. This information is
represented in full in the weighted fundamental loop matrix B (section 7.2).
The process is based on the ordered permutation of the rows of B using the
concept of loop index [29] and the binary partitioning of the matrix based on
the concept of tearing index (section 8.2). There are two numbers associated
with every ith fundamental loop, (ith row of B), the loop index Iii and the
tearing index tii . Iii is a measure of the coupling between the first i
fundamental loops and the rest of the circuit, and Iii is a measure of the
number of nodes shared by specific groups of fundamental loops. The
loop indites and the tearing indecies of all the fundamental loops are
represented by the vectors LI and TI, respectively. They both are of
dimensions (fyxl), where is the number of rows in B (the number jinks or
fundamental loops in the circuit).

The partitioning algorithm has a recursive binary structure. The circuit
entered is always partitioned into two parts, and then each partition is again
re-entered to the algorithm to further partition each part into two new
partitions for a total of four subcircuits. The process can then be repeated on
any or all of these four subcircuits to further partition the circuit. The process
continues until a set criterion is met by each partition, like a minimum
number of branches, a minimum number of tearing nodes,; a total number of
partitions or a combination of the above criteria.

The process of partitioning a circuit into p subcircuits can be represented
by the aid of a binary tree [l], figure (8.1). Each vertex of a binary tree can
have only two children, a left child and a right child. So letting each vertex
correspond to a single binary partitioning step, makes it clear that each Vertex
of the binary tree must either have both its children or none at all. The
former case indicates that a partitioning has been performed at that vertex
and the latter represents a final partition (subcircuit). A vertex with no

(a) Balanced binary tree

(b) Unbalanced binary tree

Figure 8.1 : Balanced and unbalanced binary trees

87.

children is referred to as a leaf. So the binary tree representing the process of
partitioning a circuit into p subcircuits should have p leaves. The number of
times a binary partitioning has been performed is readily seen to be the
number of non-leaf vertices in the binary tree, or in other words, the number
of parents in the tree. This number of parent vertices vp in a binary tree is
given by / ; /

Vp = P ~ I . (Bvl)

Equation (8.1) can easily be shown to be true by the following Mathematical
Induction process [31]:

1) For the case where p=2 the circuit needs only to be partitioned once to
produce 2 subcircuits. So for this case the number of parents in the binary
tree is p — I.

2) Assume equation (8.1) is true for p, that is vp —p —I is true.
3) For p d-I partitions we have

vp +i = {p +1) — I — P (8 .2)

In order to produce p T l partitions from a binary tree that represents p
partitions (wp=p —I), one of the leaves has to be partitioned one more
time to produce two new partitions. This turns that leaf into a parent
vertex: with two children. This increases the number of partitions to p T l
and decreases the number of parents by one to P - I T l = P .

Hence equation (8.1) by Mathematical Induction [31].
An advantage to this binary structure is that it makes the partitioning

algorithm highly parallelizable. The reason being is that the data dependency
in the partitioning binary tree is an upward hierarchical one. This means that
the vertices (partitioning calls) on the same level of a binary tree are totally
independent of each other. They depend only on data generated by their
direct parents which is a level above them in the hierarchy and not on data
generated on the same Or a lower hierarchy level. Therefore, all vertices on
the same or a lower level may be visited (partitioned) at the same time, ie. in
parallel.

The parallelization concept for this partitioning algorithm is very simple.
A special purpose multiprocessor is not needed at all. The software can easily
be ported to a general purpose multiprocessor, like ELXSI [32], with the
introduction of very few inter-processor communication variables.

8.2 T h e L oop Index and the Tearing Index
The permutation of the rows of B is based on the loop index concept

introduced by Rutkowski in [29]. The binary partitioning of B is based on the
tearing index concept proposed in this report.

Each circuit to be partitioned has associated with it the numeric vector
li, the loop index vector. It haS been explained in chapter 7 that each circuit is
presented to the partitioning algorithm as a weighted fundamental loop
matrix B (section 7.2). Each row of B corresponds to a cotree link, and also
represents a fundamental loop in the circuit. There are b, of them. The
columns of B correspond to the bt tree branches of the circuit. Now the loop
index of row* (l< i< 6 f) of B, Iiii m aybe defined as follows:

Definition 8.1 [29]
The loop index Iii of the ith row of B is the number of nonzero entries in

rows from the {i+l)th to the bf tfi and in columns of B with a minimum of
one nonzero entry in rows from the 1st to the ith.

Example 8.1 illustrates the computation of Hi .

The tearing index Ui for loop i is defined as follows:

Definition 8.2
The tearing index Ui of the ith row of B is the number of nodes shared

between the first through ith fundamental loops, and the rest of the circuit.
So the loop index basically says that if the first i rows of B were joined

together to form a subcircuit, the subcircuit will have Ui tearing nodes. Thus
to minimize the number of tearing nodes, the binary partitioning of B is
performed at the row with a minimum tearing index.

Example 8.1 illustrates the computation of/»f.

Example 8.1
The graph of figure (8.5) and the B matrix from example 8.5 is used to

illustrate the calculation of Hi and Ui . The permuted matrix Bp is:

89

I 6 7 9 11
rowl 2 I O O I O
row 2 3 O O O I I
row 3 4 O O l 0 I
row 4 5 O i l 0 0
row 5 8. 0 I 0 0 I
row 6 10 I 0 0 0 I

iTo calculate h | , notice that the only two entries in row I are in columns I and
9. The number of entries in the i+ lst through I1 row, rows 2 through 6 in
this case, in columns I and 9 is two. Therefore Iii =2. For Ii2, the entries in
columns I, 9 and 11 and rows 3 through 6 must be counted. The result is
^ 2 =H- The rest of the loop indices are calculated in the same way (see example
8.5 for the complete list of the loop indices).
Now in order to calculate U1 a look figure (8.5) shows that loop I will have
three nodes to share with the rest of the graph, nodes 1,2 and 3. Ui is also
three. It is true that node 4 has been added to the subcircuit by adding row I
to row 2 but notice that node 3 is no longer a tearing node. It is only part of
the first two loops. So Ui- 3. The rest of the tearing indices are tabulated in
example 8.5.

8.3 T he P a rtitio n in g C rite ria

The partitioning criteria is obtained from the requirements of the
hierarchical symbolic network analysis. The goal is to produce partitions that
are heuristically suitable for that analysis. There are two main requirements
involved here. The first requirement is that each partition be small enough so
that the terminal block analysis of each partition, modeled by reducing the
diagonal blocks of BBD in figure (6.1), is optimized. The second is that the
number of tearing nodes at each binary partitioning point be small enough so
that the hierarchical middle block analysis process, modeled by reducing the
BP of BBD, is also optimized (chapter 6). This produces the set of criteria
that are used in the complete partitioning process.

The first criterion that the algorithm uses to control the partitioning
process is represented by the variable bm, which is the maximum number of
branches that a partition may have. So bm defines the stopping point for the
complete partitioning process. However, this is not enough, since the terminal
block analysis is also dependent on the number of tearing nodes associated

90

with each terminal block (final partition), and the middle block analysis is
completely dependent on the number of tearing nodes associated with each
binary partitioning step (at every parent vertex of the partitioning binary
tree). The number of tearing nodes, represented by the variable ntear, is used
as the second criterion to perform each binary partitioning step. The goal, of
course, is to minimize Tiitar in order to produce lightly coupled partitions with
a minimum number of tearing nodes between them. This will result in a
minimal size BP block of the BBD matrix (see chapter 6).

8.4 T he G lobal A lgorithm
The steps of the recursive routine new—part is illustrated below.

1) Find a star-like tree xising algorithm find-tree (section 7.3.1).
2) Build the weighted fundamental loop matrix B using routine build-B

(section 7.3.2). • p ■
3) Call the binary recursive algorithm new—part to partition the circuit into

p parts or until the each subcircuit meets the maximum size and tearing
node criteria specified by the user or the network analysis requirements.

new—part (Bi) {

/* F ind the near-optim al tree for th is subcircuit (section 7 .3 .1). * /

o p t - t r e e (B) ;

/*' Partition this subcircuit into a left and a right subcircuits (section 8.6).
This function checks the the branch size criterion. If the circuit is
already small enough a partitioning will not occur and a flag is set,
otherwise the function returns two weighted fundamental loop matrices

B/eŷ and r̂ight /
b i n a r y - p a r t (B) ;

./* If the circuit has not been partitioned then quit this call of the routine

.. ' / ■ ■ ■/: V ’■ f .
i f (no partitions) return ; ■

/* Here a partitioning has happened so check if the number of parts
criteria has been met or if further partitioning is needed * /
parts = parts - I ; /* Decrement the number of parts requested * /
i f (parts = 0) return ; /* Done with the partitioning * /

/* Push the left and the right subcircuits on to a queue */■
e n q u e u e (Bkft) ;
e n q u e u e (B right) ;

/* Partition the next subcircuit in the queue by calling this routine again

; '■ 7 ■ . ; ■ ■
if (queue not empty) new-part (dequeue (Bteft)) ;
*/(queue not empty) new-part (dequeue (JBright)) •

} /* End of new—part *f

'Fhe linear average asymptotic time complexity [l] of new-part is
O(plogp), where p is the number of parts the circuit Ls divided into. This
expression was found by observing in section 7.3 that opt-tree on the average
is 0(bj) and it will be shown in section 8.6 that binary-part is on the average
0(bt2). So both steps 3.1 and 3.2 in the above algorithm are a function of the
size of the subcircuit being partitioned (since, in general, bt = b - n - I , equation
(8.6)) and are not a function of p . Therefore, the recursive equation from
which the asymptotic time complexity of new-part was computed is

T(p) ^f (b l) + 2 T (£) (8.3)

since new-part calls itself twice in step 3.6. The solution to the; above equation
yields the asymptotic time complexity of the partitioning algorithm as a
function of the number of partitions p, which is

> < ; 7 n) 7 7 ' . ' - O(plogp) (8.4)

8,5 E xecution T im e M inim ization

As explained in the previous section, the routine new-part partitions each
input circuit into two subcircuits, a left subcircuit and a right subcircuit. It
then proceeds to call itself twice. The process eventually will invoke new-part
on the left and the right subcircuits to further partition the circuit into
smaller parts. So steps 3.1 and 3.2 will be performed on these subcircuits. The
size of each partition has a great effect on the execution time of the algorithm
because of the time needed to perform the actual partitioning which is f (bt) in
equation (8.3) above. This describes the execution time of opt-tree and
binary-part in steps 3.1 and 3.2, respectively. There is a nonlinear dependency
Of the time complexity for these steps on the size (branch and node numbers)
of the subcircuit. It is therefore essential to have a feel for the best binary
partition size that would yield a minimum asymptotic execution time for the
algorithm.

