
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

4-1-1988

Prospectus for a Remote PASM Execution and
Debugging Environment - PDB
Thomas L. Casavant
Purdue University

James E. Lumpp Jr
Purdue University

Thomas Schwederski
Purdue University

Wayne Nation
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Casavant, Thomas L.; Lumpp, James E. Jr; Schwederski, Thomas; and Nation, Wayne, "Prospectus for a Remote PASM Execution and
Debugging Environment - PDB" (1988). Department of Electrical and Computer Engineering Technical Reports. Paper 601.
https://docs.lib.purdue.edu/ecetr/601

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages


\yyyyyyyyyyyyyyy^ prjs^ ^ ^ /.‘ff^ .myy.m.^y.'y.
t.v.\v.x•x•x•x•^3\•jP3&x•X\*•IM^i^x•.?frx•
v iv i ,)v ;v iv iv : ,i ” \v :v i]t ,i% ^ ^ \\\-?7X -jigi\-:

X*XvX,X,X,XvX*.£^*XpSj£I,Jl\S&Xv^ivX

A  P ro sp ec tu s  for  
a  R em ote  P A S M  E xecution  
and  D eb u gg in g  
E n v iro n m en t - P D B

Thomas L. Casavant 
James E. LumppvJr. 
Thomas Schwederski 
Wayne Nation 
the PASM Working Group

TR-EE 88-16 
April 1988

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907



A  Prospectus fcr  
A  R em ote PASM  Execution and 
Debugging Environm ent —  PD B

Thomas L. Cusavant, James E. Lumppl Jr., 
Thomas Schwederski, Wayne Nation, 

and the PASM Working Group

PASM Parallel Processing Laboratory 
School of Electrical Engineering 

Purdue University 
West Lafayette, IN 47907

A bstract

This document describes four design alternatives for a remote 
debugging and execution environment for the PASM Parallel Pro
cessing System Prototype in the School of EE at Purdue. Two 
alternatives involve acquisition of modest hardware for system 
enhancement, while the others are software-only solutions. All solu
tions involve use of a high-resolution bit-mapped graphics device, 
mouse and keyboard input, and a broad-band Ethernet-like com
munication medium. These latter components are currently avail
able. The goal of this environment is to support any type of debug
ging which is currently supported by using the front panel of the 
machine and several terminals which are manually multiplexed 
between PEs and other resource management processors of the sys
tem. The environment will support voluntary output of processor 
activity from, and input to, any of the 30 processors of the PASM 
prototype. This configuration represents a step toward multi
programming of the machine and will support development of 
software tools, languages and additional applications. Debugging 
information will be in the form of textual (or other) output 
displayed on virtual windows of a high-resolution device such as a 

   SUN 3/50.

I . Introduction
For the past year, the 30 processor PASM system prototype has been opera

tional and experimental work has been carried out. While very fruitful in itself, this 
work has illuminated the need for a more sophisticated programming environment. 
The current environment requires a user to be present in the room with the (very 
noisy) machine, and to have numerous terminals connected to the front panel to sup
port monitoring of activities inside more than one processor at the same time. How
ever, the functional characteristics of this interface are quite adequate for many 
phases of program development and support many areas of experimental parallel pro
cessing research — in fact, our goal. This project represents the next evolutionary 
phase of development of an environment for programming machines such as PASM.



2

This document assumes general familiarity with the PASM system and its prototype 
[SiS81, SiS87].

The immediate goal of this work is to provide identical functionality in the 
interface to the machine as described above, while also supporting:

1. Remote program execution and debugging.

2. A greater level of programmer visibility into the dynamic operation of PASM.

3. Multi-user access to the resources of PASM.

The foundation of the 4 solutions presented here is a broad-band (e.g., Ethernet) con
nection of a high-resolution work-station (e.g., SUN 3/50 or better) to the Parallel 
Computation Unit (PCU) of PASM. The work-station will then use a virtual win
dowing capability to simulate the simultaneous monitoring of each of the processors 
in the PCU as well as the numerous management processors of the system. The 
nature of the connection of the channel to PASM represents some special problems 
and a variety of feasible solutions. The solutions described here range from 
software-only'solutions which place the bulk of the user-interface maintenance load 
on the SCU to solutions which place this load on the work-station with the SCU only 
taking on a management and error-reporting role. The other major concern in com
paring alternatives is the level of interference with the computations being monitored 
created by the monitoring process itself.

