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A New Method of Image Compression
Using Irreducible Covers of Maximal Rectangles

Y. Cheng, S. S. Iyengar and R. L. Kashyap

 Abstract

In recent years there has been a tremendous spurt in research and activity in finding 
efficient compression techniques for image processing applications. Particularly when an 
image is structured over a non-rectangular region it is always advantageous to define a 
method of covering a region by minimal numbers of maximal rectangles. Towards this 
objective, we analyze the binary image compression problem using irreducible cover of 
maximal rectangles. We also give a bound on the minimum rectangular cover problem for 
image compression under certain conditions that previously have not been analyzed. It is 
demonstrated for a simply connected image that, the irreducible cover proposed here uses 
less than four times the number of the rectangles in a minimum cover. With n pixels in 
a square, the parallel algorithm of obtaining the irreducible cover presented in the paper 
uses (n/log n) concurrent-read-exclusive-write (CREW) processors in O(log n) time.

Key words and phrases: Image compression, maximal rectangles, covering algorithms



Y. Cheng, S. S. Iyengar and R. L. Kasliyap

A New Method of Image Compression

Using Irreducible Covers of Maximal Rectangles

1. Introduction

Effective methods of representation of binary digital images are required in many 
image processing tasks. Currently hierarchical representations like quadtrees and oct- 
trees are very popular [8,9]. One criterion of evaluation of different representations is the 
degree of information compression achieved by the scheme. The information contained 
in any representation can be measured by the length of the program needed to transmit 
the same. For instance, in quadtrees, one needs to transmit the program corresponding 
to the quadtree including declarations of the leaf nodes which correspond to the pixels or 
groups of pixels having a ’one’. It is well-known that the minimum code length required for 
transmitting an n x n binary image is 21og2n. The image compression efficiency associated 
with a particular representation can be measured by the ratio of the length of the program 
to the above minimum, namely 21og2n. Typically, the ratio is greater than one. The closer 
the ratio is to one, the greater will be the degree of image compression achieved.

The quadtree corresponds to dividing an image into non-overlapping squares by par
ticular tree scanning procedure. In this paper, we explore the possibility of describing 
each connected part of an image by means of irreducible and maximal rectangles which 
may be overlapping. A rectangle is described by a quadruple, namely the sizes of the two 
sizes and two coordinates of some specific corner (say northwest). The image will be de
scribed by an xtnordered set of the quadruples corresponding to the various rectangles. We 
believe that the compression achieved by schemes like this are, in general, superior
to those obtained by quadtrees since (i) they do not involve any additional algorithms like 
tree traversal or ordering, and (ii) the basic unit in quadtrees are squares, not. rectangles. 
These schemes may also be useful for real time dynamization, i.e., dynamically altering
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the representation in real time as the image changes in real time. However, we do not 
explore this aspect in this paper.

Ferrari et al. [3] considered the representation of images via a partition with (non
overlapping) maximal rectangles. Moitra et al. [6] used maximal irreducible cover with 
squares; the squares being possibly overlapping. However, Masek showed that the con
striction of minimal covers with rectangles is an NP-complete problem. For a broader 
treatment on this see [2]. In this paper, we plan to describe an image by an irreducible 
cover made up of maximal rectangles. We also present an algorithm to find an irreducible 
cover. With n pixels in a square, the parallel implemention of the algorithm can be exe
cuted with (n/log n) concurrent-read-exclusive*write (CREW) processors in O(log n) time. 
Hence the parallel algorithm is optimal.

It is important to point out that the cover generated is irreducible, but hot minimal. 
The usefulness of the representation is intimately connected to the question of the ratio of 
the number of rectangles in the irreducible cover of this paper to the number of rectangles 
in a minimal cover. The smaller the ratio, the greater will be the usefulness of the rep
resentation. We show that the number of rectangles in the irreducible cover is less than 
four times the number of rectangles in a minimal cover.

