Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
12-1-1987

Robot Control Computation in Microprocessor systems with
Multiple Arithmetic Processors

Bo Li
Luoyang Institute of Tracking and Telecommunications Technology, China

Shaheen Ahmad
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Li, Bo and Ahmad, Shaheen, "Robot Control Computation in Microprocessor systems with Multiple
Arithmetic Processors" (1987). Department of Electrical and Computer Engineering Technical Reports.
Paper 586.

https://docs.lib.purdue.edu/ecetr/586

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages

‘Robot Control Computation
in Microprocessor Systems
with Multiple Arithmetic
Processors

Bo L1
Shaheen Ahmad

TR-EE 87-47
- December 1987

School of Electrical Engineering
Purdue University |
I West Lafayette, Indiana 47907

ROBOT CONTROL COMPUTATION IN MICROPROCESSOR
SYSTEMS WITH MULTIPLE ARITHMETIC PROCESSORS

Bo Li+, Shaheen Ahmad ™™
+Luoyamg Institute of Tracking and Telecommunications Technology -
Henan, Peoples Republic of China
T1School of Electrical Engineering
| Purdue University

- West Lafayette, IN 47907

ABSTRACT

In this paper we address the problem of designing a high performance robot con-
troller with multiple afithmetié pfoceséing units (APU’s). One attractive feature about
this controller is that a minimum number of special purpose hardware components are
needed, and in fact off the shelf components can be used. In the controller described in’
this paper, one main processor (MPU) schedules a number of APU’s to prod.uce, the
computational throughput. In this design an efficient scheduling aigorithm plays the

most important role in the system performance.

* | .
DF/THS algorithm [8] is an efficient algorithm that solves "strong" NP-hard prob-

lems of scheduling a set of particularly ordered computational tasks onto a

"DF JTHS = Depth First/Initial Heuristic Search, this is a derivative of CP/MISF (critical
path/Most Immediate Successor First) scheduling algorithm, see [8].

/l/schultzm/Ahmad/ﬁlicropfocessor -2- December 10, 1987

multiprocessor system. When interprocessor communication overheads are appreciable,
it is not very effective in providing a practical near optimum schedule. It fails to con-

sider the problem of contention for shared resources.

In this paper we present new multiprocessor scheduling algorithm, which minimizes

the effect of overhead and by doing so it reduces the effect of contention.

- We used this scheduling algorithm to derive the operational instructions of the
APU’s and the MPU for our multipie APU-based robot controller. Simulatiéns show six
Motorola MC 68881 APU’s can be used to generate the robotic control computations in
approximately 2.5 milliseconds. The control computations involve inverse dynamic cal-

culations, forward kinematics, inverse kinematics, and trajectory computations.

1. INTRODUCTION

One of the bottlenecks in the control of industrial robots is that fast computers are
necessary and they are not cheaply available. There are many calculations that need to
be performed in a control loop time. These calculations include the trajeciory genera-
tion, which is the calculation of the position of the hand in the next sample time, .
inverse kinematic operations to generate the positions of the joints, and the feedback
control of the joints. Often linear feedback control is not adequate for trajectory track-
ing, a feedforward control signal (derived from ¢nverse dynamic computations) is then
added to the joint drive signal for improved trajectory performance. In ﬁlany control
schemes, the control signal is based on the m;inipulator .hand. position in cartesian ‘spa'cé"
(as 'opposed to using joint i)ositions) in such cases the forward kinematic of Jacobian
computatiqns are also needed every sample time. The order of computational demand

“each of these tasks make on the control computer are as _iisted:

(1) Inverse dynamics (generation of the feedforward torque signal),

/1/schultzm/Ahmad /microprocessor -3- . December 10, 1987

(2) Inverse kinematics,
(3) Forward kinematics,
(4) Trajectory generation,
(5) Feedback control.

The order in the above may change depending on the number of joints and type of
computational scheme. Generally the inverse _dynamics computation is by far the most
intensive, the other four computation are equally important although they require less

of the robot controller.

Simpler computation algorithms for inverse dynamics (task one) has received much
attention [13] [17] (23] [24]. Likewise the design of special purpose computers for task
one has also received much attention. A number of researchers have proposed the

developments of special purpose computers with parallel architectures.

Luh and Lin. [12] were the first to consider the parallel computation of the inverse
dynamics via Newton-Euler [13] techniques. No specific detail of their ’c0mput¢r Sys-
_tem is given, apart from the fact a branch and bound algorithm is uéed for scheduling
the processors. Niagam and Lee [16] considered the same problem and proposed some
nominal architecture for various commercial microprocessors. They assumed the pro-
cessors can be appropriately intércofmected for the particular computation. Kashara‘
and Narita [10] utilized their DF /IHS algorithm (8] to schedule number of microprdces—
sors connected by a common bus to compute the inverse dynamic’s‘\.""Similar prdbléms

have been addressed by Watanalee et al. [18] also by Zheﬁg and Hemami'[llgl. Lathrbp

[20] has shown systolic architecture and recursive doubling may be used to exploit the

parallelism of inverse dynamics, and the computation may be performed in Of Iiogﬂb

+ Newton-Euler. computation scheme allows the inverse dynamic computation 'inO(Ii)
steps given n is the number of robot joints. It is the least computationally intensive
scheme in sequential (non parallel) machines. ’

/l/schultzm/Ahmad/microprocessor -4 - ' December 10, 1987 |

timo s‘teps,thore 1 is the number of robot joints. Nash [21] has dosigned, a processor to
perform .linear m‘atrix computatiorls; such a processor is useful in kinematios and in-
: many inverse dynam1c operatlons ‘Several systolic allgorithms and plpelined architeo-
tures were proposed by Orin, et al for Jacobian and dynamic inverse computatlons [22]. s
_ Lee and Chang [25] have shown that by using a parallel pipelined singlo instruotiOn B

multiple data stream machines, they are able to perform the inverse dynamic computa- ‘
tion in O(K; [n /p] + Ko lloggpb time steps, where p is the number of processors and n is

‘the number of joints of the robot. VLSI implementation of their algorithm was also

proposed.

In this paper we also addreés the problem of robot control computer design. Such
a control computer should be able to perform the inverse and forward kinematico,
inverse dynami'c and _trajectory computations in ratpproximate-ly one to ﬁwre' milliseconds.
It should be arc‘hitecturally simplejwith ‘,few components, oasy to progr;ﬁn and as-nelwb
controlv.n‘zethodolo.gy evolves we should be able to implement them without alteration ofb
the existing hardware system. Prefferably when we construct such a system we would

like to utilize existing off-the-shelf hardware.

Reoentl.}r in tlre markot a number of 32 bit microprocessor and coprocessors for aritl.l-v
metic processing (APU’s) have appeared. APU'’s generally are only able to execute
arithme_tic operations and have a very limited storage eg Motorola’s MC 68881 [15].v
‘Such APU’S may be loaded by a host with an instruction and their respective operand’

Usually, the APU will mterrupt the host once the operat1on is complete At that time

the host is requlred to ofﬂoad the results

In our propose’d r’_obot controller we connect a number of APU’s to one host proces-
- gor through z_t 32 bit bus (see Figure 1). In this design we select an optimal number of
APU'’s to éxplOit the task parallelism. One simplicity of this architecture is that on a

~ double size Eurocard board (measuring approximately 9'x8’ in?) it is possible to

/1/schultzm/Ahmad /microprocessor -5 , December 10, 1987

accommodate a host (eg a Motorola 68000 or 68020 microprocessor) with all necessary
peripherals and in excess of ten or more MC 68881 APU’s. This system is also upgrad-
able as APU’s become significantly faster we may simply exploit this by directly replac-

ing the APU’s in our controller.

In this paper we will address the issues involved in generating the instructions to
run concurrently on the APU’s for the basic robotic tasks one through five. We will also
address the question of how many APU’s do we need and how fast we can carry out this

!

computation for a particular APU (MC 68881).

In order to take full advantage of parallel processing, an efficient scheduling algorithm
must be developed to obtain a minimum computation time with a minimum number of
processors. Numerous scheduling algorithms* have been' developed. (3] [4] [8] [12] {13],
etc. Among them DF/IHS (8] [9] [10] is one of the most efficient. When data transfer
time among tasks are not negligible and other overheads exist, éven DF /THS algorithm
becomes inefficient. This is because it assumes that data transfer times are negligible in
comparison with the processor computation time. Thus if all the processors are identi-
cal, a task can be assigned to any one of the processors without increasing or decreasing
the execution time. In fact when the interprocessor communication overheads afe con-
sidered, a task may have a different execution time in two separate processors. This is

why DF/IHS and some branch-and-bound methods become inefficient.

