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" ABSTRACT

; Hayes, Raymond Reynolds Ph D., Purdue Un1vers1ty May 1988 Statrstlcal
- Class1ﬁer Design and. Evaluatlon Major Professor Kelnosuke Fukunaga

“This ‘thesis ‘is concerned w1th the desrgn and evaluatlon of statlstlcal
- clas31ﬁers ' This problem has an optimal solut1on W1th a priori knowledge of
) "the underlyxng probab1llty dlstrlbutrons Here, we examlne the expected per-' :
| ﬂformance of parametrlc classrﬁers des1gned from a finite set of tralnlng sam-
,ples and tested under various condltlons By 1nvestrgat1ng the statlstlca]‘ ’
: .propertles of the performance blas When tested on the true drstrlbutlons we
;have 1solated the effects - of the 1nd1v1dual design. components ‘(1-e, th’e‘»”
v 'number of tralnlng samples, the dimensionality, and the parameters of the
_ »underlynng distributions). These results have allowed us to estabhsh a ﬁrm
theoretlcal foundatlon for new des1gn guldehnes and to develop an emplrlcal

,' approach for estlmatmg the asymptotlc performance

Investrgatron of the statistical properties of the performance bras When

tested on ﬁmte sample sets has allowed us to pinpoint the effects of indivi-

'dual desrgn samples, the relatlonshlp between the sizes of the des1gn and

test sets, and the ‘effects of a dependency between these sets ThlS, in turn,

leads ta a better understandlng of how a single training set can be used

- 'most efﬁclently In addition, we have developed a theoret1cal framework for‘ -

the analysrs and comparlson of various performance evaluatlon procedures



ix

Nonparametric and one-class classifiers are also considered. 'The
reduced Parzen classifier, a nonparametric classifier which c<‘)mbinesb the
error estimation capabilities of the Parzen density estimate with the compu-
tational 'feasibility of parametric classifiers, is presented. Also, the éffect of
the distance-space mapping in a one-class cl#ssiﬁer is discussed through ﬁhe

approximation of the performance of a distance-ranking procedure.



CHAPTER 1
INTRODUCTION

1.1 Problem Statement

In the formulation of the statistical pattern recognltlon problem,
mult1d1mens1onal observations of a random event are assumed to have been
generated from a set of underlying probability densities, each of which
represents an event class. If one could accurately identify the underlying
. densities and determine from which an unknown observation came, ‘one
could claSSIfy the observation. A priori knowledge of the densities makes the
problem relatively easy. However, the designer is usually just presented
with a limited set of preclassified observations (training samples) from which

the underlying structure of the problem must somehow be inferred.

The design of a pattern recognition system involves a number of steps:
feature extraction, error estimation, classifier design, and »lclas'si’ﬁer
evaluation. Even though the measurement process determines the
dimensionality of the observations, classification can take placevin any
space. Feature extraction involves heuristically or mathematicélly obtaining
a reduced set of features which reflect the characteristics of the original
measurements. Each observation can be mapped into a feature vector which
is then used for classification. Classifier performance is bounded by the
overlap of the underlying densities (the Bayes error). Once a set of features
is chosen, the Bayes error in that space measures the maximum separability
of the classes and provides a guideline for the evaluation of the classifier
performance. Classifier design deals with the identification of the densities
and the development of a discrimination rule. A common practice is to
assume that the densities are uni-modal Gaussian, estimate the appropriate
parametérs from the training samples, use Bayes’ rule to find the a posteriori
class probabilities, and then take the natural log, generating a quadratic
expression which is compared to a threshold (the quadratic classifier). Once
the classifier has been designed, its expected performance in the field must
be estimated and compared to the theoretical bounds (classifier evaluation).



When the assumptions made in the des1gn stage are correct and a very
large number of training samples are available, the resulting clasmﬁer will -
probably be capable of near-optimal performance. However, if a large
number of training samples are not available, the density parameter
estimates w1ll not be accurate and classifier performance will be degraded 7
Furthermore, the same limited set of training samples used to design the
- classifier must also be used in 1ts evaluation. This usually leads to an
optlmlstlc estimate of the classifier performance.

When the assumptions made in the design stage are ‘not correct the
reSult1ng parametric classifier will not provide a satrsfactory level of =
performance. Currently, non-parametrlc techniques, such' as k—nearest
neighbor - (k-NN) ‘and the ‘Parzen density estimate, are " being used .
successfully for Bayes error estimation. These techniques can be re-cast as

classifiers, but their dependence on a large number of training. samples v
- makes their 1mplementat10n computat1onally impractical. ‘

F 1nally, at times, because of the dynamic nature of the classrﬁcatlon
environment, training samples from all of the classes are not ava1lable ‘For
example, suppose one wanted to be able to recognize the radar return of a '
tank located in a field. The characterrstlcs of the tank will remain- constant
but the field might contain grass, trees, rocks, or snow, all of which' fall into
the ‘non- tank class. This one-class scenario is more of a detection problem
than a classnﬁcatlon problem and. a sllghtly different approach must be
taken o '

1 Thls thes1s focuses on the classifier de31gn and evaluation concerns
ment1oned above. Even though they are theoretical in nature, the
techn1ques developed and results presented should be useful in the solutlon '
‘of a number of practical problems. - ’

1.2 Thesm Organlzatlon

, Chapter 2 of: thls thes1s deals with the effect of finite tralnlng sample o
size on ‘parameter estimates and their subsequent use in functions. General
and parameter-speclﬁc expressions for the expected bias and variance of the"
functlons are derived. These expressions . are then applied - to the

Bhattacharyya distance and to a new expression which characterlzes the o

performance for the linear and quadratic classifiers, providing valuable
insight into the relationship between the number of features and the number



. of training samples Also; the functional form of these expressions alloWed
the development of an empirical approach which will enable asymptotlc
_‘_performance to be accurately estimated using a very small number of
‘samples

In Chapter 3, the expression for expected classifier performance denved
in Chapter 2 is apphed to a series of test procedures designed to compensate
’for the fact that only one set of training samples is available. For the
holdout method the roles of the independent design and test sets are
1dent1ﬁed For the resubstitution and leave-one-out methods, the
: relatronshlp between dependent design and test sets is investigated. Alyso,‘
the statistical - properties of the bootstrap re-sampling techmque are
analyzed. ' V

Chapter 4 investigates the use of a new non-parametric classifier based
~ on the error estimation capabilities of the Parzen density estimate. We
~ develop an algorithm to select a given number of representative samples
whose Parzen density estimate closely matches that of the entire sample set.
Using these representatives, a piecewise quadratic classifier which provndes
nearly optlmal performance is designed.

In Chapter 5, an approximation for the acquisition probability for a
minimum distance one-class classifier is derived. In the original development
of the classifier, it was shown that the acquisition probability is dependent
upon the operating characteristics in the distance space, the number of
targets detected, and the number of other objects detected. An approximate
expression replaces the operating characterlstlcs curve by a single point.

Chapter 6 gives a summary of the major contrlbutlons of this thesis and
-provides recommendations for further research. -




-CHAPTER 2
EFFECTS OF SAMPLE SIZE IN CLASSIFIER DESIGN

2.1'Introduct1>ovn

In practlcal pattern recogmtlon problems, the parameters of the
underlying distributions are unknown and the number of training samples
avallable frequently is small. The size of this set of samples, relative to the
number of features used, determines the accuracy of the parameter
_estrmates and the similarity between the sample set and the true
dlstrlbutlon ‘ S

In thls chapter, we will look at the effect of sample size on functlons of
the dlstrlbutlons parameters. By viewing the estimated parameters as
random varlables, ‘the expected value of a criterion can be computed by
taklng the. expectation of the parameters over all possible N-size sets. of
training samples. This leads to a general expression for the expected bias
and variance of the function, isolating the effects of functional form from the
‘underlyi‘ng_ distribution. v ‘ ’ " ‘v "

} : Pattern recognition research has considered various ‘questions
con'cerning the relationship between the limited size of the training set; the
number of features, and the estimation of some performance criterien. A
number of authors, including El-Sheikh and Wacker [1], have investigated
the optimal number of features for a given finite design sample size in order
to combat the "peaking phenomenon,” the apparent loss of classifiability
which accompaines an increase in the number of featues without an increase
_in the number of training samples. An excellent review of work done in this
~area is presented in Jain and Chandrasekaran [2]. Another group of authors
b.has looked into the effect of the ratio of training sample size to feature set
d11nensronahty on the expected performance of an empirically-designed
classifier used on the true test distribution. In [3], Raudys and Pikelis
) catalog the development of a number of approximate expressmns for the
expected performance of the linear classifier and an exact expressmn for the
- quadratic classifier. Asymptotlc expansions for the quadratic clasmﬁer ‘have



also been developed by Han [4] and McLachlan [5]. Unfortunately, these
expressions are too complex to provide valuable insight and the'ir""ac'curacyv
has not been experimentally verified.. Thus, the relationship between sample
size and: dlmenswnallty has been inferred through simulation (eg.; {3] and
[6]); the investigation of related criteria (e.g., [7] for Bhattacharyya distance
and [8] for divergence), and a look at the performance of these clas31ﬁers
tested on the design set [9].

By applylng our general express1on to the Bhattacharyya distance and

the classifier error equation; we have developed a useful framework for the
’analy51s of classifier performance,  design, and testing procedures. This
prov1des valuable insight into the relationship between dlmens‘lonahty; and
"sarhple size and the importance of mean and covariance shifts in measuring
separabilitjr Also, we have developed an empirical 'approach which will
» allow the deSIgner to estimate the asymptotic performance of a partlcular
type of classrﬁer This can be used to evaluate trade—offs in- classifier
complexity and performance, and to determine the ratio of desrgn samples to
‘dllmenswnahty needed for a particular performance level.

2.2 -Bias and Variance Expressions

2.2.1 General Formulation

, Let us consider the problem of estimating f(yy,,y1) by f(yl,,yL) where f 18
a glven functlon, yi's are the true parameter values and J;’s are thelr -
estlmates In this section, we will derive expressions for the expected value '
and varlance “of f(§,,,91,), and propose a new method to estimate f(yl,,yL)

Assummg that the deV1at10n of §; fromy; is small f(Y) can be expanded
by a Taylor series up to the second-order terms as

o v 1 o e
R ¥ N0%) Y)+ A —t v AYAYT 2.
f( )‘ f(Y) + e Y + r [8Y YAY (21)

where Y ‘[ylyL]T and Y = [)“rl)?L]' are the column vectors of the true
parameters and their estlmates, respectlvely AY = Y-Y, v mdlcates the
“transpose of the vector v, and trA is the trace of a matrix A '

: If the estlmates are unblased ‘ S g ‘ S
E{AY}—O (e

~ and subsequently




P 1, [ & T
E{f} = 4t oy E{AYAY }

Slmllarly, the variance of f can be derived as

. of]e O | 1' o
var{l) = E{ AY + — t AT = T
Var{ } Bl oy + 5t | 5y AYAY 5 b E{AYAY }
£ 2)
NEE S
= E)|= AY
afT T | o D e
= AYAY : S .4

where the approximation from the ﬁrst hne to the second line Was made by
,dlscardlng terms higher than second-order.

Eq. (2. 3) shows that f is a biased estimate in general and that the bias
depends on 8*f/8Y? and E{AYAY"}, where 8% /GY2 is determined by the

i

functional form of f and E{AYAYT} is determined by p(Y), the density

function of Y, and N, the number of samples used to compute Y. L1kew1se,
the variance depends on 8f/3Y and E{AYAYT} :

For ‘many estlmators, the effects of p(Y) and N on E{AYAYT} can be
separated as -

BAYAY) =gNKp(®) @9

where the scalar g and the matrix K are functions determined by how Y is
computed. Substituting (2.5) into (2.3),

E{l’}~ f+cg(N) o | T ‘(2'6)

where ¢ = —;— tr (8°/0Y? K p(Y))) is independent of N and treated as a

constant determined by a given underlying problem ‘This leads to the"

followmg procedure to estimate f

: 1) Change the sample size N as NI,NZ,,N[ For each N,, compute Y and

subsequently f empmcally Repeat the experiment M t1mes and

) approx1mate E{f} with the sample mean of the M exper1mental results




2) Plot these empirical points E{f} vs. g(N). Then, find the line best:
fitted to these points. The slope of this line is ¢ and the y-intercept is
the 1mproved estimate of f. There are ‘many possible ways of selectmg a
“line.” The standard procedure would be the minimum mean—square error :
approach ‘ ‘ : '

2.2.2 Parametric Formulation » |
In- pattern recognition, most of the expressions we would like to
" _estlmate are functions of the expected vectors and covariance matrices. In

this section, we will show how the general discussion of the prev1ous sectlon -

can be applied to this particular family of parameters.

Assume that N samples are drawn from each of two n-dimensional
Gaussian dlstrlbutlons w1th thelr expected vectors and covariance matrlces
given by . ‘

‘My=0, ¥, =1 SR
M2_=M_, Ye=A (27)
Without loss of generality, any two ‘covariance matrices can be
“simultaneously diagonalized to I and A, and a coordinate shift can bring the
expected vector of one class to zero. " ‘
M and Y can be estimated w1thout b1as by the sample mean and'.

sample covarlance

~n

1 N :
M‘=E glxj(‘).

I
T

El _ _1_~/N [Xj(i)v_gﬁvi] [le - Mi]'r_" -v N . », | (28)

Where X() is the jth sample vector from class 1. Thus, the parameter vector ‘
Y of (2. 1) consists of 2(n+n’) components

v [aPaP apaP afal apad] @9
where vﬁl'() is the ith component of. M., and @igr) is the ith.‘ro{_"v and jth
column component of Er : T

SO The random varlables of (2 9) satlsfy the followmg statlstlcal propertles,‘*‘, .
. : Where Am() (I‘) : () and Aa(r) == a(l') . O{(1‘) . -



2)

| 3)

1)

5

The sample mean and covariance:are unbiased:

R N S ')

Samplés*from different classes are independent:

E{Am{IAm®) ~ E{Am()} B(Am®) =0
- B{daflAofd} = E{Aof)) B{AafD) =0

-:E'f{Amierzk‘?} =E{Am} E{AafY} =0 forrxs  (211)

Diagonal 21 and )7, cause the mean estimate covarlances to be

‘dlagonal

E{Am Am( )} =0 for i;évji

i A ()2 =L -
E{Am 2} = -ﬁ - _ (2.12)

where X is the ith -'-diagdna'] component of A.

The third-order central moments of a Gau351an dlStX’lbu‘thIl are 7ero:

E{Am(r Ao} =0 | o | (2.13)

The fourth-order centra] moments of a Gau551an dlstnbutlon are .
known ' N

I~ for (i4,i=k,j=¢ ) or (is4)i=¢ ,j=k)

=~ 2 porimjek=r
N T

otherwise



F : for (isj,i=k,j=¢€ ) or (i#],i=C ,j=k)

| IV N R
{Aa(z e )} ~ ‘1 = W for i=j=k=¢ -~ (2.14)"
- 0 . ‘ otherwise R |

Note. that in the equal mdex cases of (2.14) N-1 is replaced by N fori
51mphc1ty : . o
© Substituting (2.9) through (2.14) into‘(2.3), the bias term ‘of the
~ estimate, E{Af} = E{f'} —f, becomes o '

: 1 N T 1 L L g%
E{Af} = =t EAYAY — = | E{Ay; Ay
{ } | 2 r [ 3Y { } .. 9 l=1 _g]l 8}, ayj { ‘. - _]}
1 2 |> Ot n (f)f
— —— Al ) At - E A 2 + E A( (l' A (r)
2 O i%Jl 0ml(r { } 1211 }‘i v (r aa(r { Y }
: : 1;4_]
+ i i ot E{Aa 2}
i=1j=1 3@18‘)8%?
R S N SRR N SN
o 2N ig 8ml(1)2 * ig aml(2)2 >\1
a0 o L S
+3 Ly 0
1§1 El [Gaigl)c’?a(l) aatl)aa(l) 1§1 (9%1)2 B
i) .
k.n n ol | 82{' -',. v 82f .Il" azf | 9 .
+i§1 El [a.aigz)aa@) + aa(z)a a(z) N+ E ol 2 2N (2.15)"

: »Note that the effect of N is successfully separated and that g(N) of (2.5)
, becomes 1/N Thls is true for any functional form of f, provided f is.a
’ 'functlon of the- expected vectors and. covariance matrices of two Gaussmn
' -__dlstnbutlons ‘This concluswn can be extended to non—Gaussmn cases in
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which (2.13) is satisfied and E{Aaigr)Aa]g)} of (2.14) is propor-tiofrlalli tol/N

Simi}larly, the variance can be computed from (-2.4’),resulti'1rg in

[ af n (o P
' S i=1 i . Omy :
aoa (e ¥ o o w (ot P
+ W » e -+ — L4 - 2.
i§1 j=1 { 304%1) 30481) 306'(11) i i-1 [ daV ]
X g : ' ,
oo ([ B oot er
+y i + = = Doy
,i=21 ng { 30452) 30@52’ 3%‘(12) o

~ Note that, in order to calculate the bias ‘and varlance,_we only need to
compute" Gf/am of /Sa(r Bt /am (92f/8a(r Ba(r and 9% /(901(r aa(r) for
r=1,2: '

2 3 Bhattacharyya Distance Between Two Dlstrlbutlons -

: A popular measure of sunllarlty between two dlstrlbutlons is the
Bhattacharyya distance [10] '

\—1 |21+22 ' :
] (Mz—M1)+31—‘l 217)

2\/1_l\/El

Since B is a function of M;, M,, Y1 and Y, it is a member of the family of

21t 3

B=%(M MI)T [ 5

functlons discussed previously.

- If two distributions are Gaussran the Bhattacharyya dlstance gives an
upper bound of the Bayes error, 67

where P; is the a priori probability of class i. The first and second terms of
(2.17), B, and B,, measure the difference between the two distributions due
to the mean and covariance shifts respectively. :

 When M; and ¥, of (2.8) are used to compute B, the resulting B differs

Afrom its true value. The bias and variance of B can be obtained using (2. 15)
and (2 16)
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- 2.3.1 First Term Bl

be easﬂy obtamed as ‘ | : S
-8B, n®-m® 8B,  m®-mV o
a,mi(l) T 2(1+X) S ami@) = 2(1+>‘i) (2.19)
R = om® ; (2.20)

 omM? - Om2)? T (1_,_)\)

The computation of OB, /Balgr , 82B1 /Ha(r)aa(r) and 5‘2B1 /(9oz(r a(r) are more
complex and presented in Appendlx A. The results are :

. 6B, 6By . mm PR B 5a1
o aai(Jx) 3a(2) , (v1»+x,)(1+xj) SRR o : A( 21)
| 32B1 n 82Bl fb . . g o
ool = 9000 =0 forizj | .(2.22)
aZBl | 32B1 ' 1 ml2 .2 .
| = e = - + (2.23)
: aaigl)aj(ll) aaigz)aa-j(lz) 414N (14N) | 1N 1+x
 where m; = m{® — m{®). | | |
Substituting (2:19) through (2.23) into (2.15) and (2.16), "
ST - 2 201 1N\ 2Y :
B 1 D no My (1+>\ ) n i(1v+>\i)
L E{AB,} = — |n+ : —F (2.24
: { i 4N | El El (1+>\)2(1+>\) ,2 (143)? (,- .)
S ‘ o In-2 1 n i2 2 1—{—)\1)\ N
Var{B;} = j—\; Tt UL (2:25)

el & R 24N)P(1HN)E

: 2 3.2 Second Term B2

o Slmllarly, the partlal derlvatlves for B2 are derived .in Appendlx B.
. They are llsted as follows



o =0 amd oo =0 forr=l2 o (226)
OB, & 5 S o |
) 214N) 4 R , (22
1) _ .
B, G 5; S
: ' - (2.28)
dad  2(14x) AN - (228)
9°B, 1 1
doflaad T 4 T 201004y (2.29)
. 9*B, 1 " 1 501
:.vaaigz)aaigz) - DN 2HN)Y) (2-30)
6"By B, o L
oo " aaaep ° A B3
SUbStltUtmg (2 26) through (2.31) into (2.15) and (2. 16)
e 1 1 on 1NN o 1N |
L E‘ AB,} = —— +1 MW , 539
B { ,2} 4N (Il ) 1§ g (]_+>\ )( —{-)\]) ar (1+>\i)2‘_- ( )
Var{By} = —— N — — — | N2 (2.33)
ar{ 2} 2N ig 1+>‘1 2 1+>‘i' 2>\i ] ! ] } (2 33)

2.3.3 Discussions and Experimental Verlﬁcatlon

"Table 2.1 shows the dependence of E{AB;} and E{ABZ} on n and k

—N/n) for three different cases. In Case 1, samples from both classes are
drawn from the same source N(O,I), a Gaussian distribution with zero mean

and identity covariance matrix. In Case 2, the two distributions share a

: covariance matrix but differ in the means. In Case 3, the means are the
‘same, but the covariances are dlfferent As Table 2.1 indicates, for all three
cases, E{AB,} is proportional to 1/k while E{AB2} is proportional to
‘ n+1)/k Also, note that E{AB,} is the same for Cases 1 and 3 because the

‘sources have the same mean. Similarly, E{ABz} is the same for Cases 1 and
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Table 2.1 Sample bias expressions for the Bhattacharyya distance.

