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A bstract: An algorithm can be modeled as an index set and a set of dependence vectors. Each index vec­
tor in the index set indexes a computation of the algorithm. If the execution of a computation depends on 
the execution of another computation, then this dependency is represented as the difference between the 
index vectors of the computations. The dependence matrix corresponds to a matrix where each column is a 
dependence vector. An independent partition of the index set is such that there are no dependencies 
between computations that belong to different blocks of the partition. This report considers uniform 
dependence algorithms with any arbitrary kind of index set and proposes two very simple methods to find 
independent partitions of the index set. Each method has advantages over the other one for certain kind 
of application, and they both outperform previously proposed approaches in terms of computational com­
plexity and/or optimality. Also, lower bounds and upper bounds of the cardinality of the maximal 
independent partitions are given. For some algorithms it is shown that the cardinality of the maximal 
partition is equal to the greatest common divisor of some subdeterminants of the dependence matrix. In 
an MIMD/multiple systolic array computation environment, if different blocks of ail independent parti­
tion are assigned to different processors/arrays, the communications between processors/arrays will be 
minimized to zero. This is significant because the communications usually dominate the overhead in 
MIMD machines. Some issues of mapping partitioned algorithms into MIMD/systolic systems are 
addressed. Based on the theory of partitioning, a new method is proposed to test if a system of linear 
Diophantine equations has integer solutions.

This research was supported in part by the National Science Foundation under Grant 
DCl-8419745 and in part by the Innovative Science and Technology Office of the Strategic 
Defense Initiative Organization and was administered through the Office of Naval 
Research under contract No. 00014-85-k-0588.
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I. INTRODUCTION
Parallel processing holds the potential for computationaTspeeds that surpass by far those achievable 

by technological advances in sequential computers. This potential is predicated on two often conflicting 
assumptions, namely* that many computations can take place concurrently and that the time spent in 
data exchanges between these computations is small. In order to meet these assumptions, algorithms 
and/or programs must be partitioned into computational blocks that can execute in parallel and have 
communication requirements efficiently supported by the target parallel computer. Ideally, it may be 
desirable to identify, if at all possible, the independent computational blocks of a, program, i.e., those that 
require no data communication between them. This report describes two practical and computationally 
inexpensive approaches to Achieve this goal. It is based on a sound mathematical framework which yields 
optimal results for a meaningful class of algorithms and they outperform approaches proposed in extant

■ work :-: V ' • ■ -V - = ^ -  --" '■■■''•''v ■ r= - ; vvyuiA..
Theidentification of a possible partition of an algorithm or program can be done by the user, by the 

analysis phase of an optimizing compiler or by the machine at run time [GaPe85],. The techniques'- pro­
posed in thisreport, while usable by a patient and dedicated programmer,'arebest suited for an optimiz­
ing compiler. They address the specific problem ofidentifying independent partitions of an algorithm with 
goals that are similar to those of the early works of D.A. Padua [Pad79] and J. Peir, D. Gajski and R. 
Cytron [Pei86], [PeGa86], [PeCy87]. The focus of these efforts is on the' optimiiatioh;;o:f  programs. consist­
ing mainly of nested loops with regular data dependencies. The techniques pfbpbsed in those papers are 
intended to complement many other tools for the analysis and restructuring of sequential programs for 
execution in multiprocessing machines [Baetal79], [PaetalSO],. [Wol82 j, [Kuetal84], [Poetal86]. A related 
potential application of partitioning techniques is in the design of algorithmically specialized concurrent 
VLSI architectures [M0F086].

In this report, nested loop programs with regular data dependencies are modeled as uniform depen­
dence algorithms Which resemble the uniform recurrence equations considered in [Kaetal67] and the linear 
recurrences of [PeCy87]. Data dependencies are represented as dependence vectors (with as many entries 
as the number of nested loops) that describe the distance between dependent computations in terms of 
loop indices ( the vectors are called dependence distance vectors in [PeCy87] and are also considered in 
[Wol82] and [Cyt86] in a complemented form ). Dependence vectors are collected in a matrix, the depen- 
dence matrix, which is used iii this report and in [Pad79], [Pei86] and [PeCy87] to identify independent 
partitions as briefly described in the following paragraphs.

The greatest common divisor method \Pa.d79 ] , [PeCy87] considers, for each row of the dependence 
matrix; the greatest common divisor of the entries in that row. The resulting greatest common divisors 
are used to partition the iteration space of the program (also called the index set) and the cardinality of 
the resulting partition is the product of the greatest common divisors. In addition, an "alignment" method 
is provided in [Pad79] which allows in some cases the transformation of dependencies so that the value of 
the greatest common divisors is increased. For a given set of dependencies, this approach yields a unique 
independent partition which is not necessarily optimal, In some cases, when all of the greatest common 
divisors equal unity, the number of the blocks in the partition is one, i.e., the whole program.

In the minimum distance method [Pei86], [PeCy87], the dependence matrix is transformed into an 
upper triangular matrix which is then used to identify an independent partition. For some algorithms the 
cardinality of the partition is the product of the diagonal elements of the upper triangular matrix. This 
approach yields partitions which are better than those obtained through the greatest common divisor 
method. However, the computational complexity of this method is high (though affordable according to 
[PeCy87]) and the optimality is not guaranteed.

In the first method, called Smith normal form approach, proposed in this report, a matrix is used to 
find independent partitions of uniform dependence algorithms and the block a given index vector belongs 
to can be identified by the product of the matrix with the index vector. In the second method,called par­
titioning vector approach, proposed in this report, a set of vectors defined later in Section 4 is derived 
from the dependence matrix. These vectors are used to find independent partitions of uniform dependence 
algorithms with any arbitrary kind of index set. The block to which a given index point belongs to can be 
identified by simply computing the dot products of each of the vectors by the index point. Both methods 
provide lower bound and upper bound on the cardinality of the resulting partitions. The first method



yields maximal partitions for any algorithms with uniform dependence structure and the second method 
gives maximal partitions for a meaningful class of algorithms. Comparisons of this two methods proposed 
in this report and the minimum distance method are provided in Section 6.

The organization of this report is as follows. Section 2 presents basic definitions and notation. Sec­
tion 3 describes the Smith normal form apprpach where the notion of Smith normal form is introduced 
and the procedure of finding independent partitions by the Smith hbrrtial form approach is presented. 
Sections 4 and 5 present the partitioning vector approach. In Section 4, partitipning and separating Vec­
tors are defined and three types of independent algorithm partition by these vectors are derived. In Sec­
tion 5, a ̂ procedure finding an independent algorithm partition by the partitioning vectors is presented 
and sufficient conditions for the resulting partition to be maximal are discussed. Section 6 compares the 
methods proposed Iri this report and the minimum distance method. Section 7 discusses some implementa­
tion issues of mapping':the"' 'paftitioried-'algorithms into MIMD/systOlic arrays. Finally, Section 8 con-, 
eludes this report and points out some.- future work. Based on the partitioning vector approach, necessary 
arid sufficient conditions are derived for a system of linear Diophantine equations to have an integer solu­
tion which is presented in Appendix I.

2 . BASIC DEFINITIONS AND N OTATION
Throughout this riejport,set&y matrices and row vectors are denoted by capital letters, column vectors 

are represented by lower case symbols with an overbar and scalars correspond to lower case letters; The 
transposes of a vector v and a matrix M are denoted v 1 and M 1 , respectively. The symbol E1 denotes the 
row vector whose entries are all zeros except that the ith entry is equal to unity. The vector I  (or Oj 
denotes the row vector or column vector whose entries are all ones (or zeroes). The dimensions of I arid 6 
arid whether they denote row dr columin vectors are implied by the context in which they are used. The 
vector space spanned by a set of vectors S = Iv 1, V2, ;yk} is denoted Splv1, V2, ..., vk:} == &p{S}and .'its'' 
dimension (i.e., the number of linearly independent vectors in S) is denoted dim{S}. The symbol /  denotes 
the identity matrix. The rank of a matrix A is denoted rank(A) and the determinant of matrix A is 
represented by det A. The set of rational numbers, the real space and the set of integers are denoted Qj 
IR and Z, respectively. The set of non-negative integers and the set of positive integers are denoted N  
and iV+, respectively, The empty set is denoted 0 and the notation A ^ - B denotes the set 
{x:x EA^x^B}. The notation |S J means the cardinality of set S and \a [ represents the absolute value 
of scalar a. Let a, b, c, dEZ arid a> 0, the notation a J b m eans"a divides b"> i.e., b =f c a, and 
b(mod a)=d if and only if b = d 4-ca where 0<d<a. As defined in [Kaetal67], a function f(xj, x2, ..., xin) is 
■strictly-dependent; on:'x;':if for any arbitrary fixed values bj assigned to Xj, j '^ i ,  ^ b 1, .,., bi.j, Xjf bî ,  ...̂  
bm) is not a constant function. As a final remark, if the element a belongs to a set S, the notation a E S is 
used and this notation is "abused" to indicate also that a column vector mj (or a row vector Mi) is a 
column (row) of a matrix M, i.e., mjgM  (M1GM) means mj (M1) is a column (row) vector of hiatrix M.

The algorithms of interest in this report are the so-called uniform dependence algorithms defined as 
follows. ■ '";v;;

Definition 2,1 (Uniform dependence algorithm ) A uniform dependence algorithm is an algorithm 
thatcan bedescribed byanequation of the form

v O H  fJ ( v ( J “  di )r v ( J ~ M r  > v ( j -  dm ) ) (2.1)

where_
(1) j E J G ZnJs  an index point, J is the index set of the algorithm and n G N+ is the number of com-

■ ponents of j; <-E
(2) fj is the computation indexed by j, i.e., a single-valued function computed ” at point j in a single 

unit of time and strictly dependent on each of its arguments;
• • v >;.(• j )' is. the:value computed ' at jM, i.e. the result of computing the right hand side of (2.1) and 

(4) dj G Z11, i-^ I, f..Lrii, m G N a Te dependence vectors, also called dependencies,which are constant (i.e, 
independent of j G J); the matrix D =Jd1, ..., dm] is called the dependence matrix and rank (D)- < 
min { n, m } is denoted by m*.
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The class of uniform dependence algorithms is a simple extension of the class of computations 
described by uniform recurrence equations [Kaetal67]. The main difference is that uniform dependence 
algorithms allow for different functions to be computed (in a unit of time) at different points of the index 
set. From a practical viewpoint, uniform dependence algorithms can be easily related to programs where
(l) a single statement appears in the body of a multiply nested loop arid (2) the indices of the variable in 
the left hand side of the statement differ by a constant from the corresponding indices in all references to 
the same yariabie-in.The.-,right-hand side. Alternative computations can occur in each iteration as a result 
of a single conditional statement as long as data dependencies do not change. Nested loop programs with 
multiple statements can also use the techniques of this report together with ihe alignment method dis­
cussed in [Pad79] and [PeCy87]. For the purpose of this report, only structural information of the algo­
rithm, Le., the index set J and the dependence matrix D, is needed. Other information such as what com­
putations occur at different points and where and when input/output of variables takes place can be 
ignored. Therefore, a uniform dependence algorithm with index set J and dependence matrix D is hereori 
characterized sjmply by the pair (J, D). Also, as in Definition 2,1, the letters n ,m andm * always denote 
the dimension of points in J, the number of dependence vectors and the rank of the dependence matrix D, 
respectively. ^

Definition 2.2 (Algorithm dependence graph and connectivity) : The dependence graphof an 
algorithm (J, D) is the nondhected graph (J, E) where J is the set of nodes_of_the graph and E =  {(j1, j) : j 
- j ,=  d| or j; — j—d^ dj G D, jV j G JJJs the. set.'of edges. ̂ Twp- index points j, j1 aje connected if there exist 
index points J 1, such that (j, Ji), (j,, j2), J,., ji), (ji, j#) GE.

Defihition 2.3 (Independent p artition , m aximal independent partition  ahd partitionabillty): 
Given an algorithm (J, D) and the corresponding dependence graph (J, E), let IP.— (J i, ..., Jq), q E N+, be 
a partition of J. If for any arbitrary points J1 E Jj and j2 E J i, I and 0< i, l<q, (J1, jo) $ E, then ^P is an 
independent partition of the algorithm (J, D). The sets Ji, i—I, q, are called 6/ocfe of partition For
an independent partition^ P i if any two arbitrary points j, j' E J1, i= l ;, ..., q, are connected in the depen­
dence graph, then is the maximal independent partition of (J, D) and is denoted T̂ qiax. The cardinality 
of the maximal independent partition j rPmvix | is referred to as the partitionabiliiy of the algorithm (J, DJ

Informally, an independent partition of the index set J is such that there are no dependencies 
between computations which belong to different blocks of the partition. In graph theoretical terms, each 
block of an independent partition of (J, D) corresponds to a component of its dependence graph (J, E),

Generally speaking, the shape and the size of the index set influence the partitionability of the algo­
rithm because of boundary conditions. Consider two algorithms (J, D) and (J-, D#) such that D*=D and 
J1=JLJIj), Le., they differ only in the size of the index sets. The corresponding dependence graphs (J, E) 
and (J*, E;) can be such that I lrJ2GJ are not connected in -(Jr E)- but are connected in (J-, E*) because it is 
possible that E1=EUI(jrji), (j, jo)}. In other words, jj and j2 can belong to different blocks of the maximal 
independent partition of (J, D) but belong to the same block of the maximal independent partition of 
(J#, D̂ ). The following example illustrates this concept. .

