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ABSTRACT

[
i
'
I

~In:the field of ultrasound diffraétion tomography, a cross section of a ‘weakly
scattering object is reconstructed from measurements of the sound scattered from the
insonified object. This research studies tomographic imaging algorithms that deal only
with the sound that is backscattered from the object. The use of the backscattered
sound provides higher resolution reconstructions due to the higher spatial frequency
information about the object that is o'lfata_ined from the backscatter. Unfortunately the
cost Qf the high frequency infor_matiorjl contained in the backscatter is t'hc» loss of low
frequency information. Different approaches to compensate for this loss are discussed.
An additional benefit of reflection mode tomography is that it has the advantage of
requiring only 180° access to the objecj_t whereas transmission mode requires 360°.

The charter of this research is to explore the effectiveness of current reflection
mode’ diffraction tomography algorit&lms and to theoretically develop, as well as
experimentally verify, new algorithms. Different scanning geometries with different
~ methods of insonification are explored.' Many different approaches to the analysis of
the problem are taken. B



INTRODUCTION

The ﬁeld of computed tomography involves the non-destructive reconstruction of
a shce of an object from measurements made external to the object. There are a
vanety of ways in which the object is irradiated and in which the measurements are
- made.. In this proposal only ultrasound is considered as the source of energy to use in
u'radlatmg the object Ultrasound has the advantage of being harmless- to living tissue
but is disadvantaged in that traveling sound waves are diffracted and refracted -when
- they encounter dense or otherwise strongly scattering objects. For this reason. the type
of tomography considered here is named diffraction tomography. This name might
~ deceive the reader into thinking that cross-sections of strongly scattering objects can be

recon‘structed Unfortunately, reconstructions can only be accurately obtained when
the object under examination is a weakly scattenng object. As object complexttyv
increases, reconstruction quality degrades. - '

Many different approaches to reflection mode diffraction tomography (RMDT)
have been. proposed in the literature. The first approach that should be mentioned is
the paper presented by Johnson et al. [John77} which discusses a ray tracing approach :
to- synthetlc aperture, reflectivity imaging. The approach does correct for refraction
and attenuation but does not take into consideration diffraction effects and is aimed at
tissue parameterization. ,

Secondly, the work of Norton and Linzer [Nor79a] analyzes backprOJectlon
methods for reconstructing cross-sectional images of ultrasonic reflectivity. The data
neceSsary‘for reconstruction is obtained from single frequency CW backscattered wave
measurements.. Reconstructions of ultrasonic reflectivity from experimental data have ,
been carned out with promising results by K. Dines [Dines]. S -

Norton and Linzer [Nor81] have also presented 3-d1men51ona1 1nver510n" B
equatlons that are based upon the use of broad-band, pulsed, point sources and
- receivers. The resulting equations that are based upon the Born approximation are in
" the form of a filtered backpro;ectlon operatlon and are derived for 3 different scanmng
- geometries. L

A third source of reﬂectlon mode imaging work comes from Aznm and Kak
[ManiTR] which considers the reflection mode version of a synthetxc aperture.



’,reconstrucuon algonthm proposed in [Nah84]. The approach is based on the Fourier
diffraction theorem and seems to efficiently collect data due to the fact that only two
rotational views of the object are required. This benefit is offset by the complex1ty of
the transducer arrays and the time consummg manner in Wthh the scattered field

~ measurements are made. .

All of the techmques mentioned in the previous paragraphs suffer from a lack of
low frequency information inherent in reﬂectlon mode imaging and/or the lack of

consideration of diffraction effects. .

In this proposal the basic concepts underlying -reflection mode dlffractron

. tomography will be described and the promise of higher resolution reconstructions.
generated from backscatter, will be examined. An intuitive argument that supports this
claim, follows in the next paragraph. - S :

The backscattered waves that can be received in a pulse-echo system, can be

-attributed to the relatively large density (or refractive index) changes within the object
being-scanned. Hence the information about the object that is contained within the
backscattered waves, provide us with only the high frequency changés within the
object. - The forward scattered wave contains information about the average density. (or
_refractive index) within the object. Hence low frequency information is inherently
obtained by transmission tomography. The above intvition will be mathematlcally
supported in chapter one. ' :

Chapter one serves to provide the reader ‘with the basics of RMDT the

_ approx1matlons and methods of reconstructions that are used. In the following chapter
a different type of reflection mode imaging, named ultrasonic reflectivity tomography

- (URT), is analyzed in both the time and frequency spaces. Chapter three describes a
newly conceived algorithm which uses a simple scanning aparatus and delves: into
experimental issues related to implementing the algorithm. Chapter four builds upon
three by describing methods of extrapolating the low frequency information in the
 backscattered wave measurements that other reflection mode algorithms: simply do
without.  Simulated results of the new algorithm are provided with and w1thout the use
of the spectral extrapolation necessary to regain the low frequency information. ’

-~ Finally, chapter five will examine synthetrc aperture defractlon tomography as

v apphed to backscattered fields. A

A moment must be spent before the thesis begms to point out. crumal notatlon
that will be used throughout the document. Firstly, all bold characters are vectors. -
When a. character that is known to be a vector quantity is not bold it represents the
magmtude of the vector, r= Irl. A phasor representation of wavefronts will be used.
This means that the function u(r,t) will be represented by Re {U(r) ei"?‘]. where U(r) is
a complex function of position that is equal to U(r)e ™. :In. short



CHAPTER 1

DIFFRACTION TOMOGRAPHY

The mathematlcal background presented in the next section can be passed over by
the reader hav1ng sufficient background in tomography. In subsequent sections,
equatlons used m this prehmmary chapter will be referenced when needed.

L1 Matheniatieal Found-ation

The fundamental equatlon on which diffraction tomography algorithms are based
’ '1s the scalar wave equation

_1 a ur,y _
R - cX(r) o e
~ where c(r) is the speed of sound and u(r,t) is the spatially and temporally varying
pressure wave of the wave. Note that for our purposes, ¢ will only vary ‘Wit'hin_'the :
object that is being imaged and will remain constant in the surrounding medium. I the
source of the wave is simple-harmonic such that u(r,t) = Uy(r) € IOt the wave equauon o
" reduces to the followmg Helmholtz equation, -

VU (r)+ (r) 0. B ¢))
(r) S

V2u(r,t) ~ (1) -

“To change the equation into a more manageable form it is convenient to normalize c(r)
by the constant ¢, which is the sound speed in the surrounding medium.

' VU0 + kU, m=—o ———Lluwm. @
TN e

The c’ohstant k, is the wave number of the surrounding medium which is equivalent to

w/c,: The form of Eq. (3) is that of an inhomogeneous wave equation in Whlch the

forcmg functlon is



~ F(r) Uy(r) =k2[,1 - n2(r)] U, () .

The ratio c/c(r) = n(r) is referred to as the refractive index. Hence the wave equatlon
of 1nterest appears as follows o

VU (1) + szm(r) = —F(r) U, . @

Note that the function F(r) U «(r) should more appropriately be called the scattering
potential since it accounts for the scattering of the sound as it propagates through the
object being insonified. The scattering potential describes the 1nhomogene1ty of the
object which causes the scattering. .

The model of the scattering potential that was just discussed could not take into
consideration the scattering effects of the object’s compressibility, k, or density, p,
which together determine the speed of propagation (c = 1/\/@). A more accurate wave
equation that includes the effects of x and p is [Morse, pg.408-410] '

VZUm+k3Um=—kZUmyK(r)+V-['yp(r)VU(,,} Lo - (5

The scattering potential in Eq. (5) is effectively that of a viscous ccmpre$sible fluid. It
has been assumed in Eq. (5) that the functions representing the variation in x and p,

K=K,

Y(T) = 2 and
P—Po
(ry= ,
Yo b |

do not vary with time.

On the assumption that the scattering effects of compressibility are very much
smaller than those of the density, yK<<yp, the equation

can be used as the basrs of an inverse scattering algonthm that reconstructs the
parameter p. It is possible to avoid the above assumption by making use.of the fact
that ‘the angular dependence of the scattering caused by x and p d1ffers ThlS
dependence will be mathematically described in section 1.3 . :

There are two practical methods used to express the solutlon to the
mhomogeneous wave equation in Eq. (4): the separation of variables method and-the
integral solution method. The first of the methods can be used when the dependence of
the pressure wave on each of the coordinates, can be separated. In other words it must
be possible that the pressure wave u(r,t) can be expressed as the product of the wave’s
dependence upon each of the variables used to describe the coordinate syst_em_ (ie.
R(@)O(B)Z(2) in cylindrical coordinates). This approach typically provides the So_lliticn



in the foxm of an infinite series which is mathematically correct but might converge too
slowly to be useful. ‘

The second of the methods is more general in part due to its mdependence from
the coordinate system being used. Because of its generality, discussion will henceforth:
be llrmted to the integral solution method.. ,

° The solution of the time harmonic wave equation in Eq (4) can eas11y be
expressed as follows [Morse pg-319-321] |

OU(ro) L 9G,(riry)
| m(r) j (,,( | “on -Um(ro)—————ano ds,
+ [F(r) Uy Gyrirdv, . (D “

where Um(r) is the spatial variation of the pressure wave within and on the surface
'boundmg the medium, and dS, is the elementary unit of surface area on the boundaty
of the region of interest. The first term on the right hand side of Eq. (7) is the 1ntegral
over the surface enclosing the region of interest, S, which accounts for reflections
from, and sources on, the boundary. In our case we are dealing with an‘inﬁnite
medlum for ‘which the boundary integral will reduce to U;(*) which is the time-
harmonic incident wave whose source is on the boundary. This is' a good
approximation because in this work the received backscatter is time gated such that the
transducer does not sense any part of the scattered waves from the sides of our imaging
tank Hence the pressure wave can be expressed as

Ug® =Ui(0) + [ B Ugry) Gyt Ir) dvy, = U+ U®) (8)
{_ JFC N

where G (rir,) is the solution of the wave equation in Eq. (A1) indicating that the
function represents the spatial variation of the pressure wave due to a unit harmonic
point source at r,. Essentially, the second term on the right hand side of Eq. (8),
represents t_he summation of waves scattered from point sources that are weighted ,_by
F(ry) Uy(r,) dv, . This weighting term is typically called the scattering amplitude. ‘
' It is interesting to note the form of the above solution if the source of the pressure
wave is non-harmonic. In this case it is necessary to consider U,(r) as a function of o,
instead of sirnply being parameterized by ®. ‘ '
Ur,0) = [u(r,t) o dt

—00

The reSulting scattered wave can be expressed as follows:



uy(r,0) - [F(ro) [ uroty) glrtirgty) dt, dv,, | O

The above equation is a convolution of the forcing function, f(*), and the time domain
Green s function, g(*) in Eq. (A8), in space and time. This free space result w111 lead 1o
the followin g expressmn for the scattered wave, ~ '

us(r,t)zj.___(rLu[ r,, — r ‘ro } dVro ) o . (10)

v 4nir-rl c

1.1.1 The Born Approximation -

The solution to the inhomogeneous wave equation in Eq. (4), is

Uy r) =Uy(r) + ”J'F(r)Uw(r)Gm(rlro)dv,. . o ‘(1.'1)

which appears to be a Fredholm equatlon of the second kind. The soluuon to such an
equatlon can be obtained at great cost by iterative-perturbation methods [MorFes] To v
‘simplify the expression for U,(") into-a more manageable form, we will'make use of -
the Born approximation which assumes that the object is _weakly scattering,

I'U 1< U; 1. Making the assumption that the total wave is equal to the incident wave
plus the scattered wave and using the Born approximation, Eq. (11) becomes

Uyr) =Uy(r) + j [[Far) Uir) Gurirydv, . '(12)

The equatlon above Tepresents only a first order approximation to the total wave, U,
The 1ntegral term in Eq. (12) represents the scattered wave,

U0 = [[[ Br) Ui(ro) Gyt Ir) dvy, . (13)
14 : .

It is this relationship between the scattered wave and the 'scattering potential,
henceforth referred to as “‘the object,”” which is the crux of diffraction: tomo‘graphy
Of course, higher order approximations to U(*) can be made, but the fact remams that
Eq (13) is the basis of most algorithms. Unfortunately the same approxunauon uised
to obtam the scattered wave equation also represents the most severe limitation ‘to
reconstruction accuracy. L
- To reduce Eq. (13) to a more desirable form, the Green’s function can be replaced
by its angular spectrum expansion which is Eq. (AS) in the 3 dimensional case or Eq.
(A6) in the 2D case. If we stick to the 3D problem, the scattered wave becomes '



Us(r) = _Ljﬂ dvr, F(r o) Ui(ro) fde dK, e[ (o "°)+Ky(y—ya)]

J’Y|Z—Zo|

Y

Y= \/kf—Kf—Kf : 14

-1,1'.2 The Fonﬁer Diffraction Theorem

Smce we are only interested in the reflection mode problem let’s cons1der a
scanmng geometry in which the z component of the observation point r always has a
value less. ‘than the value of z,. Figure (1) illustrates the geometry in which
Iz—z I =2z, z Note that the value of r will be allowed to vary only over the plane
jk .-

z=1y. I, the incident wave is a time harmomc plane ‘wave, Uy(r) =U,¢’ , the
' mtegratlon ‘with respect to ry = (X4,¥:Zo) i Eq. (14) can be carried out, resulting in
U, ; (,-) = F(r ) S— ¢ IKXtK Yo 2ol JIKax+K,y—7vlo]
(o]
HKaxHyy-yial L s
8n2 j [dK, dK F(Kx,Ky,-y—k) T T (15)

where Fe) is equal to the Fourier transform of F(*) and 4, is the unit vector in the
positive z‘;d1rectlon Note that the Fourier transfomzanon operatz_on{ can only be
carried out if we limit ourselves to consider only nonevanescent waves for which
k2 K2+K2 Refer to Appendix C for a discussion on evanescent waves and the
unphcauons of their exclusion. - :
The final step needed to obtain the desired spatial frequency domain relanonsh1p

between the scattered wave and the object, is the Fourier transformation of Uy(*) over
the measurement plane, z =1 0.' This transformation yields, -

Vo 13U, "J\h?oz—ﬁ‘2 p*lo n 3 L
Us,af(a,B,l,o)— ? o F(ouB~\k2-o?—B?—k,) . (16)

Note that the above equation was obtained with the following two basic relationships; |

j e’J(“ K% g = 2n8(a-K) and j F(K) 8(a-K) dK = F(@) -

Equatlon (16) is called the Fourier d1ffractlon theorem (FDT) in three dJmensmns
It relates the Fourier transform of the scattered wave on the surface of a plane to the
transform of the object over surfaces known as Ewald spheres.



Az

Figure (1) A sirﬁple illustration of the location of the transducer plane in a 3D
experiment. The transducer plane is z = [, o
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The fact that an object’s spatial frequency components are known on a spherical
surface is a result of the argument of the function F(W) where W = ({,1,7). ‘Equating '
~the components of W with the x, y and z spat1al frequency components used m Eq.

_(16) results in _
| (=a,n=B, y=-\k-a™p2 -k, .

It the dependence of the components of W on o and B is ehmmated we have -

R (k)% | : |
which :,isf.the equation for a sphere centered at the spatial frequency (0:?0,_1(0,) with a
- radius of k,. This describes the Ewald sphere corresponding to plane wave
' 1nson1ﬁcat10n of the object in the positive z d1rect10n One thing that must be pomted '
out is the extent of the sphere that can actually be recovered from the measured
scattered wave. Remember that our discussion is limited to nonevanescent waves'
v thereby boundlng the value of vy, —2k,<y<-k,. Hence the recoverable portion of the
sphere will always be the hemisphere furthest from the origin. The coverage of the
opposne hemisphere is attributed to the backscattered evanescent waves which
attenuate in the direction of the receiving plane and are too weak to be rece1ved at a
distance of a few wavelengths. Note that the sphere is divided into hemispheres by the
plane perpendicular to the vector in the direction of the center of the sphere 'Zand

containing ‘the center of the sphere. Hence we have mathematically shown that a
backscattered wave measurement only provides high frequency 1nforrnat10n about the
obJect bemg insonified. | : ’ _

~ In'the above paragraph, discussion was limited to a particular geometry but now

let’s generahze the discussion and examine plane wave insonification’ from any

d1rec_t10n. ‘Let’s use the plane wave e’(k"s" H”t), which propagates in the dlrectron S

The expression for the FDT remains the same, although the axes used hav_e been

rotated about the origin such that the new z axis has the unit vector §,. Following the

discussion related to Eq. (15) one can see that the Ewald sphere will end up being
centered at —k_§, in the spatial frequency domain. '
To obtain the FDT for the case of forward scattered waves mstead of

backscattered waves, simply replace |z-z,| with z—z_ since the observation plane is. .

z=1y where Iy is always greater than z,. In this case coverage in the object’s
, frequency domain will always lie on the hemisphere closest to the origin thereby :
containing zero frequency information about the object.

A similar FDT in two dimensions can easily be obtained by dropping the z

dependence of the object and using the angular spectrum expansion for the 2D Green s.

function, Eq. (A6), in Eq. (13). Figure (2) illustrates the simple scanning configuration
in which the line of transducers is located at y = lo and §,=4,. Figure (3) illustrates
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: 4f(x sY)
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Figure (2) The scanning geometry used in obtaining backscattered field
measurements for use in the algorithms. The single plane wave transducer lies on the

liney =,
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‘the FDT in 2 dlmensmns {d can t draw 2D representatrons of 3D relatlonshlps very
well). Note that in transmission mode, the object coverage obtained is 1ndlcated 1n, v
ﬁgure (3) by the dashed hne portlon of the “Ewald circle.” ‘

1.2 Methojii'svfof Reconstruction

ThetWo most popular approaches to carrying out the reconstruction of the interior
of an object from scattered wave measurements, are called filtered backpropagatiOn )

‘[Dev82] and frequency domain ﬁlhng [Pan83]. In the followrng two sub—secuons both
_ approaches w1ll be briefly described in reﬂecnon mode.

121 Frequency Domain Filling

, One reconstructlon approach is that in whrch the ObJCCt S spat1al frequency
‘ _dornam 1s ﬁlled in with the scaled and phase shifted Fourier transform of -the
backscattered wave. For the 2D case of an incident monochromatic plane wave havmg
a d1rectlon of propagatlon indicated by §, (s0 a, = cosf), the followmg 2D Founer ‘
d1ffractlon theorem follows from Eq. (16) :

o, -\/ki-af-ko)_-p\j f—afe"‘"‘_" % 0, go((x,y o) R --('17)\

: where o= V cosq)—u sm([) Note that the function F( ) is the 2D Fourier transform of the
functlon F( ) and US g, () is the Fourier transform of the scattered wave recerved on the

lme y =1, 0 " The function F() represents the object being imaged and. 1s part of the
forcing function in the following wave equation

VAU () + k2U o(r) = -F(U,(r) .

To remforce the reader’s understanding of the FDT, it is necessary to refer to
ﬁgure (3) and pomt out where the functions in Eq. (17) originate. The functron
U (a lo) is the Fourier transform of the backscatered wave along the receive hne

wh1ch is at a distance of / from the origin. This transform after scahng and phase‘
shlfung, prov1des values of the spatial transform of the obJect functlon F(u v), on'the
reflection portion of the arc in the (u,v) plane. A bandlrrmted region of F(u V) is
obtained by making scattered wave measurements at various posmons around the
ObJCCt at integral values of ¢ in the range of [0,2n]. The resulting coverage of F(u,v)
lies between the 2 circles of radius W2k, and k, rad/m This coverage, as lllustrated in
ﬁgure 4 is rmss1ng a large portion of F(u V). ‘



incident plane
wave

receiver array

Fourier
transform
—_—

Transmission

Figure (3) The Fourier diffraction theorem is illustrated in reflecion mode. In
transmission mode the forward scattered field is linearly related to the 2D Fourier

domain data lying on the dashed portion of the Ewald circle.