Case 1 Case 2 Case 3
N(0,]) N(o,1) N(0,]) N(M,I) N(0,I) N(0,4I)
m; = 2.56
; ;=0 m; = 0 (i1) m =0
X N =1 N = 1 N = 4
. B, 0 0.82 0

B, 0 0 0.11 n

¢ 50% 10% Depends on n

E{AB,} 0.1253—'1;Fl 0.125 “:1 0.08 2L



S 14

2 because the sources share a covarlance matrlx

Smce the trend is the same for all: three cases, let us study Case 1
closely.. Table 2.1 demonstrates that in hlgh dimensional space (n >> 1) the .
distortion due to the covariance estimate E{AB2} 10.125 (n+1)/k) _
dominates that- caused by the mean estimate ( E{AB} = 025/k Also,
v s1nce E{ABz} = 0.125 (n+1)/k, an increasingly large value of k is- requlred .
to  ‘maintain - a “constant value of E{B} E{B,} + E{B,}) as . th'e_
dimenswnahty increases. For -example, Table 2.2 shows the- value of k
requlred to keep the value of E{B} less than 0.223. The true Bayes error for
this case is 50%, and E{B} -0.223 gives an upper bound of 40% using
(2.18). Only 16 samples (3.9 times the dimensionality) are needed to achieve
E{B} = 0.223 in a 4-dimensional space, while 9396 samples (73. 4 times the
'dlmenswnahty) are needed in a 128 dimensional space. This result  is
‘sharply ‘contrasted with the common belief that a fixed muitiple of ‘the
dlmenswnahty such as 5 or 10 could be used to determine the sample size.

Slnce the theoretical results of (2.24) and (2.32) for bias and (2 25) and
(2. 33) for variance are approximations, we have conducted three séts of
fexperlments to Verlfy these results. The first two cases are Cases 2 and 3 of
Table 2. 1, whlle the third, which will be called Case 4, uses both mean and
covarlance dlﬂerences Case 4 uses an 8-dimensional Gauss1an data set
taken from [6] with a Bayes error of 1.9%, and N’s and m;’s hsted in Table
.2 3. £

For Cases 2 and 3, the dimensionality ranged from 4 to 64 in powers of
2, ‘and k was selected as 3, 5, 10, 15, 20, 30, 40, and 50. N(= nk) samples
‘were generated from each class according to the given mean and covariance,
and B1 and B2 were computed. This procedure was repeated 10 times
mdependently, and the mean and standard deviation were computed.
Tables 2.4, 2.5, and 2.6 present a comparison of the theoretical predictions
(first lines) and the means of the 10 trials (second lines) for Cases 2, 3, and 4
respectively. These tables show that the theoretical predictions of the biases
match the experimental results very closely. »

The third lines of Tables 2.4 and 2.5 present the standard deviations of
the 10 trials. Table 2.7 shows the theoretical predictions computed from
(2.25) and (2.33) for B; of Case 2 and B, of Case 3. Again the theoretical
1 predlctlons match the experimental results closely It should be noted that

. the variances for B2 of Case 2 and B, of Case 1 are zero theoretically. This

suggests that the variances for these cases come from the Taylor expansion
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Table 2.2 Values of k and N required to maintain E{B} -§ 0.223.

n 4 8 16 32 64 128
'k 3.9 6.2 10.7 19.6 39.6 73.4°
N=nk 16 50 172 628 2407 9396
Table 2.3 Statistics for Case 4.
i 1 2 3 4 5 6 7 8
>\i 8.41 12.06 0.12 0.22 1.49 1.77 0.35 2.73
m 3.86 310 084 0.84 1.64 1.08 026 0.01
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15

20

30

40

50

1.1101

1.0730
0.4688

0.9946
1.0941
0.3867

0.9080

0.9593

0.2240

0.8791
0.8802
0.1634

0.8647
0.8778
0.1356

0.8502
0.7901
0.0702

0.8430
0.7917
0.0786

0,8387
0.8524
0.1060

(2) Bl

1.0758
0.9933
0.3791

0.9740
1.0702
0.2745

0.8977
0.9277
0.1424

0.8723
0.8705
0.1493

0.8595
0.8891
0.1060

0.8468
0.8477
0.0992

0.8405
0.8251
0.1118

0.8366
0.8383
0.0404

16

Table 2.4 Biases of B for Case 2.

(B,=0.82)

16

1.0587
1.0502
0.2221

0.9638
1.0396
0.1542

0.8926
0.8421
0.1045

0.8688
0.8909
0.1053

0.8570
0.8261
0.0929

0.8451
0.8583
0.0712

0.8392
0.8578
0.0522

0.8356
0.8364
0.0515

32

1.0502
1.0754
0.1551

0.9586
0.9659
0.1091

0.8900
0.9128
0.0720

0.8671
0.8634
0.0794

0.8557
0.8685
0.0455

0.8443
0.8436
0.0361

0.8385
0.8343
0.0283

0.8351
0.8301
0.0475

(1st line:
2nd line:

64

1.0459
1.0825 3
0.0955

0.9561
0.9764 5
0.0733

0.8887
0.8911 10
0.0709

0.8663
0.8730 15
0.0493 k

0.8551
0.8361 20
0.0387

0.8438 N
0.8373 30
0.0366

0.8382
0.8444 40
0.0271

0.8348
0.8290 50
0.0287

0.2083
0.2546
0.0787

0.1250
0.1133
0.0266

0.0625
0.0803
0.0339

0.0417
0.0437
0.0243

0.0313
0.0389
0.0101

0.0208
0.0190
0.0063

0.0156
0.0170
0.0072

0.0125
0.0102
0.0037

0.3750
0.4106
0.0653

0.2250
0.2791
0.0785

0.1125
0.1179
0.0191

0.0750
0.0742

0.0146

0.0563
0.0566
0.0140

0.0375
0.0344
0.0082

0.0281
0.0282
0.0084

0.0225
0.0219
0.0062

Theoretical prediction,
The mean of 10 trials,
3rd line: The standard deviation of 10 trials)

16

0.7083
0.8930
0.0588

0.4250
0.5244
0.0581

0.2125
0.2280
0.0218

0.1417
0.1416
0.0143

0.1063
0.1079
0.0132

0.0708
0.0707
0.0097

0.0531
0.0561
0.0086

0.0425
0.0417
0.0041

32

1.3750
1.7150
0.0776

0.8250
0.9252
0.0302

0.4125
0.4365
0.0279

0.2750
0.2894
0.0257

0.2063
0.2099
0.0154

0.1375
0.1416
0.0098

0.1031
0.1034
0.0046

0.0825
0.0831
0.0060

64

2.7083 -
3.2875
0.1083

16250
1.8035
0.0775

0.8125
0.8578
0.0234

0.5417
0.5566
0.0170

0.4063
0.4129
0.0058

0.2708
0.2777
0.0062

0.2031
0.2061

.0.0063

0.1625
0.1650
0.0057
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Table 2.5 Biases of B for Case 3.

{2) By (B,=0) e (b) B, (By=0.11n)
n o
4 8 16 32 64 g 8 16 32 64
© 0.0833 00833 00833 00833 00833 05796 11326 2.2385 4.4503 8.8739
“'3 0.1435 0.1212 0.1051 0.1118 0.1061 3 07129 1.0732  2.4527 4.7841 9.3263
© 0.0971 0.0633 0.0415 0.0385 0.0160 0.1447 0.1653 0.2332° 0.1893 0.1642
'0.0500° 0.0500 00500 0.0500 0.0500 - 0.5263° 1.0366 2.0572 40083 8.1808
5 0.0489 0.0709 0.0579 0.0545 0.0605 5 0.5081. 1.0063 2.1341 4.1041 8.4000
0.0284 00314 00141 0.0209 0.0071 01119 01546 0.1129 0.0868 0.1209 .-
0.0250 '0.0250 0.0250 -0.0250 0.0250 04863 0.9646 19212 3.8343 7.8606
10 0.0192 0.0267 0.0266 :0.0276 0.0262 10 04901 09463 19345 3.8014 7.6630
0.0151 0.0124 0.0066 0.0079 . 0.0035 101016 0.0722 0.0759  0.0702 " 0.1206
0.0167 0.0167 0.0167 0.0167 . 0.0167. - 0.4730 ' 0.9406 = 1.8758 3.7463  7.4873
15 0.0159 0.0155  0.0207 0.0166 0.0181 15 0.5085 0.9675 1.9030 3.7952 75133
k' 0.0078 0.0049 0.0106 0.0046 0.0036 Kk 0.0686 0.0350 0.0567 = 0.0306 0.0658 .
" 00125 00125 00125 00125 00125 04663 09286 1:8532 3.7023 7.4006
" 20 00135 0.0156 00139 00120 00141 20  0.4708 0.9331 18277 3.7019 7.4049
’0._005"5 0.0071 0.0036 '0.0038 0.0025 ' }0.0658 10.0686° 0.0966 '0.0394‘ 0.0672
© . 0.0083 0.0083 0.0083 0.0083 0.0083 0.4596 0.9166 1.8305 3.6583 7.3139
30  0.0050 0.0097 0.0085 0.0087 0.0085 30 .0.4478 0.9033 18856 3.7053  7.3493
0.0037 = 0.0050 0.0030 0.0014 0.0013 10.0328 0.0646 0.0411 0.0884 .00531'
. 0.0063 - 0.0063 0.0063 0.0063 0.0063 0.4473  0.9106 1.78‘85 3.5769 7.1536
40 00066 0:0082 0.0056 00062 0.0065 40 -0.4713 0.8937 1.8058 3.6374 7.2596
© 0:0045 *0.0050 - 0.0021° 0.0014. 0.0010 0.0444 0.0328 0.0353 0.0563 . 0.0392
0:0050 0.0050. 0.0050 0.0050 0.0050 = ' 0.4543 09070 1.8124 3.6231 7.2446
50 0.0042 0.0040 0.0054 0.0049 0.0052 ~ 50 0.4456 0.8872 1.8116 3.6279 72212

0.0037 00017 0.0015 0.0008 0.0009 0.0562 0.0506 0.0362 0.0449  0.0610

(1st line: Theoretical prediction,
: 2nd line: The mean of 10 trials,
3rd line:  The standard deV1a.t10n of 10 trlals)
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Table 2.6 Biases of B for Case 4.

.20

.15

(a) B“l-_r
| Theoretical Experimental
k Mean | St. Dev."
3| 1.6453 1.5056 | 0.4995
5 1.4951 1.5104 | 0.1650
10 | 1.3824 | 1.3864 | 0.1997
15 1.3448 | 1.3365.| 0.1886
- 1.3261 1.3266 | 0.1712
30 |  1.3073 1.2884 | 0.1136
40 1.2979 1.3104 | 0.0658
50 | 1.2923 112997 | 0.0769
| Theoretical Experimental
k- N | Mean | St. Dev.
3 1.4431 1.5695 | 0.2081
5| 1.3002 .| 1.2287 | 0.1446
10| 1.1929 1.1638 | 0.0766
11572 | 1.1497 | 0.0523
20 | 1.1393 1.1255 | 0.0539
30 1.1214 1.1005 | 0.0337
40 | 11125 1.1093 | 0.0405
50 1.1071 1.1063 | 0.0276




Table 2.7 Predicted standard deviations.

19

B, for Case 2

B, for Case 3

k* 4 8 16 32 64 for all n
3 0.3531 0.2497 0.1765 0.1248 0.0883 0.1732
5 0.2735 0.1934 0.1368 0.0967  0.0684 0.1342

10 0.1934  0.1368 0.0967 0.0684 0.0483 0.0949

15 0.1579 0.1117 0.0790 0.0558 0.0395 0.0775

20 | 0.1368 0.0967  0.0684 0.0483  0.0342 0.0671

30 0.1117 0.0790 0.0558 - 0.0395 0.0279 0.0548

40 0.0967 0.0684 0.0483 0.0342  0.0242 0.0474

50 0.0865 0.0612  0.0432 0.0306 0.0216

0.0424
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terms higher than second—order and therefore are expected to be smaller' ,
than the variances for the other cases. This is confirmed by comparing the »
variances between Bl and B2 of Cases 2 and 3. Also note that the variances
bof B2 for Cadse 3 are independent of n. '

In ‘addition to the experimental verlﬁcatlon, When n=1, our theoretlcal
predlctlons agree with those presented for univariate Gaussmn dens1t1es in
bJa.ln [7]. Note that, because of the presence of cross-terms (e. RPON ) Jain’s
»umvarlate expression cannot be applied to the multivariate case by summing
' the contrlbutlons of each feature even when these features are mutually
1ndependent ' ‘ ’

2. 3 4 Verlﬂca.tlon of the Proposed Estlmatlon Procedure

‘ The proposed estlmatlon procedure followmg (2.6) was tested on a set of
6‘6_d1men,s1ona.l, millimeter-wave radar data. The samples were collected by
.rotatin‘gi'i' a Camaro and a Dodge Van on a turntable and taking
Vapp'roxima.tely 8800 readings. 66 range bins were selected and the resultlng
66 dimensional vectors were normalized by energy. The vectors were. then'
selected at each half-degree to form 720—sa.mple sets. The Bha,ttacharyya‘
dlstance_estlmated from 720 samples, B720, was 2.29 which corresponds to an
upper bound of the Bayes error of 5.1% (¢, = 5.1%). These 720 samples per
~class were then divided .into two sets of 360 samples. Since two sets were
available from each class, there were 4 possible combinations of selecting one
set from each class and forming a two-class problem. B was computed for
each combination and the average of the 4 cases was taken. The resulting
Bago was 3.27 (e, = 1.9%). Since g(N) of (2.6) is 1/N for this case, two
equations, Byyy = 2.20 = B + ¢/720 and Bygy = 3.27 = B + ¢/360, were
set up and solved for B. Note that we replaced E{B;5} by Byyo because
Var{B;5} was expected to be small from the experimental results for Cases
2 and 3. The resulting B was 1.31 (¢, = 13.5%). On the other hand, when
all available 8800 samples per class were used, Bggoo was 1.51 (¢, = 11.0%).

Although the radar data is not guaranteed to be Gaussian, the above
results indicate that the prediction of the true B from a relatively small -
number of samples (720 per class for the 66 dimensional space) seems
possible. ~Also, note that By, B720 and Bggyo are significantly different.
Without the proposed compensation, B360 and B720 could not provide a
useful upper bound of the Bayes error.
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2.4 Classifier Degradation

An even more important measurement in pattern recogmtlon is the
expected performance of a given classifier. The discriminant functions for
some of the popular clasmﬁers, 1nclud1ng the linear and quadratic classifiers,
are functions of M;, M,, >_J1 and Y),. Thus, they are the members of the
fam'il'y of "functions presented in Section 2.2. However, . unlike the
 Bhattacharyya distance, the degradation of  the expected classifier
performance due to a finite sample size comes from two sources: the ﬁmte‘ '
‘sample set used for design and the finite number of test samples. Thus, we -
need to study their effects separate_ly ‘

2.4.1 Eﬂ‘ect of Test Sample Size

‘ When the design and test samples are independent, the eﬁect of test
" sample size is well-understood. Let us assume that a classifier is given and ¢
' (1—1 2) is the true probability of error from class i («). In order to estimate

€, N; samples from w, are drawn and tested by the given classifier ‘and the
number of mlscla531ﬁed samples, %, is counted. The random varlables T and
7y are 1ndependent and each is binomially dlstrlbuted as [10]

s Pr{%l'= T Ty = 72}_'f—‘ T P?.{Tl = i}'

N;

T

= T GiTi(l—Ei)Ni_’_’i . ! . (234)

i=1

€ is estlmated by T/N and subsequently, the total probability of error is
' estlmated by - '

A

2 .
=i§iPi_N_‘i : RS . | ' (2.35)
where P; is 'the a priori probability of wi. ‘ vT_he 'expected value and: variance

are known o

E‘{ - o ‘ o o B ':, | »t,_k’.(2.36})}

Var{e} = Z P2 ————ei(l — &)

B (2.37)
11’>7Ni'.,’



'2.4.2 Expression of ¢ _ =

Thé effect of de51gn sample size is much harder to analyze In order to

. discuss this subject, we need to express the probability of error, €, in terms'
’ .of the c1a351ﬁer Let us assume that the classrﬁer is deﬁned as ‘

Wl

‘The characterrstrc functlon of h for w s

_E{erh o) = fe’“’h(XpI(X)dX o s

- where S 1ndlcates the entire n-dimensional space and Pl(X) is the den31ty'
functlon of X for w: Since the chatacteristic function of h is the Fourier
‘transform of the density function of h (except for the sign of Jw), the den51ty
:functlon of h for W, g;(X), can be obtained by thevlnverse Fouriér transform

. as

" ’._I‘he probabilities of error for Wl an'dw2 are

—00

- él..:=‘fq1 h)dh =1 — f ql b o o .,:'7(24“'1‘1)’,,

=] ’qZ’('h)'dh-' B BT '(2'.42)*

Accordlng to Fourler transform theory, the integration in the h-space can be
' converted to multlphcatlon by 1 /Jw in the w—space That i is,
| f o HO 17T B
ah 2 or

—00

o '"j“‘d (243);

B Insertmg g,(O) into (2. 41) and. (2 42), and rea.hzfng that (2. 39) guarantees .
(0) = 1 ’ ' . .

€= Plel + P262

LR 1 g

L == 4Py — dw — Py — ——d
2 + 1 2T _{o jw _ 2 o f jw: o

—OQ




When the de31gn sample size is finite, the parameters Y of the dlstrlbutlons'.

"~ are estlmated and the discriminant function is based on these estimated.

' parameters Y. That is, H(X) =h(X, Y) is a random variable shifted from -
h(X Y) Taklng the expectation with respect to Y, o : ‘

B HM Pup() ~ Papa X def215)

- Treatlng erh(X) as f in ( 3)

E{ewh(x} = e{“’h(x) + = ‘E § ay ay, E{Ay;Ay;)
- jwh(X).+,J_‘*_i ejwh(X Lk _hQ_()_ + ] __hj)_()__h()_()_ E{Ay,A 246
| e e | >=_J % 8}’13)’1 | v By, )y { Y1 y.l} ) :
- Substltutmg (2 46) into (2. 45) and realizing E{AE} E{G} — € N
. { 5} 27r _{o 'g ‘2 121 ng [5‘y(9yj , JWA 3}': ) 3}’] ' { YJ} :
xel‘”“‘x) [Plpl(X) Pzpz(X)]dX dw v‘ ” ) NCEON |

Eq (2. 47) is a very general expression for E{Ae} which is valid regardless of
the selection of h(X), P, and p;(X). The term E{AylAyJ} gives the effect of
the sample size, N. Therefore,. if (2.5) is satlsﬁed E{AE} can be expressed ‘

N cg(N) where ¢ is determined by h(X), P, and p;(X), and the proposed
T estlmatlon procedure following (2.6) can be applled Furthermore, xf h(X) is
o a functlon of M; and Ev g(N) becomes 1 /N .

