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'PARTITIONING OF UNIFORM DEPENDENCY ALGORITHMS
, FOR PARALLEL EXECUTION ON MIMD/SYSTOLIC SYSTEMS
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, Abstract An algorlthm can be modeled as an indez set'and a set of depcndcnce vcctors Each lndex vec-
tor in the lndex set indexes a computation of ‘the algorlthm If the execution of a computation depends on
" the execution of - another computatlon, then this dependency is represented as the difference between the
index vectors of; the computatlons ‘The dependence matriz corresponds to a matrix where each column is a
, dependence vector, An mdcpcndcnt partition of: the index set is such that there are no dependencles
between computations that belong to different blocks of the partltlon “This report considers uniform
dependence algorithms with any arbitrary kind of index set and proposes two very simple methods to find’
' independent partitions of the indeéx set. Each method has advantages over the other one for certain kind
‘of application, and they both outperform previously proposed approaches in terms: of computatlonal com-
plexity and/of optlmahty Also, lower bounds and upper bounds of the cardmahty of the maximal
lndependent partitions are given. For some algorlthms it is shown ‘that- the ‘cardmahty of the maximal
partition is equal to the greatest.common divisor of some subdeterminants- of the dependence matrix. In.
an MIMD /multiple systollc array computation environment, if different blocks: of 'an mdependent parti- -
tion' are asmgned to different processors/arrays, the communications between’ processors/ arrays will be
mlmm_lzed to -zero. This is significant because the communications usually dominate the overhead in
MIMD machines. : Some - issues of mapping partltloned algorlthms into Ml]vﬂ)/systohc systems are .
addressed, Based on the. theory of partltlonmg, a new method 1s proposed to test 1f ‘a system of linear
,Drophantlne equatlons has 1nteger solutlons ' ' ’

‘ »Thls research was. supported in part by the Natlonal Sc1ence Foundatlon under Grant
- DC1- 8419745 and in part by the Innovative Science and Technology Office of the Strateglc .' e
Defense - Inltlatlve‘ Organlzatlon and:’ Was. admlnlstered through the Ofﬁce of Naval
‘Research under contract No 00014-85 k 0588 ' » » L



_ 1 INTRODUCTION : s ; .

Paral]el processmg holds the potentral for computatlonal speeds that surpass by far those achlevable
by technologlcal advances ‘in sequentla] computers ‘This potential is predlcated on two often conﬂlctmg
assumptions, namely, that many’ computatrons can take place concurrently and that the time spent in
-data exchanges between these’ computatlons is small. In _order to meet these . assumptions, algorlthms'
and/or programs must ‘be partltroned into computatronal blocks that can execute in parallel and: have
' communication requirements efficiently - supported by the target parallel computer Ideally, it. may be:
desrrab]e to 1dent1fy, if at all possible, the 1ndependent computatlona] blocks of a program, i.e., those that
requrre no data communlcatron between them. Thls report describes. two practlcal and computat]onal]y’
, 1nexpenswe approaches to ‘dchieve this goal It'is ‘based on a sound mathematlcal l'ramework whlch yields
pti al results for a: meanmgful class of algorlthms and they outperform approaches proposed m extant ’

work : :
‘ The 1dent1ﬁcat10n of a possxble partltron of an'algonthm or program can be done by the ‘user, by. the‘: ,
analysm phase of an optl izing comprler or by the: machlne at run time [GaPe85] The techmques pro-
posed in thls report whlle ‘usable by a patlent and dedicated - programmer are best suited for an optrmrz-
ing: compller They address the specific problem of’ identifying, independent partztwns of an algorithm 'with
goals that are similar to. those of the early: works of D.A. Padua’ [Pad79] and J: Peir, D: Gajskr and R ’
Cytron [Pei88], [PeGa86], [PeCy87] ‘The focus ‘of these efforts is ‘on the optlml ation’ ‘of programs consist-
ing mamly of nested loops with regular ‘data dependenc1es “Thé techniques’ proposed in’ those papers ‘are
‘intended to complement many other tools for ‘the analysis and’ restructurmg ‘of 'sequential programs for
~ execution in multiprocessing machinés [Baetal79], [Paetal8o], [Wol82], [Kuetal84]; [Poetal86]. A related .
potential appllcatxon of partrtlonmg techmques is m the desrgn of algorrthmrcally spec1ahzed concurrent
VLSI architectures [MoFo86]. - » . =
Tni “this report nested loop programs w1th regular data dependencies are: modeled as umform depen-’
dence algorzthms which resemble the uniform récurrence equations considered in [Kaeta167] and the linear
. recurrences of [PeCy87] Data’ dependencres are represented as dependence vectors (‘w1th as many entries
as the number ‘of ‘nested loops) that describe ‘the distance between dependent computations. in-terms of
loop 1nd1ces ( the vectors are called dependence distance vectors in [PeCy87] and are also’ considered in
[VV0182] and [Cyt86] in a complemented form ) Dependence vectors are collected in a matrrx, the dépen-
“dence matriz, ' which is used in this report and in {Pad79], [Pe186] and {PeCy87] to 1dent1fy mdependent'
_' partrt1ons as brreﬂy descrlbed in. the following paragraphs. '
v - The greatest common divisor method: [Pad79] [PeCy87] consxders, for each row of the dependence'
matrlx, the greatest common divisor of the entries in that. row. The resultlng greatest common divisors
are used to partition’ the iteration space of the program (also called ‘the index set) and the cardrnahty of
" the resultmg partition is the product of the greatest common divisors. In addrtlon, an ahgnment ‘method -
is provrded in [Pad79] which allows in some cases the transformation of dependencles so that the value of
the greatest common divisors is mcreased For a given set of dependencles, this’ approach yields a unique
'lndependent partition which is not necessarlly optimal. In some cases, when all of the greatest common:
'd1v1sors equal umty, the number of the blocks in the partrtlon is one, i.e., the whole program.
In the minimum distance ‘method [Peig6], (PeCy87], the dependence miatrix is transformed into an "
“upper trlangular matr1x whlch 1s then used to identify an independent partition. For some algorlthms the
cardinality of the partltlon is the product of the diagonal elements of the upper trrangular matrix.’ This

- approach ylelds partltlons which are better than those obtained through the greatest common divisor -

method. However, the: computatlonal complexlty of this method is hlgh (though aﬂ'ordable accordmg to
[PeCy87]) and the optimality is not giaranteed.. .
In the ﬁrst method, called Smith normal form approach, proposed in thls report a matrlx is used to
~find. lndependent partitions-of unlform dependence algorithms and the block a given index vector belongs ‘
to can be identified by the: product of the matrix w1th the index vector. In the second method, called par- -
»trtwnmg vector: approach, proposed in' this report, a set of vectors defined later in Section 4 is derived
from:the dependence matrix. These vectors are used to find 1ndependent partitions of uniform dependence
~ algorithms. ‘with any arbltrary kind of index set. The block to which a given index point belongs to:can be
identified by simply computing the dot products of each of the vectors by the’ index point.  Both- methods
prov1de lower bound and upper bound on ‘the cardmahty of the: resultmg partltrons The ﬁrst method




. yrelds max1mal partltlons for any algorlthms w1th unlform dependence structure and the second method :
glves maximal partltlons for a meaningful class of algorlthms Comparlsons of thls two methods proposed' v
m thls report and the minimum distance method are prov1ded in Sectron 6. Co TR
) “The . o ganlzatlon of this report is. as follows. Section 2 presents basic deﬁnltlons and notatron Sec-
tlon 3 ‘describes’ the Smlth normal form" approach where the notién of Smlth normal form: i is 1ntroduced
‘ and ‘the procedure of ﬁndlng independent’ partrtlons by the Smith’ normal form approach is presented.
'Sectlons 4'and 5 present the partltlonmg vector approach. In’ Section” 4, partlt' mng and separatmg vec-
. tors are deﬁned and three types of lndependent algorlthm partltron by these vectors are derlved In Sec-, '
, ,tlon 5, a procedure finding an independent’ algorlthm partition by the partitioning. vectors is presented
" and’ suﬁiclent cond 'ons for the resulting partition to be maximal are dlscussed Sectlon 6. compares the
) methods proposed in this report ‘and the minimum’ distance method Section’ 7 discusses somé 1mplementa—
tion “issues of mappmg “the partltroned “algorithms’ into’ MIMD/systohc arrays.’ Flnally, Section 8 con-
.'v-cludes this report and pomts ‘out some future work. Based on the partltlomng vector- approach necessary'
)and sufﬁcrent condltlons are derlved for a system of lmear Dlophantlne equatlons to have an mteger solu- ,
5tlon whlch is presented in Appendlx 1 ' - : :

2. BASIC DEFINITIONS AND NOTATION S )
Ak Throughout this 1 port sets, matrices and row ‘véctors are denoted by capltal letters, calum vectors

i ::are represented by lower case symbols with an® overbar and scalars correspond to lower casé: letters Thev i

; transposes of a vector v. and a matrlx M are denoted v and MI, respectlvely The symbol E, denotes the -
- TOW vector whose entries are all zeros. except. that the ith entry is'equal to unity. The vector 1 (or 0)_ :
denotes the row vector or column vector whose entries are all ones (or zeroes) “The dlmensrons of 1-and 0
“and. whether they denote Tow ‘or column vectors are implied by the context in whrch they are used. The
. vector space spanned by a set of vectors S= {vl, Vay weey Vi) 8 denoted sp{v,, Vo viny Vi) =8p{S} and its
~dimension (i.e., the number of- hnearly 1ndependent vectors'in S) is denoted dzm{ 8}. The symbol J denotes
the identity matrlx The rank of a matrix A is denoted rank(A} and the determinant of matrix A is
represented by detA. The set of rational. numbers, the real space -and ‘the set of integers’ are denoted @,
IR and Z, .respéctively. The set of non-negatlve 1ntegers and the set of pos1t1ve mtegers are denoted N

" and N"' respectlvely. The empty ‘set' is denoted (% -and - the hotation AR denotes “the:: set

©{xxEA, xeB} The notation IS | means the cardinality of set S and Ioz | represents the absolute value

" of /scalar . " Let a, by ¢, dEZ ‘and - a>>»0, ‘the -notation a Ib meéans: "a’ d1v1des b"; ie., b—ca, and .

’ .b(mod a)—d if- and only if b==d+ca where 0<d<a. As defined in- [Kaetal67], a function Ay, x5 m) is .
‘stnctly dependent on x; if for any: arbltrary fixed: values b assigned:tox;; j aé i, f(b,, ,;. bigy x5 by
b,) is not a ¢constant functlon As a final remark, if the element a belongs to a set S, the notation a € S is
used and this notation is abused" to indicate also that a column vector m; (or-a row vector M) is a
column (row) of a matrix M, i.e., m; EM (M, €M) means m; (M;) is a ‘column (row) vector-of matrix M.

f ollows

. Deﬁmtlon 2 1 (Umform dependence algorlthm) A unzfarm dependence algorzthm is’ an algorlthm‘-“‘ o
“-‘that can be descrlbed by an- equatlon of the form - » —

V(J)-—-f"(v(,]—“d ),V(J_d ),

(1) Jelc VAR is an lndex pomt J is. the zndea: set of the algorlthm and n E NJr is. the number of com-
s .rponentsofj, . - o - : , , o ‘
(2) .,'f- is the computatlon 1ndexed by j ], ie., a smgle—valued functlon computed at pomt j m_a' 'sihgle "
P unlt of time and strictly. dependent on. each of its arguments; . .- - ‘ -
(8)- ¥(§) is the, value computed "at j", i.e. the. result of computing the r1ght hand s1de of (2 1) and
(4) o AN i=1, .., m;m¢€ N are dependence vectors, also called dependenczes, whlch are constant (1 e. .
i vlndependent ofJ € J), ‘the matrlx D—[dl, dm] is called the dependence matrzz and rank(D) <<

”v"»'mm{n m} is denoted bym ‘ ~ LT e T S

The algorlthms of 1nterest in thls report are the so-called un1form dependence algonthms deﬁned as, Lo

(2 1) i



The class of umform dependence algorlthms is a’ 51mp]e extensron of the class of computatlons‘
described by uniform recurrence equations [Kaeta167] “The main difference ‘is that uniform dependence -
algorithms allow for- différent functions to be computed (in a unit of time) at different points of the index
set. From a practical viewpoint, uniform dependence algorithms can be easily related to programs where
(1) a single statement appears in the body of a multiply nested loop and (2) the indices of the variable in
the left-hand side of the statement differ by a constant from the corresponding indices in.all references to -
the same variable in:the right hand side.. Alternative computations can occur in each iteration as a result
of a single condltronal statement as_long as data dependencres do not change Nested loop programs with
multlple statements’ can also use the technlques of this report together with the allgnrnent method dis-
cussed-in [Pad79] and [PeCy87] For the purpose of this report, only’ structural information ‘of the algo-
rithm, i.e.; the'index set J and the dependence matrix D, is needed.: Other information such as what coms=
putatlons occur . at- different points and. ‘where and when_input/output. of variables takes .place can be
1gnored Therefore, a uniform dependence algonthm with index set J and dependence matrix D is hereon
characterlzed srmply by the pair (J, D). Also, as in Deﬁmtlon 2.1, the letters n, m and m’ always denote
the dlmenSlon of pomts in J the number of dependence vectors and the rank of the dependence matrlx D,
respectrvely : ' :

}Deﬁnltlon 2 2 (Algorlthm dependence graph and connectrvrty) The dependencc graph of an
al_gorlthm @ D) is the nondirected graph (J, E); where J is the set of nodes of the graph ‘and E= {G' ]) 2§
C-j=d; or j '—j=d, d € D, j!, j € J} is the set of edges Two index pomts 3, §' are, connectcd if there ex1st

. lndex pomts JH sy JIE‘I such that (J;J]); (JI)J )7 s/ (Jl I)Jl)’ (JlrJ) E E

Deﬁmtlon 2. 3 (Independent partltlon, maximal mdependent partltron and partntnonablhty)
leen an algorrthm J, D) and the correspondmg dependence graph (J, E), let P={1, .. q}, g € N*, be
a partition of J. If for any arbitrary points j, € J; and j, € J,, i#1and 0<1 I<q, (J,,J ) ¢ E then P is an
independent partttwn of the. algorlthm (J, D) The sets J,, = ,‘ ., q, are called blocks of partition P. For -
an independent. partrtron p if any two arbitrary points _], j €, i=1, .., g are: connected in the depen-
dence graph then p is the mazzmal mdcpcndcnt partition of (J, D) and is denoted 7pmd\ The cardmahtyv
of the maxrmal 1ndependent. partltlon | pmax | is referred to as the partztwnabzlzty of the algorithm (J, D);.