€1
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Figure  (4) The object’s spatial frequency domain coverage obtainable from only
backScattered field measurements.
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" To obtain values of F(uyv) from ﬁss (o;lg) we need 'equatioris 'relating

u,v,oe and ¢. In pursult of these equations we refer to figure (5) and recogmze the
relatlonshlps o

- Y ksin] X2+
2(n—4+0)+y+ > n and > kosm[ 2+4]

from which the desired equations result,

o= %—+-22L+arctan.[ -31,—] and a.=k,cosy

; . u’v? T
X =2| arcsin
2k, 2

For a computer implementation of this approach to cross-section rééc’)nstrﬁctibn,»
F(u,v) must first be estimated at every point on a rectangular sampling grid such that a
subsequent -inverse fast Fourier transform can be carried out to obtain our
apprOximation to f(x,y). For a particular u and v the values of ¢ and o may not
correspond actual samples of Gs,s;,(') since there are a finite number of receiving

where

transducers and backscattered wave measurements are only taken at 1 degree
increments at best. Therefore it is necessary to approximate the value at (u,v) by one
of two ways. One may interpolate the value of (u,v) from nearby samples of I?Is o (a50)
that" are known, or simply accept the nearest known value of Ijsg (o). A good
comparison of the two approaches to frequency domain filling when applied to
inversion of the forward scattered waves, is provided in {Pan83].

Once a sufficient number of F(u,v) samples have been obtained, a simple Fourier
inversion provides us with a band-pass estimate to f(x,y).

1.2.2 Filtered Backpropagatibn

© In this section the backscattered wave version of the filtered- backpr‘opagation
approach (FBP) to object cross-section reconstruction will be described. An excellent
_reference for this approach, formulated for forward scattered waves, is prescnted by its
inventor in [Dev82]. Note that only the 2D problem with plane wave msomﬁcatlon
will be discussed in this section. ~ : o
. Tostart off the discussion we first examine the Founer transform relatlonshlp,
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Figufc (5) Thc Frcquency domain relationship bctwcen US s0(0t,y lo) and the‘
samples in the objcct s spatial frcqucncy domam ' -
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fpp(x,y) = —4—11;5 [f Fea,vy @) du dv - (18)
b \

~in which D is the shaded area in (u,v) space as illustrated in figure (4). Using the
- Ewald circle geometry in figure (5), the first step in deriving the FBP algonthm is to
convert the 1ntegrat10ns with respect to u and v in Eq. (18) to integrations with respect
to the variables ¢ and (. To do this let’s first formulate the change of vanables that
‘must occur and then calculate the necessary jacobian,

u=ko(cos{—cosp) v =Kko(sin{~sing) '
:—k sin{ ~ k,sin¢ | | ‘ |
- du dv ~ 1 kseosf —k cos¢ |dC dé

=k2\1 —cosf(c—¢ d{ do = kZ\/l (kf—o?)/k2 d¢do =k, ol dg d¢ .

'Wlth tlns knowledge Eq (18) becomes,

T ¢+1|:/2 .
- fgp(xy) = k°2 jdcl) f df lal F[ k(8 g)} eJko(ﬁ-éo)r :

- where § and §, are unit vectors in the directions indicated in figure (5). For
convenience let’s make the change the variable { into the more sultable angle where
C ¢——x—1t/2 and dC —dy. Hence, :

fop(r) = j a6 jdx ol F k8] O

in which another change of variable is necessary. This time let’s replace % with o
‘where dou=—k,siny dy=-ydy and y= VkZ—0Z. " Next we replace F() with its

- equivalent described in Eq. (17) which yields,

Note the use of the unit vector SOJ_Wthh is perpendlcular to §,. _ o
o The 1mp1ementat10n of Eq. (19) is better seen if the equatlon 1s rewntten as
follows ’
k £ oK 0 0PN ok
pr(x,y)- o jd¢j’da2]e’ ° ol Uss(alo)e e‘

j d¢ j do A(er) U (01) Pn(oc) %

--1[ -0
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where [ A(o) =2jk Il ,~k <o<k ] is the frequency dependent welghtlng and

[ .n((l) o g Ik Ia|_ko:| is a phase factor proportional -to - the dlstance ’

traveled by the incident wave. Also note that the reconstruction point (x,y) is
described by (E=—xsin¢+ycost, N=xcos¢+ysing) in the rotated coordinate plane (;). .
*  The form of the P (o) filter is interesting because it is dependent upon the point

within the object that is being reconstructed. In‘actual implementation each measured
‘backscattered wave would have to be filtered many times with P. 7(*) for a range of 1
“values that covers the region of the object’s cross-section that is of interest. Of course
this is" qulte a time consuming process but if only a small region- needs to be
reconstructed, the amount of additional filtering is only marginal.

It is important to keep in mind that fgp(x,y), as its subscript proclalms is only a
bandpass approximation to f(x,y)

, 1.3 Separation of the Effects of Compressibility and Density

In reference [Nor83] a unique scanning geometry along with. plane wave
mson1ﬁcat10n is shown to allow separate reconstructions to be made of the
compressibility and density within the object being imaged. The followmg presents a
very compact mathematical explanatlon of how separate reconstructions of
compre551b111ty and density can be obtained.

The free space scattenng amplitude of Eq. (5), with the aid the Born
approx1mat10n is expressed as ‘ 5

040 = [ ISRV FIC(F150) = Vo1p(ro) Voi(r) ] Gutr 17 dVéb E

where V, is the gradient operator applied to the r, variable. The above expressmn can
be simplified with the vector identity ‘ ’ '

| YV-A = V-(yA) — A'Vy

Wthh leads to | |

¢s(r) szU(r )Yx(ro)G o(F 1) dvy +JYp(r )V Ui(r,) Vo Grir, )dv
- J' Yo(To) VoUi(ro)-Von(rlro) dvy, . o G (20)‘ |

The last 1ntegra1 on the right hand side of the above equation, w1ll equal zero smce’ _
'Yp( ) equals zero on the surface S that lies outside of the. Ob_]CCt and bounds the reglon _
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Next let us once again look at the scattering amplitude,

'¢S(r) jk2 ,(ro)y,((ro) G(r Irp) dv,_+ jyp(ro)v U(ro)V Gm(rlro) dvr '(2’1)'

) and' take the spat1a1 transform of both sides of the equation with respect to r. Thrs
leads to the Fourier transform of the scattenng amphtude bemg expressed as

s(K) Iko Ui(roYi(ro) Go(K Iro) dvp +]j j Yo(ro) VoUiro) K G (K1r,) dvr. . o

‘into which we substitute Eq. (A3) and subsequently carry out the 1ntegrauo_n with
' respect to r, [Morse, pg.413-414]. The result is

s(K) j ko Uir (o) ch%? &
| ' JK *To
+ijp<ro>v Uir'K md
1<o j Ul(A)l"K(K—A) dvy - (koK) [ T (K-A) dvy

, @
K12 k2 SEE R ()

where Ul(kl) fuime ik 'dv,, (K) [y e & dv, .

» The integrals in Eq. (22) are now spatial frequency domain convolutlons that result
because of F{V,Ur,)) €= jKU(K).

' The dot product k;K in Eq. (22), is equlvalent to Ik, ||chose where 9 is the
angle between the vector of incidence k;=k,4; and the vector in the direction of
observation K =k, 4. When this angle is equal to 7/2 radians we can see that the
second term on the nght hand side of Eq. (22), will equal zero. Hence we can use a
scanning geometry, illustrated in figure (6), consisting of two perpendicular, phase
insensitive, plane wave transducers in the near field of the object, one operating in
pulse-echo mode and the other serving only as a receiver. * The transducer operating in
- pulse-echo mode will receive the scattered wave as described by both terms in Eq. (22)
and the “‘receive only’’ transducer will receive only the first term on the right hand
side. ,

- For the case of plane wave insonification-

Ur) = 55T 1K) = §Kk,)
’rev’SUIting'in
d’s(K) = ﬁ(—lﬁ[ 'Kk — Tp(K-ky ai'ar] :
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. Teceive only transducer - : *

M R T T S 8 G

o
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incident wave

- ’ g "4 X T » = -
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pulse/ eieh“o‘ transducer

B Flgure (6) The scanning geometry that allows the separate reconstrucuen of
compre551b111ty and density.  Only the pulse-echo transducer will generate the 1nc1dent

? wave and other transducer is passwe
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This is quite a simple relationship that describes the Fourier transform of ‘the scattered
wave that each transducer will receive. Comblmng the measured waves" would allow
the elnmnatlon of either the effects of compressibility or density. / :

. In the diffraction tomography algorithms discussed in this document only the
.pulse-echo transducer is used which leads to 4,4, =—1, & = a '

1.4 Summary

This chapter has provided the basic concepts underlying the current state of
diffraction tomography. A solution to the wave equation has been found with the aid
of the Bomn approximation which has lead us to a spatial frequency domain
relationship between the backscattered wave and the object causing the scattering.
With this relatronshlp in mind, a process that can simply be termed inverse:scattering,
can be carried out to obtain an estimate of the cross-section of the object. Two
different techniques of object reconstruction have been presented in enough detail for
‘one to. 1mp1ement the techniques. It is important to note that the region of the object’s
frequency .domain obtainable w1th elther reconstruction approach is only an -
approximation. ’ -

- Within this chapter no consideration of the effects. of attenuation nor refracuon
has been made. Also frequency dependent scattering and attenuatron have bemg
neglected ‘ ’ ' :
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CHAPTER2

* ULTRASONIC REFLECTIVITY TOMOGRAPHY

*In‘this chapter a reflection mode reconstruction algorithm that was first de§cnbed
in [Nor79a Nor79b,Nor81] will be analyzed The name given to this approach is
’ ultrasomc ‘reflectivity tomography (URT) because the backscattered fields result: from

an ObJCCt parameter named “reflectivity.”” This differs from non-d1ffract10n ‘
- tra.nsmlssmn tomography which has been used to image an object parameter such as

attenuatlon or speed of sound. In reference [Dines87] a reflectivity technique, havmg a ..

theoretlcal ba51s s1rm1ar to that in [Nor79a], has been developed and expenmentally
tested B : o

2.:1_,: e ‘bniain Analysis of the Technique -

In thlS secuon URT is analyzed in the time domain in two steps. The ﬁrst step :

' _' -mvolves ‘the basic formulation of the technique and describes its mteracuon with a

p01nt object. The use of the point object aids in defining the optimum filter to use in
: ﬁltermg the reflected signals. The second step is to model the reflected signals from a -
= true object. The mathematical analysis Qf URT presented, follows that in [Nor79a]. . ,

o2l Pejint Object

To start off thls chapter we first analyze the bas1c scanning geometry, 111ustrated' |
Cin ﬁgurc D, that consists of a point target and a point source. In actual
1mp1ementat10n, the source would either travel on a circle of radius R centered at the
- location of the point. target or there would be a ring of transducers encuclmg the

obJect The advantages to this imaging modality are that higher’ spatial frequency- .

lnformatlon about the object is obtained and that no transducer movement is requlred 1f -
a nng of transducers is used, thereby leadmg to faster data acqu1s1t10n



point target
(the center of rotation)

current position
of the transducer -

Figure (7) A basic geometry used in analyzing the echo received from'a pOint iarget
- inURT.”'? ' IR . - . S . o
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I the point source emits a broad- band pulse, pr(*), the received waveform should
be pR(t) pr(t)*h(t), where h(t) represents any filtering of the transmltted signal by the
- transducer ‘and/or any modification due to the mechanics of backscatterlng To

indicate the time it took for the pulse to travel, pr(*) is convolved with the Dirac delta._ S

function 3(t—2R/c) where c is the speed of propagation within the medlum
Incorporatmg the time shift into the expression for pp(*) ylelds

- Pr(-2Rf) = pr(*h(t-2R/c)

To compensate for the attenuation of the pulse, h(t) could also contain a functlon
which would scale the amplitude of the received pulse in proportion to the time of
travel. The ‘'scaling would have to be done under the assumption that the ‘absofp’tion
within- the: object is uniform and attenuation due to scattering is neghglble “This
assumption allows us to model attenuation as a constant number of dB per meter and
- thereby compensate for attenuation and beam divergence with a time-gain _amphﬁer,

If a simple backprojection is carried out to reconstruct the point object, 6(r,8),
then : _ - o

0(r9)—IPR[ d(R¢,,)——-] @ IR | |

| Wthh is tembly incorrect. To accurately reconstruct the point target the function
R() must be modified by inverse filtering as will be described. The point target

“()

. Refer to '

o(r,e), is" equ1va1ent to the delta function in polar coordlnates,
A’ppendix‘F for a discussion of this delta function.

In search of the proper function with which to filter pg(*), it is necessary to
expand Eq. (23) and examine the frequency domain. of pR() Substituting the
expression for d(*) 1nto Eq (23) ylelds

2n R
8(r,0) = j pr| = \/R2+r2—2rR cos(9—¢) _2R Ve @

in which the square root can be replaced by terms in its binomial expansmn that are
lower than second order in (1/R)

‘/ 1+(r2—-2rR cos(9—-<|>))/R2 1+ ;rl_:_»— 'y cos(e—q)) - —rl:— cos2(9—¢)

, This approxlmatlon will prove to be a good one when (r 9) is close to the ongm Asa
o result Eq (24) becomes : - ~
- 8(1,0) = [ pr| =— - —cos(6 ——cos 20-2
__o(r)ng 3 co(—q» (20-20) | do .
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The next stép is to replace pgr(*) with an expression containing it’s Fouxier':transform,
pr® = | Pg(h) ¥ df ,

Wthh rcsults in,

2K o

‘ o(r 0) = j' J' P (f) ej21tfr2l(2Rc)—_|21tﬁ'7'cos(29—2¢)/(2Rc) —jAnfr cos(6—0)/c df d¢
0 —oo .

Still this equation is unmanageable, therefore the next step is to replaée the first
complex exponential with a series expansion such that

21 oo _
6(1",9)‘ = j j Pr(f) e Jamir cos(@-d)c 4f do 3 25)
Q—oo’ ‘ o .
: + f j PR(f) Jf — -f—— - Jf_a — e e—j41tfr co§(9—¢)/c dfd¢

2 6

where o = 52—:———%—— cos(20-2¢). Equation (25) breaks the reconstructlon up into

two. parts, 6(r,0) = 0,(r,0)+0,(r,0), and henceforth only the term o, will be considered
since interest lies in points near the origin and o is small close to the origin. Hence, 1f
the substltutlon Y= 9+1t is made in o,(*)

() = 0,(ry) =21 | Py(f) J,(@nfr/c) df
since,
o(fr) = - j' e]fl’ cos@ de .

Recalling the goal of 8(r,0) = 8(r)/(x 1), the ch01ce of the. optlmum Pgr(f) can
now be made. With the use of the rclatlonshlp

1} - 1
0 L T6q) 11 df = ({ Jo(fq) If1 df = -8 ,

Ctis obvious that Pg(f) = If! would be optimum. Unfortunately, that pillse would be
unobtamable due to its infinite bandwidth. Therefore a bandlimited approximation
IfI rect(f/2f,) where f_ is the cutoff frequency, is the best that can be done. This
leads to the observation that the mainlobe width of o,(r,8), which is the point spread
- function of the system, is limited mainly by signal bandwidth. The rcsblution of the
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reflectivity reconstruction that is obtainable with this technique is directly linked to the
-width of the mainlobe of o, o(1,8), therefore the wider the bandwidth, the more accurate
the reconstruction.

The paragraphs above lead us to the conclu51on that the optimum ﬁlter to use in
shaprng PR( ) is : ‘

rect(f/2f,) Ifl '

o Hyp(f) = ————— C(P/T(f")) - - (26) |
Of course the division by P(f) would be implemented more wisely by a. W1ener ﬁlter
A much more through analysis of the filtering should be carried out so that the best
possible realizable point spread function is obtained. For example, constrained
deconvolution would be a more accurate method to use in removing the effects of ‘PT(f)
[Hunt72]. The current discussion serves only to point out the basic properties of URT.:

212 True, ;()quCt

For the purpose of mathematical convenience, the following d150ussron wxll use
the geometry in figure (8) wherein the point source is the origin of our coordlnate
system and the object is centered at location (R,8). For the particular . geometry
descnbed above an identical received pulse is obtained if a point target is moved along
an arc of radius R that is centered at the point source. As a result, one can see that the
received waveform at the instant of time 2R/c, relative to the transmission of pT()
could represent the coherent summation of the scattered fields due to all scatterers on
the arc described in the previous sentence. Of course this assumes the absence of
muluple scattermg .

Now let us discuss a more challenging object whose properties we will descnbe
momentarily. The A-scan, Qg(t), received from the point transducer can approx1mate a
set of arc-integrals through the object wherein the radius of the arc-integration varies
as a function of time. Figure (9) illustrates the paths of integration and indicates the
interdependence of arc radius and the received echo at time t. At time t; after the pulse
was tranismitted, the returned A-scan corresponds to the object integrated over the arc
of radius (t;c/2) convolved with the reflection received from a point object, pr(t).
From here on, such an arc will be referred to as a ‘‘constant time”’ . arc
Mathematically, ' B

Qu(t) = j PR(t— ) g oRMdOR @D

Whe’re ”O(R'[,’d))» represents the variation in reflectivity, and 6 indicates the current
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transducer

Figure (8) The scanning geometry used for convenience in the analysis of the A-
scans in URT.
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Figure (9)  An illustration of the relationship between arc radius and the time of
arrival within an A-scan.
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position of the center of the ohject-as illustrated in figure (10). Note that the
integration in Eq. (27) assumes that the point source emits a pulse that-has constant
amplitude wavefront in all directions. If the transducer being used emits a wavefront

~ whose ‘amplitude varies with 0, an additional factor, representing the amplitude

variation along the constant time arc, can be included in the integrand of Eq. (27).
' Measurement of the amplitude pattern can be crudely achieved with the lab equlpment
described in the second section of appendix D. : -
The farmly of A-scans/arc-integrals obtained by either rotaung the transducer
‘about the object or rotating the object itself, is analogous to the hne-mtegral projection
data obtained in non- -diffraction tomography [KakRob]. To make this analogy
possible, the object must have a number of simplifying properties. The following are
" but a few of the properties/assumptions that make the ‘‘A-scan’ to ‘‘arc-integral’’
~ relationship possible: ) ’

'a.)v ~ most unportantly the object must be weakly reflecting,

b.) there must be no variations in sound velocity large enough to produce deforrmnes
, in the constant-time arcs, ,

c) the obJect under investigation must consist only of isotropic scatterers

d. )"‘_ : the attenuation due to scattenng is negligible and v .

e. ) » a unlform absorbency exists within the Ob]CCt and the surroundmg medmm .“'

Note.that in defense of the above assumptions, it is necessary to point out that the same
assumptions are also used in B-scan imaging [Fate80]. R

- In what follows, a reconstruction algorithm will be presented that W111 ‘appear to
ciarry out an inverse Radon transform [Dean] analogous to the reconstruction algorithm
used in non-diffraction tomography. The analogy is clearly illustrated in [Nor79a}-

- As described above, the data represented by Qe(')'describes a set of arc-integrals
which shall be called a projection. By measuring Qg(*) at angular intervals as the
center of the object moves about the source, enough information would be obtained to
reconstruct, with the use of backprojection, an approximation to _the - object’s
: reﬂectmty -Using the geometry in figure (8), the backprojectlon can be descnbed ina

manner s1m11ar to that in Eq (23), . - - :

o(c0) = J Qiyde . _;.;' s

Unfortunately this expression is just as incorrect as was Eq. (23). The functxon that
should be backprojected is
kO —J o) where Qo) = j Pr(t- —3-> LT
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4

Pl
transducer location
(the origin)

Figure (10) An illustration of the variables used in equation (27).'
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Therefore a ﬁlter is required to remove the effects of pr(t) before the backprOJectlon in
Eq. (28) is carried out.
2n

o= | (@0 * 0] | 00

The frequency domain form of h(t) has already been expressed in Eq (26). Hence the
filtering process can be described:

"j'{ Qe(t)} 3’{h(t)} = |fl rect[z—ic—] 3‘{19(0}

This is equivalent to deconvolving pR(t) from Qg(*) and then convolving the result with

ey

It is interesting to note that both non-diffraction tomography (NDT) and URT use
a Ifl ﬁlter {Robr85] although in URT it is applied to the temporally varying
projections unlike in NDT where the projections vary spatially.