2. 4 3 The Quadratlc Clasmﬁer for Gaussxan sttrlbutlons S o

o When a quadratlc classifier-is- des1gned from N training samples, drawn' g
o 'from two simultaneously diagonalized distributions, N(O,I) and N(M A), with

a priori probablhtles P, = P2 = 0.5, the dlscrlmmant functlon can be found B



Y
E(X)= %(X_M )TLl ( "M )—_(X_Mz)TLz ( _M2)

'_'HILI"_‘“&' ey

: :'. Where M; and ¥, are estlmated by (2.8). Formmg ¥ as in (2. 9) We on]y need'

to - compute 8h/c9m (9h/('5'oz(r Bzh/{)m(r c?zh/ﬁcu(r acv(') and
32h /Ba(r)(')ozj(, ), since E{AylAyJ} = 0 for other combinations. . -
Wlth M; and 3 given in (2.7), these partxal derlvatlves can be easﬂy. v

v »computed and are listed in Appendlx C Substxtutmg these results mto
(2.47), | |

[+ 1 E{Aydy)

g

. 1 L
=1

=N |(a+1) 2 { v

- Ry | 2
\ l I P 2 (X mi), (X m_])
+jwln + 5 ,El'-jg{){l xj + NN
é N q\-“™ . | » - *

- E{®) ~ gL | - | | | (2.50)
where | | o | |
’ f It (Xw)e“hx>lP1p1(X) Pzpz(X)]dX do o (s1)

That is, ¢g is determined by the underlymg dlstrlbutlons, and stays constant
for experlments with various sample sizes. Thus, as was proposed in Section
2.2, we may choose various values of N as N;,,Nz, and measure €.
Computlng E{¢} from several independent trlals, we may solve (2. 50) for e

: and Cq by a line fit technique. :
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“The above techmque was apphed to the radar data The entire 8800-' _
‘sample set was divided into two groups, each consisting of 4400 samples
~'When one group was used to design a- quadratic classifier and the other was

" used for testing, the error, 2,400, Was 17.2%. Then, 720 samples were

‘ selected from the design group and used to design a quadratlc class1ﬁer.
' The entire 4400 samples of the test group were tested, resulting in’ 6720 =
21, 4% ‘Such a large number of test samples was used to eliminate the -

o varlatlon of ¢ due. to test sample size. The same experlment was: performed

“for 360 samples Since there were two groups of 360 samples from 720
) samples for each class, four error estimates were obtalned they were

- averaged, resulting in &350 = 25.4%. &799 ‘and the averaged 855 Were used to -

" obtain € by solv1ng (2.50), restlting in € = 17.4%. - This result is very close
© 10 €400 = 17.2%, and confirms that we can predlct the potentlal
performance of the quadratlc classifier even if the avallable samp]e size 1s
' relatlvely small for a high dlmensmnal space. '

Although we do not need to- know the value of ¢q to conduct the above
A»experlment to estlmate €, 'cq. can be computed by carrying - through the

- 1ntegratlon of (2.51). Let us consider the simplest case, Case 2 of Table 2 1,

Cin Whlch p,(X) and py(X) are Gauss1an N(o, I) ‘and N(M I respectlvely |

o Then, ej“’h(X)pl(X) may be rewritten as"

o \‘/\/; e-ﬂf_sNA——%)NsWM,n <>
o h%oc) v\/; ”"’/SNw( —)Nx((1+w)M D s

where ,U—MTM N, (a, b) and NX(D K) are- Gaussmn dens1ty functlons of w
and X with the expected value of a and variance b for N, and the expected
vector D and covariance matrix K for Nx.

v Since f (wX) is a linear combination of x; x (a,b = 4) as i's"'seen in
(2.49), f f, XwNX( -)dX .is. the linear combmatlon of the moments of -

- NX(' °) The result of the 1ntegratlon becomes a polynomlal inw

‘.."’Yi_('.‘)--_ ﬁi(w) F ﬁ%jw): +ﬂ (n+5+3,8)(1w)3 x4 (n+5+2ﬂ)(w) :
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11, A S : ' o :
+ [-n(n+7)+(5n+9)ﬂ+ﬂ2](jw) + @_+2_1m o (284)
‘where — and + of F are for 1—1 and 2 respectlvely A‘gain,Athe
S H(WN,(,)dw is a linear combination of the moments of N,(*,)- Thus, c

qQ
for'P1=fP2 =0.5 is

— 1  -h
4\Varfp

Cq—

, . 2
n’ (1+ﬁ)xi+(—ﬁ———‘§——1) - (2.55)

E{e} can be predicted theoretically by e + ¢/N. Table 2. 8 hsts the
theoretlcal predictions for various N and k (=N/n) for the distribution
parar‘neters‘glven in Case 2 of Table 2.1. These parameters yleld g =2. 562
and ¢ =0.1 (10%). Also shown in Table 2.8 are experimental results
verifying these predictions. For each combination of n and k, N samples
were generated from each class and used to design a quadratic classifier
which was then tested on true distributions. Novak developed an algorithm
- which numerically computes the error of any discriminant function with a
quadratic form tested on two Gaussian distributions [11]. This procedure
was repeated 10 times. The second and third lines in Table 2.8 show the
means and standard deviations of the experimental results. The theoretical
prediction accurately reflects the experimental trends. Also, ‘the standard
deviations are small. Notice that as n gets larger, k must increase to
maintain the same performance, since cq is proportional to n? for n >> 1.
This conclusion agrees with Pipberger’s experimental results [6] and the
numerical tables in Raudys and Pikelis [3]. Together, these present design
guidelines significantly different from. the traditional rules of thumb which
suggest a particular fixed value of k for all values of n.

2.4.4 The Linear Classifier for Gaussian Distributions

The analysis of the linear clasmﬁer proceeds in a similar fashion.
 Fisher’s linear discriminant function is

h(X) = (Mz—Ml)TS‘IX—I——(MlTE"lMI—MEE‘IMz) | (2.56)

where Y= (Zl+22)/2 Again, we assume, without lost of generahty, that
M =0M;=M, ¥}, =Tand ¥, = A.

The partial derivatives of h can be computed as is shown in Appendlx
D. Thus, (2.47) becomes .
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2 o _.Tabié 2.8 Quadratic classifier degradatioh for Case 2..

4 8 16 - 32 64
0.1450  0.1689 02115 0.3067 04894

3. 0.1668 0.2041 0.2204 0.2673  0.3131
- 0.0351  0.0235  0.0289 0.0195 0.0133

01270  0.1414  0.1691  0.2240 . 0.3336
5 0.1403 0.1640 0.1734 0.2081  0.2554
. 0.0211 0.0186 0.0091 0.0057 0.0074

0135  0.1207 0.1345 0.1620 - 0.2168
10 0.1152 0.1240 0.1366 0.1573 = 0.1934
0.0081  0.0061 ~ 0.0070 ~ 0.0054  0.0085

», ~ 0.1090  0.1138 0.1230 0.1413  0.1779 - '-
15 0.1086 0.1184 0.1232 0.1415  0.1658
"k .0.0044 - 0.0061 0.0042  0.0053  0.0042 -

. 01067 01103 01173 0.1310 0.1584
20 01077 01105 01190 0.1393 0.1513
. 0.0021 00023 00051 0.0022 0.0032

0.1045  0.1069  0.1115 = 0.1207  0.1389
30 01054 01071 01114 0.1307 0.1365
. 0.0019 00021 0.0020 0.0019  0.0022

0.1034 0.1052 = 0.1086 0.1155 0.1202
40 0.1037 ©0.1057 0.1087 01150 01275
1 0.0024  0.0013  0.0013  0.0013 0.0018 -

01027 01041 0.1069  0.1124 01234
50 0.1025 0.1044  0.1068 0.1125 01221
00013 0.0010 0.0013 ~ 0.0009 0.0007 -

'(lstbli»ne': Theoretical prediction, 2nd line: The mean of 10 trials,
o -3rd line: The standard deviation of 10 trials) :
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E{e} = ¢ + N B - (2.57)
+00 Co o |
) v | , S
e =5 [ [t Xw)eJ hix)[ p1(X) — Pypy(X)]dX dw O (288)
: —00 S ' o :
fo(X,w) =3 + (2x—m; 4+ — : : J
el , ) iél 1"‘)‘ -( ) (N (1) Ei 1+
. . x2 | 'Xi_mi v2>\i_
+ L& 4y -+ ( )2
2 i-1 | (1+N)" . (14N)
. my(2x; m)(1+>\>\) st o ) e 5?},)
) x;—m;)+m;(2x; —1my ’
i§1 j‘z=§ (TN A+N) ‘ .

Again, ¢, 'is. determined by the underlyui'g dlstrlbutlohs, and € can be
estimated from experiments with various N. Also, since f,(X,w) is a linear
combination of x; (a_ 2), ¢, can be theoretically computed for Case 2 of
Table 2 1 resultmg in
1 s g ‘ o : R
Cop =—F—— ¢ 1+ —) n—1 1 2.,60)
o (L | | (

» ‘Eq. (2.60) was experimentally verified in the same manner as (2 55)
The results are shown in Table 2.9.

Comparison of (2.55) and (2.60) reveals an important distinction
between quadratic and linear classifiers. For Case 2, the two covariances
are the same. Thus, if the true underlying parameters are used, the
quadratic classifier of (2.48) becomes identical to the linear classifier of
(2.56). However, when the estimated covariances are used, ¥ #S, even
~ though 21'=22; Thus, the classifier of (2.48) differs from that of (2.56). As
- a resﬁlt, E{A¢} for quadratic is proportional to n®/N (=n/k) while E{Ae}
for linear is proportional to n/N (=1/k) as in (2.55) and (2.60) when n >>
1. A‘lthough it depends on the values of n and 3, we may generally conclude
that ¢, is larger than ¢, for n >> 1. This implies that many more samples
are needed to properly design a quadratic classifier than a hnear classifier.
Novak reported in [11] that the linear classifier is more robust (less sensitive
to parameter. estimation errors) than the quadratic c'l'assiﬁer_,'pér't"_icularly in
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-Table 2.9 Linear classifier degradation for Case 2.
n
4 8 16 32 64

0.1273 0.1287 0.1294 0.1298  0.1300
3 0.1437 " 0.1436  0.1336- 0.1302  0.1319
- 0.0365 0.0174  0.0135 0.0081  0.0040

01164 01172 0.1177  0.1179  0.1180
5 0.1165 0.1223  0.1207 0.1199  0.1207
- 0.0128 0.0153 0.0071 = 0.0048 0.0041

1 0.1082  0.1086  0.1088 0.1089  0.1090
10 0.1050 0.1089 0.1093  0.1086 0.1092
0.0030  0.0041 0.0024  0.0021  0.0019

0.1055 0.‘1057‘ 0.1059 - 0.1060  0.1060
15 0.1048 0.1080 - 0.1064 0.1058 ~ 0.1064
k - 0.0030 0.0032‘ 0.0027  0.0013 - 0.0012

©0.1041 0.1043 0.1044 0.1045 0.1045
20 0.1039 0.1039 0.1058 0.1040 0.1045
0.0021 0.0018 0.0026 0.0011 0.0008

01027 0.1029 0.1029 0.1030  0.1030
30 0.1036  0.1033 0.1027 0.1033 0.1028
0.0023  0.0021 0.0009  0.0006 0.0006

0.1020 - 0.1022  0.1022 0.1022 -0.1022
40 0.1022  0.1027  0.1021 0.1023  0.1022
0.0021 - 0.0014 . 0.0009  0.0005 - 0.0004

, 0.1016 0.1017 0.1018 0.1018 0.1018
50 0.1016 0.1021 0.1018 =~ 0.1018  0.1017
0.0011  0.0007 0.0005  0.0004  0.0003

(1st line: Theo_r'etic’al pi-edid_ibn, 2nd line: The mean of 10 frials, - “
~ 3rd line: The standard deviation of 10 trials)
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~high dimensional spaces.” Our results support his claim both the‘oretiea"lly
and experimentally.- | N o

Also note that for large n, ¢, /N is proportlonal to l/k ThlS 1nd1cates
that as far as the design of a linear classifier is concerned, a fixed multlple v
could be used to determine the sample size from the d1mens1ona11ty ThlS '
coincides with the conclusions of many reports in the past. However, (2 60)
indicates that the value of the multiple depends on [, whlch measures the
separablllty between two distributions with 2 common covariance matrlx '

2.6 Conclusrons

The maln purpose of thls chapter was to 1nvest1gate the effect of ﬁnlte '
sample size parameter estimates on the evaluation of a family of functions.
- To this end we have presented general expressions for the expected bias and,
'varlance in terms of the statistical properties of the parameter estlmates

Applylng these expressions to the Bhattacharyya distance has provxded o
1ns1ght 1nto ‘the relatlonshlp between the dimensionality and- the number of
tralnmg samples and their effect on measuring separability due to mean and
covariance sh1fts Applylng them to classifier evaluation equatlons we have
derived exp11c1t expressions for the degradation of the quadratic and hnear‘
classifiers. This provides a new guideline for the selection of the number of
samples or features necessary for a certain level of classifier performance
We have prov1ded theoretical evidence that, as the dimensionality i increases,
covariance-based sxmllanty measures and the quadratic classifier require an
increasing multlple of samples. We have also presented support for the |
clalm that the linear classifier is more robust.

Flnally, the form of the bias expression allows the dependence .on the

- sample size to be separated from the d1str1but10n-spec1ﬁc terms. Since the

d1str1but10n and dimension are fixed. for a given sample set, an empirical
~ approach was employed to use estimates of expected. performance  for
different sized samples to find an estimate of the asymptotic performance.
- This 'al'lowis small sample sets to provide accurate, unbiased estimates.
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g CHAPTER 3
ESTIMATION OF CLASSIFIER PERFORMANCE

3.1 Introduction

Evaluatmg the performance of a classifier is an important, yet dlﬂicult
roblem in pattern recognition. In practice, the true distributions are never
- known and only a finite number of training samples are available. The
designer must decide whether this sample size is adequate or not, and also
dec1de how many samples should be used to design the classifier and how

many should be used to test it. The effect of the test sample size is well- .

 known. However, the effect of the design sample size is hardly understood in
spite of substantlal effort in the past. -

The leave one-out method [13] is designed to alleviate one of the above
difficulties. - That is, it avoids dividing the available sample set into de51gn
and test, while maintaing an independence between them. Thus, the
procedure utilizes all available samples more efficiently, and produces a
‘pessumstlc error estimate. On the other hand, the resubstitution method, in
‘which the available samples are used for both design and test without any
modification, produces an optimistic error. Thus, using both methods
simultaneously; we can obtain an upper and lower bounds of the true
performance of the classifier.

More recently, Efron [14] proposed a re-sampling procedure, called the
bootstrap method, in which artificial samples are generated from the existing
samples, and the optimistic bias of ‘the resubstitution error is estimated from
them. : '

~ All these procedures work well experimentally. However, it was still
very dliﬁcult to analize them theoretically and to find the effects of sample
size and other parameters on the errors. Raudys and Pikelis [3] gave an
excellent review of work done in approximating the expected performance in
the parametric case. The difficulty came from the fact that the explicit
expression for the classification error was not available or too complex for
further theoretical development, except in the case of linear classifiers.
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~ In Chapter 2, we investigated the effect of sample size on a family of
functions, and found a manageable expression for the errors of cla331ﬁers,
including quadratic and Fisher linear classifiers. Using the expression, we
“computed the biases of these clasmﬁer errors due to a finite design set.

The obJectlve of this chapter is to apply the error expression of Chapter
2 to the varlous methods of error estimation mentioned above, and to offer a
unified and complehensive approach to the analysis of classifier performance
In Sectlon 3.2, after the error expression is introduced, it is applied to three
" cases: (1)a given classifier and a finite test set, (2) given test distributions
and a finite design set, and (3) finite and independent design and test sets.
For all cases, the expected values and variances of the classifier errors are
presented. Although the study of Case 1 does not produce any new results,
it is important to confirm that the proposed approach produces the known
results, and also to show how these results are modified when the de81gn set
becomes ﬁnlte, as in Cases 2 and 3. In Section 3.3, the error expresswn of
Chapter 9 is used to compute the bias between the leave—one—out ‘and
resubstitution errors for quadratlc classifiers. Note that in this case the
de31gn and test sample sets are no longer independent. Again, the expected
value and variance of the bias are presented. Also, because of its’ sumlarlty,
to the analysis of the leave-one-out method, the effect of outhers in design
samp]es on the classification error is discussed. Finally; in Section. 3. 4, the
‘theoretlcal analysis of the bootstrap method is presented for quadratlc
~ classifiers. The explicit error expression can be obtained for the optimistic
bias of the bootstrap resubstitution error. The “expected value of the bias
with respect to the bootstrap procedure is shown to be very close to the bias
between the conventional leave-one-out and resubstitution errors. The
- variance of the bootstrap bias also can be computed in a closed form.

‘Throughout all sections, the theoretical conclusions are experlmentally
verlﬁed The results of these analyses allow us to delve into the ‘theoretical
dlfferences between the methods and account for a series of frequently—
observed experimental trends
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3.2 Cla.ssiﬁcation Errors For Finite Samples

In thls section, we, will discuss the effects of finite test and design
samples on classification performance.

3.2.1 Error Expression

For the two-class problem, a classifier can be expressed by
, Bt e ,,

h(X) S 0 EE— e

where h(X) is the descriminant function of an n-dimensional vector X, and w
indicates the class i (i=1, 2) The probabilities of errors for this clasmﬁer
from w, and Wy are ' '

6= [ p(X)dX = gu(h)Pl(X)dX

h(X)>0
+0o
-/ [J—w + mo{)ehC pl(X)dde
S—o0 ) )
, +o0 wh(X) - R e
1 1 e’ _
==+ E_ff py(X)dwdX - (32)
52 ,
and 7
too _]wh x)

= | p‘2(X)dX= ff

po(X)dwdX (3.3)
| nX)<o 2 my, |
where p;(X) is the density function of class i tested by the classifier, and S
“indicates the entire n-dimensional space. The second line of (3.2) is obtained
using the fact that the Fourier transform of a step function, u(h), is
[1/jw + 7o(w)]. |

The total probability of error is

€ = Plel + P262

e e R
i B X)dwdX | (34
' 2 23 e JW

where P’i,iS‘ the a priori prrobability of w; and
B(X) = P1py(X) — Pypy(X) : - _ (35)



34

3.2.2 Effect of Test Samples

When a finite number of samples are tested by a given claés-iﬁer, pi(X)
of (3 5) may be replaced by -

())' | ,‘ | 68

PiX) =
. ij=1

where Xli ,,Xlg) are N; test samples drawn from pi(X)- Throug'houtv the
. chapter, boldface indicates randomness. ”
Thus, the estimate of the error probablllty is

+00 jwh(X) P P, N: - :
1 J
R [—‘ Ea(x x( ) — —N $O(X — X[#)]dedX

ol
2 2mg,, W 1j=1 | v 2 j=1
- PN P, N, - | -- |
B N Sy P | , (3
2 Nl'j=1’ N2 =1 , ; ) : ol
where ‘
' ' s jwh(X®) ‘
a.(‘) = - - dw ' : - (3.8)
Yoo o, jwo : : o R

The expected value of aj(i) with respect to 'Xj(i) (w.r.t. the test samples)

- 1 e

el—é— for i=1

=1, ’ - o (3.9)
| E—g for i=2 - | L
2 .

