
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

6-1-1988

Extending Static Synchronization Beyond SIMD
and VLIW
Henry G. Dietz
Purdue University

Thomas Schwederski
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Dietz, Henry G. and Schwederski, Thomas, "Extending Static Synchronization Beyond SIMD and VLIW" (1988). Department of
Electrical and Computer Engineering Technical Reports. Paper 608.
https://docs.lib.purdue.edu/ecetr/608

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages

E xtending S tatic
Synchronization
B eyond SIMD and VLIW

Henry G. Dietz
Thomas Schwederski

TR-EE 88-25
June 1988

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

E x te n d in g S ta tic S y n ch ro n iza tio n B ey o n d SIM D an d V L IW

Henry G. Dietz and Thomas Schwederski

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907
June 1988

A b stra c t

A key advantage of SIMD (Single Instruction stream, Multiple Data stream) archi
tectures is that synchronization is effected statically at compile-time, hence the
execution-time cost of synchronization between “processes” is essentially zero. VLIW
(Very Long Instruction Word) machines are successful in large part because they preserve
this property while providing more flexibility in terms of what kinds of operations can be
parallelized. In this paper, we propose a new kind of architecture —- the “static barrier
MIMD” or SBM — which can be viewed as a further generalization of the parallel execu
tion abilities of static synchronization machines.

Barrier MIMDs are asynchronous Multiple Instruction stream Multiple Data stream
architectures capable of parallel execution of loops, subprogram calls, and variable-
execution-time instructions; however, little or no run-time synchronization is needed.
When a group of processors within a barrier MIMD has just encountered a barrier, any
conceptual synchronizations between the processors are statically accomplished with zero
cost — as in a SIMD or VLIW and using similar compiler technology. Unlike these
machines, however, as execution continues the relative timing of processors may become
less precisely knowable as a static, compile-time, quantity. Where this imprecision
becomes too large, the compiler simply inserts a synchronization barrier to insure that
timing imprecision at that point is zero, and again employs purely static, implicit, syn
chronization. Both the architecture and the supporting compiler technology are discused
in detail.

K eyw ords; SIMD, VLIW, LSM, SBM, DBM, MIMD, barrier-synchronization, code-
scheduling, compiler-optimization.

I. Introduction

PASM is the PArtitionable Simd/Mimd system designed by H. J. Siegel et. al.

[SiS81] and the PASM prototype which was constructed at Purdue University is a 16

processing-element implementation [ScN87]. The work presented in this paper is largely

the result of considering implementation of a VLIW execution model, and associated com

piler technology, for the PASM prototype.

I t quickly became clear tha t PASM could not easily support VLIW execution, how

ever, it is capable of executing a model which is not SIMD, M3MD, nor alternately or in

partitions SIMD and MIMD, but rather something between the two. Processors would

run and communicate in MIMD mode, however, the logic tha t normally enables/disables

processors in SIMD mode would be used to create a barrier synchronization mechanism.

An arbitrary subset of the processors could be specified, using the enable/disable logic, to

participate in each barrier synchronization. The key realization was that code for this

model could be generated using VLIW-Iike compiler technology.

Some simple benchmarks have been run using the PASM prototype in this mode

[FiC87] [FiG88], allbeit without taking full advantage of VLIW-Iike code scheduling tech

niques. Preliminary results have been Very promising.

In the meantime, work continued within CARP — the Compiler-oriented Architec

ture Research group at Purdue — to define both the new compiler technology and the

characteristics of the architectures between SMD and M M D which constrain the

compiler’s model in generating efficient parallel code.

In this paper, we present an overview of the new taxonomy, the architectural con

cepts, and the compiler technology. Section 2 defines the classification scheme and uses it

to evaluate which unusual architecture(s) a,re worthy of further investigation. The most

useful of these architectures, barrier MMDs (the SBM and DBM models), are described in

detail in Section 3. Section 4 discusses the compilation technology needed in support of

barrier machines, and presents algorithms for implementing the key compiler analysis

and optimization routines. Finally, Section 5 summarizes the contributions of this paper

and suggests directions for further research.

Purdue University TR-EE 88-25

Page 2

2. M otivation and Classification

Flynn’s traditional classification of architectures separates machines along the

dimensions of how many instruction streams and how many data streams can be

executed/operated on simultaneously. The classification has become so widely accepted

tha t it is commonly held tha t describing a machine in these terms defines the architecture

sufficiently well that one may evaluate its properties. However, recent developments,

such as VLIW (Very Long Instruction Word) computers [E1185], are not adequately

described by classification as SIMD or MIMD.

