View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
6-1-1988

Extending Static Synchronization Beyond SIMD
and VLIW

Henry G. Dietz
Purdue University

Thomas Schwederski
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Dietz, Henry G. and Schwederski, Thomas, "Extending Static Synchronization Beyond SIMD and VLIW" (1988). Department of
Electrical and Computer Engineering Technical Reports. Paper 608.
https://docs.lib.purdue.edu/ecetr/608

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/220146546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages

Extending Static
Synchronization

Beyond SIMD and VLIW

Henry G. Dietz
Thomas Schwederski

TR-BEE 88-25

June 1988

School of Electrical Engineering
Purdue University |
West Lafayette, Indiana 47907

Extending Static Synchronization Beyond SIMD and VLIW

Henry G. Dietz and Thomas Schwedersk: -

School of Electrical Engineering
Purdue University
West Lafayette, IN 47907
June 1988

Abstract _ _ _

A key advantage of SIMD (Single Instruction stream, Multiple Data stream) archi-
tectures is. that synchronization is effected statically at compilé-.time,' hence the
execution-time cost of synchronization between ‘‘processes’’ is essentially zero. VLIW
(Very Long Instruction Word) machines are successful in large part because they preserve
this property while providing more flexibility in terms of what kinds of operations can be
parallelized. In this paper, we propose a new kind of architecture — the “static barrier
MIMD” or SBM — which can be viewed as a further generalization of the parallel execu-

tion abilities of static synchronization machines.

Barrier MIMDs are asynchronous Multiple Instruction stream Multiple Data stream
architectures capable of parallel execution of loops, subprogram calls, and variable-
execution-time instructions; however, little or no run-time synchronization is needed.
When a group of processors within a barrier MIMD has just encountered a barrier, any
conceptual synchronizations between the processors are statically accomplished with zero
cost — as in a SIMD or VLIW and using similar compiler technology. Unlike these
machines, however, as execution continues the relative timing of processors may B,ecome
less precisely knowable as a static, compile-time, quantity. Where this imprecision
becomes too large, the compiler simply inserts a synchronization barrier to insure that
timing imprecision at that point is zero, and again employs purely static, implicit, syn-
chronization. Both the architecture and the supporting compiler technology are discused
in detail.

Keywofds: SIIVID, VLIW, LSM, SBM, DBM, MIMD, barrier-synchronization, code-

scheduling, compiler-optimization.

Purdue University TR-EE 88-25 _

1. Introductlon

: PASM is the PArtitionable Slmd/Mlmd system designed by H. J Siegel et. al.
[Sis81] and the PASM prototype which was constructed at Purdue University is a 16
processing-element implementation [ScN87]. The work presented i in thls paper is largely
the result.of considering implementation of a VLIW executlon model, and associated com-

piler technology, for the PASM prototype.-

: I,t quickly became clear that PASM could not easily support VLIW execution, how-
ever, it 1s capable of executing a model which is not SIMD, MIMD, nor alternately or in
partiti.ons SIMD and MIMD, but rather something between the two. Processors would

vrun and fcoltlmunicate in MIMD mode, however, the logic that normally enables/disables
processors in SIMD mode would be used to create a barrier synchronization mechaniSm;
An ar_h'itrary isubset of the processors could be specified, using the enable/ disablevlogic, to
'part1c1pate in each barrier synchronlzatlon The key reahzat1on was that code for this

model could be generated using VLIW-like compiler technology.

S Some srmple benchmarks have been run using the PASM prototype in this mode
[F1087] [FiC88], allbeit without taking full advantage of VLIW-like code scheduhng tech-

nlques Prehmmary results have been very promising.

In the meantime, work contmued within - CARP — the Compiler-oriented Architec-
ture Research group at Purdue — to define both the new compller technology and the
characteristics. of the architectures between SIMD and M[MD which constram the

compller s model in generating efficient parallel code.

In’ this paper, we present an overview of the new taxonomy, the architectural con-
cepts, and the compiler technology Sectlon 2 defines the clas31ﬁcatlon scheme and uses it
to evaluate which unusual architecture(s) are worthy of further investigation. The most
useful of these archltectures, barrier MIMDs (the SBM and DBM models), are described in
detail in Section 3. Section 4 discusses the 'compilatio‘n technology needed in support of
barrier rnachines, and presents algorithms for . implementing the key compiler ranalysis
and optlmlzatlon routines. Fmally, Section 5 summarizes the contributions of this paper

and suggests directions for further research.

. Page 2

Purdue University TR-EE 88-25

' 2 Motlvatlon a.nd Classxﬁcatlon v .
‘ Flynn s trad1tlonal classlﬁcatlon of archltectures separates machlnes‘\ along the
~dimensions of ‘how many 1nstruct1on streams and how. ‘many data streams can be
» ‘executed/ operated on s1multaneously vThe 'clas51ﬁcat1on has become so w1dely accepted -
:that it i 1s commonly held that descrlblng a machlne in these terms deﬁnes the archltecture

‘ 'sufﬁclently Well ‘that one may evaluate its propertles However, recent developments,

: "such ‘a8 VLIW (Very Long Instructlon Word) computers [E1185], are not adequately
descr1bed by class1ﬁcat1on as SIMD or MIMD ' ’ '

_ Motlvated by the 1nadequacy of the SM and MIMD labels in descr1b1ng the pro-
_pert1es of VLIW we propose a class1ﬁcatlon based on the cont1guous spectrum of proper-

'_tles between SIMD and MIMD ‘This spectrum is based on the concept of SIMD d1ﬂ'er1ngv »

from MIMD in that SIMD. places more constramts on the parallehsm structures which the s

vhardware is able to execute, yet 1t is super1or to tradltlonal MIMD models 1n that there is