Exam ple 2 ,1 : Consider algorithms (j, D) and (J;, D), where 

3 O
-3 2 . J=IUi: P '< Ji, j‘2;< S,' S E N+}

- I  I O
J'={j: O - I O
' -I O S

, SE

Figure 2.1 shows the index sets J and J' where s=  8. These two algorithms have the same dependence



matrix but different index sets. In J', point [l, l ]1 is not connected to any other points in J' because 
[l, 1]1 dr dj, i=  1,2, do not belong to J;. However, in J it is connected to [4, l ]1 G J;. End of example.

The dependence of the partitionability of an algorithm (J, D) on the shape and size of its index set J 
is a complicated issue and Has practical implications. For example, in many programs, the loop bounds 
are not known at compile time and partitions must be identified which are independent of the size and 
shape of the index set and based solely on data dependencies. To concentrate on the relationship between 
the structure of the dependence vectors* and the partitionability of the algorithm, the following concepts 
are introduced. .. . *'

Definition 2.4 (Pseudo-connectivity):; Given an algorithm (J, D), two points G J are psedo- 
connecied if there exists‘a vector X (EZm such that J=^jfH-D X.

As an example of pseudo-connectivity, in 'algorithm'. (T, D) of Example 2.1, point [1, 1]1 is pseudo- 
connected to [4, Op through point [1,3] 1 G (J -J J .

Definition 2*5 (Pseudo-independent partition , maximal pseudo-independent partition  and 
pseudo-partitionability): Given an algorithm (J, D)*let P=={Ji, ..., J^}t>eapartition of J. If any two 
arbitrary pointsJ 1 G JjGF and j .2 G JjGPj i # I, are not pseudo-connected, then P is a pseudo-independent^ 
partition of the algorithm (J, D). IfP  is a pseudo-independent partition and any two arbitrary points j, j# 
G q, are pseudo-connected, Then P is the rna^ima/ pscudo-indcpcndcnt parh’fipn of (J, D) and is
denoted Pniax. The cardinality of the maximal pseudo-independent partition | Pmax | is referred to as the 
pseudo-partitionabiliiy of the the algorithm (J, D).

In many practical cases, e.g., when "while” loops are present in a program, it is also convenient to 
consider algorithms whose index sets are arbitrarily large along one or more dimensions. The general case, 
i.e., when this applies to all dimensions, is captured in the following definition and i$ also considered in 
this report.

Definition 2.6 (Semi-infinite index set): An index set J is semi-infinite if'it takes the following fo^m: 

j  = {j = [ j i> L  ]T; 0 < ji < OO, i = I, n} (2.2)

Example 2.2 Consider the algorithm (J, D); where D =
2 —3 
-I 2 and J= N 2 is semi-infinite, i.e.,

J — { j = [J ijJ j ]T: 0 < jj, jo < oo). The index set J is partially shown in Figure 2.2, The maximal parti- 
tion A k1X -IJ1, Jjj ; J,, J 1) where J ,= {[0, 0]T}, Jo={[l,0]T}, J;(={[0, 1]T, [2, 0]'1'} and J4̂

{ j: j G ( J — U Jj )}• Points j,-- [0, 0]1 and Ji.= [0, l ]1 are not actually connected in the dependence graph of 
■V. • # i==l •/ ~ '' . _ _ . :v
the algorithm. However, they are pseud by Definition 2.4 since J2==ji -F D X, X= [3,2]T.
Intuitively, J 1 and J2 are connected through points [2, —l]T, [4, — 2]T, [6, —-3]T and [3, —l]T which are not in
J. rP ' ^  I? not a pseudo-independent partition. Since det D =I, equation D X = J — j1 always has an integer 
solution for X. So any two arbitrary points in J are pseudo-connected to each other. This iriiplies that 
there is only one pseudo-independent partition P= (J}  which is also the maximal pseudo-independent par­
tition. End of example.

At this point, some comments are in order. First, by Definitions 2.3 and 2.5, a pseudo-independent 
partition is also an independent partition regardless of the shape and size of the index set. However, an 
independent partition is not necessarily a pseudorindependent partition. This is due to the fact that J1, J 2 
G J are pseudo-connected if they are connected and the reverse is not necessarily true. Secondly, for prac­
tical purposes, it is sufficient and more efficient to identify pseudo-independent partitions instead of 
independent partitions for the reasons explained next. Blocks of independent partitions that are not



blocks of a pseudo-independent partition and contain only a few index points (hereon called boundary 
blocks) always occur at or near the boundaries of an index set. This can be shown for the general case 
when J is semi-infinite. In fact, according to Lemma 3 in [Kaetal67], there exists always a point 
P = Ip1, P̂ i ..., pn]T € J such that for any arbitrary points J =  [L,J 2, ..., j„]1 Q J and j'% [j',,J 12, 'j'n]1 G
J beyond p G J (i.e;,J i > Pi andJ'j > pj, 1 = I, ..., n), j and J1 are connected in the dependence graph if and 
only if they are pseudo-connected. Boundary blocks are typically such that their individual cardinalities 
are very small in relation to the sizes of the algorithm and pseudo-independent blocks. As a consequence, 
little additional speed-up can result from executing boundary blocks concurrently with other blocks. 
Moreover, assigning small boundary blocks and other large pseudo-independent blocks to different proces­
sors of a multiprocessor can cause a non-balanced load distribution and inefficient system operation. In 
addition, as pointed out before, when index sets are known only at run time, it is not possible to deter­
mine the boundary blocks^ Finally, many algorithms are such that they have' the. ?ame; .partitionability 
and pseudo- partitionability. F or all of the, above reasons j this report considers hereon only the problem 
of identifying pseudo-independent partitions of an algorithm.

3. SMITH NORMAL FORM APPROACH
This section discussed an approach, called Smith normal form approach, of finding maximal 

pseudo-independent partitions where the Smith normal form (abbreviated SNF) of the dependence matrix 
D is used. First, a theorem about the SNF is restated and followed by the definitions of the partitioning 
matrix aild the displacement vector. These concepts are used then to define a partition of index set J 
which is also the maximal pseudo-independent partition of the algorithm. Then a procedure is presented 
which constructs the maximal pseudo-independent partition of a given algorithm. Complexity of the pro­
cedure is also discussed.

Theorem  3.1 (Sm ith norm al form) [Sch86, pp. 50]: Given a matrix DGZn̂ ,  there exist two unimodu- 
Iar (A non-singular matrix is unimodular if its elements are integral and its determinant is ± 1) matrices 
UGZn 11 and VGZm such that

S1 0 . . .  0 0 . . .  0

0 S2 ... 0 0 ... 0

• • - • • e • • • « «©•■ •••  e«o

UDV=S= 0 0 . . .  Sm/." 0 . . .  0

0 0 . . .  0 0 . . .  0

0  0 ... 0 0 ... 0

S is called the Smith normal form (abbreviated SNF) of matrix D, S is unique, S1, ..., sm/ are positive
-..V--. . . ■ '■ ■. k - ' : ' /■ . ' • - '■ . . . ' . . . . . .  V  '

integers, S1Js2 |... |smy JJsi, k =  I, ..., in',is the greatest common divisor of subdeterminants of order k of

the dependence matrix D and m# is the rank of the dependence matrix. D. Q-

More details and explanations about SNF can be found in [Sch86, pp, 50] and [VeFr2l].

Example 3.1: algorithm .(J,-D) studied in [PeCy87]. D=

l<ji<16? i= l, 2,3}. Thematrices U,: S=SNF and V is as follows.

1 2  0 
- 2  4 4 
4 -1  2:

and J=([j1, j 2l js]T:

I 0 0 1 0  0 '• Y ' I - 2  12
U= 2 - I  - I , S= 0 I 0 , V-:. 0 1 6

-14  9 8 0 0 52 0 0 I

Clearly UDV=S and U and V are unimodular. End of example.



Definition 3.1 (Partitioning m a trix  and displacement vector): Given an algorithm (J, D), the 
matrix U such that UDV==S is the SNF of D is called partitioning matrix of (Ĵ  D). Let s,, ..., sm/ be the 
non-zero diagonal elements of S, then vector S=Js1, ..., sm/, oo, oo]1 G(N+)" is called displacement vector 
of (J, D). . V ',r

Definition 3.2 (U-partition): Let U be a partitioning matrix of algorithm (J, D), the partition of index 
set J Pu==IJyi, J - }r where YiGZ1V Jf=I, ..., t, is tailed the U-partition of algorithm (J, D) if

J7 = {j:Uj(mod's>-Y iJeJJi- " ;

Example 3^2:Considerthe algorithm of Example 3.1. U is the partitioning matrix;_s==[l, I, 52]1 is the 
displacement vector; P u= { ;J|q,o.5^ ^ e  U-partition where J|() () i| i =={j: Uj(mod s)-[0 , 0, i]T}, 
i==b, ..., 51. End of example.

It is clear that Pu is a partition of the index set J because for each jGJ, Uj(mod s) is unique. Actu­
ally, P1I is an independent partition. To show the independence of U-partition, the following lemma is 
introduced first and followed by a theorem.

Lemma 3.1: Given algorithm (J, D), let J 1J 2GJ and s be the displacement vector, then J 1 and j2 are 
pseudo-connected if and only if Uj[(mod s)==Uj2(mod s).

Proof (=>): Let’s assume that jj_and jo are pseudo-connected, then, by Definition 2.4, there exists an 
integer vector XGZg such that DX=J1̂ j2. Let VGZm n- be such that UDV=S is the SNF of matrix^D. 
Then SV- 1X=UQ1-Jo). V is unimodular implies that V j1 is also an integerjmatrix and therefore, V-1X is 
an integer vector. So, U ( j j 2)(modj)=SV“1X(mod s)=0, i.e., Uj1 (mod_s)=Uj2(mod s).

(=>): Let’s assume that JJj! (mod_s)=Uj2(mod i), i.e., Ufo-jo)==- IyiS1, X2So1 ym/sn/, 0, ..., 0]T 
where J ll 1=1, ..., m', are integers. Let y ={yu y2, ..., ym̂, .0, ..., 0]TGZm, then U (jj-j2)=Sy. This implies 
that J 1 - J 2=U- 1UDVy, or jj—j2=DVy. V is integral implies that Vy is integral. So, there exists an integral 
vector X=FV̂  such that j j—jo^DX which meansJ 1 and J2 are pseudo-connected, □

Theorem  3.2: Given an algorithm (J, D), let Ui be the ith row of the partitioning matrix U, i= l ,  ..., n, 
îu=max{Ujj: jGJ}, l̂l- min{Ug: jGJ} and Xj=<5iu—̂ j+l, i= m ;+ l, ..., n. The following statements are 

true: ■ '- 'V --rV.,..' • .
(1) The U-partition is the maximal pseudo-independent pa;rtitioii, i.e., P u= Pmax.

: m' n n/' n V'''- •
(2) The pseudo-partitiohability is bounded above by J j s k Xi, i.e., |P mrix j = JJsk ] [ Xi.

- ' - k = l i—in '-fl k = l i= m '+ l

Proof: Let s be the displacement vector.
(1) First, Pu is a psepdo-independent partition. This can_ be proven as follows. For any two arbitrary 
points jjGJy.GPu and J2GJy1GPib Ti^yiV Ly Definition 3.2, Uj j (mod s)=yj and Uj2(mod s)=yj. Because Yi=̂ y1, 
Ujjmbd s)^Ujo(mod^s). By Lemma 3.1, J1 and j2 are not pseudo-connected which implies that Pu is 
pseudo-independent.

