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A New Method of Image Compre'ssic;n‘,: o

Using Irreducible Covers of Maximal Rec"t’angleé'

Y. Cl‘lé‘n‘g,’S. S Iyengar and R. L. Kashyap

"Abstract

In recent years there has been a tremendous Spurt in research and a.cti_v'ity inrﬁudingf
efficient compression techniques for image processing applications. Particularly when-a;li=
image is structured over a non—rectangulaf region it is always a‘dvantage‘ous to"(_l:éﬁnc,a,"'
method of covering a regioﬁ by minimal numbers of maximal rec_tangles.‘ Towards t_hi's""
objective, we analyze the binary image compressibn problem using irreducible cover of
maximal rectangles. We also give a bound on the minimum rectangular cover p‘roblem'-for.
b‘ilnage compression under certain conditions that previously have not been analyzed. It is
demonstrated for a simply connected image that, the irreducible cover ptopoéed-her,e uses.
less than four times the number of the rectangles in a minimum cover. With n p'ixcls'i_ll '
a square, the parallel algorithm of obtaining the irreducible cover presented in the paper

uses (n/logn) éo1zcurreni-read-emclusive-write (CREW) processors in O(logn) time.

Key words and phrases: Image compression, maximal rectangles, covering algorithms



A New Method of Image ACompreésion

Using Irreducible Covers of 'Maximal: Ree’tbangles"

Y. C_lieug-, S. S. Iyengar and R. L. Kas_h‘yao

‘1. Introduction

: Efl'ective 1'1i'et,liod$ of repre.‘sentationk of l:v)lnary: digital i111ages are‘ req‘uired in many
image ‘prOCeSSi-llg"taéks. ~Currently hierar_c_llica.l represeutation's like quadtrees and oct-
trees are very populal'[S 9]. One criterion of evaluation of diﬂ'erellt rebrééentzitioné is the
deg1ee of information compression achieved by the scheme. The information contained
| in any representatlon can be measured by the- length of the program needed to transnnt
tlxe same. For instance, in quadtrees, one needs to transmit the program correspondmg
to the quadtree including declaratlons of the leaf nodes wluch c01respoud to the pixels or
groups of plxels havmg a 'one’. It is well known that the minimum code length reqmred for
| gtransnnttmg annxn bmary image is 2log2n The image compressmn efficiency assocxatecl :
with a particular representatlon can be measured by the ratlo of the length of the program.
to the above minimum, namely 2log,n. Typlcally, the ratlo is greater than one. The closer

the ratlo is to one, the greater w1ll be the degree of i nnage compressmn aclueved

"The quadtree 'corresponds to'dividing an image into non-overlapping squares by par-
ticular tree scannmg procedure In this paper, we explore the possibility of describing
each connected part of an’ image by means of irreducible and maxnnal rectangles which
may ‘be overlappmg A rectangle is descrlbed by a quadruple, namely the sizes of the two
.51zes and two coordmates of some specrﬁc corner (say, northwest) The i image ' will be de- :
“scribed by an unordered set of the quadruples correspondmg to-the various rectangles We

beheve that the compressxon aclueved by _schemes like tlns are, in general superxor :

to those obtained by quadtrees since (i) they do not mvolve any addltlonal algorltlnns like

’tree traversal or ordering, and’ (ii) the basrc unit in quadtrees are squa1es, not rectangles '

These schemes may also be useful for real” time ‘dyuan’nzatlon, ie., dynamlcally altering -
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the representation in real time as the image changes in real time. However, we do not

.explore this aspect in this paper.

~Ferrari et al. [3] considered the representation of images via a partitioyn" with (non-
overla.pping) maximal rectangles. Moitra et al. [6] used maximal irreducible cover w1th' :
| squares; the squares being pOSSlbly overlapplng However, Masek showed that the con-
striction of nnnlmal covers with rectangles is an NP-complete problem. For a broader
treatment on this see [2|. In this paper, we plan to deserlbe an image by an irreducible
cover made up of maxi_mal rectangles. We also present an algorithm to find an irreducible
cover. With n pixel'.s in a square, the parallel implemention of the algorithm can be exe-
cuted with (n/logn) concurrent-read-ezclusive-write (CREW) processors in O(.log,n‘) time.
Hence the parallel algorithm is optimal. | :

“ It is important to point out that the cover genéra.t'ed is irreducible, but not ﬁiiniln&_l.
-The usefulness of the representation is intimately connected to the question of the ratio of
the number of rectangles in the irreducible cover of this baper to the number of _re‘cta»ngleé :
.in a minimal cover. The smaller the ratio, the greater will be the usefulness on the rep-
resentation. We show that the number of rectangles in the 1rreduc1ble cover is less than

four tunes the number of rectangles in a minimal cover.