From sections 7.3, 8.4 and 8.6, it can be seen that the asymptotic time
complexity of / (b[) is given by

Oibl2) (8-5)

where 6/ is the number of links in the circuit and is given by equations (7.1
and 7.2). In order to simplify the argument here, but without any loss of
generality, an assumption is made that no pseudo-branches exist in the circuit.
I n w h i c h c a s e t h e n u m b e r o f l i n k s is g i v e n b y

bf = b — n — I (8-9)

where 6 and n are the total number of branches and nodes in the circuit,
respectively.. So the asymptotic complexity of the algorithm is a function of
both b and n.

Now to discuss partitioning the circuit into two parts, a generic outlook
on the problem is taken. The partitioning problem can be generalized as a
problem of size m that takes raIogm time units to divide into two similar but
smaller problems, a left problem and a right problem. Each left and right
problem having size

'?• .-u.u "" 18.7)
/ " ■ ,v- ■■■■■ • c :
respectively, where c is and positive real integer. So the time for the further
partitioning of the two problems into four even smaller problems is given by
substituting the expressions in equation (7.7) into equation (8.5) which yields.

; n m) = (^) 2 + (m - ^) 2

c c '
(8.8)

So the g o a l h e r e is t o f i n d t h e i n t e g e r c f o r w h i c h T (m) i s a m i n i m u m .

D i f f e r e n t i a t i n g e q u a t i o n (8 .8) w i t h r e s p e c t t o c a n d s e t t i n g t h e r e s u l t t o z e r o ,

p r o d u c e s ' - T ' ■

dT (m) _ m2f _ — + —)
dc { cz c2 }

VT.Y V.V; . 7 .Y> '(- 4 ;.+ 2 e):=-0 ; ■ (8-9)

th e solution to equation (8.9) is c =2, which implies dividing the problem into
two equal halves.

Going back to the partitioning problem, this seems to imply that the best
partitioning is one that separates the fundamental loops of the circuit into two

93

" . bt
equal parts of size — . This is not the ease though. As illustrated in section

8.4, the right partition does not preserve its tree and cotree structure and the
process guarantees that the number of fundamental loops will be less than the

original — loops that the partitioning point defined in B 2. Otherwise, that

would indicate that the circuit had two sets of loops with no branch
intersections between them, ie. two totally independent circuits. Also, simply
dividing bj in half ignores the fact that the number of nodes are not directly
divided into two halves. There is the set of tearing nodes that are part of
both tiie left and the right partitions. That is, although for the branches

b = b U f t + b r i g h t (8 .1 0)

for the nodes the split must account for the tearing nodes Htear

n = n Ieft + n Hght — 2Htear (8.11)

Since the time complexity of the algorithm is 0(b,2), it can be deduced from
the previous argument that the best partition would be one that produces a
left and a right partitions that have an equal number of fundamental loops, ie.
cotree links. This requirement can be expressed as follows:

F K ft = bIr̂ r bPart ; fs.ia)

^ bIeft ~ Kleft ~ I = bright ~ K r i g h t - I (8.13)

From the expression for the number of links in a circuit, b ^ b - n - 1, and
substituting equations (7.10) and (7.11) in that expression, the expression for
bf becomes

bI = (b Ieft + b right) ~ in right + K r i g h i - 2 Htear) - I (8.14)

which, after rearranging the terms, may be rewritten as

K = ib left - Kkft - I) + {bright - Kright ~ l) + [Zntear + l) (8.15)
which simply is

bI = bIuft + bKiiht + [2 n Uar + 1) V (8.16)

Now making use of equation (8.12) produces

bI ~ 2bpart .+ [2ntear 7F l) (8.17)
Solving for bpart yields

bpart
bj ~ 2Wieflr - I

: 2
(8.18)

Equation (8.18) above defines the size of each partition given the number of
fundamental loops bt in the parent circuit and the number of tearing nodes
nlear at the partitioning point. Therefore, the best partitioning point to
heuristically optimize the execution time of the complete partitioning process,
is one that has a local minimum for equation (8.18).

There are two execution cases to be considered when deciding on which
criterion is more important in the partitioning process, minimizing the number
of tearing nodes or balancing the sizes of the partitions. The conclusion is
that always a combination of both should be considered. The number of
tearing nodes is the first factor to .be considered in order to minimize the
middle block analysis, but the binary partitioning should not be allowed to be
grossly uneven because that could extremely slow down the partitioning
process. The two eases are a function of the hardware available for the
running of the entire process. They are the sequential execution case and
parallel execution case.

1) Eor parallel execution of the algorithm, the partitioning goal is to produce
a binary tree structure that is as balanced as possible. Figure (8.1a) shows

V ; a balanced binary tree and figure (8.1b) shows an unbalanced binary tree.
Producing a balanced binary tree would result in high utilization of the
available processors with minimal idle processors at any certain time. The
best situation is if each partitioning process would always produce equal
left and right partitions, that is, an equal number of fundamental loops in
each partition. This may be accomplished by emphasizing equation (8.18)
as the main partitioning criterion, rather than the number of tearing
nodes niear. :
The balanced binary tree not only is helpful in the full utilization of the
multiprocessor during partitioning but also: during the hierarchical
combination process of the middle block analysis described in chapter 5.

2) For sequential e x e c u t i o n , the requirement on the partitioning to produce a
’ balanced tree is not essential as in the parallel execution case. The number

of tearing nodes is a more important criteria to use for the binary
partitioning step in order to optimize the middle block analysis process.
However, because of the nonlinear 0 (6 ,2) time complexity of binary-part,

grossly uneven partitions can result in creating a bottleneck for the
partitioning algorithm; thus nullifying the future advantage gained by the
minimization of the tearing nodes.

8.6 T he B inary P a rtitio n in g A lgorithm

8.6.1 G eneral D iscussion

The algorithm will partition the input circuit into two parts referred to
as the left subcircuit and the right subcircuit. The basic idea of the
partitioning is to group the most tightly coupled loops together in the same
partition. The rows of the fundamental loop matrix B are permuted such that
the first bh rows have a local minimum number of intersections with the
remaining b ^ - b ^ rows. This also means that the first bh fundamental loops
have a local minimum number of shared branches with the remaining bt
fundamental loops. The new permuted fundamental loop matrix is

. 95 ■

where B 1 and B2 are submatrices of dimensions bltxbt and blfxbt , respectively.
Hence, the left subcircuit will consist of the first bh fundamental loops of the
circuit, and the right subcircuit will consist of the remaining b,r fundamental
loops excluding the tree branches that already have been selected in the left
partition, or in other words, excluding the loop intersections with the first blf
fundamental loops.

Example 8.2

The Bp matrix for a circuit represented by the graph in figure (8.2) is
shown in equation (8.20). The partitioning illustrated in figures (8.2 and 8.3)
would define B 1 and B2 as illustrated also in equation (8.20) below.

Hi
B2 (8 .20)

96

V 2 6 1 2 9 I i 1 3 1 4 1 7 18

8 ;■ O O O I . I L O O- 0 o

1 5 O O O O I O I 0 0 .■ / > - ; / . - ■

1 6 O O O O O I 0 0 ■■ - v ' ..

1 9 O O O O O ' - . . I : V I 0 I

2 0 O O O O O O 0 I I

■ . , ' ■ T V. I I O O O O 0 0 0 ;■ ■ y ;

■V.;." 3 I O I O O O 0 0 0 ■ ■ v;-t . . . :

;V; 4 I O I O O O 0 I 0 y' ' ; "; ■ -

1 0 O O I O O I 0 0 0 ; .

7 ■-. O I I O O I 0 0 0 . '■ ■; ■” -V /:■ .

■. v '5 : O I I I ■ V T 1 . ■■ 0 0 0

Since the C o lu m n s o f B p represent the tree branches of the circuit, the

a b o v e ; p a r t i t i o n i n g o f B p d o e s n o t y ie ld , f u n d a m e n t a l l o o p s u b m a t r i c e s , i n a r

i s , B 1 a n d B 2 a r e n o t f u n d a m e n t a l l o o p m a t r i c e s f o r t h e l e f t a n d r i g h t

s u b c i r c u i t s , r e s p e c t i v e l y . T h e i r c o l u m n s i n c l u d e t h e t r e e b r a n c h e s o f t h e e n t i r e

c i r c u i t . T h e f i r s t s t e p t o p r o d u c i n g t h e f u n d a m e n t a l l o o p m a t r i c e s B, a n d B r
f o r t h e l e f t a n d r i g h t s u b c i r c u i t s , r e s p e c t i v e l y , i s t o s i m p l y r e m o v e t h e z e r o

c o l u m n s f r o m B 1 a n d B 2, t h u s r e m o v i n g t h e t r e e b r a n c h e s t h a t d o n o t b e l o n g

t o t h a t p a r t i c u l a r p a r t i t i o n . C a u t i o n m u s t b e t a k e n h e r e t h o u g h , b e c a u s e z e r o

c o l u m n s a r e a l l o w e d in B , S e c t i o n 8 .6 e x p l a i n s t h e h a n d l i n g o f s u c h a s p e c i a l

c a s e . T h e c o n s i d e r a t i o n n o w is t h a t i n o r d e r f o r t h e s u b m a t r i c e s t o b e

f u n d a m e n t a l l o o p m a t r i c e s , a l l o f t h e i r c o l u m n s m u s t r e p r e s e n t t h e t r e e

b r a n c h e s , t h e i r r o w s m u s t r e p r e s e n t t h e H n k s p a n d t h e i r r o w e n t r i e s m u s t

represent the fundamental loops of their respective subcircuits.

8.6.2 L eft W eighted F u n d am en ta l Loop M a tr ix B p
Looking at the left subcircuit and B 1, B 1 can be obtained by simply

removing zero columns from B 1, therefore eliminating the branches that do
not belong, to the left partition. The resulting matrix B / is a fundamental loop
matrix. This is the case here because of the nature of the permutation process
of the rows of B and the process of choosing the first bh rows for a left
partition. They both dictate that the ith row must intersect the (i + l) s t row,
where K i K b t - L So the tree branches that are in the left subcircuit are a

connected subgraph of the original tree. Also the nodes of the left partition are
determined by the subset of tree branches in it, because the links form

97

Figure 8.2 : Partitioned graph of example 8.2

98

complete loops with the tree branches of the left partition by the above choice
of the left p a r t i t i o n . These two facts indicate that the subset of the original
tree branches included in the left partition form an acyclic connected
subgraph of the left subcircuit that spans all the nodes in that subcircuit.
Hence B , is a fundamental loop matrix for the left subcircuit.