Another drawback of DF/IHS is that it fails to consider the possible contention
bpr_,oblem. As is often the case, the contention for shared resources cannot be neglected, it
has to be reduced as much as possible in a multiproces;or system, such that resources
are efficiently utilized and maximum parallel processing is obtained. Contention prob-
lem has been analyzed as a markovian process in [7] :[14] etc. However éﬁect of

* .
We do not cite all reference, but a few relevant to this paper.

/1/schultzm /Ahmad /microprocessor -6 - December 10, 1987

contention on a schedule of a set of known tasks has not been extensively analyzed. '

In order to obtain maximum throughput from our parallel procevssing system we
developed a new scheduling algorithm DF /MOHS*. The algorithm assumes that: (1)
interprocessor covmmunication overheads (including data transfer) and other necessary
overheads are not insignificant, (2) contention for host processor (MPU) service exists
and has to be considered,As a rgsult (in our scheduling algorithm) not only the relation
among tasks, but also the assignment relation betweenv ‘tasks and processors is impor-

tant and is considered during the scheduling process.

2. THE SCHEDULING ALGORITHM

In order to allocate tasks to processors efficiently, some assumptions are essential. |
Every APU is assumed to be identical, i.e. they have the same processing capability.
The time needed to transfer the same data packet between two processors are also the
same, and both daté aﬁd instructions are transferred between the main processor and "
coprocessors through a shared bus (see Figure 1). Hence, the execution time of a _task% 1
is T; and it can be viewed as a computational time t,; and a overhead time t,. The
computational time is the time needed for‘an APU to computé the task, whereas the‘
overhead time may indude the times to fetch the task operational code, task operands,v
retrieve the results from the APU, v'a.»n(’i store the results appropriately. Therefore, the
overhead time can be further represented as: initiation overheadl tpi, data and 6perand
fetch time tg; task termination Qverheadz teis and»d_ata storage time tg. ‘The overhead
times tp; and t; are acc_umulated'Before a task is executed in a APU and t, and tg are
* "DF/MOHS — Depth First/Minimized Overhead Heuristic Search.

- A mathematical operation executed in an APU.
1: Initiation times may include effective address computation etc.

9: Termination overhead will include such operations as interrupt processing or
~coprocessor polling. ’ '

/1/schultzm/Ahmad/microprocessor -7- December 10, 1987

the overhead times accumulated after a task has been executed in the APU. Four possi-

ble situations may arise:

tioi = tp; +te (if data transfer is unnecessary) L (1)
otherwise,

tooi = thi + ta + te; (with data fetch only) = (2)

t3oi = tpi + tei + tg, (with data storage only) , (3)

taoi = tpi + tg + tei + tg. (with full data trapsfer) | (4)

and the total execution time of task i, t; is then accumulated as:

t = tgoi +ta; (1 =1,.,n) and k=1,2,3,4, ()

If the processing system has one APU, then we may find the overall computation
time by adding the 'prefetchl and ’oerminat’,ion2 times into the task execution time. In a
multi-APU system, if there are more than one APU being serviced by the MPU (Main
Pfocessor), then the MPU is required to perform the appropriate préfetch and termina-
tion operations, éppropriately interleaved with other APU operations so as to minimize
the effect of the overhead on the overall execution time. Kasihara and Narita’s optimal
scheduling algorithm DF /IHS neglected the fact that task initiation and termination
may be as large as the actual APU execution time, eg. a fast floating point APU may
take approximately 500ns to perform an arithmetic operation, whereas the prefetch and
the termination may require more than 100ns each. Kasihara and Narita’s schedulihg
algorithms in this particular case would not select an E/Lppropriately efficient solution (as
the overhead processing is not addressed). Additionally, the host processor might be

requested to service multiple APU’s simultaneously and as only one bus exists

Lprefetch will now be taken to mean operations related to time ty; and tg.
Termination will now be taken to mean operations related to tg and tgj. These are
loose terms used for easy explanation of the problem. : :

/1/schultzm/Ahmad/microprocessor -8- Decembér 10, 1987

(restrictions of our problem) to service the APU’s, a contention for the MPU sefvice
would exist, If the prefetch énd the termination operations can be interleaved at
instances when the service request for the APU is zero, then the optimal schedule may
be obfained by the DF /THS method. If this is not possible, an additional vdelay time will
be inserted in to the overall computation time. We wish to minimize the effect of this

delay time.

Task Representatz'on

Given a set of n computationai tasks T = {Ty, . , Th }, the relatidnship betwbeelrl
each task may be représented in a finite acyclic task graph G. In general, data transfer
only occurs between tasks and their immediate successors. The graph G (see Figure 2)
is a multiple weighted as multiple packets of data may be transferred between a partic-
ular parent and different cbildren t‘asks. In G the task i, T;, is represented as a node,
two extra nodes are included in G, one for the beginning of the computation and one
for the terfnination. Both "of these nodes have zero processing time, and all nodes can

be reached from the entry and exit nodes.

We now describe the scheduling algorithm, it is based around the DF/IHS algo-
rithm except that additional steps are included to minimize the time delay due to over- .
head operations that cause contention for MPU services. The algorithm is divided into

eight steps, each of which are explained in the below.

STEP 1: Determine the level of each task in G. The level |; of task T; is defined as

" the longest path from the exit node to the node of T;:

L =max Y (tgo; + ta) - (8)
k j€7rk» - . ‘.

where 7 is the k™ path from the exit node to task node T;. The time (ts; + t,;) is the-

maximum execution time of task T; in the worst case without contention. If

/1/schultzm/Ahmad /microprocessor -9- December 10, 1987

contention exists, i.e. other APU’s requests the service of the MPU this time might
increase further. This time is dependent on the selected schedule, and therefore ; is an

approximation.

~ STEP 2: We next form a list for each task T; {l;, nj, t4o }, where n; is the number
of immediate successors. From this list, we form a priority table for each task Ti'v
Task’s with the higher priority are those with larger |; and n;, and in that order. That
is, if I; < lj, task j kas higher priority, if I; =1;, then the one with largest number of
children has higher priority. If, |; =1;, and n; = n; then the task having the smallest
overhead time t4,; has the higher priority. This is chosen because the smaller overhead
implies the MPU may begin servicing other APU’s at an earlier time. Here we are mak-
ing an assumption that t4,; is composed mainly of the task initiation, eg prefetch opera-
tions as opposed to termination tasks. If this is not the ‘case, then those tasks with the
smallest initiation time should be considered first, before other tasks are scheduled.
Note in robotic cbmputations, dyadic and monadic operations are usual with one or two
data fetches and one operator code fetch, and one resultant word is output. In robotic

computations initiation tirme is almost equal for all tasks.

STEP 3: At each schéduling step a list of tasks available for immediate execution
{afe(t)} is next formed. A task is assigned “afe’ status, if its parents have been exe-

cuted: , ' 1

Cafe(t) = {Trl"'Trn,}

where n.r is the number of tasks in afe(t).

. /l/schultzm/A,hmad/microprocessor - 10 - December 10, 1987

STEP 4: If m, is the number of processors available for computation at this
scheduling stage, select as many tasks as possible from the afe(t) in the sequence of
priorityv(as proposed earlier) to forrn an execution list {fe(t)}. This forms a branching

o node, for example: fe(t) = {Trl,Trg, .o, Trel; € = min(m,,n,).

STEP 5: Assig‘ntasks in {fe(t)} to the available processors and compute delay.time |
as in the below: o - |

<a> Set an. incremental 'trariabte tq denoting time delay caused by contention for
' MPU's‘ervices equal to zero. |

 For every available processor, check if eny of the tasks in {fe_(t)} are children
of the task T (a task dalready executed in the availatble processors). If task Ty is the
child of ‘Tej, assign the pro'cessor on which T, was executed on to the' task Ty and .

*
remove the task from the fe(t) list and the processor from the m, list .

If the finished task in the processor has other children, other than T,; the MPU
schedule isorganized to store data first so that other tasks may access them. If no other

children other than T,. exists then this is unnecessary.

Time delay caused by the transfer operations can now be accumulated as:
Cta =ta F bk + by + g
If the executed task j has a child, task i and it is in the {fe(t)} list ‘and the task i .is
chosen to execute on the same prOCessor x (see Figure 3). Then tirne tﬁo is the time'
taken to fetch all the data for task i from the parent tasks 1, m and n. The time ty; is

, the 1n1t1at10n time for task i, e.g. thls may mclude the tune needed to fetch the 1nstruc— .

