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I.

Yin

ABSTRACT

This thesis is concerned with the performance of nonparametric 
classifiers and their application to the estimation of the Rayes error. 
Although the behavior of these classifiers as the number of preclassified 
design samples becomes infinite is well understood, very little is known 
regarding their finite sample error performance. Here, we examine the per- 
formance of Parzen and k-nearest neighbor (k-NN) classifiers, relating the 
expected error rates to the size of the design set and the various, design 
parameters (kernel size and shape, value of k, distance metric for nearest 
neighbor calculation, etc.). These results lead to several significant improve
ments in the design procedures for nonparametric classifiers, as well as 
improved estimates of the Bayes error rate. ,

Our results show that increasing the sample size is in many cases not 
an effective practical means of improving the classifier performance. Rather, 
careful attention must be paid to the decision threshold, selection of the ker
nel size and shape (for Parzen classifiers), and selection of k and the dis
tance metric (for k-NN classifiers). Guidelines are developed toward propper 
selection of each of these parameters.

The use of nonparametric error rates for Bayes error estimation is also 
considered, and techniques are given which reduce or compensate for the 
biases of the nonparametric error rates. A bootstrap technique is also 
developed which allows the designer to estimate the standard deviation of a 
nonparametric estimate of the Bayes error.
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CHAPTER 1 
INTRODUCTION

1.1 Motivation and Problem Statement
The practical design of a statistical pattern recognition system may 

generally be broken down into three distinct phases. In the first stage, the 
designer must obtain and normalize a set of preclassified feature vectors 
which in some way characterize the various classes to be distinguished. 
Since the entire design is dependent on this limited set of design samples, it 
is important that this set adequately describes the statistical properties of 
the feature vectors for each class being considered. The second phase of 
design is generally termed data structure analysis. This stage may involve a 
wide variety of statistical tests. Various parametric models for the data may 
be examined. Data clustering and feature extraction are two important 
procedures which fall into this stage of design. The last phase is the actual 
classifier design and evaluation. In this phase, the designer uses his 
knowledge of the structural properties of the data to develop effective 
decision rules to determine the class of an unknown feature vector.

The estimation of the Bayes error rate (the minimum probability of 
error which may be obtained by any decision rule) should play a 
fundamental role in each of the three design phases. In the earliest stages of 
design, Bayes error estimates give the designer an indication of whether the 
feature vectors he obtains are adequate to design a system with a desired 
level of performance. If the design vectors have a Bayes error rate which is 
higher than the allowed error rate for the system, then immediately the 
designer knows that a more complicated feature set will be required fo meet 
the goals, and no time is lost in the later two stages of classifier design. 
During the structure analysis phase, Bayes error estimates play their 
primary role as a guide toward feature extraction. By comparing the Bayes 
error in the original space to that of the extracted features, one may 
determine the amount of classification information which has been lost in 
the feature extraction process. Also, Bayes efror estimates provide a means



with which to compare different feature extraction techniques in terms of 
their potential error performance. Finally, Bayes error estimates provide a 
benchmark by which the designer may gauge the success or failure of any 
particular classifier structure. For example, if a linear classifier provides an 
error rate of 16% when the Bayes error for the data has been determined to 
be 15%, then the designer knows that more complicated classifier structures 
will not result in any dramatic improvements in the error performance. On 
the other hand, if the Bayes error for the data is 3%, then more complicated 
structures must be examined.

Since assumptions regarding the mathematical forms of the 
distributions of the data are not appropriate for Bayes error estimation, 
nonparametric procedures which converge for any distribution should be 
used. There are two nonparametric approaches to Bayes error estimation: 
those based on k-nearest neighbor (k-NN) procedures and those based on 
Parzen estimates. In both cases, the classification decision rule is formed by 
using nonparametric estimates of the density functions in place of the 
(unknown) actual density functions in the Bayes decision rule. The error is 
then estimated by counting the number of misclassified samples using this 
rule, and dividing by the total number of samples tested.

When an infinite number of samples is available, the behavior of the 
estimates is fairly well understood. Asymptotically (as the number of design 
samples becomes infinite), the k-NN errors are known to place bounds on the 
Bayes error: upper bounds for odd k’s, and lower bounds for even k’s. The 
bounds improve, and converge to the Bayes error, as k increases. Similar 
statements may be made regarding the error performance of classifiers based 
on Parzen density estimates. In practice, however, the number of available 
design samples is always very limited. Under these conditions, the k-NN 
errors do not necessarily bound the Bayes error, and the relationship of the 
error rates obtained using Parzen density estimates to the true Bayes error 
has not been determined. It is the goal of this thesis to clarify the behavior 
of these estimates when the number of design samples is limited, and to 
examine the effects of sample size, dimensionality, and distributions on the 
estimates. These results will be used to improve the estimation procedure, 
resulting in significantly more reliable estimates.
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1.2 Thesis Organization

Chapter 2 of this thesis deals with the bias of the 1-NN and 2-NN risk 
estimates from their asymptotic values. Expressions are given which separate 
the effects of dimensionality and sample size from those of the distributions. 
A possible means of using this knowledge to compensate for the bias and 
obtain an improved estimate is also given.

In Chapter 3 we introduce the Parzen and k-NN density estimates, and 
their application to Bayes error estimation. The selection of each of the 
design parameters (Parzen kernel shape, k-NN metric, value of k used in k-
NN classification, etc.: 
threshold is shown to
error estimates. By casting the k-NN classifier into a density estimation
framework, we are ab 
parallel manner, clarif; 
The discoveries of this 
both the k-NN and Pa

is discussed. The proper selection of the decision 
play an important role for both k-NN and Parzen

e to develop the k-NN and Parzen procedures in a 
ying the fundamental relationships between the tyro, 
chapter also result in a significant improvement for 

rzen error estimates. The results of this chapter are 
only valid if the Parzen kernel shape (or k-NN metric) is chosen 
independently from the data which is used to evaluate the classifiers. 
Chapter 4 presents an efficient, practical, computational algorithm to satisfy 
this requirement.

Chapter 5 uses the density estimation framework developed in Chapter 
3 to obtain expressions relating the finite sample nonparametric error rates 
to the true Bayes error. This is in contrast to the results of chapter 2 which 
relate the finite sample 1-NN and 2-NN error rates to the asymptotic 1-NN 
apd 2-NN errors. Tttrcjugh a curve fitting technique, we are able to use a set 

of observed (finite design set) error rates to obtain a true estimate of the 
Bayes error. The role of- the decision threshold introduced in Chapter 3 is 
made more clear in this chapter. Also, we obtain results concerning the 

‘selection of the optimal Parzen kernel shape which nicely complement k-NN 
optimal metric results already in existence.

In Chapter 6, we examine a bootstrap procedure which may be used to 
estimate the variance of our Bayes error estimates. Thus we provide a 
means by which the reliability of our estimate may be judged.

Chapter 7 gives a summary of the major contributions of this thesis.



CHAPTER 2
BIAS OF NEAREST NEIGHBOR RISK ESTIMATES

2.1 Introduction
Classification error estimation using k-nearest neighbor (NN) rules has 

been a popular topic of research ever since Cover and Hart demonstrated 
the properties of the NN classifier [1]. Their results show that the expected 
error of the NN rule converges asymptotically (as the sample size becomes 
infinite) to a value which is between the Bayes error and twice the Bayes 
error. Thus k^NN errors provide a means of nonparametrically placing 
bounds on the Bayes error, provided the sample size is sufficiently large.

When a finite number of samples is available, however, the k-NN errors 
do not necessarily bound the Bayes error, and the NN classifier may yield an 
error which is much more, than twice the Bayes error. Cover [2] investigated 
the finite sample performance of the NN classifier for the 1-dimensional case 
and found that, assuming almost surely continuous a posterior probability 
functions, the bias of the NN error from its asymptotic value is bounded by 
the function which is 0(l/N2), where N is the sample size. Wagner [3] 
pointed out that, in terms of examining the convergence of the NN rule, a 
more meaningful criterion is Pr{|LN —e j > //}, where LN is the probability of 
error given N preclassified samples, e is its asymptotic value, and /i is a 
constant. He provided an exponential bound on this criterion under several 
additional assumptions including the continuity of the density function. 
Fritz [4] significantly reduced the conditions on the distributions and 
improved the bound provided by Wagner. Stone [5] demonstrated that if k 
is allowed to vary with N, the k-NN errors will converge to the Bayes error 
(in probability) for any distribution. Devroye [6] has shown that, with an 
additional assumptions of how k increases with N, the convergence holds 
with probability one. Further, Devroye [7] showed that, for a fixed k, the 
asymptotic results of the k-NN rule are distribution free. Other significant 
contributions concerning the convergence of NN rules have been made by a 
number of authors [8,9,10,11].



While these results give an indication of how the NN classifier 
performance improves as the sample size becomes infinite, they do little 
toward examining the behavior of the classifier when a finite number of 
preclassified samples is available. If the NN rules are to be used to place 
bounds on the Bayes error, then an important question is whether the finite 
sample NN error is significantly biased from its asymptotic value, and 
whether that bias may be effectively reduced by increasing the sample size. 
In this report, rather than finding bounds on a convergence criterion, we 
concern ourselves with the estimation of the bias between the finite sample 
and asymptotic errors. We have found that, depending on the distributions 
of the data, the k-NN errors in practice may exhibit a significant bias from 
their theoretical asymptotic value, so that they no longer place bounds on 
the Bayes error. Until now, most of the work in reducing the size of the bias 
has concentrated on the selection of an optimal metric [12,13]. In this 
chapter, we approach the problem in a different (and more general) point of 
view. : ' /■

In Section 2.2, we begin by deriving the form of the bias of the NN 
classifier in terms of the sample size, metric, dimensionality, and 
distributions. We will show that the bias may be expressed as a product of 
two terms, the first of which is independent of the distributions, and the 
second of which is independent of the sample size. Thus we have isolated 
the effect of sample size from that of the distribution, giving an indication of 
the number of samples required to reduce the bias, and also of the 
relationship between that number and the dimensionality of the data. It 
can be shown that, for the one-dimensional case, our result agrees with 
Cover’s result [2]. Thus, we have provided a generalization of his result to 
the n-dimensional case, while including the effects of other factors, such as 
the metric.

In Section 2.3 we separately consider the effects of dimensionality, 
sample size, metric, and distributions on the finite-sample NN error. In 
order to verify the theoretical results, some experimental results using two- 
class Gaussian mixture densities are given in Section 2.4. We then present 
in Section 2.5 a possible means of using these results to compensate for the 
bias and obtain an improved estimate of the asymptotic error. This 
procedure involves measuring the NN errors for several different samples 
sizes, and using our derived relationships to extrapolate an estimate of the 
asymptotic error. The results for the NN classifier are extended to the 2-NN 
Case in Section 2.6. Finally, we consider the direct application of these
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results to the multiclass problem in Section 2.7.

2.2 The Bias of the NN Error
Let X be an n-dimensional random vector with density p(X), where the 

boldface type indicates randomness. In NN classification, X is to be 
assigned to one of two classes, and uj2, according to the class of its NN, 
XNN. In order to keep our initial discussion as simple as possible, only the 
two class problem is discussed here. Extensions to the multiclass problem 
are given in Section 2.7. The risk associated with the NN classifier, then, is 
given by

ri(X,XNN)==q1(X)q2(XNN) + q2(X)q1(XNN) (l)

where q;(X) is the a posteriori probability of class u>, given X. Under an 
asymptotic analysis, it is assumed that the sample size is made arbitrarily 
large and XNN converges to X with probability one. Thus, the asymptotic 
NN risk is obtained by setting q,(XNN) = qj(X) in (l) giving

r;(X) = 2qi(X)q2(X). (2)

In the finite sample case, however, there is a finite difference between qj(X) 
and qj(XNN). Thus we define e so that

qi(XNN) = qi(X) + e and q2(XNN) = q2(X) — e (3)

Eq. (3) holds since qj(X)+ q2(X) = 1 and qj(XNN)+ q2(XNN) = 1. Substituting 
(3) into (l) we obtain

r1(X,XNN) = r1*(X) + b(X,XNN) (4)

where

b(X,XNN) = (q2(X)-q1(X))£ (5)

Thus, the bias between the finite sample and asymptotic NN errors may be 
found by taking E{b(X,XNN)} with respect to both X and XNN. In order to 
accomplish this, we first approximate e using a second order Taylor series 
around X:

fSe=VTq1(X)«1 + U1TV!q1(X)ii1 (6)

where

«,=XNN-X (7)

Before we can take the expectation, we must also specify the metric which is



to be used. In order to simplify our derivation and ensure that our results 
are applicable to practical situations, we will assume that a quadratic metric

dAfX.Y^p-YfAtX-Y)]'''2 (8)

is used to measure distances between samples X and Y. In the case that A 
is held fixed, this is a global metric. However, in the more general case, A 
may be allowed to vary with X, forming a local metric. Thus, in our 
derivation we will assume that A could be a function of X.

In order to evaluate the expectation of (5), we follow a procedure very 
similar to that used by Fukunaga and Flick [13]. We begin by breaking the 
expectation into three stages as E E E {(q2(X)— q^X))? |p,X} where p is the

X p X|MN '
distance between X and its NN, p = dA(X,XNN).

2.2,1 Expectation with respect to XNISf
The first step in evaluation of the bias is to calculate the expectation 

with respect to XNN, given X = X and p — p. That is, the bias is to be 
averaged over all X]ypj on a hyperellipsoidal surface with a constant p,

dA(Y.X)|.

K
Xisin

qi(X))e|p,]
(^PO —qi(X)) f fp(^NN)^NN

; ■ m
f P(Xnn)^NN 

S(i')

tr{(q2(X)-qi(X)) (Vp(X)yTq1(X) + l/2p(X)V2q1(X)) / ^^dX^}
.....m..

p(X) / dXNN 
s (p)

= tr{A-1[l/n(q2(X)-q1(X)) (Vp(X)VTqi(X)/p(X) + l/2V2qi(X))]}p2 (9)

The second line of (9) is obtained by approximating p(XNN) by a Taylor 
series as

p(Xnn) = p(X) ( rVp(X) (10)

Note that all odd order terms of (\ disappear after taking the integration, 
since S(p) is symmetric around X.



2.2.2 Expectation with respect to p
Let u represent the probability enclosed by the surface S(/>). Assuming

(10), ; ■
U (ii)

where apu |A|-1/2 is the volume of the region surrounded by S(p) and

■ - 7TU/2Ot-= ■
(n/2 + 1)

(12)

Here T represents the gamma function and n is the dimensionality. The 
random variable u is known to have the beta distribution [14]

p(u) = N(1 — u)N_1 (13)

where N is the number of samples. Thus the expectation of (9) with respect 
to p may be accomplished by substituting u for p using (11) and taking the 
expectation with respect to u. This yields

E{p2 [X} = E (cT 2/np-2/n(X) [A [1/nu2/DtX} :
P U

:■ = (r2/np-2/D(x) [a I1/" 1 + ^1 ^±-1
F 1 'KM r(N+l+2/n)

(14)

(15)

2.2.3 Expectation with respect to X
Substituting (15) into (9) and taking the expectation we obtain

E{b(X,XNN)}sftE{|A|V"tr(A-1B1(X))} (16)
• A

where

B1(X) = p-2/»(X)(q2(X)-q1(X))(Vp(X)VTq1(X)/p(X) + l/2V2q1(X)) (17)

r^>/2+i) 112/,,+m iN'-, 0 ,l8,
Pl nw r(N + l+2/n) ’ 1 1

Eq. (16) is the bias of the NN error estimator due to a finite sample size.
For large value of N, become proportional to N-2y,n. Thus our results 

are in agreement with those obtained by Cover [2] which showed that in the 
1-dimensional case the bias drops as N~2.
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2.3 Effect of Parameters, n, N, A and p(X)
Several observations may be made at this point. First, note that the 

value of is completely independent of the mixture density. It depends 
only on the dimensionality of the data (n) and the sample size (N) and does 
nrot depend on the particular distributions involved. The term inside the 
expectation in (16) on the other hand, does not depend oh the sample size. 
For any given set of distributions this term remains fixed regardless of the 
number of samples. This term does, however, depend heavily on the 
selection of the metric, A.

Our expression, therefore, yields much information about how the bias 
is effected by each of the parameters of interest (n, N, A, and p(X)). Each 
of these parameters will be discussed separately as follows.

2.3.1 Sample Size (N)
Eq. (18) gives an explicit expression showing how the sample size effects 

the size of the bias of the NN error. /?x vs. N is plotted in Figure 2.1 for 
various n. Thus, we have obtained valuable insight into the number of 
samples which are required to obtain a reliable NN error. As shown in 
Figure 2.1, the bias tends to drop off rather slowly as the sample size 
increases, particularly when the dimensionality of the data is high. This is 
not an encouraging result, since it tends to indicate that, when the 
dimensionality of the data is high, increasing the sample size N is not an 
effective means of reducing the bias. For example, with a dimensionality of 
64, increasing the number of samples from 1,000 to 10,000 results in only a 
6.9% reduction in the bias from .0504 to .0469). Further reduction by 
6.9% would require increasing the number of samples to over 100,000. Thus 
it does not appear that the asymptotic NN error may be estimated simply 
by “choosing a large enough N" as generally believed, especially when the 
dimension of the data is high. The required value of N would be 
prohibitively large. This has been a repeated observation in our experience, 
and has motivated us to initiate this investigation.

2.3.2 Effects of Dimensionality (n)
The dimensionality of the data appears to play an important role in 

determining the relationship between the size of the bias and the sample 
size. As is shown in Figure 2.1, for small values of n (say, n < 4), changing 
the sample size is an effective means of reducing the bias. For larger values
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of n, however, increasing the number of samples becomes a more and more 
futile means of improving the estimate. It is in these higher dimensional 
cases that improved techniques of accurately estimating the Bayes error are 
needed.

It should be pointed out that, in our expression for the bias of the NN 
error, n represents the “local" or “intrinsic" dimensionality of the data . NN 
statistics are determined by local sample distribution, and not related to 
global one. In many applications, intrinsic dimensionality is much smaller 
than the dimensionality of the observation space. Therefore, it is necessary 
that the intrinsic dimensionality be estimated from the data in order to 
calculate fiy A convenient means of estimating the intrinsic dimensionality 
which works well in conjunction with NN techniques is given by [15], [16].

n = ~=------- (19)
-/'K:-':,;-,'- d2NN _ j

where dNN and d2NN are the mean distances to the first and second NN 
respectively.

2.3.3 Effects of Densities
The expectation term of (16) gives the effect of densities on the size of 

the bias. In general, it is very hard to determine the effect of this term 
because of its complexity. In order to investigate the general trends, 
however, we have computed the term numerically for a Gaussian case. 
When two density functions Pj(X) (i = 1,2) are Gaussian with the expected 
vector Mj and covariance matrix Sj, Bi of (17) becomes

B,(X) =p-2/"(X) (q*(X) - ihpqjq.-fxlqipc) •■■■■

:v,(x)v,T(x) - Vs(x)v.T(x) -y,1 ‘i (20)

where - ■■

v.(X) ‘(X-M.) . (21)

The derivation of (20) is given in the Appendix.