Secondly, Pu is the maximal pseudo-independent partition. This can be verified as follows. For any 
two arbitraryV points V j1;, ..-VjoG JyGPii, Ly definition of the U-partition (Definition 3.2),
Uj!(mod s)=FUjo(mod s)= y . By Lemma 3.1, J 1 and j2 are pseudo-connected. VByDefinition 2.̂ 5, P u is the 
maximal pseudo-independent partition.
(2) Let Pu=IJyi, ..., Jyt). Consider a block J-GPu where y = [yu ..., y n]T. Clearly, 0<yi<si, i=-l, ..., m' and
(5ii<yk<<5iu, k^m 'V l, .,v,Vh. So there are at most s^xsox...XsmZkxmẐ 1 x...xxn distinct block indices, i.e.,

|P„„JHPrl< i’k  11 V -;V V :'V/"
k = l i= m '+ l

t: Let x=[xj, ..., X11]1 GZn and s=[s,, ..., sm/, oo with S1X), i=  I , m*. The
notation x(mod s) denotes the vector [X1 (mod S1), ...,XmJmod smJ, xm/+1, „.,xn] 1.
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For every y,,]1, O^yiCsi, i= 'I, m', <5j|<yk<<5;,,, k==m'+l, n, if there exists at least one

index point jGJ such that j G t h e n  Jy^0  and |Pu I=I Isk JJ Xi. Notice that'' detU=j;-l. So, for each
_  k =  l i = m '- h  ’

such vector y, there always exists an integer vector j such that Uj(mod s)=y. Therefore, it is reasonable 
to make the following assumption oil algorithms of interest of this report. That is, for each vector 
y == [yjj"--• ••• ,'-'yn]>j 0<yi<S| j = l ,  m1,• ̂ y ^ u , , .  k = m ,f  l ,- ..., n, there is at least one index point JG J such
that j G T h i s  assumption makes sense, especially, whenJ is dense (informally, an index set J is dense if 
any arbitrary point JGZn that is inside the boundaries of J belongs to J), and large enough and 
rank(D)=n. Under this assumption, the following corollary is true;

Gorollary 3.1: Given algorithm (J, D), let rank(D)=n and s=[S1, ...,S11] 1 be the displacement vector. Then 

[Pmax N r i sh i-e-> Ihe pseudo-partitionability of algorithm (J, D) is equal to the greatest common divisor 

of subdetermihants of order n of the dependence matrix D.

Procedure 3.1 (Finding the maxima! pseudo-independent partition  by SNF approach):
Input: Algorithm (J, D).
''Output:U-partition Pu of algorithm (J, D).
Step I: Find a partitioning matrix U and the displacement vector s. _
Step 2: For every index point jGJ, compute Uj(mod s)=y and assign j to J-, the block indexed by y.
Step 3: P lJ={Jyi, ...,Jyt). Stop.n

The complexity of the procedure is a  linear function of the cardinality of the index set J, i.e., the 
number of the index points of the algorithm, and a polynomial function of n and m, the number of com­
ponents of the index vectors and the number of the dependence vectors. To find the displacement vector s, 
it needs to find the SNF of matrix D. In [KaBa79], a polynomial algorithm is proposed for finding the 
SNF of any arbitrary matrix AGZn n and the corresponding left and right multipliers U and V such that 
UAV=SNF. The complexity of the product of the memory space and the total execution time of this algo­
rithm is G((max{n, m})10) [KaBa7;9]. So, the operations of_Step I is bounded by 0((max{n, m})1(,)e For 
Step 2, it needs at. most-O( | J |n2) operations to compute Uj for every index point J. Therefore, the total 
complexity is O((max{n,m})10)+O( IJ |n2).

4. PARTITIONING VEGTOR A PPRO A CH -BA SIC RESULTS
Sections 4 and 5 present the partitioning vector approach. In this approach, independent algorithm 

partitions are determined by two types of vector, called partitioning vectors and separating vectors, which 
must satisfy certain conditions. Together with some auxiliary terminology they are introduced in 
Definitions 4.1 and 4.3. These definitions are followed by a theorem and an example which make clear the 
relation between these vectors and independent algorithm partitions.

Definition 4.1 (Partitioning vector, determ ining vector, equal partition ing  vector and  algo­
rithm  coefficient): Given an algorithm (J, D), II=[Tr1, Tr2, ttJ gZ1 n is a partitioning vector of (J, D), if 
and only if it satisfies the following conditions.
(1) gcd IjrljJroj . TT1,)==!?. ' / I .  ';> /  ̂  v V
(2) There exists a set of m?==rank(D) linearly independent dependence vectors d( ], dto, ..., dt such that

= FIdt^ - displl > 0. •

The dependence vectors dtj, ..., dt^ are called the determining vectors of Il and [dtj, ..., d( is called 
determining matrix of Tl. If 'Tl dj(mod displ 1)=0, i= l ,  ..., m, then_Il is called an equal partitioning vector 
of (J,D). The constant a = gcd(dispM,Cv1, ..., a m) where - dj = I Id1 (mod displ I), N I , ...,m, is called the

t : gcd ( a - j , a n)=the greatest common divisor of a'j, ..., an.
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algorithm coefficient;

For a given partitioning vector the set of determining vectors is not necessarily unique and, there­
fore, disp II might not be unique, either^ However, given a partitioning vector and a set of determining 
vectors, dispH is unique. Therefore, whenever disp 11 is mentioned, it is associated with a particular set of 
determining vectors. , _ \

By Definition 4.1, if m —n, then for each set of determining vectors d( ,̂ ..., dt J, the corresponding 
partitioning vector 11 is the unique solution that satisfies .conditions I and 2 in Definition4.1 andthe fol­
lowing system of linear equations:

n (dti — dt̂ ) —0 r / ■ y':.: y t ;  V\-

(4*2)

When m* < n, the partitioning vector determined by m/ linearly independent dependence vectors d( [, 
..., dt is not unique? and of course, it belongs to the solution space of Equation 4.2. In the next section, a 
closed form expression is provided for a partitioning vector as a solution of Equation 4*2.

A partitioning vector H defines a set of hyperplanes Hj (moda)=c, c£Z, in the index space. Since an 
index point lies on only one of the hyperplanes, the index_set J can be partitioned according to them, i.e., 
all points j lying Oh hyperplanes such that for a fixed c, I Ij (moda)=c belong to the same block of the par­
tition. The following definition $tates this concept formally.

Definition 4.2 (or-partition): Let U be a partitioning vector and a be the algorithm coefficient for (J, 
D>);-;--;Tiie:>partition P Q= { J0, J0- J  where J i= I  j:j £ J, FIj (modo)=i},i=0, ..., ar-̂ 1; is called the o- 
partition of (J, D).

Clearly; P cv is a partition and it is shown in Theorem 4.1 that P 0 is also a pseudo-independent parti­
tion. .• j  ; - .

For the case where m '<  h, i.e., rank(D) < ^ , a necessary condition for two index points j[, jo £ J to 
be pseudo-connected is that equation D x -Q 1- j2) has at least a real solution x £ IRm. This motivates the 
introduction of the following concepts. Let row vector aF1 be such that ^ iD=O. Clearly, there are n—m' 
linearly independent such vectors, denoted 'k j j ..., and they define a set of hyperplanes

■ ■ . . .  • ■

/ n—m'

j= y , y G Zn ,n', (4-3)

in the index space. The index set J  can be partitioned such that points lying on the  ̂same hyperplane 
belong to the same block of the partition. It will be clear later that if two index points J1, J2 £ J lie on the 
same hyperplane defined by (4.3), the equation Dx = Q1- jo) has- a solution. These concepts are formally 
defined as follows. T

Definition 4.3 (Separating vector and separating  m atrix): Given an algorithm (J, D), vFi- [V’iu ..., 
^inlGZ1 n is a separating vector of (J, D) if and only if it satisfies the following conditions.
(1) gcd^ju
(2) " " "

Let ^ 1, ..., be all the linearly independent separating vectors; the matrix ..vF=

separating matrix.

is called



A set of n—m' linearly independent separating vectors vF,, ..., vFll-.,,,' for algorithm (J, D) can be 
found by solving the equation in condition 2 of Definition 4.3. The following definition indicates how to
use these separating vectors to construct a corresponding algorithm partition.

Definition 4.4 ('I'-partition): Let 'I' be a separating matrix of algorithm (4, _D). The^ partition
J_,, J- } of J is called the ^ -partition of algorithm (J, D) if J-.— {j: jeJ, where

yi=[y,i, ..., yii.-m'iiPeZ1"-1"'1 iscalled the index of block J-, i= l ,  q.

CleariyjlP t is a partition of J. If m '=n, then P t =  { J } &' a trivial partition since the only separat­
ing vector is 0 in this case. As for P,,, P t  is actually pseudo-independent as shown later in Theorem 4,1.

Let J- 6 P t  and consider the subalgorithm (J-, D). Clearly, if A > 1, subalgorithm (J^, D) can be 
further partitioned by the partitioning vector 11. In other words, the index set J can be partitioned by a 
set of hyperplanes

I lj(mod«) . ;■ yo

• v ’
4/j — ,

: ■ i■sl y0e  {0,1,. . . , o - l }  and y £  2" (4-4)

formally stated next.

Definition 4.5 (o'I'-partition): Let 11 be a partitioning vector and vI* be a separating matrix of̂  algo­
rithm (J, D). The partition P a t=  {Jy,r--OJyk) of index set J is called the a^-partition if J- — {j: j£J,

Ilj(mqd o) =- ^  ^here y i^  Iyoi. y,,, --m y|n--mqi]Te zn_m,'H is called the index of biock Jy.,4=1» •••» k-

Partitidnihg vectors and separating vectors play a very important rdle in algorithm partition. The 
next theorem gives some of the motivation for the introduction of these concepts. More specifically, it pro­
vides sufficient conditions for two computations to belong to different blocks of an independent partition, 
in terms of those vectors and the index points associated With the computations. Moreover, it shows that 
a —partitions, 4* —partitions and a ̂ -partitions are all pseudo-independent.

Theorem  4.1 : Let Tl be a partitioning vector, a  be the algorithm coefficient and Ak be a separating 
matrix of algorithm (J, D), respectively. The following_Statements are true:
(1) For any two arbitrary points jj, jo 6 J, if rijjlmodaJ^lljofmod a) then they are not pseudd- 

connected. Therefore, P a is a pseudo-independent partition of (J, D),
(2) For any two arbitrary points j,, jogJ, if vFji^vFj-J, then they are not pseudo-connected. Therefore, P<j, 

is a pseudo-independent partition of (J, D).
(3) P o4, is a pseudo-independent partition.

Proof: Provided in Appendix 2.

Corollary 4.1: If algorithm (J,_D) has an equal partitioning vector 11, then j), jogJ are not pseudo- 
connected if TI jj(mod dispii) LI jo(mod displl) or vFji^vFjj.

As a particular case of Theorem 4.1, Corollary 44 is obviously true. If algorithm (J, D) has an equal 
partitioning vector FI, then the algorithm coefficient d=displl. By Theorem 4.1, Corollary 4.1 holds.

Example 4 .1: Consider algorithm (J, D) where J =  {[J1»JajT= 0 < Ii. J2< s ,se N +} and D==[d]: where
d=  [2, 2]t . Figure 4.1 shows the W ex set J for s = 4. ̂ herd is only one possible set .of determining vectors 
{d}. One of the partitioning vectors determined by d_is Fl ..= [—I, 2]._ It follows that disg_Il =  Ild = 2 and 
the algorithm coefficient a —2, Consider index points J1- [0, 0]1 and jo — [1, 0]1; since I l j 1 (moda)-O and 
Hjo(moda)=l, by Theorem 4.1, they are not pseudo-connected. There is only one linearly independent 
separating vector xI7j = [l5—l] and_a separating matrix is = [l,_j-l]. Again, consider index points jj, 
j:,=[0, l]T for which Alzj1=O- and' ^ j8= - I .  By Theorem 4.1, J1 and j;> are not pseudo-connected. In Figure
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4.1 (a) and (b), hyperplanes I lj(jnodr> j—c, and vFj = c.,, c, j Co G Z, are drawn, respectively. All the points 
lying on the same hyperplane I l j|m 6do)=c1 belong to the same block of the Vy-partition and all the points 
lying on the same hyperplane = Ci belong to the same block of the '!'-partition. Figure 4.1 shows the 
o —partition, '!'-partition and o '!'-partition pictorially. Let s—3, then P 0=(JojJ i) where 
- ......... ' [2,1 ] ‘, [2,2f, (2,3j1} and J , =  {(l, O]'1', [I f l ] 1', [ l ,2 f , [1,3]"'Ji,= {[0, 0]T,[0, l]T, [0, 2]1, [0, 3]1, [2, 0]1

ilT Fq i i T  ; Tq 4 lT  Tq q IT

T:

[3,0]T, [3,1]T, [3, 2]'1:, [3, 3]1}. Also P*={ JMJ>. ,Jrn,
• r .ha, • r. nr‘P r • r ‘ «mV :r TfI'

. .. .........................................  . . ............... Jv } where J ;,^{!3, 0]T}, J .,= { [2, 0]!,[3, l ] 1},
J 1 ={[1, 0]T, [2, l]T, [3, 2]!}, J :u—'![0, Of1, [I, 1]T, [2, 2]1 ,[3, 3]1}, J._,,-{ [0, l]'1, [l, 2j'r, [2, 3]T},
J__ ={[0, 2]1, [1, 3]r} and Jj_.;, —“{[0, 3]1}. P,,^ can be obtained by intersecting JiHJj:, >- 0, I and j=-3, 
...,- 3. Table 4.1 lists all blocks of tv'!'-partition and their index points. | P0Vj, [ == 12 < a | Pvj, J =  14. 
Clearly, Pvj,, Pa and Pn4, are pseudo-independent partitions. Iii Section 5, it is shown that the a 'k- 
partition is also the maximal pseudo-independent partition. End of example.