"tlon code and perform the address computatlons The time t ki represents a -storage |

The exact method of processor and task a331gnment is complex and is descnbed in the »
below, but it may be thought as being simple as that.
Note | is the number of tasks in {fe(t)} list and | = mln(ma,nr), ,

/1/schultzm/Abhmad/microprocessor -11- - December 10, 1987

operation for task k not in the {fe(t)} list. Note this time delay ty is not the delay of
the entire computation but it is a delay in this computation step with respect to that of

the no overhead case. This delay is used to calculate the real-computation time.

.We wish to minimize the data transfér from APU to sﬂorage.’ In order to achieve
this we may assign tasks to processors (APU’s) from the {fe(t)} list in an appropriate
mannef. If. a taék r; has a pareI}t in APU P1, then the APU P1 is assigned task ry.
This simplistic algorithm does not produce the optimal results as we illustrate by the
" below example, assume {fe(t)} = {ry, 13, 14 5, Tz} and m, = {Pl, P2, P3, P4, P5}
also the part of the fask graph which is currently being executed is shown in Figure 4.
If we assign APU’s on a priority basis then we may select the following assignment‘
r; —P1; r3—P2 therefore we need to transfer data from P2 to P3 to execute ry. Clearly

from the task graph this is nonoptimal.

 If a task has m—parenfs we may reduce the data transfer to (m-1) data fetches by
assigning an appropriate APU. This is easily accomplished by the below assignment
sf‘eps. First we form a table to illustrate the relationship between processors aﬁd tasks
- interms of their parents. For the example in Figure 4, a table may be formed as per

. below:

/I/schultZrn/Ahmad/microprocessor -12 - December 10, 1987

I Fo I3 L1 s
() \ S() 3lolel1]o]|
P1 2 X X
P2 3 X X | X
| P3 1 X
P4 | 0
P5 0
Table 1

Procéssor Assignment Map

A cross is placed in the table to" ihdﬁcate if a process‘or generated a parent, e.g. P1 coh-
tains the parents of task r1 and r3. Row X,() is used to indicate the number of
parents of a task generated by the processors in {m, } list e.g. £;(rl) = 3. Column ()
indicates the number of children of task M, where task M is generated in a particular
processor eg L (P3) = 1. Clearly those tasks which have one link to the processor list
(Z¢(*) =1) or one processor link to the task list (2y() =‘1), must be assigned first
before assigning other tasks. Sincethese tasks are those with one parent as the case

With ry or alternatively the parents have only one child as is the case w1th r; and P3.

Therefore we schedule r4—+P2 and r1 —>P3, such an ass1gnment reduces data
“"transfer operatlons Followmg these a551gnments, these tasks and processors are"
removed from the a351gnment map and the’ map is changed accordmgly The next set of -

. processor asmgnments is 51m11ar, as 2 «(r3) =1, we must a551g11 r3—+P1 These

1

~ /1/schultzm/Ahmad /microprocessor -13- ' . December 10, 1987

¢

assignment steps reduce thévdata transfer. Remaining tasks are arbitrarily assigned to
processors on priority basis, as X (*) =0, and X, (*) = 0, the case with r; and ro.
Consider a seéond eXample, with the task graph as shown in Figure 5. The result-

ing processof assignment map is then as given by Table 2:

Fg | Iy | Iz | Tyg.

5O\RO |5 5]
lPlv"f E X . <
P2 | 3 | X|X|X
| P3 2 N XX
pa | .~3 x| x | x
Table 2

- Processor Assignment Map for Example 2

Tn this example we select ry—P4, as Yy(ry) = 1. Next Wé remove P4 'rovw‘ an‘d‘xﬂ;
column from the é,ssignment map, and adjust Xy(*), Xy (*) values accordingly. We now}v.
consider rq, if the tim’e to traﬁsfer data for execution of r2. in processor P1 or ‘in proces— ‘
sor P2 is éxactIy fhe same, the task may be chosen to exe'ciut‘e in any of the two proces-
sors, OthefWise the prbcessor chosen is based on minimum data transfer tinie. If for
example P1 is chosen, then P1 and r, must be removed from the assignment map, and
(), Ey(') must be adjusted aécofdingly. We continue to assign ﬁrocessors in_ this
| manner, if at any s_tep‘ the Xy(+) or Xy(+) value should become equal to one, the task 1s
:iss_ighed the corresponding processor on which one of its parents was generated.v The

process is repeated down the priorit‘y‘list until all v-t}ie.'process‘ors‘ are assigned. These

: /l/schultzm‘/vA:hmad/’microprocessor S14- , | o ‘. December 10,1987 |
| ~ass‘ignmentrules can be recursively 'programmed in a comoa‘ct manner. v

Reﬂectrng on the above algorrthm, the processor assrgnment method will yreld ‘
optrmal results, if all the data transfer operatlons have approxrmately the same transfer
. ,tlme." In robot dynamrcs,, klnematlcs and tra_]ectory computatlons most of the tasks
,require the same’ data-,transfer time. Tn such a case, the algorithm will yield optimal
results. If hoyvever, theyloperations have varying unit data transfer times the algorithm
must be adjusted to select assignments which mlnimize the time of the transfer, as

~ opposed to minimizing the number of transfers.

<c> In the above we ass1gned all the tasks that have parents Whlch executed on
lthe Processors 1n‘~the {ma}. list:: "'We now ass1g11 the remalnrng tasks W1th the avallableb
processors in their respective prlorlty, until all the tasks in {fe t)} 11st are assrgned The
time. delay t d is accumulated approprlately for each assignments. |

Note that if '«tWo tasks in the {fe(t)} list are of the same level then task with the

lower overhead may be aSsigned' first.

'STEP 6: The time to poll ‘the processors to see if the task has ﬁnlshed may now

o

' accumulated this time is:

Ctg =) b
) cieft

where f*is the set of tasks which have completed execution, '

Accum‘ulation of Time,—D;eldy into C'omputation Time

The computatlon tlme is determlned on an 1ncremental basis and it is 1llustrated in

: _'Flgure 6. Consrder at tlme to, MPU schedules task jin APU1 and task k'in APU2 then o

. "t1me delay of tdl and tdz 1s, assomated with each of these operatlons respectlvely
B ‘I'Assume also task m is in execut1on in APU X.. Then after APUl is scheduled tlme Wlll‘

'read to = to + tdl After APU2 is scheduled it Wlll read to = to + tdl + td2 Thea_next -

/1/schultzm/Ahmad /microprocessor - 15 - December 10, 1987

time processor will be required to service an APU will be at t3

*

=t3 + ’min{(taj —tag), tak, (bam — tar — tqz)}- The computation time can be further

determined in this stepwise manner.

STEP 7: If the entire task graph is executed, i.e. the exit node is reached, go on to

Step 8, otherwise go to Step 3.

STEP 8: At this point one schedule is obtained. If the task graph is complicated or
if the graph is large we can stép. Assuming the solution is satisfactory. When the data
transfer and contention problems are negligible, this solution is similar to CP J/MISF. If
interprocessor communication is lengthy and contention problem is appreciable, a better
solution than CP/MISF can be obtained by the above steps. This is because the above
method of assigning tasks to processors reduces delay due to contention. If the gen-
erated solution is not satisfactory or it is not very close to the optimal one backtracking
may be employed to search for a better solution. In those cases (in ‘which optimal solu-
tion time is unknown) an estimate of the ideal lower bound on the computation time
can be used to compare with the present solution and if a better solution is desired,
then the present solution can be used as an initial solution. Next, utilizing branch-and-
bound method, we can backtrack and search for other possible solutions that ﬁavé a
shorter length. For that purpose, the present solution can be used as an initial uppef
bound. Thus by continually backtracking from the terminal node to other possible

branches closer to the entry node, a desirable computation time may be obtained..

The procedure for backtracking and the determination of new branching nodes is
now explained as follows: Assiming there are m coprocessors altogether, at a certain
branching stage, if there are n; ready tasks and m, idlelprocessors available for execu-
tion, and if n, Z m, < m, then the number of branching nodes (possible choice of

local schedules) are:

i

/l/schultzm/Ahmad/microprocéssor -16 - December 10, 1987

np =Y "Cp="Cy+"Cy + .. +MCphe
. k=0

~where m' =m, and ""C, corresponds to selecting (m,) processors idle, and the (m—m,)
processors would currently be active. If m, = m, the sum is carried over the range
k = 1..m, and m' =m. This would correspond to having at least one processor being
active. If m =m, > n,, thenlwe reassign the above summatfion to be carried over the
range, k =1..n, and m' =n, = min(m,,n;). If m > m, > n, then k =0..n, as this

corresponds to having (m — m,) processors being active.

