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ABSTRACT

~In this report we present some initial results of our Workicomp_lete‘d thus
far on "Computational Structures for Robot Control”. A SIMD architecture
v_v'ith, the crossbar interprocessor network which achieves the parallel process- ‘

ing execution t;l_me lower bound of o [aln]), where a; is a constant and n is
the nﬁﬁi‘ber of r_nanipulator joints,,fc;r the computation of the invefée dy.na'nif
iéé problem, ’is discussed. A novel SIMD task scheduling algorithm th:a‘.t“
bptimizeé the parailel processing performaﬁce on the indicated airchiﬂtectur‘e‘ |

is‘ »zilso’,delineated. Simulations performed on this architecture show S-péédﬁp
) fvalcto.l" of 3.4 over previous related work completed for the evaluation of 'thé
specified problem, is achieved. Parallel processing of PUMA forward '5‘1’1&7
iﬁverse 'kinématics solutions is next investigated using a particular schedul-
‘ingvalgo'r'_lr‘thm.' In addition, a custom bit-serial afray architecture is designed
for the computation of the inverse dynamics problem Within the bit-seriz-zl‘
execution time lower bo,undbof o(culk +rc2k'n)‘, where c¢; and c, are speci’ﬁédv
conéta’.nts,’ k‘ is the word length, and n is the number of manipulator joints.
Finally, inapping of the Newton-Euler equations onté a fixed systolic array is
- investigated. A balanced architecture for the inverse dynamics problem
* which achieﬁres the systolic execution time lower bound for the specified
pfoblem is:»depicted.» Pleaée note again that »tbhesé revsults are only prelim- .
i_nary »a}ﬁd »r»imp’roveme»nts, to our algorithms and éfcﬁitectures are currently

still beiﬁg’ m#de.



CHAPTER 1 |
- - INTRODUCTION AND BACKGROUND

1 1 Introductlon

Inverse Dynamlcs, Forward and Inverse Klnematlcs are partlcular robot
"control a.lgorlthms ‘which need to be computed during regular robot servo
control . loops. Unfortunately, the computational complexity - of these

o algorlthms (see Table 1.1) degrades the servo control loop time of present-

day.robot control systems. This preliminary report therefore mvestlgates :
hlgh-performa,nce computational structures to evaluate the ' specified
algorithms in minimal time. The architecture, operation, performance, and
_deriiratiOn of lower bounds for the execution times and number of precessors
on speclﬁc computatlonal structures to evaluate the speclﬁed problems. is
dlscussed ’ :

~ The forward and inverse kinematics algorithms deal with the analytical
study of the geometry of motion of a robot with respect to a fixed reference
coordinate system. The former algorithm determines the position and
orientation of the end-effector of the manipula‘,ter with respect to a fixed
reference coordinate system, given the joint angles and geometric link
parameters. Conversely, the latter algorithmic formulation determines the
joint angles, given the position and orientation of the manipulator with
-respect to a fixed coordinate system. The second scheme is thus wused
primarily to determine whether the manipulator can reach the desired hand
position and orientation, and if it can, find how many different manipulator
configurations the given manipulator position and orientation may satisfy.
Since the independent variables in a robot arm are the joint variables, and a
task is usually stated in terms of the reference coordlnate system, the inverse
kinematics problem is used more frequently



Table 1.1 Computational Compexity of Robot Control Algorithms

Inverse Dynamics

eration ' Forward Inverse |
QP o (Newton-Euler) - Kinematics Kinematics :
Type of ', Non-Recursive | Non-Recursive |
Equations Llnear Rccmcncc Non-Linear Non-L_'i,r_iearv
Multiplications 678 100 74
Additions 597 77 66
“Transcendental - 137 62
'Square Root - - ‘3“: |
. Division - -~ 10




The 'inverse kinematics solution may be obtained by tvarious'methods
such as inverse transform, screw algebra, dual matrices, dual quaternian,
' iterative, and geometric approach. The iterative solution often requlres a
very . hlgh number of computations and does not guarantee convergence to
the correct solution. The inverse transform method yields a set of explicit,
non—1terat1ve joint angle equations. The dataflow structure of this techmque '
will therefore be used in this thesis. The architecture, operatlon, and
performance of a parallel processing architecture to compute. the spemﬁed
klnematlcs algorithms for the PUMA robot is described.

. The inverse dynamics problem is that of efficiently deterr‘nining'_the
motor torques required to drive a manipulator arm in free motion.: These
torques ‘must be evaluated repeatedly during servo control loops to avoi‘d
undesirable motion deviations of the robot arm from the desired’ trajectory
p.ath.* The computation of the torques is, however, a very 'mather’natical'ly
intense task which degrades the servo loop time of present-day robot control
systems. . Many researchers have thus concentrated on simplifying the
dynam1cs equations [30,35,57], or developmg new computatlona.l archltectures
» [5 19, 26 32,34,35,43,45,58,60] to reduce the servo sampling period. In this
. paper, the latter approach is employed

;T-here are a number of ways to formulate the robot arm ‘dy'na‘mics
eq,vuationsﬂ of motion. They include the Lagrange-Euler [4], recursive
Langrange-Euler [18], Newton-Euler [36] and the generalized d’Alembert
principle functions [30]. Among these methods, the Newton-Euler (N-E)
dynarnioé equations is the most efficient and has been shown to possess the
computational time lower bound of O(n) [36], where n is the number of
degrees-of-freedom of the manipulator. The N-E algorithm will therefore be
. used to implement the various computational structures discussed in this
thesis. It should, however, be noted that the proposed architectures may be:
customized to meet the computational model of other formulatlons of the
inverse dynamics problem.

‘ The N-E formulation uses two types of iterative recursions, namely, the
forward and the backward recursions, which are applied to the robot links
sequentially. The forward recursion propagates kinematics information —
such as linear velocities, angular accelerations, and linear acceleratlons at
the center of mass of each link — from the inertial coordinate frame to the
hand coordinate frame. The backward recursion propagates the forces and
moments exerted on each link from,the'end-eﬁ'ector of the manipulator to the
base reference frame. The parallel, pipelined, and recursive nature of the N-



E dynamics algorlthm suggests that it is amenable to parallel processmg‘

"'7'structures using off-the-shelf processors, as well as parallel and pipelined

*custom VLSI array architectures. This thesis therefore also presents such
~computational schemes. S

| 12 Previous Work

" Several parallel architectures have been proposed to solve the inverse

 dynamics problem. Luh and Lin [35] proposed a modification of the

traditional "branch and bound" scheduling technique to process the equations

in parallel on a set of n CPUs. Kasahara and Narita [19] continued along

the same path by proposing to use the DFIHS (Depth-First-Implicit-

Heuristic-Search) scheduling algorithm for this purpose. However, in both
~ the above studies, the important problem of interprocessor commumcatlon-
which degrades the performance of their particular multlprocessor structure,
is 1gnored

- Orin, Chao and Schrader [45], recognizing the pipelined nature. of the
N—E formulation, proposed assigning two pipelined CPUs per link to compute
the forward and backward recursions in each processor, respectively‘.' Their
structure eliminates some of the performance degradation problems
‘ assoclated with interprocessor communications that exist in the computation
of the N-E algorithm for parallel processing environments. - The task  of
computing forward or backward iterations of a single stage of the N-E
recursive algorithm at a smgle CPU location does not however, produce-
sufficient speedup over a smgle CPU solutlon : |

- Liao and Chern [32] suggest usmg the CBAP (Cross—Bus ‘Array
.Processor) which uses a large set of bit-parallel processors arranged in an
array format with two sets of busses crossing over the array in’ two
‘dlrectlons The primary disadvantage of this system is the cost-mefﬁclency
of using a large number of bit-parallel array processors which are not fully
utilized. - Additional problems include complexity in the operand ‘data .
.' ahgnment process and the directional ‘data-shifting mechanisms used in the
. control- of the .array, causing the system to be vsusyceptlble to
o hardware/software faults. o ) AR

Lathrop [26] proposed two parallel algorithms on the inverse dynamics
‘problem using a group of special purpose processors. One is a linear-parallel.
. algerithm'»and the other is a logrithmic-parallel algorithm based on the



partial réum technique. The main . concern with both approaches is the
massive - buffering - between forward and backward recursions, which
deteriorates the performance. The second problem is that they both involve
complex interprocessor communication structures which frequently - cause
’ data to be fetched and, as a result, data for operand pairs are not properly
ahgned for parallel computations. ' L

~Lee and Chang [29] recently proposed usmg the recursive doubllng '
algorlthm with a modified inverse perfect shuffle 1nterconnect10n scheme
between a set of parallel processors. Their processor interconnection
 structure improves pipelining and eliminates some of the problems assoclated

- with 1nterprocessor communication. They did not, however, 1ncorporate any

operand -access mechanisms into their structure to allow proper
synchronlzatlon of the parallel processors. Their implementation requires a
~ total of 530 modular processors, where the processor complexity requlred to‘
. perform 3-D parallel vector dot product and for vector addition along with
the - expenswe interconnection structure among . processors indicate this
'approach may not be a cost-efficient and fault-tolerant practical approach

For the computatlon of the inverse kinematics algorithm, which is an
equally 1mportant problem, Lee and Chang have proposed a plpehned VLSI
, architecture using CORDIC processors as building blocks of the structure

Delay buffers were inserted along data paths of the system t.o,_,vbalance
~operand arrival time of the CORDIC computational nodes. The author has
no valid criticism of this custom VLSI architecture. R

1.3 Organization of Preliminary Report

Parallel processing using off-the-shelf processing elements to evaluate
- the inverse dynamics, PUMA forward and inverse kinematics algorithms is
‘discussed in chapter 2. Ideal lower bounds on the number of parallel
| processors and execution time for the computation of the inverse dynamics
problem in the specified computational model is derived here. A novel
scheduling algorithm for the parallel processing of N-E equations on an SIMD
’ machlne with a particular interprocessor communication network is pregented
next. Simulation results performed on this architecture are then delineated
and compared to the performance of previous related work completed on
this problem. -The second part of this chapter describes the performance of
both types of kinematics algorithms in a multiprocessor environment with a-



shared memory interprocessor communication mechanism while wusing a
particular instruction scheduhng algorithm.

In chapter 3, a custom bit-serial array architecture for the computatlon
of the inverse dynamics problem is presented. The organization, operation
and performance of the proposed system is described. In addition, the
architecture and intercell communication protocol of an individual bit-serial
cell (which is used as the building block of the overall array structure) is
delineated.

Mapping of the Newton-Euler equations of motion onto a fixed systolic
architecture is depicted in Chapter 4. The systolic design methodology for
this mapping process is discussed here. This design procedure is used to find
a basic set of systolic processor architectures which are used to build the
complete systolic system. Integer linear programming is applied for the
optlmal buffer assignment problem to obtain a 'balanced” systollc array for
the computation of the specified problem. The performance, operation,
de31gn and lower bound task latency costs of such a systolic system are also
delineated here. Finally, Chapter 5 provides a summary of conclusmns
drawn from this report. '



S o CHAPTER 2 o
o ~PARALLEL PROCESSING OF ROBOT INVERSE DYNAMICS
S FORWARD AND INVERSE KINEMATICS COMPUTATIONS

2.1 Introduction

In the first part of this chapter, we discuss parallel processing of the inverse
dynamics computational problem. First, the ideal lower bounds for the number of
parallel processors and execution time to evaluate the specified problem in a parallel ’
processing environment using an optimal scheduling algorithm is derived. The
- proposed multiprocessor architectural model is then presented. Next, a scheduling
algorithm customized for optimal parallel processing on the proposed system model is
described. ‘Further, simulation results for computing the desired algorithm using the
proposed. architecture and scheduling methodology is delineated and compared to
prev1ous work completed on this topic.

In the second part of the chapter, the parallel processmg system model for the
computation of PUMA forward and inverse kinematics algorithms is presented. This
architecural model for the evaluation of the specified problems is simulated by using
the DFIHS (Depth-First-Implicit-Heuristic-Search) algorithm [19] as the primary task
scheduling tool.



- 12.2"Parallel P'ro'cessing of _the Inverse Dynamics Problem

| 2. 2.1 Ideal Lower Bounds on the Number of Processors and: Executlon Tlme of
“the Inverse Dynamlcs Computatlonal Problem while running on a
Multlprocessor System usmg an Optlmal Schedulmg Algonthm. ‘ '

‘dynamlcs problem in minimal time while runmng in a parallel processmg
environment using an optimal scheduling algorithm is discussed here. In addition, the
limitation on. speeding up the specified problem in the indicated computational
- architecture. is also investigated. Before deriving these ideal lower bounds, the
following notation, definitions, and lemmas must be estabhshed ’

Notatlon

ml;— ‘:Mlm_mum number of parallel processors needed to >comp‘ute ’ the “inverse
| dynamics problem in minimal time using an optimal scheduling algorithm. -

Tp= Lov'Ver bound on the execution time of the inverse dynarnies prohlem‘ whiie ‘
~ running in a parallel processing system with mp processors, usmg an opt1mal
. scheduling algonthm : A

E<I> denotes a linear arithmetic expression of / distinct atoms, where an atom is a
constant or variable, e.g. E<4>=a+b-c/d. '

"’YT

Tep= Mlnlmum time to perform the set of computations in the crmcal path of a task »}

graph G.

‘V F;D.‘V’ﬁnihtion 2.1: : The activity of vertex j [10] in a taSk graph 15 deﬁned % - |
f(z j,t) = 0, otherw1se.

