
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

1-1-1988

Fast Algorithms for the Real Discrete Fourier
Transform
O. K. Ersoy
Purdue University

N. C. Hu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Ersoy, O. K. and Hu, N. C., "Fast Algorithms for the Real Discrete Fourier Transform" (1988). Department of Electrical and Computer
Engineering Technical Reports. Paper 591.
https://docs.lib.purdue.edu/ecetr/591

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages


Fast Algorithms for The Real 
Discrete Fourier Transform

O. K. Ersoy 
N. C. Hu

TR-EE-88-5
1988

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907



- 2 -

CONTENTS

ABSTRACT................ ................ ...... ....................... .............. .................. ............... .............. . 3
1. INTRODUCTION......... ................................. ..................................... ......... ............... ...... 4
2. THE RADIX-2 DECIMATION-IN-TIME FRFT ALGORITHM ........ ..........................7
3. THE RADIX-2 DECIMATION-IN-FREQUENCY FRFT ALGORITHM............. . 8
4. THE RADIX-4 DECIMATION-IN-TIME FRFT ALGORITHM................... ............... 9
5. THE SPLIT-RADIX DECIMATION-IN-TIME FRFT ALGORITHM..................... ....12
6. THE SPLIT-RADIX DECIMATION-IN-FREQUENCY FRFT ALGORITHM...........13
7. DATA STRUCTURES FOR THE SPLIT-RADIX DECIMATION-IN-FREQUENCY

FRFT ALGORITHM............. .................. ................................. .,............................. ....... 16
8. THE PRIME-FACTOR FRFT ALGORITHM...................................... ....... .................. 18
9. THE RADER PRIME FRFT ALGORITHM............ .............................. ........................20

10. THE WINOGRAD FRFT ALGORITHM....................... ...... ............................ ..............21
11. ALGORITHMS FOR THE INVERSE RDFT AND DFT .......................... ................... 25
12. CONCLUSIONS............................... ................................................... .............. ................. 27

APPENDICES........... .................. ................................... ................................ ......... ..... .....27
REFERENCES...................... ...... ..... .............. ................. ......... ......... ................. ............51
TABLES................................ ........................ ........ ......................... ........ ......... .................. 52
FIGURES.......................... .............. ............. ......................... ...... ............... .........................54



- 3 -<

ABSTRACT
Fast algorithms for the computation of the real discrete Fourier transform (RDFT) 

are discussed. Implementations based on the RDFT are always efficient whereas the 
implementations based on the DFT are efficient only when signals to be processed are 
complex. The fast real Fourier (FRFT) algorithms discussed are the radix-2 
decimation-in-time (DIT), the radix-2 decimation-in-frequency (DIF), the radix-4 DIT, 
the split-radix DIT, the split-radix DIF, the prime-factor, the Rader prime, and the 
Winograd FRFT algorithms.



- 4 -

I. INTRODUCTION
The discrete Fourier transform (DFT) is one of the most important tools in signal

processing. The DFT of a signal x(*) of size N is given by 
N—1

f(n) — x(k) exp(—j27mk/N) (1.1)
k—o

The DFT can be considered to be the approximation of the complex Fourier 
transform (CFT) given by

x(f) = f x(t) exp(—j27rtf)dt (1.2)

The DFT and the CFT are well-suited when the signals are complex. When the 
signals are real, it may be more advantageous to use real transforms. The real discrete 
Fourier transform (RDFT) is given by [l]

N—1
y(n) = x(k) cos 

k=o
27mk
N" + 0(n.)

where

0(n)==
0 0 g n ^ N2
7T— N2 < n < N ;

and N2 equals N/2 when N is even, and (N—1)/2 when N is odd. 
The inverse RDFT is given by

27mk
x(n) N.

1 N—1
y(k)v(k)cos

where

v(k) =

2 k=0

1 k#0, N2

T k==0, N2

N + #(k)

(1-3)

(1.4)

(1.5)

(1.6)

The RDFT can be considered to be the approximation of the real Fourier 
transform (RFT), given by

y(f) = J x(t) cos ^27rtf + 0(f)j (1.7)

where



In. the literature, numerous applications have been traditionally expressed in terms 
of the DFT, Especially when the signals are real, the complex arithmetic of the DFT is 
not well-suited. Two approaches to come around such disadvantages have been to 
develop algorithms for real-valued signals to be used together with the DFT, or the use 
of some real trigonometric transforms such as the discrete cosine, sine and Hartley 
transforms [2], [3], [4]. The very power of the DFT has caused the negligence of the 
RDFT.

It can be easily shown that the RDFT matrix consists of the eigenvectors of a cir­
cularly symmetric covariance matrix. Consequently, the RDFT is ideal for the imple­
mentation of zero-phase or linear-phase FIR filters. The RDFT gives better perfor­
mance than the DFT in applications such as signal representation and nonlinear 
matched filtering [l], [5]. It is very efficient for the computation of real circular convo­
lution [6]. When the other discrete trigonometric transforms are expressed in terms of 
the RDFT, the best fast algorithms for the RDFT also correspond to the best fast algo­
rithms for the other transforms in terms of the number of operations [7]. The scram­
bled RDFT (SRDFT) gives basically the same performance in image compression as the 
discrete cosine transform (DCT) with much fewer number of operations [8]. A number 
of claims such as Walsh-filtering being more efficient than Fourier-filtering can be 
shown to be untrue once the RDFT is utilized [8j.

The purpose of this article is to discuss a number of fast algorithms to compute the 
RDFT, by treating the RDFT on its own, rather than going through the intermediate 
processing with the DFT. The fast algorithms for the computation of the RDFT, to be 
discussed in the following sections, will be referred to as FRFT.

The RDFT actually corresponds to the first class out of four possible classes of the 
generalized real discrete Fourier transforms (GRDFT) [9]. For this reason, the RDFT 
will also be denoted by Rx. The other three classes are denoted by R2,R3,R4. Each 
class Rj consists of a combination of a discrete cosine Cj and a sine transform S;. R2
will be needed in the discussion of the fast algorithms. R2 can be expressed as

z(n) =
N-l

= ]T] x(k) cos 
k=0

2m(k + (1.9)

where

-= 0 0 ^ n < N2
(1.10)aV

II

£

< N
2

Let Rj and R2 also denote the matrices for the two transforms. The relationship



-6 -

between Rj and R2 can be written as

R2 =TRx (1.11)

where the elements of the matrix T are given by

T(0,0) = 1 (1.12a)

T(N2,N2) =-l (1.12b)

and for 0 < n < N2,

T(n,n) = —T(N—n, N—n) = cos^- (1.12c)

T(N—n,n) = T(n,N-n) = -sin (1.12d)

When N is odd, Eq. (1.12b) is removed and n also equals N2 in Eqs. (1.12c) and 
(1.12d).

Once the RDFT is computed, other transforms can easily be obtained from it. For 
example, the DFT coefficients f(n) are given by

f(0)=y(0) (1.13a)

f(N2) — y(N2)

and for n # 0,N2,
f(n) 1 y(n)

f(N—n) 1 j y(N-n) (1.13c)

Similarly, the discrete Hartley transform (DHT) coefficients h(*) can be written as

h(0) = y(0) 

h(N2) == y(N2)

(1.14a)

(1.14b)

and for n ^ 0,N2,
‘ h(n) ' 1 l" y(a)
h(N-n) 1 -1 y(N-n) (1.14c)

In the succeeding sections, the basic building block for the fast algorithms will be 
observed to be the Givens’ plane rotation, in the form



- 7 -

*

p __
1

V ==
- -

COS-

sin-

27m
M

27m
M

27m-sin

COS-

M
27m
M

(1.15)

This operation will be indicated by a cross with the label Gn in the signal flow- 
diagrams, as shown in Fig. 1. When the label is missing, it signifies an add (upper 
address) and subtract (lower address) operation. The number of additions and multipli­
cations in each algorithm will be denoted by A(N) and M(N), respectively.

2. THE RADIX-2 DECIMATION-IN-TIME (DIT) FRFT ALGORITHM

For N a power of 2, Eq. (1.3) can be written as

y(a) =yi(n) +y2(n)

where
Njs-l

yi(n) = E x(2k)cos
k=0

27mk
No

+ #(n)

and
Na-i

y2(n) = E x(2k+l)cos
k=0

2”i(H+l/2). + Ha)
N-

(2.1)

(2.2)

(2.3)

Let N4 be N/4. Using the properties of cosines and sines, Eqs. (2.2) and (2.3) can 
be interpreted to be Rx and R2 of size N2, respectively, with the following relations:

y(o) =yi(o) +y2(o) (2.4a)

y(N2) =yi(o)-y2(o) (2.4b)

y(N4)=yi(N4) (2.4c)

y(3N4) =-y2(N4) (2.4d)

< n < N4,

y(n) =yi(n) +y2(n) (2.4e)

y(N2-n) =yi(n) -y2(n) (2.4f)

y(N2 + n) = -yi (N2 - n) - y2(N2 - n) (2.4g)

y(N - n) = y4(N2 - n) - y2(N2 - n) (2.4h)



- 8 -

The procedure described above can be continued iteratively until reaching Rj and 
R2 of size 2.

At stage k, Rx and R2 of size 2k is computed from Ri and R2 of size 2k_1 of the 
previous stage. R2 of size M is computed from Rx of size M, using Eq. (1.12).

The algorithm obtained above in terms of Rj^ and R2 gives the same results as the 
pruning of the radix-2 DIT FFT [10], The program provided in Ref. [10] is rewritten in 
Appendix B in terms of the equations above, in order to show the recursive use of Rx 
and R2 and the equivalence between the two procedures.