This was pointed out by Arnold C. Williams of Martin Marietta Aerospace, Orlando,
FL, and was confirmed empirically by him on radar signature data, for which the 
intrinsic dimensionality was about a quarter of the measurement dimensionality.
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Gaussian data was generated with == X2 — I. The class means, 
and were separated to obtain the desired Bayes error. The 

Euclidean metric (A = I) was used. The Bj of (20) was evaluated at each 
generated sample point where the mathematical formulas based on the 
Gaussian assumption were used to compute p(X) and qj(X). The expectation 
of (ib) was replaced by the sample mean taken over 1600n samples. The 
result is shown in Table 2.1 for dimensionality ranging from 2 to 16 and the 
Bayes error ranging from 2% to 30%.

Table 2.1 reveals many properties of the expectation term. But, special 
attentionmust be paid to the fact that, once h becomes large (n > 4), its 
Value has little effect on the size of the expectation* This implies that fij of 
(18) dominates the effect of n on the bias. That is, the bias is much larger 
for high dimensions. This coincides with our frequent observations in 
practice that the NN error comes down, contrary to theoretical expectation, 
by selecting a smaller number of features. That is, the bias is reduced more 
thaii the increase of the Bayes error. In order to compare two sets of 
features in different dimensions, this dependency of the bias on n must be 
carefully examined.

Also, note in Table 2.1 that the second order term due toV2qj(X) is 
comparable to or even larger than the first order term due to Vq1(X). It is 
for this reason that we have included the second order term in the Taylor 
series of (6).

2^3.4 Effect of metric (A)
The expectation term of (16) also indicates hoW the matrix, A, affects 

the bias. Certainly, proper selection of a metric may reduce the bias 
significantly. Unfortunately, Bj is a very complex function of X and very 
hard to estimate for any given set of data. An exception is the Gaussian 
case in which (20), with known mathematical formulas for qx(X) and p(X), 
provides a means to compute Bj.

As for optimization of A, Fukunaga and Hostetler [17] showed that an 
expression of the |A|1</n tr (A'^j) is minimized by setting A = Bi> provided Bx 
is a positive definite matrix. However, (20) reveals that Bj might not be 
positive definite.

Thus, it is not immediately clear how to choose A to minimize the bias. 
Nevertheless, selection of an appropriate metric remains an important topic 
in NN error estimation.
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Table 2.1, Estimates of the Expectation Term in Eq. (16) for Data 1

Bayes
Error n = 2 n = 4 n '= 8 n = 16

1st order term 3.4 1.2 1.2 1.1
30% 2n<^ order term 2.2 1.2 0.4 0.3

Sum 5.6 2.4 1.6 1.4
1st orcjer term 2.2 1.3 0.9 0.8

20% 2nd order term 1.8 1.2 1.1 1.0
Sum 4.0 2.5 2.0 1.8

1st order term -1.3 -.2 -0.2 -0.2
10% 2nd order term 4.7 2.1 1.7 1.6

Sum ■ 3.4 1.9 , 1.5 1.4
1st order term -1.9 -1.0 -0.8 -0.6

5% 2nd order term 3.8 2.3 1.8 1.5
Sum 1.9 1.3 1.0 0.9

1st order term -2.0 -1.5 -0.8 -0.7

to 2nd order term 3.5 2.3 1.3 1.1
Sum 1.5 0.8 0.5 0.4



2.4 Experimental Verification
2.4.1 Experiment for Data 1

In order to verify our results, an experiment was run for the same 
Gaussian data which were used to produce Table 2.1. The NN errors were 
measured empirically by generating N samples, performing the NN 
classification, Counting the errors, and averaging the resulting error over 20 
trials. Sample sizes of N = 20n, 40n, 80n, and 160n were used.

According to (16), the bias of the NN rule (and hence the actual NN 
error) varies linearly with for any given set of distributions. Therefore, 
taking the expectation of (4) with respect to X and XNN, the finite sample 
NN error may be written as

^NN — CNN+P’lcl ■'(^2)

where eNN =te{ri(X,XNN)}, eNN is its asymptotic value, and cx is the 
expectation in (16). For the distributions used in these tests, the values of
Cj were previously estimated in Section 2.3, and are shown in Table 2.1.

• r *
The theoretical asymptotic error, e^, was also estimated by generating a 
large number (1600n) of samples, calculating the risk at each sample point 
from (2) using the known mathematical forms of q;(X) for the Gaussian case, 
and averaging the result. These estimates are shown in Table 2.2.

Thus, using (22) in conjunction with the estimates of eNN and Cj, We can 
predict the finite sample NN error as a linear function of The dotted 
lines of Figure 2.2 (for n = 8) show these predicted NN errors for various 
values of the Bayes error. The eNN’s, which were obtained empirically by 
averaging the NN error over of 20 trials, are also plotted in Figure 2.2. Its 
standard deviation is also shown by the vertical bars (+ one standard 
deviation). Note that these measured cNN’s are reasonably close to the 
predicted values.

2.4.2 Experiment for Data 2
The experiment was repeated, again using 8-dimensional Gaussian 

random vectors, but this time choosing XIj and 2C2 to he significantly 
different (after simultaneous diagonalization of Xlj —► 1 and —► A, the 
diagonal elements of A vary from 0.12 to 12.06 [18].) The empirically 
measured NN errors, as well as the predicted NN errors are plotted in 
Figure 2.3. In this case, the empirical NN errors tend to lie above values 
predicted by our estimates of eNN and Cj, although still preserving the linear 
relationship predicted by (22).



Table 2.2 Asymptotic NN Errors (%) for Data 1

Bayes
Error n = 2 n = 4 n = 8 n = 16

30% 38.9 38.9 38.9 38.8
20% 27.6 27.8 27.8 27.7
10% 14.5 14.6 14.6 14.6
5% 7.6 7.5 7.4 . 7.6
2% 3.2 3.0 3.0 3.2
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2,4.3 Effect of Metric for Data 2
In order to demonstrate the effect of properly selecting the metric, the 

empirical NN errors were also measured using an optimized metric./ In this 
case a global metric was assumed, so that the matrix A is not a function of 
X. The expected value of B^X) in (16) was estimated by evaluating Bj^X) 
from (20) at each generated sample point using the known mathematical 
forms for p(X) and qj(X) under the Gaussian assumption, and taking the 
sample mean. A total of 100,000 samples were used to estimate this mean. 
In this case, the expectation of B^X) happened to be a positive definite 
matrix, and hence the optimal metric is found by setting A = E{Bj(X)}.

The resulting NN errors, obtained using the optimal metric, 
A0 = E{Bi(X)}, are plotted vs. $1 in Figure 2.3 for various values of N. The 
results shown were averaged over 20 trials. Figure 2.3 confirms our 
expectation that the selection of an appropriate metric may significantly 
reduce the slope of the bias curve, resulting in more reliable estimates.

2.6 Estimation of the Asymptotic NN Error
While it may not be practical to obtain the asymptotic NN errors

simply by increasing the sample size, it may be possible to use our
information concerning how the bias changes with sample size to our
advantage. ?NN could be measured empirically fOr several sample sizes, and
(\ obtained using either (18) or Figure 2.1. These values could be used in■ . * 
conjunction with (22) to obtain an estimate of the asymptotic NN error, eNN.

*
Thus, our proposed procedure to estimate eNN is as follows:

1. Change the sample size N as N1} N2,... ,Nm. For each Nj, 
calculateand measure empirically,

2. Plot these m empirical points eNN vs. /^. Then, find a line best
fitted to these m points. The slope of this line is Cj and the y- + • ^ 
intercept is eNN which we would like to estimate.

There are many possible ways of selecting a line. The standard 
procedure would be the minimum mean-square error approach. An 
alternative could be to weight the square error for each value of /ij by the 
corresponding sample size, /?j, or the variance of the NN error.



This procedure was tested using Data 1 of Section 2.4. The standard
minimum mean square approach was adopted to find lines. Table 2.3 shows

*
the estimated values of eNN for each of the test cases. As may be seen by 
comparing Table 2.3 and Table 2.2, the predicted NN errors using the above 
procedure come very close to our estimates of the asymptotic error obtained 
in Table 2.2.

In order to test a more difficult case, the experiment was again repeated 
for Data 2 of Section 2.4. These distributions yield a theoretical Bayes error 
of T.9% and an experimentally determined (see Section 2.4) asymptotic NN 
error of 2.6%. The minimum mean-square error line fitting the empirically 
measured NN errors has been plotted in Figure 2.3, and is seen to yield a 
much improved estimate of the asymptotic error. While increasing the 
sample size to 1600 (800 samples per class) only .gave a predicted NN error 
of 5.5% in the conventional NN procedure (Euclidean metric), the proposed 
procedure has given a predicted error of 3.0% - much closer to the actual 
2.6%. The same procedure was applied by using the optimal metric. Figure
2.3 shows that the line hits the y-axis at 2.2%.

In order for (22) to be valid with a constant c1? eNNmust be the 
expected value of ^(XjXnn) with respect to both X and XNN. For 
artificially generated data, the expectation may be approximated by 
generating many sets of the data and averaging the resulting NN errors. 
However, in practice, only one set of data is available. In this case it 
becomes necessary to partition the available data to obtain the various 
desired sample sizes. For example, given 1000 samples, only one trial could 
be used to estimate eNN for N — 1000, two trials to estimate 6NN for N = 
500, 4 trials for N =£' 250 and so on. The actual value used for eNN in the 
proposed procedure would be the average of all trials at a particular sample 
size. Although the number of trials used decreases as the sample size 
increases, the variance of the NN error at the large sample size is smaller, so 
that hopefully the damage is minimized.

2.6 The Bias of the 2-NN Error

- ■ is . ': ■ ;■■■

2.6.1 Derivation
An analysis of the 2-NN bias may be carried out in much the same 

manner as the NN bias. In 2-NN classification, a sample is counted as 
misclassification only if both of its two NN’s are of the opposite class. The 
tie vote is treated as correct-classification. Because of this, the 2-NN error
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Table 2.3 Estimates of Asymptotic NN Errors for Data 1

Bayes
Error n = 2 n = 4 n = 8 n -- 16

30% 39.4 38.1 39.3 40.1
20% 28.1 27.6 27.3 28.0
10% 14.2 13.7 14.2 13.1
5% 8.1 7.5 7.6 5.9
2% 3.1 3.3 3.4 4.1
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gives the lower bound of the Bayes error. Thus, the risk is given by

r2(X,XNN>X2NN) =<h(X)%(XNN)%(X2NN) ^^PQQiP^-NN^iP^Nn) (23)

where X2jsijj is the second NN to X. Under the asymptotic assumptions, 
both XNN and X2NN converge to X, giving the asymptotic 2-NN risk

r.'(X, .uiXi.i.fXi (24)

Thus, the 2-NN risk is (asymptotically) one half the NN risk. We now 
define such that qi(XiNN) = q,(X)-Rj and q2(XiNN) = q2(X) —fj (i = 1,2). 
Substituting these into (23), and subtracting (24) from this gives the bias

b(X,XNN,X2NN) = e1e2 (25)

In order to find the expected value of (25), we approximate and e2 
using a second order Taylor series, and first take the expectation with 
respect to X^n and X2^, holding their distances from X (given by 
Pi and p2) constant. This gives

E0AlX,Pl,p2] = |tr (A';1(l/n(Vp(X)VTq1(X)/p(X) 4-l/2V%(X)))}lViV| (26)

We now let Uj be the probability enclosed by S(pi)

ui = opinp(X)|A|“1/2 (27)

where the joint density of ux and u2 is known to be [14]

p(uid12>= ^-^2)! (! -«2)N‘ 2, 1 > »12 > ui > 0 (28)

Substituting Uj for p; and taking the expectation, we obtain

Hil>(X,Xw.X,NN)! .Kllpf »tr!A H-(X); 2: (29)
-A-

B5(X).-,. :-'"(X)(Vp(X)VTq,!X)/l.(X)4 1/2VJ.1,(X)) (30)

r2/p(n/2 + l)
nTr

1(1 T 4/n) I (N-~1~T)
l'(N + l+4/n)

1+4/n
1 +2/n

(31)

Thus we have obtained expressions very similar to those obtained for the 
NN error bias. The effect of sample size has successfully been isolated from 
that of the distribution.

Eq. (31) gives an explicit expression showing how the 2-NN error is 
affected by sample size. 62 is plotted vs. N for various values of n in Figure 
2.4. By comparing (31) to (18), we see that the 2-NN error converges to its



n =128

n —16
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Figure 2.4 /?2 vsy N
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asymptotic value more quickly than the NN error - as if the dimensionality, 
n, were half as large. Also note that .>2 is significantly smaller in magnitude 
than p’j. To some extent, this may be offset, by an increased value for the 
expectation term of (29).

Also noteworthy is the fact that, under the approximations made here, 
the 2-NN bias is always positive, regardless of the distributions and metric 
used. Once again we see that the only apparent means of reducing the size 
of the expectation term in (29) is to adjust the metric. Just as in the NN 
case, when the expectation of (29) is taken we obtain a linear relationship 
between the 2-NN error and value of //2

^ 2NN = f2NN + ^2C2 (32)

where ?2NN = E{r2(X,XNN,X2NN)}, <:2nn 1S ds asymptotic value and c2 is the 
expectation term of (29). Thus most of the arguments presented for NN 
error estimation (including the procedure for estimating the asymptotic 
error) are directly applicable to the 2-NN case, provided the new constant /?2 
is used.

2.6.2 Experimental Verification
These results were tested using the same Gaussian test cases as were 

used in Section 2.4. Table 2.4 shows the estimated values for c2. The 
empirically measured 2-NN error is plotted, along with our theoretically 
predicted results, in Figure 2.5 for n = 8. As may be seen in the figure, 
there is a close correspondence between the empirically measured 2-NN 
errors and the values predicted using (32). The experiment was also 
repeated using Data 2. The results are plotted in Figure 2.6. Also shown in 
Figure 6 is the minimum mean-square error line best fitting the empirical 
data. This line yields a predicted asymptotic 2-NN error rate of 1.85%, 
higher than the actual 1.3%, but still closer than the 2.33% value predicted 
by accepting the N - 1600 estimate.

2.7 Extensions to Multiclass Classifiers
In the proceeding, we have assumed that X belongs to one of two 

classes, and to2. We now generalize these results to the M class problem. 
The NN risk associated with the M class classifier is given by



Table 2.4 Estimates of the Expectation Term in Eq. (29) for Data 1

Bayes
Error n = 2

2-NN -

n 4 n 8 n = 16
30% 11,000 144.5 18.2 11.1
20% 9,000 45.8 16.6 10.3
10% 14,000 35.0 11.5 6.4
5% 460 24.5 6.5 3.9
2% 2,800 23.4 3.2 1.9
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M M
ri(X,XNN)= >J qi(X)(.l -qi(XNN)) = l - \]qi(X)qi(XNN) (33)

>, i=l ■ i=l ■

The asymptotic NN risk is found by letting XNN —► X
* ■ M n

r,(Xi. 1 . (34)
i=l

The bias is then

hjX.XNN) = r,(X.XNN) - r, jx; (<|,|X! - (Xsx)) (35)

Expanding the error term into a Taylor series, and taking the expectation in 
exactly the same procedure as used in Section 2.2 gives the final form of the 
bias'

K(b(X,XNN)| A 'IK,!X! i (36)
Jv.

where

5 l(X)1i,(X)(-r,,(Xirl,,,:xi/pi\! ■ l/iV2,,,^)) (37)

and /ij is as given in (18). Once again we have isolated the effects of sample 
size from that of the distributions. Therefore, all discussion in this chapter 
concerning the 2-class NN classifier may be applied directly to the multiclass 
classifier. The only exception is that the value of the expectation term, cj^, 
is different from c, of (22).

2.8 Summary
An analysis has been given of the biases of the finite sample NN and 2- 

NN errors away from their, asymptotic values. The effect of sample size on 
the bias was completely isolated from the effects of the distribution, giving 
insight into many questions concerning k-NN statistics. It was shown that 
in many cases, increasing the sample size is not an effective means of 
estimating asymptotic NN errors.

A possible procedure for compensating for the bias has been presented. 
Under this procedure, the NN errors are first measured for a variety of 
sample sizes. Since we now have explicit expressions showing how the bias 
changes with sample size, these empirically measured values may be used to 
form an estimate of the asymptotic NN error. Experimental results show 
that the procedure yields significantly improved estimates of the asymptotic



NN errors, and hence more reliable bounds on the Bayes error.

Finally, the analysis was extended to the multiclass problem. It was 
shown that the bias associated with the multi-class NN classifier behaves in 
virtually the same manner as the 2-class classifier.

28
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CHAPTER 3
BAYES ERROR ESTIMATION USING 

PARIZEN AND k-NN DENSITY ESTIMATES

3.1 Introduction
Uoiiparanietric density estimation, and the closely related area of 

nonpararnetric error estimation, play fundamental roles in statistical pattern 
recognition. The k-nearest neighbor (k-NN) estimate of the density function 
was introduced by Fix arid Hodges [19,20]. Cover and Hart [1] strengthened 
the case for using k-NN procedures in error estimation by showing that the 
error for the 1-NN classifier is bounded by twice the Bayes error. The 
Parzen kernel type estimation of the density function was introduced by 
Rosenblatt [2*1] and later studied by Parzen [22]. Cacoullos [23] extended 
the estimation to the multidimensional case. f

There are mariy theoretical results dealing with the asymptotic 
properties of the above estimators. Although the properties of the k-NN 
and Parzen estimates are well understood as the number of preclassified 
design samples becomes large, very little is known about the use of the 
estimates when the design set is limited. Our investigations in Chapter 2 
have shown that the k-NN estimates may be severely biased even for large 
sample sizes if the dimensionality of the data is large. This unreliability of 
the estimators in finite sample conditions is the major obstacle toward 
implementation of these techniques in practice.

The goals of this chapter are twofold. First, we wish to develop reliable 
procedures for estimating the Bayes error using Parzen and k-NN techniques 
under limited design set conditions. The procedures developed here will be 
shown to be much less sensitive to the sample size and underlying 
distributions than are the Parzen arid k-NN procedures currently in use. 
Second, by developing the k-NN and Parzen estimates in a parallel manner, 
we hope to expose and clarify the relationship between the two.

Because of the extreme difficulty of analysis of the k-NN and Parzen 
estimates under finite sample conditions, this chapter tends to be
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experimental, rather than theoretical, in nature. Most of the arguments 
presented here are intuitive, and lack theoretical rigor. However, the 
experimental results do hack up these arguments, and the resulting 
procedures are seen to be significant improvements over the commonly used 
k-NN and Parzen Bayes error estimates.

Section 3.2 of this chapter introduces the k-NN and Parzen density 
estimates, and their application to Bayes error estimation. The next three 
sections deal with the selection of the design parameters used in the 
estimators, including the Parzen kernel size and shape, the value of k used 
for k-NN classification, and the value of the decision threshold. The proper 
selection of the decision threshold is shown to be an extremely important 
procedure for both the Parzen and k-NN error estimates, and it is this 
discovery which is the major contribution of this chapter. Section 3.6 gives 
an experimental result showing the behavior of the error estimates as the 
sample size is varied, and Section 3.7 presents an experiment in which the 
design set is not Gaussian, and cannot effectively be classified using a 
quadratic classifier. Finally, Section 3.8 gives a comparison of the 
procedures developed in this chapter with those currently in use.