2.2 Fourier Domain Analysis of the Technique

This section takes the classical approach to the problem, that involves Fourier
domain analysis and the wave equation. |

The Born approximated solution to Eq. (5) is the summatlon of the scattermg
-amplitude, as described in Eq. (21), and the incident field, ‘

Ur(r,@) = Ui(r,0) + [ k2 Ui@¥(@) Go(r 1) dvg
. v .
+ [ 1(@) VU@V Go(rlq) dvy , @)
) ;

where k,=w/c and the volume V encompasses all volume where Yp and Y, are
\ nonzero. The incident field used in URT is a broadband pulse. Hence, mathematically
the incident pulse, u;(r,t), that will be used is the solution to [Morse]
. | 5

‘ 1 oy

Vi, - = —= =—p(t) 8(r-ry) ,
R 0 B ;
which descnbes the waves generated by a broadband pomt source. In thc temporal

fx‘equency domain the same wave equation becomes

V2U(r,0) - k2 Uy(r,0) = -P(@) 8(r-r,) ,
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~which has the solution Uj(r,w) = P(w) G,(rir,) where G(rir,) is the free space
Green’s function in Eq. (A2). When the expression for U; is inserted into Eq. (29), the \
resulting equation,

Ur(r,o) = Uy(r,o) + k2P() J %@ Gu(q!T,) Gfrlq) dvg
+P() j Yo(@) Vqu(qlro)-Vqu(rlq) dvy (0

proves to be interesting due to the abundance of Green s functions. For the case of '
observing backscatter, the observation point, r, can be the same point as the source, Ty,

which - will reduce the dot groduct of the gradients in the above equatlon to
V Gy VqG [ jk,—lr—ql 1} w(r |q) which is approx1mately equal to —ko Gm(rlq)

when Ir—ql > A. Simplifying Eq. (29) with the above approximation and the
condmon r=r,, ylelds -

Ur(r,e) = Uy(r,0) + k2P(®) j Y@ G2(r! q) dvq
-P@ [L@k2C2rIQd, 6D

therefore o

U =U, )+ IP@ | [vx<q>—vp(q>]Gw(rlq> dvg . _(éz)

Now we have a more compact express1on for the total field that only requn'es that
Ir—-ql >A. S

‘What is desired is an expression for the total field in a form smnlar to that in Eq.
(8). From now on lets only consider the scattering potentlal term in Eq. (32) and see
what can be done to simplify the G(% term. Hence our starting point is the equation

) ’ ej2k°|r—ql
(r,m) =k;P(w) | F(qQ) ——— dv,
¢ v ° i[ 16n%ir—qi2 4 v
where F(q) = [Y(@)-Y,(q) ]. The first step is to carry out an ideal inverse ﬁlterihg
operation to ‘‘normalize’’ the scattering potential’s temporal spectrum. Next, a scaling
of the temporal frequency variable is necessary in which w;/2 is substituted for . A
subsequent step is the differentiation of both sides of the equation with respect to ;.

All of the above steps are reflected in the equation,

o2 | JF' GJoulr-alfe
0?P(o,2)| 4mc iy 4mir—ql

42 -0

20, dvq .




33

If both sides of the equation are multlphed by —j4nc, the resulting right hand 51de could
be referred to as a new scattering potential function, y(r,®,),

,0:/2 jo, Ir—ql/c
o(r,; )} [F ()e

oP@/2)| ¥ 4rir—q!

... 13 0 ’ o
y(r,w;) =—j16mc 20, [ dvg -  (33)
This equation provides us with a direct relationship, first seen in chapter 1, between
our reflectivity function and a modified, measured, backscattered field. |

To obtain a linear relationship between y(-) and F(), the angular spectrum
expansion, Eq. (AS), can be substituted for the Green’s function in Eq. (33),

y(r, (!)1) ._LJ' F(q) j‘ J‘e [ x(x_qx)"'Ky(y—qy)] C’hfle—z_Ki 2,1
VKK

Carrying out the volume integral with'respect to q(=(g,,qy,9,)), Where z will always
be less tha.n q,, Tesults in

dK, dK, dv, .

| askyy| o TFKIK] 2 e
(m)-»—l- F(K,K,\/k§ K- Kf) ek, e "7 K. dK
\V 1 jj Xy 1 m X Yy

in which F(') is the Fourier transform of F(-). If the spatial Fourier transform of y is
taken over a plane z = 1, where /<q, always, we have v :

\?(ﬁ,v,lo,wl)=% | [ —w)dK,~v) F[K;,Ky,— kl—KxeKy) ."_;‘

NG 1y

dK, dK, .
733 y

Vki—-K =Ky
The necessary final step is to carry out the trivial integrations with respect to K and Ky
whlch leave

. —"\]i;124u2—v2 l
Pvdoo) =< F[u,v,-\ /k?-uf—vf] PL_____° _
T \]kli—ui—v:
The above equation appears to be similar to the Fourier diffraction theorém of sub-
section 1.2.2 although the Ewald sphere in this case is centered at the origin of the
spatial frequency space of (). Essentially, the 2D Fourier transform of the modified
received field on the plane z=1[; provides us with values of the 3D FT of the
reflectivity function over a hemisphere. The hemisphere of the sphere in question is
once again determined by the avoidance of evanescent waves which requires that
k122K2+Ky and therefore 0>K >k;. Figure (11) attempts to illustrate the relatlonshlp

mdlcated in Eq. (34).

(34)



“frequency domain
of the object, F(K)

plane of point
transducer motion

Figtlre (11) The ccverage of the dbject’s frequency domain that is recovered from the -~ = -

~ illustrated position of the transducer plane,. is lying on one half of the surface of the
~“sphere of radius w/c. ‘One monochromatic point transducer of temporal frequency o,
moved over the transducer plane, is used in obtaining this: coverage

b€
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‘To summarize this discussion the following enumerates the steps involved in
. using the Fourier domain method as discussed to reconstruction the reﬂect1v1ty
function:

1.)' The broadband point source is moved over the receive plane, z =/ 0,\and_'_at each
samphng position, the A-scan received, u (x,y,/,t), is recorded. | _

2.) The temporal spectrum of ug is normalized with the spectrum of the pulse

~ transmitted by the point source and the temporal frequency variable is scaled such
- that 20=w,.

- 3.) Next the function is differentiated with respect to ®; which is analogous to
multiplication by 2t in the temporal domain. "

4.) The result is multiplied by the complex term —j4nc.

5.) The last step involves taking the 2D FT of y(r,w,) over the receive plane addmg
a phase shift, and muluplymg by a scaling factor. '

The result of steps 1 through 5 operating on the received field, for a-pai‘_ticu-l_ar 0)1,15
equal to the spatial transform of the object function on a semi-spherical -surface
centered at the origin of the frequency space with a radius of w;/c. All of the temporal
frequencies within the bandwidth of the transducer have a similar shell, but with a
different radius of course. -

To fill the reflectivity function’s frequency space, one must use two positions of
the receiving plane or have two receiving planes on opposite sides of the,{_obje‘ctﬁ The.
data obtained from the two positions/planes is enough to completely cover the 3D
frequency domain within a volume bounded by the spheres of radius of ;/c and
Wyax/C Where @, and ®,,,, are, respectively, the low and high temporal frequency
limits of the bandwidth of the transducer. It is then possible, albeit time consuming, to
apply a spectral extrapolation technique, as will be presented in chapter 4,.to the 3D
frequency domain to obtain an estimate of the missing low frequency information. |

"2, 3 Mathematlcal Relatlonshlp between the Time Domam and Frequency
Domam Formulations of URT

In this section we would like to show that the time domain description of the
backscatter provided by URT agrees with that obtained from the Born approximatiou
solution to the wave equation. To begin let’s examine Eq. (9) after replacing the total
ﬁeld u( ) by the incident field,
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us(r,y) = [ F@) [ ur'ty) grtir' ) dy dvy
V —00

In the'h temporal frequency domain the incident field is expressed by
Ui(r,m) = P(w) G,(rIr,) which is expressed in the time domainas = =

Ir—r,| 1 Codeerl|
t— — =p| t— —| =,
c. 4nir-r,| .c Anlr-r, |
since the Green’s functlon is ‘a weighted Dirac delta function in the time domam as
stated by Eq (A8) Hence, s :

"'u’;(-?,t)‘ = p()*5,

(4
Ir'=r,|

us(rt) J'F(r)J' p[t -

c

ol t- Ir'—r, | -1l :
” c c
dvy

=F : :
j ) 41c|r’—'r | 4 lr—r’1|

r R
- LIt ) de, dve -
] 4xlr’—r, | BrtIrity) dip dv;

The above equatlon indicates that the backscattered wave at time t, is an attenuated and
time delayed version of the original pulse resulting from all scatterers within the ob_]ect
whose pos1t10n r satisfies the equation

Ir"=r,i Ir-r'|
r-r’|
+ :

t= :
. ' -C c .
In addition, if the positions of the source and receiver happen to commde the t1me that
the pulse is delayed becomes ‘
) ’

2lr —rol

t =
delay . I

* This is just what is proposed as the model for backscatter in the time domain analysis
.of the previous section. Essentially the ‘‘constant time’’ arcs and Eq: '(27) have been
- rediscovered.
The above time domain expression for the backscattered field was obtained from
~ the Born approximated solution to the wave equation in Eq. (4). Thls,adds some rigor
to the time domain formulation of URT. Hopefully other interesting time domain
relationships can be obtained from inverse Fourier transforrmng tradmonally frequency
domain opcrauons
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24 Experimental Considerations

The speed of sound within the object being imaged is typically gomg to be a
function of position. This throws a monkey-wrench into the whole concept of constant
time arcs. A cure for the degradations caused by this saddening fact can be taken from
B-mode signal processing [Kim84]. The idea is this, why not create a time-of-flight
(TOF) compiited tomography (CT) slice of the object to obtain an estimate of the
speed of sound throughout the object. With this ‘‘speed of sound map,”’ one can
directly compute the constant-time arcs at each discrete time for each position of the
"insonifying transducer. | :

In the effort to save processing time, the deconvolution of the incident pulse from
the reflected pulse is sometimes approximated by envelope detection. Using the
envelope detected, measured reflected signals is inherently bad [Robi84, Fate80]
because information is being thrown away by the nonlinear effects of the envelope
detection. In section 3.4 envelope detection is used on experimental backscatter
measurements and compared to the result of inverse filtering. '

A discussion on attenuation modelling and subsequent compcnsatlon for
attenuation, will be postponed unt11 Chapter 3. v

25 Smnmary

“This chapter has formulated two different approaches to Ultrasonic Reflectivity
Tomography (URT). The technique has been analyzed in both the time domain, in
which it has been implemented [Dines87], and analyzed with greater;' rigor in the
Fourier domain. In section 3 of this chapter, the similarities between the algorithms
formulated in the two domains, have been coarsely pointed out thereby lcading us to
the conclusion that similar reconstruction quality will be obtained'reg@.fdless of the
domain in which one works. Both approaches utilize broadband point sources that
encircle an object, obtain A-scan data, and require normalization by the infcident‘pnl:s'e

‘spectrum. - | S



' CHAPTER 3

SINGLE TRANSDUCER REFLECTION MODE
DIFFRACTION TOMOGRAPHY

| In this chapter a reconstruction algorithm is presénted which possesses a simple
scanning geometry and reaps the benefits of higher resolution reconstructions prov1ded |
by the knowledge of higher spatial frequency information about the object being
imaged. This broad-band reflection mode algorithm mherently lacks a large amount of.
low frequency information but an estimate of the missing frequency content can be
recovered by spectral cxtrapolatlon as discussed in the next chapter. The resolutlon of
the a]gonthm will be shown to be fundamentally limited by the Born appr0x1mat10n as
well as the bandw1dth and physical size of the single plane wave transducer that 1s used
to obtam backscattered wave measurements for the algorithm. SEDACT

The second half of the chapter delves into various topics that are pertmcnt to’'the
experimental implementation of the single transducer reflection mode (STRMDT)
'algonthm Topics covered are wavefront modelling, the effect of attenuation, and the
modelling of backscatter from transducer generated wavefronts. B

3.1 Algorithm Description

v Iny.thhis section the new reconstmt:tio’n algorithm and its benefits are dcscnbed
This valgorithm employs a single, phase sensitive, broadband transducer that serves as
both the source and receiver of acoustical energy. The output of the tramsducer,
P¢((n,y=l o) is effectively the integration of the sound impinging upon the surface of
the transducer and is a function of the temporal frequency of insonification, ¢, and the
physical location of the transducer, /. Hence for the case of an incident plane wave of
temporal frequency ©® ' v : ‘ < '
Py(ayy=to) = Jﬂ Ug g (xy=lgo) dx o 6
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where L is the total length of the transducer and ¢ is the angle between the vector §,
and the positive x axis. As L goes to infinity, the transducer output happens to be
equal to the zero frequency component of the Fourier transform of the scattered field,
Py(w,y=lg) = U s4, (oLy=lgw) with e =0. Therefore with the use of Eq (17), Eq (35)

~canbe rewntten with o= 0 to yield

Py(@,y=lp) = EkL e FO0,-2k,) , k, =/ 066

‘which provides a direct relationship between the spatial transform of the object
function, F(*), and the output of the transducer. With the Born approximation and the
additional assumption that the transducer is long enough to measure nearly all of the
backscattered field, Eq. (36) becomes the basis of the reconstruction algorithm. '

Given the output of the transducer, Eq. (36) provides us with the value of a single
point in the object’s spatial frequency domain, marked by an ““x’* in figure ((3). Note
that the relationship is dependent upon temporal frequency, ® =k, wher_eco'is equal
to the speed of sound propagation in the medium surrounding the object. . |

1f Eq. (36) is implemented at multiple temporal frequencies for a particular value
of ¢, what is obtained is an estimate of the object along a line in the spatial frequency
domam The coverage for fixed ¢ = 0° is illustrated in figure (12) and results from the
changmg radius of the Ewald circle as temporal frequency changes. By rotating the
transducer about the object, the line of coverage rotates too, thereby filling in’ the
frequency, domain of the object. Data collection is fast and simple. Figure (13)
illustrates the obtainable frequency domain coverage by the area between the two
dashed circles centered at the origin. Obviously, low spatial frequency content is-
rmssmg :

Object reconstruction can be accomplished simply by filling the spatial frequency
domain with the nearest sample of Py(w,lg). The value at frequency (u,v) is obtained .
by using the value of Py(,!) that is closest to the values of wand ¢ calculated w1th
the equauons : A

o = Vu2v? o= ar'ctan[ _v_]
u
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Flgure ( 12) A monochromatlc insonification by a phase insensitive transduccr at six

different temporal frequencies would yield the Fourier domain coverage 1ndlcated by
the semlcucles
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Figure (13) “The portion of the scattering potential’s spatlal frequency space that is
theoretically obtainable with the. STRMDT algorithm. Note that A, as used in this -

_. - presentation, w1ll be deﬁned as 2n/k,,
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3.2 Computer Simulations

To 31mu1ate the algorithm, it is necessary to use an object for whlch an exact
expresswn for the scattered field is obtainable. For this reason, the obJect used is a.
; constant refractlve index cylinder for which the scattered field is exactly known

[Morse pp. 464]. » L
B Generatmg the data necessary to fill the frequency domain consists of calculatmg
'the scattered field for each of the sampled temporal frequencies within the bandwidth
of the transducer This calculation needs to be done only for one angular position of .
the transducer since the object is circularly symmetric as is the- spaual frequency
domain of the object. Figure (14) is a plot of the real part of the slice of the frequency
domam coverage obtained from a single measurement of the broad-band field scattered -
from a cyhnder In this case, the cylinder is of radius 2A and has a refractlve index of
101 . Note that the center of the plot is where the zero frequency component is
located and that 2k, is the highest spatial frequency obtainable. The value of A that is

referred to above is by our definition 2m/k,. where w¢=ck,_ is the center temporal

frequency of the incident pulse and 8k, = 5k, for the 51mu1ated transducer. The solld

line in the plot is the result obtained w1th simulated scattered field data and the dashed
line is the true slice of the real part of the object’s Fourier transform. ‘The coverage
v prov1ded seems quite good within the range of spatial frequencies for wh1ch data can
be obtained. ~ Note that the solid line simulates the data that could be obtained from a
‘transducer that has a bandwidth of approximately 6 MHz and a center frequency of 5
MHz. . This particular transducer bandwidth will be used in all subsequent simulations.
- A.more detailed explanation of the simulated experiment is provided in appendix E. :

- Likewise, figure (15) presents a plot of a slice of the real part of the frequency -
spectrum obtained when the object is a 2A cylinder with a refractive index of 1.1. The
reader will -probably notice that the data obtained for the cylinder of higher refractive
index does not match the exact frequency domain coverage. This fault is due solely to
the ﬁrst order Born approximation. ' |

When many such broad-band scattered ﬁeld measurements, where each
measurement results in a slice of F(u,v), are obtained by rotating the transducer;about
the object, enough data is obtained to essentially reconstitute F(u,v). In this
presentation, the only technique used to reconstruct f(x,y) is that of direct filling of the
frequency space with the ald of bilinear 1nterpolatlon followed by two- d1men51onalv
Fourier inversion. SR :

The plots in figures (16) and (17) -are the real parts of the reconstructions of two
cylinders both having a radius of 2A but having refractive indices of 1.01 and 1.1
respectively. For clarity, the center slice of each reconstruction is provided in part (b)
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Figure (14) A comparison of the true slice of the scattering potential’s frequency -
spectrum (dashed line) and the slice obtained from the algorithm. The object in this
figure is a cylinder of constant refractive index 1.01 and a radius of 2A ( X is deﬁned in
the capuon of ﬁgure (13) and in the text).
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Figure (15) A comparison of the true slice of the scattering pote’ntial"s frequency
spectrum (dashed line) and the slice generated by the algorithm. The object in this

figure is a cylinder of constant refractive index 1.1 and a radius of 2X.
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Figure (16) The real part of the cross section of a cylinder of radius 2A having a 1.01
refractive index is plotted in (a). This reconstruction does not make use of any kind of
spectral estimation. Only the frequency domain coverage obtained from the
backscattered field -is utilized. The solid line in (b) is the center slice of the
reconstruction and the dashed line is the true center slice. '



020100 7

016723

013346 4

009969 4

006592 4

1003215 4+
-.000161 T

-.003538. 4

46

- 006515 +

-64-

T ames paey

-32 0

sample number (x D)

(b)

Figure (16), continued. :
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Figure (17) - The real part of the cross section of a cylinder of radius 2A having a 1.1
refractive index is plotted in (a). This reconstruction does not make use of any kind of -
spectral estimation. The solid line in (b) is the center slice of the reconstruction and
the dashed line is the true center slice.
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of each figure. Along with the center slices, the dashed lines indicate the position of
the true center slice although it couldn’t be plotted to its maximum extent. If the true
slices had been plotted fully, the reconstructed slices would appeax_' as nearly straight
lines since they have such a small magnitude in comparison to the true slices The only
observable merit of the reconstructions lies in their specification of the discontinuities
in refractive index which occur at the object boundary. ‘ _

It is interesting to note that the lower frequencies that are missing in the
reconstructions, cause the reconstructions to somewhat resemble the derivative of the
object function.

