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ABSTRACT

A "state model" is proposed for solving the problem of routing and rerout­
ing messages in the Inverse Augmented Data Manipulator (IADM) network. 
Using this model, necessary and sufficient conditions for the reroutability of 
messages are established, and then destination tag schemes are derived. These 
schemes are simpler, more efficient and require less complex hardware than pre­
viously proposed routing schemes. Two destination tag schemes are proposed. 
For one of the schemes, rerouting is totally transparent to the sender of the 
message and any blocked link of a given type can be avoided. Compared with 
previous works that deal with the same type of blockage, the timeXspace com­
plexity is reduced from O(logiV) to 0(1). For the other scheme, rerouting is 
possible for any type of link blockage. A universal rerouting algorithm is con­
structed based on the second scheme, which finds a blockage-free path for any 
combination of multiple blockages if there exists such a path, and indicates 
absence of such a path if there exists none. In addition, the state model is used 
to derive constructively a lower bound on the number of subgraphs which are 
isomorphic to the Indirect Binary N-Cube network in the IADM network. This 
knowledge can be used to characterize properties of the IADM networks and for 
permutation routing in the IADM networks.

Index terms - cube network, data manipulator network, destination-tag routing, 
fault tolerance, interconnection network, multiprocessor, parallel processing, 
state model.
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1. Introduction

This paper discusses novel and efficient techniques for routing and rerout­

ing messages in the Inverse Augmented Data Manipulator (IADM) network [9]. 

These results are based on a new approach, the "state model," which character­

izes and correlates the topologies of the IADM and Indirect binary n-cube net­

works, and leads to efficient exploitation of the redundancy available in the 

IADM network.

Considerable research has been dedicated to the design of multistage inter­

connection networks for multiprocessor systems. The class of data manipulator 

networks] introduced in [3], includes, among others, the Augmented Data Mani­

pulator (ADM) network [17], the IADM network [9] and the Gamma network 

[13][14]. The IADM network and the ADM network differ only in that the input 

side of one of them corresponds to the output side of the other and vice versa,. 

The Gamma and the IADM networks are topologically equivalent; however, 

they use switches of different types. Each 3X3 crossbar switch used in the 

Gamma network can connect simultaneously all three inputs to all three out­

puts whereas each switch used in the IADM network can connect only one of its 

three inputs to one or more of its three outputs. The main interest of this 

paper is the study of the IADM network; both the one-to-one and permutation 

routings are considered. The schemes proposed for routing and rerouting mes­

sages in the IADM network are also applicable to the Gamma network.

Perhaps the most popular class of multistage networks is the multistage 

cube-type networks such as the Indirect Binary N-Cube [15], Omega [6], Baseline 

[20], Generalized Cube [18], STARAN flip [2] and a special case of SW-Banyan 

[4] networks. Among the main advantages of these networks are their very 

efficient destination tag routing schemes, partitionability, 0(N\og2N) cost and
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ability to pass useful permutations [16]. Some results of this paper are based on 

characteristics of the Indirect Binary N-Cube network (hereon referred to as the 

ICube network). Since the cube-type networks mentioned above are all topologi­

cally equivalent [16][17][20][21], the results in this paper are also relevant to any 

of them.

The ICube network is composed of n = logiV stages labeled from 0 to n — 1. 

Each stage consists of 2JV connection links and N interchange (switches) boxes. 

The structure of the network is such that two input links of an interchange box 

differ only in the i-th bit of their labels; the upper links have a "0" in the i-th 

bit and the lower links have a "l." Figure 1 illustrates an ICube network of size 

IV=8 and two possible states of an interchange box, "straight" and "exchange." 

Since this paper considers only one-to-one and permutation routing, broadcast 

states are not shown.

The IADM network is composed of n stages labeled from 0 to n■—1. Each 

stage consists of 3N connection links and N switching elements. An extra 

column of switches is appended at the end of the last stage as the output 

switches atid is referred to as stage n. Each switch j at stage * has three out­

put links to switches (j—2*) mod N, j and (j+2l) mod N of the succeeding 

stage. Each switch selects one of its input links and connects it to one or more 

output links. Figure 2 illustrates an IADM network of size N=8.

In a multistage interconnection network, the path connecting the source of 

a message to its destination is determined by a routing scheme that specifies the 

switching state of each switch in the path. Routing schemes are considerably 

simpler for the cube-type networks than for the data manipulator-type net­

works. In cube-type networks, the interchange box at stage i needs to examine 

the i-th bit of the binary representation of the destination address of an
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incoming message. If the i-th bit is 0, then the upper output of the box is 

taken. If the i-th bit is 1, the lower output of the box is taken. These schemes 

are known as destination tag routing schemes [6] and are extremely efficient and 

simple to implement. Unlike cube-type networks, in the IADM and other data 

manipulator-type networks there are several paths between any source s and 

destination d (s=fid) and each switching element has at least three switching 

states. Previously proposed routing schemes [9] [10] [13] for the IADM network 

can be thought of as distance tag schemes', that is, they require calculation of 

the distance from source to destination in order to generate routing and rerout­

ing tags. The rerouting schemes in these works are basically finding an alter­

nate representation, which specifies an alternate routing path, for the distance.

McMillen and Siegel [9] proposed three dynamic rerouting techniques for 

the IADM network for avoiding faulty or blocked ±2* (nonstraight) links. The 

first and the second schemes require that switches be capable of performing 

two’s complement and +2* addition operations, respectively. The third scheme 

requires one extra tag bit which is dynamically updated as the message pro­

pagates toward the destination. In [10], the work of [9] was expanded, and a 

single-stage look-ahead scheme was proposed to avoid certain type of straight

link faults. This improved scheme also requires two’s complement operations.
♦

Parker and Raghavendra [13] used redundant number representation and 

proposed an algorithm capable of finding all routing paths, which, effectively, 

are the redundant number representations for the distance between the source 

and the destination. Because of the complexity of the algorithm, the cost of 

computation is prohibitively large so that it is infeasible to implement the algo­

rithm in order to achieve dynamic routing [19]. In addition, although the algo­

rithm can generate all routing tags for any distance, there is no specific work on
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rerouting schemes in [13] [14].

Lee and Lee [7] proposed signed bit difference tag and destination tag local 

control algorithms for the ADM and IADM networks that require no computa­

tion for the distance between the source and the destination. But their local 

control algorithms can only find one routing path for each source and destina­

tion pair. If the need for rerouting arises, they still resort to the distance tag 

schemes to find alternate paths.

Past research has shown interesting relationships between data manipula­

tor and cube-type networks. For example, because it is possible to embed the 

Generalized Cube network in the ADM network [1][17], the set of interconnec­

tions implementable by the ADM network is a superset of that of the General­

ized Cube network. This fact and the existence of multiple paths between any 

source s and destination d (s^d) in the ADM network suggests that the ADM 

network can be thought of as a fault-tolerant Generalized Cube network. 

Analogously, the IADM network can be regarded as a fault-tolerant ICube net­

work2. Since the permutations realizable by cube-type networks are well stu­

died, the identification of possible embeddings of the ICube network in the 

IADM network can help characterize the permutation capabilities of this net­

work. A contribution to the precise understanding of these notions is made in 

this paper; it consists of the identification of a large number of distinct sub­

graphs of the IADM network that are isomorphic to the ICube network.

Section % of this paper introduces a state model to describe and correlate

topologies of the ICube network and the IADM network. Necessary and
2 •While topologically equivalent, the ICube and Generalized Cube I/O ports are 
addressed so that their inter-relationship is the same as that of the IADM and ADM 
network, i.e. the input and output sides are interchanged.
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sufficient conditions to perform rerouting in the IADM network are derived in 

Section 3 . In Section 4 two routing and rerouting schemes are proposed based 

on the theory developed in Section 3, together with a discussion of their merits 

and implementation considerations. A universal rerouting algorithm is proposed 

in Section 4, which can deal with any combination of multiple link blockages. 

A class of subgraphs in the IADM network that are isomorphic to the ICube 

network are identified in Section 6, and it is shown how to reconfigure the 

IADM network under certain link faults to pass the cube-admissible permuta­

tions. Finally, Section 7 summarizes the results presented in this paper.

2. State Model Descriptions for the ICube and IADM Networks

Multistage networks can be modeled as graphs by treating interchange 

boxes (also called switching elements) and links of the network as nodes and 

edges of the graph, respectively. Another equivalent graph model [l] [8] results if 

interchange boxes are associated with edges, and links with nodes. Both models 

are exemplified in Figures 1 and 3 for the ICube network. The IADM network is 

shown in Figure 2 according to the first model. The design of switches based on 

both models is discussed in [ll]. Clearly, the ICube network in Figure 3 can be 

regarded as being a subgraph of the IADM network in Figure 2. Henceforth, 

the second model is always assumed when referring to the ICube network (i.e. 

Figure 2) and the first model is assumed when dealing with the IADM network.