The remainder of this paper is organized as follows: Sectio’h 2 describes some basic
definitions and the main focus of our problem. Section'3 describes the greedy algorithm and -
there we develop motivation for the proposed method. Section 4 describes an overview
of the proposed algorithm with a detailed proof to show that our method produces an
irreducible cover for ‘the image. Section 5 describes a parallel version of the algorithm.
Section 6 discusses the numbe_’r of rectangles used in 'the irrducible cover and that of a

minimum cover under some restricted conditions. Section 7 concludes the paper.



2. Preliminaries

In this paper, we conslder a bmary image as an arra.y P [0..m, 0. 'm] of blna.ry value(l
pixels, where m = v + 1. For convenience, we assume that the image is only’ thlun
P[l /n,1.4/n). The Value of a pixel P,j is represented as both true/false or its synony- |
mous value blacL/whzte ln Figure 1 we g1ve an example of an image an(l an. 1rre(luc1ble |

‘cover of rectangles for it.
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Figure.l .

A rectangle can be represented as rect<row,column. sizel,size2>, where row and
column are the coordlnates of the northwest corner plxel of the rectangle, and sizel and
size2 are the numbers of rows and columns in the rectangle; A black rectangle is mazimal - -
if it is not contained in any other black rectangle. In this pafper ‘a rectangle always means
a black rectangle. A collectlon C of rectangles is called a covcr of the i image if every black
pixel is contamed in at least one of the rectangles inC. A cover C is 1rreduc1ble if no
proper subset of C is a cover of the image. A greedy algonthm to obtam an 1rreduc1ble' o

cover from a cover wxll be glven in section 3. - ’ T



Neighborhood eharact,erlzation of blelek vpixels,‘. A vblacl_,{ pixel Pi,j is a top
(respecti?ely, bottom, left or right) pixel if the pixel P;_ 1,j (respectively, ‘_P,;H,j, P»‘j 1,.
'P,]+1 ) 1s not- black. It is easy to show that a rectangle is maxunal if and only if it
contains top, bottom, left and rlght plxels A column of black plxels is called a mazimal
column if it is not contained in any other column of black pixels. Hence, a rectangle is
a maximal column if and only it contains only one column and it contains a top pixel
and a bottom pixel. For example in Figure 1, the plxels Ps 5 and P; 5 form a maximal
~ column and pixels P; 2,P4 2, Ps 2 form another one. Of course, the maximal column is
uniquely determined by its top pixel. If the top pixelis P; ;, we write the maximal column
as max.col<z,j>. Hence the two maximal columns. in’ Flgure 1 we just mentioned are
denoted as_max-col<6,5> and max-col<3,2>, respectively. The notation max_col<z,_7>_ is
defined only when P;, j. isa tep pixel. Similarly, we can define maximal rows. A set of black
pixels is said to be covered by a colle'Ctlbn of .bi'ee‘vta,ngles if every pixel in the set is contained
in at least one rectallgle of this collection. A'Seqﬁénée of consecutive top (respectively,
bottom, left, right) pixels is called a. top (1espect1vely, bottom left, right) edge. Figure 2

llustrates these terms

. top
T left .
™ bottom 6%
. right| ‘ ’ left
top
bottom
right
left
bottom,
Figure 2.

A cover with minimum number of rectangles is called a minimum cover. Clearly, every

minimum cover is irreducible. The vice versa is not true, an irreducible cover need not be
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minimal. Also, sixice eVefy reetallgle is c_oht&ined in at least one 'llllba)rcilna,l black rectangle,,' v
we can obtain a minimum cover with maximal rectangles from any minimﬁm cover. An "
ideal way to store bmary nnage data is to use a minimum cover. However it is a (llfhcult
pxoblem to find a minimum cover for an image. The ploblem that whether an nna,ge has
a minimum cover with k rectangles is known to be NP- complete (Masek’s unpubllshed
work. cited in [2]) Therefore, it is reasonable to use 1r1educ1ble covers mstead of minimum
covers. In this paper, we plesent an algonthm to ﬁnd an 1rreduc1ble cover. For a snnply
connected i image, i.e., a conected unage without holes we show that the irreducible covers

uses less than four times the number of rectangles in a minimum cover.