By Theorem 4.1, if for any arbitrary value of a E Z, 0 < a < tv there is at least one point JG J such 
that Hj(mod ev)=a, then there are at least a points in J that are not pseudo-connected to each other and 
Ji GP0 .is such that J1 # 0 ,  1=0, ..., n —I. Therefore, J P lliax | > tv. Intuitively, if J is large enough and 
dense, then J ot any arbitrary- value''-of ;a.,- -0<ai(<n- -,and a G Z, there usually exists at least one index point j 
such that Uj (mod cv)=a. Therefore, it is reasonable to make the following assumption:

Assum ption 4.1 (Ipdex set); For an algorithm (J, D) under consideration in this report, let 11 be a 
partitioning vector 'and;b .be'the-algorithm coefficient. It is assumed that for any arbitrary value of a E 
Z, 0 < a <  or, there is at least one point j G J such that Hj(mod tv)=a.

Corollary 4.2: Let a and P q be the algorithm coefficient and the or-partition, respectively. Then |Pa \=a 
under Assumption 4.1.

The next theorem shows that this is true if the index set J is defined by (2.2), Le., J = N n. Therefore, 
I Priiax I > a if J is semi-infinite.

Theorem  4.2 : Let IT be a partitioning vector of (J, D) where J is defined by (2.2) and a be the algorithm 
coefficient;-Then for any arbitrary value of a G Z, 0 < a <  a, there exists .at least one index point jEJ such 
that Tlj(mod a)—a and the pseudo-partitidnability of (J, D) is greater than or equal to n, i.e., | Pn%:X I ^

Proof: Provided in Appendix 2.

m:ix

5 PARTITIONING VECTOR APPROACH -METHOD
In this section, Theorem 4.1 and other results and concepts introduced in Section 4 are used to 

prescribe a partitioning procedure. Afterwards, Section 5.1 discusses how to find the partitioning vectors 
required by the procedure. Then Section 5.2 characterizes algorithms for which the method yields the 
optimal partition and derives lower and upper bounds on the pseudo-partitionability of arbitrary uniform 
dependence algorithms. The independent partitioning procedure is as follows:

Procedure 5.1 (Finding a  ̂ -p a rtitio n  for algorithm  (J, D) by partition ing  vector approach): 
Input: Algorithm (J, D).
Output: aty-^ariJtionPck̂ fpr algorithm (J, D). _ _
Step I: Select m- linearly independent dependence vectors dti, ..., d ^ , set Dc== [dt], ..., dtJ ,  find T G

Zm‘' n such th a t^ank(TDc)==m, and compute the corresponding partitioning vector 11 according 
to Theorem 5.2 provided in Ŝection 5.1. If dispTl | det(TDc) | , then select another set 6f m7 
linearly independent dependence vectors and compute the corresponding partitioning vector until 
all distinct sets of m' linearly independent dependence vectors are considered. If a partitioning 
vector TI such that dispTI = | det(TDc) | is not found, then select the partitioning vector II such

Idet(TDc) I : -..L, ---''Z.
that — ------  is minimum. Then compute the algorithm coefficient tv according to

displl 
Definition 4.L
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Step 2: Obtain n — m-linearly independent separating vectors vFh ..., vIln nV by solving equation TjD = O.
f viz , 1

Set T=
 ̂.n—in'

. yoi .

t_
. 

I I ■5
.

__ “ _ Tii
v|/j •

y  ( I) —n i ') i

, then assign j to J-., the blockStep 3: For every index point j G J, if

indexed by yj, i.e., j G J .̂.
Step 4: ..., J-.}.

5.1.^Fixiding a partition ing  vectd^^
This subsection provides in TiHebrem 512 a closed form expressionfor the computation of partition­

ing vector IT, as required in Step I of the partitioning Procedure 5,1. In addition, because of the simple 
and regular paappings that result from equal partitioning vectors, necessary and sufficient conditions are 
provided in Theorem 5.1 and Corollary 5.1 for the existence of this type of vectors for a given algorithme

Theorem  5.1 : An algorithm (J,_D) has_an equal partitioning vector if and only if there exists a set of m1 
linearly independent vectors d( i, dtoj ...̂  d ^  such that

aI I ,a I2 
a2i aoo

aIm
a2m

a m ' l  ^ n i '2  a m 'n i

ay £ IR (5.1)

where J] a  ̂ is an integer, j = l ,  ..., ni.

Proof: Provided in Appendix 2.

It is not easy to test whether a given algorithm has an eqnal partitioning vector using the condition 
in Theorem 5.1. The following corollary provides sufficient conditions which are easier to test.

Corollary 5.1: An algorithm (J, D) has an equal partitioning vector if it satisfies one of the following 
conditions: ^ _ V _ ;t:
(1) rank([dj-do, dj-d^, ...  ̂d , - dni]) <  rank(D). _ _
(2) There exists a set of m linearly independent dependence vectors dt , dt , such that all dependence

'-V - / V ; v ; v v  : -.. -Z s v  _ y  _ V -  ■'
vectors can be expressed as an integer linear combination of dVi, ..., dt ,. i.e., d j=  j ]  a,j dt., j = l ,  ...,

m, where ajj, I== I, ..., m and j=±i, m, are integer constants.
Proof: Provided in Appendix 2.

i = l

If algorithm (J, D) satisfies condition I in Corollary 5.1, then it has an equal partitioning vector Il 
such that n d i= .. .  = n d m= dispn . To see if a given algorithm satisfies condition 2 in Corollary 5.1, one 
has to see if Equatibn 5.1 has an integer solution. This can be achieved by applying the necessary and 
sufficient conditions for a linear system of equations to have an integer solution provided in Appendix I.

Given m1 linearly independent vectors dti, ..., dt^, the corresponding partition vector Tl belongs to 
the solution space of ^ u a tio n  4.2. In [For83], a closed form expression for a partitioning vector which is 
determined by dtj, ..., d,  ̂is given. This result is restated as Theorem 5.2 as follows.

Theorem  5.2 [For83] : Let d^j ..., d( 7 be linearly independent, consider matrix Dr=1̂ n/ d. and let
T G Zn̂  11 be such that rank (TDr J=Tn1. Then I I==/? I (TDr ) 1T is a partitioning vector determined by



d, d( { and displ I f=^, where /lG N+ is such that 11 6 Z1 11 and the greatest common diyispr of the n 
components of 11 is equal to pne.

Notice that matrix T £ Ztn 11 such that rank (TDr )=m^ always exists. Because rank(Dr) = m1, there
; ' ’ • : - . E.r?

are m; linearly independent rows in Dr; Suppose rows T1 ..., rn/  are linearly independent. If T =
: V : LE,V^

•' where Erj, *.., Erj f are as defined in the beginning of Section 2, then Jank(TDc) —,m'.';Tn other words, the 
result of multiplying D- by T Js a square submatrix of D that contains exactly m; linearly independent 
rows of the m/ linearly independent' columns of D. If m;= n , then T =I, the identity matrix^ and 11 =  
0 I D r 1. The essence of the proof is as follows [For83]. Because 0 I ( TDc )-1 TD0=/? I, vector 01 (TDr) 1T 
satisfies Equation 4.1 and meets conditions I and 2 in Definition_4.1 by the meaning of the constant 0] so 
\ \—0 I ( TDr )_, T is a partitioning vector determined by d,-, ..., dtĵ  and d isp ll=^>0.

5.2. Sufficient conditions for optim ality
Theorem 44 provides a.necessary condition for two index points in J to be pseudo-connected. Next 

it is shown in Theorem 5.3 and 5.3a that when the dependence matrix D satisfies certain constraints, this 
condition becomes sufficient. The implication of this result is that the partition obtained by Pro­
cedure 5.1 is maximal. In order to motivate and facilitate the understanding pf the main results of this 
section, first, a special case is discussed in Theorem 5.3 where m/=n, i.e, rank(D)=n. In this case, the 
xIx- partition is trivial, i.e., P v|/= {J}- Therefore, by Theorem 4.1, the necessary condition for two index 
points J 1, j2 G J to be pseudo-connected is Ilj^mod o)=Hj2(mod a).

Theorem  5.3 : Let m— n* Il be a partitioning vector of algorithm (J, D) determined by dt], ..., dt ,
Dc=  [dti, ..., dlf ] and a be the algorithm coefficient. If |detDc |=dispn, then
(lj two index pointsJ i , j2 G J are pseudo-connected if and only if TI jj(m6d a)=Il j2 (mod a);
(2) 4̂he''/.a-partHiph^:;is the maximal pseudo-independent partition of (J, D)y i.e., = Pa, and

t?  max' I *' : ; .
Proof: Provided in Appendix 2.

In this case, Procedure 5.1 becomes very simple. Since rank(D)=n, there is only one trivial separate 
ing vector 0 and therefore, x̂ -Partition=(J). So Step 3 in Procedure 5.1 can be skipped. When II is an 
equal partitioning vector, then ndjfmod displl)==0, i=  T, ..*, m. So a = dispFI= j (let P c | , This fact is 
summarized as Corollary 5.2 as follows*

Corollary 5.2 : Let m '=n, FI be an equal partitioning vector of algorithm (J, D) determined by dtj, ..., 
dtn and Dc =  [5^, dtf ]. If | detDc |=displl, then the pseudo-partitionability of (J, D) is equal to the 
absolute value of the determinant of matrix Dc, i.e., j Pmax |=  | detDc |.

• ; ‘ , . . . ' ' ' A'. ■' ■■■ : '  •••• •. : . • v ■
The meaning of Corollary 5.2 is as follows. For a class of algorithms, the number of blocks in the 

maximal pseudo-independent partition is equal to | det Dc | , the absolute value of the determinant of a 
submatrix of the dependence matrix D. If the algorithm, is--to.".be. nxbcutedvhy.'c^ processors with
limited inter-cluster communication capabilities then the number of clusters to be used should be directly 
related and perhaps equal to the cardinality of the pseudo-independent partition. In such MIN© systems, 
j detDc j is a direct indication of how many clusters can be used to execute the algorithm.

To find the necessary and sufficient conditions for two points J1, J2 G J to be pseudo-connected in 
general case, the approach used here is as follows. First, a subalgorithm (J-, D) where J- G P  ̂ is con­
sidered and the necessary and sufficient conditions for two points J 1, j> G J- to be pseudo-connected are 
derived. Tb achieve this, the algorithm (Ĵ , D) is transformed, by a linear mapping T, into another algo­
rithm (T( J-), T( D )) where the dimension of the index points is mf and there are m; linearly independent 
dependence vectors. Then Theorem 5.3 is applied to find these necessary and sufficient conditions for algo­
rithm (T( J-), T(D)), Then it is shown that the mapping T is bijective and algorithms (Ĵ , D) and
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(T(J7), T(D)) are equivalent in the sense that j,, jo £ J - are pseudo-connected in algorithm (J-, D) if and 
only if their images T(J1), T(j.j) are pseudo-connected in algorithm (T( J-), T(D)). So these necessary 
and sufficient conditions for algorithm (T(J?), T(D)) are actually valid for algorithm (J-, D).

Theorem 5.3a : Consider algorithm (J, D), let d, d,,n) linearly independent, D,= [d,., ..., d^J,
TeZ"-' " be such that rank(TD,.)=m', l l -d is p llI(TDl) - iT be the partitioning vector determined by d, 
..., d, ), it be the algorithm coefficient and b e  a separating m a tr ix . |d e t (T D )  |F=displ I^then
(I) two points j , , J, £ J are pseudo-connected if arid only if fl( j, -  jo)=0(mod o)=0 and TjT==Tj.,;

the ft ̂ -partition is the maximal pseudo-independent partition of (J, D), i.e., P
n— m' . • — - —- ■: -i — . —

. _  . .  .  /  .  a  V r . l ,  / •  i  V -  :  :  r -  T l  1 n-xn’, and ft <
KtX "

|P 4, | < j | (x;4 I), where x —maxITiQ, -  jo): ji, j_> €: J}, i- I,

l < ‘> I Pt I -
Proof: Provided in Appendix 2,

If the cardinalities of the a-partitiops of algorithms (JF., D ),whereJ-. E P 4,, i= l ,  •••> cIr ^fe all equal 
to 0 , then | P nns I=  <1 ( P t |. However, for some block Jf G P t. the cardinality of its a-partijion mrgh> 
be lessJhan a because fo fsome Value of a £ Z, 0 < a < « ,  there might not exist an index point j £ J7 such 
thatTlj(moda)=a, This phenomenon is illustrated in the following example.