We seek to eliminate those nodes which will not j'ield a better solution than the
one selected by the present schedu.le. The way we achieve this is by the following elimi-
nation rule. If the seleéted node will not lead to a solution which will be better than the
current solution within an ap[')roxi.mation of the lower bound, we delefe it from the
search list. The lower bound onj the computation time of a new node is given in the

below:
tlb,ound = [max(t€i> tt”Z)] (1 + e)

~ where,

- tg = max {Li} +to
: i

where max{li} is the critical path length from current node to the terminal node ih the
task graph. | o

o . ‘
a'nd? - by = — E ’(tai + J['oi) + t,

. M ey v
where the set of unassigned tasks from the current node is U and i€ U. The time t, is
the time taken to arrive at the cnrfent branch node from the entry node utilizing the

current schedule. The constant e is an arbitrary number and it is chosen as 0 < e < 1.

/1/schultzm/Ahmad /microprocessor - 17 - L December 10, 1987

After the initial solution is obtained and it is not within t;poynq for the graph, we
backtrack from the lower level branching node to higher level nodes, using the selection |
rule and eliminafion rule to seleét a new branching node which appeérs yields a better
schedule. Next we branch to STEP 5 to generate anbther schedule and proceed to
check if it is within tj,oyng of the graph. If it is not, we select another node to back-
track for a solution Withinlthe tiboung Of the graph. We repeat this process until the

entire tree is searched or the desired schedule is obtained.

The scheduling algorithm is represented in the flow charts shown in Figure 7.

- A Simple Example of the Scheduling Algorithm

An example task graph is shown in Figure 8. It consists of nine tasks iﬁcluding an
entry node and an exit node. Two schedules were generated one by our algorithm
(DF /MOHS) and one by DF/IHS for varying number of proceséors. The results are
summerized in Figure 10 for DF/MOHS. It is seen that the computation can be carried
out in 17.33 time units for one processor. The results for the DF/THS algorithm are
summerized in Figure 9. The computation time for the DF /THS algorithm is 19.00 units
of time for one processor. This because DF /THS does nof minimize datartransfers, eg in

steps involving Task 2—Task 5, Task 5—Task 7 and Task 4—Task 6.

Note that overhead transfer time has been added to the task executioﬁ time in the
DF/IHS algorithm. The effect of contention and data transfer is also clear if we con-
sider the schedules with two processors, DF/MOHS has a procéésing time of 10.08,
whereas DF /THS has a processing time of 12. With three processors DF /MOHS vresults

in a processing time of 8.08 and for DF /IHS this is 10.5.

On examination of task graph it is seen that at most three parallel execution paths
exist for Ty, Ty and Tj, for remaining part of the graph two such paths exists. Because
" of such a small parallelism the contention problem is not so significant. However, it

does exist and it contributes to the relative increase in the computation time for the

/l/schultzm/Ahmad'/microprocessor S -18- ST , Decemher _1»0,'198‘7

DF /IHS schedule By m1n1m1z1ng the data transfers in DF /MOHS we have reduced the »
: MPU serv1ce request therefore reduced the effect of contentron Thrs will be further '

‘ born out_,by the SJmula‘tlons‘ of the robot control tasks.,

Surrrmary of Algorlthm Advantages |
It 1s dlfﬁcult to rrgorously prove that our algonthm DF /MOHS y1elds a near |
' roptlmal schedule in presence of overhead and contentron for MPU services. However,
‘extens1ve simulation have shown the following:

(1) " It can be. execut,ed ln approximately the sarne time as DF/ II-IS and CP/MISF algo-
‘(11) Our algorlthm con51ders the overhead 1nvolved w1th data transfer and proceed to

reduce 1t by generatlng a schedule whrch minimize it. -

'(111) By mrnrmrzmg the data transfer operatlons we reduce the contentron for MPU ser-

‘ vrces, and 1f contentlon oceurs we accurnulate 1ts eﬁ'ect in the overall schedule

3. The Number of APU’s Needed for a Robot Controller |

_In order to determrne the optimal number of APU’s needed to perform the forward .
l{lnernatrcs, the 1nverse k1nemat1cs, the inverse dynamrcs and traJectory _computatlons'
:, we us"ed the VDF /MOHS algori:'t‘hrn to g‘enerate the computation time for varying number
of APU’s From :—the'se‘ set of times we Were‘ able to determine the loptirnal number of
o APU’s and ob'tain"the computation'ti'rne,'these tirnes included overhead and. effects of

i contentron In our calculatlons we used the data for the Motorola MCG8881 APU the

,'computatlon tlmes are summarlzed in Table 3.

/1/schultzm/Ahmad/microprocessor -19 - . December 10, 1987

Approximate Approximate -
Computation Overhead time {us)
Operation time (us) 178 te te tg
subtraction 4.66 0.24 | 0.96 | 0.18 | 0.48
addition 4.66 0.24 | 0.96 | 0.18 | 0.48
‘multiplication 5.87 0.24 | 0.96 | 0.18 | 0.48
division - 7.78 0.24 | 096 | 0.18 | 0.48
sqrt 7.90 0.24 | 0.48 | 0.18 | 0.48
- sincos 28.47 0.24 | 0.48 | 0.18 | 0.96
 atan? 33.38 0.24 | 0.48 | 0.18 | 0.48
negate 3.59 0.24. | 0.48 | 0.18 | 0.48
Table 3

Computation time for the Motorola MC68881 APU used in our Simulations-

Computation Tasks:

For our computation we used the dynamical and kinematic models of the PUMA
manipulator. The forward kinematics of the PUMA ‘arm is summarizéd in the
Appendix-Ai, the inverse kinematics is summerized in the task graph of Appendix-A2.
Sevénty fouf APU oper’atidns are.necessary to compute the forward kinematics and 164
operations are necessary tp compute thé invefse kinematic operations. The Newton-
Euler inverse dynamic computatioﬁs of the PUMA arm are summerized in the
Appendix-A3, 154 steps or approximately 400 APU computations are ﬁecessary to com-~
pute the joint feedforward torques given the. joint posi£ion velocity a,nd accelerations.
The cartesian trajectory computation as described in Paul’é book in termsv of .drive

matrix are summerized in Appendix-A4. Two hundred and fifty five APU-operations

/1/schultzm/Ahmad/microprocessor - 20- December 10, 1987

are necessary to compute the drive matrix.

K

Summary of Simulation Results

The computation times aﬁd schedules were generated by DF/IHS and by the
DF /MOHS algorithm. In all simulations overhead is included. In order té show the‘
effect of contention, a set of simulations for DF/THS and DF /MOHS were prefofmed
without accumulating the effect of contention, and énother set accumulates the effect

due to contention.

The factor e was set to ‘0..05 for those simulations not accumulating the effect of
contention, and e is set to 0.09 for those simulations accumulating the effect of conten-
tion. A computer time limit was imposed on the simulations by the UNIX 4.3 Operat-
ing ‘System running on VAX 11/780. In those simulations in Whichb conteﬁtion was

accumulated, this time limit was exceeded.

Figure 11 shows the simulation f(‘)r‘the forward kinematics. It is seen from the Fig-
ure 11 that DF /MOHS .without contention produces better results than DF/IHS as
expected, as DF /MOHS minimizes data transfer. In the case with contention
DF/MOHS also ‘produces better solution than DF /THS With contenfion, as minimizing
data transfer reduces the effect of contention. Note aléo that in the DF JTHS simulation
with contention a ‘kink" is prgsent, this is because in pfesence of contention it is difficult
to get the near‘éptimal solution. No such kink is present'ih DF/MOHS simulation‘,
mainly because of the 'feasons_ indicated earlier i.e. With Ibnin"imi»z'ed data transfer, a

smaller contention exists, therefore an acceptable solution is found quite qufckly.

F rom F igure 11 it is apparent that approx1mately six APU’S lead to an. optlmal process—

ing time of 147 s for the forward klnematlcs

Slmulatlons for the inverse. kmematlc operatlons are shown in Flgure 12. The

o optlmal APU ut111zat1on occur for ﬁve APU’s with a- processmg time of 416us.

/1/schultzm/Ahmad/microprocessor -21- : December 10, 1987

Simulation results for the inverse dynamics is shown in Figure 13. Here we note

that the optimal processing time of 1213 us occurs for six APU’s.

The drive matrix computations can be carried out in approximately 400us by six
APU's. | |

From our simulations it is seen that with six MC 68881 APU’s we may perform the
forward kinematic, inverse dynamic, inverse kinematic, drive matrix computations using
floating point arithmetic in approximately ~ 2500us using a very simple parallel pro-

cessing architecture.

It is interesting to note that different parallelism exist for each of the tasks and it is

reflected in the way the computation time change with increasing number of APU’s.