2. Design A lternatives

The basic environment described in section I may be achieved in a number of 
ways. The collection of alternatives explored and described here each have different 
requirements in terms of hardware and/or software. The solutions also differ in th» ir 
potential for interference with the actual parallel computation. The more hardware- 
intensive solutions are superior with respect to their ability to provide debugging 
information and checkpointing without altering natural program flow. The 
software-intensive solutions will be cheaper to implement, but will utilize the control 
path from the PCU through the MCs and SCU to route data to and from the PCU 
and SUN work-station. This will greatly affect the behavior and performance of pro
grams — especially programs with a significant SIMD component. However, since 
none of the solutions are completely passive in their monitoring capabilities, the ques
tion is one of a matter of degree of interference.



2.1. Solutions Requiring New H ardw are

-  3 -

2.1.1. Annex-Box Solution
The first solution described here is characterized by the use of an N-to-1 

MUX/DEMUX hardware component which combines N RS-232 ports connected to 
the PASM PCU into a serial stream of data received and transmitted over an Ether
net channel (as shown in Figure I). The hardware component is an ANNEX Box 
manufactured by Encore Computer Corporation [Enc86a]. This hardware will act as 
a de-multiplexor of data from windows on a SUN work-station to the processors of 
the PCU as input, and as a multiplexor/concentrator of data from the PCU proces
sors back to the SUN. When tracing/debugging information is to be displayed, the 
programmer simply uses the RS-232 interface, and the output will be displayed in a 
window of the SUN. Any SUN work-station with access to the research Ethernet on 
ECN will be usable in the first implementation, and eventually any SUN on ECN will 
be usable. The software required on the SUN will be a program (labeled smon in 
Figure I) using X-windows routines to maintain an up-to-date display of any infor
mation printed from each processor in the PCU. The program must interpret arriv
ing data and display it in the correct window, and must also poll the keyboard and 
send data from the active window (identified by the mouse position) to the appropri
ate processor in the PCU. The initialization phase of this program will begin by 
requesting an allocation of processors from the SCU of PASM (this function is carried 
out by the program pmon shown in Figure I). The SCU will then establish the ses
sions between itself, the ports of the ANNEX hardware, and the SUN smon program. 
The pmon block must then continue to monitor the parallel ports for control, status, 
and error conditions detected in the P CU and relay these to the smon block.



PASM
SCU

Ether Net

Ether NetRS232

windows

Figure I. 
ANNEX Solution

data

smon

pmon

ANNEX
OBOX

PE5

P E 13

PElO

PE14

P E ll

PE15

MC3

2.1.2. SMM Solution

An alternative to accessing the serial ports of all PASM CPU boards is by means 
of a system monitoring module (SMM), which is an enhancement to the PASM proto
type I/O processor. Each SMM contains 8 MC68681 DUART chips, each of which 
implements two serial ports. Thus, 16 serial ports are available per SMM, and two



-  5 -

SMM boards are required to have a connection, to each of the 30 PASM processors. 
The DUARTs are accessed by the CPU through the I/O-Channel, a local bus pro
vided by the MVME110 CPU boards that are used in the PASM prototype. The 
I /O-Channel has the advantage of very simple interfacing logic. Below is a simplified 
block diagram of the SMM:

I /O Channel

Terminal

Terminal

Serial 
Port 0

Serial 
Port 15

I/O Channel 
Interface

Figure 2.
BasicBlockDiagramofSMMSolution

The I/O processor has a parallel port connection to the SCU. This connection should



be of sufficiently high speed to keep up with messages to and from serial CPU ports. 
The SCU ethernet link can be used to connect PASM to the SUN workstation, simi
lar to the other proposals. Figure 3 shows the relationship of the SMM to the rest of 
PASM and the display device.

VME Bus

8-bit bidirectional

Ethernet

to to CPU to to CPU 
terminals serial terminals serial 

ports ports

parallel
port

board
parallel

port
board

SMMSMM

Figure 3.
Integration of SMM Hardware into PASM

Another advantage of the SMM is that the "Blue Box", i.e., the central serial 
port distribution box, can still be used, even without software support from the I/O 
processor. The SMM will automatically intercept all messages from a terpijjjiJ con
nected to the blue box, and pass it on to the appropriate CPU board. It can also 
read such a message and pass it on to the SCU. On the other hand, messages from 
the SGU (or SUN) are passed to the Blue Box as well as the connected CPU. This 
way, a terminal connected to the Blue Box will display all traffic to and from the 
CPU serial port, whether originating from the terminal, the CPU, or the SMM. Also, 
the current wiring used to connect the Blue Box to PASM can be used, which will



make it very simple to hook up the SMM boards. No new terminal cables need to be 
manufactured (which is always a pain).