With respect to these graph models, the nodes and the edges of the graph 

refer to the switches and the links of the networks, respectively. The number of 

switches at each stage of a network is denoted N and n = log2iV refers to the 

number of stages. The switches of each stage are labeled from 0 to N—1 from 

the top to the bottom. Any integer j has a binary representation
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joil ' • • ire-i, where ire-i is the most significant bit and n denotes the number 

of bits. Tfie notation jp/q means the bits of j starting at jp and ending at jq, 

where p < q. Bit j) is l’s complement of bit j). Throughout this paper, j and 

j+a, where a is some constant, are reserved to represent labels of switches. 

Also modulo N arithmetic is assumed, e.g. j+a implies (j+a) mod N. The 

notation iE#,- is used to indicate that a switch j belongs to stage i and 

(jESi , j"(zSi+1) is used to represent a link at stage i joining j ES1,- and j'(zSi+1. 

A sequence of switches of contiguous stages (jESi , j ESi+l , • • • , j' ESi+k) is 

used to represent a path from /e>S,- to j ESi+k.

Notation and terminology required for the characterization of network 

topologies and destination tag routing schemes are introduced next. A switch j 

of stage i is an even,- switch if ^ = 0 and an odd,- switch if jj- = 1. Figure 2 

identifies even,- and odd,- switches at different stages of the IADM network of 

size N=8. Define the functions AC,- and AC,- that represent connection links at 

stage i as

ACi(M)

q if j is an even,- switch and i,-=0, 
or if j is an odd,- switch and t,- =1 

—2* if j is an odd,- switch and f,-=0 
+2* if j is an even,- switch and i,-=l

V

AC-(M-) = -A ct.(M)

Also, define the functions C,-(y,^,-) = j + AC,-(j,f,-) and 

Ci(j)U) — j + AC,-(j,^,-). These definitions imply the following lemma of funda­

mental importance to the results of this paper.

Lemma 2J.

Jo/i—3i+\/n—1
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for some value of gJ+1/w_1 which depends on j and t,-.

Proof: If j is an even,- switch and i,- = 0, then Ct-(./,£,•) = C^j,^) = j. If j is 

an oddi switch and t,- = 1, then C^j,^) = = j. If j is an odd{ switch

and = 0, then C,•(,/,£,•) results from subtracting 1 from j,-. Since j is an odd,- 

switch, j} — 1, no borrow is generated and all remaining bits of j are 

unchanged; however, (?,•(/,£,•) adds 1 to j,-, changing the i-th bit to 0 and alter­

ing some of the bits in positions *+1, . . . ,n— 1 due to carry propagation. Simi­

lar reasoning applies when j is an even,- switch and ti — 1. □

The notation and terminology just introduced can now be used to describe 

the networks of interest in this paper. The following description for a network 

in terms of AC,-, AC,-, C, and C, is called the network state model.

The ICube network is composed of n stages labeled from 0 to n—1. Each 

stage consists of 2N links and N switches. An extra column of switches is 

appended at the end of the last stage as the output switches (Figure 3) and is 

denoted Sn. A switch j&S,- is connected to switches C,-(j,i,-)(ES,-+1, for 

0 < i < n—1, 0 < j < AT—1, and f,- =0 or ^ = 1. When using destination 

tags, switch j)£<?,- routes a message to switch C^j,di)ESi+l where di is the i-th 

bit of the address of the message destination.

The IADM network is composed of n stages labeled from 0 to n— 1. Each 

stage consists of a column of N switches and 3N connection links. An extra 

column of switches is appended at the end of the last stage as the output 

switches and is denoted Sn. A switch j&S1,- is connected to switches 

Ci(j>ti)£Si+i and CitiA)£Si+1 f°r 0 <'* < n— 1, 0 < j < N—1, and t+ = 0 or 

^ = 1. In other words, three links connect a switch to the switches (j—2l),
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j and (y+2*) at stage t+1. Sometimes +2* and —2* are used to represent links 

(i£<% , (i+2l)£5,+1) and (./&% , {j— 2*)£-S,,-+1), respectively. The terms a 

straight link refers to link (j^Si , j£Si+1) and a nonstraight link refers to links 

±2\

According to the model, two types of switches, even,- and odd,-, are required 

in the IADM and ICube networks. Figure 4 illustrates the connection links of a 

pair of even,- and odd,- switches for an ICube and an IADM network of size 

N—8. The AC,- function describes the ICube connections. For the IADM net­

work, the connection links can be described by the union of the functions ACi 

and AC,-. In practice, even,- and odd,- switches can be identical and easily pro­

grammed (at power-up or system configuration time) to behave differently.

There are two possible routing behaviors (or states) for each switch in an 

IADM network. A switch is said to be in state C if the routing is decided in 

accordance with the function C,-(y,t,-) and it is in the state C if the function 

CdjA) applies. On the whole, the link on which a message is routed depends 

on whether the switch is an even,- or odd,- switch, in state C or C, and the 

value of tag bit £,-. Also the term state of the network is used to denote collec­

tively the states of all switches in the network.

The notion of switch state is only conceptual; it can be implemented by 

designing the switches with actual logic states as well as by using tags with n 

added bits specifying the states of the switches on the routing path. In Section 

4, these and other aspects of the actual implementation of the proposed 

schemes are discussed in detail.
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3. Theory behind the State-Based Destination Tag Routing Schemes

Based on the framework developed in Section 2, routing problems in the 

IADM network are now examined. It is clear that when every switch in the 

IADM network is in state C, the IADM network behaves like an ICube network 

and, therefore, the destination address d0/n-i can be used as a routing tag, i.e. 

i,- = dj. More generally, the following theorem can be proven.

Theorem 3.1 Let d — d0/n_i be the destination in the IADM network to which 

a message is to be sent. Then t = d0/n_1 is the unique destination routing tag 

to the destination d regardless of state of the IADM network.

Proof: Consider an arbitrary tag / o/»—l anc* assume that the IADM network is 

in an arbitrary state. Let i0/n-i = / o/n-i- Then each switch will route the 

incoming message to either or C'l(j’,/t). From Lemma 2.1, it can be

reasoned by induction that, at stage i, (C',-(^,/*))0/* = (C7f(j,/t))0/i = f o/ii at 

the last stage, C're_1(j,/n_1) = Cn_1(y,/n_1) = /0/n_1. Thus the address of 

the destination of the message is the same as the routing tag. This proves both 

the validity and the uniqueness of dQ/n_1 as a routing tag. □

It is implicit in the reasoning underlying Theorem 3.1 that any link on a 

given path results from the appropriate choice of the state of the corresponding 

switch, i.e. the use of "link". results from setting jESi to state C and

the use of "link" Aresults from setting jES^ to state C. Thus, given a 

path to the destination d, there is at least one network state for which the use 

of d as the destination tag results in the routing of a message through that 

path.

The implication of Theorem 3.1 is that the use of a state model for the 

IADM network reduces the problem of finding alternate routing paths to that of
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controlling the states of the switches in the network. Capitalizing on this idea, 

the following theorems show how alternate routing paths can be found in order 

to evade blockages in the network. A straight link blockage occurs if a straight 

link on the routing path is faulty or busy. A nonstraight link blockage is defined 

analogously. The third type of blockage, called double nonstraight link blockage, 

occurs if both nonstraight output links of a switch in the routing path are 

faulty or busy. A switch blockage occurs if the switch itself is busy or faulty. A 

switch blockage has the same effect as blocking all of the switch’s input links 

and can be transformed into a link blockages problem accordingly. The discus­

sion on rerouting in this paper is concerned only with link blockages.

Theorem 3.2 In the IADM network, a change of the state of switch j^Si results 

in a different routing path to a destination d if and only if a nonstraight output 

link of j is used on the original routing path to d. Moreover, the other non­

straight output link of j is used on the new path.

Proof: Changing the state of j implies that the "link" AC^(j,t,) is used instead 

of or vice versa. However, if = 0 then A<7t(j,£t) = 0 (i.e.

both use a straight link) and vice versa. □

With regard to the rerouting schemes proposed in this paper, the implica­

tions of Theorem 3.2 are twofold. First, the "if" part of the theorem implies 

that dynamic rerouting for a nonstraight link blockage can be achieved by 

changing the state of the switch whose output is the nonstraight link, which is 

equivalent to rerouting the message through the oppositely signed nonstraight 

link connected to the same switch. Thus, the same subset of destinations is 

reachable from the two switches whose input links are the two oppositely signed 

nonstraight links. Second, the "only if" part of the theorem implies that 

dynamic rerouting for a straight link blockage is impossible. This is true in
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general since every routing path in the IADM network can be the result of set­

ting the network to some state. Moreover, if a path from stage i to stage * 

consists of all straight links connecting jESi and jESi+1, i' < i <. t", then there 

exist no alternate routing paths from jES^ to jES-" for otherwise there would 

exist an alternate routing path branching from jESj and ending at the destina­

tion. The only resort, if any at all, to bypass the straight link blockage is to 

backtrack to a switch connected to a nonstraight link on the routing path at 

some preceding stage and to reroute from that switch. It remains to show that 

an alternate routing path always exists, provided that such a nonstraight link 

exists. In fact, the existence of an alternate routing path partly results from 

Theorem 3.2, as stated in the next theorem. Figure 5 illustrates the situation in 

Theorem 3.3.