3.2 Error Estimation Procedures
In this section, we introduce the Bayes error estimates to be used for 

both the k-NN and Parzen error estimates. In both cases, the error 
estimates are obtained by first forming the corresponding k-NN or Parzen 
estimates of the densities, designing the Bayes classifier based on these 
estimates, classifying the available samples, and counting the number of 
classification errors. Resubstitution and leave-one-out estimates are used to 
form upper and lower bounds on the Bayes error. In the following, for class 
u>v we assume we are given N, samples X['\ . . . , taking va-lues in Rn 
which are independent and have a common density Pj(X).

3.2.1 Parzen Density Estimates
The Parzen,;qr kernel; estimate of the density at X is given by [21-23]

Pi(X) ^ (1)
v ...• :, ;,' - J=i \:.;vv,V ; ' V ; ; '■

where k;(*) is a nonnegative Borel measurable kernel function satisfying 
Jkj(X)dX — 1, and h is a linear scale factor determining the “spread" of the 
kernel function. Convergence results for this estimate may be found in [24-
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27]. A extensive discussion of the statistical properties of p;(X) may be 
found ip [28].

In error estimation, we commonly wish to estimate the density at one 
of the sample points Xj^. In this case, use of (1) with included in the 
design set will produce biased results. In Order to reduce this bias, leave- 
one-out estimates of the density may be employed. The resulting estimate is

Pifxf1) = V7 i£(lA")ki((xP-X<i>)A) -.(lA‘)ki(0)I • (2)
■ i ■*- j=l

Note that the leave-one-out density estimate may be calculated by a simple 
modification of (l), so that in practice no additional computational burden is 
assumed by calculating both estimates.

The form of the kernel function and the appropriate value of h are key 
questions when the sample size N; is limited. In this chapter, we will always 
choose the functional form of the kernel so that the covariance of the kernel 
density k^(X) is equal to the covariance of the design samples, Hence the 
covariance of the scaled kernel, (l/hn)k(X/h) is given by h2£;. In selecting 
the best value for h, several factors must be considered. Taking the 
expectation of (1) with respect to X gives

, E{p;(X)} = Pl(X)*(l/h»)k(X/h) (3)

where * represents convolution in Rn. From this we see that for any 
nonzero value of h, the estimated density is a smoothed version of the true 
density, and that as h increases, the smoothing becomes more severe. For 
small values of h, the scaled kernel (l/hn)k(X/h) approaches an impulse 
function and the expected value of the estimate given in (3) approaches the 
true density. However, while the bias of the estimate decreases for smaller 
values of h, the variance of the estimate becomes very ; large. In practice, 
when a finite number of design samples is available, the value of h must be 
carefully chosen. This problem is further explored in Section III.

3.2.2 k-NN Density Estimates
The k-NN density estimate is given by [19,20]

where v^(X) is the volume of {YGRn; d(X,Y)<d(X,xg,N)}, d(X,Y) is any
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metric measuring the distance from X to Y and X^jsf is the kth NN to X in 
the design set from class o>,. Loftsgaarden [29] showed that the k-NN 
density estimate is asymptotically unbiased and consistent. These results 
were strengthened by Moore and Yackel [30], and by Devroye and Wagner 
[31]. As in the case for the Parzen estimates, in many cases we will be 
evaluating the k-NN density estimate at one of the sample points X^. In 
this case if we leave Xj1- in the design set (and hence count it as its own first 
NN) the density estimate given in (4) will be biased high. Effectively, we 
have set vjW by counting only k-1 neighbors, other than x|‘l We will call 
this biased estimate the resubstitution density estimate. This bias may be 
removed by using a “leave-one-out" procedure in which xj‘) is not counted 
as its own neighbor.

In theory, any metric d(X,Y) may be used in (4). In this chapter, we 
are interested in forming a comparison between the Parzen and k-NN error 
estimates. For the Parzen approach, we have restricted ourselves to kernel 
densities where covariance is equal to the covariance for class Hj. In 
analogy with the Parzen estimate, and in order to form a valid comparison 
of the two procedures, we will restrict the distance metric to the quadratic 
metric based on the covariance Ej:

di(X,YW) = ](X~Y W)T> v 1 (X —Y^)]1 /2 (5)

Note that we have chosen to use a different metric to form the density 
estimates for each class.

3.2.3 TheError Estimates
An estimate of the Bayes error may now be formed by using the 

estimated densities (k-NN or Parzen) to calculate a log likelihood ratio, 
classifying each of the design samples using this likelihood ratio estimate, 
counting the number of classification errors, and dividing by the total 
number of samples classified. Our decision rule, then, is given by

4(X)
, Pi® 5.

-m—— V t 

P2(X) -

where pi(X) is given in (l) for the Parzen estimate and (4) for the k-NN 
error estimate, and t is the decision threshold. Many authors have 
considered the asymptotic properties of the error performance of classifiers 
based on Parzen type density estimates (see, for example [32-36]). With
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restrictions on the kernel k(-), if h—>0: and Nhn/logN—>oo as N—*oo, then the 
classification error, .(for t==0) approaches the Bayes error for any distribution 
for Wj and o)2 [6,8,37]. For k-NN, if k/N—K) and k^log(logN)^bo as N-^oo, 
then for any distributions the error performance also converges to the Bayes 
error [5,38]. Further, for fixed k, the error performance forms: upper and 
lower bounds on the Bayes error regardless of the distributions [7]. Results 
concerning rates of convergence may be found in [10,11].

In practice both the resubstitution and leave-bne-out density estimates 
are used in (6) to form lower and upper bounds on the Bayes error. The 
parameters to be chosen by the designer for Parzen error estimation are the 
kernel size (h), decision threshold (t) and kernel shape kj('). 
Correspondingly, k-NN error estimation the designer is free to select the 
number of neighbors (k), the decision threshold (t), and the metric used,
d;

A few remarks are in order concerning the' use of (6) to perform k-NN 
error estimation. Under the. more conventional k-NN error estimation 
procedure, the k-NN’s from the mixture density are located, and the 
classification decision is based on the majority class among these k-neighbors 
[l]. /Wh.en k is even, and equal numbers of neighbors are found from both 
classes, the sample is rejected, and no error is counted. Using this procedure 
gives (asymptotically) upper bounds on the Bayes error'for odd values of k 
and lower bounds on the Bayes error for even values of k. These bounds 
improve as k becomes large, provided the sample sizes is large enough. 
Under the procedure used in this chapter, for each sample we find the 
volume to the kth NN from each class, and use this value to estimate the 
density at the sample point. Equation (6) is then used to classify the 
sample. While this may seem a very different procedure, a little thought 
verifies that, if the metrics used are kept the same for both classes, and if 
the decision threshold is set to 0, then the leave-one-out k-NN error estimate 
considered here is' identical to the more conventional (2k-l)-NN sample 
counting rule. Similarly, the resubstitution k-NN error estimate used here is 
the same as the conventional (2k-2)-NN sample counting procedure. Thus, 
under these conditions the k-NN resubstitution and leave-oiie-out procedure 
used here do in fact asymptotically give lower and upper bounds on the 
Bayes error. By using the decision rule as it appears in (6), we hope to make 
the relationships between the k-NN and Parzen estimates more clear. Also, 
we gain the ability to use different metrics for each class of data. Finally, 
the representation given in (6) allows us to adjust the decision threshold.
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Our experimental results will show that the decision threshold plays a 
crucial role in both k-NN and Parzen type error estimates, and should not 
be neglected.

The following sections will present arguments on how to select each of 
the parameters of interest. Since analysis of the Parzen and k-NN classifiers 
in the finite design sample case is extremely difficult, many of the arguments 
presented here are rather heuristic in nature. However, the experimental 
results presented will verify that the procedures proposed here will result in 
a significant improvement of the performance of the k-NN and Parzen 
classifiers as they are currently employed. The experiments run here are 
based on three test cases, whose statistics are summarized in Table 3.1. 
Gaussian data was used in all cases, and throughout this chapter, all results 
are averaged over 10 independent trials. Case 1 is a simple, equicovariance 
case with means separated to give a Bayes error of 10%, For case 2, the 
means were set equal and the covariances are proportional to each other. 
This case was specifically chosen so that the covariance determinants would 
be very different. Case 3 is a complex case in which and E2 are very 
different. The parameters for case 3 were chosen from Fukunaga’s 
“standard data" after simultaneous diagonalization [18]. The class 2 
covariance A is a diagonal matrix with diagonal terms as given in Table 3.2. 
Table 3.2 also shows the corresponding components of M2—Mp The three 
test cases were chosen as to present a wide range Of practical problems, For 
example, while the Bayes classifier for case 1 is a simple linear classifier, the 
Bayes classifier for case 2 contains only 2nd order terms, and the Bayes 
classifier for case 3 is a complex quadratic decision rule. Also, while the 
Bayes error rates for cases 1 and 2 are moderate (10% and 9% respectively),® 
the Bayes error of case 3 is fairly small (1.9%).

3.3 Selection of Kernel Size/Optimal Value of k
As mentioned: earlier, the choice of the Parzen scale parameter h is 

largely a tradeoff between reducing the bias of the estimate, and increasing 
the variance. Many authors have considered the problem of determining the 
optimal value of h (or correspondingly, the optimal value of k in k-NN 
classification). Fukunaga and Hostetler found expressions for the optimal k 
in k-NN density estimation and used this expression to determine the 
optimal h for Parzen estimation assuming a uniform kernel function [17]. 
Increasingly popular are estimates based on cross-validation procedures 
which maximize some: criterion - usually based on the maximum likelihood
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Table 3.1 Statistics for three experiment test cases.

Case ilM,—M2II n TJ J5J Bayes Error
1 2.563 I I 8 1 1 10%,
2 0 . I 41 8 1 65,536 9%
3 5.463 I A 8 1 6.747 1.9% ..

Table 3.2 Statistics for Case 3.

M2(i)-M1(i):

_T_

8.41
3.86

_T_ _3_ _4_ _5_ _8_ _a_
12.06 0.12 0.22 1.49 1.77 0.35 2.73
3.10 0.84 0.84 1.64 1.08 0.26 0.01
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principle. Such estimates were first suggested by Duin [39] and Habbema et. 
al. [40] and later investigated by a number of authors [41-43], Another 
approach involves relating the chosen value for h to the distances to the kttl 
nearest neighbor [44,45], Most of these results find the optimal h based on 
some density estimation criterion. In many cases, such estimation criteria 
place the emphasis on obtaining accurate estimates in regions in which the 
densities are large. In error estimation, however, many times we are 
primarily concerned with obtaining accurate estimates in the tails of the 
densities, particularly when the Bayes error is small. Hence, while the 
optimal kernel size/optimal k results do give us a general idea of the 
magnitude of h or k, blind use of these values may result in disastrous 
estimates of the Bayes error.

In our experiments, use of the theoretically determined values of h or k 
gave very discouraging and inconsistent results. After many unsuccessful 
attempts to determine the optimal value of h theoretically, we found that 
the only reliable means of selecting the best h for a particular data set is 
experimentally. That is, by using several values of h or k on a given data 
set and plotting the results to obtain the best bounds on the Bayes error. In 
the case of Parzen error estimation, this requires that the estimation 
procedure be completely repeated for each value of h. In the k-NN case, 
however, the computational load is only slightly increased since the error 
may be computed for all values of k simultaneously.

Figure 3.1 shows a graph of the Parzen errors for the data from cases
1,2 and 3. Gaussian kernel function were used for the Parzen classifier. In 
this experiment 100 samples per class were used in each trial. The decision 
threshold t was set to zero.

The behavior of the Parzen classifier may be explained as follows. For 
small values of h, the Parzen classifier gives basically a 1 -NN type of 
performance, since as h decreases, only the nearest neighbor to Xk has a 
significant contribution to the sum given in (2). As h increases, the variance 
of the density estimate decreases and the density estimate approaches its 
expected value given in (3) As h becomes very large, the kernel function 
begins to dominate the convolution in (3), and the density estimate 
approaches the scaled kernel function, shifted to the mean of the true 
density, 1 /hnki((X—Mj)/h). Thus the decision rule as h becomes large 
becomes almost completely determined by the functional form of the kernel 
function, and not by the true density. When the kernel function is
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BAYES.
(a) CASE 1

n1=n2 = 1 GO

BAYES (b) CASE 2 
N,=N,

BAYES
(c) CASE 3

N, »N

1.0 .

Figure 3.1 Parzen error for various values of h. Upper and lower curves 
represent leave-One-out and resubstitution results respectively.
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Gaussian, this results in a quadratic classifier. For the data in Figure 3.1(a), 
as h increases the Parzen classifier approaches the quadratic classifier which 
happens to be the Bayes classifier. Thus, in this case, the performance of 
the parzen classifier does not degrade as h increases. This is not the case in 
general as demonstrated in Figures 3.1(b) and 3.1(c). In these cases, 
although the Parzen classifier does approach a quadratic classifier, it does 
not approach the particular Bayes classifier for cases 2 and 3. Thus as h 
increases the performance of the Parzen classifier degrades sharply. Similar 
performance may be expected when the data is not Gaussian, and the Bayes 
classifier is not quadratic. In general the leave-one-out error dips down to 
some minimum point and, as h increases, performance degrades to the 
performance of a quadratic classifier which is determined by the shape of the 
kernel functions. The best bounds on the Bayes error are obtained by using 
the minimum of the leave-one-out performance curve, and the corresponding 
resubstitution error. It is interesting to note the size of the optimal value of 
h in Figure 3.1. In these experiments (n - 8, Nj—N2—100) the best value of h 
appears to be close to h=l, meaning that the covariance of the kernel 
function is nearly equal to the covariance of the original data. While on 
first glance this seems to be an extremely large value for h, further 
examination shows that such values of h are required if the Parzen density 
estimate at a sample is to receive reasonable contributions from its nearest 
neighbors, particularly as the dimensionality of the data becomes large. A 
discussion of the relationship between dimensionality, sample size, and 
nearest neighbor distances may be found in [16]. For Gaussian data with 
covariance I, the expected distance to the kth nearest neighbor is given by
M V ■■■ -■

E{d(X,X§N)}
V2r(k + l/n)r(Ni-K)r,/ri(l+n/2) 

r(k)r(N1+i+iA)(i—i/n)n/2

For n== 8 and Nj" 100, this gives an expected 1-NN distance of 1.9. These 
large nearest neighbor distances necessitate the use of large values of h. 
The need for such large values of h clearly demonstrates that biases 
associated with Parzen density estimates must be considered when these 
estimates are used in practice. A possible means of compensating for these 
biases is presented in Section 3.4. v h

The behavior of the k-NN error as k increases is not so easily explained. 
However, the k-NN rule may be viewed as a Parzen density estimate with 
uniform kernel and adaptable kernel size. Varying the kernel size h for the
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Parzbn classifier is. analogous to changing the value of k for the k-NN 
classifier. It is known that for infinite sample sizes, larger values of k give 
tighter bounds on the Bayes error. However, with a finite number of design 
samples, one expects that the k-NN leave-one-out error will pass through 
some minimum as k increases. It is this minimuni which gives hs the best 
bound on the Bayes error.

3.4 The Decision Threshold! t
If Pi(X) and p2(X)" were accurate estimates of p1(X) and p2(X), then 

using 't==ln(P(h^/Pfh^)), •. where P(u>i) represents the priori probability of 
wbuld give the optimal Bayes classifier. In practice though, our estimates 
may be heavily biased, particularly when h or k is large. In order to 
evaluate the error performance, we must design our classifier based on pj(X) 
and p2(X), and test the samples drawn from the true densities Pi(X) and 
p2(X). In this case, the optimal value of t to use in the decision rule (6) is 
not clear. We would like to select the threshold which gives performance as 
close to the Bayes error as possible.

3^4.1 The Gaussian Case

In the Gaussian case, for the Parzen classifier, the threshold may be 
solved for explicitly for large h. Recall from (3) the expected value of the 
estimate pi(X) is. given by (l/h^kjfX/h^p^X). When pj(X) and 
(l/hn)k;(X/h) are normal densities with covariances and h2Sj
respectively, this convolution gives another normal density with mean M; 
and covariance (I+h2)Xj. For larger values of h, the variance of Pi(X) and 
p2(X) decreases, and the estimates approach their expected values. 
Substituting the expected values into the estimated log likelihood ratio, one 
obtains

— In
Pi X i « Ef1
p2(X) 1+h2

-Mj) - i(X-M2)——
■ 2V . 1+h2 (X-M,) +

Except for the l/(l+h2) factors on the covariance matrices, this expression is
P!(X)

identical to the actual log likelihood ratio, — In—^7. In fact, the two may
P2PO

be related by



, Pi(X) 1 , , Pi(X)N , 1 , h2
.......... V-1- ;’\.::nW 2w )ln

Pi I
(8)

P2(x) 1+h.2 P2PQ 2 1-fh2 P2I

The actual Bayes decision rule is given by — In|Pi(X.)/p2(X)]^ln[P^)/P(-v’2)]. 
Using (8), an equivalent test may be expressed in terms of the estimated 
densities:

In—— ^ t

where

P2(X)

1 ,, >V.S 1. h!
1 • 1,'1 P(«4) ’■ + 2' 1 . lr )ln

|S2|
(«)

In all of our experiments, we assume P(.o;1) =P(w2) = 0.5, so that the first 
term of (9) may be neglected. (9) gives the appropriate threshold to use 
when using the Parzen classifier with Gaussian kernel function on Gaussian
data. When the class covariances are equal, as in the data for case 1, the 
appropriate threshold is t==0 for all h. ; Thus in Figure 3.1(a), setting t=0 
happened to be the correct choice, and relatively good performance was 
obtained even for large values of h. When the covariance determinants are 
different, as for the data in cases 2 and 3, the value of the decision threshold 
becomes a function of h. Tn this case, if the value of t is simply held 
constant at zero, as is commonly done, the performance of the Parzen 
classifier degrades sharply for larger values of h, as evidenced in Figures 
3.1(b) and 3.1(c). Figure 3.2 shows the behavior of the Parzen classifier for 
cases !, 2, and 3 with t given by (9). For low values of h, the classifiers give 
similar performance to that shown in Figure 3.1, since the appropriate value 
of t given in (9) is close to zero. As h increases, if t is held fixed the 
performance begins to degrade sharply for' cases 2 and 3, while if the value 
of t is set according to (9) relatively good performance is obtained for all 
values of h. Thus, by allowing the decision threshold to vary with h, we arc 
able to make the Parzen classifier much less sensitive to the value of h. As 
a byproduct, we are able to use larger values of h to obtain tighter bounds 
on the Bayes error. :
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THRESHOLD SELECTION METHOD: 
O OPTION 1-t GIVEN BY (10) 
a OPTION 3 
□ OPTION 4

- BAYES
(a) CASE

£ (%)

BAYES (b) CASE 2 
Nr-IV 100

BAYES (c) CASE 3
N1=N2 100

Figure 3.2 Threshold selection for Parzen classifiers.



