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ABSTRACT

Hayes, Raymond Reynolds. Ph.D., Purdue University. May 1988. Statistical 
Classifier Design and Evaluation. Major Professor: Keinosuke Fukunaga.

This thesis is concerned with the design and evaluation of statistical 

classifiers. This problem has an optimal solution with a priori knowledge of 

the underlying probability distributions. Here, we examine the expected per

formance of parametric classifiers designed from a finite set of training sam

ples and tested under various conditions. By investigating the statistical 

properties of the performance bias when tested on the true distributions, we 

have isolated the effects of the individual design components (i.e., the 

number of training samples, the dimensionality, and the parameters of the 

underlying distributions). These results have allowed us to establish a firm 

theoretical foundation for new design guidelines and to develop an empirical 

approach for estimating the asymptotic performance.

Investigation of the statistical properties of the performance bias when 

tested on finite sample sets has allowed us to pinpoint the effects of indivi

dual design samples, the relationship between the sizes of the design and 

test sets, and the effects of a dependency between these sets. This, in turn, 

leads to a better understanding of how a single training set can be used 

most efficiently. In addition, we have developed a theoretical framework for 

the analysis and comparison of various performance evaluation procedures.



ix

Nonpararnetric and one-class classifiers are also considered. The 

reduced Parzen classifier, a nonpararaetric classifier which combines the 

error estimation capabilities of the Parzen density estimate with the compu

tational feasibility of parametric classifiers, is presented. Also, the effect of 

the distance-space mapping in a one-class classifier is discussed through the 

approximation of the performance of a distance-ranking procedure.



I

CHAPTER I 
INTRODUCTION

1.1 Problem Statem ent
In the formulation of the statistical pattern recognition problem, 

multidimensional observations of a random event are assumed to have been 
generated from a set of underlying probability densities, each of which 
represents an event class. If one could accurately identify the underlying 
densities and determine from which an unknown observation came, one 
could classify the observation. A priori knowledge of the densities makes the 
problem relatively easy. However, the designer is usually just presented 
with a limited set of preclassified observations (training samples) from which 
the underlying structure of the problem must somehow be inferred.

The design of a pattern recognition system involves a number of steps: 
feature extraction, error estimation, classifier design, and classifier 
evaluation. Even though the measurement process determines the 
dimensionality of the observations, classification can take place in any 
space. Feature extraction involves heuristically or mathematically obtaining 
a reduced set of features which reflect the characteristics of the original 
measurements. Each observation can be mapped into a feature vector which 
is then used for classification. Classifier performance is bounded by the 
overlap of the underlying densities (the Bayes error). Once a set of features 
is chosen, the Bayes error in that space measures the maximum separability 
of the classes and provides a guideline for the evaluation of the classifier 
performance. Classifier design deals with the identification of the densities 
and the development of a discrimination rule. A common practice is to 
assume that the densities are uni-modal Gaussian, estimate the appropriate 
parameters from the training samples, use Bayes’ rule to find the a posteriori 
class probabilities, and then take the natural log, generating a quadratic 
expression which is compared to a threshold (the quadratic classifier). Once 
the classifier has been designed, its expected performance in the field must 
be estimated and compared to the theoretical bounds (classifier evaluation).



When the assumptions made in the design stage are correct and a very 
large number of training samples are available, the resulting classifier will 
probably be capable of near-optimal performance. However, if a large 
number of training samples are not available, the density parameter 
e s t im a t e s  will not be accurate and classifier performance will be degraded. 
Furthermore, the same limited set of training samples used to design the 
classifier must also be used in its evaluation. This usually leads to an 
optimistic estimate of the classifier performance.

When the assumptions made in the design stage are not correct, the 
resulting parametric classifier will not provide a satisfactory level of 
performance. Currently, non-parametric techniques, such as k-nearest 
neighbor (k-NN) and the Parzen density estimate, are being used 
successfully for Bayes error estimation. These techniques can be re-cast as 
classifiers, but their dependence on a large number of training samples 
makes their implementation computationally impractical.

Finally, at times, because of the dynamic nature of the classification 
environment, training samples from all of the classes are not available. Fdr 
example, suppose one wanted to be able to recognize the radar return of a 
tank located in a field. The characteristics of the tank will remain constant, 
but the field might, contain grass, trees, rocks, or snow, all of which fall into 
the non-tank class. This one-class scenario is more of a detection problem 
than a classification problem and a slightly different approach must be 
taken.''

This thesis focuses on the classifier design and evaluation concerns 
mentioned above. Even though they are theoretical in nature, the 
techniques developed and results presented should be useful in the solution 
of a number of practical problems.

1.2 Thesis Organization
Chapter 2 of this thesis deals with the effect of finite training sample 

size on parameter estimates and their subsequent use in functions. Genera,! 
and parameter-specific expressions for the expected bias and variance of the 
functions are derived. These expressions are then applied to the 
Bhattacharyya distance and to a new expression which characterizes the 
performance for the linear and quadratic classifiers, providing valuable 
insight into the relationship between the number of features and the number



of training samples. Also* the functional form of these expressions allowed 
the development of an empirical approach which will enable asymptotic 
performance to be accurately estimated using a very small number of 
samples.

In Chapter 3, the expression for expected classifier performance derived 
in Chapter 2 is applied to a series of test procedures designed to compensate 
for the fact that only one set of training samples is available. For the 
holdout method, the roles of the independent design and test sets are 
identified. For the resubstitution and leave-one-out methods, the 
relationship between dependent design and test sets is investigated. Also, 
the statistical properties of the bootstrap re-sampling technique are 
analyzed.

Chapter 4 investigates the use of a new non-parametric classifier based 
on the error estimation capabilities of the Parzen density estimate. We 
develop an algorithm to select a given number of representative samples 
whose Parzen density estimate closely matches that of the entire sample set. 
Using these representatives, a piecewise quadratic classifier which provides 
nearly optimal performance is designed.

Iii Chapter 5, an approximation for the acquisition probability for a 
minimum distance one-class classifier is derived. In the original development 
of the classifier, it was shown that the acquisition probability is dependent 
upon the operating characteristics in the distance space, the number of 
targets detected, arid the number of other objects detected. An approximate 
expression replaces the operating characteristics curve by a single point.

Chapter 6 gives a summary of the major contributions of this thesis and 
provides recommendations for further research.



CHAPTER 2
EFFECTS OF SAMPLE SIZE IN CLASSIFIER DESIGN

2.1 Introduction
In practical pattern recognition problems, the parameters of the 

underlying distributions are unknown and the number of training samples 
available frequently is small. The size of this set of samples, relative to the 
number of features used, determines the accuracy of the parameter 
estimates and the similarity between the sample set and the true 
distribution.

In this chapter, we will look at the effect of sample size on functions of 
the distributions’ parameters. By viewing the estimated parameters as 
random variables, the expected value of a criterion can be computed by 
taking the expectation of the parameters over all possible N-size sets of 
training samples. This leads to a general expression for the expected bias 
and variance of the function, isolating the effects of functional form from the 
underlying distribution.

Pattern recognition research has considered various questions 
concerning the relationship between the limited size of the training set, the 
number of features, and the estimation of some performance criterion. A 
number of authors, including El-Sheikh and Wacker [1], have investigated 
the optimal number of features for a given finite design sample size in order 
to combat the "peaking phenomenon," the apparent loss of classifiability 
which accompaines an increase in the number of featues without an increase 
in the number of training samples. An excellent review of work done in this 
area is presented in Jain and Chandrasekaran [2]. Another group of authors 
has looked into the effect of the ratio of training sample size to feature set 
dimensionality on the expected performance of an empirically-designed 
classifier used on the true test distribution. In [3], Raudys and Pikelis 
catalog the development of a number of approximate expressions for the 
expected performance of the linear classifier and an exact expression for the 
quadratic classifier. Asymptotic expansions for the quadratic classifier have



also been developed by Han [4] and McLachlan [5]. Unfortunately, these 
expressions are too complex to provide valuable insight and their accuracy 
has not been experimentally verified. Thus, the relationship between sample 
size and dimensionality has been inferred through simulation (eg., [3] and 
[6]), the investigation of related criteria (e.g., [7] for Bhattacharyya distance 
and [8] for divergence), and a look at the performance of these classifiers 
tested on the design set [9].

By applying our general expression to the Bhattacharyya distance and 
the classifier error equation, we have developed a useful framework for the 
analysis of classifier performance, design, and testing procedures. This 
provides valuable insight into the relationship between dimensionality and 
sample size and the importance of mean and covariance shifts in measuring 
separability. Also, we have developed an empirical approach which will 
allow the designer to estimate the asymptotic performance of a particular 
type of classifier. This can be used to evaluate trade-offs in classifier 
complexity and performance, and to determine the ratio of design samples to 
dimensionality needed for a particular performance level.

2.2 Bias and Variance Expressions

2.2.1 General Form ulation
Let us consider the problem of estimating f(yi,ryL,) by f(yi>ryL,) where f is 

a given function, yj’s are the true parameter values and yj’s are their 
estimates. In this section, we will derive expressions for the expected value 
and variance of f(yi„.yL)> and propose a new method to estimate f(yi„.yL)-

Assuming that the deviation of from yj is small, f(Y) can be expanded 
by a Taylor series up to the second-order terms as

M  f(Y) =  W  + ^  AY + - tr AYAYt (2-1)

where Y = [yj.y^p and Y = [yi.yyT are the column vectors of the true 
parameters and their estimates, respectively. AY = Y -Y , VT indicates the 
transpose of the vector V, and trA is the trace of a matrix A.

If the estimates are unbiased,

E{AY} = 0 -  (2.2)

and subsequently



E(f) s . f + — tr 
2

dH
BY2

E(AYAYt ) (2-3)

Similarly, the variance of f can be derived as

Var(f) S  E- ~  A Y + .1  tr <9Y 2 AYAYt :
/

tr ,
BY2\ /' 2

d2f
BY2

E(AYAYt )

ss E
BY AY

E(AYAYt )
BY

where the approximation, from the first line to the second line, was made by 
discarding terms higher than second-order.

Eq. (2.3.) shows that f is a biased estimate in general and that the bias 
depends on B2f/BY2 and E(AYAYt ), where B2f/BY2 is determined by the 
functional form of f and E(AYAYt ) is determined by p(Y), the density 
function of Y, and N, the number of samples used to compute Y. Likewise, 
the variance depends on Bf/BY  and E(AYZIYt ).

For many estimators, the effects of p(Y) and N on E(AYAYt ) can be 
separated as

Kj .AYAYt I R(N)K(PlY)) . (2.5)

where the scalar g and the matrix K are functions determined by how Y is 
computed. Substituting (2.5) into (2.3),

E{f} a  ( +  C g(N) (2,6)

where c = — tr (32f/<9Y2 K(p(Y))) is independent of N and treated as a

constant determined by a given underlying problem. This leads to the 
following procedure to estimate f.

I) Change the sample size N as Nl5N2jrN^. For each Ni, compute Y and 
subsequently f empirically. Repeat the experiment M times, and 
approximate E(f) with the sample mean of the M experimental results.



2) Plot these empirical points E{f} vs. g(N). Then, find the line best 
fitted to these points. The slope of this line .is c and the y-intercept is 
the improved estimate of f. There are many possible ways of selecting a 
line. The standard procedure would be the minimum mean-square error 
approach.

2*2.2 Param etric Form ulation
In pattern recognition, most of the expressions we would like to 

estimate are functions of the expected vectors and covariance matrices. In 
this section, we will show how the general discussion of the previous section 
can be applied to this particular family of parameters.

Assume that N samples are drawn from each of two n-dimensional 
Gaussian distributions with their expected vectors and covariance matrices 
given by

M1 = o , E i = i
M2 = M  , E 2 =  A V (2J)

Without loss of generality, any two covariance matrices can be 
simultaneously diagonalized to I and A, and a coordinate shift can bring the 
expected vector of one class to zero.

Mi and E r  can estimated without bias by the sample mean and 
sample covariance

- z  xfl
N .j=i J

^ = N 1 1 "i M; fJ—I

(2 .8)

where XjW is the jth sample vector from class i. Thus, the parameter vector 
Y of (2.1) consists of 2(n+n2) components

;/ Y =  [m^mW In1WmW &}})*£) &{;)*£) ]* ; (2.9)

where m/r) is the ith component of Mr, and aj-p is the ith row and jth 
column component of E r*

The random variables of (2.9) satisfy the following statistical properties, 
where AmiW = x$i/r) — m/r) and — o ^ :



!) The sample mean and covariance are unbiased:

E(Amî )  =  O , E (A aiW) =  O (2,10)

2) Sarnples from different classes are independent:
E(AmZ1)Am/2)) = E(AmiO) E(Am/2)} = 0

; r  /  E(AaZ1)Aa/2)) =  E(AaJ)) E (A a f)  = 0

, E(AmWAa^) = E(AmW) E (A a^ ) = 0 for r ^ s (2.11)

3) Diagonal and cause the mean estimate covariances to be 
diagonal:

E(AmW AmW) =  0 for i ^ j

E { ^ w 2} =  i  ' :

Ki^iiii'2''-i (2.12)

where Xi is the ith diagonal component of A.

4) The third-order central moments of a Gaussian distribution are zero:

E(AmZr)A o^) = 0 (2.13)

5) The fourth-order central moments of a Gaussian distribution are 
known:

E- AaiW Aog)

for (i#j,i=k,j=^ ) or (i=Kj,i=̂  ,j=k)

for i= j=k=f 

otherwise



Aaj®Aa$\
2 Xj2 2 Xj2

N -I
O

for (i^j,i—k,j==A) or ( i ^ i —̂  »j—k)

for i=j=k=^ (2.14)

otherwise

Note that in the equal index cases of (2.14) N-I is replaced by N for 
simplicity.

Substituting (2.9) through (2.14) into (2.3), the bias term of the 
estimate, E(Af) — E(f) — f, becomes

E(Af) ^  j  tr

I 2 

M r=i

dH
DY2

n (')2f

E(AYAYt )
I L L rfif

n n <92f

n n
+ E S

a2t E(AaiWAaW) +  S  B(AaW2}
i-i j=lydofildaM-

MJ

I
2N

A a2f , A d2f xE Cj  (1)2 **" E Ai-i OTnju X- i=i dm/2)2

n n
+ E:E

V=Ij = I
: m

n n
+ E E

i=i j=i

a2f
dalp da-lp dafpdalP

dH

dH
dafpdotfp dajpdajp

dH

+ f ■ JH- 2

XX , v  dH 2X2
^ + S  dnlp2 2Xi

(2.15)

Note that the effect of N is successfully separated, and that g(N) of (2.5) 
becomes I /N. This is true for any functional form of f, provided f is a 
function of the expected vectors and covariance matrices of two Gaussian 
distributions. This conclusion can be extended to non-Gaussian cases in



which (2.13) is satisfied and EfAaWA a$  } of (2.14) is proportional to I /N. 
Similarly;, the variance can be computed from (2.4), resulting in

JL_ B di 2 n di '
N > E

i=l dmp) + E
i=l (9m/2̂

X /
n n

E l
/ I i- L r 1
. ; . .

n n
+ E E ]

i=l J-J
: M

di 2 di di
daM , dap) dap)

di 2 di di
dap)

V  ̂ / dafp dap)

Xi-

+ E
i—I

2

dap)

XiXj + E
dap)

2\;: (2.16)

Note that, in order to calculate the bias and variance, we only need to 
compute di/dmp), di/da®, d2i/dmp)2, d2{/dap)dap) and dH /dafpda^  for 

. r—1,2.

2.3 Bhattacharyya Distance Between Two Distributiohs
A popular measure of similarity between two distributions is the 

Bhattacharyya distance [IOj

v_i IEi+E2
E i+  E 2 "B = ~ (M2 -  M1) (M2 -  M1) + -  In —  V 2 : ,

2 VWlVEl
(2.17)

Since B is a function of M1, M2, E i an<i E 2> ^ a member of the family of 
functions discussed previously.

If two distributions are Gaussian, the Bhattacharyya distance gives an 
upper bound of the Bayes error, e*,

£* S  £„ =  VPlPje-B (2.18)

where Pi is the a priori probability of class I. The first and second terms of
(2.17), B1 and B2, measure the difference between the two distributions due 
to the mean and covariance shifts respectively.

When Mi and Ei of (2.8) are used to compute B, the resulting B differs 
from its true value. The bias and variance of B can be obtained using (2.15) 
and (216).



2.3.1 First Term Bj

Since B1 = — >] — (m/2) -  m/1))2, SB^Sm/') and S2B1/Sm/r)2 can 
8 i=i 1+Xi '' 

be easily obtained as
SB1 m/2)—m /1) SB1 m/2)—m/1)

Sm/1)

S2B 1

2(1H-X|) ’ Sm/2) 2(1+Xi)

S2B1

(2.19)

(2 .20)
Sm/1)2 Sm/2)2 2(l+Xj)

The computation of SB1/Sc*//), S ^ /S a /^ S a /1) and S2B1/S a î S ajW are more 
complex and presented in Appendix A. The results are 

SB1 SB1 IniHij
SaiW Sa/2) 4(1+Xj)(l+Xj)

S2B1 S2B1
SaWa/1) Sa/2) Sa/2)

0 for i^j

S2Bi S2B1

SaWajW Sa/2)Sa/2) 4(1+Xi)(l+Xj)

m/2) — m/1).
Substituting (2.19) through (2.23) into (2.15) and (2.16),

Hl2 Hlj2
—----- +  •' J
I+Xi I+Xj

(2.21)

(2 .22)

(2.23)

where Ini — m/2) — m/1)

E(AB1) s

Var(B1)

4N
n n mj2(l+XjXj) A mi

n + E E + E
’(i+^i2)

i=i j=i (l+Xj) (!+Xi) i=1 (!+Xi)

4N
n m2 n n m2mj2(l+XjXj)

Ju!+X i J( j?x 2(1+Xi)2(l+Xj)2

(2.24)

(2.25)

2.3.2 Second T efm  B2
Similarly, the partial derivatives for B2 are derived in Appendix B. 

They are listed as follows:
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dBo S2B9
- - ■■■ ■ _  o and
SmiM : SinM2 °

SB2 <$jj
dajf1 ~  2(1+Xj) “ . 4

SB2 ĵj îj
dcej-p 2(1+Xj.)' ’ 4 Xi

S2B2 i I
daj-pda^p 4 2(1+Xi)(l+Xj)

rH.I I

for r—1,2

dalpda-jp

s2b .