Exam ple 5.1: Corisider the algorithm of Example 4.1 with s=3. There is only one set of determining 
vectors {dj and Dc = D. If T = [ - l ,  2], then TD =[2j. According to Theorem 5.2, 
n = 2 l [ 2]-‘ [—I, 2]= [—I, 2] and dispn -  2 == det(TDt). As in; Example 4.1, the separating matrix 
T=[l, -1]. To illustrate Theorem_ 5.3a (I), consider points ji= (0 ,0 ]T and ;j2=[2, 2]r. Because 
I lj,(mod <*)=I Ij.,(mod a) and T j1 =Tj..,, by Theorem 5.3a, they are pseudo-connected. Due to the fUct that 
dispH = det(TD); by Theorem 5.3a, P^* is Iffie maximal pseudo-independent partition. Consider "JfcjfPy? 
Le., the block whose points j are such that Tj = 3. Jjsl={[3, Of) as found in Example 3.1. There does not 
exist an index point j £ J3 such tha t' nj(mod a)=0. This illustrates the explanation before this example. 
By Theorem 5.3a (3), I P 4, I == x+ l= 7 , where x=3 -  (—3)=6 and | P max I=  12 < a | P 4, j =  14. End of 
example.

The complexity of Procedure 5.1 is a linear function of the cardinality of the index set. Step l ccan- 
putes the partitioning vector. The coiriplexity of the product of the number oh memory locations and the
number of the operations is bounded by G ((^)n5), For Step 2 the complexity of the product of the 
memory locations and the number of operations is bounded by 0 ((n-m')n5). Step 3 needs at most 
0 (min{n, n -m '+ l)n  IJ j) operations . The total complexity is bounded above by 0 ((“ i)nf’)+0((n-m )n£’) 
+ 0 (min{n, n—m,+l}n | J j).

6. COMPARISONS OF MINIMUM DISTANCE APPROACH (M pA), PA R TITIO N IN G  
VECTO R APFiROACH (PVA) AND SMITH NORMAL FORM APPROACH (SNFA)

In the minimum distance approach (abbreviated MD A) [PeCy87], [Pei86], an elegant ideaTs used 
which consists of using a linear mapping to transform the dependence matrix D into an upper triangular 
matrix denoted Dt in [PeCy87]. These two dependence matrices are equivalent in the sense that each 
dependence vector in Dt, the upper triangular matrix, is a linear integer conibination of the dependence 
vectors in D and vice versa: A set of initial points, each of which corresponds to a block in the resulting 
partition, is identified by Dt and the cardinality of the partition is the product of the diagorial elements of 
P '.  The original program is transformed into a parallel program containing parallel statements such as 
"parallel do" by DL An independent partition is implicitly expressed by Dt and a set of initial points.

In relatibn to the terminology Used in this report, a clarification needs to be made regarding the 
ability of the MDA to find the maximal independent partition. In fact, as the next example illustrates, 
that method finds the maximal pseudo-independent partition instead of the maximal independent parti­
tion which is claimed by the authors of [PeCy87], [Pei86].
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Example 6.1 : Consider the algorithm of Example 2.2. In Example 2.2, the maximal independent/parti­
tion of this algorithm is obtained and it has four blocks, i.e,, j P max J = 4 , By the MDAr the upper tri-

' I 0 I
J So, there is only one block in the partition obtained by the MDA, which,angular matrix is 0 1

clearly, is not maximal. However, it is the maximal pseudo^ndependent partition. End of example.

Unfortunately, the MDA finds the maximal pseudo-independent partition only for a restricted class 
of algorithms as illustrated in the next two examples. Twp possible interpretations are considered for the 
following definition of D ^.n in line 15, page 218 of [PeCy87]: " Dc1 „ contains only those linear- 
independent dependence cycles." In one interpretation, it is assumed that only W  < n linearly independent 
vectors are taken into account and included in D^1. n and the remaining vectors are ignored. In the other 
interpretation it is assumed that all dependence vectors are included in D1̂ ;ii. The next two examples 
illustrate the fact that both interpretations result in inconsistent results.

; ; ■

Example 6.2 Consider algorithm (J, D) where J is seirii-infinite and D =  ^ 3 = '  ^ dod 3J. By-, the

partitioning vector approach (abbreviated PVA), if dj, d2 are chosen as determining vectors, Dr=

2 j the corresponding partitioning vector H =  [5? 3] and ̂ the dgorithin coeflicient

a=gcd(n d i(mod displl), Hdo(mod dispFl), Hd3(mod dispn))=gcd(G, 0, 3)=3. Because disp11 = det D0, by 
Theorem 5.3, the a-partition (which is equal to the partition)for this algorithm is ps^dp-maximfd 
and there are three blocks in the maxin^l jpseudo-indegendent partition. There^ are two sets of two 
linearly independent dependence vectors {dr, do} and {d1? d3}. By the MDA, if "d j ,  do are included in P c,

f 3 - 3 ]  • • ■ ^
(note that Dc in [PeCy87] is D j in this report)*, then the corresponding upper triangu-Le., Dc=

Iar matrix is

0 2 
3 - 3  
0 2 arid the number of blocks in the maximal pseudo-independent partition is 6. If d

3 -3  
0 3 and the number of blocksd3 are chosen tp be in Dc, the corresponding upper triangular matrix is

in the maxiihal pseudo-independent partition is 9. Recall that the number of blocks in the maximal 
pshhdb^ihdepend'ent; partiiiori ; iri three. Therefore, both cases yield partitions that are not independent, -'Sb 
all the dependence Vectors have to be taken into account to find the maximal pseudo-independent parti­
tion instead of only m; linearly independent dependence vectors. End of exariiple.

Example 6.3 Consider an algorithm (J, D) with n dependence vectors and n—I linearly independent 
dependence vectors, i.e., D £ Zn n and rank(D)=n—I. By the MDA, if. all dependence vectors are included 
in the dependence matrix, then P^=D t £ Znxn. The upper triangular matrix Dt is square and Dt=  KxDx 
and all diagonal elements are positive. This implies that Tank(Dt) =  n. However, since rank(Dc) == n—I, 
Tahk(Pt)Sn-I-Thisisacontradiction-Ehdofexam ple.

In summary, if the dependence matrix contains only linearly independent dependence vectors, then 
the MDA is valid only for the Case where all dependence vectors are linearly independent. For the case 
where m' = m = ri, the MDA generates the maximal pseudo-independent partitionandfor the case where 
m*=m < ri, it generates an independent partition that may not be maximal. In [Pei86], an algorithm to 
generate initial points is presented for this case. However, its complexity and optimality are not clear. 
Moreover, only index sets of the form J=Ijj1, ..., jn]T: ^ S j iSbi, i= l , ..., n} (not necessarily dense) are con­
sidered, otherwise, the initial points are not easy to identify.

Compared with the PVA proposed in this report, the MDA has the following disadvantages. First, 
in the MDA, partitions arc expressed implicitly in terms of the upper triangular matrix and a set of initial 
points. According to [PeCy87], to find the upper triangular matrix, it is necessary to solve n integer pro­
gramming problems with m variables which are NP-complete, where n, m are the number of dimensions



of the index points and the number of dependence vectors, respectively. This is expensive although it is 
affordable when n̂  m are small. In the PVA, partitions are expressed explicitly in terms of the partition­
ing vectors and Separating vectors. To obtain these vectors, the dominating computations required are to 
find partitioning vectors, i.e., consider at most all possible combinations of m' vectors from the m depen­
dence vectors and compute displl I (TD,.) 1T. The complexity of the execution time of Procedure 5.1 is

bounded above by Q f a j . .

Secondly, as mentioned above, in the MDA, blocks of the resulting partition are implicitly expressed 
in terms of the Upper triangular matrix and a set of initial points. Although the serial loops in the original 
program can be transformed into parallel loops by the upper triangular matrix, it is costly to obtain the 
explicit expression of blocks of the partition and to know which block a given index point belongs to. 
According to the notations in [PeCy87], given ah index point X G Z1 one way to see which block it 
belongs to is to see if equation X Xj0 H-. AD1 has an integer solution A E Z1 119 where Xl0 is an initial point 
belonging to block i. If it has, then X belongs to block i. If it does not, then another initial point Xjo 
belonging to block j, j Vi, is tried until an initial point Xko is found such that  ̂equation X = Xko+ AD1 has 
an integer solution. This can be a very computationally expensive procedure. In Contrast, in the PYA 
proposed in this report, blocks of partitions are explicitly expressed in terms of the vectors. To see which 
block a given index point j G Zn belongs to, the computations required are to compute IIj(moda) and 
In additioh, as it will beexplained innext section, this method is more convenient for mapping algorithms 
into systolic arrays than the MDA. It is not clear which method is more suitable for mapping algorithms 
into MlMD systems. ■ r ^

Compared with the Smith normal form approach (abbreviated SNFA), the PVA has the following 
disadvantages and advantages; First, SNFA always provides the maximal pseudo-independent partitions 
for any uniform dependence algorithm. In contrast, the PVA provides the maximal pseudo-independent 
partitions only when the uniform dependence algorithm satisfies the condition of Theorem 5.3a. 
Secondly, for the complexity, when m=n=m', the complexity of the PVA is 0(n5)-fO(n | J j) and the com­
plexity of the SNFA is O(n10)+O(n2 IJ I). However, it is not true that the fVA always has better complex­
ity than the SNFA. Thirdly, in MIMD systems, one problem is to find a time-optimal schedule such that 
the total execution tiihe plus the total overhead caused by communications is minized. In this case the 
PVa  is preferred because the partitioning vector Il could also be used to specify a linear schedule 
[ShFo88]; The PVA can also be used to derive optimal multiple-systolic a r r a y s ^ is discussed in next
section. /■ .\V':

One interesting observation is as follows. Look at Definition 3.2, if the first k elements of the dis­
placement vector s are equal to I, i.e., S1= ...=sk= l, 0<k<m/, then only the last n—-k rows of the matrix U 
are needed to construct the U-partitioh. When m ^n  and k = n -l, then only one vector is needed to con­
struct the U-partition as the PVA. The following theorem provides a sufficient condition when only one 
vector is needed to construct the U-partition.

Theorem  6.1: Given algorithm (J, D), let s be the displacement vector. If there exists a partitibriing vec- 

tor TI such that displl= |det(TDc) | , where Dc is the determining matrix of Tl and T= ... is such that
^ ■■ [Er„,

rank(TDc)=in', then

Proof: Provided in Appendix 2.

7. ISSUES OF MAPPING PARTITIO NED  ALGORITHMS IN TO  MIMD/M ULTI- 
SYSTOLIC ARRAYS ; .

This section discusses some issues of mapping the partitioned algorithms into MIMD/multiTsystolic 
arrays. First, a new: architecture called multi-systolic array is proposed and how to map the partitioned 
algorithms into it is discussed. Then, the mapping of the partitioned algorithms into MIMD systems are 
addressed. The basic idea is to assign one block in the maximal pseudo-independent partition to one pro­
cessor (or cluster) such that there is no communication between processors (clusters) which dominates the



overhead in M
The system of multi-systolic arrays consists of a set of identical systolic arrays. Processing elements 

(PE-s) in the system can be described by index vectors Jx1, ...,xn_ |,xn] where xn indicates which array the 
indexed PE belongs to and X 1, . . . ,  ;x„_j indicate its location inside that array. ^If the pseudo- 
partitionability of the algorithm to be mapped is,a, then a arrays are taken from the pool of the system 
for executing the algorithm. Each bjock of the partition resulted from the partitioning procedure 
described in Section 5 will be assinged to one array. Since the partition is independent, there is no com­
munication between different arrays and the hardware structure is expected simple and regular.

There are many methodologies of mapping algorithms into a single systolic array [Che86], [KuS87], 
[LiWa85], [OKF086], [Rao85], [Qui84], [M0F086]. With a little modification, the transformation method 
[M0F086], [FoMo85] can be used to map partitioned algorithms irito multi-systolic arrays. Given an algo-

[ I -rithm (J, D), this mapping can be specified by an integer matrix T—

ILL
dispil

E Zn N' 11 G Zl n and 

where 11 is a partition-S E Zn 1 11. The computation indexed by j will be executed at time step

ing vector andvdispO== M n { Il djrdjED }, at processor (Sj, I) j (mod a )) where a is the algorithm 
coefficient. Notice that if dispil = /fo, E N fr then.0 computations are mapped into the same PE and the 
sametime step.Mf the algorithm has an equal partitioning vector, i.e., 0 = J5, then each PE processes only 
one computation at one tiriie step. If ^ > I, then each PE has to process 0 computations at one time step. 
There are two ways to achieve this. One way is to process these ^ computatibns in serial in one time step. 
The other ds to install /9 computing elements inside one PE so that all 0 computations can be executed in 
parallel in one time step. For an algorithm (J, D), the problem of finding an optimal transformation with 
respect to the total execution tinae consists of finding H E Zl n such that it minimizes the following objec- 
tive function:  ̂ ; '• '>

f max { n  (j 1 -  j2): J 1, j2 £ J } 
min { 11 d,: dj G D }

Subject t o Il D̂  >  dispn and 11 is a partitioning vector

(7.1)

The solution of ^rmulatipn 7̂ 1 can be found as follows. First, find all partitioning vectors II|, 1I|, 
each of which corresponds to a combination of m' linearly independent dependence vectors from the m
dependence vectors. Clearly, there are at most ( ^ )  partitioning vectors. Le., I < (^/)* Secondly, identify all
these partitioning vectors Il such that FID > dispil I. These partitioning vectors are all the feasible solu­
tions of formulation 7.1. Finally, find the feasible partitioning vector that results in the shortest execution 
time and is with a feasible space transformation S. TMe step can be achieved by comparing all execution 
times by these feasible partitioning vectors, respectively.

