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- ABSTRACT

This thesis is concerned - with the performance of nonparametric
classifiers and therr apphcatron to the estimation of the Bayes error.
~Although the behavror of these classifiers as the number of preclass1ﬁed
de51gn samples becomes infinite is well understood very httle is known

- regardlng their finite sample error performance Here, we examrne the per-

formance of Parzen and k-nearest ne1ghbor (k- NN) classrﬁers, relat1ng the
expected error rates to the size of the desrgn set and the various. desrgn
~ parameters (kernel s1ze and shape, value of k, distance metric for nearest
| nelghbor calculatron, ete.). These results lead to several s1gn1ﬁcant 1mprove— ,
ments in the design procedures for nonparametrrc classrﬁers, as Well as
improved estrmates of the Bayes efror rate.

- Our results show that increasing- the sample size is in many cases not
an effective practical means of improving the classifier performance Rather,
7 careful attention must be paid to the decision threshold, selection of the ker-

' nel size and shape (for Parzen classifiers), and selection of k and the dis-
, tance metric (for k-NN classifiers). Guidelines are developed toward propper
~ selection of each of these parameters :

The use of nonparametrlc error rates for Bayes error est1mat1on is also
considered, and techniques are given which reduce or compensate vfor the
biases of the nonparametric error rates. A bootstrap technique is also
developed which allows the designer. to estimate the standard deviation of a

nonparametr1c estimate of the Bayes error.



CHAPTER 1
~ INTRODUCTION

1. 1 Motlvatlon and Problem Statement

The practlcal design of a statistical pattern recognltlon system may
lgenerally be broken down into three distinct phases. In. ‘the first stage, the -
designer must obtain and normalize a set of preclassified feature vectors
which in some way characterize the various classes to be “distinguished.
Since the entire design is dependent on this limited set of de31gn samples, it
~ is important that this set adequately descrlbes the statistical properties of
the feature vectors for each class being conSIdered The second phase of
design is generally termed data structure analysis. This stage may involve a
- wide variety of statistical tests. Various parametric models for the. data may
be. exa.mlned Data ‘clustering and feature extraction are two unportant
procedures Whlch fall into this stage of design. The last phaseuls the actual
classifier design‘ and evaluation. In this phase,  the ,des‘ign_ell' uses his
knowledge of the structural properties of the data to “develop effective
decision rules to determine the class of an unknown feature vector." »

The estimation of the Bayes error rate (the minimum probablhty of
error which may be obtained by .any decision rule) should play a
" fundamental role in each of the three design phases. In the earliest stages of
deysign, Bayes error estimates give the designer an indication of whether the
feature vectors he obtains are adequate to design a system with a desired
level of performance. If the design vectors have a Bayes error rate which is
higher than the allowed error rate for the system, then immediately the
- designer knows that a more complicated feature set will be required to meet
the goals, and no time is lost in the later two stages of classifier design.
.During the structure analysis phase, Bayes error estimates play their
primary role as a guide toward feature extraction. By comparing the Bayes
error in the original space to that of the extracted features, one may
 determine the amount of classification information which has been lost in
the feature exti'action process. Also; Bayes efror estimates provide a means



"Wlth whlch to compare dlﬁerent feature extraction technlques in terms of -

" “thelr potentlal error performance Flnally, Bayes error estimates provide a

benchmark by which the designer may gauge the success or fallure of any
'vpartlcular classifier structure. For ‘example, if a llnear classifier provides an
error rate of 16% when the Bayes error for the data has been determined to
be 15%, then the des1gner knows that more compllcated classifier structures

~will not result in any dramatic 1mprovements 1n the error performance. On

- the other hand, if the Bayes etror for the: data is 3%, then more complicated
structures must be examined. : o

o Slnce assumptlons regarding‘ “ the” ‘mathematical‘ forms of  the

- d1str1but10ns of the data are . not approprlate for Bayes error estlmatlon,‘
’nonparametrlc procedures which converge for any d1str1but10n should be
used. There are two’ nonparametrlc approaches to Bayes error estlmatlon
“those based on k-nearest nelghbor (k-NN) procedures and those based on -

- » 'Parzen estlmates ‘In both cases, the cla551ﬁcat10n decision- rule is formed by

usmg nonparametr1c ‘estimates of the density functions in place of the
: '(unknown) actual dens1ty functions in the Bayes decision rule. The error is

~ then estlmated by countlng the number of misclassified samples usmg “this
rule, and d1v1d1ng by the total /number of samples tested. ‘

When an 1nﬁn1te number of ‘samples is avallable, the behaV1or of the -
t;estlmates is fairly well understood Asymptotlcally (as the number of design
samples becomes 1nﬁn1te) the k-NN errors are known to place bounds on the .
Bayes error upper bounds for odd k’s, and lower bounds for even k’s. The
ybounds improve, and converge to the Bayes error, as k increases. Slmilar

‘statements may be made regardlng the error performance of classifiers based:

v _on Parzen den31ty estimates. - In practice, however, the number of available -

v design samples is always Very llmlted Under these conditions, the k-NN f
errors do not necessarlly bound. the Bayes error, and the relatlonshlp of the
- _error- rates ‘obtained using Parzen: den31ty estimates to the true Bayes error
"has not been determlned It is the goal of this’ thesis to clarlfy the behavior -
of these estlmates When the number of . des1gn samples is llmlted and ‘to
‘examlne ‘the eﬂects of sample size, d1mens1onallty, and distributions on the
: :estlmates These results Wlll be used to 1mprove the estlmatlon procedure,
. resultlng 1n 31gn1ﬁcantly more rellable estlmates P



1.2 Thesis Organization

Chapter 2 of thls thesrs deals Wrth the bias of the 1-NN and 2- NN r1sk
estimates from thelr asymptotlc Values Expresswns are given which separate
the effects of dlmensmnahty and sample size. from those of the distributions.
A possible’ means of usmg this knowledge to compensate for the bias and
obtain an improved est}mate is also given. -

In Chapter 3 we mtroduce the Parzen and k-NN density estlmates, and
their apphcatlon to Bayes error estimation. The selection of each of the
design parameters (Parzen kernel shape, k-NN metrlc, value of k used in k-
NN classification, etc) is discussed. The proper- selectlon of t.he decision
- threshold is shown to|play an important role for both k-NN and Parzen
error estimates. By casting the k-NN classifier into a den51ty estlmatmn
framework, we are. ab e to develop the k—NN and Parzen procedures in a
parallel manner, clarifying the fundamental relatlonshlps between the two.
The discoveries of thls chapter also result in a srgmﬁcant 1mprovement for
both the k-NN and Parzen error estimates.  The results of this chapter are
only valid if the ‘Parzen kernel shape (or k-NN metrrc) is. chosen
independently from the data which is used to evaluate the classifiers.
Chapter 4 presents an efﬁclent, practrcal computatlonal algorlthm to satlsfy
this requirement. v ' _

. Chapter 5 uses the density estimation frameyvork developed'in Chap,ter
3 to obtain expresSion_s relating the finite sample nonparametric error rates
to the true Bayes error. This is in contrast to the results of chapter 2 which
relate the finite sample 1-NN and 2-NN error rates to the asymptotic 1-NN
and 2-NN errors. Through a curve fitting technique, we are able to use a set
‘of observed (finite destgn set) error rates to obtain a true estimate of the
Bayes error. The role of the decision threshold introduced in Chapter 3 is
- made more clear in this chapter. Also, we obtain results concerning the
‘selectlon of the optimal Parzen kernel shape which nlcely complement k-NN
‘optimal metric results already in existence.

In Chapter 6, we examme a bootstrap procedure Whlch may be used to
estimate the variance of our Bayes error estimates. Thus we provide a
means by which the reliability of our estimate may be Judged

Chapter 7 gives a summary of the major contributions of this thesis.



| CHAPTER 2 |
BIAS OF NEAREST NEIGHBOR RISK ESTIMATES

2;1 Introduretion |

'ClaSSiﬁcation error estimation using k- nearest neighbor (NN). rules ha's '

been a popular topic of research ever since Cover and Hart demonstrated .

the propertles of the NN classifier {1]. Their results show that the expected

error of the NN rule converges asymptotwally (as the sample size becomes" o

1nﬁn1te) to a value which is between the Bayes error and twice the Bayes '
error. - Thus k-NN errors - provide a means of nouparametncally placmg-
bounds on the Bayes error, prov1ded the sample size is sufﬁc1ently large

When a ﬁmte number of samples is available, however, the k-NN errors -
~ do not necessanly bound the Bayes error, and the NN. clas31ﬁer may yield an
error which is much more. than twice the Bayes error. .Cover [2] investigated

the: ﬁmte sample performance of the NN classifier for.the 1- dlmenswnal case

and found that, assuming almost surely continuous a posterlor probability
functlons, the bias of the NN error from its asymptotic value is bounded by
the function which is 0(1/N?), where N is the sample size. Wagner (3]
pointed out that, in terms of examining the convergence of ‘the NN rule, a
more meaningful criterion is Pr{ ILN——E*I>;1}, where Ly is the probability of -
- error given N preclassified samples, € is its asymptotic value, and u is a
constant. He provided an exponential bound on this criterion under several
additional assumptions including the continuity . of the density . function.
Fritz [4] significantly reduced the conditions on the distributions and
improved the bound provided by Wagner. Stone [5] demonstrated that if k
" is allowed to vary with N, the k-NN errors will converge to the B'ayes "error
(in probablllty) for any distribution. Devroye [6] has shown that, with an
additional assumptions of how k increases with N, the convergence holds
~ with probability one. Further, Devroye [7] showed that, for a fixed k, the
: asymptoticvresults of the k-NN rule are distribution free Other significant
‘ contributions concerning the convergence of NN rules have been made by a
v number of authors 8,9,10 11]



Whi,le these results 'glive an indication of how the NN classifier

‘performance improves as the sample size becomes- infinite,” they do’ little ,

toward examining the behav1or of the classifier when a finite number of.
preclassrﬁed samples is available. If the NN rules are to be used to place

- bounds on the Bayes error, then an important question is whether the finite . '

~ sample NN ‘error is significantly biased from its asymptotic value, and

whether that'bia_s may be_effectivﬁely reduced by increasing the sample size.
In this report, rather»than finding bounds on a convergence criterion, we -
“concern ourselves with the estimation of the bias between the finite sample
" and ‘asymiptotic errors.” We have found that, depending on the"distributions

~ of the data, the k-NN errors in practice may exhibit a significant bias from -
their theoretical asymptotic value, so that they no longer place bounds on -
‘the Bayes error. Until now, most of the work in reducing the size of the bias
has. 'concentrated on the- selection of an optimal metric [12,13]. In this
‘_chapter, we approach the problem in a dlfferent (and more general) pomt of

view. ' o

" In Sectlon 2 2, we begm by deriving the form of the bias of the NN

classifier  in terms of “the sample s1ze, rnetrrc, dimensionality, and o

drstrlbutlons We will show that the bias may be expressed as a product of
two terms, the first of whlch is 1ndependent of the dlstrlbutlons, and the
"second of which is 1ndependent of the sample size. Thus we have ‘isolated
‘the effect of sample size from that of the d1str1but1on, gi\}ing an indication of
the number of sarnples requlred to reduce the blas, and also of the '
relat1onsh1p between that number and the d1mens1onahty of the data ‘It
can be shown that, for the one-dimensional case, our result agrees with
Cover’s result 12]- Thus, we have prov1ded a generalization of his result to
the n—d1men31onal case, wh1le 1nclud1ng the effects of other factors, such as_'
the metr1c S o ‘ '

In Section 23 we separately con51der the effects of d1mens1onahty, _
sample size, ‘metric, and distributions on the ﬁn1te—sample NN error. In
~order to ver1fy the theoretlcal results, some expenmental results using two-
. class Gauss1an mlxture dens1t1es are glven in Section 2.4. ‘We then present

~in Section 2.5 a’ pos31ble means’ of using these results to compensate for ‘the

»blas and obtain’ an “improved estimate of the asyrnptotlc error. This
procedure mvolves measurlng the NN errors for. several different samples
~ sizes, and us1ng our derived relatlonshlps to extrapolate an estimate of the
' ‘asymptotlc error. The results for the NN classifier are extended to the 2-NN -
case in’ Sectlon 26 Flnally, we consider the direct appllcatlon of these



results to the multiclass problem in Section 2.7. ‘4

2.2 The Bias of the NN Error

Let X be an n-dimensional random vector with density p(X), where the
boldface type indicates randomness. In NN classiﬁcation,;'X is to be
assigned to one of two classes, w; and wy, according to the class of its NN,
Xnn- In order to keep our initial discussion as simple as possible, only the
two class problem is discussed here. Extensions to the multiclass problem
are given in Section 2.7. The risk associated with the NN classifier, then, is
given by ' '

£ (X, Xivx) = 0, (X) 05 (Xiex) + 22(X)1 (Xoen) 1)

where ¢;(X) is the a posteriori probability of class w; given X. Under an
asymptotic analysis, it is assumed that the sample size is made arbitrarily
large and Xyy converges to X with probability one. Thus, the asymptotic
NN risk is obtained by setting q;(Xyn)=q;(X) in (1) giving
. . SN

r (X) =2q;(X)qy(X). (2)
In the finite sample case, however, there is a finite difference between g;(X)
and q(Xyy). Thus we define € so that

0 (Xyn) =a(X)+€  and  qp(Xyn) =qp(X) —¢ (3)
g. (3) holds since qy(X)+qy(X)=1 and q;(Xnn) +q2(Xnn) =1. Substituting
(3) into (1) we obtain

(X X =1, () + (X Xiy) W

where ..
b(X,Xnn) = (92(X) —ai(X)) € (5)
Thus, the bias between the finite sample and asymptotic NN errors may be
found by taking E{b(X,Xyy)} with respect to both X and Xyy. In order to

accomplish this, we first approximate € using a second order Taylor series
around X:

fl2

¢ =VTq,(X)6, + 6TV2q1(X)5 | (6)

€

where
b =Xnny—X (7)
Before we can take the expectation, we must also specify the metric which is

?



to be used. In order- to simplify our derivation and ensure that our results

are applicable to practical situations, we will assume that a quadratic metric.
A Y) =[(X = Y)TAX - )2 e

is used to measure distances between samples X and Y. In the case that A

is held fixed, this is a global metric. However, in the more general case, A |

may be allowed to vary with X, forrning a local metric. Thus, in our

derivation we Wlll assume that A could be a functlon of X.~ _

v “In order to evaluate the expectation of (5), we follow a procedure very
~similar to that used by Fukunaga and Flick:[13] We begin by breaklng the

expectatlon into three stages as E E XE {(qy X) q1 )Eéle, X} Where , is the

’

distance between X and its NN, p=d,(X, XNN)

2.2.1 'Expectation w1th respect to XN

The first step in ‘evaluation of the bias is to calculate the expectatlon v
Wlth respect to Xyn, glven X X and p=p. That is, the bias is to be
averaged over all Xyn on a hyperelhps01dal surface with a constant p,

{Yp dAYX)}

(22(X) —qu(X fz XNN)dXNN
E{q2x> QG x> el X} =— 2 ~

f P XNN)dXNN
) S(p)

()~ ) (V0 (X) +1/20(X) P 09) ] 8o

i o | p(X) [ dXnn
| | st -
—tr{A ‘[I/n (¥) — ay(X ) (Vo(X)V7ay(X)/p (%) +1/2Viq,(X)}0*  (9)

,The second lme of ( ) is obtained by approx1mat1ng P(XNN) by a Taylor

: senes as

P =0+ (o)

Note that all odd order terms of (5 dlsappear after taklng the mtegratlon, »
Vsmce S(p ) is symmetrlc around X ’ : : '



2 2 2 Expectatlon w1th respect to p

Let u represent the probabﬂlty enclosed by the surface S(p).  Assuming
(10) ‘

u = p"p(X |A|—1/2 R R (11) -
where ap lAI 172 is the volume of the reglon surrounded by S(p) and o
™2 |
" I(n/2+1)

Here I’ represents ‘the gamma function and n is the dlmenswnallty The
_ random variable u is known to have the beta distribution [14]

plu)=N1—-u™" o (13)

(12)

where N is the number of samples Thus the expectation of (9) Wibth/ respect
to p may be accomphshed by substntutmg u for p usmg (11) and taklng the
‘expectation with respect to.u.. This yields

Bl }X) =Efo- '_ 00y oy

.=a/ /n 1/,1 2/n§r1)l‘(N41)' ‘
“ -2 X)lAl Ii‘(N7+1+2/D)vv . (15)

2.2. 3 Expectatlon w1th respect to X _
‘Substituting (15) into (9) and taklng the expectation we obtam

E{b XXn)} SHE(AI r(ATB (X)) N (16)

where:

B,(X) ';P—Z/B(X) (q2(X) — q4(X)) (VP(X)VT‘il(X)/ P(X)‘V'*‘ 1/ 2V2‘11(X)) ‘ (17)

Trn/24+1) D(E@/m+D)IN+1) SRR
/81 = . oy - . : : . (18)
. nw - I(N+1+2/n)
-Eq. (16) is the bias of the NN error estimator due to a finite sample size.

For large value of N, /4, become proportional to N;z/ ", Thus our results
are in agreement with those obtained by Cover [2] whlch showed. that in the

1- dlmensmnal case the bias drops as N2,



.‘i ‘

2.3 Effect of Parameters, n, N, A and p(X) -

Several observations may be made at this point. First, note that the
~value of fJ; is completely independent of the mixture density. It depends
only on the dimensionality of the data (n) and the sample size (N) and does -

not depend on the particular distributions involved. The term inside the
expectation in (16) on the other hand, does not depend on the sample size.
F_or any gi'ven set of distributions: this term remains fixed regardless of the
number of samples. ThlS term does, however, depend heavily on ‘the
' selectlon of the metric, A.

Our expresswn, therefore, yields much mformatlon about how the blas
is effected by each of the parameters of interest (n, N, A, and p(X)). Each
of these parameters will be discussed separately as follows. - '

2.3.1 Sample Size (N),

~ Eq. (18) glves an exp11c1t expression showing how the sample size eﬁ'ects
the size of ‘the bias of the NN error. 3, vs. N is plotted in Figure 2.1 for
various n. Thus, we have obtained valuable: 1ns1ght 1nto the number of
samples which are reqmred to obtain a rehable NN error As shown in
Figure 2. 1, the bias tends to drop off rather slowly as the sample size
1ncreases, partlcularly when the dlmensmnahty of the data is high. Th1s is
not .an encouraging result, since - it tends to 1nd1cate that, when the
'vdlmenswnahty of the data is hlgh, increasing the sample size N is not an
effectlve means of reduc1ng the bias. For example, with a dimensionality of -
64, 1ncreas1ng the number of samples from 1,000 to 10,000 results in only a
6.9% reduction in the bias (B, from .0504 to .0469). Further reduction by
6.9% would requlre increasing the number of samples to over 100,000. Thus
it does not appear that the asymptotic NN error may be estimated simply
by “choosmg a large enough N" as generally believed, especially when the
dimension of the ‘data is high. The required value of N would be
prohibitively large This has been a repeated observation i in our experlence,
and has motlvated us to 1n1t1ate this mvestlgatlon

2 3.2 Effects of Dlmenswnahty (n)

~ The d1mens1onahty of the data appears to play an 1mportant role in

" determining the- relat1onsh1p between the ‘size of the bias and the sample

size. As is shown in Figure 2.1, for small values of n (say, n <4), changing _
"~ the sam_ple size is an effective means of reducing the b1as. For larger values
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of n, however, increasing the number of samples becomes a more and more
~futile. means of improving the estimate. It is in these higher dimensional
cases that improved technlques of accurately estimating the Bayes error are"
needed.