^XiXj 2 (1 )(I -t-Xj)

S2B9
0 for Mj

S a jj+ r+  daj-pdcx 

Substituting (2.26) through (2.31) into (2.15) and (2.16),

I+Xj Xj
E (AB 2 ) s

4 N

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

»(n+l) - '£ ■ £ - E
!+-Xj2

i=l j=l (l+ \)(l+^j) i=l (1+Xj)

Yar(B2) S
2N

/  \

I I 2 I I 2
\  2

I+Xj 2
N S

+ I+Xj 2 Xj
Xi 1

(2.32)

(2.33)

2.3.3 Discussions and Experim ental Verification
Table 2.1 shows the dependence of E(AB1) and E(AB2) on n and k 

(=N /n) for three different cases. In Case I, samples from both classes are 
drawn from the same source N(0,I), a Gaussian distribution with zero mean 
and identity covariance matrix. In Case 2, the two distributions share a 
covariance matrix but differ in the means. In Case 3, the means are the 
same, but the covariances are different. As Table 2.1 indicates, for all three 
cases, E(Ab 1) is proportional to l/k  while E(AB2) is proportional to 
(n+l)/k. Also, note that E(AB1) is the same for Cases I and 3 because the 
sources have the same mean. Similarly, E(AB2) is the same for Cases I and
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Table 2.1 Sample bias expressions for the Bhattacharyya distance 

Case I Case 2 Case 3
N(0,I) N(QJ) N(OJ) N(M,I) N(0,I) N(0,4I)

mi Hli =  0
In1 =  2.56 
Hii =  O(Ml) Hii =  0

Xi Xi = I Xi =  I Xi =  4

B1 0 0.82 0

B2 0 0 0.11 n
*6 50% 10% Depends on n

0.25 0.35 0.25
E(AB1) k k k

E(AB2) 0 125— 
k

0.125 n+1
k

0 .0 8 ^ -
k



2 because the sources share a covariance matrix.
Since the trend is the same for all three cases, let us study Case I 

closely. Table 2.1 demonstrates that in high dimensional space (n »  I) the 
distortion due to the covariance estimate (E(AB2) =  0.125 (n4l)/k) 
dominates that caused by the mean estimate (E(AB1) =  0.25/k). Also, 
since E (A B 2) — 0.125 (n+l)/k, an increasingly large value of k is required 
to maintain a constant value of E(B)(== E(B1) + E(B2)) as the 
dimensionality increases. For example, Table 2.2 shows the value of k 
required to keep the value of E(B) less than 0.223. The true Bayes error for 
this case is 50%, and E(B) =  0.223 gives an upper bound of 40% using
(2.18). Only 16 samples (3.9 times the dimensionality) are needed to achieve 
E(B) =  0.223 in a 4-dimensiona! space, while 9396 samples (73.4 times the 
dimensionality) are needed in a 128 dimensional space. This result is 
sharply contrasted with the common belief that a fixed multiple of the 
dimensionality such as 5 or 10 could be used to determine the sample size.

Since the theoretical results of (2.24) and (2.32) for bias and (2.25) and 
(2.33) for variance are approximations, we have conducted three sets of 
experiments to verify these results. The first two cases are Cases 2 and 3 of 
Table 2.1, while the third, which will be called Case 4, uses both mean and 
covariance differences. Case 4 uses an 8-dimensional Gaussian data set 
taken from [6] with a Bayes error of 1.9%, and Xi’s and m;’s listed in Table 
2.3.

For Cases 2 and 3, the dimensionality ranged from 4 to 64 in powers of 
2, and k was selected as 3, 5, 10, 15, 20, 30, 40, and 50. N(= nk) samples 
were generated from each class according to the given mean and covariance, 
and B1 and B2 were computed. This procedure was repeated 10 times 
independently, and the mean and standard deviation were computed. 
Tables 2.4, 2.5, and 2.6 present a comparison of the theoretical predictions 
(first lines) and the means of the IQ trials (second lines) for Cases 2, 3, and 4 
respectively. These tables show that the theoretical predictions of the biases 
match the experimental results very closely.

The third lines of Tables 2.4 and 2.5 present the standard deviations of 
the 10 trials. Table 2.7 shows the theoretical predictions computed frpm 
(2.25) and (2.33) for B1 of Case 2 and B2 of Case 3. Again the theoretical 
predictions match the experimental results closely. It should be noted that 
the variances for B2 of Case 2 and B1 of Case I are zero theoretically. This 
suggests that the variances for these cases come from the Taylor expansion
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Table 2.2 Values of k and N required to maintain BIB} = 0.223.

n 4 8 16 32 64 128

k 3.9 6.2 10.7 19.6 39.6 73.4

jAIl
■55 16 50 172 628 2407 9396

Table 2.3 Statistics for Case 4.

i I 2 3 4 5 6 7 8
Xi 8.41 12.06 0.12 0.22 1.49 1.77 0.35 2.73

mi 3.86 3.10 0.84 0.84 1.64 1.08 0.26 0.01



n

Table 2.4 Biases of B for Case 2.

(a) BI (B;!=0.82) ( b ) B2 (B2=G)

4 8

n

16 32 64 4 8

n

16 32 64

1.1101 1.0758 1.0587 1.0502 1.0459 0,2083 0.3750 0.7083 1.3750 2.7083
3 1.0730 0.9933 1.0502 1.0754 1.0825 3 0.2546 0.4106 0.8930 1.7150 3.2875

0.4688 0.3791 0.2221 0.1551 0.0955 0.0787 0.0653 0.0588 0.0776 0.1083

0 .9946 0.9740 0.9638 0.9586 0.9561 0.1250 0.2250 0.4250 0.8250 1.6250
5 1.0941 1.0702 1.0396 0.9659 0.9764 5 0.1133 0.2791 0.5244 0.9252 1.8035

0.3867 0.2745 0.1542 0.1091 0.0733 0.0266 0.0785 0.0581 0 .03Q2 0.0775

0.9080 0,8977 0.8926 0.8900 0.8887 0.0625 0.1125 0.2125 0.4125 0.8125
10 0.9593 0.9277 0.8421 0.9128 0.8911 10 0.0803 0.1179 0.2280 0.4365 0.8578

0.2240 0.1424 0.1045 0.0720 0.0709 0.0339 0.0191 0.0218 0.0279 0.0234

0.8791 0.8723 0.8688 0.8671 0.8663 0.0417 0.0750 0.1417 0.2750 0.5417
15 0.8802 0.8705 0.8909 0.8634 0.8730 15 0.0437 0.0742 0.1416 0.2894 0.5566

0.1634 0.1493 0.1053 0.0794 0.0493 k 0.0243 0.0146 0.0143 0.0257 0.0170

0.8647 0.8595 0.8570 0.8557 0.8551 0.0313 0.0563 0.1063 0.2063 0.4063
20 0.8778 0.8891 0.8261 0.8685 0.8361 20 0.0389 0.0566 0.1079 0.2099 0.4129

0.1356 0.1060 0.0929 0.0455 0.0387 0.0101 0.0140 0.0132 0.0154 0.0058

0.8502 0.8468 0.8451 0.8443 0.8438 0.0208 0.0375 0.0708 0.1375 0.2708

30 0.7901 0.8477 0.8583 0.8436 0.8373 30 0.0190 0.0344 0.0707 0.1416 0.2777
0.0702 0.0992 0.0712 0.0361 0.0366 0.0063 0.0082 0.0097 0.0098 0.0062

0.8430 0.8405 0.8392 0.8385 0.8382 0.0156 0.0281 0.0531 0.1031 0.2031
40 0.7917 0.8251 0.8578 0.8343 0.8444 40 0.0170 0.0282 0.0561 0.1034 0.2061

0.0786 0.1118 0.0522 0.0283 0.0271 0.0072 0.0084 0.0086 0.0046 0.0063

0,8387 0.8366 0.8356 0.8351 0.8348 0.0125 0.0225 0.0425 0.0825 o.im
50 0.8524 0.8383 0.8364 0.8301 0.8290 50 0.0102 0.0219 0.0417 0.0831 0.1650

0.1060 0.0404 0.0515 0.0475 0.0287 0.0037 0.0062 0.0041 0.0060 0 .005?

(1st line: Theoretical prediction,
2nd line: The mean of 10 trials,

3rd line: The standard deviation of 10 trials)



Table 2.5 Biases of B for Case 3.

(a) B1 (B1=O) (b) B2 (B2=OJl ii)

64

0.0833 0.0833 0.0833 0.0833 0.0833
3 0 1435 0.1212 0.1051 0.1118 0.1061

0.0971 0.0633 0.0415 0.0385 0.0160

0.0500 0.0500 0.0500 0.0500 0.0500
5 0.0489 0.0709 0.0579 0.0545 0.0605

0.0284 0.0314 0.0141 0.0209 0.0071

0.0250 0.0250 0.0250 0.0250 0.0250
10 0.0192 0.0267 0.0266 0.0276 0.0262

0.0151 0.0124 0.0066 0.0079 0.0035

0.0167 0.0167 0.0167 0.0167 0.0167
15 0.0159 0.0155 0.0207 0.0166 0.0181

k 0.0078 0.0049 0.0106 0.0046 0.0036

0.0125 0.0125 0.0125 0.0125 0.0125
20 0.0135 0.0156 0.0139 0.0120 00141

0.0055 0.0071 0.0036 0.0038 0.0025

0.0083 0.0083 0.0083 0.0083 0.0083
30 0.0050 0.0097 0.0085 0.0087 0,0085

0.0037 0.0050 0.0030 0.0014 0.0013

0 0063 0.0063 0.0063 0.0063 0.0063
40 0.0066 0.0082 0.0056 0.0062 0.0065

0.0045 0.0050 0.0021 0.0014 0.0010

0.0050 0.0050 0.0050 0.0050 0.0050
50 00042 0.0040 0.0054 0.0049 0.0052

0.0037 0.0017 0.0015 0.0008 0.0009

0.5796 1.1326 2.2385 4.4503 8.8739
3 0.7129 1.0732 2.4527 4.7841 9.3263

0.1447 0.1653 0.2332 0.1893 0.1642

0.5263 1.0366 2.0572 40983 8.1806
5 0.5081 1.0063 2.1341 4.1041 8.4000

0.1119 0.1546 0.1129 0.0868 0.1209

0.4863 0.9646 1.9212 3.8343 7.6606
10 0.4901 0.9463 1.9345 3.8014 7.6630

0.1016 0.0722 0.0759 0.0702 0.1206
- -v ■ . ' '

0.4730 0.9406 1.8758 3.7463 7.4873
15 0.5085 0.9675 1.9030 3.7952 7.5133

0.0686 0.0350 0.0567 0.0306 0.0658

0.4663 0.9286 1.8532 3.7023 7.4006
20 0.4708 0.9331 1.8277 3.7019 7.4049

0.0658 0.0686 0.0966 0.0394 0.0672

0.4596 0.9166 1.8305 3.6583 7.3139
30 0.4478 0.9033 1.8656 3.7053 7.3493

0.0328 0.0646 0.0411 0.0884 0.0531

0.4473 0.9106 1.7886 3.5769 7.1536
40 0.4713 0.8937 1.8058 3.6374 7.2596

0.0444 0.0328 0.0353 0.0563 0.0392

0.4543 0.9070 1.8124 3.6231 7.2446
50 0.4456 0.8872 1.8116 3.6279 7.2212

0.0562 0.0506 0.0362 0.0449 0.0610

(1st line: Theoretical prediction,
2nd line: The mean of 10 trials,

3rd line: The standard deviation of 10 trials)



Table 2.6 Biases of B for Case 4.

W B1

k
Theoretical Experimental

Mean St. Dev.
3 1.6453 1.5056 0.4995
5 1.4951 1.5104 0.1650

10 1.3824 1.3864 0.1997
15 1.3448 1.3365 0.1886
20 1.3261 1.3266 0.1712
30 1.3073 1.2884 0.1136
40 1.2979 1.3104 0.0658
50 1.2923 1.2997 0.0769

(M B,

k
Theoretical Experimental

Mean St. Dev.
3 1.4431 1.5695 0.2081
5 1.3002 1.2287 0.1446

10 1.1929 1.1638 0.0766
15 1.1572 1.1497 0.0523
20 1.1393 1.1255 0.0539
30 1.1214 1.1005 0.0337
40 1.1125 1.1093 0.0405
50 1.1071 1.1063 0.0276
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Table 2.7 Predicted standard deviations.

B1 for Case 2 B2 for Case 3

k V 4 8 16 32 64 for all n

3 0.3531 0.2497 0.1765 0.1248 0.0883 0.1732
5 0.2735 0.1934 0.1368 0.0967 0.0684 0.1342

TO 0.1934 0.1368 0.0967 0.0684 0.0483 0.0949
15 0.1579 0.1117 0.0790 0.0558 0.0395 0.0775

20 0.1368 0.0967 0.0684 0.0483 0.0342 0.0671
30 0.1117 0.0790 0.0558 0.0395 0.0279 0.0548
40 0.0967 0.0684 0.0483 0.0342 0.0242 0.0474
50 0.0865 0.0612 0.0432 0.0306 0.0216 0.0424
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terms higher than second-order and therefore are expected to be smaller 
than the variances for the other cases. This is confirmed by comparing the 
variances between B1 and B2 of Cases 2 and 3. Also, note that the variances 
of B2 for Case 3 are independent of n.

In addition to the experimental verification, when n=l, our theoretical 
predictions agree with those presented for univariate Gaussian densities in 
Jain [7J. Note that, because of the presence of cross-terms (e.g. XiXj), Jain’s 

/■Univariate expression cannot be applied to the multivariate case by summing 
the contributions of each feature even When these features are mutually 
independent,

2.3.4 Verification of the Proposed Estim ation Procedure

The proposed estimation procedure following (2.6) was tested on a set of 
66-dimensional, millimeter-wave radar data. The samples were collected by 
rotating a Camaro and a Dodge Van on a turntable and taking 
approximately 8800 readings. 66 range bins were selected and the resulting 
66 dimensional Vectors were normalized by energy. The vectors were then 
selected at each half-degree to form 720-sample sets. The Bhattacharyya 
distance estimated from 720 samples, B720, was 2.29 which corresponds to an 
upper bound of the Bayes error of 5.1% (eu =  5.1%). These 720 samples per 
class were then divided into two sets of 360 samples. Since two sets were 
available from each class, there were 4 possible combinations of selecting one 
set from each class and forming a two-class problem. B was computed for 
each combination and the average of the 4 cases was taken. The resulting 
B36O was 3.27 (eu =  1.9%). Since g(N) of (2.6) is l/N  for this case, two 
equations, B72O — 2.29 B + c/720 and B360 =  3.27 =  B + c/360, were
set up and solved for B. Note that we replaced E(B720) by B720 because 
Var(B720) was expected to be small from the experimental results for Cases 
2 and 3. The resulting B Was 1.31 (eu =  13.5%). On the other hand, when 
all available 8800 samples per class were used, B8800 was 1.51 (cu =  11.0%).

Although the radar data is not guaranteed to be Gaussian, the above 
results indicate that the prediction of the true B from a relatively small 
number of samples (720 per class for the 66 dimensional space) seems 
possible. Also, note that B360, B720 and B8800 are significantly different. 
Without the proposed compensation, B360 and B720 could not provide a 
useful upper bound of the Bayes error.



2.4 Classifier Degradation

An even more important measurement in pattern recognition is the 
expected performance of a given classifier. The discriminant functions for 
some of the popular classifiers, including the linear and quadratic classifiers, 
are functions of M1, M2, and E 2. Thus, they are the members of the 
family of functions presented in Section 2.2. However, unlike the 
Bhattacharyya distance, the degradation of the expected classifier 
performance due to a finite sample size comes from two sources: the finite 
sample set used for design and the finite number of test samples. Thus, we 
need to study their effects separately.

2.4.1 Effect of Test Sample Size
When the design and test samples are independent, the effect of test 

Sample size is well-understood. Let us assume that a classifier is given and C1 
(i=  1,2) is the true probability of error from class i (caj. In order to estimate 

Ni samples from Ca1 are drawn and tested by the given classifier and the 
n u m b e r  of misclassified samples, % is counted. The random variables T1 and 
r2 are independent and each is binomially distributed as [10]:
■ ' E '■■■■'. '■■■.■ 2 : ■ ' /  ■ : - .■■■E e ". ;^y-

Pri'r, =  r,. r. =■• r,| = .r  I'rU, - ;,}

.((I <0N" r 'V; (2-34)

q is estimated by T1/Ni and subsequently, the total probability of error is 
estimated by

I = V P .r.- (2.35)
N i

where P1 is the a priori probability of Ca1. The expected value and variance 
are known:

E{?} = e (2.36)

Variii -■ V P1- f|(1 e,) - P '37)

2
7r 

i=l
Ni
Ti



2.4.2 Expression of e

The effect of design sample size is much harder to analyze. In order to 
discuss this subject, we need to express the probability of error, e, in terms 
of the classifier. Letusassume thattheclassifier isdefined as

h(X) £  0 S M
<̂’•2 ' - . :' ■

The characteristic function of h for c<>, is

• ^ uj) = EjejwhW j^} =  J  Cj^W pi(X)dX ; (2.39)
s

where S indicates the entire n-dimensional sjDace and pj(X) is the density 
function of X for Since the characteristic function of h is the Fourier 
transform of the density function of h (except for the sign of jcj), the density 
function of h for (x\, q^X), can be obtained by the inverse Fourier transform 
as

1 .+oo
qi(h) = —  /  ^ (^ e _Jt’hdw (2.40)

. • ■■ - O C

The probabilities of error for CJ1 and UJ2 are
CO O

e I =  I  qi(L)dh =  I - J  q1(h)dh (2.41)
-O . —oo '

. V 0
H = S q2(h)dh (2.42)

- O O

According to Fourier transform theory, the integration in the h-space can be 
converted to multiplication by I/ju/in the 6>space. That is,

KiOO =  I  qi(h)dh
m

27T

4-oo
/

- O O

Aiui)
juj "jwtd w- (2.43)

Inserting gj(0) into (2.41) and (2.42), and realizing that (2.39) guarantees
<M°) =  I, :

e = P 1C1 + P 2e2

2_
2 + P /

— 00
M oj)

j o):
do;



+«. Whpq 
L  + J -  /  J  V — 
2  2 '  . i  JW

IP1P1(X) -  P2Pi(X)IdX dW (2.44)

When the design sample size is finite, the parameters Y of the distributions 
are estimated and the discriminant function is based on these estimated 
parameters Y. That is, h(X) =  h(X,Y) is a random variable shifted from 
h(X,Y). Taking the expectation with respect to Y,

■I I + °°
E{?} 1 + J- 7 I  K'<J. t:X |' [PiPi(X) — P2P2(X)IdX d ..(2.45)2 27T j j --'—bo S jw

Treating eju,h(x) as f in (2.3)
1 L L ;)2

E { ej^ (X )}  s  ejwh(X) +  L  ^  S  a .. E ( A y iA y j)
2

. e jwh(X) _|_ J H  gjwhpC) ^  \ \  

2  i = l  j = l

i = l  j = l

a2h(x)_____  Qh(X) Qh(X)
QyiQyj Qyi - Qyj

E(AyiAyj) (2.46)

Substituting (2.46) into (2.45) and realizing E(Ae) = E(e) -  e,
:+ ° °  . I L L

E(Ae) -  :::j-  J /  -  E  E
27r -CO S 1  i = l  j = l

a2h(x) Vcj ah(x) ah(x)
QyiQyj J Qyi Qyj

E(AyiAyj)

X e ^  [P1Pi(X) -  P2P2(X)]dX dw (2-47)

Eq. (2.47) is a very general expression for E(Ae) which is valid regardless of 
the selection of h(X), Pi and Pi(X). The term E(AyiAyj) gives the effect of 
the sample size, N. ThereforeQif (2.5) is satisfied, E(Ae) can be expressed 
by cg(N) where c is determined by h(X), Pi and Pi(X), and the proposed 
estimation procedure following (2.6) can be applied/ Furthermore, if h(X) is 
a function of Mi and XQ g(N) becomes l/N .

2.4.3 The Quadratic Classifier for Gaussian D istributions
When a quadratic classifier is designed from N training samples, drawn 

from two simultaneously diagonalized distributions, N(0,1) and N(M,A), with 
a priori probabilities P1 =  P2 = 0.5, the discriminant function can be found
as



h(X) = |(X ^ M l)T£ r 1(X-M1)-i{ X -M 2)TS 2 1'(X-M2) 5 S

+ J ta lS 1I -J ln lS 2I (2.48)

where Mi and are estimated by (2.8). Forming Y as in (2.9), vie only need 
to compute dh/dm[T\  dh/daf-p, cfih/dm ^2, d2h and 
d2h./dcyj-pda^\ since E(AyiAyj) — 0 for other combinations.