- where f(T;,t) indicates the activity (or. computational délay) of
- vertex j (or task T)) along time, accordlng to the restrictions
. 1mposed by the task graph, and T is the earhest completlon t1me .
of task T;. ' ‘




Deﬂnition» 2.2:. EThe load densuy functlon [10] is defined by
F(t1) = 2 f(x, e

where F(t,t) depicts the total activi‘tyvof the task graph as a
function of time, and / is the total number of tasks in task graph

Definition 2'.3: . The load density function within the interval [0, 9’2]Y'C'[O, tép]
o after all tasks have been shifted to yield minimum overlap with
this interval [10] is defined as, '

0, o
R(8;, 05, )= [ F(r,0)dt. | 22)

. 6y » : S

Lemma 2.1: A lower bound on the minimum number of processors. [10] to

execute a task graph G within time tcp is given by,

0
J’ R(6,, 0,, t) dt
14,

= | max
™7 o6 0, -
where the max1mum is taken over all 1nteger tlme segments

Theorem 2.1: The minimum number of parallel processors needed to compute
the inverse dynamics problem within time tcp of the Newton—
Euler task graph using an optimal scheduling- algonthm is n,
where »n is the number of manipulator joints.

Proof: Using Eq. 2.1, the load density function for the inverse dynamics problem
is, - '
» bn . ‘ ) )
F(tt) = ¥ f(T,t) = bybyn @)
& _

‘where b; is the number of tasks in a single iteration of the N-E algorithm,
and b, is the number of tasks in the complete N-E task graph which have an
~unit activity at a set vertices T;. The second load density function within
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~ time mterval [0, 62] c [0, tcp] to y1eld minimum overlap for the inverse

B dynamics problem is found by Eq. 2.2 to be,

- R(8;, 85, 1) =b;bn(8, - 6))

a Thus, by lemma 2.1, m, must be of the form,

. . | 97,
| mp= | max([0y, 8;] | 5 L [ bybmn(8, - 6)) dt
| 2= 01§,
L .
= | max [b;by(0,—0/)n]| - : 2.4
[91'92][ 1b2(82 = 0,) ]-l | , | ._(. )

It is evident from Eq. 2.4 that the minimum number of parallel pfoéessors to _
compute the inverse dynamics algorithm using an opumal scheduling
algonthm is n. Note. that this lower bound occurs when

[9 [blbz(ez 91)-| is unity.

Lemma 2.2: ‘The set of computatlons of a graph G cannot be completed with m

processors in a time less than t; [10],

tx

t =tcp+ max |—tg+— j'F(tt) dt
tyStistee

where ty is a discrete point in time and < is the latest complctlon
time of a spe01ﬁc task. ' -

Lemma 2.3: ©  The critical path time, tcp, Of the inverse dynarnics task gra{ph S iS

'Proof: ’

of the form a;n, where a, is a specified constant and n is thc number
of manipulator Jomts ' ’ ‘ :

Let X, be the computational delay in the cntlcal path of a single iteration of

" “the N-E dynamics algorithm. Thus the critical path time for n 1terat10ns is

‘tep<n>=x;n. The inverse dynamics problem may be considered as

computing a set of joint torques which result in obtaining the joint torques

~ Each joint torque t; of joint i can be expressed as an arithmetic expression
“containing at last 3n atoms: n joint positions {g;}2;, n joint velocities {q;},
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and n joint accéierations {ﬁ}i’;vl, implying, tcp<3n>=3x;n. The previous

expression may be rewritten without changing the order of the lower 'bvound

 as tepl[Ty,. . .,T,] = a;n, where a; is specified constant.

Theorem 2.2: The minimum time to compute the inverse dynamics problem in

Pfoof:

a parallel processing system with my, processors using an optimal
scheduling algorithm is bounded below by o| a;n|, where n is

the number of manipulator links, and a; is a specified corstant. "

By substituting F(t,t) from Eq. 2.3, tcp from Lemma 2.3, and m from

Theorem 2.1 into the expression for t; in Lemma 2.2, we :obtain a
formulation for Tp, |

tx

- Tp=an+ max —tK+% jblbzndt'
o 5

) <tg<tcp

=an+tglbyb,—1) @S

Since a;, b;, b, and tg are specified constants, the lower bound for Tp,
without changing the order of the lower bound of Eq. 2.5, may be expressed
Tp[E<3n>] = o(a;n)

where E<3n> represents the computational complexity of evaluating n joint
positions {q;};1; n joint velocities {q;}{;, and n joint accelerations {q;}{;.

2.2.2 SIMD Multiprocessor Architectural Model

The N-E Equations of motion may be decomposed into a set of homogeneous
linear unidirectional and recurrence tasks (see section 4.4). This suggests that the
i,nver’sci dynamics problem is amenable to a SIMD multiprocessor-based system. The
ba$i¢ ar(__zhitegtural model of the proposed architecture to compute the desired problem
is presented in this section. e

It has been stated that "the most critical system control mechanism in a
multiprocessor-based computer structure are clearly those involved with interprocess
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and interprocessor communication"[17]. The interprocessor communication network
for the SIMD model is therefore a crucial choice. In Theorem 2.1, we proved the
ideal lower bound on the number of parallel processors, m, to compute the inverse
dynamics problem to be n, where n is the number of manipulator joints. For n>6,
industrial robots have undesired redundant degrees of freedom. It is therefore safe to.
assume n<8 for worst-case applications. Thus, for n=m<8, a "cornplete"
iriterprocessor communication strategy such as the crossbar network is desired for this
purpose due to the commercial availability of 8x8 crossbar switches. In most image
processing applications, crossbar interprocessor communication networks are
generally not used for SIMD processing due to excessive network overhead costs
since m>>8. This is however not the case for our application, as discussed above.

Fig. 2.1 illustrates the proposed SIMD system model. The configuration is
structured with m synchronized processing elements with a crossbar interprocessor
commumcatlon network. The microcode ROM (Read-Only—Memory) contains. a
statlc instruction schedule for optimal SIMD processing of N-E Equations of motion
on the proposed system model. . Each processing element PE; has its own' “local
‘memory PEM;. Interprocessor communication data is thus directed to s1ngle or
multlple ‘destination PEM; from a single source PE; at the end of every SIMD.
1nstructlon cycle. Memory conflicts, however, occur when multiple source PE
attempt to send data to the same destination PEM; through the crossbar network In
addition, an unsystematic SIMD instruction schedule in the microcode ROM may
cause PE;s to be idle during SIMD processing cycles, thus causing a longer overall
parallel execution time. It is therefore clear that an algorithm which optlmally
schedules SIMD tasks to the PEs, in addition to scheduling intermediate results
through the crossbar network without resource conflicts, is desired. The nexvt section
presents such an algorithm. ' o ’

2 2. 3 Proposed Instruction Scheduling Algorlthm for SIMD Archltecture with
i Crossbar Interprocessor Communication Network - :

In this section, a novel algorithm for the scheduhng of SIMD-mode processes
and destination processor data through the crossbar interprocessor -network i is
presented. It should be stressed here that the technique for scheduling of destination
- data embedded in the algorithm is valid only for the case of a crossbar 1nterprocessor
network Before a formal presentation of th1s algonthm the follow1ng notatron must
be estabhshed o ’
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Notation:

@
)
3)
@
)
©6)

7

Tr(®) = {Ty,...,T;}, [€Z", is a set of ready tasks (tasks whose predeeessors ha'w)e
been executed) at time t which perform the same type of operation. o

_ Tre(Y) = {Tgys. - --Tra}> k€ Z", is a set of valid Ty’s at time t.

Ng; specifies the number of ready tasks in the task set Tg;e TRS(t).

Ni(t+ A) denotes the number of interprocessor data transfers reﬁuired to-be
performed by the crossbar network at time, t + A, where A is the computatlonal '
delay of the operation initiated at time t. : -
Ng;i(t + A) is the number of unique destination processors to which ;t_he fe_Sult of
task T; executed in processor Pj is to be sent at time t+ A.

Pp;(t+ A) = {Py,...,P,}, re z", specifies the set destination processors to which_

~.the result of task T; executed in processor P; is to be sent at time t + A.

WG is a weighted precedence graph for a computational problem C, where

specifications of node task number, node computational delay and node task

type must be included in the task graph.

vProcedure ISSMACIN (Instruction Scheduling for a SIMD Multlprocessor

Archltecture w1th Crossbar Interconnection Network)

Input:

R Weighted Graph WG and number of available parallel processor__S m';' ;

Output: Set of tables T = (STAT, DPAT} where,

STEP

. STAT is a SIMD Task Allocation Table which specifies the a551gnment of
SIMD processes to parallel processors at time t.

'DPAT is a Destination Processor Assignment Table Wthh spemﬁes the
destination processor tags for the proper routing of data through the
crossbar network at time t + A.

1: By the CP/MISF method [19], determine the *‘level”” of each task in WG,

- where the level /; of task T, is defined as the longest path from the exist
" node to node N; corresponding to T Mathemaucally, '

i /; = max Z t;
jenk

| Av?here }“k is the kth path from the exit node to node N;, and ¢; is the



STEP 2:

STEP 3:

STEP 4:

STEP 5:‘

15
computational delay of node j.

Construct the priority list L in the descending order of /; and number of
immediately successive tasks n;. Order tasks of identical /; and n; 1n
lexicographic fashion. ‘ '

Initia] assignment process of tasks in WG to parallel processors__fb_r SIMD
program execution: e :

'REPEAT
‘(a) Determine Tgg(t) = {Tgy>e - - Ty}

(b)  Find Tgse Tgg(t) with max[Ng;].

(c)  Select max[x] tasks from Tg; where xe z" and l<x<m. Let Txk be
the chosen.

| .r(d) Assign the tasks T, to x parallel processors in lexicographié‘ order. “

(e) Direct the corresponding SIMD command to these x processors and
- mask the other m-x processing elements. '

(§  Perform Tg; = TR\T,.

UNTIL Ng; =0 for all possible Tg;e Tgs and t.

Rearrange the task assignment of STEP 3 at each SIMD processing state t
so that Ny(t+A) is maximized. This may be achieved by using the
generalized backtracking algorithm [15]. The explanation of this
algorithm is beyond the scope of this thesis. We may however note that
the time complexity of the specified algorithm is O(m-s), where m is the
number of PEs, and s is the number of SIMD processing states t.

- The schedulihg of destination processor data through the crossbar

in_terconnection network at time t + A is as follows:

REPEAT

(a) Find task T;e T(t+ A) with max[Ng;] where T, is the set of x tasks
‘ computed at time t. : '

(b) Broadcast result of task T; executed in processor P;, 1 </ <m, to the
set of destination processors Ppy;(t + A).

- (¢) At the same time, send/broadcast results of set of tasks T;, where

T,cTy and T;¢T;, to set of destination processors Pp;, where
PDjC PDi(t + A)
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," (d) T,(t+A) = Tx(t+ ANT,UT).

- UNTIL NCl =0 for all possible T €Ty, tand A.

Let us now illustrate procedure ISSMACIN by a simple example. Fig. 2.2 vsho“ws
~a given WG. The task numbers T; are specified within the nodes N;. The‘

' ‘nomenclature t, j next to each node spemﬁes the type of task to be computed in the

vertex, where j denotes the type of task. For purpose of s1mphclty, we shall asSume
the operatlonal delay of task type j is j time units. Applying ISSMACIN to Fig. 2.2
‘when two parallel processors with a crossbar 1nterprocessor communication network |
is presumed to be available: o '

STEP 1:» Applylng CP/MISF method to Frg 2.2:
1y =5,1y=6,13=5,1,=5,15=4,
C1g=5,13=4,13=4,1g=4,1;p=3,
"'111--2 112—3 l13—3 14=2,115=2.

STEP 2 The priority list L of the task set is:
" L={T2,T1,T3,T4,T5, Te, T7, T8 T9, T10, T12, T13, T11 T14 T15}

B S'I‘E'Pv?{:‘ Results for the first-run through the loop which spe01ﬁes the process for
RO ass1gmng tasks to processors, we get: - :
o (a) TRS(tl) = {TRI’ TRZ] WhCT@,
+ Try ={T1, T3, T4, T5} and

2 Tgry ={T2}.
(b) NRI =4, and Ng, = 1. Thus, TR1 is selected for SIMD processmg
(©) = (T1, T3, T4). |

@ Ass1gn T1 to PE1, T3 to PE2, and T4 to PE3.
(o) Direct type 1 SIMD command to PEl‘-3. _

O ®  Tg=Tp\T,=T5. -
By repeating the loop, we may arrive at the initial task ass1gnment table- of ,

- Table 2.1 for SIMD processing states t1-t5. Note that the last column of '
' the table spec1ﬁes the type of SIMD task performed atstate ti.. - .- '

STEP v4:_ 'By apply the. generahzed 'backtrackmg algorithm to Table 2.1 to mi‘nimi'ﬁze' |
< the number of i interprocessor data transfers at time ti + A, we may arnve at
) the more efficient task assignment (STAT) of Table 2 2.
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Table 2.1: Initial SIMD Task Assignment for WG of Fig. 2.1.

Time| PE 1|PE 2| PE 3| Task Type
t1. | T1 [ T3 | T4 | ty1
t2 | T2 | T6 | T9 | ty2
t3 | T5 [ T7 | T8 |  ty1
t4 | T10 | T12| T13 |  ty1
t5 | T11 |[T14 | T15 |  ty2

Table 2.2: Final STAT for WG of Fig. 2.1.