It should be pointed out that in our expression for the bias of the NN
~error, n represents the “local” or “intrinsic” dimensionality of the data’. NN
statistics are determined vby local sample distribution, and not related to
‘, global one. In many applications, intrinsic dimensionality is much smaller .
than the dimensionality of the observation space. Therefore, it is necessary
that the intrinsic dlmenswnallty be estimated from the data in order to
calculate ;. A convenient means of estimating the intrinsie dimensionality
-which works well in conjunction with NN techniques is given by [15], [16].‘

nim et T (19)

d -
2NN -1

dNN

where dnn and dyny are the mean distances to the first and second NN

‘ respectlvely

2.3.3 Effects of Densxtles

~ The expecta.tlon term of (16) glves the effect of densities on the size of
'the bias. In. general, it is very hard to determme the effect of thls term
because of its complex1ty In order to 1nvest1gate the general trends,
. however, we have computed ‘the term numerlcally for a Ga.ussran ‘case.
When two density functions Pr(X) (i =1,2) are Gau551an ‘with the expected
vector M; and covariance matrix Y}, B, of (17) becomes

| 1(X)y=p—2/“(X)(q2( ) —1(X))ar (X)ap(X) -
ViV ) = V)V (X) 435 -5 (20)
Whe_re | o ' " v : ’ o :
- VO-NE-M) .
,pThe derlvatlon of (20) is given' m the Appendlx | | |
med out by Arnold C. Williams of Martin Marietéa: Acrospace, Orlando,

FL, and was confirmed emprnca‘llym_ by him on radar signature data, for which the
intrinsic dimensionality was about a quarter of the measurement dimensionality.
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Gaussian data was generated with X, = ‘_Jz =1 The class means
M1 and MZ, were separated to obtam the desrred Bayes error. The '
Euclidean metric (A = 1) was used. The B, of (20) was evaluated at each
generated sample. point where the mathematical’ formulas based on the
Gaussian: assumptlon were used to- compute p(X) and q](X) The expectatlon ’
of (16) was replaced by the sample mean taken over 1600n samples. The
result is shown in Table 2.1 for dimensionality ranging from 2 to 16 and the
Bayes error ranging from 2% to 30%.

Table 2.1 reveals many propertles of the expectatlon term But, spec1al
attention must be paid to the fact that, orice h bécomes large (n >'4), its
value has little effect on the size of the expectation. This implies that 5, of
(18) dominates the effect of n on the bias. That is, the bias is much larger
for high dimensions. This coincides with our frequeut vobseryat’ions in
practice that the NN error comes down, contrary to theorétical expectation,
by selecting a smaller number of features. That is, the bias is reduced more
than the increase of the Bayes error. In order to. compare two sets of
features in different dlmensrons, this dependency of the bras on n must be
carefully examined. ‘

~ Also, note in Table 2.1 that the second order ferm due to- Vi (X) is
comparable to or even larger than the first order term due to Vqy(X). 1t is
for this reason that we have included the second order term in the Taylor
series of (6).

2.3.4 Effect of metric (A)

‘The expectation term of (16) also indicates how the matrix, A, affects
the bias. Certainly, proper selection of a metric may reduce the bias
signiﬁcantly Unfortunately, B; is a very complex functron of X and very
hard to estimate for any given set of data. An except1on is the Gaussian
case in which (20), with known mathematical formulas for. ql(X) and p(X),
_provides a means to compute Bl ‘

As for optimization of A, Fukunaga and Hostetler [17] showed that an
'ex'pressmn of the IAII/ Ttr(A A7'B 1) is minimized by setting A = Bl, provided B,
is a positive definite matrlx However, (20) reveals that B1 mlght not be
"_pos1t1ve deﬁmte . -

Thus, it is not. 1mmed1ately clear how to choose A to mlnlmlze the bias.
Nevertheless, selection of an approprlate metrlc remams an 1mportant topic

~in NN error estlmatwn
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Table 2.1, Estimates of the Expectation Term in Eq. (16) for Data 1

Bayes

Error n=2|n=4 | n=8|n=16

1 1% order term 3.4 1.2 1.2 1.1

30% 22 order term 2.2 1.2 0.4 0.3

Sum 5.6 2.4 1.6 1.4

. 1% order term 2.2 1.3 0.9 0.8

20% | 2" order term 1.8 1.2 1.1 1.0

o Sum 4.0 2.5 2.0 1.8

1% order term -1.3 -2 -0.2 -0.2

10% | 2°d order term -| 4.7 2.1 1.7 1.6

' Sum - 3.4 1.9 |. 1.5 1.4

1% order term -1.9 -1.0 -0.8 -0.6

5% | 2" order term 3.8 2.3 1.8 1.5

Sum 1.9 1.3 1.0 0.9

1% order term -2.0 -1.5 | -0.8 -0.7

2% | 2" order term 3.5 23 | 1.3 1.1

Sum : 1.5 0.8 0.5 0.4




v : . 2.4 Expernmental Verlﬁcatxon L
' 2.4 1 Expenment for Data 1 : Co '~ ‘
, In order to verlfy our results, ‘an experlment was run. l'or the same
Gauss1an data which were used to produce Table 2.1. The N,N errors were
measured ~empirically by generatmg N samples, perforrning" the NN
’ clasmﬁcatlon, ‘counting the ‘errors, and averaglng the ‘resultmg error. over 20
‘trlals Sample sizes of N = 20n, 4011, 80n, and 160n Were used N
Accordmg to (1 ) the bias of the NN rule (and hence ‘the actual NN
error) varies lmearly w1th ) for any given set of distributions. Therefore,
taking the_.e)‘_(pevctatlon of (4) W1th respect to’ X and XNN’ the ﬁnlte sample ‘
NNerror may be writtenas .~
| ENN—ENN-i—[)’]c] el (22)‘
- where %NN —E{rl(X Xnn)}s fNN is its asymptotic value,' and ¢y is the
,expectatlon in (16). For the d1str1but10ns used in these tests, the values of
¢, were prevxously est1mated in Sectlon 2.3, and are shown’ in Table 2.1.
The theoretlcal asymptotlc error, ENN’ was also estlmated by generating a
' ,large number (1600n) of samples, calculatmg the risk at each sample point
from (2) us1ng the known mathematical forms of q;(X) for the Gausman case,
and averagmg the’ result “These estimates are shown in Table 2. 2

“Thus, using (22) in conjunctlon with the estimates of ENN ‘and cl, We can
predlct the finite sample- NN error as.a linear functlon of ,[7’1 "The dotted -
lines of Figure 2. 2 (for n = 8) show these predlcted NN errors’ for varlousl

| . values of the Bayes error. The ENN'S ‘which were obtamed empmcally by

averagmg the NN error over of 20 tr1als, are also plotted in Flgure 2.2. Its
standard. dev1atlon is also shown by the vertical bars (+ one standard
deviation). Note that these measured eNNs are reasonably close to the'i '

predlcted values

'2;4.2 Ex‘peari_'mventvfor Datva 2 _

N Y'T'he experlment was repeated, again using 8-dimensional Gaussian
| random- vectors, but this time choosing o and Yy to be s1gn1ﬁcantly.
different (after snmultaneous diagonalization of ¥, —1 and L2—->/\ the
diagonal elements of A vary from 0.12 to 12.06, [18].) The empirically
measured NN errors, as: well as the predicted NN errors are : plotted in
Fig"ure 2.3. In this case, the 'empirical NN errors tend to lie above values
predlcted by our estlmates of ENN and ¢y, although stiil preservmg the llnear
. relatlonshlp predlcted by (22) ' S ’
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"‘I"ablré 2.2 'As'ymptotic, NN Errors (%) for Data 1 :

Bayes .| ‘ » v
o ‘Error | n=2 n=4 1n=8 n=16
| 30% | 389 389 389 38.8
| 20% | 276 278 2718 217
10% | 14.5 14.6 14.6 14.6
5% | 7.6 1.5 74 18
2% 32 30 3.0 3.2
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2, 4 .3 Eﬂ'ect of Metric for Data 2

In order to demonstrate the eﬁect of properly selectmg the metrlc the
empirical NN errors were also measured using.an optimized metric.. In this
case a gblobal metric was assumed, so that the matrix A is ~not'~;:i fur_'lct'ion of
X. The expected value of B(X) in (16) was e'stirna“ted’-by' evaluating B X)
from (20) at each generated sample point using the known mathematical B
,forms for p(X) and ¢;(X) under the Gaussian assumptlon,‘and takmg the‘
sample mean. A total of 100,000 samples were used to estlmate this mean.
In this case, the: expectation of B (X) happened to be a p031t1ve definite
matrix, and hence the optimal metric is found by settlng A= E{B }

- "The resultmgv NN errors, obtained - using. the optimal metrlc,
Ag=E{B( X)} are plotted vs. [)’ in Flgure 2.3 for various values of N. The
results shown were averaged over 20 trials. Flgure 2.3 confirms our
expectation that the selection of an appropriate metric may 51gn1ﬁcantly
reduce the slope of the bias curve,,.resultlng in more rellable estlmates '

2 b Estlmatlon of the Asymptotlc NN Error

“While it may - not be practlcal to obtain the asymptotlc NN errors
simply by increasing the sample size, it may be possible to use our
information concerning how the bias changes with sample. size to our

advantage. &yy could.be measured empirically for several sample sizes, and B

/3 obtained using either (18) or Figure 2.1. These values could be used in
conjunction with (22) to obtain an estimate of the asymptotlc NN error, ENN

Thus, our proposed procedure to estimate ENN is as follows

1. Change the sample size N as Nj, Ny, ... ,Np- For each N;,
calculate () and measure &yy empirically.

2. Plot these mempirical points ENN VS. [)’ Then, find a line best -
fitted to these m points. The slope of this line is ¢; and the y-
.‘mtercept is ENN which we would like to estlmate : '

There are many possible ways of selectmg a line. The standard
procedure would be the minimum mean-square error approach. An
alternative could be to weight the square error for each value of () by the

correspondmg sample size, f, or the variance of the NN error.
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This*'procedure was tested using Data 1 of Section 2.4. The standard
minimum mean square approach was adopted to find lines. Table 2.3 shows
_ the estimated values of EgN for each of the test cases. As may be seen by
k comparing Table 2.3 and Table 2.2, the predicted NN errors using the above
procedure come very close to our estimates of the asymptot1c error obtained
in Table 2. 2. ' ‘

In order to test a more‘difﬁcult case, the experiment was again repeated

for Data 2 of Sect1on 2.4. These distributions yield a theoretlcal Bayes error
~ of 19% and an expenmentally determined (see Section 2.4) asymptotic NN
error. of 2.6%. The minimum mean-square error lrne fitting the empirically
measured NN errors has been plotted in Figure 2.3; and is seen to yield a
much improved estimate of the- asymptotlc error.  While increasing the
sample size to 1600 (800 samples per class) only.gave a predicted NN error
of 5.5% in the. conventlonal NN procedure (Euchdean metric), the proposed
procedure ‘has g1ven a pred1cted error of 3.0% - much closer to the actual
2. 6%. The same procedure was applled by using the opt1mal metric. Flgure
2.3 shows that the line h1ts the y-axis at 2.2%.

In order for (22) to be valid with a constant Cy) ENN must be the

. ex'pected value of (X, XNN) with respect to both X and Xyn- For

art1ﬁc1ally generated data, the expecta,tlon may be -approximated by
generating many sets of the data and averaging the resultlng NN errors.
However, in pract1ce, only one set of data is avallable In this case it
becomes necessary to part1t10n the avallable data to obtain the various
desired sample sizes. For example, given 1000 samples, only one trlal could
be used to estlmate fNN for N = 1000, two trials to estlmate énn for N =
500, 4 tnals for N = 250 and so on. The ‘actual value used for éNN In the
proposed procedure would bé the average of all trials at a part1cular sample
_size. Although ‘the number of trlals used decreases as the sample size
‘increases, the variance of the NN error at the large sample size is smaller, SO
that hopefully the damage is m1n1m1zed ‘

: . 2 6 The Bla.s of the 2- NN Error '
: ‘2 8. 1 Derlvatlon i g

An analys1s of the 2- NN b1as may be carrled out in much the same
: "manner as the: ‘NN bias. In 2-NN- classification, a sample is counted as
misclassification only ‘if both of its two NN s are of the opposite class. The
i,-t1e vote 1s treated as. correct cla551ﬁcat1on Because of thls, the 2-NN error
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Table 2.3 Estimates of Asymptotic NN Errors for Data 1

Bayes

Error n—2 n—4 n— 8 n— 16
30% 39.4 38.1 - 39.3 40.1
20% '28.1 27.6 27.3 28.0
10% 14.2 13.7 14.2 13.1
5% 8.1 7.5 76 59
2% 3.1 3.3 3.4 4.1
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. ‘gives the,‘lower‘ hounldvof the ‘Ba‘yes‘error Thus, the risk is given by '
ro(X, XNN$X2NNl (X)‘lz(XNN)%(XzNN) + Q2(X)Q1(XNN)Q1(X2NN) (23)

where X2NN is the second NN to X. Under the asymptotic assumptions,
both XNN and X2NN converge to X gwmg the asymptotlc 2- NN l'lSk o

rz(Xl ‘h(Xl‘h(X) | o ', (24)

. Thus,the2-NN risk is (asymptotically). one half 'the: NN risk. We now
- define ¢ such.that q;(Xixn)=a;(X)+¢ and qs(X INN)_‘ qZ(X)—E (i=1,2).
o ,,Substltutmg these into (23), and subtractmg (24) from th1s gives the bxa,s R

’ b(XXNN7X2NN)“6 & (25)

CIn order to find the expected value of (25), we approxunate €; and 62’
usmg ‘a second order Ta,ylor series, and first take the expecta,txon with
respect  to XNN and Xy, - holdmg their - dlstances from X (ngen‘by
p1 and p,) constant. This glves : : . :

| E{f lex Plyf’zl = [tr {A 1/11 Vp lequ X)/P X) +1/2V2Q1 X)))}]2p1 P2 (26)
, We now let. y; be the probablllty enclosed by S(pl)

weoplpOWM (@)
Where the Jomt dens1ty of ul and u2 is known to -be [14] ’
p(ul,u2) (N 2)'( —u2)N 2,,» 1>u2>u1>0 T )
: Substxtutmg w; for pl and takmg the expectatlon, we. obtaln : .
| E{b XXNN’X2NN)} ﬂzE{llAll/ntr{A_le(X)ll b (29)
(X) =p 2/ n(X)(VP(X)VTQI(X)/p X)+1/2V2q1 X)) - (30)
.’ sl ‘2/“(n/2+1) 41+4/n)l(N+1) FUYV N ) |
N n7r;‘f ; l(N+1+4/n) C1+2/n S

‘T’..»Thus we ha,ve obta,lned express1ons very smula,r to. those obtained for the ‘
NN error blas The eﬁect of sample size. has successfully been lsolated from

- '-tha,t of the dlstrlbutlon

Eq ( ) gWes an’ exphc1t express1on showxng how the 2- NN error . is

- affected. by sample size. ﬂz is plotted vs. N for -various va,lues of n in Figure

’ 2 4 By comparmg (31) to (18), We see tha,t the 2 NN error converges to its



| - Figure 24 By vs. N - |
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asymptotic’ val'ue more quickly than.the NN error - as if the dimensionality, |

n, were half as large Also note that ,[)’2 is significantly smaller in magnltude

- than ,[J’ To some extent th1s may be olTset by an mcreased value for the |
g expectatlon term of (29). - S

‘ Also noteworthy is. the fact that under the. approx1mat10ns made here,
the 2- NN bias is always pos1t1ve, regardless of the distributions and metrlci
'used Once agaln we see that the only apparent means of reducmg the size

" of the expectatlon ‘term in (29) is to adjust the metric.  Just as in the NN~

_case, when the expectatlon of (29) is taken we. obta1n a llnear relatlonshlp
’ 'between the 2—NN error and value of ,()’

: szN—EzNN‘l‘ﬂzcz BT v (32)

'Where szN—E{rz XXNN’X2NN)} E2NN is its asymptotlc value and c2 is the
"expectatlon term of (29) Thus most of the arguments presented for NN

| error: ‘estimation (lncludlng the procedure for estimating the asymptotlc

v 'error) are dlrectly' appllcable to the 2 NN case, prov1ded the new’ constant [)’
: 1s used o

2. 6 2. Experlmental Verlﬁcatlon

These results were tested us1ng the same Gauss1an test cases as were
;.vused in. Section 2.4. Table 24 shows the estunated values for c,. The

empmcally measured '2-NN' error is' plotted along with our theoretlcally

) _predlcted results, in Flgure 2.5 for n = 8. As may be seen in ‘the figure,
:there is a close correspondence between the emplrlcally measured 2-NN

~errors and ‘the -values predicted using.(32). The experiment was also

repeated us1ng Data 2. 'The results are plotted. in Flgure 2.6. ‘Also shown in

" Flgure 6 is the mlnunum mean—square error line best ﬁttlng the emplrlcal

data This'. line yields a predicted asymptotlc 2-NN error rate of 1. 85%,

‘ ',hlgher than the actual 1 3%, but. stlll closer than the 2 33% value predlcted
" 'by acceptlng the N = 1600 estlmate C

2 7 Extensnons to Multlclass Clasmﬁers ,

In the proceedlng, _We have assumed that X belongs to one- of two
. classes, wl and w2 We now" generahze these results to the M class problem
""'The NN l‘lSk assoclated w1th the M class class1ﬁer is glven by o -
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Table 2.4 Estimates of the Expectation Term in Eq. (29) for Data 1

2-NN -
-Bayes
Error n=2 n:4_n‘:8 n = 16
30% | 11,000 144.5 182 11.1
20% 9,000 45.8 16.6 10.3
10% | 14,000 35.0 - 11.5 6.4
5% 460 24.5 6.5 3.9
2% 2,800 23.4 3.2 1.9
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S ENE (9 (14 (X)) = »ilflqi(x)qi(x‘mv) @)
The a.sympt‘otiv‘c“NN risk is found by letting Xy f»_X -

| (X)—l*’};qx( x). ,"' (34)
‘ The blas is then |

XX = (X Xix) 1 (X) = Lq,(‘)(q.(X) o) ()

Expanding the error term into a Taylor series, and takmg the expectation in
exactly the same procedure as used in Sectlon 2.2 gives the final form of the
bias

\vE{b(’X,XN‘N:)} Y LTS e TR

where
¢

Bu(X) = Llp_z/ n(X)<L(X)( PX)VTqi(X)/p(X) +1/2V2¢(X))  (37)
1= 2 .

and f, is as given in ‘(18). Once agka.m we have isolated the effects of sample

size from that of the distributions. Therefore, all discussion in this chapter

concer"ning the 2-class NN classifier may be applied directly to the multiclass

classifier. . The only except1on is that the value of the expectatlon term, cy,

is dlﬁ"erent from cl of (22)

AR 2.8 Summary

An a‘naly'sis has been given of the biases of the finite samp-le NN and 2-

NN errors away from their‘ asymptotic values. The effect of sample size on
the bias was completely 1solated from the effects of the dlstrlbutlon, giving

- 1nsrght into many questions concerning k-NN statlstlcs It was shown that

“in" many cases, increasing the sample .size is not an eﬁ‘ectwe means of .
estxmatmg asymptotlc NN errors R

) A poss1ble procedure for compensatmg for the b1as has been presented‘
' 5";-Under thls procedure, the NN errors are ﬁrst measured for a varlety of

i-sa,mple sizes. Smce we. now have expllclt expressrons showmg how the blas

;,.'changes w1th sample size, these empmcally measured values may be used to’

' "-"f";form an estlmate of the asymptotlc NN error. Expenmental results show"

tha.t the procedure yxelds s1gn1ﬁcantly 1mproved estlmates of the asymptot1c_
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NN errors, and hence more reliable bounds on the Bayes error.