Motivated by the inadequacy of the SIMD and MIMD labels in describing the pro

perties of VLIW, we propose a classification based .on the contiguous spectrum of proper

ties between SIMD and MIMD. This spectrum is based on the concept of SIMD differing

from MIMD in that SIMD places more constraints on the parallelism structures which the

hardware is able to execute, yet it is superior to traditional MIMD models in that there is

no runtime synchronization cost. This classification is summarized in Table I.

Across the top of Table I are listed the names of the various machine types between

conventional SIMD and MIMD machine models. Down the left side of Table I are listed

the the various characteristics which we used to define the differences between these

machine types. Before describing the primary concern of this paper — the static barrier

MIMD (or SBM) architecture — it is useful to describe these features since they lead to

the realization that a static barrier MIMD would be an especially useful design.

2.1. A rchitectural Features

The “simultaneous operations” row indicates how many different operations can be

performed simultaneously on a machine with N processors. This is primarily a constraint

on parallel execution; the larger the number, the more different kinds of parallelism the

machine will be able to employ.

The number of “ control flow threads” is the number of independent program

counters in a machine of width N. Again, the larger this number, the more different

kinds of parallelism the machine will be able to employ. For example, if this number is

greater than one it is possible for the machine to execute a loop in parallel with straight-

Purdue University TR-EE 88-25

Page 3

Purdue University TR-EE 88-25

• , ; • V ; .
SIMD VLIW

Lock-

Step

MIMD

(LSM)

Static

Barrier

MIMD

(SBM)

Dynamic

Barrier

MIMD

(DBM)

MlMD

Simultaneous . ■

Operations I I < k < N N N :>''y N N ■ ■"

Control Flow ■' ■

Threads I . I - N N N N

Relative Time •

■
.. ::

Sync. Error 0 0 0 < k . < k > log AT

Sync. Control . ; \

FloW Threads 0 0 0 ' I N /2 N . -

Directed Sync. . . : \': , ■ "

Primitives? -- - ... — . • — no no yes . .

Table I : Hardware Parallelism Constraints for SIMD —► MIMD

line code.
. ■■ : , . . . ' . ' •

“Relative time synchronization error” specifies the time error with which the com

piler can know which instruction is executing on one processor when a particular instruc

tion is executing on another processor. In SIMD and VLIW execution, the fact that this

this error is very smalL (essentiallyzero) enables static scheduling of instructions to be

used to perform conceptual synchronizations without runtime overhead; this property

makes fine-grain parallelism usable. A barrier MIMD (of either kind) also has this pro

perty, and hence it can also be instruction scheduled with good efficiency. The reasoning

is tha t when a barrier is encountered, relative timing error between processors participat

ing in the barrier is reset to zero, hence, even if processors execute code which has dynam

ically varying execution time for some processor relative to the other processors, the com

piler can always insert a barrier to reduce this time error to zero. It is a very new way in

Page 4

Purdue University TR-EE 88-25

which to view barriers: a barrier is not an implementation of synchronization, but merely

a method for forcing relative execution time ambiguities to zero when they otherwise

might dynamically exceed an arbitrary constant, k. This implies that barriers are needed

only to resolve timing ambiguities, and not to implement synchronization; typically, only

a small fraction of all conceptual synchronizations will actually require that a barrier be

generated. A more traditional MEMD requires larger-grain processes because the relative

timing error between processes cannot be made zero: instruction scheduling alone cannot

be used to implement all conceptual synchronizations.

The number of usynchronization control flow threads” is how many different syn

chronization operations are candidates for the next synchronization operation to occur. If

this number is not zero (no synchronization), then larger values imply less waste in per

forming multiple synchronizations. If, for example, a four processor machine requires

processors 0 and I to synchronize and processors 2 and 3 to also synchronize, one needs to

know which of these pairs synchronizes first. If this cannot be predicted at compile time,

a machine which permits multiple synchronization control flow threads will insure that

the synchronizations occur in the correct order. A machine which permits only one such

thread will sometimes suffer a delay due to, for example, processors 0 and I waiting for 2

and 3 because the compiler incorrectly guessed that the synchronization of 2 and 3 would

occur first. In fact, one could avoid this waste by merging both synchronizations into a

single barrier across processors 0, I, 2, and 3 if the machine is a static barrier MIMD.

This yields the same delay, but leaves the compiler with fewer relative time errors (e.g.,

relative timings between 0 and 2 would be known).

Finally, there is the issue of whether synchronization primitives are directed or not.

A directed synchronization is an operation whereby one processor is forced to wait for

some action of another, but the processor performing the action need not wait upon per

forming the action. In other words, if A is to wait for B and B arrives before A does, B is

allowed to continue immediately. Undirected synchronization causes all involved

processes to wait, hence it is somewhat less efficient as a synchronization mechanism.