For pedagogical purposes, figure (18) is theoretically the best reconstructlon of
the 2A radius, 1.01 refractive index, cylinder obtainable with the algorithm. Note that .
we have used the whole temporal frequency range to insonify the object. From the
extremely wide bandwidth scattered fields, all the samples of F(u,v) are obtained
except for the zero frequency component which is estimated by polynomial
interpolation. Just by chance, the amplitude of this real portion of the reconstruction is
close to the accurate value of 0.0201 due to the fortunate filling of the frequency
domain near zero frequency.

= In. the next chapter the Gerchberg-Papoulis algorithm will be employed in

extrapolating the low frequency information unobtainable from the scattered field
measurements made for the algorithm described in section 3.1 . In this presentation no
other methods of spectral extrapolation have been implemented. Note that a study of
the range of objects that can be accurately reconstructed under the Born apprbximatiOn
has not been done here. For the interested reader a study has been provided by Slaney
et al. [Slane84] for the case of transmission mode tomography. Since both reflection
and transmission modes suffer from the same assumptions and approximations, there is
reason to believe that similar bounds on reconstructable objects can be assumed.

3.3 Experimental Implementation Issues

In thlS somewhat lengthy section various topics that are pcrtlnent to the
expenmental implementation of diffraction tomography are presented. In particular,
transducer wavefronts are modelled,- a theoretical discussion of the effects. .of
attenuation is presented along with a method to compensate for attenuation, and a
model for backscattered waves is presented. Each topic is helpful :in obtaining
expérimchtal reconstructions of an object’s two dimensional cross-section.
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Figure (18) . The réal patt of the teconstruction of a cylinder of radius 2 having a
refractive index of 1.01. An “‘infinite’’ bandwidth transducer has provided the
frequency domain data for this reconstruction. Note that polynomial interpolation has
been used to approximiate the zero fréquency sample of the frequency domain before
Fourier inversion. B
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3.3.1 Transducer Modeling

The following describes a model for the wavefront radiating from an unfocused
piston and a rectangular ultrasound transducer. The purpose of this investigation is to
accurately, mathematically describe the wavefront emitted by a generic transducer. As
a tesult, a description of wavefront dispersion will be generated and to that, the next
section will add a model for the effects of attenuation within the media.

Below, it will be assumed that the face of the transducer lies in the x =0 plane
such that the wave generated travels in the +x direction.

3.3.1.1 Focussing Effects

Focussing of transducers can occur in two common ways. The first method
involves shaping the transducer crystal itself and the second involves attaching a lens
to the face of the transducer. In this subsection a “‘thin-lens”’ approximation will be
used to describe the effect of shaping the transducer’s crystal such that the resulting -
wavefront is focussed in the elevation plane. Figure (19) illustrates a cross section of
the rectangular crystal which is positioned identically to the aperture in’figure (20).
The transducer’ s surface varies along the z axis and has a constant shape: along the y
ax1s '

The shapmg of the crystal can easily be modelled as a plano-convex lens of the
same‘_refractlve index as the crystal, attached to the crystal face which is located at the
x =-D plane. To describe the effect of this ““lens,’” the thin-lens approximation, used
in optics, is employed [Good68]. The approximation essentially states -that no
~ translation of a ray traveling through the lens will take place and that the only effect of
the lens is to modify the phase of the incident wavefronts.

The phase delay is proportional to the thickness of the lens,

o(y,2) = — d(Z) +— [D—d(Z)]
W

where d(z) is the thickness of the lens as a function of z, D is its maximum thickness,
Ce. is the speed of propagation in the crystal and c,, is the speed in the surrdunding
mediurmn. If within the crystal there is a plane wave propagating in the positive x
direction, then at the plane x =—D we can say that the wavefront, U(- D,y,z) e has
a constant amplitude which can be set equal to one. The wavefront amphtude at the
planc x=0 w111 be

U(O,Y,Z t) = el02 U(-D, y,z) e 1% =exp [ ](1)[ déz) D'd(z)] ] ot

c Cw
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v . .

Flgure (19) The cross secnon of a focussed transducer is prov1ded here to a1d in
descnbmg how stich transdticer surface variations affect the generated wavefronts
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AZ

Figure (20) The coordinate frame used is shown here along with the orientation of
the transducer which is being modelled as an aperture in an infinite plane.
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The distance d(z,) is equal to‘R— To get
these dlstance equations in a better form, a paraxlal approxunanon is made Wthh
v proves to be acceptable since z, is very much less than the radius of curvature, R,

L d =R —— o ol Z - 22
EI ‘(ZO)"' -R 'IA_ZOI,R““R'_R,—..I—ZRZ =—,

U320 =exp| i 5

| (37)

'z

‘where n (- cw/cc) is the refractive mdex of the crystal and k(= to/cw) It is the'
expressmn for U(O,y,z t) in Eq. 37) which can be the complex amphtude within the
aperture of ﬁgure (2@) ,

3. 3 1 2 Raylelgh-Sommerfeld D1ffractlon

The approach used to describe transducer wavefronts mvolves the d1ffract10n
formula of Rayleigh and Sommerfeld in which the transducer face is a hole in an
infinite. plane (x =0 plane). The radiated wave is generated by a time-harmonic plane'
wave incident on the infinite plane from the -x direction. From the second Green’ s
identity it is well known [Good68] that the complex amplitude of a wavefront at I,
within a region bounded by the surface S can be expressed in terms of- the wavefront
‘measured on the surface S,

U=+ H L o)——U(r) da,. 09

In the case of interest, the surface of integratlon consists of the infinite plane x = 0* and ‘

the hermsphencal shell of infinite radius extending in the positive x and bounded by

the x=0" plane. -The surface A corresponds to the hole in the x = 0% plane wh1ch

" corresponds to the transducer face. With the use of Kirchhoff’s boundary COI'ldlthl’!Sv
[Good68] and the free space Green’s function
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exp(iklr'—rol) L o

| G(rir,) Py | -39
the surface of integfation in Eq. (38) can be replaced by the surface A. Hence o
5G R e

U(r, o)——H —G—a—U dydz ,x=0. S (40)

To eliminate the requirement of knowing U(*) and oU / on on the surfaee A the
followmg choice for the Green s function’ :

Gy(r) = exp(kir-r,!) _ “exp(kir-r 1)

— , To=(C.y,2), Fo=(—,y,2), ¢>0
lr"ro l » Ir—ro [ .

will always evaluate to zero on the surface A. Hence .

U(r, )-

,r=0y.2) . @

With the geometry used in this analysis
aG
on

where a is the unit vector in the positive x dlrectlon The normal denvatlve of Go( )
becomes ;

= VG4,

3G Kir—r|
—> =2 expQkr—r, 1) [Jk—-lr—r - ]cos(\y)

Ir—r,l

where y is the angle between the vectors (r-r,) and 4,. Note that “since
Ir-r,! = Ir—F,|, only r, will be used henceforth in this analysis. If we only consider
pdints, r,, that lie many wavelengths away from the x = 0 plane, the above expression
can be simplified since Ir-r,l>>A. With the use of this approximation, the
subsututlon of the expression for the normal denvatlve of G,(°) into Eq én ylelds the
equatlon '

exp(jkr-r 1)
Ir-r,| -

UGy = 2K [ UG) cos(y) dy dz .
J .

CexpGkir-r,l) o
=E;L-£j v 22 (,’r_ﬂ cos(y) dy dz . @

The cos(*) factor in the equation accounts for the nonisotropic pattern of the wavefront
and is called the obliquity factor.

, Equatlon (42) is a description of a transducer generated wavefront at position r,
when the insonifying wave within the aperture of the transducer is known. This result
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holds for general aperture 1llum1nat10ns For example if the wave incident on the back
side of the aperture x= 0 ) is a plane wave - ’ :

U = Ae“*”,x<o @
the 'a'mplitg'de of the wave observed at r, can be expressed by N

~ikx, €xpQkir-r,l)
- hr=r, |

U(ry) = LHA e cos(y) dy dz ’ 1(44)1
R 1 o

exp(klIr-r,!)

e K% - xpOk I r—r '
X AU cos(y) =N dy dz .

~ What has been discussed up to this point is a method of describing the position
varying complex amplitude of a wavefront attributed to a single tempofal frequency,
@, of insonification. In other words Eq. (42) describes the spatially varying complex
amphtude of a wavefront, u(r,,t), whose time dependence is harmonic and can be
 described by eI u(r,,t) = U(r,) €7,
What is desired is a descnptlon of a wavefront that is generated by a transducer
- that outputs a pulse with a finite temporal bandwidth. Hence it is important to note the
dependence of U(r,) upen @ which now justifies the addition of ® as an argument of
u(r,). Replaeing k by w/c and A by 2xnc/@ in Eq. (42) clarifies this dependenee,

o E o exp(jolr-r,i/c)
o (o) = j2me ﬂ' "_(r @) Ar-r,l

|
In the time domain, U(r,,) can be _exprefs__sed as

cos(y)dydz ,x=0. (45)

oo"

v i‘n_to which the expression for U(*) can be isubsntuted to yield

exp(](o lr—r, | /c)

—2 " cos(y) €3® dy dz de .
Ir—r,| -

umn-jﬂ——Uu)
Makmg use of the relationship

: N
iy =-jo J o) e do

simplifies the expression for u(*) to the foi'm

u(ryt):!j_m_ a [r t—- o '] dydz yX= 0. (46)

2nclr-r,l ot c

This equa',tion‘ is most interesting since it describes the position-time variation of the
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wavefront. The wavefront depends upon the scaled time derivative of the time delayed
pulse génerated within the aperture. The amount of time delay corresponds to the time
to travel from the aperture to r, and the amount of scaling is 1nvcrse1y proportlonal to
dlstance from the aperture. '

* 3.3.1.3 Fresnel Approximation

To  simplify Eq. (42) a couple of approximations referred to as Fresnel
approximations can be used that provide an accurate result for distances that are many

wavelengths from the aperture. The distance Ir-r,! = \Ix(,2+(y-y°)2+(z—zo)2_can be
replaced by x, in the denominator of Eq. (42). Although in the numerator Ir-r,| must
be approximated with the use of the binomial expansion since the error of an
approximation is amplified by the very large wave number, k. Usmg the ﬁrst two
terms of the bmormal expansmn allows the approximation o

Ir-r,| = x0[1+5-[§yxy°)] +E[ (szo)] ] R 1)

One further approximation is to let cos(y)=1 which assumes that the angle of
observation is very small and/or x, is very large. Alternatively, the obliquity term can
be replaced with the expression cos(y) =x, / Ir-r,1.

Utlhzmg the above approxlmauons Eq. (42) can be expressed as follows

p{;_L— (y-Yo)2H(z—2,) ]} dydz.  (48)
Xo : B . S

Esscnually the followmg approximation has been made

- exp(jkIr-r,1) K%
| }lf g oW = jexx °XP{ 2% [(y YoV (==, )2]}
4 . o ° . °

This approximation has the capability of introducing error into the phase and
magnitude of the expression for the wavefront amplitude. To ensure accuracy, a
condition may be placed upon x, such that the maximum phase change caused by the
next hlgher term in the expansion for Ir—r, ! is limited to one radian. The condmon is
-[Good68] ' '

U(ro,o)

2
7> E] Gy + o2

- This prov1des a means by which the goodness of the wavefront expressmn can be
rou ghly detenmned '
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The ﬁnal step in this subsectlon isto expand the squared terms in Eq (48) Wthh
y1elds B : - L

»U(ro,co)-‘ _Jx cxp[.zlk_[yon” ffue exp -:nl&-[y2+zz]j|
_ o . Xo | ‘ | e
‘cmh’k[yoyﬂqz]] dy d.z@ L (_49)

It is interesting to note the two quadratio phase functions. If it were not _f0r' the
quadratic phase term inside the integrand, the integrand would essentially Fourier
transform U(r,) over the x = 0 plane and evaluate it at particular frequencies.

33 1 4 Fratinﬁofer .Approximation

o oIn thls subsectlon one further approxlmatlon is made Wthh limits the region of
’ vahdlty even further although s1mphfy1ng wavefront amphtude ‘calculations. The
' quad;aue phase functlon within the integrand of Eq. (49), ' L

L2 = CXP[ELO[ 2+z}}

 can be approximated by i-initly_if

2
X > k[y +Z]max” .

(&) : .
| The reSultin g exp'r'essior‘i for the wa‘Vefront at r,, takes the form
U(ro,(o) = 'x e’k‘y" +20/2x) j [UOy20) em[ —lﬂl [yoy + 202]] dy dz (50.)
J . Xo )

. Wthh is equal to the Fourier transform of the wave w1th1n the apcrture U( ), cvaluated

’ at the frequencws (Vo/AXs), 2/ (Axg) ). 8

' Now .as - an example, let the aperture be' a ’rectangular region

A —rect(y/sy) rect(z/s,) as 1llustrated in figure (20), and let the wavefront within the
aperture be a plané wave as in Eq. (43). As the result, the observed wavefront
amphtude becomes : '
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(o]

U(l' M) = s exp s [5'2'*2; ITi‘CCt Y| rect z e,‘l;‘ot |
o J)\.Xo 2x ° °) Sy s, | o

°'e-;kx* exp :)Jilt-[yoy+z z]} dydz
Xo |

ThlS is the case of utmost 1mportance to the algorithm presented in section 3.1 whxch is
umque to thls research. Can'ymg out the mtegratxon yields

: eJk(x‘, ~Xs) k y 3 . y Sy . zs. ) - o
U(ro,(o)- T exp —é]g[yo +z°] sy s, sinc 7:‘0 sinc ?:(: € J"" (51) |

| To be even more specific, a rectangular transducer that is available in the lab has the
vdimensions-speciﬁed in appendix E and a center frequency of 5 MHz, '
¥ =y =12750c %- =2125)e %, =334661)c ,
‘in which the value of x, is chosen to be the focal length of the transducer The plot i in -
figure (21) is the magnitude of the wavefront generated by a transducer of this size
’ although the wave is monochromatic with a temporal frequency of 5 MHz..
To 111ustrate the dependence upon ®, we replace A by 2mc/@ and k by (o/c in Eq
(50), , : e

- fone —’—[y L,]

U(ro,a» ———-Jmo j J U020 expl [yoy+zoz]] dydz (5D

What is desued is a descnptlon of a pulse generated by a transducei' that has a
finite temporal bandwidth. Assuming linearity it is feasible to sum the-amplitudes of
the ‘wavefronts at each temporal frequency within the bandpass of a transducer and
1ncorporate a wei ghtm g factor to model the shape of the bandpass Therefore

qu(ro,t)— — j B(®) U(ro,(o) gt do

vwhere B() is- the shape of the temporal bandpass. Substltutmg Eq (52) for. U(ro,(o)
tesults i 1n o/ :

. ' X/ :
| qu(ro,t) I J;’; =3 eXP[ZJm [yo+zo]} B(w)

H UQy.2) &3 CXP[—L‘[YoY + ZOZ]] dydzdo, (63
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Flgure (21) The Fourier domain magnitude of the generated wavefront ata dlstance
of 10 cm when the wave in the aperture is a 5 MHz monochromatlc wave.
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in which a Fourier transform relationship again arises. If the aperture A is a
‘rectangular region and the wave in the aperture is a plane wave, the steps leading to
Eq. (51) can again be taken to result in

. ©o O)ej(,)xolc ) .(0 .
ot 5 ] £t e
- —o0 0 (] .

. Yosy [ | Z,0s,
* S, S, sinc sinc| ——| do .
y 2mcx, 2mcx,
This result describes the wavefront of a broadband plane wave transducer having the
bandpass specified by B(*). The integration with respect to @ seems horrendous

although to simulate this result the expression for U(r,,m) in Eq. (51) can be calculated
at discrete temporal frequencies and the result of each calculation can be summed,

W2 Qe jmQ
ugp(Te,) = 2 exp| [yg +Z§}

B(mQ) sy s, gimi

men2  J2TCX, 2cx,
mQy, s mQz s C | :
- sinc ZJtz::(,y sinc ooz , Q= (ay—ay)/n . (54)

If the wave in the aperture is focussed as described in Eq. (37), the expression for
the broadband pulse in Eq. (53), becomes

o jox/c . o
upp(ro:t) = | Ll em[—””—[ﬁﬂf}} B(e)

e J2mex,, 2cx,

S -jjexp[lik(n—l)—jm] e‘J""exP[—l(-o-[yoy+zoz]} dydzdw ,  (55)
L A 2R CXo ' N A
Uhfoftunately the integration involved is much too complex to be carried (:)uf;'or'even

» 2 ,
computer calculated due to the dependence of the phase term, exp Jzz?k(n:‘l) - jkD},

upon z? and w=kc. Hence the transducer surface will be approximated by a flat
surface. a o

3.3.1.5 The Angular Spectrum

- In _this subsection a short description of the angular spectrum approach to
~describing the effects of an aperture on incident waves, is presented. The result of this
_subsection is an approximate expression for the angular spectrum of a plane wavefront
aft_ct,‘bcing disturbed by an aperture. The main benefit of this section will occur in a
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following subsection on the subject of attenuation The angular spectrum propagation -
~will prov1de insight on the affect that attenuanon has upon the RMSTDT algonthm of |
- chapter: three.. T
_ - As before, the wave incident upon the back s1de of the plane contammg the
aperture, -will be a plane wave as described in Eq. (43). The angular spectrum of the
1n01dent wave on the x; = x plane is -

Ai(u,V) = f J 1D dydz = 218(u,v)

where the spatial frequencies used have units of radians/m . When the wave reaches -
the dlffractmg plane (x = 0) the angular spectrym of U, is multiplied by the phase term
of the form’ sl representing the change resultmg from the wave propagatlon to the
aperture plane. Usmg Kirchhoff’s boundary condltlons at the aperture we can express
the wave in the aperture as : o

a(O,y,Z) -U;(0,y,2) p(y,2).

_ where p() descnbes the shape of the aperture itself. It is 1mportant to realize that
Kirchhoff’s boundary conditions are not exactly true [Good68]. The operation in the _
spat:lal frequency domain. that is analogous to the above multiplication is F T

VE 5—-vi Ix, |

A, () = Aj(u,v) ¢ *P(u,v) = 21 %! P(u,v)

To obta1n an expression for the wave at r, = (x,,0,0), (x >0), one must s1mply
- propagate the angular spectrum of the wave in the aperture out to posmon T, and then-
inverse transform '

o(u,v) = exp [ _Nkz—ui—v x] A (u,v)
=2n e’klx'lexp[ﬂ oy x] P(u,v) .

‘For the typieai- non-focussed piston type of transducer, the aperture will be a circle.
with a radius of mA. In this case :

Jl(ml. \‘ll +V )
VuZ+v2

whlch is the Founer—Bessel transform of cuc[ ‘1 2 /m] :
| If itis assumed that x;is a multlple of A, the express1on for A, could be 51mp11ﬁed,

! x" would equal one,

A (u,v) = exp [j\/kf_ui_vi xo]b P(u,v) .

P(u,v) = an}\'

since the phase term e
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Essentiaﬂly what has been outlined here is that the process of prbpagation and aperture
disturbance can be modelled as a product of the 2-D Fourier transform of the aperture
function and a phase factor which is dependent upon spatial frequency.

© 3.3.2 Attenuation

- .The attenuation experienced by an ultrasound waveform is contributed to by
beam divergence, scattering, wave mode conversion, and absorption [Wells75]. In this
section only divergence and absorption are discussed. The other effects are considered
negligible within the scalar diffraction theory used in this work.