Finally, the analysis was extended to the multiclass problem. It was
shown that the bias associated with the multi-class NN classifier behaves in

virtually'the same manner as the 2-class classifier.
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CHAPTER 3
BAYES ERROR ESTIMATION USING ‘
PARZEN AND k-NN DENSITY. ESTIMATES

3 1 Introductlon

Nonparametr1c ‘density estlmatlon, and the. closely related area of .
nonparametrlc error-estimation, play fundamental roles i in statlstlcal pattern
recognltlon The k-nearest neighbor (k—NN) estimate of the dens1ty function
was introduced by Fix and Hodges [19,20]. Cover and Hart [1] strengthened
the case for using k-NN procedures in error estlmatlon by showing that the
error for the 1- NN cla331ﬁer is bounded by tw1ce the Bayes error. The
Parzen kernel type estimation of the density function was introduced by
Rosenblatt [21] and later studied by Parzen [22] Cacoullos (23] extended
the estimation to the multrdnnensronal case. ‘

: There are ‘many theoretical results deal1ng w1th the asymptotlc
properties of the above estnnators Although the propertles of the k-NN
and Parzen estimates are well understood as the number of preclassified
design samples becomes large, very ‘little is known about the use of the
estimates when the design set is limited. Our investigations in Chapter 2
have shown that the k-NN estimates may be severely biased even. for large»
sample sizes if the dimensionality of the data is large. This unreliability of
the - estimators in finite sample conditions is the major obstacle toward

: 1mplementatlon of these techniques in practice.

‘The goals of this chapter are twofold. First, we wrsh to develop rehable
procedures for estimating the Bayes error using Parzen and k-NN techniques ’
under limited design set conditions. The procedures developed here will be
shown to be much less sensitive to the sample size and underlying
distributions than are the Parzen and k-NN procedures currently in use.
Second, by developing the k-NN and Parzen estimates in a parallel manner, -
we hope to expose and clarify the relationship between the two.

Because of the extreme difficulty of analysis of the k-NIN and Parzen
~estimates under finite sample conditions, this chapter tends to be
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experimental rather than theoretical, in nature. Most of the arguments
presented . here are intuitive, and lack - theoretical rigor. However, the
; experlmental results do back up these arguments, and the resulting
procedures are seen to be significant improvements over the commonly used
_ k NN and Parzen Bayes error estimates.

‘Section 3.2 of th1s chapter introduces the k-NN ‘and Parzen density
. estimates, and their apphcatlon to Bayes error estimation. The next three
“sections deal with the selection of the design parameters used in the
estlmators, including the Parzen kernel size and shape, the value of k used
for k-NN classrﬁcat1on, and the value of the decision threshold. The proper
selection of the decision’ threshold‘ is shown to be an extremely important
- procedure for both. the Parzen and k-NN error. estimates, and it is this
- discovery which is the major contribution of this chapter. Section 3.6 gives
an experimental result showing the behavior of the error estimates as the
sample siZeiis vari’ed and Section 3.7 presents an experiment in which the
design’ set is“not Gauss1an, and cannot effect1vely be classified using a
quadratic classifier. Flnally, Section 3.8~ gives a’ compar1son of the
procedures developed in-this chapter w1th those currently in use.

‘ '3'2 Error Estimat’lon Procedures

In this section, we 1ntroduce the Bayes error estlmates to be used for
both the k-NN' and Parzen error est1mates " In both cases, the error
estlmates are obtained' by first formmg the correspondlng k-NN or Parzen
estimates of the dens1t1es, designing the Bayes classifier based on these
‘.estlmates, class1fy1ng the “available samples, and counting " the number of
classification errors. Resubst1tut10n and leave-one-out estimates are used to
form upper and lower bounds on the Bayes error. In the following, for class
w, we. assume we are grven N; samples X() X&l taking values in R"

wh1ch are. mdependent and have a common dens1ty i (X)

3. 2. 1 Parzen Densuty Estlmates ' ‘ ,
The Parzen, or kernel; est1mate of the den51ty at X is glven by [21 23]
N N
Lo o _] 1 o :

Where k() is“a nonnegatwe Borel measurable kernel funct1on satlsfylng
fk X)dX =1, and h is a linear- scale factor determrnmg the spread of the

» kernel functlon Convergence results for th1s estlmate may be found in - [24-
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27]: A extensive ‘discﬁssik-on of the statistical properties of f)i(X)'may be
- found in [28]. v ' ' o

In error estimation, we commonly wish to estimate the w; density at ovne'

of the sample points Xlg'). In this case, use of (1) with Xlg) included in the

“design set will produce biased results. In order to reduce this bias, leave-

‘one-out estimates of the density may be employed. The resulting estimate is

~ (i 1 N n A |

Bi(Xx’) = 3201/ (X —x ) /h) — 1/h (2)

N1Jl

Note that the leave-one-out density estimate may be calculatea by’a simple -
modification of (1), so that in practice no addltlonal computatlonal burden is
“assumed by calculatmg both estimates. - '

The form of the kernel function and the approprlate value of h are key
questions when the sample size IN; is limited. In this chapter, we will always
choose the functional form of the kernel so that the covariance of the kernel
density k;(X) is equal to the covariance of the design samples, 2. Hence the
covariance of the scaled kernel, (l/hn)k(X/h) is given by h). In selecting
the best value for h, several factors must be considered. Taking the
expectation of (1) with respect to X gives

BH0) = p(OF /KX (3)

where *

represents convolution in R™. From this we see that for any
nonzero value of h, the estimated density is a smoothed version of the true
density, and that as h increases, the smoothing becomes more severe. For
small values of h, the scaled kernel (1/h™)k(X/h) approaches an impulse
function and the expected value of the estimate given in (3) approaches the
true density. However, while the bias of the estimate decreases for smaller
values of h, the variance of the estimate becomes very:large. In practice,
when a finite number of design samples is available, the value of h must be

carefully chosen. This problem is further explored in Section IIL.

3.2.2 k-NN Density Estimates
The k—NN density estimate is given by [19,20]
. - k-1
Pi(X) (i)
Nivg(X)

where v{)(X) is the volume of {YER? d(X,Y)<d(X,X{n)}, d(X,Y) is any

(4)
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,fmetrlc mea,surlng the dlstance from X to Y and XIEIZIN is the kth NN to X in
.the des1gn set from class W Loftsgaarden [29] ‘showed that the k-NN

o Aden31ty estlmate is asymptotlcally unbiased and" consistent. These results

- -were strengthened by Moore ‘and Yackel [30] and by Devroye and Wagner
[31]. As in the case for the Parzen estlmates, in many cases we will be

'V"’f’evaluatlng the k-NN- dens1ty estlmate at one of the sample p01nts X() In

“this case if we leave X() 1n the de51gn set (and hence count it as its own first
. ,NN) the den31ty estlmate glven in (4) will be biased high. Eﬁ'ectlvely, we
~ have set. vl@ by counting only k-1 nelghbors other than X()‘ We will call

‘.-_thls biased’ estlmate the resubstitution density ‘estimate. ThlS ‘bias may be

_removed by usmg a “leave-one-out procedure in Whlch X() is not counted'
~ as its own nelghbor ' '_ L : : o
S theory, any metric. d(X Y) may be used in (4) In th1s chapter, we
are 1nterested 1n formmg a_comparison between the Parzen and k-NN error
" estimates. For the Parzen approach we have restrlcted ourselves to kernel
v'den51t1es Where covariance is equal to the covarlance for class Uk 2

v;analogy w1th the Parzen estlmate, and in order to form a vahd comparlson o

of the two procedures, we will restrlct the d1stance metr1c to the quadratlc
_metrlc based on the covarlance Z .

(XY))—l(X—Y )TLI (.X Y())ll/2 T - (5)
Note that We have chosen to use ‘a dlfferent metr1c to form the den51ty“
" estlmates for each class o S -

| 3 2. 3 The Error Estlma.tes

An. _estimiate of the Bayes error may now be formed by usmg the v,

'- i'estlmated densities - (k-NN or- Parzen) to calculate a log l1kel1hood ratio,

classifying each’ of ‘the des1gn samples us1ng this likelihood "ratio estimate,
‘ »countmg the- number “of - clas51ﬁcatlon errors, “and d1V1d1ng by the total
number of samples class1ﬁed Our decls1on rule, then, is glven by - '

RIS
5:0X) ©

L where p,(X) is glven 1n (1) for the Parzen estlmate and (4) for the k- NNY _
,.error estlmate, , and t is: the dec151on threshold Many authors have

cons1dered the asymptotlc propertles of the error performance of classrﬁers o

ij“__v,based on Parzen type dens1ty estlmates (see, for example [32 36]) Wlth
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restrictions on the k‘ernef'ik( ), if h—>0 and Nhn/logN—>oo as N—»oo, then the :

classiﬁcati‘on error, (for t=0) approaches the Bayes error for any dlstrlbutlon =

- for Wy and W, [6,8 37] For k-NN if k/N—>0 and k/log logN)-—+oo as N—»oo, :

then for any d1str1butlons the error performance also converges to the Bayes
error [5,38]. Further, for fixed k, the error: performance forms upper and
lower bounds on the Bayes error regardless of the dlstrlbutlons [7] Res_ults, L

concernrng rates of convergence may be found in {10, 11]

In practlce both the resubstltutlon and leave- one- out den51ty estlmates:' .
“are used in (6) to form lower and’ upper bounds on the Bayes error. The o

parameters to be chosen by the desrgner for Parzen error estimation are the .
- kernel - size ‘(h),,, decision threshold (t) and - kernel- shape k().
| Correspondlngly, k-NN error estimation the de51gner is free to_select the
. number of neighbors (k), the declsron threshold ( ), and the metric’ used""‘

A few remarks are in order concernlng the: use of (6) to perform k NN
error estlmatlon Under the. more conventronal k-NN error estlmatlon
‘procedure,  the k-NN’s from the mixture  density are located, and the
classification decision is based on the majority class. among these k—nelghbors-

1) ._W‘hen k is even, and equal numbers of neighbors -are found from both -

- classes, the sample is rejected, and no error is counted. Using this procedure
gives (asymptotlcally) upper bounds on the Bayes error’ for odd values of k
and lower bounds on the Bayes error for even values of k. These bounds '
~“ improve ‘as k becomes large, provided the sample sizes is large enough.

Under the procedure used in this chapter, for each sample we find the
volume to the k' NN from each class, and use this value to estimate the
‘dens1ty at ‘the sample point. Equatron (6) is then used to classify the
sample. While this may seem a very different procedure, a little thought_
‘verifies that, if the metrics used are kept the, same for both classes, and if
the decision threshold is set to 0, then the leave-one-out k-NN error estimate
considered here is:identical to t'he more conventional (2k-1)-NN- sample
counting rule. Similarly, the resubstitution k-NN error estlmate used here is

the same as the conventional (2k 2) NN sample counting procedure Thus,r o

-under these conditions the k-NN resubstitution and leave-one-out procedure

used here do.in fact asymptotrcally give lower and upper bounds on the
. Bayes error. By using the decision rule as.it appears in (6), we hope to make
the relationships between the k-NN and Parzen estimates more clear. Also, o

we gain the ability to use different metrics for each class of data. Finally,
the representation given in (6) allows us to adjust the decision threshold.




34

Our experlmental results Wlll show that the decision - threshold plays a

; crucial role in both k-NN and Parzen type error estlmates, and should not

_be neglected

The followmg sectlons will present arguments on hoW to select each of -
~the parameters of mterest Since analysis of the Parzen and k-NN classifiers
in the finite des1gn sample case is extremely difficult, many of the arguments

- ‘.vipresented here are rather heur1st1c in nature. However, the experlmental
e results presented Wlll Verrfy that the procedures: proposed here will result in
. a significant. 1mprovement of the performance of the k-NN and Parzen

'iv.:'"v‘-"classrﬁers as they are currently employed The " experlments run here are

based on three test cases, whose"statistics are- summarized in Table 3.1.

- Gauss1an data Was used in all cases, and throughout this. chapter, all results

- are averaged over 10 1ndependent trlals Case 1 is-a s1mple, equicovariance
- case. W1th means separated to glve a Bayes error of 10%. For case 2, the
_means were set equal and the covariances are proportlonal to each other.
“This case was speclﬁcally chosen S0 that the covariance determmants would
be very dlﬁerent Case 3is a complex case in which ;. and X, are very
drﬂerent The . parameters for case 3 ‘were chosen" from Fukunaga s
,“standard data" “after s1multaneous dlagonahzatlon [18]. The class 2
3 covarlance A is a d1agonal matrlx with diagonal terms as given in Table 3.2.

"',"’Table 3.2 also shows the: correspondmg components of My—M,. The three

- test cases were ‘chosen’ as to present a w1de range of practlcal problems. For

‘ example, whlle the Bayes classrﬁer for case 1'is a s1mple linear classifier, the

2Dd

Bayes classifier for case’ 2. contains only order terms, and- the Bayes .

- _'—Tclass1ﬁer for case 3 is a complex quadrat1c decision -rule.” Also, while the =

~ Bayes error rates for cases T and 2 are moderate (10% and 9% respectrvely),
the Bayes error of case 3is falrly small (1 9%) :

3 3 Selectlon of Kernel Slze/Optlmal Va.lue of k

As mentloned earller, the choice of the Parzen scale parameter h is

= '}-wlargely a tradeoﬁ between reducmg the bias of the estlmate, and-increasing

f‘the variance. Many authors have: considered the’ problem of determmmg the _
optlmal value of h’ (or correspondmgly, the optlmal value of k in k-NN -
Hclasmﬁcatlon) Fukunaga and Hostetler found expressrons for the optu'nal k
o k~NN dens1ty estlmatlon and used ‘this express1on ‘to . determlne the
'_opt1mal h for Parzen est1mat1on assummg a un1form kernel functlon [17]

) Increasmgly popular are estlmates based on cross-valrdatlon procedures
-Whlch max1m1ze some cr1ter10n - usually based on the max1mum hkelrhood .




35

Table 3.1 Statistics for three ekperiment test cases:

 Case  JIM;—M,|l

1
2
3

Table 3.2 Statistics for C‘ase ‘3.

1 9 3 4 5 & T

841 12.06 0.2 0.22 149 177 ~ 0.35
3.86 310 0.84 0.84 1.64 108 0.26

2.563 I I 8 1 1 - 10%.
0 I 41 8 1 65,536 - - 9%
5.463 I A8 1 6.747 - 1.9%

-8
2.73

10.01~
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o prlnclple Such estlmates were. ﬁrst suggested by Duin [39] and Habbema et.

-[40] and later investigated by a number of authors’ [41 43]. Another
"approach involves relating the chosen value. for h to the d1stances to the k‘Ch

nearest nelghbor [44,45]. Most of these results find the optimal h based on

some. densrty estimation crlterlon In many cases, such estlmatlon criteria
' gplace the ‘emphasis on obtalnlng accurate estimates in reglons in which the
densrtles ‘are ‘large.  In error estlmatlon, however, many times we are
‘fprlmarlly concerned W1th obtalnmg accurate estimates in the tails of the
"den51t1es, partlcularly when the Bayes error is' small. Hence, while the

3 optlmal kernel s1ze/opt1mal k' results do give us a general idea of the

magnltude of h or k, bhnd use of these values may result in d1sastrous
,estrmates of the Bayes error. ‘ '

In our experlments, use of the theoretrcally determlned values of h or k
gave very . dlscouragmg and inconsistent results. -After many- unsuccessful
attempts to determiine the optlmal value of h theoretlcally, we found that
_the only rehable means of selectlng the best h for a partlcular data set is
‘experlmentally That i is, by us1ng several values of h or k on a given data

- set. and plottlng the. results to obta1n the best bounds on the Bayes error. .In

o the case. of Parzen - error estlmatlon, ‘this requlres that ‘the estlmatlon-

} procedure be completely repeated for each ‘value of h. In the k-NN. case, '
however, the computatlonal load is only slightly 1ncreased s1nce the error
may be: computed for all Values of k SImultaneously ‘ ‘

Flgure 3 1 shows a graph of the Parzen errors for the data from cases' :

o ';\1/2 and 3. Gauss1an kernel functlon were ~used for: the Parzen classifier. In

this experlment 100 samples per. class were used in each tr1al The dec1s1on .
. threshold t Was set to zero.