Page 5

2.2. A rchitectures

Having outlined what the features are which distinguish the various architectures

between SEMD and MIMD, this section attempts to discuss the practical utility of each

conceptual architecture.

The first, and probably oldest, of these architectures is the SIMD model. However,

it takes little insight to see that, according to the features given above, SIMD is less gen

eral than it could be and still provide all the same benefits; SIMD is distinguished from

VLIW only by being a less general kind of parallelism. Even the hardware implementa

tion is nearly identical. Given this, it is not surprising that SIMD is rapidly being

replaced by VLIW in commercial product offerings; in fact, MSIMD (Multiple SIMD)

machines such as the Connection Machine [Thi87] — which are essentially VLIWs by

another name — have also found wide acceptance. Perhaps the only reason “straight”

SEMD architectures have survived this long is that the more constrained parallelism

model yields a simpler programming and debugging methodology, although it does so at

the cost of loosing much parallelism in typical applications.

As discussed in the above paragraph, VLIW architectures have many benefits and

are very effective machines. The largest problem is that the programming model is too

complex to be directly expressed in high-level language, hence more sophisticated com

piler technology is needed. About 1982, Fisher and others a t Yale University proposed a

compiler technology called “ trace scheduling” to manage VLIW coding. This technique is

a very clever extension of basic block (DAG) flow analysis which allows parallelization of

code across control flow constructs such as i f or c a s e statements (but not across

loops or subprogram invocations). The simplicity of the compiler analysis and the gen

erality of the hardware are an very good match. VLIWs will probably continue to gain

support.

Lock-step MEMDs, or LSMs, are essentially VLIWs where each processor has its own

program counter, hence it would be possible to execute a loop in parallel with straight-

line code — something a VLIW can’t do. The hardware is also quite similar in complex

ity to tha t of a VLEW. The problem is that parallel operations must be known at compile

time to take exactly the same amount of time to execute. This means that each loop must

Purdue University TR-EE 88-25

Page 6

iterate a known number of times — but if this is true, the compiler could simply unroll

the loop and achieve the same parallel execution using a VLIW . . . only the code size

would distinguish the two architectures. Further, the compiler technology to parallelize

for a lock-step MIMD would be relatively very complex compared to tha t for a VLIW. In

summary, lock-step MIMD isn’t a bad architecture, but it is very unlikely that it would

achieve any better parallelism than a VLIW, and it would be harder to use (the compiler

would be harder to write and would compile slower).

A static barrier MIMD, or SBM, loosens the parallelism constraints of a lock-step

MIMD just a little — a static barrier MEMD can simultaneously perform runtime-

variable-execution-time operations. In other words, implicit synchronization can be made

“fuzzy” and then sharpened at arbitrary points in a program’s execution. This means

that, for example, w h i l e loops, subprogram invocations, conditionals, and straight-

line code can all be executed simultaneously; one can even perform dynamic load balanc

ing. In effect, a barrier MIMD can parallel execute all of the parallelism structures typi

cally generated by automatic parallelizing compilers (although it cannot efficiently exe

cute some explicitly-parallel programs because they rely on point-to-point synchronization

operations for which no static order can be determined). Further, both the hardware and

the compiler algorithms are relatively simple because one can always fall back on generat

ing a barrier for each synchronization operation. Of all the architectures discussed here,

static barrier MIMDs should yield the cheapest, most efficient, machine capable of using

nearly all the parallelism in an application — this is why static barrier MIMD is the pri

mary topic of the current work.

Dynamic barrier MIMDs, or DBMs, differ from static barrier MEMDs in that they

can require slightly less time to execute a set of barriers where the relative times at which

the barriers are encountered are not known at compile time. However, the hardware

appears to be significantly more complex and seems to require an associative matching of

processors awaiting a barrier to the barrier to occur next. In addition, the compiler tech

nology for a static barrier MIMD offers a solution for those machines which is nearly as

good if a group of barriers are so close that the sequence of them cannot be statically

determined, one would simply merge the barriers into a single barrier on the static bar

rier machine. This does result in a slightly longer average delay in barrier execution, but

Purdue University TR-EE 88-25

Purdue University TR-EE 88-25

it also provides much tighter bounds on interprpcessor timing, hence it may eliminate the

need for some future synchronization barriers. In summary, it is difficult to be certain

tha t dynamic barrier MIMDs would perform noticeably better than static barrier MIMDs,

hence the additional hardware complexity probably isn’t worthwhile.

Finally, the traditional directed-synchronization MIMD has the obvious advantage

of being able to parallel execute completely arbitrary parallel code structures. However,

synchronization cost is much higher, and this implies larger process granularity is needed.