Example 8. S
Again considering the graph in figure (8.2), the left partition is shown in

figure (8.3a). Notice by inspection of that graph, the subgraph of the tree is
also a spanning tree for the left partition. The weighted fundamental loop
matrix for the left partition B , is obtained from B 1 (equation 8.20) by simply
deleting the zero columns from B 1 which are the columns corresponding to
tree branches 2, 6 and 12. This would produce

{8.21)

.: ■. ’ . ■ , . 9 1 1 1 3 1 4 1 7 1 8

* ‘ J ■ ," -' . 8 I I 0 0 0 0

15 0 I 0 I 0 0

‘ • ■ V" ’ B i z=-1 U 0 0 I I 0 0

1 9 0 0 I I 0 I

2 0 0 0 0 0 I I

8.6.3 R igh t W eighted F u n d am en ta l Loop M a trix B r
Deleting the zero columns from B 2 is necessary but not sufficient to

construct the fundamental loop matrix B r for the right subcircuit. The
columns corresponding to those tree branches that intersect the loops of the
left partition must also be deleted, which opens one or more of the blr
fundamental loops originally defined in B 2. This destroys the fundamental
loop property of this submatrix. So B r still needs to be constructed, that is, a
new tree, cotree and fundamental loops for the right subcircuit must be

constructed.
One Way to find B r is to s t a r t from scratch, that is use the tree finding

and optimization algorithms described in section 7.3. However, B 2 has some
partial information that may be used to construct B r. An algorithm has been
devised that manipulates the broken loops of B 2 in order to produce the
fundamental loop matrix for the right subcircuit B r . The process is referred to
as updating the right tree. This algorithm exhibits a substantial savings in
execution time over the process of starting the search for a tree from scratch.

99

M

11

(a) Left partition

(b) Right partition

Figure 8.3 : Left and right partitions of example 8.3

100

The basic idea of the algorithm is to turn every link Ii for which the
corresponding loop (referred to as loop Li) intersects the left partition into a
tree branch, and then update all the other loops that are affected by this

transformation.

The algorithm, right—update, is illustrated in the following steps:

1) Form a list, d, that contains all the columns (tree branches) of B 2 that
correspond to the branches already chosen to be in the left partition. The
cost of constructing d is not included in the calculation of the complexity
of this algorithm. The reason being that d is constructed earlier during
the process of partitioning the circuit into a left and right subcircuits at a
constant cost (not a function of the data set size).

2) For each fundamental loop Li in B 2, find the list IocaLd=Ll H d. IocaLd
will contains all branches in loop Li that belong to the left partition.

3) If IocaLd is empty, that is loop Li does not intersect the left partition,
: then Li is a fundamental loop in the right partition and the algorithm

proceeds to process Li+l (go to step 2 above).
4) If IocaLd is not empty, that is loop Li d o e s intersect the left partition,

then for each remaining loop Ly in B 2 (j> 0 >

4,1) If loop Lj and loop Li have any common branches that are in
IocaLd (branches that belong to the left partition), or in other
words if Lj H Li Pl IocaLd is not empty, then, update Lj as

follows,

Lj = Lj U Li — Lj ft Li + I i (8.22)

That is create a new Lj by deleting all the branches that the
old Lj and Li have in common from Lj and add to Lj the

i p remainder of branches from Li plus Ii which will become a tree
branch in step 5 below. Example 8.4 illustrates this; step.

4.2) If Lj O Li O IocaLd is empty, then turning link Ii into a
y tree branch will have no effect on loop Lj , therefore proceed to

process LJ+1 (go back to step 4.1).

5) Add link Ii to the tree branch list and delete it from the link list. In terms
of B 2 this constitutes deleting row i and adding an extra column.

6) Delete all the columns corresponding to the branches in d. These branches
belong to the left partition.

It can be seen from step 2 above, that the algorithm terminates when i — bt .
The result is a new fundamental loop matrix B r which defines a tree, cotree
and the associated fundamental loops for the right partition. However, this
new tree might not be an optimal one or near-optimal enough for the
partitioning algorithm. In which case B r may be run through the tree
optimization algorithm opt—tree illustrated in section 7.3. From experimental
results, it has been found that running the optimization algorithm for only
one iteration is usually sufficient to produce a near-optimal tree that is
suitable for the partitioning algorithm.

The right—update algorithm can be better illustrated by the use of the
following example.

Example 8.4

Partitioning a circuit represented by the graph in figure (8.2) in the
fashion shown in figures (7.3 a and b) produces a B2 submatrix shown in
equation (8.20). After deleting the zero columns from B2 the intermediate
result becomes

101

2 6 12 9 T l 13 17
I T I 0 0 0 0 0
3 1 0 I 0 0 0 0

= 4 1 0 I 0 0 0 I
TO 0 0 I 0 0 I 0

7 0 I I 0 0 I 0
5 0 I I I I I 0

By inspection of figure (8.2) it can be seen that

d = { 9,11,18,17}

102

Now applying the right—update algorithm to update the tree of the right
partition results in:

i = I I1= I

* —3

local-d= {0} —> no change in B tefnp.
t=2 —► /2=3

local-d= {0) —* no change in B lcmp.

* ;
l o c a U d = { l 7 } "[: : . ■
Now step 4 is executed for Ij taking the values 10,7,5 respectively, but
since non of them intersect with branch 17, no change occurs in these
l o o p s . Row 4 is now deleted and link 4 becomes a tree branch, which
requires adding a new column to B kmp which becomes,

■ : " V v /■ _ " V2 6 12 9 11 13 17 4
. ' I T I 0 0 0 0 0 0

I 0 I 0 0 0 0 0 " . , ' . - . ■' < ■ ’
^lemp ~~]0 0 0 I 0 0 I 0 0

0 I I 0 0 I 0 0

T -7V \ -.'5., 0 I I I I I o O

• i~--\ —y Z4=IO - ■ ...
local—d={ IS }
Since branch 13 intersects both L5 and L 5, both loops need to be
updated using equation (8.22). That is:

L4 n L5 + 14L a U L 5

■■ { 6,12,13} - { 12,13 } -I { 10 }

: { 6,10 }

and

Lg — L4 U Lq L4 Pl L0 + lA

= { 6 ,9 ,1 1 , 12,13 } - { 12,13 } + { 10 }

= { 6,9,10,11 }

So now B lcmp becomes,

103

2 6 12 9 11 13 17 4 10
I T I 0 0 0 0 0 0 0

= 3 I 0 I 0 0 0 0 0 0
7 0 I 0 0 0 0 0 0 I

v 5 0 I 0 I I 0 0 0 I
* *=5 —y 15 = 7

local—d = {0) >• no change in 1B iemp.
V t= 6 —> I6= 5

local-d ={ 9,11 }
Now since no more loops are left after L 6, row 6 is simply deleted and

becomes a tree branch, which requires adding a new column to
^temp- Also since i=blr=§ here, the algorithm terminates after this step.
After deleting the columns corresponding to the elements of d, By
becomes:

2 6 12 4 10 5
T i o o o (T
1 0 1 0 0 0
0 1 0 0 1 0

The new tree and cotree are illustrated in figure (8.4).

8.6.4 T he B inary A lgorithm

The input to this part of the process is the weighted fundamental loop
matrix

B = j w/iere (I ^ i ^ fe*_ 12= j ^ bt) (8.23)

which includes the tree, cotree and fundamental loop information. Also, bt
and b[signify the number of tree branches and cotree links in the circuit,
respectively. The total number of branches in the circuit then is simply
b=bi+bt .

The steps of the algorithm that is referred to as binary—part are listed
herein.

I) Define and initialize the following vectors :

~~ (F : / /£ F, I = J ^ bt j, where / ; is the number of nonzero entries in

104

Figure 8.4 : New tree and cotree of the right partition

105

the jth column of bold B, that is
bt

f j = £ h j ; (8.24)
k = I

— (D : dyGD, ISi j Si 6f), where dy=0 if the jth tree branch has
already been processed and I otherwise. Initialize every dj to I.

— (DI : dq-ED, ISs «;Ss bfy where dii is the number of branches in the
the 1st % fundamental loops of the circuit. In other words,

; 'V. . £ M ;
<hi = * + £ £ ' (8.25)

Jfc=IZ=I .

(D N l : dn I m ED N l, I Si w = n), where n is the total number of
nodes in the graph G and dnI m is I if node rn is part of the first i
fundamental loops, 0 otherwise. Initialize every d n lm to 0.
(DN2 : dn2mGDN2, I ^ m = n), where dn2m is the number of
branches incident on node m and are not part of the first i
fundamental loops. Initialize dn2m to the total number of branches
incident on node m.
The significance of F and D, and D N l and DN2 will be seen
clearly in the calculation of Ii and ti, respectively.

2) For each fundamental loop Li (ie. each row i of B) do the following :

(2.1) for every loop Lp (pth row), where (i ^ b l), which has an
intersection with loops (rows) I through i -I, calculate the loop
index Iip. For the case where no such intersection exist (which
includes the initial case when * =1), Hp is calculated for all p where
i = bt. The equation used to calculate Iip is

b, v
ltP = lli- 1 — £ bpl + 5] bpjdffj (8.26)

.r=1 /=1

2.2) Find the loop Lm (row m) with the minimum loop index Iim on the
interval i m ^ b{.

2.3) Permute the mth row into the ith row of B.
2.4) Update D N l by setting dn I m= I for all the nodes connected to the

ith loop.
2.5) Update DN2 by decrementing dn 2m for every occurrence of node

■m in loop i. Note here that a maximum of two can be subtracted
from any dn 2m because a loop cannot have more than two

branches incident on one node.
2.6) Calculate Hi using the following equation:

Hi = }_] {d n lm*dn‘l m) (8.27)
’ : m = l ' V

where the is an ahd operation and is equal to I if both operands
are nonzero and 0 otherwise.

2.7) Calculate (Hi for the new ith row using
/ ■ . ' -V ■ ■ ■■ ■ - ' ' ; b, : :

(U i -=Z dtV l1 ' + E M / + 1 (8 -2 8)
■ ■ '■ • ■ ■■■ - V' V /=1 : . :

2.8) Update the D vector by setting (Ij to 0 for every nonzero entry bif
in the newly permuted ith row.

2.9) Check if the bt- i loops still unpermuted have at least a set
minimum number of branches that a partition may have bmin, if so
go to step 2 otherwise go to step 3. That is, if

' b - (Hi > bmhl (8.29)

continue with the loop in step 2, else exit the loop.
3) The new permuted weighted fundamental loop matrix is now referred to

as Bp. Search for a starting loop (row) is in B p such that the first
loops have at least bmm branches in them. That is until

■ <ft(, i t . ’-: : ; ; ; : (8-3°)
4) Search for a row which has the minimum Uanvtj index Umil on the

interval {*,,* } . Jmia is the partitioning point.
So the first Jmin loops of Bp represent the left partition of the circuit. The

rentaining b̂ —imin loops excluding the tree branches that are already part of
the left partition, that is, the intersection between the 1st Jmin rows and the
rest of Bp, belong to the right partition.