The remainder of this paper is organized as follows: Section 2 describes some basic 
definitions and the main focus of our problem. Section 3 describes the greedy algorithm and 
there we develop motivation for the proposed method. Section 4 describes an overview 
of the proposed algorithm with a detailed proof to show that our method produces an 
irreducible cover for the image. Section 5 describes a parallel version of the algorithm. 
Section 6 discusses the number of rectangles used in the irrducible cover and that of a 
minimum cover under some restricted conditions. Section 7 concludes the paper.



2. Preliminaries

In this paper, we consider a binary image as an array P[0..m,0..m] of binary valued 
pixels, where m — yfn -f 1. For convenience, we assume that the image is only within 
P\\..y/ri,\..y/n\. The value of a pixel P{j is represented as both true/false or its synony
mous value black/white. In Figure 1, we give an example of an image and an irreducible 
cover of rectangles for it.
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Image Cover with maximal rectangles a, b, c, d, e, f, g.

Figure 1.

A rectangle can be represented as rect<row,column,sizel ,size2>, where row and 
column are the coordinates of the northwest corner pixel of the rectangle, and sizel and 
size2 are the numbers of rows and columns in the rectangle. A black rectangle is maximal 
if it is not contained in any other black rectangle. In this paper, a rectangle always means 
a black rectangle. A collection C of rectangles is called a cover of the image if every black 
pixel is contained in at least one of the rectangles in C. A cover C is irreducible if no 
proper subset of C is a cover of the image. A greedy algorithm to obtain an irreducible 
cover from a cover will be given in section 3. a
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Neighborhood characterization of black pixels,. Ablack pixel Pij is a top 
(respectively, bottom, left or right) pixel if the' pixel' Pi-ij. (respectively, Pi-hj, Pfj-i, 

is not black. It is easy to show that a rectangle is maximal if and only if it 
contains top, bottom, left and right pixels. A column of black pixels is called a. maximal 
column if it is not contained in any other column of black pixels. Hence, a rectangle is 
a maximal column if and only it contains only one column and it contains a top pixel 
and a bottom pixel. For example, in Figure 1, the pixels Pe,5 and P?,5 form a maximal 
column and pixels P3,2,-P4,2, Ph,2 form another one. Of course, the maximal column is 
uniquely determined by its top pixel. If the top pixel is Pij, we write the maximal column 
as max_col<t,j>. Hence the two maximal columns in Figure 1 we just mentioned are 
denoted as max_col<6,5> and max_coi<3,2>, respectively. The notation max_col<i,y> is 
defined only when P{j is a top pixel. Similarly* we can define maximal rows. A set of black 
pixels is said to be covered by a collection of rectangles if every pixel in the set is contained 
in at least one rectangle of this collection. A sequence of consecutive top (respectively, 
bottom, left, right.) pixels is called a top (respectively, bottom, left, right) edge. Figure 2 
illustrates these terms.

Figure 2.

A cover with minimum number of rectangles is called a minimum cover. Clearly, every 
minimum cover is irreducible. The vice versa is not true, an irreducible cover need not be



minimal. Also, since every rectangle is contained in at least one maximal black rectangle, 
we can obtain a minimum cover with maximal rectangles from any minimum cover. An 
ideal way to store binary image data is to use a minimum cover. However, it is a difficult 
problem to find a minimum cover for an image. The problem that whether an image has 
a minimum cover with k rectangles is known to be NP-complete (Masek’s unpublished 
work cited in [2]). Therefore, it is reasonable to use irreducible covers instead of minimum 
covers. In this paper, we present an algorithm to find an irreducible cover. For a simply 
connected image, i.e., a conected image without holes, we show that the irreducible covers 
uses less than four times the number of rectangles in a minimum cover.

Lemma 1. Every maximal column is contained in a unique maximal rectangle.