-Time | PE 1|PE 2| PE 3| Task Type

t1 | T3 | T1 | T4 | ty1
t2 | T9 | T6 | T2 | ty2
t3 | T5 | T7 | T8 | - tyl
t4 | T12 |[T13| T10 |  ty1

5 | T11 |Ta| T15 |  TY2

Table 2.3: DPAT for WG of Fig. 2.1

Time |PE 1| PE 2| PE 3

t1+A1| d3 | d2 | a1
t2+4A1 di |d2,d3|
t2+A2| d2 | o
t3+A1| d3 | d1 | d2
t4+A1| d3 | d1 | 42
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: Tgblé, 2.4; STAT for a Single Iteration of the N-E Dynami»csbAl_govrithm

Time| PE 1| PE 2| PE 3| PE 4| PE 5| PE 6| PE 7| PE 8| Task Type|
|1 |2 | 4|5 |6 |7 |9 |10]
t2 3 | 8 |20 |23 | 25 | 27 |28 | I
43 | 21 | 22 | 24 | 26 | 20 | 30 | 37 | 38
t4 | 39 | 40 |41 | 42 | 11 | 12 | 13 | 14
t5 | 34 | 35 | 36 | 46 | 47 | 48 | 31 | 1
t6: | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56
t7 | 57 {58 | 59 | 60 | 15 | 16 | 17 | 18
t8 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77
t9 | 19 | 82 | 83 | 84 | 85 | 8 | 87 | 88
| t10 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96
| t11 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104
t12 | 105 | 61 | 62 | 63 | 64 | 65 | 66 | 67
t13 | 32 | 33 | 121 [ 122 | 123 | 124 | 125 | 126
t14 | 127 | 128 [ 129 | 43 | 44 | 45 [ 79 | 8O
t15 | 81 | 118 | 119 | 120 | 139 | 140 | 141 | 142
t16 | 109 |{ 110 | 111 | 112 | 113 | 114 | 68 | 69
17 |.106 | 107 | 108 | 143 | 144 | 151 | 152 | 153
t18 | 130 | 131 [ 132 | 133 | 134 | 135 | 115 | 116
t19] 136 | 137 | 138 | 145 | 146 | 147 | 157 | 158
t20 | 148 | 149 | 150 | 159 | 178 | 179 | 180 | I
t21 | 160 | 161 | 162 | 172 | 173 | 174 | 175 | 176
t22 | 154 | 155 | 156 | 184 | 185 | 186 | I | I
t23 | 177 | 163 | 164 | 187 | 188 | 189 | 190 | 191
t24' | 206 | 196 | 197 | 198 | 199 | 200 | 201 | 193
t25 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212
t26 | 192 | 165 | 166 | 213 | 167 | 168 | 169 | 170
t27 | 217 | 218 | 219 | 214 | 215 | 216 | 182 | 183
t28 | 220 | 221 | 222 | 165 | 166 | I
t29 | 223 | 224 | 225 | 202 | 203 | 204
30 | 226 | 227 | 228
‘t81 2290 | I | T
t32 | 230 | I | I

L T o T T |
s T o T T |

L I T ]
e I |
L B o B |

_>&>>$>zzﬁz>?>>z>z»»»zzzz»23>zz%z
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| STEP 5: - Applying the loop at t2 + Ai: e
; @ Ng=2, Ngg=1, Neg=1. Thus, task T2 is thus .-selectéd’ for
‘primary data broadcasting. L
.(b) Results of T2 is therefore sent to processing elements 2 and 3

 (¢) Since Ppg c Pp, and Ppy C Py, product of T6 is thus also selected
’ for sending its results to PE1 at this time. ' '

(d) T, (R2+Al1) =T, (12 + ADNT2UT6) = T9 : S
At 12+ A2, result of T9 is naturally routed to PE2. By repeatmg the
specified loop, we may arrive at the DPAT in Table 2.3. The nomenclature
di in the table columns specify the destination processor memories PEM; to
- which respective source processor.sends its result at time tx + A

When procedure ISSMACIN is applied to parallel process a smgle 1teratron of
the N-E algorithm, the resulting STAT for this application is illustrated in Table 2.4.
~ In this Table, the initials M and A in the "task type" column specifies a multiplication
and addition SIMD operation respect1ve1y Notice the high density of SIMD task
processing when using the proposed scheduling algorithm to evaluate the 230 tasks in
a single iteration of the N-E algorithm. The idle processors prevalent from 128
through t32 will not occur when the number of iterations is more than one (which is
the case for any n-link manipulator), since tasks of successive iterations are computed
in SIMD processing fashion at the indicated idle processors at specified time intervals
Accordingly, the DPAT generated by procedure ISSMACIN for a smgle iteration of
the N-E algorithm is shown in Table 2.5. This table verifies that an average of 3
interprocessor data transfers through the crossbar network are required at the end of
every SIMD instruction processing cycle. From these two tables, it may be deduced
that the worst-case execution time to compute the inverse dynamics problem of an n-
- link manipulatOr on the proposed architecture using procedure ISSMACIN as primary
 design tool for SIMD processing is (7t, + 15t + 32t; + 65t)n, where, t, is the time to
perform an add operation, t, is the time to compute a multiplication operauon, tf is the
time to fetch operands from local PEM,, and t; is the time to send the result to the
destmatlon PEM,; i(s) through the crossbar network. :

224 Simulation Results and Comparison to Previous work

In this section, we present srmulauon results for computing the inverse dynarmcs
'problem usmg the proposed SIMD arch1tectura1 model and procedure ISSMACIN
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Table 2.5: 'DPAT fora Single Iteration of the N-E Algorithm

PE1

PES |

Time PE2 PE3 PE4 | PES | PES | PE7
t1+A1 {d3 d4 : ds 6 |47
| t1+A2 ' d3 d4 ds
- t2+A1 | d1,d2,d3 | d4,d5 d7 ds
t24+A2 : d1’ d2 |d3
t3+41 | d1 d2 d3 d4
B34+A2 | d1 [d2 |d3 d4
|t4+A1 | d5 . s |47 o lde |d1
t4+A2 ds ds- d7
t5+A1 de d1-5,d7,d8 | '
t5+A2 | d2-5,8 | d1,d7 ,
IR A d3,d4 d1 | d2 _
54N | ' d3 d4
[ te+AL | d4 ‘ ds - de a7 |
t8+A2 | d4 ds de d7
| t7+41 | d8 o d7 d1 |ds |d2 :
RSNV d8 d7 d2 -
148+A1 | dl,de-8 | d2 d3 '
t8+A2 d1,d4,ds,d7,d8 d3
18443 : d4-8 d3 | d8 |d1,d2
| 484Ad de |ds d1,d2 | ds
t9+A1 | deé d2 d3 d4 | d1
9442 , d2 ds d4 -
£10+AL | d3 d4 ds |ds |ds a7
810422 d4 de »‘
t114+A1 | d7 ds d1 d2 d3
111442 : ds d1 d2
t124AL [ d3 d4 di | ds d2 ,
t12+22 d3 d8 d1
t13+A1 | d5 de d7 |d8 |d4 |d3-
CI8134A2 | ds de '
T tla4+A1 | d8 - d4 ds d6 [d7 |d1 |42
| d§

41442
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Tabie 2.5: DPAT for a Single Iteration of the N-E Algorithm (cohﬁr;ucd) -

Time | PE1 | PE2 PE3 PE4 |PE5 | PES | PE7 |PES
1 t15+A1 | d3 | de de - |d8 - ,
1seA2 | o | - {d8  |d7 {d8 -.
| t15+A3 o ' d7
t16-+A1 | d1. - d2 d3 -
| t18+A2 dr | d2 1 | d3
t16-+A3 N S ld1 v d2 b
t17+A1 | d4,d5 | d1 d2,d3 | d8 d7 -
[ 6174A2 ds o - d4 , ds | d4
t18+A1 | d4 ds "1 de Cld3
t18+A2 d4 oo lds | lds | d3
1419+A1 |d1 |d2 - |d3 , -
£19+A2 - Cldr o |d2 | d3 A
| 619423 o 1 |di |d2
1120441 [d1 [ d2 1d3 d7,d8 | d4 |ds.deé |
£20-+A2 ) S jd3 | di .
7l t214A1 [d4 | dS de ' : .
t22+a2 | d4 ds de
22483 | | ‘ | d4 1ds | ]
23441 | d3 d1 ' ds . | de d7
£23+22 ‘ -l d1 1 ds s |
| 2401 d1,d4,d7 | d2,d5,d8 | d3,ds - ,
| 124422 | d8 S d4 |d2 [d5 |d8 |d3
625441 | d1 o ld2 | a3 | d4 .
Fi2s+a2 | jd1 |42 | d3 o ldde
t26+A1 | d7 d4 d3 |d7  ;d4 |d8 '
(628432 | a7 B ' - 1 d8
t27+A1 | d1 d2 3 , d4 |ds
£27+A2 S ldl d2 d3
{128+A1 [d1 | d2 d3 ds de .
£20-+A1 | d1 d2 3~ ,
30441 | d1 -
83042 - | dl
1i31+Al1 | d1




Table 2.8: MC 68020 Operation Execution »T'xmes

Assembler - Operational Operational
o, Code Delay Delay
Function (in # of (in ps)
Clock Cycles)
Fetch Operands from MOVE <EA>,Dx 14 0.54
Shared M or PEM,; MOVE <EA>Dy )
Store Result in Shared M E .
or Destination PEM,; MOVE Dy, > ? 0.3
~ Add ADD Dx,Dy 3 0.18
Multiply MUL Dx,Dy 28 1.88
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The MC 68020 microprocessor is used as the basis of sunulatlon ie. each PE in Fig.
2.1 is represented by the specified processor type. Table 2.6 specifies partlcular
instruction execution times of a 16.7MHz MC 68020 processor relevant to the
processing of the specified problem. This data is used to simulate the performance of
the N-E dynarmcs algorithm on the proposed architecture, and also for the purpose.of
companson with previous work.

Flg 2.3(a) shows a plot of the execution time for computmg the inverse
dynamlcs problem of a six link robot versus the number of parallel processing
elements when using the proposed architecture and scheduling algorithm. An average
lower bound processing time of 513.84ys is achieved for 7 to 9 PEs. Note that the
time lower bound is not achieved at exactly six parallel processors as required by the
ideal case (see Theorem 2.1) when a manipulator with six degrees of freedom is used.
In fact, the actual lower bound cost is achieved for the case of nine PEs where the
execution time is 100ps lower than that of the ideal case at 6 parallel processors. This
slight' distortion from the ideal case is due to the irregular number of propagation
delays when passing intermediate results through the interprocessor network. As.seen
in Fig. 2.3(b), speedup>5.7 over the uniprocessor solution is accomplished for m=>8,
where m is the number of parallel processors. Also, Fig. 2.3(c) illustrates. the
variation of architectural efficiency with the number of parallél processors.. The
efﬁc_iency is defined as S,/m, where S, is the speedup for m parallel processors.
Intiiftively," ‘the efficiency simply gives a measure of how the achieved speedup
compares with the ideal speedup. Thus, a high performance evaluation weight should
not be given to this plot. From these figures, it is evident that lower bound solutions
may be achieved by using m=8, which is also the desired number of PEs if
commercially available 8x8 crossbar switches are to be used in the architecture. |

We shdll now compare the performance of the proposed mutiprocessor
architecture and scheduling algorithm for the computation of the inverse dynamics
problem to that of Kasahara and Narita [19]. Note that the simulations for comparison
purposes will use common' MC 68020 processing times of Table 2.6 to maintain
- fairness. The specified authors use the DFIHS (Depth-First-Implicit- Heuristic-
Search) scheduling algorithm (see appendix E) to parallel process the N-E dynamics
- Equations on a multiprocessor _system with a shared single bus interprocessor
communication mechanism. "Fig. 2.4(a) compares the execution time for the
computation of the specified algorithm on the two architectural models when m is
varied. A performance improvement of more than 1.75ms for m>8 is achieved for
~the case of the proposed system over that of Kasahara and Narita. In addition, Fig.
2.4(b) verifies that the proposed architecture performs at speedup factors greater than
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3.4 for m>8 over the previoils architectural model. Fig. 2.4(c) suggests a valid cause
for the much lower performance of Kasahara and Narita’s parallel processing
environment. It is seen that interprocessor communication is av'r"najor bottléneck in
their shared bus multiprocessor system. In fact, over 90% of the algon'thm execution
time in their architecture is spent by performing dialogue between PEs for m>8.

Latencies due to arbitration costs for access to the shared bus is thus a crucial
performance degradation factor when multiple PEs attempt to perform interprocessor
,connnunlcauon via mailboxes at the end of instruction processing cycles. Note the
moderatelvyflower percentage of total execution time that the proposed system spends
for 1nterprocessor communication (approximately 60% for m>8). The crossbar
1nterprocessor communication network is naturally one of the most important reasons
for the hlgher perforamnce of the proposed architecture. In addition to optimal
scheduhng of data through the crossbar network to destination PEs in minimal number
of 1nterprocessor transfer latencies, simultaneous operand fetches by the m parallel
PEs from respectwe PEM is performed to minimize overall algorithm execution time.