Theorem 3.3 Consider a routing path in the IADM network to a destination d 

that contains a blocked straight link at stage i. There exists at least one net­

work state which results in an alternate routing path that avoids the same 

straight link blockage at stage i if and only if the original routing path to d 

contains a nonstraight link at stage i—k for some k, i > k > 0.

Proof: See Appendix Al. □

Previous work [7] [9] [13] implies only the "if" part of the theorem, i.e. the 

possibility of using nonstraight link of opposite sign in order to reroute a mes­

sage in the case of a nonstraight link failure. However, the "only if" part of the 

theorem also implies that, in addition, it is not possible to devise a new rerout­

ing scheme capable of avoiding a backtracking (or look-ahead) mechanism in 

order to deal with straight link blockages.

From Theorem 3.2, (for a given source/destination pair) if the straight out­

put link of a switch is on some routing path, both nonstraight output links of



- 13 -

the switch cannot be used for routing; if one of the nonstraight output links of 

a switch is on some routing path, the other nonstraight link of the switch is also 

on another routing path and the straight link of the switch cannot be used for 

routing. So for a given switch, the output link blockages that affect paths from 

a given source to a given destination can only be (a) a nonstraight link block­

age, (b) a straight link blockage or (c) the double nonstraight link blockage.3 

Theorem 3*2 can be used to avoid case (a) a nonstraight link blockage and 

Theorem 3.3j case (b), a straight link blockage. If case (c) occurs, then Theorem 

3,2 cannot be used to find a rerouting path. A backtracking scheme proposed 

later in Corollary 4.2 based on Theorem 3.3 can be adapted to overcome this 

type of blockage. The adapted backtracking scheme is based oh Theorem 3.4, 

which is illustrated in Figure 6.

Theorem 3.4 Consider a routing path in the IADM network to a destination d 

that contains a switch at stage i whose both nonstraight output links are 

blocked. There exists at least one network state which results in an alternate 

routing path that avoids the same blocked nonstraight links at stage i if and 

only if the original routing path to d contains a nonstraight link at stage i —k 

for some fc, * > k > 0.

Proof: See Appendix Al. □

Physically it is possible to have any combination of blockages of the output links of a
given switch. However, the possible routing paths for a given source/destination pair 
caii be affected by either a straight link blockage or a double nonstraight link blockage 
in a given switch but never both types of blockage.
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4. State-Based Routing and Rerouting Schemes

In this section, routing and rerouting schemes are discussed based on the

theory developed in Section 3. As mentioned earlier, the novelty of the ideas in 

this paper lies in the state model of the routing behavior of each switch. In pre­

viously proposed approaches, routing is determined solely by tag bits. Accord­

ing to the state model, the switching action of each network element is concep­

tually determined by its relative position (i.e. an even,- or odd,- switch), its state 

(i.e. C or C) and a destination tag bit (i.e. 0 or 1) (Figure 4). This conceptual 

separation of routing information makes it possible to devise the simple routing 

schemes described in this section.

In the first scheme, each switch is initially set up to behave as an odd,- or 

even,- switch. In addition, each switch can dynamically be set to one of the logi­

cal states C or C. In other words, this scheme corresponds to a direct imple­

mentation of the conceptual view of switch states. Destination tags are used 

and, according to Theorem 3.1, the state of the network is transparent to the 

sender of the message since it only affects the path of the message and not its 

destination. Consequently, rerouting is also transparent in the sense that it 

results from a change in the network state. In practice, the implementation can 

be such that, for instance, state C (or C) is used as the default state for each 

switch in the IADM network and the switch regards the other nonstraight link 

as a spare link for rerouting; if a nonstraight blockage is detected, then the 

switch changes state to C (or C) so that the spare link is used instead. This 

scheme is called the Self-Repairing State-Based, Destination Tag (SSDT) scheme.

Rerouting is useful not only when one nonstraight link in a switch is faulty 

or busy, but also if both nonstraight links are busy. For example, when consid­

ering a packet switching environment, rerouting may be desirable as a means of
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balancing the message load throughout the network. The scheme proposed here 

is well suited for this purpose. Assume that each nonstraight link has an associ­

ated buffer (queue). When both nonstraight links are busy due to message 

traffic congestion, a switch can choose which nonstraight buffer to assign a mes­

sage to (i.e. which state to associate with that queued message), based on the 

number of messages present in the buffers in order to evenly distribute the mes­

sage load to the nonstraight links.

The proposed SSDT scheme has the advantages that it uses simple n-bit 

destination tags and is capable of rerouting messages when blockages occur in 

nonstraight links. In addition, rerouting of a message is transparent to its 

sender since the path of the message is determined by the state of the network. 

For a given destination tag, the routing behavior of each switch on a possible 

path is determined by the state of the switch, i.e. the SSDT scheme is fully dis­

tributed and rerouting is done dynamically. Each switch requires a negligible 

amount of extra hardware for the detection of blocked links and the representa­

tion of two possible states.

The second scheme is called the Two-Bit State-Based, Destination Tag 

(TSDT) scheme and it uses 2n-bit routing tags, which specify both the destina­

tion of the message and the states of switches on the corresponding path. The 

TSDT scheme has the advantage that rerouting is possible when blockages 

occur for straight as well as nonstraight links.

As with the first scheme, the TSDT scheme assumes that each switch is 

appropriately initialized to behave as an odd,- or event switch. Each "digit" of 

the routing tag is represented by two bits bn+i and 6,-, called the state bit and 

the destination bit, respectively. For this scheme, the state of a switch of stage 

i is specified by bn+i : if 6n+,=0, the switch is in state C and if 6n+i=l , the
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switch is in state C. For all i, 0 < * < n—1, 6, = d,-. In general, if j is an 

even,- switch, 6,6n+,=00 and 6,-6n+,=01 direct the message through a straight 

link, 6,-6n+,-=10 through link +2* and 6,-6n+,-=ll through link —2*; if j is an 

odd,- switch, 6,-6n+,-=10 and 6,6n+,-=ll directs the message through a straight 

link, bibn+i =01 through link +2l and =00 through link —2*. In general,

given a switch, the destination bit specifies use of a straight link or a non- 

straight link while the state bit determines the choice of the positive or the 

negative link (if the chosen link is a nonstraight link). Since state information 

is carried by the routing tag, switches are not required to determine and 

remember their own states, i.e. the design of the switches does not need to 

implement the logic states C and C.

From Theorem 3.2, a nonstraight link blockage at stage i can be bypassed 

conveniently by complementing the i-th state bit while the destination bits 

remain unchanged. For convenience of reference, this is restated in terms of the 

TSDT scheme as Corollary 4.1 below.

Corollary 4JL Let &n/2n-i an^ & n/2n-i state bits of the routing tag and

the rerouting tag, respectively, for the IADM network. In order to bypass a 

nonstraight link blockage at stage i, state bit bn+i needs to be changed to bn+i. 

That is, b n/2n-i = bn/n+i_1bn+ibn+i+1/2n-l' n

Figure 7 illustrates an example of routing from s = 1 to d = 0 in an IADM 

network of size N = 8. Let b 0/5 = 000000 be the routing tag and and 6 0/5 

denote the rerouting tags. The original tag i>0y5 = 000000 specifies the path 

(1G<50 , OE-S'i , 0ES^ , OES^). If (lEi^o , OES^) is blocked, the rerouting tag 

60/5 = 000100 is obtained by complementing b3, and link (lESp , 2G5i) is used 

for rerouting. This tag specifies the path (IE-S'q , 2E<S,1 , 0E<52 , 0(ES3). If 

(2E<S'1 , OE-S^) is also blocked, the rerouting tag 6q/5 = 000110 results from
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complementing b 4, and link (26-5! , 4G*S,2) is used for rerouting. This tag 

specifies the path (IESq , 2ESX ,4€52,O&S3).

As discussed in Section 3, a straight link blockage and a double nonstraight 

link blockage cannot be overcome easily; implementing a backtracking (or look­

ahead) mechanism is a must in order to evade these types of blockages. Since 

all links in the routing path from stage i—k+1 to stage i consist of only 

straight links, backtracking of at least k stages is required to find the switch 

fropi which; an alternate routing path branches. That is, at least k state bits 

need to be considered for change. Due to the similarity between Theorems 3.3 

and 3.4, the TSDT schemes for finding the rerouting paths from Theorems 3.3 

and 3.4 are exactly the same, which is stated as Corollary 4.2.