Lemnla 1. Every mamimal column is contained in a unlique mamimal 1'ectangle.

Proof. Let max_ col<t,]> be a maxnnal column with -m rows w1th Ptj as its top
pixel and PbJ its a bottom pixel w1th b=t+m—1asin Flgure 3. Now let I be the
smallest lnteger such that Pkl';c2 are black plxels for all t <k <b and I <k < 5.
-There ex1sts an integer p such-that { < p < b and P, 1 is'not a ‘black plxel Ilence
Py is aleft pixel as in Flgure 3. Let 7 be the largest 1nteger such that Py, 1, are black
' .plxels f01 allt <k <bandj <k, < ‘There exists an integer ¢ such that ¢ < q<b
and Pq',._H is not a black pixel. Hence P, is a right pixel. Pixels Py, k;, t < ‘kl < b,
l «< k; < r form the maximal rectangle rect<t,l,m,r — Il +1>. It contains the maximal
“column max-col<t, 3>, Smce this is essentlally the unique way to construct a maxunal

lectangle which contains max_col<1‘, j>, the ma,xnna,l rectangle we obtained is the unique

one. contauung max..col<t,]>. Q.E.D.

-~ - .- - .'--..--.-'
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Figure 3. Illusfration'for the proof of Lexh'nla 1



The unique maximal rectangle containing max_col<t, ;> is denoted by R, ;. We note
that different maximal columns may be contained in the same maximal rectangle. For

example, in Figure 1, R, 4 = Ry 5 = rect<2,3,2,4>.

Finally, we note that, for sets A and B, we denote the set of elements of 4 which is

not in B by A\ B.

3. Greedy AlgOrithm
The gleedy algouthm can be easily described as follows. We begin‘w’ith a 'covel C
of rectangles. When we ﬁnd one rectangle R which is covered by C \ {?h} we delete this
rectangle from the cover. That is, C—C \ {R%}. We do tlns process until we cannot find
any one in the updated cover C, Whl(‘h satisfies the above condition. Each time when we
delete one rectangle we know that the updated cover is a true cover. Hence, at the end,
the set of rectangles left is also a cover. It is an irreducible cover because this is the reason

that we Stop the process.

‘Greedy Algorithm

input: A cover C of rectangles for a binary image.

_output: A subset C; of C Whieh forms an irreducible cover for the image.

Cl — C .
while (there exists M € Cy which is covered by C, \{]VI})
Cy — G\ {M}

end;

This above algorlthnl is sequentlal in nature since we can delete one recta.ngle at a

time. In the next section, we shall outline a cover so that we can pe1fo1m the deletion

concurrently.



4. New Algo,rithmf
- 'We sketch an outline_ of our algorit_hm for finding an irredueible cover for any image.

Algorlthm A

input: bmary 1mage P, KR < i ] <.m.

output an 1rreduc1ble cover of maximal rectangles f01 the unage

. Determine all _rrzaa;z:7zal rectangles which contam some mazimal cqlumns.' This coAIle'ca
" tion of maxinial rectangles is denoted by C. Here, for a given maximal column, we -
find the unique ma.xunal rectangle wlnch conta.ms this column by the method glven
‘in the plOOf of Lemma 1. We note that we may get the same rectangle from dlffexent

columns

. Elzmmate 1epetttzon.s of the ma:czmal 1ectangles obtamed zn the p1evzous step Aftel )
 this elimination, eve1y 1ectangle of Cis umquely determlned by one partlculal maxmlal

| column or equlva.lently, by one partlculal top pxxel

. Detemune those 1ectangles RoofC whose cor respondzng mazimal column are cove1ed

by C \ {R}. This collectlon of maximal rectangles is denoted by D.

. Finally, C'\ D, the collectzon_of recvtangles in C but not znvD, s an zrreduvcible“‘cover.
- The rest of this section is devoted to the proof that C \ D is an irreducible cover.