2.3 Parallel Processing of PUMA Forward and Inverse Kinematics

2.3.1 Multiprocessor Architectural Model

- “The non-linear, non-recursive and irregular form of PUMA forward and inverse
kinematics' Equations (see Appendix C and D respectively) suggest that these
algorithms are not amenable for a SIMD parallel processing environment. In fact, if
such a type of architectural model is used for this application, severe performance
degradation will occur due to multiple idle/masked processors at each parallel
execution stage. The masking of SIMD PEs occur since insufficient number of of
identical tasks will be active at any processing level due to the non-recursive nature of
‘the specified algorithms. An alternate architectural approach must therefore be
investigated. A multiprocessor system with shared memory for interprocessor
communication is studied for this application. This architectural model is illustrated
in Fig. 2.5. The memory arbitration mechanism allows access to the mailboxes in
shared memory for interprocessor communication on a first-come first-serve basis. -
- The DFIHS (Depth-First-Implicit-Heuristic-Search) scheduling algodthm (_§g¢
Appendix E) is used to create the static schedule for parallel processing of forward
and inverse kinematics equations. This static schedule of parallel tasks is stored in the
microcode ROM; at run time.
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Table 2.7: MC 68881 Floating-Point Operation Execution Times

- Function

Assembler
Code

Operational .
Delay (in us)

| ‘Fetch Single Operand

Cosine

from Shared M FMOVE <EA>FPy 2.28
Fetch Pair of Operands | FMOVE <EA>FPx | 455
from Shared M- FMOVE <EA> FPy |
Store Result in Shared M | FMOVE FPy,<EA> 2.28

" Add | FADD FPx,FPy ©3.05
 Subtract FSUB FPx,FPy 3.05
. Multiply FMUL FPx,FPy - 4.25
Divide ~ FDIV FPx,FPy - 8.17
Square Root  FSQRT FPy 6.41
Arc Tangent FATAN FPy 241
~ Sine FSIN FPy 23.4
FCOS FPy

23.4
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Performance degradation occurs in this architecture due the operational delay
caused by multiple PEs waiting for access to shared resources. . Note that overall
execution ‘speed may not be improved for computation of the specified problems by
using an iterprocessor network with local PEM;s since these types of networks are
generally only efficient for SIMD machmes ‘

23, 2 Simlilation Results

Slmulatlon results for the computation of PUMA forward and inverse klnematlcs
' algonthms usmg the shared memory interprocessor communication strategy and
DFIHS task scheduling algorithm (see Appendix E) is presented here. The MC 68020
with its MC 68881 floating point math coprocessor is used as the basis of performance
evaluatlon _In other words, each PE; in Fig. 2.5 is represented by this dual processor
comblnatlon Table 2.7 specifies the execution time data of MC 68881 operations
needed for the computation of the spe01ﬁed problems ‘These processmg times are
used to generate the simulation results presented hereafter.

The variation of execution time for the forward kinematics algorlthm with the
number of parallel processors m is depicted in Fig. 2.6(a). Minimum execution time
is achieved at approximately 392s for m>8. As seen from Fig. 2.6(b), speedup close

to 2is reached for m=8 over the uniprocessor solution. Also, Fig. 2.6(c) spe01ﬁes how o

the arch1tectura1 efficiency varies with the number of parallel processors. ‘As a
reminder, high importance should not be given to this plot since it simply shows.how
the -achi_evedspeedup compares to the ideal speedup. Finally, Fig. 2.6(d) shows the
percentage of total execution time that the parallel processors spend for interprocessor
communication to evaluate the specified algorithm. Approximately 85% of the
overall execution time is spent performing interprocessor communication. This high
rate is primarily due to arbitration costs for access to shared memory. Note again that
performance will not be improved by using an interprocessor network with SIMD
instruction processing, although the interprocessor communication laten01es may be
lower for this case.

Simulation results for parallel processing of the inverse kinematics algorithm
will now. be discussed. Fig. 2.7(a) verifies that minimum execution - time of
approximately 750us is achieved when five parallel processors are used. Further,
speedup of 2.3 occurs for m>5 over the uniprocessor solution as illustrated in Fig.
2.7(b). For consistency, the variation of efficiency with m is delineated in Fig. 2. 7(c).
Finally, Fig. 2.7(d) confirms that over 61% of total algorithm execution time is spent
for interprocessor communication through shared memory. Notice that this last result
is considerably lower than the percentage of time the forward kinematics algorithm
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-spends for interprocessor communication.

2.4 Conclusions
The 1dea1 lower bounds on the number of parallel processors and execuuon time

.to evaluatc the inverse dynamics problem of an n-link manipulator in a parallel
processmg architecture using an optimal scheduling algonthm was derived to benand

o( aln ) respecnvely, where a; is a specified constant. Next, a novel SIMD

scheduhng algorithm to perform parallel processing on a SIMD multlprocessor-based
architectural model with a crossbar interprocessor network to compute the specified
problem close to the ideal lower bound is presented. The performance of the N-E
dynamics algorithm on the proposed architecture using the specified scheduling
technique is next simulated with the MC 68020 representing each processing element.
Speedup factor of greater than 3.4 over previous related work [19] for the computation
of the defined problem on a parallel processing system is achieved. The SIMD
architectural model is then not used again to simulate the performance of PUMA
forward and inverse kinematics algorithms because of the non-recursive and non-.
linear nature of these algorithms. A multiprocessor model with a shared memory
interprocessor communication strategy is instead investigated for this purpose using
the DFIHS scheduling algorithm. The MC 68020 with its MC 68881 math
coprocessor is used as the basis of the next few simulations to determine the
performance of the kinematics algorithms on the specified architecture. Results show
speedup of approximately 2 over the uniprocessor solution when the number of
parallel processors is greater than eight and five for the cases of forward and inverse
kinematics algorithms respectively. Very large speedups is not achieved in this latter
multiprocessor architectural model due to high interprocessor communication latency
Ccosts.
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CHAPTER 3
A COST EFFICIENT BIT-SERIAL ARCHITECTURE FOR ROBOT
INVERSE DYNAMICS COMPUTATION

3.1 Introduction

~ The parallel, pipelined, and recursive nature of the N-E dynamics falgorithr’nv'
suggests that it is amenable to a custom bit-serial array architecture. This chapter
presents such an architecture to com[yute the desired algorithm within the bit-serial

execution . time lower bound of o c1k+czknJ) where c¢; and c, are specified

constants k is the system word length, and n is the number of manipulator links. A
multi-functional bit-serial cell is developed as a building block for the recursive array
unit proposed. The cell’s fault-tolerant external asynchronous communication
protOCol and its high-performance design using Zipper CMOS [10] circuit structures is
of particular interest. This cell may easily be used as a "standard cell" to design the
two array chips which realize the forward and backward recursions, respectively, of
the N-E dynamics formulation. In addition to these two chips, a minimum number of
external FIFO register files are required to implement the proposed system.

3.2 Choice of a Bit-Serial Architecture

‘The Newton-Euler dynamics formulation is a highly pipelined recursive process.
A bit-serial architecture is therefore a natural candidate for its efficient computation in
a closely pipelined cost-efficient manner. The single wire input and output of bit-
serial devices allows tight pipelining of operational cells, leading to efficient
communication within and between chips. This is an important advantage since
communication issues are a dominant factor in the computation of the inverse
dynamics ‘problem In addition, when comparing n-bit word length bit-serial and bit-
parallel arithmetic operators, we can expect the bit-serial part to contain 1/nth of the
hardware of the b1t-parallel device [8]. Minimum chip count solutions are therefore
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feasible in bit-serial systems without the problems of on-chip routing of data lines. In -
fact, the N-E dynamics algorithm may easily be computed in the proposed
architecture with only two bit-serial chips in addition to a minimum number of
external FIFO register files.. Preliminary studies show the two chips require a
combined die;area of approximately 70mm? when fabricated in a 1.2p CMOS
technology, using the proposed bit-serial cell architecture as the standard building
block If our proposed architecture is implemented using a bit-parallel af¢hitécture; a
total of 32 matrix processors capable of performing matrix-vector multiplications" and
vvector cross-products operations would be required. In addition, a more complex
ontrol network is needed for the bit-parallel case. Furthermore, the parallel wiring
interconnections’ between bit-parallel processors suggests that it is a cost-mefﬁclent
v approach : o

3, 3 Tlme Lower Bound to Compute the Inverse Dynamics Problem on a Blt- )
| Senal Architecture e

- In: thls section we will discuss the limitation of speeding up the inverse dynamlcs
Vcomputatlonal problem when running on a bit-serial system. Before denvmg the time
lower bound the following notation and lemma must be established.

NotntiOn: '

: ('1')'; ~E<1> denotes a linear anthmetlc expression E of 1 distinct atoms, where an atom ’
o 1s a constant ora varlable e.g. E<4>-a+b—c/d “' e

@ " Tk Mmrmum time to evaluate an expresslon E<l> in a non-recursive b1t—senal
' system ‘ :

' (3) Tl = Shortest time to compute the ﬁrst iteration of the N-E algonthm in-a blt-
L senal system. '

(4) .’_"Tn_l = Shortest time to evaluate each addmonal iteration when computmg the
e remammg n-1 iterations of the N-E algorithm in a recurs1ve b1t-ser1a1 system o

(5) ,T = Mmlmum time to compute the inverse dynamlcs problem in a recurswe'
b1t-sena1 system : '
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Lemma 1: _The tlme lower bound of Tk[E<1>] [8] The shortest b1t—ser1a1

: ~process1ng ‘time to evaluate an arithmetic express1on E<1> is bounded
bclow by and equal to o(Lk] ), in other words, g
Ty[E<l>] 2 o(LkJ )

, Theorem 1_:3_‘:5 The m1n1mum time to compute the inverse dynarmcs problem of an n- '

" Proof:

~ link manipulator in a recursive bit-serial architecture is bounded below

| by o(c;L k| +c,lkn] ), where k is the system word length cl and Cpare i

y speclﬁed constants.

Addition, subtraction: and multiplication are the 'primitive arithmetic

-operations prevalent in any iteration of the inverse dynamics problem. By

beginning a subsequent operation before finishing the ‘previous one, a bit-
serial arithmetic cell requires k clock cycles to evaluate any one of ’the three

sneciﬁed operations. The minimum time to compute the first iteration of the

N-E algorithm may therefore be expressed as a function contammg at least -
3k atoms. Using Lemma 1, we thus have, : : ’

TEsklzo3d). @

- f,et bk (where b, is a constant) be an uniform clock period count needed to
kevaluate each additional iteration of the N-E algorithm in a recursive b1t-
' 'senal system. To better conceptualize, bjk clock periods is the constant

‘addmonal time required to compute those operations in the ith iteration

which are not evaluated in parallel to the (i—1)th computational cycle.

_Therefore, the addmonal tlme to calculate the remaining (n—l) iterations -

may be expressed as follows:

T

n—

1 —'blk(n -1).

Clearly, the minimum time to determine T,,_; is when b, is one. Thus, the

- lower bound of T,,_, is defined as,

T,l<n-1>] 2 o(Lk(n - 1)) ). o o @

By combining equations (1) and (2), we obtain

T, [E<n>] 2 o(| 2k + kn ).

The inverse dynamics problem may be considered as computing a set of

- arithmetic operations which result in obtaining the joint torques. Each joint

- torque T; of joint i can be expressed as an arithmetic operation containing at
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least 3n atoms: n joint positions {q;};Z, n joint velocities {q;};Z;, and n joint
“accelerations {{;}2,, implying,

T, [E<3n>] z,o(sz + 3kn|). : 3)

Rewriting equation (3) without changing the order of the lower bound to
evaluate a set of n torques, '

Talt1: 025000, Tyl 2 o(lclk + c2knJ ).
- where ¢; and c, are specified constants. Q.E.D.
By establishing a time lower bound in Theorem 1, we can now compare and
contrast bit-serial computational structures by simply comparing the coefﬁc1ents (N

and c,. It should be noted here that such comparisons will only be valid if the
competing systems use the same word length and mampulator link count.

34 Blt Serial System Architecture

The high-level view of the bit-serial system architecture is 111ustrated in F1g 3 1 S

Bas1ca11y, the core of the system consists of two bit-serial array processors: Processor
1 computes the forward recursions and Processor 2 evaluates the backward iterations
of the N-E algorlthm

Operand feeding of the bit-serial arrays is an asynchronous mechanism. Initially,
the host processor loads the rotation ( ii“R)_and inertia (I matrices, relative position
('P1+'1) joint velocity (0) and acceleration () vectors, and the scalar link masses (ml)
~into the PISO FIFO (Parallel-In-Serial-Out First-In-First-Out) register blocks in the
~ order shown. The asynchronous handshaking protocol used by the b1t-ser1a1 cells to
_.communicate with external devices allows computations to be initiated whenever both
operands of any bit-serial cell are available. The philosophy employed is similar to
that of data flow computer architectures. This eliminates the "initial delay time" (time
required to set up all the operands) which degrades the performance of many custom
: algonthrmc Processors.

Whenever the host processor loads any operand(s) into the FIFO, it also 1nforms
the Tespective bit-serial cell whose operands are currently the load  has been
performed. The notified cell subsequently provides the clock pulses to its operand
FlFOs»_to load its input data synchronously in a bit-serial fashion. Pulses delivered by
individual cells for operand loading ‘enhances fault tolerance by eliminating any -
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poss1b111ty of rmsahgnment of multi-operand data bits.

Array processor 1 computes the angular velocity (ia;) and acceleratlon ( 0)1) and

‘the linear acceleration . (lv) vectors which are fed back multiplexed with their
 initialization vectors as inputs to cells earlier in the processor’s pipeline. Outputs of
» thejirocessor are total external forces ('F;) and moments (N;) exerted at the center of
“mass of link i. These computed results are then loaded into array processor 2 through
‘:'the SISO LIFO (Serial-In-Serial-Out Last-In-First-Out) register files. A LIFO

structure is used since the total forces and moments computed in processor 1’s last

~ iteration are needed as operands of processor 2’s first iteration.

‘Processor 2 initiates execution at the end of processor 1’s nth iteration, where n
is the number of manipulator links. Operands are loaded into this processor in a
manner identical to Processor 1. Intermediate results of computations in the processor

vmclude forces ( ;) and moments (‘n,) exerted on hnk i by link (i—1) with: respect to
“the base frame. These results are subsequently fed back multiplexed into the array v
_with the1r initialization vectors. ‘A complete set of joint torques and forces (%) are

obtamed at the end of the nth backward iteration and loaded into an SIPO FIFO
(Senal-In-Parallel Out F1rst—In-F1rst~Out) register file as system. outputs o

.3_‘.:5 | Bfit-,.S‘eri}al Array Processor Organiiation. and Performance

At this stage in the paper, we shall assume that an individual bit-serial cell is
capable of computing the 3-D vector and matrix arithmetic operations depicted in

- Appendix B. Deta11s on how the cell 1mplements these functions is d1scussed in
- Section 3.7.