.»The second line of (3 9) can be obtained from (3.2) and (3.3) respectxvely
The second-order moments are also computed as

“Et{aj(i)z} = Et{[_' f

X) Ny
T dw]2} Et{[—Sgn BEO
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- o (3.10)

Et{aj(i)a}(f)} = 040 otherwise | (3.11)

~ where sgn(h) equals +1 for h>0 and -1 for h<0. Eq. (3.11) is obtained
because aj(') and aﬁ” are independent due to the independence between Xj(‘)
and Xlﬁ‘). ‘

From (3.7) and (3.9)-(3.11),
Eife} = % + Py — Pyoy
1 1 1
=35 T Py(e — ;) - Pz("z‘ —€) =¢ | (3.12)

” P12 (1 ‘P22 N
Vary{e} = —I\i—vart{aj N+ N—Vart{aj( N
Ng

P 1 1o  Pi 1 1 )
eh o i O S Rl
€(1—e€; C€o(1—€

N, Ny

That is, € is an unbiased estimate, and its variance has the well-known form
derived from the binomial distribution [10].

3.2.3 Effect of Design Samples

Tt is more difficult to discuss the effect of using a finite number of design
samples.. Although we would like to keep the formula as general as possible,
in this section a specific family of discriminant functions is investigated to
help determine which approximations should be used.

 Assume that the discriminant function is a function of two expected
vectors, M; and M,, and covariance matrices, 2 and Y,. Typical examples
are the quadratic classifier and Fisher’s linear classifier:
’ [y 1
| Z)1 |
| |
IZ2I

h(X) = é—(X—Ml)TE{l(X—Ml) . —;-(X—Mz)Tz;l(x—Mg + %m (3.14)



-~ hX) = (M2—-M1)TZJ IX + —(MEZJ“IMI—MEZ—IMZ) S (3 15)

‘Where Y= [21+L2] /2. When only a finite number of desngn samples are_'"
avallable and M; and % are estlmated from them, : :

R 50— X) = zo“‘) S em

| ,where h(X)—h(X MI,MZ,LI,Lz) h(X)—h(X Ml,M2,ZI,22) and o(k) s the Kke-th
order term. of the Taylor series expansion in terms of the variations: of - M.
’and % If the design samples are drawn from Gaussxan dlstrlbutlons, and
s M and %, are unblased estlmates (e.g., the sample mean and sample :
" covarlance), it was shown in Chapter 2 that

Ba{ol) =0, Bafo®)~ 1/, R0 = 0, B0}~ 1/547)

_Where Ey 1ndlcates the expectation with respect to the de31gn samples, and

- N is the number of design samples (Whlle N 1nd1cates the number of test k

s samples) Therefore, from (3 16) and (3.17),

 Eg{Ah(X)}~ 1/4 , Eq{Ab? X)}~ 1K Ed{Ah3 X)}~ 1/Jv :

- Ed{Ah‘*(X)}~ R @y

e Assumlng that JV is reasonably large, we can ehmlnate E{Ahm X)} for m

o “ 'larger than 2.

o Thus, the error of a random classnﬁer for glven test dxstrlbutlons Hi
~expressed by (3. 4) :

e=L —-l—f f (X)dde (319
' The expected value € wit h espect to the des1gn samples is
Sl e B R A
o e=Eq{e} = -;— f f { } X)doudX 0 (3.20)
L . S-—oo R :

=¢+ De -

where
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Ke = f f JAh X) 4 Ah2 X))l ®5(X)dwdX | (3.21)
. S —00 : : : )
The approximation from (3.20) to (3.21) was made by us‘ing'

R - eij(X)eijh(X)E R -I-ijh(X) i (jw}z‘ ARYX).

| 'When h(X) is -the Bayes classifier, € must be a minimum. Appendxx E glves
the proof that & of (3.19) is indeed larger than € of (3.4). '

‘ When two Gaussmn distributions are classified by the quadratic or-
linear classifier whose parameters are estimated from a finite sample set, Xe
of (3.21) can be computed. Explicit solutions for the case with
- M;=0, My=M and >;=2%,=] are given in Chapter 2. '
The variance of & may be computed from (3.19) and (3.20) as

Vard{e}_ # ;f: f:E {erJl:ij@ﬁ(Y)} f’(X)f’(Y) ey dX iy
ey
| -zjz J g{+z+fo E4{Ah(X)Ah(Y)}e "M E05(X)5(Y)duy depdXdY
=!xsnyd{Ah( ) 0OV OIBY )XY
_ [ | Ed{AhX)AR(Y)}H(X BYXAY o (322)

h(X)=0 K(Y)=0

where the derivation from the first line to the second line is given in

Appendix F. Eq. (3.22) indicates that the integration is carried out along :'

the classification boundary where h(X) = 0. When h(X) is the Ba.L‘y'e's'
classifier, $(X) of (3.5) must be zero at the boundary. Thus, (3.22) becomes
0. Since we neglected the higher order terms of Ah(X), Varg{2} is not zero,
‘but proportional to 1/4 % When h(X) is not the Bayes classifier, $(X) # 0
at h(X) = 0. Thus, we may observe a Variance dominated by a term
proportional to 1/# due to the fact that Eq{Ah(X)Ah(Y)}~ 1/¥ .
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In order to confirm the above theoretlcal conclusion, an experiment has
been run for the quadiatic classifier between two ‘Gaussian dlstrlbutlons
which share the same covariance matrix I and differ in the means to give a
Bayes error of 10%. The dimensionality n was varied from 4 to 64 in powers
of 2 and the ratio of the sample size and the dimensionality k(=N /n) was
varied from 3 to 50. N (=nk) samples were generated from each class
according to the given mean and covariance, and M and X, were ‘estimated
from the generated data using the sample mean and sample covariance.
The quadratic classifier was designed by (3.14). Testing was done by
Novak’s program which numerically computes the error of any discriminant
function with a quadratic form tested on separately specified Gaussian
distributions [11]." This procedure was repeated 10 times. The second and
third lines of Table 3.1 show the average and standard deviation of these
experiments. The first line shows the theoretically computed errors from
(3.20) and (3.21). Also, Fig. 3.1 shows the relationship between 1 /k( —n/N )
and the standard deviation. From these results, we may confirm that the
standard deviation is very small and roughly proportional to 1/./V 'lhus,
the variance is proportional to 1/A" *. 2 '

An intuitive reason why ‘the standard deviation due to a finite number
of design samples is proportional to 1/N¥ may be observed as follows. When
the Bayes classifier is implemented, A€ is always positive and thus generates
a posmve bias. As (3.21) suggests, the bias is proportional to 1/./\/' Since

Ae varies between 0 and some positive value with an expected value a /.N
(where a is a positive number), we can expect that the standard dev1at10n is
also proportlonal to 1/A .

In addltlon, it should be noted that design samples aﬁect the variance
of the error in a different way from test samples. When a classifier is ﬁxed
the variations of the two test distributions are independent. Thus,.
Var,{¢} =P 2yar{e,} + PjVar{g,} as is seen is (3.13). On the other hand,
when the test distributions are fixed and the classifier varies, €; and €, are
strongly correlated with a correlatlon coefficient close to -1. That is, when
2, increases, &, decreases and vice versa. Thus, when PI—PZ,Vard{e} (0.5)
E,{Ae2}+H0.5)E4{ Aef}+2(0.5)Eq{Ae; A} = (0.5)* [Eq{ A +E4{(—A€)?}
+2E,{A€,(—A€;)}|=0. The covariance of & and & cancels the individual
variances of &; and &,. ‘ o



39

~.Table 3.1 Q};:adratié classifier degradation for I-I (%).

n
4 8 16 . 32 64

1450  16.89 2115  30.67  48.94
31668 2041 2204 2673 3131
351 235 289 195 133

12.70 14.14  16.91  22.40  33.36
5 1403 1640 17.34  20.81  25.54
2.11 1.86 0.91 0.57 0.74

11.35  12.07 13.45  16.20  21.68.
10 1152 1240 13.66 1573 1934 -
0.81 0.61 -0.70 0.54 0.85

10.90  11.38 12.30 14.13 17.79
15 10.86 11.84 12.32 14.15 16.58
k 0.44 0.61 0.42 0.53 0.42

' 10.67  11.03 11.73 13.10 15.84
20 10.77  11.06 11.90 = 13.93 15.13
- 0.21 0.23 0.51 0.22 0.32

10.45 10.69 = 11.15 12.07 13.89
30 - 1054 10.71 11.14 13.07 13.65
0.19 0.21 0.20 0.19 . 0.22

10.34  10.52 10.86 11.55 12.92
40  10.37 10.57 10.87 11.50 12.75
' 0.24 0.13 0.13 0.13 0.18

10.27 10.41 10.69 11.24 12.34
50 10.25° 10.44 10.68 11.25 12.21
- 0.13 0.10 0.13 0.09 - - 0.07

‘(lst line: Theoretical prediction,
2nd line: The mean of 10 trials, v
3rd line: The standard deviation of 10 trials)
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- 3.2.4 Effect of Independe__nt Design and Test Samples

. 'When both design and test sample sizes are finite, the error is expressed

. as '
. 1Py Ny v _ P N‘K(z) ~
== +—yal) - —Lyad o (3.23)
| 2 N5 Ny o . "
where ,
+o0 jwvﬁ(x(')) . :
al) = L& "7 4 | : 3.24)

That is, the randomness comes from h due to the finite de51gn samples as
" well as from the test samples X()

* The expected value and variance of & can be computed as follows:

F=B{R) =ER 8= - 4+P@-P (329)
whefe ' o
' . p St Ed{ejwﬁ(X)} 'v
&= —[ [ 2 (X)dwdX
4T o £_foo jw Pi(X)

,'61——?21— for i=1

_ | S (3.26)
1 — : |
—2——62 for i=2 .

Substituting (3.26) into (3.25), |

This average error is the same as the error of (3.20). That is, the bias of the
error due to finite design and test samples is identical to the bias due to
finite des1gn samples alone. Finite test samples do not contribute to the
blas ' ' ‘ '

The ve;riance of 2 can be obtained from (3.23) as

Var(2) = P Var(af) + (1—y)Covia e}
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+ P2 Var{a®} + (1———)CoviaPa{)]
Ny = ° vN2,

_ 2P,1P2COY{€¥:j(l)&]£2)}‘ o : | i (328)
.’vw.herev . : ‘
A Z B [ S duf?) — (6 — 2
Var(ef)) =B [ Sl — 6 )
1 _ e Lly
i Gty
—gu-%) - (3.29)

4ot | {anh (%) Jwah(Y)y

| _cov{aj( _ﬂz— sf xsf_{o _f lesz' pi(X)pe (Y)dw dupdXdY
~&5, . 3

' 'The second line of (3. 29) can. be derived from the first line as is seen in -
~ (3.10). From (3.30), a portion of (3.28) can be expressed as

2Cov{a(1 aM} + PiCov{aDa )} ~ 2P-1P2Cov‘{aj(l oy

+oo+oo d{el“’lh( )er’h(Y)}

ffff

SS ~00—00 .- jwljwi .

(X)p(Y)dwldwdedY (e_%;)?

= Val‘d{f} . o : i | v - | : (3.31)
, where Vard{e} is the same one as (3. 22) On the other hand, (3.30) can be
_ approximated as : - " ;

+00+00°

fff fEd{Ah Ah Y)}

SXS—oo 00~

« IlZ

| Covv{&j(i)&
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e )J”’h (X)pg (Y)dwldwdedY
= [ [ By{Ah(X)Ah Y)}p X)dXdY
B(X)=0 h(Y)=0
L o (3

, Eq (3: 32) is’ proportlonal to’ l/JV because Ed{Ah Ah Y)} is proport10na1
to'1 /./V' : ‘
Substituting (3.29)-(3.32) * into (3.28), and ignoring the ‘terms
proportional to 1/N , A , '
RO G(1—6)  _,6&(1-8)

© Var{e} = P2 N +PIEGT + Vane} o (3:33)

" As we dis'cusged in Section 3.2.3, Vard{é} is proportional to 1 JN 2 when
the Baye's_gcl-a.ssiﬁer is used for Gaussian distributions. Therefore, Var{%}-of
~ (3.33) is dominated by the first two terms which are due to the finite test
set. ‘A ‘comparison of (3.33) and (3.13) shows that the effect of the finite
design set appears in €, and €, of (3.33) instead of ¢ and ¢, of (3.13). That
is, the blas due to the finite design set increases the variance proportlonally
However, since € — €;~ 1/, this effect can be 1gnored It should be noted
that Vard{.e} could be proportional to 1/4 if the classifier is not the Bayes.

Thus, we can draw the following conclusions from (3.27) and (3. 33)
When both design and test sets are finite,

1. the bias of the clas51ﬁcatlon error comes entlrely from the finite design
. set, and ’

2. the variance comes predominently from the finite test setk.

) 3.3 Dependent Design and Test Sets :
‘ In the previous section, we assumed that the design and test sets were
finite and mutually independent. When only one set of samples is available,
independence can be achieved by using either the holdout method or the
leave-one-out method. In the holdout method, the available sample set is
- divided into two groups; one group is used for designing the classifier and
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" the other for testing the classifier. The ratio of design sample size to test
sample size must be determined by the desired bias and variance of the
_ estimated error, as derived in Section 3.2.4. On the other hand, in the
leave-one-out method, each sample is tested by the classifier which was
designed using the remaining samples [13]. With N avallable samples, the
test sample size is N and the design sample size is N—1(= N).
Experimental results have conﬁrmed that the holdout method wrth equal
sample sizes for design and test grves the same bias and varlance as the
. leave—one-out method.

It has been shown that the above procedures tend to give a larger error
than the true one. The true error is the error of the classifier designed using
the true distributions, tested with the true dlstrlbutlons On the other hand,
an error smaller than the trué one can be obtained by the. resubstitution
~ method, in which all available samples are used to design the classifier and -
the same sample set is used to test the classifier. Since the resubstitution
v‘and leave-one-out methods can be carried out s1multaneously without

‘ add1t10nal computatlon time [10], it is a common practice to compute both
_ estlmates to obtain upper and lower bounds of the true error.

When the resubstitution method in used, ‘the design and test sample
sets are no longer independent. In this section, we would like to address the
) dependency of the design and test sample sets. The bias and varlance of the
resubstltutlon error and the statistical properties of the bias between the

v resubatltlon and leave-one-out errors depend on the' classifiers to be used.

Therefore, _m this sectlon, we limit our discussions to parametric claSS1ﬁers
such as the quadratic and linear class1ﬁers Extendlng this. dlscusswn to
other types of class1ﬁers could be handled in a similar way. '

3 3.1 Modlﬁcatlons of Mand &

Let us. assume that the expected vector, M and covariance matnx, Z,
of a distribution are estimated from the available sample set XInXN—l by
: the sample mean and sample covarlance as

CoweEYx o e

>l=

E =‘_ 1 -g( —M)( 7 )TV"-} - . . (3.,35)"

When;an;additional s‘ample_‘Y 1s‘_11sed, ‘the above es‘timates are .modiﬁed‘as :
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R %[( —1NLHY) = M+ N(Y-—M’) ' (338
Y,_- i - Ng_l(Y_M) . : o (337) _
‘and'-» ' - |
| " _Z_:R N_II”[NE_J (X—Mp)(X—Mp)T + (Y-Nig)(Y—Mg)"]
=% - 1—\1—_—12 + N(Y—M)(Y-—M)T . (3.38)

- The deviations of these estlmates from the true parameters, M and J], are

AMR — AM + = Ly_M-AM) = AM + S-M) (3.39)
ATy = AN — N_ N AR + N( Y—M—AM)(Y-M—AM)T *
=AY - Ly Lyl —M)T 3.40

e G

AM and AY assumed to be proportional to 1/N and apprOximations were
made by ignoring 1/N? and higher-order terms. |

With this approximation, a function of MR and Xp, (MR, Zr), can be
expanded around f(M,%) as

(¥, 5) = f(M )+ 5 or AMR +ir 5;

In the general Taylor series expansion, components of the second-order terms
are also proportional to 1/N. Using (3.39) and (3.40),

AYp - (3.41)

AMRAMg = AMAMT‘+2§'(Y-—M)AMT | (3.42)
AERAER A% AST - %[Z—(Y—M)(Y—M)T]A‘ZT  (343)

AMRAzg. =~ AM AZT - NAMET+ AM( —M)(Y— )T
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+ —;I—(Y—M)AZT (3.44)
In the above expressions, each 1/N term contains a random variable ‘which
is assumed to be proportional to 1/N, making the entire term proportional
to 1/N2. Thus, (3.41) is consistent with the approximations made by
ignoring 1/N2»and higher-order terms.

Sibstituting (3.39) and (3.40) into (3.41),

(V%) = M) + §£AM 4 tr %AZ}
ofT of - .
N Vit M) + tr-{(Y —M)(Y—M)T—L}]»
= f(M,X) + [ (Y -M) +tr {(Y—M) Y-M)T-X}]  (3.45)

Note that the difference between the two random variables f(MR,ZR) and
(M ¥) is not random, as long as Y is fixed and the first-order approx1matxon
is valid:. - '

Example: Let us examine the case where { is given by

f(M,Z)=—;-(Y—M)TZ‘1(Y— )+ Em,z' (3.46)
Then,v | |

ot .

L iy R (3.47)

Of ey anTy-1 o, s

o= MM T O (34g)
» \
Therefore, , | o

(N, Zg) — f(M,E) = ——;ﬁ[d‘*(YHn] o  (3.49)

where

a*(Y) _ (Y—M)TZ-I(Y—M) . . | - (3.50)
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3. 3 2 Quadratlc Classifiers .

In this section, the quadratic classifier of (3.14) is dlscussed Using
(3.46), (3.14) can be rewritten as -

| h(X) = {(My,2) — (M, %) o ' - (3:51)
Wlién a sample X from w; is tested in the resubstitution method, k |

: l‘;R()() = f(MiR7EIR) s f(M2?22)

= 101,5,) — 400 — 01, %s)
= hy(X) — (Xt forXew, (3.52)
Likewise, Whé»n X comes from w2, o |
ﬁR(X) = hy(X) + ——[di(X J+n] for Xew, (3.53)

zN2

where hg(X) and hj(X) are the discriminant’ functions for the resubstitution
and - leave-oné-out methods, N; is the sample size for « and.
d7(X) = (X—M) 57 (X-My). |
, NOW, the resubstitution error can be computed by (3.23) and (3 24) Wlth
h of (3.24) replaced by hy of either (3.52) or (3.53) dependmg on i=1or 2.

The result is

. Py Ny g too juhn(X{") P, N | *+o° thR(X< 2) ,

oL DA P D

2 Nl j=1 27 —00 Jw . N2 j=1 27 oo jw .

Py N P Ny o
N111 N2jélj' '
where

” +00d (X )+n ok X( -

ﬁj(l) = -2_7r —2-—— e o ) (3.55)

In order to obtain the second line of (3 54), an approximation of
efua/N 1+jwa /N is used. Also, note that, in the leave-one-out method, the’
design and test samples are independent and, therefore, the discussion of
Section 3.2.4 can be applied without modification. HoWever, in the leave-
one-out method, the number of design samples (¥ ;) is always the same as
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the number of test‘samples (N;)-

Now, the statistical propertles of the bias, b——EL—ER, can be studled
The expected value of &, is

wo=DnaBa  ow
where .
+Ood X)+n w s
ng {J hLIX)} (X)dwdX - (3.57) |

. And, the »variance of &, is

Var{g,} = 'N—‘[—'—‘Val'{ﬁ } + —-—-)Cov{ﬁ ﬁk }

P2

+ N—[——Var{ﬁ 4+ (1 —)COV{ﬁ By
9P,P, o | B
NN, Cov{ﬁ By | . | (3.58)

The explicit expression for J; of (3.57) can be obtained by using the
same technique used to compute € in Chapter 2, if two distributions are
Gaussian with M; =0, My=Mand ¥, =X, =1 and the quadratlc clasmﬁerv
N of(1_4) is used. Foer-*Nz-—N ' : -

Eqa{ J“""‘X)} = el 1 ¥ —1\? a] = eJ‘“h(x) : (3.59)
dh®py () = 2L & N, (=3 L T ) N, JUJM I)  (3.60)
| MM 2’ M'™ RS
th Ve e gl 1, s N
€ p (X) M € » Nw( 2' > MTM) Nx((l + JQ)M:I) (361) .
where a is a constant given in Chapter 2. N,(d,k) and Ny(D,K) are

‘Gaussian density functions of w and X w1th the expected value d and
: _variance k for N, and the expected vector D and covariance matrix K for
: NX Thus, the integration of (3. 57) merely involves computing the moments |
of the Gaussmn dlstrlbutlons of (3 60) and (3. 61), resultlng in |
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. -M™ . . A ,
'Bi =~ — 1 8 [n2+('1+MTM/2)n+[(MT_M)2/16—MTM/2’—1 }3,62)
2 VoM™
The first lines of Table 3.2 show the values of E{e} computed from- (3.56)
‘and (3.62) with M'™M = 2.56? and P, = P, = 0.5 for various k (= N/n) and
n. The theoretical values are compared with the experlmental ones in the
second lines. The experiments were conducted by generating N samples,
estimating M; and Y}, designing the quadratic classifier of (3.14), estimating. :
the resubstitution and’ leave-one-out errors and computing the bias between
them. The experiment was repeated 10 times and the average and standard
idev1at10n of the estimated biases are listed in the second and third lines. As
Table 3.2 shows, the first and second lines are close, confirming the vahdlty
”of our discussion.