A note is in order here. A fairly common special case is when one of the
nodes Of a tree branch is a dangling node. This means that the tree branch is
not part of any fundamental loop, which results in a zero column
corresponding to it in B. So the partitioning process as stated above will
always include these branches in the right subcircuit although its nondangling
node is part of the left subcircuit. This is highly inefficient. An extra
partitioning step is performed to handle these branches. A simple search
through the tearing nodes of the left partition is conducted and a check is

107

performed if a branch with a dangling other node is connected to any of them;
in which case, the branch is added to the left partition. It remains in the right
partition otherwise.

Example 8.5
Consider the circuit represented by the graph in figure (8.5).

Preprocessing the circuit yields the tree and cotrees highlighted in figure (8.5).
The weighted fundamental loop matrix for this graph is then

I 6 7 9 11

B

2
3
4
5
8
10

1 0 0 1 0
0 0 0 1 1
0 0 I 0 I
0 I I 0 0
0 1 0 0 1
1 0 0 0 1

Performing the step 2 of binary-tree will yield the following partitioning table

I L ti di
I 2 3 3
2 3 3 5
3 10 2 6
4 8 3 8
5 5 3 10
6 4 0 0

Step 2 went through 5 iteration. For *= I and 2, no permutations were
performed since they produced the minimum U at their respective position.
For i =3 and 4 though, 2 permutations were performed. First exchanging the
rows corresponding to Z3=4 and Z6=IO, and second exchanging the rows
corresponding to Z4 =5 and Z5=S- For the last iteration, no exchange between
Z5=5 and Z6=4 was performed. The resultant permuted B matrix is

108

1 6 7 9 11

I 0 0 I 0
0 0 0 I I
1 0 0 0 I
0 1 0 0 I
0 I I 0 0
0 0 1 0 1

Performing steps 3 and 4 of the algorithm, the partitioning point is found to
be the 3rd row corresponding to /^=10. So the first three fundamental loops
are the left partition. These include the branches {1,2,3,9,10,11}. The right
partition consists of the rest of the loops less; the tree branches already in the
left partition. So the right partition includes branches include {4,5,6,7,8}.
The partitioning nodes are node {l,4}. The two partitions are illustrated in
figure (8.6).

The linear execution time complexity of binary-part can be computed by
finding the approximate linear execution time T for the algorithm. Step 2 is
the bottle neck of the process. Let |L | be the average size of each loop, that
is, the number of branches in each loop, which also corresponds to the number
of nonzero entries in each row of B. So the linear execution time of the
algorithm to within a constant is given by the finite sum

T(b,)= }L L„- y ;b :
, - I

which converges to [30]

T M I M dve (8.32)

F r o m equation (8.32), it can be seen that binary-part is on the average

oibr- 1 / . I , , / ; - I ; (s : 3 3)
So the complexity of binary-tree is a function of the circuit size since, in
general, V1=b— n — I, and the complexity expression of equation (8.33) can be
rewritten as a function of the difference between the number of branches b
and the number of nodes n .

Examining the problem from a practical point of view though, the
practical and more realistic complexity of the algorithm can be obtained.
First, examining |L \ ave; the: average number of branches per fundamental

109

©

Figure 8.5 : Graph of example 8.5

HO

Figure 8.6 : Left and right partitions of example 8.5

I l l

loop, it is the goal of the preprocessing algorithm opt-tree t o m i n i m i z e the
number of entries in the weighted fundamental loop matrix B. This in turn
minimizes the number of branches per fundamental loop | L \ave. For general
graphs, it has been found in [29] that an upper limit on \L \ave is six and
tends to be independent of the size of the graph. This was achieved without
the use of any tree optimization algorithms. In this project, it has the same
observation was made, however because of the tree optimization algorithm
used, the figure was found to be around five. So the practical time complexity
of binary-part actually becomes

0 (b , 2). (8 .3 4)

CHAPTER O
COMPARISONS AND EXAMPLES

9.1 Comparison w ith the Flowgraph M ethod

The aim of this section is to illustrate the advantages of the network
method of symbolic analysis of large-scale circuits developed in this project
and implemented in SCAPP, over the llowgraph method developed by Starzyk
and Konczykowska in [25] and briefly explained in chapter 2. A Band-pass
filter example simulated in [25] is used for this purpose. The comparison will
show the savings in the number of mathematical operations that the network
approach exhibits to evaluate the results of the analysis.

Example 9.1

The band-pass filter is shown in figure (9.1). The symbolic transfer
v2 . . .

function — is the output requested from the symbolic analysis. The
' Vl ■■ .

flowgraph analysis technique has been performed on the circuit in [25] using
the Coates graph representation illustrated in figure (9.2) where one of the
partitions of the flowgraph is shown. The partitioning was done manually and
explores the repetitive nature of the flowgraph. The result of the analysis is
the sequence of expressions shown in table (9.1). The final transfer function
is given by:

v2 _ F (24)
V1 F (25) (9.1)

The statistics on the analysis extracted from table (9.1) are listed in table
(9.3).

The circuit was also simulated using SCAPP. It was run under three
different conditions: I)

I) Manual partitioning performed on the circuit. This is done in order to
perform a fair comparison with the flowgraph method. This manual
partitioning explores the cascaded structure of the filter shown in figure

.19 Gj

25 g» 24

Figure 9.1 : Band-pass filter [25]

114

/

Figure 9.2 : Coates graph representation of example 9.1

115

Table 9.1 : The result of the flowgraph analysis

BlockAiiabet VB B E Height Function

9 26,30 26 30 Pd) C37(Sj8 * V
30 30 P(2) CiC<C37 * 0M'
30 26 P(3) C29C32,C35(C28 * C30>

8 19,26,30 26 26 PO) <c28 * C30>l532C38C3t * C31,C35(C33 * ,C33>1
19 26 F(S) -e28c32,C3S<C29 * C31 * C»6 >
26 19 P(6> C20C23,C26<C19 + C2l>

7 12.19,26 19 19 PO) f(C„ C21HCjjC25Cj7 ♦ Cj2.C26(C21 7 .C2,)!
12 19 P(8) C19C23,C28<C20 * C22 * V
I? 12 P<9) cuclt.c17(cl6 ♦ C12)

5,12,19 12 : 12 P(IO) (C10 * CjjJICj.CjjC,, * c„.C17CC15 ♦ .C15))
5 12 PdD CJ0C1*»CIT‘C11 * C13
12 5 F(12) C2C5lC8CC1 * C5)

5 1.5,12 5 5 P(13) (C1 ♦ C3MC5C7C9 ♦ C4eC8(CfcfeC6)]
I 5 P(U) C1C5*C8<C2 * C* * V

26,30 30,30 F(IS) --P(S)F(I)* P(6)P(2)
. '& 19,26,30 19,26 26,30 P(16) P(S)P(I)

; 19,30 26,30 F(17) - P(5)P(2)
12,19 19,30 P(18) F(8)F(16)

3 12,19,30 19,30 19,30 F(19) P(7)F(15) - P(6)F(17)
12,30 19,30 P(20) - P(B)F(IS)
5,12 12,30 F(21) F(Il)F(IB)

2 5,12,30 12,30 12,30 P(22) F(10)F(19) -'P(B)P(SQ)
5,30 12,30 P(23) - F (11) F (19)

I 1,30 I 30 P(24) P(U)P(Sl)
30 30 P(25) F(13)F(22) -P(IS)P(SS).-

1 1 6

(9.3). Figure (9.4) shows one of the subcircuits as a 4-terminal block and
figure (9.5) shows the binary tree modeling the upward hierarchical
analysis process. The resulting sequence of expressions is listed in table
(9.2) and the statistics associated with it are listed in table (9.3).

2) Automatic partitioning is performed on the circuit. The resulting
partitions are not the cascaded block of figure (9.3). The partitioner
cannot recognize the repetitive structure of the circuits. However, its goal
is to hueristically minimize the number of tearing nodes, The statistics
from the resulting sequence of expressions are listed in table (9.3).

3) No partitioning performed on the circuit. SCAPP considers the whole
circuit as one large 3-terminal block. The results are tabulated in table
(9.3) .

The transfer function requested from the analysis is given by:

(9.2)
V1 T 0(32,30) \ /

From table (9.3) the advantages of the network approach are obvious. To
compare the sequence of expressions, the most important number to consider
is the number of multiplications. Using manual partitioning, SCAPP has
approximately a 24% advantage over the flowgraph approach. Also the
advantage of using partitioning, automatic or manual, over not partitioning
the circuit at all is very visible. The savings of manual partitioning is about
39% and of automatic partitioning is about 19% over the nonpartitioned case.

The advantages of the symbolic analysis methodology presented in this
report over the flowgraph approach of [25] are summarized as follows: 1

1) The resulting sequence of expressions from SCAPP will have less
mathematical operations than the flowgraph approach.