The behavror of the Parzen class1ﬁer may be explalned as follows For
,small values of h the Parzen classrﬁer gives basrcally a l-NN type of
' '-performance, s1nce as h decreases, only the nearest nelghbor to. Xy has a

,V’srgnrﬁcant contrlbutlon to the sum. glven in (2). -As h increases, the varrance »

- '}‘» of the density estlmate decreases and the dens1ty estimate approaches 1ts

'.-:expected Value glven in’. (3) As h becomes very large, the kernel functlon ’
begins to- domlnate “the convolution in’ (3),; and the dens1ty estimate

",approaches ‘the scaled kernel functlon, shlfted to the mean of the true’ ,
den81ty, l/hnk X M)/h) Thus the dec1s1on rule as h becomes large"

e , ;becomes almost completely determlned by the funct1onal form of the kernel

'.‘.;funct1on, and not by the true dens1ty When the kernel functlon 1s



37

£(%)
'y
0.~y
ol BAYES  ~—o— o o_
0- ittt (a) CASE 1
/o/o ‘ g N, =N, = 100
A:\/Ci v, —® h
1.0 2.0 :
E(%) '
20. L : /o
’ Q
/
"Q:_@Q%{G____,________;__;__ '“@)CASEZ‘
!‘ v — 1 L. »
1.0 20 3.0 B
€(%) \ o
F\ v
40} S /
O/
30¢p '
O\ ol o :
2.0b _BAYES o7 / _____.___._. (c) CASE 3
/ Ny =N, = 100
1.0F ~
- A i - 1. »h
10 2.0 3.0

Figure 3.1 Parzen error for various values of h. Upper and lower curves
represent leave-one-out and resubstitution results respectively.
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Gaussian, this results in a quadratic classifier. Fhr the data in Figure 3.1(a),_'
" as h increases the Parzen vclassiﬁer approaches the quadratic classifier which
happens to be the Bayes classifier. Thlis, in this case, the performance of
the Parzen classifier does not degrade as h increases. This is not the case in
general as demonstrated in Figures 3.1(b) and 3.1(c). In these cases,
_although the Parzen classifier does ap.proach a quadratic classifier, it does
not approach the particular BaYes classifier for cases 2 and 3. Thus as h
increases the perform;ince of the Parzen classifier degrades sharply. Similar
performance may be expected when the data is not Gaussian, and the Bayes
classifier is not quadratic. 'In general the leave-one-out error dips down to -
some minimum point and, as h increases, performance degrades to the
performance of a quadratic classifier which is determined by the shape of the
kernel functions. The best bounds on the Bayes error are obtained by using
‘the minimum of the leave-one-out performance curve, and the corresponding
resubstitution error. It is interesting to note the size of the optimal value of
h in Figure 3.1. In these experiments (n=8, N;=N,=100) the best value of h
appears to be close to h=1, meaning that the covariance of the kernel
function is nearly equ'al to the covariance of the original data. While on
first “ glance . this seems to" be an extremely large value for ‘h, further
examination shows that such values of h are required if the Parzen density
 estimate at. a sample is to.receive reasonable contributions from 1ts nearest
nelghbors, particularly as the ‘dimensionality of the ‘data becomes large. A
discussion of the relationship between d1mens1ona11ty, sample size, and
nearest nelghbor distances may be found in [16]. For Gaussian data with
covariance I, the expected d1stance to the kth nearest nelghbor is given by -
16] . L

’ Var (k-+1/n)T(N+1) /2 1+n/2)
| TN, +1+1/n)(1—1/n)*/?
'For n*—8 and: N—lOO thls glves an expected 1-NN- d1stance of 1.9. These

large nearest’ nelghbor d1stances necessitate the use of large values of h.
The need for such large valuesiof h: clearly demonstrates ‘that biases

E{d Xxk&N)} = o

assoc1ated with Parzen: den51ty estlmates must - be considered when these
estimates are used in practlce A possible means of compensatmg for these
’blases is presented in Sectlon 3. 4 ' ’ ‘ '

The behavior of the k NN error as k increases is not so easrly explalned :
However, the k- NN rule may be viewed as a Parzen density estlmate with
unlform kernel and adaptable kernel size. Varymg the kernel size h for the
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Parzen classrﬁer is. analogous to changmg the Value of k for the k- NN .
~class1ﬁer It is known that for: infinite sample sizes, larger values of k grve" ‘

tighter bounds on-the Bayes error.. However, with a ﬁmte number of de31gn
samples, one- expects that the k-NN leave-one-out error w1ll pass through
some minimum as k increases. It is -this minimum which gives us the best
 bound on the Bayes error. ’ . L .

3. 4 The Decnsnon Thresholcl t

oI pl(X) and Da(X) were accurate estimates of pl(X) and po(X), then
using t=In(P wl)/P wy)), where P( l) represents the priori probabrlrty of w, |
‘would g1ve the optimal Bayes classxﬁer In practlce though, our estrmates
may be heavily biased, partlcularly when h or k is large In order to
evaluate the error performance; we must design our classifier based on pl(X)
“and py(X), ‘and test the samples drawn from the true densities p;(X) and
po(X). In this case, the optimal value -of t to use in the decrs1on rule (6) is
not clear.. We would"like to select the threshold Wh1ch glves ‘performance as.
“close to the Bayes error as poss1ble ‘

3 4.1 The Gau551an Case

In the Gaussran case, for the Parzen classifier, the threshold may be
solved for explicitly for large h. Recall from (3) the expected value of the
estimate p,(X) is given (1/h%k,(X/h)*p;(X).  When  p;(X)
(1/h"k X/h are normal dens1t1es ‘with covariances 2, and h2§3
respectively, this convolution glves another normal dens1ty with mean M;
and covariance (l—l-hz)El. For larger values of h, the variance of pl(X) and
- Pa(X) decreases, and the estimates approach their expected. values.
Subst1tut1ng the expected values into the est1mated log likelihood ratio, one

obtams .

".f)l(X) N oy |1| _.
| MY 00y — S M) v + TR

|

=3

2
=

Except for the 1 / 1—|—h2) factors on the covarrance matr1ces th1s express1on is.

P1(X)
Pz(X) . ‘

“identical to the actual log likelihood ratio, — In In fact the two may

be related by
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 Do(X)  1+4h p2(X)” 2 14n? 7 5] 7 ‘

-‘ s‘The actual Bayes decision rule is given by — ln[p1 X)/p2 (X)] Zln[P(w;)/P(wy)]-

Using . (8), an equlvalent test may be expressed in terms of the estimated
densities: ' '

P(X)
—In Al( ) 2t
~ De(X)
where an R ,
| o1 Pw) 1w R
t= In- + = —)ln : : 9
el R eerer i o U
In all of our experiments, we assume P(w;) ’:"P(w?_)‘ == 0.5, so that the first

term of (9) may be neglected. (9) gives the appropriate threshold to use
when using the Parzen cvlass_i‘ﬁer with Gaussjan kernel function on Gaussian
data. When the class covariances are equal, as in the data for case 1, the
B appropriate threshold is t=0"for all h.  Thus in Figure ~3¢1(_a), setting t==0

‘happened to be the correct choice, and relatively good performance ‘was

‘obtained even:for large values of h. When the covariance determinants are
dlfferent as for the data in cases 2 and 3, the value of the deCISIOIl threshold
becomes a functlon of h. In this case, if* the value of t is s1mply held
- constant at. zero,‘v’as» is:commonly done, the performance of the Parzen
classifier: degrades sharply for larger values of h, as evidenced in Figures
~3.1(b) and 3.1(c).. Flgure 3.2 shows the behavior of the Parzen classifier for
cases 1, 2, and 3 with t glven by (9 ) For low values of h, the classifiers give
similar performance to that shown in Figure. 3. 1, since the approprlate value

ooof t glven in (9) is ‘close to zero. As h increases, if t is held fixed the

performance begins to degrade’ sharply for cases 2 and 3, Whlle if the value
of t is set’ according to (9) relatlvely good performance is obtalned for all
Values of h “Thus, by allowing the deCISIOIl threshold to vary with h, we are
. able to make the Parzen classifier much less sensitive to the value of h. As
a byproduct we. are able to use larger values of h to obtain tighter bounds -

- .on the Bayes error
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Figure 3.2  Threshold selection for Parzen classifiers.
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3.4.2 The »Non-Gaussia.n Case

The decision threshold as used here is simply a means of compensating
for the bias which is inherent to the density estimation procedure. When
* the data and the kernel functions are Gaussian, we have shown that the
'bias may. be completely compensated for by choosing the value of t given in
(9). In the non- Gaussian- case, we cannot hope to obtain a decision rule
equivalent to the Bayes classifier sunply by varying t. However, by choosing
an appropriate value of t we can hope to compensate to some extent the
bias of the density estlmates ina region close to the Bayes decision region,
~.giving 51gn1ﬁcant 1mprovement in the performance of the Parzen classifier.
Procedures. are therefore needed for determining the best value of t to use

. when non-Gaussian data is encountered. We have investigated four possible

. options. These options, and a brief discussion of their motivation, as given
below. ’ '

Option 1: Use ‘the threshold as calculated. under the Gaussian assumption
(9). Since for larger values of h -the dec151on rule is dommated by the
‘functional form of the kernels, thls procedure may give satlsfactory results
~ when the kernels are Gaussian, even if the data is not Gaussian.

Option 2: For each value of h, find the value of t which ‘minimizes the
leave-one-out and resubstitution  errors. This option involves finding and
- sorting the leave-one-out and resubstitution estimates of the likelihood ratio,
and mcrementlng the values of t through- these sorted lists. “The error rate
used as the estimate is the minimum error rate obtained over all values of t.
This option makes no assumption of the densities of the data or the shape of _
the kernel function. ‘However, since the value of the threshold is customized -
to the data- belng tested, using this option will consistently bias the results
low. This is not objectiOnable in the case of resubstitution errors, since the
‘ resubstltutlon error is used as a lower bound of the Bayes error. However,
~ using - th1s procedure can give erroneous results for the leave-one out error.
: Optrons 3 and 4 are de31gned to allev1ate this problem ' '

‘Option 8: ‘For each- Value of h, find the value of which: m1n1m1zes the'f;!
resubstltutlon error, and then use this value of 't to ﬁnd the leave- one—out_g
error Since the selectlon of the threshold has been 1solated from the actual
;values of - the leave -one-out - estunates of the - l1kehhood rat1o, us1ng thls._-_'

method’ does in fact help reduce the ‘bias encountered in optlon 2. Our .

experlmental results Wlll show that thls method does glve rellable results as' _
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long as h is relatively large. When h is small, however, the resubstitution -
estimates of the likelihood ratio are heavily. biaéed and use of these'
estimates to detérmine the threshold may give far from optlmal results. An
advantage of this ~option is that 1t requlres no more computatlon time: than'
option 2. " o

Option 4: Under this option, the resubstitution error is found exactly as in
option 2, by finding the value of t which minimizes the resubstitution error,
and usmg this error rate. In order to find the leave-one- -out _error, we use a’
leave-one-out procedure to determine the value of to use for each sample.
Hence under option 4, we use a different threshold to test each of the
N1+N2 samples, determining the threshold for each sample from the other
N1+N2-1 samples in the design set. The exact procedure is as follows.

1)  Find the leave-one-out density estimates at all samples,

(X)), m=1,2, i=1,2, j=1,2,..N; .

2)  To test sample X0

a) Modlfy the density estimates by removing the effect of X() fIOIIl_

all estimates

6.(X1) mA
5nlX) = | o (NGB {1 /0" (X0 /)] =0, i=0(10)
N () — (10 — X)) =), 4

b) Calculate the likelihood ratio estimates at all samples X}”#XS)
 based on the -modified density estimates. '

B:(X9)
pa(X{)) 7
¢) Find the value of t which minimizes the error among the

N1+N2——1 samples (don’t include X )) under the decision rule

()(X-(i)) = —In

J Xj(i)?gXlg) : - (11)

p(x ) <y, | (12)

This is best accomplished by first sorting the likelihood ratio
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‘estimates ()(Xj(i)); and then incrementing the value of t through
this list, keeping track of the number of errors for each value of t.

d) Classify the sample Xﬁ‘) using ‘the original density estimates and

' the value of t found in step c: / .
X

pl( K) 2y

Pz(XJl ) <2

Count anv'error if the decided class is not wy.

) = 1 (13)

3) - Repeat - Step 2 for each sample, ‘counting the resultrng number of
o cla551ﬁcat10n errors. '

, Although this procedure is by far the most complex computatlonally, it is
the only true leave- -one-out - procedure, and gave the most reliable results
partlcularly for ‘small values of h.

~ Figure 3.2 shows the results of apply1ng optrons 1, 3 and 4 to the three
test cases lrsted in Table 3.1. In each case, Gaussian kernel functlons were
used, and the estimates are obtained using 100 design samples per class. In
all of our experiments, using the ‘threshold calculated under the Gaussian
assumptlon (option 1) gave the best performance This is as expected since
both the data and the kernel function -are in fact Gaussian. It is notable,
~however, that the use of option 4 .gave performance nearly equal to that of
option’ 1.. Optron 3 gave. good results also, - -but . performance degraded
sharply for small h, partlcularly for the-data in case 2, Where the covariance
determinants are extremely different. We belleve that the most rellable
procedure when the form of the den81t1es is not known is optlon 4.

3 4 3 Threshold Selectlon for k-INN ClaSSIﬁers :

Untll this pomt only the Parzen error estimate has been considered in
the . dlscusswn of threshold selection.  However, “most of the arguments
' regardmg selectron ‘of ‘the - threshold may be d1rectly applled to  k-NN

- estimation as well. ‘The k-NN densrty estlmates are known to be biased v

" when the " srze of the desrgn set is llmlted and by choosmg an appropriate

e threshold omne rmght hope to reduce or elrmlnate the effect of that bias when

classification is performed “We have not found usable expressrons for t even
~ in ‘the Gaussian case. However,»each of the non-Gaussian' methods for
threshold selectlon (optlons 2,3 and 4) are dlrectly apphcable to the k- NN’
lproblem L fo S



45

In51ght into’. the use of the k-NN procedures proposed here ‘may be
gained by - v1ew1ng the procedures in- the nonparametric data dlsplay
framework introduced by Fukunaga and Mantock [46]. Under this
framework a two d1mens1onal dlsplay is created with coordmates related to
the volume to the k™-NN to each class. Human intervention may then be
‘used to determine the best classification tule. Under our procedure, we
restrict our decision boundaries to those of the form given in (6), i.e. to hnes
with slope one in the data display. By restricting ourselves to this set of
decision boundaries, we gain the ability to automate t_hevpr»ocess,,‘ and hence
find the errors for a wide variety of valués for k. More complicated
boundaries could be used but only at- the cost of 51gn1ﬁcantly more complex ‘
procedures In this chapter, we -are recogn1z1ng this shift of the dec1s1on
boundary as a means of compensating for b1ases assoc1ated wrth dlﬁerent
‘values of k.. v _ ' '

 One comment is in order regarding the application of ‘option 4 to k-NN
estimation. In step 2 of option 4, in the Parzen case it is fairly simple to
remove the eﬁect of X (the test sample) from the density estimates of all the
other samples using (10) There is no analogous s1mple modification in the
k-NN case. In order to remove the effect of X; from all other den31ty-
estimates, one must remove X from the table of mnearest neighbors,
rearrange the NN table, and recalculate all of the dens1ty estimates. This
procedure would have to be repeated to test each of samples in the design
set, resulting in a fairly drastic increase in computation time. In practice we
have found that modifying each of the densit\y estimates to remove the effect
of Xj:is not nearly as important as is finding the threshold by minimizing the
error among the remaining N;+N,—1 samples. That is, modifying the
estimates of the likelihood ratios in step 2 is not necessary to get reliable
results - we do it in the Parzen case primarily because it is easy. Thus for
k-NN estimation, step 2 of option 4 involves finding and sorting 0(X;) for all
samples i#j, finding the value of t which minimizes the error among these
N;+N,—1 samples, and finally using this value of t to classify X;. '

Figure 3.3 shows the results of applying option 4 to the k-NN-
estimation problem. For comparison, the results obtained using t=0 are
also shown. As in the Parzen case, we find that the threshold plays its most
significant role when the covariances of the data are different, and
particularly when the covariance determinants are different. In test case 1
(=201, ¢ = 10%) the bias of the density estimates for w; and w, are
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o nearly equal near the Bayes decrslon boundary, and hence good results are ;
o obtalned usxng t= 0 s LU e el T e P S

Sy \v" Cw T

3 5 Pa.rzen Kernel Sha.pe.

..Whi"le (w1th the threshold adJustment) the Parzen classrﬁer prov1des';l‘_

_ ‘excellent upper bounds on- ‘the Bayes error, for reasonable values of h the' -
:'IOWer ‘bounds provided by the. resubstitution - “error. seem much too |
:"conservatlve This is espec1ally true When these bounds are. compared with
- the resubstltutlon k-NN error rates.. This tends to 1nd1cate that the kernel
;functlon places too much we1ght on the ‘sample” be1ng tested 1n ‘the
o resubstltutlon estlmate " Hencé, one poss1ble approach to 1mprov1ng the_,f"

" lower bound from the Parzen estimate is to use a kernel function wh1ch_

‘places less weight on the ‘test sample and more we1ght on the nelghborlng‘

: samples than does th Gauss1an kernel. - The unlform kernel function, with
- constant value 1n31de 2 spemﬁed region, is one such kernel functlon
However, if a uniform kernel function is employed one. must decide on. the' :
- decision to be made when the dens1ty estlmates from the two classes are

,equal and the Parzen procedure becomes even more complex o

In order to examme the. eﬁect of kernel shape on ‘the. Parzen clas31ﬁer '
_performance, we used the kernel functlons glven by ‘ ' '

% Y . - <IN T — ¥ E \

TakilX/h) =" rexp |- —F(“—) (/RXEETX)™ | (14)

'2m’

m[ ( )lln/ (S 2 )
2 2m 3

(mr)n/zlm/2+1 _j__)|2|1/2 . e

c =

‘. Where m is-a. parameter determlnlng the shape of the kernel It may bev :
) v_verlﬁed that for any value of m, the covariance of the kernel dens1ty (14) is -
given by’ hzzl, just as it has been throughout this- chapter ‘The parameter‘ ,
m determmes the rate at which the kernel function drops off. -For m=1,
(14) reduces to a simple Gaussian kernel. . As m becomes large,. (14) -
. approaches a uniform (hyperelhptlcal) kernel always with a smooth roll-off,
(for finite m) and always w1th covariance h®¥. Using this kernel allows us
to use kernel functions close to the uniform kernel, without hav1ng to worry
' about the problem of equal dens1ty estimates. '
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- Figure 3.4 shows the performance of the Parzen estimates with m=1
(Gaussian kernel), 2 and 4. In each case, the estimates were based on 100
-design samples per class, and the threshold was determined using option 4.

In all cases, using higher values of m (more uniform' kernel functions) did
| improve the lower bound whrle havrng little effect on the upper bounds on
the error. ' :

3. 6 Effect of Sample Size and Dlmenswn

In order to determine the effect of sample size on the error estlmates,
k-NN and Parzen error estlmates were obtained for test case 1 using sample
sizes N;=N,=25, 50, 100, 200, and 400. Gaussian kernels were used for the .
Parzen estlmates and in all cases option 4 was used to find the best
threshold. Performance of the Parzen and k-NN estimators is graphed in
| AF1gures 3. 5(a) and 3. 5(b) respect1vely As may be seen in the figures, both
procedures give reasonable bounds using sample sizes as low as 25, and good
bounds for sample sizes of 50 per class.. The Varrance of the two est1mates r
has been graphed in Flgure 3.6. Note that the Parzen and k- NN procedures
g give comparable Varlances Similar results were obtarned for test cases 2

fand 3. '

These results show no. clear preference between the Parzen and k-NN
procedure as ‘used here. Both procedures y1eld usable bounds on the Bayes
- "error, with " very comparable variances. This is not surpr1s1ng, since the k-
NN procedure may be Vlewed as a Parzen classifier with kernel size
determlned adaptively. (accordlng to. NN dlstances) It should be stressed,
. however, that' we are not comparing the conventlonal k- NN and Parzen
procedures, but - rather then improved procedures as introduced in this
chapter Recall that our k-NN procedure involves (possibly) using d1fferent
metrics for each class in the desrgn set, and for both the k-NN and Parzen
: procedures the threshold is varied accord1ng toh or k. We believe that

. these modifications must be made to form a val1d comparison between the

two procedures, and should - also be made in practlce to obtaln rel1able
l bounds on the Bayes error - ‘ ‘ ‘

The proposed Parzen and. k-NN procedures were applied to real data

e W1th 60 d1mensronal feature vectors . Flgure 3.7 shows the results of both

The results are prov1ded by R Han, G Green and R. McCoy of Martln Marletta

e Aerospace Orlando, FL. - .
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Parzen and k-NN error estimates using sample sizes'N1=N2#115 and 230,
and using option 4 to determine the threshold. Class covariance matrices :

were used to determlne the kernel funct1ons for the Parzen and the metrlcs ,
for the k-INN. :

‘Although the true Bayes error is not known in this experiment, a
quadratic classifier was designed from the data (using 5000 samples) and
found to have an error of 8%. This value is significantly above the error
rates” obtained by both the - Parzen and k-NN classifiers, 1nd1catlng the
suboptlmahty of the quadrat1c class1ﬁer (that is, the distributions of the

~dataare not GauSS1an) ‘Notable is the fact that both the k-NN and Parzen" o

procedures give nearly identical error estimates. This suggests that both
procedures are working well, even in this experiment where the sample sizes
“are extremely small for the dimensionality considered.