Synchronization cost makes some parallelism structures unbeneficial, even though all can

be parallel executed. For this reason, hybrids or reconfigurables which provide both

MIMD and one of the finer-grain parallel architecture models, especially VLIW, make par

ticularly good sense. Further, directed synchronization permits the creation of races and

deadlocks — parallel debugging horrors which do not occur using any of the other parallel

machine types listed above. Hence, directed-synchronization MIMDs have a firm reason

for being, bu t are not always the most desirable parallel architecture.

3. BarrierH ardware

As discussed above, there is good reason to believe th a t the special properties of a

static barrier M3MD will result in very good performance on a wide range of codes —

especially on those generated by automatic parallelization of sequential programs. In this

section, some architectural and implementation details of barrier MEMD machines are

given. First, existing machines are considered, then an idealized static barrier MIMD

design is proposed.

3.1. Barrier M echanism s in Existing Machines

Despite the common use of barrier synchronization in parallel application codes,

there are very few references to barrier synchronization as a fundamental, hardware-

supported, synchronization mechanism. There are at least a couple of reasons for this:

[1] Barriers are not as general as directed synchronization primitives (it is easy to simu
late barrier synchronization using multiple directed synchronizations such as count
ing semaphores, but the reverse simulation is impossible) and

Page 8

Purdue University TR-EE 88-25

[2] Barrier synchronization has generally been viewed as a software issue — a program
ming style concern.

Actually, reason [1] isn’t valid unless one ignores the fact that a barrier conceptually syn

chronizes processors at the clock-cycle level whereas most implementations of barriers

using directed synchronization only approximately synchronize the processors. This

approximation is mainly due to variations in network traversal times of synchronization

requests and/or the fact that a tree-structured collection of synchronization operations is

used. In other words, the directed-synchronization-based simulation of a barrier does not

provide the key feature of barrier synchronization as discussed in this paper: simulated

barriers do not yield the primary benefit of permitting fine-grain parallelism without

requiring runtime synchronization for each conceptual synchronization operation.

Of course, reason [2] is simply a matter of convention.

The only machine the authors have found to deliberately implement barrier syn

chronization as the only hardware-supported synchronization mechanism is the ‘‘Control-

able MIMD’’ machine described by Lundstrom and Barnes in 1980 [LuB80]. Apparently,

Burroughs Corporation never built this machine, however, it was described in detail to

NASA as a proposal for “the Flow Model Processor (FMP) in the Numerical Aero

dynamic Simulator.”

Rather than discussing barriers per se, the Burroughs proposal discussed hardware

support for DOALL constructs. A DOALL is a loop such that the body can be exe

cuted simultaneously for all iterations, i.e., no serializing dependencies exist within the

loop. The typical program was expected to consist of a sequence of DOALL loops where

the body of each loop was arbitrary chunk of code. Since such a chunk of code would be

likely to contain several control flow paths — each examining a particular special-case

involving boundary conditions or making special-case simplifications to the computation

— these DOALL loop “instances” could not be parallel executed using a SIMD machine.

On the bther hand, using a traditional MEMD model also would be a problem, because all

processors must complete processing one DOALL loop before any can begin to execute

code from the next DO A LL, and this machine-wide synchronization would take a

significant amount of time using conventional, directed, synchronization primitives.

Their solution was to propose hardware which implemented a P-way synchronization

Page 9

primitive (where P is the number of processors in the machine).

The P-way mechanism they presented is a machine-width barrier mechanism imple

mented by a processor instruction called w a i t . When each processor reaches the end

of its work in parallel execution of a DOALL, it executes a w a i t instruction. As each

processor executes a w a i t instruction, it is halted until all processors have executed a

w a i t instruction. This halting is effected using synchronization lines; independent from

the network which interconnects processors and memory. Except for the constraint that

all processors must participate in the synchronization instead of any arbitrary subset, this

is precisely the static barrier mechanism we propose. Of course, the use of this mechan

ism for DOALL loops does not take advantage of the fact that immediately after pro

cessorshave executed a barrier they may be scheduled as a VLIW.

Interestingly, the Burroughs proposal also references the design of PASM — the

same machine which led us to study barrier synchronization. PASM’s contribution in this

respect is tha t the architecture allows both fine-grain and large-grain parallelism to be

executed, although the fine-grain parallelism must conform to SIMD constraints. The

burroughs proposal appreciated this property, and recognized tha t a barrier synchroniza

tion model could reduce the constraints on fine-grain parallel executable code structures

while still supporting large grain parallelism.