Softw areR equirem ents

The software requirements are minimal. Because the PASM monitor supports 
downloading through the serial ports, no resident software needs to be developed, but 
all required programs can be downloaded via SCU to the I/O processor. The I/O 
processor will then constantly monitor the serial ports of the two SMM, boards, either 
by polling them or in an interrupt driven mode. If a serial port requests service, the 
IOP will form a two-byte packet. The first byte will be identified by a ’0’ in its 
MSB, and will contain the source of the request. The second byte has a ’1’ in the 
MSB and contains the 7-bit ASCE character transmitted to the SMM. Software very 
similar to this has been written by PASM personnel and should not present any 
difficulties.

Consider the required data rates. E all processors of the Parallel Computation 
Unit (i.e., 16 PEs and 4 MCs) send data at maximum speed (9600 baud), a data rate 
of 24K byte/second results. The parallel port therefore needs twice this rate (approx 
50Kbyte/sec) to keep up with the incoming characters. To the best of my knowledge 
this is far below the throughput provided by the parallel port links.

On the other hand, the processor must be capable of handling these data rates. 
K polling is employed (until the IOP is used in its original capacity there is no reason 
why polling should not be used), no interrupt overhead need be considered. Each 
polling action requires one memory access (for the test) and a branch, followed by 
either the next test access or by the sending to the parallel port. When 50K bytes 
have to be transmitted per second, and an average memory access is pessimistically 
estimated at I microsecond, 50 memory accesses are allowed per transferred byte. 
This seems within easy reach of eflficient assembly level programming of the required 
task. In addition, this worst case scenario of 20 sending CPUs is rather unlikely to 
be sustained.

H ardware ajidD evelopm ent Costs

The most expensive parts of the SMM are the DUART chips. These we got as 
donations from Motorola a long time ago; most of the other parts we have as well, 
leftovers from other boards. The only costs will be approx. $50 for some additional 
parts we do not have in sufficient quantities, and another $50 for artwork and PC 
board manufacturing.



-  8 -

Statu s
Tlie circuit diagrams of the SMM have been designed and a circuit board layout 

will most likely be finished within one week. Manufacturing of the blank board (i.e., 
artwork plotting, photographic reduction, board etching, drilling of holes) should 
take another iWeek. The time to debug hardware and software is always difficult to 
predict. Howeverj large parts of the board are reused from previous designs and are 
therefore known to work properly. The serial port connections are very simple. 
Thus, a feasible implementation time for the first board to work should be approxi
mately one month from now (April 15th).

2.2. Softw are O nly Solutions

The two software-intensive solutions arise from the possibility of parallel I/O 
through the hierarchy of PASM itself. It is possible for input and output of the PCU 
to be routed through GPIB ports to the MCs and through the parallel ports to the 
SCU. From there , data packets would be forwarded through the Ethernet to a SUN 
or other monitoring device. The principle requirements are a program on the SCU to 
take data from the MCs, a means to forward that data to the SUN, and routines on 
the SUN to handle the I/O. The main drawbacks to each of these approaches are:

1. The possible bottle-neck of data at the MC and SCU.
2. The inevitable degradation of system performance due to interference with MC 

operation in SIMD or Hybrid SIMD/MIMD mode, and
3. The complexity of user-driven debugging in SIMD mode. This arises since in 

SIMD mode, data/variables which reside in the PEs must be directed back to 
the MC under the control of the MC.

Each of these considerations will be discussed in the descriptions following.
The program running on the SCU (pmon), in addition to providing the error 

and program control outlined in section 2.1, will now be responsible for the 
identification and packaging of I/O to and from the PCU elements. Since the most 
common path for I/O will be PE-*MC—►SCU—*>SUN this will serve as an illustrative 
example.

Information from a specific PE will be sent through a GPIB port to its 
corresponding MC. For the sake of performance preservation, it will be necessary to 
packetize output from the PE. It would be very inefficient to forward individual 
characters due to the overhead of identification. This requirement places the first 
restraint on the fret-flow of I/O as provided by the current multiple terminal



configuration. Next, the MC will process the packet by labeling it as to which PE in 
its group the data is from and forwarding via parallel ports to the S CU. Here, then, 
is where the bottle-neck may occur (i.e., it will not be possible for multiple PEs to 
output in SIMD mode) and additional measures may have to be taken to prevent loss 
of data if more than one PE attempts to output in MIMD mode. These problems are 
not present in the hardware approach of section 2.1. Next, the SCU will identify 
from which MC the data originated, determine if it is I/O from the MC itself or one 
of its PEs and label it as such.

At this point, all that remains to be done is to send the packet to the appropri
ate window on the sun. This set of steps is handled differently in the two software 
approaches proposed and comprises the principle difference between them. These 
differences lie in the Ethernet and X-window interfaces.