‘Note that the value of h used for the Parzen classdier is large, rangmg
from 5 to 9. These large Values are required for the kernel functlons to
reach a reasonable number of neighboring samples The expected d1stance .
to the ﬁrst NN is 7.35 by ( ) for a 60—d1mens1onal Gauss1an dlstrlbutlon with -
covarlance matrix I and N1=N2—230 [16]. : o

3.7 A Non-Gaussmn Test Case

It is of 1nterest to- examme the behavior of the Parzen and k NN.'
class1ﬁers in a case in which the optimal Bayes classifier is not a quadratlc-f
classxﬁer Toward this end, the class1ﬁers we tested on data drawn from the_
followmg d1str1but1ons DR | - - : :

g pz(X) = 0.5N(Myy,1) + 0.5N(My,1) ’(1]5_) E

where N(M, 2)) is-a normal. dens1ty with mean M and covariance Y. Like our

o prev1ous test cases, the. d1mens1on, n, was set to 8. The first component of

" the mean vectors are given by M;;(1).= 0.0, M;,(1) = 6.58, My;(1) = 3.29,

and M22(1) = 9.87, and all other components of the mean vectors were set to

zero.” - These parameters glve a Bayes error of 7.5%. ‘In our experlment. -

“ ?EGauss1an kernel functions were used with kernel .covariance given by - 8%

- The euclidean metric was used for the k-NN class1ﬁcatlon For both Parzen |
‘and k-NN class1ﬁers, 100 des1gn samples per. class were used ;

Flgure 3.8 shows the results for . both the k-NN and Parzen cla331ﬁer

As expected as h grows the error rate for the Parzen cla531ﬁer drops toa

mlmmum and then 1ncreases as the classifier. converges to the quadratlc,
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classifier. - The degradation in performance does not seem as severe for the
k-NN classifier over the values of k plotted, alf'hough a slight degradation
can be detected for k > 20. In both cases, however, both the k NN and
Parzen classification do provide usable bounds on the Bayes error.

3.8 Comparisbn With Existing Methods

As mentioned earlier, the Parzen and k-NN pfocedures.déveloped in
this chapter have' several differences from the conventional procedures
commonly in use. - Probably the most important difference is that in the
procedures used-here»the decision threshold is allowed to vary as h and k
change. This provides a means of compensating forvomthérwise unaccountable
biases in the Parzen and k-NN density estimates, and hence results in a

dramatic improvement in the performance of the estimates under finite

design set conditions. As a result of varying the threshold t, the
performance of the k-NN or Parzen classifier is made much less sensitive to
the value of k or h. '

While the determination of the decision threshold is the primary
difference in the Parzen error estimation procedures, another important
difference exists in our k-NN procedure. Under the density estimation
approach used in this chapter, different metrics may be used to _Imeasure
distances to samples from each class allowing further improvement in the
performance of the k-NN procedure. This is not possible in methods in
which the sample is classified by the majority class among its k nearest
neighbors from the mixture density. '

Figures '3.9, 3.10 and 3.11 summarize the performance of both the new
and conventional procedures for the three test cases listed in Table 3.1. In
all experiments, 1001design samples per class were used, and Gaussian
kernels we used for the Parzen estimates. -Under the conventional
procedures, the threshold t was set to zero, while under the new Parzen and
k-NN procedures, option 4 was used to find ‘the threshold for each value of
h. The Euclidean metric was used in the conventional k-INN procedure.

Figure 3.9 shows that the new procedure provides virtually no
improvement over the conventional procedures for test case 1. This is not
particularly surprising since using t==0 in the conventional procedure .
happens to be the optimal value of t given in (9) for this test case. The real
improvement in the k-NN and Parzen procedure is clearly demonstrated in
Figures 3.10 and 3.11, where cases 2 and 3 are presented. In both of these
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cases, the conventional k-NN error rate is virtually unusable as a bound on
the Bayes error, while the new k-NN estimates converge nicely, even for
large values of k. The values of the conventional Parzen estimates are also
questionable, since they seem to be extremely sensitive to the value of h. By
simply changing the value of t as h is increased, this sensitivity can be
nearly eliminated. | ’

3.9 Summary

In this chapter we have examined the use of k-NN and Parzen error
estimation procedures under conditions in which the number of design
samples are limited. The k-INN and Parzen procedures have been developed
in parallel so that valid comparisons could be made between them. The
resulting k-NN error estimation procedure allows different metrics to be used
for each class, and is thus a generalization of the k-NN counting prbcedure
commonly in use. The most significant discovery of this chapter is the
potential role of the decision threshold in error estimation and classifier
design. The decision threshold is seen as a means of compensating for biases
in the k-NN and Parzen density estimates under finite sample size
conditions. We have found that by appropriately selecting the decision
threshold, the error estimates obtained using the Parzen or k-NN procedure
may be made much less sensitive to the values of k or h.

The experimental results here show no clear preference toward either
the Parzen or k-NN procedure. Computationally, the k-NN errors are
slightly easier to calculate since the error rate may be found for all values of
k simultaneously, whereas the Parzen error rate must be completely
recalculated for each value of h. As far as performance is concerned, neither
procedure exhibits a clear advantage over the other. This is not surprising,
given the close link between k-NN and Parzen procedures.
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CHAPTER 4
'LEAVE-ONE-OUT PROCEDURES FOR
NONPARAMETRIC ERROR ESTIMATES

4.1. Introduction

Nonparametric Bayes error estimation plays an important role in
pattern recognition, providing a means of evaluating various feature sets
and forming a basis with which to evaluate various classifier designs. In
Chapter 3, modified k-nearest neighbor (k-NN) and Parzen error estimation
procedures were introduced which give significant improvement over the
procedures commonly in use. These procedures provide estimates which are
much less dependent on k (for k-NN estimate) and h (the Parzen smoothing
parameter) than are the conventional estimates. However, in Chapter 3,
knowledge of the class covariance matrices is assumed, ignoring the effects of
estimating the covariance from the data.

We have found that in high-dimensional spaces, using the same data to
estimate the kernel covariances and form the nonparametric classifier may
lead to optimistically biased error estimates. This problem was brought to
our attention while dealing with 66 dimensional feature vectors obtained by
coherently sampling millimeter wave radar returns of various targets. The
data was obtained by placing a Camero and van on a turn table, and time
sampling the resulting radar returns at 10000 different angles ranging from 0
to 360 degrees. This_ large sample set was then reduced to sample sets of
size 720 (samples taken every 1/2°) and 360 (samples taken every 1°). When
the Parzen estimation procedures given in Chapter 3 were employed using
360 design samples per class (and estimating the kernel covariances from the
same 360 samples), lower and upper bounds on the Bayes error of 3.9% and
5.1%. tespectively were obtained. However, when the sample size is
increased to 720 samples per class, bounds of 7.0% to 8.2% resulted. Using
good estimates of the covariance (estimates obtained using 10000 samples
per class) gave the most realistic error bounds for this data — 16.4% to
17.695, again using 720 samples per class to form the nonparametric error
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estimates. These inconsistent results demonstrate that the upper bounds on
the Bayes error (given by the leave-one-out nonparametric procedures) may
be severely (optimistically) biased if the class covariances are estimated from
the same data as is used to form the error estimates.

If possible, then, to avoid this bias one should estimate the class
* covariances using a large number of independent samples as was done above.
Once the covariances are estimated accurately, we have found that we may
use a relatively small sample size for the nonparametric procedures given in
Chapter 3 to produce reliable results. However, if additional samples for
estimation of the covariance matrices are not available, then in order to
obtain reliable upper bounds on the Bayes error one must use leave-one-out
type estimates of the kernel covariances when forming the leave-one-out
error estimate. This implies the use of a different covariance matrix for each
sample being tested. This chapter gives an eflicient method of calculating
this estimate, requiring little addition computational effort over the
procedures given in Chapter 3.

4.2 The Leave-one-out Procedure

Under the leave-one-out error estimation procedures given in Chapter 3,
all samples Xj( ), j=1,..,N from class w, are tested using a nonparametric
classifier designed using the N-1 samples Xi(k), i=1,...,N, i##]. For both the
k-NN and Parzen estimates, we are concerned with the calculation of the
normalized distance estimates A

d* (X, X) = (5 -X)" 57 (X X)) (1)
where in this chapter we assume that the covariance matrix > has been
_estimated using the unbiased estimate '

o LT e _ o y® — T
2 = Ne1 (X = My (X~ M) | (2)
N 1 N
Mk - - Z Xi(k)
N i=1

Note that i‘k and M, represent the covariance and mean estimates formed

(k)

~ a valid upper bound for the error rate, we must remove the affect. of X( ) o

using all samples, including the sample being tested, X;. In order to obtain

the covariance estimate Lk Let Ek denote the estimate of the covariance
estimate for class w, using all samples except Xj(k). Then [18]
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N-2. ey NE7UX j() Mk)(X Mk)T Zk
N-1 ™ (N - NG -y S () -y

o

B zkj = ( ‘ (3)

-~ Hence, when Xj(k) is removed from the coyariance ‘estimate, the .desired -
normalized * distance, formed using the covariance estimated using the
remaining N-1 samples, becomes

N|(X XTSI M)

. N__2 AZI
D=2y A Xy + ' y
( ) XX (N-1)2- N Z(X'(k);Mk)

J

x{ _Xj(k))T ilgl(Xi(k) —x{)

—(N=2, |52 ‘.(k) .(1:) N[d*(X M M,) - fl( (k)M) -&2(Xi(k),xj(k))]2
I | TR {(N=1)? — &K 1)

. Equation (4) relates the leave-one-out dlstance using ikj to the distances
d2(X(k)X M, d2( JM,), and d* (X ML,) which are formed as in (1) using
the full covariance and mean estimates given, in (2) Hence, assuming that
the N distances 32(Xi(k),1\7fk) i=1,..,N have been saved, calculation of the
leave-one-out  distances - (Xi(k)—Xj(k))T EI:jI(Xi(k)—.Xj(k)) requires little
additional effort over the calculation of aZ(Xi(k),Xj(k)). 'Note that the
conversion expression (4) involves only one-dimensional quantities, requiring
no vector or matrix manipulation. '

Also required for k-NN and Parzen estimates are the cbvariancev
determinants. The determinant of ikj may be expréssed in terms of |iki as

follows [18]:

N—1 ., 1 N
® ] (1

Sl = (——— -

(X, - (5)

where bniis the dimension of the feature vectors. Hence, assuming |§Jk| has
been calculated, a straightforward calculation gives Iij |, provided the
distances aZ(Xj(k),Mk) have been calculated and saved. ‘

The modified nonparametric error estimate which employé an estimated
covariance matrix may be summarized by the following steps: '

1) Find ik and M, using all available samples as in (2). Use ikv to
calculate likl and ik—l. Note that, as pointed out in Chapter 3,
the computational complexity of the nonparametric procedures is
greatly reduced if the data is first transformed so that ik is
diagonal This makes the calculation of the N? distance terms,
&(Xi(k) ) very simple. -
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2) Find' and save d3x ), MMy for all samples (i=1,...,N)v ‘
3) When testing sample X( ). | ' v

i) Find d(X( ) using Zk , i=1,...,N. Use these values in
forming the resubstltutlon error rates. ‘

ii) Remove the affect of Xj(k) on the covariance estimate using the
(one-dimensional) expressions (4) and (5). Use these values in
forming the leave-one-out density estimates at Xj(k)

iii)  Use the Parzen or k-NN procedures as developed in Chapter 3.
- Note that the distance correction of step (ii) need only be
pefformed ‘when measuring the distances to samples of the
same class as sample Xj(k), since ;Xj(k) does not enter into the

covariance estimates of the other classes.

4.3 Experimental Results

The three experimental test cases used in C‘hapter 3 were repeated here,
this time using estimated covariance matrices rather than the theoretical
covariance matrices-as in Chapter 3. All three cases are two class problems
involving 8-dimensional Gaussian data. For test case 1, the class
covariances are ‘equal and the mean vectors are separated to give a
theoretical Bayes error of ¢ =10.0%. Test case 2 is an equal mean test case
with class 1 and class 2 covariances of I and 4I respectivelyd where I is the
identity matrix. These parameters yield a Bayes error of 9.0%. Test case 3
is a complex dlstrlbutlon in which both the means and covariances are
different, giving a Bayes error of € =1.9%. The reader is referred to
Chapter 3 for details of the dlstrlbutlon parameters For the experiments
presented here, 100 samples per class were used to form the error estimates.
Table 4.1 shows the leave-one-out and resubstitution error estimates
obtained using both k-NN (for k =10) and Parzen (for h=1.5) procedures.
- Also shown in Table 4.1 are the corresponding results obtained -in Chapter 3,
which use the true covariance matrices. The results were averaged over ten
- trials, and the corresponding standard deviations, 01,, and oy are listed. To
test the validity of the experiments, several of the test cases were: repeated
using 50 (rather than 10)trials. Changes in all the estunates were small (for

- ‘example, using the Parzen estimate for case 1, the: estimate of oy, changed

from 2. 6% to 2. 52%, and the estimate of. O from 1.3% to 1. 25%).
_ Comparlson of the new results with- those presented in Chapter 3 shows only
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Table 4.1 Parzen and k-NN error estimates for the three experimental
test cases used in Chapter 3. All results are based on 8-
dimensional data with 100 samples per class forming the
estimate. o R

(a) 10-NN error estimates
Test | Bayes | Covariance | L.o.o. 00 Resubst. OR
Case | Error |- Used Error Error
1 10% True 11.9% | 2.2% 8.7% 1.8%,
| Estimated | 13.6% | 3.2% 8.2% 1.8%
2 9% True 13.6% | 2.8% 9.2% 2.6%
Estimated | 17.7% | 5.0% 9.0% 2.1%
3 1.9% True 2.7% | 1.0% 1.4% 0.7%
Estimated | 3.2% | 1.3% 1.3% | 0.6%
(b) Parzen (h=1.5) error estimates
Test | Bayes | Covariance | L.o.o. OLoo | Resubst. OR
Case | Error | ‘Used Error Error v
1 10% True 11.0% | 1.8% | 6.4% 1.3%
Estimated | 12.6% | 2.6% 5.8% 1.3%
2 9% True 10.6% | 2.9% 4.8% 1.0%
Estimated | 11.0% | 3.2% 4.5% 1.3% |
3 1.9% True 1.7% | 12% | 11% | 0.9%
Estimated 2.3% | 0.9% 0.8% 0.6%
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‘slig’ht degradation, this is due to the use of estimated, rather than true
covariance matrices. Both the resubstitution and the new leave-one-out
procedures continue to provide useful bounds on the Bayes error:.

In order to more clearly demonstrate the behavior of the estimate in
higher dimensional spaces, the procedures were tested using the 66-
‘dimensional radar signature data referred to in the introduction. The
results are shown in Table 4.2. The first two entries of the table show the
performance of the nonparametric classifiers when good covariance estimates
(formed using 10,000 samples per class) are used with limited sample sizes
(360 and 720 per class) used as references to form the classifier. The second
two entries indicate the performance of the procedures presented here, in
which the same data is used to estimate the covariances and form the
reference sets. The true Bayes error for this set of data is not known. Note
that even as the sample size used to estimate the covariance matrices
becomes small, the leave-one-out error rates continue to provide reasonable
and consistent bounds. This is in contrast to the results given in the
introduction in which the estimated covariances are blindly used without
employing the leave-one-out procedures of this chapter. As expected, the
bounds become worse as the sample sizes decrease. This is particularly the
case for the resubstitution error rates, which become heavily biased as fewer
samples are used to form the covariance estimates.

4.4 Summary

When the nonparametric procedures presented in Chapter 3 are applied
in high dimensional spaces, the estimation of the class covariances (i.e. the
determination of the kernel/metric shape) ‘plays a very significant role.
Specifically, if the same data is used to estimate the kernel shapes and form
the error estimates, severely biased results may be obtained. This chapter
has provided an efficient. leave-one-out algorithm which may be used to
eliminate this optimistic bias, while making effective use of all available
design samples. This procedure requires only a slight -increase in
computational complexity over the procedures presented in Chapter 3, while
still giving reliable bounds when covariance estimates, rather than the true
covariances, are to be used to form the nonparametric classifiers.:
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Error estimates obtained using 66 dimensional feature vectors

Table 4.2
derived by sampling millimeter wave radar returns of two
targets. N, represents the number of samples (per class) used
to estimate the covariance matrices, and N represents the
number of samples used to form the nonparametric error
estimates. - ’
N.ov N Parzen (h=9.0) 10-NN .
Leave-one-out | Resubst. | Leave-one-out | Resubst.
10000 | 720 17.6% 16.4% 22.4% 18.0%
10000 | 360 19.4% 15.8% 22.2% 18.8%
720 | 720 23.0% 7.0% 24.2% 10.1%
360 | 360 27.5% 3.9% - 29.3% 6.4%
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| CHAPTER 5
PERFORMANCE OF N
NONPARAMETRIC CLASSIFIERS -

5 1 Introductron '

» In thls chapter, we - examine the performance of - clasmﬁers de51gned
using Parzen and k-nearest neighbor (k-NN) density estlmates When the
number of design samples is infinite, the convergence of the Parzen on k-NN
error rates to the Bayes error is well understood. ~Here, we derive
expressions which give the expected error performance of the clasmﬁers when
4 finite number of design samples is avarlable These expressions relate the
observed error rate to the true value of the Bayes error, and show how that
error rate is aﬂected by changes in the sample size or desxgn parameters of .
the density estlmates ' o ‘

We begin in Section 5.2 by deriving the expected error: performance in
terms of the mean and variance of the density estimates used to form the
‘classifier. This section is primarily an application of the techniques
presented in [47] to the problem of classifier design. The results of this "
section are very general and have application beyond the scope of this
thesis. In [47], similar expressions are used to examine the behivior of
cla551ﬁers de31gned using parametric technlques Sections 5.3 and 5.4

evaluate these expressions for the Parzen and k-NN classifiers respectlvely »

The résults show how the Parzen error rate is affected by the sample size,
the size and shape of the kernel function, and the value of the decision
threshold. The importance of ‘the decision threshold was demonstrated in
, ‘Chapter 3, and this chapter provides some theoretical justification for these
results. Similarly, the performance of the k-NN classifier is expressed in
terms of the metrlc, the value of k, ‘and thé sample size. These expressrons
are then used in Sections 5.5 and 5.6 to improve the performance of these .
classifiers. Section 5.5 mtroduces a method of estimating the true value of -
' ‘che Ba}res error from the observed error rates for the nonparametric
classifiers. Currently nonparametric error rates are used to form upper



68

‘bounds on the Bayes error, and may in some cases be quite biased. We
_believe that the techniques of Section 5.5 more effectively use the available
information and represent a significant improvement over the current
techniques. Section 5.6 presents some guidelines regarding the selection of
the kernel shape to improve the error performance of the classifiers. These
results nicely complement results already in existence. regardlng the selection
‘of the optimal metric for k-NN classifiers.

