
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

6-1-1988

Complete Specification of DDM Mechanisms
Thomas L. Casavant
Purdue University, tomc@ecn.purdue.edu

Weng H. Cheong
Purdue University, weheong@ecn.purdue.edu

Ali Sajassi
Purdue University, nahid@ecn.purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Casavant, Thomas L.; Cheong, Weng H.; and Sajassi, Ali, "Complete Specification of DDM Mechanisms" (1988). Department of
Electrical and Computer Engineering Technical Reports. Paper 607.
https://docs.lib.purdue.edu/ecetr/607

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages

m m m m s m r n m m X
m m m m m m m m m ®
I l i i p i M i

I l l l I l I i f c i B W i M
H W M H M f l i

Com plete Specification
o f DDM M echanism s

Thomas L. Casavant
Weng H. Cheong
Ali Sajassi

TR-EE 88-24
June 1988

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

C o m p le te S p ecifica tion o f D D M M ech an ism s

Thomas L. Casavant : tomc@een.purdue.edu
Weng H. Cheong : weheong@ecn.purdue.edu

AU Sajassi : nahid@ecn.purdue.edu
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

ABSTRACT

The specification of DDM (Distributed Decision-Making) algorithms is
addressed. The modeling technique presented is based on well-known
extensions to Petri-Nets (PNs). Transition-enabling functions with a
domain corresponding to the marking of a net are used to express the
semantics of decision-making. Furthermore, the algorithm structural
characteristics of global state representation and topology are incor­
porated. Finally, the dynamic nature of evolution of system state,
interaction with processes external to the computation, and the inter­
process communication aspects of the mechanism are also modeled. The
elements of analysis associated with this model are described, but not
detailed in the scope of this paper.

I . Introduction

Distributed Decision-Making (DDM) algorithms represent a large class of computa­

tions critical to the reliable operation of distributed computing systems. However, to

date, there have been no unified techniques for modeling which incorporate all of the

salient features of these computations. Furthermore, successful specification and model­

ing of this class of computations may provide a basis for formalisms which deal with the

class of all distributed computations.

This paper describes a complete specification technique centered on the considerably

powerful modeling capabilities of extended Petri-Nets [Pet77, Pet8l]. The extensions to

Petri-Nets are in the dimension of computation modeling power [Cia87] rather than in

the time dimension. In particular, we model the semantics and structure of DDMs with

This work is supported by the National Science Foundation under Grant Numbers ECS-
8800910 and CCR-8717895.

mailto:tomc@een.purdue.edu
mailto:weheong@ecn.purdue.edu
mailto:nahid@ecn.purdue.edu

the PN class as extended by the use of inhibitor arcs. The use of this extension is then

made much mpre practical from a specification point of view by using the notion of tran­

sition enabling functions. The scope of this paper is limited to specification power only.

Analytical use of this modeling technique appears elsewhere.

2* Class ofM echanism sM odeled

The paradigm of D istributed Decision-Making (DDM) [TeSSla, TeS81b] has

been examined in a number of forms (e.g„ [H08O, Sta85]). We define a DDM algo­

rithm as a distributed computation in which a multiplicity of independent, physically

distributed, autonomous modules of computation work cooperatively to make decisions.

This is a logical extension of Enslow’s definition [Ens78l of a distributed computing sys-

tem. We further define the decision-making to be an ongoing process in which indivi­

dual modules attempt to utilize a local view of global state (based on limited informa­

tion) to make independent decisions aimed at meeting global objectives. Examples of

DDM include decentralized control [Lar79, Sta80], distributed data-base management

[BeG8l], simulation utilizing cellular automata [FrH85, HaD76, SaW85, ThM86], and

distributed fault diagnosis [HoK84]. Distributed scheduling [CaK88] will be used in this

paper as an example of the use of this model.