2) The results of the netwrok approach have a division operation as the
basic step for each block. Note that the results of the flowgraph
apprach only allows multiplications to be performed, no divisions. The
problem for computer evaluation of the resulting expressions is the
finite precision. The continuous division operations preserve the
integrity of the numerical values of the functions. For instance,
resistors with values in the mega ohm range will have conductances on
the order of IO-6 mhos. The continuous multiplication of such numbers
would result in severe underflow problems. One way to get around this
would be by normalization, an added overhead to the flowgraph

117

Vg

Figure 9.3 : Block interconnections for manual partitioning

Figure 9.4 : A single block

118

Figure 9.5 : The binary tree model of example 9.1

Table 9.2 : SCAPP result with manual partitioning

(a) Terminal blocks

Block
Number TN Symbolic Function

p (i) (G 37+Gr39)

5 ■ 26,30 P l(3 2) (G a s + G ^ W)
' Tl(32,26) —P l(3 2)* (—G37)

P(3) (G28-I-G3c)

P 3(29) (G29+G3i+ G 3^ /(P(3))

73(29,19) - P ^ n - G 28)

- P3(25) (- G32J A - 3i)

4 19,26,30 T3(26,30) - P 3 (2 5) * { - G ^

• 73(25,19) -P 3 (2 5)* (73(29,19))
'

73(25,28) —P3(25)*(—G38)

P3(25) (73(25,2 8)) /(- .C ;i5)

73(25,26) (- G 33-* G 83)-P 3 (2 5)* (-G 34)

P (5) (g 19+ g 21)

P5(22) (G 20+G ̂ + G ̂ / (P (5))

75(22,12) —P 5(22)* (- G 18)

P5(18) (- G 2M - G 22)

V''. 3 12,19,26 76(18,12) -P 5 (1 8)* (75(22,12))

75(18,26) —P5(18)*(—G20)

. 75(18,21) —P 5(18)* (-G

. . . • ' . - V P5(18) (75(18,21))/(-»G 26)

75(18,19) (- G 24-« G 2J -P 5 (1 8)* (-G 2 6)

.
P (7) (G 10+ G 12J

P7(15) (G 11+G 13+ G 18)/(P(7))

.. 77(15,5) -P 7 (1 5) * (-G 1q)

P 7 (l l) (- G 1M - G 13)

2 5,12,19 77(11,5) - P 7 (l l) *(77(15,5))

77(11,19) —P 7 (ll)* (—G 11)

77(11,14) —P 7 (ll)* (—G 18)

P 7 (l l) (77(11,14))/(-»G 17)

 ̂ • 77(11,12) (- G 18- . G 1M f 7 (l l) * (- G ie)

Table 9.2 (continued)

Block
Number TN Symbolic Function

P(S) (G r HGa)

P 8 (l) M i)/(P (8))

TS(I1I) (G 1) - P S (I H - G 1)

P8(8) (G2+ G4+ G g)/(P (8))

I 1,5,12 78(8,1) —P 8(8)*(—G 1)

. P8(4) (- O M - 0 J

T 8(4,l) -P 8 (4)* (78(8,1))

78(4,12) —P 8(4)*(—G2)

78(4,7) —P 8(4)*(—Gq)

T18(4) (78(4 ,7))/(—*Gg)

78(4,5) (- G e- , C j - P S (i) * (- G 7)

(b) Middle blocks

Block
Number TN Symbolic Function

P 6 (l l) (77(11 ,5))/(78(4,5))

6 1,12,19 76(11,1) —P 6 (ll) *(78(4,1))

76(11,12) (77(11,12))—P6(11)*(78(4,12))

P4(18) (75(18,12))/(76(11,12))

7 1,19,26 74(18,1) —P 4 (1 8)* (7 6 (ll ,l))

74(18,19) (75(18 ,19))-P 4(18)* (77(11 ,19))

P 2(25) (73(25 ,19))/(74(18,19))

8 1,26,30 72(25,1) -P 2 (2 5)* (74(18,1))

72(25,26) (73(25,26))-P 2(25) *(75(18,26))

P0(32) (71(32,26))/(72(25,26))

9 1,30 70(32,1) -P 0 (3 2)* (72(25,1))

70(32,30) (- G 40) - P0(32)*(73(25,30))

121

Table 9.3 : Results for example 9.1.

Type of
Analysis

Typeof
Partitioning

Number of
mults

Number of
adds

Number of
eqs

Flowgraph manual 63 30 25

manual 48 27 56

SCAPP automatic 64 31 73

none 79 35 88

122

would be by normalization, an added overhead to the flowgraph
method. The division operations in the network approach will keep the
precision of the numbers at a set range throught the evaluation process,
thus eliminating any need for a normalization procedure.

3) All the intermediate results of S CAPP; that is, any terminal or middle
block analysis result, has a physical meaning associated with a
subcircuit. The equations represent the entries of the RMNA matrix
characterizing the block. This is the case because the analysis is based
on network partitioning. The flowgraph method however, is based on
the partitioning of the Coates graph. The intermediate results do not
directly correspond to a physical partition of the circuit. Mapping
these intermediate results back to the circuit would require additional
algorithmic manipulations.

4) For the network approach it is directly possible to build standard
terminal block libraries for for common circuit building blocks,
opamps, amplifiers, NAND gates, NOR gates, etc. The flowgraph
approach would need the exploration of the process of interconnecting
Coates graph representations of interconnected subcircuits; an added
overhead.

9 .2 G e n e ra l E x a m p le

This section will explore the complete process of symbolically analyzing a
circuit using SGAPP. The partitioning tables are all listed. Table 9.7 shows a
comparison for the symbolic output between the partitioned case and the
unpartitioned case.

Example 9.2
The circuit in figure (9.6) is to be analyzed using SCAPP . The resulting

binary tree model that will result from the analysis is displayed in figure (9.7).
The input deck for SCAPP is shown in figure (9.8). Notice that four
partitions have been requested from the partitioner.
The first step of the analysis is to find a tree and to optimize it. The search in
SCAPP for a star-like tree starts at the ground; the densest node in the
circuit. The star-like tree found by find-tree is an optimum tree. So opt-tree
was not needed in this case. Figure (9.6) highlights the tree by the dashed
branches. The resulting fundamental loop matrix B is given in figure (9.9).

This matrix is actually B after the rows have been permuted based on their
loop indices Ii. The partitioning table with Ii, di and ti computed for each
row is listed in table (9.4).
Minimum, U is at row C16 which becomes the partitioning point in B. The first
three fundamental loops are then grouped together to form block B 1 and the
rest of the loops belong to B 2. The two partitions are:

Bi- =? { r 9,ri5 ,c16,r8,ci3,ri4}

B2 -'= {»"2,^18jC7jCigjT21, T5jT1 J5C4jC1, / 10>r 12> r17>r6>r 20>c s}

The set of tearing nodes is:

■■ TN 1’2 ■■■= {0,7}

Figure (9.7) shows the position of B 1 and B 2 on the binary tree.

The left subcircuit B 1 cannot be partitioned any further because of the
branch size limitation of 6 min=4. B 1 actually has 6 branches which cannot be
partitioned into two parts with at least 4 branches in each.

Now the right subcircuit B2 is entered to the binary partitioning process
after its tree has been updated. The one iteration of opt-tree results in

124

Figure 9.6 : Circuit of example 9.2

Figure 9.7 : The binary tree model for example 9.2

125

* Example 9.2 : A dense circuit
* Includes VCVS (branch 17)
* and CCCS (branch 10)
*

*

.opt brnin 4

.opt parts 4

.opt alltree I

.opt auto I

cl 0 8 VAR
r2 2 8 VAJR
c3 7 8 VAR
c4 I 2 VAR

r5 2 3 VAR
r6 2 9 VAR
e7 7 10 2 9 VAR = u7
r8 0 5 VAR.
r9 5 6 VAR
flO 10 r5 VAR = BlO
r l l I 3 VAR
rl2 0 2 VAR
c l3 0 6 VAR
rl4 0 7 VAR
rl5 5 7 VAR
cl6 6 7 VAR
rl7 3 0 VAR
rl8 2 7 VAR
cl9 7 9 VAR
r20 2 10 VAR
r 21 9 10 VAR
.output v8 vlO

Figure 9.8 : Input to SCAPP for circuit of example 9.2

126

r ci r 8 /10 r12 C13 r 14 r 17 r 6 r20
r 9 0 I 0 0 I 0 0 0 0
r15 0 I 0 0 0 I 0 0 0
c 16 0 0 0 0 I I 0 0 0
c3 I 0 0 0 0 T 0 0 0
r 2 I 0 0 I 0 0 0 0 0
r 18 0 0 0 I 0 I 0 0 0
e 7 0 0 0 I 0 I 0 0 I
c19 G 0 0 I 0 I 0 I 0
r21 0 0 0 0 0 0 0 I I

0 0 0 I 0 0 I 0 0
rIl 0 0 I 0 0 0 I 0 0
c 4 _ 0 0 I I 0 0 0 0 0

Figure 9.9 : B matrix for block 0 (entire circuit)

Table 9.4 : Partitioning table for block 0 (entire circuit)

I L Ii d i t i

I r-9 2 : 3 3

2 r IS 6 5 3

3 c16 4 6 2

4 c3 4 8 3

5 ■T-2 8 10 3

6 r18 6 11 3
7 e7 5 13 4
8 c19 4 15 4
9 r21 2 16 2

10 r5 2 18 3

11 rH 0 0 0

12 C4 2 0 0

127

r e d u c i n g the entries of the new B matrix from qs =21 to qs — 16. The
permuted B matrix for this partition is:

C3
e 7

c 19
r 21
r&

r U
C4

r2 / 10 >12 rn r6 r20 r18
I 0 I 0 0 0 0
I 0 0 0 0 0 I
0 0 . O': 0 0 I I
0 0 0 0 I 0 I
0 0 0 0 I I 0
0 0 I I 0 0 0
0 I 0 I 0 0 0
0 I I 0 0 0 0 _

The partitioning table for this block becomes:

Table 9.5 : Binary partitioning table of block 2

The partitioning point is r 2i- The resulting partitions are:

B3 — {c^C^Cy, Ci9,?"21>r 2)r 12>r6>f20>r 18}

B4 = JV11jC4, /]0, r 17,r5}

128

The tearing node set between blocks 3 and is:

TiV3'4 = {0,2}

The left partition is considered for yet another binary partitioning
The resulting B matrix and partitioning tables are:

r r 2 r12 r6 r 20 r 18
cI I I 0 0 0
c3 I 0 0 0 I
e7 0 0 0 I I
c19 0 0 I 0 I
r21 _ 0 0 I I 0

Table 9.6 : Binary partitioning table of block 3

I L it d i t i

I ci i 3 2
2 c3 2 5 2
3 e 7 2 7 3
4 c19 0 0 0
5 r21 0 0 0

The resulting blocks are:

B 5 = { ^ 1 , C3 j T2 j T 12j T18I

B6 = {c19Jr2lJT6jT2QJe7}

The tearing node set is:

TAi4'5 = {2,7}

process.

...■ '■ ■ '129-'.'

A t th is point, further partition ing is n ot possib le because of th e subcircuit size
lim itation. T he final partitioned circuit is illustrated in figure (9.6) and the

term inal blocks are:

B I — {r9,r 15,c 16,r 8, c 13,r 14}

B4 { c l>c 3>r2Jr 12>r 18}

B h {c i g , 7" 21> 6» ̂

B6 =-= { r X1jC4, / 1o>r 17>r o}

T he final set of tearing nodes w hich m u st include the I /O variables is:

T N = {0 ,2 ,7 ,8 ,10 ,}

SC APP now proceeds w ith th e analysis o f the p artition ed circuit. It w ill

perform a term inal block analysis on each term inal b lock and then trace up
the binary tree for the hierarchical m iddle block analysis process. T he
statistics of the result are listed in tab le (9.7).

The circuit w as run w ith ou t partition ing. Form the discussion in chapter

6 it is clear th a t the order in w hich the nodes are reduced in the term inal
block analysis has an effect on the efficiency of th e running and the results.
T he unpartitioned circuit w as sim ulated using several different random
ordering of the reduction. T he tw o basic set of num bers th e sim ulations
resulted in are displayed in tab le (9.7). For the. partition ed case, th e order did

not affect the analysis results.