3,2. The Proposed Barrier M echanism

As the design of PASM and the proposal of Burroughs suggest, it is very difficult to

achieve very low-cost, high time-precision, P-way synchronization in the context of using

the communications network of a large multiprocessor. Further complicating matters, to

achieve the maximum benefit the hardware should permit any arbitrary subset of the pro

cessors to synchronize; this implies that some hardware mechanism is able to specify for

each barrier what subset of the processors should participate,

As we noticed in studying the PASM prototype architecture, this problem of gen

erating the subset of processors to participate in each barrier synchronization operation is

actually identical in nature to tha t of determining an enable pattern for SIMD processors.

Hence, as a SEMD has a control processor which is responsible for generating enable

Purdue University TR-EE 88-25

Page 10

Purdue University TR-EE 88-25

masks, an SBM or DBM machine incorporates a barrier processor whose sole responsibil

ity to to generate the sequence of processor subsets for barrier synchronization.

As an example, a typical MIMD system design is given in Figure I.

Interconnection Network

F igu re I : Conventional MIMD (with Local memory)

This design should be compared with the SBM/DBM design given in Figure 2.

Memory MemoryMemory

Issues of, for example, shared vs. non-shared memory address space are irrelevant to

the design because the general communication network is not used for barrier synchroni

zation.

In Figure I — a typical MIMD -— it is generally impossible to achieve exact syn

chronization between multiple processors since synchronization time-accuracy is affected

by possible variations in network traversal time. Other stochastic delays are introduced

either when “sm art” combining (especially fetch-and-op [GoG83], RFM [Kla80], or

RFM + [Par86]) network switches are used or when a tree of binary semaphore operations

is used to simulate a P-way tree. These properties have the effect of making timing ambi

guity in synchronization approximately a log factor worse than if a separate, single-level,

scheme is used.

Purdue University TR-EE 88-25

Barrier Synchronization Buffer

Interconnection Network

F igu re 2: Barrier MIMD (with Local memory)

Barrier
Processor

Memory MemoryMemory

In contrast, the barrier MIMD of Figure 2 employs an independent barrier processor

to generate barrier patterns. Each barrier pattern is a vector containing one bit per pro

cessor. The value of a bit determines whether the corresponding processor will partici

pate in that synchronization barrier. These patterns are generated into a barrier syn

chronization buffer where each is held until it has been executed. In the SBM execution

model, the barrier synchronization buffer acts as a simple FIFO queue; in the DBM execu

tion model, barriers are executed and removed from the barrier synchronization buffer in

the order in which barriers are encountered at runtime (implying an associative match

Page 12

Purdue University TR-EE 88-25

process). Since, in a DBM, there may be as many as P /2 possibly next barriers in a P-

processor machine, it is the associative action of the buffer which implements the P /2 vir

tual synchronization control flow threads — the SBM and DBM barrier processors are

identical.

In either SBM or DBM model, processors execute w a i t instructions (or instruc

tions tagged with a w a i t bit) and are halted until the halted processor pattern com

pletes the next barrier. A processor which is not involved in the current SBM barrier

need not execute a w a i t for that barrier — if a w a i t is issued by a processor not

involved in the current barrier, the SBM simply ignores that signal until a barrier includ

ing tha t processor becomes the current barrier. Since barrier patterns can be created

asynchronously by the barrier processor and buffered awaiting their use, the main proces

sors see no overhead in specification of barrier patterns. Hence, both SBM and DBM

machines can achieve essentially perfect synchronization of any subset of processors with

only a very small, roughly constant, overhead.

Of course, in addition to generating code for the main processors, in either SBM or

DBM the compiler must precompute the order1 and patterns of all barriers required for

the computation and must generate code which the barrier processor will execute to pro

duce these barriers. The code for the main processors also must contain the appropriate

w a i t instructions or instruction tags. Separate w a i t instructions are probably easier

to implement than tags, but tags would permit more frequent use of barriers . . . the

trade-off depends on how often conceptual synchronizations occur in the code as compared

to the time between variable-length operations or chunks of code.

4. Software (Com pilation) Strategy

An SBM machine is, in every way, a superset of a YLIW machine. Hence, it is not

surprising tha t one can compile code for an SBM using precisely the same techniques used

in VLIW compilers, especially trace scheduling. Of course, using exactly the VLIW model

would yield no better results for an SBM than for a VLIW. In this section, we outline

I. For SBMs, this is a complete order — a sequence. For DBMs, it is a partial
ordering of maximum width P/2 for a P-processor machine.

Page 13

two different approaches to compiling for SBMs, both based on VLIW scheduling. The

first is a very simple add-on to the standard VLIW trace scheduling mechanism and the

second is a more complex technique which may make better use of SBM hardware by

explicitly considering “fuzzy” timing relationships.