42

3.4.2 The Non-Gaussian Case
The decision threshold as used here is simply a means of compensating 

for the bias which is inherent to the density estimation procedure. When 
the data and the kernel functions are Gaussian, we have shown that the 
bias may be completely compensated for by choosing the value of t given in 
(9). In the non-Gaussian case, we cannot hope to obtain a decision rule 
equivalent to the Bayes classifier simply by varying t. However, by choosing 
an appropriate value of t we can hope to compensate to some extent the 
bias of the density estimates in a region close to the Bayes decision region, 
giving significant improvement in the performance of the Parzen classifier. 
Procedures are therefore needed for determining the best value of t to use 
when non-Gaussian data is encountered. We have investigated four possible 
options. These options, and a brief discussion of their motivation, as given 
below.

Option 1: Use the threshold as calculated under the Gaussian assumption 
(9). Since for larger values of h the decision rule is dominated by the 
functional form of the kernels, this procedure may give satisfactory results 
when the kernels are Gaussian, even if the. data, is,not Gaussian.

Option 2:. For each value of h, find the value of t which minimizes the 
leave-one-out and resubstitution errors. This option involves finding and 
sorting the leave-one-out and resubstitution estimates of the likelihood ratio, 
and incrementing the values of t through these sorted lists. The error rate 
used as the estimate is the minimum error rate'obtained over all values of t. 
This option makes no assumption of the densities of the data or the shape of 
the kernel function. However, since the value qf the threshold is Customized 
to the data being tested, using this Option will consistently bias the results 
low. This is not objectionable in the case of resubstitution errors, since the 
resubstitution error is used as a lower bound of the Bayes error. However, 
using this procedure can give erroneous results for the leave-one-out error. 
Options 3 and 4 are designed to alleviate this problem.

Option 8: For each value of h, find the value of t which minimizes the 
resubstitution error, and; then use this value of t to find the leave-one-out 
error. Since the selection of the threshold has been isolated from the actual 
values of the leave-one-out estimates of the likelihood ratio, using this 
method does in fact help reduce the bias encountered in option 2. Our 
experimental results will show that this method does give reliable results as
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long els h is relatively large. When h is small, however, the resubstitution 
estimates of the likelihood ratio are heavily biased, and use of these 
estimates to determine the threshold may give far from optimal results. An 
advantage of this” option is that it requires ho more computation time; than 
Option 2. 7'

Option J,: Under this option, the resubstitution error is found exactly as in 
option 2, by finding the value of t which minimizes the resubstitution error, 
and using this error rate. In order to find the leave-one-out error, we use a 
leave-one-out procedure to determine the value of t to use for each sample. 
Hence, under option 4, we use a different threshold to test each of the 
N1+N2 samples, determining the threshold for each sample from the other 
Ni-f-N2—1 samples in the design set. The exact procedure is as follows.
1) Find the leave-one-out density estimates at all samples,

Pm(Xj^), m=l,2, : i=l,2, . j=l,2,...Nf .

2) To test sample X^:

a) Modify the density estimates by removing the effect of x|^ from 
all estimates ^

Ur[(Nm-l)pm(Xjl'))-(l/h")knl((Xj(i)-XtVh)] m=f, i=((10)
N„-2m

i -[Nm^(X«) - (l/h")km((X» - Xj»)/h)] m =!, id)

b) Calculate the likelihood ratio estimates at all samples Xf'^X^ 
based on the modified density estimates.

f(x/i))=_ln Sil ■Xi<i (ii)

c) Find the value of t which minimizes the error among the 
NiTN2—1 samples (don’t include X^), under the decision rule

0(XjH)|t. (12)
CJn

This is best accomplished by first sorting the likelihood ratio
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estimates 0(X|’'), and then incrementing the value of t through 
this list, keeping track of the number of errors for each value of t.

d) Classify the sample Xj[^ using, the original density estimates and 
the vahie of t found in step c: /

PM0)
(13)

Count an error if the decided class is not ay.
3) Repeat Step 2 for each sample, counting the resulting number of 

classification errors.
Although this procedure,is by far the most complex computationally, it is 
the only true leave-one-ont procedure, and gave the most reliable results 
particularly for small values of h.

Figure 3.2 shows the results of applying options 1, 3, and 4 to the three 
test cases listed in Table 3.1. In each case, Gaussian kernel functions were 
used, and the estimates are obtained using 100 design samples per class. In 
all of our experiments, using the threshold calculated under the Gaussian 
assumption (option l) gave the best performance. This is as expected, since 
both the data and the kernel function are in fact Gaussian. It is notable, 
however, that the use of option 4 gave performance nearly equal to that of 
option 1. Option 3 gave good results also, but. performance degraded 
sharply for small h, particularly for the data in case 2, where the covariance 
determinants are extremely different. We believe that the most reliable 
procedure when the form of the densities is not known is option 4.

3.4.3 Threshold Selection for k-NN Classifiers
Until this point, only the Parzen error estimate has been considered in 

the discussion of threshold' selection. However, most of the arguments 
regarding selection of the threshold may be directly applied to k-NN 
estimation as well. The k-NN density estimates are known to be biased 
when the size of the design set is limited, and by choosing an appropriate 
threshold, one might hope to reduce or eliminate the effect of that bias when 
classification is performed. We have not found usable expressions for t even 
in the Gaussian case. However, each of the non-Gaussian methods for 
threshold selection (options 2, 3 and 4) are directly applicable to the k-NN 
problem.
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Insight into the use of the k~NN procedures proposed here may be 
gained by viewing the procedures in the nonparametric data display 
framework introduced by Fukunaga and Mantock [46]. Under this 
framework, a two dimensional display is created with coordinates related to 
the volume to the kth-NN to each class. Human intervention may then be 
used to determine the best classification rule. Under our procedure, we 
restrict our decision boundaries to those of the form given in (6), i.e. to lines 
with slope one in the data display. By restricting ourselves to this set of 
decision boundaries, we gain the ability to automate the process, and hence 
find the errors for a wide variety of values for k. More complicated 
boundaries could be used, but only at the cost of significantly more complex 
procedures. In this chapter, we are recognizing this shift of the decision 
boundary as a means of compensating for biases associated with different 
values of k.

One comment is in order regarding the application of option 4 to k-NN 
estimation. In step 2 of option 4, in the Parzen case it is fairly simple to 
remove the effect of Xj (the test sample) from the density estimates of all the 
other samples using (10). There is no analogous simple modification in the 
k-NN case. In order to remove the effect of Xj from all other density 
estimates, one must remove Xj from the table of nearest neighbors, 
rearrange the NN table, and recalculate all of the density estimates. This 
procedure would have to be repeated to test each of samples in the design 
set, resulting in a fairly drastic increase in computation time. In practice we 
have found that modifying each of the density estimates to remove the effect 
of Xj is not nearly as important as is finding the threshold by minimizing the 
error among the remaining Nj-K^—1 samples. That is, modifying the 
estimates of the likelihood ratios in step 2 is not necessary to get reliable 
results - we do it in the Parzen case primarily because it is easy. Thus for 
k-NN estimation, step 2 of option 4 involves finding and sorting 9 (Xj for all 
samples i^j, finding the value of t which minimizes the error among these 
Ni+N2—1 samples, and finally using this value of t to classify Xj.

Figure 3.3 shows the results of applying option 4 to the k-NN 
estimation problem. For comparison, the results obtained using t=0 are 
also shown. As in the Parzen case, we find that the threshold plays its most 
significant role when the covariances of the data are different, and 
particularly when the covariance determinants are different. In test case 1 
(£1=£2=I, e - 10%) the bias of the density estimates for and tu2 are
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nearly equal near the Bayes decisioii boundary, and hence good results are 
obtained using t==0. ,

3.5 .Parzen Kernel Shape.
While; (with; the threshold adjustment) the Parzen classifier provides 

excellent upper bounds on the Bayes error, for reasonable values of h the 
lower bounds provided by the resubstitution error seem much too 
conservative. This is especially true when these bounds are compared with 
the resubstitution k-NN error rates.. This tends to indicate that the kernel 
function places too much weight on the sample being tested in the 
resubstitution estimate. Hence, one possible approach to improving the 
lower bound from the Parzen estimate is to use a kernel function which 
places less weight on the test sample and more weight on the neighboring 
samples than does the Gaussian kernel. • The uniform kernel function, with 
constant value inside , a specified region, is one such kernel function. 
However; if a uniform kernel function is employed one must decide on; the 
decision to be made when the density estimates' from the two classes are 
equal, and the Parzen procedure becomes even more complex;

In order to examine the effect of kernel shape on the Parzen classifier 
performance, we used the kernel functions given by • ;

hn
ki

c—exp 
hn

Tf11 "*"2)
: , 2m ’

ni ( )2m ;J

((1 /h ?)X^ Sj" 1X)ffl (14)

c =

n+2 . 
2m i

2tn

where m is a parameter determining the shape of the kernel. It may be 
verified that for any value of m, the covariance of the kernel density (14) is 
given by h2^, just as it has been throughout this chapter. The parameter 
m determines the rate at which the kernel function drops off. For m=l, 
(14) reduces to a simple Gaussian kernel. As m becomes large, (14) 
approaches a uniform (hyperelliptical) kernel, always with a smooth roll-off, 
(for finite m) and always with covariance h2Ej. Using this kernel allows us 
to use kernel functions close to the uniform kernel, without having to worry 
about the problem of equal density estimates.



Figure 3.4 shows the performance of the Parzen estimates with m=l 
(Gaussian kernel), 2 and 4. In each case, the estimates were based on 100 
design samples per class, and the threshold was determined using option 4. 
In all cases, using higher values of m (more uniform kernel functions) did 
improve the lower bound while having little effect on the upper bounds on 
the error.
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3.6 Effect of Sample Size and Dimension
In order to determine the effect of sample size on the error estimates, 

k-NN and Parzen error estimates were obtained for test case 1 using sample 
sizes N1=N2=25, 50, 1Q0, 200, and 400. Gaussian kernels were used for the 
Parzen estimates and in all cases option 4 was used to find the best 
threshold. Performance of the Parzen and k-NN estimators is graphed in 
Figures 3.5(a) and 3.5(b) respectively. As may be seen in the figures, both 
procedures give reasonable bounds using sample sizes as low as 25, and good 
bounds for sample sizes of 50 per class. The variance of the two estimates 
has been graphed in Figure 3.6. Note that the Parzen and k-NN procedures 
give comparable variances. Similar results were obtained for test cases 2 
■and 3. \ y

These results show no clear preference between the Parzen and k-NN 
procedure as used here. Both procedures yield usable bounds on the Bayes 
error, with very comparable variances. This is not surprising, since the k- 
NN procedure may be viewed as a Parzen classifier with kernel size 
determined adaptively (according to NN distances). It should be stressed, 
however, that we are not comparing the conventional k-NN and Parzen 
procedures, but rather then improved procedures as introduced in this 
chapter. Recall that our k-NN procedure involves (possibly) using different 
metrics for each class in the design set, and for both the k-NN and Parzen 
procedures the threshold is varied according to h or k. We believe that 
these modifications must be made to form a valid comparison between the 
two procedures, and should also be made in practice to obtain reliable 
bounds on the Bayes error.

The proposed Parzen and k-NN procedures were applied to real data 
with 60 dimensional feature vectors . Figure 3.7 shows the results of both

The results are provided by R. Han, G. Green and R. McCoy of Martin Marietta 
Aerospace, Orlando, FL.
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Figure 3.4 Effect of kernel shape on Parzen error.
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Figure 3.5 (a) Parzen error for various sample
various sample sizes.

sizes, (b) k-NN error for
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Figure 3.6 (a) Standard deviation of Parzen leave-one-out error for
various sample sizes, (b) Standard, deviation of k-NN leave- 
one-out error for various sample sizes.
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Parzen and k-NN error estimates using sample sizes N1=N2=115 and 230, 
arid using option 4 to determine the threshold. Class covariance matrices 
were used to determine the kernel functions for the Parzen and the metrics 
for the k-NN.

Although the true Bayes error is not known in this experiment, a 
quadratic classifier was designed from the data (using 5000 samples) and 
found to have an error of 8%. This value is significantly above the error 
rates obtained by both the Parzen and k-NN classifiers, indicating the 
suboptimality of the quadratic classifier (that is, the distributions of the 
data are riot Gaussian.) Notable is the fact that both the k-NN and Parzen 
procedures give nearly identical error estimates. This suggests that both 
procedures are working well, even in this experiment where the sample sizes 
are extremely small for the dimensionality considered.

Note that the value of h used for the Parzen classifier is large, ranging 
from 5 to 9. These large values are required for the kernel functions to 
reach a reasonable number of neighboring samples. The expected distance 
to the first NN is 7.35 by (7) for a 60-dimensional Gaussian distribution with 
covariance matrix I and N,=N2=230 [16].

3.7 A Non-Gaussian Test Case
It is of interest to examine the behavior of the Parzen and k-NN 

classifiers in a case in which the optimal Bayes classifier is not a quadratic 
classifier. Toward this end, the classifiers we tested on data drawn from the 
following distributions:

p,(X) - 0.5N(Mn,I) d- 0.5N(M12,I) 
P2(X) - 0.5N(M21,1) + 0.5N(M22,I) (15)

where N(M,S) is a normal density with mean M and covariance E. Like pur
previous test cases, the dimension, n, was set to 8.
the mean vectors are given by Mu(l') = 0.0, M12(,l

The first component of 
I = 6.58, M21(l) = 3.29,

and M22(l) = 9.87, and all other components of the mean vectors were set to
zero. These parameters give a Bayes error of 7.5%. In our experiment, 
Gaussian kernel functions were used with kernel covariance given by h2I. 
The euclidean metric was used for the k-NN classification. For both Parzen
arid k-NN classifiers, 100 design samples per class were used.

Figure 3.8 shows the results for both the k-NN and Parzen classifier. 
As expected, as h grows the error rate for the Parzen classifier drops to a 
minimum arid then increases as the classifier converges to the quadratic
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Figure 3.8 Parzen and k-NN error rates for a non-Gaussian test set
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classifier. The degradation in performance does not seem as severe for the 
k-NN classifier over the values of k plotted, although a slight degradation 
can be detected for k > 20. In both cases, however, both the k-NN and 
Parzen classification do provide usable bounds on the Bayes error.

3.8 Comparison With Existing Methods
As mentioned earlier, the Parzen and k-NN procedures developed in 

this chapter have several differences from the conventional procedures 
commonly in use. Probably the most important difference is that in the 
procedures used here the decision threshold is allowed to vary as h and k 
change. This provides a means of compensating for otherwise unaccountable 
biases in the Parzen and k-NN density estimates, and hence results in a 
dramatic improvement in the performance of the estimates under finite 
design set conditions. As a result of varying the threshold t, the 
performance of the k-NN or Parzen classifier is made much less sensitive to 
the value of k or h.

While the determination of the decision threshold is the primary 
difference in the Parzen error estimation procedures, another important 
difference exists in our k-NN procedure. Under the density estimation 
approach used in this chapter, different metrics may be used to measure 
distances to samples from each class allowing further improvement in the 
performance of the k-NN procedure. This is not possible in methods in 
which the sample is classified by the majority class among its k nearest 
neighbors from the mixture density.

Figures 3.9, 3.10 and 3.11 summarize the performance of both the new 
and conventional procedures for the three test cases listed in Table 3.1. In 
all experiments, 100 design samples per class were used, and Gaussian 
kernels we used for the Parzen estimates. Under the conventional 
procedures, the threshold t was set to zero, while under the new Parzen and 
k-NN procedures, option 4 was used to find the threshold for each value of 
h. The Euclidean metric was used in the conventional k-NN procedure.

Figure 3.9 shows that the new procedure provides virtually no 
improvement over the conventional procedures for test case 1. This is not 
particularly surprising since using t=0 in the conventional procedure 
happens to be the optimal value of t given in (9) for this test case. The real 
improvement in the k-NN and Parzen procedure is clearly demonstrated in 
Figures 3.10 and 3.11, where cases 2 and 3 are presented. In both of these
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«> Conventional Parzen (t=0)
A New Parzen (t found using Option 4) 
x Conventional k-NN (t=0, Euclidean Metric) 
■ New k-NN (t found using Option 4)

Figure 3.9 Comparison of conventional and modified procedures (Case 1)
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cases, the conventional k-NN error rate is virtually unusable as a bound on 
the Bayes error, while the new k-NN estimates converge nicely, even for 
large values of k. The values of the conventional Parzen estimates are also 
questionable, since they seem to be extremely sensitive to the value of h. By 
simply changing the value of t as h is increased, this sensitivity can be 
nearly eliminated.

3.9 Summary

In this chapter we have examined the use of k-NN and Parzen error 
estimation procedures under conditions in which the number of design 
samples are limited. The k-NN and Parzen procedures have been developed 
in parallel so that valid comparisons could be made between them. The 
resulting k-NN error estimation procedure allows different metrics to be used 
for each class, and is thus a generalization of the k-NN counting procedure 
commonly in use. The most significant discovery of this chapter is the 
potential role of the decision threshold in error estimation and classifier 
design. The decision threshold is seen as a means of compensating for biases 
in the k-NN and Parzen density estimates under finite sample size 
conditions. We have found that by appropriately selecting the decision 
threshold, the error estimates obtained using the Parzen or k-NN procedure 
may be made much less sensitive to the values of k or h.

The experimental results here show no clear preference toward either 
the Parzen or k-NN procedure. Computationally, the k-NN errors are 
slightly easier to calculate since the error rate may be found for all values of 
k simultaneously, whereas the Parzen error rate must be completely 
recalculated for each value of h. As far as performance is concerned, neither 
procedure exhibits a clear advantage over the other. This is not surprising, 
given the close link between k-NN and Parzen procedures.
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CHAPTER 4
LEAVE-ONE-OUT PROCEDURES FOR 

NONPARAMETRIC ERROR- ESTIMATES

4.1. Introduction
Nonparametric Bayes error estimation plays an important role in 

pattern recognition, providing a means of evaluating various feature sets 
and forming a basis with which to evaluate various classifier designs. In 
Chapter 3, modified k-nearest neighbor (k-NN) and Parzen error estimation 
procedures were introduced which give significant improvement over the 
procedures commonly in use. These procedures provide estimates which are 
much less dependent on k (for k-NN estimate) and h (the Parzen smoothing 
parameter) than are the conventional estimates. However, in Chapter 3, 
knowledge of the class covariance matrices is assumed, ignoring the effects of 
estimating the covariance from the data.

We have found that in high-dimensional spaces, using the same data to 
estimate the kernel covariances and form the nonparametric classifier may 
lead to optimistically biased error estimates., This problem was brought to 
our attention while dealing with 66 dimensional feature vectors obtained by 
coherently sampling millimeter wave radar returns of various targets. The 
data was obtained by placing a Camero and van on a turn table, and time 
sampling the resulting radar returns at 10000 different angles ranging from 0 
to 360 degrees. This large sample set was then reduced to sample sets of 
size 720 (samples taken every l/2°) and 360 (samples taken every 1°). When 
the Parzen estimation procedures given in Chapter 3 were employed using 
360 design samples per class (and estimating the kernel covariances from the 
same 360 samples), lower and upper bounds on the Bayes error of 3.9% and 
5.1% respectively were obtained. However, when the sample size is 
increased to 720 samples per class, bounds of 7.0% to 8.2% resulted. Using 
good estimates of the covariance (estimates obtained using 10000 samples 
per class) gave the most realistic error bounds for this data — 16.4% to 
17.6%, again using 720 samples per class to form the nonparametric error
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estimates. These inconsistent results demonstrate that the upper bounds on 
the Bayes error (given by the leave-one-out nonparametric procedures) may 
be severely (optimistically) biased if the class covariances are estimated from 
the same data as is used to form the error estimates.