With Mi and ^ i given in (2.7), these partial derivatives can be easily
computed and are listed in Appendix C. Substituting these results into 
(2.47),

7  E  S  I • I E(Ay1Ayj)
■ I=Ij=I

2N (n+1) E  X 
1=1

(Xi- I n i) 2

Xi

+ j OJ * + T  E  E l
2 I=I j=I

2 (Xi-mi)2(xj-mj)2
x^  + ^ v - "

A JL 
“  N

Thus, (2.47) may be rewritten as

(2.49)

E{e} — £ ^  (2.50)

where
■ + C O

cq = YT I  I  fq( X , ^ wh(x)[PlPl(X) -  P2P2(X)JdX doj (2.51)
. Z 7 r  - C O  S

That is, cq is determined by the underlying distributions, and stays Constant 
for experiments with various sample sizes. Thus, as was proposed in Section 
2.2, we may choose various values of N as NlnJMif, and measure e. 
Computing E{£} from several independent trials, we may solve (2.50) for e 
and cq by a line fit technique.
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The above technique was applied to the radar data. The entire 8800- 
sample set was divided into two groups, each consisting of 4400 samples. 
When one group was used to design a quadratic classifier and the other was 
used for testing, the error, S4400, was 17.2%. Then, 720 samples were 
selected from the design group and used to design a quadratic classifier. 
The entire 4400 samples of the test group were tested, resulting in S720 =  
21.4%. Such a large number of test samples was used to eliminate the 
variation of S due to test sample size. The same experiment was performed 
for 360 samples. Since there were two groups of 360 samples from 720 
samples for each class, four error estimates were obtained; they were 
averaged, resulting in S360 =  25.4%. S720 and the averaged S360 were used to 
obtain e by solving (2.50), resulting in £ — 17.4%. This result is very close 
to (I4400 — 17.2%, and confirms that we can predict the potential
performance of the quadratic classifier even if the available sample size is 
relatively small for a high dimensional space,

Xlthough we do not need to know the value of cq to conduct the above 
experiment to estimate e, cq can be computed by carrying through the 
integration of (2.51). Let us consider the simplest case, Case 2 of Table 2.1, 
in which P1(X) and p2(X) are Gaussian N(0,I) and N(M,I) respectively. 
Then, ^ wh(X)Pi(X) may be rewritten as

>'MX)n. m  = e-^/8N

V 2TT

where B=MtM. Nw(a,b) and NX(D,K) are Gaussian density functions of 10 

and X with the expected value of a and variance b for Nw, and the expected 
vector D and covariance matrix K for Nx.

Since fq(cu,X) is a linear combination of xfx^a.b ^  4) as is seen in
(2.49), Jfq(X,a;)Nx(v)dX  is the linear combination of the moments of 
Nx(v)- The result of the integration becomes a polynomial in co

7i(^) = “ ~(1^)5 +  ^2Dw)4 +-“ (n+5-l-3/i)(jcu)3 -F ■@~{n+5+2f3){}cuf2 Z Z

(2.52)

(2.53)
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+ . j  [n(n+7)+(5n+9)/?+/?2 6") +
fn+1)/?

2 (2.54)

where and + of -F- are for i= l  and 2 respectively. Again, the 
'/7i(w)Nw(v)dw is a linear combination of the moments of Nw(-/). Thus, Cq 
for P1==P2=O^ is

4V27T/?
-W

2 ; v 16 2 ' (2.55)

E{e} can be predicted theoretically by e -f cq/N. Table 2.8 lists the 
theoretical predictions for various N and k (—N/n) for the distribution 
parameters given in Case 2 of Table 2.1. These parameters yield $ = 2.562 
and e = 0.1 (10%). Also shown in Table 2.8 are experimental results 
verifying these predictions. For each combination of n and k, N samples 
were generated from each class and used to design a quadratic classifier 
which was then tested on true distributions. Novak developed an algorithm 
which numerically computes the error of any discriminant function with a 
quadratic form tested on two Gaussian distributions [ll]. This procedure 
was repeated 10 times. The second and third lines in Table 2.8 show the 
means and standard deviations of the experimental results. The theoretical 
prediction accurately reflects the experimental trends. Also, the standard 
deviations are small. Notice that as n gets larger, k must increase to 
maintain the same performance, since cq is proportional to n2 for n »  I. 
This conclusion agrees with Pipberger’s experimental results [6] and the 
numerical tables in Raudys and Pikelis [3]. Together, these present design 
guidelines significantly different from the traditional rules of thumb which 
suggest a particular fixed value of k for all values of n.

2.4.4 The Linear Classifier for Glaussian D istributions
The analysis of the linear classifier proceeds in a similar fashion. 

Fisher’s linear discriminant function is

h(X) =  (M2-M 1)t2 “1X +^(M 1tS “1M1-M 2t2 _1M2) (2.56)

where Again, we assume, without lost of generality, that
M1 = 0, M2 = M, =  I and J]2 = A.

The partial derivatives of h can be computed as is shown in Appendix 
D. Thus, (2.47) becomes



Table 2.8 Quadratic classifier degradation for Case 2.

27 7

■ ' V 7 . 7 n 7 :7'7'

4 8 16 32 64

0.1450 
3 0.1668

0.0351

0.1689 0.2115 0.3067 0.4894
0.2041 0.2204 0.2673 0.3131
0.0235 0.0289 0.0195 0.0133

0.1270 
5 0.1403

0.0211

0.1414 0.1691 0.2240 0.3336
0.1640 0.1734 0.2081 0.2554
0.0186 0.0091 0.0057 0.0074

0.1135 
10 0.1152

0.0081

0.1207 0.1345 0.1620 0.2168
0.1240 0.1366 0.1573 0.1934
0.0061 0.0070 0.0054 0.0085

0.1090 
15 0.1086

k 0.0044

0.1138 0.1230 0.1413 0.1779
0.1184 0.1232 0.1415 0.1658
0.0061 0.0042 0.0053 0.0042

0.1067 
20 0.1077

0.0021

0.1103 0.1173 0.1310 0.1584
0.1105 0.1190 0.1393 0.1513
0.0023 0.0051 0.0022 0.0032

0.1045 
30 0.1054

0.0019

0.1069 0.1115 0.1207 0.1389
0.1071 0.1114 0.1307 0.1365
0.0021 0.0020 0.0019 0.0022

0.1034 
40 0.1037

0.0024

0.1052 0.1086 0.1155 0.1292
0.1057 0.1087 0.1150 0.1275
0.0013 0.0013 0.0013 0.0018

0.1027 
50 0.1025

0.0013

0.1041 0.1069 0.1124 0.1234
0.1044 0.1068 0.1125 0.1221
0.0010 0.0013 0.0009 0.0007

(1st line: Theoretical prediction, 2nd line: The mean of 10 trials,
3rd line: The standard deviation of 10 trials)
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E(e) =  e + — 
N (2-57)

<7 = i ~  I  S ^(X jW)ejuhWjP1P1(X) -  P2P2(X)JdX di
-CO  S

(2.58)

f / (XjW) =  £
i—I i+X + (2xI-TOi)'

(H-Xj2)Hli IXlj n I -I-XjXj
-------- ' +  V"- ; , o  E  —(i+hr (I-HXi)2 j t l  i+ ^ j

, jw 
+  2

n
4 E

i=l

(Xi-TOj)2Xj

(H -X i)-2 ( 1+Xj)2
+

. n n ij(2 x j—m j) ( l + X iXj)

a  H  (i+xi)2(i+xj)2 ;
nij (2xj —nij) + m.j (2x  j —rrij) (2.59)

Again, C/ is determined by the underlying distributions, and e can be 
estimated from experiments with various N. Also, since ^(X,^) is a linear 
combination of X;a(a^  2), can be theoretically computed for Case 2 of 
Table 2.1, resulting in

: ^ = e^ vs i( l '+  ; w o )

Eq. (2.60) was experimentally verified in the same manner as (2.55). 
The results are shown in Table 2.9.

Comparison of (2.55) and (2.60) reveals an important distinction 
between quadratic and linear classifiers. For Case 2, the two covariances 
are the same. Thus, if the true underlying parameters are used, the 
quadratic classifier of (2.48) becomes identical to the linear classifier of 
(2.56). However, when the estimated covariances are used, E i^ E 2 even 
though E f - E2* Thus, the classifier of (2.48) differs from that of (2.56). As 
a result, E(Ae) for quadratic is proportional to n2/N (—n/k) while E(Ae) 
for Iinejar is proportional to n/N (—l/k) as in (2.55) and (2.60) when n »
I. Although it depends on the values of n and we may generally conclude 
that cq is larger than tg for n »  I. This implies that many more samples 
are needed to properly design a quadratic classifier than a linear classifier. 
Novak reported in [ll] that the linear classifier is more robust (less sensitive 
to parameter estimation errors) than the quadratic classifier, particularly in



Table 2.9 Linear classifier degradation for Case 2.

n

k

■■' . 4 8 16 32 64

0.1273 0.1287 0.1294 0.1298 0.1300
3 0.1437 0.1436 0.1336 0.1302 0.1319

0.0365 0.0174 0.0135 0.0081 0.0040

0.1164 0.1172 0.1177 0.1179 0,1180
5 0.1165 0.1223 0.1207 0.1199 0.1207

0.0128 0.0153 0.0071 0.0048 0.0041

0.1082 0.1086 0.1088 0.1089 0.1090
10 0.1050 0.1089 0.1093 0.1086 0.1092

0.0030 0.0041 0.0024 0.0021 0.0019

0.1055 0.1057 0.1059 0.1060 0.1060
15 0.1048 0.1080 0.1064 0.1058 0.1064

0.0030 0.0032 0.0027 0.0013 0.0012

0.1041 0.1043 0.1044 0.1045 0.1045
20 0.1039 0.1039 0.1058 0.1040 0.1045

0.0021 0.0018 0.0026 0.0011 0.0008

0.1027 0.1029 0.1029 0.1030 0.1030
30 0.1036 0.1033 0.1027 0.1033 0.1028

0.0023 0.0021 0.0009 0.0006 0.0006

0.1020 0.1022 0.1022 0.1022 0.1022
40 0.1022 0.1027 0.1021 0.1023 0.1022

0.0021 0.0014 0.0009 0.0005 0.0004

0.1016 0.1017 0.1018 0.1018 0.1018
50 0.1016 0.1021 0.1018 0.1018 0.1017

0.0011 0.0007 0.0005 0.0004 0.0003

(1st line: Theoretical prediction, 2nd line: The mean of 10 trials,
3rd line: The standard deviation of 10 trials)



high dimensional spaces. Our results support his claim both theoretically 
and experimentally.

Also note that for large n, c^/N is proportional to l/k. This indicates 
that, as far as the design of a linear classifier is concerned, a fixed multiple 
could be used to determine the sample size from the dimensionality. This 
coincides with the conclusions of many reports in the past. However, (2.60) 
indicates that the value of the multiple depends on /?, which measures the 
separability between two distributions with a common covariance matrix.

2.5 Conclusions
The main purpose of this chapter was to investigate the effect of finite 

sample size parameter estimates on the evaluation of a family of functions. 
To this end, we have presented general expressions for the expected bias and 
variance in terms of the statistical properties of the parameter estimates.

Applying these expressions to the Bhattacharyya distance has provided 
insight into the relationship between the dimensionality and the number of 
training samples and their effect on measuring separability due to mean and 
covariance shifts. Applying them to classifier evaluation equations, we have 
derived explicit expressions for the degradation of the quadratic and linear 
classifiers. This provides a new guideline for the selection of the number of 
samples or features necessary for a certain level of classifier performance. 
We have provided theoretical evidence that, as the dimensionality increases, 
covariance-based similarity measures and the quadratic classifier require an 
increasing multiple of samples. We have also presented support for the 
claim that the linear classifier is more robust.

Finally, the form of the bias expression allows the dependence on the 
sample size to be separated from the distribution-specific terms. Since the 
distribution and dimension are fixed, for a given sample set, an empirical 
approach was employed to use estimates of expected performance for 
different sized samples to find an estimate of the asymptotic performance. 
This allows small sample sets to provide accurate, unbiased estimates.
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CHAPTER 3
ESTIM ATION OF CLASSIFIER PERFORM ANCE

3.1 Introduction
Evaluating the performance of a classifier is an important, yet difficult 

problem in pattern recognition. In practice, the true distributions are never 
known and only a finite number of training samples are available. The 
designer must decide whether this sample size is adequate or not, and also 
decide how many samples should be used to design the classifier and how 
many should be used to test it. The effect of the test sample size is well- 
known. However, the effect of the design sample size is hardly understood in 
spite of substantial effort in the past.

The leave-one-out method [13] is designed to alleviate one of the above 
difficulties. That is, it avoids dividing the available sample set into design 
and test, while maintaing an independence between them. Thus, the 
procedure utilizes all available samples more efficiently, and produces a 
pessimistic error estimate. On the other hand, the resubstitution method, in 
which the available samples are used for both design and test without any 
modification, produces an optimistic error. Thus, using both methods 
simultaneously, we can obtain an upper and lower bounds of the true 
performance of the classifier.

More recently, Efron [14] proposed a re-sampling procedure, called the 
bootstrap method, in which artificial samples are generated from the existing 
samples, and the optimistic bias of the resubstitution error is estimated from 
them.

All these procedures work well experimentally. However, it was still 
very difficult to analize them theoretically and to find the effects of sample 
size and other parameters on the errors. Raudys and Pikelis [3] gave an 
excellent review of work done in approximating the expected performance in 
the parametric case. The difficulty came from the fact that the explicit 
expression for the classification error was not available or too complex for 
further theoretical development, except in the case of linear classifiers.
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In Chapter 2, we investigated the effect of sample size on a family of 
functions, and found a manageable expression for the errors of classifiers, 
including quadratic and Fisher linear classifiers. Using the expression, we 
computed the biases of these classifier errors due to a finite design set.

The objective of this chapter is to apply the error expression of Chapter 
2 to the various methods of error estimation mentioned above, and to offer a 
unified and complehensive approach to the analysis of classifier performance. 
In Section 3.2, after the error expression is introduced, it is applied to three 
cases: (l) a given classifier and a finite test set, (2) given test distributions 
and a finite design set, and (3) finite and independent design and test sets. 
For all cases, the expected values and variances of the classifier errors are 
presented. Although the study of Case I does not produce any new results, 
it is important to confirm that the proposed approach produces the known 
results, and also to show how these results are modified when the design set 
becomes finite, as in Cases 2 and 3. In Sectipn 3.3, the error expression of 
Chapter 2 is used to compute the bias between the leave-one-out and 
resubstitution errors for quadratic classifiers. Note that in this case the 
design and test sample sets are no longer independent. Again, the expected 
value and variance of the bias are presented. Also, because of its similarity 
to the analysis of the leave-one-out method, the effect of outliers in design 
samples on the classification error is discussed. Finally, in Section 3.4, the 
theoretical analysis of the bootstrap method is presented for quadratic 
classifiers. The explicit error expression can be obtained for the optimistic 
bias of the bootstrap resubstitution error. The expected value of the bias 
with respect to the bootstrap procedure is shown to be very close to the bias 
between the conventional leave-one-out and resubstitution errors. The 
variance of the bootstrap bias also can be computed in a closed form.

Throughout all sections, the theoretical conclusions are experimentally 
verified. The results of these analyses allow us to delve into the theoretical 
differences between the methods and account for a series of frequently- 
observed experimental trends.
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3.2 Classification Errors For Finite Samples
In this section, Wel will discuss the effects of finite test and design 

samples on classification performance.

3.2.1 Error Expression
For the two-class problem, a classifier can be expressed by 

h(X) ^  0 ( 3 . 1)

where h(X) is the descriminant function of an n-dimensional vector X, and W1 
indicates the class i (i—1,2). The probabilities of errors for this classifier 
from W1 and W2 are

f, = /  Pi(X)dX = J u(h)Pl(X)dX
h(X)>0 S

+CO ,
= — / / [ ^ - + 7r5N  ]eja,h(X)Pi(X)dMiX

S —oo JW

1 i + 00Jwli(X)
!  +  . L r  fo L J -L
2  2 7 r S - O C  J w

Pl(X)dwdX

and

e2 =  f  p2pQdX =  f
h(X)<0 *

I I
S I p2(X)dwdX

(3-2)

(3.3)
S-OO Juj

where Pi(X) is the density function of class i tested by the classifier, and S 
indicates the entire n-dimensional space. The second line of (3.2) is obtained 
using the fact that the Fourier transform of a step function, u(h), is 
[l/jw  +  TT(̂ w)].

The total probability of error is

e = T 1C1 + P2e2

- I I +°° Jwh(X)

2  2 lr  S-OO

where Pi is the a  priori probability of W1 and 

P (X )= P 1P1( X ) - P 2R2(X)

(3-4)

(3.5)
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3.2.2 Effect of Test Samples

When a finite number of samples are tested by a given classifier, Pi(X) 
of (3.5) may be replaced by

Pi(X) = ^ - S J ( X - X f ) )
j= l

(3.6)

where x P „ X $  are Ni test samples drawn from P i(X ). Throughout the 
Chaptbrj boldface indicates randomness.

Thus, the estimate of the error probability is 
i i +co J^h(X) P 1 N1 , ' P 9 N2

-  i .  +  i /  /  V - I i S J(X- X f  >) -  i E J(X -  X f V l X
S —oo JW "I j-1. S2 j= l

=  J  +
•- 2

where

P1 N1 P2 N2 ,,v
- E i 1 -  v » •  !N,.- s2 j= l

■j +ooeĵ (Xf'>)

J 27T Jjoo jw

(3.7)

(3.8)

The expected value of a® with respect to X ^  (w.r.t. the test samples)

I +0° J^h(X)
Et{«f)} =  j - i  I  -i-P:(X!d..dX

^ 7r S-OO JW

for i—I

——e9 for i=2 
2 2

(3.9)

The second line of (3.9) can be obtained from (3.2) and (3.3) respectively.
The second-order moments are also computed as

E tW l)2} = Et{[——- /j ,  1,11 27T ^ 00 JW

+oo Joih(X) ■.
1 •' < i f !  =  Et{[-+Sgn(h(X))l2}
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= — (3.10)

Et { a^ Orj^) = a-xa.£ otherwise (3.11)

where sgn(h) equals +1 for h>0 and -I for h<0. Eq. (3.11) is obtained 
because and aj?) are independent due to the independence between Xj^ 
and X ^ .

From (3.7) and (3.9)-(3.1l),

E t{^ }  =  +  P l a l ~  P 2a 2

= 7  + Pi(ei ~ 7 ) -  p 2<7 -  «2) = «■ (312)

Var‘{?} = ^fvartW11) + ^ Var‘W’’>

Pf
N1If - - t ) 2) +

P22 I I
—  [ -  -  ( -  N2 1 4 V 2 2̂)2]

_ P 2 i i t t f i i  , p jiiU zf? )
- Pl N1 +Pz N2

That is, e is an unbiased estimate, and its variance has the well-known form 
derived from the binomial distribution [10].

3.2.3 Effect of Design Samples
It is more difficult to discuss the effect of using a finite number of design 

samples. Although we would like to keep the formula as general as possible, 
in this section a specific family of discriminant functions is investigated to 
help determine which approximations should be used.