3. Properties Modeled

In short, we attempt to precisely model all structural and semantic characteristics of

this class of computation. Structural description is that part of overall algorithm

description which remains unchanged throughout algorithm execution. The structure of

an algorithm may be thought of as the framework or lattice which supports the seman­

tics of the algorithm. The structure Of sequential algorithms would normally include the

data structures employed. Similarly, the structural description of DDM algorithms

include topology of decision-making entities, static components of state, and some

representation of static global knowledge at each node such as the number and location

of other nodes in the system. Semantic characteristics are those which describe the

actions of the algorithm during its execution — the effect that the distributed com­

ponents havei on their environment.

More specifically, we define five DDM characteristics which must be modeled,

1. Topological structure of the computation. Since DDM mechanisnis must explicitly

communicate in order to function cooperatively, the underlying message-passing

structure may be defined. This may correspond to the actual topology of the physi­

cal processor interconnection, or the logical connection of the decision-making enti-

ties.

2. Communication process/events. As noted earlier, explicit message-passing must take

place to support cooperation in the DDM process. In addition to the structure of the

interconnection (characteristic I), the timing, coordination, and meaning of indivi­

dual communication events must be modeled. In the modeling technique described

here, we define equivalence classes of states (PN markings) to focus attention on the

central role of message-passing and the events defined by this process.

3. Semantics of the DDM. The decision making policy itself is represented typically by

a collection of relations which define the decisions to be made based on a combina­

tion of static (structural) information and current (dynamic) state information.

4. Evolution of system state. Since the dynamic state of the system to be controlled is

aq input to the DDM process, the model must include a representation of this aspect.

The state may evolve as a result of either the DDM process itself, or from the

influence of an external (stochastically perceived by the DDM mechanism).

5. System-external world interaction As mention in 4, some external process affects the

state of the system dynamically. This modeling technique supports specification of

the interface between the system state and an arbitrary external process which may

4 -

affect, or be affected by, the DDM process itself.

Other techniques to model computations of this nature have provided either com­

plete specification of systems with a very carefully chosen set of states and events

[MaF86], or mechanisms which have broader generality which use more than one model­

ing formalism to complete the specification [CaK86j. The distinguishing characteristics

of the technique described here are the generality to any form of DDM which meets the

definition in section 2, while remaining within a restricted and well-understood

mathematical formalism—- inhibitor-arc-enhanced PNs (PNi).

4. Modeling Technique

The modeling technique proposed in this paper is based on the use of PNs [PetSl]

to model each of the characteristics of the previous section. With this proposed tech­

nique, one can characterize each of the factors which influence the behavior of a distri­

buted computation and system.

4.1. Topological S tructure

In a distributed computing system, each DDM element is autonomous (and usually

identical). This characteristic of a DDM relies directly on the definition of neighbor rela­

tion [CaK86]. The neighbor relation is used to model the interaction between a pair of

DDM elements. Basically, this neighbor relation is expressed by the use of PNs with

transition enabling (TE) functions which are the decision making processes with regards

to its neighbors. For example, a distributed computation with five nodes may be

represented as in Figure I.

2,3

Figure I. Petri-net representation of distributed computation.

Each node of the distributed computation is represented as a (set of) places in the PN

representation. This is illustrated in Figure I as P\. The decision-making process of each

node with regard to one of its neighbors is represented as a TE function in the PN

representation.

Definition I: Given a PN representation of the topological structure of a distri­

buted computation, we define the following:

Di(i) = {...,1,0,1,...} represents the set of possible decisions of u,- with respect to its

neighbors.

d,y£D/(i) denotes the decision of v, with respect to Vj

4.2. Communication Process

In a DDM, the inter-node communication is represented by an abstraction called

phases [CaK86a]. The phase concept is used to characterize the exchange of information

between nodes at discrete points in time. This is a distinguishing feature of a distributed

computing system in that information is sent periodically between cooperating elements

6

only when the sender chooses. The basis of the sender’s decision to send information is

modeled by a TE function in the PN representation of a DDM. For example, each node

of a distributed computation with three phases may be represented as in Figure 2.

Figure 2. Petri-net representation of phases in distributed computation.

Each phase of a node is represented as a place in the PN representation. The basis of the

decision of each node with regards to one its neighbor is represented by a transition in

the PN representation. Hence, a change in phase can be used as a mechanism to cause a

node to make: a decision with regard to its neighbors.