5.2 Effect of Finite Design Set on Classifier Performance

In this section, we develop the relationship between the accuracy of a
density estimation procedures and the correspending error rate obtained
when the density estimates are used to form a classifier. Our development
closely follows the work presented in [47], which gives similar results for
- linear and quadratic classifiers.

We begm by con51der1ng the probablllty of error, €, provided by the
classifier - / o
h(x) SO o : NCY

where x is an n-dimensional random vector with density for class w given by
pi(x) (i=1,2). The probability of error for samples from each class is given
by

o0 [ou) .
1 1 1 o
= hy{dh = — + — | —¢ d ' 2
€ {Ch( ) 9 + or I jw(/)](w) W ( )
o 11 % '
= h)dh = — — — | —¢ d
o= Jaldn =5 - o ] L ®

where gj(h) is the’ dens1ty of h(x ) for class “ and ¢;(w) is the corresponding

characteristic function:.
d(w) = E{ejw |w} = J}; e hix x)dx » (4)

The error rate for the claSS1ﬁer, € = Py + Pyéy, may now be expressed.

1
€= — +
2 27T—00 ")

J“h(x) (Pipi(x )_ P2P2(X))dx_d@ ‘ : (5)

Here, P, is the a pr10r1 probablhty of class W

In practlce, h(x) is generally unknown and must be estimated using a
set of N preclassified design samples We define a random variable Ah(x )
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which relates the true value of h(x) to the estimate. v

h(x) = h(x) + Ah(x) | ~(6)
The probability of error using B(X) may be obtained by substifuting ﬁ(x) for
h(x) in (5). When Ah(x) is small, the exponential of (5) may be
approximated. as : ' -

oIvB(x)  GJwb(x)giwdh(x)

= 01 4 junh(x) + L(iean() (7)

The expected degradation of the error rate, AE; may now be obtained by
substituting (7) into (5) and taking the expectation over the set of N design
samples. - , ‘ '

B{OG = 5[ [BARG) + %éhz(x)}ej~"h<*’(Plpl(x> — Pypy())dxdes  (8)

This expression approximates the expected error degradation in terms of the
bias and mean square error of ﬁ(x)

In this chapter, we investigate the estimation of the Bayes error using
classifiers for which the estimated log likelihood ratio h(x) = —In(p,(x)/Pe(x))
is used. We wish to relate the error rate for this classifier to the Bayes
error. Assuming P;(x) = p;(x) + Ap;(x), then

 Ab) =In Apz(x)]_ln[1 .\ .Apl(x)]_t

1+ (9)

Pa(x) p1(x)

The parameter t in (9) is included to allow for the possible use of a non-zero
threshold in (1). Expanding the log terms of (9), and dropping third or
higher order terms gives '
LAk 1 {Apx) ' Ap(x) 1 [Ap) |
Ahfx) & ———— — — | — —

Po(x) 2 { Pax) pi(x) 2 pu(x)
Squaring this result, and again dropping the higher order terms,
Apo) P [Ap®) | [ An() || Ars(x)

+ J— .
Py(x) Py (x) py(x) py(x)

—t. (10)

+ t?

Ab?(x) = [
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{

APz( ) 1 AP2(’*) I B Ap]( ) l Apl(x).v 2] . '(11)‘
pz(X) 2| pa¥) P 2 m ]

The expected error devxatlon can now be obtamed by taking the expectatlon

ot

_of (10) and (11) and substituting into (8). The actual evaluation depends
upon the partlcu‘la-rv density estimates used. The parametric case assuming

~ Gaussian. distributions is treated in [47]." Sections 3 and 4. w1]l evaluate these
_expressmns for Parzen and k-NN cla531ﬁers respectwe]y

5.3 Degra,da.t‘ion' of t‘he Pa.rzen 'Class’iﬁelr' o

5 3. 1 Evaluatlon of E{Ae}

- We now assume that Parzen or kernel type dens1ty estlmates are used
“The general Parzen densnty estimate is given by

1/N))] 1/h ((x — x{ /h | o (12)

"vIn (1 | 2), (x) is a non—negatlve symmetrlc kernel functlon with [k; x)dx =1,

hisa scallng parameter ‘which determines the size of the kernel function and

" the smoothness of the ‘density estimate, and x( )(J =1,2,...;N) are thevN design

' samples from. class: wi. In order to s1mpllfy the notatlon, and to more ‘clearly
show the relatlonshlps between the Parzen and k NN classifiers, we will
assume a uniform kernel function: .
R
T B l/h )k ((x X /h) otherwise . - (13) o
.vwhere S = {Yd xY) <hVn +2}, v, is the volume of: S, and d(xY) is a
metric measuring- the dlstance from x to Y. -This assumption significantly
~simplifies the discussion, while not appreciably,altering' the final result. A
‘derivation in terms of general 2S}fmmetric"kernel functions is given in
: Appendlx B. For the umform kernel functxon the densnty estlmate of (12)
may be rewrltten as L : o :
'k""".

> »p~(X)‘
| 'where k is the number of desxgn samples whxch fall in the regxon S FOr the
_ Parzen estimate, Vi is held ﬁxed and k is random ‘and has a binomial
: dlStl‘lbutIOD Wxth parameter u;, where ' . |
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u; = Prix(es fu} = Lpi(W)dy o (15)

The dependence of u; on x is understood. The moments of k are then given

in terms of u; by v
E{k} = Ny, , : (16)
E{k?} = Nu; + N(N=1)u/ o (17)

The expectation of the error terms of (10) and (11) may now be calculated
by combining (14), (16) and (17):

) Ap;(x) oy - pi(x)v;

5 p;(x) ]_ pi(x)v; (18).
([ 2px) 2 i 'ui'l“Pi(X)V_i 2 n W o Bl |

: pi(x) }_ [ pi(x)v; ] * N [ p2(x)v [pi(x)vi ] (19)

In order to express the error degradation in terms of the kernel size and
shape, u; and v; must be expressed in terms of these quantities. For the
density estimate of (14) to be accurate, v, (and hence h) must be small.
That is, S, should represent a local region centered at x. Under these
conditions, the integral of (15) may be approximated using a second order
Taylor series about x:

p(Y) = ) + VIp)(Y) + (¥ =0TV (20)

In order to evaluate the integral of (15), we must also specify the shape of
the region S,. For simplicity and practicality, we will assume that a

quadratic metric is used to specify S;:
& (x,Y) = (x=Y)T M (x—Y) (21)

' g
This choice gives a scaled kernel function with covariance hz)_)ki, which is

consistent with notation used in previous papers as well as with the results
for general kernel functions given in Appendix B. The integration of (15)
may now be evaluated. Note that the first order term of the expansion in
(20) vanishes as a result of the symmetry of the region S,. The result is

X

u; = Pi(x)vi + étr [?2pi(x)fs (Y—x)(Y—x)TdY]



; . 1 1+ 2/n
L= )iXVi+ ; Vi ’ i\ X e X . 22)
O+ S pe(x) @)

. where -

oclx) = tr b }ka]

p;(x)

| . (g-n)hﬂ kaillﬂ | ‘ ‘ : o

‘and tf[A] represents the trace of the matrix A. The relatidnship betwee-n Vi.

‘and h is given by
vy = (\’il(l + Il/2)n/.2hn' :

- Combining (18) and (19) with (22) and (25) gives the desired error quantities
in terms of the kernel size and shape, and the number of design samples.

E{ Apy(x) }g lh2ci(x) S “ i Lo : (26)

(25)

. Pi(_X)v ,

. —,(1+§—h2ci(x))5 @

Ao Pty e |1+ (/2R )
| 4" N ‘pi(x)<yi(1+n/2)“/2h“ 1

Appendix B shows that \firtually identical results may be obtained for
arbitrary kernel functions. L o -

- The error degradation given in (8) is in terms of the expectation of (10)
~and (11). These terms may now be calculated using (26) and (27).

BN} = Sheafx) — eafx)) + ThY(eF(x) — eflx)) — ¢

‘1> 1. : 1+ (1/2)}1201()() - ‘ 1+ (1/2)}1202()() ) '
2N | py(x)og(1 +n/2"h  py(xjonll + /22

4

el —al) £ (/O —efo)| ()

(23)_ o
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Li(egf) — esf) = | = Tun(e) - edo)

E{(Ah(vx))?] 35

| 0o/ R) | 01/ )
o N pl(x)(yl(1+n/2)p/?h“ - p2(x)<‘.y2(1+n/2)n/2hn

_ (’(l‘+t)c2()‘() + (1_t)c.ll‘()'())h2, /
= :11*((1+t)c22(x) &+ (1“t)C12(x))h'4 _ ol | _ S ]

v 5.3.2 Effect of N and h:. B . : :
~ Substituting (28) and (29) into (8) we ‘obtain the error degradatlon in
terms of the sample size N and the value of h: o B
Bl b+ et + N [ash“‘» +ah ™ 4 agh? + ash»f*]' (30)
bHere, the constants ay,.. ,a6‘ are obtained by evaluatlon of the 1nd1cated
'vmtegral express1on in (8). In this sectlon, we have assumed for simplicity
that the decision threshold t has been set to zero. Because of the complexity
of the expressions, exphclt evaluation is not p0551ble However the constants
are functions only of the distributions and the kernel shapes, ks and are
completely independent of the sample size or the smoothing parameter h.
Hence, (30) gives an expression showing how changes in h or N effect the
~error performance of the classifier. The a;h’ and a,h* terms show how
biases in the density estimates influence the performance of the classifier,
while the azh™/N and azh™®*%/N terms reflect the role of the variance of
_the density estimates. For small values of h, the variance terms dominate _

(30) and the observed error rates are significantly above the Bayes'efror As

h grows, however, the variance terms decrease while the alh and a, h* terms
play an 1ncreasmgly sngnlﬁcant role. Thus, for a typical plot of the observed
~error rate versus h, ¢ decreases for small values of h until 2 minimum point
is' reached, and then increases as the bias terms of the density -estimates
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g bec‘omes”more -signiﬁcant. ‘This rbehavior has repeatedly bee'n observed by
'rnan‘y rese’arch:ers, and is accurately predicted in our expres,sio'n for E{Ae}.

It should be noted that although exphclt evaluatlon of a; through ag is |
not possrble in general, it is- reasonable to expect. that these constants are
posrtlve It is certa1nly true that E{AE} must, be positive for any value of h,
~ since the Bayes decision rule is optimal in terms of error performance Also,
i ;close e_xamlnatl_on,of (28), (29), and (8 ) show that. the constants ag and ag

“are of the same order of magnitude as' a; and a,, so that for reasonable
v’values of N (say, N > 50) the influence of the a5 and ag terms is small in
'comparlson with the a; and 2y terms, and for practical purposes rnay be
neglected ‘ |

~ The role of the sarnple size, N in (30) is seen as a means of reducing
‘the terms correspondmg to the variance of the dens1ty estimates. Hence the
prlmary effect of the sample size is seen at the smaller values of h, where the
N az and a, terms of (30). /domlnate As h grows, and the ‘a, and a, terms
become domlnant changlng the sample size has a decreasmg effect on the
| ‘resulting error. rate. " These observatlons were verlﬁed experlrnentally
Figure 5. 1 shows the observed Parzen error rates obtained for a partlcular»
"set of Gaus51an dlstrlbutlons for N ranging from 25 to 200 design samples
= per class, h ranglng frorn 0.6 to 2. 4. The dlstrlbutlons were - 8- dimensional
~Gaussian ‘with M1 = O,Ll ——I D = A and M, as speclﬁed in, Table 5.1.
~ Here M; and Ll represent the mean Vector and covarlance matrlx
respect1vely for class w, I'is the identity rnatrlx, and A is a dlagonal matrix
with dlagonal elements Ae(k=1,...8). The chosen values of X are also shown
in Table 5.1.. These parameters yield a Bayes error of 1. 9%: For each.
'comblnatlon of N and k, N independent’ samples per class were generated
and -used to form’ h(x) = —In(p (Py(x (x)/pa(x)) where pi(x) is as given in (12).
o Gau551an kernel functlons Were ‘used w1th covarlance Yk = Ll The
~ decision rule of (1) was ‘then. evaluated usmg 1000 test samples per class
1ndependently generated from. the two dlstrlbutlons The number of
classrﬁcatlon errors was counted and d1v1ded by the number of test samples
to. glve an estlmate of the probablllty of error for each design set These
’ results Were averaged over ten. 1ndependent design 'sets to prov1de an

.-V-"estlmate of -the expected error rate ‘Figure 5.1 shows that for each value of
N, the Parzen “classifier - behaves .as. predlcted by (30) decreasing to a

.minimum point, and then | 1ncreasmg ‘as the. blases of the densrty estimates
become slgnrﬁcant for larger values of h. - Also note that the sample size

4
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Figure 5.1. Parzen error rates for various sample sizes and values of h.
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Table 5.1 Diagonal elements of A, and the corresponding components of
the mean vector. ;

i1 2 3 4 5 6 | 7 8
N | 841 | 12.06 | 0.12 | 0.22 | 1.49 | 1.77 | 0.35 | 2.73
m; | 3.86 | 3.10 | 0.84 | 0.84 | 1.64 | 1.08 | 0.26 | 0.01
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plays its primary role for small values of h, where the aj alid a, terms are
most significant, and has almost no eﬂect at the la rger values of h.

Note - that ,'1"11v order to have E{Ae} — 0 as: N—oo, our error
,approxnnatlon implies that h must ‘be chosen as a function: of N such that

1
h—*—»() and Eh 0. This is the well known condrtlon fo Lhe conmtvney of

,the Parzen density estlmate and lends conﬁdenco to the apprommatlonst
which we used to obtam (30).. ' -

5. 3 3 Eﬂ'ect of the Decnslon Threshold t;

In Chapter 3; the we mtr()duced the use of Lhe decision threshold as -a
possible. means of correc,tlng for the ‘biases . of density - estimates and
_ improving the - performance of the Parzen .classifier. . The -ai’guments
presented were rather intuitive in ‘pature. However the experlmentdl results
“indicate that threshold adjustment is a very eﬁectlve tool toward this -end,
}_partlcularly for large values of h. To some extent, (28) and (2 ) prov1de
- some theoretlcal Justlﬁcatlon for the claims made in Chapter 3, showing the
role whlch the decision threqhold plays in terms of error performance '

Convergence of the observed error rate to the Bayes error may be
improved by selecting t to compensate for the first two terms of (28).
t = (1/2)h%(ca(x) ~ ¢;(x)) + (1/8)h%(ef(x) — c5(x)) (31)
This se:lec“tion‘ eliminates the bias terms of (2‘8),, and reduces the bias terms :
of (29) to only higher order terms (h® and h®). All other terms of (28) and
(29) decrease as 1/N, and may be eliminated by choice of a ]arge enough
‘sample size. Further, because the bias ‘terms are greatly reduced, it may be
possible to use a much larger value of h, thereby reducing the h™" and h™~ n+2
terms which are related to the variance of the density estimate. ‘
In practice, use of (31) to determine t may not be pOSsible. Since ¢;(x) is
-a compléx function of x depending on the second order properties of the
dlstrlbutlon, ci(x) ‘is generally unknown amd hard to estimate. In.many:
cases, however, it may be possible to approximately satlsfy (31) at least in
- the region close to the Bayes decmon boundary. Since the. 1ntegral
~ expression of (8) depends primarily on the behavior of h(x) near the decision
boundary, such an approach yields a significant improvement in- the
 resulting error probability for the classifier. ‘
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ln‘ﬂght may be. gamed by examlnlng the ‘Gaussian case 1n whlch the
‘shape of . the kernel is chosen to be proportlona] o the covarlance matrix for
class wi, M. = \ . ln thls case c( ) may be explncrtly calculated - and ‘has

:_-theform T T e ,

)= - M) - M) = M) e (32)

e :The thresho]d t may eas1ly be chosen to compensa tc for: ‘the h? terms of (28)
L and (2‘)) at least on the Bayes de< ision boundary ' ‘

A= rghf(sz(x) = c;(x))..;
= Leegeom) ey

CEpEmGnAN e

The last‘]ine'of (33) ho]ds W1th equahty only on ‘the Bayes dec1s1on

- boundary ‘Thus in thls case, our results indicate that a constant value of t

: may‘be used to improve the: performance of the Parzen classifier.. This

observation was. experimentally verified in Chapter 3. It is interesting to
note that in Chapter 3 the appropnate value of the threshold was found to‘v
r”be (1 + h2) = times the value shown in (33) Thus the approxrmatlons used v
“in - this chapter yleld con31stent rcsults with those of (“hapter 3, at least for '

~ small va]ues of h.:, ' -

_In general, an express1on of the form of (33) cannot be found since the -
' "locatlon of the Bayes: decision boundary is unknown. However, (33) shows
that use of a constant ‘nonzero threshold may result 1n a 31gn1ﬁcant
1mprovernent of the performance of the Parzen classifier. In Chapter 3,
general technlques are given for. determmmg an approprlate threshold which
‘do not depend on assumptlons about the dlstrlbutlons The results of thls
'chapter strengthen the case for the use’ of these methods

5 4 Degradatlon of the k-NN Classnﬁer

5 4 1 Evaluatlon of E{Af}

S A derlvatlon snmllar to that of the prevrous sectlon may be apphed to'
v :k NN cla831ﬁers The k NN dens1ty estlrnate is glven by S
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pi(x) = Nvy, - ' (34)
where k is  an linteger, Vig is  the volume of the  set
Syk = {Y:di(x,Y)<di(x,x}SilNN)} and x{)yy is the kth NN to x from the N
design samples of class «w. When di(x,Y) is quadratic as in (21), then
Vi = widin(x,x]QNN). Note that in contrast to (14), v, is random in (34) and
k is held fixed. To take the expectation of (34) we define
U = Pr{xj(i)c‘Sxk |;ui} and express v, in terms of u;, by solving an expression
similar to (22) ' '

Uik

pi(x)(l+Hi(x)(9i(x)"ik)2/n

e

Vik (35)

where

o fiy ¢i(x) -
Ail) = 2(1+n/2)(ki2/“pi2/“(x) : (36)

The v;, term in the denominator of (35) may be eliminated by using the first

order approximation u;, = p;(x)v;,. This gives
v = pil)(ug + Aui™ ) ' (37)

(1/vi)? = PP (wi® + 20(uif/" 2 + A (x)ui/" 7). (38)
The distribution of u;; is known to be Beta. The moments of uy are given

by

oy l‘(k‘f-(l{)l‘(N—}—]) ‘ . -
i RPN+ +) (atk>0) o » (39)

Combining (39) with (34), (37), and (38), the desired moments for the density
estimate may be obtained:

B Ap;(x)

E{u

o) b= fi(x)g(N,k,2/n) | (40)
[{2n0) Lo | [x=a |52 )]
MIETEIIE .