Lemma 2. C s a cover of the ir‘naget'

Proof Let P; ,j be'a black plxel Let ¢ be the smallest mteger such that Pk i are bla.ck

pixels for allt < k <. Smce Pt 1,j is not black, P, ; is a top plxel Sumlarly, let b be the

. largest mteger such that Py j are black pixels for all 7 < k < b. Then Pt jisa bottom plxel o

Hence plxels Prj,t < k < b, form the maximal column max-col<t »J >, which contains P; g

By Lemma 1, max-col(t, 3> is contamed in the umque maxunal rectangle R, ; €C. This

proves that C is a ‘cover for the image. Q.E.D.

In the next Iemma, we prove that if the maxunal rectangle Ri,in COVCIS a plxel P, i

wlnch is conta.med in a maximal column max. col<iy, ]]> then Ri,.j, covers the row of -

Ri contammg P;;,. Flgure 4 illustrates this result.

;



Lemxna 3 Let 8?,1 g = rect<z1,l1,r1,c1> and §R,2 g2 = rect<zz,l2,r2,c2> Suppose
fhat‘ P; i € R, J2ﬁmax col(zl,]1> Then ry <7y and P, € 3?12 gz for all k with ll <k <
l; + cy 1 : : S .

Proof Suppose tha,t 12 < 1. Then %,2 N contams the plxel le 1, Tlus plxel lSv,
not black since P;, j, is a’ 'rop plxel However, R;,.;, contains black plxels only. Hence -
i > iy. Slnnlarly, since P,lJr,n1 1,5¢ isa bottom pixel, we ha,ve that i, +ry—1 <4 +r;—1. »
Hence r; < 71. Also, P;, 1 € SR,M,for all k with I; <k < lz + c2 — 1. This 1mphes that
'lz Lhandl; +c; —1>10 + c; =1 Therefore, c; < cz and P; E R, ,j, for all k with .

‘ll<k<l]+C1—1 QED

’ r-'.‘-..'...-v- P.'li.jrx:yv N
’r"é"""' —-P - - - o R
f &\\\\\\\ 5 AN P o 5
! o _ ol i,+r;——l,1":---:.

o o> - - ol - e wn oo e -

Figure 4. I'l‘lus‘tra.tion for the proof of Ler'nm‘a’:?,.

Smce the sequentlal and parallel versions to nnplement step 2 of algorlthm A are

essentlally dlﬁ'erent we will simply assume, in tlus sectlon, that we choose one pa.rtlcular

“max_col<i ]> in each 1ectangle 3? of C and call the top plxel P, 5 d gn active plxel Hence
' Cf=, { §R,~,-j‘| Pi,j_ is a,cfi-Ve } | |

and 1f P,1 .4, and Pzz J; are dlstlnct actwe plXClS tlien 9?,1 iy ;é ER,Z gz By deﬁmtlon, N ' 

'D { Rl P ;.7 1s actlve ‘a,nd max_col <i,j> is coveled by C \ {ER,J} b N (4 1) '

.



Lemma 4. For an active P,], R.; = rect<1,l,r > is covered by C\ {Sh‘”} 1f and .

only if max_col<i ]> is covered by C' \ {Ri;}.

~ Proof. Suppose that max_col<i, j> is covered by C\{?R, it For fixed i i1 w1th 1 <13 <
i+ 7 —1, P, ; € max_col<i, j>. Hence there exists R;, ;, # R;; such that P;, ;; € Ry,,5,.
By Lemma 3, R;, j, contains P;, x for all k with I < k <1+ ¢ —1. This proves that _ﬁ;'j =
rect<i,l,r,c> is covered by C \ {R;:;}. The other part of the lemma is trivial. Q.E.D. |

Now we can prove our main result in this section that C\ D is an irreducible cover.