F1g 32 111ustrates the parallel and p1pe11ned organization of b1t-ser1al cells in

v-Pr.ocesso:r 1 to evaluate the forward iterations of the N-E algorithm. The initials

Wiithir_leeach node denote the type of operation that the particular cell is required to

'perfor,m.}Also, the number next to each cell serves as a means of individual cell
' vider‘itiﬁcation Interconnections between cells represent "single-wire" bit-serial -data
‘paths. _The cells are organized in eight stages of a pipeline with some mtermedlate :
- results being fed back as mputs to cells earlier in the pipeline in a recursive fashion.

Table 3.1 summarizes the computauon times of the various matrix and vector

,anthmetlc functions which may be evaluated by any individual bit-serial cell. The R
operat10na1 delay data from this table is used to construct the p1pe11ne schedule of = "

tasks to compute the first three 1terat10ns of the N-E dynamics algorithm in Processor' .
1 (Table 3 2) The unit on the time scale of Table 3. 2 is k clock penods, where k 1s ‘
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Fig. 3.2; Pipelined Organization of Bit-Serial Cells in Processor 1
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o Table»3.1£” VBit—Serial Cell Performance Meaéﬁre’s

No. of Individual 'Operatiozn Delay Operation Delay Usiﬁg . i
, Cells Cell (In # of Clock ~ 16-Bit Wordlength and
Operation Required Utilization Cycles) " Clock Frequency of 20-MH3z |
Vector-Add 1 .3 Adders k 800 ns
Scalar-Vector _ E
Product 1 3 Multipliers k 300 ns .
o ! 3 Multipliers .
[nner Product 1 ' 2 Adders 2k 1.8us
Matrix-Vector 3 Multipliers _
| Product 3 2 Adders 2k 1.6 us
: [ '
. Vector 4 | 3 Multipiiers/ |
Cross-Product .3 i 3 Subtractors 2k 1.6 us
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the system word length. Also, the numbers in the iteration columns indicate which
bit-serial cell of Fig. 3.2 is executing a particular operation during the specified time
- interval. Notice that bit-serial cells begin execution of tasks in successive iterations
as soon as they complete ‘their designated operations in the previous iteration,
.prov1ded process precedence relations still hold true. Thus, the parallelism between
' success1ve iterations allows high cell utilization. This higher performance operational -
featute is supported in a fault-tolerant manner by the asynchronous handshaklng ’
”protocol (described in Section 3.7) used by the bit-serial cells for external
communication. A total of 11k clock periods are needed to compute the first forward
iteration. The massive amount of parallelism between tasks of successive 1terat10ns _
’ allow each additional iteration to be processed in only 4k clock cycles. '

- Similarly, Fig. 3.3 illustrates the organization of bit-serial cells in array processor
2 to compute the backward iterations. Accordingly, Table 3.3 depicts its p1pe11ne'
schedule to process three backward iterations. ‘The first backward iteration requires 8k
clock penods, whereas each addmonal iteration needs 2k clock cycles for: completlon

: The total time to compute the inverse dynamics problem on the proposed
archltecture may, therefore, be expressed as [19k + 6kn] clock periods, where k is. the
system ‘word length and n is the number of manipulator links. Thus, for companson
purposes, the coefficients ¢, and Cy (defined earlier in Section 3.4) are 19 and 6,
respectrvely, to compute the inverse dynamics problem in our particular recurs1ve b1t—
senal system architecture. The total time to compute the N-E dynamics algonthm 1s,
therefore, 44u.s when a 16-bit system word length 20MHz operating frequency, and a
6-11nk mampulator is used.

| 3 6 Multl-Functnonal Blt-SenaI Leaf Cell Architecture and Operatlon .

In thlS section, we shall describe the archltecture and operation of a: multl-,
_functlonal ‘bit-serial cell capable of performing the various 3-D matnx/vector
. arithm'etic operations depicted in Appendix B. A block diagram of this Cell is shown'
in F1g 3.4. The 3-bit mode register determines the type of vector operauon that the
' partlcular cell is required to perform. This register is set by direct hardware control. 3
A PLA-based control unit is used for the control of the external asynchronous
communication mechanism and internal operation mode. The counter provides. load
pulses to operand cells to obtam the cell’s input data in a synchronous fashion. Shift
registers, "previous" and "new", store up to two intermediate results temporanly when '
. the cell to which these results are to be sent is not ready to receive new operands. The
v three voters determme b1t-ser1a1 data routmg paths to support altemate anthmetlc



48

Table 3.2: - Parallelism in the Execution of Tasks for Three Forward‘-:lﬁerations

Time (In | ' . , | o .
Number of ~ Iteratiom %1 Iteratior #2 Iteration %3
Clock Periods) ' o - -
. 13 1 2 3 4 | |
4 ek 2 4 3 | i
. 3k 5 8 I |
ik 7 3 910 1 2
5k 7 8 910 5 2
8k 1112 13 14 15 18| 3 3 2
Tk 11 12 13 14 1518 | 8 7 8 9 1
8k 17 18 19 7 8 910 5
9k 20 | 10 11 12 13 5
10k 21 ‘ 411 12 13 14 15 161/ 3 7 8 9
11k | 22 [ 414 15 16 8 7 8 9
12k | |17 18 19 10 11 12 13
13k | | 20 - 10 11 12 13
14k ! Lo : 414 15 16
15k ! | 22 | 414 15 18
18k | | k I 17 18 19
17k’ ! ! 20
18k | | 21
19k | | 22
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Table 3.3: Parallelism in the Execution of Tasks for Three Backward |

[terations
Time (In _
Number of Iteration 1 Iteration #2 Iteration #3
Clock Periods) - : '
ko 1 2 3
2k 1 2 3
3k 4 5 6 2 3
1k 7 8 1 2 6
3k 7 1 5 86 2
8k ' 9 4 8 i1 2 6
7k 10 7 1 5 8
8 110 9 4 8
9k | 10 7
10k IR 9
11k S 10
12k | 0 10
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' operating modes. The function of the voters is illustrated in Fig. 3.7(a)i(d). It should
be noted here that a matrix-vector multiplication task (not shown in Fig. 3.7) is
realized by simply combining three inner product cells. Individual cell utilization and
operation delay. within the cells to evaluate the matrix/vector operatlons is

’ summanzed in Table 3.1.

- Fig. 3.5 shows the control and data line interconnections between nelghbormg
b1t-ser1al cells.  Asynchronous handshake control signals, RTRIN (Ready-To-
Receive-IN), RTROUT  (Ready-To-Receive-OUT), RTSIN (Ready-To-Send-IN);
RTSOUT  (Ready-To-Send-OUT), = LOADCLKIN (Load-Clo'ck-IN)’ ~and
LOADCLKOUT (Load-Clock-OUT) use an inter-cell communication . protocol to
- achieve higher performance and fault-tolerance in the system. The flow chart
illustrated in Fig. 3.6 provides details of this asynchronous communication protocol. -

When a cell is ready to receive new operands, it indicates this by aSserting the
RTROUT signal, and if the preceding cells are ready to send the operands, they
activate the. RTSIN lines. In response, the current cell generates LOADCLKOUT
_pulses to load its operands in a bit-serial fashion. This particular feature allows
synchronized loading of multi-operand data bits. Near the end of an operatlon the
succeeding cell may have the RTRIN signal asserted, which indicates it is ready to
receive its operands. In that case, the current cell activates its RTSOUT 11ne thus
indicating that it is ready to send the operands. Subsequently, the next cell: prov1des
the LOADCLKIN pulses to load its input data bit-serially. However -if - the
succeedmg cell has the RTRIN signal negated at the end of any operation, the result

. 'W1ll be loaded into temporary "previous/new" shift registers. If both the ' 'previous”

and "new" ' shift registers are full at any point in time, the given cell is not allowed to .
load any further operands for execution until one of these registers transfers its
contents into the succeedmg cell.

- 3.7 Implementation of Bit-Serial Cell In CMOS Technology

Our design strategy utilizes Zipper CMOS [28] circuit structures.. It is basically
an improved version of Domino [20] and NORA [14] dynamic CMOS circuits, which
are characteristically immune to the problems of instability and charge-sharing
prevalent in the latter two techniques. Also, area utilization is considerably better and
 Zipper CMOS circuits can operate at least two times faster than static CMOS circuits.
In addition, its high density allows it to be clocked at very high frequencies. Itis thus
very advantageous to apply this type of circuit design methodology to bit- senal 51gnal
- processing.
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- The basic structure of a Zipper CMOS circuit uses a smgle Zipper dnver c1rcu1t
" which generates four strobe signals to drive subsequent N-P CMOS logic blocks
Dunng precharge, the output of every N block is high and that of every P block is low.
This ensures that the transistors of each dynamic block are off. During evaluation, the
output of each N stage can undergo only one transition, from high to low, and the
output of each P stage can undergo only one transition, from low to high. S1gnals A
therefore propagate down each stage of the circuit in a “staggered"” fashion.

In the leper driver circuit of Fig. 3.8, strobe signals ST and ST simply act as-a
two phase clock to drive the logic stages. Signals ST' and ST! which feed the N
block’s precharge pullup and P block’s precharge pulldown, respectively, produce a

- residual voltage which keep the precharge transistors slightly on to overcome leakage

currents. It is therefore clear that this driver plays a major role in insuring stability
and minimizing charge-sharing effects. It should be noted that only one driver circuit
is needed for each bit-serial multiplier and adder/subtractor unit used in the cell. o |
Fig. 3.9 illustrates our implementation of the bit-serial full—adder/subt,racto_r using
. Zipper CMOS circuits and dynamic latches. It is designed as a reduced majority -
_function of its inputs. Simulation results have shown the propagation delay of this
module to be 37ns. The bit serial adder is also the most significant circuit in the bit-
serial multiplier. This suggests that an individual cell may operate at frequencies of
up to 25MHz

. The. des1gn of a single module of Lyon’s 2’s complement bit-serial pipelined
multlpher in Zipper CMOS is shown in Fig. 3.10. The module is implemented using a
Zipper CMOS full-adder, pass-transistors, and dynamic registers. For a k-bit system
word length, a bit-serial multiplier consists of k such modules, with ‘serial
interconnections of the data words (A; and B,), the partial product sum (PPS;), and the
control signal R;. This latter control signal is used to truncate the low order bit of the
partial product sum and to clear the carry flip-flop after each multiplication. The last
module of such a multiplier employs a full subtractor instead of a full-adder, as is
required by the two’s complement algorithm. The bit-serial multiplier takes k clock
periods to form a k-bit product of two k-bit operands, by beginning a subsequent
operation before finishing the previous one. |

3.8 Conclusions

We have described a cost-efficient parallel and pipelined bit-serial system for the
inverse dynamics computational problem to achieve the bit-serial execution time
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Fig. 3.8: Zipper CMOS Driver Circuit
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lower bound of o(lclk + czknJ ). A high performance multi-functional bit-serial cell

architecture is described as a building block for the array configurations of the system.
Zipper CMOS circuit design strategy is proposed for the cell’s implementation to
minimize propagation delays and maximize operating frequencies. For the case of a
16-bit system word length and 20MHz operating frequency, the total time to compute .
the inverse dynamics problem of a 6-link manipulator on the proposed bit-serial
architecture is only 44ys.
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CHAPTER 4 I
SYSTOLIC ARCHITECTURE FOR ROBOT INVERSE DYNAMICS
COMPUTATION :

4.1 Introduction

’ ‘.A‘r'vidvél systolic architecture to compute the inverse dynamics corriputational
problem of an n-link manipulator within the systolic execution time lower bound of
'o.[ dln] , where d, is a specified constant, is proposed. A modified form of the systolic

design methodology of Moldovan and Fortes [40] is used as the primary design tool
for the architecture. Modifications were required to provide allowances for unequal
systolic execution times of processing cells, and to eliminate broadcasting of any
input or generated variable within the systolic array. The inverse dynamics problem is
décomposed into a set of directional and linear recurrence tasks amenable for direct
mapping onto a fixed systolic system. This task set is composed of seven "basic"
types of tasks. Thus, a basic set of systolic processors onto which these basic types of
tasks may be mapped is discussed. Next, the specified systolic processor set is used as
building blocks for realization of the overall systolic system. Due to alternate paths
and operational delays of different systolic processors, operands may appear at muti-
input modules at unequal arrival times, causing a longer pipeline time. Delay buffers
must therefore be inserted to balance the 'pipeline. The optimal buffer assignment
problem is reduced to an integer linear optimization problem. The resulting systolic
architecture is thus realized in a maximally pipelined manner with a minimum number
of delay buffers inserted along various computational paths. '

4,2 Systolic Array Design Methodology

Various systolic array design procedures [22,23,31,40,48,59] are described in current
literature. The systolic design algorithm of Moldovan and Fortes [40] is found to be
the efficient since it has been proven that their design methodology produces solutions
which have performance features close to those of dataflow machines. A modified



&

form of their systolic array design methodology will thus be used as the prlniary
~design tool for realization of systolic processors to compute the inverse dynamics
problem. As mentioned earlier, some modifications to their methodology are essential
to develop our particular systolic system for allowance of different computational
delays of alternate systolic processors, and to eliminate broadcasting of any input or
generated variable. These ideas will become more apparent by the end of section 4.6.
The midified design methodology is presented below. -

~Procedure: SADLRE (Systolic Array Design of Linear Recurrence Equations)
Input: Algorithm A over an algebfaic structure S as a 5 tuple A = J",C,D,X,Y)
where,
J" is a finite index set of A, J*"cI™;
- Cis a set of computations indexed by J*;
- Dis a set of data dependencies;
- X is a set of input variables;
'Y is a set of generated variables.