Fig. 2 shows the signal-flow graph for the radix-2 DIT FRFT when N = 16. It is 
observed that the number of stages required is 5 ^ Iog2N, due to the fact that each 
cross in Fig. 2 signifies real operations with the basic building block of Givens’ plane 
rotation instead of a complex butterfly. Because the permutations at each stage, which 
are present in the radix-2 DIT FFT, is avoided, the output comes out in permuted 
order. The minus signs at some nodes indicate that the output of the node is negated. 
This is a consequence of Eq. (2.4g).

The number of operations in the radix-2 DIT FRFT can be easily shown to be
7NA(N) = -^(log2N—2) + 6

M(N) 3N -2) - N + 4

(2.5a)

(2.5b)

3. THE RADEX-2 DECIMATION-IN-FREQUENCY 
RITHM

For 0 ^ n < N2, let

xx(n) — x(n) + x(n + N2)

x0(n) = x(n) — x(n + N2) 

Then, Eq. (1.3) can be written as

27mk

FRFT ALGO-

No—1
y(2n) = £ xx (k)cos 

k=o

Na-1
y(2n +1) = s 

k=0

N,
+ ^(2n)

COS
27rk(n+l/2) + g(2n + ^

(3.1a)

(3,l.b)

(3.2)

(3.3)

Eqs. (3.2) and (3.3) are R! and R2 of size N2 , respectively [9].



- 9 -

R3 can be computed fast in two ways. The first method is to compute it in terms 
of the discrete cosine and sine transforms C3 and S3[9]. C3 and S3 are, in turn, com­
puted in terms of Rx.

In the second method, for 0 ^ n < N2, R3 is expressed as follows:
No—1

y(2n+l)= £
k—0

y(N—2n—l)

x0 (k)cos-^- cos 
No 1

27mk
No

n2-i

E
k=0

7rkx0(k)sin—- sin 
No 1

27mk
No

No—1 ,, . . 7rk 27mk No-1 /, N 7rk
E
k==0

xo (k)sm cos
n2 + E

k=0
xo(k)cos—

IN2
27mk

No

(3.4a)

(3.4b)

Eq. (3.4) involves the computation of 2 R^’s. Thus, a total of 3 R^’s instead of 2 
Rx’s are needed at each stage, as in the case of the first method. This makes the DIF 
FRFT inefficient and is not pursued further.

4. THE RADIX-4 DECIMATION-IN-TIME FRFT ALGORITHM
Rx of size 4 can be written as follows:

yo" 1 11 1 xo‘

yi 1 0-1 0 xi

72
” 1-1 1-1 x2

73 0 10 -1 x3

(4.1)

Eq. (4.1) can be computed with only 6 additions. When N is a power of 4, a fast 
algorithm can be built up from size-4 R1; with less number of operations than with a 
radix-2 DIT FRFT.

For 0 S n < N4, let 

xa(n) = x(4n)

Xb(n) =x(4n+l) 

xc(n) =x(4n+2)

Xd(n) = x(4n+3)

Then, Eq. (1.3) can be written as
n4-i

y(n) = E xa(k)cOS 
k=0

27mk
N4

+ 0(n)
n4-i, 27m _ x+ cos ^77- Xb(k)cos

N k=0

27mk
N4

+ d(n)

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d)



- 10-

. 27m fv, . sm~— E xb(k)sm 
iN k=0

. 47msm-— E xc(k)sm 
iN k=o

R__ N4-i• 67m n \ •sm-— E xd(k)sm
iN k=0

27mk
N4

27mk
N4

27mk
N,

+ *(n)

+ 0{n)

+ ff(n)

. 4?m "il1 .
+ cos vr s xc(k)cos 

iN k=0

. 67m i~ .+ cos--— E xd(k)cos
iN k=0

27mk
N4

27mk
N4

+ 0(n)

+ #(n)

(4.3)

Let the Rx’s of the data sequences xa(*), Xb(‘), xc(*) and xd(‘) of size N4 be denoted 
by ya(*)> yb(*)> yc(*) ancl yd(*), respectively. For 0 < n < N8, Ng being N/8, the fol­
lowing will be defined,

27m . 27m"
a COS N -sm N Vb(n) ’

b — . 27m
sm ■ T

2?mcos 7b(N4—n) (4.4)
N N

47m . 47m"
c cos N ~Sm N >c(n)
d == . 47m lSm N 4?m 

COS N
yc(N4-n) (4.5)

J

67m . 67m ‘
e COS N ~Sm N Vd(n)

(4.6)f ' • . 6 ?m 
sm

67m
COS

yd(N4—n)
N N

Eqs. (4.4) - (4.6) are plane rotations which can be implemented in 3 multiplications 
and 3 additions. However, when n=N/l6, Eq. (4.5) costs 2 multiplications and 2 addi­
tions.

Eq. (4.3) can be written as
y(o) = [y.(o) + yc(o)j + [yt (o) + ya(o)] (4.7a)

y(N2) = [y.(0) + yc(0)j- |yb(0) + yd(0)J (4.7b)

y(Ns) = y.fNs) + -)=- [yb(N8) - yd(Ns)j (4.7c)

y(3N8) = y^Ng) -[yb(Ns) - yd(Ns)] (4.7d)



-11 -

y(N4) = ya(0) - yc(0) (4.7e)

y(3N4)=yb(0)-yd(0) (4.7f)

y(5N8) = -yc(N8) -+■ ^=- [yb(N8) + yd(N8)j (4.7g)

y(7N8) -yc(N,) + -U [yb(N8) + yd(Ns)] (4.7h)

and, for 0 < n < N8,
y(n) = [ya(n) + ej + (a+e) (4.7i)

y(N2-n) = [ya(n) + cj - (a + e) (4.7j)

y(3N4 —n) = [ya(N4-n) - dj + (a - e) (4.7k)

y(3N4 + n) = - [ya(N4-n) - dj -f (a - e) (4.71)

y(N4 - n) = |ya(n) - cj + (b - f) (4.7m)

y(N4 + n) = |ya(n) - cj - (b - f) (4.7n)

y(N2 + n) = — jya(N4 — n) + dj + (b + f) (4-7o)

y(N — n) = jya(N4 — n) + dj + (b + f) (4-7.p)

The complexity of Eq. (4.7) is 10 multiplications and 36 additions if n = N/l6, 11 
multiplications and 37 additions otherwise. Using these numbers, it can be easily shown 
that the number of operations in the radix-4 DIT FRFT algorithm are given by the fol­
lowing:

A(N) = -^log4N-(67N —112)/24 \ (4..8a)
8

M(N) = — log4N - (43N - 64)/24 (4.8b)
8

A Fortran program for the radix-4 DIT FRFT is provided in Appendix C.



- 12 -

5. THE SPLIT-RADIX DECIMATION-IN-TIME FRFT ALGORITHM

In the split-radix algorithm, the even indexed and the odd-indexed parts of the sig­
nal sequence at each stage are represented by a radix-2 and a radix-4 algorithm, respec­
tively [11], For this purpose, Eq. (1.3) can be written as

No—1
y(n) = 2 x(2k)cos 

k=0
27mk + cos 27m

N

n4—1
2 xb(k)cos 
k=0

27mk
\

+ %)

— sin
27m
N

n4-i
2 xb(k)sin 
k=o

27mk
\

+ %) + cos
7

67m 
N'

n4—1
2 xd(k)cos 
k—0

\
+ »(n) (5.1)

67m NA1 n , . 
sin -;--j.. 2 xd(k)sm

k=0N
27mk
N4

\
+ %)

where xb(*) and xd(*) are defined by Eqs. (4.2b) and (4.2d), respectively.
Similar to the radix-4 algorithm, Eq. (5.1) can be written in 8 parts. Using y1(*) 

defined by Eq. (2.2), and yb(•), and yd(*) defined in Sec. 4, Eq. (5.1) becomes:
y(°) = yi(°) + [yb(0) +yd(0)] (5.2a)

y(N2) =yi(0) - |yb(0) + yd(0)j (5.2b)

y(N,)=yt(N») + -)= [yb(N8)-yd(N8)] (5.2c)

y(3N8) = y.iN's) - ••)-• [yb(N8) -yd(N8)] (5.2d)

y(N4) — yi(N4) (5.2e)

y(3N4) = -yb(0) +yd(0) (5.2f)

y(5N8) = —yi(3N8) +

yCmsHyiCsNg)-^^

and, for 0 < n < Ng, in terms of a, b, e, f defined by Eqs. (4.4), (4.6),

y(n)-yi(n) + (a + e) (5.2i)

y(No - n) = yx(n) - (a + e) (5.2j)



- 13 -

y(3N4 — n) = yi(n) + (a — e) (5.2k)

y(3N4 + n) = —yx(n) + (a — e) (5.21)

y(N4-N) =7l(N4-n)+(b-f) (5.2m)

y(N4 + n) = y4 (N4 - n) - (b - f) (5.2n)

y(N2 + n) = — yi (N2 — n) + (b + f) (5.2o)

y(N -n) = Jx (N2 - n) + (b + f) (5.2p)

The algorithm obtained above in terms of R4 gives the same results as the pruning 
of the split-radix DIT FFT algorithm. The program provided in Ref. [10] is rewritten in 
Appendix D in terms of the equations above, in order to show the recursive use of -Ri 
and the equivalence between the two procedures.

Fig. 3 shows the signal-flow diagram for the split-radix DIT FRFT when N=16. 
The minus signs at some nodes indicate that the output of the node is negated. This is 
a consequence of Eqs. (5.2g), (5.21) and (5.2o).