' no runtlme synchron1zat1on cost This classrﬁcatlon is summanzed in Table 1

Across the top of Table 1 are hsted the names of the varlous machlne types between
"convent1onal SIMD and MIMD machlne models Down the left s1de of Table 1 are listed
‘the the various characterlstlcs which we used to define the d1ﬂ'erences between these
: machlne types Before descrlbmg ‘the: prlmary concern of th1s paper — the statlc barr1er
.‘M[MD (or SBM) archltecture — it 1s useful to descrlbe these features s1nce they lead to

; the reallzatlon that a stat1c barner Mll\/ID would be an especlally useful des1gn

. Aréhltectural Features

The “s1multaneous operatlons TOW indicates' how many diﬁ'efént operations can be

B performed mmultaneously on a machine with N processors This is pr1mar1ly a constralnt

'on parallel execut1on, the larger the number, the more d1ﬂ'erent k1nds of pa.rallehsm the

- machlne will be able to employ

The number of “control ﬁow threads is. the number of mdependent program -
counters in a machlne of width N Agam, the larger th1s number, the more different
k1nds of parallehsm the machme w111 be. able to employ For example, 1f this number is

' 'greater than one 1t is poss1ble for the machme to execute a loop 1n pa.rallel w1th stralght-

‘Page 3

Purdue University TR-EE 88-25

Lock- - Statie v Dynarn_ic
Step | Barrier | Barrier
SIMD | VLIW | MIMD | MIMD | MIMD | MIMD
- (LSM) | (SBM) | (DBM)
‘7 Sirhﬁltaneous .
Operations 1 |1<k<N| N N N N
- | Control Flow v v :
Threads 1 | 1 | N N | N N
Relebive Time ; -
Sync. Error 0 0 ' -0 <k <k > log N |
Syne. Control _ o
| ‘Flow_;threads : 0 o 0 1 N/2 N
_ 3,Dir¢¢‘?§d Sync.
Prillln.litives?_ — | — L — no . no - | yes

Table 1: Hardware Parallelism Constraints for SIMD — MIMD

llne code - | v :

“Relatlve time synchromzatlon error > specifies the time error with wh1ch the com- -
pzler can know which instruction is executing on one processor when a particular instruec-
tlon is executmg on another processor. In SIMD and VLIW. executlon, the fact that this
‘this error is very small (essentlally zero) enables static scheduling of 1nstruct1ons to be
used to perform conceptual synchronizations without runtime overhead; this property
rnakes' ﬁne—grain parallelism usable. A barrier MIMD (of either kind) also has this pro-

perty, and hence it can also be instruction scheduled with good effic1ency The reasomng

is' that When a barrler is encountered, relatlve timing error between Processors partlclpat- e

1ng in the barrler is reset to zZero, hence, even if processors execute ¢ode which has dynam—

_1cally varymg execution time for some processor relative to the other processors, the com-

pller can always insert a barrier to reduce this time error to zero. It is a very new way in. - ..

Page 4

Putdue University TR-EE 88-25

which __to view barriers; a harrieri.s v_not an 'irn‘plernentat'ion- of synchroniz“ation,",‘l)ut merely
2 'method for. forcing relative""eXecution time ambiguities to 'zero When they otherwise
v'mlght dynamlcally exceed an arb1trary constant k. This 1mphes that barrlers are needed
_only to. resolve timing ambiguities, and not to implement synchromzatlon, typlcally, only
_a small fraction of all conceptual synchronizations will actually requ1re that a barrier be
",generated A more trad1tlonal ‘MIMD requires- larger-graln processes because the relative
‘ t1m1ng error between processes cannot be made zero: mstructlon scheduhng alone cannot '
be used to lmplement all conceptual synchronlzatlons . ' v
'} The number-of synchromzatlon_control flow threads” is how_’ rn:any‘ ,di'f_fere_nt syn-* '
: chro‘ni‘zati‘on operations are candidates for the next synchronization operation to occur. If
this nurnber,is- not zero (no synchronization), then larger values imply less"waste in per-
forming’ rnultiple synchronizations» If' for »example, a four processor machine requires
processors 0 and 1to synchromze and processors 2 and 3 to also synchromze, one needs to
know wh1ch of these pairs synchronlzes ﬁrst -If this cannot be pred1cted at complle tlme, :
'a machlne wh1ch perm1ts multiple synchromzatlon control flow threads will insure that
the synchronlzatlons occur in the correct order. A mach1ne wh1ch perm1ts only one such
' thread w1ll sometimes suffer a delay due to, for example, processors 0 and 1 wa1t1ng for 2
and 3 becausethe compller mcorrectly_ guessed ‘that the synchromzatlon of 2 and 3 would
occur'ﬁrst In fact, one could avoi‘d this waste by merging both synchronizations into a
s1ngle barr1er across processors 0, 1, 2 and 3 if the machlne is a statlc barr1er M[MD
ThlS ylelds the same delay, but leaves the compller w1th fewer relatlve tlme errors (e g, -

relatlve tlmmgs between 0. and 2 would be known)

Flnally, there is the issue of whether synchromzatlon pr1m1t1ves are d1rected or not.
‘A d1rected synchromzatlon is an operation whereby one processor is forced to wa1t for
,some actlon of another, but the processor performlng the actlon need not wait upon per- :
formlng the actlon In other words, if Ais to'walt for B and B arrlves before A does, B is ‘
: allowed to cont1nue 1mmed1ately ‘Undirected synchromzatlon causes all lnvolved