Output . New dependence matrix A of the developed algorithm and set of tables '
- T={GVT, UVT,IT}, where, , S

-+ GVT is a Generated Variable Table whlch specifies the time and cell of
" execution of ;e Y at index point j; o -
UVT is a Used Variable Table that specifies the times and_cell location
from which y;e Y are available for use at index pointj; - = . -

- IT is an Input Table that specifies the times and cell locatlons from
which x;€ X are available for use at index point ]

STEP 1: Determine a set of generated variables {yg;} with linear indexing ‘matrices
: IB; that are susceptible for broadcasting. Variable yg; is broadcasted if,
rank(Ig;) <n

~ where nis the d1mens1ona11ty of the algonthm index set J°, and ie In

STEP 2 When { yBl} has more than one variable, determine a set of 1nd10es { JBl}eJ“
correspondmg to linearly dependent columns inIg;. :

STEP 3 Select a transformation IT that will prov1de a valid linear time scheduler
l'Id1 d‘e D. Heunstlcally, II may be found: by following these: steps
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(3.2)
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When {yg;} has more than one variable, then HBidBi must be of the
form, : ‘
HdBi = Ci + Z JIC_]I
Jji€jsi

and the following conditions must be satisfied, -

Y *Sjdg] + X y;+Sidg] @1
J€ Fim: J€im o
Ci2t;* S dg] where j; e jp; . 4.2)

where, dg;e D provides data dependence vectors of variables yg;, C;
are the constant parts of HBidBi, C;; are the coefficients of variables
Ji€jpi in Ilg;dp;, and t; is the maximum time needed for the variable
ygi to travel a single unit distance in the direction of j;. ‘This time
variable may easily be deduced from the original recurrence
equation. It is equal to the interprocessor communication time, if the
output y; in the original recurrence equation is constant for any Jie
On the other hand, t;
time and cell computational delay in the case of a varying output y;
when index j; is varied. S;; represents a row of the transformation
matrix S (see STEP 5) correspondmg to the transformation of the
jgith index in dg; dge d‘ is the constant part of dependence vector

dp;; dpe d; is the coefficient of the jgith index in dg;.

is the sum of the interprocessor communication

Time schedulers of input vanables, x;€ X, must satisfy the condition,

TLdy > to

‘where IL,eIl transform columns d.eD that provide data

dependence vectors for input variables x;, and t¢ is the interprocessor
communication time.

Time schedulers of generated variables, y;eY, must meet the
condition,

y1 yi = 2 (tf + tC)
where Il;ell transform columns d €D that provide data

dependence vectors for variables y;, and tf is the computatlonal delay
within a cell. :
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'(3 4) The final II must be chosen so as to minimize the algorlthm-

execution time,
maxI1(; —j,) + t B
t= WIRrR g
minlId; ' o

for any j;, j,€ J*, and d;eD.

Select the columns of the matrix of interconnection primitives, P, as

P; =d;\dp;

~_where PieP, and dl dl;le D" D’ corresponds to the last one and two rows of __

STEP 5:

dependence matrix D for one- and two- dimensional systolic arrays
respectlvely, d1 corresponds to columns of D; dB1 corresponds to columns of

D' that provide n-1 elements of dependence vectors for variable yg;. - -

Select a second transformation S of size (n-1)xn, where n is the dimension
of the algorithm index set J, such that: '

(5.1) 'When {yg;} has more than one variable, elements of S must s_dtiéfjr
the condition, ’ '

| Sipidsi = Cix + jgiCia o
where C;1€Z" and Cpel", Cj3#0 and S;5; is a row of S which
determines the spatial interconnect of variable yg; in the direction of
IBie | | .

(5.2) Diophantine equation SD = PK may be solved for S, where matrix K

which indicates the utilization of primitive interconnections in

matrix P must satisfy the conditions of K;; 20, and 3, Kji‘fsl"[ai.

IT

(5.3) Matrix transformation T = { S is non-singular.

, For the chosen transformation, T, the pamtlomng hyperplanes le
are given by the rows of matrix S, i.e.,
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- ‘ (5.4) Finally, S must be ehoseri to ‘rninimize the total number of bands, r,

STEP 6:

STEP 7:

r=TI — @44

n-1 [ maxl'IpKGl —32) + 1]
K=1

“for any_jn', FeI" and my, is the width of the band.-
Determine new dependence matrix A =TD.

Determine GVT (Generated Variable Table). Significant columns of this
table spe01fy the 1n1t1at10n time (t;), completion time (tg) and location of the

cell (I ) where index point ] is processed.

=H_]
E=thg+t
[=Sj

- where t;in the computaﬁonal delay of a single cell.

STEP 8:

.STEP 9:

Determine UVT (U Sed Variable Table). Slgmﬁcant columns of this table"
specify the times {ty} and location of cells {l } from whlch the set of
generated variables y(] dy) are available for use at index point ] '

t,=TIG-d) +¢
| =G4,
where d, is the dependence vector corresponding to generated variable y.

Determine IT (Input Tablej Significant columns of this table include the
times {t,} and location of cells {l «} from which input variables X(J) are 7

‘available for use at index point j.

tx"'H(]_ax)
h=8G-d

where EX is the dependence vector corresponding to input variable x, and tc
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is, as defined above, the interprocessor communication time.

STEP 10:Use the new dependence matrix A along with the set of tables -_
T={GVT,UVT,IT} to map the algorithm onto a fixed systolic
architecture. The amount of time delay for buffers inserted along the paths
of generated and input variables within an individual cell for
synchronization purpose may be determined by, : -

tpx = 1-Iax —tc
tpy =I1dy — (g + tc) -
~ where, tpx and tp, are the time intervals required for delay buffers inserted

along the paths of an input (x) and generated variable (y) respectlvely
dx, dy tc and t; are as defined before.

STEP 11 Partition the developed algorithm onto a set of r bands (r may be
determined by equation (4.4). The mapping of the indices to processors
of the partitioned algorithm is as follows: each index point jis
processed within band B, in the processor whose ith coordinate is, -

= Ip;j mod my

where my; is the width of the ith coordinate inside the band. It should be
noted here that this step usually results in a more cost-efﬁaent systolic
architecture for algorithms with a large number of recursive iterations.

The modifications to the design methodology of [40] are included in deSign:
steps: 1, 2, 3.1-3.3, 4, 5.1, and 7-10. Step 1 determines whether any generated
variable in the given linear recurrence problem may be broadcasted, which is
undesired in any systolic architecture. Step 2 simply selects these variables which are
amenable to broadcasting so that their respective dependence vectors may be used to
construct specml conditions on the selection of transformation IT in step 3.1, As
described in step 3.1, I1d; must be of the form depicted to ensure variable(s) yg; is
‘sequentially propagated through the systolic array instead of being ‘viable to
broadcasting. Special conditions are established on the choice of C; and Ci S0 as to
set lower bounds on propagation delays of jg; in the specified direction of data flow.
The conditions on the linear time scheduler in steps 3.2 and 3.3 ensure IT is selected
appropriately when the communication time, tc, and computation time, tg are

different.” Step 4 provides a systematic method for the selection of the matrix of

interconnection primitives, P, to eliminate any type of enumeration for this choice, as
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dehneated in [40]

Conditions set on the selectlon of I1 alone in step 3.1 is 1nsufﬁ01ent for the
elimination of broadcasting since -the space scheduler S must provide the
interconnections support for such data communications specified by I1. “Thus, step 5.1
discusses the condmons on the choice of S to avoid broadcasts.- Fmally, steps 7-10
incorporate desired modlﬁcatlons to [40] for appropriate determination of GVT, UVT
and IT to the g1ven linear recurrence problem when t, and tf are different.

4.3 Time Lower Bound to ?--Coﬁpute The Inverse Dynamics Problem on a
Systolic Array | |
The limitation’ on speeding up the inverse dynamics computational problem
while running on a systohc array will now be discussed. Before denvmg the time
lower bound the following notation must be established. - o '

Notation:

(1) - E</> denotes a linear arithmetio expression of / distinct atoms, where an ‘atom
is a constant or variable, e¢.g. E<4>=a+ b~ c/d. ‘
(2) Tg= Minimum time to compute the inverse dynamics problem of an n—l1nk
: mampulator on a fixed systohc array.

Theorem 4 l The minimum time to compute the inverse dynamics
 problem of an n-link manipulator on a fixed systolic

architecture is bounded below by o[dln , where d; is a

specified constant.

Proof: Using equation (4.3) in procedure SADLRE, the systolic processing ‘
‘ - time, t, for any task in program Newton- Euler may be expressed in
- the general form, ‘

n ’ 1 l
max a, min a,
. f— . +tf
max a,, mina,,
t=| maxIT == R .
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max IIl(n—l) + Z max l'Il(max al - min a,) + 1 B

. 1—2

- rrunl'[dl »
~where n is the number of manipulator Jomts, max [a2, ,am] and
" min [ay,...,a,,] are upper and lower bounds of the task’s 1ndex set

' '{-j-z,. . .Jm}, respectively. Variables Z maxII (maxa1 min a;), - tf, "
' =2 :
and minIId; in the above equation are constants 1ndependent of n.
In the case of II, =£(j,) where I, is the first term in the vector -
. transformation and j, is the outermost index of the iterative

algorithm, maxIT;(n~1) will be o(n2)__ Thus, for ‘minimal t,
I, #£(,). Under this condition for IT to achieve the lower bound for
t, we may rewrite the above above formulation of t as,

bl(n—l) + by
by |

—Cln+02

. where b, by, bs, ¢4, and ¢, are specified constants. Thus the lower
bound to evaluate Ts for an anthmetlc expression E<n> may be
deﬁned as,

| Ts[E<n>]Zo(cifn] ) | _ S

- The inverse dynamics problem rnay be considered as computing a |
set of arithmetic operations which result in obtaining the joint
torques. - Each joint torque T; of joint i can be expressed as an
arithmetic expression containing at least 3n atoms: n joint positions
- {q;}iz1, n joint veloc1t1es {%}1—1 and n Jomt accelerauons {q.l}l—l" '
| lmplymg, - . ,
TS[E<3n>] >o(3c1[n1) S (4 5)

“ ‘Rewrmng equation (4.5) without changmg the order of the lower
s bound to evaluate a set of n torques, : -
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Ts[tys. . Tl 2 0(d; [ 0] )
where d, is a specified constant. Q.E.D.

By establishing a lower bound in Theorem 4.1, alterhatc systolic architectures for the
computation of the inverse dynamic‘s’ problem may be compared and contrasted by
simply comparing coefficient d; of the competing systolic struct.ui'es.

4.4 Reformulation of Newton Euler Equations of Motion for Direct Mapping
onto a Fixed Systolic Architecture

In this section we shall reconstruct the Newton-Euler dynamics algorithm in
Appendix A in a form amenable for direct mapping onto a fixed systolic array. This
reformulation is achieved by decomposing the algorithm into a set of unidirectional
and linear recurrence computational tasks. The algorithm is as follows:

Algorithm NEWTON_EULER
Forward Iterations:

forh=0to (n—1) do
begin h
fori=0to2do
begin i
Forj=0to2do
Fork=0toldo -
Start Task 1
begin j

- o[h,i,j] = w[h,i,j—1] + R[i,jl(w[h—1,i,2] + éz[h,i])
end j

Finish Task 1

Start Task 2

ifi =2 then
x4 [h,i] = @[h,2]#6 *[h,0] — w[h,0]*6 *[h,2]
else
" xi[h,i] = o[h,i]*d {h,i+1] — @[h,i+1]%6 7[h,i]
Finish Task 2
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Stan Task 3

X,[h,i] = xl[h 1] + 6 z[h i
Finish Task 3
Stan Task 4
© begin j
(D[h,l,]] O)[h,l,_]—l] + R[l,_]]((!)[h —1,1,2] + x,[h,i])
. endj
Finish Task 4
Start Task 5-
_ifi=2then ..
- xafh,i]= 0)[h 2]*P[h 0] a)[h 0]*P[h 2]
. else
- x3[h,1] ofh, 1]*P[h 1+1] m[h,1+1]*P[h,1]
Finish Task 5
Start Task 6
begin k
x4[h,i,k=0] = wlh,i]
-ifi=2then - ~
x4[h,1,K] = x4[h,2,k—1]*P[h,0,k] — x4[h 0,k-1]*P[h,2.k]
“else oo
x4[h, 1,k] x4[h 1,k— 1]*P[h i+1.k] - x4[h,1+1 k—1]*Pfh,i,k] -
. endk :
- Finish Task 6
- Start Task 7
| xs[h,i] = X3[h,i] + x,[h,i]
* Finish Task7 |
Start Task 8’
v[h l,J] v[h 1,j—-1] + R[l,j]*V[h 1,1,2] + x5[h 1]
T end j
Finish Task 8
- Start Task 9
' ifi=2 then
xg[h,i] = (o[h 2]*Pc[h 01 - (o[h 0]*Pc[h 2]
else . :
e xg[h,i] = wh, 1]*Pc[h 1+1] m[h 1+1]*Pc[h i]
o '-F1msh Task9
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Start Task 10
' _begin k
x7[h,1,k—0] -0[h,i]
ifi =2 then
X4[h,ik] = x,[h, 2,k—1]*PC[h 0.k} - x7[h O,k—l]*Pc[h 2 k]
else -
x7[h,1,k] x7[h,i k—l]*PC[h i+1.k] — x7[h i+1 k—l]*PC[h,l k]
end k
Finish Task 10
Start Task 11
Xg[h,l] x6[h il + x5[h,i]
- Finish Task 11
- Start Task 12
velh,i] = v[h,i] + xg[h,i]
Finish Task 12 |
Start Task 13
Flh,i] = m[h]*vc[h i]