The number of operations in the split-radix DIT FRFT algorithm can be shown to

(5.3a) 

(5.3b)

6. THE SPLIT-RADIX DECIMATION-IN-FREQUENCY FRFT ALGO­
RITHM

Eq. (1.3) can also be written as as

^ t \ Itn.1 /i \ 27mkxi(n) = Ex(k)cos~l^~
k=0
N—l o-Tmk ’ (6-1)

Xo(n)= Sx(k)sin^ 
k=0 iN

J .

X4 (•) and Xq(*) are the real and the imaginary frequency components, respectively. 
Consider X1(2n) and Xo(2n), given by

be [12]

A(N) = j [31og3 N—5] + <

M(N) = t[>°82n-3] + 2



- 14 -

N2-i 27mkXi(2n) = £ Xl(k)cos^*
k=0 -2

-v \ t"K \ • 27mkXo(2n) = Exi(k)sm-—-
k=0 iN2

where xx(k) is defined by Eq. (3.1a). Eq. (6.2) is of size N2. 
Next the following number groups will be defined:

IX(N) = (1 + 4n)modN' 
I2(N) = (3 + 4n)modN n =integer

(6.2)

(6-3)

Consider odd indices m in the left-hand side of Eq. (1.3). If m belongs to Ix(N), it 
can be written as 1 +41, and if it belongs to I2(N), it can be changed to N—m since 
cos27nn/N — cos27r(N—m)N and sin27nm/N = — sin27r(N—m)/N. Thus, Xx(m) and 
Xo(m) with m odd can always be written as Xx(41+1) and Xq(41+1). These are related 
to y(*) by

y(n) =Xx(n) nGli(N) (6.4)

= X1(N-n) n€l2(N) 0 < n < N2

Let

where

y(N-n) = Xo(n) nGl^N)

= — X0(N—n) n€l2(N)

x'(k)‘
27rk 

C°S N
. 2+k' —sin

. N ; u(k)
*00 . 2+kSffl 2+kcos u(k)

N N ;

u(k) = x(k) — x(k + N2) 
u"(k) = x(k + N4) — x(k + 3N4)

Also let

(6.5)

(6.6)



- 15 -

xi(n) - h x'(k) c°s
k=0

27mk

N4-i

Xo(n) = J2 x(k)sin 
k=0

N4-l
Xj-(n) = x"(k)cos

k=0
h-

N4

27mk
N4

27mk
N4

N . 27rnk
X0(n) — S x (k)sm-

k=0 n4

X1(4n+l)=X'1(n)-Xo(n)

Xj (N-4n+l) = Xi (n) + Xj(n)

Xo(i)-x';(o)

Xo(l+N!) =X';(N8)

X0(4n+l)=X';(n)+X'o(n) 

Xo(N-4n+l) =X'i(n) -Xo(n)

0 < n < N8

0 < n < N8

(6.7)

(6.8)

Eqs. (6.7) and. (6.8) are R4 of size N4.
Now it can be easily shown that X4(*) and Xq(*) for odd index are given by 

X1(1)=X'1(0)

Xx(1+N2) = Xi(N8)

(6.9 a) 

(6.9b)

(6.9c)

(6.10a)

(6.10b)

(6.10c)

Eqs. (6.2), (6.9) and (6.10) show that R4 of size N is to be computed via R4 of sizes N2 
and N4. The same algorithm is applied recursively to successive smaller Rj’s such that 
R4 of size 2 is obtained as an add/subtract operation in the end.

The number of operations in the split-radix DIF FRFT algorithm can be easily 
shown to be equal to the number of operations in the split-radix DIT FRFT algorithm.

The Fortran program for the split-radix DIF FRFT algorithm is provided in 
Appendix E. The pertinent data structures are discussed in the next section.



- 16 -

7. DATA STRUCTURES FOR THE SPLIT-RADIX DECIMATION-IN­
FREQUENCY FRFT ALGORITHM

If one neglects, for the moment, the additions defined by Eqs. (6.9) and (6.10), a 
regular signal-flow diagram is obtained for the implementation of the split-radix DIF 
FRFT algorithm. The signal-flow diagram for N. = 16 is shown in Fig. 4.

The add/subtract operations defined by Eqs. (6.9) and (6.10) are shown as dotted 
lines in the last stage of Fig. 4. When these operations are neglected, the resulting 
signal-flow diagram will be referred to as the regular structure.

The Fortran program for the split-radix DIF FRFT algorithm is given in Appendix 
E, This program was developed by constructing a few simple rules with regard to the 
regular structure, and the additions of Eqs. (6.9), (6.10). The rules for the regular 
structure will be discussed first.

The even-indexed terms are computed according to Eq. (6.2), requiring the addi­
tions of Eq. (3.1a), and the odd-indexed terms are computed according to Eqs. (6.7) - 
(6.10), requiring the subtractions of Eq. (6.6). The additions and subtractions dictated 
by Eqs. (3.1a) and (6.6) will be referred to as A. For example, the first stage of Fig. 4 is
A.

The addresses involved in A in a particular stage are divided into upper and lower 
halves in the succeeding stage; the upper half is still A. The lower half requires the 
computation of Givens’ plane rotations, given by Eq. (6.5). These operations will be 
referred to as P. For example, the lower half of the second stage of Fig. 4 is P whereas 
the upper half is A. Thus, we can construct the following rule:

Rule 1. A is always followed by A and P. This structure belonging to two successive 
stages will be referred to as AAP.

The addresses involved in P in a particular stage are divided into upper and lower 
halves in the succeeding stage in order to start the computation of 2 Rj/s according to 
Eqs. (6.7) and (6.8). This means the two halves succeeding P should be A, leading to 
the second rule:

Rule 2. P is always followed by A and A. This structure belonging to two successive 
stages will be referred to as PAA

Combining rules 1 and 2, one also reaches the following conclusions:



- 17 -

Rule 3. AAP is always followed by AAP, PAA, AAP, AAP.

Rule 4. PAA is always followed by AAP, PAA, AAP, PAA.
The block size of AAP and PAA (tbe number of addresses involved) will be called 

S(AAP) and S(PAA), respectively. Both S(AAP) and S(PAA) are powers of 4.
Rules 3 and 4 allow programming in terms of 2 stages at a time, as done in the 

appendix. These rules also lead to the conclusion that it is necessary to differentiate 
between the cases of N = 2L, L odd and L even, as follows:

The Case of L Odd:

The first stage is implemented as A. The succeeding stages are implemented two 
at a time, as AAP and PAA, according to Rules 3 and 4. This process is continued 
until and including the block sizes S(AAP) and S(PAA) equal to 4.

For example, Fig. 5 shows the block diagram in terms of A, AAP and PAA opera­
tions when N = 32. The numbers in parenthesis are the block sizes.

The Case of L Even:

The stages are implemented two at a time, as AAP and PAA according to Rules 3 
and 4. This process is continued until and including the block sizes S(AAP) and 
S(PAA) equal to 4.

For example, Fig. 6 shows the block diagram in terms of AAP and PAA operations 
when N — 64.

Next we will discuss the add/subtract operations due to Eqs. (6.9) and (6.10), 
which exist for N ^ 16. These operations, which will be referred to as IAS of size 2M,
combine the results of 2 Rx’s of size M, requiring (M-2) pairs of add/subtract opera­
tions. In order to determine their locations, a sequence of control numbers (SCN) is 
devised as follows:

The first IAS of size 8 occurs at address 8+2 when N = 16, as seen in Fig. 4. 
Reasoning through the successive smaller Rj/s imbedded in a single large R1? it is easy 
to find out that the starting addresses of IAS of size 8 are 2 plus the following numbers: 
8, 40, 56, 72, 104, 136, 168, 184, 200.

SCN will be defined as the above sequence divided by 8, as shown below for 
N ^ 512: SCN = [l, 5, 7, 9, 13, 17, 21, 23, 25, 29, 31, 33, 37, 39, 41, 49, 53, 55, 57,
61],

A careful study of signal flow in the split-radix DIF FRFT algorithm also leads to 
the following rules:



- 18 -

Rule 5. IAS of size M7 = 2M always starts at addresses given by M*SCN. For exam­
ple, when N == 512, IAS of size 16 starts at addresses [16, 80, 112, 144, 208, 272, 336, 
368, 400, 464, 496), which is 16 • [1, 5, 7, 9, 13, 17, 21, 21, 23, 25, 29].

Rule 6. The starting addresses of PAA’s of size S(PAA) are at SCN • S(PAA). For 
example, PAA of size 16 in Fig. 3 starts at address 16, which is 16*1. The starting 
addresses of PAA’s of size 4 are [4, 20, 28, 36, 52], which is 4* [1, 5, 7, 9, 13].

The output results are in permuted order, as seen in Fig. 4. Unscrambling of the 
permuted sequence can best be done with a look-up table, which is provided in Table 2 
for N Si 256. When N < 256, M = 256/N is used to divide the first N numbers in this 
table in order to find the permutation sequence corresponding to N.

Some of the output results also have a negative sign, due to Eq. (6.4). A careful 
study of the signal-flow diagram indicates that these occur at the last K outputs where

L N
K = , (7.1)

i=i 4

L being log4N when N is a power of 4, and log4 (N/2) otherwise.