, An 1mportant fact is that from (3.56) and (3. 62), E{eb} is roughly.
~ proportlonal to nZ/N for large n. A simpler explanation for this fact can be
obtained by observing (3.57) more closely. Assuming (3.59) and carrylng
B 'through the mtegratlon of (3.57) w1th respect to w, ’

o ﬂ. = S{ ii_gzli_g §(h(X))p;(X)dX
5 dA(X) ,+n» ' -
T, T 2 | 9
h(X) =0

It is well known that d2(X) is X*-distributed with an expected value of n and

- standard deviation of \/2—11,- if X is Gaussianly distributed. Particularly
- when 1 is large, d?(X) on the classification boundary should be n times some
number not far from 1. That is, d}(X) is close to n’. Thus, B should be
proportlonal to n? : ' , ‘

‘ The analysis of the variance (3. 58) is more complex. Though the order
of magnitude may not be immediately clear from (3.58), our experimental
results, presented i in Fig. 3.2 and the third line of Table 3.2, show that the

. standard “deviation is roughly proportional to- 1 /N. The intuitive

explan_atlon should be the same as that presented in Section 3.2.3.
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Table 3.2 Bias between leave-one-out and resubstitution errors for LI (%).

n

4 8 16 32 64

3 © 900 13.79 23.03  41.34 771.87
13.33  15.42 19.69 22.86  30.29
703 522 412 426  3.40

5 540  8.27 13.82 24.80 46.72
750  9.25 1075 = 17.75  24.47
~.4.56 3.24 228 2.69 1.53

10 270 414 691 1240 23.36
225 463 - 634 958 1601
1.84 202 159 161 124

15 180 276 461 827 1557
133 313 442 0 Td44 1192
k 090 129 087 047 118

20 135 . 2.07 3.45 6.20 | 11.68
1.38 2.09 3.14 5.05 = 9.56
1.05 1.00  0.64 0.53 0.45

30 090 138 230 413 779
063 158 239 394 641
045 052 041 035 033

40 0.67 1.03 1.73 3.10 5.84
-0.44 1.08 ©  1.55.  2.96 5.21
~0.30 . - 0.39 0.30 0.30 0.36°

50 054 - 083 138 248 467
030 075 138 229 42T
023 023 037 025 025

(1st line: Theoretical prediétiOh,
~ 2nd line: The mean of 10 trials,
3rd line: The standard deviation of 10 trials)
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Figure 3.2 Bias between Leave-one-out and Resubstitution Errors for I-I
(Standard deviation vs. 1/N for n=38)



. 3.3.3 Effect of Outhers .

Tt is widely beheved in the pattern recognltlon ﬁeld that class1ﬁer
; performance can be 1mproved by removmg outliers, pomts far from a class’s
71nferred mean which seem to distort the distribution. The approach used in

g ~Section 3.3.1 to’ analyze the difference between the resubstitution #hd leave-

‘one-out parameters can be extended to handle the effect of a smgle pomt of
the des1gn set on classifier performance

~ As in (3.34)-(3. 38) assume that N-1 samples have been ased to estlmate '

" a distribution’s parameters: (M ¥) and that these estimates will now be

modlﬁed by including a new pomt Y. These new estimates (M ,Ly) are

'deﬁned by (3. 36) and (3. 38) "The approxxmatlons in (39)-(44) are still valid,
50 (3 45) can also be used. For the quadratlc claSS1ﬁer, (3.47) and (3.48) can
. ‘be substxtuted 1nto (3. 45) to y1eld . v '

(M ‘_y’_‘y)'"'_“( 1, ) = Ei’(fl_ (Y— M)TE (X—M)+(Y M)TZ_ (Y—M)
—{(YeM)Tzfiv(x—M)}? 4 MM

_ L
N

'The correspondlng change in the discriminant functlon for Yewl can- be
' found by 1nsert1ng (3.64) into (3. 51)

(X) = f(NIIy’ ly) f(M2xEZ)

v '-‘»<3}164)

R .%' f(Ml,Z.l)+ (XY) —‘f(Mz, 5)

- ﬁ(X).+ —I;gl.(x Y) for Yeuy e

V ‘l_.lkew1se,v when Y comes’ from w2, . | ) | | | | |
| | “ y(X) —___-v ( ) : N (XY) for» qub)zb o | | : | (366)
N : Vlhére él indicates fhat M, and & are used instead'cf M and "E‘ in (3.64). |

o~ When this modified cla331ﬁer is used on. an 1ndependent set of - test .
samples, the result is; usmg (3 19),
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1 jw .
S 1+ £5g,(X,Y)|p(X)dwdX
10 Rl
=2 & — [ [ P —g (X V)p(X)dwdX
2T 5 "0
1 1
= 2+ —[ [ M®—g(X,Y)p(X)dwdX | (3.67)
27 5 "o N

where + and i=1 are used for Yew; and — and i==2 are for Yew,. The

X) in terms of eEX)

approximation in the last line involves expressing ej‘“f’
and ignoring terms smaller than 1/N. Unlike the case of the resubstitution
error, (3.67) keeps p(X) in its integrand. This makes the integral in (3.67)
particularly easy to handle. If the quadratic classifier is the Bayes classifier,

the integration with respect to w results in

a 1 ”
| Ag, = =+ f(?(h(X))T\I—gi(X,Y)p(X)dX =0 (3.68)
S : . : )
That is, as long as p(X) = 0 at h(X) = 0, the effect of an individual sample
is negligible. Even if the quadratic classifier is not optimal, A#; is
dominated by a 1/N term. Thus, as one would expect, as the number of
samples becomes larger, the effect of an individual sample diminishes.

These results were confirmed in three sets of experiments. The first was
the mean difference case used earlier. In the second experiment, ‘the two
classes share a mean, but have different covariances (I for wy, 41 for wy).
The third experiment used Standard Data from [10] where the classes differ
widely in both the mean and the covariance. Eight-dimensional data was
used in each case.

The experiments were run in the following manner. N samples were
generated for each class. Then, an additional sample, Y, was generated
from class 1 and scaled to a specific normalized distance from the mean.
Classifiers were designed with and without Y and were tested on the true
distributions using Novak’s program computing the performance of a
classifier with a given test distribution [11]. This procedure was repeated 10
times for each particular value of N. The entire process was run a number
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~ of . times Wlth varying dlstances Experimental results are presented in
Tables 3.3, 3.4, and 3.5. Notice that even when the squared dlstance is
much larger than its expected value, n, the outller s effec t. is stlll negllglble :

3. 4 Bootstrap Methods

As an alternatWe to the holdout and leave-one-out error estimates,
~ Efron [14] has suggested using a bootstrap technique to estimate the
optlmlstlc bias of the resubst1tutlon error and, in turn, to estimiate the
expected error rate for a given decision rule. In the bootstrap procedure,
one assumes that the existing sample set represents the true distributions.
That is, these density functlons eons1st of impulses located at the existing
' sample pomts :

P X) == 2 5(X—X(‘)) i=1,2 o (3.69)

where * indicates somethlng related to the bootstrap operation. Note that
~in this section, X('l is con51dered a given fixed vector and is not random as it
was in the previous sections. _ |
"When samples are drawn from pl*y(X) randomly, we select only the
existing sample points with random frequencies. Thus, the N; samples

drawn from Pi (X) form a density function '
P (X) = g; o) ‘6(X—X-('P)) G=12 o (370)

i , , :

Wlthm each’ class the 0(1)’s are 1dent1cally distributed under the condltron '

’ Z 9 = 1 Their statlstlcal propertles are known [14]

- B{6) =N e L - B
E{6o{)} = N O — i) o . | (3.72)
E{a.(i)all,")} =0 foriz¢ o (3m)

» The holdout error in the bootstrap procedure, E}*I, is obtained by
- generatmg samples, designing a cla351ﬁer based on p,( ) and testing p,*(X),
o On the other hand the resubstltutwn error, eR, is computed by testing
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Bias between error without outlier and error including outlier

for various outlier distances from the class- 1 mean for I-I (¢* =

10%).

ERROR WITHOUT

BIAS BETWEEN ERROR WITHOUT OUTLIER
AND ERROR INCLUDING OUTLIER (%)

N OUTLIER (%) d?=n/2 | d®=n | =20 | &®=3n
24 20.18 0.519 0.689 0.769 0.762
40 15.61 0.124 0.211 0.279 0.274
80 12.04 0.029 0.035 0.027 1 0.018
120 11T 0.008 0.012 0.011 0.003
160 " 11.04 0.006 0.010 0.014 0.013
240 10.74 0.004 0.006 0.010 0.001
320 10.53 10.004 0.006 0.009 0.011
400 10.34 -.001 -.001 -.003 -.001
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Table 3.4° Bias béetween error without outlier and ‘error including outlier
. for various outlier distances from the class 1 mean for. I-41 (e*

= 9%).
S - | BIAS BETWEEN ERROR WITHOUT OUTLIER
ERROR WITHOUT |  AND ERROR INCLUDING OUTLIER (%)
‘N | OUTLIER (%) | d®=n/2 | d®=n =2n | d®=3n
24| - 2353 C 0792 | 1213 1.451 1.356
40 | - 16.19 - 0:222 0.423 | 0.619 0.658
80 |  1L79 | 0.025 0.060 0.091 0.083
120 | 10.83 0015 10.032 | 0047 | 0.045
160 | - 10.32 003 | . 0005 | 0014 | 0013
| 240 992 | 0.003 0.012 0.025 0.034
320 | 9.52 | 0.003 | 0.006 0.012 |- 0.015
|400 | 941 | 0000 | 0000 | 0001 | -001
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Table 3.5  Bias between error without outlier and error including outlier
for various outlier distances from the class 1 mean for standard
data (¢* = 1.9%). :

| BIAS BETWEEN ERROR WITHOUT OUTLIER
| ERROR WITHOUT AND ERROR INCLUDING OUTLIER (%)

N OUTLIER (%) d*=n/2 | &=n d* = 2n d* = 3n
24 5.58 0.374 0.555 0.664 0.673
40 3.70 0.054 0.088 0.110 0.103
80 2.54 0.005 - 0.007 0.008 0.003
120 2.35 0.005 0.007 0.007 0.005
160 2.25 _ -.001 0.000 0.001 0.001
240 2.14 0.001 0.002 0.003 0.004
320 2.08 0.000 0.000 0.001 0.001
400 2.05 0.000 0.000 0.000 0.000




58

P, (X). The bias between them can be expressed by

* * R

:_vfb' =€y — €R

o +oo jwh (X) N,
1 e’ 1
- P, v | =— — 60 |sx—x®
N, .
—P, 3 | — 00 |5x—X®)| dwdX
N ] J
J=1» 2 . .
N, -, N . k . .
=P ) 'ij —P, ¥ '7j(2) ' - (3.74)
=1 = |
where _
’ S Aa(l) 400 jwh xH _ .
10— R R (I | (375
 and Agf) = of) — .
. R 1 .
When a quadratic classifier is used, h*(X) in (75) becomes
B'(X) =180, 8) — 0¥, 8) . (3.76)
~ where f(+,*) is defined in (3.46). The bootstrap parameters, M, and %, are
o L e | |
N e e e
8 = 3 oSNt - (3.78)
=1 » o |
, oN . O |
»Note that M, = —N— P2 XJ(’)~is used to compute 5. M is available in the
ANy )=l '

bootstrap operatlon and the use of M mstead of M sunphﬁes the discussion |
31gn1ﬁcant1y Thelr expectatlons are '

E*{M}—zE{e ) _=‘%§ ) ='M_i e
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E (%) = EE{" e —M)( -g)T
N s

where' Ex mdlcates the expectation with respect to the &’s.

f(vr; :Ei ) can be expanded around f(M,,)L) by the Taylor series as

(381)

T v
(V7 E) = 1(V,E) + e 8f
where AM, = M, — M, and AEi': Ei* — Ei-. Since E(X)= f(Ml,Zl)
— f(IVI2’ ) ' R :
(X) R(X) - H(X) |
T T ’ .
= o AM, — —— of AM2+tr of AX, — of AE (3.82)
oM; M, v or, 05y ] :

| The partial derivatives of (3.82) can be obtairied by (3.47) and-(3.4'8).'

3.4.1 Bootstrap Expectation ,
Using the approximation of (3.21); (3.75) can be approximated as

. AQR) +oo jeh(Xf) | N
ol =~ | S R + MAh( XMjdw  (3.83)

The third term contains third-order moments w1th the combination of A’Gj(i)

and Ah? and can be ignored. Thus, our analysis will focus on the first and
second terms. With this in mind, substituting (3.77), (3.78) and (3.82) into
* (3.83) produces '

AG) +oo b

M _ e”
,yj o »27r ,_joo jw d’w
o :'”'+6o . = 2
B SRR ) (2 o ; A0S AgW) x— O $ 68 A0 X {2

Joo 5M1v k=1 | oMy =1
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+ 3 08 AgE—N)T -2 (xxr,)
k=1 o 0%,
k e (2) s T O (‘2) : | o
— 3, 860 20X M) o, 0 Ml L sy
k=1 ' 2 : ; . .

Using' the partlal derivatives of (3 47) and (3. 48) and the expectatlons 111'
(3 71) (8.73), E*{’yJ } becomes

Lo E*{,yjl} ~ _(._];)_. ._1_. _1_(___-1__).___ eJWh(XJ())dw_ K i (3.85) )
o »Ni2 2T 2 1 R
where v S . _
200 = oMM e
In the derlvatlon of (3.85), we' ut111zed the relatlonshlp that
i .
L3 o) ) = B 5 (N8
N1 k=1 v . . N1 k=1.
N1 |
= tr OIS
Ni -
N—1 -
= n= n
N

7 | Thus, the expectatlon of the bootstrap bias for a quadratlc cla,smﬁer glven a
’ sample set S= {X X]t;l (2) X&z } becomes '

| P~N1*- PN
E*{ebls} < Zﬁj-m‘+ 1‘\'12?253 (2) (3.87)
where R A
R ’+°°d( )+n oy - : -
) = = [ e th(x S . '
5" I | » dgg . o - (339)

Note that (3.55) and (3 8'8)'are very similar. The differences are d? of (3.86)
.. d? of (3.50) and h vs. hL h is the discriminent function designed with
VM and El, the sample mean and sample covariance of the sample set S. The

__.,_‘-._.test samples X() are the members of the same set, S. Therefore, h is the

- same.as the res‘ubstltutlon dlscrumnant function hy of the prev1ous sectlons,' o
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while hy is the leave-one-out, discriminant function As is shown in (3.52)
and (3.53), the difference between hL and hR is proportional to 1/N Thus,

the dlﬁ‘eren‘ce between e “h - and ¢"" is proportional to 1/N Also, as (3 50)
suggests, it can be shown that the difference between d? and d? is
proportional to l/N Thus, ignoring terms with 1/N, &, of (3. ’54)“ and
E+ {%b 1S} of (3.87) (note that S is now a random set) become equal and have
the same statistical properties. Practically, this means that estimating the

expected error rate using the leave-one- out and. bootstrap ‘methods should '
yield the same results. '

These conclusions have been conﬁrmed experlmentally For several
values of N;, 8-dimensional sample vectors were generated from the Gau551an
dlstrlbutlons used in Section 3.3. The generated samples were bootstrapped
- and used to design a quadratic classifier. This classifier was then tested on
the original sample set (Eﬂ) and the bootstrap sample set (ﬁﬁ) Each sample
set (S) wars‘bootstra,pped 100 times and the results were averaged to
simulate the bootstrap expectation (E*{&::S}) The whole procedure was
repeated '10 times to estimate the expectation with respect to the training
sample set (ESE*{ESIS}.) Results are presented in Tables 3.6, 3.7, and 3.8.
In columns 3-7, the first line of each entry is the mean of 10 trials and the
SecOnd line is the standard deviation. In column 2, the first line is still the
mean, but the variance is presented in the second line.

-When N;

; is particularly small, our approximations might not be valid

and the leave-one-out and bootstrap methods may produce different results.
"Though the bootstrap bias estimate does seem to have a slightly smaller
standard deviation (column 4 vs. column 6 of Tables 3.6-3.8), both our
results ‘and those presented in Jain, Dubes, and Chen [15]‘shoW that the
leave-one-out and bootstrap methods are equivalent (column 3 vs. column 5
of Tables 3.6-3.8).

3.4.2 Bootstrap Variance

~The variance with respect to the bootstrap can be evaluated in a
fashlon sumlar to (3.58)

Var*{EbIS} = Z[ZVar*{’YJ } + E E COV*{’YJ }] v
=1 i Jlick—l
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Table 3.6 Bootstrap results for I-I (e¥* = 10%).

CONVENTIONAL BOOTSTRAP
LEAVE-ONE-OUT & RESUBSTITUTION
* X *
| | |
N (E{ez}| E{e} E{e,—€r} Eg{eg+E+{e, | S}EE{€, |SIEsVar{e;, S}
24| 3.54 17.08 1354 12.77 923 0.18
011 | 4.89 3.14 4.17 1.38 0.04
40| 5.75 13.38 763 11.68 5.92 0.08
0.07 8.04 3.88 4.44 1.90 0.02
80| 7.13 11.19 4.06 10.67 3.55 0.04
0.04 2.47 1.29 2.50 056 0.01
120| 9.04 11.79 275 11.45 2.41 0.03
0.06 2.97 1.01 2.79 0.43 0.01
160| 9.13 | -~ 11.28 2.16 11.17 2.05 0.02
0.03 2.35 o 1.09 1.94 : 0.44 0.00
240| 827 |  9.35 1.08 9.46 1.19 0.01
| o0z | 161 0.51 1.61 015 0.00
320 9.78 | 1067 0.89 1078 1.00 0.01
0.01 0.80 0.37 0.91 0.11 0.00
400| 9.18 9.78 0.60 , 9.96- 0.77 .01
0.01 0.91 ©0.26 0.84 010 | . 000

(All numbers are percentages.)
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Table 3.7 Bootstrap results for T-4I (¢* = 9%).

CONVENTIONAL BOOTSTRAP
LEAVE-ONE-OUT & RESUBSTITUTION| ' v
’ * ‘ * . *
| | (=
N E{ER} E{fL} E{EL'_GR} Es{fR""E*{Eb |S}}E5E*{€b ,S}ESVar*{Eb |S}
24| 3.54 18.33 14.79 15.08 11.54 0:21
0.12 4.79 3.86 4.35 1.26 0.03
40} 4.88 13.75 8.88 12.10 7.22 0.12
0.06 3.23 2.97 2.27 0.92 0.03
80| 7.19 11.19 ©4.00 10.82 3.63 0.04
0.08 2.72 1.56 3.12 0.54 0.01
120 8.25 10.75 2.50 10.86 2.61 0.03
0.03 214 123 2.04 0.37 0.01
160| 7.59 9.88 2.28 9.56 1.96 002
0.01 1.58 0.68 1.23 0.33. 0.00
240| 838 9.75 1.38 9.80 1.42 0.02
0.03 1.94 0.49 1.83 0.22 0.00
320| 9.11 10.09 0.98 10.14 1.03 0.01
0.71 0.83 0.40 0.77 0.15 0.00
400{ 9.09 9.99 0.90 9.99 0.90 0.01
0.01 - 0.95 0.24 0.89 0.13 0.00

(All numbers are percentages.)
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Table 3.8 Bootstrap results for standard data (e¥ = 1.9%).