Proof. Let inax_col<i, j> be a maximal column with m rows with Ptj as its top 
pixel and Pbj its a bottom pixel with h =:• t + rn — 1 as in Figure 3. Now let / be the 
smallest integer such that Pklyk2 are black pixels for all t < k\ < b and l < k2 < j. 
There exists an integer p such that t < p < b and PPfi-i is not a black pixel. Hence 
PPil is a left pixel as in Figure 3. Let r be the largest, integer such that Pkx,k2 are black 
pixels for all t < ki < 6 and j < k2 < r. There exists an integer q such that t <q<b 
and P9?r+i is not a black pixel. Hence Pq^r is a right pixel. Pixels Pkt,k2 5 i ^ k% < 6, 
l < k2 < r form the maximal rectangle rect<t,l9m.,r — / + !>. It contains the maximal 
columii max_col«,j>. Since this is essentially the unique way to construct a maximal 
rectangle which contains max_col<<,j>, the maximal rectangle we obtained is the unique 
one. containing max.col</,j>. Q.E.D.

Figure 3. Illustration for the proof of Lemma 1.
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The unique maximal rectangle containing max-col<t,j> is denoted by 3?<j. We note 
that, different maximal columns may be contained in the same maximal rectangle. For 
example, in Figure 1, 3?2,4 = 3?2,s =’rect<2,3,2,4>.

Finally, we note that, for sets A and £?, we denote the set of elements of A which is 
not in B by A \ B.

3. Greedy Algorithm

The greedy algorithm can be easily described as follows. We begin with a cover C 
of rectangles. When we find one rectangle 3? which is covered by C \ {31}, we delete this 
rectangle from the cover. T*hat is, C *— C \ {3?}. We do tins process until we cannot find 
any one in the updated cover C, which satisfies the above condition. Each time when we 
delete one rectangle, we know that the updated cover is a true cover. Hence, at the end, 
the set of rectangles left is also a cover. It is an irreducible cover because this is the reason 
that we stop the process.

Greedy Algorithm 

input: A cover C of rectangles for a binary image.
output: A subset C\ of C which forms an irreducible cover for the image.

■Ci*-C
while (there exists M (E Ci which is covered by C\ \ {M})

C\ Ci \ {M}
■ end;

This above algorithm is sequential in nature since we can delete one rectangle at a 
time. In the next section, we shall outline a cover so that we can perform the deletion 
concurrently.
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4. New Algorithm

We sket ch an outline of our algorithm for finding an irreducible cover for any image.
..... . . ' . ' v • .

Algorithm A

input: binary image Pij, 1 < m.
output: an irreducible cover of maximal rectangles for the image,

1. Determine all maximal rectangles which contain some maximal columns. This collec
tion of maximal rectangles is denoted by C. Here, for a given maximal column, we 
find the unique maximal rectangle which contains this column by the method given 
in the proof of Lemma 1. We note that we may get the same rectangle from different 
columns. ■

2. Eliminate repetitions of the maximal rectangles obtained in the previous step. After 
this elimination, every rectangle of C is uniquely determined by one particular maximal 
column, or equivalently, by one particular top pixel.

3. Determine those rectangles 3?of C whose corresponding maximal column are covered 
by C\ {9i}. This collection of maximal rectangles is denoted by D.

4. Finally, C \D, the collection of rectangles in C but not inD,is an irreducible cover. 

The rest of this section is devoted to the proof that C\D is an irreducible cover. 

Lemma 2. C is a cover of the image.

Proof. Let Pij be a black pixel. Let t be the smallest integer such that P& j are black 
pixels for all t < k < i. Since Pt-ij is not black, Ptj is a top pixel. Similarly, let b be the 
largest integer such that Pkj are black pixels for all i < k < 6. Then Ptj is a bottom pixel. 
Hence pixels Pkj, t < k < b, form the maximal column max_col<< ,j>, which contains Pi j- 
By Lemma 1, max_col«,j> is contained in the unique maximal rectangle £ C. This 
proves that C is a cover for the image. Q.E.D.