Assume that the discriminant function is a function of two expected 
vectors, M1 and M2, and covariance matrices, S1 and E2. Typical examples 
are the quadratic classifier and Fisher’s linear classifier:

I 1E 1
h(X) = A(X-M 1)rS r 1(X-M1) -  !(X -M s)lrE f1(X-Mi ) + Tln-JTrf (3-14)I Z Z I Zj2 I



h(X) =  (M2-M 1)tE -1X + - -̂(M1tE -1M1-M 2t E 1M2) (3.15)

where E =  [S1+S2]/2. When only a finite number of design samples are; 
available and Mi and Ei are estimated from them,

Ah(X) = h(X) -  h(X) = V 0 (k) (3-16)
k=l .

where f.JX) .) »«.1 0 «  is the k-th
order term of the Taylor series expansion in terms of the variations of Mi 
and Si. If the design samples are drawn from Gaussian distributions, and 
Mi and Si are unbiased estimates (e.g., the sample mean and sample 
covariance), it was shown in Chapter 2 that

Ed(OW) =O, KaIO1V  I/-'' - Ed{oW }_0, Ed{oW}~ # i l )

where Ed indicates the expectation with respect to the design samples, and 
. 'jf is the number of design samples (while N indicates the number of test 
samples). Therefore, from (3.16) and (3.17),

Ed{ A h(X ))- l /Jf  , Ed{Ah2(X))~ I /Jf , Ed(Ah3(X ))- l/A  2

Ed (Ah4 (X)} — ! / J f i ... (3-18)
Assuming that W is reasonably large, we can eliminate E(Ahra(X)) for m 
larger than 2.

Thus, the error of a random classifier for given test distributions is 
expressed by (3.4)

v ;;! V= -  + — f f — —p(X)dwdX (3.19)
2 . S T rii0, jco ■/

Thfe expected value e with respect to the design samples is

i i +°° Ej-!e^’̂ XH
j +  „7 / /  - - J w -K iX H lrfX  (3-20)

=  e +  S i

where
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S i S  —  /  /  Ed(Ah(X) + j ^ A h 2(X) }eja'ĥ p(X)dcolX (3.21)
27r S -o o  • • 2

The approximation from (3,20) to (3.21) was made by using

,.-•fes: „  ,j b,x,,>-h:s;s  ^ hm [l+ jw A h (X )+ -^ A h !(X)].
2

When h(X) is the Bayes classifier, e must be a minimum. Appendix E gives 
the proof that 2 of (3.19) is indeed larger than e of (3.4).

When two Gaussian distributions are classified by the quadratic or 
lihear classifier whose parameters are estimated from a finite sample set, ZSi 
of (3.21) can be computed. Explicit solutions for the case with 
M1=O, M2=M and E1=E2=I are given in Chapter 2.

The variance of e may be computed from (3.19) and (3.20) as
+oo+oo

Vard{?} =  ' / /  /  /  j V . .  ' l-.:Xi;V,Y),l,:,l.,,dX,lV
•1 S.S, ■ ■ J -'.J '2

+oo+oo

■ =  j J f f  I  1 1+1Aih(X)Ah(Y)J+ J t!Vip(X),-.:Y:.i ,<■; „.ix jy
^ ■ SxSy—00—00

= / / E d{Ah(X)Ah(Y)}<5(h(X))6(h(Y))p(X)p(Y)dXdY
. sA-

= J J Ed{ Ah(X) Ah(Y)}p(X)p(Y)dXdY (3.22)
Ii(X)=O h(Y)=O

where the derivation from the first line to the second line is given in 
Appendix F. Eq. (3.22) indicates that the integration is carried out along 
the classification boundary where h(X) - 0. When h(X) is the Bayes
classifier, p(X) of (3.5) must be zero at the boundary. Thus, (3.22) becomes 
0. Since we neglected the higher order terms of Ah(X), Vard{e} is not zero, 
but proportional to I / J f  2. When h(X) is not the Bayes classifier, p(X) ^  O 
at h(X) — 0. Thus, we may observe a variance dominated by a term 
proportional to I / J f  due to the fact that Ed{ Ah(X) Ah(Y)) ~  I / J f  .



In order to confirm the above theoretical conclusion, an experiment has 
been run for the quadiatic classifier between two Gaussian distributions 
which share the same covariance matrix I and differ in the means to give a 
Bayes error of 10%. The dimensionality n was varied from 4 to 64 in powers 
of 2 and the ratio of the sample size and the dimensionality k(=^V /n) was 
varied from 3 to 50. Jf (=nk) samples were generated from each class 
according to the given mean and covariance, and Mi and Si were estimated 
from the generated data using the sample mean and sample covariance. 
The quadratic classifier was designed by (3.14). Testing was done by 
Novak’s program which numerically computes the error of any discriminant 
function with a quadratic form tested on separately specified Gaussian 
distributions [ll]. This procedure was repeated 10 times. The second and 
third lines of Table 3.1 show the average and standard deviation of these 
experiments. The first line shows the theoretically computed errors from 
(3.20) and (3.21). Also, Fig. 3.1 shows the relationship between I /k(—n/A ) 
and the standard deviation. From these results, we may confirm that the 
standard deviation is very small and roughly proportional to I /Jf , Thus, 
the variance is proportional to I /Jf 2.

An intuitive reason why the standard deviation due to a finite number 
of design samples is proportional to I /Jf  may be observed as follows. When 
the Bayes classifier is implemented, Ae is always positive and thus generates 
a positive bias. As (3.21) suggests, the bias is proportional to \/Jf  . Since 
Ae varies between 0 and some positive value with an expected value &/Jf 
(where a, is a positive number), we can expect that the standard deviation is 
also proportional to I /Jf  .

In addition, it should be noted that design samples affect the variance 
of the error in a different way from test samples. When a classifier is fixed, 
the variations of the two test distributions are independent. Thus, 
Vart(S) =  P 12VarJe1) + P 22Var(S2) as is seen is (3.13). On the other hand, 
when the test distributions are fixed and the classifier varies, S1 and S2 are 
strongly correlated with a correlation coefficient close to -I. That is, when 
S1 increases, S2 decreases and vice versa. Thus, when Pi=P2r^ard{^}= (0r5) 
Ed(Ae12}+(0.5)2Ed{Aef}+2(0.5)2Ed{Ae1Ae2} =  (0.5)2 [Ed(Ae12̂ E dK-Ae1)2) 
+2Ed(Ae1(—AejJlJ—O. The covariance of S1 and S2 cancels the individual 
variances OfS1 and S2.



Table 3.1 Quadratic classifier degradation for I-I (%).

. 39

' n

4 8 16 32 64

14.50 
3 16.68

3.51

16.89 21.15 30.67 48.94
20.41 22.04 26.73 31.31
2.35 2.89 1.95 1.33

12.70 
5 14.03

2.11

14.14 16.91 22.40 33.36
16.40 17.34 20.81 25.54
1.86 0.91 0.57 0.74

11.35 
10 11.52

0.81

12.07 13.45 16.20 21.68
12.40 13.66 15.73 19.34
0.61 0.70 0.54 0.85

10.90 
15 10.86

k 0.44

11.38 12.30 14.13 17.79
11.84 12.32 14.15 16.58
0.61 0.42 0.53 0.42

10.67 
20 10.77

0.21

11.03 11.73 13.10 15.84
11.05 11.90 13.93 15.13
0.23 0.51 0.22 0.32

10.45 
30 10.54

0.19

10.69 11.15 12.07 13.89
10.71 11.14 13.07 13.65
0.21 0.20 0.19 0.22

10.34 
40 10.37

0.24

10.52 10.86 11.55 12.92
10.57 10.87 11.50 12.75
0.13 0.13 0.13 0.18

10.27 
50 10.25

0.13

10.41 10.69 11.24 12.34
10.44 10.68 11.25 12.21
0.10 0.13 0.09 0.07

(1st line: Theoretical prediction,
2nd line: The mean of 10 trials,

3rd line: The standard deviation of 10 trials)
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Figure 3.1 Quadratic Classifier Degradation for I-I. 
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3.2.4 Effect of Independent Design and Test Samples
When both design and test sample sizes are finite, the error is expressed

as .

I Pi N| m P2 N- Me = — + —  V&P) -  —  V af! 
'*> N 1 M J N9 ■ J•ij=i ^j=I

where
i + ~ > iw )

T
-OO

(3.23)

(3.24)

That is, the randomness comes from h due to the finite design samples as 
well as from the test samples Xj^.

The expected value and variance of t can be computed as follows:

where

e =  E{e} =  EtEd{e} =  -  +  P ja 1 -  P 2« 2

“ i =  T ~ !  I  ----- PiMdwdXs_0O ju;

(3.25)

£i—— for i=l

—-e , for i=2 
2 2

(3.26)

Substituting (3.26) into (3.25),

P =  P1P1 + P2P2 (3.27)
This average error is the same as the error of (3.20). That is, the bias of the 
error due to finite design and test samples is identical to the bias due to 
finite design samples alone. Finite test samples do not contribute to the 
bias.' ■■ ■

The variance of e can be obtained from (3.23) as 

Var{8} = P12I ^ V a r ja ] 1)) +



+ P |[-^ V ar{ a |2)} +  ' ( l - ^ ) c ?v{&}2)&J[2)}],
JN 2 : ^2

-  2P1P2Cov{&f%f)} (3-28)

where
, +OOJwh(X)

Var(AB) =  E f l -  Jo- T - lM 2)

fi(l -  0 ( 3 . 2 9 )

+004-00 t? Tjw WeJŵ OOy
( , .V;,->f,-,/•} — . / /  !  J j V - Pl(X)p f (Y)do;,<ndXaY

4 7 T 2 S  J y- O O - C O  ,  M J w 2

-OClOlf (3.30)

The second line of (3.29) can be derived from the first line as is seen in 
(3.10). From (3.30), a portion of (3.28) can be expressed as

P12Cov(AMaiM) + PfCoviAfsA f!  - !UflrsC ov iftfA f!

1 r+r r  E je iui6lxW ^ m )
47T2

f I f I . . — p(X)p(Y)d.:,d .-,dXrtV P - ; ( r
J J J J  JW1JW2 2
SxSy--O O -

= Vard{e} (3.31)

where Vard(I) is the same one as (3.22). On the other hand, (3.30) can be 
approximated as

•. +oo+oc

Cbvfaf ̂ ^  /  I  Ed{Ah(X)Ah(Y))
47T2 SxSy-OO-OO
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x e j„h^ ,b (Y )pj(x^  (Y )^ 1CkcijdXdY

; = /  /  Ed(Ah(X)Ah(Y))Pi(X)P  ̂(X)dXdY
h(X)=O h(Y)=0

i j r  '"■> : (3-32)

Eq̂  (3.32) is proportional to I /J f because Ed(Ah(X)Ah(Y)) is proportional 
to I /Jf .

Substituting (3.29)-(3.32) into (3.28), and ignoring the terms 
proportional to I/N iY ,

Var{8} S  P f - A - 1'-  f l’? ''i(! r 4i) I Var,,!?! (3.33)

As we discussed in Section 3.2.3, Vard{?) is proportional to l/Y  2 when 
the Bayes classifier is used for Gaussian distributions. Therefore, Var{?) of 
(3.33) is dominated by the first two terms which are due to the finite test 
set. A comparison of (3.33) and (3.13) shows that the effect of the finite 
design set appears in C1 and e2 of (3.33) instead of C1 and e2 of (3.13). That 
is, the bias due to the finite design set increases the variance proportionally. 
However, since Fi — e1— IJJf , this effect can be ignored. It should be noted 
that Vard{e) could be proportional to I /Jf  if the classifier is not the Bayes.

Thus, we can draw the following conclusions from (3.27) and (3.33). 
When both design and test sets are finite,
1. the bias of the classification error comes entirely from the finite design 

set, and
2. the variance comes predominantly from the finite test set.

3.3 Dependent Design and T est Sets
In the previous sectiop, wp assumed that the design and test sets were 

finite and mutually independent. When only one set of samples is available, 
independence can be achieved by using either the holdout method or the 
leave-one-out method. In the holdout method, the available sample set is 
divided into two groups; one group is used for designing the classifier and
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the other for testing the classifier. The ratio of design sample size to test 
sample size must be determined by the desired bias and variance of the 
estimated error, as derived in Section 3.2.4. Ori the other hand, in the 
leave-one-out method, each sample is tested by the classifier which was 
designed using the remaining samples [13]. With N available samples, the 
test sample size is N and the design sample size is N—1(= N). 
Experimental results have confirmed that the holdout method with equal 
sample sizes for design and test gives the same bias and variance as tile 
leave-one-out method.

It has been shown that the above procedures tend to give a larger error 
than the true one. The true error is the error of the classifier designed using 
the true distributions, tested with the true distributions. On the other hand, 
an error smaller than the true one can be obtained by the resubstitution 
method, in which all available samples are used to design the classifier and 
the shme sample set is used to test the classifier. Since the resubstitution 
arid ieave-one-out methods can be carried out simultaneously without 
additional computation time [10], it is a common practice to compute both 
estimates to obtain upper and lower bounds of the true error.

When the resubstitution method in used, the design and test sample 
sets are no longer independent. In this section, we would like to address the 
dependency of the design and test sample sets. The bias and variance of the 
resubstitution error and the statistical properties of the bias between the 
resubatition and leave-one-out errors depend on the classifiers to be used. 
Therefore, in this section, we limit our discussions to parametric classifiers 
such as the quadratic arid linear classifiers. Extending this discussion to 
other types of classifiers could be handled in a similar way.

3.3.1 Modifications of M and £
Let us assume that the expected vector, M, and covariance matrix, £, 

of a distribution are estimated from the available sample set. XlnXN_j by 
the sample mean and sample covariance as

/'/V.;'-;.*.V . i N-i '■
N—I HX;

I N - I

N—2
£  (Xi-M )(Xi-M )J

(3.34)

(3.35)

When an additional sample Y is used, the above estimates are modified as



Mr -  ^  I N 1)MIY M + ^-(Y-M )

or

(3.36)

Y — Mr = M) (3.37)
IN

V . ' ' ■

Sr = - ^ l E 1 (X,-IVIE)(Xi-M E)T + (Y-lViR)fY-MEf  ]
1N 1 i=l •

= S -  ^ 3 j- S  +  i(Y -lV l)(Y -M )T (3.38)

The deviations of these estimates from the true parameters, M and E, are

AMr = AM + -(Y -M -A M ) ss AM + ^ (Y -M ) (3,39)
J-N IN'

V.;Y/ AEr = AE -  ^ j-(E d -A E ) + ^-(Y-M -AM )(Y-M -AM )1 -

/ 4 + r Y ' Y -  = AS -  ^ -E  +  ^-(Y-M)(Y-M)t (3.40)

AM and AE assumed to be proportional to l/N  and approximations were 
made by ignoring l/N 2 and higher-order terms.

With this approximation, a function of Mr and Er , f(MR, Er ), can be 
expanded around f(M,E) as

opT ft#
Y(ICi ejEe) =S f(M,£) +  ^ j AMe + t r ^ A E R (3.41)

In the general Taylor series expansion, components of the second-order terms 
are also proportional to l/N . Using (3.39) and (3.40),

AMrAMr =  AMAM t + ^ j-(Y-M)AMt (3.42)

AErAEr ^  AE AEt — ^[E-(Y -M )(Y -M )tJAEt (3.43)

ZMMr AEJ s* AM AEt -  ^ A M E t + -^-AM(Y-M)(Y-M)T
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+ -^-(Y-M)AXt (3.44)

In the above expressions, each l/N  term contains a random .variable which 
is assumed to be proportional to l/N , making the entire term proportional 
to l/N 2. Thus, (3.41) is consistent with the approximations made by
ignoring l/N 2 and higher-order terms.

Stlbstitufmg (3.39) and (3.40) into (3.41),
BfF(MeiEb) S  [f(M,E) +  —  AM + tr— AE]

+ W ' £ (Y- M) + tr f « Y- M)(Y- M)T- E}l

= F(MjE) + ^ l f j j ( Y - M )  + tr ||-{ (Y —M)(Y-M)T—E}] (3.45)

Note that the difference between the two random variables f(MR,£R) and 
f(M,X) is not random, as long as Y is fixed and the first-order approximation 
is valid.

Example: Let us examine the case where f is given by

f(M,X) = -(Y -M )tXT1(Y-M) + ^lnjXj
2 L

Then,

—  -  -X -'(Y -M )

= ——X-1(Y—M)(Y—M)tX- 1 + -^X-1 
r)X 2 V A 2

Therefore,

F(MrjEe) -F (M jE) a . - i[a < (Y )+ n |

where
d2(Y) = (Y-M)tX-1(Y-M)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)



3.3.2 Quadratic Classifiers
In this section, the quadratic classifier of (3.14) is discussed. Using 

(3.46), (3.14) can be rewritten as

h(X) = I(M11E1) -  I(M21E2) (3.5j)

When a sample X from W1 is tested in the resubstitution method,

..... -.-finipg ■= fp5i1R, s 1R)

S  ^ , , S 1) - - i - [ d ,4(X)+nl -  f(M2,E2)

= -  2N~[dl4(X)+"] for X' ■ C-®)-

Likewise, when X comes from cu2,

hR(X) -  hL(X) +  — [d24(X)+n] for Xew2 (3.53)

where hR(X) and Iilj(X) are the discriminant functions for the resubstitution 
and leave-one-out methods, Ni is the sample size for Ca1 and
d-ix; =  (X-M i)'1' ,  1IX M.).

Now, the resubstitution error can be computed by (3.23) and (3.24) with 
h of (3.24) replaced by hR of either (3.52) or (3.53) depending on i= l  or 2. 
The result is

1 P 1 N1 , +oo Jvhlf(Xjllj)
?R = -  + -T- S j -  f  ---- - d o )2 Nj j=1 2tt _0O jw

P 9 No i +oo Jwfis(XP).'.
—  V —  [ ----------- du;
N2 /I1 2TT Joc jiJ

h  -
P 1 N1 P2 N2 . „v

+ F J F E / f 1]
jnU=I jnZJ=I

where

= ^ - d 4(xf>)+n
J O'TT J O

(3.54)

(3.55)

In order to obtain the second line of (3.54), an approximation of 
ejuia/N^ 14-jcoa/N is used. Also, note that, in the leave-one-out method, the 
design and test samples are independent and, therefore, the discussion of 
Section 3.2.4 can be applied without modification. However, in the leave- 
one-out method, the number of design samples (A ,) is always the same as



the number of test samples (Ni).
Now, the statistical properties of the bias, can be studied.

The expected value of eb is

Kl-V '  +  ^  (3-56>

where .,

ft =  —  j T  ll^ x - - E , ',(■-(;|X'ip{X-)d,>:X — (3:57)
■ 27r s-oo.. 2

And, the variance of 2b is

Var{eb} = ^ y [ ^ - Y a r { ^ }  + { l - ^ C o v i P ^ } ]
I' . - I- . • I- . .

; +  ' (3.58)
N 1JN2

The explicit expression for /5; of (3.57) can be obtained by using the 
same technique used to compute e in Chapter 2, if two distributions are. 
Gaussian with M1 =  0, M2 -  M and S 1 = E2 = I and the quadratic classifier 
of (14) is used. For N1 = N2 = N

E d{ej.vf.dX)} s  ej^h(X) J1 +  _L a ] ~  ej"h(x ) (3.59)

^ 3S 1(X) V2tt

V m t M

-Mt M

e 8 •[ I N.O -M-I; (3.60)
M M

I—■— —M-iM . ^

ej"'h(x)p2(X) =  — f = =  e 8 N i i r  > T ^ r )  N x ( ( 1  + HM,I) (3.61)
V m t M 2 M M

where a is a constant given in Chapter 2. Nw(d,k) and NX(D,K) are 
Gaussian density functions of oo and X with the expected value d and 
variance k for Ntj, and the expected vector D and covariance matrix K for 
Nx. Thus, the integration of (3.57) merely involves computing the moments 
of the Gaussian distributions of (3.60) and (3.61), resulting in



- r  "
2 \ f  2ttMt M

+(l+MTM/2)n+[(MTM)2/l6 •MtM/2

The first lines of Table 3.2 show the values of E{eb} computed from (3.56) 
and (3.62) with IvT1M = 2.562 and P1 = P2 = 0.5 for various k (= N/n) and 
n. The theoretical values are compared with the experimental ones in the 
second lines. The experiments were conducted by generating N samples, 
estimating Mi and E;, designing the quadratic classifier of (3.14), estimating 
the resubstitution and leave-one-out errors and computing the bias between 
them. The experiment was repeated 10 times and the average and standard 
deviation of the estimated biases are listed in the second and third lines. As 
Table 3.2 shows, the first and second lines are close, confirming the validity
of our discussion.