" Informally, an mdependent partition of the mdex set J is such that there are no dependencles
between computations which belong to dlﬂerent blocks of the partltlon In graph theoretical terms, each
block of an independent partition of (J D) corresponds toa component of its dependence graph (J E)

" Generally speaking, the shape and the size of the index set influence the partltronablhty of the algo—
rithm because of boundary conditions. Consrder two algorithms (J, D) and (J', D) such that D’=D and
J= JU{J}, i.e., they differ onl_y in the size of the index sets. The corresponding dependence graphs (J, E)
and (J', E') can be such that j b 31y ) ,EJ are not connected in (J E) but are connected in (¥, E') because it is
possible that E'= EU{(J, _]1) (_;, Jn)} In other words, j; and js can belong to different blocks of the maximal ,
independent partrtron of (J,D) but belong to the same block of the max1mal 1ndependent partition of
(J' D') The followrng example 1llustrates this concept

Ex-arnplev 2'.‘1': Consider alg_or‘ithms (J, D) and (J', D), where

D=

s ol . . | ‘ )
_3 2] J= {[Jnl] QSjnj‘lS.srseN—*_}
“and i '
- “1 ]. _ 0 . ;
={j: | 0 -1[j< |0} seNt}"

Figure 2.1 ‘sh:ows the index sets J and J' where' s=8. These two algorithms have theb same ’dependenc'e




. rnatrlx but dlﬂerent mdex sets In .]’ pomt 1, 1][ is not connected to any other pornts in J' because
T, 1] _—t d,, 1—1 2, do not belong to J’ However, in J 1t lS connected to [4, 1]I E J. End of example )

The dependence of' the partltlonabrlrty of an algorlthm (Jy D) on the shape and size of its mdex ‘set J
s a cornpl]cated issue and has practlcal rmpllcatlons For example, in many programs, the loop’ bounds
are not known at complle time and partitions must be identified which are 1ndependent of the size and
' shape of the 1ndex set and based solely on data dependencres To concentrate on the relatlonshlp between
the structure of the dependence vectors-and the partltlonablhty of the algorlthm, the fol]owmg concepts
are 1ntroduced '

Deﬁmtron 2. 4 (Pseudo-connectrvrty) Given an algorithm (J D), two. pomts _], i E J are pseudo-
connccted if there exrsts a vector X € YAl such that ]_j'+D ) VR T

: As an exarnple of pseudo-connectrvrty, in algorrthm (J' D) of Example 2 1, pomt [1 1" is pseudo-
'connected to [4 0" through point [1 3" e (J J')

Deﬁmtlon 2. 5 (Pseudo-mdependent partrtlon, maxrrnal pseudo—mdependent partltlon and
pseudo—partltlonablhty) Given an- algorlthm (J, D) let P={J;, ... J,} be a partition of J. If any two
arbitrary points j, € J,€P. and j, € J,€P, i #'], are not pseudo—connected then Pisa pseudo mdependent
partition of the algorithm (J, D). fPisa pseudo—mdependent partition and any two arbitrary points j, _]
€ J;, i=1,...., q, are pseudo—connected ‘then P is the mdazimal pseudo-independent partition of {J, D) and is
denoted an The cardinality of the maximal pseudo—mdependent partltlon | Pma‘ | is referred to as the
pseudo partttzonabzlzty of the the algorlthm (J D) :

In many practical casesﬂ,e‘e.gi., when “while" loops are present in a 'pro'gram,'it is also convenient ‘to
consider algorithms whose index sets are arbitrarily large along one or more dimensions. The general case,
i.e;, when this applies to: all dimensions, is captured in the followmg deﬁnltlon and’is also considered in -
thls report ' - : o

Deﬁmtron 2. 6 (Seml-mﬁmte mdex set): An mdex set Ji is semi- mﬁmte 1f 1t takes the followmg form

J—{J—[Jl,f,J.l] 0<J.,<OO i=Lewn) ,_'_ (22).

12
J= = {'j J = [Jl, i ] 0< _]“_] < oo}, The mdex set J is partially. shown i in Flgure 2.2, The maximal parti-

-Example 2.2 Cons1der the algorlthm (J D), where D— '

] and J=N? is semi-infinite, i.e.,

‘tlon ﬁm,\g{Jl, sy Jy, B where Ji={[0,0]"},- J={1, 0]}, J={[0, 17, 2,00} a.nd =

‘{_] je (J= U J)- Pomts = [0 O]T and. J,—[O 1]T are not actually connected in the dependence graph of

‘the algorlthm However, they are pseudo-connected by Definition 2.4 since _])—Jl + D>\ A= [3 2]T ‘
‘Intuitively, j; and j jo are connected through points [2,—1]T, [4,-2]", [6, —3]T and [3 ~1]" which are not in

J. ﬁm,\ is not a pseudo—mdependent partition. Since det D=1, equatlon D A= ] — j'always has an integer
solution for. >\ 'So any two arbitrary points in J are pseudo-connected to each other. This implies that
there is only one pseudo—mdependent partltlon P= {J} which-is.also the maxunal pseudo—mdependent par-
tition. End of example : o : :

At this point,. some ,comments are in order. First, by Definitions 2.3 and. 2.5, a.i.bpseudo-independent
partition is also an independent partition regardless of the shape and size of the index set. However, an
. ‘independent partition is not necessarrly a pseudo-lndependent partltlon ~This'is due to-the fact that j;,.j.
€ Jare pseudo—connected if they are connected and the reverse is not necessarlly true.. Secondly, for prac~

tical purposes, it . is sufﬁcrent and rnore efficient to 1dentrfy pseudo-mdependent partitions instead  of
_mdependent partrtlons for the reasons explamed next Blocks of mdependent partitions that-are not.



blocks of a pseudo—mdependent partltlon and contam only a few 1ndex pomts (hereon called boundary‘
blocks). always ‘occur- at or near the boundarles of an index set. “This can be shown for the general case
when J is seml—lnﬁnlte In fact according to Lemma 3in [Kaeta167], there eXISts always a point
[p,, Py veny p.]" € Jsuch that for any arbitrary points _]—‘ [_]1,]), vo da]T € Jand j'= 3§ s BT €
J beyond p € J (i-e., J; > piand j j' > pi, 1=1, ..., n), j and j' are connected in the dependence graph if and
only if- they are pseudo-connected Boundary blocks are typically such that their-individual cardinalities
" .are very small in- relatlon to ‘the sizes of the algorithm and pseudo-lndependent blocks. As a consequence,-
llttle addltlonal speed -up can result from executing boundary blocks concurrently ‘with other’ blocks.
Moreover, assigning small boundary blocks and other large pseudo—mdependent blocks to different proces-

- sors of a multlprocessor can cause a non-balanced load distribution and inefficient’ system operation. In

addition, as pointed out before, when index sets are known only at run time, it is not possible to deter-
mine the boundary blocks. Finally, many algorithms are such that they have the same partmonablhty'
and: pseudo-: partltlonablhty ‘For all.of the above reasons, this report considers hereon only the problem-
of 1dent1fy1ng pseudo—mdependent partltlons of an algorlthm :

3 SMITH NORMAL FORM APPROACH

Thls section discusses an approach," called Smlth normal form approach of finding maximal
vpseudo—mdependent partitions- -where the Smith normal form {abbreviated SNF) of the dependence matrix
D is used. First, a theorem about the SNF is restated and followed by the definitions of the partitioning
matrix and the dlsplacement vector. These concepts are used then to define a partition of index set J
which is also the maximal pseudo-independent partition of the algorithm. : “Then a procedure is presented
which constructs the max1mal pseudo—mdependent partltlon of a glven algorithm. Complexity of the pro-
cedure is also dlscussed S

Theorem 8.1 (Smith normal form) [Sch88, pp. 50]: Given a matrix DEZ"*™, there exist two unimodu-

lar (A non-singular matrix is unimodular-if its elements are integral and 1ts determmant is 1) matrices
UEZn " and VEZ“‘ m such that" : :

ese ave  ses swes  wms- ses ouo

UDV=S={0 0 .. sy 0 .. 0

.....................

Sis called ‘the Smlth normal form (abbrev1ated SNF) of matrix D S is unique, sl, eesy Sy are positive

integers, 8 |s) oo I8y Hs,, k=1, ..., m', is the greatest common divisor of subdeterminants of order k of
e o v
the dependence matrix D and m’ is ‘the rank of the dependence matrix D. O

More detaxls and explanatlons about SNF can be found in [Sch86, Pp-. 50] and [VeFer]

: i 2 0
Example 3. 1 Con31der the algorlthm (J D) studied . in [PeCy87] D= ——2 4 4 and J {[jl,_]y,_]]
’ 4 '—1 2
'1<_],<16 1—1 2 3} The matrrcesU S=SNF andVls as follows »
10 0] Cfroo] i -2 a2
CU=[2 -1 -1, S=j0 1 0}, V=0 1 6
~-'_—149 8] - |00 52 00 1

‘Clearly UDV S and U and V are ummodular End of examp]e




Deﬁnltlon 3 1 (Partltlonmg matrlx and dlsplacement vector) leen an algorlthm (J D) the
‘matrix- U such:that UDV=S is the SNF of D is called parhtwmng matriz-of’ (J D). Let sj,- ..., s, bé the
non-zero dlagonal elements of S, then vector s—[s,, oy Spify OO oo] € N+)“ iscalled dzsplacement vector -

of (3, D)...

Definition 3.2 (U-partltlon) Let U be a part1t1omng matrix of algorlthm (J D), the partltlon of mdex
set - J: Pu—{J . }, where y,EZ', i=1, .., t, is called the ‘U-partition of algorithm (J, D) if

J-={J UJ(mod—) )'., J€J}

Example 3. 2 Cons1der the algorithm of Example 3 1. U is ‘the partltlonmg matrix; s=[1, 1,52]l is the
'd)sp]acement vector, Pl'_{‘llu 0.0 lU o ‘lllr} is the U-partltlon where Jl” 0 || {J LJ(mod s)= [0 0 1] },
1—0 51 End of example :

, It is clear that Py is-a partltlon of ‘the mdex set J because for each JEJ U_](mod —) is unique. Actu-
'ally, Py is an mdependent partition. To show the mdependence of U—partltlon, the followmg lemma is
introduced: ﬁrst and followed by a theorem." Lo S Lo v

v’Lemma 3.1: leen algorlthm (J D), let J,_JEJ and 5 be the dlsplacement vector, then J, and J ‘are
pseudo—connected if and only if Ujl(mod _) UJ (mod —) .

Proof ( > ) Let’s assume thatj Jl and 1_'3 are: pseudo—connected ‘then, by" Deﬁmtlon 2. 4 there exists an
. integer vector: )\EZ"', such ‘that D)\—]I—Jo Let. VEZ™ ™ be such that UDV=S is the SNF:. of ‘matrix D.
Then SV~ IX—U(J,—JQ) V is unimodular implies that V- 1 is also an integer matrix and therefore, V-IN is
an 1nteger vector. So, U(Jl—Jo)(mOd_) SV~I\(mod _)—0 ie., UJl(mod<) Uj,(mod s). Tk
(=>): Let’s assume that Ujl(mod s)=Ujy(mod s), 1e, U(i=io)=" [¥181y Y282 ++es YuSruts 0y -eey O]
where ¥ip i=1, i.., -m!; are integers. Let Y=[y,, Yo, -iss ¥m» 0y «rey 0]TEZ™, then:U(j,~j;)=Sy. This implies
~that J.l,—_,_,_]z,-:U ‘UDVT,,_gr JL—_]z—_DT V is integral implies’ that V— is integral. So, there exists an integral
vector >\:.V_' suc'h that.jl—jszX which means j; and j, are pseudo-connected I ’ '

Theorem 3. 2 leen an algorlthm (J D) let U be the ith row. of the partltlomng matrlx U i=1 ‘,: V weey Iy
6,u—max{U,J JEJ}, ]—mm{U,] ]EJ} and x-& 6|+1, i=m'+1, ..., n.” The following statementsr are.’
_true: .