The advantage of partition ing here is very clear, th e p artition ed case
requires 77% less m ultip lications than the first random case and 35% less than

the second ease.

Table 9.7 : Results for example 9.2

T yp e o f
P artition ing

T ype o f
Order

R eduction
m ults

N um ber o f
adds

Num ber o f
eqs

autom atic all 66 70 75

none random 287 216 292

random 102 89 108

131

C H A P T E R 1 0
S U M M A R Y , C O N C L U S I O N S A N D

R E C O M M E N D A T I O N S

1 0 .1 S u m m a r y a n d C o n c lu s io n s

A new m ethod for the sym bolic analysis of large-scale circuits has been
developed. T he m ethod has been im plem ented in a software package using the
C program m ing language. T he program , referred to as SC A P P , an
abbreviation for Sym bolic Circuit A nalysis Program w ith Partition ing, is a
unique user oriented tool for sym bolic circuit analysis o f large-scale networks.
A t the present tim e, the only other tools available for sym bolic analysis are
lim ited to a circuit size of about 50 nodes [3].

T he hierarchical netw ork analysis m ethod proposed consists of three basic
parts. T h ey are:

I) N etw ork partitioning: T he partition ing algorithm is based on the process
of finding an in itia l spanning tree for the network, building the w eighted
fundam ental loop m atrix B and then finding a near—optimal spanning
tree. A fter th at, a hierarchical binary partition ing process is perform ed.
It consists o f perm uting the rows of B based on the concept o f loop index
to group tigh tly coupled fundam ental loops together, and then
partition ing the netw ork using the new concept of tearing index to
perform the actual binary partition ing. The goal of the process is to to
m inim ize th e num ber of tearing nodes w hile considering the size o f the
resulting partitions. T his in turn will optim ize the sym bolic analysis
process. T he concept o f pseudo—branches was introduced in order to
allow for user defined subcircuits to be present in the netw ork and
considered in the partition ing process.

T he result was an efficient netw ork partition ing process w ith a m ain goal
of optim izing the hierarchical sym bolic analysis by m inim izing the num ber
of tearing nodes w hile considering the size of the partitions. The process
was found h ighly suitable for parallel im plem entation.

; .-132

2) Terminal block analysis: A further modification to the modified nodal
analysis technique has been introduced in order to allow ideal opainps in
the symbolic networks. Also the concept of the reduced modified analysis
(RMNA) was introduced to produce a symbolic matrix that characterizes
the subcircuits in terms of their tearing nodes and extra current variables.

The RMNA reduction technique was proven to be very stable for practical
electrical networks. Also, it was found that this terminal analysis
methodology is able to perform the analysis on the entire network without
partitioning. This allowed for the flexibility in using the partitioning.
Another result of this terminal block analysis method is that it allows for
the characterization and building of standard symbolic libraries for
standard circuit building blocks. The partitioning is capable of handling
these blocks as user defined subcircuits. This results in a more efficient

; anailysis process. Each terminal block analysis result is a complete
solution of the subcircuit in terms of its external variables. The terminal
block analysis process is completely independent from any of the other
analysis steps, middle or terminal. So, the parallel of the terminal blocks
would result in a major speed-up in the complete symbolic analysis.

3) Hierarchical middle block analysis: A binary hierarchical combination
process of terminal and middle blocks was proposed. The solutions are
represented as RMNA matrices. The analysis proceeds up the binary tree
model dictated by the partitioning.

The two criteria that control the efficiency of the process, in their order of
importance, are: the number of tearing nodes, and secondly the size of the
partitions. This is where the constraints on the partitioning technique
arise.

Therefore, the mam conclusion of this project is that large-scale networks
can be analyzed symbolically. The presentation of the hierarchical network
approach for the symbolic analysis of large-scale networks and its computer
implementation in SCAPP proves the argument.

10.2 Recommendations
The main consideration for the symbolic analysis of large-scale networks

is reducing a large problem into several smaller problems, solving them, and

133

then combining the solutions. In this project, this process corresponds to the
partitioning, terminal block analysis and hierarchical middle block analysis,
respectively. In the author’s opinion, the most important consideration when
attempting to analyze large problems is : the ability to easily combine the
solutions of similar but smaller size problems to produce a solution to the
large problem. The following recommendations are based on this
consideration.

1) Exploring the possibility of using one of the existing topological
approaches, like parameter extraction [3], to perform the terminal block
analysis. Actually further modifications and improvements would have to
be realized in the methods because of their exponential growth behavior
with the growth in subcircuit sizes. Otherwise, a very powerful partitioner
must be used such that the size of the each partition is the main criteria
for partitioning. The partitioner would almost have to guarantee such
optimum sizes. Since partitioning is of the class of N P —complete
problems [1], guaranteeing such an outcome could be very costly. All
practical partitioners are hueristic. Therefore, the analysis methodology
should be flexible and efficient enough to handle occasional large
partitions. Also, the recombination abilities of these methods must be
studied in detail.

2) Exploring the possibility of using other network approaches for the
terminal block analysis, like the sparse tableau method [9] or loop analysis
[7]. Here the research must begin by the applicability of the methods to
symbolic analysis. After that, the same considerations of the combination
abilities of the method must be studied.

3) The exploration of different partitioning techniques, like ones based on
branch tearing rather than node tearing, or a hybrid combination of both.
This is highly related to the type of terminal block analysis used. For
instance, a nodal analysis technique, like the one developed in this project,
would conceptually need a node tearing partitioning technique. The
restrictions on the partitioner are imposed by the analysis methodology.
However, even within each class of partitioning, node tearing or branch
tearing, there is a vast area of possibilities.

4) The exploration of the symbolic sensitivity analysis of large-scale

networks. This w ould involve finding the first and possib ly higher order
derivatives of variables involved in the sequence of expressions.

: 5) A practical application for SC A PP would be to build a standard library o f
sym bolic RMNA m atrices for standard circuit build ing blocks. Som ething

sim ilar to a standard cell library. T his w ould save the cost of term inal
block analysis for circuits utilizing these standard build ing blocks.

6) E xtensively studying the roundoff error and the effects of the num erical
evaluation of the sequence of expressions. T h is stu d y should be
perform ed w ith regard to the expression patterns produced by the

. sym bolic analysis of electrical circuits and n ot any general expression
sequence. The form er w ill produce specific repetitive patterns, lik e the

A t output of SC A PP versus the latter could have infin ite possib ilities. An

attem pt can be m ade to find som e level of recurrence in the patterns.

7) A nd finally the extensive testing o f S C A P P . As w ith any softw are product
the bugs are endless. E xtensive use o f the program will encourage its use,
m ake for the addition of new features to it and explore the application of

134 — ..

, sym bolic circuit analysis in m any areas.

L I S T O F R E F E R E N C E S

135

LIST OF R E FE R EN C ES

[1] A. V . A ho, et. al., T he D esign and A nalysis of Com puter A lgorithm s.
A ddison- W esly, 1974.

[2] G. E . A lderson, and P . M. Lin, "Computer G eneration of Sym bolic
netw ork functions-A n e w . theory and im plem entation," IEEE Trans, on
C ircuit T heory, V ol. C T -20, pp. 48-56, Jan 1973.

[3] G. E . A lderson," Sem i-N um erical A nalysis of Large Networks," P h .D .
Thesis, P urdue U niversity , A u gust 1971.

[4] L. T. B ruton, R C -A ctive Circuits. Prentice Hall, Englew ood Cliffs, N J.,
1980.

[5] N. B alabanian , and T . A . B ickart, E lectrical Network Theory. John W iley
& Sons, 1969.

[6] W . K. Chen, "Topological A nalysis for A ctive Networks," IEEE Trans, on
C ircuit T heory, V ol. C T -12, no. I,pp . 85-91, Mar. 1965.

[7] L. 0 . Chua, and P . M. Lin, Com puter A ided A nalysis of E lectronic
Circuits - A lgorithm s and C om putational Techniques. E nglew ood Cliffs,
NJ: Prentice-H all, 1975.

[8] C. L. Coates, "Flow graph Solutions of Linear A lgebraic Equations," IRE
Trans, on Circuit T heory, V ol. CT-6, pp. 170-187, 1959.

[9] G. D . H achtel, et. ah, "The Sparse T ableau A pproach to N etw ork and
Design," IEEE Trans, on Circuit Theory, Vol. CT-18, pp. 101-113, Jan
1971.

136

[10] G. D. Hachtel, and A. L. Sangiovanni-Vmcentelli, "A Survey of Third-
Generation Simulation Techniques," Proc. IEEE, Vol. 69, pp. 1264-1280,
Oct. 1981. '

[11] I. N. Hajj, and D. G. Saab, "Symbolic Logic Simulation of MOS Circuits,"
Proc. IEEE Int. Symposium on Circuits and Systems, May 1983, pp. 246-
249.

[12] C- Ho, A. E. Ruehli, and Brennan, "The Modified Nodal Approach to
Network Analysis," IEEE Trans, on Circuits and Systems, Vol. CAS-25,
pp. 504-509, June 1975.

[13] A. Konczykowska, and J. A. Starzyk, Computer Justification of Upward
Topological Analysis of Signal-Flow Graphs," Proc. European Conf. on

: Circuit Theory Design, pp. 464-467, 1981.

■.[1 4] p . M. Lin, "Symbolic Methods for Large-Scale Circuits," A research
proposal for NSF, Purdue University.

[1 5] p . M. Lin, "A Survey of Applications of Symbolic Network Functions,",
IEEE Trans, on Circuit Theory, Vol. CT-20, pp. 732-737, Nov. 1973.

[16] P . M. Lin, " Computer Generation of Symbolic Network Functions: an
Overview," in Computer-Aided Design, edited by J. Vlietstra and R. F.
Wielinga, Amsterdam, The Netherlands: North Holland, 1973.

[17] P . M. Lin, and G. E. Alderson, "SNAP - A Computer Program for
Generating Symbolic Network Functions, School of EE, Purdue
University, West Lafayette, IN., Rep. TR-EE 70-16, Aug. 1970.

[18] B. J. Leon, and P. A. Wintz, Basic Linear Networks for Electrical and
Electronics Engineers. Holt, Rinehart and Winston, Inc., 1970.

[19] R. R. Mielke, "A New Signal Flowgraph Formulation of Symbolic Network
Functions," IEEE Trans, on Circuits and Systems, Vol. CAS-25, pp. 334-
340, June 1978,

137

[20] S. K. Mitra, Analysis and Synthesis of Linear Active Networks, John
Wiley & Sons, Inc., 1969.