If possible, then, to avoid this bias one should estimate the class 
covariances using a large number of independent samples as was done above. 
Once the covariances are estimated accurately, we have found that we may 
use a relatively small sample size for the nonparametric procedures given in 
Chapter 3 to produce reliable results. However, if additional samples for 
estimation of the covariance matrices are not available, then in order to 
obtain reliable upper bounds on the Bayes error one must use leave-one-out 
type estimates of the kernel covariances when forming the leave-one-out 
error estimate. This implies the use of a different covariance matrix for each 
sample being tested. This chapter gives an efficient method of calculating 
this estimate, requiring little addition computational effort over the 
procedures given in Chapter 3.

4.2 The Leave-one-out Procedure
Under the leave-one-out error estimation procedures given in Chapter 3, 

all samples x|kI j = 1,...,N from class o^. are tested using a nonparametric 
classifier designed using the N-l samples x/k\ i = 1,...,N, i^j. For both the 

k-NN and Parzen estimates, we are concerned with the calculation of the 
normalized distance estimates

d2(xi,xj) = (xi-xj)Tx:k-I(x,-xj) (i)
where in this chapter we assume that the covariance matrix Ek has been 
estimated using the unbiased estimate

L = Tf-r £ (Xi(k) - MkXxM - Mk)T (2)
IN—I 1=1

Note that Ek and Mk represent the covariance and mean estimates formed
fklusing all samples, including the sample being tested, Xj '. In order to obtain 

a valid upper bound for the error rate, we must remove the affect of on 
the covariance estimate Ek. Let Ekj denote the estimate of the covariance 
estimate for class using all samples except xjk\ Then [18]
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£ -l
kj = (

N—2 , 
N—1 ' (N-l)2 - N(X/k) -Mk)T £k 1 (xf) -Mk)

(3)

Hence, when x|k) is removed from the covariance estimate, the desired 

normalized distance, formed using the covariance estimated using the 
remaining N-l samples, becomes

(XiW-XW)^k-‘(X,W-Xf))=(^=l)
N-l

d2(xi(k),xf)) +
N[(Xik)-X/k))TEk-1(Xf)-Mk)]2 

(N—l)2 — Nd2(XM,Mk)

(—) {N-1 } dW X )+ 4[(N-l)’-Nd’(xM,Mk)] w

Equation (4) relates the leave-one-out distance using Skj to the distances 
d2(XiW,xW), d2(X/k),Mk), and d2(X;W,Mk) which are formed as in (1) using 

the full covariance and mean estimates given, in (2). Hence, assuming that 
the N distances d2(X/k),Mk) i = l,...,N have been saved, calculation of the 
leave-one-out distances (x/k^ — x|k^)T E1^1(x/k^ — X^) requires little 
additional effort over the calculation of d2(x/k),XjW). Note that the 

conversion expression (4) involves only one-dimensional quantities, requiring 
no vector or matrix manipulation. -

Also required for k-NN and Parzen estimates are the covariance 
determinants. The determinant of Ekj may be expressed in terms of [Ekj as 
follows [18]:

bkl (1 - d2(XW Mk)) (5)

where n is the dimension of the; feature vectors. Hence, assuming j£k| has 
been calculated, a straightforward calculation gives |£kj j, provided the 
distances d2(x|k\Mk) have been calculated and saved.

The modified nonparametric error estimate which employs an estimated 
covariance matrix may be summarized by the following steps:

1) Find £k and Mk using all available samples as in (2). Use Ek to 
calculate j£kj and EjJT1. Note that, as pointed out in Chapter 3, 
the computational complexity of the nonparametric procedures is 
greatly reduced if the data is first transformed so that £k is 
diagonal. This makes the calculation of the N2 distance terms, 
d (xfk\x}k), very simple.
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2) Find and save d2(X/k^,M^) for all samples (i = 1,...,N)

3) When testing sample X^:

i) Find d(x/k^xW) using i*=l,...,N. Use these values in

forming the resubstitution error rqtes.
ii) Remove the affect of Xj^) on the covariance estimate using the 

(one-dimensional) expressions (4) and (5). Use these values in 
forming the leave-one-out density estimates at Xj^

iii) Use the Parzen or k-NN procedures as developed in Chapter 3. 
Note that the distance correction of step (ii) need only be 
performed when measuring the distances to samples of the 
same class as sample Xj^, since xj^ does noj; enter into the 
covariance estimates of the other classes.

4.3 Experimental Results
The three experimental test cases used in Chapter 3 were repeated here, 

this time using estimated covariance matrices rather than the theoretical 
covariance matrices as in Chapter 3. All three cases are two class problems 
involving 8-dimensionnl Gaussian data. For test case 1, the class 
covariances are equal and the mean vectors are separated to give a 
theoretical Bayes error of e =10.0%. Test case 2 is an equal mean test case 
with class 1 and class 2 covariances of I and 41 respectively where I is the 
identity matrix. These parameters yield a Bayes error of 9.0%. Test case 3
is a complex distribution in which both the means and covariances are■ • > *
different, giving a Bayes error of e =1.9%. The reader is referred to 
Chapter 3 for details of the distribution parameters. For the experiments 
presented here, 100 samples per class were used to form the error estimates. 
Table 4,1 shows the leave-one-out and resubstitution error estimates 
obtained using both k-NN (for k = 10) and Parzen (for h = 1.5) procedures. 
Also shown in Table 4.1 are the corresponding results obtained in Chapter 3, 
which use the true covariance matrices^ The results were averaged over ten 
trials, and the corresponding standard deviations, (TLoo and aR are listed. To 
test the validity of the experiments, several of the test cases were repeated 
using 50 (rather than 10) trials. Changes in all the estimates were small (for 
example, using the Parzen estimate for case 1, the estimate of <rLoo changed 
from 2.6% to 2.52%, and the estimate of from 1.3% tt> 1.25%). 
Comparison of the new results with those presented in Chapter 3 shows only
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Table 4.1 Parzen and k-NN error estimates for the three experimental 
test cases used in Chapter 3. All results are based on 8- 
dimensional data with 100 samples per class forming the 
estimate. ;

(a) 10-NN error estimates

Test Bayes Covariance L.o.o. OO Resubst. |
Case Error Used Error Error

1 10% True 11.9% 2.2% 8.7% 1.8%,
Estimated 13.6% 3.2% 8.2% 1.8%'

2 9% True 13.6% 2.8% 9.2% 2.6%
Estimated 17.7% 5.0% 9.0% 2.1%

3 1.9% True 2.7% . 1.0% 1.4% 0.7%
Estimated 3.2% 1.3% 1.3% 0.6%'

(b) Parzen (h=1.5) error estimates

Test Bayes Covariance L.o.o. ^Loo Resubst. ■°R
Case Error Used Error Error

1 10% True 11.0% 1.8% 6.4% 1.3%
Estimated 12.6% 2.6% 5.8% 1.3%

2 9% True 10.6% 2.9% 4.8% 1.0%
Estimated 11.0% 3.2% 4.5% 1.3%

3 1.9% True 1.7% 1:2% 1.1% 0.9%
Estimated 2.3% 0.9% 0.8% 0.6%
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slight degradation, this is due to the use of estimated, rather than true 
covariance matrices. Both the resubstitution and the new leave-one-out 
procedures continue to provide useful bounds on the Bayes error.

In order to more clearly demonstrate the behavior of the estimate in 
higher dimensional spaces, the procedures were tested using the 66- 
dimensional radar signature data referred to in the introduction. The 
results are shown in Table 4.2. The first two entries of the table show the 
performance of the nonparametric classifiers when good covariance estimates 
(formed using 10,000 samples per class) are used with limited sample sizes 
(360 and 720 per class) used as references to form the classifier. The second 
two entries indicate the performance of the procedures presented here, in 
which the same data is used to estimate the covariances and form the 
reference sets. The true Bayes error for this set of data is not known. Note 
that even as the sample size used to estimate the covariance matrices 
becomes small, the leave-otte-out error rates continue to provide reasonable 
and consistent bounds. This is in contrast to the results given in the 
introduction in which the estimated covariances are blindly used without 
employing the leave-one-out procedures of this chapter. As expected, the 
bounds become worse as the sample sizes decrease. This is particularly the 
case for the resubstitution error rates, which become heavily biased as fewer 
samples are used to form the covariance estimates.

4.4 Summary
When the nonparametric procedures presented in Chapter 3 are applied 

in high dimensional spaces, the estimation of the class covariances (i.e. the 
determination of the kernel/metric shape) plays a very significant role. 
Specifically, if the same data is used to estimate the kernel shapes and form 
the error estimates, severely biased results may be obtained. This chapter 
has provided an efficient leave-one-out algorithm which may be used to 
eliminate this optimistic bias, while making effective use of all available 
design samples. This procedure requires only a slight increase in 
computational complexity over the procedures presented in Chapter 3, while 
still giving reliable bounds when covariance estimates, rather than the true 
covariances, are to be used to form the nonparametric classifiers.
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Table 4.2 Error estimates obtained using 66 dimensional feature vectors 
derived by sampling millimeter wave radar returns of two 
targets. Ncov represents the number of samples (per class) used 
to estimate the covariance matrices, and N represents the 
number of samples used to form the nonparametric error 
estimates.

Nx xov N Parzen (h = 
Leave-one-out

= 9.0) 
Resubst.

10-NK
Leave-one-out

E
Resubst.

10000 720 17.6% 16.4% 22.4% 18.0%

10000 360 19.4% 15.8% 22.2% 18.8%

720 720 23.0% 7.0% 24.2% 10.1%

360 360 27.5% 3.9% 29.3% 6.4%
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CHAPTERS 
PERFORMANCE OF 

NONPARAMETRIC CLASSIFIERS

5.1 Introduction
In this chapter, we examine the performance of classifiers designed 

using Pfirzen and k-nearest neighbor (k-NN) density estimates. When the 
number of design samples is infinite, the convergence of the Parzen on k-;NN 
error rates to the Bayes error is well understood. Here, we derive 
expressions which give the expected error performance of the classifiers when 
a finite number of design samples is available,. These expressions relate the 
observed error rate to the true value of the Bayes error, and show how that 
error rate is affected by changes in the sample size or design parameters of 
the density estimates.

. We begin in Section 5,2 by deriving the expected error performance in 
terms of the mean and variance of the density estimates used to form the 
classifier. This section is primarily an application of the techniques 
presented in [47] to the problem of classifier design. The results of this 
Section are very general and have application beyond the scope of this 
thesis. In [47], similar expressions are used to examine the behavior of 
classifiers designed using parametric techniques. Sections 5.3 and 5.4 
evaluate these expressions for the Parzen and k-NN classifiers respectively. 
The results show how the Parzen error rate is affected by the sample size, 
the size and shape of the kernel function, and the value of the decision 
threshold. The importance of the decision threshold was demonstrated in 
Chapter 3, and this chapter provides some theoretical justification for these 
reshlts. Similarly, the performance of the k-NN -classifier is expressed in 
terms Of the metric, the value Of k, and the sample size. These expressions 
are then used in Sections 5.5 and 5.6 to improve the performance of these 
classifiers. Section 5.5 introduces a method of estimating the true value of 
the Bayes error from the observed error rates for the nonparametric 
'classifiers'.. Currently nonparametric error rates are used to form upper



bounds on the Bayes error, and may in some cases be quite biased. We 
believe that the techniques of Section 5.5 more effectively use the available 
information and represent a significant improvement over the current 
techniques. Section 5.6 presents some guidelines regarding the selection of 
the kernel shape to improve the error performance of the classifiers. These 
results nicely complement results already in existence regarding the selection 
of the optimal metric for k-NN classifiers.

5.2 Effect of pirnte Design Set on Classifier Performance
In this section, we develop the relationship between the accuracy of a 

density estimation procedures and the corresponding error rate obtained 
when the density estimates are used to form a classifier. Our development 
closely follows the work presented in [47], which gives similar results for 
linear and quadratic classifiers.

We begin by considering the probability of error, 6, provided by the 
classifier

h(x) $f0- (1)

where x is an n-dimensibnal random vector with density for class given by 
Pi(x) (i=l.,2). The probability of error for samples from each class is given 
by

e, =
o 2 2 77

62 = 7 q?(h)dh = - -

f — o,(.c)d..'
. i x’-ex') J

(2)

00 1
/ “—</>2(w)dix>

-ooi^' (3)

where q;(h) is the density of h(x) for class cu, and is the corresponding
characteristic function:

«W)=E{e<“1‘W|Wi} = ^WpiWdx (4)

The error rate for the classifier, e = Pje, + P2e2, may notv be expressed.

6 = \ + ^ribo'i"j^.eJWhW(PlP^x) ~ P2P2(x))dx dto (5)

Here, P; is the a priori probability of class car '

In practice, h(x) is generally unknown and must be estimated using a 
set of N preclassified design samples. We define a random variable Ah(x)
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which relates the tree value of h(x) to the estimate.

h(x) = h(x) + Ah(x) ' (6)

The probability of error using h(x) may be obtained by substituting h(x) for 
h(x) in (5). When Ah(x) is small, the exponential of (5) may be 
approximated as

eJ-'h(x) _ ej-'h(x)eju»Ah(x)

J-'hW 11 + jcuAh(x) + — (jwAh(x)) (?)

The expected degradation of the error rate, Ae, may now be obtained by 
substituting (7) into (5) and taking the expectation over the set of N design 
samples. •-

E{Af} = m/” ^ E{Ah(x) + J^Ah2(x)}eJ"'hM(P,p1(x) - P2p2(x)}dxdw (8)

This expression approximates the expected error degradation in terms of the 
bias and mean sqqare error of h(x).

In this chapter, we investigate the estimation of the Bayes error using 
classifiers for which the estimated log likelihood ratio h(x) = —ln(p1(x)/p2(x)) 
is used. We wish to relate the error rate for this classifier to the Bayes 
error. Assuming Pj(x) = Pj(x) + Ap;(x), then

Ah(x) = In 1 +
Ap2(x)
P2W

— In 1 +
Api(x)
Pi(x)

-1 (9)

The parameter t in (9) is included to allow for the possible use of a non-zero 
threshold in (l). Expanding the log terms of (9), and dropping third or 
higher order terms gives

12
Ah(x) =

ap2(x) i Ap2(x) 2 APi(x) 1 Api(x)
Pz(x) 2 Pz(x) piM 2 . PiW ,

- t. (10)

Squaring this result, and again dropping the higher order terms,

(X) =
Ap2(x) 2

+
Api(x) 2

0 Api(x) Ap2(x)
, P2(x) Pi(x)

— z
Pi(x) , ; P2(x)

+ r2



Ap2(x) ] ; aP2(x) ’ 2 APi(x) + .1 APi(x) 2“

p2(x) 2 , Pz(x) , Pi(x) ■ 2 , Pi(x) ^
(11)

The expected error deviation can now be obtained by taking the expectation 
of (10) and (ll) and substituting into (8). The actual evaluation depends 
upon the particular density estimates used. The parametric case assuming 
Gaussian distributions is treated in [47]. Sections 3 and 4 will evaluate these 
expressions for Parzen and k-NN classifiers respectively.

5.3 Degradation of the Parzen Classifier

5.3.1 Evaluation of E{ Ar J:

We now assume that Parzen, or kernel type density estimates are used. 
The general Parzen density estimate is given by

Pi(x) = (1/N) E (l/hD)ki((x - xj(,))/h) (I2)
' : ' j=i ; - ...; \ ' . ■■.: . '

In (12)* ki(x) is a non-negative symmetric kernel function with fkj(x)dx = 1, 
h is a scaling parameter which determines the size of the kernel function and 
the smoothness of the density estimate, and x|^(j=l ,2,...,N) are the N design 
samples from class u\. In order to simplify the notation, and to more clearly 
show the relationships between the Parzen and k-NN classifiers, we will 
assume a uniform kernel function:

!l/!«:,(!x - . x/Vhi (13)
'A. if’es,

0 otherwise
where Sx =. {Y:dj(x,Y) < hA/n+2), v; is the volume of Sx, and dj(x,Y) is a 
metric measuring the distance from x to Y. This assumption significantly 
simplifies the discussion, while not appreciably altering the final result. A 
derivation in terms of general symmetric kernel functions is given in 
Appendix B. For the uniform kernel function the density estimate of (12) 
may be rewritten as

: - Wx) = ll^ : : ) : (14)

where k is the number of design samples which fall in the region Sx. For the 
Parzen estimate, Vj is held fixed and k is random and has a binomial 
distribution with parameter uj, where
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■ uj =Pr{xWGSxh} =/spi(Y)dY , (15)

The dependence of Uj on x is understood. The moments of k are then given 
in terms of Uj by

E{k) = Nil; (16)

E {k2 } = Nu; + N(N-l)u; (17)

The expectation of the error terms of (10) and (if) may now be calculated 
by combining (14), (16) and (17):

E-

E

Api(x) i - Pi(x)Vi

Pi(x) r Pi(x)Vi

APi(x) |l \
Uj - Pi(x>

, Pi(x) Pi(x)Vi

12
+ N

U;

P,2(x)Vi2

U;

Pi(x)vi

(18)

(19)

In order to express the error degradation in terms of the kernel size and 
shape, 11} and Vj must be expressed in terms of these quantities. For the 
density estimate of (14) to be accurate, v- (and hence h) must be small. 
That is, Sx should represent a local region centered at x. Under these 
conditions, the integral of (15) may be approximated using a second order 
Taylor series about x:

1Pi(Y) = P,(x) + V‘Pi(x)(Y-x) + y(Y - x)'V^,(x)(Y-x). (20)

In order to evaluate the integral of (15), we must also specify the shape of 
the region Sx. For simplicity and practicality, we will assume that a 
quadratic metric is used to specify Sx:

di2(x,Y) = (x—Y)t ^‘(x-Y) (21)

This choice gives a scaled kernel function with covariance h2]^., which is 

consistent with notation used in previous papers as well as with the results 
for general kernel functions given in Appendix B. The integration of (15) 
may now be evaluated. Note that the first order term of the expansion in 
(20) vanishes as a result of the symmetry of the region Sx. The result is

U; = Pi(x)vi + Ur V2Pi(x)/s (Y—x)(Y—xfdyj
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Pi(x)vi 4

where

Cj(x) = tr

2(1 -(• n/2)(»j2/" '

V2Pi(x) ,

,1 + 2/nPi(x)Ci(x) (22)

<V;

Pi(X) 

(27T)"/2|v:k||l/2

Hk,. (23)

(24)
l'(l 4 n/2)

and tr [A] represen ts the trace of the matrix A. The relationship between V; 
and h is given by

.vi-«vi(l.+ n/2)n/V= (25)

Combining (18) and (19) with (22) and (25) gives the desired error quantities 
in terms of the kernel size and shape, and the number of design samples.

l Pi(X)
= —h2C;(x)2 iv )

E
APi(x)
Pi(x) 4 . ‘ , N

1 4 (l/2)h2Ci(x) 1 2 2
—-----------—To—-—(14-—hzc:(x))Pi(x)ai(l+n/2)“^2hn 2 ,l- "

(26)

(27)

Appendix B shows that virtually identical results may be obtained for 
arbitrary kernel functions.