An important fact is that, from (3.56) and (3.62), E{eb} is roughly 
proportional to n2/N for large n. A simpler explanation for this fact can be 
obtained by observing (3.57) more closely. Assuming (3.59) and carrying 
through the integration of (3.57) with respect to cj,

, dj4(X) + n
: ; S s  I — I — «(h(x))Pi(x)dx

-y-M.'.’ s

, A4(X ).+ n= J  - I  Pi(X)dX (3.63)
h(X) -  0 1

It is well known that d 2(X) is X2-distributed with an expected value of n and 
standard deviation of V2n, if X is Gaussianly distributed. Particularly 
when n is large, d 2(X) on the classification boundary should be n times some 
number net far from I. That is, d4(X) is close to n2. Thus, should be 
proportional to n2.

The analysis of the variance (3.58) is more complex. Though the order 
of magnitude may not be immediately clear from (3.58), our experimental 
results, presented in Fig. 3.2 and the third line of Table 3.2, show that the 
standard deviation is roughly proportional to I /N. The intuitive 
explanation should be the same as that presented in Section 3.2.3.
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Table 3.2 Bias between leave-one-out and resubstitution errors for I-I {%)

n

4 8 16 32 64

',(-V-. 'H. . 3 ' 9.00 13.79 23.03 41.34 77.87
13.33 15.42 19.69 22.86 30.29
7.03 5.22 4.12 4.26 3.40

5 5.40 8.27 13.82 24.80 46.72
7.50 9.25 10.75 17.75 24.47
4.56 3.24 2.28 2.69 1.53

10 2.70 4.14 6.91 12.40 23.36
2.25 4.63 6.34 9.58 16.01
1.84 2.02 1.59 1.61 1.24

^  15 1.80 2.76 4.61 8.27 15.57
1.33 3.13 4.42 7.44 11.92

. k ■ 0.90 1.29 0.87 0.47 1.18

20 1.35 2.07 3.45 6.20 11.68
1.38 2.09 3.14 5.05 9.56

. ■ ■ ' 1.05 1.00 0.64 0.53 0.45

30 0.90 1.38 2.30 4.13 7.79
0.63 1.58 2.39 3.94 6,41
0.45 0.52 0.41 0.35 0.33

40 0.67 1.03 1.73 3.10 5.84
0.44 1.08 1.55 2.96 5,21

\  •' 0.30 0.39 0.30 0.30 0.36

' ■■ 50 ' 0.54 0.83 1.38 2.48 4.67
0.30 0.75 1.38 2.29 4.27

V:- ■■■ 0.23 0.23 0.37 0,25 0.25

(1st line: Theoretical prediction,
2nd line: The mean of 10 trials,

3rd line: The standard deviation of 10 trials)
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Figure 3.2 Bias between Leave-one-out and Resubstitution Errors for I-I 
(Standard deviation vs. l/N  for n=8)



3.3.3 Effect of Outliers
It is widely believed in the pattern recognition field that classifier 

performance can be improved by removing outliers, points far from a class’s 
inferred mean which seem to distort the distribution. The approach used in 
Section 3.3.1 to analyze the difference between the resubstitution ahd leave- 
one-out parameters can be extended to handle the effect of a single point of 
the design set on classifier performance.

As in (3.34)-(3.38), assume that N-I samples have been used to estimate 
a distribution’s parameters (M,E) and that these estimates will now be 
modified by including a new point, Y. These new estimates (My,Ey) are 
defined by (3.36) and (3.38). The approximations in (39)-(44) are still valid, 
so (3.45) can also be used. For the quadratic classifier, (3.47) and (3.48) can 
be substituted into (3.45) to yield

?(%.>:.} -  f(M,E) = -2<y mit >: \ x  m r y  us7': ' 0 ’ M) ■.

-{(Y -M )t£-*(X-M )}! +  (X-M)tE-Hx -M)]

-g(X,Y) (3.64)

The corresponding change in the discriminant function for Yew1 can be 
found by inserting (3.64) into (3.51)

; . fiypc) - H(MlylEly) -  f(M,,E,)

~ ITVf,..'':,)+ ^ g 1(XjY )-H M 2jE2)

■ Ii(X) + K1(XjY) for YfW1 (3.65)

(3.66)

Likewise, when Y comes from W2 ,

hv{X) =  h(X) -  ” g2(X,Y) for Yew1

where g, indicates that Mi and Ei are used instead of M and E in (3.64).
When this modified classifier is used on an independent set of test 

samples, the result is, using (3.19),
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+ - J JO-TT J  J

-f-oo ju;hy(X)

2 7 r S - O O  J w

- p (X) d colX

1  j _  f y
2 2 TrlJoo Jw

|1 ±  |p(X,Y)]p(X)dwdX

4-co

e ± T - U  ei“fi'X>^-gi(X>Y)p(X)d«lX
S —oo

I +oc I
3  f ±  ^ r /  /  e '^ + f i lX .Y J p p q d w d X  (3-67)

where + and i=  I are used for Yew1 and — and i=  2 are for Yew2. The 
approximation in the last line involves expressing e-’0-'*’® in terms of e-iall(x) 
and ignoring terms smaller than l/N . Unlike the case of the resubstitution 
error, (3.67) keeps p(X) in its integrand. This makes the integral in (3.67) 
particularly easy to handle. If the quadratic classifier is the Bayes classifier, 
the integration with respect to w results in

Aly = ± f  S( h(X))-^-gi(X,Y)p(X)dX = O (3.68)
S iN

That is, as long as p(X) = O at h(X) =  0, the effect of an individual sample 
is negligible. Even if the quadratic classifier is not optimal, Aey is 
dominated by a l/N  term. Thus, as one would expect, as the number of 
samples becomes larger, the effect of an individual sample diminishes.

These results were confirmed in three sets of experiments. The first was 
the mean difference case used earlier. In the second experiment, the two 
classes share a mean, but have different covariances (I for W1, 41 for W2). 

The third experiment used Standard Data from [10] where the classes differ 
widely in both the mean and the covariance. Eight-dimensional data was 
used in each case.

The experiments were run in the following manner. N samples were 
generated for each class. Then, an additional sample, Y, was generated 
from class I  and scaled to a specific normalized distance from the mean. 
Classifiers were designed with and without Y and were tested on the true 
distributions using Novak’s program computing the performance of a 
classifier with a given test distribution [11]. This procedure was repeated 10 
times for each particular value of N. The entire process was run a number
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of times with varying distances/ Experimental results are presented in 
Tables 3.3, 3.4, and 3.5. Notice that even when the squared distance is 
much larger than its expected value, n, the outlier’s effect, is still negligible.

3.4 B ootstrap M ethods
As an alternative to the holdout and leave-one-out error estimates, 

Efron [14] has suggested using a bootstrap technique to estimate the 
optimistic bias of the resubstitution error and, in turn, to estimate the 
expected error rate for a given decision rule. In the bootstrap procedure, 
one assumes that the existing sample set represents the true distributions. 
That is, these density functions consist of impulses located at the existing 
sample points

Pi’(X) =  V i(X -X f)  : =  1.2 ; (3.69)
■ > j=1 . ■ ...

where * indicates something related to the bootstrap operation. Note that 
in this section, is considered a given fixed vector and is not random as it 
was in the previous sections.

When samples are drawn from p*(X) randomly, we select only the 
existing sample points with random frequencies. Thus, the N; samples 
drawn from p*(X) form a density function

P,'(X) V «f) ^X -X li*) 1 =  1,2
v - . . v -.(V- j=i .

(3.70)

Within each class, the are identically distributed under the condition

Yi 0.(0 = i. Their statistical properties are known [14]:
j=1 -. :

/  (3.71)
- ."..V .■ . . . ■ •• .. ■

^  * (3.72)

= 0 for (3-73)

The holdout error in the bootstrap procedure, eH, is obtained by 
generating samples, designing a classifier based on p; (X) and testing p; (X).

j|t t
On the other hand, the resubstitution error, eR, is computed by testing
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Table 3.3 Bias between error without outlier and error including outlier 
for various outlier distances from the class I mean for I-I (e* =  
10%).

N

ERROR WITHOUT 

OUTLIER (%)

BIAS BETWEEN ERROR WITHOUT OUTLIER 
AND ERROR INCLUDING OUTLIER (%)

d2 = n/2 d2 =  n d2 =  2n d2 =  3n

24 20.18 0.519 0.689 0.769 0.762
40 15.61 0.124 0.211 0.279 0.274
80 12.04 0.029 0.035 0.027 0.018

120 11.71 ■ 0.008 0.012 0.011 0.003
160 11.04 0.006 0.010 0.014 0.013
240 10.74 0.004 0.006 0.010 0.001
320 10.53 0.004 0.006 0.009 0.011
400 10.34 -.001 -.001 -.003 -.001
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Table 3.4 Bias between error without outlier and error including outlier 
for various outlier distances from the class I mean for 1-41 (e*
= 9 % ) .

N

ERROR WITHOUT 

OUTLIER {%)

BIAS BETWEEN ERROR WITHOUT OUTLIER 
AND ERROR INCLUDING OUTLIER {%)

d2 = n/2 d2 =  n d2 =  2n d2 =  3n

24 23.53 0.792 1.213 1.451 1.356

40 16.19 0.222 0.423 0.619 0.658

80 11.79 0.025 0.060 0.091 0.083

120 10.83 0.015 0.032 0.047 0.045

160 10.32 -.003 0.005 0.014 0.013

240 9.92 0.003 0.012 0.025 0.034

320 9.52 0.003 0.006 0.012 0.015

400 9.41 0.000 0.000 0.001 -.001



57

Table 3.5 Bias between error without outlier and error including outlier 
for various outlier distances from the class I mean for standard 
data (e* =  1.9%).

N

ERROR WITHOUT 

OUTLIER (%)

BIAS BETWEEN ERROR WITHOUT OUTLIER 
AND ERROR INCLUDING OUTLIER (%)

d2 = n/2 ts3 Il ti d2 =  2n d2 =  3n

24 5.58 0.374 0.555 0.664 0.673
40 3.70 0.054 0.088 0.110 0.103
80 2.54 0.005 0.007 0.008 0.003

120 2.35 0.005 0.007 0.007 0.005
160 2.25 -.001 0.000 0.001 0.001
240 2.14 0.001 0.002 0.003 0.004
320 2.08 0.000 0.000 0.001 0.001
400 2.05 0.000 0.000 0.000 0.000
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Pi* (X). The bias between them can be expressed by

Tb =  ?H ~ tR
' »>,

j _  + p  m -

2 7 T  { jL jw
N 1

Pi E
j-i.

-  m
N1 J

(V(X-XjM)

No

P2 E
j=i N9

6 f S (X -X }2) dwdX

N i N 2

Pi S-Tjm - P 2 s T 1
j=i j=i

(3.74)

where
A0& +°° (xf)

7-OO JOJ
dw (3.75)

and A #  = #  -
J J N .

When a quadratic classifier is used, fi*(X) in (75) becomes

h*(X) = ^ , S 1*) -  f(M2*,S2*) (3.76)
^  ,j. - £

where f(*,*) is defined in (3.46). The bootstrap parameters, Mi and Si are

Mi* = £
- ' ' '  ̂ - : .; . . . (3.77)

j=1 ■' E  ' ''-V ' ' . ' ''
N-

K  v  ffj ' iX f—SIi)(X-”-M,)T (3.78)
■ j=l ■

\".^T  - I Ni .
Note that Wli — —— S Xî  is 

Ni j-i J I
used to compute Si .

•A

Mi is available in the
1 x *

bootstrap, operation and the use of Mi instead of Mi simplifies the discussion 
significantly. Their expectations are

K-IM1' I = S
K  ■ -.'".-T-1T

(3.79)

■*\ n .
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E*{S*} = £  E{0f}(XP-Mi)(Xj(i)-Mi)T
j=i

Ni- I
~ N ~ S  = Si (3.80)

where E* indicates the expectation with respect to the #’s.
f(Mj ,Si ) can be expanded around f(Mj,Sj) by the Taylor series as

f(M; ,Si ) = f(Mj,Sj) + „ AlVdi -(- tr (3.81)
. ^Mi 1 ' as-

where Abdi Mi* — Mi and ASi = Si* - S i. Since h(X) = ^M11S1) 
~  f(M2,S2),

Ah(X) = h*(X) -  h(X)

5M,
AM1

5Mn
AM2 + tr

as ,
AS1

a s ,
(3.82)

The partial derivatives of (3.82) can be obtained by (3.47) and (3.48). 

3 .4 .I Bootstrap Expectation

Using the approximation of (3.21), (3.75) can be approximated as
,\2

t/1) =
A #  +°° . n Uwl2

J I  —  |l+j^Ah(xf>) + Ah2(XP)Idw (3.83)
— _oo JW ' ’ \  J ' 2 J

The third term contains third-order moments with the combination of A#P 
and Ah2 and can be ignored. Thus, our analysis will focus on the first and 
second terms. With this in mind, substituting (3.77), (3.78) and (3.82) into 
(3.83) produces

A0-W +0° J^(Xf)
7  l} = --------- - -  J  — -------dw1J <W J - JW

_1_
27T J e J " 1 ( X f t  I-^- S Mil Atf1 xl1*- -Jr- S ASf A#

_ o o  aMj k=1 aM, v=i .2 k=l
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+ E  Afif Afi^(X if-M 1)T -^ r (X jf -M 1)
k=l 0 l j \

E  AfiW- A fi^(X jf-M 2)7  -J j-(X jf-M 2)Jdw
k=i

(3.84)

Using the partial derivatives of (3.47) and (3.48) and the expectations in 
(3.7l)-(3.73), E*{tW) becomes

E.fr*1*}
(-I-Ii+1 I • ' ^!X;'*)+n 

J O
> * ( X ( " )

Nf M  [^00

where
df(X) = (X—Mi)TS f  ̂ X-M i)

In the derivation of (3.85), we utilized the relationship that 
I  . N i 

Ni k=1

'dw- (3.85)

(3.86)

± 7  E  (Xj1)-M i)TEi- 1pcf>--Mi) =  i t  EC* ^  S  p tf' I-M iJlXfI-ICli)1
N i

E
i k=l

Ni- I

I v
Ni- I

W

tr E f  1Ei

n =  n

Thus, the expectation of the bootstrap bias for a quadratic classifier given a 
sample set S=(Xj1)11X i i * , becomes

E.{?b*iS}
I‘| S.

W  ' N
(3.87)

2 j=i

where

m
i

+ C O  . j  4

 ̂ 27T Ldi*(x/'))+p
'dw (3,88)

Note that (3.55) and (3.88) are very similar. The differences are df of (3.86) 
vs. df of (3.50) and h vs. hL. h is the discriminent function designed with 
Mi and Ei, the sample mean and sample covariance of the sample set S. The 
test samples X f  are the members of the same set, S. Therefore, h is the 
same as the resubstitution discriminant function hR of the previous sections,
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while hL is the leave-one-out discriminant function. As is shown in (3.52) 
and (3.53), the difference between hL and hK is proportional to I /N. Thus, 
the difference between e ^ 1' and is proportional to l/N . Also, as (3.50) 
suggests, It can be shown that the difference between d 2 and d 2 is 
proportional to l/N . Thus, ignoring terms with l/N , eb of (3.54) and 
E*{£b ]S} of (3.87) (note that S is now a random set) become equal and have 
the same statistical properties. Practically, this means that estimating the 
expected error rate using the leave-one-out and bootstrap methods should 
yield the same results.

These conclusions have been confirmed experimentally. For several 
values of N;, 8-dimensional sample vectors were generated from the Gaussian

* •• V. _ . ; ; - • '

distributions used in Section 3.3. The generated samples were bootstrapped 
and used to design a quadratic classifier. This classifier was then tested on 
the original sample set (eH) and the bootstrap sample set (eR). Each sample 
set (S) was bootstrapped 100 times and the results were averaged to 
simulate the bootstrap expectation (E*{eb jS}.) The whole procedure was 
repeated 10 times to estimate the expectation with respect to the training 
sample set (EsE*{eb j S}.) Results are presented in Tables 3.6, 3.7, and 3.8. 
In columns 3-7, the first line of each entry is the mean of 10 trials and the 
second line is the standard deviation. In column 2, the first line is still the 
mean, but the variance is presented in the second line.

When N; is particularly small, our approximations might not be valid 
and the leave-one-out and bootstrap methods may produce different results. 
Though the bootstrap bias estimate does seem to have a slightly smaller 
standard deviation (column 4 vs. column 6 of Tables 3.6-3.8), both our 
results and those presented in Jain, Dubes, and Chen [15] show that the 
leave-one-out and bootstrap methods are equivalent (column 3 Vs. column 5  

of Tables 3.6-3.8).

3.4.2 B ootstrapV ariance
The variance with respect to the bootstrap can be evaluated in a 

fashion similar to (3.58)

Var*{eb*[S} = P f ^ V a r * ^ 1)} + £  £  Covt-}^1̂  }] 
j=i

N1 N1

j=lk=lj*k
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Table 3.6 Bootstrap results for I-I (e* — 10%).

CONVENTIONAL
LEAVE-ONE-OUT & RESUBSTITUTION

BOOTSTRAP

N E { 6r } E f o ) E { eL—cr }  1Es { eR + E *{eb Is } } SSE * { e b |S } 3 sV a r * { e b IS }

24 3.54 17.08 13.54 12.77 9.23 0.18

0.11 4.89 3.14 4.17 1.38 0.04

40 5.75 13.38 7.63 11.68 5.92 0.08

0.07 6.04 3.88 4.44 1.90 0.02

80 7.13 11.19 4.06 10.67 3.55 0.04

0.04 2.47 1.29 2.50 0.56 0.01

120 9.04 11.79 2.75 11.45 2.41 0.03

0.06 2.97 101 2.79 0.43 0.01

160 9.13 11.28 2.16 11.17 2.05 0.02

0.03 2.35 1.09 1.94 0.44 0.00

240 8.27 9.35 1.08 9.46 1.19 0.01

0.02 1.61 0.51 1.61 0.15 0.00

320 9.78 10.67 0.89 10.78 1.00 0.01

0.01 0.80 0.37 0.91 0.11 0.00

400 9.18 9.78 0.60 9.96 0.77 0.01

0.01 I 0.91 0.26 0.84 0.10 0.00

(All numbers are percentages.)
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Table 3.7 Bootstrap results for I-4I (e* =  9 % ) .

C O N V E N T IO N A L

L E A V E -O N E -O U T  & R E SU B ST IT U T IO N

B O O T ST R A P

N E { £ r } E K ) E { 6L — 6 r } E s { 6R + E * l e b ! S } } E s E * l e b i 'S } E s V a r * { e b* | S }

24 3.54 18:33 14.79 15.08 11.54 0.21

0.12 4.79 3.86 4.35 1.26 0.03

40 4.88 13.75 8.88 12.10 7.22 0.12

0.06 3.23 2.97 2.27 0.92 0.03

80 7.19 11.19 4.00 10.82 3.63 0.04

0.08 2.72 1.56 3.12 0.54 0.01

120 8.25 10.75 2.50 10.86 2.61 0.03

0.03 2.14 1.23 2.04 0.37 0.01

160 7.59 9.88 2.28 9.56 1.96 0.02

0.01 1.58 0.68 1.23 0.33 0.00

240 8.38 9.75 1.38 9.80 1.42 0.02

0.03 1.94 0.49 1.83 0.22 0.00

320 9.11 10.09 0.98 10.14 1.03 0.01

0.71 0.83 0.40 0.77 0.15 0.00

400 9.09 9.99 0.90 9.99 0.90 0.01

0.01 0.95 0.24 0.89 0.13 0.00

(All numbers are percentages.)
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Table 3.8 Bootstrap results for standard data (e* =  1.9%).