Definition 2: Given a PN representation of the semantics of DDM, we define:

P (0 — {fo , P m P»+i} represents the set of possible current phase of node v,-.

iPj E P(i) denotes node t;,- has Py as its current phase, tifj denotes the basis used

in making a decision by a node to change from phase Pi to phase Py.

O,-denotes Output of a transition to node Vt-.

4.3. Seniahties

The semantics of a DDM are embedded within an instance of a PN model. The ele­

ments of the PN model consist of places and transitions. First, a place in the PN model

is used to represent either an autonomous and identical DDM node or a phase that is

associated with One of the DDM nodes. In general, each DDM node can be interpreted,

for example, as a logical unit of memory in a distributed database management system.

In particular, a token in the place representing a particular phase denotes that the node

is currently in that phase. Further, there can be only one phase-place which will have a

token at any point at each node. Second, the decision-making process semantics are

embedded in the transitions, d, y, where each dt-y has a TE function associated with it.

Note that a PN with TE functions can be translated to a PN with inhibitor arcs [Cia87]

and PN with inhibitor arcs can be further translated to a Turing Machine. However, for

ease of exposition of the essence of a distributed computation, PNs with TE functions
are used.

4.4. System S tate Evolution

For DDMs, each node is allowed to influence its neighboring nodes. With this PN

modeling /technique, the nature of influence of a node on its neighboring nodes can be

modeled by a set of criteria which must be satisfied before any change to the state of a

neighboring node is allowed. In particular, this set of criteria is embedded in the TE

function that is associated with the transition, d,-y, that provide the link between node Vi

and its neighbor, vy. In addition, permission of the neighboring node to allow another

node to influence its state is also embedded in the TE function just described. Therefore,

the set of criteria expressed in the TE function must be completely satisfied and permis­

sion from the neighboring node must be given before a node is allowed to change the

state of one of its neighboring nodes. Further, the state of each node can be represented

in the PN model as the number of tokens in the place representing the node. For exam­

ple, a distributed computing system with five nodes and the condition that each node is

allowed to influence one of its neighbor only when its phase changes from Pq to Pn may

be represented as in figure 3.

- 7 -

■-FipireiS. Petri-net representation of a distributed computation

Withfiyenodesandtwophases.

'■■■ ;■ v.c-. ' ■ . :/ . ■ , :: ■' \ ' i : . v ..." ■
4.5. System /E xternal W orld Interaction

With the use of the PN modeling technique, the interaction of a distributed com­

puting system with the external world can be easily modeled. In detail, the external

world is represented as input places, (e.g., n/, as in Section 6), in the PN representation.

Each computation node interacts with the external world through a transition with a TE

function associated with it in the PN model. The TE function is used to express the rela­

tionship between the input from the external world and the computation node. The TE

function also imposes a limit on the use of the node by the external world. With regards

to the influence on the external world by the computing system node, a transition with

input places representing the (apparently) stochastic process carried out by a node of the

- 9 -

computing system is used to represent this relationship. The interaction of a distributed

computation and the external world may be represented as in Figure 4.

Figure 4. PN representation of the interaction between

a distributed computation and external world.

Definition 3: Given a PN representation of the system/external world interaction,

we define the following:

I(i) = {nJo>nj i t—>njn} represents the set of input places for the external world.

0(0 = {Jco, Jci, ••••> jcn} represents the set of input places to represent what

appear as stochastic processes internal to a node of a DCS from the point of view of

the DDM mechanism.

denotes the link between input from external world to computation node u,-.

Ef. denotes the TE function describing the relationship between the input place

from the external world to the computation node t;,-.