; The error degradation given in (8) is in terms of the expectation of (10) 
and (11). These terms may now be calculated using (26) and (27).

E{Ah(x)} = ~h2(c2(x) - c,(x)) 4 -^h4(c,2(x) - c|(x)) - t

4
2N.

1 4 (l/2)h2Cl(x) 1 4 (l/2)h2c2(x)
Pi(xH(l + n/2)n/2hn p2(x)<t2(l 4 n/2)n/2hn

+ h (c2(x) - Ci(x)) 4 (l/4)h (c2(x) - cjf(x)) (28)
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E (zXh(x))2
^2

■h2(«2W - cl(x)) - 1 yth4(cj2(x) — c|(x))

+ N
(l--t)(lH-(l/2)h2C](x)) (l+t)(H-(l/2)h2c2(x))
p,(x)a1(1+n/2)ri/2hD p2(x)a2(l+n/2)n/2hn

- (0+t)o2(x) + (l“t.)c,(x))h2

- i((l+t)c|(x) + (l-t)cf(x))K4 - 2
.4 -

(29)

5.3.2 Effect of N and h:
Substituting (28) and (29) into (8), we obtain the error degradation in 

terms of the sample size N and the value of hr

— arh2 “b a2h4 -f
N

aah + a4h -n+2 + a5h‘ + afih4

Here, the constants a^^.^g are obtained by evaluation of the indicated 
integral expression in (8). ■ In this section, we have assumed for simplicity 
that the decision threshold t has been set to zero. Because of the complexity 
of the expressions, explicit evaluation is not possible. However the constants 
ate functions Only of the distributions and the kernel shapes, £}k,: and are 
completely independent of the sample size or the Smoothing parameter, h. 
Hence, (30) gives an expression showing how changes in h or N effect the 
ertor performance of the classifier. The ath2 and a2h4 terms show how 
biases in the density estimates influence the performance of the classifier, 
while the a3h n/N and a4h_n+2/N terms reflect the role of the variance of 
the density estimates. For small values of h, the variance terms dominate 
(30) and the observed error rates are significantly above the Bayes error. As 
h grows, however, the variance terms decrease while the ajh2 and a2h4 terms 
play an increasingly significant role. Thus, for a typical plot of the observed 
error rate versus h, f decreases for small values of h until a minimum point 
is reached, and then increases as the bias terms of the density estimates
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becomes more significant. This behavior has repeatedly been observed by 
many researchers, and is accurately predicted in our expression for E{Ae}.

It should be noted that although explicit evaluation of aj through a6 is 
not possible in general, it is reasonable to expect that these constants are 
positive. It is certainly true that E{Ae} must be positive for any value of h, 
since the Bayes decision rule is optimal in terms of error performance. Also, 
close examination of (28), (29), and (8) show that the constants a5 and a6 
are of the same order of magnitude as a, and a2, so that for reasonable 
values of N (say, N > 50) the influence of the a5 and a6 terms is small in 
comparison with the a, and a2 terms, and for practical purposes may be 
neglected.

The role of the sample size, N, in (30) is seen as a means of reducing 
the terms corresponding to the variance of the density estimates. Hence the 
primary effect of the sample size is seen at the smaller values of h, where the 
a3 and a4 terms of (30) /dominate. As h grows, and the aj and a2 terms 
become dominant, changing the sample size has a decreasing effect on the 
resulting error rate, These observations were verified experimentally. 
Figure 5.1 shows the observed Parzen error rates obtained for a particular 
set of Gaussian distributions for N ranging from 25 to 200 design samples 
per class, h ranging from 0.6 to 2.4. The distributions were 8-dimensional 
Gaussian with = 0,Vj = I, V<2 = A and M2 as specified in Table 5.1. 
Here Mj and Vj represent the mean vector and covariance matrix 
respectively for class xu,, I is the identity matrix, and A is a diagonal matrix 
with diagonal elements Xk(k=l,...8). The chosen values of Xk are also Shown 
in Table 5.1. These parameters yield a Bayes error of 1.9%. For each 
combination of N and k, N independent samples per class were generated 
and used to form h(x) = —ln(p](x)/p2(x)) where pj(x) is as given in (12). 
Gaussian kernel functions were used with covariance X/k: = lii The 
decision rule of (1) was then evaluated using 1000 test samples per class 
independently generated from the two distributions. The number of 
classification errors was counted and divided by the number of test samples 
to give an estimate of the probability of error for each design set. These 
results were averaged over ten independent design sets to provide an 
estimate of the expected error rate. Figure 5.1 shows that for each value of 
N, the Parzen classifier behaves as predicted by (30), decreasing to a 
minimum point, and then increasing as the biases of the density estimates 
become significant for larger values of h. Also note that the sample Size
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1. Parzen error rates for various sample sizes and values of h



Table 5,1 Diagonal elements of A, and the corresponding components of 
the mean vector.

i 1 2 3 4 5 6 ' 7 8

k 8.41 12.06 0.12 0.22 1.49 1.77 0.35 2.73

mi 3.86 3.10 0.84 0.84 1.64 1.08 0.26 0.01
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plays its primary role for small values of h, where the a3 and a^ terms a,re 
most significant, and has almost no effect at the larger values of h.

• Note that in order to have E {—► 0 as: N—>oo, our error 
approximation implies that: h must be chosen as a. function of N such that

h —>0 and h n—d). This is the well known condition fo the consistency of
• , n . "■ : ■ v :• v .

the Parzen density estimate, and lends confidence to the approximations 
which we used to obtain (30).

5.3.3 Effect of the Decision Threshold t:
In Chapter 3, the we introduced the use of the decision threshold as a 

possible, means of correcting for the biases of density estimates and 
improving the performance of the Parzen ^classifier. * The arguments 
presented were rather intuitive in nature. However, the experimental results 
indicate that threshold adjustment is a very effective tool toward this end, 
particularly for large values of h. To some extent, (28) and (29) provide 
some theoretical justification for the claims made in Chapter 3, showing the 
role which the decision threshold plays in terms of error performance.

Convergence of the observed error rate to the Bayes error may be 
improved by selecting t to compensate for the first two terms of (28).

t = (l/2)h2(c2(x) - c,(x)) + (l/g)h4(cf(x) - c|(x);)

This selection eliminates the bias terms of (28), and reduces the bias terms 
of (29) to only higher order terms (h6 and h8). All other terms of (28) and 
(29) decrease as l/N, and may be eliminated by choice of a large enough 
sample size. Further, because the bias terms are greatly reduced, it may be 
possible to use a much larger value of h, thereby reducing the h~D and h~"n+2 
terms which are related to the variance of the density estimate.

In practice, use of (31) to determine t may not be possible. Since Cj(x) is 
a complex function of x depending on the Second order properties of the 
distribution, cj(x) is generally unknown and hard to estimate. In many 
cases^ however, it may be possible to approximately satisfy (31) at least in 
the region close to the Bayes decision boundary. Since the integral 
expression of (8) depends primarily on the behavior of h(x) near the decision 
boundary, such an approach yields a significant improvement in the 
resulting error probability for the classifier.
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Insight may be gained by examining the Gaussian- case in which the 
shape of.the kernel is chosen to-be proportional to the covariance matrix for 
class cv'|, Vk. = V.. In this case Cj(x) may be explicitly calculated and has 
theform

(-(x) - (x - Mj)t \y '(x - M,) - n - >>. (32)

The threshold t may easily be chosen to compensate for the h2 terms of (28) 
and (29) at least On the Bayes decision boundary:

t-)'t)2(c2W-c,(x)) ' . ; , ; ^ v ;

- -j-h2(d^(x,Mj)-dfnjM,))'.. ;-.- ■■

- ' (33)

The last line of (33) holds with equality only on the Bayes decision 
boundary. Thus in this case, our results indicate that a constant value of t 
may be used to improve the performance of the Parzen classifier. This 
observation was experimentally verified in Chapter 3. It is interesting to 
note that in Chapter 3 the appropriate value of the threshold was found to 
be (l + h2) 1 times the value shown in (33). Thus the approximations used 
in this chapter yield consistent results with those of Chapter 3, at least for 
small values of h.i ,

In general, an expression of the form of (33) cannot be found since the 
location of the Bayes decision boundary is unknown. However, (33) shows 
that use of a constant, nonzero threshold may result in a significant 
improvement of the performance of the Parzen classifier. In Chapter 3, 
general techniques are given for determining an appropriate threshold which 
do not depend on assumptions about the distributions. The results of this 
chapter strengthen the case for the use of these methods.

5.4 Degradation of the k-NN Classifier 

5.4.1 Evaluation of E{Ae):
A derivation similar to that of the previous section may be applied to 

k-NN classifiers. The k-NN density estimate is given by
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Pi(x) =
k—1 
Nv:ik

(34)

where k is an integer, vik is the volume of the set 
Sxk = {y:dj(x,Y)<di(x,x^'2N^)} and. xj'iNN is the kfh NN to x. from the N 
design samples of class c^. When dj(x,Y) is quadratic as in (21), then 
vik ~ (h^in(x)xll-NN)- Note that in contrast to (14), vik is random in (34) and 

k is held fixed. To take the expectation of (34) we define 
uik = Pr{xj(l)6Sxk } and express vik in terms of by solving an expression 

similar to (22)

where

_ _________ u,ik
^ _ Pi(x)(l+a,(x)(pi(x)Til)V»

C[(x)
AM 2(l+n/2)„V"PlV-(x)

(35)

(36)

The vik term iii the denominator of (35) may be eliminated by using the first 
order approximation uik = Pj(x)vik. This gives

l/vit = PifxXuit1 + (37)

OA.lt = Pi’MKi2 + 2 ft(x)U;2k/-2 + ft2(x)Uil/-2)- (38)

The distribution of uik is known to be Beta. The moments of uik are given 
by

ER} = 13k'Y)l(N+1? («+k>0)
1 ,k/ I (k)l (N+l+a) 1 ;

(39)

Combining (39) with (34), (37), and (38), the desired moments for the density 
estimate may be obtained:

APi(x)
E{-

Pi(x)
■} = M(x)g(N,k,2/n) (40)

E
APi(x) 'L f

k-i
/ \

N—1 __ 1
Pi(x)\ /

r k—2 N .
)

; -- 1
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+ 2

+

k-l
k—2 2/n

N-l+2/n
' N:

k-1
\

N-l+4/n
k—2—4 /n N

V' ■ /

- 1

/•>’i2(x)g(N,k,4/n) (41)

/ii(x)g(N,k,2/n)

where

g(N,k+) = -’(k- i+^r(.\’) (42)
l (k l)r(N4<s) '

Note that for larger .values of N (say, N>50), g may be accurately 
approximated by

+ r(k-l+<V)
(43)

so that for positive values of A, g(N,k,b) decreases with N. The second 
approximation of (43) holds only for large k. Taking the expectation of (10) 
and (ll), and substituting (40) and (41) into this result gives the 
expectations of the Ah terms of the error expression (8):

E{Ah(x)} =

x))2l = 2

k-1 'A
■ ' ■ \
N-H 2/n

- k-—2+2 /n N

1_ k-1
/ \

N—1+4 /n
2 ' k—2+4 /n ; n ;

- 2 (ft(x) -/i2(x))g(N,k,2/n)

■ A2(x) ~ ;>!(x) )g(N,k,4/n) - t (44)

/ \

k-1 ' N-l ; - 1

r— k—2 N ■. , )

+

+ 2

+

(/^(x) - •■’’i(x))g(N,k,2/n) - t j - (ffi(x) + h’12(x))g2(N,k,2/n) 

N-l+2/nk-1
k-2+2/n N - 1 2(x) + (l-t)A(x) g(N,k,2/n)

k-1
k—2-H /n

N N ,/ ' I'1 1,1 !!1 " ?(>)^(N,k,4/n) (45)

These expressions with (8) yield the behavior of E{Ae} in terms of the 
sample size, the value of k, and the distributions.
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For a fixed k, as N is increased all terms of (44) and (4-5): approach zero 
except for the first line of* (45). This term corresponds to the finite variance 
of* the k-NN density estimate under infinite sample set .conditions, and 
results in the asymptotic k-NN error fate which is\greater-th:an'..the-Bayes- 
error. In order to guarantee conYergence of the k-NN error to the Bayes 
error, k must be chosen as a function of N. To make all terms of (44) and 
(45) vanish we must require that k—kx> and k/N—*0 as N—>oo. These 
conditions are identical to the conditions required for asymptotic consistency 
of the k-NN density estimate provided by Loftgaarden [29], a result which 
lends confidence to the approximations used in this chapter.

5.4.2 Relationship Between k-NN and Parzen Procedures:
While the Parzen classifier with uniform kernel counts the number of 

design samples which fall within a specified volume, the k-NN classifier 
adjusts that volume to include a given number of design samples. For this 
reason* many researchers have suggested that the two procedures should 
give similar performance if the Parzen kernel size is determined adaptively, 
using larger kernel functions in regions in which the density is smaller. In 
this section, we show that this claim is largely supported by our error 
expressions.

We begin by rewriting the k-NN expressions (40) and (41) using large N 
and large k approximations. Using (43), dropping terms which behave as 
l/Nk, we obtain

-(-2(1—2/n)(l/k—l/N)/^(x)(k/N)2^n

- |l " (I l/n;;i/k- l/MjnxHk/M1" (47)

We now examine the behavior of the Parzen classifier when the size of the 
kernel is chosen adaptively, with hn proportional to l/pj(x). In order to 
clearly exhibit the relationship between the two cjassifiersj we choose the
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particular functional form of h as

h — (1 + n -1/2 J/feNpiM)
1/n

(48)

where the parameter P (as with k for the k-NN classifier) is in general a 
function of N to be chosen by the designer. Substituting (48) into (26) and
(27) gives the result for the Parzen classifier.

I Api(x)
:E-

Pi(x)
^/I(x)(p7n)2/“

E
APi(x)
Pi(x)

^2
l/P-l/N

+ (1 /P —2/N )/7 (x) (P /N)2/”

+ [1 - i/N]A2(x)(j?/rsr)4/n (50)

Comparison of (46) and (47) with (49) and (50) shows that the behavior 
of the. density estimates is very similar, not only in its behavior with N and 
hi, but also in absolute value. There are slight differences between (47) and 
(50), which may be due in part to the different approximations for uj used in 
the two derivations. These results, when substituted into (10), (11), and (8) 
confirm the: often made claim that the k-NN classifier gives similar 
performance to the Parzen classifier with adaptable h, at least under the 
large N, large k approximations used here.

5.5. Estimation of the Bayes Error
Non pa ra me t ric classifiers are often used to provide estimates of or 

bounds on the Bayes error, r . Sections 5.3 and 5.4 relate the performance 
of these classifiers under finite design set conditions to the true Bayes error. 
In this section, we utilize these results to provide a method of estimating the 
Bayes error from the observed error rates for these classifiers.

The procedure for the Parzen classifier is as follows. We first rewrite 
the expected error rate in terms of h for a fixed value of t and N by 
combining (28), (29) and (8):
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E{e} = e* + bjh2 + b2h4 + b3h_n + b4h_n+2 (51)
*

Here, the constants b1,b2,b3,b4, and the desired value of e are unknown and 
must be determined experimentally. An estimate of e may be obtained by 
observing the Parzen error rate for a variety of values of h, and finding the 
set of constants which best fit the,observed data. Any data fitting technique 
could be used, however the linear least squares approach is straightforward 
and easy to implement.

This approach has several intuitive advantages over the common 
procedure of accepting the lowest error rate over the various values of h. 
First, it provides a direct estimate of e rather than simply an upper bound 
on the value. We have found in many cases that the bounds provided by 
Parzen or k-NN procedures may be biased far away from the true Bayes 
error. Another advantage is that this procedure provides a means of 
combining the observed error rates for a variety of values of h. Hence we 
may be utilizing certain information concerning the higher order properties 
of the distributions which is ignored by the previous procedures.

As mentioned earlier, it is reasonable to expect that all five of the
constants (51) are positive since the observed error must remain above e for

*any value of h. In order to ensure stability in the estimate of e , we have 
found it advisable to restrict the constants to positive values during the 
curve fit procedure.

Our procedure is illustrated in Figure 5.2. Here the N= 100 data of 
Figure 5.1 has been replotted, and the best fit of the form given in (51) has 
been drawn as a solid line. The resulting estimate of e =1.96% is 
extremely close to the true value of e of 1.9%. Note the closeness of the fit, 
indicating that the observed error rates are in fact following the trends 
predicted in this chapter. <

An identical procedure may be applied to the k-NN error estimates by 
combining (44), (45) and (8)

E{e} = e* + bi((N-k+l)/(N(k-2))) + b2g(N,k,2/n)

+ b3g2(N,k,2/n) + b4((k-l)/(k-2+2/n))g(N,k,2/n)

+ b5((k-l)/(k-2+4/n))g(N,k,4/n) (52)

For the k-NN estimate, we observe the error rate for various values of 
k, and then solve for the best set of positive constants in (52) to fit the
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Best Fil

= 1.963%

0.2 0.4 0.6 0.8 1 2.2 2.4

*
Figure 5,2 Estimation of e from observed Parzen error rates.
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observations. Figure 5.3 shows the results of this procedure applied to the 
k-NN error rates for the same data as was used in Figure 5.2. Note that a 
reasonable estimate of e is obtained even though the observed error rates at 
this sample size (N= 100) are well above the true Bayes error.

5.6 Selection of the Kernel Shape
While results are available regarding the selection of the distance 

metric for use with k-NN classifiers [12,13], little work has been done 
regarding the selection of the functional form of the kernel for the Parzen 
classifier under limited design set conditions. Our results using second order 
approximations of the density functions show that the performance of the 
Parzen classifier depends primarily on the covariance of the kernel function,
)y]k.. A common choice is to select V]k. equal to the Uj covariance matrix V\.

1 ''
While this choice ensures that the resulting density estimate has second 
order moments which are proportional to the true second order statistics, 
nothing is implied concerning the resulting error rate. In this section, we use 
our error expression to suggest a possible modification of this procedure 
which results in a more stable error estimate for larger values of h.

From (28) and (29) we see that if the kernel covariance is selected 
such that Cj(x) = c2(x), then all terms which are independent of the sample 
size may be eliminated from the error expression. Hence we must find 
positive definite matrices Vk[ and ^]ko such that

V2Pl(x)
tr , x Ek,

Pi(x) j
= tr V ri

/ \ Ajk->P2W ‘J

In general, however, the second order properties of the density are not 
known. When the data is Gaussian, however, we may obtain a solution of 
(53) in terms of the mean vectors and covariance matrices.