heorem 1. C \ D is an zrreduczble cover of the zmage

Proof. We first prove that C \ D is a cover. So, let P,] be a black pjxel ‘By
Lemma 2, P;; € R;, ;, = rect<iy,ly,r1,c1> for an active P, ;.. Among all these possxble
3?,1 s we choose one with minimum r;. That is, P ;€N = rect<z"‘1‘,lrl-,:r1,c1> and if
P; ; € RN g = rect<i’ ' e, then r < r'.Now we clalm that 91,'1"']-1 € C\D. Supposeif is
not so. Then Ehu i € D and max_col<iy, j;> is covered by C\ {®:, j, } by (4. 1). By Lemma
4, R;, ;, is covered by C\ {R;, ;, }. Since P; ; € R; ; , we have that zl 1 <1y +r =L
Consider the black pixel P;;, which is coveled by C\ {®i, ., }- Say, i € 5}‘12,12 =
rect<is,ly,r2,c2>, with iaiz2 # Riyji- By Lemma 3, 7, < and P;; € Ry, 5, By the
minimality of ®;, ;,, r2 = r1. Now, both ®;, ;, and Risiia contain P; ;, and have the same
number of rows. Hence, they both contain max_col<iy, j‘1> By Lemma 1, fhey are the
same rectangle, a contradiction. This proves that Pl ,j 1 con tained in Ehu i1 €C\D. Hence

C\'D is a cover.

- To prove that C \ D is an irreducible cover, we have to prove that C \ (DU {®; ;}) is
not a cover for every R; ; € D with active P; ;. Suppose that C\ (DU{R; ,j}) is a cover for
some §Rt j & D with active P; ;. Then C\ {R; ;} is also a cover. In particular, max_col<z,]>
:‘;s covered by C \ {?R,,J}. By definition, R; ; € D, which is a contradiction. This completes
the proof of this theorem. Q.E’.D. ' ' '



5. Parallel Implementation of Algorithm A

The first step in algorithm A is to determine all maximal rectangles which contain
some maximal columns. Paralle] algorithms 1 and 2 returns maximal rectangles #;; «
rect<topli, j|, léft_bound[i,j]; col_size[i, j],row_size[i,j] >. For an illustration, please see .

Figure 5.

Algorithm 1

input: binary image P;;, 1 <14, < m. ,
output: boundaries left[s, j], right[i,j] of the maximal row containing black pixel

P; .. boundaries top[i, j], bottom|i, j] of the maximal column containing black pixel P; ;.

forall 1 <i,7 < m pardo
if P; ; then
‘b4egin o P
left[i, 5] « lliill({ZI/\o<tgk5j Pik})
rightli,j] — max({r| A;<e<rem Fik})
topli, j} « niin(,{t{ /\0<t§k§i.PkJ})

bottoml[i, 5] « max({b| A;crcpcm Prii})

end
od
end;
A -~ v/ 7
. ¥ .
“ o
. Z
<> A Z7ENE
. , ;;/ ZzB

~ Figure 5. Ilustration for Algorithm 1.
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~ Algorithm 2
mput output of Algouthm 1.

output: maxunal rectangles 81 ;,; and maxunal columns max_ col(z ,7> which contams '

top pixels P; ;.

forall 1 <'i,j < m pardo ;
if (P;,; and not(P, 1 J)) then
begin
le ft_bound|i ,]] — max({left[ :, 7]|topli ,]}

k ttom[t,]]}) -
right_bound|[i,j] — min({right[i, ]ltop[z i<

< b
k< bOtt.Onl[l,]]})_ |
" col_size[i, ] ’e-’bottom[i,j‘] — toplt, j] SR
Tow s-i”/e[',j]‘i— };ight bound[”ﬁ] — left bound[-',j]
91,,' — rect<top[z il left _bound|t, 5], col _siz e[ ]] Tow _siz c[ ,]] >
- max. col<z ]> « rect<i ],1,row_szze[z ]] > .
" end S ' '
od.

end;

Algorithm'1 can be executed with n? concurrent read-write "processors in *O‘(l)' tilu‘e.‘
As suggested in Moitra and Moitra [6], it can also be executed with (n/logn) cancurrent-
read-ezcl'ttsi-ve-turite processors in O(log n) time as follows. It can be obtained by allocating
one processor to every pixel whose row index is a multiple of log n. We describe the method
to obtain right[i,j] only. The other three can be obtained similarly.’ In logn sequentlalv
 steps, each processor links each of the (next logn) pixels to the rightmost one which either
terminates a horizontal sequellee of black pixels and/or is logn columns away. Then in at
most logn parall'elsteps all the processors find the right end of horizonts,l‘ strips which
are wider than logn columns. Fmally, in a sequential log n steps, each processor links each

of the (next at most logn) pixels which belongs to a sequence of black plxels wider than

. logn columns, to the rlghtmost one which terminates the sequence

Snmlar arguments show that the compausons in algorlthm 2 can be executed inlogn

time with (n/logn) CREW processors

11



The purpose of the next algorithm is to implement the second step in Algorithm A.