The first subsection hopes to build, through an understandmg of fundamental'
theory, an accurate model for the effects of attenuation. The subsection draws upon
Maxwell’s equations to add rigor to the discussion and extends the discussion to
ultrasound waves and analyzes the effects of attenuation upon the Fourier diffraction
theorem. The second subsection narrows the scope of the discussion to consider the
affects -felt by the single  transducer, reflection mode, diffraction tomography ,
(STRMDT) algorithm that is presented at the beginning of the chapter

3.:%.2.1 Theory

| ~ The purpose of the following is to draw upon the electromagnetic discussion of
atténuation_ presented in [Born] to describe the effects of attenuation on ultrasound
waves. The following refers to the material constants €,, and 6 as well as some of
Maxwell’s equations. The discussion will not go into detail but serves to give the
reader a feel for the theoretical basis upon which the rest of our discussion of
attcnuatlon will lie. S

- In an conducting medlum such as a metal, thc electric charge density p can be set
to zero. since p falls off very rapidly within the medium. Therefore V:E = 0 Wthh
leads to thc wave equation : '

VE = —”ﬁﬁ + ME
¢ c .

in Wthh thc term involving E causes the wave to be damped/attenuated as it
propagatcs within the medium. With the use of Maxwell’s equations and assuming
tlmc-harmomc electric and magnetic ﬁelds of the foorm E=E, e thc helmholtz
equatlon for E can be rewritten as

VE +kZE =0




¢

o 0] .4nc | . RPN ey e v
where k., = 2.” [e +) (o - ] is a complex wave number. It is also interésting to note

that we now have a complex refractive index n., which is edu‘iValent to
Co/Ceo = Co Koo/ It is a refractive index map of the object that can be stated as the
goal of tomography.

The - sxmplest solution to the new helmholtz equation is a plane, ume harmomc
wave.

E=E ej(kcor'ﬁa" t)
(¢

in which 4; is a unit vector in the direction of propagation. Expanding this solution
yields "

' .on ., wKn :
E= E0 exp [ J—r~aS - ——T - mt}

where k,:0 = (onw/c -on(1 + jk)/c in which x is called the attenuation 1ndex
» Leavmg the complex exponential domam and returning to real expressions,
leaves the result ' '

E=E ¢ “"M%° cosf[(o[ L t] ]
| | e

in which there is a plane wave being attenuated by an exponential term.

~ The above discussion may be extended to ultrasound waves by adopting the
~ complex wave number as a way of characterizing attenuation. This approach does run
into problems because, as will be shown, the Fourier diffraction theorem (FDT)
depends upon the wave numbér being real.
- The first step in this investigation is to let the wave number in Eq. (14) be
complex kco k, oFi0» :

Y, i[Ketxx+K,0v0)

mdv, F(r,) Uy(ro) ] f K, K, ¢
1z, . : -
Wikt Y‘,zo , ‘Y=\[1€c}o_—ff‘_1<;2 . S (56)

Asin subsectlon 1.1.2, the incident wave will be a time harmonic plane wave although‘i
1n th1s case the wave number is complex : :

'U()—

(r) _ J o I ", J'd F(ro) e’k‘*’ﬁ l'o J- J~ dK dK -J[K,xo+l(yy°—’ﬂo] eJ[KxX+Kyy—YIo] 'IY (57)

where the recelvmg plane is again z=1[. _When denvmg the Fourler dlffracuon
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theorem, the next step is to carry out the integration with respect to r, which results in
Fourier transforming F(*) as expressed in Eq. (15). Taking a closer look at the mtegral

fﬁ dv, F(rp)e koo o IKXHK Y12l J‘ [ avy Fero) e S LETE &% J(kco'PY)zo _}

mdlcates that the Fourier transform operation is no longer possible due to the complex
spatial frequency variable (k. +Y) whereas transformation with respect to x, and Yo 18
possible. The above integration with respect to z, is termed a Founer-Laplace mtegt'al
[Roseau],’ '

Qe = [ q e e a I

in which the integrand is equal to q(t) €™ for t 2 0 and equal to zero when t <0. The
Fourier-Laplace integral does not have a solution for nonconstant ¢ therefore leaving
us without a convenient relationship between the object and backscattered fields. |

The affect that attenuation has upon STRMDT and the approach taken to
compensate for the attenuation, is presented in the next subsection.

3.3.2;2 The Affect of Attenuation on STRMDT

To estabhsh the detrimental affect of attenuation on STRMDT we go- back to Eq.
.(57) and take it one step further by Fourier transforming both sides of the equation,

Koo
ﬁs( A) = I j dx dy e—J(t!x+By) %,% J‘ J’ J’ dvro F(r,) J’ J’ dK, de EJT_ e—J[K,xo+K,yo—wv]
—oo . ‘ Y 4 —co .

. KKyl

F(l’ ) echozc e J[Kxxo‘*'Ky)'o"’Y‘o] C . a(a_Kx) a(ﬂ_Ky)

J _ =il 3‘
o J"”' dv,. F(l‘o) ejkcnzo J[axo""Bya ch] e - m
but under STRMDT & = 8 =0, hence
' o ; —ikeolo
s o jUe™ .
U,0.0ke) = —5— [[[Fro) "™ av,
g o

Here again the convenient Fourier transform relationship between U¢) and F() is



66

unobtamable so what can be done? A possxble technique for gettmg around the
mathematlcal stumbling block is to assume that k, > ¢, and therefore koo =k, Wthh
allows the use of the FDT. . ey

Slnce the above approach led to no conclusmns other than to 1gnore attenuatron
we. next d1scuss the seventy of attenuation’s affect on STRMDT and suggest a stopgap
measure to compensate for its affect.

It is the hypothesis of the following, that STRMDT algorithm is affected less by
attenuatlon ‘than other approaches to tomography. A discussion similar to what is
presented below appears in{ManiTR]. :

- From subsection 3.3.5 we have the relationship

A, (V) = exp"[ %o \f kcoi 2 —vz] P(uyv) = oo P(u, v)
where kco = -k oo, is the complex wave number which accounts for attenuatlon The

functlon Ao() is simply the spatial Fourier transform of the scattered wave on the
plane X = x for fixed o and P(") is the spatial Fourier transform of the aperture _-

U(r)l o, = T3 Aot v)} o - 1“(.;5‘85

Expandmg upon wc and using the relatlonshlp w2 2 w?-v2, y1e1ds -

(u V)= exp[_]x \/ko—ao —uP-v2Hj2k a] P(u,v) ,

[JX \[w -0 +_12k (x] P(u,v) .

jEs,sentiall?yg, “the vector, at=i(w,u,v) indicates the direction of ’prop,a_gation of a plane

~ wave. When w equals zero a plane wave is propagating in the y—z plane parallel to the
X= x0 plane and when w equals k0 a plane wave is propagating perpendlcular to the
X =X, plane. .

A plot of the loss attributed to ‘the real _exponential term versus w and Oy 1S ‘
presented in figure (22). The plot computes the loss in dB- over the range of valid w, as’
-dictated by the exclusion of evanescent waves, and over a one to five dB/cm range of
-’oco.‘ We -can see from the ..plotthat as w becomes smaller the attenuation increases.
This irnpiie’s, for a fixed temporal frequency, , that the high spatial frequencies of the
's'cat'tered wave on the x = X, plane are experiencing more attenuation than -the lower
: frequencws '

“In the two- dimensional case A (v) ’le{U(y)} is the spat1a1 Founer transform of -
a backscattered wave along the line x =x,, :

A (v) CXp[JX \ﬁ(z—v -oc2+_]2k aJ P(v) W(v) P(v)
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Drawing upon the discussion in subsection 3.3.2.1 we may substitute the backscattered

fwav,e;,rUs, in place of U in Eq. (58) and take another look at the Fourier diffraction
theorem. . Recalling the 2-D FDT relationship illustrated in figure (3), the influence of
the weighting function W(v) is indicated in figure (23).. Since STRMDT requires only
the v =0 value of A(*), it is affected the least by object and medium attenuation,

A(0) = € P(0) = e ™% ™ p(Q) .

vTh"eréfdre a feasible method of compensating for attenuation is to measure the
attenuation of the medium and the average attenuation of the objects bcmg imaged and :
simply amplify accordingly. o

- Our last investigation in attenuation modelhng comes from a paper. by Kak and
Dines [Kak78] in which a useful linear phase model for the effects of ob_]ec_t -
attenuation is presented and experimentally verified. Unfortunately the model is
incorrect in.ignoring the effect that attenuation has upon the phase of a signal [Kuc84].
In defense of the paper, one must note that only the magnitudes of the reflected signals
are required to reach the goal of the paper which is to determine the attenuauon
’coefﬁcwnt a. - ‘ '

“In {Kak78] the amplitude of a plane wave after travelmg through a medlum of

thlckness d, is descnbed as

u@dy) = Io(f) e~ Dd -iB(D)d gj2nft

where I,(f) is the amplitude of the original wave as a function of frequency, o(f) is the
attenuation coefficient of the medium, and B(f) is the phase shift of the medium.
Within this paper, B(f) is assumed to be a linear function of frequency equal to 27tf/c
and a(f) is assumed to be equivalent to o, If1. The assumption about o(f) is a good one
which has been experimentally verified in many places, [Dunné2,Moun72]. It is the
assumption about B(f) which falls under suspicion. For the interested reader, Kuc
[Kuc84] explores the B(f) assumption and proposes a ‘‘minimum phase filter’’ to
accurately describe the effect that attenuation has upon signal phase. The minimum
phase filter is derived from the fact that a real, causal sequence can be described solely
in terms of the real paft of its Fourier transform [OppScf]. Hence knowledge of of)
leads to an éxprcssion for B(D). Unfortunately time and space is not available to
explore this type of filter. Instead the original linear phase assumption will be used.

Now, returning to the model and making the assumptions mentioned -above,
yields -

U(d t) Io(f) _ao|f|d —_]21'Cfd/C e]21l§fl

GJfld o
If the amount of attenuation. caused by the exponential term, e 'Y were not a
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Figure (23)  The variable affect of attenuation upon the different spatial frcquen:cies
within the backscatter measured along the receiving line, is illustrated by the curve
labeled w(v) which is laying beyond the FDT arc. '
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functi_cn_ of temporal frequency, f, the amplification would be of a fixed amount ‘dver'
the time span of the backscattered wave. The time domain equation for the wave takes
the form, | |

u(t) = io[tf%] e—aofcd ’

when the wave is narrowband and |fl is approximated by the center freqnency, vf
The narrowband approximation removes the frequency dependence although it
presents a problem because the insonifying wavefronts generated for STRMDT must
be broadband. The unfortunate lack of a better method of removing frequency
" dependence forces the use of ‘the narrowband method in the implementation  of
STRMDT v '

B I the average value of o, for the type of objects being imaged is known or
‘ measurable ‘then a time varylng amplifier can be used to compensate for object
attenuation. The dependence of d, the distance traveled within the ob_]ect upon time, t
within the backscattered signal is described as

=c(t — )‘

where t, is the initial time of the echo arrival. It becomes obvious that an amphﬁer
with ume variation described by a(t) = eXefect~ 1) u(t—t,) would approx1mately
compensate for object attenuation. Figure (24) helps clarify what is meant by to and
1llustrates the: time variation of the amplifier.

" Of course the second factor causing energy loss is beam divergence Wthh is
represented in the incident wave expression in Eq. (46) by the term 1/Ir-r,! . The
position r, is the point of observation and r is a position within the x =0 plane which
represents the aperture of the transducer. A similar dependence upon distance is
~ exhibited in the time domain expression for the scattered wave, u(*), in Eq. (10). At
 first glance one might compensate fcr this inverse dependence upon distance with a

time-gain amplifier since |r-r,l is equivalent to ct/2 where c is the speed of -
propagation. But one must note that the incident wavefront, u,(*), is a plane wave
which is only affected by beam divergence at its edges. Since the object space, as
indicated in figure (25), used in the STRMDT approach, lies within the lateral center of
| insonifying wavefronts, beam divergence is not considered. It is the scattered wave,
u,(), which suffers from beam divergence because the wave resembles a wave
generated by a point source or, more accurately stated by a collection of point.sources.
Such a diverging wave looses energy proportionally to r 2. Hence only the dlvergence :
of the scattered wave will be accounted for by a time-gain amphﬁer o -
‘ Drawmg upon the approximation made for Ir-r, 1”1 in section 3.3. 1 3, the

dependen_ce upon distance can be replaced by x, =1 As is evident from figure ._(2__5), for
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A a(t)

amplifier
characteristic

Y

4 PO

Figure (24) The amplifier which compensates for object attenuation must be time
delayed until time t, which is the time it takes for a wavefront to travel out to the
surface of the object and back again. The amplifier’s variation w1th time, a(t) 18

_ 1llustrated above the simulated backscatter. ‘
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transducer

| Figure (25)  The scanning geometry used for experimental implementation of the
STRMDT algorithm. -
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the particular scanning geometry that is used to experimentally obtain scattered wave
measurements, replacing Ir-r,| by x, results in a seven percent maximum error in
- distance. Therefore the amplifier that compensates for beam divergence has the time
" dependence described by b(t) =ct/2. This is due to the fact that at time t’ in the
backscattered'wa've, the maximum distance traveled by the wave is equivalent to 2x,’
where x,” is the maximum perpendicular distance from the transducer that a wavefront
could have reached. A more accurate version of b(*) is the following which takes into
consideration the change of ¢ within the object, '

ctf2 ,t<t

b= ¢, . t/2 01,

where c,,. is the average propagation speed within the object. This might be an
appropriate amplifier if the receiving transducer were small in relation to the scattering
ObJCCt but in our case of interest the transducer is much larger than the obJect and can
sense a large percentage of the backscattered energy. Hence it isn’t clear what effect
that  beam dlvergence will have on the energy levels received by the' “long
transducer. Therefore the experimental work presented in section 3. 4 will only
compensate for object attenuation and rely upon the line spread functlon d1scussed in .
subsection 3.3.3.1 to account for beam divergence.

“ At this point two amplifiers have been derived to compensate for- the types of
attenuation that are most bothersome to ultrasound tomgraphy: '

a(t) = ™= y(p - t)
and b(t)=ct/2

The first of these amplifiers is incorporated into the experimental data collectlon
process in a later section. '

333 A Model for Backscatter

. Three major steps are necessary to arrive at an accurate description of the output
of a plane wave transducer of the kind used in the single transducer RMDT algorlthm
described in section 3.1:

o ‘Des"cribc the pulse emanating from a transducer as a function of position r.
e  Use this ‘“‘incident wave’’ expression in the time domain Born approximated
expression for the scattered wave. ’
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o ) Integrate the scattered wave over the face of the transducer to obtaln an
expression for the actual output signal of the transducer.

The first step is accomphshed by Eq. (46),

_cos(® o __“'"70' A e oA
i(Fost) = jj Trolor] atu[r t-———| dy'dz’ ,r'=0y'2) - -(_59)7

where u,(*) is the wave within the transducer ‘‘aperture’’ as could be descnbed from
Eq. (37) for a focussed transducer. The second step is provided by Eq. (10) i

T
uy(r0 = il 4m(r’_°) [ro,t— 'c’°]dvo,

Note that the above equatlon describes the scattered field at a particular posmon r and
time t, as the 1ntegral over a circular arc of radius Ir-r,| =tc. Note. also that the
' equauon ignores multiple scattering. '
’ Lastly, step number three is the integration

: , . Sy 5

Pou® = [ [ ug(r,p) dz dy ,r=0yp2) ,

‘ &
which yields the expression for the output signal. Itis obvious that the curvature of the
transducer face is being ignored in this integration for the purpose of s1mphfymg the i
calculation. - ' -

Comblmng all three steps results in the equation

s s F(r,)  cos(®) ' | |
' ' (60
p°"[()___‘[_'[ m 4mlr—r,| AU 2melr'-ro | » B v( )
[ el Irergl]
o r,t— = dy dz’ dv, dydz .

The above result of this subsection is used subsequently to generate a description
of the line spread function corresponding to the backscattering process.

3.3.3.1 The Line Spread Function

It is important to have an accurate description of the ‘impulse function’’ of the
imaging process which for this discussion is called the line spread function, the term
used in image processing. The use of the line spread function (Isf) instead of the point
spread function (psf) is justified by pointing out that the interaction of the ultrasound -
wave with the object is confined to a slice of the object. Confining the ultrasound and
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object interaction, is accomplished by uSing/a transducer that is focussed in the plane
in which lies the object slice whose reconstruction is desired. In short, focu'ssing is’in
the elevation plane

v In this subsection a theoretical description of the Isf is derlvcd from the
bﬁ‘ckground provided in the previous subsections. Given the theoretical Isf, an
1mplementab1c form is derived for use in inverse filtering the expenmcntally obtamed
backscatter from real objects. -

The point spread function of a linear imaging system is defined to be the A -scan
of a point object. To generate an expression for the psf of a pulse-echo system, steps
similar to those outlined in section 3.3.3 can be followed. This time the object
function F(r,) will be an impulse function which results in the psf ' ’

o d(r,—-p) N |
grup) = [ ui[ Fop t = —— J dv,

y anir-r, c

I S _Jlr-pl
= anir—pl “‘[p’t e ]

where p is the vector indicating the position of the point target. We see that the psfisa
function ‘of relative distance between the observation point r and the object point P.
Thercfore, unfortunately, this psf does not possess the shlft-mvanant propeny Wthh
would allow a convenient deconvolution of the psf.

If a focussed transducer is used, the object-wavefront interaction is- lumted toa
narrow strip of the object thereby justifying the use of a system Isf instead of the psf,.

gxy.up) = [ gxy.ztp) dz

although the problem of shift-variance remains. To avoid the shift-variance problém it
is necessary to examine the scanning geometry dictated by the STRMDT algorithm. If
the vector p is restricted to lie within the object region that is illustrated in figure (25),
shift-invariance can be reasonably approximated within that object region.
Considering the dimension of the object region, this approximation for the 1sf is in
error in magmtude only slightly. : S ,

 Now since the shift-invariance of g,(*) is established, the next step 1s to con81der
the output of the transducer, hy/(*), £
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hy()) = [ gy da
A ,

= J‘J‘ |r1p| ,i[P?t— h';_pl] da,r = ©0y0 ,p= (xp,O,;O) , ‘ | (61)
in which p is a constant at the center of the object region. The subscript ‘s’ attached to
the functlon hs,( ) 1nd1cates that this 1sf accounts for the scattering effects but does not
account for the electro-mechanical effects of the transducer itself. As in [Fate80] the
total line response of the data collectlon system, h/(*) can be broken into the two parts
Just mentroned '

DO =y * hen® - f ) (62)

If it were necessary to obtain an expressron for the electro- mechanical 1mpu1se
function,-one would have first look at Eq. (62) in the frequency space, ’

HI((!)) = Hsl(m) Hem((’)) y

—c

Hence all that is needed are the Fourier transforms of hy(*) and hy(). The total lme
response can be measured experimentally and hg(*) can be theoretically calculated.