- 1 0 -

5. F o rrh so f Analysis Supported

In this section we explain some of our motivations behind developments of analyti­

cal tools for a general class of extended Petri-Nets. A complete discussion on this subject

will be presented elsewhere. Up to now, there has been extensive work bn modeling and

analytical power of restricted classes of PNs such as S tate Machines, Marked

Graphs, and Free Choice Nets. Most analysis properties of these classes of PNs have

been well formulated [Pet8l,Rei83]. However, there is a trade-off between modeling

power and analytical power within these classes; as the modeling power increases,

analytical power decreases. For example, with state machines we acquire high analytical

decision power (because they are equivalent to the finite state machine automata and

formal language theory [Pet8l]) but very limited modeling power because of its

deficiency in iriodeling concurrency, Marked graphs, on the other hand, can model con-',

currency or^waiting, which characterizes synchronization, but can not model conflict or

data-dependent decisions. Most of the properties of marked graphs such as safeness, live­

ness, and reachability have been Well investigated [Mur77, Rei83]. Free choice nets offer

greater modeling power in the way they allow both the conflicts of state machines and

the concurrency of marked graphs but in a more restricted way than the general P R

However, the analytical power of this class is less than that of state machines or marked

graphs. ■■

None of the above three classes have sufficient modeling power for representation of

general computation models. In order to increase modeling power to account for any

type of system, zero testing capabilities are required. It is been shown that PNs with zero

testing capabilities have equivalent modeling power to Turing Machines, which in turn

can represent any computable function [Pet8I,Gia87]. By including additional exten­

sions to the basic PN, we can achieve a high degree of flexibility in modeling power, but

at the expense of analytical decision power. Several types of extended PN are classified

by Ciardo [Cia87]. These extended PN are categorized as:

. . . - I i - . ;

1) Inhibitorarcs(PAZt)

2) transition priorities (PAZp)

3) Bnablingfunctions(PAZe)

4) variable input/output bags (PiVw)

with increased model specification flexibility from first to last. The fourth class is of little

interest t© us because no study on the analysis of net invariant or other logical properties

of PN with variable input/output bags are available to this date. Although ease of

express for PNe is greater than for PNp and PNp is greater than for PiVt- , they all have

the Same modeling power. Further, they are equivalent in the sense that reachability

graphs for each of them are the same [Cia87].

In our modeling technique, we use PNs with enabling functions for their high degree

of expressivity and then perform a transformation on the PNe into their equivalent class-

PiVt . From there we can partition the model further and analyze each subnet

separately. For example, the subnet corresponding to the phase component of the DDM

mechanism discussed in Section 6 can be analyzed separately. It can be seen that this

subnet is live and conservative (total number of tokens in the set of places remains con­

stant after each transition firing). These properties can be characterized by a linear sys­

tem of equations and can be manipulated and analyzed easily.

Some of these properties can be related to some well defined terminologies of classi­

cal and modern control theory. For example, Murata [Mur77] defines controllability in

terms of a transition-to-place incidence matrix — A, for any given PN, and states that a

necessary conditions that a PN be completely controllable is rank(A)=p; where p is the

number of places in that PN. Milner [Mil80] defines observability in terms of liveness of

the net (every transition can be fired starting from any reachable marking). Stability

and response time of a system can also be defined in terms of liveness ©f its PN model.

In a stable system, the response of the system to externally induced perturbations in sys­

tem state approaches an equilibrium state (whether optimal or not) after some time. In

a PN model of a system, stability can be considered to be the condition when some set of

transitions are never enabled. For instance, in the load-balancing example of Section 6,

a decision transition of a processor can become disabled if loads of neighboring proces­

sors are in balance with respect to the processor’s internal load (which is indication of

steady state for the system). Response time of the system can also be defined in a

related way in terms of number of transition firings before the sequence comes to halt.

Since response time in the model example of Section 6 is measured in terms of number of

decision’s transition firings, it can be interpreted both in terms of absolute and relative

measurements. However, relative measurements gives us a more accurate basis of com­

parison of one system to an another. We define relative response as the ratio between

number of decision transition firings and total number of transition firings before the

system arrives at equilibrium state or within some specified limits.

In conclusion, our objectives here are to develop transformations that preserve most

properties of nets and transform an extended PN model (e.g. PNe or PNj)

into the restricted subclasses of PN where the analysis can be performed. In some
. - ■ ■ . .

.• .■ - : . ; ; . ■ ■ , - ■■ ■ \

instances, these transformations are not possible. In such cases tools maybe developed for

direct analysis of a subset of the extended PN model.