CONCLUSION

In this paper we presented an algorithm which extends the method of DF/IHS to
include overhead and contention. The algorithm seeks to minimize overhead by reduc-
ing the number of data transfer operations between the processors and in this way
reduces the effect due to contention for MPU services. This result is verified from simu-

lations of robot control tasks for varying number of APU’s.

We have also presented a simple multi-coprocessor (APU) robot -controller which
may be constructed utilizing the Motorola MC 68881. Such a device has optimal perfor-
mance with six APU’s. Such a controller is able to perform kinematics, inverse dynam-
ics and trajectory computétions using floating point arithmetic in approximately 2.5ms.
It is sufficiently modular to allow adaptation for other ﬁomputational purposes. A fun-
daniental component of the design of this robot controller is an accurate schedule which
not only producés an accurate estimaté of the computation time but also produces an
MPU schedule whic_h has a minimum number of operations, allowing easy programming

and implementation.

/1/schultzm/Ahmad/microprocessor -22- , December 10, 1987

REFERENCES

[1]

2]

3]

[4]

[6]

[8]

[9]

[10]

Ahmad, 5. and lli, B'.V “Optlmal Des1gn of 1 \/lult1ple Arlthmemc Processor-Based
Robot Controllers,” Proc 1987 IEEE Robotlcs and Automatlon Conf Raleigh,
N.C.

Ahmad, S., “On the Design of Special-Purpose Computetional .Structures for
Robot Control: Design Constraints,” Proc. 1986 Applied Motion Control Conf.,

Minneapolis, Minnesota.

Arya, S. “An Optimal Instruction-Scnednling Model for a Class of Vector Proces-
sors,”’ IEEE Trans. Comp., Vol. C-34, No. 11, Nov. 1985, pp. 981-994. |

Coffman, E.G. et al. Computer and Job Shop Scheduling Theory, New York,
Wiley, 1976. _‘ |

Craig, J. J. Introduction to Robotics, Addison-Wesley Publishing Company, 1986.
Fernandez, E. G. and Bussel, B., “Bounds on the Number of Processors and Time

for Multlprocessor Optimal Scheduler, IEEE Trans. Comp., Vol C-22, No 8, Aug.

1973, pp. 745-751.

Fung, K. T. and Torng, H. C. “On the Analysis of Memory Conflicts and Bus
Contentions in a Multilole-Microprocessor System,” IEEE Trans. Comp. Vol. C-
97, No. 1, Jan. 1979, pp. 28-37.

Kasahara, H., and S. Narita, ‘“Practical Multiprocessor Scheduling Algorithms for
Efficient Palrallel Processing,” IEEE Trans. Comput., Vol.‘C-33, 1984, No. 11. |
Kasahara, H., and S Narita, “Load Distribution Among Real-Time Central Com-

puters Connected via Communication Media,"’v Proc. 9th lFAC World Cong.,

1984, Oxford: Pergammon.

Kasahara, H. and Narita, S., ‘“‘Parallel Processing of Robot—Arm Control Compu-

tation on a Multimicroprocessor Systems,” IEEE Journal of RoboticsAutomat.,

[11]

: /l/schultzm/Ahmad/microp,rocessor S -23- o _December'IO, ‘1987

Vol RA 1, No 2 June 1985, pp 104 113.

L1, C. J. and Wah B W, “Computatlonal Eﬂiclency of Parallel Processrng» |

Approxrmate Branch—and Bound Algorlthm,” Proc Int. Conf Parallel Process- o S

- 1ng, 1984, Pp- 473- 480..

[12]

Luh J Y. S and Lrn, C. S “Scheduhng of Parallel Computatlon for a

Computer—Controlled Mechamcal Mampulator,’.’ EEEE Trans Sys Man andi

3]

Cyber Vol. SMC 12, No 2, March/Aprll 1982, pp. 214-234.

Luh J Y. S Walker, M. W and Paul R. P. C “On- hne Manipulator Scheme

- for Mechanlcal Robots,” Journal of Dynamlc Systems, Measurement and Control -

| »Trans ASME Vol 102 June 1980, pp. 69-76.

[14]

5]

18]

Marsan, M A Balbo, G and Conte, G., 1 ‘Comparatlve Performance Analysrs of

k Single Bus Multlprocessor Archltectures,” IEEE Trans Comp . Vol. C 31, No 12

. Dec. 1982, pp. 117~9-1191.

M068881 Floatlng-Pomt Coprocessor User’s Manual Motorola, Inc 1985.

ngam, R. and Lee, C S G “A Multlprocessor Based Controller for the Control

.of Mechanlcal Manlpulators,” IEEE J. Robotlcs Automat Vol RA-1, No 4, Dec.

| 85, pp. 173-182.

Paul, R P Robot Manlpulator Mathematics Programming, and-Co‘ntro_l.‘ MIT

'Press, 1981

: Watanalee, T et. al “Improvement 1n the Computlng Trme of Robot Manlpula—» :
tors U_slng a Multlmlcroprocessor,, Trans ASME Vol 108 Sept 1986, pp 190-:‘:. R

‘:f,_' theng', ’Y . and Hemami, H, “Computatlon of Multrbody System Dynamlcs by a3' |

Multrprocessor Scheme,” IEEE Trans Sys Man, and Cyber, SMC 16 No 1, :

vJan [Feb. 1986, pp. 102- 110 o

/1/schultzm/Ahmad/microprocessor -24- . : ~ December 10, 1987

[20]

[21]

[22]

[23]

[24]

[25]

Lathrop, RLH., “Parallelism In Manipulator Dynamics,” Int. Journal of Robotics
Research, MIT Press, Vol. 4, 1985.

Nash, G., “A Systolic/Cellular Computer Architecture for Linear Algebraic
Operations,”” Proceedings of the 1985 IEEE Conference on Robotics and Automa-

tion, St. Louis, MO, April 1985.

Orin, D.E., H.H. Chao, Olson, K.W., Schravder,' W.W., “Pipeline/Parallel Algo-
rithms for Jacobian and Inverse Dynamic Comiputations,” Proceedings of the

IEEE Conference on Robotics and Automation, St. Louis, MO, April 1985.

A.K. Bejezy, “Robot Arm Dynamics and Control,” JPL, Pasadena CA, memo 33-

669, Feb. 1974.

J.M. Hollerbach, ‘“A Recursive Lagrangia-n Formulation of Manipulator Dynamics
and a Comparative Study of Dynamics Formulation Complexity,” IEEE Trans.

Systems, Man, Cybernetics, Vol. SMC-10, No. 11, pp. 730-736, Nov. 1980.

Lee, C.S.G., Chang, P.R., “Efficient Parallel Algorithm for Robot Inverse Dynam-
ics Computation,” IEEE Trans. Systems, Man Cybernetics, Vol. SMC-16, No. 4,

pp. 532-542, July 1986.

/1/schultzm /Ahmad/microprocessor - 25- December iO, 1987
APPENDIX A1

TN: Task number

FN: Function number
NC: Number of children
LC: List of children

TN FN NC LC
1 5 12 24, 25, 27, 28, 37, 39, 42, 43, 52, 53, 58, 60
2 5 6 7,8, 11, 10, 48, 49
3 5 4 7,8, 10, 11
4 5 6 14, 15, 21, 22, 33, 38
5 5 6 13, 18, 33, 35, 38, 46
6 5 4 13, 15, 18, 21
7 2 1 9
8 2 1 9
9 0 6 19, 30, 35, 45, 51, 54

10 2 1 12 S

11 2 1 12 .

12 1 6 17, 31, 34, 46, 50, 55 :

13 2 2 14, 22

14 2 1 16

15 2 1 16 .