" The’ 11ne spread function, h{*), which is equivalent to the backscatter received
from a line at the center of the object region, is illustrated, as obtained from
experimentalr measurements, in figure (26). Along with the time domain plot, the
magnltude of the Fourier transform of h,(*) is provided in figure (27). ’ i

- To calculate the function hg(*) it is necessary to return to Eq. (61) and come up
w1th an accurate expression for u;(*) and u,(*) within the object region. To aid in
coming up with an efficient expression for ui(*), Eq. (59) is used to calculate u;(*) for
the four different sizes of transducer illustrated in figure (28). For the largest
transducer the incident wave, plotted in figure (29), is constant over the width of the
~ obiject region due to the integration over the large surface area of the transducer itself.
The wavefronts generated by the other transducers, plotted in figures (30,31,32), are
not nearly as uniform. Since the transducer used in the lab is by our definition much - |
longer than the width of the object region, as would be the case in figure (29), u;(* ) can
~ be safely approxunated within the object region as

* from which we obtain
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Flgure (26) The transducer output resulting from backscatter from a line target
placed at the center of the object region. This 51gna1 is essentially the line spread
function of the expenmental imaging system
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F_igure’(27)*= The magnitude of the Fourier transform of the line spread- fﬁnctign 1n
figure (26). o
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Figure (28) To obtain an intuitive feel for the form of the incident wave within the

object region, Eq. (59) is used to calculate the wavefronts generated by four different

" sizes of transducers. The conditions of the simulations and the relative sizes of the
transducers are illustrated here. ' : :
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Figure (29) The wavefront generated by a simulated transducer of 513 samples.
Note that within the calculated region, the wavefront is constant with respecttoy.
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d by a simulated transducer of 385 s'ampies. '

Figure (30) The wavefront generate
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of 129 s_arh‘bles.

ated by a simulated transducer

Figure (32) Thé wavefront gener
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where the wave within the- aperture u,(*) is no longer a functlon of posmon but ratherv
only a funcuon of time. Next, the function u,(*) is determined with the aJd of the
measured ‘backscatter from a planar surface as plotted in figure (33). ThlS is. done
under the assumption that the backscatter will have the same general bandwidth as
u,(*) and that it is possible to model the wave as ' ’
L0 = T ® B(w) e do
ot Y o

where the function B(*) is the magnitude of the Fourier transform of the planja’r»surface
backscatter as illustrated in figure (34). - ' .

= The above was an interesting diversion into how one would calculate ‘hy() and
‘into the type of incident waves that the object region experiences, but now we must get '
‘back to the issues at hand. What this subsection provides is an experimentally
Ameasured line spread function to use when inverse filtering the A-scans of real objects
as descnbed in the next section. Well there you have it, in the next section we will
describe how the expenmental imaging system makes use of the Isf in obtammg us(t)
, measurements '

34 _Ef)rperi_nientavtion

| ‘t A fea31ble techmque for constructmg a tomogram is illustrated in ﬁgure (35)

: ‘record the A-mode signal with the use of a large broadband transducer ,
amplify the signal to compensate for object attenuation and beam d1vergence
deconvolve the line spread function from the signal o
Fourier transform and extrapolate the spectrum of the resultmg signal
Place the slice in 1ts proper posmon m Fourier space

oOooaoao

 After applymg the necessary amplification as outlined in subsectlon 3 3.2.2, we can
return to Eq. (36) and obtain the function of ®, Py(w,y=l,), by dividing the spectrum of
Poui(t) by the spectrum of hft) and staying in the Fourier domain. The division of
spectra is a crude attempt at deconvolution which can be improved upon by resorting R
~ to a more robust approach such as Wiener filtering or constrained deconvolution. Once

: P¢(0),y—l 0) is known it is a simple matter to obtain an estimate of the obJect functlon 'S

Fourier space along a line,

“F(0,~2w/c) = i—? &b Py(w,y=l¢)
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Flgure (33) The transducer output resulting from backscatter from a planar surface
located at the center of the object region. :
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Fi’g.uré_(34) The magnitude of the Fourier transform of the planar backscatter in
figure (33). B '
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~ Record the A-mode signal

i

Amplify'to compensate for

attenuation

'Flgtiré | (35)

|

Deconvolve the line spread

function from the signal

Extrapolate the resulting signal
- with infinite, noniterative GP

 Place the extrapolated slice in
the proper position in the spatial
~ frequency domain

~ The approach taken to expenmentally 1mplement the STR’VIDT

algorithm is 1llustrated by the block dxaoram ’
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Before show1ng expenmental results 1t is necessary to say a few words about the -
unmed1ate goals and the type of experimental measurements that were ‘made. The
speC1ﬁcat10ns of the transducer used to make the measurements are included in
appendix E, the 1sf is presented in the previous section, and the configuration of the
insonifying aparatus is presented in figure (25). If the object region is confined to be of
radius ZXC s0. that reconstruction quality will be acceptable than the reglon would only:
have a dlameter of 1.2mm at best. The statement concemlng reconstruction quahty
comes. from the discussion in the summary of chapter 4 and the array of
reconstructions that is presented there. From that discussion and the assoc1ated plots it

" becomes obvious that reconstruction quality becomes questionable for ob_]ects of radius
larger than 27tc It is this restriction along with the fact that the insonifying transducer
must be much longer than the greatest dimension of imaged objects, that- leaves us w1th
| very little choice as to the size of the object region. '

The purpose of this section is to illustrate a process for obtaining data,

mampulatmg it, and using it to obtain cross-séctional reconstructions of objects. In the -

- hope of fulﬁlhng this purpose, an plex1glas rod of diameter O. 3175cm (=10.65A¢) is

used as an object. It is difficult to obtain ‘‘core samples’’ of tissue rmmlckmg material
that would-be: small enough to ﬁt within the object region, hence the choice of the
above mentioned object. :

The. echo from the rod is plotted in ﬁgure (36). To deconvolve the lme spread
function a combination of Wiener filtering and simple Fourier domain d1v1s1on can: be -
carned out ‘The comblned ﬁlter Hy(w), takes the form :

r

1 - -

- J m fmp1<.®<mph |
H = % ‘ . ‘ R

R f((’?) } ) . ® elsewhere :

IH(@))1? + |N(m)/1>(o))l2 . .

-

where the functlon N(w) is the noise spectrum and P(w) is the echo spectrum In
addition to the filtering, a gaussian shaped window centered at the center frequency of -
- the transducer is applied since the spectra of both the line response and the echo are

narrowband. The result of applying this filtering to the rod echo is shown in ﬁgure :
' (37) Ideally the result would appear to be two impulse functions. s -

" 'The time conscious experimenter might resort to envelope detecnon to

approximate the deconvolution of line response from the echo. To numencally o

~ calculate the envelope of the rod echo it is first necessary to Fourier transfo_rm the :
signal and zero out all of its negative frequency content. Then inverse transform, take
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“the magnitude of the result and multiply it by two. The envelope of the rod echo is
plotted in figure (38). As shown the 2 peaks in the envelope aren’t nearly impulse
functlons :
~As a more serious example the experimentally measured backscatter from a thin

slice of a natural sponge is plotted in figure (39). The deconvolved and envelope
detected sponge echo are presented in figures (40) and (41) respectively.

~ To use filtered backscatter to reconstruct the object, a sequence of tasks must be
executed: ~

zero pad and Fourier transform

apply spectral extrapolation in the frequency space

20 szu/c

e :
place the 1-D sequence on the appropriate line in the object’s 2-D Fourier space.
fill the 2-D Fourier space with backscatter measurements from around the ob_|ect
and then 2-D inverse Fourier transform. ‘

]
O
O mult1ply the result by the function —
O
O

Dueto a lack of a suitable, weakly scattering object and a lack of tirne, the spectral
extrapolation and frequency space filling can’t be carried out by the time of printing. .

3.5 Sutnmary

The algorithm that has been presented makes use of a very simple scanning
* geometry that results in simple and efficient data collection. The output of the
transducer is essentially a simple A-mode s1gnal that requires little processing to
prov1de spat1a1 frequency samples of the object. Unfortunately, the algorithm alone
suffers from a lack of low frequency information that can only be obtained w1th the use
of spectral extrapolation or with the use of forward scattered. field measurements
Another limitation to the type of objects that can be imaged is the physrcal size of the
plane wave: transducer. The transducer must prov1de a ripple free plane wave to the
slice of the object being imaged and it must be physically long enough so that all of the
backscattered field will impinge upon the surface of the transducer. ‘Otherwise
erroneous measurements of Ug s () will be obtained. R

~ As briefly mentioned above, the combination of broadband backscattered and
forward scattered fields could be used to obtain a nearly complete ﬁllmg of the object’s
frequency domain.

The main assumptions used in developmg the algorithm are 1) that only non-
frequency dependent backscattering is observed and 2) that only weakly scattenng
Ob]CCtS can be ‘imaged because of the Born approxrmatlon »
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CHAPTER 4

SPECTRAL EXTRAPOLATION

In thls chapter various versions of the Gerchberg-Papoulis (GP) algonthm for
spectral extrapolation will be presented and used to extrapolate simulated data. Within
sections 4.1, 4 2and 44 the results of applying the respective versions of GP w1]1 be
presented '

4.1-T_heGei‘chberg-Papoulis Technique of Spectral Extrapolation

In th1s section the spectral extrapolatxon approach that is used to ga1n an estimate
to the missing low spatial frequency information, will be described. Other basic
techmques to spectral extrapolation have been 1nvest1gated but not presented in thls"
document The reader is referred to [Robr85]. : S
- . The spectral extrapolation technique used within this presentanon is’ the
‘Gerchberg-Papoulis, GP, algorithm which has been discussed by many authors
[Pap75,Trus84,Gerch74]. The paper by Sato et al. [Sato81] provides cornputer
simulations of the GP algorithm extended to two dimensions. -

The choice of the GP algorithm for use in extrapolatmg our simulated frequency
‘domain data is based on its simplicity and power. An approach such as the maximum
entropy (ME) technique is not suited to the needs of our problem; the ME technique is-
applicable only to non-negative functions and unfortunately the Fourier domain data
we need to extrapolate fails this condition. The ME technique is well suited to the
extrapolation of power spectra and digitized images consisting of positive gray levels.

. In this presentation, spectral extrapolation will be carried out in only one
dimension although our problem is inherently two dimensional. Limitation to one
dlmensmn is possible because of the symmetry of the object that is used in the
computer s1mulat10ns of the algorithm. In addition the A-mode signal obtained from v
the broad- band plane wave transducer provides information about a single slice of the.
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Fourier space of the object being insonified. Hence it makes sense to extrapolate each
1-D signal as it is obtained from the inverse filter as illustrated in figure (35).

The basic concept that enables the GP technique of spectral extrapolation to
furiction, is the analytic property of the spectrum being extrapolated. In reference
[Churc76], the following theorems are stated and proven: ‘ B

1.) A function that is analytic in a domain D is uniquely determined over D by its
values over a domain, or along an arc, interior to D.
2.) I two analytic functions, f; and f,, with the domains D; and D,, have a region of
- intersection, D;ND,, f; must equal f; in the region of intersection.

It follows from the first theorem that the two functions are identical over both D, and
D, _ . v

The GP algorithm will combine the analytic nature of the spectrum, the a priori
spatial information, and a known range of the spectrum obtained from scattered wave
‘measurements, to iteratively obtain the full spectrum. In our apphcatlon ‘the known
rcglon of the Fourier domain, H(u,v), obtained from the backscattcrcd waves is a
bandpass function which sets our application apart from the typical problem
considered in the literature in which a low-pass frequency range is known. The
knowledge of H(u,v) and the finite region of support of the object, is all that is
necessary tb begin extrapolating. The first estimate of f(x,y) is generated by the inverse
transformation -of H(u,v) which yields hy(x,y). The steps involved in thc iterative
cxtrapolatlon are outlined below: :

1.) Thc 1n1t1al step of the iteration consists of multlplymg h, ,(x,y) by thc rcglon of

‘support function, P(x,y)
1if (xy)eR
P(x,y) =

0 if otherwise

. to yield the function f,(x,y).
ii.) Sccondly, f,(x,y) is transformed resulting i in F,(u,v). :
iti.). Thirdly, the region in which F(u,v) is known is restored to its ongmal value,
~+ H(u,v), without disturbing the remainder of the frequency domam Thc result of
- this step we shall call H (u,v).
iv.) Finally, H, (u,v) is inverse transformed to obtain hn(x,y) and we return to step (1)
“'to gcnerate the (n+1)th estimate. \

To aid in the description, a block diagram of the algorithm is provided in ‘ﬁgure (42).
‘Also for the sake of clarity, the relationships in the above steps are outlined below..
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" Known frequency
range, H(u,‘v) ’

‘Restore the known
frequency range

>  | '_IFFT |

Spatial domain
truncation

Figure (42) A b'lo‘ck diagram of the steps taken in the Gcrchberg-Papoulis algorithm
of spectral extrapolation. : =
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: H(u,v) ,(u,v)elL
Hyu,v) = F,(u,v) ,otherwise

Fouv)= [ [ f,0y) ¥V dxdy

= ” h,_1(%,y) e'j(“"”” dxdy .

In the above, L is the region in which H(u ,v) is nonzero and R is the spaual domain
region of support of the object. » :

Following the presentation in [Pap75], the mean square error of the estlmate
within one iteration, is twice reduced. With the aid Qf Parseval’s equation, the
following relationships hold: ’ :

= v 2 . 2
J J fonhsn)| dxdy> | [ x| dxdy=

= j | IF@v)-Fy) }2 dudv> | [ Fauv)-Hwv) :2 dudv .

The 1nequa11t1es are, of course, due' to the‘ relauonshlps
1506y ) by 1 (xoy) | > oY)~ 06y) | and [F(u,v)-Fy(u,v)| > 'F(u,v) ~H,(u,v)| that result

~ from spatial limiting and frequency range restoration, respectxvely.
“One possible iteration stopping criteria for the algorithm is

CEa= [ [ eyt duav<s " (63)

where 8 is an acceptably small mean square error between iterations.

As shown in [Gerch74], the spectrum extrapolated by the GP algorithm has a
resolution that is severely limited by the accuracy with which the known frequency
range is known but doesn’t seem to be very sensitive to noise.

In what follows, the GP algorithm will be used to extrapolate the simulated
scattered wave data generated by the scanning apparatus described in chapter three
sectlon three. .

, " In the actual digital implementation of extrapolanon the use of the FFI‘ does

present the difficulty of having to deal with a simultaneously spaually-hmlted and
band-limited function. Of course, the idea of having a spatially-limited object implies
~ that the ,spe’etrum must be infinite in extent. By limiting the function’s spectrum, the
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analytic nature of the spectrum is lost, but with the assumption that the function’s
spectrum is negligible outside the band-limited region, the analyncny of the spectrum
is retained. :

The one d1mensrona1 slices of the object’s two dimensional' Fourier transform
obtained from the transducer’s broad band measurements, have been processed by the
GP techmque with surprising results. Note that the simulated cylinder has-a 2 radius
and that the region of support function, P(x), that is used has the value 1 for x| €22
and 0 elsewhere Figures (43) and (44) present the extrapolated slices of the real part
of the frequency domain obtained for both of the cylinders that were reconstructed

previously. Figure (43a) is the slice of the cylinder of 1.01 refractive index after 150
1terat10ns and (43b) is the result after 250 iterations of the GP algorithm. Likewise,
ﬁgure (44) presents slices of the cylinder having a 1.1 refractive index. It is interesting
to note how well the previously unknown frequency range, —21((J <v< 2k0L has been

estlmated : i

- The number of iterations of GP that are requlred is quite high but remember that
very little information within the object’ s region of support was provided by the 1n1t1a1
frequency domain coverage. Asa result more iterations were required.
_ In figure (15), it is obvious that the simulated slice deviates from the exact shce

and yet extrapolation still provides an improved approximation to the exact slice which

is plxotted_ini figure (44). It is disturbing to see that the additional 100 iterations used:to
obtain (44b) did not improve the data noticeably. In subsequent sections new and
1mproved extrapolanons will be prov1ded for both the 1.01 and the 1.1 refractive index
cylmders T 3
At first glance the use of the GP technlque seems 1mpresswe but beware that the
1mply that the fundamental hmmng factor to the accuracy of the reconstructions
obtained with the approach to diffraction tomography described in this chapter, is the
Bom approx1mat10n If the Born approximation does not hold, the inaccurately known
frequency range will be extrapolated by the GP technique into somethlng that remaJns
inaccurate. ,

The newly extrapolated shces 1n figures (43) and (44), when used to fill up the
two d1mens1ona1 frequency domain, yield the reconstructions whose real parts are
presented in _ﬁgures (45) and (46). The center slices of each reconstruction appear as
solid lines and the true center slices appear as dashed lines in part (b) of each figure.
The center slice plots aid in providing a feel for the accuracy of the amplitudes of the
Areconstructlons Note that these reconstructions are improved in magnitude and in
shape over the reconstructions obtained without the use of extrapolation. This is of

course due to the more accurate estimation of the low spatial frequencres The reader N

familiar with this research might note that the extrapolated reconstrucnons are 1nfenor ‘
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figure (14): (a) 150 iterations of the GP algorithm; (b) 250 iterations of the GP

algorithm.
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to the reconstructions of a cyhnder of smaller radlus which were presented in. the
preliminary document. L

For the purpose of comparison, an array of reconstructions generated by each of
the methods of extrapolation that are presented in this chapter is 1ncluded at the end of
the chapter '

4.2 A Noniterative Extrapolation Algorithm

In this section we will discuss a noniterative formulation of spectral
extrapolation. Many authors have contemplated combining all of the projection
operators, P, into one composite operator T = P;P,P; - - - P, [Youla82]. Unfortunately
the composite operator is of no benefit unless the prOJectlon operators are linear such
that T will have the same effect as each of the operators applied md1v1dua11y

- The simple discrete Fourier transform operatlons that we are concerned w1th are

x(k) == z X(n) W
: n—O
| N-1 ‘ | v
X = 3 x(k) W B )
k=0 -
2%
2=

W=e N -_
Wthh can be formulated conveniently as matrix- vector multiplications, [Ersoy]
o X=[F]R ®=[RIX.

Fortunately within the GP algonthm every term within the mamces [F] and [R] need
not be calculated. This is pointed out with the aid of figures (14) and (47). In figure
(14) the solid line is the plot of a slice of the known spatial frequency range and the
dashed line is the true spectrum. Most importantly one should notice the portion of the
solid line that has a solid zero value. That portion is the unknown low frequency range
and it is only this range of the vector X that needs to be calculated during the iterative
spectral extrapolation. Hence
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-The value of the index p, is determined by the bandwidth of the transducer used to
obtain the frequency domain slices. Hence p can be exactly obtalned for each type of
transducer that would be used in the scanning apparatus.

In a similar manner we only need to use a sparse amount of the matrix [R]
because in the spatial domain the region of support truncation will set to zero all values
of x(k) outside of the range g <k< N-g . The dashed line in figure (47) is the region of -

support and the solid line is the inverse transform of the frequency domain slice in

figure (14). Hence

....... 1 car ees 1
...... w'—gk W-g.(N—l)
RS 0 e e 0 o
Rl1= — ) ...... 66
[Ry] Nipg... ... O v eee 0 '(- )
...... W—(N—g)k cee e W—-(N—g)(N—l)
...... W—(I.*I—l)k cee e W‘_(N‘.l)(N.‘l.)

The maximum value of g is determined by the size of the largest object that will be
imaged. Of course the size of the plane wave transducer as well as thclimi_tationS' of
the Born approximation, determine the largest object that can be imaged. Therefore to
be conservative, the maximum value of g can be calculated and used to determlnc the
[Rl] matrix. : o

‘In the GP algorithm the first step is to inverse transform X and carry out the
region of support truncation which can now be described as follows

% =[R1X.

~ Step two is the transformation of X, back into the frequency space and the restoration

of the known frequency range. This is all accomplished by the following V
R, =[Fl1% +X=F]RIR+X .

The vector Xl is the result of the first iteration of the algonthm The result of the
second iteration is described by
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X,=1[P] R, +R =[PP+ PIR+X

where [P] is the matrix product [F,] [R,] .
The notable result of this formulation of the problem is the fact that n 1terat10ns of
'GP can be carried out by a single matrix-vector mulnphcatlon '

X,=[GX [Gl= 3Pk I (7)
k=0 .

The only difficulty encountered involves the calculation of the matrix [G]. This
c}alc;lilation,_c_:ould be quite time consuming although the matrix need only be calculated
once for each combination of transducer and object size that is encountered in the lab.