6. Illustrative Example

In this section we will demonstrate the use of the modeling technique proposed in

this paper for the complete specification of DDM mechanisms by an example dealing

with distributed load-balancing [CaK86], The concept of load may be abstract, and can

represent a variety of different actual demands upon the schedulable resources in the sys­

tem. Each node is responsible for scheduling its own resources and for making decisions

regarding the commitment of its resources to the use of other processors in the system.

- 1 3

To fully capture all these salient features dealing with transitions, load transfers,

and phase changes, a PN model with TE functions may be used as shown in Figure 5.

b

Figure 5. Petri net model for a distributed computation with

S computation nodes and 3 phases associated with each node.

Definition 4: Given a PN model as in Figure 5, we define the following:

Places:

P ri

n+2 Iwt known phase of node Vi is Pn+l
n+ l if last known phase of node Vi is Pn
I i f last known phase of node Vi is Pq

® otherwise

>p < - jo
if node Vj is in phase Pi
otherwise

n j i=
I if new job arrives at node Vi
O otherwise

- 14 -

JCi =
I if o job completion happens at node Vi
O otherwise

IiZit denotes current load at node Vi

Zylf denotes the last known value of load of Vj as sent Vi by Vj

Decisions: (neighbors of node Vi are nodes unl and vn2)

h if((lj»') and (SJ
*’nl ~ ' 0 otherwise

V)•»*(. # < « ?)) .
0 otherwise

Transition enabling functions:

I if IiZit < maximum limit for node Vi
0 otherwiseEti =

'l if phase P0 is completed
0 otherwise

Etn,n+X

A +1,0

I if phase Pn is completed
0 otherwise

\

1 \t phase Pn+i is completed
0 otherwise

Etf
I if updating of information on load value of node Vi is required
0 otherwise

- 15 -

Etf
I if updating process is completed
Q otherwise

From Figure 5, we can observe that the topological structure of the distributed

load-balancing system, the semantics of each distributed node of computation, the com­

munication process between neighboring nodes, the distributed system state evolution of

each node, and the interaction between the distributed system and the external world

are fully represented by this PN model with the relevant TE functions. In particular, i f

in Figure 5 corresponds to p\ in Figures I and 3.

The mathematical description of this algorithm in the notation of Communicating

Finite Automata as shown in Figure 5 is included in the appendix. Take note of the

correspondence between certain terms in the mathematical CFA description and the PN

model:

P f = fP0 or iPn or iPn+i

I f ^ iI f
•

7. Conclusions

This paper has presented a modeling technique which allows for complete

specification of Distributed Decision-Making (DDM) algorithms. These computations

represent a large class of computations critical to the reliable operation of distributed

computing systems. Successful specification and modeling of this class of computations

may provide a basis for formalisms which deal with the class of all distributed computa­

tions.

The technique described is centered on the modeling capabilities of extended Petri-

Nets. These extensions are in the dimension of computation modeling power rather than

in time. Semantics and structure of DDMs are modeled with the PN class as extended

- 16 -

by the use of inhibitor ares. The use of this extension is then made much more practical

from a specification point of view by using the notion of transition enabling functions.

This paper has not covered in detail the analytical use of this modeling technique.

[BeGSl]

[CaK86]

[CaK87]

[CaK88]

[Cia87]

[Ens78]

[FrH85]

[HaD76]
" . S ’ ..

[HoSO]

[HoK84]

[Lar79]
[Miiso]

[Mur77]

[Pet77]

[Pet81]

[Rei83]
[SaW85]

[Sta80]