(1) The U-part1t10n is the ma.xnmal pseudo—mdependent partltlon, ie., Py= Py ;\ :
n m'

(2) The pseudo-partntlonablhty is bounded above by I]sl\ IT xiiey [P I=11ss ] [ X;.
RS . . : . k=1 1-—m’+l . L k= I i=mi41

' Proof:. Let 5 be the dlsplacement vector L :
(1) First, Py is a pseudo—mdependent partition. This can_be proven as follows For ‘any two arbitrary’
points jIEJ— EPU and JnEJ EPU, ¥i#Y); by Deﬁmtlon 3.2, UJ,(mod s)=y; and UJ (mod s)=y). Because y,¢y|,‘

: ~"U_]1(mod _)anJo(mod_) By Lemma 3.1, Jl and jo are not pseudo—connected ‘which" 1mplles that Py is
- pseudo—mdependent : : :
; ~Secondly, PU is the maxlmal pseudo-mdependent partition. This can be verified as follows For any
two - arbitrary . ‘points " j; JQEJ—EPU, by deﬁmtlon of  the U—partltlon (Deﬁmtlon 3.2),
;UJ,(mod s)= U_]n(mod s)=y. By Lemma 3.1,'j,.and j, are pseudo-connected By Definition 2.5, Py; is the
maximal pseudo—mdependent partition. " =
7 (2) Let PU—{J y oy J } Con31der a block J;€Py where Y=[y15 ony yn] Clearly, 0<y,<s,, i=1 ,,' :;,m’ and ;

6,|<y,\<6m, lg-—m +1 ‘, n. So there ‘are -at most slxs,x xs,,l:><xm+|>< e dlstmct block mdlces, 1e,
oo . L :

l ll\J\l lPUl< l[sk ll X D
: k 1 1—m'+1 )

f: Let x= [x“ wery x"] EZ" and s= [s,, sey Sty 00y oty 00] T with ‘s>0, i=1, .., m' Thel
notation x(mod s) denotes. the vector [x,(mods), ..., x,/(mod s, ), X,/ 41y -ee xn] ". '



: For every y= {yl, iy y,,] K O<y,<s,, 1——1 o’ b,,<y,7<6,,,, k-—m +1 oy Iy 1f there exlsts at least one

.om

mdex pomt JEJ such that jEJ then I 96@ and. IP“ =] ]sk ]] X;. Notice that detU—il So, for each .
. k=1 l—m'+L_
such vector ¥, there always exrsts an integer vector j.such that UJ(mod s)= y Therefore, 1t is: reasonable

to ‘make. the - following - assumptlon onh ‘algorithms of interest -of this report: That is, for.each" vector’
y=[yy ,yn] 0<yi<s; i=1, 4, m', §,<y.<d,, k=m'+1, ..., n, there'is at least:one: mdex point. JEJ such
that _]GJ— Thls assumptlon'makes sense, especially, when J is dense (informally; an index set J'is dense if-
any arbltrary point jEZ" that is. inside the boundaries of J belongs to J) and large enough and
rank(D)—n Under thls assumptlon the followmg corollary is. true T R e SRS

Corollary 3. l leen algorlthm (J D), let rank(D)—n and 5= [s,, ,s,,] be the dlsplacement vector Then '

. |Pm,;|—-]—ls,, 1. e., the pseudo—partltlonablhty of algorlthm (J D) lS equal to the greatest common dwrsor:. .
SoiEL - .
“of subdetermmants of order n of the dependence matrlx D

Procedure 3 l (Fmdmg the maxnmal pseudo—mdependent partltlon by SNF approach)
Input: - - Algorithm (J; D)5 © . o/ - e o S T L
Output: U-partition Py of’ algorlthm (J D) i -
‘Step 1: ..Finda partltromng ‘matrix U and. the dxsplacement vector TN AL OLE TR
Step 2:" For every index pomt JEJ compute Uj(mod s)= y and: assrgn _] to. J the block indexed by y.
.Step3 PU—-{J Yo J } StopD ,' e

The complexxty of the procedure is a linear functlon of the cardlnahty of the lndex set J i.e., the
: number of the'index pomts of the ‘algorithm, and a polynomial function of n and m, the number of com-,
ponents of the index vectors and the number of the dependence vectors. To find the displacement vector s,
‘it needs ‘to find' the SNF of matrix D. In [KaBa79], a polynomial algorithm is proposed for. ﬁndmg the
SNF of any arbltrary matrix A€Z" " and the corresponding: left and right multipliers U and V such that’
UAV=SNF. The ‘complexity of the product of the memory space and the total execution. time of this algo-
rithm is O((max{n, m})'°). [KaBa78]. So, the operations of Step 1.is bounded by O((max{n m})‘”) ‘For.
Step 2, it needs at most O({J |n® ) operatrons to compute Uj for every mdex pomt j Therefore, the total
'complexlty is 0((max{n,m})1°)+0( 8 |n ) S . o s :

‘ 4. PARTITIONING VECTOR APPROACH--BASIC RESULTS VR
~ Sections 4 and 5 present the: partltronmg vector approach In this approach mdependent algonthm
partltrons are determmed by two types of vector, called partitioning vectors:and separating vectors, which

‘must_satisfy certain conditions. Together with some auxiliary termmology they are introduced in

Definitions 4.1 and 4.3. These deﬁmtlons are followed by a theorem and an example whlch make clear the
relation between these vectors and mdependent algorlthm partltlons : ‘

: -Deﬁmtlon 4. 1 (Partltlonmg vector, determlmng vector, equal partltlomng vector and algo--» '
rithm coefficient): Given an‘algorithm (J, D), =[x, 7r,, T €L " is a partztzonmg vector of (J D), if
-and only if it satisfies the following condxtlons , L
(1) ged (ﬂ'l; Ty esey 7'rn)"lT ’ - : s '
(2) There ex1sts a set of m —rank(D) linearly- 1ndependent dependence vectors dt , dt 3 ey d such that

: Hdt1= —Tldt —dzsprl>0 SR r o v‘ ST » :_ ‘ (4 1)_

o, 2T€ called the detcrmmmg vectors of ll and [d, ) e d ] is 'called‘

detcrmmmg matriz of T1. If- ||d (mod dlspll) 0, i=1, ..., m, then [l is called an equal partztwnmg vector
of (J,D). The constant o= gcd(dlspll @y - am) where o —lld (mod dlspll), i=1,...,m, is called the.

The dependence vectors dL 1oy, d

1 ged (a,, w3 ) the greatest common d1v1sor of Bpy ey By



algorithm "cbc;ﬁ“icié‘rit; :

For a glven partmonmg vector the set of determlnlng vectors is not necessarlly unique and there-
fore, displl mlght mnot be unlque, either: However, grven a partitioning vector and- a set of determining
vectors, displ] is unique: ‘ Therefore, whenever displl is mentioned, it is assoclated with a partlcular set of
’determlnlng vectors. _

By Deﬁnltlon 4, 1; if m—n, then for each set of determlnlng ‘vectors d, 3 e d' i , the correspondmg S
' _partltlonlng vector i is the: unlque solutlon that satlsﬁes conditions 1 and 21in Deﬁnltlon 4.1 and the fol- -
~ lowing system of linear equatlons ' : '

“f{i»,ﬂ(d d 5)=0.

- N3, - .;3)——.-,0
| 1(d,-dy)= il

"(dt'*d ) o

When m'’ < n, the partltlonlng vector determmed by m' llnearly lndependent dependence vectors dl o
d,l is not unlque, and of course, it belongs to the solution space of Equatlon 4.2. In the next section, a
closed form expresslon is provided for a partitioning vector as a solution of Equation 4.2.

- A partitioning vector I1-defines a set of hyperplanes Il j(moda)=c, c€Z, in the index. space. Since an

index point lies on only one of the hyperplanes, the index set J can be:partitioned according to them, i.e.,
~all points j lylng on hyperplanes such that for a fixed ¢, Hj j (moda)—c belong to the same block of the par- S
tltlon The followmg deﬁnltlon states ‘this concept formally : s

VDeﬁmtlon 4.2 (a-partltlon) Let ITbea partitioning vector and a be the algorlthm coefficient for (J, |
D). The -partition’ P, -—{JO, ﬂ__,} where Ji= {j jeldy ﬂj (moda) 1}, 1—0 ya—1; is called the a-
partttzon of (J D) R '

Clearly, P isa partltlon and it is shown in Theorem 4. 1 that P is also a pseudo—mdependent partl-
thIl . . . . : o
“For: the case where m'< n, ise., rank(D_) < n, a necessary condition for two index pomts J,, J €lto
be pseudo—connected is that equation Dx (J]—-J ,) has at least a real solution x € IR™. This motivates the
introduction of the following concepts Let row vector V; be such that V,D=0. Clearly, there are n—m’
linearly independent such vectors, denoted ¥y, ...; ¥, and they define a set of hyperplanes

‘\I’l,

n—m"

\1;":"’ E=i"iezn—'m” P o 7. : o ’ L (43)

~.in the lndex space. The 1ndex set-J can. be partitioned such that points lying on the same hyperplane

‘belong to the same block of the partition. It will be clear later that if two index points jj, j, € J lie on the =

same hyperplane defined by (4 3), the equatlon Dx= (]1—] ) ha.s a solutlon These: concepts are formally-’ .
deﬁned as follows. :

Deﬁnltlon 4 3 (Separa.tlng vector and separatlng matrlx) Given an. algorlthm (Jy D ) —[d),], veey
d)m]EZ] Tis a separatmg vector of (J D) if and only if it satlsﬁes the followmg conditions. '
(1)  ged(viy, - ,¢m)—— : : : : L

(2) wD=0. A [
“Let \111, ey W, be all the linearly- independent -separating vectors; the 'matrix,\l{# \U | is called

separating matriz.
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A set of n— ml linearly independent separating vectors V,, ..., \I/n_m: for - algorlthm (J, D) can be
found by solving the equatlon in condition 2 of Definition 4.3. The following definition indicates how. to
use these separatlng vectors to construct a corresponding algorithm partltlon : :

_Deﬁnition 44 (w- partltlon) Let ¥ be a separating matrix ‘of algonthm (J D). The partltlon
Pq,={.]. } of J is called the W-pariition of algorithm (J, D) if J—— Ut j€d, \113 y}, where

Yi=[¥1i oo y("_m'),] EZ(" '“’) is called the index of block I ) i=1, ..., q.

Clearly,_Pq, is a partltlon of J. If m'=n, then Py={J} is a trivial partition since the only separat— '
: mg vector i5 0in this case. As for P, Py is actually pseudo- lndependent as shown later in ‘Theorem 4.1,
“Let J- € Py and ‘consider the subalgorlthm (J7» D): Clearly, if o >1, subalgorlthm (J‘,D) ¢an be
farther partltloned by ‘the' partrtlomng vector 1. In other words, the index set J can be partltroned by a
set of hyperplanes : : : ' : : ;

”J(‘;‘,;’d‘f)_ l lyi ] "yUE{o (P 1} andy € e, _.-(4-,4.)" |
.and all pomts lymg on the same hyperplane belong to the same block of the, partrtxon T}us partltlon 1s .
formally stated next. .

Deﬁnltlon 4.5 (a‘l’ partrtlon) Let ll be a partltlonmg vector and W be a separatmg -matrix of algo— B
rithm (J, D) The partltlon Poy= {Jv, Jg ) of index set J is called the V- partttwn if J— —{j 1€,

HJ(mod oz)

uj. y.}, where y,_ [yfm,‘y__,i,. ,y("_m,)l} EZh—mv is called the ;ndez of block Jg, i i=1, ..., 'k‘; B

) Partltlonlng vectors and separatlng vectors play a very important role in: algorlthm partltlon The"
next theorem gives some of the motivation for the introduction of these concepts. More specifically, it pro-
vides sufficient conditions for two computations to belong to different blocks of an mdependent partition, '
in terins of those vectors and ‘the index points assoc1ated with the computatlons Moreover, 1t .;hows tha,t'
a— partltlons, LA partltlons and a V- partltlons are all pseudo—mdependent ' : L

Theorem 4 1 Let Il ‘be a partltlonmg vector, o' be the. algorithm coefficient and \l/ be a separatmg '

matrix of algorithm (J, D), respectlvel_y The followmg statements are true:

(1) ' 'For any two arbitrary points j;, j» € J, if Tlj;(mod a);éll_]r,(mod ) then they are not pseudo— :
~ connected. Therefore, P, is 2 pseudo—mdep_endent partition of (J, D). ~ v .

(2) For any two arbitrary points i1y Jo€Jd, if ‘l/J]aé‘l’_] oy then they are not pseudo—connected Therefore, Pq, -

' 'is a.pseudo-independent partition of (J D). : -~ : . -

(3) . P.y is a pseudo-independent partition. -
: Proof Prov1ded in Appendix 2.

k,Corollary 4.1: If algorithm (J,_D) has an equal partitioning vector ll then _]1, >EJ are not pseudo—
connected if HJl(mod dispIl) = I jo(mod dlspll) or ¥j;#Vj.. ' . . : ~

As a partlcular case of Theorem 4.1, Corollary 4.1 is obvrously true. If algorxthm J, D) ha.s an equa]
partltlonmg vector 11, then the algorlthm coefficient o=displl. By Theorem 4.1, Corollary 4 1 holds.