[21] L. W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor
Circuits, Memo ERL-M520, Electronics Res. Lab., University of California
at Berkeley, May 1975.

[22] V. B. Rao, and T. N. Trick, "Network Partitioning and Ordering for MOS
VLSI circuits," IEEE Trans, bn Computer-Aided Design, Vol. CAD-6,
number I, pp. 128-L44, Jan. 1987.

[23] A. Sangiovanni-Vineentelli, L. Chen, and L. 0 . Chua, "A New Tearing
Approach — Node-Tearing Nodal Analysis," Proc. IEEE Int. Symposium
on Circuits and Systems, pp. 143-147, 1977.

[24] A- Sangiovanni-Vincentelli, L. K. Chen, and L. 0. Chua, "An efficient
heuristic cluster algorithm for tearing Iarge-Scale Networks," IEEE Tran,
on Circuits and Systems, Vol CAS-24, pp. 709-717, Dec. 1977.

[25] J. A. Starzyk, and A. Konczykowska, "Flowgraph Analysis of Large
Electronic Networks," IEEE Trans, on Circuits and Systems., Vol CAS-33,
pp. 302-315, March 1986.

[26] M. N. S. Swamy, and K. Thulasiraman, Graphs, Networks and Algorithms.
John Weily & Sons, 1981.

[27] J. White, and A. L. Sangiovanni-Vincentelli, "Partitioning Algorithnas and
Parallel Implementation of Waveform Relaxation Algorithms For Circuit
Simulation," Department of EECS, University of California at Berkeley,
1986.

[28] F. F. Wu, "Solution of Large-Scale Networks by Tearing," IEEE Trans, on
Circuits and Systems, Vol. CAS-23, No. 12, pp. 706-713, December 1987.

[29] J. Rutkowski, "Heuristic Network Partitioning Algorithnn Using the
Concept of Loop Index," IEE Proceedings, Vol. 131, Pt. G, No. 5, pp. 203-
208, October 1984.

138

[30] E. W. Swokowski, CalculusW ith Analytic Geometry. Boston, MA: Prindie,
Weber Sc Schmidt, 1978.

[31] B, Noble, and J. W. Daniel, Applied Linear Algebra. Englewood Cliffs, Nd:
Prentice-Hall Inc., 1977.

[32] S. K. McGrogan, "Parallel Circuit Simulation Using SPICE on an ELXSI
6400," ELXSI System 6400 Documentation, August 1985.

[3 3] J. E. Barbay, and G. W. Zobrist, "Distinguishing Characteristics of
Optimum tree,” 5th Allerton Conference on Circuits and Systems Theory,
pp. 730-737, 1967.

[34] J. E. Barbay, and G. W. Zobrist, "Optimum Tree Generation by Tree
Transformation," Ilth Midwest Symposium on Circuits Theory, pp. 463-
471, 1968. -v

[35] W. H. Hayt, Jr., and J. E. Kemmerly, Engineering Circuit Analysis.
McGraw-HillBook Co., 1978.

[36] W. T. Weeks, A. J. Jiminez, G. W. Mahoney, D. Mehta, H. Qassemzadeh,
and T. R. Scott, "Algorithms for ASTAP-A network analysis program,"
IEEE Trans, on Circuit Theory, Yol. CT-20, pp. 628-634, Nov. 1973.

[37] "M. Hassoun and P . M. Lin, "Performance Analysis of a Relaxation Method
for Simmulation of Large-Scale Circuits," Proc. IEEE Int. Symposium on
Circuits and Systems, 1985.

[38] J. E. Kleckner, "Advanced Mixed Mode Simulation Techniques," Memo
ERL M84/48, Electronics Res. Lab., University of California at Berkeley,
June 1984.

[39] H. DeMan, et, ah, "DIANA: Mixed Mode Simulator with a hardware
description language for hierarchical design of VLSI," Proc. IEEE ICCC,
pp. 356-360, 1980.

139

[40] B. VV. Kernighan, and D. M. Ritchie, The C programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

[41] J. K. Fidler, and J. I. sewell, "Symbolic Analysis for Computer-Aided
Circuit; Design-The Interpolative Approach," IEEE Trans, on Circuit
Theory, Vol. CT-20, November 1973.

[42] K. S. Yeung, "Symbolic Network Function Generation Via Discrete Fourier
.= Transform," IEEE Trans, on Circuits and Systems, Vol, CAS-31, February

1984.

[43] C. Pottle, CORNAP User Manual, School of Electrical Engineering,
Cornell University, Ithaca, NYi 1968.

[44] L. P. McNamee and H. Potash, "A User’s and Programmer’s Manua,! for
NASAP," University of California at Los Angeles, Rep. 63-38, Aug. 1968,

[45] D. A. Calahan, "Linear Network Analysis and Realization Digital
Computer Programs, and Instruction Manual’" University of III. Bull., Vol.
62, Feb. 1965.

[46] J. 0 . McClanahan, and S. P. Chan, "Computer Analysis of General Linear
Networks Using Digraphs," International Journal of Electronics, No. 22,
pp. 153-191, 1972.

[47] S. J. Mason, " Feedback Theory - Some Properties of Signal Flow Graphs,"
Proceedings of the IRE, Vol. 41, pp. 1144-1156, Sept. 1953.

[48] S. J. Mason, Feedback Theory - Further Properties of Signal Flow
Graphs," Proceedings of the IRE, Vol. 44, pp. 920-926, July 1956.

[49] K. Singhal and J. Vlach, "Generation of immittance functions in symbolic
form for lumped distributed active networks," IEEE T ran, on Circuits and
Systems, Vol CAS-21, pp. 57-67, Jan. 1974.

[50] K. Singhal and J. Vlach, "Symbolic Analysis of Analog and Digital
Circuits," IEEE Tran, on Circuits and Systems, Vol CAS-24, pp. 598-609,

: Nov. 1977.

[51] P . Sannuti, and N. N. Puri, "Symbolic Network Analysis - An Algebraic
Formulation," IEEE Tran, on Circuits and Systems, Vol CAS-27, pp. 679-
687, Aug. 1980.

[52] T. E. Idleman, F. S. Jenkins, W. J. McCalla, and I). 0 . Pederson, "SLICr-
-A Simulator for Linear Intergrated Circuits," IEEE Journal of Solid-State
Circuits, Vol. SC-6, August 1971, pp. 188-204.

[53] F.TI. Branin, G. R. Hogsett,; R. L. Lunde, and L. E. Kugel, 'ECAP I I - A
New Electronic Circuit Analysis Program," IEEE Journal of Solid-State
Circuits, Vol. SC-6, August 1971, pp. 146-165.

[54] M. M. Massoun," A Study of a Semi-Direct Method for Computer Analysis
of Large-Scale Circuits," Master’s Thesis, Purdue University, December

- ■- 1984.

140

A PPE N D E C E S

141

A ppendix As SC A PP D a ta S tru c tu re s

A.1 Subcircu its

Each vertex of the binary tree modeling the process is a description of the
subcircuit that has been partitioned at that vertex or is still there (the case of
a leaf). There are only one set of branches that are never duplicated, rather
they are split when a partitioning occurs. The root of the tree is pointed to by
the variable ckt—vertex.

Table A. I: struct subckt (the binary tree vertex)

Type element Discription

int num Subcircuit number
int nsize Number of nodes
int bsize Number of branches

struct nlist *nodes Singly linked list of node structures (only

used in root subcircuit in ascending order
struct nodeptr *sub_nodes Singly linked list of pointers to

the node structures in the list above
int num_tn Number of tearing nodes (external variables)

struct nodeptr *tearing_nodes Singly linked list of pointers to the
node structures pointed to by *nodes above

struct row * branches Linked list of all the circuit’s branches

(O nlyusedforreadinginm aincircuit)
int rowJknt Number of links for this subcircuit

struct row *rows T helinked listo flinksofth issubcircu it
int col_knt The number of tree branches for this subcircuit

struct row *cols The tree branches of this subcircuit

142

Table A. I (continued)

Type element Discription

int i perm The partitioning point in the partitioning table

struct mna_-ptr *mna Pointer to MNA matrix rows
(T herow sthenpo in tto them atrixen tries)

struct subckt ♦left Pointer to left child (subcircuit)

struct subckt ♦right Pointer to right child

143

A. 2 B ranches

Each branch of the circuit is represented by the struct brunch structure.
The reason the word row is used here is because these branches also point to
the row contents of the B matrix.

Table A.2: struct row (the branch structure)

Type element Discription

int flag Set if this is a tree branch
char type Type of element r,c,l,e,h,g,f,o
int num Branchinternalnum ber

char ^branch Branch name
struct nlist *nodel Pointer to structure of first node
struct nlist *node2 Pointer to structure of second node

union extral
struct nlist *cnodel For e,h,g, or f, pointer to first control node
struct nlist *node3 For o, pointer to opamp third node

union extra2
struct nlist *cnode2 For e,h,g, or f, pointer to second control node

struct mna_ptr *mna Not used

struct nlist *cvar Pointer to current variable structure
struct row *cbranch Pointertocontrolbranch

int f Number of nonzero entries in this B row or column
struct ptr-llist =Toc P o in terto thenonzeroen trieso fB
struct exp_llist *sym_value Pointer to linked list of the symbolic

expression of the value of the element

double value Numeric value of element, O if purely symbolic
struct row *next N extelem entoflinkedlist

A.3 P o in te rs to B ranches
This is the structure of the elements of the linked list pointing

branches of circuit. It is used in building the B matrix.

Table A.3: struct ptr-llist (pointers to branches)

Type element Discription

struct row *ptr Pointer to branch structure

struct ptr_Hist *neXt Next element of linked list

Each node of the circuit is represented by this node structure. All these
nodes are linked only in the root subcircuit. The rest of the subcircuits have
pointers to their nodes in the list.

A .4 N od es

Table A.4: struct nlist (the node structure)

Type element Discription

int num Node internal number
int real_num Node real number

struct ptr_llist *branches
> ' '

Linked list of pointers to the branches
incident on this node

struct ptr_llist *last_branch Pointer to the end of the above list
struct nlist *op_nodel Flags that this is a - terminal of an op amp

and points to + terminal
struct nlist *op_node2 Flags that this is an output terminal of an

opamp and points to - terminal
struct nlist *op_node3 Flags that this is a + terminal of an opamp

and points to - terminal
struct nlist *op_out Pointer to the output terminal of an opamp

if this is a - terminal
struct nlist *next Next element of linked list

A.5 P o in te rs o t Nodes
Tliis structure is used in the subcircuits to point to their nodes in the

main linked list of nodes linked in the main subcircuit data structure
(ckt—vetrex—+nodes).