MIMD systems consist of a set of identical processors or a set of identical clusters of processors. Pro­
cessors may be connected through shared memories (tightly coupled MIMD system) or interconnection 
network |lppsely coupled MIMD system). In both cases, communication between processors is realized by 
expensive interconnection network and usually is much slower than the computation speed of the proces­
sors. So the communication between processors dominates the overhead of the system and minimizing the 
amount of communication between processors is a main goal in mapping of algorithms to MIMD systems. 
If one block of the independent partition of the algorithm is assinged to one processpr, the communication 
between processors is zero.

If the MIMD system consists of a set of clusters of processors and each cluster consists of a set of 
processors, then one block of the independent partition can be assigned to one cluster and inside each clus­
ter, computations can be scheduled to execute by an optimal linear schedule. Solutions of how to schedule 
computations by a, linearschedule and how to find the optimal linear schedule with respect to the total 
execution time are provided in [FoPa84], [ShFo88];

8. FUTURE W ORK AND CONCLUSIONS



.There - is-, still ':more‘- research:-'W6rk-" needed to be done on how to make good use of the partitioning 
methods proposed in this report to inap algorithms into MIMD/multi-systolic arrays. First, the time 
schedule Il obtained by the procedure described in Section 7 may not as good as the one obtained by 
[ShFo88] even if the same number of PE’s is used. This is because only partitioning vectors are con­
sidered in the procedure as the solution space of Formulation 7.1. This space is actually a si^all subspace 
of thesolution'-space of the linear schedule problem described in [ShFo88]. It is still open to find an 
optimal procedure which considers the whole solution space of the linear schedule problem and makes use 
of the partitioning vector to yield an optimal time schedule. Secondly, instead of finding the maximal 
independent partitions, it is also desired to find the maximal partitions such that the communications 
among blocks can be supported byThat target machine. For nompartitionable algorithms, (ap algorithm 
is non-partitionable if iti pseudo-partitibhability is equal to I), sometimes, it is desired to find the maxi­
mal partition such -that-The ratio of the communications between a block and other blocks with the cardi­
nality of that block is minimized.

The main cohtributibn of this report is computationally inexpensive methods for identifying 
independent partitions of algorithms with uniform dependencies. The resulting partitions are maximal. 
The partitiohihg methods proposed here ckri be applied in practice as one of the many analysis procedures 
used by optiinizing compilers to detect and exploit concurrency in serial programs. It may be particularly 
useful in mapping of algorithms into multiprocessor machines where processors are organized in clusters 
with limited inter-cluster communication capabilities. In these systems^ differeiit clusters can process dis­
tinct blocks of a partition without inter-cluster communicatibn overhead costs. Among others, such mul­
tiprocessors include Cedar [Kuetal86] and Cm* [HwBr84j.
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APPENDIX I .  NECESSARY AND SUFFICIENT CONDITIONS FOR LINEAR SYSTEMS 
TO HAVE IN TEG ER SOLUTIONS

Consider a linear system of equations as follows:

aT I a I2 ••• a I in

a‘J I a‘22 ••• a2m

a n I a n2 ••• a n in

X2

*Am

b,
b,
. . .

bn

A x — b . ' ; (aM).

where n, m G N-V aIj > bj G Q, i==l, ..., n and J = l ,  ..., m, are given coefficients and x G IR111 is the unknown 
vector; There have been some necessary and sufficient conditions of existence of integral solutions of Equa­
tion al.I [Sch86, pp. 51], [VeFr2l]. This section provides a new such conditions based on the result of the 
partitioning vector method and also a procedure to identify one integer solution of Equation al.I.

Without loss of generality, it is always assumed that a,j, b, G Z, i=  I, ..., n and J = I, m. If there

is a coefficient Eij such that a,; = —  6 Q, where c C Z and gcdfa'y, c )= l, then by multiplying both
sides of the ith equation ail Xi-H...+aim xm=bj with constant c, the assumption can be satisfied. In addition, 
gcd(ail, al2, ..., ain>, bj) is assumed to be I, i= l ,  ..., n. These assumptions are summarized as follows.

A ssum ption a l . l  (Linear system): The linear system (al.I) satisfies the following conditions:
(1) The coefficients of Equation a l.l are integers, i.e., a,j, b, G Z, i= l ,  n and j==l, m; and
(2) gcd(ajj, ai2,>.i, aim, b,) = !, i—I, ..., n.

Consider the algorithm (J, A),̂  where J= Z n and the dependence vectors are a^ ..., am. Let 
rank(A)==nir, Il and ^  be a partitioning vector and separating matrix of (J, ;A)y respectively, ati, a(  ̂
be the determining vectors of H, Ac- [at j, ..., at J-.. and a be the algorithm coefficient for (J, A). Without 
loss of generality, let Ac=[ai, anJ , i.e., the first m- columns of matrix A are linearly independent and

. . V Erj
the determining vectors of Il, and A= .[Acj A 1J. Let T= ...

"■ Ern/j
Section5.1, such a matrix T is always possible. By Theorem 5.2, T Id isp FJ I (TAc) 1T.

Theorem  a l . l  (Necessary conditions): If Equation a l.l has an integer solution, then Ilb(mod a )=0 
and x̂ b=O.

Proofr Let J1=L  and Then i ,  J2 G J= Z n ahd_(j1- j 2)= b . Since Equation a l.l has an integer solu­
tion X G Zm, i.e., AX = b = ^ ! -  j2), index points J 1, J 2 are pseudo-connected in algorithm (J, A). By 
Theorem 4 .1 ,n(jj — j2)(modG')=0 and xI^j1 — j2) = Q. Therefore, FIb(mod a)=0 and x̂ b=O. □

Theorem a l.l provides necessary conditions for Equation a l.l to have an integer solution. The fol­
lowing theorem identifies the cases where the conditions in Theorem a l.l  become sufficient*

Theorem  a l .2 (Necessary and  sufficient conditions^: Let dispfl = J det(TAc) j. Then, Equation a l .1 
has an integer solution if and only if nb(moda)=0 and xMb=O.

Proof: (=>) See Theorem a l.l. _ _
(<=) Now, let’s prove that if dispU = J  det(TAc][I, llb(moda)==0 and x̂ b=O, then Equation a l.l 

has an integer solution. Let j j—b and J2=Oi Then, L = Jj1-  jo), Il(j.j ^ J 2)(mqd Pf)=  TIb(mod <x)=0 and 
i — j2)==^b=0_. By Theorem 5.3a, J1 and_ j2 are pseudo-connected since dispH= jdet(TAc) | , i.e., there 

exists a vector X G Zm such that (j] — j., )=b=A X . This implies that Equation a l.l has an integer solution

be such that rank(TAc)=m '. As explained in
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X. □

Theprocedureofhow to used Theorems a 1.1 and al.2 to test the existence of integer solutions of a 
given linear system bf equations is as follows. First, find the h—m' separating vectors vVj, i==l, ..., n—m by 
solving equation T7A=O and try to find a partitibning vector I l such that displl = |det(TA,.) |. Secondly,

I lb(mod a]compute the algorithm coefficient a and If y^O, then there does not exist an integer

solution for the linear system of equations. Tf there exists a partitioning vector T l such that 
displl= |det(TAc) I and y=0, then there exists at least one integer solution of the linear system of equa­
tions. If such Tl does not exist and y=0, then the procedure fails to answer the question of existence of 
integer solutions of the linearjystem of equations.

If one integer solution S of Equation a l.T can be identified, then all integer solutions of Equation 
a l.l can be expressed as linear combinations of S and the n-m' linearly independent solutions of equation 
Ax = O. The following theorem describes one integer Solution of Equation a l.l for the case where the 
algorithm (J, A) has a partitioning vector Il such that displl = | det(TA,.) |.

Consider the following equation

; ^dispii + ^ r i a 1 + • vv + 4 n i m = .«: J  ' v . ;(aL2i
Let TIai(moddispll)=**;, i= l ,  ..., m. Since a==gcd(dispfi,ai,.. .,o in)^(*, by Lemma I W Appendix 2, 
gcd(dispri, IIa1,..., Ilam)= « . By [Mor69], Equation a l .2 has at least one integer solution.

Theorem a l .3: Let displI = | (det(TAj |, /?T= [ / ? , / ? nl]T be an integer solutkm of Equation al.2, /?= 
p+ /?,), /?o, ..., pm]T and v= A  p. If nb(modft)=0= 7ldisPn + .72a, O < 72« <  displl and_7l, Z, and 
\j/.b = 0, i= l ,  ..., n-m ', then an integer solution of Equation a l.l is <5=72/? + X, where

. Xni*, 0,..., 0]T is such thatX - I X 1 ,  . . , ,  A m ' j  v ,  • • • > ’

(TAc)*T (b-72^) = #t(TA^)
X1

Xm'
(al.3)

where (TAc)* is the adjoint matrix of matrix (TAc) which is defined in Appendix 2.

Proof: Since /?' is an integer solution of Equation al.2, then

Dv = iL p  = # 11; + ^ n s 1 + ••• + PmU i m

= /9dispFI + ^ 1H a1 + ••• + ^mFlam = a,

where a, E Ac is a determining vector of Il and Tla1 = displl. I! ( b - 7i v ) =  H b -  72 n v = T i  disPn + 
7s a - 7oa. So, n ( b - 72v)(moddiSPn )=0 and xJ/j(b-72v) =  ^;b -  T s V =  O -T 2W = O  since; 
V1A== 0," i= l ,  ..., n-m '. So, by Theorem 5.3a, b, 72v E J are _pseudo-connected and belong to the same 
block of the T'-partition. Let b, 72v belong to J- E P*, L -=  (T j1: j, E Jy} and A==TA. Consider the algo­
rithm (Ly, A}, let T E Zlxm' be the partitioning vector for algorithm (L-j ^ ) determined by T a1, ..., Tam'.
Then T= a I (TAc)-1 where aEN 4 is such that greatest common divisor of the m' components of T is 
equal to unity. Notice that Fl=TT is a partitioning vector determined by a,, ..., am/ and displl —
dispT = a. Since II(b -  7ov)(mod disPn)=0, T(Tb -  72Tv)(mod displ>0.- By Lemma 3 in Appendix 2,

(TAc)* (Tb -  72Ty )=  det(TAc)
X1

X.m'

where X1,'..., Xm' E Z. So,

T ( b - 72T) =(TAc )-1 Tet(TAc)
Xm'

X1

X,
TIApA1 ]

X1

Xm'
0 TAX

rn'



In summary, T(b — 72v) — T(ArA1) X. Since vFjb — Tov) = 0,. S-=JLi n—m;, (b — 72v) belongs to spja,, ...* 
am}. By Lemma 2 in Appendix 2, b —72v = AX or b = 72v + A X = 72 Afi  H- A X=A ( ' ■ +  X ) = AX. So ft 
satisfies Equation al.I. This implies tha;t  ̂is an integer solution of Equation al.I. □

The next procedure describes how to find ah integer solution by Theoreiri al .3 when the giveh linear 
system satisfies the Conditions in Theorem a l.2.

Procedure a l .2 (Finding an integer solution for Equation a l .l ) :
Step I: Find a transforming matrix Tj the partitioning vector Il and the algorithm coefficient o .
Step 2: Write 0 b as 11 b = 7 | displl -H 7^o, 0 < 72a <displl.
Step 3: Solve Equation al.2 and obtain.fi. _ _
Step 4: Compute Y==A/? and find (TAc)* T( b — 72 v )= b #== [ b#|, . . . j  b^,/ ]1.

Step 5: By Theorem al.3, each component of b' is a multiple of det(TAr). Set > i—I,

Step 6: &=72/3 -h X where X= [X1, ..., Xin>, 0,..., 0]1.

Exam ple a l . l :  Consider the linear system:

m .