‘ Example 4.1 ConSIder algorithm (J, D) where J={[j;,js|": 0<jl,J,<s, s€ N+} and D [d] where
d=12, Z]T Figure 4.1 shows the index set J for s=4. _There is only one possible set of determining vectors
{d} One of the partitioning vectors determined by dis = -1, 2]_ It follows that displl=Iild=2 and

the algorithm coefficient a=2. Consider index points _}1—[0 0]l and j, = [1 0]"; since [1j,(moda)=0 and '
llj (moda)=1, by Theorem 4.1, they are not pseudo- -connected. There is only one: linearly 1ndependent
separating vector W;=[1, —1] and a separating matrix is ¥ =1, ~1] Agam consider index ‘points j,
js=[0, I]T for whlch \lJ_]l—O and \ll_]»——-—] By Theorem 4.1, 3, and J are. not pseudo—connected In Flgure



b -,11"‘_’;‘ :

4, 1 (a) and (b), hyperplanes ]l_](_modnz) =c, ‘and’ \UJ—c,, cl, ¢, € Z, are drawn, respectlvely All the pomts‘ -
lying on the same hyperplane II_]_(_modw)—cI belong to the same block of the a-partition and all the points

: lylng on the same hyperplane . Vj=c. belong to-the same block of the W- -partition. Flgure 4.1 shows the

a—partition, V- partltlon and a V- partltlon pictorially. Let s=3, then ,,—{Jl,,.l } . where
 Jy= {[o o/%, [0, 1], [0,2]", [0,3], [2,0]", 2,1]", [2,2]%, [2,3]"} and Ji={[1 o]‘,[1 i 1, 2] , [1 3]‘

- 13,015, 3, 1]F, [3 2], [3,3]' } Also Py= {JI sjy ooy Jigly ooy Jpyy} Where Jy= {3, 01"}, J={[2, o' 3,1,
“Jm—{ll o, .[2,1]",[3, 2"}, JM—{[O o, [1, 1]I 2%, 31, J—=tlo, li 1202 8"y,
.—{[0 2] ,[l 3] } and ‘]I—*]— {[0, 3]"}. P,¥ can be obtained by intersecting Jﬂ.lij, 1——0 1 and ]—-3 .

, 3. Table 4.1 llsts all blocks of oW-partition and their index points. IP,N, | =12<ua le |——14
Clearly, Pw, P,, ‘and P are pseudo-mdependent partitions. . In Sectlon 5, it is shown that the rr\h-
partltlon is. also the maxxmal pseudo-mdependent partltlon End of example '

st B_y Theorem 4.1, if for any arbltrary value ofa€ Z;0< a< o there is. at’ least one pomt ]EJ such ;
that llJ(mod a)—a, then there are at least o points in J that are. not pseudo-connected to each other and

J,€P, is such that J; = (¥, i= 0, ..., a—1. Therefore, [P"m | > o. Intuitively, if J is large enough and

dense, then for any arbltrary value of a, 0<a<oz and a € Z, there usually exists at least one index pomtj _
such that HJ(mod a)—a Therefore, it'is reasonable to make the followrng assumptlon o

‘ Assumptlon 4.1 (Index set) For an algorlthm (J D) under consrderatlon in thls report “let i1 be a
-partltlonlng vector and o be the algorlthm coefficient. It 'is assumed that for any arbltrary value of a E
Z 0 < a<a, there is at least one polnt J € J such that llJ(mod oz)—

Corollary 4.2: Let ¢ o and P be the algorlthm coeﬁclent and the a-partltlon, respectlvely Then |P |—on R

under Assumptlon 4, 1

The next theorem shows that thls is true 1f the mdex set J is deﬁned by (2 2), ie., J Nn Therefol-e’ .
l _mhax l > o lf Jis seml-mﬁmte e e |

Theorem 4 2 Let ﬂ be a partltlomng vector of (J D) where J is deﬁned by (2 2) and'a be the a _gorlthm"

coeﬁcwnt Then for: any arbitrary value of a€ Z,0<a<a, there exists at least one mdex pomt j€J such -

that ﬂj(mod a) a and the pseudo-partltlonablllty of (J D) is greater than or equal to , ie., le & | >

o . : : _ .
Proof Prov1ded in Appendlx 2.

b, PARTITIONING VECTOR APPROACH--METHOD

In this section, Theorem 4.1 and other results and.concepts 1ntroduced in Sectlon 4 are used to
prescnbe a'partitioning procedure. Afterwards, Section 5.1 discusses how to find the partitioning vectors
-required by the procedure. Then Section 5.2 characterizes algorithms.for which the method yields the
optlmal partition and derives lower and upper bounds on the pseudo-partitionability of arbltrary umform
dependence algorlthms The 1ndependent partltlonlng procedure is as follows »

Procedure 5. 1 (Fmdmg a¥-partition for algorrthm (J D) by partrtlomng vector approach)

Input:  Algorithm (J, D). ‘ e
Output: ‘oW —partition P,y for algorlthm (J, D) , PO

Step 1: Select m' linearly independent dependence vectors. dipy ey d i set D = [dL R d ], ﬁnd T g

‘ . Z™ " such that rank(TD, )—m and compute the correspondmg partltlonmg vector H accordmg

. to-Theorem 5.2 provided in Section 5.1. If dispIl | det(TD,) |, then select another set of m'

lmearly independent’ dependence vectors and compute the corresponding partitioning vector until

- all distinct sets of m' linearly independent dependence vectors are considered. . If a partitioning

. vector Ill su(ch t])ult dlspll = |det(TD ) |'is not found, then select the partltlonlng vector 11 such

det(TD

d1spl|

is - m1n1mum Then compute ‘the algonthm coeﬁic1ent o accordlng to -
Deﬁnltlon 4.1, ‘
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Step _2: Obtam n ——‘ m' lmearly 1ndependent separatlng vectors Wy, v, W, by solvmg equation W, D 0.

v,
, Sét W=
o \yn——m(
: S . k . - Yoi » _ _
Step 3: F index voint 7 e J. i | Milmeda} L o1 Vi hen assien 1 to J-. the block
ep i tor every ‘index ‘pomt.JE J, il'» \I/] ==y = s t en‘asmgn ] ‘to W e bloc
. o e S » Yin--w'li v » '
» ‘indexed by y;; i.e., j € J;.
Step 4:> 'P‘“\y:'{J—,xv sey J- }i.

¥

5.1. Fmdmg a partltlonmg vector ; S '

This subsection provides in- Theorem 5.2 a closed form" expressron for the computatlon of partltlon-
ing vector [, as required in Step 1 of the partitioning: Procedure 5.1. In' addition, because of the snmple
and regular mappings that result from equal partitioning vectors, necessary and sufficient condltlons are-’
provxded in Theorem 5. 1 and Corollary 5 1 for the existence of thls type of vectors for a given algorlthm
Theorem 5.1 An algorlthm (J D) has ‘an equal partltlomng vector if and only 1f there ex15ts a set of m'

llnearly 1ndependent vectors d, 2 dl o dl {such that

| ‘:a'll"~.a'l"-' _-l..‘ a’lln
. 5 _’ ‘ By E — | RS : vra-m_) .’..‘» » Ao . o ‘ ' . . .
D=[ddimnd, ]| b wER R

a'ml Ao v Ayiy ]

vwhere 2 a 1s an 1nteger, j——-l o m ,
i=1 L ’
Proof Prov1ded in: Appendlx 2.

_ lt is not‘easy to test whether a glven alg0rithm has an eq,ual partitioning“ver:tor'using‘ the condition
in Theorem 5.1.’ The following corollary provides s‘ufﬁcient conditions which are easier to test. '

Corollary 5.1: An algorlthm (J, D) has an equal partltlomng vector 1!' 1t satisfies one of the followmg
conditions: D RS

(1) . rank([d,~d., d, vy dy—d,)) < rank(D) ~ ,
(2) There ex15ts a set of m' hnearly mdependent dependence vectors dl o dc . such that all dependence

m
lll,

vectors can be expressed as an 1nteger hnear combmatlon of dt N ...,‘d, v oie, d; —E a; dt, _]—1
. m I—l
" m, where a,,, 1——1, ., m and j=1, ..., m, are integer constants.
Proof Provrded in Appendix 2. ' '

If algontlu'n’ 3y D)‘ satisﬁes condition 1 in Corollary 5“1 “then it has an equal partitioning vector T -
such that [1d,=... =Ild,,=dispIl. To see if a given algorithm satisfies condition 2 in Corollary 5.1, one

has to see if Equation 5.1 has an integer solution. This can be achieved by applying the necessary and - -

sufficient conditions for a linear system of equations to have an integer solution provided in Appendix 1.
- Given m' linearly independent vectors d, e dt P the corresponding partition vector Il belongs to

the solution space of Equatlon 4.2. In [For83|, a closed form expression for a ‘partitioning vector whlch is
determmed by dl g 4y o is given. This result is restated as Theorem 5.2 as follows :

Theorem 5.2 [For83]': Let d;l; i d“"}{ be linearly independent, consider matrix D(.’: [dll,,d. .,1] and let
T é'zln',n besuch _tvhat_ran'k(TD‘. J=m'. Then ll:[ﬁT(TDC)—IT is a'partitioning vector determined by



d, " .,"..,‘d and dlSpll—ﬂ where ﬂ E N+ is. such that Il 6 Zl f‘ and the greatest common_drvrsor of the M -
components of ll is equal to. one. Y : O R R

= " Notlce that matrlx T € Z"' u such that rank(TD )—m always exrsts Because rank(D ) o', there

. . | E;
R ,a'r'e'-m'-v ';li'nea'rly in’depe‘ndent rows,in,_D-.‘; Su‘p’p0se rTows r,,l»...','r,'":‘are linearly,_lndependent.“If ‘-T_=j
where Er 5 t00 E are as deﬁned in the beglnnlng of : Sectlon 2, then rank(TD ) In other words, the }

Tt
result ‘of multlplylng D by T is: a.square submatrix of D that contains-exactly- m' llnearly .independent
.: "TOWS of ‘the m' lmearly independent columns of D. -If m'=n, then T=I, the 1dent1ty ‘matrix, and 1= "
- 81 D_l The essence-of’ the proof is as follows [For83] Because $1(TD, )"‘l TD.=41, vector 1 (TD, )"T
satlsﬁes Equation 4.1 and meets condltlons 1 and 2 in Deﬁn1tlon 4.1 by the meaning of the constant ﬂ, s0
- l|~— ’3 1 (TD )"]T ' '_ partltlonmg vector determmed by d, o and dlspll-—ﬁ>0 IR ST

5 2. Sufﬁclen condltlons for optlmallty o I ERT B B RS
Theorem 41 provxdes a.necessary. condition for two 1ndex pomts in J to be pseudo-connected Next»
'lt is, shown in. Theorem 5.3 -and 5.3a that when the dependence matrix D satlsﬁes certain constraints, this
'condltlon becomes sufﬁclent The: unphcatlon of thls result. is ‘that the ‘partition’ Pa- obtalned by. Pro-
_cedure 5: 1is maxlmal In order to -motivate and- faclhtate the understandlng of the: mam results of ‘this
sectlon, ﬁrst a speclal case is dlscussed in- Theorem 5.3 where m'=n, ie, rank(D)—n In this case, the -
o= partltlon is tr1v1al ie., Py={J). Therefore, by Theorem 4.1, the necessary condltlon for two 1ndex-
, pomts 31, Jr_, € J to be pseudo-connected is. ll],(mod a) lljs(mod o:) : : ; : e

' T 0 ;m 5 3 Let —n,'ll beva‘ partltlomng vector of algorlthm (J D" determlnedby d,, .‘\.., d, ;
D= d ]and a be the algonthm coeﬂiclent If IdetD |—d1spll then . - RIS
(1) : two 1ndex pomts 3,, _] .€ J are pseudo-connected if and only if I1 J,(mod oz)—l'l o (mod oz), v ,
- (2) '-the - partltlon is the max1mal pseudo—lndependent partltlon of- (J D), Liesy Pma\ —PO,, and '
S 1P |=a. R L (R D S
1 Proof Prov1ded in. Appendlx 2

' »lln th1s case, Procedure 5 1 becomes very s1mple Slnce rank(D)—n, there is only one tr1v1al separat-
‘1ng vector 0 and: therefore, W— partltlon--{J} So Step 3 in Procedure 5.1 can be sklpped “When Il is an
~ equal partltlonlng wvector, then lld(mod dlspﬂ) 0 = 1 < M. So a= dlspll— |detD | ThlS fact is
_ summarlzed as Corollary 5 2 as follows : L

"Corollary 5 2 Let m --n, ﬂ be an equal partltlonlng vector of algorlthm (J D) determlned by d,‘
d ‘and D, —[dt )y o d ] u IdetD I——dlspll then the pseudo—partltlonablhty of. (J D) 1s equal to the _‘
‘ absolute value of the determlnant of matrix Dc, ie.,: | Pm,,\ |=|detD,|. " L

The meamng of Corollary 5.2 is as follows For a class of algorlthms, the number of blocks in the .
- 1max1mal pseudo-lndependent partltlon is equal to | detD, |, the absolute value of the. determlnant of a
. submatrix of the dependence matrix D.. If the algorlthm is to be ‘executed. by clusters of processors with

- limited inter-cluster communication capabllltles then the number of clusters to be used should be: directly

- related and: perhaps equal to the cardmallty of ‘the pseudo-lndependent partltlon In such MIMD systems,
K | detD | is a- direct 1nd1cat10n of how many clusters can be usedto execute the algorlthm ' :
- To ﬁnd the necessary- and sufﬁclent condltlons for two points j;, j» € J to be pseudo-connected in
’,'i‘general case, the approach used here is as follows. Flrst a subalgorithm (J— D) where J. € Py is con--
sidered and the ‘necessary. and sufﬁclent conditions” for two points j;, j» € J— to be pseudo—connected are

: ‘der1ved T6 achieve this, the algorlthm (J D) is transformed by a linear mapplng T, into another algo—

-~ ‘rithm (T( J—) T(D )) where the dimension of the index points is m' and there are m' linearly 1ndependent-',
. -dependence vectors ‘Then Theorem 5.3 is applied.to.find- these necessary and sufficient conditions.for algo-
: '”_rlthm (T( J—) T(D)) Then it is shown that the mapping T is. buectwe and algorlthms (J\, D) and B
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(T( Jz), T(D )) are equivalent in the sense that_}], jo € J)—,v afe'psgudo-cdnnééted in algb_i;ithm (J;, D) if and ‘
only if their images T(j,), T(js) are pseudo-connected in algorithm (T J;,), T(D)). So. these necessary
and sufficient c,'ondition_s for algorithm (T(J;), T(D)) are»a.ctuallybvalbid)for algor'it!lm (J5» D) . N