Table A.5: struct nodeptr (Pointers to nodes)

Type element Discription

struct nlist *ptr Pointer to node structure

struct nodeptr *next Next element of linked list

1 4 7

A.6 E xpression L ist

This structure is linked in each branch and points to the symbols
involved in the expression for the branch.

Table A.6: struct exp—llist (expression pointer)

Type element Discription

struct symbol_tbl ^symbol Pointer to symbol in symbol table
struct exp_llist *next Next element of linked list

148

A.7 Sym bol T ab le S tru c tu re
The linked list of these structures starting at sym-table contain all the

symbols of the circuit without duplication. The are referenced by the branches
by pointers to these structures.

Table A.7: struct symbol-tbl (symbol table element)

Type element Discription

char *var The symbol

struct symbol_tbl *next Next element of linked list

149

A.8 M N A M atrix Row P o in te r

This is the structure of the elements of the linked list representing the
rows of the MNA or the RMNA matrices.

Table A.8: struct mna—ptr (MNA row)

Type element Discription

struct nlist *ptr Pointer to the node this row corresponds to
struct mna-element *row Linked list of row nonzero elements

struct mna_ptr *next Next element of linked list

150

A.9 M N A M atrix e n try
This structure represents a nonzero entry in the MNA or RMNA entry.

It is linked the row structures of the MNA (section A.8).

Table A.9: struct mna—element (MNA entry)

Type element Discription

struct nlist *ptr Pointer to the node this entry corresponds to,

it represents the column this element is in

struct temp_exp ^expression Linked list of pointers to branches
’■ • that contribute an entry to this element

struct mna—element *next Next element in linked list

151

A.10 E xpression P o in te r to B ranch
This structure is used to build the linked list of pointers to branches that

contribute to the an entry in the MNA or RMNA matrix. This is only true for
the first time the expression is manipulated. After that an internal symbol is
generated to represent the expression.

Table A.10: struct temp—exp (pointer to branch)

Type element Discription

struct row *ptr P o in terto theb ranch
char ^symbol Symbol associated with this entry

struct temp—exp *next Next element of linked list

■ 152 ■

Appendix B: SCAPP Users’ M anual

B .l Program Usage

NAME : . "
SCAPP (Symbolic Circuit Analysis P rogram with P artitioning)

SYNOPSIS
scapp file I [file 2]

DESCRIPTION
SCAPP is a general symbolic circuit analysis program for lumped linear
circuits. It takes the input deck describing the circuit from file I and
produces the output in file2, if specified; otherwise the output goes to
standard out. The input file is a description of the circuit elements and
their interconnections. The following pages of the manual illustrate the
input Syntax. The output is a transfer function in the form of a
collection of equations (sequence of expressions) in the form of a C
function. The argument of the function is the symbolic elements of the
circuit. The program also has a circuit partitioner. The users may choose
to partition the circuit manually using the .subckt statement, request the
program to perform automatic partitioning, or perform the analysis with
no partitioning at all.

BUGS
This is an initial test version of SCAPP. The .subckt statment requires a

blank line before it. Further testing of the program is still needed.

. A U T B b R ; , ; . . . :
MarwanHassoun

153

B. 2 H ardw are Im p lem en ta tio n

The program was developed on a VAX 11/780 VM/Unix (4.3BSD)
system.

B.3 T ype o f A nalysis

SCAlPP finds the symbolic transfer functions for one or more output
variables with respect to one or more input variables. The variables currently
are internal nodes and external currents. Internal branch currents will be
accessible in the near future. The transfer function is in the form of a C
function with the arguments of the function being the symbolic variables of
the circuit and the complex frequency variable s. The output could be slightly
modified to make it into a FORTRAN subroutine which is more convenient
for complex number evaluation purposes.

B.4 C om m ent S ta te m e n t
* This is a comment line

A comment line is any line that starts with an asterisk. The contents of
the line is completely ignored by SCAPP. An input file may contain as
many comment lines as desired.

B.5 .op tion S ta te m en t
.option [optI value] [opt2 value]........

The user can control the partitioning process using the .option command.
The options available are:

1) bmin: The limit on the number of branches in each final partition.
2) maintree: Number of tree optimization iterations to perform on

the initial tree, default I.
3) subtree: Number of tree optimization iterations to perform on the

trees of the subcircuits, default I.
4) auto: I if automatic partitioning is requested, 0 if manual or no

partitioning is desired, default I.
5) parts: Number of parts the circuit is to be partitioned into, default

2, unless bmin is specified in which case that will decide the
number of partitions.

6) noprint: 0 if the partitioning information and the analysis matrices
are requested to standard out, I if no partitioning and matrix

information are desired, default 0.
7) delop: 0 if the partitioning is to treat the opamp as a

pseudo —branch in the partitioning, and I if it is to be simply
deleted, default I.

.output [Vk] [VI] [Vm]
The final output expressions are to solve for the relationship between
nodes k, I and m. The output in the RMNA matrix is in terms of these
output node voltages. The final transfer functions are obtained by a
simple extra user manipulation of the matrix. The released version will
allow a specification of the form Xout/Xin, where X is a node voltage or a
branch current.

B.7 R esis to r S ta te m e n t
rncme node! node2 VAR [= wor_name] or
rname: nodel nodeS VALUE === xx.xx

This line describes a resistor connected between nodes nodel and node2.
The name can be any collection of characters, up to 8 of them. Care
must be taken though in using special characters that C or FORTRAN
do not allow, otherwise a problem will arise in the later evaluation of the
output expressions. This applies to all symbolic names. VAR specifies
that this is a symbolic element. The user has an option to give this
symbolic resistor a different name other than r name, otherwise rname
will be used as the symbol for this resistor. Specifying VALUE and a
numeric value following indicates that this is a numeric resistor with that
certain value. The frequency domain admittance expression for the

B.8 C a p ac ito r S ta te m e n t
cname node! node2 V AR [= var-name] or
cna,me nodel node2 VALUE = xx.xx

This line describes a capacitor connected between nodes nodel and node2.
The user has an option to give this symbolic capacitor a different name

resistor will be I Ior
r name var-name

1 5 5

capacitor. Specifying VALUE and a numeric value following indicates
that this is a numeric capacitor with that certain value. The frequency
domain admittance expression for the capacitor will be s*cname or
s*var—tiame.

B.9 Inductor Statem ent
lncme nodel node2 VAlR [= var^.name] or
lname nodel node2 VALUE = xx.xx

This line describes an inductor connected between nodes nodel and
node2. The user has an option to give this symbolic inductor a different
name other than lncme, otherwise lncme will be used as the symbol for
this capacitor. Specifying VALUE and a numeric value following indicates
that this is a numeric inductor with that certain value. The frequency

domain admittance expression for the inductor will be -̂---- or
s^lncme

; . . j y . - i

s *var-name

B.10 VCVS Statem ent
encme nodel node2 cnodel cnode2 VAR [= var—name] or
enome nodel node2 cnodel cnode2 VALUE = xx.xx

This line describes a voltage controlled voltage source connected between
nodes nodel and node2 and controlled by the voltage between cnodel and
cnode2. The user has an option to give the symbolic voltage gain of the
VCVS a different name other than encmc, otherwise ename will be used
as the symbol for this VCVS. Specifying VALUE and a numeric value
following indicates that this is a numeric gain with that certain value.

B .l I CCVS Statem ent
hname nodel node2 cbranch VAR [= var—name] or
hnomc nodel node2 cbranch VALUE = xx.xx

This line describes a current controlled voltage source connected between
nodes nodel and node2 and controlled by the branch current of cbranch,
where cbranch is a branch name. The user has an option to give the
symbolic transresistance of the CCVS a different name other than
Innamei otherwise h name will be used as the symbol for this CCVS.
Specifying VALUE and a numeric value following indicates that this is a

1 5 6

numeric transresistance with that certain value. The direction of the
controlling current is always assumed from nodel of the controlling
branch to node2.

B.12 V CCS S ta te m en t
gname nodel node2 cnodel cnode2 VAR [= var—namt] or
gname nodel node2 cnodel cnode2 VALUE = xx.xx

This line describes a voltage controlled current source connected between
nodes nodel and node2 and controlled by the voltage between cnodel and
cnode2. The user has an Option to give the symbolic transconductance of
the VCCS a different name other than gnome, otherwise gnome will be
used as the symbol for this VCCS. Specifying VALUE and a numeric
value following indicates that this is a numeric transconductance with
that certain value.

B.13 CCCS S ta te m en t
fnome nodel node2 cbranch VAR [— var—name] or
fnome nodel node2 cbranch VALUE == xx.xx

This line describes a current controlled current source connected between
nodes nodel and node2 and controlled by the branch current of cbranch,
where cbranch is a branch name. The user has an option to give the
symbolic current gain of the CCCS a different name other than fnome,
otherwise fnome will be used as the symbol for this CCCS. Specifying
VALUE and a numeric value following indicates that this is a numeric
current gain with that certain value. The direction of the controlling
current is always assumed from nodel of the controlling branch to node2;

B*14 Ideal O pam p S ta te m en t
oname nodel nbde2 node3

This line describes an ideal opamp with nodel being the negative
terminal, node2 being the output terminal and node3 being the positive
terminal. The ideal Opamp has no options associated with it, it has
infinite gain and a zero current entering its input terminal. Also v+ = v-.

1 5 7

B.15 User Defined Subcircuit
.subckt nodel node2........
.ends

All the lines between .subckt and .ends statements are considered as a
user defined subcircuit and are not considered in the partitioning process.
The tearing nodes of this subcircuit are nodel, node2, node3, etc.

B.16 Illustrations
Consider the circuit in figure (9.6). The SCAPP input syntax is listed in

figure (9.8). The partitioning results are shown in figure (9.6). A sample of the
output of SCAPP is shown in table (9.2).

VITA

Marwan M. Nadim Hassoun was born in Kuwait on November 1st 1962. He

received his BSEE degree with high honors from South Dakota State

University in Brookings in 1983. In 1984 he received his MSEE from Purdue

University while working as a graduate research assistant on an International

Business Machines supported project. He spent the year of 1985 as a software

development engineer for Hewlett-Packard Company in Cupertino, California.

In 1986, he returned to Purdue to continue his studies toward the Ph.D.

degree as a graduate research assistant on a project supported by the National

Science Foundation. He also was a graduate teaching assistant at Purdue in

1.988.

Mr. Hassoun is a member of Phi Kappa Phi, Tau Beta Pi and E ta Kappa

	Purdue University
	Purdue e-Pubs
	8-1-1988

	Symbolic Analysis of Large-Scale Networks
	M. M. Hassoun
	P. M. Lin

	tmp.1542052450.pdf.CmwEV