16 0 ' 2 17, 30

17 2 1 20

18 2 2 19, 31

19 2 1 20

20 1 2 25, 27

21 2 1 23

22 2 1 23

23 1 2 24, 28

24 2 1 26

25 2 1 26

26 0 2 71, 69

27 2 1 29

28 2 1 29

29 1 2 65, 72

30 2 1 32

31 2 1 32

32 0 2 66, 68

33 2 2 34, 45

34 2 1 36

35 2 1 36

36 0 2 37, 42

37 2 1 40

38 2 2 39, 43

39 2 1 40

40 0 1 41

41 7 2 68, 72

/ lr/‘schultzm/Ahmad/ microprocessor ' -26 - ' " December 10, 1987

TN: Task number

FN: Function number
NC: Number of children
LC: List of children

TN FN NC LC
42 2 1 44
43 2 1 44
44 1 2 66, 71
45 2 1 47.
46 2 1 47
47 1 2 65, 69
48" 2 1 56 -
49 2 1 82
50 2 1 56
51 2 1 62
52 2 1 61
53 2 1 59
54 2 1 57
55 2 1 63
56 0 1 57
57 1 2 58, 60
58 2 1 59
59 1 1 74
60 2 1 61
61 0 1 74
62 0 1 63
63 0 1 64
64 7 1 74
65 2 1 " 67

66 2 1 67
67 1 - 1 74
68 2 1 70
69 2 1 70
70 1 1 74 .
71 2 1 73
72 2 1 73
73 1 1 74
74 8 0

/1/schultzm/Ahmad/microprocessor ‘ - 27 -

Function Type and Computation Time

f
’

FN = Function number
FT = Function type

CT = Computation Time

December 10, 1987

FN FT CT ty t t, t,
0 tfadd , 4.66 0.24 0.96 0.18 0.48
1 tfsub 4.66 0.24 0.96 0.18 0.48
2 tfmul 5.87 0.24 0.96 0.18 0.48
3 tfdiv 778 0.24 0.96 0.18 0.48
4 tfsqrt - 7.90 0.24 0.48 0.18 0.48
5 tfsincos 28.47 0.24 0.48 0.18 0.96
6 tfatan? 33.38 0.24 0.48 0.18 0.48

7 tfneg 3.59 0.24 0.48 0.18 0.48
8 exit 0.0 - 0.0 0.0 0.0 0.0

Function type key

0 = Floating addition

1 = Floating subtraction

2 = Floating multiplication
3 == Floating division

4 = Floating square root

5 = Floating sine cosine

6 = Floating arc-tangent

7 == Floating negate

8 = Null function

- /1/schultzm/Ahmad/microprocessor

=3
© 00 N3 D Ul B LI PO e >

B 00 00 o W W W W W MDD DD DNDRIR D H b b b e e e
C WO N U A WNFHEOWOWNNOD U W EHEOWOW=I U i Wiw = O

S|
2z

APPENDIX A2

e
Q

Pt b b bl ek DD R b RO b ke DO R DD DD DD b b b b DD b ke b DD R b kel bd f b b e DD b= b bR e e

-928-

TN:
FN:
NC:
LC:

December 10, 1987

Task number
Function number
Number of children
List of children

LC

O 00 N DD T LT
—
~

Do
(=2}

16
16

15

15

19

17, 22
18

18

19

20, 24
22

25

23

24

25

27, 42
30, 31, 44, 45, 47, 49, 57, 61, 68, 70, 78, 82
28, 34 '
29

33, 38
32

32
33,39 .
37

35

36, 39
37

41

40

40

41

/1/schultzm/Ahmad/microprocessor - 29 - ’ " December 10, 1987

' TN: Task number
FN: Function number
NC: Number of children
LC: List of children

TN FN NC LC

41 6 2 42, 43

42 1 1 104 :
43 5 9 47, 49, 51, 64, 68, 70, 72, 85, 98
44 2 1 46 '
45 2 1 46

46 1 1 54

47 2 3 48, 56, 77

48 2 1 52

49 2 3 50, 60, 81

50 2 1 53

51 2 1 52

52 1 1 53

53 1 1 54

54 6 1 55 _
55 5 10 56, 57, 60, 61, 64, 77, 78, 81, 82, 85
56 2 1 58 '
57 2 1 58

58 0 2 59, 89

59 2 1 66

60 2 1 62

61 2 1 62

62 1 2 63, 93

63 2 1 67

64 2 2 65, 97

65 2 1 66

66 1 1 67

67 1 4 76, 90, 94, 98

68 2 2 . 69, 90

69 2 1 73

70 2 2 71, 94

72 2 1 74

73 0 1 75

74 7 1 75

75 1 4 76, 89, 93, 97

76 8 1 104

77 2 1 79

78 2 1 79

79 1 1 80

80 2 1 87

81 2 1 83

82 2 1 83

83 0 1

84

/1/schultzm/Ahmad /microprocessor

TN

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

g
z

O O = O DN N NN NN NN =N NN

- 30 -

TN:

FN

NC:
LC:

Task number

: Function number
Number of children
List of children

Z
Q

= Y S S e

December 10, 1987

LC

88
86
87
88
103
91
91
92
101
95
95
96
101
99
99
100
102
102
103
104

/l/schultzm/Ahfnad/microprocessor

Function, Type and Computation Time

-31-

FN = Function number
FT = Function type

CT = Computation Time

December 10, 1987

Function type key

0 == Floating addition
1 == Floating subtraction

2 = Floating multiplication

' 3 = Floating division

= ‘Floating square root

5 = Floating sine cosine

6 = Floating arc-tangent

7 = Floating negate
8 == Null function

FN FT CT 6y, t; t.. te
0 tfadd 4.66 0.24 0.96 0.18 0.48
1 tfsub 4.66 0.24 0.96 0.18 0.48
2 tfmul 15.87 0.24 0.96 0.18 0.48
3 tfdiv 7.78 0.24 0.96 0.18 0.48
4 tfsqrt 7.90 0.24 0.48 0.18 0.48
5 tfsincos 28.47 0.24 0.48 0.18 0.96
6 tfatan2 33.38 0.24 0.48 0.18 0.48
7 tfneg 3,59 0.24 0.48 0.18 0.48
8 exit 0.0 0.0 0.0 0.0 ,

/l/schultzm/Ahmad/microprocessdr -32- ' * December 10, 1987
APPENDIX A3

TN: Task number

FN: Function number
NC: Number of children - -
LC: List of children

TN FN NC LC
1 10 7 4, 5,10, 11, 14, 19, 20
2 10 4 6,12, 16, 21
3 10 2 7,22
4 5 1 5
5 5 1 8
6 5 1 7
7 10 1 8
8 2 1 9
9 6 2 146, 148

10 6 1 11

11 5 1 13

12 5 1 13

13 2 1 150

14 5 2 15,17

15 10 7 25, 26, 31, 32, 35, 40, 41

16 1 18

17 11 1 18

18 2 4 27, 33, 37, 42

19 5 1 20

20 5 1 23

21 5 1 22

22 10 1 23

23 2 1 24

24 7 2 28, 43

25 8 1 26

26 8 1 29

27 8 1 28

28 3 1 29

29 3 1 30

30 6 2 137,139

31 9 1 32

32 8 1 34

33 9 1 34

34 3 1 141

35 7 2 36, 38 :

36 1 7 46, 47, 52, 53, 56, 61, 62

37 7 1 39 '

38 11 1 39

39 3 4 48, 54, 58, 63

40 8 1 41

/1/schultzm/Ahmad/microprocessor - 33 - December 10, 1987

TN: Task number

FN: Function number
NC: Number of children
LC: List of children .

TN EN NC LC
41 . - 8 1 44
42 8 1 43
43 3 1 44
44 3 A 1 45
45 7 ' 2 49, 64
46 8 1 47
47 8 1 50
48 8 1 49
49 3 1 50
50 3 1 51
51 6 2 128, 130
52 9 1 53
53 8 1 55
54 9 1 55
55 3 1 132
56 7 2 57, 59
57 1 5 67, 68, 73, 74, 77
58 7 1 60 . :
59 11 1 60 \
60 3 3 69, 75,79
61 8 1 62
62 8 1 65
63 8 1 64
64 3 1 65
65 3 1 66
66 7 2 70, 82
87" 8 1 68
68 8 1 71
69 8 1 70
70 3 1 71
71 3 1 72
72 6 2 121, 123
73 9 1 74
74 8 1 76
75 9 1. 76
76 3 1 124
77 7 2 78, 80
78 1 5 83, 84, 89, 90, 93
79 7 1 81
80 11 1 81
81 3. 3 ' 85,91, 95
82 7 c 2 86, 98
8 1 84

83

/1/schultzm/Ahmad/microprocessor

TN

84
85
86
87
88
89
90
g1
92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112

- 113

114
115
116
117
118
119
120

121
122
123
124
125
126

=
zZ

P GO QO 00 ST GO ST QO G000 ST ST W 00D WW OO DWW W NTWH I NWO 0O 0 WwW s

-34-

December 10, 1987

TN: Task number

'N: Function number
NC: Number of children
LC: List of children

Z
Q

Lc

87
86
87
88 :
114, 116 .
90 .
92
92
117
94,96 |
99, 100, 105, 106
97
97 |
101, 107"

[y
o
[\

100
103
102
103 ‘
104 ‘
109, 110,
106 :
108 ;
108 j
111 :
113 :
11
112, 115 |
154
114
120
117
118
, , 118
119, 122
154
121
127
124
125
125
126, 129