N

CONVENTIONAL
LEAVE-ONE-OUT & RESUBSTITUTION

BOOTSTRAP

E M E { « l } E { eL—cr } 1E s { eR + E * { eb !® }} 'EsE - K  I S } l3sVar*{eb I S }

24 0.63 5.00 4.38 4.14 3.52 0.10

0.01 3.43 3.02 1.69 0.84 0.02

40 1.88 3.63 1.75 3.74 1.86 0.03

0.02 1.99 1.21 1.95 0.67 0.02

80 1.44 2.31 0.88 2.26 0.82 0.01

0.01 1.10 0.94 1.08 0.24 0.00

120 1.75 2.71 0.96 2.31 0.56 0.01

0.01 1.04 0.48 1.05 0.19 0.00

160 i 1.94 2.34 0.41 2.35 0.42 0.01

0.00 0.90 0.36 0.80 0.17 0.00

240 2.21 2.50 0.29 2.50 0.29 0.00

0.00 0.71 0.26 0.60 0.13 o.od

320 2.00 2.17 0.17 2.18 0.18 0.00

0.00 0.48 0.14 0.53 0.07 0.00

400 2.01 2.24 0.23 2,21 0.19 0.00

0.00 0.45 0.16 0.38 0.07 0.00

(All numbers are percentages.)
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+  P![EV ar*{7j(2)} +  E  E C ov*{7j(2)7j(2)}]
j= i j= ik = i

ĵ k

-  SP1P2S r c o v , I 7 ( S P )
j= lk ~ l

(3.89)

Because the samples from each class were bootstrapped independently, 
Covt{7ĵ 7̂ ^ }  = 0.

Using a property of the inverse Fourier transform,
A #  +0° > h ‘(Xi(i))

I '
-  - C O  J w

Thus, the variance of 7jW is

Var*{7j(')} = E*{7ĵ 2} — E 2{7jW)

= —E { A ^ 2} -  E*2{7jW} 
4

J ——;------ dw =  ——sgn(h*(XjW))AflW (3.90)

1 . 1s  —(----
4 ' N2 - ) (3.91)

where E*{7jW) is proportional to l/N 4 from (3.85) and therefore can be 
ignored. Cov*{7j^7^} may be approximated by using the first term only of 
(3.84). Again, using (3.90),

Cov^Tj^O} =  E * ) ^ 0} -  E*{7j(i)}E*{7iSi))

S  7^n(£(^ffl))sgn(£(xii)))E{MJ(ilA«ii) } - E . { 7 (i)}E {# } .

s  --^sgn(h(Xf))sgn(h(X P)) (3.92)
4 INj

where E(AfljWAfl1W) = —l / N 3 for by (3.72), and E*(7jW)E*(7]W} is 
proportional to I /Ni4 by (3.85) and therefore can be ignored.

Thus, substituting (3.91) and (3.92) into (3.89) and using 
Cov*{7j(1)7i!2)} = 0 ,



Var»{?b IS} = i f H
4 t x  Ni

N; sgn(h(Xj^)) Ni sgn(h(x£))) 

1 - iS  H Ni

I f I i  
4 a  Ni

[I (I 2eRi)(l 2eRi)]

* gRiC1- gRi) 
^  ' N-i=i

(3.93)

Note that Ssgn(h(XjW))/Ni = (^1)‘ [(# of correctly classified LOi samples by
OC11  ̂ u7I- ' *

h ^  0)/Nj - (#  of misclassified o>, samples by h ^  0 )/N i] ==•■
"oc’o. ^

(—I)*[(I —eRi)—eRij ]= (—l)‘(l—2?Ri). Since h is the resubstitution 
discriminant function for the original sample set, the resulting error is the
resubstitution error.

Note that (3.93) is the variance expression of the resubstitution error 
estimate. This is seen in Tables 3.6-3.8 (second line of column 2 vs. first line 
of column 7) and theoretically substantiates a claim of Efron [14]. Also, 
note that, since (3.93) only involves bootstrap operations, this value can be 
estimated using just one set of samples. When S becomes a random set, 
Var*{cbjS} varies with eRi( l-? Ri) S ?Ri.

3.5 Conclusions
The objective of this chapter was to apply the error expression derived 

in Chapter 2 to various classifier test procedures in order to theoretically 
analyze their estimates of the expected classifier performance. It was shown 
that the design samples alone account for a classifier’s bias, while the test 
samples dominate the variance of the error estimate. These results had been 
demonstrated empirically. But, this chapter offers a new theoretical
approach to understanding how design and test sample sizes affect the
performance of classifiers. A general expression showing the relationship
between the resubstitution and leave-one-out estimates of functions of
Gaussian parameters was derived. As an example, the statistical properties 
of the difference between the resubstitution and leave-one-out error 
estimates for the quadratic classifier were investigated. The difference was 
found to be inversely proportional to the number of design samples and 
roughly proportional to n2. In a related discussion, the effect of outlier 
design samples was found to be negligible, other than their effective
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reduction of the number of design samples in the training set. Finally, 
Efron’s bootstrap estimate of the optimistic bias of the resubstitution error 
was analyzed. The resulting error estimate was shown to be statistically 
equivalent to the leave-one-out error estimate under reasonable design 
conditions.

Though not exhaustive, this study should provide a better 
understanding of the role of dependent and independent design and test 
samples in classifier design and evaluation. Hopefully, the tools and 
methodology can be applied to other statistical testing procedures and may 
help propose new ones.
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CHAPTER 4
THE REDUCED PARZEN CLASSIFIER

4.1 Introduction
In pattern recognition, the quadratic classifier is very popular. 

However, in practice, with non-Gaussian distributions, it has been frequently 
observed that the error of a quadratic classifier is much larger than the 
Bayes error estimated by nonparametric techniques. On the other hand, 
nonparametric classifiers are too complex and time-consuming for on-line 
operation. Thus, there is a need to fill the gap between these two kinds of 
classifiers.

One possible solution is to find clusters and to design quadratic 
classifiers around cluster centers. Unfortunately, conventional clustering 
techniques give very poor estimates of the expected vectors and covariance 
matrices of the clusters. For example, let us consider a distribution which 
consists of two Gaussian distributions with some overlap. If we divide the 
mixture distribution into two clusters by setting a boundary, each cluster 
includes one true Gaussian distribution with a tail cut off, plus the tail of 
the other Gaussian distribution. Thus, the estimates of the expected vector 
and covariance matrix of the cluster based on samples in that cluster region 
could be significantly different from the true parameters of the Gaussian 
distribution.

In this chapter, we have taken a different approach. Our solution is to 
find a small number of representatives, maintaining that the Parzen density 
estimate with these representatives is as close as possible to the Parzen 
density estimate with all available samples [16], [17]. The resulting Parzen 
density estimate represents the distribution of each class. Combining these 
estimates from different classes, the Bayes classifier is designed. With 
Gaussian kernel functions, this closely resembles a piecewise quadratic 
classifier.

The idea of using reduced sample sets as representatives of larger 
sample sets has been around for a long time for various purposes,



particularly for the k-nearest neighbor (NN) approach. For examples, the 
condensed NN for reducing storage and computation time, the edited NN for 
better performance and so on [18], [19], [20], For the Parzen approach, 
smaller sample sets were sought in a pure density estimation setting [21]. 
Also, various parametric techniques have been developed for the 
decomposition of Gaussian mixtures [22], [23].
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4.2 The D ata Reduction Algorithm
In [24], Fukunaga and Mahtock presented an algorithm for finding a 

reduced sample set which had virtually the same nearest neighbor (NN) 
density estimate as the original sample set. In this section, we will show 
how this algorithm has been adapted to use the Parzen density estimate.

Given N samples drawn from a density function, p(X), of a random 
vector, X, we wish to select r samples (r <  N) such that we make the Parzen 
density estimates for the N sample set and the r sample set as close as 
possible.

Assuming that a Gaussian kernel is used, the Parzen density estimate 
at X given N samples is

i>n(x ) -  ‘ >: MX x.) : (4 J )
i=l .

where ’

k(x Xi) =  — — 1 •—  1 ; x - x ) T\ ;  1IX -X1); (4 .2)
-!.t V E l  2h

n is the dimensionality, is the kernel covariance matrix, and h is the 
kernel size control parameter. Similarly, when r representatives, Y1*...,Yr, 
are selected, the density function at X is estimated by

Pr(X) i  S  k(X -  V) (4.3)

In ofder to measure the similarity between Pr(X) and Pn (X), the entropy 
J  ln[pr(X)/pN(X)] pN(X)dX is used in this chapter. The entropy expression
satisfies



I ln
Pr(X)

Pn (X)
pN(X)dX ^  O (4.4)

where equality holds when P1̂ (X) = Pr(X). A larger entropy means that 
Pr(X) is closer to pN(X). The inequality of (4.4) can be proved easily by 
using a property of the logarithmic function, In a <1 a—I. That is, 
I  In [pr(X)/pN(X)j pN(X)dX <£ /  [pr(X)/pN(X) lj Pn (X )d X = J  pr(X)dX -  
/  pN(X)dX = l - l = 0 .

The entropy expression may be rewritten as E{ln[pr(X)/p]sf(X)]} where 
the expectation is taken with respect to p^(X). Thus, if the expectation is 
replaced by the sample mean over the existing samples Xt,...,XN, (4.4) is 
approximated by

J = j  E  [InPr(Xi)-InPn(Xi)]. (4.5)
i=l

Since the expectation: is replaced by the sample mean, (4.5) ^  0 is no
longer guaranteed. However, this approximation significantly simplifies the 
criterion and subsequently the selection algorithm. The experimental results 
are good, as reported in the next section, and justifies the use of (4.5) as a 
criterion. Substituting (4.1) and (4.3) into (4.5),

J S  Pai  S  It(Xi-Yi) -  Ia“  S  It(Xi-X j)] (4.6)
iN i=1 r j= j iN j=l

In order to find the best r representatives from the existing samples 
Xj,...,XN, we would like to maximize J over all possible r element subsets of
the original N element set. Unfortunately, an exhaustive search of all (^)
subsets is not computationally feasible. Instead, we will settle for the 
maximum J for subsets formed by replacing one element of the 
representative set by the best candidate not yet selected.

The proposed procedure is as follows:

I) Select an initial assignment of r samples from the N sample data 
set. Call the r sample set STORE and the remaining N-r samples 
TEST.

2) For each element, Xt, in TEST, compute the change in J that results 
if the sample is transferred to STORE. 7
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-  ' >; > :vk(x, v ) I k,x -xt)iN i=1 r+1 j=1

- I n  ' V MXi-Y j)] (4-7)
r j=l -

3) Pick the element, Xt, corresponding to the largest AJ1 (and call it
X*).

4) For each element, Xs, in STORE, compute the change in J that 
results if the sample is transferred to TEST.

AJ2(Xs) = Jr(Xs) - J ^ 1

Jr  V jln  — I V  k(Xl- Y j) +  k(X: Xt-) - k ( X  XJS 
N i-l r i-l

In •••' I V  SlX1 -ViI I k(X ,-X .')i; (4.8)
^1* + 1 ■ j=l .

5) Find the element, X8, corresponding to the largest AJ2 (and call it

Xs*).
6) The change of J due to these two operations is AJ ..== 

AJ1(X^)TAJ2(Xs). In order to maximize J, we would like to have 
AJ >  0. If Xs* exists to satisfy AJ >  0, transfer Xs to TEST, 
transfer X1 to STORE, and go to step 2.

7) Otherwise, find the element, Xt, corresponding to the next largest 
AJ1 (and call it Xt ).

8) If Xt exists, go to step 4.
9) Otherwise, stop.

Generally, this kind of iterative process produces a result which depends 
on the initial selection of r representatives in STORE. However, Steps 7 and 
8 allow us to search more possible combinations of Xt and Xs and thus 
insure that the final representative set is independent of the initial 
assignment.
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This procedure should be applied to the sample set of each class 
separately. The resulting Parzen density estimate with r representatives 
from each class is used to design the Bayes classifier.

4.3 Experimental Results
Two types of experiments.were run to demonstrate the feasibility of the 

proposed procedure: one is for various Gaussian cases and the other is for 
non-Gaussian cases.

4.3.1 Gaussian Cases
The experiments for Gaussians used the test distributions mentioned in 

Chapters 2 and 3. Case a characterizes mean-separable problems. Case b 
characterizes covariance-separable problems. Case c is a complex case in 
which both the means and covariances are different. For all cases, the 
experiments were run by the following procedure:

I. Classifier design:
a) Generate 100 samples per class, the design set, Gaussianly with given

Mi and Ei-
b) Generate the Parzen density estimate of (4.1) for each class by using 

the known covariance matrix as the kernel covariance in (4.2). Each 
class has a different kernel covariance.

c) The kernel size control parameter, h, will be selected experimentally 
as will be presented in Step (b) of classifier test.

d) For a fixed h, classify the existing 200 samples (100 per class) by

■

Pn(X1M ) 3* Pn(XiM )  + t (i=l,...,200) (4.9)

where Cu1 indicates class i and t is the threshold, t is selected to 
minimize the classification error. When the true P(XZcu1) and p(X/cu2) 
are used, the Bayes classifier requires a value of zero for t. However, 
when these densities are unknown, their estimates are biased. 
Adjusting t has been shown to be an excellent way to minimize the 
effect of the biases on classification [25].
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2. Classifier test:
a) Generate independently another set of 100 samples per class, the test 

set, and classify them using the classifier of (4.9) with the t fixed by 
1-d. This was repeated 10 times and the average error is denoted as

■ ' e. ' \ ■ ■ ..
b) Repeat 1-d and 2-a for various h. The optimal h is selected which 

minimizes e [25]. When e decreases monotonically with increased h, 
as has been observed for Gaussian distributions, h is selected at the 
point where e starts to flatten out. Figs. 4.1(a), (b), and (c) show the 
plots of e vs. h for cases a, b and c. Since the design and test sets are 
independent, these curves are supposed to give an upper bound of the 
Bayes error. The dotted lines were obtained by testing the original 
design samples. Because of the dependency between the design set 
and the test set, this procedure is supposed to give a lower bound of 
the Bayes error. From these figures, 2.0, 2.0, and 3.0 were selected as 
the optimal h for cases a, b, and c, respectively.

3. R epresentative selection: Select the r representatives by the proposed 
procedure of Section 4.2.

4. Design of the reduced Parzen classifier: Classify the original 100
design samples using

Pr(XiM ) ^  Pr(XiM )  + t (i=l,,..,200) [ (4-10)
W2

Select t which minimizes the error. Note that t must be readjusted each 
time a different value of r is selected.

5. T est of the reduced Parzen classifier: Generate another set of 100 
test samples per class and classify them by (4.10). The resulting errors 
are plotted in Figs. 4.2(a), (b), and (c), (corresponding to cases a, b and c 
respectively), for various values of r. The curves of these figures are the 
averages of 10 trials and their standard deviations are shown by vertical 
bars.

In the cases presented above, the estimated errors bound the theoretical 
Bayes error closely. The reduced Parzen classifier provided excellent results 
until a very small ( = 3) number of representatives was selected. For
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Figure 4.1 Parzen Density Error Estimates for Gaussians.
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Figure 4.2 Reduced Parzen Classifier Results for Gaussians.



Gaussian cases, selecting the expected vector as the one representative from 
each class and the covariance matrix as the kernel covariance, the reduced 
Parzen classifier becomes the Bayes classifier. So, the error curves of Fig.
4.1 could be fiat down to r—I. However, the proposed data reduction 
algorithm selects a vector from the existing design samples, which may or 
may not he close to the expected vector.

4.3.2 Non-Gaussian Cases
Two cases were studied as follows:

a) n = 8, 4 Gaussian clusters with

M1 = [—3.28,0, • • • ,Of and E i=I

M2 = [0,0 , • • • ,0f  and E 2=1

M3 = [+3.28,0, • • • ,0]T and E 3=1

M4 — [+6.56,0, *• * ,0]T and E 4=I

Clusters I and 3 form class I and clusters 2 and 4 form class 2. 

e = 7.5%, e a = 29.5%

b) n = 8, 6 Gaussian clusters with

M1 = [—3.28,0, * ,0]T and ^ 1=I

M2 = [0,0, • • • ,0]T and E 2= 1

M3 = [0,3.28,0, • • * ,0]T and V)3=I

M4 = [3.28,3.28,0, • • • ,0]T and £ 4=I

M5 = [0,-3.28,0, • • • ,0]T and Es=1

M6 = [3.28,-3.28,0, • • • ,0]T and Ee=1 

Clusters I, 3 and 5 form class I and clusters 2, 4 and 6 form class 2. 

e =8.3%, e a = 19%



If we blindly assume that each class has a Gaussian distribution and 
design a two-class quadratic classifier using overall means and covariance 
matrices, the resulting error is much larger than the Bayes error. This error 
is called the apparent error and is listed above as ea. When the size of the 
Gaussian kernel function, h, is large, the Parzen density estimate becomes 
close to a Gaussian distribution, and the resulting classification error is 
expected to be close to ea.

All experiments were run as in the Gaussian case, with 75 samples per 
cluster for case a and 50 samples per cluster for case b. The Gaussian 
kernel function with I was used for both cases.

Figs. 4.3(a) and (b) show e vs. h in Step 2-b for cases a and b. The 
optimal h’s were selected as 2.0 for case a and 1.3 for case b, respectively.

With these h’s, the reduced Parzen classifiers were designed and the 
resulting error vs. r curves are plotted in Figs. 4.4(a) and (b).

As in the Gaussian cases, the reduced Parzen classifier provided 
excellent results Until a very small number of representatives was selected. 
In case a, this number was 6. The data reduction algorithm picked 3 
representatives from each cluster; the Gaussian results show that fewer 
non-optimal representatives cannot accurately represent the distribution. 
For case b, degradation occurred after 9 representatives. Again, the data 
reduction algorithm picked 3 representatives from each cluster.

4.3.3 Radar D ata
To test its performance in a real, high-dimensional case, the reduced 

Parzen classifier was used on a set of 66-dimensional miIimeter-wave radar 
data. The samples were collected by rotating a target (a Camaro and a 
Dodge Van) on a turntable and taking approximately 8800 readings. 66 
range bins were selected and the resulting vectors were normalized by 
energy. For each class, the samples were alternately picked to form 
independent design and test sets, 4400 in each. Every sixth point in the 
design sets was chosen to form two sets of 720 reference representatives. 
Using a kernel covariance estimated from the 4400-sample design sets, these 
720-sample sets were used to compute the Bayes error estimate. Then, the 
reduced Parzen classifier was designed for different numbers of 
representatives. Each classifier was tested on the 4400-sample test sets. 
Results are presented in Fig. 4.5.
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Figure 4.3 Parzen Density Error Estimates for Non-Gaussians.

«<300



79

20 40 M  W 100 120 1400 I 2 a 4 * 6 7 0 0 10

CO

20 40 60 80 100 120 1400 I 2 3 4 6 6 7 6 6 10

c>)

Figure 4.4 Reduced Parzen Classifier Results for Non-Gaussians
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Figure 4.5 Reduced Parzen Classifier Results for Radar Data.



A flat performance is observed until the number of representatives is 
reduced to 3, suggesting that the underlying distributions are dominated by 
a Caussian-Iike mode. The introduction of a few more representatives 
improves performance slightly, as if the distributions also contained small 
clusters of outliers. Nearly-optimal results can be achieved with a very 
samll (= 7) number of representatives. This illustrates the reduced Parzen
classifier’s applicability in complicated, high-dimensional, real-life situations.