2 1 3  
0 1 - 1

-  ■■• k 'X =  b (al.4)

‘he corresponding algorithm (J, A) has an equal partitioning vector 11 =  [I, i] and vF - 0. Let Ar=
2 1 , . _ i _

1 ”  111  then H b(mod a )=4(moda)=0. By Theorem al.2, Equation0 I . a= dispi n = 2= det Ac. If b =

a l .4 has an integer solution. Now, let’s follow procedure al.2 to find this integer solution. Step 2

n b t = 2>dispFI, 7j=  2 and 72= b . Step 3: /?=0. Step 4: v = 0, A*=

X1= - -^-=-1, X2= - = 3  and Xs=O. Step 6, ft=\-
2 2

of Equation a l.4. Notice that if Ac is chosen as

- I  
3 
0

I 3 
I - I

1 - 1  
0 2 and b'= * Step 5:

It can be verified that ft is an integer solution

, then dispTl # | det Ac | and Theorems a l .2 and

a l .2 can not be applied. So, it is important to choose the right Ac. End of example.

APPENDIX 2
Before the proofs are presented, some mathematical notations are introduced. These notations are 

based on [Str80], Let a matrix A E IRn n and

a Il  a I 2 ••• a In

•̂a22-: ■•••- â n
•  •  •

a n I a n2 a,nn

a I a 2 * * • a n

The cofactors of A are denoted Aij, i, j = l ,  n. The cofactors of matrix Ac are denoted by (Ac ),j, i , j= l,  
..., n. The adjugate (or adjoint) matrix of A is denoted A*, Some facts [Str80] are also listed here which 
will be used later in some of the proofs.

Fact I:

A11 Ao
A1O A22

Aln Aon

... A11



- 2 4 -

Fact 2 : A" 1 = A
det A

L em m a I: If g c d ( z , , z j = z ,  ZiG Z, i— I, ..., s, then gcd(zh c._> z, +  z._>, • <7 z, + zs)— z, Ci G Z, i— 2, s.

Proof: Let’s prove it by contradiction.: Suppose that gcd(zj, c., z, +  z._,, ..., Cs Z1 -f zs) = z 7 +. z, then z divides 
z7, i.e., there exists a positive integer 'f t  such that z7= z  P  and P  + I (See [Gol73, pp.26]). Let z ,=  z/?7u 
Zi=ZAi, i— 2, s, where ^i £ (Z — { 0 }), i = l ,  s, Since z7 divides z,, C1Zi +  Zi, i = 2 , s, p  divides P ^ u
Ci P  7 .i +  7 j, i= 2 ,  ..., s. Let Ci p  -7 , +  7 - = / ^ i i= 2 ,  s. Then 7 -,= P  - C1P  7i =  P ( <>\ ~  cA  i )• So, ^ divides
7 j, i= 2 ,  ..., s and Z1. This means that gcd(z1} z._>, zs) = z 7. So z7 =  z, i.e., P  =  I  which is contradict to the
assumption. So gcdjzj, C12Z1 +  z ,, ..., Cs Zi +  zs)= z .  □

Lemma 2: Let A £ IRn m, A =[i], ..., am], rank(A)=m7, b
b,

K
Espja1, , a j  and T £ IR'11 11 be such

that rank(TA)=m7. Then x is a solution of equation TAx = Tb if and only if it is a solution of equation 
Ax = b.

Proof: (=>). Let M = [A b]

K1
TM=JTATb] = K =  ...

Km'
rank(K)=rank(M)=m7, spjNlU

Since b £ Spja1, ..., ain}, rank (M )=m7 and rank(TM)=m7. Let

Since K1, ..., Km/ are linear combinations of M1, ..., Mn and

...,Mn) =  sp{K1? ...,Km/}, i.e., Mi, i= l ,  n, can be expressed as linear
combinations OfK1, ..., Km/. Let

7 n  7-12 -  7 lm' 

7*21 7*22 ••• 72  m'

7n l 7n2 ••• 7nm'

K 1

Km'

or [A b]= T jC =  T [TA Tb .̂ Then A =T  TA and b = TTb. Let x be_a solution of equation TAx = Tb, then 
PTAx= TTb. i.e., Ax = b. Therefore, x is also a solution of Ax = b._

(<=). Let x be a solution for equation Ax = b. Then TAx = Tb which implies x is also a solution of 
equation TAx = Tb. □

Proof of Theorem 4.1 _
(l). Suppose J1 and j2 are pseudo-connected, then there exists a vector X =  JX1, ..., Xm]1 £ Zm such 

that J1 + D X=j2. Therefore,

P fj1 + n D x = n jo

or
_  m _  . _

H j1+ E  ^iH di = Flj2
i=l

Let If dj=aj + Ei dispPl, Qfi, a5 £ Z, O < Q̂i < displl, i= l ,  ..., m. So,
_  _  m m

Fl j2 “  H j1 = ( a; X-Jdispl I + QfiXi 
i= l i= l

m
^ X ja 1 is an integer because Xi and a„ i= l ,  ..., m, are integers. Since gcd(displ I, a j, ..., Qfln)=  o, 0 = 0 7 , 
i= l
and dispIl =  Q7 , 7i? 7 £ Z, i= l ,  ..., m. Then,



I I j j - l l j , E v V l  > : -ZiXi) and 11 (j- j,)(inoda)=0

i.ev, 11 j 1(moda')== I I j2 (mod a). This contradicts to the assumption, So j, and J2 are not pseudo- 
■ connected.-'. ■ E . •:

Consider_the a-partition P n. SinccE I Fj(mod a )==i, j G Jj G P,», i = 0, ..., a —I, for any two arbitrary 
index points j G Ji, j* G J|, i+= I, 11 j (mod a)# 11 j ; (mod u ) and they are not pseudo-connected, By 
Definition ^.SrT5 is a pseudo-independent partition. _

(2) . Suppose that J1, are pseudo-connected, then there exists a vector -X G Zm such that
DAj= Qj -  jo}.- S°, _^DV =Vp(J1- J 2): By Definition 4.3, Vp1D=O, i=  I ..., n-m ' which implies that 
vp(j,—j2)=0, i.e., j= vPjo- This is_contradict to the assumption. So, j,, j2 are not pseudo-connected. For
the +-partition P,j,, let J 1GJy. and J2GJyj, yj + yi, J-., J - (G Pvj/. The f a c t  that yj^yi implies that VpjlTtvlzj.,. So, 
ji , j2 are not pseudo-connected. By Definition 2 5̂, P+ is pseudo-independent.

(3) . Similarly, let J1G Jy .GPaVi/ and J2GJy1GP0Vi/, Y\*y\r where yi=[y()i» y i i > y ( n—m')i]1 and
^i=  [y(,i,yHj ...,y(n-m')i]'r- Sijice Ti ^yi> +hereSexists at least one dimension tgJO, l ,^ n - in '}  such that 
y yt.i- If t—0; then Oj3 (mod a)j£ 11 j 2(mod o ) and by (I) of Theorem 4.1^ J1 and j2 are not pseudo- 
connected. K I < t < n-m ', then + J 1 ¥ + J 2 and by (2) of Theorem 4.1, J1 and j2 are not pseudo-connected. 
So, by Definition 2.5, P a4/ is pseudo-independent. □ +

Proof of Theorem 4-2 :
Let a G Z and 0 < a <  r*. If it can be shown that for any arbitrary value of a, there exists at least 

one index point jGJ such that Il j (mod a )—a, then by Theorem 4.1, there are at least a index points in 
J which are not connected to each other. Therefore, Jj # 0 ,  where Ji G--Pcrt i—0» ..., a — I. This implies 
that the maximal pseudo-independent partition contains at least a blocks. So, |Pnrix | >

Let IF= [Tr1 7r2 ... TTn ]. Since FI is a non-zero vector, it has at least one non-zero component. Without 
loss of generality, let TT1 # 0. Let M—t »+a (i.e., M (mod a)= a), M G Z — {0}, t G Z, and M-Tr1 > 0. 
Since gcd(7r1, ..., 7rn)==l, by [Mor69] there exists at least one integer solution of the following equation

M . ■ ' I1)

Let z=

7rI xL + 

zI

+  7̂ n x n-

zn
be such an integer solution of Equation I. If Z1, ..., zn > 0, then z G J and it has been pro­

ven that for any arbitrary integer a, 0<a<O', there exists at least one index point z G J such that 
ri z(mod or)=M (mod a )= a . Now suppose not all Z1, ..., zn > 0. It is clear that all the solutions of Equa­
tion I take the form

.- i ... . -. ■ -  JTo -J -  % . “  7rIi
7rI 0 0

X=Z + 0
0 to +

.TT1
0 +3 +

0

;• vH-E- .+ *•••*'* ••• ' ■ 0
0 0 TT1

where t2, t3, ..., tn are constants. This can be verified as follows.
■ ... • J J  . ‘ ■

-  TTo •
7rI

■■ - ^ 3
0

-  S
0

n x  -  n i  +  Fi 0
0 ■to f  Il 7rI ,

0 1.3 +  it.
0

. • v ;; • ■ • . . . .  - ... 0
"■ ; ■ ' ■ -■ ; 0 0 .7rI

=  M +  ( -  TT1TT2 +  TT2TT1 ) to  +  ( -  7T, 7T.;> +  TF2TTj ) t 3 +  • * • + ( -  +I--jCn' +  7rH7rI ) t M =  M

Therefore, x is a solution of Equation I. Next, it shows how a non-negative integer solution of Equation I 
is constructed from Equation 2. Let,
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51 T C t._. /T;. t ;. * yTn Li

Z-> TC j t . )

Z;. +  TT1 t ;.

Zn +  TT1 t„

!f t; > — — , then X1 > 0, i = 2, n. Let
7T, •

A
TT1

— —- + /ij where O < /f, < I i=2, .... n.

Now it is shoivn that x, is also greater than or equal to zero if b„ i—2, n, are defined by (3), 

*1 -  h  -  E  'Ti ti =■ -Z l; -  /£  ( A  — )
i=-J 'i= 2  - 7rI

-  E  A 7rI + E  7rI
zi

i=2

~  s I — X  7L + ( M — Z1 7T, )
i=2 . . 7rI

M 11
7rI i=2

n n n M
Notice that J] 17Tj | >  XAi [Tri I > J] 7Tj. If M is selected such that M = t a + a and —  > X  I^i L 

i=2 i=2 i=2 7fI
M n M n . . -then X1=  — — Xl P\ 7rI > —  -  X  I 7rI I > So, there exists an index point x £ J such that
7rI i=2 7rI i=2

lTx(moda)=a. □

P roof of Theorem  5.1 :
(=>). Let Il be an equal partitioning vector of (J, D). Then by Definition 4.1, there exists a set of 

mf linearly independent dependence vectors such that

n a t =ii ltIrfr displl > 0

and

Ildj = aj displl, aj E Z, j =

Since rank(D)=m/ and dtj, dto, dt^  are linearly independent, dj, I < j < m, can be expressed 
linear combination of dtj, ..., dt^. i.e.,

(4)

as a

dr d‘i’ d>w

aU
a 2j

a rn'j

I < j<  m

So,

Ildj = Il d| l’ d|n/

aU
a2j

a m'j

: displl [11 * 1 ]

aIj
a 2j

a IiZj
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in7
: displ I VVaij
' ' . ,V. V:N. y

nV
By (4), I Idj=^aj displ I, where aj G Z, I < j < m. So £  a ^  ap I < j < m, are integers. 

{<=): Consider the following two systems of equations:

M (d,,-- d,_j = o . v

and

"(d„ d, J - O

lid, = 0
i ' ■ ■'■■■
n:dt̂ o

lld t„,= 0

Let N1 be the solution space of Equation 6 and N2 be the solution space of Equation 7. If 11 is a solution 
of Equation 7, then it is a solution of Equation 6. Thus N o  C N 1. The dimension of N 1 is n - m ' + l  and 
the dimension of No is n -  m'. This implies that N2 C N1. So, there exists at least one solution TI' of 
Equation 6 such that 11' dt. * 0, I < j < m\ Let 11 G Zl n be such a solution of Equation 6 that I I d,.=a >
0, j—I ..., m*, and the greatest common divisor of the n components of hi is equal to one. Then

Ildj =I l dt,,—»dtllf

aIj
a 2j = a E  'ay, j= l,...,m .

i= l

Since ^Vaij, j = l ,  ..., m, are integers, the following holds.
i= l  ‘ ' :■ '

n  dj(mod a)=0, j= l,...,m  and displ I = a > 0

By Definition 4.1, Il is an equal partitioning vector of (J, D). □.

Proof of Corollary 5.1:
(I). Let’s first prove that if algorithm (J, DJ satisfies the first condition, then it has an equal parti­

tioning vector. Consider the following two systems of equations:

Tl Id 1 -  do ) = 0
n ( d ^ d 3) - o

■\ '■ ■ - v

IT (d , - d m) = 0

(8 )

I ld1=O 

I l d j = O :

I l d„. = 0
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With the similar reasoning as in the second part of the proof of Theorem 5.1, it can be shown that there 
exists at least one solution Tl' of Equation 8 such that I I'dj # 0, I < j < m. Let 11 G Z1 " be such a solu­
tion of Equation 8 that Il dj^displi > 0, j= l ,  m, and the greatest common divisor of the n com­
ponents of Il is equal to one. Then 11 dj-displl > 0, j = l ,  ..., m. Therefore, 11 is an equal partitioning
vector.