' F1msh Task'13

Start Task 14
beginj
- xg[h,1,j] = xg[h,i,j~1] + I[i,j]*w[h,i]
‘end j
Finish Task 14
Start Task 15
if i =2 then
xyolh.i] = &[h,2]*xg[h,0] - o[h,0]*xe[h,2]
else
xm[h i] = w[h,i]*x¢[h,i+1] — w[h, 1+1]*x9[h,1]
~ Finish Task 15
~ Start Task 16
begin j
- x40, 1,3] xu[h i,j-1] + I[1,_]]*co[h i]
end j
- Finish Task 16
Start Task 17 =~
N[h,i] = x;o[h,i] + x;,[h,i]
- Finish Task 17
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end i
end h

. Backward Iterations:

forh=nto 1do
" beginh
fori=0to2do
begin i
forj=0t02 do
Start Task 18
- begin j
fTh;i,j] = flhi,j—1] + R[I,J]*f[h+1 1] + F[h i]
end j '
- ‘Finish Task 18
- Stan Task 19 -
' xp[hil =P[h,i] + Palhi]
" _Finish Task 19 |
Start Task 20
ifi=2 then o
xy3[h,i] = xy5[h, 2]*F[h 0] — x42[h,0]*F[h,2]
- relse
x13[h,i} = xy5[h,i]*F[h,i+1] - x12[h i+1]*F[h,i]
Finish Task 20
Stait Task 21 -
* Xy4lh,il = N[h,i] + xy3[h,i]
Finish Task 21
Start Task 22
ifi =2 then
xy5[h,i] = P[h, 2]*f[h+l 01 — P[h,0]*f[h+1, 2]
else. '
. X150h, 1] P[h 1]*f[h+1 Ji+1] - P[h 1+1]*f[h+1 1]
. Finish Task 22 ’
 Start Task 23
begm i
o n[h i,jl = n[h 1,j— 1] + R[1,J](n[h+1,1 2] + xy5[hil) + xp4[hi]
end J -
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Flmsh Task 23 .
Start Task 24
o thil= ﬂhrJ]+Rﬂhﬂ*nnu]
' Finish Task 24 .
endi i
~endh

45 Systematlc Design of a Basic Set of Systolic Processors for the Inverse
‘Dynamics Computational Problem S

- From the aIgor'ithm of Section 4.4, it is seen that a “basic set of types of tasks -
exist from which the complete systolic architecture for the computation of the i 1nverse
" dynamics’ problem may be derived. Thus, by desrgnmg a set of systolic processors
onto which this “‘basic’ set of task types may be mapped, we can arrive at the
'co'mplétc’ systolic architecture for the computation of the specified problem by srmply

using these processors as building blocks for the realization of the overall systolic

system. The basic set of tasks may be partmoned into a set of un1d1recnona1 and
linear recurrence tasks as’ follows '

: Unidirectionalf tasks::

Type.1:  Vector-Add (VA) ,
 fori=0to2do
yli] = x[i] +z [i]
_ - end 1 :
| Type 2: Scalar-Vector Product (SVP)
fori=0to2do :
y[il=K*x[i]
endi
Type 3:  Vector Cross-Product (VCP)
fori=0to 2 do
ifi=2then
ylil = x[2] * z[0] - x[0] * Z[2]
else | -
ylil = x[i] * z[i+1] — x[i+1] * 2[i]
endi
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Linear Recurrence tasks:

- Type 4: Inner Product (IP)
fori=0to2do
ylil = y[i-1] + x[i] * z[i]
end i
Typé 5: Matrix-Vector Product
- fori=0to2do
forj=0to2do
yli.j] = ylij~1] + ALi,j] * x(i]
end j
end i ,
Type 6: Recursive Matrix-Vector Product (RMVP)
- Type 6a:
" forh=0ton~1do
fori=0to2do

forj=0to2do ' '
yihif] =ythij=1] + ALl (7Th-1,i,2] + x(hii] O
end j '

; end i
end h
Type 6b:
Replace line (1) in Type 6a by,
ylh, l,J] yth,i 1,1 1] + Ali,j] * y[h—1,i,2] + x[h,i]
Type 6c¢:
"~ Replace line (1) in Type 6a by,
. y[h,i,jl = y[h,i,j—1] + A[ij] * (y[h-1,i 2] + x[h 1]) + z[h Al

- Type 7: Recursive Vector Cross-Product (RVCP) ‘

fori=0ton
forj=0to2 do
if j =2 then
y[h,i] = y[i-1,2] * x[1 0] yl[i—-1,0] * x[i, 2]
else
: y[h,i] = y[1—1,]] * x[1,J+1] y[1— ,J+1] * x[1,3]
endj

end i
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Now 't‘hat_' the basic types of tasks prevalent in the inverse dyriamics
computational problem have been defined, we can develop systolic architectures onto
- which these. processes may be mappéd The modified .- systolic mapping procedure of
- Section 4.2 will be used to develop the systolic archltectures for lmear recuirence

tasks 4 7 o

For the purpose of generality whlle denvmg systohc archltectures using
procedure: SADLRE, we shall assume that the interprocessor commumcatlon time, £,
is of unit time latency and the operational delay of primitive tasks such as addition,
: subtractlon and multlphcauon is also an unit of time. ‘ '

. Before denvmg the specified systolic processor architectures, two terms which -
-will be used hereafter must be defined. The first one is, Systolnc Operational Delay,
which is defined as the latency required to compute the first element of a vector
operation at the end of the first iteration in the given linear recurrence problem on the
specified systolic array. Next, the Systolic Execution Time is defined as the latency
to evaluate all elements of the vector operation at the end of n iterations in the linear
recurrence_problem on the specified systolic array. '

4.5.1 Systohc Processors for Unidirectional Tasks

Task types 1 and 2 are represented by primitive adder and multipler cells (Figs.
4.1(a), (b)). Paired vector operands enter these cells in synchronous fashion. A
systolic vector cross-product module (type 3 task) is illustrated in Fig. 4.1(c). Unit
delays are inserted along some input variable paths for operation synchronization.
The operaﬁon delay of this particular module is 3 time units. '

4.5.2 Systolic Architecture for a Type 4 Task
The Algol-like program for an inner product operation is,

fori=0to2do
i
x[i,jl = x[i,j-1]
z[i,j] = z[i,j—-1]
yli) = yli-1] + x[1,j] * z[i,j]
~end 1

001

11 O] , where the

columns from left to right denote data dependencies for x[i], z[i] and y(il respéctively.

The data dependency matrix for thg above algorithm is D =
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xli]
}ﬂil
afi]

(a): '_I‘ype 1 Processor

x(i)
}y{il
K

(b): Type 2 Processor

x|{0j {o}-
a{1]
x(1]
)
32
x[2]

(¢): Type3 Processor.

F ig. 4.1: Syétolié Prbceésors for Unidirectional TaSks

-
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‘ By followmg procedure SADLRE ITis found to be [3 1] and S to be { 01
. o | " 113 ,
) The new. transforrnanon matrix, A is thus [0 O 1|. Tables 4.1-4..3’ show the GVT-
* - ' 110

-_UVT and IT for thlS type of task. The systohc architecture and its partmoned
-structure may be derived from these tables to be as. shown in F1g 4, 2(a) and (b)
respecuvely Also, the architecture of an individual processing element of Fig. 4.2(a)
s illustrated in Fig. 4.2(c). Information regardmg scheduling of operands and
v generatlon of intermediate variables in Fig. 4.2(a) can be obtained from task type 4 s
_ 'tables {T} The operatlonal delay for the Type 4 task is elght time units. ’

4 5 3 Systohc Archxtecture for a Type 5 Task

_ The Algol-like program of a matrix- vector product (Task 4) operation w1ll nowv
be presented in a slightly modified form, :

for i=0to2do
for_| Oto2do : _ S
Cxfl=x-11 " | Y
- AliLj] = Ali,j-1] s : - L ‘;,"(2)‘».>,
ylijl = yli,j-1] + Alij] * x[i] . -
endj
Vend i - , A
- The purpose of statements (1) and (2) is to ensure the .inputs are propagated
sequentially alonhg the ith and jth directions, respectively, of the systolic array. These -
statements, therefore, eliminate any possibility of broadcasting input variables. The
data dependency matrix, D, of iteration (i,j) for the above algorlthm may easﬂy be

derlved as,
1100
lo11

~ where columns 1, 2 and 3 represent dependence vectors for vanables x[1-1] A[l,_]—l]

~ and y[1,J-1] respectively. - o
Linear indexing matrices, Ip;, for this problem were found to have the s;ar,ne’ rank
as the dimensionality of the algorithm index set. Thus, it may be assumed that
broadcasting of any input or generated variable will not occur. We can, therefore, . -
jump to step 3.2 in procedure SADLRE.
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Table 4.1: GVT of a Type 4 Task

ITERATION |BEGIN EXECUTION |FINISH EXECUTION|IN CELL GENERATING
(i) AT TIME AT TIME (i) VARIABLE |
0 0 2 0 y0)

1 3 5 1 (1) :
2 8 8 2 - y(2) - .
Table 4.2: UVT of a Type 4 Task
ITERATION USING FROM CELL AT
() VARIABLES (i = dy TIMES
0 y(-1) -1 -1
1 ¥(0) ] 2
2 (1) 1 5
a * Table 4.3: - IT of a Type 4 Task
ITERATION USING INPUTS | FROM CELL | AT
(i) x(i), z(1) (1,}4 - QEL TIMES
‘0 x(0), z(0) 0,-1 -1
1 x(1), 2(1) 1,-1 2
2 2,-1 5

x(2), 3(2)




B R

- (a): Systolic Architecture

o dil :
(b): Partitioned Systolic Architecture

xi}

ylij

S|

2li |

. (¢): An Individixal Processing Element

Fig. 4.2: Systolic Architecture for a Type 4 ;l‘iaslf’:j
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From the above Algol-like program specification, it is easily derived that the
computational delay of an individual-systolic cell will be two time units since two
consecutive primitive 'ofperatio'ns are required to evaluate y[i,j]. The linear time
scheduler, IID, must, therefore satisfy the conditions of IId;, ITd, > 1 and Ild; 2 3,

. where the subscnpts of dependence vector d indicate column indexing in matrix D.

The transformatlon vector, I1, which meets the above spemﬁcatlons and minimizes the
algonthm ¢xecution time, t, in step 3.4, is found to be[1 3]. _
Usmg step 4 we may obtain a two-dimensional systolic array archltecture by .
’ 10
selectlng the matrix of interconnection primitives, P, as 01 . Further, the second

’transformatlon S is chosen to allow the dlophantme equation SD = PK to be solvable
for S, and minimize the number of bands, r. The denved S-transformatlon and
1nterconnect10n utilization matrix, K, are as follows: :

frol . roo
We thus arrive at the new dependence ‘matrix,'A, '
131100
A=TD=|1 0| 011
‘ 101 -

(133
=(100].
01 1]

The ﬁrst row of the transformed matrix, A, indicates the number of time units-allowed
for the respective variable to travel from the processor where it is generated to the

~ processor where it is used. The next two rows specify the direction of data flow for

the resp'ectiVe variable. "It is therefore easily verified that input x[i] needs one time -
unit to propagate one space in the ith.direction, input A[i,j] and generated ‘variable
"y[1,J -1] requires three time units to travel one space in the jth d1rect10n

_ Tables 4.4 through 4. 6 dehneate the GVT UVT and IT, respectlvely, of the '

matrix-vector product operation. They are derived using Steps 7 through 9:of
procedure SADLRE. The systolic array and its partitioned form 1nferred from these
tables are 111ustrated in Fig. 4.3(a) and (b) respectively. The. archltecture for an

. individual cell of the systolic archltecture using step 10 is shown in’ Flg 4, 3(c) The
- operauonal delay of the systohc module 1s 8 tlme unlts to perform the des1gnated .
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o "Tabl’é 4.4: ‘GVT of a Type-5 Task

[ TTERATION|BEGIN EXECUTION |FINISH EXECUTION|IN CELL|GENERATING ,
(i) AT TIME AT TIME (i) | VARIABLE |
00 IR S I | (00 | 00
01 - 3 5 S (01 | - y(01)
02 - 8 8 . 02 | ¥02) -
1,0 1 1 (1,0) ¥(1,0). -
L1 4 8 (1,1) ¥(1,1)
1 1,27 7 9 (1,2) ¥(1,2)
200 2 4 (2,0) ¥(2,0)
21 | 5 7 (2,1) ¥(2,1)
2,2 8 10 (2,2) - 7(2,2)
v - Table 4.5:'_~UVT of a Type 5 Task
- | ITERATION | USING | FROM | AT
. (i,j) VARIABLE | CELL | TIME |
00 - (0-1) | (0-1) | -3}
0,1 (0,0) (00 | o0
0,2 (0,1) (01) | 3 |
1,0 (1-1) | (1,-1) 2 |
L1 | (L0) (1,00 | 1
1,2 (1,1) (1,1) 4
20 | @1 | (2-) -1
2,1 (2,0 (2,00 | 2
2,2 21 | (21 5
Table 4.6: IT of a Typ'e‘ 5 Task ,
ITERATION | USING | FROM | AT
(1)) INPUTS CELLS | TIMES |
00 | xfo], Al0,0] | (-1,0), (0-1) | -1,-3
s 0,1 _ X[O],A[O,I] (‘171)7 (070)‘ 1. 20
02 x[0], A[0,2] | (-1,2), (0,1) 5,3
1,0 x(1], A[1,0] | (0,0), (1,-1) | 0,2
L1 x{1], A[1,1] (0,1), ‘(170) 3,1 ‘
12 | x[1), AL | (02), (L,1) | 84
20 | x[2], Al20] | (1,0), (2-1) | 1.1
2,1 | x[2], Al2,1] | (1,1), (2,0) 4,2
22 x(2], Al2,2) | (1,2),(21) | 75
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A0l A[LG] AR

yo,2) v y2,2)
(a): Systolic Architecture

AloGl AL AR
vo,3-1)  y{Li-1]  yi2,-1);

x[2] x{1] xjo]—

: b2 yiig 22
(b): - Partitioned Systolic Architecture

Alinj) ylij—1}

- xfi]