When Pj(x) is Gaussian, then

ppp- = lt‘(* - Mi)(* - Mi)Txr‘ - ^r1 • <54)

To solve (53), we begin by proposing a solution of the form

Ek; = Ei + Vx - Mi)(x - Mi)T (55)

We wish to determine; the possible values of 7, and 72 so that (53) holds. 
Substituting (54) and (55) into (53) arid simplifying gives
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Best Fit

1.584%

Figure 5.3 Estimation of e
*

from observed k-NN error rates.
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y,(d,2(x,M,) - 1) - y2(d7(x,M2) - 1) = d|(x,M2) - dfjx.Mj.) (56)

where y; is given by •7jd;2(x,Mj), and dj(x,Y) is as given in (21). In addition to 
satisfying (56), we must also choose yj> — 1 to ensure that V^. of (55) 
remains positive definite. Hence valid choices for yj and y2 lie in the region 
y2>—1, y2>—1, and satisfy the linear equation (56). This is illustrated in 
Figure 5.4. Equation (56) describes a line passing through the point 
(yi,y2) = (-1,-1) with slope (d]2(x,Mj) — l)/(d22(x,M2) — l). Hence, valid 
positive definite solutions exist provided this slope is positive. For practical 
purposes, it is convenient to use a fixed set of values for yl and y2. In this 
case, a near solution may be used by choosing '(y],y2) close to the (-1,-1) 
point. Such a choice comes close to satisfying (53) even in the case in which 
the slope of (56) is negative.

The data used in Figure 5.1 was tested using the kernel given by (55) 
using N= 100 design samples per class. The results using y} = y2 = —0.8 are 
shown in Figure 5.5. These results indicate that although the estimates 
seem less stable at' smaller values of h, as h grows the results using (55) 
remain close to the Bayes error while the results using .degrade
rapidly. This implies that the h2 and h4 terms of (28) and (29) have been 
effectively eliminated.

These experimental results indicate the potential importance of the 
kernel covariance in designing Parzen classifiers.

5.7 Conclusion .
This chapter has developed relationships between the expected error 

rates of nonparametric classifiers and the true Bayes error. These 
relationships explicitly show how the error performance changes as the size 
of the design set is varied, how the value of h affects the performance of the 
Parzen classifier, and how k affects the performance of the k-NN classifier. 
The results are related directly to the Bayes error, in contrast to Chapter 2 
which relates the 1-NN and 2-NN performance to their asymptotic values.

Two direct applications of these results have been presented in Sections
5.5 and 5.6, The first is a curve fit technique which utilizes the observed 
error rates for many values of h or k to obtain an estimate of the true value 
of the Bayes error. The experimental results indicate that this value may be 
a significant improvement over the bounds provided by the observed error 
rates. The second application involves an improvement of the performance
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Valid combinations of yj and y2

Figure 5.4 Valid combinations of yj and y2
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of the Parzen classifier through the selection of the kernel covariance. 
Again, the experimental results indicate that a significant improvement may 
be possible, particularly for larger values of h.

Aside from the practical contributions, this chapter has also given some 
theoretical justification to the results concerning the decision threshold 
presented in Chapter 3. Careful selection of the decision threshold should 
play a, key role in the design of nonparametric classifiers.
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CHAPTER 6 
BOOTSTRAP METHODS FOR 

NONPARAMETRIC ERROR ESTIMATES

6.1 Introduction
Since its introduction in. 1977 [48], bootstrap techniques have been 

applied to a wide variety of estimation problems. Particular attention has 
been paid to the problem of estimating the error rate for various classifiers 
designed using a small number of preclassified samples. Traditionally, these 
error rates have been estimated using the apparent (resubstitution) error 
and cross-validation (leave-one-out) type estimates. The bootstrap has been 
proposed as a means of correcting for the negative bias of the resubstitution 
error, resulting in an estimate with lower variance than the leave-one-out 
error [49]. .

Bootstrap procedures refer to a general class of techniques which 
resample the given data in order to induce information about the sampling 
distribution of an estimator. As long as the resampling procedures are 
similar enough to the original sampling procedure, the bootstrap allows one 
to determine various statistical properties of an estimator even when very 
Little is known about the underlying distributions. The choice of an 
appropriate resampling procedure is crucial to obtain accurate estimates of 
the true sampling statistics. Normally, the resampling is performed by 
drawing samples from the empirical distribution (that is, from a distribution 
with probability mass l/N at each of the original N design samples). Many 
authors have found this to be an acceptable procedure for a wide variety of 
estimation problems [48-51]. However, all of these authors point out possible 
drawbacks of this procedure for some estimates due to the discrete nature of 
the empirical distribution. These problems are clearly manifested when the 
bootstrap is applied to estimate the error for nonparametric (e.g. Parzen or 
k-NN) classifiers. This is the case to be investigated in this chapter. Here, it 
is important that the samples which are drawn in the resampling procedure 
are different from those samples being tested in order that the sampling
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statistics of the bootstrap sample not be biased away from the true sampling 
statistics.

Several methods have been proposed in order to satisfy this 
requirement. Chernik ' et al. [50,51] perform experiments in which the 
bootstrap samples ar convex combinations of the original N samples. While 
this procedure does remove the bootstrap samples from the design set, it 
places convexity assumptions on the underlying distributions which may not 
be valid. This is particularly a problem when the technique is used to 
investigate nonparametric procedures, which are usually used to avoid 
making assumption about the distributions. Further, the experimental 
results in [50,51] suggest that this procedure is inferior to several others. 
Another possible procedure is to use the estimate of Efron [49]. The 
estimate is obtained by resampling the data from the empirical distribution 
to obtain the bootstrap samples, and then testing only those samples of the 
original data which are not part of the bootstrap sample set. The error 
estimate is the average error among these left out samples over many 
bootstrap trials. Efron introduces the estimate only as a heuristic
motivation for his ".632" estimate, claiming that the error should be 
biased high since the samples being tested are "too far" from the design set. 
Jain et al. [52] investigate the use of the estimate in evaluating the error 
for a 1-NN classifier. They found that although a slight positive bias is 
observed, use of the estimate gave tighter confidence regions than did the 
standard leave-one-out or resubstitution errors.

In this chapter, we investigate a third alternative. Under our approach, 
the bootstrap samples are drawn not from the empirical distributions, but 
from a smoothed estimate of the true distribution. The degree of smoothing 
is chosen so that the leave-one-out error for the bootstrap sample is roughly 
equivalent to the observed error for the original data. The bootstrap is then 
Used to form an estimate of the standard deviation of the actual leave-one- 
out error. This procedure is somewhat different from the conventional use of 
the bootstrap. In the past, most authors have used the bootstrap a a means 
of estimating and correcting for the negative bias which is observed in the 
apparent, or resubstitution, error. Here, instead of trying to estimate the 
bias of the resubstitution error, we are interested in estimating the standard 
deviation of our observed leave-one-out error, gaining an indication of the 
reliability of our Bayes error estimates for the particular distributions being 
considered.



Section 6.2 formally introduces the procedures used here, and Section
6.3 presents some experimental results for several test cases. Although the 
emphasis in this treatment is on the estimation of the variance for the 
Parzen classifier, application of the same techniques to the k-NN classifiers 
is straightforward.

6.2 The Bootstrap Procedure

We now adopt the notation of Efron [49]/ We assume that the classifier 
is designed based on a set of N training vectors x = [xlJ * * * An I w^ere 
each Xj represents a pair (tj,y;) consisting of a n-dimensional feature vector tj 
and the known class yj from which tj was drawn. The prediction rule //(t,x) 
is constructed which assign an unknown vector t to some class based on the 
training set x. In this treatment, the prediction rule r/(t,x) will be the 
Parzen or k-NN classifier designed from x, the set of preclassified samples. 
We define an indicator function Q(y,r/(t,x)) to be 0 of the decision rule 
?/(t,x) correctly assigns t to class y, and 1 otherwise.

Jo if r/(t,x) = y 
Q(y,»i(M))= j ifl((t>x)#y (i)

We are interested in estimating the actual error rate, Err, which is 
encountered when new samples independent of x are encountered. Thus

Err = E
\

QUo.^V*)) (2)

where x0 = (t0,y0) is a randomly selected independent test sample. There are 
two widely used estimates of Err: the apparent (resubstitution) error and the 
cross-validation (leave-one-out) error. The apparent error App is found by 
reclassifying each of the N samples, counting the number of 
misclassifications, and dividing by the total number of samples tested

App = (3)
1N i=l

Since the samples being tested are included in the design set x, the apparent 
error tends to be lower that the true value of Err. This is particularly true 
for the nonparametric classifiers considered in this treatment which are 
highly dependent on the location of individual samples in the design set. In 
order to help eliminate the negative bias associated with the apparent error, 
cross-validation estimates may be used. Under this procedure, each sample 
in the design set is tested using a decision rule which is designed based on
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the remaining N-l samples. The leave-one-out error, Err^ \ is found by

Krr(<-V) = VQfyi,//^^;)). (4)
; 1N i = l W

where X; — x—{X;} is the original design set with the sample Xj = (tj,Vj) 
removed.

While ErrG ' provides the designer with a nearly unbiased estimate of 
the true error, in general the standard deviation of the estimate is not 
known. In this chapter, we introduce a bootstrap technique to estimate this 
standard deviation from the given set of design samples. The procedure is as 
follows. From the given design samples x, we first form an estimate of the 
unknown underlying density, F. Normally, the empirical distribution is used

F: mass l/N on Xj, i=l,2,...,N (5)

However, we will find that for k-NN and Parzen classifiers it is necessary to 
use a smoothed estimate of the density. From this estimate we repeatedly 
perform the following procedure:
1) Draw N "bootstrap samples" x^, x2^V •••> xn^ independently from the 

estimated distribution F. We denote this sample set x

2) Find and tabulate the leave-one-out error for the sample set x 

Errj(CV^ = VQ(yi,(j),/7(ti‘(j),x*^)) 3 (6)

3) Repeat steps 1 and 2 for j = l,2,...,B , where B is the number of 
bootstrap trials desired. The estimate of the Standard deviation of 
Krr(CV) may now be formed by calculating the sample standard 
deviation over the B values of KrrjCV^ . ( '

If the resampling procedure is similar enough to the true sampling conditions 
(that is, if the density estimate F is close enough to the true density F) then 
the statistics of Err|GV^ ,. j=i:l,2,...,B , should be close to the actual sampling 
statistics of Err^CVL v

The appropriate value of B depends largely on the sampling statistic to 
be estimated. In the past, authors have concentrated on estimating the 
entire sampling distribution of the estimated error rates, and hence have 
required B to be quite large. Jain et al. [52] claim that B should be greater 
than 100, while Efron [49] suggest that B need not be greater than 200. In 
this paper, the value of B is severely limited by computational concerns.
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The nonparametric procedures considered here already require a large 
amount of computer time, and the bootstrap requires that the procedures be 
repeated B times. Because of this restriction, we only Concentrate here on 
estimating the standard deviation of the error estimates (as opposed to the 
entire sampling distribution), and hence use a fairly small value Of B (B=fO 
for the experiments presented in Section 6.3). ,

Application of, the bootstrap is complicated by the fact that we are 
considering error rates of Parzen and k-NN classifiers. For these classifiers, 
use of F as given in (5) will result in values of Err^CV^ far below the values 
of Err^y) obtained from the true distribution. This fact is cjearly 
demonstrated in Table 6.1. Columns 2 and 3 of Table 6.1 show the average 
leave-one-out and the corresponding standard deviation for a Parzen 
classifier applied to a variety of distributions. In each case, 8 dimensional 
Gaussian distributions were used with covariance matrices ^ —^2 ^ I and 
mean vectors separated to give the indicated Bhyes' error. All results are 
averaged over ten independent trials. Columns 4 and 5 of Table 6.1 show 
the average predicted values for the same experiments using the bootstrap 
procedures (B=10) and F as given in (5). These predictions are also 
averaged over the ten trials. The bootstrap predictions are clearly biased 
bplow the true sampling statistics of Erdcv), indicating that F is not an 
adequate estimate of the distribution. This bias is a result of the fact that 
that many of the bootstrap samples x, ^ appear multiple times in the 
bootstrap sample set x Samples which appear more than once will 
almost never be misclassified by the Parzen or k-NN classifier, and hence the 
leave-one-out error for the bootstrap sample is biased below the actual 
leave-one-out error, (This is most apparent when one considers the 1-NN 
classifier. Here, if a sample is included more than once it is always 
considered as its own nearest neighbor, and is hence never misclassified.)

This problem may be eliminated by choosing a smooth estimate of F 
rather than the empirical distribution given in (5). Toward this end, we use 
the Parzen density estimate for each class .

I'i*. !?•;• • T V t.}/hB I (?)
-. . • -yoy^y.) ■

where Nyo is the number of design samples in x from y0, ky(t0) is a zero 
mean density function which may depend on y0, and hg is a parameter 
which determines the degree of smoothing. Note that as hg—>D, 
(l/h3)kyo( (t0—t^/hg) approaches an impulse function and (7) becomes the



Table 6.1 Error rate statistics for the Parzen classifier using h=1.0 with 
100 samples per class. Bootstrap samples were drawn from the 
empirical distribution.

Bayes
Error JCT) ^CV)*Err<cv> Err'cvr

30% 34.2 3.9 17.L 2.5
20% 22.1 3.5 11.2 2.3
10% 10.9 2.4 5.8 1.7
5% 6.9 1.7 3.0 1.1

^ 2% 2.2 1.0 1.1 0.8



empirical distribution given in (5). As hB grows, the density estimate 
F(xo bo) becomes smoother. To generate a sample x; ^ from the density of 
(7), one first randomly (all samples equally likely) selects a sample 
xk = (tk,yjc) fro™ x- A sample z is then generated (independent of tk) from 
the scaled kernel density (l/hB)kyk(z/hB). It may be verified that the 
random variable formed by Xj ^ = (t^-t-'z^y^) has the density given in (7). 
Since the density of z is continuous, no two samples of x ^ will have the 
same value, and hence the normal problems associated with using the 
bootstrap on Parzen or k-NN error rates is eliminated. For convenience in 
the sample generation procedure, the kernel density ky(*) was chosen to be a 
Gaussian density with covariance equal to the covariance for class y, XIy. 
The covariance of the scaled kernel density (l/hB)ky(z/hB) is then h2)Jy.

A key problem in the use of the above procedure is how to select the 
value of hB to be used. It is desired that the value of the smoothing 
parameter hB be selected so that the sampling statistics of Err|CV^ be as 
close as possible to those of Err^CV^. For small values of hB, the leave-one- 
out error of the bootstrap sample ErrjCV^ is biased below' that for the 
original design set, Err^CV^. As hB grows, however, the covariance associated 
with the generated samples grows and the leave-one-out error of the 
bootstrap samples becomes larger, eventually overtaking the leave-one-out 
error of the original data. A typical case is illustrated in Figure 6.1. We are 
interested in finding a value of hB at which the sample statistics of ErrjCV^ 
are similar to those of Err^CV^. Hence, the proposed procedure is the 
measure the mean and variance of Err^CV^ for a variety of different values 
of hB, and plot the mean value to obtain a graph similar to Figure 6.1. A 
reasonable value of hB is then given by the value of hB for which the mean 
value of Err|CV) equals the measured value of Err^CV^. The estimate of the 
standard deviation of Err^CV^ is then the corresponding sample standard 
deviation of ErrfCV) , j = l,2,...,B , evaluated at this value of hB.

6.3 Experimental Results
The procedure was tested using the Parzen classifier for two different 

test distributions. Both test cases are two-class problems with 8-dimensional 
Gaussian distributions. For test case 1, the class covariances are equal, and 
the mean vectors are separated to give a Bayes error of 10%. Test case 2 is 
a complex set of distributions in which the mhans and covariances are not 
equal, giving a Bayes error of 1.9%. The actual distribution parameters for
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Figure 6.1 Typical trend of the bootstrap error Err^CV^ as the value of hB 
increases.



99

test case 2 are shown in Tables 3.1 and 3.2 of Chapter 3. For each of the 
test cases, the Parzen smoothing parameter used to form the classifier, hB, is 
allowed to vary from 0.6 to 3.0. The value of the smoothing parameter used 
to generate the bootstrap samples, hB, was chosen so that the bootstrap 
average Err^CV^ was equal to the observed cross-validation error Err^CV^ 
when hD = 1.0. The resulting values were hB =0.55 for test case 1, and 
hB = 0.51 for test case 2.

For each experiment, ten independent sets of samples with 100 samples 
per class were generated. For each set, Err^CV^ and App were determined. 
The statistics (mean and standard deviation) of these values were calculated 
over the ten trials and serve as a reference in our evaluation of the 
bootstrap procedures. For each set of samples, the bootstrap procedure of 
Section 6.2 was applied (using B=1Q) forming bootstrap estimates of the 
standard deviation of Err^CV^ and App. These estimates are then averaged 
over the ten trials.

The results for test case 1 are shown in Figures 6.2 and 6.3. Figure 6.2 
shows the mean value of Err^CV^ and App over the ten independent trials for 
various values of hD. The average predicted values of these variables using 
the bootstrap sample sets (generate with hB =0.55) are also shown. Ideally, 
if the F of (7) was close to the true distribution F, these .curves would be 
identical. Figure 3 shows the calculated standard deviations of Err^CV^ and 
App, as well as the average predicted standard deviations given by the 
bootstrap procedure. Similar results for test case 2 are shown in Figures 6.4 
and 6.5.

Our results indicate a close correspondence between the actual standard 
deviations and the corresponding bootstrap predictions for both test cases. 
This relationship exists not only for hD = 1.0, for which the value of hB was 
selected, but also for the entire range of hD from 0.6 to 3.0. This indicates 
that the sampling statistics of our bootstrap sample sets are in fact very 
similar to those for the true distributions, and gives us confidence in the 
estimates. For test case 1, the values of Err^CV^ and Err^CV) begin to 
diverge for large values of hB in Figure 2. This indicates that at these 
values of hB, it may be wise to employ a different value of hB. However, 
even for these values, the bootstrap estimates of the standard deviations are 
very close to our estimated values.
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<> Original Data 

x Bootstrap Sample Sets

Figure 6.2 Results for test case 1. Average leave-one-out and
resubstitution error rates for the original data and the
generated bootstrap sample sets.’
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*» Measured Standard Deviation 

x Average Predicted Standard Deviation

Figure 6.3 Results for test case 1. Standard deviation of the leave-one-
out (a), and resubstitution (b), error rates for the original data
and average predicted standard deviation from the the
generated bootstrap sample sets.



Original Data

x Bootstrap Sample Sets

Figure 6.4 Results for test case 2. Average leave-one-out and
resubstitution error rates for the original data and the
generated bootstrap sample sets.
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n Measured Standard Deviation 

x Average Predicted Standard Deviation

3 nD

Figure 6.5 Results for test case 2. Standard deviation of the leave-one-
out (a), and resubstitution (b), error rates for the original data
and average predicted standard deviation from the the
generated bootstrap sample sets.



6 >4 Summary
This chapter has provided a means by which the standard deviation of 

an error estimate may be obtained from a single set of design samples. Our 
experiments indicate that a suitably modified bootstrap procedure provides a 
nearly unbiased estimate of the variances of the cross-validation and 
apparent error rates. It should be noted that although our experiments have 
concentrated on the Parzen classifier, and identical bootstrap procedure may 
be applied to k-NN classifiers. The approaches indicated in this chapter 
seem most appropriate for use with nonparametric classifiers, since most 
investigations have shown that for parametric classifiers the empirical 
distribution is an adequate estimate of F.