References

P.A. Bernstein, N. Goodman, “Concurrency Control in Distributed Data
Base Systems,” Computing Surveys, VoL 13, No. 2, Jun. 1981, pp. 185-221.
T.L. Casavant and J.G. Kuhl, “A Formal Model of Distributed Decision­
making and its Application to Distributed Load-Balancing,” Gth IEEE Inter­
national Conference on Distributed Computing Systems, Cambridge, Mas­
sachusetts, May 1986, pp. 232-239.
T.L. Casavant, J.G. Kuhl, “Analysis of Three Dynamic Lpad-Balancing Stra­
tegies With Varying Global Information Requirements,” 7th IEEE Interna­
tional Conference on Distributed Computing Systems, West Berlin, West Ger­
many, September 1987, pp. 185-192.
T. L. Casavant, J. G. Kuhl, “A Taxonomy of Scheduling in General-Purpose
Distributed Computing Systems,” IEEE Transactions on Software Engineer­
ing, Vol. SE-14, No. 2, February, 1988, pp. 141-154.
G. Ciardo, “Toward a Definition of Modeling Power for Stochastic Petri Net
Models,” International Workshop on Petri Nets and Performance Models,
Madison, Wisconsin, August 1987, pp. 54-62.
P.H. Jr. Enslow, “What is a “Distributed” Data Processing SystemVri Com-
pider, Vol. 11, No. I, Jan. 1978, pp. 13-21.
U. Frisch, B. Hasslacher, Y. Pomeau, “A Lattice Gas Automaton for the
Navier-Stokes Equation,” Preprint LA-UR-85-S50S, Los Alamos, 1985.
J. Hardy, 0. DePazzis, Y. Pomeau, “Molecular Dynamics of a Classical Lat­
tice Gas: Transport Properties and Time Correlation Functions," Phys. Rev.,
A13(1949), 1976.
Y. Ho, “Team Decision Theory and lnformation Structures,” Proceedings of
the IEEE, Vol. 68, No. 6, Jun. 1980, pp. 644-654.
S. H. Hosseini, J.G. Kuhl, S.M. Reddy, “A Diagnosis Algorithm for Distri­
buted Computing Systenas with Dynamic Failure and Repair,” IEEE Tran­
sactions on Computers, Vol. C-33, No. 3, Mar. 1984, pp. 223-233.
R.E. Larson, Tutorial: Distributed Control, IEEE Press, New York, 1979.
R. Milner, “A Calculus of Commimicating Systems,” LNCS 92, Springer-
Verlag, 1980
T. Murata, “State Equation, Controllability, and Maximal Matchings of
Petri Nets,” IEEE Transactions on Automatic Control, June 1977, pp. 412-
415. " '
J.L. Peterson, “Petri Nets,” Computing Surveys, VoL 9, Sep. 1977, pp. 223-
252.
J. L. Peterson, “Petri Net Theory and the Modeling of Systems,” 1981, pp.
79-110.
W, Reisig, “Petri Nets, An Introduction,” 1983, pp. 61-109.
J. B. Salem, S. Wolfram, “Thermodynamics and Hyrodynamics with Cellular
Automata,” Thinking Machines Corporation Technical Report Series, T$&v.
1985. . -
J.A. Stankovic, A Comprehensive Framework for Evaluating Decentralized
Control, Proceedings 1980 International Conference on Parallel Processing,
Aug. 1980, pp. 181-187.

- 18 -

[Sta85] J.A. Stankovic, “An Application of Bayesian Decision Theory to Decentral­
ized Control of Job Scheduling,” IEEE Transactions on Computers, VoL-G-
34, No. 2, Feb. 1985, pp. 117-130.

[TeS81a] R.R. Tenney, N.R. Jr. Sandell, “Structures for Distributed Decision­
making,” IEEE Transactions on Systemsr Man, and Cyberneticsr Y ol. SMC-
11, No. 8, Aug. 1981, pp. 517-526.

[TeSSlb] R.R. Tenney, N.R. Jr. Sandell, “Strategies for Distributed Decisionmaking,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-11,. No. 8,
Aug. 1981, pp. 527-537.

[ThM86] Thinking Machines Corporation, “Introduction to Data Level Parallelism,
Chapter 3: Fluid Dynamics,'' Technical Report Number 8.11, April 1986, pp.
15-24.

- CFA Semantics of m il -
NOTE: This section contains a section of the paper identified as [CaK86] in order to

aid the reader in understanding the example of section 6.
This example, which will be called mil, (the distributed environment is an m-node

loop), behaves as follows.

m il: Each node examines the load of itself, and its two neighbors. One unit of load
will be “given” to the neighbor with the least load if that load is less than its
own load. Otherwise, no load is “given”. Ties are arbitrarily broken in one
direction.