CONVENTIONAL BOOTSTRAP
LEAVE-ONE-OUT & RESUBSTITUTION, ' L :
i ¥ ¥ * ]
. I | |
N [E{er)| E{ev} E{e,—er) [Eg{er+Er{ey|S}}EsE+{e,|S)EsVar«{e, S}
24| 0.63 5.00 , 4.38 ' 414 3.52 0.10
0.01 3.43 302 . . 1.69 0.84 0.02
40| 188 | 363 1.75 374 1.86 0.03
0.02 ' 1.99 1.21 195 0.87 0.02
80| 1.44 | 231 0.88 2.26 o082 0.01
001 |- 1.10 094 1.08 0.24 . 0.00
120 1.75 2.71 0.96 2.31 , 0.56 0.01
001 104 0.48 1.05 . 0.19 0.00
160 194.| 234 0.41 : 2.35 0.42 o001
' 0.00 | 090 ... 036 0.80 017 .| . 000
240| 2.21 2.50 029 2.50 - 0.29 v 0.00
000 | 071 ~ 0.26 0.60 0.13 0.00
320| 200 | 217 o017 | . 218 0.18 0.00
© -l 000 | 048 014 ‘ 0.53 0.07 0.00
400| 2.01 2.94 023 S 221 0.19 0.00
0.00 0.45 016 L 038" 007 | 0.00

(All numbers are percentages.)
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N, N,

+ PQZ[ZVar*{'VJ } +¥y % Cov*{’yJ }]
j=1 j=1k=1

j#k
Nl Nn

— 2P, P, 32 3 Covi{y{Vy{¥} (3.89)
j=lk=1 .

Because the samples from each class were bootstrapped independently,
Cov*{'y 2)} = 0.
Usmg a property of the inverse Fourler transform,

, AL +oo _jwh (X)) e ,
U R dw = —sgn(B (X{)ad  (3.00)

) .
2 o Jw

Thus, the variance of ’7j(i) is

Vard{y} = By} — B3~}
1 i : i
= ZE{AQ’( 2} — B )

1
4

(&1—2 - “1\%) ‘_ (3.91)

1l

where Ef{'yj(i)} is proportional to 1/Ni4 from (3.85) and therefore can be
ignored. Covx {’yj(i)’y]g)} may be approximated by using the first term only of
(3.84). Again, using (3.90),

»Cov*{'yj(i)'y]g)} = E*{'yj(i)mg)} — E*{'yj(i)}E*{'y]g)}

= %Sgn( X Msgnh(XIME{ADAGDY — BfyOVE{}
= ;ISSgn(ﬁ( ))sen(h(x)) (3.92)

where E{A0j(i)A0|£i)} = —1/N? for j#k by (3.72), and E*{'yj(i)}E*{'ylg)} is
proportional to 1/N;! by (3.85) and therefore can be ignored.

Thus, substituting (3.91) and (3.92) into (3.89) and using
Cov*{’yj(l)’71£2)} =0,
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) 12 P N Sgn(ﬁ(xj(i))) Ni sgn(h (Xk ))
Vars{e, 182 =N —11-)) )]
. ! 1aN | o NS Ny
LB 1’» 92 )(1—2¢)]
= — V' ——1—(1-2¢ ¢
4 231 Ni [ ( Rl)( Rl)
2 ep(l—tg;) : ' '
— EPi Rl( . ,Rl) : (3.93)
: i=1 N; B . _ S
Note that ngn ))/N 1)l [(# of correctly classified W samples by.
h>' 0)/N; - (# of misclassified W sampies by hs o)/N] =

(—1)[(1—2g)—2ri] |= (1) '_2€RI)‘ Since h is the _'resubstitution
discriminant, functlon for the original sample set, the resultmg error is the
‘ resubstltutlon error.

Note that (3.93) is the variance expression of the resubstitution error
estimate. This is seen in Tables 3.6-3.8 (second line of column 2 vs. first line
of column 7) and theoretically substantiates a claim of Efron [14]. Also,
note that, since (3.93) only involves bootstrap operations, this value can be
estimated using just one set of samples.  When S becomes a random set,
Vari{2, IS} varies with 2g;(1—2g;) = ;. | SR

3 5 Conclusmns ‘

The obJectlve of thls chapter was to apply the error expressmn derived
in- Chapter 2 to various classifier test procedures in order to theoretically
analyze their estimates of the expected classifier performance. It was shown
 that the design samples alone account for a classifier’s bias, while the test
samples dominate the variance of the error estlmate These results had been
demonstrated empirically. ‘But, this - chapter oﬁ'ers 'a- new theoretical
approach to understandmg how design and test sample sizes affect the
performance of classifiers. A" general expression showmg the relatlonshlp
between the resubstltutxon and leave-one- out, estimates of functlons of ‘
Gaussian parameters was derlved As an example, the statistical propertles
of the difference between “the. resubstitution and - leave—one—out -error
estimates for the quadratic classifier were investigated. The difference was
found to be: inversely proportiOnal to the number of design samples and-
roughly: proportional to n. In a related discussion, the effect of outlier
de31gn samples ‘was found to be neghglble, other than the1r eﬁectlve'
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~reduction of the v_mimber of design samples in the training set. Finally,
Efron’s bootstrap estimate of the optimistic bias of the resubstitution error
was analyzed. The resulting error estimate was shown to be statistically
~ equivalent to the leave-one-out error estimate under reasonable design -
conditions. o ‘ ’

Though not exhaustive, this study should pfovide a better
understanding of the role of dependent and independent design and .test
samples in classifier design and evaluation. Hopefully, 'the tools and
methodology can be applied to other statistical testing procedures and may
help propose new ones. ‘ ' e
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“ _ CHAPTER 4 :
THE REDUCED PARZEN CLASSIFIER

4 1 Introductlon

- Im pattern recogmtlon, the quadratic classifier ‘is very popular ‘
However, In practice, with non-Gaussian dlstrlbutlons it has been frequently ‘
'observed that the error of a quadratic classifier is much larger than the
Bayes error estimated by nonparametric techniques. On the other hand
nonparametrlc classifiers ‘are too complex and tlme-consummg for on-line
~ operation. Thus, there is a need to fill the gap between these two klnds of
classxﬁers ' g

7 One p0531ble solution is to find clusters and to des1gn quadrat1c
: cla531ﬁers ~around cluster centers. Unfortunately, conventional clustermg
: techmques glve very poor estimates of the expected vectors and covariance
matrices of the clusters.. For example, let us consider a d]Stl‘]but]OD‘wthh-
consists of two Gaussian distributions with some overlap If we divide the
mixture distribution into two clusters by setting a boundary, each cluster -
mcludes one true Gaussian distribution with a tail cut off, plus the tall of
the other Gaussian distribution. Thus, the estimates of the expected vector
and covariance matrix of the cluster based oh samples in that cluster reglon
could be significantly dlﬁ'erent from the true parameters of the Gauss1an
dlstrlbutlon ‘ _ _ | '

- In this chapter, ‘we have tiken a different approach. Our solution is to
ﬁnd a small number of representatives, maintaining that the Parzen density
estimate with these representatives is as close as possible to ‘the Parzen»
density estimate with all avallable samples [16], [17]. The resultmg Parzen
densn‘.y estlmate represents the distribution of each class. Combmmg these

estimates from different classes, the Bayes classifier is designed. With
‘Gausman kernel functions, this cloSely resembles a piecewise quadratlc
classifier. ‘ ' : ‘ '

The idea of using reduced sample sets as representatives of ‘larger
sample sets has been around for a long time for various purposes,
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| _. partlcularly for the k-nearest nelghbor (NN) approach. For examples, the.‘

condensed NN for reduclng storage and computation time, the ‘edited NN for

~ better performance and so on [18], [19] [20]. For the Parzen approach -

smaller sample sets were sought in a pure density estimation setting- [21]
Also, various - parametric technlques have been developed  for _the”
decompos1t10n of Gauss1an mlxtures [22] [23]. ' . B

4. 2 The Da.ta Reductlon Algonthm

In [24], Fukunaga and Mantock presented an algorlthm for ﬁndmg a
v reduced sample set which had virtually the same nearest nelghbor (NN)

density estimate as the orlglnal sample set. In this section, we will show -

'q how thls algorithm has been: adapted to use the Parzen density estlmate :

‘ leen N samples drawn from a density functlon, p(X), of a random '
vector, X, we wish to select ‘samples (r < N) such that we make the Parzen
density estlmates for the N sample set and the r sample set as close as - |
. poss1ble '

Assumlng that a Gaussmn kernel is used the Parzen dens1ty estlmate
”-:at X given: N samples is : ‘

Mz

PN(X)=T\I_

i

k(X—X) .(4;.i) |

”where ) S
. ‘ T B
(27T)n/2hn1 /Izl

o [ n is the d1mensxona11ty, E is the kernel covariance matrlx, and h is the

x —x,) expl—— 7 ( (X—X)Tz-l(x-—xn Cuy

‘ “kernel size control parameter. - S1mllarly, When r representatlves, Yl, .Y,
B v are selected the dens1ty function at Xi is estlmated by ‘

. In order to measure the 51mllar1ty between pr(X) and pN(X) the entropy -
B f ln[pr /PN ]pN(X)dX is: used in' this chapter The entropy expressmn
: satlsﬁes : : : ' v

™



70

[ |= X)X <0 - (44)
Pn(X) L : o

Where equalrty holds When pN(X) =p(X). A larger entropy meahs that
pr(X) is closer to pN(X). The inequality of (4.4) can be proved easily by
using a property of the logarithmic function, In aga 1‘ _That is,
Jin lPr /PN (X)) bn(X)dX < [ [3:(X)/Bn(X) — 1] Hn(X) dX - [p(X)dX —
(X =1-1=0. L

The entropy expression may- be rewrltten as E{ln[p,( X)/pN X)} where
the expectation is taken with respect to Pn(X). Thus, if the expect‘atlon" is
~replaced by the sample mean over the existing samples Xl, XN, (4.4) is

approxxmated by

)= mml)mmmn e

an

1
N
Since 'the‘expectationv is replaced by the sample mean, (4.5) = 0 is no
longer guaranteed. However, this approximation significantly simplifies the
criterion‘land subsequently the selection algorithm. The experimental results
are good, as reported in the next section, and justifies the use of (4 5) as a
crlterlon Substltutmg (4.1) and (4.3) into (4.5), )

| r 1 N R

=§§1 ln“ § k(X;—Y;) —In "1\7 k(Xi_Xj)l - ,‘(4'6)

T =1

IIMZ

In- order to find the best r representatives from the existing samples
Xi,...,Xy; we would like to maximize J over all possible r element subsets of
the original N element set. -Unfortunately, an exhaustive search of all (1:1)
subsets is not computationally feasible. Instead, we will settle for the
maximum -J for subsets formed by replacing one element of the

representative set by the _best candidate not yet selected.

. The proposed procedure is as follows:

1) "Seleet an initial assignment of r samples from the N sample data
‘set. Call the T sample set STORE and the remaining N-r samples
TEST.

2) For each element, X;, in "TEST, compute the change in J that results
- if the sample is transferred to STORE 7
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-~ EI In — {j-%-Jl k(X,=Y;) + k(X—X,)}
St By (47)

3) P1ck the e]ement Xt, correspondmg to the largest AJ, (and call 1tr

o Xy). » |

>4) For each element XS, in STORE compute the change in J that
" results if the sample is transferred to TEST

AJ2(X‘s) = Jr(Xs) Jr+1

— ;; Il 2 {3} k(X=Y;) + K(X—X;) ~ K(X-X)}
i=1 =1 '
— rii {i k(Xi—Y;) + k(Xi_Xt*)}] - (4.8)

i=1

5) Flnd the element, X, correspondrng to the largest AJ, (and call 1t

6) The change of J due to these two ‘operations . s v ‘AJ =
AKX )+AJ2(XS) In order to maximize J, we would like to have
AJ>0. If X, exists to satisfy AJ>0 transfer XS to TEST
transfer Xt to STORE, and go to step 2. ‘

7) Otherw1se, ﬁnd the element, Xj, correspondlng to the next largest
AJ; (and call it X,).

8) If Xt* exists, go to step 4.
9) Otherwise, stop. ‘

Generally, this kind of: iteratire proee'ss produces a result which depends

 on the 1n1t1al selection of r representatives in STORE. However, Steps 7 and

8 allow us to search more possible combinations of X; and X, and thus

. insure that: the final representatlve set is 1ndependent of the 1n1t1a1
ass1gnment ‘ ‘ : "
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Thns procedure should be apphed to the sample set of each class
separately The resulting Parzen density estimate with r representatlves
from each class is used to design the Bayes classifier.

4.3 Expenmental Results

Two types of experlments were run to demonstrate the feas1b111ty of the
proposed procedure: one is for various Gauss1an cases and the other is for
non-Gaiussian cases. ’

| 4 3.1 Gaussian Cases’

The experiments for Gauss1ans used the test dlstrlbutlons mentloned in
Chapters'2 and 3. Case a characterizes mean-separable problems Case b
characterizes covariance-separable problems. Case c.is a complex case in
which both the means and covariances are dlﬁ'erent For all cases, the
experiments were run by the following. procedure

1. Cla.ss1ﬁer design:

~a) Generate 100 samples per class, the des1gn set, Gaussmnly w1th given
'M and Y. '

: vb) Generate the Parzen density estimate of (4. 1) for each class by using
~ the known covariance matrix as the kernel covariance in (4.2). Each
~class has a different kernel covariance. '

'¢) The kernel size control parameter, h, will be selected experimentally
as will be presented in Step (b) of classifier test

d) For a fixed h, classify the existing 200 samples (100 per c]ass) by
R WI

NXi/en) 2 BNi/wn) + (=120 (49)
W ' '

where -« indicates class i and t is the threshold. t is selected to
~_minimize the classification error. When the true p(X/w;) and p(X/w,)

are used, the Bayes classifier requires a value of zero for t. However,

when these densities are unknown, their estimates are: biased.

Adjusting t has been shown to be an excellent way to minimize the
- effect of the biases on classification [25].
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2. Classifier test:

a) Generate independently another set of 100 samples per class, the test
“set, and classify them using the classifier of (4.9) with the t fixed by
1-d. This was repeated 10 times and the average error is denoted as
E '

b) Repeat 1-d and 2-a for various h. The optimal h is selected which
minimizes € [25]. When € decreases monotonically with increased h,
as has been observed for Gaussian distributions, h is selected at the
point where € starts to flatten out. Figs. 4.1(a), (b), and (c) show the
plots of € vs. h for cases a, b and c. Since the design and test sets are
independent, these curves are supposed to give an upper bound of the
Bayes error. The dotted lines were obtained by testing the original
design samples. Because of the dependency between the design set
and the test set, this procedure is supposed to give a lower bound of
the Bayes error. From these figures, 2.0, 2.0, and 3.0 were selected as
the optimal h for cases a, b, and ¢, respectively.

3. Representative selection: Select the r representatives by the proposed
procedure of Section 4.2. ‘

4. Design of the reduced Parzen classifier: Classify the O'rigi'nal 100
design samples using S

%

B:(X;/wy) = ﬁr(Xi/w2)+t (i=1,...,200) L (4.10)
Wy ‘ o

Select t which minimizes the error. Note that t must be readjusted each
~ time a different value of r is selected. -

5. Test of the reduced Parzen classifier: Generate another set of 100
test samples per class and classify them by (4.10). The resulting errors
are plotted in Figs. 4.2(a), (b), and (c), (corresponding to cases a, b and ¢
respectlvely) for various values of r. The curves of these figures are the
averages of 10 trials and their standard deviations are shown by vertical
bars. .

In the cases presented above, the estimated errors bound the theoretical
Bayes error closely. The reduced Parzen classifier provided excellent results -
until a very small ( & 3) number of representatives was. selected. For
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Gaussian cases, selecting the expected vector as the one representative from
each class and the covariance matrix as the kernel covariance, the reduced
Parzen classifier becomes the Bayes classifier. So, the error curves of Fig.
4.1 could: Be‘ flat down to r=1. However, the proposed data reduction
algorithm selects a vector from the existing design samples, which may or
may not be close to the expected vector. '

4*3'2 Non-Gaussian Cases

" Two cases were studied as follows:

a) n=8, 4 Gaussian clusters with

M; =[-3.28,0, - - - ,0|T and 5 =1 -
M2 = [d,O‘, e ,0],Tb and Y,=I
M; = [+3.28,0:, o 0|T and 3=l
M, = [+6.56,0, - - - 0T and =1

V‘C:lust‘é_rs 1 and 3 form class 1 and clusters 2 and 4 form claés 2.

e =15%, € =295%

. v‘b) ‘n:8, 6 Gaussian clusters with

M, = [-3.28,0, - -+ ,0] and ¥),=I

M, = [0,0, - - - ,0]T and 22=IV

M, = [0,3.28,0, - - ,0]" and Yl=I

M, = [3.28,3.28,0, -+ 0|7 and ¥},=I
a M; = [0,—3.28,0; <o+ 0]T and Y=l

Mg = [3.28,~3.28,0, - - ,0|7 and Y=l
Clusters 1, 3 and 5 form class 1 and clusters 2, 4 and 6 form 'c‘lass 2.

€ =83%, ¢, =19%



77

If we blindly assume that each class has a Gaussian distribution and
design a two-class quadratic classifier using overall means and covariance
‘matrices, the resulting error is much larger than the Bayes error. This error
is called the apparent error and is listed above as €, When the size of the
" Qaussian kernel function, h, is large, the Parzen densrty estimate becomes
close' to a Gaussian distr1butlon, and the resulting classification error is
expected to be close to ¢, o

All experunents were run as in the Gaussian case, with 75 sariples per
cluster for case a and 50 samples per cluster for case b. The Gaussian
kernel function with =1 was used for both cases. '

,Flgs. 4.3(a) and (b) show € vs. h in Step 2-b for cases a and b. The
optimal h’s were selected as 2.0 for case a and 1.3 for case b, respectively. -

‘With these h’s, the reduced Parzen classifiers were designed and the
» resulting error vs. r curves are plotted in Figs. 4.4(a) and (b). | :
“Asin the Gaussian cases, the reduced Parzen classifier provided
' excellent results until a very small number of representatives was selected.
In case a, this number was 6. The data reduction algorlthm picked 3
representatives from each cluster, the Gaussian results show that. fewer
: non—optlmal representatives cannot accurately represent the distribution.-
“For case b, degradatmn occurred after 9 representatives. Agaln, the data ,
‘reduct1on algonthm picked 3 representatwes from each cluster

7,4 3.3 Radar Data

To test its performance in a real, high-dimensional case, the reduced
Parzen classifier was used on a set of 66-dimensional milimeter-wave radar
data. The samples were collected by rotating a target (a Camaro and a
Dodge Van) on a turntable and taking approximately 8800 readmgs 66
range. bins were selected . and the resulting. vectors were normahzed by
_energy For each class, the samples were alternately picked to form
independent design and test sets, 4400 in each. Every sixth point in the
~design sets was chosen to. form two sets of 720 reference representatlves
Using a kernel covariance estlmated from the 4400-sample design sets, these
‘ 720—sample sets were used to compute the Bayes error estimate. Then, the :
reduced Parzen classifier was designed for different numbers of
representatwes Each classifier was tested on the 4400—sample test sets.
Results are presented in F1g 4.5.
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Figure 4.4 Reduced Parzen Classifier Results for Non-Gaussians.
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Figure 4.5 Reduced Parzen Classifier Results for Radar Data.
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A flat performance is observed until the number of representatives is
reduced to 3, suggesting that the underlying distributions are dominated by
a Gaussian-like mode. The introduction of a few more representatives
improves performance slightly, as if the distributions also contained small
‘clusters of outliers. Nearly-optimal results can be achieved with a very
samll (& 7) number of representatives. This illustrates the reduced Parzen
k classiﬁer’s applicability in complicated, high-dimensional, real-life situations.