T‘h‘eoremv 5.3a Consider algorithm (J, D), lVeE a,,l, ,...,”d,"{’_be linearly inaéi)end»'ént,ﬁvD';:'[ai ;-, ey vd‘lj(],
TE._Z“!’[“ ‘be 'stlc’hbj that r.anvk(TD‘.)'=m', l‘l:disbvaEII(‘TD“‘)_:'T be fhé'~pa;titioning vgcl‘f‘orv«d‘eter‘mined,by di,
vy dy 1 e the i‘a.lg'i)rithm coefficient and ¥ be a separating matzi;(.‘,_lf |det(TD}.) I;zdispl,l,_',therl i
(1) ~two pointsj;, j. € J are pseudo-connected if and only if 11(j,— jo)=0(mod )=0 and ¥}i= Wi
(2). the aW-partition is the maximal pseudo-independent partition of (J, D), iey PPt

. AL ek R e . AP ‘

@) 1Pyl < 11 bu+1), where x=max{¥i(ji—i)} Jui€3h =1 nm’, and o <

T =1
Panl<o Pl -
Proof: Provided in Appendix 2. -~

- If the cqidinalities of the a-partitiohs ,of.’élgb;ithms (J?;’ D), where J.\_’; € Py, i=1, .., q, are ali equal
Vto.q, then. | P_,,m_'_\.’.:l =a |Py | However, for some block J;. € Py, the cardinality of its a-partition ‘might
be less than o because for some value of a € Z, 0 < a<a, there might not exist an index point j €.J; such
that Tl j(m(“)'do‘z)'z'a.'. This phenomenon is illustrated in the following example. o e

Example 5.1: ‘Consider the-ia‘.lgorithm of Example 4.1 with s=3. ‘There is 'o‘n,ly_one set of detgermining
vectors: “{d}"and .. D.=D. " If T=[-1,2], then TD.=[2]. According - to - “Theorem 5.2,
T1=21{2)7 =1, 2]=[-1, 2] and " displ] =:2;det(TD'c).' As’ in’ Example 4.1, the separating matrix
V=[1, ~1]. To ‘illustrate Theorem  5.3a (1), consider points j,=[0, 0]7 and j.= (2, 2]".  Because
Mj,(mod o)=11j.(mod ) and Vj = Vj,, by Theorem 5.3a, they are pseudo-connected. Due to the fact that
displ1 = det(TD,), by Theorem 5.3a, P,y is the maximal pseudo-independent partition. Consider :‘,‘IB]E;AP%
i.e., the block whose points j are such that ¥j=3. Jy=1[3, 0|7} as found in Example 3.1. “There does not
exist an.index point j € J; such that’Ij(mod a)=0. This illustrates the explana._tl;ipn'bgforeﬂthis’ example.
~ By Theorem 5.3a (3), |Py | = x+1=7; where x=3=(—3)=6and | P, |=12< o |Py'|=14. End of

'The comﬁlékity of Prbcedure' 5.1 is a linear function of the cardinality of the index set. Step 1 com-
putes the partitioning vector. The compli_zxity of the product of the number of xhnem'ory‘hcations' and the
number of the operations is :bo‘u‘nd‘ed by O((::,)n'r’). For Step 2 the complexity of the product of the
memory il'ocations and the number of operations is bounded by O((n—m")n®). Step 3 needs at most
O(min{n, n—m'+1}n |J |) operations . The total complexity is bounded above by O((;l,)n5)+0((n—m’)n5)
‘ +O(min{n, n—m'+1}n [J1). v ’ : '

6. COMPARISONS OF MINIMUM DISTANCE APPROACH (MDA), PARTITIONING
" VECTOR APPROACH (PVA) AND SMITHE NORMAL FORM APPROACH (SNFA)
' In the minimum distance approach (abbreviated MDA) [PeCy87|, [Pei86], an elegant idea is used
- which consists of using a linear mapping to transform the dependence matrix D into.an upper triangular
matrix denoted D' in '[PeCy"87].“ These two dependence matrices. are equivalent in the sense that each
dependence vector in D, ‘the upper triangular matrix, is a linear integer combination of the dependence
vectors in D and vice versa. A set of initial points, each of which corresponds to q~block in the resulting
partition, is identified by D' and the cardinality of the partition is the product of the diagonal elements of
D'.-The original} program- is transformed into a parallel program containing parallel statements such: as
“parallel do" by D'. An independent partition is implicitly expressed by D' a‘nd a set of initial points.

In relation to:the terminology used in this report, a clarification needs to be made regarding the
ability of the MDA to find the maximal independent partition. In fact, as the next example illustrates,
that method ‘finds the maximal pseudo-independent pai‘tibtion’ibnstead of theé maximal independent parti-
tion which:is claimed by the authors of [PeCy87], [Pei88). B o o
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v Example 6 1: Consrder the algorlthm of Example 2.2, In Example 2 2 the maxxmal 1ndependent partl- -
tlon of thls algonthm lS obtamed and it. has four blocks, 1e., IP,,,H l——4 By the MDA the upper tl‘l—y

1 o .
angular matrlx is _' 01} So, there is only one block in’ the partltlon obtamedv“by the MDA whlch .

' _clearly, is . not max1mal However lt is the maxrmal pseudo—mdependent part1tlo 1.-F ‘

Unfortunately, the MDA ﬁnds the max1mal pseudo—mdependent partltlon only for A restrlcted class

“of algorlthms as illustrated in. the next two examples ‘Two possible interpretations.are cons1dered for the N
followmg deﬁnltlon of-Df, ., in llne 15, -page 218 of [PeCy87] " Dy contams ‘only “those, linear-

‘ lndependent dependence cycles.” In one lnterpretatlon, it is assumed that onlym"< n linearly lndependent'
" vectors are taken into account and included in D, , and the remaining ‘vectors are ignored. In the other
- interpretation it is assumed that- all: dependence vectors are included in Dm ge The next:. two examples
: ‘lllustrate the fact that both. 1nterpretatlons result in 1ncons1stent results : » :

[d d,d ] ' By the

-3 0’ 0 ]
—323 ,
partltlonmg vector approach (abbrev1ated PVA), 1f dl, d> are chosen as determmmg vectors, D =
3 0 i
~3.2p the i

: a—gcd(lld (mod drspll), l'ldo(mod dlspll), lld3(mod dlspH))—gcd(O 0 3)——3 Because displl —-det D/, by
Theorém 5.3, the o- -partition (which-is- ‘equal to-the oz\l/—partltlon) for this algorlthm is: pseudo-max1mal ,

~ and ‘there: are three: blocks in -the: maxiinal ‘pseudo-independent partltlon There are two sets. of two =
lmearly mdependent dependence vectors’ {dl,dq} and {dl,d3} By the MDA 1f dl, d» are 1ncluded in D‘ U

- Example 6 2 Consxder algorlthm (J D) where J is semi-i nﬁmte and D_,

correspondmg partltlonlng vector --,_l5 3] , and he algorlthm ' coeﬂiclent‘;

3 -3

d3 are chosen to be in D° the correspondmg upper tnangular matrlx is lo 3 and the number of blocks o

in the maxlmal pseudo-lndependent partltlon is' 9. Recall that the number of blocks in the maxrmal,
pseudo—mdependent partltlon is three. Therefore,: both cases yield partitions that are not 1ndependent So
all the dependence vectors have to be taken into account to find the maximal pseudo—mdependent partl-

R 'tlon mstead of only m' lmearly mdependent dependence vectors End of example A .

‘ Example 6. 3 Consxder an algonthm (J D) with n dependence vectors and n—1 Imearly mdependent

dependence vectors, i.e., D € Z* " and rank(D)—n—l By the MDA, if all dependence vectors are included:

© in the dependence ‘matrix, then Dc €°Z"""..The upper triangular matrix D" is square. and D'= KxDL
. and all diagonal elements are pos1t1ve. Th1s implies’ that rank(D') =n. However, since rank(D ) n—-l
rank(D‘)( n—1, Thls isa contradlctlon End of example ' - - ‘

In summary, 1f the dependence matnx contams only llnearly mdependent dependence vectors, then

the MDA is valid only for ‘the case where all dependence vectors' are lmearly mdependent For-the case

’ where m'=m=n, the MDA generates ‘the: ‘maximal- pseudo-lndependent partltlon and for the case where
m'=m < n, it generates an 1ndependent partltlon that may not be maximal.:In" [Pe186], an algonthm to

generate mltlal ‘points is presented for this case. However, its complex1ty and optimality . are not- clear. -

. Moreover, only index sets of the form J= {[]1, win T a<Gi<hy, i=1,. ,n} (not necessarlly dense) are‘con-

‘srdered otherw1se, the initial pomts are not easy to 1dent1fy S

. Compared wrth the PVA proposed in this report; the MDA has the followmg d1sadvantages Flrst

o in- ‘the MDA, partntlons are- expressed 1mphc1tly in terms of the upper trlangular matrix and’ a set. of initial :

pomts Accordmg to. [PeCy87], to find the upper trlangular matrlx, it is necessary to. solve n ‘integer pro-

grammmg problems w1th m varlables whlch are NP-complete, where n, m are the number of dlmens1ons
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of the 1ndex pomts and the" number of .dependence vectors, respectrvely This is expenswe although it7is
affordable when n; m are small. . In the PVA, partitions are expressed explicitly in ‘terms:of the partmon-
ing vectors and separating vectors. To obtain these vectors, the dominating computatrons required are to
find partitioning vectors, i.e., consider at most all possxble combinations of ‘m' vectors from the m depen-.
dence vectors and compute dlspll 1 (TD ) ‘T The complex1ty of the execution ‘time of Procedure 5 1 1s

bounded above by , O(n’ ) o,

Secondly, as mentloned above, in the MDA blocks of the resultlng part1tlon are 1mpllc1tly expressed
in terms of the upper trlangular matrlx ‘and a set of 1n1t1al pomts Although the serial loops in the original
‘program can be transformed into parallel loops by ‘the upper trlangular matrlx, 1t is costly to.obtain the'
explicit expression of blocks of the partltlon and to know which block a given “index point belongs 0.
According to the notatlons in [PeCy87], given ‘an 1ndex pomt X ez i one. way to see which block. it
belongs to is to see if equation X =X, + AD' has an integer solution A € Z' "/ where X,(, is an initial point
belongmg to block i. If it has, then X belongs to block i. “If it does not, then . another 1n1t1al point Xj,
belongmg to block j Jyi#iis “tried untll an initial point. X is found such that equation X = X, o+ AD" has
‘an integer solution. This can'be a very computatlonally expensive procedure In contrast, in the PVA -
,proposed in this report blocks of ‘partitions are exphc1tly expressed in terms of the vectors. T'o see*which
block ‘a given indéx point j € Z" bélongs to, the computations required are to compute L1, J(modu) and Vj j.

“In addltron, as it will be’ explamed in next section, this method is more convenient for mapping algorithms
into systolic arrays than the MDA It is not clear whlch method is more sultable for mappmg algorlthms
into MIMD systems."

Compared with the Smith normal form approach (abbrev1ated SNFA), the PVA ‘has the followmg
disadvantages and advantages. First, SNFA always: provides the maximal pseudo-lndependent partitions

- for any uniform dependence algorithm. In contrast, the PVA provides the maximal pseudo-independent
partitions only . when the :uniform dependence algorithm satisfies the condition of Theorem 5.3a.
Secondly, for the complexity, when m=n=m', the complexity of the PVA is O(n®)+O(n |J |} and -the com-
plexity of the SNFA is O(nm)+0(n |31). However, it is not true that the PVA always has better complex- -
ity than the SNFA. Thirdly, in MIMD systems, one problem is to find a trme-optlmal schedule such that
the total execution time plus the total overhead caused by communications is minized. In this case the

PVA is preferred because the partitioning vector I1 could also be used to specify a linear schedule -

[ShFo88]. The PVA can also be used to derlve optlmal multlple-systollc arrays whlch is dlscussed in next
section. :

. One mterestmg observatlon is as follows Look at Definition 3. 2, 1f the ﬁrst k elements of the dis-
‘placement vector s are equal to 1,i.e., sl—...—s,\—l 0<k<m', then only the last n—k rows of the matrix U
are needed to construct the U-partxtlon When m'=n and k-—n—l then only one vector is needed to con-
struct the U-partition as the PVA. The following theorem provides a sufficient condition when only one
vector is needed to construct the U-partltlon

‘ Theorem 6 1 leen algorlthm (35 D), let s be the dlsplacement vector If there exists a partltlonmg vec-
R |
tor TI such that dlspH ldet(TDc) |, where D 1s the determmmg matrlx of ITand T=|{ ... |is such that
NE;
. - L . Tnf
rank(TD )—'m then sl—....—smr ,—1 '

Proof Prov1ded in Appendlx 2.

7. ISSUES OF MAPPING PARTITIONED ALGORITHMS INTO MIMD /MULTI-
SYSTOLIC ARRAYS

This section discusses some issues of mappmg the partltloned algorlthms mto MIMD /multr-systollc
arrays. First, a new architecture called multi-systolic array is proposed and how to - ‘map the partltloned
algorithms into it is discussed. Then, the mapping of the partitioned algorithms into MIMD systems are
addressed. The basic idea is to assign one block in the maximal pseudo-independent partition to one pro-
cessor {or cluster) such that there is no communication between processors (clusters). which dominates the
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overhead in MHVID systems . e :

The system of multi-systolic arrays cons1sts of a set of 1dent1cal systohc arrays Processmg elements
(PE s) in the system.can be described by index vectors [Xj,...,X,_;,%,] where x, indicates which array the
" indexed PE - belongs 10 - and Ky ey Xyog mdlcate its: location: 1ns1de that array.. If the pseudo-
partitionability of the algorlthm to be mapped is. @, then a arrays: are taken from. the. pool of the system
for - executing the algorithm. Each block of the partition resu]ted from the partltlonlng procedure
descrlbed in Section 5 will be assmged to one array. Since the partition is independent, there is no com-
munijcation between different arrays and the hardware structure is expected simple and regular.