(2). By_the assumption of condition 2, there exists a set of m' linearly independent dependence vec­
tors d, , ..., d, , such that all dependence vectors can be expressed as an integer linear combination of dt |,

tor. □

..., d, ,. ue.,-A-=Y1 ay d, j = l ,  ..., m, where ay, i = l ...... m' and j = l ,  ..., m, are integer constants.
m  . ; ’ 1 =  1 .

Clearly, Y  aij> J==1) —> m> are integers. According to Theorem 5.1, (J, D) has an equal partitioning vec­

Lemma 3 : Let m '=n, I l be a partitioning vector of algorithm (J, D) determined by A 1, ..., A 11,. D, [Jll, 
..., dti ] and J 1, J 3 e  J- If I det Dr |=displl and 11 (j i —j.j)(mod displ l)= 0, then j,, j, are pseudo-connected

and D(. (J1 — jo)== ^etDc , where X1, X11 E Z

Proof: Consider algorithm (J, D,). The algorithm coefficient is equal to | JetDc |, Le., «=gcd(lldt i, ..., 
Hdl )=  gcd(displl, ..., dispn)=dispn= |detDc |. By Corollary 3.1, there are |detDc | blocks in the maxi- 
mal pseudo-partition of algorithm (J, Dc) and by Corollary 4.2, |P „ |= « =  |detj)c| .  So, the o-partition is 
the maximal pseudo-independent partition. Because 0 (j\-  j2)(modjlispn)=0, j 1( jo are in the some block 
of a-partition. Therefore, j, and j2 are pseudo-connected and j)-jo=DcX, XeZ\ By Fact I and Fact 2, 
D^(Ii-J2)=JetD cX. □

P roof of Theorem  5.3: _ _ _ _ v
(1) . By Theorem 4.1, J1, jo are pseudo-ponnected only if Oj^mod a) = Hjofmod a). Let’s prove that

J1, jo are pseudo-connected if llj^mod a) = Tljo(mod o). _
~ Let LI (Ti -  jo) =  7 i dispFl -f 72a, 0< J2 a <dispn and J u J2 E Z. If J2 =  0, by Lemma 3, J1 and

jo are pseudo-connected. Suppose j 2¥=0 and let Ildj = Ejdispri-I-Oj, aj, Oj £ Z, 0 < a-} <  dispH, I I, m.
Since gcd(disp]l, a u ..., Qrm) == a, by Lemma I, gcd(displl, Udli ..., Tl dnl) =  a* By [Mor89], there exists 
at least one integer solution of the following equation:

X dispFI +  X1 Il d1 -f 9 • * +  X111 D d m =  O; (9)

Let X =[X, X1, Xni] be an integer solution of Equation 9. Then J2 \  is an integer solution of the follow­
ing equation:

J2 X dispH -f 72 X1 Fl dj -f *•* + 72 X111 U dm = J2 a 

Let

j — j‘2 + 72 X dtj + J2 X] dj -f • * * + Jo Xm dm

where dt E Dc is a determining vector of II. Clearly, j and j 2 are pseudo-connected. Then,

I! ( j — jo) = 72X dispH + J2 X1 Tl T1 -f ; • V + IfoXrn 11 dm = j 2a

H(J1-I) = nj, - nj + nj2 nj, _= H(I1-I2) - n(j-j2)=jy ̂ spn+_+,_« -i,a. So,
11 (j, —j)(mod dispn)=0. By Lemma 3, j, and j are pseudo-connected. Since jj_j2 pnd j, j, are pseudo- 
connected, respectively, j, and j2 are also pseudo-connected. Therefore, if 1 1 (J1 -  J 2 )(modw)=0, then j,
and j2 are pseudo-connected. _ _ ■ _ -

(2) . Consider the a-partition P u, since Ilj1 (moda)= Hjo(moda) where j,, j 2 G Jj G P„ are arbitrary 
index points, 0 < i <  a, by the results in (l) of Theorem 5.3, j,, j2 are pseudo-connected. By Definition 2.5,



P n is the maximal pseudo-independent partition, i.e., P n = P 111 and | P m:iX | — J P n J = ,  a . □

Lemma 4: Let J-E  P^, then J- =  {j: jEJ, j=p+Dx, xER'", ^p-y}-

Proof: Let S denote {j: jEJ, j=p+Dx, xER"\ vPp=^y}- If jEJ;-, t henM^y and '!'(j-p)= 0. By the Funda- 
mental Theorem of Linear Algebra (See [Str80], pp. 75 and pp. 87), j—p belongs to sp{d,± dtn} because 

• vl/D=0. This impliesthat thereexists an X G R pi such that j—p=Dx, Le., j=p+Dx. So, j G S and J-CS.- 
Now, let jGS, theri j=p+Dx and vlzj^vlzp+vlzDx^^p=^. So jGJy and J-=S. □

Lemma Si Letdli, ..., dt̂  be linearly independent, Dr= [dti, ..., d,.^], TGZn/ " be such that rank(TDr)"= 
m', J- G P t and L- = (Tj: j G Jy}. Then,
(1) the mapping T: J- -> L-, T ( j  ) = T j, j G J- is bijective and
(2) T Tj1, Tjo G L- are pseudo-connected in algorithm (L-, TD) if • and only; if J j-.K  j^ g ;  Jy .jare;'pseudo^

connected; in';algorithin (J-, D),. i.e., I f j1- J 2 =. DX if and only if TQ1 — j2) =  TDX*

Proof: (I). Consider the mapping T: J- -  L-, T  (j ) = T j, j E_Jf  Since L-= {Tj: j E J7), T  is surjective. 
By Lemma 4, J -=  {j:jEJ, j =p+Dx,xERm, vl/p=y}. Since d , d ,  f are linearly independent and 
rank(D)=m', each dependence vector can be written as a linear combination of d1|( d, i.e., D--D1xA
where AGR^ m. So, J- can be rewritten as J-={j: j=p+Dcz, z=Ax, JGJriXGRm', Tzp=y}. Let jy  j^EJy andfV
J 1 =PT-DcZ1, j2=p+DeZ^ then, T Q H 2)=  TD Jzi-z2)=0 if and only if Z1=Z2, or equivalently, J1=J2, since 
rank(TD)=m', i.e,, Tjl=^Tj2 if and only if jj^jo. So T  is injectiye^whichTniplies T  is bijective.

f2). (<C==); If J1 ,J2 G Jy ^re pseudo-connected, then there is a vector X G Zm such that J1 =< j2 + DX. 
So, T j1 == T j2 + TELX and Tj1, Tj2 are pseudo-connected. _ _ _

(=>). If Tj1, Tj2 are pseudo-connected, then there exists^a vector X G Zni such that TQ1- j 2) = TE)X. 
j 1, j *2 G Jy implies that Ji -  j2 G Sp^d1, ..., dm}. By Lemma 2, X is also a solution of equation DX = Q1- j2) 
which implies that jj and j 2 are pseudo-connected. □

Proof of Theorem 6.3a:
(1) . (=>) See Theorem 4.1. _ _ .

_(<=). Since ^ 1 = ^ 0 ,  J 1 and j 2 belong to the same block of the Tz-partition, i.e., j 1? J2GJyGPvi;, where 
Jr=Tzj1. Let L- = {Tj : j  G J-Jand A = TD. Consider the algorithm (L-, A), let P be the •. partitioning / vector 
of (L-, A) determined by Tdtj, Tdt and-’0* be the coefficient for algorithm (L-, A). By Theorem 5.2, I 
== p11(TDc)-1 and disp F = P1, where ^1GN+ is such that the greatest common divisor of the m' com­
ponents of F is equal to one arid FGZlvm ; Now, consider the row vector 11=(1//?W)T'T =  ^l(TDr)-1T where 
M i f i 1JP11) is such that the greatest common divisor of the n components of Fl_is equal to unity and 
TlGZ1 n. By Theorem 5.2, 11 is a partitioning vector determined by vectors d,, ..., dm> for algorithm (J, D) 
and dispFI=(l//?w)dispF. This implies that Oi=Ja1ZP11) is the algorithm coefficient for_ algorithm (J, D) 
which can be proven as follows. aJ=gcd(/?V TTdi , ..., TTdm) and a=gcd(P, IJd1, ..., FIdm) (see Definition 
4.1 and Lemma I). Now1 a = g c d ( ^ ^  ( I ^ w)FTd1, „., ( l / f f l T d m)=a'//?''.

ByassumptionJTQ1- jJ(mod a)=0, i.e., TIQj—jo)=Xa where XGZ. Because a—a'/p11, FIj1-=(IZ^w)FTj1 
and_ njo=(l//?wjrT j2, IIQ H 2) = ( I y f f l T j1-T j2)=XaV^, or F(Tj1-T j2)=Xa' which means 
F(Tj1- T j2)(mod a')=0. That is, if n Q ^ j2Kmod a)=0, then F(Tj ,-T j2Kmod a')=©. Notice that the 
dimension of the index points of algorithm (L-, A) is m1 and the rank of its dependencejnatrix A is m'. By 
applying Theorem 5.3 (I), for any two arbitrary index points T j1JTj2 G Ly, if FfTj1- Tj2)(mod a')=0, then 
T j1, Tj2 are pseudo-connected. According to Lemma SjJ 1, j2 G Jy are also pseudo-connected in_algorithm 
(J 1̂ I)). In summary, it has_ been proven that for any two arbitrary index points jj, j2 G J, if 
l l(ji-j2)(m°da)=0 and Tzj1=Tzj1, thenJ 1, j 2 are pseudo-connected.
(2) . Consider any two arbitrary points jj, j2 G Jy. G P 0vj/,'-i==l,- ..., k. Since TlQ1— j2)(moda)=0 and 
TzQ1—j2)—0, by the results in Theorem 5.3a (l), they are pseudo-connected. By Definition 2.5, P nvJ/ is the 
maximal pseudo-independent partition.
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(3) Let Pfdenote the a-partition for algorithm (Lv, A). First, let’s show that | P;', | < P- There is one

Lr « r=  f ,z’ ^
a nonempty blocks in P^, I Po I S  aiIC in p  * o> I * O I .— , __ _  _

For P 4,, clearly, there at most ] [  (x,+l) nonempty blocks, where xi=max{'ki(j:-j.J): JlJ j G J), i = l ,
1 = 1

.... „-m '. So, IRt I s n W  IPf l<» implies that |P ln„|<m»x{ |P> |: J ^ P *1 |P. I - | P . I -  Bj
Theorem 4.1, P fl is a pseudo-independent partition of (J, D) and I P„ I =  a - So n < | P max I < (1 I P t I-
□

P r o o f o f  Theorem 6.1: Without loss of generaljty, let det(TDr)>0. Because dispn=det(TD,,) by 
Theorem 5.2 L n=disPnI(TD,.)-'T =det(TDr)l(TDr)-'T . By Fact 2, Il = I ( T D ) T  Let
r= [7 , , ..., W = I(T D c)V then gcd(7l, ..., ,„ ,)=  g c d Let  (TDr),, i,j==l, m ' be the cofactors

of matrix (TDr). Then by Fact I, F=(E(TD C)U, E(TDr)mIj). So, gcd(E(TD r)lj, ..., E(TD,.)n/j)=l and

gcd((TDr)i , i,j= l, ..., m')=l. This implies that the greatest common divisor of all subdeterminants of
n/—Inr —I

order m;—I  is equal to I ,  Le., ] \ Si- I .  Therefore, s ] = ...=sni;_,=l. □



Index set J'Index set J

Figure 2.1 In J', [1,1]* is not connected to any other points. However, in J it is con­
nected to many other points such as point [4,0]T.



Figure 2.2 The maximal independent partition of algorithm of Example 2.2.
Pjnax ==IJ1JJ2jJ3jJ4). However, there is only one block in the maximal 
pseudo-independent partition. Pictorially, only the connectivities of 
points near boundaries of J are affected.



(c) a -V - partition

Figure 4.1: Partitions of algorithm of Example A.I where D= [2, 2]', 11 == [— 1, 2] and vI'= [l, -I]- (a) 
o-partition: the hyperplanes are described by I lj(mod 2)=cj. Points lying on dotted lines belong to 
J11GPil and points lying on solid lines belong to J 1GP,,-. (b) '!'-partition: the hyperplanes are described 
by ^j=C - Points lying on hyperplane v̂ j=C. belong to- J,r. , i G P ( c) OvJr-Partition: dotted lines specify
o-partition and solid lines specify ^'-partition.



Block
' k i ­ t e ] ' t e i [-oJ UJ is] 'Bi [ ; l [si [J is] BI

Index Point £
3
I

3
0

Table 4.1: List of blocks and their corresponding index points of the « '!'-partition of algorithm of 
Example 4.1.
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