Corollary 4J& Let bnj2n_i and b n/2n-i be the state bits of the routing tag and 

the rerouting tag, respectively, for a source/destination pair in the IADM net­

work. Let'*—A; be the largest stage number for i > k > 0 such that a switch at 

stage i—k is connected to a nonstraight link on the routing path. In order to 

bypass a straight link blockage or a double nonstraight link blockage at stage i, 

only state bits &»+(*-*)/»+* <-i need to be changed; (i) 

b'h/„+(,•_!) = ^ the nonstraight link at stage i—k of the ori­

ginal path is link -2i~k, and (ii) 6= 6rt/re+(t_fc)_1dt_A/i_1 if the non­

straight link at stage i—k of the original path is link +2l~*. The state bits 

6 n+t/2n_i have arbitrary values in both cases.

Proof: See Appendix Al. □

The example in Figure 7 can be used to illustrate the TSDT scheme for (a) 

a straight link blockage and (b) a double nonstraight link blockage, (a) Again 

the tag i>0^g = 000000 specifies a path (1G50,00?! , OGS2 , OG^). If the 

straight link (0£Sl , 0G92) is blocked, the rerouting tag can be 000110 which
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specifies path (l£S0 , 2£S1 , 4GS2,0ES3) by having

63+063+163+2 = d0dib3+2 — HO. Since state bits 63+163+2 can be arbitrary, 

000100, for example, is also a valid rerouting tag; it specifies path 

(lGiS'o , 2&S'i , OE^ > 0G<S,3). (b) Let the tag 6 0/5 = 000110 specifies a path

(l€#o , 2&fi > 4E<S2 > If both nonstraight output links of 4E52 are

blocked, the rerouting tag b'0/5 can be 000100 which specifies path 

(lG^o r 2€<S'i , OE-S^ , OE^) by having b'3+0b's+lb'3+2 = 63+0d1d2- Since state 

bits 6 3+2 can be arbitrary, 000101 is also a valid rerouting tag which also 

specifies the same path.

The rerouting path computed from Corollary 4.2 is blockage-free from 

stage 0 to stage i. While the rerouting path is different from the original rout­

ing path from stage i—k to stage i, the routing path from stage 0 to i — k— 1 

remains the same. This results from the fact that backtracking always 

proceeds backward along the original path until it stops at stage i—k, and the 

rerouting path only changes course from stage i—k onwards. Although state 

bits bn-\-i/2n—i remain unchanged, the routing path from stage i to n — 1 may 

still be altered due to the changes from stage i—k to i. For example, in Figure 

5, the switch on the original routing path at stage t+l'is yE^+i whereas the 

switch on the rerouting path at stage *+1 may be (j -t-2* +1)E-S'i*+1, which may 

further induce changes at higher-order stages.

In the TSDT scheme, the tag can be computed by the message sender 

which is assumed to know the location of faulty links and switches in the net­

work. Thus, rerouting is transparent to the switches in the sense that the tag 

computed by the sender of the message simply avoids the usage of faulty links 

and switches. Therefore switches do not require any extra hardware for rerout­

ing purposes. An alternative is to implement dynamic rerouting for the TSDT
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scheme. Since backtracking is indispensable for avoiding a straight link block­

age, it is required that each switch can detect the inaccessibility of any output 

port (connected to a switch at the next stage) and signal the presence of the 

blockage back to the switches of previous stages [10] [12]. Whether rerouting is 

done by the sender or dynamically is an implementation decision which depends 

on how many stages of backtracking are allowed. When the sender computes 

the tag, it must be able to identify and track the switches and links on the 

corresponding routing and rerouting paths (the next paragraphs explain how 

this is done). If any of the switches or links in the path is known to the sender 

as being faulty, then the sender computes another tag by changing the state 

bits as described in Section 5.

Locating the switches on the routing path is straightforward. For a given 

source s and a destination d, the initial routing path can be specified by settiiig 

state bits i>n/2n-i = 0n/2n-i (a string of n 0’s), equivalent to setting every 

switch in the IADM network to state C. Then every switch on the original 

path has label 0<* < n— 1, since now the IADM network

functions like an ICube network [6] [15].

To find the switches on the rerouting path, let jGS; be the switch whose 

output link is blocked. First consider the case where the blocked link is a non- 

straight link. It may be an (a) positive or (b) negative link. In case (a) the 

switch at stage *+l reached by the positive link is (j+21)(ESi+1 and, from 

Corollary 4.1, rerouting can done through switch (j—2t)ESi+1. In case (b) the 

switch at stage t'+l reached by the negative link is (j—2*)G<S'j+1 and, from 

Corollary 4.1, rerouting can done through switch (j+2t)£Si+1. Let the switch 

at stage t+1 on the rerouting path be w>o/»-i* The state bits 6w+(t+1yn_1 

remain intact (equal to 0’s) because it corresponds to having every switch from
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stage i-f-1 to n—1 remain in state C so that the IADM network from stage i+1 

to n—1 can emulate the ICube network from stage i +1 to n—1. Thus, the bits 

/, t+1 <• n— 1, of the label of a switch on the rerouting path are 

From Lemma 2.1, bits 0 to /—1, 1 < / < t-f-1, of the label of a switch on a path 

to destination do/w-i must be d0//-i* Hence the switch on the rerouting path 

from stage *+l to n— 1 has label t-|-l < l < n— 1.

Next Consider the case where the blockage of ./GS1,- is a straight link block­

age or a: double nonstraight link blockage so that backtracking is necessary. 

There are two sub-cases for each type of blockage: (i) the nonstraight link 

found in backtracking is a negative link and fii) it is a positive link. Here only 

sub-case (i) of the straight link blockage is considered; the other cases can be 

dealt with similarly. From the proof of Corollary 4.2 (case (i) only), the switch 

on the rerouting path is (j+2l)ESi, i—k < l < i. The switch of stage *+1 on 

the rerouting path is j£Si+1 if K+i = 0 and j&Si+1 is an odd,- switch or if 

bn+i — 1 and j£Si+1 is an even,- switch, and is (j-f22+1)C*S',-+1 if b^+i = 0 and 

j&Si+1 is a,n even,- switch or if b'n+i =1 and j£Si+1 is an odd,- switch. The 

identification of switches on the rerouting path from stage i +1 to n —1 is done 

as in the case of a nonstraight link blockage described above.

The blocked link can be represented by the two switches joined by the link. 

Since every switch on the original routing path and the rerouting paths can be 

easily identified as described above, it can be readily determined whether or not 

the blpclsed link is on the current path.

In summary, for both SDT schemes, the binary representation of the desti­

nation address can be used directly as the routing tag. In the SSDT scheme, 

rerouting tags are not needed and in the TSDT scheme, rerouting tags result 

from simple bit complementing operations. In terms of complexity of the
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computation for a rerouting tag, the SSDT scheme and the TSDT scheme for 

one instance of nonstraight link blockage require timeXspace complexity 0(1); 

an improvement over previous proposed schemes [9] dealing with rerouting for a 

nonstraight link blockage that require timeXspace complexity O(logiV). In [10] 

a single-stage look-ahead scheme for rerouting of a straight link blockage was 

proposed; it requires use of two’s complement to compute the positive and nega­

tive dominant tags so that the scheme has timeXspace complexity of O(logiV). 

Note that the single-stage look-ahead rerouting scheme is valid only for some 

cases of the straight link blockage; it cannot be applied to any case of the 

straight link blockage. From Corollary 4.2, fc-stage backtracking is needed for 

a straight link blockage and k bits of the state bits needs to be changed; thus 

the complexity of the TSDT scheme for a nonstraight link is 0(h). If only 

single-stage backtracking (corresponds to single-stage look-ahead) is necessary, 

rerouting can be done dynamically and the complexity is 0(1), an improvement 

over the scheme in [ 10].

5. A Universal Rerouting Algorithm for Multiple Blockages

The TSDT scheme can be applied to not only one instance of some block­

age, but also can be applied repetitively each time a new blockage is encoun­

tered as the message propagates along. This section considers the derivation of 

an algorithm to deal with any case of multiple blockages. The backtracking 

schemes proposed in Corollary 4.2 find a rerouting path for a straight link 

blockage and a double nonstraight link blockage. Nevertheless, it is possible 

that blockages also exist on the rerouting path; then further backtracking to a 

lower-order stage is needed. Since this phenomenon can recur, repeated back­

tracking may be necessary due to blockages on the rerouting paths. The
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algorithm BACKTRACK described next performs iterated backtracking to find 

an alternate routing path. It underlies a universal rerouting algorithm (called 

REROUTE) to be shown later that can find a routing path, if there exists any, 

to bypass multiple blockages in the network.

The inputs to algorithm BACKTRACK are the current routing path P, the 

stage number i where a blockage occurs, and state bits b'n/2n_i representing 

path P. The algorithm returns updated values of the state bits b'n/2n_i which 

specify a rerouting path that is blockage-free from stage 0 to stage i if such a 

rerouting path exists, or returns FAIL if the blockages on the current routing 

path and the rerouting paths eliminate the possibility of communication 

between the source and the destination. It is assumed that the blockage on the 

original routing path at stage i is a straight link blockage or a double non­

straight link blockage and is the switch whose output links are the

blocked links. Informal explanations for the algorithm will be given following 

the algorithm and the correctness proof of this algorithm can be found in 

Appendix A2.