8. THE PRIME-FACTOR FRFT ALGORITHM
In the Good-Thomas prime-factor algorithm [12], [13], the transform length N 

equals NxNy, and Nx,Ny are prime to each other. Consequently, the input index n, 
0 ^ n < N—1 can be decomposed into two indices nx and ny, ® = nx < Nx, 
0 ny < Ny, using the Chinese remainder theorem, in the form [14]

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

(8.7)

n = nxMyNy + nyMxNx

where

nx = n mod Nx

ny = n mod Ny 

Mx, My are integers satisfying

MXNX + MyNy = 1 mod N 

The input index k is written as

. k « Nykx + Nxky

where

kx = (My modnx)k modnx 

ky — (Mx modny)k modny



- 19 -

Using the equations above, Eq. (6.1) can be written as
Nv—lNy—1

Xi(nx,ny) = E £ X(kx>ky) cos
k„=0 ky=0

27T
nxkx
Nv + %ky

N„
(8.8a)

NX~1 Ny—1
Xo(nx,ny) = E E x(kx,ky)sin

k„=0 ky=0
27T

nxkx nyky
Ny Ny

(8.8b)

where Xj^x,^) and Xo(nx,ny) equal Xx(n) and Xo(n), respectively, n given by Eq. 
(8.1); similarly, x(kx,ky) equals x(k), k given by Eq. (8.5).

The 2-D RDFT of size NxxNy is given by [15]

y(nx>%)
NX —1 Ny—1
E E X(kx,ky) cos

kx=0 ky=0

27rkxnx
Nx + ^(nx) COS

27myky
Ny

+ ^(%) (8.9)

The relationship between y(nx,ny) and X1(nx,ny), Xo(nx,ny) is shown in Table 2. 
When Nx and/or Ny is odd, the rows of Table 2 containing Nx/2 and/or Ny/2 are to be 
removed. Xi(nx,ny) and Xo(nx,ny) are also the real and the imaginary parts of the 2-D 
DFT. Thus, the relationship between the 2-D DFT and the 2-D RDFT is also given by 
Table 2.

The fast computation of the 2-D RDFT can be achieved in a number of ways, such 
as by using the 1-D FRFT, first along the rows, and then along the columns of x (*,•), 
or vice versa.

The procedure for the prime-factor FRFT is as follows:
A. The 1-D signal x(*) is converted into the 2-D signal x(*,‘), using Eqs. (8.4) - 

(8.7).

B. The 2-D RDFT y(v) of x(v) is computed.
C. Xi(v) and Xo(*,*) are computed from y(v)> using Table 2.
D. Xi(v) and Xq(v) are converted to 1-D y (•), using Eqs. (8.1) - (8.4).
When the number of relatively prime factors of N are more than 2, the procedure 

above can be easily extended to convert the 1-D RDFT to a multi-dimensional (M-D) 
RDFT and to recombine the results back to 1-D in the end.

The number of operations in the prime-factor FRFT algorithm can be shown to be 
the following:

M(N) = NxM(Ny) + NyM(Nx) (8.10a)

Nx even, Ny odd:

A(N) = NKA(Ny) + NyA(Nx) + 4(Nx/2-X)((Ny+l)/2-l)

Nx and Ny odd:

(8.10b)



- 20

A(N) = NxA(Ny) + NyA(Nx) + 4((Nx+l)/2-l)((Ny+l) /2-1) (8.10c)

A(NX), A(Ny).,M(NX),M(Ny) depend on tile particular FRFT algorithm.

9. THE RADER PRIME FRFT ALGORITHM
In the Rader prime algorithm [16], the number of data points N is a prime number. 

Then, there exists a primitive root p of N such that each positive integer less than N 
can be expressed as a unique power of p mod N.

Eq. (6.1) can be written, for 0 ^ n < N2, as

Xi(°) = £x(k)
k=0

Xi(pn) - x(0) = £) x(pk)cos 
k=0

27Tk+n
N P

Xo(pn) = XI x(pk)sin 
k=0

/
k+a

N P ,

(9.1a)

(9.1b)

(9.1c)

Let N0 be (N—1)/2. Since cos27m/N equals cos27r(n—n)/N, and sin27m/N equals 
-sin27r(N—n)/N, Eqs. (9.1b) and (9.1c) can also be written as

Nn 1
Xi(pn) - x(0) = X xl(p )cos 

k=0

27T k+a
N p

Nn—1
Xo(pn) = X x0(pk) sgn(N0—pk)sin 

k=o
2?r k+a

N

(9.2b)

(9.2c)

where sgn(*) is the sign function, and x1(‘), x0(*) are given by Eq. (3.1). It is assumed 
that Xx (l) and x0(l) equal xt (N—1), and x0(N—1), respectively, when 1 is greater than N0.

Eqs. (9.2a) and (9.2b) are circular and skew-circular correlations of size Nq, respec­
tively.

For example, let us consider N—5. Let c(n,N) and s(n,N) represent cos27m/N and 
sin27m/N, respectively. Then Eq. (9.2) can be written as

(9.3a)

(9.36)

X,(l) • x(0j c(l,5) c(2,5) XlC1)'

X,(2)-x(0) c(2,5) c(l,5) xl (2)

X>(i) s(l,5) s(2,5)
s(2,o) —s(l,5) M2)



- 21 -

The Rader algorithm can still be used when N equals Np, Np being an odd prime 
[14]. In this case, there is no primitive root of order N—1, but there is an element a of 
order Nj. equal to Np-1(Np—1). In order to make use of a, all the rows and columns of 
the transformation matrix with index i equal to 0 or having a factor containing Np are 
deleted. For the remaining indices, Eq. (6.1) can be written, for 0 n < N1; as

Ni/2—1 . ott ,
Xi(att)-x(0) = XI Xi(ak)cos(—ak+a) (9-4a)

k=0 iN

Ni/2-1
Xo(an) = £ x0(ak)sgn(N0

k=0
(9.4b)

Eqs. (9.4a) and (9.4ba) are circular and skew-circular correlations of sizes Ni/2, 
respectively.

The other transform components with index containing N® , m < m, as a factor 
can be handled by the same algorithm after reducing N by N“ .

For example, let us consider N=9. Then a equals 2. Eq. (9.4) can be written as

Xl(l)-*(0) c(l,9) c(2,9) c(4,9) xi(l)
X,(2) — x(0) = c(2,9) c(4,9) c(l,9) xi(2)
Xi(4) -x(0) 5(4,9) c(l,9) c(2,9) Xl(4).

(9.5a)

X«(l) s(l,g) s(2,9) s(4,9) xo(l)
Xo(2) = s(2,9) s(4,9) —s(l,9). x0(2)
Xo(4) _s(4,9) —s(l,9) ^-s(2,9) xo(4)

(9.5b)

The other components with index 3 can be treated as in N=3 algorithm. Thus,

X1(3)-x(0) = c(l,3)x1(3) (9.5c)

Xo(3)=s(l,3)x0(3) (9.5d)

When N is a power of 2, the circular and skew-circular correlations are of size N/8, 
N/8...2. The details of this algorithm can be found in Ref. [17].

10. THE WINOGRAD FRFT ALGORITHM
In the Winograd algorithm, the circular convolutions are computed by small convo­

lution algorithms [18]. The Winograd FRFT algorithm is similarly obtained by com­
puting the circular and skew-circular correlations by small convolution algorithms. For 
example, the N=9 algorithm presented in the last section is computed by a circular and 
a skew-circular convolution algorithm of size 3.



- 22 -

The end result of this approach, as discussed below, is to factorize the transform 
matrix Rj as

Rx — CD A (10.1)

where A and C are simple rectangular matrices, and D is a diagonal matrix containing 
the multiplicative terms.

When N consists of factors prime to each other, the Good-Thomas prime factor 
algorithm can be first used to convert the 1-D RDFT to a M-D RDFT, as in Sec. 8, fol­
lowed by a number of simplifications to obtain a result similar to Eq. (10.1).

For the sake of simplicity, let N be NxNy, Nx and Ny relatively prime to each 
other. The result of the application of the Good-Thomas prime factor algorithm to the 
1-D problem is the conversion of the problem to 2-D in the form

y [r,(N%)|-< [r1(N:.:| (10.2)

where x and y are the 2-D input, output matrices, and [r,(Nx) , Rj(Ny) are the 

RDFT matrices of size Nx and Ny, respectively.
Eq. (10.2) can also be written as [14]

>-' ([i'‘i(Nv)|e 11x J h ■:i°-3

where ® is the Kronecker-product operation; x and y are 1-D vectors of size N, 
obtained from x and y by concatenating their columns, respectively.

In turn, |R1(Nx)|and jRi(Ny) can be written 

[Rl(Nx)] = Cxl

as

ir'DyAv

[Ri(N,)] = CyDyAy

(10.4)

(10.5)

The Kronecker-product of (10.4) and (10.5) gives
|ri(N)] = CyDyAy ® CXDXAX (10.6)

where |r1(N)| denote jRx(N)j with permuted rows and columns, due to the concate­

nation procedure described earlier.
Since [14]

[A® B][C® D] = [AC] ® [BD],

Eq. (10.6) can be written as

(10.7)



- 23 -

[R1(N)]' == CtDtAt (10.8)

where

CT = Cy ® Cx (10.9)

DT=Dy<8> Dx (10.10)

Ax = Ay <g> Ax (10.11)

The matrices A, D, C for small size RDFT’s can be easily constructed from the 
corresponding small size DFT’s listed in the literature [14]. This is due to the fact that 
the matrices A and D for the DFT are real and C for the DFT has elements which are 
purely real or purely imaginary. Consequently, the RDFT coefficients X* (•) (Xo(*)) are 
obtained by setting the imaginary (real) elements in the corresponding rows of the 
matrix C to zero. The resulting short Winograd FRFT algorithms are given in Appen­
dix E.