3 »processes to walt hence 1t is somewhat less efﬁc1ent as a synchronlzatlon mechamsm

Page 5

Purdue University TR-EE 88-25

2. Architectures

- Having outlined what the features are which distinguish the various architectures = - -

between SIMD and MIMD, this section attempts to discuss the practlcal utility of each

conceptual archltecture

N The first, and probably oldest, of these architectures is the SIMD model. However,
it takes little insight to see that accordmg to the features given above, SIMD is less gen-
eral than it could be and still provide all the same beneﬁts, SIMD is distinguished from

o ,VLIW only by being a less general kind of parallelism. Even the hardware implementa-

tion is mnearly 1dent1cal ‘Given this, it is not surpr1s1ng that SIMD is ‘rapidly belng
replaced ‘by VLIW in commercial product offerings; in fact, MSIMD (Multlple SIMD)
machines such as the Connection Machine - [Th187] — which are essentially VLIWs by

another name — have also found wide acceptance. Perhaps the only reason ‘“‘straight”

SIMD architectures have survived this long is that the more constrained p’arallelism
model yields a simpler programming and debugging methodology, although it does so at

the cost, of loosing much parallelism in typical applications.

As discussed in the above paragraph, VLIW architectures have many benefits and
are very effective machines. The largest problem is that the program‘ming model is too
complex to be directly expressed in high-level language, hence more soph1st1cated com-

pller technology is needed. About 1982, Fisher and others at Yale Umversn;y proposed a

compller technology called “trace scheduling’ to manage VLIW coding. This technique is

a very clever extension of basw block (DAG) flow analysis which allows parallelization of
code across control flow constructs such as if or case statements (but not across
loops or subprogram invocations). The s1mpllc1ty of the compiler analysis and the gen-

: erahty of the hardware are an very good match. VLIWs will probably contmue to gain
support

N Lock-step MIMDs, or LSMs are essentlally VLIWs where each processor has its own
program counter, hence it would be possible to execute a loop in parallel with straight-
line code — something a VLIW can’t do. The hardware is also quite 31m11ar in complex-

: 1ty to that of a VLIW. The problem is that par‘allel operations must be known at compile

time to take exactly the same amount of time to execute. This means that each loop must.

Page 6

Purdue University TR-EE 88-25

iterate a known number of times' —_— But if this is true, the compiler could slmply unroll
the loop and achieve the same parallel executiqn using a VLIW ... only the code size
would distinguish th‘ebtwb aréhitéctu’res. Further, the compilef teéhnology to'parallelize
for.a lqck-step MlMD would be relatively very cbmplex compared to that for a VLIW. In
sum';na'ry, lock-step MIMD isn’tl a bad architecture, bul: it is very unlikely that it would
aghieve any better parallelism tllan a VLIW, and it would be harder to use (the compiler

would be harder to write and would compile slower).

CA static barrier MIMD, or 'SBM, loosens tlle parallelism constraints of a’ lock-step
MIMD ‘just -a little — a _’ static Barrler MIMD can simultaneously perform runtime-
v#riablé-éxecution-time operatiqns. In other words, implicit syn'chronizatidn‘ carl be made
‘ “l;u'zzy.’»’ and then sharpened at arbitrary points in a program’s execution. This means
‘ that, for example, while loops, subprogram invocations, condltibnals,‘and' straight-
line code can all be executed simultaneously;v one can even perform dynamic load»b'alanc-;
ing. ll.lveﬂ'ect, a.barrier MIMD: can paré.llelexécute all of thg parallelism structures typi-
cally gel;erated by automatic parallelizing compilers (although il; .canrlot efficiently exe-
éutq some expliéitly-parallel programs because they rely on point-to-point synchronization -
‘oberations for which no static order can be determined). Further, both the hardware and
the compiler algorithms are relatively 'slmple because one can always fall back on generat-
- ing a barrier for each synchronization opefatioh. Of all the architectures discussgd here,
static barrier MIMDs should‘yield the chea'pest,v mbst efficient, machine capable of using
nearly 'yall the parallelism in an application — this is wl1y static barrier Ml"MD is the pri-
‘mary topic of the current work. | ’ o

" Dynamic barrier MIMDs, or DBMs, differ from static 'barrier‘MIMDé in that they

can reqﬁire.sllghtly less time to execute a sel; of barriers where l',he relative times at which.
the 'lv)a:rrier‘s are ‘encountered are not known at compile time. "Howevver, the hardware
'.app‘ea;rs ‘to be significantly more corrlplex and seems to require an associative matching of
processors awaiting a barrier to the barrier to occur next. le addition, the cdmpiler tech-
nclldgy for-a static barrier MIMD offers a solution for those machines which is nearly as
good — if a group of barriers are so close that the sequence of them callnot be-stati“c‘ally

~ determined, one would simply merge the barriers into a single barrier on the static bar-

rier machine. This does result in a slightly longer average delay in barrier execution, but - o

- Page7

Purdue University TR-EE 88-25

it also provides much tighter bounds on interprocessor timing, hence it may eliminate the
- need for some future synchronization barriers. In summary, it is difficult to be certain
that{ »dyvnamic barrier MIMDs would perform noticeably better than static barrier MIMDs,

hence the additional hardware complexity prdbably isn’t worthwhile.