There are many methodologies of mapping algorithms into a single systollc array [Che86], [KuS87],
[LlWa85] [OKF086], [Ra085],: [Qui84], [MoFo86]. With a little modification, the transformation method
[MOF086] [FoM085] can be used to map partltloned algorlthms into multl-systohc arrays vaen an algo-

[l i nen In,"
[s €2 Nez! " and

rlthm (J D), thls mapprng can be spec1ﬁed by an 1nteger matrlx T—
- displl :|.
ing vector. and drspll-— nin { I d d eD }, .at-, processor - (Sj, ll_](mod o)) where "o is. the algorlthm}
coefficient. Notice that if disp[l = ﬂa [9 € NT,.then § computations are mapped: into the same PE and the
same time step. If the algorithm has an equal partitioning vector, i.e., 3=1, then each PE processes only
one computation at one time step. If 3> 1; then each PE has to process. 8 computatlons at one time step.
- There are two ways to achieve this. One way is to process these S computations in serial in one time step.
‘The other'is to'install 3 computing elements inside one PE so that all # computations can be executed in
_ parallel in one time step: For an algorithm (J, D), the problem of finding an optimal transformation with
Tespect to:the total execution tlme consrsts of ﬁndmg ll € Z1 " such that it minimizes the followmg obJec-
tive functlon ‘ : S - ‘

SE Zn “iu The computatlon 1ndexed by ¥ w1ll be executed at tlme step where I lS a partltlon-

g max {1 J)J1’J €J) R | TR
) mln{lld deD} : R S £

SubJect to HD > dlspH and Il isa partltlonmg vector

‘ ,The solutlon of formulatlon Tl can, be found as follows Flrst ﬁnd all partltlonmg vectors Il,, , t,
“‘each’ of which corresponds to a combmatlon of m' linearly independent dependence vectors from the m

E dependence vectors Clearly, there are at most ( ,) partltromng vectors. i.e., l<( ™). Secondly, 1dent1fy all

these partltlonmg vectors Il such that 11D > dlspﬂ 1. These partitioning vectors are all the feasible solu-
- tions of formulation 7.1. Finally, find the feasible partitioning vector that results in the shortest execution
time and is with a feasible space transformation S. This step can-be achleved by companng all execution
times by these feasible partitioning vectors, respectively. , ‘

o MIMD systems consist of a set of identical processors or a set of 1dent1cal clusters of processors. Pro-
cessors may: be connected through shared memories (tlghtly coupled MIMD system) or interconnection
network (loosely coupled MIMD system). In both cases, communication between processors is realized by -
expensive interconnection network and usually is much slower than the computation speed of the proces-
sors. So-the communication between processors dominates the overhead of the system and minimizing the
‘amount’ of commiunication between processors is a main goal in mapping of algorrthms to MIMD systems.
If one block of the 1ndependent partltlon of the algorlthm is assinged to one processor, the communrcatlon'
between processors is zero.. :

If the MIMD system consists of a set of clusters of processors and each cluster con51sts of a set of

* processors, then one block of the independent partition can be assigned to one cluster and inside each clus-

. ter, computations can be scheduled to execute by an optimal linear schedule. Solutrons of how to schedule

'“»computatlons by a linear schedule and how to find the optimal linear schedule with respect to the total
. execution tlme are prov1ded in [FoP384] [ShFoSS]

‘ 8 FUTURE WORK AND CONCLUSIONS
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v There is Stlll more. research work needed to be done on how to make good use of the partltlomng’
methods proposed in. this report to map algorlthms into MIMD/multl-systohc arrays. Flrst the time:
schedule [1 obtained by the procedure described in Section 7 may not as good' as the one obtained by
[ShFoBS] even if the same number of PE’s is:used. This is because only partltlonlng vectors. are con-
sidered in the procedure as the solution space of Formulation 7.1. This space is- actually a small subspace
of the solution- space -of. the linear schedule problem described in [ShFoSS] It is still open to find an
optimal procedure which considers the whole solution space of the linear schedule problem' and makes use
of ‘the partitioning vector to yield an optimal time schedule.” Secondly, instead of finding the maximal
mdependent partltlons, it is also desired to find the maximal. partitions such that the communications
among blocks can be supported by that target machine. For non-partitionable algorlthms (an algorithm
is non-partltlonable if its pseudo-partitionability is equal to 1), sometimes, it is desired to find the maxi-
mal part1t10n such-that the ratio of the commumcat]ons between a block and other blocks w1th the cardi-
nallty of that block is. minimized. : ‘ 2 :

The ‘main contribution of this. report is computatlonally 1nexpens1ve methods for ‘identifying
1ndependent partitions of algorlthms with uniform dependenc1es The resultmg partltlons are maximal.
The partltlomng methods proposed here can be applied in practlce ‘as one of the many analysrs procedures
used by optlmlzlng compilers to detect and exploit concurrency in serial programs. It may be particularly
useful in mapping of algorithms into multiprocessor. machines where processors are orgamzed in clusters
with limited inter-cluster communlcatlon capabllltles In these systems, different clusters can ‘process’dis-
tinct blocks of a partition without mter-cluster communication overhead costs. Among’ others, such mul—
t1processors 1nclude Cedar [Kueta186] and Cm’ [HwBr84]
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APPENDIX 1. NECESSARY AND SUFFICIENT CONDITIONS FOR LINEAR SYSTEMS‘
TO HAVE INTEGER SOLUTIONS ‘

Con31der a linear’ system of equatlons as follows

3_11~a|~_"---- Ay ||

e ot x| bl
Aoy @aa. L 8oy X, - b.
Ap A ey Ay LTmepe ok M
or - v :
x—b;_ S ' o o : (al.1)

where n,m & Nt, au, b € Q, 1——1 ., n and _]—1 .y In, are glven coefﬁclents and x 6 IR"‘ is the unknown
vector. There have. been some necessary and sufﬁclent condltlons of existence ‘of mtegral solutions of Equa-
“tion-al.l [Sch86, pp- 51], [VeFer] This section prov1des a new such conditions based on the result of the
partltlomng vector method and also a procedure to identify one integer solution of Equatlon al.l. .

“Without loss of generality, it 1s always assumed that au, b; € Z =1, ., n and j= 1, ..., m. If there

a
is a coefﬁclent a such that a; = Le Q, where a'; ¢ € Z and gcd(a IJ,c) 1, then by multlplylng both

sides of the ith equatlon a;; x;+.. +alm xm—b with constant c, the assumption can be satisfied. In addltlon, 3
gcd( a1y Bigy “ey Aims b; ) is assumed to be 1, 1——1, 5 I These assumptlons are summarlzed as follows ‘

Assumptlon al 1 (Lmear system) The hnear system (al 1) satlsﬁes the followmg condltlons
(1) The coefficients of Equation al.l are mtegers, i.e., a; b € Z i=1, .. o7 and j ]— y sery I and

(2) ng( ai15. 8 12’ wesy Aimy b ) 1 l_l

ConSIder the algorlthm (.l A), where J= Z" and the dependence vectors are a), . B a,. Let

rank(A)=m', Il and ¥ be a partitioning’ vector and separatlng matrix of (J, A), respectlvely, 2, o By,

be the: determmlng vectors of 11, A= [—1 5 awiy By J and o be the algorithm coefficient for (J, A). Wlthout

loss of generallty, let A [51, ieny amf], ie.;. the first m columns of matrix A are llnearly 1ndependent and
i Er N . .

1.

the determlmng vectors of ll and ‘A= [A‘ . A,] Let T=| ... be such that rank(TAc)zm'. As »exp‘lamed in

Faf

Sectlon 5 1 such a matr1x Tis always p0531ble By Theorem 5. 2 M= dlspll 1 ( TA )_'T

Theorem al. 1 (Necessary condltlons) If Equatlon al. 1 has an 1nteger solutlon, then llb(mod o)= 0
- and \I/b 0 , : , , .

Proof: Let ]l—b and _]__—0 ‘Then j _J_l,j € J=1z" and (J, —] )= b. Since Equation al.l has an integer solu-

tion' A € Z™, i.e, Ax=b= (_]]—] ), index Pomts Jiy Jo are pseudo-connected in algorlthm (J, A) By, SRt

Theorem 4.1, H(Jl Jq)(moda) 0 and \l/(Jl —ja)=0. Therefore, llb(mod a)=0 and ¥b= 0 o

Theorem al. 1 prov1des necessary condltlons for Equatlon al.l to ‘have an 1nteger solutlon The fol-
_ 'low1ng theorem 1dent1ﬁes the cases: where the condltlons in Theorem al. 1 become sufﬁc1ent -

':Theorem a1.2 (Necessary and sufﬁclent eondltlonsl Let dlspll |det(TA )I Then, Equatlon a1 1' _.
“has an lnteger solutlon 1f and only lf ﬂb(mod oz) 0 and \l/b =0. S 4

(—>) See Theorem a1 1 SN R R AT T

_ (<=) Now, let’s prove that 1f dlspll =] det(TA )_|, llb(mod rx) 0 and \l/b 0 then Equatlon all

'_‘_"has an integer solution, Let J,=b and J,—O Then, b= (j; - j.), ll(J,—j ;)(mod a)—llb(mod a)=0 and
‘f\ll(_]l—-Jn) b= 0 ‘By Theorem 5.3a, j, and j., are pseudo-connected since dlspﬂ |det(TA )|, i.e., there

ex15ts a vector N\ E Zm such that (_], —j ) b——A>\ Thls lmplles that Equatlon al. 1 has an 1nteger solutlon _
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; The procedure of how to used Theorems al.l and al.2 to test the existence of integer solutions of a
given linear’ system‘of g_(juatioris is as follows. First, find the n—m’ separating vectors V¥, i=1, .1, n—m'by
solving ‘equation ¥;A=0 and try to find a partitioning vector Il such that displl=|det(TA.)|. Secondly,
compute the algorithm coefficient o and ”b(l\?gdu) ]z? If y+0, then there does not exist an integer -
solution for the linear system: of equations. If there exists a partitioning = vector !l “such that
displl= |det(TA,) | and y=0, t_he,n,the‘r‘g exists. at least one integer solution of the linear system of equa-.
tions. If such TI does not exist and y=0, then the procedure fails to answer the question of existence of
integer solutions of the linear system of equations. - : , : e

If one integer solution ¢ of Equation al.l can be identified, then -all integer solutions of Equation
al.l can be expressed as linear combinations of § and the n—m’ linearlyvindependent solutions of equation.
Ax=0. The following theorein describes one integer solution of Equation al.l for the case where the
algorithm (J, A) has a partitioning vector Il such that displl= | det(TA,) |-

Consider the following equation ’ :

o pdispll 4 A Ta 4 e 4 B lla =0 i  (al2)
' Let 11z (mod displl)=q;, i=1, ..., m. Since a=ged(displl, @} ..., )=0, by Lemma 1 in Appendix 2,
ged(displl, [Tay, ..., ITa,)=a. By [Mor69], Equation al.2 has at least one integer solution. =~ - . )

Theorem al.8: Let displl= | (det(TAY) |, B'==[B, By -+er Bra] " be.an integer solution of Equation al.2, f=
[(B481); By oy Brl” and V=A . If Tb(moda)=0==1,displl + 7., 0 <o < dispIl and ,, 7o € Z; and

¥;b=0, i=1, .., n—m then an integer solution of ‘Equation al.l is §=7,8 + ), where

N==[A1yeees Ats 0, e, O] T is sUch that T T T

: = SRR P ST i ‘ , ~
(TAC)'T(§—725)=.d§t(TAE) - o T ' IR o (al3).

m’

where (TAC)‘ is the adjoint matrix of matrix (TA ) which is defined in Appendix 2.

Proof: Sincé ﬂT is an integer soliltidn of Equation 31,2, then
v = Af = fila; + B, Ha; + =+ + By 1l5,

= pdispll + f, 113, + +== +f M3, = o, |
where Zl €A isa dejermining vector of Il and Ia, = displl. I (E—_’y._ﬁ): Mb-— 7o [T = 7, displl +
Yo — 7. So, I (b—4,V)(mod displ1)=0 and Wi(b—7.v) = Vb — 7 W= 0=, W;Af=0 since
WA =0, i=1, ..., n—m'. So, by Theorem 5.3a, b, 7,v € J are pseudo-connected and belong to the same
block of the W-partition.. Let b, 4o¥ belong to J; € Py, Ly= {Tj;:j; €J;} and A=TA. Consider the algo-
rithm (Ly, A),let T € Z'™ be the partitioning vector for algorithm (Lg, A) determined by Tai, «ey. Tay.
Then = a1(TA,)~! where acN* is such that greatest common divisor of the m' components of I is
-equal to unity. Notice that M=I'T is a partitioning vector determined by a;y ., ay and displl =
displ’=a. Since I1(b—,v)(mod dispI1)=0, I'(Tb—~,Tv)(mod displ'})=0. By Lemma 3 in Appendix 2,
i -:— N ) . - xl i . . : ) . . N .
(TA.)" (Tb—7,T¥ )= det(TA,) | ... |where Xy, ..., \yy € Z. So,

m’

— ‘ » o )‘1‘
T(b-7y¥) = (TA )" det(TA,) | ...

m’

>\l
M v -
=TA | . = TA A | g [=TAX
1 i’ ) :
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In summary,. T(b r7,v) T[A A ]>\ Smce \l/ib 15¥)=0, i=1, ..., n—m’, (b Yav) belongs to spia,y iy
a,} ByLemma21nAppend1x2 b—7,v=A\ orb=", v+A>\ o AB+ Ar= A(yu)‘+)\) Ad So b
satisfies Equatlon al. 1 This implies that 6, is an integer solutron of Equatlon al.l.’ c ; '

The next procedure descrlbes how to find an integer- solutlon by Theorem al.3 when the glven “linear
system satlsﬁes the condmons in Theorem a1 2.