The proposed procedure selects the optimal kernel size h and the 
threshold, t, of the classifier. However, the selection of the kernel function 
and the kernel covariance matrix is not clearly understood. For Gaussian 
distributions, the Gaussian kernel with the sample covariance matrix works 
very well, provided that a large number of samples is used to estimate the 
covariance. Unfortunately, in non-Gaussian cases, the sample covariance 
matrix does not reflect the local Structure of the distribution, producing poor 
experimental results. Ifwe could estimate the local covariance accurately, 
the Parzen density estimate Would provide a good estimate of the Bayes 
error, and We could design the reduced Parzen classifier with a small number 
of representatives.

The last paragraph suggests an interesting byproduct. In the past, it 
has been believed that a nonparametric procedure needs a large number of 
samples, N, for high-dimensional data, in order to reliably estimate the 
Bayes error or reasonable upper and lower bounds. Any nonparametric 
operation with a large N requires a large amount of computer time, and the 
turn-around time normally becomes days or even weeks. The results of this 
chapter contradict these common beliefs, and suggest that we may need only 
a relatively small sample size after all.

For example, Fig. 4.5 reveals that r could be reduced to 100 from 720 
with an increase in the upper bound of the Bayes error from 22% to 25%. 
These 100 representatives are selected to optimize the criterion of (4.6). 
However, if r is a reasonably large number, such as 100, we may select them 
in a non-optimal way without significantly hurting the performance. For 
example, we may pick a sample every 3.6 degrees of the viewing angle. 
Previously, it was reported in [25] that the upper and lower bounds' of the 
Bayess error for 60-dimensional data were reliably estimated using N =  115 
and 230 from each class. The results were surprising at that time; But, 
that result is very consistent with our observations in this chapter. 
However, it should be pointed but that in [25] 5000 samples per class were 
used to estimate the covariance matrix which was used as the kernel



82

covariance of the Parzen density estimate.

4.4 Summary
An algorithm was proposed to select a subset of representative samples 

from a given data set which preserves the Parzen density estimate. If an 
approximate Bayes classifier is designed using these representatives, nearly 
optimal discrimination is achieved, even for a significantly reduced number 
of representatives. Experimental results were presented, covering a wide 
range of Gaussian and non-Gaussian test cases.
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CHAPTER 5
THE ACQUISITION PROBABILITY FOR A  MINIMUM  

DISTANCE ONE-CLASS CLASSIFIER

5.1 Introduction
v In many targeting scenarios, objects from different classes are detected 

and classified. As long as all of the classes are well-defined, standard 
Bayesian classification techniques work very well. However, in some cases, 
one class can be well-defined, while the other is not. For example, when we 
want to distinguish tanks (targets) from all other possible objects (non- 
targets), the non-targets may include trucks, automobiles and all kinds of 
other vehicles as well as trees and clutter discretes which are detected 
erroneously. Because of the wide variety, it is almost impossible to study 
the distributions of all possible non-targets before a classifier is designed.

One-class classification schemes have been proposed to solve this 
problem* Typically, they involve measuring the object’s distance from the 
target mean and applying a threshold to determine if it is or isn’t a target
[26]. This technique, however, greatly increases the classification error. The 
mapping from the original n-dimensional feature space to a one-dimensional 
distance space destroys valuable classification information which existed in 
the original feature space.

However, this large increase in error can be reduced if one uses ranking 
instead of thresholding. If many objects are detected in a field and the goal 
is to acquire that one object which is most target-like, rank the objects 
according to their distances from the target mean and select the closest one. 
The acquisition probability of this procedure was derived and studied by 
Parenti and Tung [27] and Novak [28]. In this chapter, we will point out 
that this probability is determined by the operating characteristics in the 
distance space as well as the numbers of targets and non-targets detected in 
the field. Also, we will show that, if an exact measure is not required, the 
probability of acquisition can be approximated from just one point of the 
operating characteristics.



5.2 Com putation of Acquisition Probability

Let X be an n-dimensional vector, representing an object in the feature 
space, and let us assume that Ic1 targets (Xljl--JXki) and k2 non-targets 
(Xk1+1,-,X kl+kJ are detected in a field. The acquisition procedure which will 
be studied in this chapter is:

(l) Compute the squared distance of Xi from the target’s expected 
vector (M1), normalized by the target covariance matrix (Jj1):

Zi =  -J (X 1- M 1)1  S f 1(Xi - M 1) (i— 1-2....K1-K1.) (5.1)

where T indicates the transpose of the vector. M1 and Jj1 are 
assumed to be known.

(2) Rank the Xi’s according to their Zi values. The Xi with the 
smallest z is selected as the target to be acquired.

The probability of acquiring any one of the L1 targets in the field by 
this procedure (the probability of correct classification) can be expressed as
[27]

P 11- / M l - U 1Jk ' - 1 ( I - U 2)kVdU1 (5 .2)
: '-v .0  ; - v

where
‘ ' . , • t .; . . ■, ' . v . /

ui(t) =  f  Pi(z)dz (i = i >2) (5-s)
0

and Pi(z) is the density function of z for class i, Classes I and 2 are assigned 
o the targets and the non-targets respectively. As is seen in (5.3), u;(t) is 

the probability of a sample from class i falling in 0 ^  z < t. Uj(t )  and u2(t) 
are known as the detection and false alarm probabilities in the z-space when 
the threshold is chosen at z=t .  In (5.2), du1? (I — u1)kl 1 and (I — u2)k" 
represent the probability of one of the L1 targets falling in t ^  z < t  + At, 
k1—I of the targets falling in t+A t Ss z <oc and all k2 non-targets falling in 
t+A t ^  z<oo. The product of these three gives the probability of the 
combined event. Since the acquisition of any one of the k1 targets is a 
correct classification, the probability is multiplied by L1. The integration is
taLen with respect to t from 0 to oc, that is, with respect to U1Trom 0 to I. 
The derivation of (5.2) is given in Appendix H.
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Rewriting ( l -U 1) as v and ( l — u2) as f(v), the acquisition probability 
becomes

I  k iv
o

ki—i fk'i(v)dA (5.4)

Eq. (5.4) indicates that Pa is a function of kj, k2 and f(v). f(v) is a function 
relating I-U 2 to I-U 1. Since U1 and u2 are the detection and false-alarrn 
probabilities in the z-space, f(v) represents the operating characteristics 
when each sample is classified in the z-space without ranking.

Fig. 5.1 shows typical operating characteristics from a series of 
experiments which will be described in the next section. Also shown are'Vk-I
plots of v 1 for k1=5 and 20, which were used in these experiments. 
f(v) = v represents the worst case in which the summation of the class I error 
and the class 2 error is always 100%, regardless of the operating point or the 
threshold value. That is, the distributions of class I and class 2 are 
identical. Therefore, if the distributions are classifiable through this ranking 
procedure, f(v)>v. Thus, vkl 1 is reasonably assumed to drop to zero more 
quickly than f^v), for realistic values of k, and k2. This means that only 
the rightmost part of the operating characteristics, where v is close to I, 
contributes to Pa. The other part of the operating characteristics will not 
affect P„,

Although (5.2) is the exact expression for Pa, it is desirable to have an 
approximation formula through which Pa can be estimated faster and which 
shows the effects of k1, k2 and f(v) more explicitly. Since only a small 
portion of f(v) affects Pa and f(v) is very flat in that portion, we tried to 
approximate f(v) in this region with a constant, a line and other simple 
constructs. We have found that a constant gives us the simplest and most 
robust approximation of Pa> although it is rather crude. Thus,

f(v) S  1 - 7  for vk,_1 0 (5.5)

1
Pa =  /  k ^ kl-1 (I -  7)k'Jdv = (I - 7)ks 

0

= I — k27 (5.6)

We have found empirically that 7  may be selected in the following manner:
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Figure 5.1 Operating Characteristics and v



(l) For a given kx, find V0 which satisfies V0 1 ==0.5.
. (2) Read the operating characteristics f(v) at v0. Then, f(v0) = 1 — 7 .

The experimental results of this approximation will be reported in the next 
section. —

It might seem that (5.6) is too sensitive to changes in the value of 7. 
However, a small change in 7  corresponds to a significant change in the 
operating characteristics. So, in practice, the variation of 7 stays very small 
and the approximation of (5.6) works well as reported in the next section.

_2

5.3 Experim ental Results
In order to test the validity of the proposed approximation and to find 

a AVay to select the value of 7 , a series of experiments were run.
For P j(z )  (i = 1,2) of (5.1), Gamma densities were chosen as 

whose expected value and variance are
bj+1 „ bj+1

m: = ——— and = — —
ci Ci2

(5.8)

The reasons for this selection are as follows:
1. For class I, if X is distributed Gaussianly with the expected vector

M1 and covariance matrix V̂1, z of (5.1) has the Gamma
2

distribution of (5.7) with In1 =  I and of =  —.
n

2. For class 2, even if X is distributed Gaussianly, z does iiot have an
exact Gamma density, since the expected vector, M2, differs from 
M1. However, our experiments show that the empirical 
distributions of z are very close visually to the Gamma
distributions for a wide variety of M2 and ^]2 values. The
empirical distribution of z was obtained from samples generated 
Gaussianly with given M? and Yj2 *n the X-space and converted to 
z by (5.1). The corresponding Gamma density function was
specified by the expected value and variance computed by the 
following equations:



m2 = — ( V Xi + £  Mi2) (5.9)
n i=l i=l

(2 v  Y +-I >: V ,: i (5-10)
n i=i i=i

where Xi and /Xi are obtained as the results of simultaneous
m

diagonalization. That is, a linear transformation A X is applied to 
X such that At ^ 1A = I and AtV2A = A. Xi and /q are the i-th 
components of the diagonal matrix A and the transformed vector 
At(M2- M 1), respectively. The derivations of (5.9) and (5.10) are 
given in the Appendix G.

In order to cover various cases for the class 2 distribution, two types of 
Gaussian distributions were chosen for the experiments. Note that the 
selection of I for does not hurt generality, since we can always linearly 
transform ^ 1 to I without changing the subsequent results. Throughout the 
experiments, it was assumed that a priori probabilities of classes I and 2 are 
equal. ex and C8 indicate the Bayes errors in the X- and z-spaces 
respectively. The Bayes error is the smallest error which can be obtained by 
the optimal classifier (the Bayes classifier) for given distributions [26].

1. Case I: V1 = YJ2 = I, M2-M 1=M, n=20 
The Bayes classifier in the X-space is linear in this case and ex is

determined by the length of the vector M, j[M|j. We selected jjMjJ’s to 
get I, 5, 10 and 20% for ex.

2. Case 2: ^ i =  >]2 = A, M2-M 1 = ^ i1, -  • ,M8]T, n =  8
A and M2 — M1 were chosen from Standard Data of [10], and their

components are X1=S-Il, X2 = 12.06, X3 = 0.12, X4 = 0.22, X5 = 1.49, 
X6 = 1.77, X7 =  0.35, X8 = 2.73 and /X1=  3.86, /X2 = 3.10, /x3 = 0.84,
//.4 = 0.84, /i5 = 1.64, jtz6 = 1.08, /V= 0.26, ./X8 = 0.01. This data is suitable 
to test the case where VJ1 and Yl2 are significantly different, since the 
X’s vary from 0.12 to 12.06. The Bayes classifier is quadratic for this 
case and the resulting ex is 1.9% [10]. In order to obtain various ex’s, 
we multiplied M2 — M1 by constants while keeping the covariances fixed. 

The experiments were carried out as follows:
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1. Compute Sm2 and of of (5.9) and (5.10) from given M2 and £]2.
2. We assumed that the class 2 distribution in the z-space is Gamma 

with m2 and <j|  computed in step I. The class I distribution is 
Gamma with Iii1 = I and af = 2/n. These two Gamnaa density 
functions are plotted in Fig. 5.2, (a) for Case I and (b) for Case 2 
respectively.

3. In Fig. 5.2, select the threshold t and compute U1 (t) and u2(t) by 
(5.3). Changing t from 0 to o o ,  plot the relationship between 1 —u2 
and I - U 1. The results are the operating characteristics as shown in

; Fig. 5.1. ;
4. Compute Pa of (5.4) and the approximated Pa of (5.6) for several 

values of /y. Table 5.1 shows the results when 7  is selected as
k — 1

I — f(v0) where V0 ' =0.5. Although the approximations are
somewhat crude, they predict the trend of Pa reasonably well.

A counter-intuitive result was observed in the Case 2 experiment. 
Intuitively, as Ic1 and k2 increase (i.e,, as the numbers of targets and non
targets detected increase), the probability of misacquisition should decrease 
since there are now more targets, the acquisition of any one of which is 
considered correct. This is shown clearly in Case I. However, in Case 2, the 
probability of misacquisition actually increases with an increase in Ic1 and 
k2. From (5.4), it should be apparent that an increase in kr makes the far 
rightmost position of the operating characteristics more dominant. Due to 
the construction of f(v), the rightmost position of the operating 
characteristic corresponds to the integration of the leftmost portion (the 
section closest to zero) of the probability duration of the distances. 
Ordinarily, one would expect p1(z)>p2(z) for small values of z (i.e., one 
would expect the probability of a target being very close to the target mean 
to be greater than the probability of a non-target being very close to the 
target mean). However, Fig. 5.2 shows that, in spite of the fact that 
m2> Tn1, p2(z)>Pi(z) for small values of z! Thus, increasing k1 compresses 
the range of significant distances from the target mean and amplifies the 
effect of the small region in which non-targets are more likely to be closer to 
the target mean than the targets themselves, increasing the probability of 
misacquisition. This result suggests that a careful examination is needed for 
the starting edges of the density functions in the z-space before deriving any 
conclusions by intuition.

!

■I
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Figure 5.2 (a) Case I with €x — 10%. (b) Case 2 with ex =  1.9%. (c) Blow
up of the left-most part of (b).
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Table 5.1 Results of Pa Approximation for Cases I and 2. 
(All numbers are percentages.)

Ici = It2 =  5 Ic1 =Ic2 =  20
I  / 1 ~ A ^ 2  I ,  I  TJ I  11 - A ^ 2eX eZ I -P a l - ( l - 7)k'2 k27 I - P a i - ( l - T ) ts k27

CASE I: 1.0 10.0 0.9 0.3 0.3 0.6 0.1 0.1
Ei = E 2 5.0 24.0 8.9 6.2 6.4 4.4 2.9 3.0

= I 10.0 32.0 17.6 14.8 15.8 14.9 8.4 8.7
20.0 42.0 34.2 35.5 42.0 32.0 26.9 31.1

CASE 2: 1.9 12.9 4.4 3.1 3.1 6.9 4.0 4.1
E i^ E 2 * 29.7 17.6 17.3 18.7 30.1 27.5 31.9

* 35.8 23.1 23.4 25.9 37.0 36.3 44.6

* - unknown error rates



At this point, we would like to point out the purpose of the ranking 
procedure. As Table 5.1 shows, the transformation of (5.1) from n- 
dimensional X to one dimensional z increases the classification error from ex 
to ez, if a simple threshold in the z-space is applied. Although the ranking 
procedure reduces ez to I — Pa, this reduction barely compensates the loss 
from ex to ez. Therefore, there is no need to use the proposed procedure, if 
the class 2 distribution is unimodal Gaussian as in the experiments. The 
conventional Bayes classifier in the X-Space gives the classification error ex. 
However, if the class 2 distribution consists of many Gaussians surrounding 
the class I distribution as shown in Fig. 5.3, we must use a one-class 
classifier such as z ^  t, accepting ez as the resulting error. In this case, tx 
merely serves as a measure of how far the neighboring Gaussians are apart 
from the class I center. As was discussed in the introduction, in many 
target classification scenarios, class 2 includes various objects such as trucks, 
automobiles and all kinds of other Vehicles as well as trees and clutter 
discretes, thus creating a distribution like the one in Fig. 5.3. Therefore, in 
this chapter, we point out how much the error can be reduced (from ez to 
I — Pa) by the ranking procedure, and discuss the effects of kr, k2, and the 
relative locations of the class 2 distributions.

5.4 Supplem entary Discussions

5.4.1 Combinatorial Results
The expression and approximation derived for Pa are only good for fixed 

kj and k2. More realistically, one is given the total number of objects 
detected in a field, k, and the a priori probability that a sample is a target, 
P1. In this case, Pa can be computed by

p .=  b  ( j ) P |( l - P 1J11-iP ji, k-i) / - ' . 'A t W lJ
i=o : /  ■ '

where Pa(i,k—i) is the acquisition probability for k} = i and k2 = k—i.

5.4.2 Effect of D istance-Space Mapping
Even though the ranking procedure outperforms conventional one-class 

classification techniques, it is still hampered by the error introduced by the 
mapping from the original n-dimensional feature space to the one- 
dimensional distance space. In order to see how much the error is increased,
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Figure 5.3 A Possible Class 2 Distribution with Multi-modal Gaussian.



the relationship between the Bayes errors in the X- and /,-spaces, ex and ez, 
was examined for Case I of the previous section. Results are presented in 
Fig. 5.4. Figure 5.4 was obtained as follows:

1. Fixn (10, 50, 10, 150, 200).
2. Change [jMjj in Case I experiment and obtain the corresponding ex in 

the X-space.
3. Compute u1(tD) and u2(t0) of (3) by numerical integration. P1(Z) and 

p2(z) are assumed to be Gamma densities with In1 = I and of = 2/n 
for P1(Z)' and m2 and of computed by (5.9) and (5.10) for p2(z). t0 is 
the value of z where P1(Z) and p2(z) cross. When P1(Z) and p2(z) 
cross at two values of z, as is the case for Case 2 experiment, choose 
the larger z.

4. ez = — (I-U 1(I0)) + — u2(t0), since the a priori probabilities for classes 
2 2

I and 2 are both assumed to equal I / 2.
As one would expect, ez becomes very large as n increases.

5.4.3 Trade-off Between Number o f Features and Original Error
Increasing the number of features, n, has both advantages and

disadvantages in our targeting scenario. It reduces ex in general, but
increases the information lost by mapping to the z-space. Thus, there 
should be some sort of trade-off between the number of features which would 
provide a reasonable error in the X-space and limit the amount of
information lost in the distance mapping. Fig. 5.5 shows the same
experimental results as Fig. 5.4, but this time ex vs. n is plotted for a fixed 
ez. Fig. 5.5 indicates that, in Order to achieve ez = 27% for example, we may 
have many choices such as ex = 10% with n = 10,; ex — 3% with n =  60 and so 
on. There is no reason to use an incredibly large number of features if the 
additional classifiability in the X-space cannot be transferred to the z-space. 
By keeping ez fixed, we Were able to see just how much error could be 
introduced in the X-space while maintaining £z and reducing the number of 
features used:.
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5.4.4 Extension to M ultiple-Target, M ultiple-Shot Case
So far, our scenarios have assumed that one and only one acquisition is 

attempted. However, in a different situation, where a acquisitions are 
attempted, we need to compute the probability that 0 targets are acquired 
in (V attempts (a > /J . In this case, the probability of acquisition equals the 
probability that, if the a  smallest distances are selected, 8 are targets and 
.01-/3 are non-targets. The probability is presented here without derivation:

i
I

it.
H f

k]—/i+1
/

k2 *33.IO:
kj—/?—Pl du!

C U -0  r u2 I\ J h-* 
: I

+  g(ki g(k2,a - 0 - l  ,u2)
k2—oc-\-0-I-I

I j l - u 2
(5.12)

where

g(k,#,u)
k
S U4(I-U) k-£

In [27], an approximation was developed which defines the multiple-target, 
multiple-shot acquisition probability as a function of Pa, k1( a and 8:

«/?

ki

ki
E

i=ar.