' Finally, the traditional directed-synchronization MIMD has the obvious advantage
of being':able‘ to parallel execute completely arbitrary parallel code structures. - However,
synvchr;bkniza.tion cost is much higher, and this implies larger process granularity is needed.
Synchronization cost makes some parallelism structures unbeneficial, even though all can
be parallel executed. For this reason, hybrids or reconfigurables which provide both
MIMD and one of the ﬁner-grain parallel architecture models, 'especially VLIW, make par-
ticularly good sense. Further, directed synéhrbnization permits the creation of races and
deadloéks - parallel debuggingvhorrors which do not occur using any of the other parallel .
. machine types listed above. Hence, directed—synchronizatioxi MIMDs have a firm reason

for being, but are not ‘alwa.)'fs the most desira‘ble parallel architecture.

3. ‘,‘_Bal.lrf‘rier Hardware

_ ‘ As discussed above, there is good reason to believe that the special properties of a .
étati‘c- barrier MIMD will result in very good performance on a wide range of codes —
especially on those generated by automatic parallelization of v_sequéntial pro‘grambs. In this
section,rsome architectural and implement-ation’ details of vbarrier MIMD machines are
given. First, kexisting machines are considered, then an idealized static barrier ‘MIMD

desigi; is proposed.

3.1. Barrier Mechanisms in Existing Machines
f‘Despite the common use of ‘barrier synchronization in parallel application codes,
there are very few references to barrier synchronization as a fundamental, hardware-

supported, synchronization mechanism. There are at least a couple of reasons for this:

[1] = Barriers are not as general as directed synchronization primitives (it is easy to simu-
late barrier synchronization using multiple directed synchronizations such as count-
ing semaphores, but the reverse simulation is impossible) and '

Pagé 8

Purdue University TR;EE 88-25-

[2] ABa.rr»ier éynchronizati'on has generally been viewed as a software issue — a program-

.ming style concern.

Actually, reason [1] isn’t valid unless one ignores the fact that a barrier conceptually syn-
chronizes processors at the clock-cycle level whereas. moét implementations :of barriers
using directed synchronization only approximately synchronize the prooessors. This -
approximation is mainly due to variations in network traversal times of synchronization
requests a.nd/or the fact that a tree-structured collection of synchronizatiorl operations is
used.. In other words, the directed-synchronization-based mmulatron of a barrler does not
prov1de the key feature of ba.rrler synchromzatlon as discussed in this paper: simulated
barr1ers do not yield the primary benefit of permitting ﬁne—gram parallelism without
requ1r1ng runtlme synchromzatlon for each conceptual synchronization opera.tlon

Qf course, Teason [2] is simply a matter of convention.

The only machine the authors have .found to deliberately implement barrier EYn-
chronization as the only hardware—supported synchronization mechanism is the-‘Control-
able MIMD” machine descrlbedvby Lundstrom and Barnes i in 1980 [LuB80]. Apparently,_
Burrorxghs Corporation never blrilt thi‘s ma.chirxe,‘ however, it was described in detail to
NASA as a proposal for “the Flow Model Processor (FMP) in the i_ Numerical Aero-

dynamic¢ Simulator.”

Rather than discussiog barriers per se, the Burroughs proposal discussed hardWare
support for DOALL constructs. A DOALL is a loop. such that the body can be exe-
cuted simultaneously for all iterations, i.e., no serializing dependencies exist within the
loop. The typical program was expected to .conéist of a sequence of DOALL loops where
- the body of each loop was arbitrary chunk of code. Since such a chunk of code would be
likely to: contain several control flow paths — each examining a particuivar‘special-case
~ involving boundary conditions or making specialecase simpliﬁeations to the eomputation
e theee 'DOALL loop ‘‘instances” eould not bevparallel executed using a SIMD machine.
On the other hand, using a traditional MIMD model also would be a problem, because all
' processors must complete processmg one DOALL loop before any can begin to execute
oode from the next DOALL, and thxs machine-wide synchromzatlon would take a
sngmﬁca.nt -amount of time us1ng conventlonal dlrected, synchronization pr1m1t1ves

Thelrsolutlonv was to propose hardware which 1mp1emented a P-wa.y synchronlzatlon

Page 9

Purdue University' TR-EE 88-25

primitive (where P is the number of processors in the machine).

‘The P-way mechanism they presented is a machine-width barrier meohe.n-ism'imple-
rnented by a processor instruction called wait. When each processor reaches the end
of its work in parallel execution of a DOALL, it executesa wait instruction. ' As each
proceseor exeeutes a wait insﬁruotion, it is halted until all processors have executed a
wa 1t instruction. This halting is effected using synchroniiation lines independent from -
the n'etw*'{:ork which interconnects processors and memory. Except for the constraint that

~all processors must participate in the synchronization instead of any arbitrary subset, t}ris
is p’recisely the static barrier mechanism we propose. Of course, the use of t}ris mechan-
ism for DOALL loops does not take advantage of the fact that immediately after pro-

cessors have executed a barrier they may be scheduled as a VLIW.

E Interestingly, the Burroughs proposal ‘also references the desigr‘rof PASM — the :
same machine which led us to study barrier synchroniza.tion. PASM’e contribution in this
respect is that the architectur‘e allows both fine-grain and large-grain paralleliem to be '
executed, although the ‘ﬁnngrainbparallelism must conform to SIMD corrstraints. The ',
Burrougfrs proposal appreciated this property, and recognized that a barrier synchroniza-
tion model could reduce the constraints on ﬁne—gram parallel executable code structures

_ wh11e stlll supportlng large grain parallelism. -

3.2. The Proposed Barrier Mechanism

As the design of PASM and the .proposal‘ of Burroughs suggest, it is very difficult to
achieve ;rery‘low-cost, high time-precis_ion, P-way synchronization in the context of using
the'communi‘ca.tions network of a Iarge multiprocessor. Further complicating matters, to
achieve the maximum benefit the hardware should permit any ar‘Bitrary subset of the pro-
cessors to synchronize; this implies that some hardware mechanism is able to specify for

each b’a.r'rier what subset of the ‘processors should participate,

» - As we notlced in studying the PASM prototype architecture, this problem of gen-
eratlng the subset of processors to partlclpate in each barrier synchromzatlon operation is
actually identical in nature to that of determining an enable pattern for SIMD processors.

| Hence, as a SIMD has a control processor which is responsible for generating enable

Page 10

Purdue University TR-EE 88-25

_masks, an SBM or DBM machine incorporates a barrier processor whose sole responsibil-

'ity to to generate the sequence of processor subsets for barrier synchronization.