In the next lemma, we prove that if the maximal rectangle j2 covers a pixel Pijiy 
which is contained in a maximal column max-coKij,j1>, then 3?i2j2 covers the row of 

containing Pijt. Figure 4 illustrates this result.
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Lemma 3. Let — rect<ti,/i,rI,ci> and 5?i2lj2 = reet <z2, h, r2, c2>. Suppose
that Pij2 G J2nmax_col<ii, ji>. Then r? <'rj and P*,* € &i2j3 for all k with l\ <k< 
h + ci - 1.

Proof. Suppose that i2 < 'ij. Then 5?;2j2 contains the pixel P{1-ijl. This pixel is 
not black since P^j, is a top pixel. However, 3?;2j2 contains black pixels only. Hence 
*2 > *i- Similarly, since is a bottom pixel, we have that i2 + r2 — 1 < z’i -f rj — 1.
Hence r2 < rj. Also, Pi2tk € 5?i2j2 for all fc with 12 < A: < /2 + c2 — 1. This implies that 
/2 < /j and /2 -f c2 —1 > l\ + cj — 1. Therefore, c.i < c2 and Pj,fc € 3?t2,j2 for all A; with
/1 < k < lx + cj -1. Q.E.D.

• Pi

Figure 4. Illustration for the proof of Lemma 3

Since the sequential and parallel versions to implement step 2 of algorithm A are 
essentially different, we will simply assume, in this section, that we choose one particular 
max_col<z,j> in each rectangle 3? of C and call the top pixel Pij an active pixel. Hence

C = { j Pij is active }

and if Pi1j1 and Pi2j2 are distinct active pixels, then 5?;^ 7^ 5?,i2j2. By definition,

V = { | Pij is active and max_col <i,j> is .covered by C \ }• (4.1)



Lemma 4. For an active — rect<z,/,r,c> is covered by C if and
only if max_col<2, j> is covered by C \

Proof. Suppose that max_col<i, j> is covered by For fixed with i < h<
i + r — 1, €.max-Col<irj>. Hence there exists 3?t2,j2 7^ such,that- Piltji € 9?;2-,32. 
By Lemma 3, 9?i2,j2 contains Piltk for all k with l < k < l + c — 1. This proves that 9? —
rectcf, l, r, c> is covered by C \ The other part of the lemma is -trivial. Q.E.D.

Now we can prove our main result in this section that C \T> is an irreducible cover.

Theorem 1. C \T> is an irreducible cover of the image.

Proof. We first prove that C \ P is a cover. So, let Pjj be a black pixel. By 
Lemma 2, P,;j G 3?;, j1 = rect<ii,/j,ri?ci> for an active Among all these possible

we choose one with minimum . That is, Pij € 9?i1)3l = rect<i] ,/1,ri,c1>and if 
Pi,j G = rectei',c?>, then r < r'. Now we claim that 9?,-,,'^ G C\P. Suppose it is
not so. Then 9?;,^ G P and max_c61<ij ,yj> is covered by C\{3i,:i)j1} by (4.1). By Lemma 
4( 9?;ii3l is covered by C \ }. Since Pjj G 9?i1)3l, we have that ii < i < i 1 + ?’i — 1.
Consider the black pixel Pjj, which is covered by C \ {li;, j,}. Say, Pjj, G 9?,:2j2 = 
rect<i2,/2,r2,c2>, with 3?i2,j2 7^ 9?t1)3l. By Lemma 3, r2 < n and Pij G 9?i2j2. By the 
minimality of 9?;, , r2 =rj. Now, both 9?jWl and 9?,-2j2 contain Pijl and have the same
number of rows. Hence, they both contain max_coKii,ji>- By Lemma 1, they are the 
same rectangle, a contradiction. This proves that Pjj is contained in9?ilt3l G C\P. Hence 
C \ P is a cover.

To prove that C \ P is an irreducible cover, we have- to prove that C \ (P U {9?*,j}) is 
not a cover for every 9?ij P with active Suppose that C \ (PU {9?;,;}) is a cover for
some $tij $ P with active Pij- Then C \ is also a cover. In particular, max.coKi, j>
is covered by C \ By definition, 9?*)3 G P, which is a contradiction. This completes
the proof of this theorem. Q.E.D.