Algorithm BACKTRACK (and REROUTE) presumes existence of the 

knowledge of all blockages in the network. The network controller is responsi­

ble for collecting this information and maintaining a global map of blockages, 

which is accessible to every sender of the messages in order to compute a path 

to avoid the blockages. In addition, since it may take several iterations before a 

blockage-free path can be found or it can be concluded that no blockage-free 

paths exist, the sender of the message needs to maintain and update the loca­

tions of switches on the rerouting path in each iteration.

Algorithm BACKTRACK {P,i, b'n/2n J



0: q — stage number where a blockage occur.

• q «—

1: P= the current routing path.

Backtrack on path P from stage q to find a nonstraight link. If no non- 

straight link exists at any preceding stage, return(FAIL); otherwise assign 

to r" the stage number where the first nonstraight output link is found.

2: If the nonstraight link at stage r on the routing path is +2r, assign flag

link found value 0; if it is — 2r, assign linkfound value 1.

3: If linkfound = 0, b'n/2n-i «— b'n/n+r-idr/q-ib'n+q/2n-v if linkfound = 1,

b ;n/2n-l b n/n+r-ldr/q-lb n+q/2n-V

4a: This step applies only when the blockage at stage q on path P is a straight 

link blockage.

If linkfound — 0, set b'n+q = dq; if ({j—2q)£Sq , (j—23+1)G<S'9+1) is blocked, 

change b'n+q to dq; furthermore, if ((j—2q)(zSq , j(zSq+l) is also blocked, 

return(FAIL). K linkfound = 1, set b'n+q = dq; if

((j+2q )£.Sq v(i+29+1)&S,g+1) is blocked, change b'n+q to dq; furthermore, if 

{( j+2q)£.Sq , j£Sq+1) is also blocked, return(FAIL).

4b: This step applies only when the blockage at stage q on path P is a double 

nonstraight link blockage.

If {{j—2q)€.Sq , (j—2q)^Sq+1) is blocked for linkfound — 0, or 

([j+2q)ESq , (j+2q)ESq+1) is blocked for linkfound — 1, return(FAIL).

5: Let Q denotes the part of the rerouting path (specified by the tag in step

3) from stage r +1 to q from step 3.

If linkfound =0, Q —

{{j-2r+1)esr+1, • • • , , {j-2q)esqy, if linkfound = i,

- 23 -
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Q = ((y+2r+1)esr+1, • • • , (y+25-1)G59_1, (y+2*)es9).

If a blockage occurs on path Q, return(FAIL).

6: If link found = 0 and ((j—2r)(E.Sr , (j—2r+1)(ESr+1) is blocked, or if link-

found = 1 and ((j+2r)E.Sr , (i+2r+1)G5'r+1) is blocked, go to step 7; else 

return(6w/2n_1).

7: j +- j+2r, q « r.

8: Backtrack on path P from stage q to find a nonstraight link. If no non­

straight link exists at any preceding stage, return(FAIL); otherwise assign 

to r the stage number where the first nonstraight output link is found.

9: If link found =0 and the nonstraight link at stage r is — 2T, or if link-

found = 1 and the nonstraight link at stage r is +2f, return(FAIL).

10: If Unkfound =0, b'niin_x «— b'ninJrr_ldTiq_lb'nJrqj2n_x', if linkfound = 1, 

^ n/2n—l b n/n+r-ldr/q-lb n+q/2n-V Go to step 4b.

Step 0 is the initialization step. From Theorems 3.3 and 3.4, an alternate 

path exists for avoiding a straight link blockage or a double nonstraight link 

blockage if and only if there exists a nonstraight link at some stage preceding 

stage r; step 1 of the algorithm searches backward for such a nonstraight link. 

If not found, it results in premature termination of the algorithm, reflecting the 

fact that no alternate paths for rerouting exist. Step 2 is used to differentiate 

the cases when the nonstraight link at stage r found in the first backtracking is 

a positive link and when it is a negative link; flag linkfound is assigned 0 for 

the former and 1 for the latter. If a nonstraight link exists at some stage 

preceding the blockages, in step 3, Corollary 4.2 is applied to find the stage bits 

specifying the rerouting path; cases (i) and (ii) in Corollary 4.2 correspond to 

linkfound = 1 and linkfound = 0, respectively, and q and r correspond to i
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and i—k, respectively.

Steps 4a and 4b deal with the link blockage at stage q on the rerouting 

path computed in step 3. If the blockage of a switch at stage q on path P is a 

straight link, the possible rerouting links at stage q are two nonstraight links. 

In step 4a the default link is negative link if line found = 0 and a positive link if 

link found = 1. If the default link is blocked, step 4a attempts to reroute the 

message through the other nonstraight link. If both nonstraight links are 

blocked, there exist no blockage-free paths. Step 4b applies if the blockage of a 

switch at stage q on path P is a double nonstraight link blockage. The rerout­

ing path must use a straight link at stage q. If it is also blocked, no blockage- 

free path exists.

Step 5 checks blockages from stage r+1 to stage q— 1 on the rerouting
A,

path; if any blockage falls on Q, there exists no blockage-free path. In step 6, 

if the blockage falls in the link of stage r on the rerouting path, further back­

tracking is necessary. Otherwise (no blockages on the rerouting path), the algo­

rithm terminates with the state bits specifying the rerouting path. Step 7 

updates the stage number q and the switch label j where a blockage on the 

rerouting path occurs, initiating a new iteration of backtracking. Step 8 is the 

same as step 1, searching backward at lower-order stages again for a non­

straight link. Step 9 of the algorithm dictates that if the encountered non­

straight link in the first iteration of backtracking is a positive (or negative) link, 

the nonstraight link found in each subsequent iteration of backtracking must be 

also a positive (or negative) link; otherwise no blockage-free paths exist. If the 

condition in step 9 is satisfied, step 10, which is the same as step 3, computes a 

rerouting path. After the rerouting path is found, the algorithm returns to step 

4b, to check for further blockages on the rerouting path.
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For each source/destination pair, a link on some routing path for the 

source/destination pair is called a participating link. As a direct result of 

Theorem 3.2, the set of participating output links of a switch is composed of 

either its straight output link or both of its nonstraight output links, but never 

all of them. So the output link blockages of a switch, for a given 

source/destination pair, can only be a straight link blockage, a nonstraight link 

blockage, or a double nonstraight link blockage. Algorithm BACKTRACK 

deals with the first and third kind of blockages, and the second kind of block­

age can be overcome by applying Corollary 4.1. Algorithm BACKTRACK and 

Corollary 4.1 can be used to form a universal algorithm capable of rerouting 

messages when multiple blockages exist in the IADM network. This algorithm, 

called REROUTE, returns state bits b n/2n-i specifying a blockage-free rerout­

ing path if one exists, or returns FAIL otherwise.

Algorithm REROUTE (P, b'n/2rt_i)

0: P= the original routing path.

bn/2n-i~ the routing tag specifying the original routing path.

6 n/2w_i= the rerouting tag specifying the rerouting path.

& n/2n-l ■*“" ^»/2w-l*

1: Let i be the smallest stage number such that there exists a blockage at

stage i on path P. If no blockages occur on path P, return(i/w/<2n-i)*

2: If the blockage at stage i on path P is a nonstraight link blockage and the

other nonstraight link is not blocked, apply Corollary 4.1 to find state bits 

b n/2n-l and g° to step 4.

3: & n/2n—i * BACKTRACK^, 6 n/2fl_i).
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4: Q = the rerouting path specified by state bits b'n/2n_1.

P «— Q and go to step 1.

Step 0 is the initialization step. At the end of each iteration, a blockage- 

free path from stage 0 to stage i is found. Then a new iteration starts and i is 

given a new value in order to find a path avoiding the blockages at a higher- 

order stage. The only terminating conditions for algorithm REROUTE are that 

a return of FAIL from step 3 indicating that no blockage-free paths exist and 

the return from step 1 indicating a blockage-free path is found. Algorithm 

REROUTE is executed iteratively to evade blockages from lower-order to 

higher-order stages. The correctness of this algorithm follows from the correct­

ness of algorithm BACKTRACK and Corollary 4.1.

6. Permutation Routing and Cube Subgraphs of the IADM Network

The results discussed so far are a consequence of the existence of spare 

nonstraight links in addition to the ICube network embedded in the IADM net­

work. This section pursues this issue further by showing that there exist multi­

ple distinct subgraphs in the IADM network, each called a cube subgraph, that 

are isomorphic to the ICube network. Two cube subgraphs are considered to be 

distinct if they differ in at least one link. As mentioned in the introduction of 

this paper, the cube-type networks have been studied extensively in the litera­

ture and shown to be topologically equivalent. Together with results from these 

Studies, tbe knowledge of how to identify cube subgraphs can help the under­

standing of the capabilities of the IADM network and be useful for permutation 

routing in the IADM network.
AT

Since each switch can be in state C or C, there are as many as 2 

(= NN) network states, although each does not necessarily generate a unique
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permutation. Setting a switch to a certain state indicates that one of its non- 

straight output links can be used for routing (i.e. it is active) while the other 

cannot. Thus, each network state can be associated with a subgraph of the 

IADM network which contains only the active links. When all switches in the 

IADM network are set to state C, the IADM network functions as an ICube 

network; this network state corresponds a cube subgraph. The constructive 

derivation of a lower bound for the number of cube subgraphs of the IADM net­

work uses the two basic ideas discussed in the next paragraphs.