Algorithm 3 =

input: output of Algorithm 2.
output: activities, Ai,j," of top pixels P, ;.
(Explainecl below). 4

» There are two methods to aclueve the goal. In the first method we use array boolean

vanables B[zl,]l,vl,vz] 1 < z,],vl,vz < m, and the CREW model All top plxels i
concurrenlly attemp to write B[zl,jl,vl,vz] where R:; = = Bliy, j1,v1,v2]. Those asses to’
‘B{ll,]],l’l,vzl successfully can get A;j — 1. OtherW1se, A — 0. This can be done in

log n tlme by using n/logn processors

The second method to achieve the goal in Algorithm 3 can be described as follows. We
first define a linear ordering on the rectangles we obtained in algorithms 1 and 2 as ;fo,llo‘ws.
Let ; ; = rect<vv:1,.v2,r1,c1> and Ry ;» = rect<vi,vy,ry,ci>. Define N;; < RNy ; if and
only if R

(Ul;bz,rll,cl,i,j)'< (VU;,'U;,T';,C'J,?,J") v_
in -the lexicographical order. Now we can apply the optimal‘randohi sorting algorithm
-of Reif [7], which can be executed in O(logn) time using (n/logn) P-RAM processors,
to eliminate‘1'epetitions among the rectangles obtained in algorithins 1 end 2. Th‘é.t"is,
vamong those rectangles R; ,j with the same rect<vy, v, ,:1‘1 , 1>, we choose the one with the
smallest ] (All i are the same for the same rectangles). For this cholce, we say that the
pixel P;; is active. Or say A;; = 1if F;; is active and 0 otherwise. Therefore, every =
rectangle obtained in algorithms 1 and 2 is uniquely determined by an active plxel P; ;.
We can also. apply Lelghton s deterministic method [5], to- aclueve the goal by using n

processors in time log n. This apparently uses more procesSes

In algorithm 4, we assign a sign signfi', '] to each plxel so that 1t is 1 if Pl: B E”

(R ,J\ max_col<z,]>) for some actlve P ;. Now for every active plxel P, 52 we have that

signli', j' =1 for all Py j; € max_col<i,j> if and only 1f max. col<z, > 1s covered by
gnli',j j j v

C\ {?Rl it Equlvalently, 3?1 € D. For this P; ;, we change 1ts act1v1ty AL 5 f10111 1 to 0'in ‘,

12



algorithm 5. Finally, those P;;; with 4;; = 1 form the irreducible cover C \ D accbrding

to Theorem 1.

Algorithm 4

input: output of algorithms 2 and 3.

output: sign[i,j] for active P; ;. The meaning of signi, j] is explained above.

forall 1 <i,7 < m pardo
signfi, 7] =0
od
forall 1 <i,5 < m'pardo
if A;; then
signfi',j'] 1 for all Py ;0 € R; ;\ max_col<i, >
od

end;

Algorithm 5

i>nput: output of algorithms 2, 3 and 4.

output: change some A; ; from 1 to 0. Those R, ; with A4, ; = 1 form the irreducible

cover C\ D.

forall 1 <i,57 < m pardo v
if (A;; and A{sign[i', ;'] | Py j» € max_col<i,j>}) then
A;; —0
od

end;

To sketch the sequential algorithm, we first assume that all e{lges of the image are
stored. For a fixed top edge and a fixed bottom, we find all bottom edges under this top
edge. Now we fix one of these bottom edge and consider the pair of the top edge and the
bottom edge. For a pair of top edge and bottom edge, we construct a maximal rectangle as

in Lemma 1. To eliminate repetitions, we simply check all maximal rectangles. This can