4.1. V LIW T race Scheduling

Trace scheduling for VLIWs is eloquently described in [E1185], and we shall not

review the technique here. Instead, this section defines the changes needed to adapt trace

scheduling (and related scheduling, such as [Die87]) to generation of code for an SBM

model.

To demonstrate the difference between pure VLIW scheduling and the minimal

extension to VLIW scheduling for SBM machines, a simple example will be used. Figure 3

shows a set of regions of code2 for this example. The regions are named A, B, C, D, E, F,

G, and H, and each region is labeled with the exact amount of time required to execute

tha t region. Parallel-execution precedence constraints are given by arrows which, as a

m atter Of convention, point from the following process to its predecessor. In other words,

if all eight code regions, A through H, were to be submitted for simultaneous execution,

each arc would represent a directed synchronization operation where the consumer points

to the producer.

It is easy to see tha t spawning eight processes and using directed synchronizations

could be quite inefficient — there would be 9 directed synchronizations and only 18 units

of useful work, also, only two of the code regions are ready to execute at any time.

Hence, it is useful to conceptually re-package these regions into two sequential processes

which may be parallel-executed: this grouping is indicated in Figure 3 by the dotted

boxes. Once this has been done, only the three inter-process synchronization arcs need be

considered because the other synchronizations are inherent in sequential order of execu

tion within each process3. If inter-process synchronization were cheap enough, this

2. A region is an arbitrary grain size chunk of code having certain properties;
see [Bie87] for a precise definition. As a simplification, one may consider
each region to be a sequence of a few instructions.

3. This is a general principle which we refer to as the principle of selective

Purdue University TR-EE 88-25

Page 14

Purdue University TR-EE 88-25

3 units

2 units

2 units

I unit
2 units

2 units

3 units

3 units

processor O processor I

F igure 3: Sample VLIW Code

structure would be the optimal encoding for a traditional, directed synchronization,

MIMD. Unfortunately, the cost of the directed synchronizations might easily make the

completely serial version faster; if the three remaining synchronizations delayed the com

putation by more than 9 units of time, a completely sequential order such as A, B, E, C,

serialisation. Serializing synchronization/communication arcs typically
reduces or zeroes their cost, hence, for a given parallelism width it is best to
package code regions into processes such that the fewest/lowest-cost arcs are
inter-process.

Page 15

Qi D| H would execute faster. In summary, a directed-synchronization MIMD prob

ably would find no useful parallelism at this grain level.

On the other hand, this is precisely the kind of code tha t VLIW execution was

designed for. The VLIW execution of this code would merely observe that all “inter

process” synchronizations are satisfied by the static timing constraints (i.e., all the arcs

point backward in time), and no synchronization cost would ever be incurred. Since SBM

is a superset of VLrW, the same would be true of SBM execution of the code. A diagram

of this is shown in Figure 4 (the inter-process arcs are drawn for reference purposes only).

Purdue University TR-EE 88-25

F ig u re 4s VLIW Code Executed using SBM

Page 16

4.2. Simplified SBM Scheduling

The SBM model of execution is, however, more general than the VLIW model, and

this difference can be demonstrated easily.

In order for a VLIW to execute the ordering given in Figure 4, the control flow after

trace analysis for all the regions A through H would have to be the same — a VLIW

machine has only one program counter. This implies, for example, that if B contains a

loop, then a VLIW could not execute the above parallel structure4. The SBM model, on

the other hand, can execute the parallel structure of Figure 4 no m atter what control flow

appears within each code region. Not only does the SBM permit loops and conditionals

within each code region, but subroutine/function calls are permitted as well. To take full

advantage of this, unlike a VLIW compiler which cannot parallelize calls, an SBM com

piler may need to be able to examine the complete program or flow analysis results

representing it.

A more insidious VLIW constraint is, however, that the compiler must know exactly

what the execution time will be for each region of code. W ithout such perfect knowledge,

operations must be completely serialized such that at any given time, only a single region

is executing. Further, the compiler’s time estimate may be imperfect for any of three rea

sons:

Purdue University TR-EE 88-25

[1] There may be variable-time operation(s); operations whose execution time is data
dependent or is dependent on other dynamic properties of the execution, such as I/O
traffic or interrupts.

[2] A time variation could be due to different control flow paths (while loops or condi
tional branches) being taken.

[3] The imprecise knowledge could be exactly that — the compiler analysis may fail to
discover the exact execution time even though it is theoretically knowable. A good
example is that the compiler may may make its execution time estimates before the
final code has been generated: unexpected code generation conditions, such as a
failure to place a variable in a register or the assembler’s recognition that a shorter

4. One could argue that unraveling the loop would be reasonable — and VLIW
CQEQpilers often take this approach — but the expansion in code size and
Iessemng of locality properties (reduction in cache perforEiance, etc.) limits
the performance.