Since +2n_1 = — 2n~l mod N, = Cn-\(j,tn-i), i.e. the state of

each switch of stage n—1 is irrelevant in the sense that any switch at stage 

n— 1 is always connected to the same two switches at stage n. Consequently, 

given any cube subgraph, there exist (2^—1) subgraphs isomorphic to it which 

differ only in their choices of the nonstraight link +2n_1 or —2n_1 at stage n— 1. 

Therefore, the total number of distinct cube subgraphs is given by the product 

of,2* and the number of distinct subgraphs of the IADM network from stage 0 

to stage n— 2 that are isomorphic to the same stages in the ICube network.

The calculation of the number of subgraphs in the first n—1 stages uses an 

idea similar to that proposed in [5] for reconfiguring the DR network so that it 

performs as a Generalized Cube network. All switches of the IADM network 

are logically relabeled by adding a constant x, 0 < x < N—1 to the original 

labels, i.e. switch j becomes j = j + x. By setting each switch to be an even* 

or oddj switch according to its new label and having all switches be in state C, 

a cube subgraph results for each relabeling. However, of the N possible sub- 

Ngraphs, only — are distinct as far as the first n—1 stages are concerned. This 
2

result is stated in Theorem 6.1. A graphical interpretation of cube subgraph 

isomorphism for an IADM network of size N=8 is illustrated in Figure 8. In
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Figure 8, each physical switch j acts as a logical switch / = (j+1) mod 8. The 

isomorphism to the ICube network can be easily visualized by moving switch 7 

to the top of each stage as shown in the figure. Notice that setting some switch 

to state C according to its logical label may be equivalent to setting the switch 

to state C according its original label. For instance, switch 0650 (logical label 

1) is set to state C in Figure 8.

N NTheorem 6.1 There exist at least —-2iV distinct cube subgraphs in the IADM

network.

Proof: See Appendix Al. □

In order to reconfigure the IADM network to one of its cube subgraphs, 

each switch of stage i, for 0 < i < n— 2, needs to know the i-th bit of its logi­

cal label. This can be done by sending the same logical label to every switch in 

the same row at system reconfiguration time. Each switch is set as being an 

odd{ or even,- switch by examining the i-th bit of the logical label. All switches 

operate in state C according to its logical label with the exception of those at 

stage n—1 for which different states correspond to different subgraphs.

The results of this section can be used in different ways. One usage is in 

characterizing a class of permutations performable by the IADM network. Per­

mutations passable by the ICube network are discussed in [15] and adaptable 

from [6]. Thus, the IADM network can perform all of these permutations plus 

the same set of permutations with a given x added to both the same source and

Ndestination labels, 0 < z <—.— 2 Another use of the results of this section is

that the IADM network can pass the permutations performable by the ICube 

network when the ICube network embedded in the IADM network experiences 

nonstraight link failures. This is done by incorporating a reconfiguration
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function in the system that reassigns each switch j to (j+x) and reconfiguring 

the IADM network to a corresponding cube subgraph which does not include the 

faulty ndnstraight links. In [21] it is shown that any of the cube-type networks 

can pass the permutations performable by the others by incorporating appropri­

ate reconfiguration functions. By the same token, the IADM network with a 

nonstraight link fault can also pass the permutations performable by the cube- 

type networks by including these reconfiguration functions in the system.

7. Concluding Remarks

One of the main contributions of this paper is the identification of destina­

tion tag routing schemes for the IADM network. They are simpler and more 

efficient than previously known approaches, thus requiring less complex switches 

and reducing message communication delays due to routing overhead. In the 

SSDT scheme rerouting can be done when nonstraight links fail and in the 

TSDT scheme both the straight and double nonstraight link blockages can be 

avoided. As for the SSDT scheme, routing and rerouting are transparent to the 

source and only negligible hardware and time are used by each switch for rout­

ing and rerouting purpose. These are considerable advantages over previously 

proposed schemes which do not use destination tags and require extra hardware 

or delays of O(logiV) complexity instead of 0(1). In addition, previous works all 

deal only with certain types of blockages. Based on the TSDT scheme, a 

universal rerouting algorithm is derived, which is capable of avoiding any com­

bination of multiple blockages if there exist a blockage-free path and indicating 

absence of such a path if there exists none. The rerouting capabilities of the 

new schemes can be readily used for fault-tolerance and load balancing pur­

poses since they adequately exploit the redundancy available in the LADM
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network.

Another contribution of this paper is the constructive derivation of a lower 

bound on the number of cube subgraphs of the IADM network. While it was 

previously known that the ICube network is a subgraph of the IADM network,

N Nthis paper shows that there exist at least —•2iV distinct cube subgraphs. This,

combined with previous multistage cube network studies, can help characterize 

some of the permutations performable by the IADM network. As other use of 

the subgraph analysis, it is shown how to reconfigure the IADM network under 

nonstraight link faults to pass the cube-admissible permutations.

Perhaps the most fundamental contribution of this paper is that of the net­

work state model used for the IADM and the ICube networks. The essence of 

this model is in the recognition that the routing action of each switch is concep­

tually dependent on its position in the network (topological information), its 

state (functional information), and the destination of the message (routing 

information). Topological information is fixed and, when using destination 

tags, the same can be said of routing information for a given message destina­

tion. Consequently, the routing path is solely determined by the state of the 

network. These basic concepts are applicable to networks other than those con­

sidered in this paper; the state model can help devise new designs, solve routing 

problems, and understand relationships among networks.
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Appendix A1

Proof of Theorem 8,8

The "only if" part follows immediately from Theorem 3.2. To prove the "if" 

part, let j£Sj be the switch whose straight output link is the blocked link on 

the routing path and i—k be the largest stage number for i > k > 0 such that 

a switch at stage i—k has a nonstraight output link on the routing path, (i) 

Assume that the nonstraight link at stage i—k found in backtracking is link 

—2 . Clearly, as illustrated in Figure 5, the path

, (j+2'~kJtl)eSi_k+1 , .... , (j+2t)esi , jesi+1) is a rerouting 

path for path {{j+2* k)GSi_k , , jESi_k+2 , .... , , j£Si+l). (ii)

Assume that the nonstraight link at stage i — k found in backtracking is link 

4-2*"*; similarly path

, {j~2l~k+1)eSi_k+l , .... , {j-2l)£St , jesi+1) is a rerouting 

path for path ((i-2,_*)€5i_jfc , , jESi_k_i.2 , .... , iCS; , jESi+1). □

Proof of Theorem 8.4

The "only if" part again follows immediately from Theorem 3.2. To prove the 

"if" part, let notations i, i—k and jESi be the same as those in the proof of 

Theorem 3.3. The proof is illustrated in Figure 6. From Theorem 3.2, 

(j—2l)£Si+1 and (y4-2*)G*S't+1 can reach the same subset of destinations so that 

it does not matter which is on the rerouting path, (i) Assume that the non- 

straight link at stage i—k found in backtracking is link —2l~k, It is self- 

explanatory that path

i[j-^~k)eSi_k , (y+2i-fc+1)6^_fc+1 , .... , U+2i)eSi , {j+2i)esi+1) is a rerout­

ing path for both paths {{j+2t~k)eSi_k , j€Si_k+1 , • • • , jGS{ , {j+2l)ESi+l) 

and ((i+2‘, jES{_k+1 , ■ • • , jES{ , (i-2*)GSl+1). (ii) Assume that 

the nonstraight link at stage i—k found in backtracking is link +2*~k; similarly



path (U-2i-t)€Si^ , ,...., tf-ifjesj) , (j-2*)6Si+1) is a

rerouting path. Note that the participating input link of j&S',- may be a non­

straight link; however, this is just a special case for k — 1. □

Proof of Corollary \.2

First two lemmas are presented, which are to be used to prove Corollary 4.2.

Lemma Al.l In the TSDT scheme, the links +2l and —2l connected to a switch 

jdzSi are specified by tag bits = j)and 6/6w+/ = j)ji respectively, and

the straight link is specified by btbn+l = j^) or btbn+l = j)]).