[Y S VG S TG G S T S e S T e T T T o T T e N T o N e e N I e e) R e el I

(321
>

/1/schultzm/Ahmad/microprocessor -35- December 10, 1987

TN: Task number

FN: Function number
NC: Number of children
LC: List of children

TN

FN NC LC

127 7 2 128, 131

128 3 1 136

129 7 1 132

130 8 1 133

131 8 1 133

132 3 1 134

133 3 1 134

134 3 2 135, 138

135 1 1 154

136 7 2 137, 140
. 137 3 1 145
138 7 1 141

139 8 1 142

140 8 1 142

141 3 1 143

142 3 1 143

143 3 2 144, 147

144 1 1 154

145 7 2 146, 149

146 3 1 154

147 7 1 150

148 8 1 151

149 8 1 151

150 3 1 152

151 3 1 152

152 3 1 153

153 1 1 154

154 0 0

/1/schultzm/Ahmad/microprocessor

Function Type and Computation Time

- 36 -

FN = Function number
FT = Function type

CT = Computation Time

December 10, 1987

FN FT CT by, b t, b
0 exit 0.0 0.0 0.0 0.0 0.0
1 tfadd 4.66 0.24 0.96 0.18 - 0.48
2 tf2add 9.32 0.48 1.92 0.36 0.96
3 tf3add 13.98 0.72 2.88 0.54 1.44
4 tfmul 5.87 0.24 0.96 0.18 0.48
5 tf2mul 11.74 0.48 1.92 0.36 0.96
6 tf3mul 17.61 0.72 2.88 0.54 1.44
7 tf4m2a 32.80 1.44 5.76 1.08 2.88
8 tf6m3a 49.20 2.16 8.64 1.62 4.32
9 tf9mba 80.80 3.6 144 2.7 7.2

10 tfload 4.66 0.24 0.96 0.18 0.48

11 tf2mil 16.40 0.72 2.88 0.54 1.44

12 tf3load 13.98 0.72 2.88 0.54 1.44

Function type key

0 = Null function
1 = Floating add

2 = Floating (2x1) vector addition
3 = Floating (3x1) vector addition
4 = Floating multiplication

5 = Floating vector x scalar (one element = 0)

6 = Floating vector x scalar

7 = Floating (3x3) matrix x vector (three elements = 0)
== Floating (3x3) matrix x vector (four elements = 0)

9 = Floating (3x3) matrix x vector
11 = Floating 3x3 matrix (four element = 0) x (3x1) vector
12 = Floating (3x1) vector addition

/1/schultzm /Ahmad/microprocessor - 37 - December 10, 1987
APPENDIX A4

TN: Task number

FN: Function number
NC: Number of children
LG: List of children

TN FN- NC LC
1 0 2. 4,15
2 0 2 5, 16
3 0 2 6, 17
4 1 1 7
5 1 1 7
6 1 1 8
7 0 1 8
8 - 0 1 9
9 3 4 13, 15, 16, 17

10 0 1 12

11 0 1 12

12 0 1 13

13 2 1 14

14 4 3 24, 25, 26

15 2 2 18, 24

16 2 2 19, 25

17 2 2 20, 26

18 1 1 21

19 1 1 21

20 1 1 22

21 0 1 22

22 0 1 23

23 3 3 97, 28, 29

24 1 1 27

25 1 1 28

26 1 1 29

27 2 1 135

28 2 1 148

29 2 1 161

30 0 1 34

31 0 1 34

32 0 1 35

.33 1 1 36

34 1 1 36

35 1 1 37

36 0 1 37

37 0 1 38

38 3 1 42

39 0 1 41

40 0 1 41

/1/schultzm/Ahmad/microprocessor - 38- December 10, 1987

TN: Task number
FN: Function number

- NC: Number of children
LC: List of children

TN FN NC LC
41 0 2 42, 44

42 2 1 43

43 4 3 62, 63, 64
44 1 2 45, 46

45 0 2 - 47, 51

46 0 1 47

47 2 1 48

48 3 1 49

49 6 3 50, 56, 62
50 0 1 51 '
51 1 2 53, 55

52 0 1 53

53 2 2 57, 63

54 0 1 55

55 2 2 58, 64

56 1 1 58

57. 1 1 59

58 1 T 60

59 0 1 60

60 0 1 61

61 - 3 3 65, 66, 67
62 1 1 65

63 1 1 66

64 1 1 67 o
65 2 2 135,138 -
66 2’ 2 148, 151 '
67 2 2 161, 164
68 0 2 71, 82

69 0 2 72, 83

70 0 2 72, 83

71 1 1 74

72 1 1 74

73 1 1 75

74 0 1 75

75 0 . 1 76

76 3 4 80, 82, 83, 84
77 0 1 79

78 50 1 79

79 0 1 . 80

80 2 1 81 .
81 4 3 . 91, 92, 93
82 2 2 85, 91

83 2 2.

86, 92

/1/ schultzm /Ahmad/microprocessor

TN

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113~

114

115 .

116
117
118
119
120
121
122
123
124
125
126
127

g
Z

O O MR P NONOFR OO WNOOFARNOSDOOWOOFEMFIRMROOOIDNIMNMDNREMFEFWOOO M H - N

-39 .

TN: Task number

FN: Function number
NC: Number of children
LC: List of children

2
Q

e e e R R i i e e R e R e e e e il SR U S T)

December 10, 1987

LC

87, 93
88

88

89

89

90

94, 95, 96
94

95

96

138, 142
151, 155
164, 168
100

101

102

103

103

104

104

105

109

108

108
109, 111
110
129, 130, 131
112, 113
114, 118
114

115

116
117, 123, 129
118
120, 122
120
124, 130
122
125
126

126

127

127

128

/l/schultzm/Ahmad/xhicroprocessor ‘ - 40 - December 10, 1987

TN: Task number

FN: Function number

NC: Number of children"
‘ . LC: List of children

TN FN NC LC
128 3 3 132,133, 134
129 1 1 132

130 1 1 133

131 1 1 134

132 2 1 142

133 2 1 155

134 2 1 168

135 0 1 136

136 2 2 137, 140
137 2 1 225

138 0 1 139

139 2 2 140, 146
140 0 1 141

141 2 1 225

142 0 1 143

143 2 2 144, 146
144 2 1 145

145 6 1 225

146 0 1 147

147 2 1 225

148 0 1 149

149 2 2 150, 153
150 2 1 225

151 0 1 152

152 2 2 153. 159
153 0 1 154

154 2 1 225

155 0 1 156

156 2 2 157, 159
157 2 1 158

158 6 1 225

159 0 1 160

160 2 1 225
. 161 0 1 162

162 2 2 163, 166
163 2 1 225
164 0 1 165

165 2 2 166, 172
166 0 1 167

167 2 1 225

168 0 ‘ 1 169
169 2 2 170, 172
170 2 1 171

171 6 1 225

/1/schultzm /Ahmad/microprocessor v - 41 - December 10, 1987

TN: Task number

FN: Function number
NC: Number of children
LC: List of children

TN FN NC LC
172 0 1 173

173 2 1 225

174 0 1 175

175 2 2 176, 179
176 2 1 225 -
177 0 1 178

178 2 2 179, 185
179 0 1 180

180 2 1 225

181 0 1 182

182 2 2 183, 185
183 2 1 184

184 6 1 225

185 0 1 186

186 2 1 225

187 0 1 188

188 2 2 189, 192
189 2 1 225

190 0 1 191

191 2 2 192, 198
192 0 1 193

193 2 1 225

194 0 1 195

195 2 2 196, 198
196 2 1 197
197 6 1 225

198 0 1 199

199 2 1 225

200 0 1 201 o
201 2 2 202, 205
202 2 1 225

203 0 1 204

204 2 2 205, 211
205 0 1 206

206 2 1 225

207 0 1 208 -
208 2 2 209, 211
209 2 1 210

210 6 1 225

211 0 1 212

212 2 1 225

213 1 1 223

214 1 2 1218, 219

/1/schultzm/Ahmad/microprocessor ‘ -42 - _ December 10, 1987

TN: Task number

FN: Function number
NC: Number of children
LC: List of children

TN FN NC LC

215 ‘1 2 220, 222

216 1 1 224

217 0 1 218

218 0 1 225

219 0 1 220

220 0 1 225

221 0 1 222

222 0 1 225

223 0 6 136, 149, 162, 175, 188, 201
224 0 6 143, 156, 169, 182, 195, 208
225 7 0 -

/1/schultzm/Ahmad/microprocessor - 43 -

Function Type and Computation Time

FN = Function number

FT = Function type

CT = Compﬁtation’Time

December 10, 1987

FN FT CT t[, tf te ts
0 tfadd 4.66 0.24 0.96 0.18 0.48
1 tf,ul 5.87 0.24 0.96 0.18 0.48
2 tfdiv 7.78 0.24 0.96 0.18 . 0.48.
3 tfsqrt 7.90 0.24 0.48 0.18 0.48
4 “tfatan 25.6 ' 0.24 10.48 0.18 0.48
5 tfvmul 26.93 1.2 4.8 0.9 2.4
6 tfneg 3.59 0.24 0.48 0.18 0.48
7 exit 0.0 0.0 0.0 0.0 0.0