As an example, let us consider N=12.
corresponding matrices are:

Ax
1 1 1
0 1 1
0 1 -1

Choosing Nx = 3 and Ny = 4, the

(10.12)

and

Dx =

1 ° 0
2?r „0 cos—-1 0
3

0 . 2ir0 sm-j-

0 0 
1 0 
0 1

(10.13)

(10.14)

(10.15)



- 24-

D

10 0 0 
0 10 0 
0 0 10 
0 0 0 1

G

10 0 0 
0 0 1 0 
0 1 0 0
0 0 0 1

Eqs. (10.9) - (10.11) gives
11 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 1
0 1 -1 0 1 -1 0 1 -1 0 1 -1
11. 1 •-1 -1 -1 1 1 1 -1 -1 -1
0 1 1 0 -1 -1 0 1 1 0 1 h-

* -1
0 1 -1 0 -1 1 0 1 -1 0 1 1
11 1 0 0 0 -1 -1 -1 0 0 0
0 1 1 0 0 0 0 -1 -1 0 0 0
0 1 -1 0 0 0 0 -1 1 0 0 0
0 0 0 1 1 1 0 0 0 -1 -1 -1
00 0 0 1 1 0 0 0 0 1 H

-1 -1
0 0 0 0 1 -1 0 0 0 0 -1 1

(10.16)

(10.17)

(10.18)



- 25 -

Di

1 0 0 0 0 0 0 0 0 0 0 0
2tt

0 COS-—-1 00 0 00 0 00 0 0
3

0 0 sin— 0 0 0 0 0 0 0 0 03
0 0 

0 0

0 0 

0 0 
0 0

0 0 

0 0

0 10
2~0 0 cos-11-—!
3

0 0 .0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
0 0 0

.sin"— 0 0
3

0 1 0
2 7T

0 0 cos ——1
3

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
0 0 0

sin^- 0 0

0
0

0

0
0

(10.19)

0

0
0 0 

0 0

0 0 0 0 0 0 

0 0 0 0 0 0

0

0

0

0 0

C'p ==

1 0 0 0 0 0 
1 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 1 0 0 
0 0 0 1 1 0 
0 0 0 0 0 1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 oil 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1

(10.20)

After the computations with the matrices Ax, Dx, Cx, the final 1-D RDFT output 
coefficients Xi(*) and Xo(*) are computed by using Table 2. This is straightforward to 
do by tracing the conversions from the 1-D x(*) to 2-D x(*,*) according to CRT, and 
finally the concatenations of the columns of x(*,*) to get x (•). .



- 26 -

11. ALGORITHMS FOR THE INVERSE RDFT AND DFT
RJ'1 can be computed using the same subroutine for R^. In order to do so, let

x(0) = z(0) (11.1a)

x(N2) — z(N2) (11.1b)

x(n) = z(n) + z(N — n) l
x(N - n) = z(n) - z(N - n)J 0 < n < Nz (11-lc)

and

u(0) = y(0) (11.2a)

Then

u(N2) == y(N2)

u(n) — y(n) + y(N — n) 
u(N—n) = y(n) — y(N—n)

j

I N—i '
z(n) = ^ E u(k)cos

1N k=0
27fnk

N

(U.2b)

(11.2c)

(11.3)

which is the same as Eq. (1.3) except for the normalization factor 1/N.
Eqs. (11.1) and (11.2) are exactly the same equation implemented in a single sub­

routine, say, comin (x,n,j). If the routine for R* is frft(x,N), then the calling sequence 
for Rf1 is

call comin (x,N,l) 
call frft (x,N) 
call comin (y,N,2)

The flag j in comin is used to include the normalization factor 1/N in the second 
call to comin (j—2).

The computation of the DFT with complex input data x(*) is equivalent to com­
puting 2 Rj’s and then combining the results in the end. If f(») is the DFT output, 
Ji(•) and y2(*) are the Ri outputs to the real and the imaginary parts of the input data, 
the three are related by

f(°) =yi(0) + jy2(0) (11.4a)

f(N2)=y1(N2)+jy2(N2) (11.4b)



- 27 -

f(n) = yi (n) + y2 (N - n) + j (y2 (n) - jx (N-n)) 
f(N-n) = ji (n) - y2(N—n) + j(y2(n) + yi(N-n))^ 0 < n < N2

The resulting algorithm will be referred to as R1-FFT.

(11.4c)

If the subroutine to implement Eq. (11.4) is called rldft(x1}x2,N,flag), where Xj 
and x2 are the real and imaginary parts of f at the output, and of data at the input, the 
calling sequence for R^-FFT is given by

call frft(xl5N) 
call frft(x2, N,) 
call rldft(x1,x2,N,)

With this approach, there is no need to have a separate program for the inverse 
DFT (IDFT) either. In the case of the IDFT, Eq. (11.4) is modified to

f(o) = (yi(°) +jy2(o))/N :
f(N2) = (y2(N2)+jy2(N2)/N |

f(a) = [yi(n)-y2(N-n)+j(y2(N)+y1(N-n))]/N| 
f(N—n) = [yj (n) + y2(N-n) + j(y2(N) - yi(N-n))]/N| 0 < n < N2

In other words, in addition to scaling with 1/N, f(n) and f(N-n) are interchanged. 
These changes are included in rldft corresponding to flag j equal to 2. Thus, the calling 
sequence for the IDFT becomes

call frft(x!, N) 
call frft(x2,N) 
call rldft(Xi,x2,N,2)

CONCLUSIONS
The fast algorithms discussed above for the computation of the real discrete 

Fourier transform are expected to be useful in applications, especially in order to pro­
cess real signals without intermediate processing with complex signals. Many applica­
tions consist of real signals only. When complex signals are needed, the DFT computa­
tions can be achieved as in Sec. 11 without any loss of efficiency. As a matter of fact, 
this approach can be preferable since the real and the imaginary parts of the signal can 
be processed in parallel. On the other hand, when the signals are real, the computation 
of the RDFT by a fast implementation of the DFT is necessarily inefficient. Conse­
quently, hardware, say, VLSI, and software implementations of Fourier processing of 
signals can be preferably based on the RDFT rather than the DFT. This rationale is 
further strengthened by the advantages of the RDFT discussed in Sec. 1.



-28-

However, there are some disadvantages of the FRFT algorithms. The radix-2 DIF 
FRFT algorithm is inefficient, as discussed in Sec. 3. The signal-flow diagrams for the 
FRFT are more difficult to understand than the FFT. If permutations are avoided in 
the intermediate stages, both the input and the output data are in permuted order. 
These issues should be further studied for possible improvements.

APPENDIX A

The Winograd small RDFT algorithms are given for n==2,3,4,5 and 7. The algorithms 
are in the form

X = CD Ax

The matrix D is a diagonal matrix, and only the diagonal elements are given. The 
matrices A and C are given in full.

2-point RDFT: 0 multiplications, 2 additions

11 O o II H
-1 1 o’

A = : 1 -1 Di = 1 C = 0 1

ao — x0 + xj X0 = a0
a== Xq ■ Xj !X^ == a^

ZaI\3-point RDFT: 6 = ——. 1 multiplication (1 shift), 4 additions
3

1 1 1' D0 =1 10 0"
=== 0 1 1 D| = cos# — 1 C = 1 1 0

0 1 -1 D2 = sin# 0 0 1_

a2 =xx +x2 Xq — ao
H =x1 — x2 Xx = -ax/2
ao = Xq + a2 X2 == a2 • D

4-point RDFT: 0 multiplications, 6 additions



- 29 -

1111 D0=l 10 0 0
1-1 1-1 D1=l 0 0 10

A =

H
-1 0 1 h-
1 O d2=i g " 0 10 0

0 10-1 D3=l 0 0 0 1

&2 —- Xq X2
a3 = xx — x3
t0 =X0 + X2 

tx — xx +x3 

a0 = to + ti
al = tg tj

Xo = a0 
X2 = a2 
X2 = a!
X3 = a3

5-point RDFT: 8 = —,
5

5 multiplications, 13 additions

t-H 1 1 1 1
0 1 1 1 1
0 1 -1 -1 1
0 1 -1 1 -1
0 0 -1 1 0
0 1 0 0 -1

Dq — 1

Dj = — (cos0+cos2#)—1 
2

D3 — —(cos# — cos2#)
2

D3 = sin 8
D4 = sin# + sin2#
D5 = sin2# — sin#

1 0 0 0 0 0
111 00 0 
11-100 0 
0 0 0 1 0 1
000 1 -1 0

to = *1 + X4

ti — x2 +x3
a4 = x3 — x2
a5 =xx - x4

Xo — ao
Xi == (ag + Dia^) + D2a2 = to + D2a2

a4 = tg + t4
X2 = to D2a2

3-2 — ^0 ^1
X3 = a3D3 + a5D5

a3 = a4 + a.5 X5 = a3D3 — a4D4

ao — Xq + aj

7-point RDFT:
27T

8 — -y, 8 multiplications, 30 additions



- 30

A =

11 1 1 1 1 1 
0 1 11 11 1 
0 1 0 -1 -1 0 1
0 0 -1 1 1 -1 0
0 -1 1 0 0 1 -1
0 1 1 -1 1 -1 -1
0 1 0 1 -1 0 -1
0 0 1 1 1 1 0
0 -1 1 0 0 1 1

Do = 1

Dj == -^(cos# + cos2# + cos3#)—1
v

D2 = —(2cos0 — cos20 — cos30)