As an example, a,typical MIMD gystem design is given in Figure 1.

PE PE PE

Memory - | Memory | ... 1" Memory

i o Interconnection Network . = G j
Figure 1: Conventlonal MIMD (w1th Local memory)

This des1gn should be compared with the SBM/DBM deslgn given in Flgure 2.

| VIssues of, for example, shared vs. non-shared memory address space are irrelevant to
~the design because the general communieation network is not used fer barrier synchroni-
" zation. | :

’ In Figure 1—a typieal ‘MIMD — it is generally impossible to achieve ezact syn-
chromzatlon between multlple processors since synchronization tlme-accuracy is affected
kby possible variations in network traversal t1me Other stochastic delays are 1ntroduced
elther when “smart” comblnmg (especlally fetch-and-op [GOG83], RFM [Kla80], or
RFM+ [Par86]) network switches are used or when a tree of binary semaphore operatlons
is used to simulate a P-way tree. These propertles have the eﬂ'ect of making timing ambl-
guity in synchromzatlon approx1mately a log factor worse than if a separate, smgle-level

' scheme is used

Page 11

Purdue University TR-EE 88-25

Barrier
-~ Processor

_ Barrier Synchronizatidn Buﬁ”er L ' ’ j

, ,PEO : PE1 L PEn
1. Memory 1B Memory | el B E "_Memoryv
Interconneétiqn Network { - : “ :'
Figure 2: Bai'r_ier MIMD ,(With Local memory) .
" In contrast, the barrier MIMD of Figure 2 émplbys an independent balfrigr vprocessor T

to generate barrier patterns. Each barrier patte‘rnv is a vector containihg one bit per pro-

*cessor. The value of a bit determines whether the cofresponding processor will partici- -

- o »"pa;t:e",i‘n_: that synchronization barrier. These patterns are g‘énerated‘ into a barrier SYn-

'chronizé,tibn buffer where each is held until it has been executed. In fhe SBM execution e
model, the barrier synchronization buffer acts as a simple FIFO queue; in ‘the DBM execu-
~ tion 'mo"del, barriers are executed and removed from the barrier '_Synchvronization' buffer in

. the order .in which barriers are encountered at runtime (implying an associative match -

: Page 12 .

Purdue. Univ’erSity: TR-EE 88-25

_ process) Slnce, in a DBM there may be as many as P/2 poss1bly next barriers in a P-
-processor machme, it is the assoclatlve actlon of the buffer which 1mplements the P/2 v1r- :
tual synchronlzatlon control flow threads — ~ the SBM and DBM barrler _processors are

' 1dent1cal

In elther SBM or DBM model, processors execute wait instru'ctions'(or.‘inst‘ruc-
'tlons ‘tagged with a wait bit) and are halted until the halted processor ,pattern com-

pletes the next barrler A processor which is not involved in‘ the current SBM barrier

need not execute a wait for that b‘arrier —ifa wailtis issued by a processor not .

vmvolved in the current barrler, the SBM s1mply ignores that srgnal untll a barrler includ-
| ing -»that processor becomes the current barrler ‘Since barrler patterns can be created
: asynchronously by the barner processor and buffered awaltlng their use, the ma1n proces- '
: sors see no overhead in specification of barrler patterns. - Hence, both SBM and DBM’
‘machlnes can achleve essentlally perfect synchronlzatlon of any subset of processors w1th_

o only a. very small roughly constant, overhead

- Of course, in addition to generatlng code for the ma1n processors, 1n either: SBM or
DBM the compller must precompute the order1 and patterns of all barrlers requlred for '
the computatlon and must generate code whlch the barrler processor will execute to pro- '
duce these barrlers The code for the maln processors’ also must contaln the appropriate
wait 1nstructlons or 1nstructlon tags. Separate wait 1nstruct1ons are probably easler
" to '1mplem'ent than ~tags, but tags would permrt more frequent use- of barriers. the’
trade-off depends on how often conceptual synchronlzatlons occur in- the code as compared

to the time between varlable-length operatlons or chunks of code

4. Soft‘_vva_re_ (Cornpilati‘onb) Strategy
| 7- An 'SBM‘machine is, in every way, a superset of a VLIW machine Hence, it is'not B
surprlslng that one can complle code for an SBM using precisely the same techniques used '

1n VLIW comprlers, especrally trace schedulmg Of course, uslng ezactly the VLIW model

- would yxeld no better results for an SBM than for a VLIW In this sectlon, we outhne‘ o

.1. .For SBMs this is a complete order — a sequence For DBMs, it is a partlal
orderlng of maximum width P/2 for a P-processor machine.

Page 13

| Purdue Unixrersity TR-EE 88-25

two dlﬁerent approaches to complhng for SBMs both based on VLIW scheduhng The
first is a very sxmple add-on to the standard VLIW trace scheduhng mechamsm and the
second is-a more complex:technique which may ‘make better use of SBM hardware by

“explicitly considering “fuzzy” timing relationships.