The proposed procedure selects the optimal kernel size h and the
threshold t, of the classifier. However, the selection of the kernel function
and the kernel covariance matrix is not clearly understood. For Gaussian
distributions, the Gaussian kernel with the sample covariance matrix works
very well, provided that a large number of samples is used to estimate the
covariance. Unfortunately, in non-Gaussian ‘cases, the sample covariance
matrix does not reflect the local structure of the distribution, producing poor
experlmental results. If we could estimate the local covariance accurately,
the Parzen density estimate would provide a good estimate of the Bayes
error, and we could design the reduced Parzen classifier with a small number
of representatrves ' L

‘The last paragraph suggests an interesting byproduct. In the past, it
" has been believed that a nonparametric procedure needs a large number of -
.samples, N, for hlgh dimensional data, in order to reliably estimate the
Bayes error or reasonable upper and: lower bounds. Any nonparametrlc

eratron with a large N requires a large amount of computer time, and the
turn- around time normally becomes days or even weeks. The results of thrs
chapter contradict these common beliefs, and suggest that we may need only |
a relatrvely small sample size ‘after all.

y For example, Fig. 4.5 reveals that r could be reduced to 100 from 720
w1th an increase in the upper bound of the Bayes error from 22% to 25%.
These 100 representatrves are selected to ‘optimize the criterion of (4. 6).
However, if r is a reasonably large number, such as 100, we may select them
in a non- optlmal way without s1gn1ﬁcantly ‘hurting the performance For
example, we may pick a sample every 3.6 degrees of the viewing angle.
: Prev1ously‘, it was reported in [25] that the upper and lower bounds of the.
Bayes error for 60-dimensional data were reliably estimated using N = 115
and 230 from each class. The results were surprising at that time: But,
~ that result is _very consrstent with our -observations "in this - chapter
However, it should be pointed out that in [25].5000 samples per class were.
used to estlmate the covarrance matrix which was used as the kernel
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covariance of the Parzen density estimate.

4.4 Summary

An algorithm was proposed to select a subset of representative samples
from a given data set which preserves the Parzen density estimate. If an
approximate Bayes classifier is designed using these representatives, nearly
optimal discrimination is achieved, even for a significantly reduced number
of representatives. Experimental results were presénted, covering a wide
range of Gaussian and non-Gaussian test cases.
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R ~ CHAPTER 6 S
THE ACQUISITION PROBABILITY FOR A MINIMUM
. DISTANCE ONE-CLASS CLASSIFIER

5. 1 Introductlon

‘ In many targetlng scenarlos, objects from different classes are detected
and classrﬁed As long as all of the classes are well- deﬁned, standard
Bayesran classification techniques work very well. However, in some cases,
‘one class can be well-defined, while the other is not. For example, when we
“want to distinguish tanks (targets) from all other possible objects (non-
targets) the non-targets may include trucks, automobiles and all kinds of
other vehicles. as well as trees and clutter discretes which are detected
erroneously Because of the wide variety, it is almost impossible to study
the dlstrlbutlons ‘of all possible non-targets before a classifier is designed.

* One-class classification schemes have been proposed to -solve this
problem. ‘Typically, they involve measuring the object’s distance from the
target mean and applying a threshold to determime if it is or isn’t a target
[26]. This technique, however; greatly increases the classification error. The
"~ mapping- from the original n-dimensional'feature space to a one-dimensional
distance space destroys valuable- class1ﬁcat10n information which existed in
the orlglnal feature space.

However, this large increase in error can be reduced if one uses ranking
" instead of threskolding. If many objects are detected in a field and the goal
is to acquire that one object which is most. target-like, rank the objects
according to their distances from the target mean and select the closest one.
The acquisition probability- of this. procedure was derived and studied by
Parenti and Tung [27] and’ Novak [28]. In this chapter, we will point out -
that this probability is determined by the operating characteristics in the
distance space as well as the numbers: of targets and non-targets detected:in
the field. Also, we will show that, if an exact measure is'not required, the
,probablllty of acquisition can be  approximated from Just one point of the
" operating characterrstncs
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_ 5.2 Cornputatlon of Acqulsltlon Probablhty
Let X be an n-dimensional vector, representing an object i in the feature
space; and let us assume that k, targets (Xy,--, Xy ) and k, non- targets
(X 15Xk +k,) are detected in a ﬁeld The acqursltxon procedure which will
~ be studled in this chapter is:

- (1) Compute the squared‘ distance of X; from the target’s expected
‘vector (M,), normalized by the target covariance matrix (Zi)
S = ;( i 1) 21 ( N 1) (i=1, "°°ak1+k2) SR (5 1)
where T indicates the transpose of the vector. M; and El are
assumed to be known. ' ‘

(2) Rank the X;’s according to their z; values. The X w1th the
‘smallest z is selected as the target to be acqulred

The probability of acquiring any one of the k; targets in the field by

this procedure (the probablhty of correct classification) can be expressed as
Dﬂ |

P, =

a.

k(l—u,)k‘ ' (1—uy)* du, . (52)

'o%e

'where.‘-
W0 - e (=12 69

‘and p;(z) is the density function of z for'class i. .Classes 1 and 2 are assigned
to the targets and the non-targets respectively. As is seen. in (573),>u~i(t) is
the prebability of a sample from class i falling in 0 = z <t. ul(t) and uy(t)
~ Jare known as the detection and false alarm probabilities in the z-space when
the threshold is chosen at z=t. In (5.2), du,, (1 —ul)k'l_1 and” (1 '—uz)k’?.
represent the probablhty of one of the k, targets falling in t = 3 <t+At‘
- k;=1 of the targets falvhng in t+At = 2z <oo and all k, non-targets falhng in
t-{-At =< z<oo The produc_t of these three gives the probability of the
com_bi‘ned event. ' Since the acquisition of any one of the k, targets is a
correct cla'SSiﬁcation, the probability is mult‘iplied by k;.. The integration is
taken with respect to t from 0 to oo, that is, with respect to u1 from 0 to 1.

The derivation of (5 2) is glven in Appendlx H.
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Rewrltlng (1—u,) as v and (l—uz) as f(v), the acquisition probablhty
becomes ' ’

y = }klvk'_l H(Q(v)‘dv | e | (54)
0 , a

. Eq.“(5,.4)”i’ndi:ca'tes that P, is a function of ky, ky and f(v). f(v)is a function
relating 1—u, to 1—u;. Since u; and u, are the detection and false-alarm
probabilities in the z-space, f(v) represents the operating characterlstlcs
when each sample is classified in the z- space without ranking. ‘

Fig. 5.1 shows typical operating characteristics from a series- of
eXper\iments’ Which will be described in the next section Also shown are
plots of v for k;=5 and 20, which were used in these experlments
f(v)=v represents the worst case in which the summation of the class 1 error
and ‘the class 2 error is always 100%, regardless of the operating point or the
~ threshold- value. That is, the distributions of class 1 and class 2 are
identical. Therefore if the dlstrlbutlons are classifiable through this ranking
procedure, f f(v)>v. Thus, v kim g reasonably assumed to drop to zero more
quickly than fk2 (v), for realistic values of k; and k,. This means that only
the rlghtmost part of the operating characterlstlcs, where v is close to 1,
contributes to P,. The other part of the operating characteristics will not
affect P,. | |

Although (5.2) is the exact expression for P, it is desirable to have an
approximation formula through which P, can be estimated faster and which
shows the effects of k;, k, and f(v) more- explicitly. Since only a small
portion of f(v) affects P, and f(v) is very flat in that portion, we tried to
approximate f(v) in this region with a constant, a line and other simple
. constructs. We have found that a constant gives us the simplest and most
robust approximation of P,; although it is rather crude. Thus, V

f(v) = 1—~ for vl /0 , (5.5)

1
k-1 ko .
Py [kyv T (A=) tdv = (1— fy)
o « ,

= 1 —kyy o | | (5.6)

We have found empirically that v may be selected in the following manner:
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~Figure 5.1 Operating Characteristics and Vil
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.. (1) For a given ky, ﬁnd’v which satiSﬁes vkrl =0.5..
- (2) Read the operatlng characterlstlcs f(v) at’ v,. Then, f(v 0)—1 ——’-7

The experlmental results of this approxunatlon will be reported in the next :
sectlon a ‘ ; '

It mlght seem that (5 6) is too sensltlve to changes in the value of 7 '
However, a small change in 7y corresponds to.a srgmﬁcant change in the
‘operating characteristics. So, in practice, the variation of stays very small
and the approximati'on'of (5.6) 'wo‘rkS'Well as »reported in the nextsection. |

5 3 Experlmenta.l Results

In order to test the vahdlty of the proposed approx1mat10n and to ﬁnd
a way to select’ the value of 7, a series of experlments were run.

For p,(z) (i=1,2) of (5. 1), Gamma densities were chosen as

_ b1 , v .
s G " by ~c@ ¢ S -
. e i ¥ ) . 5.7
pi(z) = T(b; -l-l) ©e R v ( n.
' whose expected value and var1ance are ‘ o
mi':': and 0.i2 - ‘l ; e (5.8)
o ?i - ¢ R

The reasons for this selection are as follows

1. For class 1, if X is distributed Gaussianly with the expected yector
M, and covariance matrix ¥), z of (5. 1) has the Gamma

' drstrlbutwn of (5.7) with m; =1 and o} 22
n

2. For class 2, even if X is dlstrlbuted Gaussianly, z does not have an
‘ ‘exact Gamma- density, since the expected vector, M,, differs from
Ml.' However, “our experlments show that the empirical
distributions . of z are very close visually to the Gamma
distributions for a wide variety of M, and 22 Values. The

" 'empirical distribution of z was obtained from samples generated
Gaussianly with given Mz and Y, in the X-space and converted to

_ 'z by (5.1). The corresponding Gamma density function was
' specified by the expected value and variance ‘computed by the -

- following equations: ' . :



m2=%(§ | é} ) . g (5.9)
g=Lenw +4z wd) (5.10)

' where N and i are obtamed as the results of s1mu1taneous
dlagonahzatlon That is, a ‘linear transformation A X is appl1ed to
- _X such that ATEIA I and ATzzA A. X and g are- the 1th '

'-:"j . components of the dlagonal matrix A and the transformed vector»
AT(M, —M,), respectively. The derivations of (5 9) and (5. 10) are
_given in the Appendix G. . :

" In order to cover various cases for the class 2 distribution, two types of
Gaussian - distributions were chosen for the experlments Note that the
- selection of I for S does not hurt generality, since we can always linearly
transform S tol w1thout changlng the subsequent results. Throughout the
experlments, it was assumed that a priori probabilities of classes 1 and 2 are
equal. € and ¢, indicate the Bayes errors in the X- ‘and ' z-spaces
'respectlvely The Bayes error is the smallest error which can be obtamed by

~ the optlmal classifier (the Bayes class1ﬁer) for given distributions [26]

1. Case 12 3, =Y,=L M,— MI—M n—20 .
,‘ " The Bayes classifier in the X-space is linear in thls case and €4
determlned by the length of the vector M, HM We selected }{M"’s to_
' get 1,5, 10 and 20% for €x- v v

L 2 Case 2: LI—I 22 A, M2 Ml—[,ul, R —s
‘ A and M, — Ml were ¢hosen from Standard Data of [10], and thelr
'v components are A\ =8.41, X\=12.06, ), =0.12, \,=0. 22, >\5—1 49,
S Ne=177, M\=035, Xg=273 and =386, Hy=3.10, py=0.84,
| g =0.84, 15 =1.64, g =1.08, 1y =0.26, 145 =0.01. “This data is suitable
‘ B to test the case where i and 'Y, are significantly dlﬁ'erent smce the
o >\s vary from 0.12 to 12 06. The Bayes classifier ‘is quadratlc for this -
case and the resulting ¢, is 1.9% [10]. In order to obtain vatious ¢s,

' we multlphed M, —M, by constants while keeping the covarlances ﬁxed

The experlments were carrled out as follows '
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1. Compute m, and o? of (5. 9) and (5.10) from given M2 and Lz

2. We assumed that the class 2 distribution in the z-space is- Gamma

~ with- m, and of computed in step 1. The class 1 distribution is
‘Gamma with m;=1 and oy ——2/n.‘ These two Gamma density

 functions are plotted in Flg 5.2, (a)'for Case 1 and;«.(,b)-for.‘Case 2
vrespectlve]y , 3 ‘ : o

3. In Fi ig. 5.2, select the threshold t and compute u,(t) and: u2( )'by
(5:3).. Changing t from 0 to oo, plot the relationship between 1—u,
and 1—u;. The results are the operatmg characterlstlcs as shown i in
Flg 5.1.

) 4. Compute P, of (5 4) and the approx1mated P, of (5. 6) for several
- values. of 7. Table 5.1 shows the results when < is selected as

' v k-1 :
1—f(v,) where v,' =0.5. Although the approximations are
somewhat crude, they predict the trend of P, reasonably well.

A counter—mtultrve result was observed in the Case 2 experiment..
Intu‘itikvel_yv,:as k; and ky increase (i.e., as the numbers of targets and‘non'— o
targets detected increase), the probability of misacquisition should decrease
since there are now more targets, the acquisition of any one of whieh is
considered ‘correct. This is shown clearly in Case 1. However, in Case 2, the

,p,robability,, of misacquisition actually increases with an increase in k, and
| ko -From':(5.4), it should be apparent that an increase in k, makes the far
rightmostlposition of the operating characteristics more dominant. Due to
the construction of f(v), the rightmost position of the operating
characteristic corresponds to the integration of the leftmost portion (the
section closest to zero) of the probability duration of the distances.

Ordinarily, one would expect p,(z)>>py(z) for small values of z (i.e., one B

would expect the probability of a target being very close to the target mean
to be greater than the probability of a non-target being very close to the
target mean). However, Fig. 5.2 shows that, in spite of the fact that
my >my, Py(z)>py(z) for small values of 2! Thus, increasing k; compresses
the _ra’nge‘:'of significant distances from the target mean and amplifies the
. effect of the small region in Whi_ch_non—targets_ are more likely to be closer to
the target mean than the targets themselves, increasing the probability of
mis'acqui'sition This result suggests that a careful examination is needed'fo'r
the startmg edges of the density functions in the z- space before derlvmg any k
conclusrons by intuition. |
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Table 5.1 Results of P, Approximation for Cases 1 and 2.

(All numbers are percentages.)

EX EZ

CASE 1: 1.0 10.0 0.9
Y, =3, 5.0 240 89
=1 10.0 320 17.6
20.0 42.0 34.2

CASE 2: 1.9 12.9 4.4

SuES, o * 297 17.6
* 358 23.1

* . unknown error rates

1-P, 1—(1—)" kyy

0.3
6.2

14.8

35.5

3.1
17.3

23.4

0.3

6.4

15.8
42.0

3.1
18.7
25.9

kl = k2: = 20
0.6 0.1
4.4 2.9
14.9 8.4
32.0 26.9
6.9 . 4.0
30.1 27.5
37.0 36.3

ko
1""Pa 1_(1_’7) . k2/7

0.1
3.0

8.7
31.1

4.1
31.9

44.6
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At this point, we would like to point out the purpose of the ranking
procedure As Table 5.1 shows, the transformation of (5. 1) from n-
dimensional X to one dimensional z increases the cla351ﬁcat10n error from €y
to €,, if a simple threshold in the z-space is applied. Although the ranking
procedure reduces €, to 1—P,, this reduction barely compensates the loss
from ¢x to €,. Therefore, there is no need to use the proposed procedure, if
the class 2 diStribution is unimodal Gaussian as in the experiments. The
conventional Bayes classifier in the X-space gives the classification error e,.
However, if the class 2 distribution consists of many Gauss‘iansfsurroundivn'g
the class ‘1 “distribution as shown in Fig. 5.3, we must use a one-class
classifier such as z 2 t, accepting €, as the resulting error. In this case, ¢,
merely serves as a measure of how far the neighboring Gaussians are apart
from the class 1 center. As was. discussed in the introduction, in many
target claSSiﬁcation scenarios, class 2 includes various objects such as trucks,
automobiles and all kinds _of"oth_er vehicles as well as trees and ‘clutter
vdiscretes, thus creating a distribution like the one in Fig. 5.3. Therefore, in
this chapter, we point out how much the error can be reduced (from €, to
1—-P,) by the ranking procedure, and discuss the effects of kl, k2, and the
relatlve locatlons of the class 2 distributions.

’5.4 Supp‘lem.enta’ryv Discussions

5 4 1 Comblnatorlal Results

The expression and approx1mat10n derlved for P, are only good for fixed
k] and k2 More realistically, one is given the total number of objects
detected in a ﬁeld k, and the a priori probablllty that a sample is a target
Pi. In thls case, P, can be computed by

2 8 D Pi—P PR
‘where P (1 k 1) is the acqulsltlon probablhty for k, =i and k, —k—1

5 4. 2 Eﬂ'ect of Distance-Space Mappmg

Even though the ranking procedure outperforms conventronal one-class
classification techmques, 1t.is still hampered by the error 1ntroduced by the
map_p_ing_ _:from the original n-dimensional feature space to “the one-
: 'dir_n'eh_s’ional_- distance space. In order to see how much the error is increased,
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~ classifier
o

—-Class 1

--—--B class2

Flgure 5.3 A Possible Class 2 Distribution with M‘ul’ti-moda;ij ’Gaﬁss'ia;n'é :



v the relationship'b‘etween the Bayes errors in the X- and z-spaces, €, and ¢,,
was examined for Case 1 of the ‘previous section. Results are "presented in
. F1g 5.4. Figure 5.4 was obtained va’s' follows: ’ L

1 F1xn(10 50, 10, 150, 200) .

2 Change Ml in Case 1 experlment and obtain the correspondmg €4 1n
the: X—space o

~.3._ Compute u,(t,) and u2( ) of (3) by ‘numerical 1ntegrat10n P1( ) and

‘A._»pz( ) are assumed to be Gamma densities with m;=1 and o} ——2/n' -

~for py(z) and m; and of computed by (5.9) and (5.10) for py(z). tgyis

' _vthe value of z where p;(z) and py(z) cross. When py(z) and py(z)
‘cross at two values of Z, as is the case for Case 2 experlment choose
the larger z. ' ’ ‘

4 6= ; (1 ul(t )) + ; u2(t0) since  the a priori probab1ht1es for classes ’

1 and 2 are both’ assumed to equal 1 /2

' IAs one would expect €, becomes very large asn increases.

5. 4 3 Trade-off Between Number of Features and Orlglnal Error

Increasmg the ‘number of features, n, has both advantages and

dlsadvantages in our targeting scenario. "It reduces €, in general,” but
~increases ‘the mformatxon lost by mapping to the z-space. Thus, thcre
- ‘should be some sort of trade—off between the number of features which would
. vprov1de a reasonable error in the X-space and limit the -amount of
.1nformat10n lost in .the d1stance ‘mapping. F1g 5.5 shows - the ‘same

B v‘experlmental results as Flg 5. 4 but this time ¢, vs. n is plotted for a ﬁxed

€, Flg 5 .5 indicates that 1n order to ach1eve €, =27% for example, we may
" have many choices such as €, =10% with n= 10, € «=3% with n =60 and S0
on. There.is no reason to- use an incredibly. large number of features if the

' addltlonal class1ﬁab1hty m the X—space cannot be transferred to the z-space..
s By keepmg ¢, fixed, we were able to see just- how much error could be -

iflntroduced in the X—space Whlle ma1nta1n1ng €, and reduclng the number of

- ; ’features used
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500

~ Figure 5.4 ¢, vs. ¢, for Constant n.
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Figure 5.5 €, vs. n for Constant €,.



o1

5.4.4 Extension to Multiple-Target, -Multiple-Shot Case

" So far, our scenarios have assumed that one and only one acquisition is
attempted. However, in a different situation, where o acquisitions are
attempted, we need to compute the probability that (3 targets are acquired
in « attempts (o> (). In this case, the probability of acquisition equals the
- probability that, if the o smallest distances are selected, 3 are targets and
o qéﬂ are non-targets. The probability is presented here without derivation:

: o : o : o

P ' =f [ 1 ]u‘ﬂ_l(l—u )kl‘ﬂ“ [ 2 ]uo.-ﬁ [ =0 : dul :
I B Rty Yoo la=p) 1 1—u,
‘ : | v ko—a+0+1 du, v

+ g(k1?187u1) g(kZaO-‘_ﬂ_'l’uZ) 1 1—u (5.12)

where

.g(k,é"u) — [1;]1'16'(1_11»)](—6 .