Procedure al.2 (Fmdmg an mteger solution for Equation al. 1) FETT
; Step 1: Find a. transformrng matrix T, the. partltlonmg vector Il and the algorlthm coeﬁicrent @,
Step 2: ‘Write 1 b as 11b=", disp!l + 1. ¢, 0< Yo < displl. :

Step 3: Solve Equation al.2 and obtain 3. S L
Step 4: Compute v=A § and find (TA,)" T(b — 7.7 )= b’— [b), ooy bl ™2

‘Step 5 By Theorem al 3 each component of b'i 1s a multlple of det(TA ): Set )\ —t—L,——; lzl, I
. e D
Step 6 6—%,6 + )\ where )\— [>\l, P » 0, ...,O]T.‘ '

Example al 1: Consider the lmear system: -

[0 1 _1] =b, CE AT : = . : © o (al)

“The correspondmg algorlthm (J A) has an equal partltlonlng vector H=]1, 1] and ¥ = 0 Let A=
21

01 o= dlspll—2 detA It b— then Hb(moda) 4(moda) 0 By Theorem al 2, Equatlon

al.4 has an mteger solutlon Now, lets follow procedure al.2 to find thls lnteger solution. Step 2:
=1y

llb—2 dlSpH, '71— 2 and ’7)—0 Step 3 ﬁ-—O Step 4 v—0 A = |9 2 “['and b——' Step 5

7 X1=—§?~—-1 X;—-;—3 and )\;-—0 Step 8, F=\= l ] It can be verified that 6 is an integer solution

. S : : 1 '
of Equation al.4. Notice that if A is chosen as [ ] then displl = | detA | and Theorems al 2 and

1
al.2 can not be applled So, it is lmportant to choose the rlght A,. End of example

APPENDD( 2 .
o Before the proofs are presented some mathematlcal notat1ons are 1ntroduced These notations are
based on [Str80] Let a matrlx A €R"" and

. | 21 31’ a’ln
BT I ~aﬂ22 eawe Byt L S
A=1 - =:[31’-32"73n]v

The cofactors ofA are denoted A,,, , _]—1, .y 0. The cofactors of matrix A are denoted by. (A, )m 1,j=1,

. N, The ad]ugate (or adJomt) matrix of A is denoted A", Some facts [Str80] are also listed here which
w111 be used- later in some of the proofs » ,
 Fact 1: - L : ’
Ar 1v Agp Ay
A A Ay

: Aln_"‘ Azﬁ ;-- Ann ‘



_ 84 .

2

Fact 2: -A~! ——é——
 detA”’

Lemma 1: If gcd(zl, ...,z\):zz, 3,€ Z, i=1, ..., 5, then ged(z; c. 2, + 2oy ..oy €. 7y + 2)=2, ¢; € Z, i=2, ..., 5.

Proof Let’s prove it by contradlctlon Suppose that ged(z; ¢z + 2o, -.oy €, il +12.)=1' # z, then z divides
z', i.e., there exists a positive integer ' such that z'=z 3 and B =1 (See [Gol73, pp.26]). Let z,=:z87,,

3,=1 7, 1=2, '8 where 7, € (Z—{0}), i=1, ..., s, Since z' divides z, ¢;z, + %, i=2, ..., s, § divides 87,
B+ i—2 . Let ¢; 8, + = ,8(51— . Then v= ﬂh-cxh,—,(é—c 71) So, 3 divides
Yis 1=2 «0sy § and z] ThlS means that gcd(z,, Zoy eesy L )=z' So z =12 i.e., ,[f— 1 which is contradict to the

assumptlon So gcd(zl, Coly+ By eesy €2 F 2 J=z.0

S - . ' = b,
Lemma 2: Let A € ]R""“ A=[§1, vy By rank(A)—— , b= | .. Esp{i,, voy a,,,} and T R be such
that rank(TA)——m Then x isa solutlon of equatlon TAx Tb if and only 1f lt 1s a solution of equatlon
Ax=b. - A

' . oM -
Proof: (=>). Let M=[A b]= | .. | Since b € sp{a;; «y 2y}, rank(M)=m' and rank(TM)=m'. Let

- TM=[TA Tb] =K=| ... | Since K,, .., K,/ are linear combinations of M,, .., M, and

m’

rank(K)=rank(M)=m', sp{MI,...,M_n}z sp{K,, ..., K.}, i.e., M, i=1, ..., n, can be expressed as linear
combinations of K, ..., Ky Let : o

T Y1z e Tiw!
W,72.1 Yoo et Yot K]

M=

ol Tz oo Tam

or [A b)J=TK=T"[TA Tb]. Then A=TTA and b=TTb. Let X be a solution of equatlon TAX=Thb, then
I'TAx= FTb i.e., Ax = b. Therefore, x is also a solutlon of Ax=b. ,

(<=). Let x be a solution for equatlon Ax=b. Then TAX=Tb which implies x is also a solution of
equatlon TAx = Tb O ‘

Proof of Theorem 4.1: :
_{1). Suppose j; and j jo are pseudo-connected, then there exists a vector A= Ny cosy AT € Z™ such
that j, + D A=j,. Therefore, ‘ ’

n'}] ‘+‘H Dix=1l Tz
or

njl+zxnd _HJ,

. i=l1
Letﬂd—a + a; displl, o:,,a EZ 0 < q; <dlspﬂ i=1, ..., m. So,
m m N '
Mj, — 1M, = (Zalk,)dlspll + Yo )\
) Rt i=1 :

m ’ :

37X a; is an integer because N and a;, i=1, ..., m, are integers. Since ged(displl, ay, ..., a )= o, o;=0a;
i=l . )

and displl=c v, v;, v € Z,1=1, ..., m. Then,
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m ) m R )
113,—111,_a( Za\ +Z%\.) and Il(j._,_—j,‘)(mo_dq)':O
’ : A=l , :

11 J,(modoz)—-]l_] (mod u) T}llS contradlcts to the assumptlon So J, and J . are not pseudo—
connected . : RN
Consider the a-partltlon P,, Smce lI_](mod I3 )—1,J 6 J, € P,, i=0, -a’=1, for any two arbltrary
~index points j € J, i’ € J,-i=], II _](mod a)#11) (mod u) and they are’ not pseudo—connected. By
- Definition 2.5, Pi is a.pseudo-independent. partition. : SN ' o FE -

- (2). -Suppose “that 'j,, j. are pseudo—connected then there exists a vector _.,\ €- 2™ such. that
D\—(J, ~jo)- 8o, \IIDX —-\l/(_],—]) By Definition 4.3, ¥.D=0, i=1, .., n—m' which implies that
V(=g )=0, i.e., \lljl—\ll_l : This is contra.dlct to the assumption. So, j,, j. are not pseudo-connected. For

the V- partltlon Py, let JIEJ— and J,EJ‘ Vi # Vs J‘ ) J5 EPq, The fact that y aéyl 1mplles that \IJJ,#\II_], So,

_],,_] -are not pseudo-connected By Definition 2.5, Pq, is pseudo—mdependent SRR P
(3) sunlla'rIYv let ]1€J GPMI’ a'nd J’EJ EP aWsy Y|%YI1 . where Y|’_‘[vy(v)nvyln ’y(n—m')l] ‘a‘nd
' y,—[ym,y“, ,y(n_mln] ‘Since "y, #y),- there exists at least one dlmensmn tE{O,l, ~,n m'} such that
Yi# Yy If t==0; then HJ, (mod a)_aé[l_] (moda) and by (1) of Theorem 4. 1,_], and j. are not pseudo—l
. coninected. If 1 <t<n—m/, then' Vj, # V¥ j, and by (2) of Theorem 4. 1, j; and j., are  not pseudo—connected
So, by Deﬁmtlon 2 5, Paq; is pseudo—mdependent ]

Proof of Theorem 4.2 :
Leta€ Zand 0<a < lf it can be shown that for any arbitrary value of a, there exists at least .
one index point jEJ such that I1 j (mod a )=a, then by Theorem 4.1, there are at least o index points in -
J which are not connected to each other. Therefore, J; = (¥, where J; € P,, i=0, ..., @ —1. This implies
that the maximal pseudo—mdependent partition contains at least o blocks So, le ol > a. o
‘Let II=([m, 5 ... 7, |. Since I1 is a non-zero vector, it has at least one non-zero component. Wlthout
loss of generality, let 7, #0. Let M=t a+a (i.e., M (mod a¢)=a), M € Z—{0}, t € Z, and M1, > O.
Since gcd(n‘_l, veey T )——1 by [Mor69] there exists at least one lnteger solutlon of the followmg equatlon

X F +1r x =M et ' S ()
Letz= | ... | be such an integer solution of Equation 1. If z,, ...,'s, > 0, then z € J and it has been pro-
' 2, ’ : ’ ‘ :

ven that for any é,r.bitr‘a;ry integer a, 0<a<a, there exists at least one index point z-€ J such that
8| z(mod o)=M (mod o )=a. Now suppose not all 2, ...,'5, > 0. It is clear that-all the solutions of Equa- -
tion' 1 take the form ST : :

m _ v 0 0
= = 0 ' L3 -0
X=12++ 0 tt_z + © 0 tq + ;.v- tll (2)
| . 0
0 0 T
where to, ts, o t are constants Thls can be verified as follows.
: | | I ’ ":"n
el § o 0. ], LI | -0
Mx=1lg+ H 0 by + 11 0 ty + 11 t,
o |l e 0
0 | 10 m

=M+ﬂ(—ir Ty Ty )t +(—7r Tat 7T, Ybit = A (= w,l’+‘ﬂ'|w,-)t,,#
Therefore, x is.a solution of Equatlon 1. Next, it shows how ‘a non-negative. mteger solutlon of Equatlon 1
is constructed from Equatlon 2. Let : :
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2= Fa b = Wty — s — Wt

n n
2, + Tt X,
X= Lo Ty by = .
ese xll
2, + US| tn
Ift; > — —, then'x; > 0,i=2, ..., n. Let
T :
t,=]— — |=— — +8; where 0 < < 1 i=2,..,n. _ (3)
' ‘7.'1 T ' : . . ‘

Now it is shown that x," is also greater than or equal to zero 1f t;y 1-—-2, .., 0, are defined by (3). '

X = ‘,—:-:\_.“zrvt—-z, Z([i ,———)r

o ) n ) n '”Z- )
- LA+ N
e = m
o 1o
5, = Zﬁﬂ'-l———(M‘—zIﬂ,)

=2 .

M
_7‘r1 Zﬂlﬂ-l

Notice that. Z |m | > Z B; Ifr | > Z ﬂ 7. If'M is selected such that M=to + a and % > ¥ |y
. - = : 1 =2
then x,= ——Eﬂi o> M——E fm | > 0. So, there exists -an index point x € J such that

1 j=2 1 =

Tx(mod a)=a. m|

Proof of Theorem 5.1:
(=>). Let 1 be an equal partxtlomng vector of (J, D). Then by Deﬁmtlon 4.1, there exists a set of
m' lmea.rly lndependent dependence vectors such that

Hdl,1= =Hd,,n{=dxsp[1>0
and ‘ o ,
Hd = a; dlspﬂ a,€Z, j=1,. : o ' o (4)

Since rank{D)=m' and dl » dt eny dtn{ are lmearly mdependent d 1 <j<m,can be expressed- as a

linear combination of d,,], weey d‘-n{ i.e., .
a”'
d= [5;1, ,—,,“{] aJ 1<j<m (5)
/ o
So,
)
Md;=1 [E._]}, |
R o
ay;
=displl[11 1] a'”
[ &'y




R

R R
p ,.;—dlspll 3. a; - oo
“v,l I .

I ,’m‘., : : PR
By (4) 1 d —a dlspII where a E Z 1 < i< m So \“ au—a.J, 1 < _) < m, are mtegers :
v (< ) Consxder the followmg two systems of equatnons

(‘ ")
( )

|I

)

_and

Let. N, be the solutlon space of Equatlon 6 and N, be the solut1on space: of Equatlon 7. If ll is.a solutlon
of Equatlon 7, then it.is a solutlon of Equation 6. Thus N, C N;. The dimension of N;is n—m'+1 and

* the dimension of Nj is n —m’. This implies that N, C N;. So, there exists at least one solution Nn'of

- Equation 6 such that n'd,’ * 0, 1< J <m Let. 1T € Z] " be such a solution of Equation 6 that I dt =a>.
0,j=1.. 9 m', and the greatest common d1v1sor of the n components of I i is equal to one. Then. L

o 5 ) . ) alj )
_" G o= — 33 o'
Cnd=n [d“ ,dl“{] ’ =ay) a;§=1,.
. e =1 o
mj

. |a

S mt o h

: Smce 5 ajjy J-—lf, oy m, are 1ntegers, the followmg holds .
e AR . .