)
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5. Parallel Implementation of Algorithm A

The first step in algorithm A is to determine all maximal rectangles which contain 
some maximal columns. Parallel algorithms 1 and 2 returns maximal rectangles 3it|J 
rect<top[i, j], lef t-bound[i,j],col-size{i,j], row-size[i,j] >. For an illustration, please see 
Figure 5. ,

Algorithm 1

input: binary image Pij, 1< i,j < m.
output: boundaries left[i,j], right[i,j] of the maximal row containing black pixel 

Pjj. boundaries top[i,j], bottom[i,j] of the maximal column containing black pixel Pij.

forall 1 < i,j < m pardo 
if Pi j then 

. begin .

lcft[i,j] +- min({/| Ao<i<k<j pj,k})
ri9ht\hi] max({r| t\j<k<v<Tn 
top[i,j] *-min(.{t| /\o<t<k<i pk,j}) 
botiom[i,j] <- max({6| At<fc<fr<m-^d})

. end ■ 
od 

end;

-4 w

^____ _
4 - H

ss/s.
—^

- w.w
V

' A■//2s. r

Figure 5. Illustration for Algorithm 1.
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Algorithm 2

input: output of Algorithm 1.
output: maximal rectangles 9?^ and maximal columns max_eol<i, j> which contains 

top pixels Pij.

forall 1 < iyj < m pardo
if (Pij and not(Pi_lrj)) then 

begin
le ft-bound[i, j] max({left[k, j] \top[i,j] < k < bottom

:\rightJ>ound[i,j]'<-r-min({right[i,k]\iopli'ij]<.k<bottdm[i,j]y)
' col-size[iij]<—hottom[i\j] — top[i,j] 

rowsize[i,j] rightJ)ound{i, j] — leftJbound\i,j\
$iij rect<top[i^ j]Jeft-boundlij j], coLsize[i, j], row -size{i, j] >
max_col<?,j>Tect<i,j,lrrow-size[i,j]" >v 

end 
od

end;

Algorithm 1 can be executed with n2 concurrent read-writeprocessors in 0(1) time. 
As suggested in Moitra and Moitra [6], it can also be executed with (n/\og n) concurrent- 
read-exclusive-write processors in 0(log n) time as follows. It can be obtained by allocating 
one processor to every pixel whose row index is a multiple of log n. We describe the method 
to obtain right[irj] only. The other three can be obtained similarly. In log n sequential 
steps, each processor links each of the (next logn) pixels to the rightmost one which either 
terminates a horizontal sequence of black pixels and/or is log n columns away. Then in at 
most logn parallel steps, all the processors find the right end of horizontal strips which 
are wider than logn columns. Finally, in a sequential log 7? steps, each processor links each 
of the (next at most logn) pixels which belongs to a sequence of black pixels wider than 
log n columns, to the rightmost one which terminates the sequence.

Similar arguments show that, the comparisons in algorithm 2 can be executed in log ?? 
time with (??/log??) CREW processors.

. ■ 11 ' ■ V



The purpose of the next algorithm is to implement the second step in Algorithm A.

Algorithm 3

input: output of Algorithm 2.
output: activities, Ajj, of top pixels Pjj.
(Explained below).

There are two methods to achieve the goal. In the first method, we use array boolean 
variables B[i2,jirvi,v2],l < i,j,vy,v2 < m, and the CREW model. All top pixels \j 
concurrently attemp to write B[i1,j1,x>1,v2], where = B[i1,j1,vi,v2]. Those asses to 

i>i, v2] successfully can get Aij <— 1. Otherwise, Aij «— 0. This can be done in 
log n time by using ?i/log 7i processors.