In [27],-an‘ approximation was developed which defines the multiple-target,
multiple-shot acquisition probability as a function of P, k;, & and :

X, ' )
3 Paﬂ(l_Pa)krﬁ i <y = K
Py= - |  (5.13)
2 P.1-P)" : f=oB= k
i=q

If our proposéd approximation for P, is used together with this expression,
P4 can be estimated directly from the empirical operating characteristics.

5.6 Conclusions _
'Targefing scenarios, in which one class is known and well-defined and
the other is unknown, -pdint out the need for one-class classifiers.
Conventional one-class ‘classification techniques introduce a great deal of .
error by mapping the n-dimensional feature space into a one-dimensional
distance space. An ‘exact expression for the acquisition probability is
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dependent upon the empirical operating characteristics, the number of
targets detected, and the number of other objects detected. An approximate
expression is dependent on a single point of the operating characteﬁstics, the
~number of targets detected, and the number of non-targets detected.
Combinational techniques can be used when only the total number of objects
detected is known. All of these results can be extended to include the

multiple-target, multiple-shot case.
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c CHAPTER 6
. SUMMARY AND RECOMMENDATIONS |

6.1 Summary of Contrlbutlons

This the51s has examined several aspects of the class1ﬁer de31gn and
evaluation stages of the statistical pattern recognltlon system des1gn process
Chapter 2 provides general and parametric expressions of the bias and
variance of functions of estimated parameters It was shown that when the
dependence on: the sample size can be separated from the distributions’
effects, an empirical method for estlmatmg the asymptotic value of the -
‘function can be applled Also, ‘an explicit expression for the error of a given
_cla351ﬁer When used on a given test dlstrlbutlon was derlved The bias -
: expressmns were then apphed to this error functlon to- generate bias
express1ons for the linear and quadratlc class1ﬁer, characterlzmg thev-
- degradatlon in thelr performance due to the design condltlons :

In Chapter 3, the tools developed in Chapter 2 were - apphed to, .

¢lassifiers under - finite design and test conditions. A number of testlng
procedures ‘were investigated and compared This chapter prov1des a unified
framework for the analysis of classifier evaluation techniques and gu1de11nes
for the development of new ones. In addition, an explicit expressmn for the
effect of outliers in the des1gn set was presented. ‘ ‘

The reduced Parzen cla551ﬁer was developed in Chapter 4. This
‘classifier combines the ‘error estimation capabilities of the Parzen density
estimate with the computational feasibility of parametric classifiers. It also
~ shows. that nonparametric techniques can be eﬂ'ectlve When implemented
with a 'small number of carefully selected samples. : :

In Cha,pter 5, an approximation for the -acquisition probablllty of- a
minimum-distance one-class cla351ﬁer was presented. This prov1des 1nsxght'
into how the distance-space mapping of a one-class class1ﬁer degrades,
separa,blhty and how some of this can be recovered by applylng a rankmg
- procedure rather than a threshold ‘



. study

3)

- provrde a more theoretrcal explanatlon of the trend in Flg 3.2..

i 62 Recommehdﬁﬁons ,"for/"Furthe‘rﬂ- Research-’f o

There are several toplcs related to thls the51s wh1ch deserve further, _

;,The"‘bi»asf»and variance exp’ressions of 'Chapter 2 and ’Chapter 3 were
only calculated for the I-I case A symbolic -or numerical tool must. be '
.developed in order to: calculate these expresswns for the general case

Now that the degradatlon of class1ﬁer performance due to the de51gn o
conditions has been characterlzed perhaps the desrgn process 1tself can
be 1mproved ' o '

The Chapter 2 error bias express1ons can be used to characterlze the

'_sens1t1V1ty of a classifier to changes in’ the measurement of a feature'
, and to measure the separablllty provided by a feature ’

The variance express1on of (3. 58) needs to be stud1ed further in order to

Chap'ters2 and 3 sug'gest that a ﬁnite test set 'presents more dliﬁiculties’

. than a ﬁmte des1gn set. That is, it is impossible to characterlze the

degradation due to a finite test set without hypothesizing the true test

7 “_dlstrlbutlons We would ‘like to develop an' intelligent system which .
) ‘could ‘manage these hypotheses, determine their likelihoods, evaluate

~ classifiers within this hypothetlcal framework, and somehow ﬁnd the

e optlmal clas31ﬁer for the most llkely underlymg d1str1butrons o

6
‘ :'.entropy as a sample - ‘selection - criterion. Although this prov1ded
‘satlsfactory results, other crlterla, such as ‘the mean—square error, _need

In Chapter 4, the reduced Parzen class1ﬁer des1gn process employed the

, ':vto be 1nvest1gated

Many 1mportant issues- related to the Parzen densrty estlmate have_' ,

"been 1nvest1gated from den31ty estlmatlon -and Bayes error estimation
- perspectlves Whlle these haVe provrded msrght into the selectron of the -
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kernel size and the threshold, the estimation of the kernel covariance
remains a mystery. Perhaps this can be compensated for by allowing
the locations of the representatives to move away from the sample
pomts or by allowing the size of each 1nd1v1dual kernel to vary

The 'approximation presented in Chapt,é_r 5 was based on an intuitive

- understanding of the mechanics of the integral expression (5.4).  While

this» has provided a great_ deal of insight, -other ‘approximation
techniques, such as Gaussian quadrature, need to be investigated.
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Appendix A -
Computation of the Derivatives of B;

In order to compute the derivatives of BI, we need the following formula
for matrix differentiation [12]. |

-1 : o ‘ ‘
OA 10A g1 - I(1,j)A™t | (A1)

=— A~

aaij . : Baij
where a;; is the 1, vcomponent of a matrix A, and I(i,j) isa matrix with an i,j
component of 1 and all other components equal to 0. The s,t component of
(A1) is ‘

oA~ |
e

== AA, S @

st
Applymg (Al) repeatedly,
CH*A! L OA OA

=A" ATMEDAT AT AT ———A!
Oajdaxe daye (L)AHA DA Oayp
= A7M(k,€ )ATI(5L)A T HATIL,)A Ik, )ATT  (A3)
and
_ai‘é_'__l___ | __.A—_l A“l » A——l A—] A_'l A__l A4
DayOane St*-[ JsxlAT el ]jtf[ Jsil ]jl;[ lev (A4)

In the computation of»the derivativés of B, with respect to Oligr), let
A=T=(33+33,)/2 and M=M,~M; from (2.7).

| From (217), (Al):and (A2)

a“‘31 1 Tes-1 1 aEr ——__1 )
- dorf) .f—sMZ x M

2 aaigr)
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[ SN
~ M )T M

=

R it -l
16 [ 163 ]jememy
1t=1 -

8=

[

1 n n 258i 25}t

16 5510 10y

{

mymy o AR : (A5)

CAN)aEN) o .
where 6; =0 or 1 depending on i#j or i:j‘ and m; is the ith component of
M.

Also from (2.17), (A3) and (A4)

OB, e R J) p( .1) Ixu) 1 X(i
. —— e = =M - L — L] =1 — W) = ,J)
"‘()a(r)a(ygr) ) 8 2 E L +L i) L _M
1 n n. ’
= 'I?Z E[ 1]51[2 1]]1[2 1]Jtnls]'-nt
s=1t=1
1] o n 2(Ssi ’ 2511 25 ’ -
B 16§§1+)\ 1+N 1+xms b
=0 for A O
, Li‘kewise,, » » : .
By 1 e T0,5) ey T it mr T640) ey 1 |
L [z ) o (J,I)E L (J,I)E 1 (,J)E Mo
ij Y _ : v’ B T
oo |26 26 06, 20, 26; 26,
- 3"25251 1+x 14y 1+xms t+1+x 14N 1+x s
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2 mj2 :
(A7)

LI .
4| (1N)7(1+N) (1X)%(1+%) ,

1

Egs. (A5), (A6) and (A7) are shown in (2.21), (2.22) and (2.23) respectively.
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Appendlx B
Computatlon of the Derlvatlves of B,

From [12], if a matnx Ais symmetrlc
din]A| - _
=A T = A!
O0A R
or, v .
nlA| 1y
— A7
—Lﬂaa A7
Using (A1), .

321n|A| _ oAt
BABakf '88.]{["

— Ak, )ATH

or,

ma| ;;-—'[A;II(k,Z )A_l_]ij =—| +1]ik[A;1]€j |

» Baijc?akg v_ »
L 1y L 1, P
Since By, = — ln 5] — " In |3 — ZlEzI ~ from (2.17)
¥ = EI+Z2)/2 | ' '

B, _11 1
o) 2 2 4 1+ 4
0By 1 _1_[— |, é—[z p o1 1k
dald) 2 2 PET 4y 4N

Egs. (B5) and (B6) are shown in (2 27) and (2. 28) respectlvely
"The second order d,erlvatvlves of B2 are obtamed by using (B4):
8B,

i N U U P
3aigf)aaigr) o 2 4[ ]H[Z ]JJ [Zr l]n[;Jr 1]]_]

By

a,nd
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82B2 1 1 1 1 1
_— = = =[x — [ [y 1.
8aigr)8aj(,r) 9 4 ) ]U[L ]Jl + 4 [Zr ]u[zr ]jl (B8)
Therefore,
0"By 1 2 2 1
a0 T TR 1o - B9
paloa B 1ty 14y 4 (89)
"B, 1 2 2 111
Baig2)8aig2) ) IR DN EON + ;TIX_J (B10)
o0, for i#] B11)
daDoof ~ 0 for 17 | (B11)

Eqgs. (B8) through (B11) are shown in (2.29) through (2.31).
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| Appendlx Cc
The Derlvatlves of h for the Qua.dratlc Classifier

‘The,derivatives of ‘h with respect to mi(r) can be obtained easily from
(2.48) as follows: '

O(X) eire ap h(X | |
= LSOR ‘(i\(A—l M) ()
aM Ll ) aM =-% (C2)
l 2 .
Usmg MI—O MZ—M 3=l and Yp=A of (2. 7) |
| S Ah(X) . oh(X) _ x—m
b = TN o T -9
i@_l X 1 (o)
| Bm() . : 'Smi(2)2-— N

In order to. derive the derivatives with respect to ozigr), we ‘need the -
derivatives for matrix inversion as in Appendix A -and the derivatives of the

log-determinant as in Appendix B. They can be computed as follows: -

) é(X—Ml)TE;II(i,s)Z;I(:X—Ml) + 510
=%§=§—(X M) 11( DL _Mz)_ 1=
Ty .
S 1 (Xi_mi)(xj”’mj) 1'51, ' ' -~
RS 2 N AT

TS Y
aai(il)laaigl)f 2( | 1) [Z (,.])21 (I,J)Zl



o)

dofPoa?)

Ry (AR Ay

0O |

5211()()
8aigl)8aj(11)

(R

o |

&*h(X)
801152)6011(12) B

111

+ OIS (,J)Ll (X—M;)
l ~—1 1

- Q[Ll Ll

2 E si 31 th sXt — 5115j.i

s=1t=1

— —;— for i#j

6557 T

+ S0 lDr

1

>\i>\j for  i#j

S (B ((K)) e

[241 ]l][}.ll I]Jl

wlb—*

s=1t=1

1
(s +%7) = 0

+ 376,10 1(1L1) S5

(X—M,)

- Lo [ 60 165

(X—M,)

i i(5516j15 XXy + O 511519( X¢) ~

(X—M,)

1

- — (XM [zfll(i,j)zgll(',i)zz‘ ,‘

5.6

_51331

(c1)

(C8)

(C9)
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= —l- n‘ nw 5Si i 5lt
=B 5 b
S &5 6 s
2 e — 1A G
NN (xs—mg)(x—my) | + 5 J
i~y 2 —m:)? l
-5 (Xz ) (ijj) +—1— ) (C10)
2 >\l >\J >\J >\i 2 >\l>\]

Plugging all these equations inito (2.47), we obtain (2.49).
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Appendix D
The Derivatives of h for the Linear Classifier:

The derivatives of h with respect to m’i(r) can be obtained from (2.56) as

follows: ,
oh(X v ——1 _
: = - 37IX D1
Oh(X =1 =1 _ o
. , | D2
Ph(X) -y | .
= ; : D3
M2 by , . | -‘ (D3)
S*h(X —1 . B
- _ _ _ D4
M )y | | | (D4)
Using M;=0, My=M, ¥,=I, 3,=A and T'=(I+A)/2,
oh(X) _ 2% oh(X) _ 20x—my) (Ds)
Om{V) 1+ Om® 14X
5*h(X) _ 2 9*h(X) _ 2 (DS)
Bmi(l)z 14N 3m-(2)2 R O

The derivatives with respect to oz() are computéd as follows:

o _
0 Ozigr)

MT (1, T (2X-M)

20, 20,

4N 1Py

13 —

s=1

i
lM"
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mi(2xj—mj)
=T N 1N D7
T NN (D7)
___?_211____1-1\___‘._1..__1..__1_1
PRCENCErE DS DY LV
+ SIS )T |(2X-M)
1. 2.1 255i 25]1 25)t L
N 4s§1t§1.1+xi REDVES EON HIS(zxtfmt)
=0 for A | N
—_.azh | __1__ T[—;l s Sl o1
saoa) 8 12 I
+ TUGE) TS (2X-M)
1o on | 205 26 26
T8 22 1aN 14N 1y
s=1t=1 N i i
28 26, 26 ,
+ 1N 1HN 1) my( Xt—lét)
o) meym) B

(1+xi)2(1+xj)» (LN (aN)

Plvuggivng’all theseqresults into (2.47), we obtain (2.59).
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Appendix E
Proof of ¢ > ¢

The first step is to prove that the first-order variation of (3.19) is zero
regardless of Ah(X) From (3.21), the ﬁrst-order variation of (3.19) is

j f Ah(X)eb®)p(X)dwdX = gAh(X)(S(h(X))f)(X)dX

TS o

= [ ARX)B(X)AX
n(X)=0

=0 ' | (E1)

‘The last equality comes from the fact that p(X) = 0 at h(X) =0 if‘h(X) is
the Bayes classifier of Pyp;(X) and Pypy(X). ’

The second step involves showing that the second-order variation of
(3.19) is positive regardless of Ah(X). Again from (3.21)

f [ Ah2(X) hX5(X)dwdX = % | Ahz(X)d—j%)- 5(X)dX (E2)

S —o0

27r

In fhe region very close to h(X) = 0, dé(h)/dh > 0 and $(X) > 0 for h <0,
while dé(h)/dh < 0 and p(X) < 0 for h > 0. Since Ah*(X) > 0 regardless of
Ah(X), (E2) is always positive.
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. Appendlx F
Denvatlon of Var {6}

| Keeplng up to the second—order terms of Ah ‘
Jth(X) me(Y) leh( ) wah(Y) leAh(X) jé{gAh(Y)

= e?f'h(")ew-%'é M '+,jw14;¢1-(x>;+;jw2As2(Y>}—v @, AR(X)AR(Y)] (F1)
- 'whe_ré

»Af;;<>t>‘= Ah(X) + Ah?( )  my

' | Thus, the ﬁrst hne of (3 22) can be expanded to

Tl 4oo leh(X) ' T 1 +00 _]th(Y) :

'{v,ard“{;e}_ | 'ff AXax - ] | ¢

}Y)dedY
Ceol dW T 800 jwy

400 ‘]wgh(Y)

j f d{Agl X)}e’w‘h(x)p(X)dde Y)dw2dY"
8, o | '

00 . 8y—00 Jw?

F0o jwh(X) o ,l,i. +00 - uhh(Y) :
S : (X)dwl —f f Ed{Ag Y)}ej Y)dw dY-
M e dW _.2, S0

ﬂg ngif 70 E’d{Avh(X)Ah(Y» ’“l“‘x’ 05()5 md%m -

,. The ﬁrst lme of (F3) ( —)2 from (4), and the second and thlrd lmes are . |

s each ( —)ZY' from (3 21) Furthermore, the summatlon of the ﬁrst second

"‘v_thlrd and ﬁfth lmes (e—é—) -|-2(6—- )A_ (—— ) ='—K2 -where. : -
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€ = ¢ + Ac. Since A¢ is proportional to Eg{Ah(X) + 'J-zﬂAhz(X)} (~ 1/¥)

from (3.21), Ae? is proportional to 1/N 2 and can be neglected. Thus, only
the fourth line remains uncancelled, which is the second line of (3.22).
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‘Appendix G
Derlvatlon of Expressmns for mz and ol

" Let us assume that Y=L Y=A, M;=0, and M, =M —[,ul,’. i) T
- These assumptions do not hurt any generality. First, z of (5. 1) can be
modified as '

1= %XTX=%(§;—M_+M)T(X—_M}M)
- Loc-mTee-m) + 2T+ MM e
The expegted value of 4 for class‘ 2 (wy) -;s
| my —E{z W2}=—E{X M)T(X M) wp}+ 121 MTE{X M W2}+ MM
. =itrE{X M)(X — M)T'w2}+MTM,é—1—t A+ MM
L Do : 0 o s
.»_=%(;xi+;ui) B @

Likewise, the second order moment of z for wj is

B{r? i) = L B{X-MTX-M)X-MTXM) )
A TR} M

Lo (MM )M
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= % [3zx§+2-zzxixj

4 1.
+— SN+ (8 Mok
i>] n° n®

£ (SIS

where X is assumed to be Gaussian. Thus, the variance of z for wj is

‘o3 = E{z2}w2}—m22=;12— [2in2+42xiui2]
i - 1

(G4)
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: Appendix H
Derivation of the Acquisition Probability of (5.2)

The acquisition probability of (5.2) is derived as follows:
P, = Pr {the smallest z is from class 1}

Pr{Ai and Bi and Cl}

[N\l

—

= ¥ Pr{A,} Pr{B, | A} Pr{C; | A,B,} (H1)

L

—

where A; ={no sample in 0 =z <iAt},' B, ={one class 1 sample is.
in 1At =z <(i+1)At} and  Cj={k;—1 class 1 samples
and k, class 2 samples in (i+1)At = z<oo}.  Pr{A;}, Pr{Bj]A;} and
Pr{C;!A,B;} may be computed as follows:
ky ky
0/- . k, 0r- : . ko
Pr(A} = () ufliA) (1 —u, (AN () ) uf(AL)(1 — uy(iA)

= (1= (A (1—uy(iAe) - (m2)
ki Agiat) ) Auy(iat) o
Pr{BiiAi}=(1) 1—w(iat) | | 1—u(iAt) |-
ke [ Auyiat) Auy(iAt) |
Tl [ 1—uyian) | [T 1-uiay)
Auying) |
| T 1y (iAt) [F3)
.FPr{Ci}Ai,Bi}'=1 B R (H4)

v,where Auj(iAt) is the plf(v)bability’ of a class j sample filling in
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IALS g ‘<‘(i'+1b)At The approximation of (H3) is obtained by making
Au —0. Substxtutmg (H2), (H3) and (H4) into (H1) and letting Au;—0, we -
'ca,n obtain S '

P. =

a

kl(l—ul)k ](1—112) du, S 7, , (H5)

The summation of (H1) is taken by changing t from 0-to co. Since u; (0) =0
and vy (oo)—l and u;(t)’s are the monotonic functlons of t, the integration is

taken ‘with respect to ul from 0 to 1.
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