P f( I -P a )
kr-/? /3 <  cv, 8 ^ kj

(5.13)

P i ( I - P J ki 1 : 0 = « ,8 ^ k,

If our proposed approximation for Pa is used together with this expression, 
Pa.# can be estimated directly from the empirical operating characteristics.

5.5 Conclusions
Targeting scenarios, in which one class is known and well-defined and 

the other is unknown, point out the need for one-class classifiers. 
Conventional one-class classification techniques introduce a great deal of 
error by mapping the n-dimensional feature space into a one-dimensional 
distance space. An exact expression for the acquisition probability is
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dependent upon the empirical operating characteristics, the number of 
targets detected, and the number of other objects detected. An approximate 
expression is dependent on a single point of the operating characteristics, the 
number of targets detected, and the number of non-targets detected. 
Combinational techniques can be used when only the total number of objects 
detected is known. All of these results can be extended to include the 
multiple-target, multiple-shot case.



CHAPTER 8
SUMMARY AND RECOMMENDATIONS

■ • ' ' ' ■ •

6.1 Summary of Contributions
This thesis has examined several aspects of the classifier design and 

evaluation stages of the statistical pattern recognition system design process. 
Chapter 2 provides general and parametric expressions of the bias and 
variance of functions of estimated parameters. It was shown that when the 
dependence on the sample size can be separated from the distributions’ 
effects, an empirical method for estimating the asymptotic value of the 
function can be applied. Also, an explicit expression for the error of a given 
classifier when used on a given test distribution was derived. The bias 
expressions were then applied to this error function to generate bias 
expressions for the linear and quadratic classifier, characterizing the 
degradation in their performance due to the design conditions.

In Chapter 3, the tools developed in Chapter 2 were applied to 
classifiers under finite design and test conditions. A number of testing 
procedures were investigated and compared. This chapter provides a unified 
framework for the analysis of classifier evaluation techniques and guidelines 
for the development of new ones. In addition, an explicit expression for the 
effect of outliers in the design set Was presented.

The reduced Parzen classifier was developed in Chapter 4. This 
classifier combines the error estimation capabilities of the Parzen density 
estimate with the computational feasibility of parametric classifiers. It also 
shows that nonparametric techniques can be effective when implemented 
with a small number of carefully selected samples.

In Chapter 5, an approximation for the acquisition probability of a 
minimum-distance one-class classifier was presented. This provides insight 
into how the distance-space mapping of a one-class classifier degrades 
separability and how some of this can be recovered by applying a ranking 
procedure rather than a threshold.
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6.2 Recom m endations for Further Research

There are several topics related to this thesis which deserve further 
.study./-..-

1) The bias and variance expressions of Chapter 2 and Chapter 3 were 
only calculated for the I-I case. A symbolic or numerical tool must be 
developed in order to calculate these expressions for the general case.

2) Now that the degradation of classifier performance due to the design 
conditions has been characterized, perhaps the design process itself can 
be improved.

3) The Chapter 2 error bias expressions can be used to characterize the 
sensitivity of a classifier to changes in the measurement of a feature 
and to measure the separability provided by a feature.

4) The variance expression of (3.58) needs to be studied further in order to 
provide a more theoretical explanation of the trend in Fig. 3.2.

5) Chapters 2 and 3 suggest that a finite test set presents more difficulties 
than a finite design set. That is, it is impossible to characterize the 
degradation due to a finite test set without hypothesizing the true test 
distributions. We would like to develop an intelligent system which 
could manage these hypotheses, determine their likelihoods, evaluate 
classifiers within this hypothetical framework, and somehow find the 
optimal classifier for the most likely underlying distributions.

6) In Chapter 4, the reduced Parzen classifier design process employed the 
entropy as a sample selection criterion. Although this provided 
satisfactory results, other criteria, such as the mean-square error, need 
to be investigated.

7) Many important issues related to the Parzen density estimate have 
been investigated from density estimation and Bayes error estimation 
perspectives. While these have provided insight into the selection of the



kernel size and the threshold, the estimation of the kernel covariance 
remains a mystery. Perhaps this can be compensated for by allowing 
the locations of the representatives to move away from the sample 
points or by allowing the size of each individual kernel to vary.

8) The approximation presented in Chapter 5 was based on an intuitive 
understanding of the mechanics of the integral expression (5.4). While 
this has provided a great deal of insight, other approximation 
techniques, such as Gaussian quadrature, need to be investigated.
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A ppendixA
Computation of the Derivatives Of B1

In order to compute the derivatives of B1, we need the following formula 
for matrix differentiation [12].

- A -1 I(U)A-1 (Al)dA = _  a - i JA_ a - i 
Saij 9a jj

where a^ is the i,j component of a matrix A, and I(i,j) is a matrix with an i,j 
component of I and all other components equal to 0. The s,t component of 
(Al) is

" 9A_1
9aij -  [A_1]si[A-1Ijt (A2)

Applying (Al) repeatedly,

92A~1 a- i 9A
Saij 9ak̂

A -1ICi,j)A-1+A-1I(i,j)A-1̂ - A - 1

= A_1I(k / )A-1I(i,j)A-1+A-1I(i,j)A-1I (k / )A_1 (A3)

and

= [A 1Isk [A 1Ĵ i [A 1Jjt + [A 1IsitA 1JjkIA 1J^t (A4)
st

In the computation of the derivatives of B1 with respect to ot^j\ let
A = S = (I]i+ E 2 )/2andM=:]^2_Mi froni(2-7)-

From (2.17), (Al) and (A2)

S2A- 1
9aij9ak/
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-  ^ M tS - 1I(U)E-1MIo

I a n
A Ir—I «—

£  £  IS-1Isi[Er1IjimSnHS=It=I

I ^  2 ŝi 2 ĵt
■ 5, m  T r n w v

IniIiij

4(1+ \) (1+^j)
(AS)

where îj = 0 or I depending on Mj or i==j and Hii is the Tth component of
M. ■ ■

Also from (2.17), (A3) and (A4)

^2B1

daU daft) S
I ( i j ) I ( i j ) KU) „_iI(i , j )

Aj 2 2 ■ ■ ■ 2 2

-^ E E iS -1IsiiS-1IjiiS-1IjtmSmI10 S=It=I

I 24i 2 ĵi 2 ĵt
^ >.] S  TTT” TTv- TTT'nlsmt16 S=It=I l+ \ !+>4 1+Xj

0 for Mj (AS)

Likewise,
S2B1 4 TVZfT

<9ajW<9a|r) 8
Trt-i i(i)j) r t-i Ki4) m i  1 Kj >0 y, 1 KiJ) rti- 1 
Zj 2 2 Aj Mj 2 ■ 2

I 11 11 2 ŝi 2 ĵj 2 ît 2 ŝj 2^j 2̂ jt
!+Xi !+Xj H-Xi ^ +  l+Xj !+Xi I+Xj msmt
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I
4 (!+Xjf(H-Xj) (1+Xj)2(l+Xj) (AT)

Eqs. (A5), (A6) and (A7) are shown in (2.21), (2.22) and (2.23) respectively.
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Appendiic B
Com putation of the Derivatives of B2

From [12], if a matrix A is symmetric 
A"1’1' = A”dln|A[ _  . - I 1' A-i

dA

dln|A|
^aij

Using (Al),

a2in Ia  I _  dA -1.
dAd&M

A~H{k,e )A-1

or,

(92ln[A| 
^ajj <9a

I

A ‘I(k /!A  -  -  [A-1IikIA-1Ifj

Since B2 y in I'll J ln IxJlI J 11:1 from
S - . ( S i + S s ) A "

SB,

(2.17)

SB2:

1 2iV
4 H-Xi - T - S ii

I 2 îj _  J_^y_ 
4 I H-Xi 4 Xi

Eqs. (B5) and (B6) are shown in (2.27) and (2.28) respectively.
The second order derivatives of B2 are obtained by using (B4):

<92B,
dalpdaj-p -  \  +  -J-IEr-1IiiIS,"1Iii

(BI)

(B2)

(B3)

(B4)

and

(B5)

(Be)

(B7)
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T mT m -  -  I  T E - I i jE " 1!). + T lE -I ijISr- 1Iji

Therefore,

d2B2 _  _  I 2 2 _1
da^daj-p 8 I+Xj I +Xj 4

d2B2 _  _  I 2 2 J_J_ J_
. da^ da^  ~~ 8 IH-Xi I+Xj + 4 Xi Xj

a2B2
----TT----TT = 0 for i+jaajWaajW

Eqs. (B8) through (BH) are shown in (2.29) through (2.31).

(B8)

(BO)

(BlO)

(BH)
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Appendix C
The Derivatives of h for the Quadratic Classifier

The derivatives of h with respect to m/r) can be obtained easily from 
(2.48) as follows:

dh(X)
(M 1

ah (x)
aM2

E f 1(X-M2)

; a2h(x) _ , a2h(x) _
: aM f 2^1 ’ aM | ■

Using M1=O, M2=Mr E i= 1 and E 2= A of (2.7),

ah(x) _ ah(x) _ xi~mi
am /1) 1 ’ am /2) \

a2h(x) _ a2(x) I
am/ 1)2 ’ am/ 2)2 \

(Cl)

(C2)

(CS)

(C4)

In order to derive the derivatives with respect to O'//), we need the 
derivatives for matrix inversion as in Appendix A and the derivatives of the 
log-determinant as in Appendix B. They can be computed as follows:

ah(X)
aa /1)

.w,)Tv ,  'I0.j)>;, '(X -M1; +  -J -E r1Iii

J-X ,x; i J  - (C5)

ah(X)
da®

a2h (X) 
datpdaM

- |(X -M 2)T£ 2- 1I(iJ)Sr1(X-M!) - f  [Er'lij

1 (xj—mj)(xj—mj) _  2_h-
2 XjXj 2 Xj

‘ (X M1) E 1 1IiiO).':, 1K UiE1 1

(C6)
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da ^d a lp

a2h(X)
da-^daj-p

a2h(x)
daj-^daj-^

+ E r ^ o ^ E r ^ c ^ E f 1 (X-M1)

-  —isr^ iiiE r'ljj

n n j

E  EMji<ExsXt _
S = I t = I  Z

for i=£j (C7)

-  Y(X-M 2)1 E r 1I(Ij)Er1I(Ij)Er1

+ E r 1I(Ij)Er1I(Ij)E2"1 (X-M2)

+ Y l s r 1IiiE2"1];;

1 i
2 XiXj for 'I=#

I(X-M1)1, [sr'iOdisr’ia.'OEr-I

+ E r 1Ia 1O s r 1I(Xj)Er1

-  I l E r 1I ijE r1Iii

(X-M1)

(CS)

X E  E  (M j$txsxt +  S s i S l i Si t X sX t )  -
S = I t = I

| ( X i 2 +  Xj2) -  X { ij (CO)

-  Y(X-M 2)1 E r 'iW E r 'io .O E -I
2

+ E r 1Ia 1O s r 1I(I j)E r1 (X-M 2)
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I n n
t E E
L  S = I t = I

ŝi ĵj ît
Xi Xj Xi

(Xs-Ins)(Xt-In t)

+ Xj Xi Xj
(Xs- H is)(Xt- I n t) + I îj ĵi

2 Xi X:

1_
2

(Xi-H li)2 (Xj Hlj)2

X2Xj Xj2Xi
+ 1 $j

2 XjXj

Plugging all these equations into (2.47), we obtain (2.49).

(CIO)
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AppendixD
The Derivatives of h for the Linear Classifier

The derivatives of h with respect to can be obtained from (2.56) as 
follows:

j y x i
SM1 “  2  X +  S  M> (Dl)

'Mx ! V -1X - V - 1M SM2 - S  X S  M2 (D2)

S2Ii(X) v  , 
SM12 ^

(D3)

S2h(X)
dMf

(D4)

), M2=M, Yll=I, ^ 2=A and S=(I+A)/2,

dh(X) 2Xi <9h(X) 2(xj—mj)
dm/1) I+Xi ’ <9m/2) !+Xi

. -

(D5)

a2h(X) 2 d2h(X) 2
dm/ 1)2 I+Xi ’ dm/ 2)2 !+Xi

(D6)

The derivatives with respect to -Qt̂  are computed as follows:

= -  ~MT£]- 1I(i,j)^- 1(2X—M)
1J

I ^  ^  25si 2
- T S E4 s=u=i l + \  1+Xj

ms(2xt-m t)
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m j ( 2 X j — r t i j )

(1+X;)(l+Xj) (D7)

d \
S o $  dot® 8

-M t E -1I(M)E-1I(M)E-1

+ E -1I(M)E-1I(M)E"1 (2X-M)

I n H 2 Ssi 2(5:: 2 Xjf
~  E E —T-  --- 7------ ms(2xt-
4 s= i t = i l + \  1+Xj I + X j M "m t )

for i/j (D8)

d2h
d a ^ d a ^  8

I-Mt S - 1I(U )S- 1IO1OE-1

+ S -1i(i.0S-1i(i.i)E-1 (2X-M)

i n n
x E E i
*  S = I t = I

2(5si 2 Xjj 2Xit

I H-Xj I+Xj I+Xj

+ 2 ŝj 2 *5» 2(5jt
I+Xj I +Xj I+Xj ms(2xt-m t)

X n i ( 2 X j - T X i j )  ■+■ m j ( 2 X j — n i j )  

"T(1+ \)2(1+Xj) (1+Xj)2(l+Xj)
(D9)

Plugging all these results into (2.47), we obtain (2.59).
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Appendix E 
Proof of e >  e

The first step is to prove that the first-order variation of (3.19) is zero 
regardless of Ah(X). From (3.21), the first-order variation of (3.19) is

+  OO

— /  J  Ah(X)e-’a'h(x^p(X)dwdX = /Ah(X)<S(h(X))p(X)dX
271 S -OO S

= J  Ah(X)p(X)dX
h (X)=O

= O (El)

The last equality comes from the fact that p(X) = O at h(X) = O if h(X) is 
the Bayes classifier of P1P1(X) and P2P2(X).

The second step involves showing that the second-order variation of
(3.19) is positive regardless of Ah(X). Again from (3.21)

^ A h 2(X)ejc+ x>p(X)dojdX = ± JA h2( X ) - ^ -  p(X)dX (E2)

In the region very close to h(X) =  0, d<5(h)/dh >  0 and p(X) >  0 for h <  0 , 
while d< (̂h)/dh <  0 and p(X) <  0 for h >  0. Since Ah2(X) >  0 regardless of 
Ah(X), (E2) is always positive.
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Appendix F 
Derivation o f Var {e}

Keeping up to the second-order terms of Ah,
e jW,f,(X)eja-ah(Y) =  ejc* ,h(X)ej^^b(Y)ej^ ,^h(X)eJ-CtiA

S ei" |h®ei“’*(Y)[l + JW1ACi(X)+ Iw2Af2(Y) -  W1OJ2Ah(X)Ah(Y)I (Fl)

where
• •• ■

Afi(X) =  Ah(X) +  ^ A h 2(X)

Thus, the first line of (3.22) can be expanded to
) + 0 0  jw,h(X) i +OC ju.’._>h(Y)

Vard{e} s  J f  ----- p(X)d^dX • — /  f  p(Y)du;2dY

(F2)

Sx-OO J W1 

-Hoc

^ 7r Sv-OO J W2

- r w  +oo j W2Ii(Y)

I —  J I E ^ A f t tX j^ ^ W d W id X  • POOdWidY
S x- O O

w w +  oo M w1Ii (X)
+ — f f - ----  ~

^i-O O  M

27r Sy-OO M

+  OO

P(X).I ,,.IX • j - J  J KdI Ac2(Y)Ie' jlivV(Y)1I WlY

+  00+00

+ M - J J  }  J Ed{Ah(X)Ah(Y)}eju'lh(X)eja'-ll(Y)p(X)p(Y)da;1d^2dXdY
47T  SjS-O C-CC ...

(■ ! f (F3)

 ̂■
The first line of (F3) is (e— )2 from (4), and the second and third lines are

2

each (e——)Si from (3.21). Furthermore, the summation of the first, second, 
■ 2

third and fifth lines is (e—^-)2 +  2( e -^ )S i  -  (ê —)2 =  -S e 2 whereL ■ 2 L
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e — e + ZXe. Since ZXe is proportional to Ed{Ah(X) + -^-Ah2(X)) (~  l / N  )

from (3.21), ZXe2 is proportional to I /Jf 2 and can be neglected. Thus, only 
the fourth line remains uncancelled, which is the second line of (3.22).



A ppendixG
Derivation of Expressions for m2 and <x|

Let us assume that ^ 1 =  I, )T)2 = > M1=O, and M2 = M = [/Z1,
These assumptions do not hurt any generality. First, z of (5.1) 
modified as

Z = - X t X = -  (X -M  + M)t(X -M +M ) 
n n

= - (X - M f ( X - M )  + - M t(X-M ) + M-Ml
n n n

The expected value of z for class 2 (w2) is

m2 =  Elzj oj2} = -  E{(X—M)T (X—M)j u;2} + -  Mt E{(X -  M) j to2) + 
n n

I  r / i r   ̂ r \ / ^ - r  i, * \T  I V * M t M  I  J A , M T M— — t r E l(X -M )(X -M )1 OJ2) +  ——— = — tr A + —---- 1
n n n n

= 7 ( S \  + S r t 2)
” i : i

Likewise, the second order moment of z for W 2 is

E{z21 w,} =  ' K|(X-M)T(X M)(X-M)t(X~M |IU4J
n ■

+ Mt E((X-M)(X-M)t Igj2) M

+  -V(M tM)2 +  -VtE{(X-M)t(X-M) I oj2)  Mt M
n ' n

can be

(Gl)

Mt M
n

(G2)
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_1_
n i i>j

+ -V S  V i2 +  j ^ (E ft2)2n i n j

+ - ( E xO(Srf)
n i i

(G3)

where X is assumed to be Gaussian. Thus, the variance of z for c j 2 . is

of =  E(Z2 Iw2)-IXi22 2 E  Xi2+ 4 S Xi^i2
i . i

(G4)
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Appendix H
Derivation of the Acquisition Probability of (5.2)

The acquisition probability of (5.2) is derived as follows:
Pa = Pr (the smallest z is from class l}

OO

= y] Pr{A; and Bi and Ci) 
i=i

CO

= E  Pr(Aj) PrfBi | Ai) Pr(C: | AilBi) (HI)
i=l

where Ai = Ino sample in 0 ^  z< iA t), Bi = Ione class I sample is. 
in IAt ^  z <  (i+l) At) and Ci = Ik1- I  class I samples
and k2 class 2 samples in (i+l)At ^  z <oo). PrlAi), PrlBjjAi) and 
P r lc i j Ai,Bi) may be computed as follows:

Pr(A1) = (k„ )u » (iA t)(l-u 1(iAt))k' ( 0!)u20(i& t)(l-u J(iAt))kl

(l-u ,(iA t))k' ( I -U 2(IAt)Jk" (H2)

P r(B 1IA 1) = ( J )
Au1(IAt) I " Au1 (i At)

I - U 1(JAt) I - U 1(IAt)

ki—I

k2
x ( 0 )

Au2(iAt) O Au2(iAt) k
l - u 2(iAt)\ / I — u2(iAt)\ . /

— k
Au1(IAt)

1 I - U 1(IAt)

Pr(C l IAllBl) =  I

(HS)

(H4)

where Auj(iAt) is the probability of a class j sample filling in



iAt ^  z <  (H-I)At. The approximation of (H3) is obtained by making 
Auj ► 0. Substituting (H2), (H3) and (H4) into (Hi) and letting Auj—>0, we 
can obtain

Pa =  /  ki(l -  -  u2)k- duj (HS)
0 .

The summation of (Hi) is taken by changing t from 0 to oc. Since Ui(O) =  0 
and Ui(CX)) = I and ui(t)’s are the monotonic functions of t, the integration is 
taken with respect to U1 from 0  to I.
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