D3 == —(cos# — 2cos2# — eos 9)
3

D4 = —(cos# + cos2# —> 2cos3#) o

D5 = —(sin# + sin2# — sin3#)
O

D6 —(2sin# — sin3# + sin3#)
O

D7 === -^-(sin# — 2sin2# — sin3#)
u

D8 = —(sin# + sin2# + 2sin3#)
O

1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 -1 0 -1 0 O' 0 0
1 1 0 -1 1 0 0 0 0
0 0 0 0 0 -1 0 1 -1
0 0 0 0 0 1 —1 0 -1
0 0 0 0 0 1 1 1 0



- 31

t0 =X1 + x6
tl = - x6
t2 = x2 + x5
t3 = X2 - Xg 

t4 - X4 + Xg 

t5 = X4 - X3 

tg = t2 + to 

a4 = tg to

a2 = t0 t4 
a3 = t4 — t2 
t? = ts + t3
a7 = ^5 — t3 

a6 ~ tj — tg

a8 = tg t4 

al = t6 + t4 

ag = t7 + t4 

ao xq -n a4

Xq = ao
X4 = ao + a4Di — a3D2 ~ a3D3 
X2 =ao + a4D4 — a2D2 — a4D4 
X3 = ao + a4D4 — a3D3 + a4D4 

X4 ■= —agDg + a7D7 — agDg 
Xg = agDg — agDg — a3D3 

Xg = agDg + agDg 4- a7D7



-32-

APPENDDC B
c :
C The radix-2 decimation-in-time FRFT program
C The output is in order:
C [re(0),re(l),...,re(N/2),im(N/2-l),im(N/2-2),...,im(l)]
c ; •

SUBROUTINE FRFT(X,N)
REAL X(l)
M=INT(ALOG(FLOAT(N))/ALOG(2.0)+0.5)

C Bit-reverse permutation of input data :
' J=1 ' / ■.

N1=N-1 
DO 104 1=1,Nl 

IF(I.GE.J)GOTO 101 
XT=X(J)
X(J)=X(I)
X(I)=XT

101 K=N/2 :
102 IF(K.GE.J)GOTO 103 

J=J-K
' K=K/2

GOTO 102
103 J=J+K
104 CONTINUE
C—----------------—-----------—--------------------------------
C
C DO 60 loop below is size 2 Rl:
C

DO 60 I=1,N,2 
XT=X(I) 
X(I)=XT+X(I+1) 
X(I+1)=XT-X(I+1)

60 CONTINUE
C------------—---------------------------
C .
C Computation of larger Rl’s:
C

N2=l
DO 10 K=2,M

C



a a
 a 

a a
 a 

a a
 

o o
 o o o 

o 
o o

- 33 -

Computation of size 2**K Rl;

N4=N2 
N2=2*N4 
Nl—2*N2
E=6.283185307179586/Nl 
DO 20 I=1,N,N1 

XT=X(I)

X(I) is Y(0) of eqn. (2.4a):

X(I)=XT+X(I+N2)

X(I+N2) is Y(N2) of eqn. (2.4b):

X(I+N2)=XT-X(I+N2)
A=E

DO 30 J=1,N4-1 
I1=I+J 
I2=I-J+N2 
I3=I+J+N2 
I4=I-J+N1 
CC=COS(A)
SS=SIN(A)
A=A+E

The 7 lines below compute Tl=X(i3)*CC-X(i4)*SS, 
T2=X(i3)*SS+X(i4)*CC ; Tl and -T2 are R2 of size 2**k ; 
Tl is the cosine term of R2, -T2 is the sine term:

P1=CC+SS
P2—SS-CC
P3=CC*(X(I3)+X(I4))
P4=P1*X(I4)
P5=P2*X(I3)
Tl=P3-P4
T2=P3+P5

X(I4) is Y(N-n) of eqn. (2.4h):



34

X(I4)=X(I2)+T2
C
C X(I3) is Y(N2+n) of eqn. (2.4g): 
C

X(I3)=-X(I2)t-T2
C
C X(I2) is Y(N2-n) of eqn. (2.4f): 
C

X(I2)=X(I1)-T1
C
C X(Il) is Y(n) of eqn. (2.4e):
C

X(I1)=X(I1)-T1 
30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN 
END



- 35 -

APPENDIX C 
C
C The radix-4 decimation-in-time FRFT program
C The output is in order:
C [re(0),re(l),...,re(N/2),im(N/2-l),im(N/2-2),...,irn(l)]
C

SUBROUTINE FRFT(X,N)
REAL X(l)
M=INT(ALOG(FLOAT(N))/ALOG(4.0)+0.5)

C
C Bit-reverse permutation of input data:
C

J=1 
Nl=N-l 
DO 104 1=1,N1 

IF(LGE.J)GOTO 101 
XT=X(J)
X(J)^X(I)
X(I)=XT

101 K=N/2
102 IF(K.GE.J)GOTO 103 

J-—J-K
K=K/2 
GOTO 102

103 J=J+K
104 CONTINUE
C------------- -------------------------- -----------------------
c
C Do 60 and 61 loops below are size 4 Rl:
C
70 DO 60 I=1,N,2 

XT=X(I)
X(I)=XT+X(I+1)
X(I+1)=XT-X(I+1)

60 CONTINUE 
DO 611=1,N,4

XT=X(I)
X(I)=XT+X(I+2)
X(I+2)=XT-X(I+2)

61 CONTINUE



- 36

C---------------------- ------------------------------
N2=4
DO 10 K—2,M 

N2=N2*4 
N4=N2/4 '
N8—N2/8
E=6.283185307179o86/N2 

DO 38 I=0,N-1,N2 
11=1+1 
I2=I1+N4 
I3=I2+N4 
I4=I3+N4 
T1=X(I4)+X(I3) 
T2=X(I1)+X(I2)

C
C X(I4) is Y(3N/4) of eqn. (4.7f):
C

X(I4)=X(I3)-X(I4)
C
C X(I2) is Y(N/4) of eqn. (4.7e):
C

X(I2)=X(I1)-X(I2)
C
C X(I1) is Y(0) of eqn. (4.7a):
C

X(I1)=T2+T1
C
C X(I3) is Y(N/2) of eqn. (4.7b):
C ■

X(I3)=T2-T1 
I1=I1+N8 
12=12+N8 
I3=I3+N8 
I4=I4+N8
T1=(X(I3)+X(I4))/SQRT(2.0)
T2=(X(I3)-X(I4))/SQRT(2.0)

C
C X(I4) is Y(7N/8) of eqn. (4.7b):
C

X(I4)=X(I2)+T1



O
 O 

0^
 

0 0
 0 

0 0
 0 

0 0
- 37 -

C
X(I3) is Y(5N/8) of eqn. (4.7g):

X(I3)=-X(I2)-t-Tl

X(I2) is Y(3N/8) of eqn. (4.7d):

X(I2)=X(I1)-T2

X(IX) is Y(N/8) of eqn. (4.7c):

X(I1)=X(I1)+T2 
CONTINUE

A=E
DO 32 J=2,N8 

A2=2*A 
A3=3*A 
CC1=C0S(A)
SS1=SIN(A)
CC2—C0S(A2)
SS2=SIN(A2)
CC3=COS(A3)
SS3=SIN(A3)
A=J*E
DO 30 I=0,N-1,N2 

Il=I+J
I2=I14-N4 
I3=I2+N4 
14—I3+N4 
l5=I+N4-J+2
16— I5+N4
17— I6+N4 
I8=I7+N4

Tl and T2 are a and b of eqn. (4.4):
C

T1=(X(I3)*CC1-X(I7)*SS1) 
T2=(X(I7)*CCl+X(I3)*SSl) .



a a
 a o o o 

oo
- 38 -

C T3 and T4 are e and f of eqn. (4.6): 
O'

T3=(X(I4)*CC3-X(I8)*SS3)
T4=(X(I8)*CC3+X(I4)*SS3)

C
C PI and P2 are c and d of eqn. (4.5):
C

P1=(X(I2)*CC2-X(I6)*SS2)
P2=(X(I6)*CC2+X(I2)*SS2)
T5=T1+T3
T3=T1-T3
T6=-T2-T4
T4=-T2+T4
T2=X(I5)+T6

C
C X(I8) is Y(N-n) of eqn. (4.7p):
C

X(I8)=X(I5)-T6+P2
C
C X(I3) is Y(N/2+n) of eqn. (4.7o):
C

X(I3)==T2-P2
T2=X(I5)+T3

C
X(I4) is Y(3N/4+n) of eqn. (4.71):

X(I4)=-X(I5)+T3+P2

X(I7) is Y(3N/4-n) of eqn. (4.7k):

X(I7)=T2-P2 
Tl=X(Il)-T4

X(I5) is Y(N/4-n) of eqn. (4.7m):

X(I5)=T1-P1 
C
C X(I2) is Y(N/4+n) of eqn. (4.7n):
C

X(I2)=X(I1)+T4-P 1



o o
 a on

T1=X(I1)+T5

X(I6) is Y(N/2-n) of eqn. (4.7j):

X(I6)=~X(I1)-T5+P1

X(I1) is Y(n) of eqn. (4.7i):
C

X(I1)—Tl+Pl 
30 CONTINUE
32 CONTINUE
10 CONTINUE 

RETURN 
END



- 40 -

APPENDIX D 
C
C The split-radix decimation-in-time FRFT program
C The output is in order:
C [re(0),re(l),...,re(N/2),im(N/2-l),im(N/2-2),...,im(l)]
C

SUBROUTINE FRFT(X,N)
REAL X(l)
M=INT(ALOG(FLOAT(N))/ALOG(2.0)+0.5)