13



be done in O(k?) time, where k is the nmnber of 1ecta11gles To determme those 1ectangles
in D, we can also fix one rectang]e and check all other rectangles in C. Agam this can be

done in O(L2) time.
6. Georne'tryv of Bi_nary Images

~In this section, we shalrl’s"tate an upper bound on the cardinality of C, #C; which is the
number of rectangles in the ‘cover obtained in Algorithm A. This bound is also an upper
bound for the cardinality of the irredncible cover C \ D. After presenting a formula for the
‘number of convex and concave corners of a snnply connected bmary image, we shall prove

that #C is at most 4+ #M- 3 for a.ny minimal cover M

In order to obtain those bounds we,mentioned a.bOve, we shall introduce some concepts
in the geometry of binary inlages. Although these concepts are pretty much well kllOW;ll in
the field of geometry, the authors know no references for our particular need in the study
of binary images. |

~ We first define convex and concave corners. Each pixel ‘h‘as' 'fouxj":'cdrn‘ers. Each corner
of a black pixel P; ; has 3 neighbor pixels. The two neighbor pixels which share common
edges with P; ; are called edge neighbors of the corner and the other one the vertez ne1ghbo1

of the corner. Figure 6 illustrates the definitions.

Figure 6. E] and E2 are edge ne1ghbors of corner 1in Plxel P‘ g

V1 is the vertex nelghbor of corner 1 in Pixel P; ;.

A corner of black pixel P; ; is called a convez cornerbif both its edge neighbors are
white pixels. It is called a concave corner if both its edge neighbors are black pixels and

its vertex neighbor is a Whit‘e'pixe_l. Figure 7 illustrates the deﬁnitionsf

14



Figure 7. The image has 10 convex corners, labeled 1,

and 2 concave corners labeled 2.

Let

“ Pilv.;l’Pi2~j2’ ""7Pit WJt | (G])

be a sequence of black pixels. It is a path if P;, ;. and share a common edge,

Thp1Jk41

forall 1 <k <t-1. A path (6.1) is simple if all the black pixels are distinct. The path is
a cycle if P;

i =P Tt s a/'sim'p‘le cycle if the black pixels :i‘u((i.]) are distinct, except
for P, ;. = Pi, j » which are identical pixels; We can usé a simple cycle to partition the
wliole set of pixels into three parts: the c‘ycl‘e itself, and pivxel's inside the cycle and pixels
outside the cycle, called the inner and outer part, brespe;“tively.‘ An example to illustrate

the concept is given in Figure 8.

. outer part

inner part

——cycle—]

F igure 8. Inner and outer parts of a cycle.
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An image is said to be connected if there is a path connecting any two black pixels.
A connected component is a subset of black pixels which is connected, and is maximal
subject to the connected condition. Clearly, an image can be partitioned into connected
components. An image is connected if and only if it has exactly one connected component.
A connected image is said to be stmply connected if, the inner parts of all simple cycles

consist no white pixels.

For the remainder of this section, we let a(P) be the number of convex corners of
the image P, 3(P) the number of concave corners, and v(P) the number of connected

components. We also denote C(P) as the cover of P obtained in Algorithm A.

Theorem 2. If all connected components of an image P are simply connected, then
«(P) = pB(P) + 4y(P).

Proof. Let I' be the collection of images such that all their connected components
are simply connected. We use induction on # P, the number of black pixels in P, to prove

the statement that

o(P) = B(P) +47(P) (6.2)

for Pe I'. If #P =1, then P consists of a single black pixel. In this case, (6.2) is certainly

true.

Consider a P € I, and #P > 1. Let P be obtaine.d from P by deleting a black
rectangle from P such that P € I' and P differ in at least one of the values of «, I
and . We want to generate systematically all the possible P obeying the above con-
ditions. We will show that the quantity [of") — () — 47(-)] is invariant. Since
[o() — B(*) — 47(*)] = 0 for the single pixel image, we can conclude that

a(P) = B(P) + 4y(P) for all P€ I’

Consider a maximal left edge & of P.