80)

e k=1 N—142/n , o

+ . k—2-2/n N 1] ﬂi(x)g(_N_’k’?/n) '
x k=t | N=144/n |].0 o
R ] e GO

where | .
I‘Lk H-()I( ) | )
Note that. for la rger va,lues of N (say, N>50), g may be accurately o

g(N,k,ﬁ) :

approximated by . ; . :
g(N k) = —M—‘l N k/N)” | )

(k1) |

S0 that for positive values of -, g(Nk 9) decreases with N. The second

' approx1mat10n of (43) holds only for ]arge k. Taking. the expectatlon of (10)
and (11), and substituting ,(40) and- (41) into this result gives the

o expectation’sv of the Ah terms of' the error expression (8):

Emh(x)};[ e % 1;;2/“ —z}w( ) = AN k2/n)
o s o
{ }_2“1(2 ngl ~1]

%L: [(@(x)_ ~'m(x)>g(N,k,2/ri> = t]; ~ (8309 + B2()E*(Nk,2/n)

k=1

f’+“‘2 i 1;2/n 1 [(:‘1'+t.)-{32(x)¥(l—yt)ﬁil(‘x)]g(vN,kz/n)
| 4 b I;—ijl/n 1§4/n [(1+t)[;22.(x)!+(v1—-vt)[7’12(xA)]gv(N,k,{l/n) (45)

These expressions with - ( ) yleld the behavmr of E{AE} in ‘terms of the
sample 51ze the va]ue of k, and the dlstrlbutlons . »
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, For a fixed k, as N is increased all terms of (44) and (45) approach zero -
except for the first line of (45). This term corresponds to the finite variance
of the k-NN density estimate under infinite vsamp]e'vset,.condit,io_ns, and
results in the asymptotic k-NN error"irat}evwhic_h is greater than ._the' Bayes
error. In-order to g'uar:int'ee convergence of the k-NN error to the Bayes
error, k must be chosen as a function of N. To make all terms of (44) and
(45) vanish we must require’ that k—oco and k/N—0 as N—oo. These
: CODdlthDS are 1dent1cal to the conditions requ1red for asymptotxc con31stency
of the k-NN den51ty estlmate prov1ded by Loftgaarden [29] a result which
lends conﬁdence to the approx1mat1ons used in thls chapter

5.4.2 Relations‘hip Between k-NN and Parzen Procedures:

While the Parzen classifier with uniform kernel counts the number of
design samples which fall within a specified volume, the k- NN classifier
- adjusts that volume to include a given number of desxgn samples. For this
reason, many- researchers have suggested that the two procedures should
give similar performance if the Parzen kernel size is determined adaptively,
using 1arger kernel functlons in regions ‘in whlch the den31ty is smaller. In
this section, we show’ that this clalm is largely supported by our error

expressions.
We begin by rewriting the k-NN expressions (40) and (41) using large N

and large k approxrmatlons Using (43), dropping t‘erms which behave as
’ ]/Nk we obtain ' ‘ ' '

Apy(x) | ~
1l - pi(x) ]]_ [l/k—— I/N]

2(1—2/n)( l/k 1/N)Bi(x k/N)2/"

+ -[1 + (1%—4/n)(1/k—v>1:/}N)][}iz(k)(k/N)4'/n | "(47) :

We now ,exanﬁne the behavior of the Parzen classifier when the size of the
kernel is chosen adaptively, with h" proportional to 1 /pi(x). In order to
clearly exhibit the relationship between the two classifiers, we choose the
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particular funct'ional',fbrm of h as ‘ _
‘ : N SRR N/ .
b=+ [0l B

where the pararneter 0 (as w1th k for the k-NN -clé‘sSiﬁer)‘is in general a

" function of N to be chosen by the designer. Substituting (48) into (26) and
(27) gives the result for the Parzen classifier. o ’ :

E{'pi(*) }—rﬁ}( ;)(Q/N)“ B (49)
Api(x)] ]5[1/0—1/1\1]

1/9 2/N[)’ 0/N2/“

+u—i‘/N]ﬂf(xw/an_ )

‘Comparison of (46) and (47) with (49) and (50) shows that the behavior
of the density estimates is very srmllar, not only in its behavior with N and
h, but also in absolute value.’ There are slight differences between (47) and
(50), which may be due in part to the different approximations for u; used in
the two derivations. These results, when substituted into (10), (11), and (8)
confirm the often made claim that the k-NN classifier gives similar
performance to the Parzen classifier with adaptable h, at least under the
;large N, large k approximations used here. '

" 5.5. Estimation of the Bayes Error ;
Nonparametric classifiers are often used to provide estimates of or
- bounds on the Bayes error, €. Sect,‘ionsv_5.31 and 5.4 relate the performance :

~of these classifiers under finite design set eohdit’ibns to the true Bayes error.
In this sectlon, we utlllze these results to provide a method of estlmatmg the _
g Bayes error from the observed error rates for these clasmﬁers -

" The procedure for the Parzen claSSIﬁer 1s as follows We first rewrlte -

the expected error _rate in terms’ of h for a ﬁxed value of t and N by
;cornblmng (28) (29) and (8 ( ) ’
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Ele}=¢ +bh2+bh“+b3h “+bh ST SR (51)’
Here, the constants bl,bz,b3,b4, and the desired Value of ¢ are unknown and
must be determined experlmentally An estimate of E may be obtained by
observing the Parzen error rate for a varlety of values of h, and finding the,
set of constants which best fit the, observed data. Any data fitting technique
could be used, however the llnear least squares approach 1s stralghtforward

and easy to implement.

This" approach has several intuitive advantagés over the common
procedure of accepting the lowest error rate over _thezvabrious values of h.
First, it provides a direct estimate of € rat_her than simply an upper bound
on the value. We have found in many cases that the bounds provided by
Parzen or k-NN procedures may be biased far away frorn, the true Bayes
error. Another advantage is that this procedure- provides a means of
~combining the observed error rates for a variety of values of h. Hence we
may be utilizing certain information concerning the higher order propertles
of the distributions which is ignored by the previous procedures. '

As mentioned earlier, it is reasonable to expect that all five of the
constants (51) are positive since the observed error must remain above ¢ for
any value of h. In order to ensure stability in the estimate of E*, we have
found it advisable to restrict the constants to positive Values durmg the

curve fit procedure.

Our procedure is 1llustrated in Figure 5.2. Here the N=100 data of
Figure 5.1 has been replotted, and the best fit of the form glven in (51) has
been drawn as a solid line. The resultmg estimate of ¢ =1.96% is
extremely close to the true value of € of 1. 9% Note the closeness of the fit,
indicating that the observed error rates are in fact followmg the trends
predicted in this chapter.

An identical procedure may be applied to the k-NN error estimates by
combining (44), (45) and (8)

Efe} =€ + by((N—k+1)/(N(k—2))) + byg(N,k,2/n)

+ b3g2(N,k,2/Il) + b4((k——1)/(k—-2+2/n))g(N,k,2/n) ‘

+ by((k—1)/(k—2+4/n))g(N,k,4/n) (52)

For the k-NN estimate, we observe the error rate for various _valules of
k, and then solve for the best set of positive constants in (52) to fit the .
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Figure 5.2 Estimation of ¢’ from observed Parzen error rates.
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observations. Figure 5.3 shows the results of this procedure applied to the
k-NN error rates for the same data as was used in Figure 5.2. Note that a
reasonable estimate of € is obtained even though the observed error rates at
this sample size (N=100) are well above the true Bayes error.

5.6 Selection of the Kernel Sha’pe'

While results are available regarding the selection of the distance
metric for use with k-NN classifiers [12,13], little work has been done
rega'rding the selection of the functional form of the kernel for the Parzen
classifier under limited design set conditions. Our results using second order
approximations of the density functions show that the performance of the
~Parzen classifier depends primarily on the covariance of the kernel function,
Y. A common choice is to select Yy equal to the w; covariance matrix N,
While this choice ensures that the resulting density estimate has 'secon_d
order moments which are proportional to the true second order statistics,
nothing is implied concerning the resulting error rate. In this section, we use
our error expression to suggest a possible modification of this procedure

which results in a more stable error estimate for larger values of h.

From (28) and (29) we see that if the kernel covariance is selected
such that ¢;(x) = cy(x), then all terms which are independent of the sample
size may be eliminated from the error expression. Hence we must find
positive definite matrices 3}, and )}y such that

v2P2(X) ]

In general, however, the second order properties of the density are not
known. When the data is Gaussian, however, we may obtain a solution of
(53) in terms of the mean vectors and covariance matrices.

When p;(x) is Gaussian, then
Vepi(x)

— 1»—1){— Mx — AT\~—1 w_-—l.
pi(X) - ( Ml)( Ml) Ll Ll (54)

1

To solve (53), we begin by proposing a solution of the form
| \ T |
S =2+ nx - Mj)x — M) | (55)

We wish to determine the possible values of 7 and ~, so that (53) holds.
Substituting (54) and (55) into (53) and simplifying gives
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VAR0M,) — 1) = y(d(eMy) — 1) = ddxMy) — dHxM,)  (56)

where y; is given by vdZ(x,M;), and d;(x,Y) is as given-in (21).” In addition to
satisfying (56), we must also choose y;> — 1 to ensure: ‘thvat 3, of (55)
remains positive definite. Hence vn,lid_ch(v)i’(:cs .vfor y; and y, lie in the region
¥1>—1, yo>—1, and satisfy the linear cquation (56). This is illustrated in
Figure 5.4. Equation (5v6) describes a line passing through the point
(¥y1,¥2) = (—=1,—1) with slope '(df‘)(x,Mi) — 1) (df(x,;M;) — 1).- Hence, valid
positive definite solutions exist provided this slope is positive. For practical
purposes, it is convenient to use a fixed set of values for y, and ¥o. In this
case, a near solution may be used by choosing (y,,y,) close to the (—1,—1)
point. Such a choice comes close to %atnsfymg (563) even in the case in which
the slope of (56) is.negative. '

The data used in Figure 5.1 was tested using the kernel given by (55)
using N=100 design samples per class.” The results using y, = Yo = —0.8 are
shown in Figure 5.5. These results indicate that although the estimates
seem less stable at smaller values of h, as h grows the results using (55)
remain close to the Bayes error while the results using Yk, = ; degrade
rapidly. This implies that the h* and h4 terms of (28) and (29) have been
effectively eliminated. '

These experimental results-indicate the potential 1mportance of the

kernel covariance in de51gn1ng Parzen class1ﬁers

5.7 Conclusion

This chapter has .developed relationships between the expected error
rates of mnonparametric, classifiers and the true Bayes error. These
relationships explicitly show how the error performance changes as the size

of the design set is varied, how the value of h' affects the performance of the .

Parzen classifier, and how k affects the performance of the k-NN classifier.
The results are related directly to the Bayes error, in contrast to Chapter 2
which relates the 1-NN and 2-NN performance to their asymptotic values.

Two direct applications of these results have been presented in Sections

5.5 and 5.6. The first is a curve fit technique which utilizes the observed
error rates for many values of h or k to obtain an estimate of the true value
~of the Bayes error. The experimental results indicate that this value may be
a significant improvement over the bounds provided by the observed error
rates. The second application involves an impfovement of the performance
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Valid combinations of y, and y,
di(x,M)-1

(yi—1)

)= Mt

y,>—1, y2>—1

..........................................................

Figure 5.4 Valid combinations of y, and y,
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of the Parzen classifier through the sclection of the kernel covariance.
Again, the experimental results indicate that a significant improvement may
be possible, particularly for larger values of h.

Aside from the practical contributions, this chapter has also given some
theoretical justification to the results concerning the decision threshold
presented in Chapter 3. Careful selection of the decision threshold should
play a key role in the design of nonparametric classifiers. '



CHAPTER 6
BOOTSTRAP METHODS FOR
NONPARAMETRIC ERROR ESTIMATES

6. 1 Introductlon

~ Since 1ts 1ntroduct10n in 1977 [48] bootstrap technlques have been
applled to a wide variety of estimation problems. ~ Particular attentlon has
been paid to the problem of estimating the error rate for various. class1ﬁers
_ desrgned usmg a small number of preclassrﬁed samples Tradltlonally, these
_error rates have been estimated usmg the apparent (resubst1tut10n) error
-and. cross- valldatlon (leave one-out) type estimates. The bootstrap has been
proposed as a means of correctlng for the negatlve b1as of the resubstltutlon '
error, resultlng in an estunate with lower variance. than the leave- one out
error [49].

Bootstrap procedures refer to a general class. of - technlques which
resample the given data in order to induce information about the sampling
distribution of an estimator. As long as the resampling procedures are.
srmllar enough to the original sampling procedure, the bootstrap allows one
- to determine various statlstlcal propertles of an estimator even when very
little is known sbout the underlying distributions. The ch01ce of an
appropr1ate resampling procedure is crucial to obtain accurate estimates of
the true sampling statistics. Normally, the resampling is performed by -
dra'Wi‘ng samples from the empirical distribution (that is, from a distribution
with probability mass 1/N at each of the original N design samples). Many
. authors have found this to be an acceptable procedure for a wide variety of
estimation p'roblems [48- 51] However, all of these authors point out possible
drawbacks of this procedure for some estimates due to the discrete nature of
the empvmcal distribution. These problems are clearly m_anlfested when the
bOotstrap is applied to estimate the error for nonparametric (e.g. Parzen or
- k-NN) classifiers. This is the case to be investigated in this chapter_. »Here, it
~is important that the samples which are drawn in the resampling,proceduré
~are different from those samples being tested in order that the ‘sampling



statistics of the bootstrap sample not be blased away from the true samplmg' ‘
lstat1st1cs ' ‘ ' B

Several methods have been vprdpose‘d in order. to satisfy this
requ1rement Chernik ‘et al.. [50 51} “perform experiments in which the
bootstrap samples ar convex: combmatlons of the original N samples While
) this procedure does remove the bootstrap samples from the design ‘set, it
places convex1ty assumptlons on the underlying dlstrlbut1ons which may not . '

'be valid. This is partlcularly a problem when the technique is used to . -

1nvest1gate nonparametrlc procedures whlch are usually used to avoid
- making assumptlon about, the dlstrlbutlons ‘Further, ‘the exper1mental
_results in. [50,51] suggest that this procedure is inferior to several others.
_ Another possible procedure is to use the €9 estimate of Efron [49]. The e
estlmate is obtained by resamplmg the ‘data from the empmcal distribution -
to obtain the bootstrap samples, and then testing only those samples of the
original data which are not p’ar‘t of ‘the bootstrap sample set. The 5(0)' error
estimate is' the average error among these left out samples over many

~ bootstrap trials. Efron introduces the ¢® estimate only as' a heuristic

motivation for his ".632" estimate, claiming that the €@ error should be
- biased hlgh since the samples bemg tested are "too far" from the desrgn set.
Jain et al. [52] investigate the use of the &) estimate in evaluating the error,
for a 1- NN classifier.. - They found that although ‘a ‘slight positive bias is
‘obs'er‘ved use of the ¢ ) estimate gave. t1ghter conﬁdence reg1ons than dld the
'standard leave -one-out or resubst1tut1on errors. ‘

“In th1s chapter, we mvestlgate a thlrd alternatlve ‘Under our approach |
the bootstrap samples are drawn not from the emplrlca] dlstrlbutlons, but
from a smoothed estlmate of the true distribution: The degree of smoothmg
is chosen so that the leave one—out error for the bootstrap sample is roughly
equivalent’ to the observed error for the originial data. The bootstrap is then
~ used to form an “estimate of the standard deviation of the actual leave-one— |
out error. Th1s procedure is somewhat dlﬂerent from the conventional use of
‘ the bootstrap "In the past most authors have used the bootstrap a a means
- of estimating and’ correcting’ for the negative bias which is observed in' the
_apparent, or- resubstltutlon, error ~ Here, - mstead of trying to estimate the
‘bias of the resubstitution error, we are’ interested in estimating the standard
deviation of our observed leave one—out error; gaining an indication of the
rellablllty of our Bayes error estlmates for the partlcular dlStI‘lbllthIlS bemg
: jcons1dered o : S ‘
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) Section 6.2 formally introduces the procedures used here, and Section
6.3 presents some experimental results for several test cases. Although the
emphasis in this treatment is on the estimation of the variance for the
Parzen classifier, application of the same techniques to the k-NN classifiers

is straightforward.

6.2 The Bootétrap Procedure

We now adopt the notation of Efron [49].” We assume that the classifier
is designed based on a set of N training vectors x = {x, -~ XN | where
each x; represents a pair (t;,y;) consisting of a n-dimensional feature vector 4
and the known class y; from which t; was drawn. The prediction rule #(t,x)
is constructed which assign an unknown vector t to some class based on the
training set x. In this treatment, the prediction rule 7(t,x) will be the
Parzen or k-NN classifier designed from x, the set of preclassified samples.
We define an indicator function Q(y,7(t,x)) to be 0 of the decision rule
n(t,x) correctly assigns t to class y, and 1 otherwise.