The . techmque described above for turning GP spectral extrapolation into a
noniterative ‘algorithm, is not unique to this.text. In fact Sabri and Steenaart [Sabri78]
and Schafe:, et. al. [Schaf81] discuss the combination of general linear operators in a
similar manner. In addition Cadzow [Cadzo79] has described a single step
extrapolation procedure that involves solving a Fredholm integral equation of the first
kind. _ -

‘In [Sabri78] the geometric series in (67) is replaced with the :equivalent
expression

[G] é[[l]-—[P]"”J [[I]‘—[Pj] - | | .(6"85

where [I] is the identity matrix. Calculating [G] in (68) would not be advantageous in
our case. The additional matrix multiplication and subsequent matrix inversion
necessary to calculate [G], would be more expensive than the approach that we have -
taken to calculate [G] by the method in (67). In our computer implementation, the
followmg algorlthm has been 1mplcmented on an FPS120 array processor

float G{m]{n], T(m){n], Fim][n], /*matrices */
" I[m][n}; /* the complex identity matrix */
int N; /* number of iterations */ '

- G=P;
T=P;,
for(i=0;i< N-1 ;i++){
 F=G*T;
 G=F+T,
}
. G=G+;

A piof of ftl;le matrix [G] corresponding to 200 iterations of GP is provided in figure
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(48). The matrix was constructed for a region of support having a radius of slightly
greater than 2A, and a transducer of center frequency 5 MHz and bandwidth 6 MHz
just as in the‘ preceding chapter. The diagonal ridge in the matrix is the result of the
final addition of the identity matrix. The dashed lines in figure (49a) and (49b) are the
true Fourier space slices obtained from backscattered wave measurements from the
1.01 and 1.1 refractive index cylinders respectively. The solid lines are the

- extrapolated versions of the dashed lines. These noniterative extrapolat_ed slices are
greatly improved over the iterative extrapolations in figures (43) and (44). .

- It is very interesting to examine the limit of [G] as the number of 1teratlons n,

goes to infinity. This limit of (68) can be expressed in closed form if the: norm of the
matnx [P]is less than one,

(6= lim in (- [P]"“] [n- [P]]'l (m-m1)- .

'The norm of a matrix is defined to be the square root of the largest e1genva1ue of
([P]T[P]) The norm measures the largest amount by which any vector is amphﬁed by
matrix multiplication [Stran80]. Essentially the magnltude of the largest e1genvalue of

[P must be less than one. The sufficiency of thls condition is easxly proven by
exammmg the d1agonahzed version of [P] ’ B

[P] = [SI™'[AIS]

where [S] i 1s a matrix whose columns are lmearly independent elgenvectors and [7L] isa
diagonal matrix whose elements are elgenvalues If indeed the elgenvalues of [P] all
have a magmtude less than one, then - Feohe

[GI” = lim ¥ [PI¥= lim 3 [ST"[AI{S]=0
. M—eo g } n— 1

Using the same simulated conditions as used for figure (48), figure (50) is a plot
of the matrix ([I]—[P])‘l The matrix [P] is plotted in figure (51). The extrapolated
slices obtamed with the use of [G]™ are the solid lines in figure (52). In (a) the shces
vpertam to the 1.01 refractive index cylinder and in (b) they pertain to the 1.1 refractlve
index cylmder Itis unsettlmg to observe that the dashed lines in figure (52) wh1ch are
the true Founer space slices, are much smaller than the extrapolated slices although the
extrapolated slices are much smoother than that obtained with the matrix in figure (48).
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Figure (49) The extrapolated version of the Fourier space data plotted in figure (14)
which corresponds to a 1.01 refractive index cylinder having a radius of 2A is plotted
in (a). The extrapolation is carried out by multiplying the data vector by the
extrapolation matrix in figure (48). In (b) the extrapolated version of the Fourier space
data plotted in figure (15) whlch corresponds to a 1.1 refractive index cylinder having a
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The extrapolated verstons’ of the Fourier space data obtained with the

matrix ({I]-[P])"! corresponding to: (a) the data in figure (14); (b) the data in figure

(15).
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4.3 The Noniterative Extrapolation Algorithm Extended to 2-D

The same matrix formulation of GP can be applied to two dimensional functions
that have limited frequency domain information and a finite region of support in the
spatial domain. To begin the section the 2-D problem will be examined within a two
dimensional framework and secondly the problem will be reduced into a 1-D problem.

4.3.1 TWo Dimcnsional Formulation

The 2-D discrete Fourier transform relationships are
1 M-1 N-1

x(m,n) = —— X(u, v) W™ W™
WN 2 | |
v M-1[ N-1 ‘ '
X@v)= ¥ [ Y x(m,n) w,:;m] Wy _ (69)
m=0| n=0

- The previous equation illustrates the separability of the Fourier transform, Thetcrm in
. the brackcts is the DFT of the n’th row of [x]. In matrix form thc DFT rclatlonshlps
are written as [Rosen82] ~

x(mm = tg I:);O[ eimv/N] L x@w) [ ei2’“““’M] %4— : 10)
[x] = [RIX][T} [X] [QI[xI[S]
where [Q] is an NxN matrix whose (nv)'th element is ™ N and [R]= -I{I—[Q]*
Likewise [S] is an MxM matrix whose (u,m)’th element is ¢ 32*™M and [T] = -—[S]

If the image is square, matrix [T] will equal [R] and [Q] will equal [S].

- The region of support for the image is illustrated by the shaded region in figure
(53). Given this region it becomes evident that not all of the of elements within the
' ~matrices [R] and [T], must be known. Considering that only the rows of [x] falling
into the ranges of 0 to o and N-o to N-1 need to be calculated, only the. rows of [R]
within the same ranges are needed. Likewise, only the columns of [T] within the range
of 0 to B and N-P to N-1 are needed since only the elements of [x] within this range of
columns must be calculated. These new matrices, identified as [R;] and [T,], allow the
inverse transform of [X] and the region of support truncation to be expressed as

[x1] = [RJIX][Ty] .

.~ When transforming the matrix [x;] it is only necessary to.calcuvlate the zero
valued elements of [X] and subsequently add to that result the matrix [X]. Two types
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Figure (53).] " The region of support for the 2-D image is

illustrated by the' shaded
region. = : I A



123

of Fourier domain coverage are of interest and will be discussed here. The first type is
a lowpass coverage in which low frequency information is known in advance although
high frequency information is missing. In figure (54) the shaded area is the un'kn'own
_frequency region. Given this unknown frequency region, the operation of transforming
the image [x;] is reduced to '

X41= [Qq1[x,](S{] + [X] .
The zero portions of the matrices [Q,;],[S;1.[R;] and [T}] are 1ndlcated in ﬁgure (55)

The matrix [X;] is just the first iteration of the algorithm. In a manner snmlar to

that described in the last subsection, higher order iterations can be obtained by a
summation of matrix multiplications, :

[X,] = [P"XI[P,I" + [P XI[P 4 -+ + X]
[Pa] = [T]][Sl] ‘ [Pb] = [Ql][RI] . .

~ The second type of Fourier domain coverage is a bandpass covemge: that 1s
obtainable from backscattered ultrasound measurements made at regular iriterVaIs
~around the object of interest. The resulting unknown frequency region, mdlcated by
the shaded region in figure (56), is unique because the boundaries of the reglon lie
neither along a row nor a column of the matrix.
It is unreasonable to assume that nonshaded regions in figures (54) and (53) w111 :
be fully known. In other words, it is unlikely that the region of support and the known
frequency range will have a rectangular shape. For example it is more hkely that a
circular region of the frequency domain, noted with the dashed lines in figure (54) will
be known with confidence. The gap outside of the dashed arcs but still within the
nonshaded region, presents a problem to this 2-D formulation of GP. To attempt a
solution to this problem one could first decrease the values of y and & until the gap
disappears. Secondly a new operator would have to be introduced that would truncate
the part of [X;] outside of the potentlally circular region in which the frequency
domain data are known. :

X1l= 0{[R1][X][T1]} +[X] .

The operator O would simply “‘and’’ the matrix product with a mask indicating the
elements of the matrix product that should have a nonzero value. Unfortunately this
operation will make unfeasible the possibility of precalculatmg the extrapolatlon
" matrix as was done when dealing with 1-D signals. :

~In summarizing this subsection I believe that it is safe to assume that the matrix
formulation does very little to speed up the extrapolation algorithm. In fact for smalln
it is quite possible that using the FFT algorithm to actually iterate between the Fourier
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Figure (54) The shaded area is the unknown frequency region.
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lI:igure (55}): The zero portions of the matrices [Q;],[S;],[R;] and [T;] are indicated
ere. |
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Figure (56) The unknown frequency region that results when an image is known only
within a frequency bandpass, is indicated by the shaded region. The boundaries of the
region lie neither along a row nor a column of the matrix therefore making noniterative
2-D GP impossible.
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and spatial domains, would be quicker that carrying out the matrix multiplications even
if the matrices are precalculated.

4.3.2 One Dimensional Formulation

~ In this subsection it will be shown that the 2-D image extrapolation problem
discussed in subsection 4.3.1 can be posed as a 1-D problem. To achieve a 1-D
formulation, the discretized 2-D image x(m,n) of dimension (NxM), is éxpfcsscd as the
- vector x(k) of length NM in which the (M+1)’th element is x(0,1). ‘

X = [x(0,0), - - - ,x(M-1,0),x(0,1), - - - x(M—1,N-2),x(O,N-1), - - - X(M—-1,N-D)]T

To compute element (u,v) of the Fourier transform of the image, one need only
compute the dot product of the vectors Au , and X" where

A =exp[—j21t[ u (k rnMod M, v [kIéMJ H |
M-1 N-1
X@v)=Y Y x(m,n)e _]21t[um/M+vl1/N]
m=0 n=0

The 1ndex k uscd in the last equation is equal to (nM + m). : -

To construct a transformation matrix one has only to construct a matnx [A] of
dimension NM x NM whose rows are the vectors Au v The result of the matnx—vector
product, [A]1®, will be the vector X’ which is the Fourier transform of the 1mage
expressed as a vector.

X’ =[X(0,0), - - - ,X(M-1,0),X(0,1), - - - ,>X(M—1,N—2),X(0,N—1),.- .o ;x(M;l‘;NiljjT

[A] = AMma1,0

_)
| AM-1,N-1]
Likewise the inverse transform takes the form

¥=[B]X', [Bl=—— [A]

'” Carrying out the GP iteration becomes quite simplc given the above rélationshipé.
The starting point, the Fourier domain of the image X', must be inverse transformed
and the result must be truncated by the region of support. This can all be accomphshed
in one step w1th the aid of the diagonal matrix [L] '
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SRR ¥ =[LIBIX I
The [L] matrix has a one on the diagonal to correspond to ‘every pixel of ‘Tc" ‘within the
. region of support. To complete the first iteration of the algorithm one must transform
-X’; and retain only the elements of the Fourier domain _previously unknown and add to
that result the original known frequency data, X

X', =[K] [A]?1+X‘

'The matnx [K] is the unknown frequency rangc mask just as the matrix [L] 1s thc'
‘region of support mask. : :
- The result of n iterations of thls algorlthm is

Xy= [[P]"»+[P-]"v‘ £ +[P].+[I]]’ X

in which [P] [K][A] [L] [B]. v
Since it is the frequency space data that we wish to extrapolate, it is beneficial to
Timit the discussion to mampulatlons on the Fourier space of the nnagc, 5() Ttis
1nterest1ng to note that the product [A][L] [B] constitutes a Fourier space. convolutlon '
w1th a reglon ‘of support™’ filter. - -

’ 4._4"'0:vérrelaxed Extrapolation |

1In the paper by Youla and Webb [Youla82], the GP algorithm is reformulated
such that extrapolation is accomplished by iteratively projecting onto convex sets.
This reformulation enables the enforcement of each constraint involved in the
algorithm to be described as a projection of a data vector onto a set of functions
satisfying that particular constraint. This formalism makes it intuitively easy to |
include many constraints on the cxt‘rapolation. It is also convenient to use this
formalism when discussing overrelaxation. Additional information on the method of
B projection onto convex sets is provided in [Sezan82,Schaf81]. '

In the first subsection more information about projecting onto convex sets is
provided and in the second subsection overrelaxation is described and simulation
rcsults are presentcd o '

4:4.1 Pro;ectlon onto Convex Sets

- f’vahcv'p‘ap‘ér,by'YOula and Webb [Youla82] formulates the iterative r'ccpnsttuction
algorithms, such as GP, in terms of a sequence of projections of the data vector onto a



129

collectio'n' of convex sets in Hilbert space. Each convex set is a constraint:"upo_r'l_, Or’é
- desired property of the reconstructed data. Of course the intersections _Of all _such
convex sets is the space in which the reconstructed data vector will lie. With GP,
convex sets are constructed from each constraint used in the iterative extrapolatlon
Examples of convex sets obtained from basic GP are

1, a<ifi<b
P,d & w(f)D(f) , w(f)= 0, elsewhere

which mdlcates that the frequency space of the data, D(f), is bandhrmted to the
frequency range [a,b] and

- 1, c>Ixl
P,d =r(x)d(x) , r(x)= 0, elsewhere

which reflects the region of support truncation. To ensure convergence of the iterative
‘application of the projections, each projection must be nonexpansive. For a ﬁrbj'ectibn
to be labelled nonexpansive the distance between two vectors to which the pI'O]CCtl()n
has been applied, must be less than the distance between the original data vectors '

1P x—P,yll < llxyll

where
1

lixll = [ ) lx(n)l2] 2

“To finish this subsection the following are a few intuitive comments about
extrapolation under this new formalism. The uniqueness of the solution obtained is
dependent upon the “‘size’’ of the intersection of the convex sets used. It is important
to note that vectors that already lie within set i are unmodified by projection i, P; . The
effect of makmg an accurate first guess decreases the 11ke11hood that the 1terat10n will
d1verge E , , - ~

4.4;2'Noniterati’ve Overrelaxed Exlrapolatioﬁ

Overrelaxatlon is used to speed the extrapolation process of 1terat1vely applymg
projection operators. The basic change made by overrelaxation concerns the form of
the projections that are used. When using overrelaxation a projection no longer
projects onto the border of its convex set, rather the projection takes the data past the
boundary and into the set itself. The new projection operator becomes
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Py = (1-A)I+ A Py= 1+ A, P;

The operatof P, is clearly nonexpansive if P; is nonexpansive when 0<A;<1 although
when 1<), it must be shown that Py is still nonexpansive. This is proven in the
appendix of [Youla82] and will not be repeated here. Therefore the range of
overrelaxation constant, A;, is 0SA;<2. _ '

The two projection operators that were discussed and implemented throughout the
beginning of this chapter, are the ‘‘spatial truncation’’ and the ‘“‘frequency restoration”’
opérators. The overrelaxed version of the spatial truncation operatdr can be ex,__pres_séd
as . e

X = [L_T[RI]HT[R]] Rie1 =[Tql Xy

in which [Ri] is as defined in (66). In a similar fashion the overrelaxed'frequency
restoration-operator is |

X, = [AR[FI] + KR[F]] Rt + AgX = [Tr] RByg + AX

Combining the operators results in

Xy = [TRUT7] Ky + A%

o= [[TR] [TT]] : Xy 2+ AR[TRIT7] _X + 21X

= [T AT+ AT+ g0 R

in which [T] =[TRr][Tt]. The hope is that relaxation will result in fewer iterations to
obtain a desired mean squared error between the extrapolated and true Fourier space
data. - , : o
In figure (57) sixteen reconstructions obtained with sixteen different combinations
of the relaxation constants, Ay and Ag, are plotted. There doesn’t seem to a clearly
superior reconstruction within the array of reconstructions. Therefore we draw the
conclusion that overrelaxation is of very limited benefit to STRMDT.

45 }Sulmmkary

In this Chaptér investigation into the different forms of the GP method of spécn'él :
extrapolation. is carried out. To aid in comparing the different formulations of
cktrapola_tion,"ﬁgures (58), (59), (60) and (61) illustrate cylinder reconstructions over a
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Figure (57) . The real part of a cylinder reconstructions in which the cylinder radius is
2A and the refractive index is 1.01. These reconstructions are generated with the use
~of overrelaxed GP over a range of relaxation constant combinations.
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Figure (58) The real part of cylinder reconstructions over a range of one to ten A in
radius and 1.001 to 1.20 in refractive index. These reconstructions are obtained
without the aid of spectral extrapolation. They illustrate the quality of reconstructions
without low frequency information. : : :
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. Figure (59)  The real part of cylinder reconstructions over a range of one to ten A in
+ radius and 1.001 to 1.20 in refractive index. These reconstructions are obtained with

the use of an ‘‘infinite’’ bandwidth transducer.
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Figure (60). The real part of cylinder reconstructions over a range of one to ten A in

ius an

rad

d 1.001 to 1.20 in refractive index. These reconstructions are obtained. with

the aid of iterative spectral extrapolation.



" Figure (61) The real part of cyli’ndér reconstructions over a range of one to ten A in
radius and 1.001 to 1.20 in refractive index. These reconstructions are obtained with
the aid of noniterative spectral extrapolation of infinite ‘‘iteration.’”

Sel
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range of one toten A in rad1us and 1.001 to 1.2 in refractlve 1ndex In all 4 ﬁgures the

plots arc of the object function O(r) = [nz(r) 1} The reconstructions in figure- (58)1

- are ‘obtained without spectral extrapolatlon. The reconstructions in figure (59) are
“obtained with the assumption that a transducer with infinite bandwidth was -used -to
obtain the ‘backscattered wave measurements. In figures (60) and (61) convennonal
iterative extrapolatlon and infinite noniterative extrapolation respectively; is used.

.- The reconstructions in figure (61) appear to be quite smooth although qu1te po_or
for .the objects of larger radius. This is due to the horrible shape of the infinite
lextrapolahon matrix for the _particular object radii. This is not due to an excessive
filling -of the matrix [Rl] wh1ch would only result in the matrix [P] approachmg the
1dent1ty matrix in form. As of the date of prmtmg, we have no valid- explanauon for
the. degraded extrapolation matrices. = :

i is interesting to note that there is. a curve that can be drawn through each ﬁgure
to po1nt out where reconstruction quality degrades rapidly. This curve serves ‘to
- indicate the range of objects for which the Born approx1mat10n holds. The fact that the
curve is the same in all 3 figures, emphasizes that it is the Born approximation that'.
limits reconstruction quality. :

" For the interested reader the complexmes of conventional and nomterauve GP
can be compared by comparing the number of operatlons necessary to carry ‘out

extrapolauon The number of calculations necessary to extrapolate an N sample data - A

vector with the conventional approach is approximately n(2Nlog,N) complex
.multiplieations and additions where n is the number of iterations. For noniterative -
extrapolation only N2 mult1phcatrons and N(N-1) additions are necessary. Although ‘
- there is-an additional one time cost of nN? multiplications and n(N2+N—-1)+N additions
just to calculate the extrapolauon matrix. Hence for a 100 iterations of a 128 sample
‘data vector, the noniterative approach is a factor of 10 “‘cheaper” 'in complex
multiplies than its conventional counterpart. , .

' The results of the application of GP extrapolauon are qulte good but the
algorithm can successfully be applied only to the Fourier space data of ob_]ects for
which the Born approximation holds. Essentially only good data can be extrapolated.
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CHAPTER 5

SYNTHETIC APERTURE TOMOGRAPHY

- In synthetic aperture diffraction tomography (SADT), for each position of the
receiving plane/line, the object is insonified from a number of different directions and
a scattered field measurement is made per each incident wave. As will be shown, the
freq‘uenc,y_g;’domain coverage obtained in this manner by a single position of the
recei\)ing line, is far more dense than that obtained by a single incident wave as
described in previous chapters. Hence fewer positions of the receiving array about the
object are required. The cost of this benefit is the increased complexity of generating .
the incident waves. '

5.1 szisic_ Theory and Limitations

Before startmg the discussion lets consider an incident plane wave w1th
propagatxon vector §, and a receiving plane that is normal to the vector S such that
$ sp cos. To derive the effects of this new form of insonification we simply- insert

T

“the new expression for the incident wave, U;(r) = , into Eq. (14) and follow steps

similar to those used to derive Eq. (16). This yields the relationship
. __J,ﬁgz a2l . )
mmpm l————HAk%)

V202

: where A= {a \/k2 7] . Figure (62) illustrates the geometry of the expenment and

the resultmg frequency domain coverage.