2.2.1. SCU^Ihtensiye Solution

The S CU-intensive solution would handle the communication through XLIB 
software running as an application library extension to the SCU system software. 
This library includes features which emulates a terminal across the net and supports 
TCP sockets.! In this case, pmon interfaces with the X-window library routines and 
maitains the multiple virtual terminals by stripping the origination information from 
each packet, and sending the data through the appropriate virtual terminal. Much 
of the development of the virtual terminal manipulation routines could be done on a 
SUN or VAX. This routine would then be ported to the SCU and would receive 
information from the parallel ports through a routine developed on the SCU itself 
which polled the parallel ports.. Note, that in Figure 4, this is illustrated by the 
movement of smon from the SUN to the S CU. The functionality of pmon and smon 
may be merged in this case, thus eliminating one level of message passing between 
clients of the tool.

This approach would require no code to be written for the SUN, however the 
major drawback here is the need to port the XLIB routines needed by smon to run 
on System-V (currently native on the SCU). X-windows was developed on 4.3 BSD 
and the port may pose a considerable challenge. A second possible drawback is the 
performance degradation of the SCU which could further heighten the data bottle
neck phenomenon.



-  10 -

PASM SUN windows

r SCU

pmon smon Ether Net

MCO MCI MC2 MC3 v  - ' ■ ' ■ ■ V ;

PEO PEl PE2 PE3

PE4
; i ' ■ '
PE5 PE6 PE7

■' '■ ’ ’ . . ■ ; . .. ,

PE8 PE9 PElO P E ll
. ; _ ■■ ■ c v

PE12 PE13 PE14 PE15
■ :

Figure 4.
SCU-Intensive Solution

2.2.2. SU N -Intensive Solution

This alternative would alleviate some of the load on the SCU by moving the X- 
window support (i.e., smon) from the SCU to the SUN while still utilizing the 
PE—►MC—♦SCU—*-SUN path for data. In this case, pmon must multiplex MUX all



- l i 

the packets from the MCs into a single pipe or socket for transmittion across the 
Ethernet. The packets would be received by the smon routine on the SUN, the origi
nation information would be stripped, and the data displayed in the correct window 
through X-window calls by smon. Input from the user would be packetized and 
labeled with a destination and forwarded to the appropriate PCU element based on 
the mouse location determined by smon.

The SCU is spared the burden of managing the XTERMs (i.e., smon now runs 
on the SUN, not the S CU) but must still interpret the packets from the SUN, strip 
off the control bits, and send the data to the correct part of the P CU. In the SCU- 
intensive case pmon/smon needs to packetize data coming from the virtual terminals 
'(P CU); The Virtual terminals would automatically send characters across as they are 
typed while the smon would have to packetize to avoid a performance degradation. 
With this SUN-intensive case the packetization and lableing would take plac on the 
SUN. A SUN 3/50 has a Motorola 68020 running at 16 MHz while the SCU is a 
68010 running at 10 MHz. Thus, the packetization in the SUN-intensive solution 
could be done much more quickly on the SUN thus avoiding the potential bottle-neck 
there.

The most important point of comparison between these two software solutions 
would be the porting of the X-window libraries to System-V as opposed to the poten
tially easier manipulation of windows in the SCU-intensive version. The disadvan
tage of the second software solution would be the extra code to be written for the 
SUN to manipulate the windows. However, performance is expected to be 
significantly greater.



PASM

SCU

pmon

MCO MCI MC2 MC3

PEO PEl PE2 PE3

PE4 PE5 PE 6 PE7

PE8 PE9 PElO P E ll

FE 12 PE13 PE14 PE15

std. in/out

Ether Net

SUN windows

Figure 5.
SUN-Intensive Solution



-  13 -

References

[Enc86] Encore Computer Corporation, “ANNEX Hardware Installation Guide,” 
and “ANNEX User’s Guide,” Document # ’s 716-02887 and 716-02886, 
1986.

[SiS8l] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E. Smal
ley, Jr., and S. D. Smith, "PASM: a partitionable SIMD/MIMD system for 
image processing and pattern recognition," IEEE Transactions on Com
puters, Vol. C-30, December 1981, pp. 934-947.

[SIS87] H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, "An over
view of the PASM parallel processing system," in Computer Architecture, 
D. D. Gajski, V. M. Milutinovic, H. J. Siegel, and B. P. Furht, eds., IEEE 
Computer Society Press, Washington, D.C., 1987, pp. 387-407.


	Purdue University
	Purdue e-Pubs
	4-1-1988

	Prospectus for a Remote PASM Execution and Debugging Environment - PDB
	Thomas L. Casavant
	James E. Lumpp Jr
	Thomas Schwederski
	Wayne Nation

	tmp.1542052450.pdf.xAgaa