The topology of this system is defined as follows:

$ = (V , A)

where

V = { u0» »1, ’ ' * > Vm-I } 5 ™ = I Y l

A — { fvi, Vj) | (j == (V-Hl) mod m) V

■(* = (j +1) mod m) }

hence, the neighbor relation is defined as:

N(i) = { «(,_!) mod m, V(l+1) mod m }

We further refine the decision sets to be:

D1(I) = Dr(i) = { 0, I }

Finally, the transition function is defined as follows. There are six cases of transitions to
consider (n = I). Even though we are considering a one-phase policy in this example,
we will maintain the practice of using n to denote the number of phases in order to
allow a simple extension of this example to a multiple phase example in the next section.

1) locally : Po—+pn
2) locally : Pn--Pn+!
31 locally : p„+i-^Po
41 at a neighbor : Po—*pn
51 at a neighbor : pn—*-pn+i
6) at a neighbor : p»+i—*Po

2 0 -

Si(iM, !•“, p, <„s> p it, p i,, j»sf, pj”,
irex
nIdnui, < , * '.Cf,

(I) -

> 7 t Pnr ^«',n2> Pn1J Pn2)

'Ji2=sPn"if (P ^ 0) 0 (p- - P ^) AT (PW-PS?)

where:

*>i ~ ’

^‘>2 _

fi if .«■/" > O « (c r ' s c* 1))
0 otherwise

if ((/•'“< > C f) » (c" < C''))
0 otherwise

(2) =

0 »̂,»1 *̂,»2» »̂>1 — «̂>2» Pn+1» ni> ^t,n2»
Pn1J Pn2)

' a (p = p „) « W 1 = p j ”) « W s - p #)

(3) -
(fK ^ V p 0, < W pii,>p »s)

if (p = P„+i) 8 (Pli1 = PJr) 8 (pjs = PjJ)

(4) = (| « , /W ■ p, ^ , p*, p£)
if (W 1 * p™) 8 W 1 - p„)) V

(W s V P #) 8 W s - po))

where:

'rm if (p .̂ ^ p j^) # (p .̂ = p 0)
r otherwiser* —

* G{1, 2}

- 2 1 -

(5) — {lint + 5j ŷ,*» P> «̂,»2» Pn i> Pn2)
JGC

ifa p ; . / P ?) ^ K 1 = P»)) ?

((PL * p £) * W* - . Pa))

where:
C — { J I py ^ Pym # py = p« ® / € {W V »2 } }

and

ri
rin if (pTn. 5̂ PnJ1) & (Pn1- “ Pn)
r otherwise

for:
<e{ 1,-2}

(6) = " ■
" ‘, p, <w >?„ O

if ((Pn1 ^ PSf) ® W 1 ”s P»+l))T
« p ;a .**%)■« w , = p»+i »

where:-.:.'
jrm if (Pnl. # P™) # (p !v = Pn+i)

-js •" .r otherwise

for:

* G { i , 2 }

During transition (I), decisions are made and transmitted to neighbors. The local
record of each neighbor’s state does not change, but the local phase does change to p„.
In (2), the local phase is updated to pn+1 and Iint and Iext are both updated to reflect the
local decisions reached during the previous phase change. The purpose of (3) is to
transmit the new value of Itnt to each neighbor. The value which was sent during (2)
only reflected the effect of locally made decisions, and not the decisions of any neighbors
which underwent transitions of type (2). This is a very subtle point since the full effect
of the decisions made locally and at neighbors is not felt upon Iini until after transition
(5) in which each neighbor’s decisions is used to calculate the next value of internal load.

- 2 2 -

Transitions (4) and (6) simply change the internally recorded values of a neighbor’s
current phase.

	Purdue University
	Purdue e-Pubs
	6-1-1988

	Complete Specification of DDM Mechanisms
	Thomas L. Casavant
	Weng H. Cheong
	Ali Sajassi

	tmp.1542052450.pdf.GuEhw