C
C Bit-reverse permutation of input data :
C

J=1 
Nl=N-l 
DO 104 1=1,Nl 

IF(I.GE.J)GOTO 101 
XT=X(J)
X(J)=X(I)
X(I)=XT

101 K=N/2
102 IF(K.GE.J)GOTO 103 

J=J-K
K=K/2 
GOTO 102

103 J=J+K
104 CONTINUE
C —-—-----------------------—--------------------- -

IS== 1 
JD=4 

C
C DO 60 loop below is size 2 Rl:
C
70 DO 60 I0=IS,N,lD 

11=10+1 
R1=X(I0)
X(I0)=R1+X(I1)
X(I1)=R1-X(I1)

60 CONTINUE 
IS=2*ID-1 
ID=4*ID



- 41

IF(IS.LT.N)GOTO 70 
C -------- ------------------------ -----------------

N2—2
DO 10 K=2,M 

C
C Computation of size 2**k Rl:
C

N2=N2*2
N4=N2/4
N8=N2/8
E=6.283185307179586/N2
IS=0
ID—N2*2

40 DO 38 I=IS,N-1,ID 
11=1+1 
I2=I1+N4 
I3=I2+N4 
I4=I3+N4 
T1=X(I4)+X(I3)

C
C X(I4) is Y(3N/4) of eqn. (5.2f):
C

X(I4)=X(I3)-X(I4)
C
C X(I3) is Y(N/2) of eqn. (5.2b):
C

X(I3)=X(I1)-T1
C
C X(I1) is Y(0) of eqn. (5.2a):
C

X(I1)=X(I1)+T1 
IF(N4.EQ.l)GOTO 38 
11=11+N8 
I2=I2+N8 
I3=I3+N8 
I4=I4+N8
T1=(X(I3)+X(I4))/SQRT(2.0)
T2=(X(I3)-X(I4))/SQRT(2.0)

C
C X(I4) is Y(7N/8) of eqn. (5.2h):



Q
 Q

- 42 -

C

C
C
C

C
C
C

X(I4)=X(I2)+T1 

X(I3) is Y(5N/8) of eqn. (5.2g):

X(I3)=-X(l2)-rTl 

X(I2) is Y(3N/8) of eqn. (5.2d): 

X(I2)=X(I1)-T2

C

38

36

C
C
C

X(Il) is Y(N/8) of eqn. (5.2c):

X(Il)=X(Il)-rT2
CONTINUE
IS=2*ID-N2
n)==4*ID
IF(IS.LT.N) GOTO 40 
A—E .
DO 32 J=2,N8 

A3—3*A 
CCl=COS(A) 
SS1=SIN(A) 
CC3=COS(A3) 
SS3=SIN(A3) 
A=J*E 
IS=0 
ID=2*N2 

DO 30 I=IS,N-1,ID 
I1=I+J 
I2=I1+N4 
I3=I2+N4 
I4=I3+N4 
I5=I+N4-J+2 
I6=I5+N4 
I7=I6+N4 
18—I7+N4

The seven lines below compute Tl=(X(i3)*CCl-X(i7)*SSl), 
T2=(X(i7)*CCl+X(i3)*SSl); Tl and T2 are a and b of eqn. (4.4):



o o
 ooooo

o 
o o

- 43 -

C
Pl^CCl+SSl
P2=SSl-CCl
P 3=C C1 * (X( [3) +X(I7))
P4=Pl*X(I7)
P5=P2*X(I3)
Tl=P3-P4 
T2—P3+P5 

C
C The seven lines below compute T3=(X(i4)*CC3-X(i8)*SS3) ,

T4=(X(i8)*CC3+X(i4)*SS3); T3 and T4 are e and f of eqn. (4.6)

P1=CC3+SS3
P2=SS3-CC3
P3==CC3*(X(I4)+X(I8))
P4^P1*X(I8)
P5=P2*X(I4)
T3=P3-P4
T4=P3—P5
T5=T1+T3
T6=T2+T4
T3=T1-T3
T4=T2-T4
T2=X(I6)-T6

X(I8) is Y(N-n) of eqn. (5.2p):

X(I8)=T6+X(I6)

X(I3) is Y(N/2+n) of eqn. (5.2o):

X(I3)=-T2 
T2—X(I2)-T3

C

c
c
c

X(I4) is Y(3N/4-n) of eqn. (5.2k):

X(I4)=X(I2)+T3 

X(I7) is Y(3N/4+n) of eqn. (5.21):



- 44

X(I7)=-T2
Tl=X(Il)+T5

C
C X(I6) is Y(N/2-n) of eqn. (5.2j):
C

X(I6)=X(I1)-T5
C
C X(I1) is Y(n) of eqn. (5.2i):
C

X(I1)=T1
T1=X(I5)-T4

C
C X(I5) is Y(N/4-n) of eqn. (5.2m): 
C

X(I5)=X(I5)+T4
C
C X(I2) is Y(N/4+n) of eqn. (5.2n): 
C

X(I2)=T1
30 CONTINUE

IS=2*ID-N2 
ID=4*ED
IF(IS.LT.N)GOTO 36 

32 CONTINUE
10 CONTINUE 

RETURN 
END



O
 O 

O
 O 

O
 O 

O
 O 

O
 O 

O
 O 

Q
 

o o
- 45 -

APPENDIX E 

C '
C The split-radix decimation-in-frequency FRFT program
C The output is in order:
C [re(0),re(l),...re(N/2),im(N/2-l),im(N/2-2),...,im(l)]
C

SUBROUTINE FRFT(X,N,FX)

x=input data ,fx=output data 
REAL X(l), FX(l)
INTEGER N

INTEGER NSQ(IOO), NOL(51)
INTEGER INP, NN, L, NK, I, J, LP, LGN

Take care of initial A (if necessary), compute blocksize (NN), 
compute number of stage pairs (L)

LGN = INT(ALOG(FLOAT(N))/ALOG(2.0) + 0.5)
IF (MOD(LGN,2) .NE. 0) THEN 

CALL ADD(X,N)
NN=N/2

L below is the number of stage pairs consisting of two 
successive stages :
L=(LGN-l)/2 

ELSE 
NN=N 
L=LGN/2 

END IF

Generate control sequence for this value of N 
(NSQ is the parameter control sequence SCN(p. 17);
NK is the number of IAS operations of size 8;
NOL is an auxiliary sequence used to step through NSQ)

CALL BASQ(NSQ,NK,LGN,NOL)
C
C Process the data 
C



Q
 O

- 46 -

DO 1000 LP=1,L 
INP=0 
J = 1
DO 1100 I=1,N/NN 

IF (I .NE. (NSQ(J)+1)) THEN 
CALL ADDPLANE (X( 1+INP), NN)

ELSE
CALL PLANE ADD (X(1+INP),NN)
J = J + 1 

ENDIF
INP=INP+NN 

1100 CONTINUE 
NN=NN/4 

1000 CONTINUE 
C
C Perform IAS to combine results of small Rl’s 
C (LP below is the number of block sizes from 8 to N/2: 
C NK is the number of IAS operations of size J)
C

NN = 8 
LP = LGN-3 
DO 2000 J = 1,LP 

D O 2100 I = 1,NK 
INP = NN * NSQ(I)
CALL ADDSUB(X,N,NN,INP)

2100 CONTINUE 
NN = 2*NN 
NK — NK-NOL(LP-J+l)

2000 CONTINUE 
C
C Permute output results
C

CALL LKUP (X,N,L,FX)
C

RETURN
END

SUBROUTINE ADDSUB(X,N,M,INP) 
C



- 47 -

C Subroutine ADD SUB performs an IAS of size M 
C

REAL X(l) •
INTEGER N, M, INF 

C
INTEGER START, END, M2, L, I, J, NS, NE, LGM8 
REAL XT 

C
C Define and adjust initial block 
C

M2 = M/2 
START = INP +3 
END » INP + M2 + 4 .
IF ((START ,GT. N) .OR. (END .GT. N)) GO TO 10 
XT = N(START)
X(START) = XT -b X(END)
X(END) = XT - X(END)

10 IF (((START+1) .GT. N) .OR. ((END-1) .GT. N)) GO TO 20 
XT == X(START+1)
X(START-fl) = XT + X(END-l)
X(END-l) = XT - X(END-l)

20 IF (M .EQ. 8) GO TO 1 
C '

LGM8 = INT(ALOG(M/8.0)/ALOG(2.0) + 0.5)
NS = START + 1 
L = 1
DO 100 I = 1,LGM8 

L == 2 * L 
C /
C Adjust XI (6.9)
C

DO 110 J = 1,L 
NS = NS + 1 
NE = NS + M2 + L
IF ((NS .GT. N) .OR. (NE .GT. N)) GO TO 110 
XT = X(NS)
X(NS) = XT + X(NE)
X(NE) = XT - X(NE)

110 CONTINUE



- 48 -

C Adjust XO (eqn. 6.10)
C

DO 120 J == 1,L 
NS — NS + 1 
NE = NS + M2 - L
IF ((NS .GT. N) .OR. (NE .GT. N)) GO TO 120 
XT = X(NS)
X(NS) == XT + X(NE)
X(NE) = XT-X(NE)

120 CONTINUE 
100 CONTINUE 
C
1 CONTINUE 

RETURN 
END 

C 
C 
C

SUBROUTINE ADDPLANE(X,M)
C
C Subroutine ADDPLANE implements an AAP of size M 
C

REAL X(l)
INTEGERM 

C
INTEGER M2 

C
M2 — M/2 
CALL ADD(X,M)
CALL ADD (X,M2)
CALL PLANE(X(l+M2),M2)