To keep the experiment truly refiection mode, in this presentatron the angle ¢ will
be lumted to the range [0,~n]. When two such synthetic aperture measurements are
made on opposite sides of the object, the resulting coverage of the object’s spatial
frequency domain, is illustrated by the shaded region in figure (63). This coverage
looks promising because some low frequency information is obtained which would
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Figure (63)  The object’s frequency domain coverage obtained with synthetic aperture
scattered field measurements from 2 positions of the transducer array. '
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enable the GP extrapolation algorithm to converge much more rapidly. Theoretically
an estimate of the zero frequency sample is obtained. This fact will especially lower
the number of iterations required for GP to extrapolate the unknown frequency rarige.

In reflection mode implementation, the scanning geometry could be quite hard to
realize. A possible solution is to use an array of transducers lying on the receiver line
[Nah84]. By pulsing each transducer individually and measuring the resulting
scattered field with all transducers, the experiment could be implemented.
Unfortunately, this requires that the transducer generated wave has a known plane
wave expansion and assumes that the receiver line is infinitely long. Hence in -
implementation the obtainable range of ¢ is [y,n—y] where W would be determined
from the beamwidth of the transducer. This is only the author’s opinion and has not
been expenmentally verified. : ‘

5.2 -Synthetic Aperture with an Array of Poin_t Sources

In this section a specific synthetic aperture reconstruction algorithm will. be
derived that utilizes an array of point sources lying on a infinite line.. With this
pamcular transducer array, each transducer in turn will serve as the msomfymg source
of energy while all of the transducers serve to receive the scattered sound waves.- We
will see that an interesting frequency domain coverage will result. :

"The type of incident wave desired is a monochromatic spherically diverging wave
produced by a point transducer. This implies that the incident field, uy(r,t), satisfies a
Wave equation of the form, ‘

1 o%uy(r, t)
ot a2

in which ‘¢’ is the velocity of the generated wave in the medium. In the temporal

frequency domain (71) takes the form - '

V2U,(r,0) + K2Uy(r,0) = 8(r-T,) . o m

V2ur,) - —eTI §(r-r,) ~ay

in which ko = w/c . Hence the field generated by the transducer which is:positioned' at
r,, is described by ' :

el | U(r,a;r,) = G(rlr,)
as follows from the application of Eq. (8) to Eq. (72).

- If the expressmn for U; is inserted into Eq. (13) and then the Green’s functlons are
replaccd by their plane wave expansions as presented in Eq. (A6), we have
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Us(r,m;fo) =m F(r) Go(rIr,) G(rir) v,
Qk’_o—kzly ~Yol
F@) [ di, @560 €
161 2.[.” .[ \/k?-—kx{
oy ST
\/kz—oc7

The abovc equatxon can be simplified by recognizing that y’>y, and yo-y _
The first step in deriving the desired Fourier domain relationship is to mterchange
the order of integration in Eq. (73) and carry out the integration with respect to
x" and y’. If one considers only those values of k, and o that are of magnitude less
than k,, restricting our consideration to non-evanescent waves, the integration will

. j dou o dv, o 3)

Fourier tranSform the object function. Therefore,

A ]

o - —J«/E;ﬁ-& o ik 1o : -
gl g TR E ,K=[kx, ko—kx].
2 2
- ViZ=e? Nk - S
The next Stép is to take the Fourier transform of Ug, resulting from a pulse transmitted
from the transducer at location (x,,/), as measured on the transducer line. Note that
the consideration of the location of the transmitting transducer is crucial to the
algorithm. The function Ug(-) will generically denote the Fourier transform of Ug(*)
although one must pay attention to the arguments of the function to determine what the
functlon truly represents. The reader will see what is meant in a moment. - After takmg
the above mentioned transform we have ' '

Us(X 10,0) XO,I()) =

ﬁs(ll,"'lo,o);ré) = j "US(XJO,O);ono) e X gy

- One fu‘rther" transformation with respect to the position of the transmitting transducer,
X, Tesults in the function

GS(ualﬁ?m;Vé”l 0= j .ﬁs(u’l 00 X050 o) e—jvxo dx,

L Ikl NGl
= — F ‘\]ko - - K
4 VkZ-u?  Ak2-v*

where K=[ v,.\f» ’k(?—v'zJ . Itis the above equation, or other equations similar to it, that

’




142

form the basis of the synthetic aperture imaging algorithm. The relatiori,ship_d&:sc_i"ibed
is the same type as that pointed out by the FDT. It leads to reconstniction thrOugh
spatial . frequency domain filling with the use of intricate rneasurements of
backscattered energy. ' '

Given the function Ug(u,lg,;v,lp) obtained from the scattered ﬁeld
measurements made from one position of the receiving transducer array, the coverage
of E¢) illustrated by the shaded reglon in figure (64), can be achieved. The shaded
region is constructed by a multitude of ‘‘Ewald’” semi-circles whose centers' are
located by the vector K. If the receiving array is rotated by 180° about the object, and
the frequency domain coverage obtained at that position is combined with the coverage
from the first position; the result is the coverage illustrated in figure (63)

In actual implementation there might be N small piston type transducers alcng the
receive line which would result in N measurements being taken from the transducers at
each angular posmon of the line.” This comes about due to the fact that each of the N
transducers must in turn be used to insonify the object. After Fourier transforrmng
each field measurement, such that the function Ug(u,!g,0;x,,!0) is obtained, t.he Founer
transform with respect to x, must be taken. Effectlvely, we have carried out a 2D FT
in which x and x, form a 2D space. After the function Usu,d g,;v,g) i is obtamed 1t is
a s1mp1e matter to use it to obtain values of F( ). , o

53 Spmmary'

- This chapter has explored the basics of synthetic aperture tomography and
described a - particular scanning geometry. This approach to tomography ' is
characterized by a long data collection time per array position but fewer positions of
the receiving transducer array are required. If one were working - with forward
scattered fields, the physical problem of how to insonify the object from dlfferent
directions and obtain scattered field measurements would be trivial. For t_he reﬂectxon
mode case, insonifying and receiving on the same side of the object is quite a complex
- job. An approximate theoretical solution to the problem has been discussed herein.



143

Figure (64) The object’s frequency domain coverage obtained with synthetic aperture
scattered field measurements from a single position of the transducer array.
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Appendix A Green’s Functions

In this appendix two different Green’s functions will be described that satisfy two
different wave equations. The discussion will entail 2 dimensional and 3 dimensional
functlons

The solutlon to the following wave equation is called a Green s funcnon ‘

V2G () + k2G (1) = —8(r-r,) . (Al)

The form of the equatlon indicates that G,(*) represents the spatial variation of the
wave generated by a unit harmonic point source at r,. In free space the Green’s
function takes the form

1 ‘ 3— Ir—r,|

Gy(riry) = ———— A2
olF 0o = et © (A2)
The argument of G(rlr,) denotes the functlon s dependence upon r;. Nexg, ~1et"us
look at the spatial Fourier transform of the three dimensional free space Green’s
function in-Eq. (A2). If we look at the wave equation, Eq. (Al), satisfied by the
Green’s function, we can see that the following equation holds when we take the

spatial Fourier transform of Eq. (A1).
g K24k )G (K Ir,) = — KT

This implies that -
: ST ) ) o e—jK'l‘o .
Gm(Klro)=m and ' | (A3)
eJK (r-r,)

G, (rir) = K (Ad)
| (” o (2 )3.".[.[ |K|2 k2

where K = (K, ,K,,K,). The integration with respect to K, is a contour integral of the
form in Appendix B Eq. (B1) having poles located at +\]k2-—K§ KE The result of the
integration takes the form of Eq. (B2) so that the point r, will be a source of waves
1nstead of a sink of wave energy. Using Eq. (B3), Eq (A4) can be expressed as

X - 2-K2-K? 1z-2,| '
m(rlro) —J—jj [ K (x—xo 1K (y Yo):l eJ ” 7z de de (AS)

\]koi—K i—K2
The above equation will be referred to in the text as the angular spectrum expans1on of

G-
=~
In two dimensions the solution to Eq (Al) is [Morse, pg. 364- 366]
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Go(rlr) = -‘;LHO(k Ir-r 1)

where Hy(*) is the Hankel function of zeroth order. The function H;(');"’ ‘which |
describes the wave backscattered from a unit harmonic: line source has_'thc_a;ngular
spectrum expansion, ' R

x SERE
VkZ-K?

Now let us consider a different form of the wave equation in Eq. (Al),'

V2g(r,t) + k2g(r,t) = -8(r-r )8(t-t,) , (AN

‘ . ;. .Tc had Kx( ’
-J4—Ho(klr—rol)— ::-n? i ¢ dK, . ~ (A6)

in which the forcing function contains an impulse at t =t,. The function g() is the -
infinite bandwidth version of G(*) which holds only for the temporal frequency .
The temporal impulse Green’s function, g(r,t), can be expressed as the inverse
transform of the function G(*) [Morse, pg.321] ‘

. oo . W .
s , . 1 1 J?lr_rol —ior
gr)=—|]|————e - e dw
: ,g(':._) 2n_-[°41t|r—rol ©
| P DL o A8
" 4nlr-r,) b ) - ()

where 1 in the above equation is equal to t—t,. Since g(*) depends explictly upon t, and
T, all reference to this function will use the notation g(r,tlr,,t,).
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'Appenvdix B Common Contour Integrals

' ~The 'gontour integrals encountered within this paper are typically of the for_ru |
= A7) | e

I= — —-dA . (B1)
| ~ (A-Vkg-pH(A+Vkg-pY) |
The problem with this integral is that the poles of the integrand lie on tho real axis
which implies a purely oscillatory, nonattenuating system which is not physically
realizable. There is always a damping force acting upon the system which causes a
wave to attenuate and eventually vanish [MorFes, pg.1334-1335]. In this case it is best
to assume a complex wave number, k _=kytHa, in Wthh o is respon51b1e for the

attenuation in the medium. The poles become

Ay = Vk2-o2pi2jk .0 Ay=-A,

Since we will consider only nonevanescent waves, |k, !>p, the pole A, lies above the
real axis and A2 lies below the real axis as in figure (B1). If (z—z,)>0 then the contour
‘must surround the upper half plane such that the integrand of the integral on the arc
extending to infinity, will evaluate to zero, lim R =0, As a result, the contour

~ Rjee
contains A; and by Cauchy’s integral equation,
| ' o EP (-2)
I=2nj (z—z,)>0 .

2k

If (z-z, )<O the contour must surround the bottom half plane thereby cnclosmg A2 and
y1e1d1ng the result

e \fk—c.’—p2 @z)
N

in Wthh the —27j term is included due to the clockw1se du'ecuon of the contour The
combmatlon of the above two solutions is the following:
e)\/k?—? 22,1 .
I=m) ———— - (B2)
\/kgo 2 : ' |
This solution of the integral leads to outgoing waves as if the point z, were a source of
‘wave energy. | v ' |
If the >c_omplcx wave number is negative, k. = -k,—jo, and Ik, |>p, the A, pole
lies \arbovc the real axis and A, lies below the real axis as in figure (B2). Repeating the -

I= -27U (z-z,)<0 ,
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~Alm A

Figure (B1) Path of contour integration for the case of positive wavenumbcf.
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AlmA

Figure (B2) Path of contour integration for the case of negative wavenumber.
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above manipulations for this case leads us to the solution
e—j\ﬁ;z—p2 |z-z,!
\]kcu“p

which represents incoming waves as if the point z, were a sink to wave etiergy.
All possible combinations of k._and (z-z,) in the solution to I, are encompassed

(B3)

I=-nj

in equation
oy JA(z—2z,)
- -‘. i 2 = p) N ) dA =
— (A- ko_p YA+ ko_p )
exp [ ] sgn(kco)‘\/k2°'—p2 lz—z, I]

2 p?

I

(B4)

=jm sgn(k,)

where sgn(k) ={-11’ kk><OO.
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Appendix C Evanescent Waves

~The unimportance of evanescent waves is crucial to this thesis. ‘Disregarding
evanescent. waves makes the Fourier diffraction theorem possible. ' Heénce a few words
explaining these waves are warranted.
~:Consider the time harmonic wave described by

W(u, )= -A(u v) e’(““"ywl)

where the vector K = (u,v,) indicates the direction of propagation and A(u v) is the
amphtude of the wave propagating in the direction (u,v). Since y= \/ oi—ui—,vz, there
are two possible classes of waves. The first class consists of evanescent ‘waves
[Shew68] for Wthh k2<u +v2 resulting in

W(u v) A(u,y) el(ux+vy) —m

These waves pro_pagate in all possible directions perpendicular to the z axis and
- attenuate with distance along the z axis. The second class consists of waves for which
»k02>u +v2 resultmg in waves propagating in all directions within 90 degrees of the z
;axis. : . ;
In all of the discussions within this thesis, only the second class of waves, non-
evanescent waves, will be considered since evanescent waves attenuate rapidly and
therefore can be ignored at a distance of a few wavelengths. As shown within the body
of the proposal, ignoring evanescent waves makes the Fourier domain relatlonshlps
poss1ble
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Appendix D The Ultrasonic Imaging System (UIS)

~ This appendix will briefly describe the current configuration of the equipmerit in
the laboratory that allows us to carry out tomography experiments. To start the
,appendlx we will discuss the basic pieces of equipment and how they fit together
Throughout the discussion, the modifications that have been made to the system durmg
the course of the research presented in this report, will be described. -

As illustrated in figure (D1), the Panametrics pulser serves to drive all of the
transducers in the lab, the output of which is digitized by a Biomation 8100 transient
recorder. The recorder is controlled through the DMA parallel 1/O board that is

plugged into the motherboard of the lab’s 68020 based computer that is named
'~ MALCOLM. The actual interface between the 1/O board and thc digitizer is prov1ded
by a board that was de51gned and built in the lab.

Thc motors that move the transducers are controlled by a 6800 P which is itself
controlled by one of MALCOLM’s serial lines. These stepper motors can conSIStently
be bumped in 1.8" increments which makes possible Sum lateral movements in the
transducers.  Repeatibility of experiments is very good due to the aCcuracy -of the
motors and the accuracy with which the slides can find their home positions.

Just a short time ago, a 6809 micro was totally responsible for data collectlon
Once -data had been stored in its small memory it would have to be uploaded to the
now defunct ARPA machine. The rate of data transfer between the digitizer and
computer memory, without considering upload time, has been more than double by the
current system Today a C program compiled and executed on ' the- MALCOLM
machine can completely control the experiment, collect all the data and begin to use
the data in a reconstruction algorithm in between data transfers. To accomplish this, a
device driver had to be written so that the I/O board could be used. Along with the
driver, a whole library of routines had to be written to implement full control of the
Biomation and the 6800 motor controller. Effectively a UIS shell from“Which all
computer controlled aspects of the system can be manipulated, had to be written: -

The geometry of the reflection mode scanner is such that a single transduccr can
be moved in the X-Y plane under motor control. A third motor will have the object to
be imaged mounted to its shaft and will provide rotation of the object. -
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Appendlx E The Specnﬁcatlons of the Simulated and the Expenmental -
Measurements :

It what follows the experimental and the simulated backscatter thieasurement
‘parameters will be presented. The conditions that were simulated, e.g. the transduCer
size, the object size and the distance between the transducer and object, 'will'be
presented in units of meters. In the reverse direction, the parameters of the plane wave
transducer available for experimental measurements will be presented and: coverted
1nto units of wavelengths of the center frequency of the transducer.

Simulated

- The simulated results that are presented in chapters 3 and 4 make use of a 5 MHz
center. frequency transducer with a bandwidth of 6 MHz. This implies the following
values of wavelength and wave number given that the speed of sound in water at 25°C
is ¢, = 1494.04 meters/sec.

‘—"- =Ay=18676 um kg =33.6440 rads/mm = -
H — o 0

Ac=29881pum  kc=21.02750 rads/mm

A= 747.020 um  k; = 8.411 rads/mm

The transducer consists of 512 samples spaced O.SkH apart which is equivalent to
4.78093cm (1.88226 inches) in length. The distance of the face of the transducer from
the center of the object is /5= 207y = 0.37351cm (0.147051 inches). Since the highest
22

| | Mg ,
frequency is kg =4kyrads/m and the temporal nyquist frequency is fr=4kyc/2n
which is equivalent to 32MHz. Therefore the temporal signal that is the output of the
transducer is sampled every Tr=0.25Ay/c, =31.25ns. It is the maximum spatial
frequency that determines the temporal nyquist frequency and not simply the highest
temporal frequency within the bandwidth of the transducer. Since a 64x64
reconstruction grid is USC_d, the spatial sampling interval in the reconstruction grid is

2

}spa'tialrﬁfrequency used in the reconstruction is 2ky= the spanal nyqulst

=2.10275 rads/mm .

Given Q it is known that the 8th (=2k; /) through the 32nd sample of the
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horizontal slice through the zero frequency sample of the grid, will be filled.

Experimental

_ The expenmental backscattered wave measurements were made with a plane
wave transducer focussed in the plane of the object with a focal length of 10 cm. The
physical size of the transducer is 3 inches by 0.5 inch, and it has a center frequency of
5 MHz with a bandwidth of 3.5 MHz. Assuming that the full bandwidth of the
transducer can be utilized, the highest and the lowest temporal frequenmes are 6 75
MHz and 3. 25 MHz respectively. Therefore

Ay =221. 339 pum k= 28 387 rads/mm
Ac=298.81 um k¢ =21.02750 rads/mm
AL =459.705 um k= 13.668 rads/mm .

The length of the transducer will be equivalent to 688.5358 TH Since - the -focal

length of the transducer is 10 cm it is logical to set /g equal to 10 cm = 451.795 Ayy.

The maximum sampling frequency of the lab’s digitizer is fr = 100MHz. Usmg
this frequency, it follows that the spatial sampling frequency is
kg = 2nfy/c, = 420.550 rads/mm-and the highest spatial frequency in the reconstruction
grid is 0.5 kg=14.815ky. Working backwards, if the desired maximum spatial
frequency is 2ky then the temporal sampling frequency need only be fr= 27MHz
(ks = 113.549 rads/mm). If fr=27MHz is used, the reconstructlon grid sampling
interval is

2

Qg =2ky y7i 1:77419 rads/mm

for the case of a 64x64 grid. The resulting coverage of the horizontal slice of the
reconstruction grid that passes through the zero frequency sample, extends from the
15th sample to the 32nd sample. Obviously this coverage lacks samples O through 14
and is greatly inferior to the coverage that is simulated.
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Appendix F ‘The Dirac Delta Function

ThlS appendlx will brleﬂy denve the form of the delta. functlon 1n polar
, coordinates. To start the discussion we express the delta funcuon in terms of the
Founer transform relationship which defines it, ‘

By = [ [P dudy |

Carrying out the substitutions
x=rcos@, y=rsind

u=pcosdp, v=psin ,

‘and making use of the identity [Andrws]
: 1 2n

’ - ip cosd

To(p)= 7 { P dp |

wﬂl yleld the expressmn

2Reo

S(X,Y) - J'J' eJ2‘I‘I’.1’R cos(0—8) RdR d¢

~2n] fRI@rR) AR .
0 .

Using another Bessel function identity,

8@

Irl

’

j Jyap) pdp =
'and notmg that 8(ax) 8(x)/ | Otl smce
g 700 8(0) = f £(9/00) B(y) ~o = f‘o’ j ) 2% ax

we have thc proof of the transformation

KN
2nlrl -

that results when the coordinate system is changed to the polar coordinate system.

d(x,y) &
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