The second method to achieve the goal in Algorithm 3 can be described as follows. We 
first define a linear ordering on the rectangles we obtained in algorithms 1 and 2 as follows. 
Let. Btf-j = rectCiq,v2, ry, cj> and j< — rect<vj, v2, rJ, c\>. Define jt if and
only if

{vuV2,r1,c1,i,j)<(v,1,v'2,r'1,c,1,i',j') .'•>

in the lexicographical order. Now we can apply the optimal random sorting algorithm 
of Reif [7], which can be executed in O(logn) time using (71/log n) P-RAM processors, 
to eliminate repetitions among the rectangles obtained in algorithms 1 and 2. That is, 
among those rectangles with the same rect<iq,v2,rlici>, we choose the one with the 
smallest j. (All i are the same for the same rectangles). For this choice, we say that the 
pixel Pjj is active. Or say Aij = 1 if Pij is active and 0 otherwise. Therefore/every 
rectangle obtained in algorithms 1 and 2 is uniquely determined by an active pixel Ptj. 
We can also apply Leighton’s deterministic method [5], to achieve tlie goal by using n 
processors in time log n. This apparently uses more processes.

In algorithm 4, we assign a sign sign[i',j'] to each pixel so that it. is 1 if Pi< j< £ 
max_col<i,j>) for some active Pij. Now, for every active pixel Pij, we have that. 

sign[i' ,j'] = 1 for all P{< j< .€ max-col<i,j> if and only if max-ccll<i,)> is covered by 
C\ {3?i,j}. Equivalently, € D. For this Pij; we change its activity A^j from 1 to 0 in

12



s ‘
algorithm 5. Finally, those P{.j with Aij = 1 form the irreducible cover C \ T) according 
to Theorem 1.

Algorithm 4

input: output of algorithms 2 and 3.
output: sign[i,j] for active Pij. The meaning of sign[i,j] is explained above.

forall 1 < i,j < m pardo 
sign[i,j] = 0
od

forall 1 < iyj < to'pardo 
if A{j then

sign[i',j'] 1 for all Pi’j' € $i,j\ max_col<t, j> 
od

end;

, Algorithm 5

input: output of algorithms 2, 3 and 4.
output: change some Aij from 1 to 0. Those with Aij = 1 form the irreducible 

cover C \ V.

forall 1 < i,j < to pardo
if (Aij and /\{sign[i', j'} | Pi>j' € max_col<i, j>}) then

i.., •-"
od

end;

To sketch the sequential algorithm, we first assume that all edges of the image are 
stored. For a fixed top edge and a fixed bottom, we find all bottom edges under this top 
edge. Now we fix one of these bottom edge and consider the pair of the top edge and the 
bottom edge. For a pair of top edge and bottom edge, we construct a maximal rectangle as 
in Lemma 1. To eliminate repetitions, we simply check all maximal rectangles. This can

13



be done in 0(k2) time, where A; is the number of rectangles. To determine those rectangles 
in "D, we can also fix one rectangle and check all other rectangles in C. Again, this can be 
done in 0(k2) time.

6. Geometry of Binary Images

In this section, we shall state an upper bound on the cardinality of C,i£C, which is the 
number of rectangles in the cover obtained in Algorithm A. This bound is also an upper 
bound for the cardinality of the irreducible cover C \ Zh After presenting a formula for the 
number of convex and concave corners of a simply connected binary image, we shall prove 
that is at most 4 • #.A43 for any minimal cover At.

In order to obtain those bounds we mentioned above, we shall introduce some concepts 
in the geometry of binary images. Although these concepts are pretty much well known in 
the field of geometry, the authors know no references for our particular need in the study 
of binary images. ,

We first define convex and concave corners. Each pixel has four corners. Each corner 
of a black pixel Pij has 3neighbor pixels. The two neighbor pixels which share common 
edges with P, j are called edge neighbors of the corner and the other one the vertex neighbor 
of the corner. Figure 6 illustrates the definitions.

Figure 6. E\ and E2 are edge neighbors of corner 1 in Pixel Pij.
V\ is the vertex neighbor of corner 1 in Pixel P»,j.