Proof: Follow immediately from the definition for the TSDT scheme. □

Lemma Al.2 (i) Let jG<Sj and (j-l-2/)G<S,;+1 be two switches joined by a positive 

nonstraight link +2l and they are on a path to the destination d0^n_v In the 

TSDT scheme, the routing tag can be set to b[bn+i — dtdi to control routing to 

send the message from jG-S) to {j+2l)£Sl+1. (ii) Let j£Sl and [j— 2l)ESl+1 be 

two switches joined by a negative nonstraight link — 2l and they are, on a path 

to the destination d0/n_1. In the TSDT scheme, the routing tag can be set to 

bibn+i = d[di to control routing to send the message from jG<S/ to (j—2^)G*S’/.1_1- 

Proof: Only proof for (i) is given and proof for (ii) is similar. From Lemma 2.1 

and the proof for Theorem 3.1, the switch j{= j+2i)GS'j+r has the label 

io/n-i = do/l-idiwi+i/n-i) where wl+ljn_x depends on network state. So 

j i = dt. Additionally, j / = because j' = j +2l. Hence j) = d[. By Lemma 

Al.l, b[bnj^i = d[d[. D

Proof of Corollary 4.2:

Only proofs of (i) for (a) a straight link blockage and for (b) a double non- 

straight link blockage are given; proofs of (ii) for cases (a) and (b) are similar. 

Since the destination bits always remain unchanged, only state bits need to be

- 36 -
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considered, (a) This proof first derives the state bits controlling the rerouting 

path Q+ = ((i+2*:-fc)G5f_fc , (i+2*-*+1)6S;._*+1 , .... , (i+2*‘)G5f) in Figure 5 

(which illustrates the proof of Theorem 3.3). Since the links on path Q+ are all 

positive nonstraight links, by Lemma A1.2, 6= d,-represents 

the state bits for path Q+. In addition, by Theorem 3.2, the link of stage i on 

the rerouting path can be either link —2* ((i+2* )££,- , jESi+1) or link +2* 

((j+2i)G5i , (j+2i+1)esi+1). Thus b'n+i can be 0 or 1. (b) Notice that the 

rerouting paths from stage i—k to stage i found in Theorem 3.3 and Theorem 

3.4 are the same except the the link of stage i on the rerouting path is a non­

straight link in Theorem 3.3 (Figure 5) and it is a straight link in Theorem 3.4 

(Figure 6). By Lemma Al.l, the state bit b'n+i, which specifies the straight link 

at stage i in Theorem 3.4, can be 0 or 1. So the state bits specifying the 

rerouting path from stage i—k to stage i are the same as those in (a). 

b w+(t+i)/2w-i can be arbitrary because, regardless of the values of b n+(,-t-i)/2n-i> 

as long as the destination bits are &o/n-i ~ ^o/n-v the path can reach the des­

tination d0/n—l* a 

Proof of Theorem 6.1

Consider two cube subgraphs generated by adding x and y, respectively, to the 

original labels of all switches of the IADM network. It is shown that 

N Nx mod — ^ y mod — is a sufficient condition for these subgraphs to be dis- 
2 2

tinct in the sense that they differ in at least one link of the first n—2 stages (it 

is also possible to show the necessity of this condition). To prove that the sub­

graphs are distinct, it is shown that, given the condition above, there exists 

some physical switch j* £Sn_2 such that (j*+x) and (j*+y) differ in their

(n—2)-th bit, i.e. the switch with logical label (j +x) is an even,- switch and the
$switch with logical label (j +y) is an odd,- switch, or vice versa. This implies



- 38 -

that a different nonstraight link is used and therefore the subgraphs are dis­

tinct. Let the h-th bit of ^o/n-2 and y0/n_2 be the highest order bit such that 

xh^yhr i-ev xh+i/ri-2 = Vh+i/n-2- Here h < n— 2 since only the topology of the 

IADM network from stage 0 to stage n— 2 is considered. Without loss of jgen- 

erality, assume that xh = 0 and yh =1 and let j a/n-2 = %/h-ilxh+i/n-2 

(where 00/^_1 is a string of h 0’s). Then

tjc
(j +x)o/w_2 = ®0/a-1(0+1)1/1+1/w_2 = xo/h-i^-h/n-3^ and 

{j +J/)o/n-2 = J/0//i-l(1+1)1/i+l/ji-2 = yo/h-l^h/n-3^

Ndiffer in the value of their (n—2)-th bit. Therefore there exist — distinct cube 

subgraphs when considering only the topology of the IADM network from stage

N0 to stage n— 2. For each of these cube subgraphs, there exist 2N subgraphs 

of the IADM network which differ from it only in the choice of the nonstraight 

links at stage n—1. Thus, the IADM network contains at least —•2JV distinct 

cube subgraphs. □

Appendix A2: Proof of Algorithm BACKTRACK

Terminology and two lemmas are introduced first in order to lay the 

ground for the verification of algorithm BACKTRACK. Given a source and a 

destination, a switch on some routing path for the source/destination pair is 

called a pivot. Conversely, by the definition of a pivot, a path in the IADM net­

work can reach the destination if and only if it passes through a pivot at each 

stage. The set of pivots at each stage varies with different source/destination 

pair and is characterized by the following lemma.



- 39 -

Lemma A2,1 Let k be the smallest stage number for which there exists a non­

straight link on at least one routing path from a given source So/»i-i to a given 

destination do/n-i in the IADM network. For this source/destination pair,
f f A

there is exactly one pivot at stage k, 0< k < k, and there exists exactly two
If a i

pivots at stage k , k+1 < k < n— 1. The pivot at stage k is ^o/k'-isk'/n-v The 

pivots of stage k are 40/kViajb7n-r and either {d0/k"_1sk«/n_l+2 ) or

A

Proof: By definition of k, the routing paths from stage 0 to k—1 consist of only 

straight links. From Theorem 3.2, there exists a unique path from stage 0 to
a i i A

stage k and, therefore, the set of pivots at stage k, 0 <fc< fc, consists of
|( A a

exactly one pivot. Existence of exactly two pivots at stage k , k+1 < k < n—1, 

and that their distance is 2* follow immediately from the single theorem in [13]. 

Since the IADM network functions like an ICube network when every switch in 

the IADM network is set to state C, d0^k_1sk^n_i£Sk, 0 < k < n— 1, is on a 

routing path [6] [15]; the lemma follows. □

Lemma A2.1 captures a simple characteristic of routing in the IADM net­

work and, for each source/destination pair, it allows the discussion to focus only 

on the behavior of the pivots at each stage. A pivot is unreachable if all its par­

ticipating input links (defined in Section 3) are blocked, and it is closed if all its 

participating output links are blocked. A pivot of a lower-order stage can be 

closed due to the closure of pivots at higher-order stages. Likewise, a pivot of 

higher-order stage can be unreachable due to unreachability of pivots at lower- 

order stages. From the definition of a pivot, an important lemma which 

identifies the causes for the absence of blockage-free paths between a 

source/destination pair is stated as follows.
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Lemma A2*2 In the IADM network, for a given source/destination pair, if all 

pivots of some stage are closed or unreachable, there exist no blockage-free 

paths for the source/destination pair. □

Lemmas A2.1 and A2.2 describe the behavior of the switches and the links 

in the set of routing paths for each source/destination pair. These lemmas 

make it possible to ignore switches other than pivots and links other than parti­

cipating links at each stage for a source/destination pair. These results greatly 

simplify the complexity of rerouting in the IADM network.

The correctness proof for algorithm BACKTRACK consists of two parts. 

First is that the path found by the algorithm is a valid path leading to the des­

tination and capable of avoiding blockages in the network. Second is that algo­

rithm BACKTRACK always finds a rerouting path if there exists any, which is 

equivalent to that algorithm BACKTRACK returns FAIL only if there exist no 

blockage-free paths. To prove these two parts, it requires examination of the 

conditions that terminate algorithm BACKTRACK.

The rerouting path found by the algorithm can route the message to the 

destination because the destination bits of the rerouting tags equal to the 

binary representation of the destination address. The rerouting path’s ability 

to evade blockages is a natural consequence of Corollary 4.2, on which steps 3 

and 10, the only steps in the algorithm that generate rerouting tags, are based. 

Notice that step 6 returns the rerouting tag if the rerouting path found from 

step 3 or 10 is blockage-free.

The steps that return FAIL are steps 1, 4a, 4b, 5, 8 and 9. Steps 1 and 8 

return FAIL because no alternate routing paths exist. Steps 4a, 4b, 5 and 9 

return FAIL because the communication between the source and the destination 

is broken due to the blockages in the network. So it is impossible for a
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blockage-free path to exist without algorithm BACKTRACK finding it and not 

returning FAIL. Validity of steps 1 and 8 was discussed. Therefore, the proof 

for the second part is complete if steps 4a, 4b, 5 and 9 are verified.

Proof of steps J^a and 4b

In the following discussion for steps 4a and 4b, only the case where link- 

found = 1 is explored; the cases where link found = 0 can be treated analo­

gously. In Figure 5 (linkfound — 1 and q = i), the blockage at stage q on path 

P is a straight link blockage and the link at stage q on the rerouting path is 

chosen, to be ((i+29)GF9 , (j+2q+1)£Sq+1) by setting b'n+q = dq (Lemma A1.2). 