As a bonus, we have uncovered a possible means of generating artificial 
samples from a limited number of available design samples. Our procedure 
involves first finding the value of hB to match a test statistic of the 
artificially generated samples to the observed statistic for the design set. 
Once hB has been determined, one is free to generate an unlimited number 
of samples and be assured that in some sense, the statistical behavior of the 
generated samples will be close to that of the original samples. This 
procedure may have widespread application in many areas of pattern 
recognition, and is a possible subject of further investigation.
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CHAPTER 7
SUMMARY AND RECOMMENDATIONS

7.1 Summary of Results
This thesis has examined the expected error of nonparametric classifiers 

and applied these results to the estimation of the Bayes classification error 
fate. Chapter 2 provides an analysis of 1-NN and 2-NN classifiers, isolating 
the effects of sample size, dimension, and distance metric from those of the 
distributions. These results are then used to provide an improved estimate 
of the asymptotic 1-NN and 2-NN error rates, which place bounds on the 
Bayes error. The Parzen classifier was examined in Chapter 3, and the k- 
NN classifier was reframed into an analogous density estimation viewpoint. 
Guidelines are developed regarding the selection of the kernel size and 
shape, the selection of k, and the selection of the k-NN distance metric. 
The most important discovery of Chapter 3 is the potential role that the 
decision threshold plays in compensating for the biases of the density 
estimates. These discoveries are shown to significantly improve the 
conventional procedures now in use.

A computationally efficient method of estimating the kernel covariance 
for leave-one-out estimates is presented in Chapter 4. In Chapter 5 we use 
the density estimation framework developed in Chapter 3 to derive the 
expected error performance of both Parzen and k-NN (k>2) classifiers. 
These results give explicit functional forms of the observed error rate in 
terms of the sample size, kernel size and shape, k, and the NN distance 
metric. These expressions relate the observed error rate directly to the 
Bayes error, and provide a means of estimating (rather than bounding) that 
value. The optimal selection of the kernel covariance is also discussed in 
Chapter 5. Finally, a bootstrap procedure has been developed which allows 
the designer to estimate the standard deviation* of a nonparametric estimate 
of the Bayes error.
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7.2 Recommendations for Further Research
There are several topics related to this thesis which merit further 

investigation.
It should be possible to extend the results of Chapter 5 to include 

resubstitution error rates, by taking into account the biases associated with 
the resubstitution density estimates. While the justification is strong for 
using resubstitution k-NN error rates as lower bounds on the Bayes error, 
analogous results have not been found regarding resubstitution Parzen error 
rates. Such an approach could provide some theoretical insight.

One problem associated with the algorithms presented in this thesis is 
the large computational burden which is assumed when the procedures are 
implemented. To some extent, this thesis has helped to alleviate some of 
this burden by reducing the number of samples which are required to obtain 
reliable estimates. However, computational concerns remain an important 
factor in high dimensional spaces, where the number of samples required 
remains quite large. Useful contributions could be made in this area, either 
by finding efficient algorithms of finding the k-NN and Parzen errors 
directly, or by finding methods of estimating the respective error rates 
without actually designing and implementing the classifier.

Finally, this thesis has not treated the class of nonparametrie 
procedures based on the estimation of the density functions using orthogonal 
series. Application of these techniques in high dimensional spaces is often 
difficult in practice due to the large number of series coefficients which must 
be determined. However, several authors have obtained theoretical results 
which indicate that the rate of convergence of density estimates based on 
orthogonal series is independent of the dimension of the space. This is in 
sharp contrast to the results for both k-NN and Parzen estimates. An open 
question is the relationship between the orthogonal series estimates and the 
estimates presented in this thesis. Practical application of these methods to 
high dimensional problems is contingent on finding a means of keeping the 
required number of series coefficients reasonable, and this is also an area in 
which significant contributions could be made.



LIST OF REFERENCES



107

LIST OF REFERENCES

[1] T. M. Cover and P. E Hart, “Nearest neighbor pattern classification," 
IEEE Trans. Inform. Theory, Vol. IT-13, pp. 21-27, Jan. 1967.

[2] T. M. Cover, “Rates of convergence for nearest neighbor procedures," 
in Proc. Hawaii Int. Conf. on System Sciences, pp. 413-415, 1968.

[3] T. J. Wagner, “Convergence of the nearest neighbor rule," IEEE Trans. 
Inform. Theory, Vol. IT-17, pp. 566-571, 1971.

[4] J. Fritz, “Distribution-free exponential error bounds for nearest 
neighbor pattern classification," IEEE Trans. Inform. Theory, Vol. IT- 
21, pp. 552-557, 1975.

[5] C. j. Stone, “Consistent nonpararnetric regression," Ann; Statistics, 
Vol. 5, pp. 595-645, 1977.

[6] L. Devroye, “On the almost everywhere convergence of nonpararnetric 
regression function estimates". Ann. Statistics, Vol. 9, pp. 1310-1319,

■ ■ 1981. ;

[7] L. Devroye, “On the inequality of Cover and Hart in nearest neighbor 
discrimination," IEEE Trans. Pattern Anal. Machine Intel!., Vol. 
PAMI-3, pp. 75-78, Jan. 1981.

[8] L. Devroye and T. J. Wagner, “Distribution free consistency results for 
nonpararnetric discrimination and regression function estimation". 
Ann. Statistics, Vol. 8, pp. 231-239, 1980.

W. H. Rogers and T. J. Wagner, “A finite sample distribution free 
performance bound for local discrimination rules," Ann. Statistics, Vol. 
6, pp. 506-514, 1978.

[10] J. Beck, “The exponential rate of convergence of error for kn—NN 
nonpararnetric regression and decision," Prob. Contr. Inform. Theory, 
Vol. 8, pp. 303-311, 1979.



108

[ 11 ] L» Cyorli, “The rate of convergence of kD—NN regression estimates and 
classification rules," IEEE Trans. Inform. Theory, Vol. IT-27, pp. 362- 
364, 1981.

[12] R. D. Short and K. Fukunaga, “The optimal distance measure for 
nearest neighbor classification," IEEE Trails. Inform. Theory, Vol. IT- 
27, pp. 622-627, Sept. 1981.

[13] K. Fukunaga and T. E. Flick, “An optimal global nearest neighbor 
metric," IEEE Trans. Pattern Anal, and Machine Intell., Vol. PAMI-6, 
pp. 314-318, May 1984.

[14] D. A. S. Fraser, Nonparametric Methods in Statistics, New York: 
Wiley, 1957, Chapter 4.

[15] K. W. Pettis, T. A. Bailey, A. K. Jain and R. C. Dubes, “An intrinsic 
dimensionality estimator from near-neighbor information," IEEE Trans. 
Pattern Analysis and Machine Intelligence, Vol. P AMI-1, pp. 25-37, 
Jan. 1979.

[16] K. Fukunaga and T. E. Flick, “Classification error for a very large 
number of classes," IEEE Trans. Pattern Anal, and Machine Intell., 
Vol. PAMI-6, pp. 779-788, Nov. 1984.

[17] K. Fukunaga and L. D. Hostetler, “Optimization of k-nearest neighbor- 
density estimates," IEEE Trans. Inform. Theory, Vol. IT-19, pp. 320-

• 326, May 1973.

[18] K. Fukunaga, Introduction to Statistical Pattern Recognition. New 
York: Academic 1972.

[19] E. Fix and L. J. Hodges, “Discriminatory analysis, nonparametric 
discrimination, consistency properties," Report No. 4, Project 21-49- 
004, School of Aviation Medicine, Randolph Field, Texas, 1951.

[20] E. Fix and L. J. Hodges, “Nonparametric discrimination small sample 
performance," Report NO. 11, Project 21-49-004, School of Aviation 
Medicine, Randolph Field, Texas, 1952.

[21] M. Rosenblatt, “Remarks on some nonparametric estimates of a 
density function," Annals of Mathematical Statistics, Vol. 27, pp. 832- 

/V 837, 1956.

[22] E. Parzen? “On the estimation of a probability density function and 
the mode,' Annals of Mathematical Statistics, Vol. 33, pp. 1065-1076, 

' 1962.



109

[23] T. Cacoullos, “Estimation of a multivariate density," Annals of the 
Institute of Statistical Mathematics, Vol. 18, pp. 178-189, 1966.

[24] L. Devroye, “The equivalence of weak, strong, and complete 
convergence in Lj for kernel density estimates," Annals of Statistics, 
Vol.'ll, pp. 896-904, 1983.

[25] L. Devroye and T. J. Wagner, “The Lj convergence of kernel 
estimates," Annals of Statistics, Vol. 7, 1136-1139, 1979.

[26] P. Deheuvels, “Conditions necessaires et suffisantes de convergence pon 
ctuelle presque sure et uniforme presque sure des estjmateurs de la 
densite, C. R. Acad. Sci., Paris, Ser A 178, 1217-1220, 1974.

[27] L. Devroye and T. J. Wagner, “The strong uniform consistency of 
kernel density estimates," in Multivariate Analysis V, P.R. Krishnaiah 
(Ed.), North Hollad, New York, pp. 59-77, 1980.

[28] L. Devroye and L. Gyorfi, Nonparametric Density Estimation: The Lj 
View. New York: John Wiley & Sons 1985.

[29] D. O. Loftsgaarden and C. P. Quesenberry, “A nonparametric estimate 
of a multivariate density function," Annals of Mathematical Statistics, 
Vol. 36, pp. 1049-1051, 1965.

[30] D. S. Moore and J. W. Yackel, “Consistency properties of nearest 
neighbor density estimates," Annals of Statistics, Vol. 5, pp. 143-154, 
1977.

[31] L. Devroye and T. J. Wagner, “The strong uniform consistency of 
nearest neighbor density estimates," Annals of Statistics, Vol. 5, pp. 
536-540, 1977.

[32] J, Van Ryzin, “Bayes risk consistency of classification procedures using 
density estimation," Sankhya Series A,Vol. 28, pp. 161-170,, 1966.

[33] L. Rejto and P. Revesz, “Density estimation and pattern 
classification," Problems of Control and Information Theory, Vol. 2, pp. 
67-80, 1973.

[34] N. Click, “Sample based classification procedures derived from density 
estimators," J. Amer. Statist, Assoc., Vol. 67, pp. 116-122, 1972.

[35] N. Glick, “Sample based classification procedures related to empirical 
distributions," IEEE Trans. Inform. Theory, Vol. IT-22, pp. 454-461,

■ . 1976..



110

[36] W. Greblicki, “Asymptotically optimal procedures with density 
estimates," IEEE Trans. Inform. Theory, Vol. IT-24, pp. 250-251, 1978.

[37] C. Spiegelman and J. Sacks, “Consistent window estimation in
nonparametric regression," Annals of Statistics, Vol. 8, p. 240-246, 
1980. ,

[38] L. Devroye, “Necessary and sufficient conditions for the pointwise 
convergence of nearest neighbor regression function estimates," 
Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete, Vol. 
61, pp. 467-481, 19,82.

[39] R. P. W. Duin, “On the choice of smoothing parameters for Parzen 
estimators of probability density functions,’ IEEE Transactions on 
Computers, Vol. C-25, pp. 1175-1179,1976.

[40] J.D.F. Habbema, J. Hermans, and K. Vandenbreock, “A stepwize 
discriminant analysis program using density estimation," in 
COMPSTAT 1974, G, Bruckmann (Ed.), Physica Verlag, Wien, pp. 
101-110, 1974.

(41 ] J, Van Ness, “On the dominance of non-parametric Bayes rule 
discriminant algorithms in high dimensions," Pattern Recognition, Vol. 
12, pp. 355-368, 1980.

[42] P. Hall, “Large sample optimality of least squares cross-validation in 
density estimation," Annals of Statistics, Vol. 11, pp. 1156-1174, 1983.

[43] Y. S. Chow, S. German, and L. D. Wu, “Consistent cross-validated 
density estimation," Annals of Statistics, Vol. 11, pp. 25-38, 1983.

[44] T. J. Wagner, “Nonparametric estimates of probability densities," 
IEEE Trans. Inform. Theory, Vol. IT-21, pp. 438-440, 1975.

[45] B. W. Silverman, “Choosing the window width when estimating a 
density," Biometrika, Vol. 65, pp. 1-11, 1978.

[46] K. Fukunaga and J. M. Mantock, “A Nonparametric two-dimensional 
display for classification," IEEE Trans, on Pattern Analysis and 
Machine Intelligence, Vol. PAMI-4, pp. 427-436, July 1982.

[47] K. Fukunaga and R. R. Hayes, “Effects of sample size on classifier 
design," submitted to IEEE Trans, on Pattern Analysis and Machine 
Intelligence, 1987.

[48] B. Efron, “Bootstrap methods: another look at the jackknife," Annals 
of Statistics, Vol. 7, pp. 1-26, 1979.



Ill .

[49] B. Efron, “Estimating the error rate of a prediction rule: improvement
on cross-validation," Journal of the American Statistical Association, 
Vol. 78, pp. 316-331, 1983. '

[50] M.R. Chernik, V-K. Murthy, C.D. Nealy, “Application of bootstrap 
and other resampling techniques: evaluation of classifier performance," 
Pattern Recognition Letters, Vol. 3, pp. 167-178, May 1985.

[51 j M.R. Chernik, V.K. Murthy, C.D. Nealy, “Correction note to 
‘Application of bootstrap and other resampling techniques: evaluation 
of classifier performance’," Pattern Recognition Letters, Vol. 4, pp. 
133-142, April 1986.

[52] A.K. Jain, R.C. Dubes, and C.C. Chen, “Bootstrap techniques for error 
estimation," IEEE Trans, on Pattern Analysis and Machine 
Intelligence, Vol. PAMI-9, pp. 628-633, Sept. 1987.



APPENDICES



112

Appendix A
Bi of Chapter 2 for Gaussian Cases

When the density function of u>p p;(X), (i = 1,2) is Gaussian with the 
expected vector Mj and the covariance matrix Ej,

-Pn^pC) = ^(X'^H)T^-1(X.-Mi) + -i-pn |Ei|+|-Pn27r. (l)

By taking the gradient of (l),

-vPi(x)/p1(x) = 5:-1(x-Mi)=vj(x) (2)

The gradient of the mixture density, p(X) =P1p1(X)+P2P2(X) with a prior 
probability Pi( is

Vp(X)/p(X) =
p.p.m

P(X)
Vp,(X) p2p2(x) Vp,(x) 
P,(X) + p(X) p2(X)

= -[<li(X)V1(X)+^(X)V!(X)| (3)

where <h(X) = PiPi(X)/p(X).

The gradients of qj(X) are:

Vqx(X) = V
PlP!(X)

p(X)
“11(X)%(X)

Vpi(x)
Pi(X)

Vp2(X)
P2(X)

=qi(x)q2(x)[v2(x)-v,(x)] (4)

and
V2qi(X) = qi(X).,..|X| [(cfalX) - <u(X))

• |V2(X) - V,(X)| |V2(X) ^ V((X)|T + £,-■- Ef1

Substituting (3), (4) and (5), the Bj of (17) in chapter 2 becomes

(?)



Bi(X)- f P"2/n(X)(q,(X)-qi(X))q,(X)q2(X)

•|yl(x)v^(x)-v,(X)v?'(x)+^,-l:f,] (6)

For the simplest case in which Ei=E2=l, Pi — P2=0.5 and A — I, 
trBi(X) becomes

lr B,: X) J I. 2 “'N>1,iX).j,(X){-i,SX) -N!)

■ •1(X-M1)t(X-M,)-(X-M2)t(X-M,)] (7)

■ • Cc’.j

In this case, [•] ^ 0 is the Bayes classification rule which also satisfies
"’i .

wc’o

q2(X) —<ii(X) 0. That is, [•] and q2(X) — q1(X) share the same sign

regardless of X. Since p(X), qj(X) and q2(X) are all positive, trB1(X) and 
subsequently the bias of (16) in chapter 2 becomes positive.

The positive bias is not guaranteed in the more general case. Since 

q2(X) —q^X) is the Bayes classifier, q2(X) — q,(X) >0 for the Gaussian 

case is equivalent to
|v I p

(X-M1)T>J1-,(X-M1)-(X-M2)Tv-1(X-M2)+pn-i^T-pn-L>0 (8)
1^21 “2

On the other hand, from (6) tr A-1 [*] becomes positive when

(X — )TEf 1 A"1 Ef1 (X — M,) — (X—M2)TE2 1A 1 E2'1 (X—M2)

+ trA-I(E2-1-Ef1)>0 (9)

Thus, these two terms share the same sign in some domain and have 
different signs in the other domain. Thus, the bias of (16) in chapter 2 could 
be either positive or negative, depending on Ej and Mj as well as A.
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Evaluation of E

Appendix B 
APs(x)
Pr(x)

and E
AP-,(X)
P;(x)

for General Symmetric Kernel Functions

When Pi(x) is the Parzen density estimate as given in (12) of Chapter 5, 
the desired expectations for a general symmetric kernel function is given by 

APi(x) } E(Pi(x)}
E

PiW Pi(X)
- 1

h Dki(x/h)*Pi(x)

Pi(x)
- 1 (1)

E
APi(x)
Pi(x)

= (!/Pi2(x)) (E(APi(x)))2 + Var(APi(x))

h nkj(x/h)*Pi(x)

Pi(x)
- 1

+ N
h 2nkj(x/h)*Pi(x)

Pi2(x)
h nkj(x/h)*Pi(x)

Pi(x)

^2

(2)

where * represents convolution in Rn. Equations (l) and (2) give exact 
expressions for the indicated moments. For a local kernel function, the 
convolution may be evaluated by approximating Pj(Y) by

PiOQ = Pi(x) + (Y-x)TVpi(x) + ^-(Y-x)TV2Pi(x)(Y-x) (3)

where the approximation holds in the region in which kj((x—Y)/h) takes 
significant values (i.e. when Y is close to x). Under this approximation and
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using the symmetry of the kernel function, the convolution term becomes

jMr^Kx-Yyh) Pi(x) + (y-x)TVpi(x) + ^-(Y-x)TV2Pi(x)(Y-x) dY

-Pi(x) + ^tr 

= Pi(x) + ~tr

V2pi(x)/(Y-x)(Y-x)Th-nki((Y-x)/h)dY

V2Pi(xjh2^kl (4)

Similar results hold for the convolution of kj2(x/h) and Pj(x). Substituting 
these results into (l) and (2) gives

E

E:

APi(x) I 1 })2 , v
.. /" \' = ~h ci x
Pi(x) 2 (5)

APi(x)
Pi(x)

^2
— h4c2(x) + — 
4 lV ’ N

h- -I(ki) i
"■'yhhWi

- (1 + ,7h>i(i;)i2

where

Kki) = /ki2(x)dx 

V2Pl(x)
Cj(x) = tr

bj(x) '= tr

Pi(x)

V2Pi(x)

Pi(x)

Ek;

(«)

(7)

(8)

(9)

and Vk;; is the covariance matrix for the density function given by 
k2(x)/I(ki). For many popular kernel functions Cj(x) is proportional to bj(x). 
For the uniform kernel, b,(x) = Cj(x), and for the Gaussian kernel

bi(x) = Yci(x)’
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