C
RETURN
END

C
C
c

SUBROUTINE PLANE ADD (X.M)
C
C Subroutine PLANE ADD implements a PAA of size M



o o

- 49 -

c
REAL X(l)
INTEGER M 

C
INTEGER M2 

C
M2 = M/2 
CALL PLANE (X,M)
CALL ADD (X,M2)
CALL ADD (X(l +M2),M2)

C
RETURN
END

C
c
c

SUBROUTINE ADD(X.M)
C
C Subroutine ADD implements an A of size M(eqns. 3.1a and 6.6) 
C

REAL X(l)
INTEGERM 

C
REAL XT
INTEGER I, M2, M2PI 

C
M2—M/2 
DO 100 1=1,M2 

M2PI = M2 +1 
XT = X(I)
X(I) = XT + X(M2PI)
X(M2PI) = XT - X(M2PI)

100 CONTINUE 
C

RETURN
END

C
SUBROUTINE PLANE(X,M)

Subroutine PLANE implements a P of size M



- 50 -

C
REAL X(l)
INTEGER M 

C
INTEGER I, J, M2, M3 
REAL PI2, ANG, HC, HS, RO, Rl 

C
PI2 = 8.0*ATAN(1.0)
M2 = M/2 
M3 = 2*M 
DO 200 1 = 1,M2 

ANG — PI2*(I-l)/(FLOAT(M3))
HC ~ COS (ANG)
HS = SIN(ANG)
J = I + M2
RO = HC * (X(I) + X( J))
R1 = (HS - HC) * X(I)
X(I) = RO - (HC + HS) * X(J)
X(J) = - (RO + Rl)

200 CONTINUE 
C

RETURN
END

C
C
C

SUBROUTINE BASQ(NSQ,K,LGN,NOL)
C
C Subroutine BASQ generates the control sequence parameters
C

INTEGER NSQ(l), K, LGN, NOL(l)
C

INTEGER L, I, NN, M, J 
C
C Define the basic sequences...
C

NOL(l)=-l
NOL(2)=l
NOL(3)=2
NOL(4)=2



- 51 -

NSQ(l)=l
NSQ(2)=5
NSQ(3)=7
NSQ(4)=9
NSQ(5)=13

C
L=LGN-4 
DO 100 1=4,L+l 

NOL(I-i-l)=NOL(I)-j-2*NOL(I-l)
100 CONTINUE 
C ' . '

. K=1
NN=16 ■
DO 200 J=1,L+1 

NN=2*NN ;
M=NOL(J-fl)/2 
DO 300 1=1,M 

NSQ(I+K)=NSQ(I)+NN/16 
NSQ(Ih-KtM)=NSQ(I)4-3*NN/32 

300 CONTINUE
K = 2*M + K 

200 CONTINUE 
C

RETURN
END

C
C
C

SUBROUTINE LKUP(X,N,L,FX)
C ...
C Subroutine LKUP permutes the output data and changes 
C the sign of appropriate output values (eqn. 6.4)
C ■■

REAL X(l), FX(1)
INTEGER N, L

c ■
INTEGER NSEQ(256), I, K, ND, NS, M, NQ 

C
0PEN(UNIT=2,FILE=’LOOKUPr)
REWIND (2)



- 52

RE AD (2,*) (NSEQ(I),1=1,256) 
C

K = 0 
ND = 1 
DO 100 1=1, L 

ND = ND * 4 
K = K + N/ND 

100 CONTINUE 
NS = N - K 
M = 256/N 
DO 200 1=1,N 

NQ = NSEQ(I)/M 
IF(NQ.GE.NS)THEN 

FX(NQ+1) = -X(I)
ELSE

FX(NQ+1) = X(I)
END IF

200 CONTINUE 
C

RETURN
END



- 53 -

REFERENCES

1. O. K. Ersoy, “Real Discrete Fourier Transform,” IEEE Tran. Acoustics, Speech,
' Signal Processing, Yol. ASSP-33, No. 4, 880-882, August 1985.

2. N. Ahmed, T. Natarajan, K. R. Rao, “Discrete Cosine Transform,” IEEE Tran. 
Computers, Yol. C-23, 90-93, January 1974.

3. A. K. Jain, “A Fast Karhunen-Loeve Transform for a Class of Stochastic 
Processes,” IEEE Tran. Commun, Vol. COM-24, 1023-1029, 1976.

4. R. N. Bracewell, “The Discrete Hartley Transform,” J. Optical Society of America, 
Yol. 73, 1832-1835, December 1983.

5. O. K. Ersoy, M. Zeng, “New Approaches to Generalized Matched Filtering,” Opti­
cal Society of America Annual Meeting, Rochester, New York, October, 1987, and 
submitted to J. Optical Society of America, A.

6. O. K. Ersoy, “On Walsh-Domain Versus RDFT Filtering,” IEEE Tran. Acoustics, 
Speech, Signal Processing, in print.

7. O. K. Ersoy, N. C. Hu, “A Unified Approach to the Fast Computation of All 
Discrete Trigonometric Transforms,” ICASSP 1987 Proceedings, 1843-1847, Dallas, 
April 1987.

8. O. K. Ersoy, C-H Chen, “Transform-Coding of Images with Reduced Complexity,” 
Computer Vision, Graphics, and Image Processing, in print.

9. O. K. Ersoy, “Generalized Real-Discrete Fourier Transform: A Family of
Transforms,” Conf, Information Sciences and Systems Proceedings, 777-782, 
Princeton University, March, 1986

10. H. Y. Sorensen, D. L. Jones, M. T. Heideman, C. S. Burrus, “Real-Valued Fast 
Fourier Transform Algorithms,” IEEE Tran. Acoustics, Speech, Signal Processing, 
Vol. ASSP-35, No. 6, June 1987.

11. P. Duhamel, H. Hollman, “Split-Radix FFT Algorithm,” Electron Lett., Vol. 20, 
14-16, January 1984.

12. I. J. Good, “The Interaction Algorithm and Practical Fourier Analysis,” J. Royal 
Statist. Sot., Ser. V, Vol. 20, 361-375, 1958, Vol. 22, 372-375, 1960.

13. L. H. Thomas, “Using a Computer to Solve Problems in Physics,” Applications of 
Digital Computers, Ginn and Co., Boston, Mass., 1963.

14. R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, 1985.
15. O. K. Ersoy, “A Real-Time Interpolation of Images Obtained by Image Detector 

Arrays,” Conf. Image Detection and Quality, 371-374, Paris, July, 1986.
16. C. M. Rader, “Discrete Fourier Transform When the Number of Data Samples is 

Prime,” Proc. IEEE, Vol. 56, 1107-1108, 1968.
17. “A Real Formalism of Discrete Fourier Transform in Terms of Skew-Circular 

Correlations” and its Computation by Fast Correlation Techniques, SPIE Conf. 
Real Time Signal Processing VI, 239-253, San Diego, September 1983.

18. S. Winograd, “On Computing the Discrete Fourier Transform,” Math. Computa­
tion, Vol. 32, No. 141, 175-199, January 1978.



- 54 -

Table 1. The Output Permutation Sequence in FRFT for N 256.



- 55 -

Table 2. The Relationship Between the 2-D DFT and the 2-D RDFT.

nl n2 Xifn^no) X.i(Ni—ni, no) Xo(ni,n2) Xo(Ni—ni,n2)

0 0 y(o,o) y(°.) 0 0

Ni/2 No/2 y(ni>n2) yln^ng) 0 0

o 0<Cn2<CN2/2 y(0,n2) y(0,n2) y(0,N2-n2) y(0|N2—n2)

Ni/2 0< Il2<CN2/2 y(N1/2,ng) y(Nj/2,n2) y(N i/2, N2—n2) y(Nl/2,N2-n2)

0<n1<N1/2 0 y(nitO) y(n i, o) y(Nj—nj,0) •',y(N’i~niiO)

0<n!<Ni/2 N2/2 y(N,,No/2) y(ni.N3/2) -y^-m.N^)

0<n1<N1/2 0<n2<N2/2 ytiibnoJ-ylNi-iii.No-ns) y (n i, n2)+y (Ni -n 1, N2-n2) y(n i, N2—n2)+y (Nx—n i, n2) —y(n1No—n2)+y(N1—Iloilo)



- 56 -

Fig. 1. Givens’ Plane Rotation, the Basic Operation in the FRFT Algorithms.



- Oi



- 58 -

• 3

Fig. 3. The SpliURatlix DiT FRFT Signal-Flow Graph When N= 16.



- 59 -

Fig. 4. The Split-Radix DIF FRFT Signal-Flow Graph When N==16,



- 60 -

A
(32)

AAP

PAA

AAP (4)

PAA (4)

AAP (4)

AAP (4)

PAA (4)

AAP (4)

PAA (4)

Fig. 5. The Block Diagram of A, AAP and PAA Operations When N=32.



- 61 -

AAP
(64)

AAP

PAA

AAP
(16)

AAP
(16)

AAP (4)
PAA (4)
AAP (4)
AAP (4)
AAP (4)
PAA (4)
AAP (4)
PAA (4)
AAP (4)
PAA (4)
AAP (4)
AAP (4)
AAP (4)
PAA (4)
AAP (4)
AAP (4)

Fig. 6. The Block Diagram of AAP and PAA Operations When N—64.


	Purdue University
	Purdue e-Pubs
	1-1-1988

	Fast Algorithms for the Real Discrete Fourier Transform
	O. K. Ersoy
	N. C. Hu

	tmp.1542052450.pdf.iPWBc