Function type key

0 = Floating addition

1 = Floating subtraction

2 = Floating multiplication
3 = Floating division -

4 = Floating square root

5 = Floating sine cosine

6 — Floating arc-tangent

7 = Floating negate

8 = Null function

Main

Processor

and memory

APU #1 APU #2 APU #n

Robot

input #

output
processor

RS Robot
sensors

_ Figure 1 ‘
Multiple APU-Based Robot Controller

/1/schultzm /Ahmad /microprocessor - 33 - ' " October 15, 1987

- (entry node

(Intertask transfer times=0)

_ (Intertask
transfer time =0)

T2

T1 2 =
task #2

 task #1

\ computation . computation

time time

\ (Intertask transfer time)

(Intertask
transfer time) . : v
: 7 (Intertask
transfer time) -

T4 -

T3 ,
task #4 -

- task #3 \
computation computation

~ time time

' Figui‘e 2

An Acyclic Graph used for Representing a Computation

/l/schultzm/Ahmad/microprdcess‘or -34- " - October 15, 1987

P :processor

storage to
memory or
register

Figure 3

. Computing time delay t4

/1/schultzm /Ahmad /microprocessor - 35 - October 15, 1987

m_=(P1,P2,P3,P4,P5)

processors: P2 - P11 P3

priority list

Figure 4

Example Computation with Processors and Priority Lists

/1/schultzm/Ahmad /microprocessor - 36 -) October 15, 1987

m, = {P1,P2,P3,P4)

fe(t)={r1,r2,r3,r4}

priority list

Figure 5

Second Example on Processor Assignment and Task Graph

MPU ‘ _ o
\-‘ 3 :
B L / . .
APU 1 G AN
I I taj - ta2
. I \ j
APU 2 | , tax
—~ rull
| I taj~ taz - k- taj + g2
| I~ A
. | ta -
tamh |
APU X — T~ -
Lol ‘'am |
a1+ lgo | I
" | |
| |]
Real-time T A
2
,T to=1o +ly1*tg
=t +t
. 0 0 d1
t=t,

2 =tZemin{(t, -t y,). (tak),(t;n- t, +t)

e 3 2
In this figure: t o=t o"’taj'tdz

Figure 6

Computation time with accumulation
of time-delay |

" Determine level
. ljoftasksin .
-G (the task graph)

Y
- Form priority list
' {I',n',t4}
set processing time
' t0=0

A Form {afe(t)} list
={Ty . n 1€eG
_All parents of Ty

- have been executed
-save {afe(t)} on stack’

T

| Form a branching 'node {fe(t)}
~withl=min(n._,m)):
tasks of {afe(t)}
| save the {fe(t)} list on stack
E smg-o

Form the processor-task
assngnment map

" F igure 7a .
. F lowchart of Scheduhng Algonthm

Allocate tasks to the APU's
according to the assignmenit
~map recursively and compute
' the real time t, , accumulating
the time delay of this processing stage

:

Accumulate overhead in -
polling as the APU's -
finish-executing task's
in the next computational stage

Any more

tasks to be
scheduled in
graph G?

- Is this
solution satisfactory?™
tst Ibound ? /

Yes

Figure 7b
- Flowchart of Scheduling Algorithm

any further |
branchmg nodes

unsatifactory in the stack?

.solution

Pop a branchmg node
from the stack and form
- {afe(t)} list, reverse
the time to that of the
"popped” stage

” Are there
any branching nodes

No

- .in {afe(t)} which have
\\Jiot been searched?.

Select a new {fe(t)} list -
suppressung the choice of ’
the set that has already
- been examined .~

‘Check if this
branching node will ™
bring about a better solutlon.\

: Usung the lower bound '

: computatton :

" No ™

; S ""’.:'Flgure Te o
Flowchart of Scheduhng Algorlthm

Entry node * .

' » (0,0.5,0,0.5)
1(0,0.5,0,0.5) AR =

| (0,0.5,0,0.5"\

(0,0.25,0,0.5)

Note: =~ .
(i) Quadruplet weight is (t gtptet S)
(ii) If task has more than one parent, _
t, is replaced with (-), meaning only one
storage to main memory is necessary, and
it is only counted once for all the children.

(0,0,0,0)

) Terminal node

F ,igure‘ 8

- An Example Schjedul_eb With Data Transfer Overhead =

- /m/chris/ahmad/micropro.tables

- 39;.. October 15, 1987

Number of processors (APU)=1 -

Time

0,00
. 3.00
6.00
9.00
11.00

14.00:

17.00
19.00

et e e b et ek e

m
a

Task in execution

0 O~ B TR W R

Number of processors (APU)=2

Time

0.00
3.50
6.50
8.50
10.00
12.00

m

0D = =N NN

a

Task in execution

00 =3 ~3 O b =
QO ok O W

Number of processors (APU)=3

Time

0.00
4,50
6.50
- 8.00

10.50 -

m

. a

WD wWww

W~ ~3 T

Task tn execution

Y NN
coc o

Number of processors Processing Time Total Idle Time

1
2
3

19.00 0.00
12.00 - 3.00
10.50 6.00

| Figure 9. Simulation Results for DF/IHS

/m/chris/ahmad/micropro.tables - | - 40- . o _ October 15, 1987

Number of processors (APU)=1

Time to m, Task tn execution

0.00 1 1
2.50 1 3
5.50 1 2
8.50 1 5
9.83 1 7
12.58 1 4
15.58 1 6
1 8

16.83.

Number of processors (APU)=2

Task in execution

Time m
. a

0.00 2 1 3
250 1 2 3
3.50 1 2 4
5.50 1 5 4
6.50 1 5 0
6.83 2 7 6 -
9.08 1 7 o
9.58 2 8 ¢

Number of processors (APU)=3

Time m, Task in execution
0.00
2.50
3.00
3.50
4.83
5.58
6.83
7.58

[N OO O CR RSy
C OB B BB
COO0OOOO W
00 =3 ~J ~J &t M) DN DD

- Number of Processing Lower bound APU

processors time time © tdle teme
1 17.33 19.00 0.00
2 10.08 9.50 . 1.33
3 8.08 8.00 - 6.33

Figure 10. Simulation Results for DF/MCHS

Processing Time in us

- 2233.5D -

. 38.9p0 ;

G524,

us1:

184

597. 25

379.

346.

Fugure Key

YYY =Data transfer No contention the algonthm of '[hIS paper
AAA = DF/IHS No contention =

'— — — = Data transfer and contention wuth th|s algorlthm
labelled (DF/MOHS) .

. ----’f--f = _DF/IHS with contention

Number of APU's

Flgure 10

Forward Kmematlcs Computatlon Time

Processing Time in us

. HqQ.

1180.3

925.
a7,
- 784,
575.

4a?.

10312.54)

0D 1
Gl
b

5p

bo 4

a0 -

'Flgure Key

Y'Y Y =Data transfer No contentlon the algonthm of this paper
A A /\ =DF/IHS No contention -

— — — = Data transfer and content:on wnth this algonthm
labelled (DF/MOHS) ' :

- -------- = DF/IHS with contention

" DF/THS

2 DF - MOHE

Number of APU's

Figure 11

Inverse Kinematics Computation Time

Processing Time in us

. 4000,

47000

2750

" 3ng. Do ,

Has0.

auae.

2140,

1430.0

- Frgure Key

Y Y. Y =Data transfer No contentron the algonthm of this paper
A A /\ = DF/IHS No contention

— — — = Data transfer and contention with thrs algorrthm
labelled (DF/MOHS) -

| _ =--<---- = DF/IHS with contention

= DF #IHS

DF ~MOHS

 Number of APU's

Flgure 12

Inverse Dynamlcs Computatlon Tlme for PUMA

Processing Time in us

1850.0 §

1621.24 1)

14312, 5 4
1193.p 4
9750
786 B5 -
$37.5b 4

318.7354

Flgure Key

Y Y Y = Data transfer No contentlon the algorithm of this paper
AAA . DF/IHS No contention

— — — = Data transfer and contention with thls algorithm
labelled (DF/MOHS) .

-------- = DF/IHS with contentxon

100 . B i
1

W

L e LS - ¥

& 8 w12z 12 15
Number of APU's

.UH'.

Figure 13

Cartesian Space Path Planning Computation Time

	Robot Control Computation in Microprocessor systems with Multiple Arithmetic Processors
	

	tmp.1542052450.pdf.A319M