VLIW Trace Scheduhng

Trace scheduhng for VLIWs is eloquently descrlbed in [E1185], and we -shall not
- rev1ew the technique here. Instead, this sectlon defines the changes needed to adapt trace
scheduhng (and related schedulmg, such as [D1e87]) to generatlon of. code for an SBM

‘vmodel

To demonstra.te the dlfference between pure VLIW scheduhng and the mlmmal
' '-'extens1on to VLIW scheduhng for SBM machlnes, a simple example will be used Flgure 3
| "‘shows a set of regions of code? for this exa.mple The regions are named A B C, D E, F,

G, and H and each region is labeled w1th the ezact amount of t1me requlred to execute
. that reglon Parallel-execution precedence constramts are given by arrows wh1ch as a‘
. matter of conventlon, point from the followmg process to its predecessor In other words,
if all elght code regions, A through H, were to be submltted for s1multaneous executlon,' .
each arc would represent a directed synchromzatlon operation where the consumer points

: to the producer

It is ea.sy to see that spawning elght processes and usmg d1rected synchromzatlons
,'could be quite mefﬁclent — there would be 9 directed synchronizations and only 18 units
of useful work also, only two of the code regions are ready to execute at any time..
‘ Hence, xt is useful to conceptually re-package ‘these reglons into two sequential processes
wh1ch may be parallel-executed this grouping is indicated in Flgure 3 by the. dotted
boxes. Once this has been done, only the three mter-process synchromzatlon arcs need be
» :cons1dered because the other synchromzatlons are inherent in sequentlal order of execu-

_ tion’ w1th1n each process3 If lnter-process- synchronlzatlon ‘were cheap enough, this

2.. A reglon is an arbitrary grain. size chunk of code having certain propertles,
see [Dje87] for a precise definition. As a simplification, one may consider
" each region to be a sequence of a few instructions. :

5 This is a general principle which we refer to as the principle of selective

Page 14

Purdue University TR-EE 88-25

2 units ?

2 units

B N T
3 units : :

‘ﬁ k 3 units

2 units éﬁ

: v H
D : 3 units
2 units : :

processor 0 processor 1

Figure 3: Sample VLIW Code
structure would be the optimal encoding for a traditional, directed "Eynchroﬁization,
MIMD. - Unfortunately, the cost of the directed synchronizations might easily make the
completely serial version faster; if the three remaining synchroniza.tions delayed the com-

putation by more than 9 units of time, a completely sequential order such as A, B, E, C,

serialization. Serializing synchronization/communication arcs typically
reduces or zeroes their cost, hence, for a given parallelism width it is best to
package code regions into processes such that the fewest/lowest-cost arcs are
inter-process. : '

Page 15

- Purdue UniverEitil' TR-EE 88-25

F.,‘ G, D, H would execute ‘faster.' In sum‘mery, a directed—synchronization MIMD prob-
ably would find n‘o useful parallelism at this graih level |

On' the other hand this is precxsely the kmd of code that VLIW execution was
des1gned for. The VLIW execution of this code would merely observe that all “inter-
process” synchronizations are satisfied by the static timing constraints (i.e., all the arcs
point backward in time), and no synchronizatidn cost would ever be incurred. Since SBM -
-is a superset of VLIW, the same would be true of SBM execution of the code. A dlagra.m

of thls is shown in F1gure 4 (the 1nter-process arcs are drawn for reference purposes only)

......... : Sta.rt
'E [
A
F
B
G
C
D

Figure 4: VLIW Code Executed using SBM

: _Pager 16

Purdue Unive"rsity_’rdR-EE 88-25 -

42, Slmphﬁed SBM Scheduhng

The SBM model of executlon is, however, more general than the VLIW model and

thls dlﬁ'erence can be demonstrated easily.

_ In order for a VLIW to execute the order1ng grven in Flgure 4, the control flow after
trace analy81s for all the regions A through H would have to be the same — a VLIW
machme has only one program counter. This implies, for exam‘ple,_ that 'if B- contains a

‘, loop, then a VLIW could not execute the above parallel structure‘f. -The’SBM model, on "
:' . the other hand, can execute the parallel structure of Figure 4 no matter what{_control flow
e appears within each code region. Not only does the SBM permit loops and conditiOnals

'within". each code region, but sﬂubroutlne/function calls are permitted a‘s’well To take l'ull

" j'_advantage of thls, unlike a VLIW compller whlch cannot parallelize- calls, an SBM: com- -
_pller may need to be able to examine the complete program or ﬁow analys1s results

. representmg 1t

v A ‘more 1nsrd10us VLIW constralnt lS, however, that the compller must know ezactly
what the execution time w111 be for each reglon of code W1thout such perfect knowledge,'
: operatlons must be completely serialized such that at any given t:mc, only a smgle regzon
is executmg Further, the compiler’s time estlmate may be 1mperfect for any of three rea-
sons:
1} - There may be variable-time operation(s), 'Operations whose ekecution time is data
- dependent or is dependent on other dyna.mlc properties of the executlon, such as I/O .
"trafﬁc or 1nterrupts ‘ s '

[2] A time variation could be due to dlﬂ'erent control flow paths (whlle loops or condl- ;_. o
tlonal branches) being taken ’

- [3] | The imprecise knowledge could be exactly that — the compller analys1s may fall to
‘d1scover the exact execution time even though it is theoretxcally knowable, A good

, _example is that the compller may may make its executlon time estimates before the
©~-final code has been generated: unexpected code generatlon condltlons, such as a
' fallure to place a varlable in a reglster or the assembler’s recognltlon that a shorter

L4, One could argue that unraveling the loop would be. rea.sonable — and VLIW

- compilers- often take this approach — but the expansion in code size and .