Then §is  a maximal column in P. By Lemma 1, & is contained in a unique 1115xi;11a]
‘rectangle R. Let R be the right edge of the rectangle R. R contains a right pixel. Let R’

be the unique maximal column containing R. For an illustration of these terms, please see

Figure 9. _ ' 16



F;igur;e 9. Tllustration for the proof of Theprem 2.-

IR =R, then we have thi'ee'pdssible situations as shown in Figure 10 (a)-(c). | We
‘note that we omit the sittjation 'whic_h: is a reflection of (c). If N;é X', then we have two -
possible situations as shbwn in Fig_ilre 10 (d) and (e). We note that we omit the situation.
which is a reflection of (d). In each of these situations, we del’ei‘;e a black reCjt.angle,‘ as
“shown in Figure 10 (a)-(e). Tt is-édéy to check that the resulting image P' is also in r.
Since #P' < #P, (6.2) holds for P' by induction hypothesis.. By using tlioseiii_foﬁnation
we obtained in Figﬁre 10, we can eé,sily check that (6.2) holds for P. This 'compl'etés ‘the

proof of Theorem 2. Q.E.D. |
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() AP) = ofP) - 2, A(P) = B(P) - 2, A(P) = ~(P).

Figure 10. Illustration for the proof of Theorem 2.
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The proof of the next result is similar to the proof of Theorem 2 and involving more

cases.

Theorem 3. If all connected components of an tmage P are siniply connected, then
#C(P) < B(P) +~(P). " |

Proof. Let T be the collection of images such that all their connected components
are simply connev('ted. We use induction on # P, the number of black pixels in P, to prove

the statement that

#C(P) < B(P) +~(P). (6.3)

for P e IT'. If #P = 1, then P consists of a single black pixel. In this case, (6.3) is certainly

true.

Now we assume that P € T', and #P # 0. As we did in the proof of Theorem 2, we
consider a maximal left edge & of P. Then  is is a maximal column in P. By Lemma 1,
¥ is contained in a unique maximal rectangle ®. Let R be the right edge of the rectangle
2. N contains a right pixel. Let X' be the unique maximal column containing X. For an

illustration of these terms, please see Figure 9.

If 8 = X', then we have seven possible situations as shown in Figure 11 (a)-(g). We
note that we omit situations which are reflections of (c),(d) and (f). We also note that
these seven situations come from the consideration of the northeast and southeast corners
of the rectangle %. The corners can be convex, concave corners or can be none of the above

two types. We assume that there are ¢ right edges of P in R.

If R # X', then we have two possible situations as shown in Figure 11 (h)-(i). We
note that we omit the situation which is a reflection of (h). In each of these situations, we
delete a black rectangle, as shown in Figure 11 (a)-(i). It is easy to check that the resulting
image P' is also in TI'. Since #P' < #P, (6.3) holds for P' by induction hypothesis. By
using those information we obtained in Figure 11, we can easily check that (6.3) holﬁs for

P. This completes the proof of Theorem 3. Q.E.D.
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Frgure 11 Illustratron for the proof of Theorem 3. IR

a Corollary 1. If all. connected components of an zmage P are szmply connected then
4C(P) < a(P) - 3y(P). I |
Proof. Tlus result follows from Theorms 2 and 3 Q. E D.

' Corollary 2 | If an zmdge P has only one szmplyv connected component then
.v #C’(P) < oP) - 3. In particular, #C(P) < 4 - M(P) 3, for every minimum cover M. ;
Proof The first part follows froin Corollary 1 dlrectly, since- fy(P) _ 1. bTob L
. prove the second part, we fix a minimum cover M. Clearly, every convex corner of P |

* is covered by at least one. rectangle in M Also, every rectangle contarns at most’ four: ’

- convex corners of P. Therefore, oz(P) < 4-#M This proves the corollary. Q.E.D. ~
This co_rollary also implies tlle'following result.

Theorem 4. Suppose ‘that an image P is simply connected and C \'D is the zrreduczble
cover obtained in Algonthm A Then #(C\D) <4 -#M -3, for every minimum cover

M.
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7. Conclusions

The search for an optimal covering for a binary image is fundamental to many image
processing applications. In this paper, we propose an efficient way of compressing digital

image using irreducible covers of maximal rectangles. The principal results are:

1. If all connected components of an image P are simply connected, then the number of
convex corners = number of concave corners +4- the number of connected components

of the image.

2. For a simply connected image, the cover C proposed in this paper uses less than four
times the number of rectangles in a minimum cover. This bound is also an upper

bound for the number of rectangles used in the irreducible cover C \ D.

3. The parallel algorithm of finding the irreducible cover C\ D uses (n/log n) concurrent-

read-exclusive-write (CREW) processors in O(logn) time.

4. The geometry of binary images described in this paper is very unique in characterizing

the mathematical correspondence of minimum cover problem.
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