0 if n(t,x) = ,
Qmmm»=1id&$¢§ | 1)

We are interested in estimating the actual error rate, Err, which is
encountered when new samples independent of x are encountered. Thus

Err = E{ Q(¥o, 1(tox)) ] (2)

where xg =(tq,yp) is a-r;/mdomly selected independent test sample. There are
two widely used estimates of Err: the apparent (resubstitution) error and the
cross-validation (leave-one-out) error. The apparent error App is found by
reclassifying each of the N samples, counting the number of
misclassifications, and dividing by the total number of samples tested

N
App = = SQ(3i,1(4, %)) (3)
1=1 ‘ .
Since the samples being tested are included in the design set x, the apparent
error tends to be lower that the true value of Err. This is particularly true
for the nonparametric classifiers considered in this treatment which are
highly dependent on the location of individual samples in the design set. In
order to help eliminate the negative bias associated with the apparent error,
cross-validation estimates may be used. Under this procedure, each sample
in the design set is tested using a decision rule which is designed based on
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the remammg N-l samples The leave—one—out' error, Err(CV), is found by

ov) o 8 :
Bl = ~—ch(y., 1)) @
~ where x#:x—‘-{xﬁ is ’theoriginal vdesign set with  the sample X; = (t;,5;)
: remove’d.‘ ’ o v o ' )
' While‘ Errl€ )'vprovides the designer’With a nearly unbiased estimate of
: the true error, in general the standard dev1atlon of thc estimate is not
_‘known In this chapter, we 1ntroduce a-bootstrap technique to estrmatc this

o standard deviation from the given set of design samples: ’_llle procedure is-as -

follows From the given des1gn samples x, we first form an estimate of the
: unknown underlymg denS1ty, F. Normally, the empmcal dlstrlbut10n is used

F ~mass l/N on x;, 1——12 R\ - e ’ (5)

| ‘However, we Wlll ﬁnd that for k-NN and Parzen cla351ﬁers 1t is necessary to
use a smoothed estimate of the densrty From th1s estimate we repeatedly
perform the followmg procedure : '

1) Draw N bootstrap samples xlm | x;(jl . x&ll 1ndepcndently from the
- estlmated distribution F. We denote this sample set x 0,

- 2)‘ Fln_d and‘ ta»bulate_’the leave—one-o_ut error for the-sample'setvxl(lli

3) -Repeat steps 1. and 2 for _]—12 B ,.Where B is the number of
- bootstrap trials desired. The estimate of the standard deviation of
Err(@) ‘may ‘now. be formed by calculatmg ‘the sample standard“
' ‘ (CV) '

devratlon over the B values of Err ,

It the resamphng procedure is similar enough to’ the ‘true samplmg cond1tlons '
v (that is, if the density est1mate F is close enough to the true density F) then _
" the statrst1cs of Err (CV) , _)—1 2,...,.B , should be close to the actualsamplmg'

',statlstxcs of Err(©V),

- The approprlate value of B depends largely on the sampllng statlstlc to
' _'be estlmated In the past authors have concentrated on estlmatmg the
- entire samplmg d1str1but10n of the estimated error rates, ,and hence have
- required B to be quite large:- Jaln;et al. [52] claim that B should be great_er
~ than 100, while Efron {49]. suggest that B need not be greater than 200. In
- this paper, the value of B is severely'_limited by"_c_omputational‘ concerns,
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The nonparametru proccdures cons1dercd here a]ready requ1re a large
: :amount ol' computer trme and the bootstrap requlres that the procedures be '

-repeated B times. Because of ‘this restriction, we only concentrate here on
ﬁestlmatlng the standard dev1at10n of the error estlmates (as opposed to the
: _entlre samplmg dlstrlbutlon) and hence USL a l'alrly small value of B (B—_ 10 :

‘for the experrments presented 1n Sectlon 6 3) " L

Apphcatlon of the bootstrap is- complrcated by the fact that ‘we are:
,consrdenng error rates of Parzen and k- NN class1ﬁers For these classrﬁers,,'
’ 'use of F as given in (5) will result in values of Err( ) far below the values
of Err(CV) obtamed from the true dlstnbutlon Thls l'act s clearly v
_demonstrated in Table 6.1. Columns 2 and 3 of Table 6.1 show the average
leave -one-out and the correspondlng standard dev1at1on for a Parzen'
| class1ﬁer applled to a variety of dlstrlbutlons In each case, 8 d1mens1onal '
Gaus51an dlstrlbutlons ‘were: used w1th covariance matrices 2 L2—I and
"vmean vectors separated to ‘give the 1nd1cated Bayes error.. All results are »
averaged over ten 1ndependent trlals Columns 4 and 5 of Table 6 1 show' '.
the average predrcted values for’ the same experlments usmg ‘the bootstrap

- procedures (B—lO) and F as given in (5). These predlctlons are also

: averaged over the ten trrals The bootstrap pred1ct10ns are clearly blased

‘below the true samphng statistics of Err(CV), mdlcatlng that F is not an

- adequate estlmate of the d1str1but|on This bias is a result of the fact that ,

'th'vt many of the bootstrap samples x (J) appear multxple times in the
,bootstrap sample set x (J) Samples whlch ‘appear. more than ‘once “will
" :almost never be m1sclass1ﬁed by the Parzen or k NN classrﬁer, and hence the
leave—one—out error for the bootstrap sample is blased below the actual
. leave -one- out error. (ThlS is most apparent when one cons1ders the: 1-NN

' uclasmﬁer Here,_lf a sample is included more" than once it is always‘f

' con31dered as its own nearest nelghbor, and i is hence never mlsclass1ﬁed )

ThlS problem may be eliminated by choosmg a smooth estlmate of F “
' rather than the empmcal distribution given in (5). Toward th1s end We use
' the Parzen densrty estimate for each class :

Flsaly0) = 5= 33 (1/b) k(0 t)/hB) L '-(n_
- YoyEyo : N

. vwhere Ny, is the number of design samples in X from yo, k (to) is a zero -

‘, ‘."mean denSIty functlon which ‘may depend on yo, ‘and hB is a parameter

K f'bwh1ch determlnes the degree of smoothlng Note - that as hg—0,

. l/hB)ky“ to t)/hB) approaches an 1mpulse function and (7) becomes the -

B
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Ta‘blﬁé 6.1 - "‘_-,_»Er_ror rate statistic_sf‘ffor the Par'zeh_ clas'siﬁreﬂr ‘using h.;'l.O with
L - 100 samples per class.” Bootstrap samples were drawn from the
empirical distribution. = . - : ST :

Ty | [
| Error. - Err®Y) | ACV) ErrlCV) (I(CV)*,
30% | 342 | 39 | 171 | 25
20% | 221 | 35 | 112 | 23 |
10% | 109 | 24 | 58 | 17 |

| 5% | 69 | 17 | 30 | 11 .
2% | 2.2 1.0 | 11 | 08 .
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empirical distribution given in (5). ~As hg grows, the density estimate
ﬁ‘(xo lyo) becomes smoother. To generate a sample xi*(j) from the density of
(7), one first randomly (all samples equally likely) selects a sample
Xg = (ty,yx) from x. A sample z is then generated (independent of t,) from
the scaled kernel density (1/hg)k,(z/hg). It may be verified that the

random variable formed by x, U= (tk+z,yk) has the density given in (7).
Since the density of z is continuous, no two samples of x U will have the
same value, and hence the normal problems associated with using the
bootstrap on: Parzen or k-NN error rates is eliminated. For convenience in
the sample generation procedure, the kernel density k ( ) was chosen to be a
Gaussian density with covariance equal to the covariance for class y, uy.
_The covariance of the scaled kernel density (1/hg)k,(z/hp) is then h2}j

A key problem in the use of the above procedure is how to select the
value of hp to be used. It is desired that the value of the smoothing
parameter hp be selected so that the sampling statistics of Err( V)" be as

(cv)

close as possible to those of Err For small values of hg, the leave-one-

out error of the bootstrap sample Errj(cv)* is biased below that for the

CV). As hy grows, however, the covariance associated

original désign set, Errl
with the generated ‘samples grows and the leave-one-out error of the
bootstrap samples ‘becomes larger, eventually overtakmg the leave-one-out
error of the original data. A typical case is illustrated in Figure 6.1. We are

interested in finding a value of hg at which the sample statistics of Etrj(cv)*

(V) Hence, the proposed procedure is the

are similar to those of Err
measure the mean and variance of Errl®Y)" for a variety of different values
of hg, and plot the mean value to obtain a graph similar to Figure 6.1. A
reasonable value of hg is then given by the value of hg for which the mean

(cv)r

value of Err; equals the measured value of Err{®V). The estimate of the

standard deviation of Err{®Y) is then the corresponding sample standard

devxa’mon of Err; (Cv) , j=1,2,...,B , evaluated at this value of hy.

8.3 Eﬁcperir’nen"tal Resﬁlts

The procedure was tested using the Parzen classifier for two different
test distributions. Both test cases are two-class problems with 8-dimensional
Gaussian distributions. For test case 1, the class covariances are equal, and
the mean vectors are separated to give a Bayes error of 10%. Test case 2 is
a complex set of distributions in which the méans and covariances are not
equal, giving a Bayes error of 1.99%. The actual distribution parameters for
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Best J “ hp
Value

Fiéure 6.1 Typical trend of the bootstrap error Errj(cv)*

increases.

as the value of hyg
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test case 2 are shown in Tables 3.1 and 3.2 of Chapter 3. For each of the
test cases, the Parzen smoothing parameter used to form the classifier, hy, is
allowed to vary from 0.6 to 3.0. The value of the smoothing parameter used
to generate the bootstrap samples, hg, was chosen so that the bootstrap

average Err®Y)" was equal to the observed cross-validation error Err(®V)
when hp=1.0. The resulting values were hg=0.55 for test case 1, and

hg=0.51 for test case 2.

For each experiment, ten independent sets of samples with 100 samples

(V) and App were determined.

per class were generated. For each set, Err
The statistics (mean and standard deviation) of these values were calculated
over the ten trials and serve as a reference in our evaluation of the
bootstrap procedures. For each set of samples, the bootstrap procedure of
Section 6.2 was applied (using B=10) forming bootstrap estimates of the
standard deviation of Err(®Y) and App. These estimates are then averaged

over the ten trials.

The results for test case 1 are shown in Figures 6.2 and 6.3. Figure 6.2
shows the mean value of Err{®) and App over the ten independent trials for
various values of hy. The average predicted values of these variables using
the bootstrap sample sets (generate with hy =0.55) are also shown. Ideally,
if the ¥ of (7) was close to the true distribution F, these .curves would be

(€V) and

identical. Figure 3 shows the calculated standard deviations of Err
App, as well as the average predicted standard deviations given by the
bootstrap procedure. Similar results for test case 2 are shown in Figures 6.4

. and 6.5.

Our results indicate a close correspondence between the actual standard
deviations and the corresponding bootstrap predictions for both test cases.
This relationship exists not only for hy =1.0, for which the value of hg was
selected, but also for the entire range of hy from 0.6 to 3.0. This indicates
that the sampling statistics of our bootstrap sample sets are in fact very
similar to those for the true distributions, and gives us confidence in the
estimates. For test case 1, the values of Errl®" and Err(®) begin to
diverge for large values of hp in Figure 2. This indicates that at these
values of hp, it may be wise to employ a different value of hg. However,
even for these values, the bootstrap estimates of the standard deviations are
very close to our estimated values.
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Figure 6.2 Results for test case 1. Average leave-one-out and
resubstitution error rates for the original data and the
generated bootstrap sample sets:’ :
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+ Measured Standard Deviation

% Average Predicted Standard Deviation
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Results for test case 1. Stahdard deviation of the leave-one-

out (a), and resubstitution (b), error rates for the original data
~and average predicted standard deviation from the: the

generated bootstrap sample sets. -
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‘Figulv'e' 6.4 Results for test case 2. Average leave-one-out and
resubstitution error rates for. the orlgmal data and the
generated bootstrap sample sets. o
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+ Measured Standard Deviation

« Average Predicted Standard Deviation

(b).

Figure 6.5 Results for test case 2. Standard deviation of the leave-one-
o out (a), and resubstitution (b), error rates for the original data
“and average predicted standard deviation from the the

generated bootstrap sample sets. ' L
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6.4 Summary

ThlS chapter has provnded a means by -which the standard dev1at10n of
an error estimate may be obtained from a single set of design samples. Our
_experiments indicate that a suitably modified bootstrap procedure provides a
nearly unbiased estimate of the variances of the cross-validation and
~ apparent error rates. It should be noted that although our experiments have
-concentrated on the Parzen c]ass1ﬁer and identical bootstrap procedure may
- be applied to k-NN classifiers. The approaches indicated in this chapter
seem  most appropriate for use:with nonparametnc classxﬁers, smce most
vlnvestlgatlons have shown that for parametric classifiers the empirical
.d1str1but10n is an adequate estlrnate of F.

As a bonus we have uncovered a possible means of generatlng artificial
- samples from a limited number of available design samples.. Our procedure
involves first finding the value of hy to match a test statistic of the
artificially generated samples to the observed statistic for the design set.
Once hg has been determined, one is free to generate an unlimited number
‘of samples and be assured ihat in some sense, the statlstlcal behavior of the
generated samples will ‘be close to that of the original samples This
procedure may have w1despread application in- many areas of pattern‘
recognltlon and is a possnble subject of further 1nvest1gatlon
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CHAPTER 7
SUMMARY AND RECOMMENDATIONS

B 7.1 Summary of Results

This thesis has examined the expected error of nonparametric classifiers

and apphed these results to the estimation of the Bayes classification error.
rate. Chapter 2 provides an analysis of 1-NN and 2-NN clasmﬁers 1solat1ng.
the effects of sample size, d1mens1on, and distance metrlc from those of the B
dlstrlbutlons These results are then used to prov1de an improved. estlmate‘
of the asymptotlc 1-NN and 2-NN error rates, which place bounds on. the-
Bayes error. The Parzen classifier was examined in Chapter 3, and the k-
NN classifier was reframed into »ah analogous density estimation viewpoint.
Guidelines are developed regarding the ‘selection of the kernel size and
shape the selection of k, and the selection of the k-NN distance metric.
The most important discovery of Chapter 3 is the potential role that the

~ decision threshold plays in compensating for the biases of the density
estimates. These discoveries are shown to significantly improve the

conventional procedures now in use.

A computationally efficient method of estimating the kernel covariance
for leave-one-out estimates is presented in Chapter 4. In Chapter 5 we use
“the density estlmatlon framework developed in Chapter 3 to derive the
expected error performance of both Parzen and k-NN  (k>2) classifiers.
These results g‘ive» explicit functional forms of the observed error rate in
terms of the sample size, kernel size and shape,  k, and the NN distance-
metric. These expressions relate the observed error rate directly to the

Bayes error, and provide a means of estimating (rather than bounding) that

value. The optimal selection of the kernel covariance is '_als() discussed in
Chapter 5. Finally, a bootstrap procedure has been developed which allows
the designer to estimate the standard deviation,of a nonparametric estimate

of the Bayes error.
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7.2 Recommendatlons for Further: Research

- There - are several toplcs related to this the51s which - merlt further
1nvest1gatlon '

It should” be. posslble to extend the results of Chapter 5 to include

resubst1tutlon error rates, by taking 1nto account the biases assoclated with

‘the resubst1tut1on denSIty estimates: Whlle the _]ustlﬁcatlon is strong for
using - resubstltutlon k-NN error rates as lower bounds on the Bayes error, -
analogous results have not been found regardlng resubstxtutlon Parzen error
: ‘rates Such an approach could prowde some theoretlcal 1ns1ght

' ‘ One problem assoc1ated with the algorlthms presented in this thesis is
the. large computat1onal burden which is assumed when the procedures are
1mplemented To some extent this  thesis has helped to alleviate some of
- this burden by reduc1ng the number of samples which are required to obtain

reliable estlmates However, computatlonal concerns remain an important - .

factor in hlgh dimensional spaces, where the number of samples required
v remalns qulte large.  Useful contr1but10ns could be made in this area, either ‘
by ﬁndlng efficient algorlthms of ﬁndmg the k-NN and Parzen errors
directly, or’ by finding methods of estimating the respectlve error rates
: 'w1thout actually de51gn1ng and 1mplement1ng the class1ﬁer k

‘ F1nally, ‘this’ ‘thesis’ has not treated the class of nonparametrlc
‘procedures based on the estlmatlon of the den51ty functlons using orthogonal
- series. Appllcatlon of these techn1ques in hlgh d1mens1ona.l spaces is often

difficult i in practice due to the large number of series coefﬁclents which must V

be determlned However, several authors have obtalned theoretical results

which’ ‘indicate ‘that the rate of convergence of den31ty estlmates based on o
- orthogonal serles is 1ndependent of the dlmenswn of the space ~This is in
- sharp contrast to the results for both' k-NN and Parzen estimates. An open

question is the relat1onsh1p,between the orthogonal series estimates and the
- estimates pre’sented in thisthesis Practical application of these: methods to
high dlmenS1onal problems is contlngent on finding a means of keeplng the
" required humber of series “coefficients reasonable,’ and this i is also an area in
wh1ch s1gn1ﬁcant contrlbutlons could be made ) ‘ o
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Appendlx A
B, of Chapter 2 for Gaussian Cases

When the den51ty function of w, p,(X) (i=12)is Gaussmn with the

expected vector M, and the covariance matrix Y,

o —Iapy(X )=5(X—Mi)TLi (X-Mi)+59n|xi|+g‘9n2ﬂ )

By taking the gradient of (1), v :
X)X =TT X-M)=V,(X) (2)

,The gradlent of the mlxture ‘density, p(X)=P,;p,(X)+P,p,y(X) with a prior

probablhty P, is ' '

X)/ P;py(X) VPI(X) .Png(X) Vpy(X)
X m® e e

—— @MV +aV @)

where q;(X) =P;p;(X)/p(X)
~ The gradients of q,(X) are:

' Pipy(X i V1X V2X
= ,(X)ay(X) [Vo(X) = V4(X)] - | @

and
Vz.ql (X)=Q1(X)Q2(X) [(92(X) — q:(X)).
V2(X) VA0 Va0 -V T+ 25 - ()
Substltutlng (3), (4) and (5), the Bl of (17) in chapter 2 becomes



’ 1,1’3
Bi(X)= Lp7X) (@) ~ 0 (X)as (X))
VOOV = VoLOVIR) = ()

For the sirnplest case-irx'which 2y=2%,=1, P,=P;=05 and A = |,
. trB (X) becomes ’ :

B9 = Lp 000,00 09(00 ~0,X)
-{(X—'MI)T (X —My) — (X —My) (X — My)] 7)

In thls case, [] < 0 is the Bayes class1ﬁcatlon rule which also-satisfies

(X)—q](X) < 0. That is, [] and qo(X)—q;(X) share the same sign
regardless of X Since p(X), ql(X) and qu(X) are all positive, trB (X) and
subsequently the bias of (16) in chapter 2 becomes positive. ’

The p031t1ve blas is not guaranteed in the more general case. Since
(X) ql(X) 0 is the Bayes classifier, q2(X) — ql(X)>0 for the Gaussmn

case is equ1valent to

> P
B, Py

(X‘—MI)TL (X- Ml) (X Mz)TLz (X M) +in=—fn==>0 (8)
IL2I :PZ

On the other hand, frorn (6 ) trA7! [] becomes positive when

(X MI)TL lA—lL (X"——M"l);(X*’Mz)TZ{lA'—lzz_l(X—'Mz)

+r AT -2 >0 )

Thus, these two terms share the same sign in some domaln and have
different signs in the other, domaln "Thus, the bias of (16) in chapter 2 could
be elther pos1t1ve or negatlve, dependlng on X and M; as Well as A.
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Appendix B

an AP;(X)_ ]2]
pi(x) pi(x) :

for General Symmetric Kernel Functions

Ap.(x
Evaluation of E Pi(x) d E{

When p;(x) is the Parzen density estimate as given in (12) of Chapter 5,

the desired expectations for a general symmetric kernel function is given by
E[ Api(x) ]_ E{fi(x)}

pi(x) a pi(x)

_ b™ki(x/h)*pi(x) . ‘ 1)

pi(x)

] ] = (1/p{(x)) [(E(Api(X)))2 + Var(Ap;(x))

_ h™"k(x/h)*py(x) .
pi(x)

1| G/ p) kAR |
N pi2(X) ' pi(x)

where * represents convolution in R" Equations (1) and (2) give exact
- expressions for the indicated moments. For a local kernel function, the
convolution may be evaluated by approximating p;(Y) by

pi(Y) = pi(x) + (Y—x)"Vpi(x) + _;'(Y_X)Tvzpi(x)(Y_x) a (3)

where the approﬁ(imation holds in the region in which k;((x—Y)/h) takes
significant values (i.e. when Y is close to x). Under this approximation and
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ﬁsiﬁg the Syfhmetry (-)f the kernel 'i‘un-étibh, the convolution term becomeé

: th “k =Y /h

pis) + ("7 0) + (TP p )Y~

= pl(x) + %tr[Vzpl(x)f(Y-—x)(Y—X)Th‘nk,((Y—X)/h)dY] :

~ Similar resu]ts hold for the convo]utlon of k x/h) and p,(x) Substltutlng
these results into (1 ) and (2) gives. | o

Eq

k) %1‘1»‘2%:(,'{‘)) B

0 hz()) e

where -

and \‘k~ 1s the covariance matnx for the densﬂ;y functlon given by

(x)/i(k;). For many popular kernel functlons ¢;(x) is proportional to b;(x).
, For the umform kernel .bi(x) -—»c( x), and for. the Gaussian kernel

(X) PO
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