A Hd(moda) 0, j=1,. oy I anddlspll—a>0
: By Deﬁnltlon 4 1 H is an. equal partltlomng vector of (J D) a.

a 7.‘”1:Proof of Corollary 5 1

(1) Let’s first prove that if algorlthm (Jy D) satlsﬁes the ﬁrst condltlon, then it has an equal partl- ;
-tlonmg vector Cons1der the followmg two systems of equat1ons ' B S L

"‘n(m—dq 0 |
l_l(d]_dd) 0 (8)
f'ﬂ(fj?i&z'—fﬁmt)=0 -
aln.dr SRR
Jd,=0
nd, =0
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With the similar reasoning as in the second part of the proof of Theorem 5.1, it can be shown that there
exists at least one solution |1’ of Equation 8 such that ['d; # 0,1 <) <m. Let |1 € Z''" be such a solu-
tion of Equation 8 that Il dj==displl > 0, j=1, ..., m, and the greatest common divisor of the n com-
ponents of Il is equal to one. Then Il d;=displl > 0, j=1, ..., m. Therefore, I1'is an equal partitioning
vector.

_(2). By_the assumption of condition 2, there exists a set of m’ linearly independent dependence vec-
tors d , .. d, , such that all dependence vectors can be expressed as an integer linear combination of d, ,

n ,
— m

. 3 . - 3 ! - ‘- V
ey dy . de, d=3 a5 dy, =1, ., My, where a;;, i=1, ..., m and j=1, ..., m, are integer constants.

m .
=1

Illl

Clearly; Y a

Zz (K

j=1, ..., m, are integers. According to Theorem 5.1, (J, D) has an equal partitioning vec-
i=| ) : .

tor. O

Lemma 3: Let r’n":nb,‘ 1 be a partitioning i'ectfor of algoﬁth{m (J, D) determined by H,fl; , E‘“, D= [;(i“l,
ey Ay ] and j, . € J. If | detD, lzdispl]v and [1(3,—j.)(mod displ1}=0, then },, j» are pseudo-connected
o Ry .
and D, (j; —j. )= detD | ... | where X}, ..;, A\, €Z
| \ o

n

Proof: Consider algorithm (J, D). The algorithm coefficient is equai to |detD, |, i.e., a=ged(lid,, ..,
I'ldtn)——— ged(displ]l, ..., dispIl)=displl= |detD, |. By Corollary 3.1, there are |detD, | blocks in the maxi-
mal pseudo-partition of algorithm (J, D.) and by Corollary 4.2, |P, |=a= Idet_Drl. So, the a-partition is
the maximal pseudo-independent partition. Because I1(j,—j2)(mod dispI1)=0, ji, j, are in the some block
of a-partition. Therefore, j, and j» are pseudo-connected and j;—j.=D., A€Z", By Fact 1 and Fact 2,
D.(j,—js)=detD ). O ’ : R

Proof of Theorem 5.3: 3 o

_ (1). By Theorem 4.1, jj, jo are pseudo-connected only if [1j,(mod )= [1j.(mod a). Let’s prove that
i1, jo are pseudo-connected if I1j,(mod o) = Ij.(mod o). T
B Let IT(j; —jo) = 7y displl + 720, 0< 10 < displ! and 7, 7 € Z. If 7, = 0, by Lemma 3, j; and
j» are pseudo-connected. Suppose 7,0 and let I1d; = a;displl + o}, a;, ¢; € Z, 6 < o;<displl, i=1, ..., m.
Since ged(displl, @, ..., @) = @, by Lemma 1, ged(displl, 11dy, ..., [1d,) = a. By [Mor89], there exists
at least one integer solution of the following equation: - S ‘ ‘ :

MisplT+ 2, TTd, + **+ + 3, [1dy =@ (9)

" Let A= [)\, A{, -y A] be an integer solution of Equation 9. Then '7:)? is an integer solution of the follow-
ing equation:

’72>‘disprl+72>‘l nal+ cee +’7‘3>‘mnam:72a
Let

JT=§2+72>\5¢,+'72>\151+ T +’T‘3>‘mam
where ;1-‘] € D, is a determining vector of I1. Cléarly, 3 and :]:, are pseudo-conneéféd. Then, ‘

n(.JT“JTQ) = NdisplT + 79 A 11 a1"*‘ e A nam=’72°‘ _ ,
NG,—3) = M3 - N5 + N5 - Ny = NGi—g) - 1 (3-Js )= displi+y, 0 -ypa. So,
11(j,—})(mod dispf1)=0. By Lemma 3, j, and j are pseudo-connected. Since j, jo and j, j, are pseudo-
connected, respectively, j; and j, are also pseudo-connected. Therefore, if 11(j, —jo)(mod «)=0, then j,
and j. are pseudo-connected. o B ‘ e

(2). Consider the a-partition P, since I1j, (mod @)= Ij,(mod ) where j,, j, € J; € P, are arbitrary

index points, 0 <i< a, by the results in (1) of Theorem 5.3, ji, j. are pseudo-connected. By Definition 2.5,
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P is the maxnmal pseudo—lndependent partltlon ie. P,, =P, .. and |P”m |=| P, | = d, o
Lemma 4 Let J; € P\y, then J— = {_] JEJ,J p+Dx, xGlR n \l/p y}

" Proof: Let S denote {3 ]EJ,_] p+Dx, x€R™, ¥p=y}. If JEJ ‘then \llj =y and \V(J p) =0. ’By the Funda:'

mental Theorem of Linear Algebra’ (See [Str80], pp- 75 and Pp- 87) j-p belongs to sp{du_ d,} because
- ¥D=0. Thls 1mplles that there exists an x € R"™ such that j—p=Dx, i.e., j= =p+Dx. So, _] E S and J CS
) Now let _]ES thenJ p+Dx and \l/_] \l/p+\l/Dx——\|Jp =y. So _]EJ- and J;=S. o

Lemma 5: Let 4, g be hnearly independent, D= [d vy d, P TEZ™ " be such that rank(TD J=
m' J—EPwandL——{TjjeJ} Then, : o
(1): the mapping T: J; — Ly +T(j)= T],_] € J— is bijective and : :
(2) TJ,, Tj, € L; ‘are pseudo—connected in algorlthm Ly TD) if and only 1f 3,, _] € J are pseudo-"
connected in algorlthm (J D), i.e., lfh —jo» = DX if and only if T(J1 —] )= TDX. L . '

Proof (1) Con51der the mapplng T J— — L T(_]) T], _] E J— Slnce L—_— {Tj JE 3, T ls sur_]ectlve
By Lemma 4, J——-{_] JEJ = =p+Dx, xEIR ‘l/p y} Smce d» viey dl { are 11nearly mdependent and
rank(D) m each dependence vector can be wrltten as.a 11near comblnatlon of dt » ..._,'d " ie. e ,-D= D x/\v_
where. AE]R"‘ m So J; can be rewritten as J——{_] = p+D 2, 2=AX, JEJ xERY, \llp ¥} Let _],,_],EJ— and_;‘
vjl—p+D % Jv-—p+D 57, then, T(]l—]o)— TDF_(—I—zn) 0 if and only. if #,=z,, or equlvalently, ji=Jiy since
-rank(TD)—m i.e.; TJL -Tj, if and only if j;=j,. So T is injective which: 1m_phes T is bljectlve o
_(2) (<=). If],, Jo € J5. are pseudo—connected then there is.a vector.A € Z“‘ such that h=1 + D)\ '

"80,Tj = TJ-’) + TDA and: le, Tj, are pseido-connected.

(=) T_]l, Tj, are p_seudo-connected then there exists a vector Y= Z"‘ such that T(Jl _J ) TD)\
J,, jo € J; implies that j, —j, € sp{d,,...,d}. By Liemma 2, A is also a solutlon of equatlon Dh= (Jl‘——‘] )
whlch 1mphes that j; and j, are pseudo—connected o ' et : '

Proof. of Theorem 5 3&
( ) ( >) See Theorem 4.1. .~ - ,
(< ) Smce \Il_]l-—\lljn, _)1 and j _]f, belong to the same block of the V- partltlon, i.e.y _),, 3¢ ,EJ—GPW, where
y= \11_]1 Let Ly={Tj:je &} and A TD. Consider the algorithm (L A), let 1" be the: partitioning ‘vector
of (L, 4). determmed by Tdt y - Td ,and o' be the coefficient for algorithm. (L, A). By Theorem 5.2, I’
= ﬁ'l(TD )~ and dispI'= ﬂ' where ﬂ'EN+ is such that the greatest common divisor_of the m' com-
ponents of I'is equal to one and I’ €Z!*™, Now, consider the row vector I1=(1/8")"T= ﬂl(TD )~'T where
B=(8'/8") is such that the greatest common divisor of the n components of Il is equal to unity and
ez ®, By Theorem 5.2, Il is a partitioning vector determined by vectors dy, ..., d,y for algorithm (J, D)
and dlspH (1/8")displ’. This implies that a=(a'/p") is " the algorithm coefﬁc1ent for_algorithm (J, D)
which can be proven as follows. o'=ged(#', I'Td,, ... FTdm) and a=gcd(g, [1d}, ... Tldm) (see Definition
. 4.1 and Lemma 1). Now, a=ged(8'/8", (l/ﬂ")FTd,, ,(l/ﬂ")FTd )=0a'/B". v
' By assumption H(JI—J)(mOd @)=0, i.e., I1(j;—jo)=Na where \€Z. Because a=a'/g", TIJI—(I/ﬁ")FT]
and_ T1jo=(1/8""Tis, TI(j;—ic) (l_/ﬂ’_')I“(T_]l —Tjo)= }\a’/ﬂ" or F(TJ, Tjs)=Xa' = which . means
T(Tj,—Tj.)(mod o')=0. That is, if T(j;—js)(mod )=0, then I'(Tj,~Tjs)(mod o')=0. Notice that the
dimension of the index points of algorithm (L— A)is m' and the rank of its dependence matrix A is m'. By
applying Theorem 5.3 (1), for any two arbitrary index pomts T_],, T_] €Ly, if I (T3,—Tjs )(mod a')=0, then
“'Tj), Tjo are pseudo-connected Accordmg to Lemma 5, 3 Jw € J— are also pseudo—connected in algorithm
gy D_) In summary, it has ‘been proven that for any two arbitrary index pomts iy o€ 3, Af
Il(_]l—_] ,)(mod & )=0 and \1131—\1/]1, then j _]1,_17 are pseudo—connected
| (2) Con51der any two arbltrary pomts i J2 € J; € Py, i=1, o, ke Since ll(.]I »J ,)(mod &)= 0 and

' ‘I/(Jl i )= 0, by the results in Theorem 5.3a (1), they are pseudo—connected By Definition 2.5, Pw is the " '
maxxmal pseudo-mdependent partltlon : . g
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(3). Let P‘ denote the a-partition for algorithm (L, A). First, let’s show that lP,‘l | < e There is one -
complication caused by the mapping T, i.e., for some value of a € Z, 0 < a < displ’, there may not exist”
an index point T j € L such that I'T j(mod disp!)=a even if J = N". However, because there are at most

a nonempty blocks in P,,, |PY | <.

l)—lll
For Py, clearly, there at most || (x;+1) nonempty blocks, where x,;=max{V¥; ( ) jl,j e}, i=1,

i=1
n—m’

vy n—m'. So, |Py|<|T (x+1) ‘P;}[Sa/ implies that [P, |<max{ IP |: J:€Py} |Py| = |Pyl.

i=1
Theorem 4.1, P,, is a pseudo-independent partition of (J,D) and |P, | = a. So a <P | S 0 IPW | _
m] : '

Proof of Theorem 6.1: Wlthout loss of generality, let det(TD.)>0. Because dlspll—-det(TD ), by
Theorem 5.2, II= dlsplll(TD )"'T =det(TD)1(TD.)"'T. By Fact 2, 1=1(TD,)'T.  Let
T=[1y eoer Tl = l(TD ), then ged(7y, - s = gcd(nl, ., 7,)=1. Let (TD, ),J, i,j=1, ., m’ ‘be the cofactors-

of matrix (TD,). Then by Fact 1, I’ —(Z(TD Nijp o Z(TD Juvi)- So, gcd(Z(TD )”, ey Z(TD Ji)=1 a.nd .
. j=1 =l )
ged((TD, )”, i,j=1, ..., m')=1. Thls implies that the greatest common divisor of all subdetermmants of
m'—1
order m'—1 is equal to 1, i.e, []s=L Therefore, §;=...=sy_=1. 0
i=1



Figure 2.1
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Indexsetd Index set J'

“In J, [11]¥ is not connected to any other points. However, in J it is con-
" nected to many other points such as point [4,0]7. L '
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The maximal independent partition of algorithm of Example 2.2.
P;néx ={J; ,J2,J3,J4}. However, there is only one block in the maximal
pseudo—mdependent partition. Pictorially, only ‘the connectlwtles of
- points near boundaries of J are aﬂ'ected
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(@« -partion (o) ¥ - parion

- Flgure 4.1 Pér‘titions'O'f_-'alg‘or‘ithvm of .EXamplé 4.1 where D=[2, 2], I,I?’[;l, 2:].tand \I'=[1, —71]-,_ (a)
" o-partition: the hyperplanes are described by I1j(mod 2)=c;. Points lying on dotted lines belong to

o J.i'iEP'_Q'and' points lying on solid lines belong ‘t‘b J,€P,.. (b) W-partition: the hyperplanes are. described - -

~ by ¥j=c,. Points lying on ‘hyperplane Vj=c, belong to J;. j€Py. (¢) oW-partition: dotted lines specify

g ,o-partitién and solid lines specify W-partition. : :



| Block

vlj

'J‘o

|

Index Point

Mw“" " ...

W
T g 1 v
NN
L It
r "
w W
1 J

Table 4.1: Lxst of blocks and thelr correspondmg mdex pomts of. the aW- partmon of algonthm of
Example 4.1.
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