A blockage in ((j+2q)eSq , (j+2q+1)eSq+l) can be overcome by rerouting the 

message through the other nonstraight link ((y+29 )G5,jJ , j£Sq+1). This is done 

by complementing b n+q. If ({j-\-2q)£Sq , j£Sq+l) is also blocked, links 

U£Sq , jG^+1), ((j+2q)esq , j&Sq+1) and ((j+2q)£Sq , u+2q+1)esq+1) are all 

blocked, thus both pivots at stage q, j£Sq and (j+29)&S'9, are closed. HenCe no 

blockage-free paths exist. The above explains step 4a. In Figure 6 (link- 

found = 1 and q =i) both nonstraight links of j£Sq on path P, 

(j€Sq > (i“2-)€<^+i) and (j€Sq , (j+2q)£Sq+1), are blocked and thus pivot 

j€Sq is closed. If ((j+2q)£Sq , (j+2q)£Sq+l) is also blocked, pivot (j +29 )£Sq 

is also closed. Because both pivots of stage q , j£Sq and (j+2q)£Sq, are closed, 

there exist no blockage-free paths. This explains step 4b. □

The scope of the correctness proof for steps 6 and 10 is limited to the case 

where the first nonstraight link found in backtracking is —2r (linkfound = 1) 

and assumes that the blockage at stage i is a double nonstraight link blockage. 

Discussions for the cases where link +2r is the first nonstraight link found in 

backtracking and where the blockage at stage i is a straight link blockage can 

be treated analogously.
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An interesting property regarding the behavior of the pivots at each itera­

tion of backtracking is discussed here. This is to be used in the correctness 

proof for steps 5 and 9. The discussions are associated with Figures 5 and 6 for 

q = i and r = i—k. Since the links on path P from stage r+1 to q—1 are all 

straight links, by Theorem 3.2, there exist no alternate routing paths from 

j£Sr+l to rjESq. So the closure of j£Sq would effectively close every pivot 

j £St, r +1 < l <q —1. Hence if j£Sq is closed, every j €<S), r+l< / <g, is 

closed. Due to the closure of j£Sr+1, ((j+2r)£Sr , j£Sr+l) is blocked. If 

((i+2r)G<S'r , (y+2r+1)E<Sr+i) is also blocked (step 6), both participating output 

links of (y +2r)E«Slr are blocked and thus {j+2r)£Sr is closed. After j and q are 

updated in step 7 (i.e. j «— j+2r , q «— r so that (y+2r)E<S'r becomes j£Sq), 

the same type of blockage recurs (i.e. both nonstraight output links of j£Sq 

are blocked and thus j£Sq is closed) as that which took place when the algo­

rithm was first entered (i.e. q = i) and thus a new iteration of backtracking 

begins. For convenience of reference, the property described in this paragraph 

is formally restated as a lemma.

Lemma A2.3 In each iteration of backtracking in algorithm BACKTRACK, on 

path P every pivot j£S[, r+1 < l < q, is closed; if

(0+2r)GS,r , (j+2r+1)GS'r+1) is also blocked, (j>+2r)GSr is also closed. □

Beginning from the second iteration of backtracking, the link of stage q on 

the rerouting path is always a straight link, since the blockage at the onset of 

each iteration of backtracking is always that both nonstraight output links of 

j£Sq are blocked (Figure 6). Hence only step 4b is concerned in checking the 

blockages of stage q on the rerouting path. As a result, in Figures 5 and 6 

(linkfound =1), the links on path P from stage r to stage * consist of only 

straight links and negative nonstraight links; correspondingly, the links on the
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rerouting path from stage r to stage i consist of only straight links and positive 

nonstraight links. Similarly, for linkfound = 0, the links on path P from stage 

r to stage i—1 consist of only straight links and positive nonstraight links; 

correspondingly, the links on the rerouting path from stage r to stage i—1 con­

sist of only straight links and negative nonstraight links.

Proof of step 5

Proof of step 5 is illustrated in Figure 6 for q = i and r = i —k. Because of 

Lemma A2.2, it suffices to show that, in each iteration of backtracking, a dou­

ble nonstraight link blockage at stage q and an additional link blockage in 

((j+2l)£S[ , (y+2i+1)G-S';+1), for some /, r-fl < l < g— 1, effectively close pivot 

jESi+i and make .(y+2*)E<S/+1 unreachable. From Lemma A2.3, on path P
A

every pivot j r+1 < l < Q~1> is closed. On path Q, if a link blockage

also occurs in ((j+2l)£Sl , {j+2l+1)£Sl+1), pivot (j+2,+1)E5/+1 becomes 

unreachable unless jG.S{, the other pivot at stage l, is also connected to 

(i+2/+1)E^+i. This would occur only if link +2*+1 is a legitimate link at stage 

l, i.e. 2l+1 — 2n = 0 mod 2n (a straight link). But l < q —1 < (n— 1)—1 so that 

l+l ^ n. q < n— 1 since q is the stage number at which a output link is 

blocked and stage n— 1 the last stage that has output links. Because pivot 

is closed and (j-|-2*+1)E«S'/+i is unreachable, there exist no blockage-free 

paths. □

Proof of step 9

From Lemma A2.3, at the end of each iteration of backtracking, (j+2r)£Sr and 

j'E-S'j.+i are closed. After a new iteration of backtracking starts and step 7 is 

executed, (j+2r)£Sr is relabeled as j(zSq and j£Sr+1 is relabeled as 

{j-2q)£Sq+v So the condition that j£Sq and (j—2q)£Sq+1 are both closed is a 

priori in the beginning of the new iteration. Since (j— 2q)£Sq+1, one of the
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pivots at stage q +1, is closed, any rerouting path must pass through 

{j-\r2q)^Sq+1, the other pivot at stage q +1. It is shown below that such a 

rerouting path does not exist if the nonstraight link at stage r found in back­

tracking is +2r. The proof is illustrated in Figure 9. The current routing path 

is {(j-2r)ESr , j€.Sr+1 , • * • , j£Sq , [j—2q)€Sq+1) and there exists a rerout­

ing path ((j—2r)£Sr , • • • , (j-2^-1)eSq_1 , (j-2q)(ESq , (j-2q)6Sq+1). Thus 

(j—2q)<ESq and j^Sq are the two pivots at stage q. Since pivot j£Sq is closed, 

any rerouting path must pass through pivot (j—2q)£Sq. But (j— 2q)£Sq is not 

connected to (j+2q)(zSq+1 since link +29+1 is not a legitimate link at stage q, 

0 <9 < n— 1. Therefore, no paths that pass through (j—2q)£.Sq and 

(y+29)G<S'9+1 exist. Note that although further backtracking to a still lower- 

order stage is possible, as long as the nonstraight link at stage r found in back­

tracking is +2r, the two pivots at stage q never change. That is, further back­

tracking will not result in a path that passes through (j—2q )ESq and

(y+2«)es„+1. □
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Figure 1. The Indirect Binary N-Cube (ICube) network for N=8 (according to 
the first graph model); two possible states for each box are shown (i.e. 
straight and exchange).
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Figure 2. The IADM network for N=8 (according to the first graph model);
tven{ and odd{ switches, 0 < * < 2, are enclosed with bold and regular 
edges respectively. The solid edges (links) show the ICube subgraph.



Figure 3. The Indirect Binary N-Cube (ICube) network for N=8 (according to 
the second graph model).
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Figure 4. The connection links of stage t of the ICube network can be described 
by the function AC{. The connection links of stage i of the IADM 
network can be described by the union of the functions AC,-' and AC7,-.
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Figure 5. Rerouting for a straight link blockage in (jES,- , j£Si+l). Path 
({j+2'~k)eSi_k , jes{_k+1, • • • ,jesi+1) is a segment of the original 
path; {{j'+2i-k)G3i_k,{j+2i-k+1)G5i_k+l, ••• , (i+2,')£5< , jeSi+l) and 
((i+2-fc)£5,_, , (i+2*-fc+1)€5,_,+1 , • • • , (i+2*)eS,. , (j+2*+1)ESI+1) are 
the rerouting paths for it.
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Figure 6. Rerouting for a double nonstraight links blockage in
tieSi , (i-2’)€5i+1) and U^St »(i+2‘)€5i+i). Path

, (j+2*-fc+1)€5,._,+1 , • • • , (i+2*)G5,. , (j+2*)GS<+1) is a
rerouting path for both paths
((j+2'-*)6S,-i > J^i-k+l > . ies,.+1, (i-2')es<+1) and
(W+2‘-*)esu , j&i-k+l > • * • , iG*5i+1 , (i+2‘)€5i+1).
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Figure 7. AH routing paths from 1£S0 to 0£S3 in an IADM network of size 
N=8.
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STAGE 0 1 2

Figure 8. A cube subgraph generated by relabeling each switch j to (j'+l) mod 8 
for an IADM network of size N=8.
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—O—D—

Figure 9. Rerouting for nonstraight output link blockages of switch j&Sq. The 
original path is ((j-2r)eSr , j£Sr+1, • • • , jeSq , {j~2q)eSq+1) and the 
nonstraight link found in backtracking is a positive link 
{(j-2r)esr ,j<ESr+1).
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