A corner of black pixel Pij is called a convex corner if both its edge neighbors are 
white pixels. It is called a concave corner if both its edge neighbors are black pixels and 
its vertex neighbor is a white pixel. Figure 7 illustrates the definitions.

14



Figure 7. The image has 10 convex corners, labeled 1, 

and 2 concave corners labeled 2.

Let

^>1 ijl ) 1 ••••? Pit ,jt (^•i)

be a sequence of black pixels. It is a path if Piktjk and Pik+1,jk + l share a common edge, 
for all 1 < k < i — 1. A path (6.1) is simple if all the black pixels are distinct. The path is 
a cycle if Pi1jl =-Pitjt '. It is a simple cycle if the black pixels in (6.1) are distinct, except 
for.Pilyjt = Pit jt, which are identical pixels. We can use a simple cycle to partition the 
whole set of pixels into three parts: the cycle itself, and pixels inside the cycle and pixels 
outside the cycle, called the inner and outer part, respectively. An example to illustrate 
the concept is given in Figure 8.

outer part

inner part

cycle—-

Figure 8. Inner and outer parts of a cycle.



An image is said to be connected if there is a path connecting any two black pixels. 
A connected component is a subset of black pixels which is connected, and is maximal 
subject to the connected condition. Clearly, an image can be partitioned into connected 
components. An image is connected if and only if it has exactly one connected component. 
A connected image is said to be simply connected if, the inner parts of all simple cycles 
consist no white pixels.

For the remainder of this section, we let a(P) be the number of convex corners of 
the image P, /3(P) the number of concave corners, and 7(P) the number of connected 
components. We also denote C(P) as the cover of P obtained in Algorithm A.

Theorem 2. If all connected components of an image P are simply connected, then 
«(P)=f3(P)+47(P). , .

Proof. Let F be the collection of images such that all their connected components 
are simply connected. We use induction on #P, the number of black pixels in P, to prove 
the statement that

a(P) = /?(P) + 47(P) (6.2)

for P E T. If #P = 1, then P consists of a single black pixel. In this case, (6.2) is certainly 
true.

Consider a P £ T, and #P > 1. Let P be obtained from P by deleting a black 

rectangle from P such that P £ T and P differ in at least one of the values of a, j3 

and 7. We want to generate systematically all the possible P' obeying the above con

ditions. We will show that the quantity wo - m - 47(-)i is invariant. Since 

[a(-) — /?(•) — 47(0] = 0 for the single pixel image, we can conclude that

a(P) = /?(P) + 47(P) for all P £ T

Consider a maximal left edge 5 of P.

Then 5 is a maximal column in P. By Lemma 1, 5 is contained in a unique maximal 
rectangle 9?. Let N be the right edge of the rectangle 9?. K contains a right pixel. Let N' 
be the unique maximal column containing N. For an illustration of these terms, please see 
Figure 9. 16



Figure 9. Illustration for the proof of Theorem 2.

If N = Wy then we have three possible situations as shown in Figure 10 (a)-(c.). We 
note that, we omit, the situation which is a reflection of (c). If H / K', then we have two 
possible situations as shown in Figure 10 (d) and (e). We note that we omit the situation 
which is a reflection of (d). In each of these situations, we delete a black rectangle, as 
shown in Figure 10 (a)-(e). It is easy to check that the resulting image P' is also in I\ 
Since '#P' < #P, (6.2) holds for P' by induction hypothesis. By using those information 
we obtained in Figure 10, we can easily check that (6.2) holds for P. This completes the 
proof of Theorem 2. Q.E.D.



(a) a(P') = a{P) - 4, /?(P') = p(P), 7(P') = 7(P) - 1-

g§L - » I
1 1ill

(b) a(P') = a(P) + 2, /?(P') = /?(P) - 2, 7(P') = 7(P) + 1

) a(P') =. a(P) - 1, /?(P') = /?(P) - 1, 7(P') = 7(P). (d) «(P') = «(P) - 1, /?(P') = /?(P) - 1, 7(P> = 7(P)

r " “

(e) a(P') - a(P) - 2, /?(P') = /?(P) - 2, 7(P') = 7(P)-

Figure 10. Illustration for the proof of Theorem 2.
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The proof of the next result is similar to the proof of Theorem 2 and involving more 
cases.