Page 17

span-dependent instruction [Szy78] could be used in a particular case, may cause the
’"compiler’s estimate to be in error.

Current VLPiVs minimize these problems by forcing operations to always take their

worst-case execution time, but this can cause even more profound damage.

To demonstrate the effect of imprecise time knowledge on VLIW schedules, suppose

that code region B might take anywhere from I to 3 units of time to execute, and in simi

lar manner region G could take either 2 or 3 units of time. This would result in the

(clearly undesirable) VLIW parallelization of Figure 5.

The problem here is simply that VLIW hardware has no mechanism for regaining

synchronization if it is ever lost, hence, it cannot permit asynchrony of any kind, SBM

machines do not have this constraint, however. Consequently, the minimal extension of a

VLIW compiler to take advantage of SBM is simply:

[1] As long as all timing constraints are known, perform ordinary trace scheduling —
except that conditionals, loops, and calls are permitted to remain intact,

[2] Whenever a variable-time (or imprecisely known time) code region is encountered,
set a compiler-internal flag noting tha t time is not precisely known for the process
containing this region, and continue scheduling (as in [I]) based on a compiler-
generated “guesstimate” of the region’s average execution time. Upon completing a
step in the schedule, if the next step in the schedule is the “consumer” of a syn
chronization produced by another process, check the imprecise-time flags on both
the producer and consumer processes. If either process is flagged as being impre
cisely known, insert a barrier before the next region and reset the imprecise-time
flags.

Using this scheme, the compiler will generate code which may contain unnecessary bar

riers, but since barrier synchronization is very fast, this results in only a minor perfor

mance loss. For the code whose VLIW schedulers given in Figure 5, Figure 6 presents the

SBM schedule derived using the above algorithm.

Purdue University TR-EE 88-25

Page 18

To achieve the maximum possible benefit from the SBM model, it is necessary for

the compiler to consider not just tha t it has imprecise time estimates, but also precisely

how imprecise the estimates are.

Page 19

regions in two different processes. Let Tp be the time at which the producer region com

pletes execution and T1fi be the time at which the consumer region begins execution. The

synchronization constraint will be satisfied iff Tc > Tp. Hence, we can make the following

observations:

[1] Any variable-time operations in the producer’s process which occur after the pro
ducer region are irrelevant.

[2] The position within the consumer’s process at time T must be before the consumer
P

region begins.

which lead to a very simple algorithm for tracking time imprecisions and inserting bar

riers. The algorithm to determine whether adding a new step to a schedule requires inser

tion of a barrier is:

Page 20

[1] If no region scheduled in this step is a consumer of a synchronization whose producer
region is scheduled in another process, no barrier need be inserted before this
schedule step. If there is at least one consumer of a synchronization from another
process, then perform steps [2] through [6] for each of these consumer regions.

[2] Beginning with the producer code region corresponding to the current consumer
region, scan forward looking for a barrier in which both the producer and consumer
processes participate. If there is such a barrier, then the synchronization is redun
dant because an earlier region of the consumer is guaranteed to be executed after the
producer code region, and no barrier is needed. If there is no such barrier, go to step
[3].

[3] (Steps [3] and [4] simply find the the closest dominating barrier of the producer and
consumer.) Beginning with each of the producer and consumer code regions, scan
backward to find the last barrier encountered. If the same barrier was found for
both producer and consumer processes, go to step [5], else go to step [4].

[4] An irrelevant barrier has been encountered by one of the two processes since the
producer and consumer processes last synchronized, hence, the timing error for the
occurrence of that barrier must be added in. We say a processes is indirectly
involved in a barrier creation problem if it is not a participant in the proposed bar
rier, but it is a participant in a barrier which propagates timing error to a process in
the proposed barrier. To resolve this, continue scanning backward to find the first
barrier in which all processes directly or indirectly involved in the proposed barrier
were participants. Proceed with step [5],

[5] Beginning with this dominating (common ancestor) barrier, scan forward on both
the consumer and producer processes accumulating relative time and time error
bounds. If the minimum time since the dominating barrier for the consumer region
is greater than or equal to the maximum time since the dominating barrier for the
producer region, no barrier is needed. Otherwise, go to step [6].

[6] The result at this point is that a barrier needs to be placed somewhere between the
producer and consumer processes anywhere such that the barrier appears after the
producer region and before the consumer region. For best performance, one simply
remembers these constraints and if the current step required creation of several bar
riers, one first trys to find an overlap in constraints which will permit a single bar
rier to be generated instead of several. In other words, two 2-process barriers might
become one 4-process barrier, etc.