- lessemng of locality properties (reduction in cache performance, etc) llmlts :
the performance

" Page 17 »

| Pur'due.Universil;y_ TR-EE 88-25

: span—dependent 1nstruct1on [Szy78] could be used in a part1cular case, may cause the
comp1ler 6] est1mate to be in error. '
Current VLIWs minimize these problems by forcing operat1ons to always take their

worst-case execution t1me, but this can cause even more profound damage

To demonstrate the eﬂect of imprecise time knowledge on VLIW schedules, suppose
that code region B might take anywhere from 1 to 3 units of t1me to execute, and i in simi-
lar manner region G could take either 2 or 3 units of time. This would result i in the

(clearly nndesirable) VLIW parallelization of Figure 5.

g The_ problem here is simply‘ that VLIW llardware_ has no vmechanism for regaining
synchronization if it is ever lost, hence, it c‘annot permit asynchrony of any kind. SBM
machines do not have this constraint, however. Consequently, the minimal extens1on of a
VLIW compller to take advantage of SBM is s1mply
[1];:' As long as all timing constraints are known, perform ordinary trace scheduling —

except that conditionals, loops, and calls are permitted to remain intact.

[2] Whenvever a variable-time (or imprecisely known time) code region is encounﬁered,

' set a compiler-internal flag noting that time is not precisely known for the process
containing this region, and continue scheduling (as in [1]) based on a compiler-
generated ‘“‘guesstimate’ of the region’s average execution time. Upon completing a
step in the schedule, if the next step in the schedule is the ‘“‘consumer” of a syn-
chronization produced by another process, check the imprecise-time flags on both
the producer and consumer processes. If either process is flagged as being impre-
cisely known, insert a barrier before the next region and reset the 1mpreclse-t1me
ﬂags '

Usmg this scheme, the compiler will generate code which may contain unnecessary bar-
r1ers, ‘but sxnce barrier synchronization is very fa.st this results in only a minor perfor-
mance loss. For the code whose VLIW schedule is given in Figure 5, Figure 6 presents the

SBM schedule derived using the above algorlthm

Page 18

Purdﬁe Univei'sity TR-EE 88-25

................................... Start

E

A
F

B
o

C
H

D

v v Figure 5: Variable-Time Code Executed using VLIW
4.3. SBM Scheduling " S L
To achieve the maximum possible benefit from the SB_M model, it is necessary for
. the compﬂer to consider not just that it has imprecise time estimates, bl_ii;_ also precisely

" how imprecise the estimates are.

Page 19

Purdue University TR-EE 88-25

..................................... barrier
E
A
F
................................ barrier
B ' '
G
ceisenses . barrier
C
crreeises pe———t iiieeaas IR IETTPTRPS . barrier
0

Figure 6: Va.rla.ble-Tlme Code Executed using SBM
' Conmder a single directed synchronization operation which takes place between
regions in two different processes. Let T be the time at which the producer region com-
pletes execution and T be the time at whlch the consumer region beglns execution. The
synchromzatlon constramt will be satisfied t_ﬂ" T, = T Hence, we can make the followmg
observations:

(1

Any varlable-tlrne operatlons in the producer s process ‘which occur . after the pro-
“ducer reglon are irrelevant.

2]

The position within the consumer’s process at time T p Must be before the consumer
_region begins. ' '
which lead to a very simple algorithm for tracking time imprecisions and inserting bar-
riers. The algorlthm to determine Whether adding a new step to a schedule requu'es inser-

tion of a. barrler is:

Page 20

[1]

2]

3]

[6]

Purdue University TR-EE 88-25

If no region scheduled in this step is a consumer of a synchronization whose producer
region is scheduled in another process, no barrier need be inserted before this
schedule step. If there is at least one consumer of a synchronization from another

process, then perform steps [2] through [6] for each of these consumer regions.

Beglnmng with the producer code region corresponding to the current consumer
region, scan forward looking for a barrier in which both the producer and consumer
processes part1c1pate If there is such a barrier, then the synchronization is redun-
dant because an earlier region of the consumer is guaranteed to be executed after the
producer code region, and no barrier is needed. If there is no such barrier, go to step
3l |

(Steps [3] and [4] simply find the the closest dominating barrier of the producer and
cbnsumer.) Beginning with each of the producer and consumer code regions, scan
ba,ékward to find the last barrier encountered. If the same barrier was found for

both producer and consumer processes, go to step [5], else go to step [4].

An irrelevant barrier has been encountered by one of the two processes since the
producer and consumer processes last synchronized, hence, the timing error for the
occurrence of that barrier must be added in. We say a processes is indirectly
involved in ‘a barrier creation problem if it is not a participant in the proposed bar-
riei‘, but it is a participant in a barrier which propagates timing error to a process in
the proposed barrier. To resolve this, continue scanning backward to find the first
barrier in which all processes directly or indirectly involved in the proposed barrier

were participants. Proceed with step [5].

Beginning with this dominating (common ancestor) barrier, scan forward on both
the consumer and producer processes accumulating relative time and time error |
bounds. If the minimum time since the dominating barrier for the consumer region
is greater than or equal to the maximum time since the dominating barrier for the
producer region, no ba.rrler is needed. Otherwise, go to step [6].

The result at this point is that a barrier needs to be placed somewhere between the
producer and consumer processes anywhere such that the barrier appears after the
producer region and before the consumer region. For best performance, one simply
remembers these constraints and if the current step required creation of several bar-
riers, one first trys to find an overlap in constraints which will permit a single bar-

" rier to be generated instead of several. In other words, two 2-process barriers might

become one 4-process barrier, etc.