Theorem 3. If all connected components of an image P are simply connected, then

#C(P)<0(P) + 'r(P)-

Proofe Let T be the collection of images such that all their connected components 
are simply connected. We use induction on ffP, the number of black pixels in P, to prove 
the statement that

#C(P)<I3(P) + 1(P). (6.3)

for P £ F. If ffP — 1, then P consists of a single black pixel. In this case, (6.3) is certainly 
true.

Now we assume that P £ T, and ffP ^ 0. As we did in the proof of Theorem 2, we 
consider a maximal left edge Qvof P. Then Sr is is a maximal column in P. By Lemma 1, 
S is contained in a unique maximal rectangle 3i. Let N be the right edge of the rectangle 
3?. K contains a right pixel. Let be the unique maximal column containing K. For an 
illustration of these terms, please see Figure 9.

If K — K', then we have seven possible situations as shown in Figure 11 (a)-(g). We 
note that we omit situations which are reflections of (c),(d) and (f). We also note that 
these seven situations come from the consideration of the northeast and southeast corners 
of the rectangle 5ft. The corners can be convex, concave corners or can be none of the above 
two types. We assume that there are t right edges of P in H.

If K 7^ N', then we have two possible situations as shown in Figure 11 (h)-(i). We 
note that we omit the situation which is a reflection of (h). In each of these situations, we 
delete a black rectangle, as shown in Figure 11 (a)-(i). It is easy to check that the resulting 
image P' is also in T. Since #P' < #P, (6.3) holds for Pf by induction hypothesis. By 
using those information we obtained in Figure 11, we can easily check that (6.3) holds for 
P. This completes the proof of Theorem 3. Q.E.D,
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1 fc^NN 

\ *\

: Hi itP' = l(P).

l{P ~ 7(P) -(- t.

Figure 11. Illustration for the proof of Theorem 3.

Corollary 1. If all connected components of an image P are simply connected, then

ffC(P) < a(P) - 37(P).

Proof. This result follows from Theorms 2 and 3. Q.E.D.

Corollary 2. If an image P has only one simply connected component, then 

ffC(P) < a(P) - 3. In particular, ffC(P) < 4 • M(P) - 3, for every minimum, cover M.

Proof. The first part follows from Corollary 1 directly, since 7(P) — 1. To 

prove the second part, we fix a minimum cover M. Clearly, every convex corner of P 

is covered by at least one rectangle in M Also, every rectangle contains at most four 

convex corners of P. Therefore, a(P) < 4 • ffM: This proves the corollary. Q.E.D.

This corollary also implies the following result.

Theorem 4. Suppose that an image P is simply connected and C\V is the irreducible 
cover obtained in Algorithm A. Then ff{C \ T>) < 4 • #A4 — 3, for every minimum cover 
M. . ?
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7» Conclusions

The search for an optimal covering for a binary image is fundamental to many image 
processing applications. In this paper, we propose an efficient way of compressing digital 
image using irreducible covers of maximal rectangles. The principal results are:

1. If all connected components of an image P are simply connected, then the number of 
convex corners = number of concave corners +4- the number of connected components 
of the image.

2. For a simply connected image, the cover C proposed in this paper uses less than four 
times the number of rectangles in a minimum cover. This bound is also an upper 
bound for the number of rectangles used in the irreducible cover C \ 7).

3. The parallel algorithm of finding the irreducible cover C\V uses (n/ log n) concurrent- 
read-exclusive-wi'ite (CREW) processors in O(log n) time.

4. The geometry of binary images described in this paper is very unique in characterizing 
the mathematical correspondence of minimum cover problem,
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