The final result of applying the above algorithm to the example is given in Figure 7.

Purdue University TR-EE 88-25

Page 21

Purdue University TR-EE 88-25

barrier

barrier

F igu re 7 s Variable-Time Code Optimally Executed using SBM

5. C onclusions

In this paper, a new classification of parallel computer architectures is presented.

Based on this taxonomy, several new and useful architectural concepts —: particularly the

s ta tic b a rr ie r MIMD (or SBM) — are proposed and explored.

Although barrier synchronization has existed as a programming concept for many

years, the SBM model recognizes and exploits synchronization barriers not as “cheap

approximations” to directed synchronization primitives, but as operations manipulating

relative timing constraints which are statically determined (by the compiler), Hence,

SBMs can be viewed as relaxing the constraints on parallel structure which were imposed

by SIMD and even VLIW models, yet preserving the primary benefits of static scheduling

and (in most cases) zero-cost synchronization. The associated compiler technology has

also been outlined.

Future research will construct and test SBM compilers using the technologies out

lined in Section 4, as well as design and simulate specific SBM and/or DBM architectures.

We also believe tha t the general concept of catagorizing architectures based on what may

be considered static (i.e., compile-time) constraints on parallel execution structure will

prove valuable in analysis of existing, as well as future, computer architectures.

A cknow ledgem ents

Thanks to the members of CARP (the Compiler-oriented Architecture Research

group at Purdue) for their useful comments on and discussion of the architectural cata-

gorization and SBM architecture presented in this paper. Thanks to H. !. Siegel and T.

L. Casavant for discussions relating to use of PASM as a SBM machine.

Purdue University TR-EE 88-25

References

[Die87]

[FiC87]

[FIC88]

[GoG83]

[Kla80]

H. G. Dietz, The Refined-Language Approach to Compiling for Parallel
Supercomputers, PhD Dissertation, Polytechnic University, June 1987.
(An updated version is also available as a Purdue University internal
report, May 1987.)

J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, 1985 ACM
Doctoral Dissertation Award, MIT Press, 1986.

S. A. Fineberg, T. L. Casavant, and T. Schwederski, “Mixed Mode Com
puting with the PASM System Prototype,” 25th Annual Allerton
Conference on Communication/Control, and Computing, Monticello,
Illinois, 1987, pp. 258-267.

S. Fineberg, T. Casavant, T. Schwederski, and H. J. Siegel, “Non-
Deterministic Instruction Time Experiments on the PASM System Pro
totype,” to appear in the Proceedings of the 1988 International Confer
ence on Parallel Processing, August 1988.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P, McAuliffe, L. Rudolph,
and M. Snir, “The NYU U ltracom puter—■ Designing an MIMD Shared
Memory Parallel Computer,” IEEE Transactions on Computers, Vol.
C-32, No. 2, February 1983, pp. 175-189.

D. Klappholz, “An Improved Design for a Stochastically Cpnflict-Free
Memory/Interconnection System,” Proceedings of the 14th Asilomar
Conference on Circuits, Systems, and Computers, November 1980.

Page 23

[LuB80]

[Par 86]

[ScN87]

[SiS81]

[Szy78]

[Thi87]

S. F. Lundstrom and G. H, Barnes, “A Controllable MIMD Architec
ture,” IEEE Proceedings of the 1980 International Conference on Paral
lel Processing, August 1980, pp. 165-173.

H-C. Park, Smart Switching Nodes in an MIMD Architecture, PhD
Dissertation, Polytechnic University, December 1986.

T. Schwederski, W. G. Nation, H. J. Siegel, and D. G. Meyer, “The
Implementation of the PASM Prototype Control Hierarchy,” Proceed
ings of the Second International Conference on Supercomputing, Volume
i, 1987, pp. 418-427.

H, J. Siegel, L. J. Siegel, F. C. Kemmerer1P. T. Mueller Jr., H. E. Smal
ley, Jr., and S. D. Smith, “PASM: a partitionable SIMD/MIMD system
for image processing and pattern recognition,” IEEE Transactions on
Computers, VoI. C-30, December 1981, pp. 934-947.

T. G. Szymanski, “Assembling Code for Machines with Span-Dependent
Instructions,” Communications of the ACM, Vol. 21, No. 4, April 1978,
pp. 300-308.

Thinking Machines, Connection Machine Model CM-S Technical Sum
mary, Thinking Machines Technical Report HA87-4, April 1987.

Purdue University TR-EE 88-25

Page 24

	Purdue University
	Purdue e-Pubs
	6-1-1988

	Extending Static Synchronization Beyond SIMD and VLIW
	Henry G. Dietz
	Thomas Schwederski

	tmp.1542052450.pdf.kRrNk