The final result of applying the above algorithm to the example is given in Figure 7.

Page 21

Purdue University TR-EE 8‘8-25

weveneees - CTTTTRI ..; barrier
: . E
A
F
B
G
R BT '......C..‘..‘... ereereenne ' ‘ vessienas barrier
H
D .

_ Figure 7: Variable-Time Code Optimally Executed using SBM |
‘5. »Com‘:lusbions‘ ' ’ -
In this paper, a new classification of parallel compute»rb architectures is bfe;ented.
Based on this taxonomy, several new andﬁseful'architectural‘ cohceptsv— particularly the

static barrier MIMD (or SBM) — are proposed and explored.

Although barrier synchronization has existed as a programming ‘concept‘, for many
years, the SBM model recognizes and exploits synchronization barriers not aé “cheap‘
approximations” to directed synchrbnization primitives, but as opératiohs mahipulgting
relative timing constraints which are statically determine‘dby(by the compiler). Hence,
SBMs can be viewed as ;ela.xing the constraints on parallel structure which were iIﬁpOg'ed .
by SIMD a.nd”even VLIW models, yet preserving the primary beneﬁté of étaticf scheduiing
and (ih‘most cases) zero-cost synchronization. The associated compiler technology has

also been outlined.

Page 22

Purdue University TR-EE 88-25 -

Futufe research will consﬁruct and test SBM compilers using the _technologies out-
. lined in"Section 4, as well as design and simulate specific SBM and/or DBM architectures.
- We also,beliéve that the general concept of catagorizing architectures based on what may
be_conéidered static (i.e., compile-time) constraints on parallel execution structure will

- prove valuable in analysis of existing, as well as future, computer architectures.

Ackhowledgements

Thanks to the members of CARP (the ‘Compiler-orieuted Archite,ctufe Research“
group at Purdue) for their useful comments on and discussion of the architectural cata-
g‘orizatidn and SBM architecture presentéd in this paper. Thanks to H. J. ‘Siegel and T.

L. Casavant for discussions rel?;ting to use of PASM as a SBM machine.

References

'[Die87]i : H. G. Dietz, The Refined-Language Approach to Compiling for Parallel
SRR Supercomputers, PhD Dissertation, Polytechnic University, June 1987.
(An updated version is also available as a Purdue Un1vers1ty 1nternal ,
‘report, May 1987.) 4 o
[E1185] o J. R. Ellis, Bulldog: A Compiler for VLIW Archztectures, 1985 ACM
- Doctoral Dlssertatlon Award, MIT Press, 1986. St
[FiC87] S. A. Fineberg, T. L. Casavant, and T. Schwederski, “Mixed Mode Com-

puting with the PASM System Prototype,” 25th Anl_lual Allerton
Conference on Communication, Control, and Computing; Monticello,
| ~ Tllinois, 1987, pp. 258-267. o |
[FiCss] S. Fineberg, T. Casavant, T. Schwederski, and H. J. Siegel, “Non-
Deterministic Instruction Time Experiments on the PASM System Pro-
“totype,” to appear in the Proceedings of the 1988 International Confer-
ence on Parallel Processing, August 1988. _ ’
[GoG83] A. Gottlieb, R. Grishman, C. P. Kruska.l K. P. McAuhﬁ'e, L. Rudolph
" and M. Snir, “The NYU Ultracomputer — Designing an MIMD Shared
Memory Parallel Computer,” IEEE Transactions on Computers, Vol.-
~ C-32, No. 2, February 1983, pp. 175-189.

[Klag0] ‘D. Klappholz, “An Improved Design for a ‘Stdch‘a’stically Conﬁict—Ffee

Memqry/Interconnection System,” Proceedings of the 14th Asilomar B

Conferencé on Circuits, Systems, and Computers, November 1980.

| Page 23

: [L'u_Bso].

[Parss]

,[S§N87]

[siss1] B

- [Sz.y7‘8]""

[‘Thi87]’ o

'Purdﬁg University” TR-EE 88-25

'S. F. Lundstrom and G. H. Barnes, “A Controllable MIMD Architec-
* ture,” IEEE Proceedings of the 1980 Internatlonal Conference on Paral-

lel Processing, August 1980, pp. 165-173.

H-C. Park, Smart Switching Nodes in an. MIMD Archztecture, PhD
Dlssertatlon, Polytechmc University, December 1986.

T. Schwederski, W. G. Nation, H J. Siegel, and D. G.. Meyer, “The
Implementatlon of the PASM Prototype Control Hierarchy,” Proceed-

“ings of the Second International Conference on Supercomputmg, Volume
A, 1987, pp. 418-427. '

H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller Jr., H. E. Smal-
*ley, Jr., and S. D. Smlth, “PASM: a partitionable SIMD /MIMD system

for image processing and pattern recognition,” IEEE Transactions on _

‘Computers, Vol. C-30 » December 1981, pp. 934-947.

T. G. Szymanski, “Assembhng Code for Machines w1th Span—Dependent
Instructions,” Communlcatlons of the ACM, Vol. 21, No. 4, April 1978
pp. 300-308. '

Thmkmg_ Machines, Connection Machine Model CM-2 Technical Sum-

‘mary, Thinking Machines Technical Report HA87-4, April 1987.

Page 24

	Purdue University
	Purdue e-Pubs
	6-1-1988

	Extending Static Synchronization Beyond SIMD and VLIW
	Henry G. Dietz
	Thomas Schwederski

	tmp.1542052450.pdf.kRrNk