L o ~Y'i1j' | L .
{(e¢): An Individual Processing Element

Fig. 4.3: Systolic Architecture for a Type 5 Task
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computation.’
4.54 Systollc Architecture for Task Types 6(a) (e)

, Type 6(a) Task |

The recursrve matnx-vector product formulation of a Type 6(a) task is
represented by the follow1ng modified Algol -like program:

forh= Oto n-1do
o for1-0t02do
for j=0to2do- |
- x[h,i] =x[h,i-1]
~ Alij = ALLj-11
 yhhij] =ylhij-1] + Ali,j] (y[h-1,i,2] + x[h,i])
end j
- endi
endh -
The data dependency matrix for the above algorithm spemﬁcation may be
derived tobe, :

000 1}
- D=[{100 O
o 011 j=2
where the columns from left to right spe01fy data dependence vectors for vanables
x[h,i-1], A[l,] -1}, y[h,i,j-1] and y[h-1,i,2] respectively.
‘The linear indexing matrix for the generated variable y[h—-1,i,2] is,

100
_ IBy[h—l 1’2]— 01 0 .
: 000

* Since the rank of the above linear indexing matrix is less than the dimensionality of
the algorithm index set, it is therefore clear that the generated variable y[h—1,i,2] may
be broadcasted. By using Step 2 and 3.1 of procedure SADLRE, the linear time
scheduler for variable y[h-1,i,2] must be of the form :

HdBy[h—l,1,2] =C, +iC, L @49

The conditions on constants, C; and C,, may only be determined after the selection of
the S transformation matrix. By Step 4, we find the matrix of interconnection
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100
=lo11]"

Using Step 5.1, broadcasting of variable y[h—1,i,2] is avoided by also setting the
following condition on the space scheduler transformation matrix S,

primitives, P, to be,

SByh-1:219By(h1121= C3 +iCs - - @an
where C;eZ", C4eI™ and C4¢0 A S-matrix is thus selected which minimizes the

- number of bands, r, satisfies equation (4.7), and allows the diophantine equatlon SD=
PK to be solvable for S, -

S%SOlforK:,Olll
b 0000

From this choice of S, constants C5 and C, in Eq 4.7) are both one. _

We may now return to the problem of setting conditions on C; and C, in Eq.
© (4.6). By Egs. (4.6) and (4.7) in Step 3, C, and C, must both be greater or equal to 4
since t; 2 tg+ to(=4) and Sy 159 8121 » Sym-1,21 dgy[h_l‘ui are" both ‘one.
Using -Steps 3.2 and 3.3, we impose further conditions on the selection - of
IT: Tldyqp -1, Tldagij-172 1, and Ildypp ;5 72 4. Finally, the transformation IT is
chosen to satisfy all the above conditions and minimize the a.lgonthrn executlon time
t, I=[121 4]. :

" The new transformation matrix, A, is thus,

1 4 4 4+4j
A=TD=|100 0O
o111 14]

The information gathered from thls A matrix regarding communication latency for the
d1rect10na1 flow of vanables in the systolic array is as follows:

1 x[h i—1] requires 1 time unit to.travel 1 space unit in the ith dlrectlon ‘
@) A[l,]—l] needs 4 units of time to move 1 space unit in the jth d1rect10n

3 Generated variable, y[h,i 1,_] 1], travels 1 space unit in the jth d1rect10n in 4 time
units.

4) ,Generated variable, y[h—1, 2], requlres 4+4j units of time to travel l+J space
unlts in the _]th d1rect10n SR
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The set of tables {GVT, UVT, IT} for the Type 6a operatron is deplcted in
Tables 4.7 through 4.9, respectively. The systolic array architecture derived from
these tables is shown in Fig. 4.4(a). The number of systolic cells required for this
architecture is 3n, where n is the number of manipulator joints, and the operational
~ delay of the array is 11 units of time.

- The architecture of an individual cell in the systolic array of Fig. 4. 4(a) is.
illustrated in Fig. 4.4(c). Note that buffer delays derived using Step 10 of SADLRE
v generated insufficient latencies along the paths of Afi,j] and y[h,i,j—1] due to the
asynchronous sequence in which these variables are operated upon in the cell. This
problem is solved by adding extra latencies along thelr paths for the purpose of
operation synchronization. :

- The algorithm may be mapped onto a more cost-efﬁcrent architecture of a 3x3
VLSI array by following the partitioning technique in Step 11. This partitioned
architecture onto a set of 3 bands is illustrated in Fig. 4. 4(b). The scheduling of these
bands is performed by assigning the processing of y(]) in band B;, 1<i<3, at a
processor whose ith coordinate is Hp,_] mod 3, where Ilp; corresponds to the ith row in
‘the S matrix. . |

Type 6(b) Task

The systohc architecture for thlS type of task is identical to that of a Type 6(a)
task. The only architectural modification exists within an individual processing cell.
Fig. 4.5 specifies the processing cell architecture for a Type 6(b) task. The shorter
computational latency of this cell compared to that of a Type 6(a) task, thus, requires
the systolic array for a Type 6(b) task to have a shorter operation delay of 8 time units.

Type 6(c) Task

The systolic architecture of this task type is also the same as that of a Type 6(a)
task. An individual processing cell architecture for a Type 6(c) task is shown in Fig.
4.6. The operational delay for the type type 6(c) task is indifferent from that of a
Type 6(a) task, i.e. a latency of 11 units. '

4.5.5 Systolic Array for a Type 7 Task

The Algol-like program for a type 7 recursive vector cross-product operation is
as follows,

fori=0ton~1do
forj=0to2do
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Table 4.7: GVT of a Type 6a Task

ITERATION |BEGIN EXECUTION |FINISH EXECUTION|IN CELL |GENERATING
(hyinj) AT TIME AT TIME (i,j) VARIABLE
0,0,0 0 3 , 0,0 7(0,0,0)
0,0,1 4 7 0,1 ¥(0,0,1)
0,0,2 8 1 0,2 ¥(0,0,2)
0,1,0 1 4 1,0 ¥(0,1,0)
0,1,1 - s 8 1,1 ¥(0,1,1)
0,1,2 9 12 - | L2 7(0,1,2)
0,2,0 2 5 | 2,0 7(0,2,0)
0,2,1 8 9 2,1 7(0,2,1)
022 10 13 ' 2,2 ¥(0,2,2)
1,0,0 12 : 15 . 0,3 ¥(1,0,0)
1,01 18 19 0,4 ¥(1,0,1)
1,0,2 20 : 23 0,5 ¥(1,0,2)
1,10 13 : 16 1,3 ¥(1,1,0)
1,1,1 17 20 - 1,4 v(1,1,1)
1,1,2 21 24 1,5 ¥(1,1,2)
1,2,0 14 : 17 2,3 . 7(1,2,0)
1,2,1 18 21 2,4 ¥(1,2,1)

1,2,2 22 25 2,5 ¥(1,2,2) - -




Table 48 UVT of a Type 6a Task

| ITERATION USING _FROM AT |
__(hij) | VARIABLES | CELLS TIMES
I 00,0 ¥(0,0,-1), ¥(-1,0,2) | (0,1), (0;-1) | -1,-1.
0,01 Tv'y(O,O,'O)’,Vy'(-1,0,2) (0,0), (0,-1) | 3,1
g "0’0’2 Y(0’071)7 Y(‘1’012) (071)7 (01‘1) :“'7’_1 :
0,1,0 ¥(0,1,-1), y(-1,1,2) | (1,-1), (1,-1) | 0,0°
01,1 ¥(0,1,0), ¥(-1,1,2) | (1,0) (1,-1) | 4,0
- 0,1,2 ¥(0,1,1), ¥(-1,1,2) | (L,1), (1,-1) | 8,0
- 0,2,0 ¥(0,2,-1), ¥(-1,2,2) | (2,-1), (2,-1) L,1 |
0,21 7(0,2,0), y(-1,2,2) | (2,0), (2,-1) | 5,1
07272 ‘Y(012’1)7 Y(‘11212) (211)’ (21‘1) : 9’1
- 1,0,0 | y(1,0,-1), y(0,0,2) | (0,2), (0,2) | 11,11 | -
1,01 | ¥(1,0,0), ¥(0,0,2) | (0,3), (0,2) | 15,11
. 1,0,2 y(1,0,1), ¥(0,0,2) | (0,4), (0,2) | 19,11
. .‘1’1’0'- Y(l,lf_«l)’ Y(O,l-‘,z) (1’2)1 (112) K 12’12‘.-
1,1,1 ¥(1,1,0), ¥(0,1,2) | (1,3), (1,2) 16,12
1,1,2 y(1,1,1), ¥(0,1,2) | (1,4), 1,2) | 20,12
1,2,0 v(1,2,-1), ¥(0,2,2) | (2,2), (2,2) | 13,13
1,2,1 ¥(1,2,0), ¥(0,2,2) (2,3), (2,2) 17,13
1,22 ¥(1,2,1), ¥(0,2,2) | (2,4), (2,2) 21,13
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Table 4.9:  IT of a Type 6a Task

FROM AT

_(1,8), (24)

ITERATION | USING INPUT

(h,ij) | =x(hj), A(i,j) __CELLS TIMES

© 0,00 | x(0,0), A(0,0) | (-1,0), (0,-1) | -1,-4 |

0,01 x(0,1), A(0,1) | (-1,1), (0,0) 3,0
0,0,2 - x(0,2), A(0,2) | (-1,2), (0,1) 7,4
0,1,0 - | x(0,0), A(1,0) | (0,0), (1,-1) 0,-3
0,1,1 - x(0,1), A(1,1) (0,1), (1,0) 4,1
0,1,2 | x(0,2), A(1,2) | (0,2), (1,1) 8,5
0,2,0  x(0,0), A(2,0) | (1,0), ((2,-1) 1,-2
0,2,1 x(0,1), A(2,1) | (1,1,), (2,0) 52
0,2,2 x(0,2), A(2,2) | (1,2),(21) | 98
1,0,0 x(1,0), A(0,0) | (-1,3),(0,2) | 11,8
1,0,1 x(1,1), A(0,1) | (-1,4), (0,3) | 15,12
1’0’2 : » X(1’2)r A(0’2) ('175)7 (0,4) 19118
1,1,0 x(1,0), A(1,0) | (0,3), (1,2) 12,9 |-
1,1,1 x(1,1), A(1,1) (0,4), (1,3) 16,13 |
1,1,2 | x(1,2), A(1,2) (0,5), (1,4) | 20,17 |
1,2,0 | x(1,0), A(2,0) (1,3), (2,2) | 13,10
L,2,1 - — | x(1,1), A(2,1) | (1,4), (2,3) 17,14
1,2,2 x(1,2), A(2,2) 21,18
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S yl-1,0,2) y[-112) v[-1,2.2)
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Fig. 4.4: Systolic Architeeture for a Type 6a Task
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Fig. 4.6: Processing Element for a Type 6c Task
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Clil = Cli-11
- x[il = x[1—1] .

eﬂw] CIj] - (=11 * x[i+1] = yli~1j+11 * x[il)
—+Clj] - (y[i-1,2]-* x[0] - y[i—1,0] * x[2]) -
, end i '
end1

where C[]] is a control s1gna1 entering the systolic array vertlcally The data
. dependence matrlx for the above program is, : ‘
011 1 1 1]

D=l1004 (-2 j

where the columns from left to right specify data dependence vectors for C[] 1], |
x[1—1] yli=1,j1, yli-1,j+1], y[i— 1,2] and y[i—1,0] respectively.

The linear indexing matrices for generated vanables yli—1,2] and y[i—l,O] are,

o 10
Ipyii12=IByii1.01= | g 0

The ‘rank of the above linear indexing matrix is less than the dimensionality of the
algorithm index set. The variables yli—1,2] and y[i—1,0] are, therefore, amenable to
broadcasting within the systolic array.

By Step 4, the matrix of interconnection primitives, P, is

01 1
“l10-1]-

Conditions on the selection of the S matrix to avoid broadcasting of specified
variables include,

Spyi-1,219Byri-1,21 = C1 +ICs
and, | |

Spyfi-1, O]dBy[r—l 0= C3 +jCy

~ where C,, C3e Z" C,, C4eI™ and C,, C4#0. An S-matrix is selected which satisfies
these conditions, minimizes the number of bands, and allows the diophantine equatlon _
SD = PK to be solvable for S, '
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~Jro
S=101

110000
K={001000
| 000111

Now that the S matrix has been chosen, conditions on the selection of the I1
transformation may be summarized as follows:

(l) ndBy[i—l 217 Cl + _]Cz'
. (11) l'IdBy[l_l 0= C3 +]C4, where Cl 2 2 C3 > 0 and Cz, C4 2 1
(Gii) Tldg, T1d, > -
(IV) Hd yli-1,4]s Hd yli-1j+1] 23.

| for,

The above conditions are derived using Steps 3.1-3.3 of SADLRE. A II
transformation is selected to satisfy these conditions in addition to minimizing the
algorithfn execution time t, [I=[4 1]. '

The new transformation matrix, A, is found be,

144 32+ @4+)
A=TD={011 1 1 1
100-1G-2) j

Informatioh ‘regarding communication latency for the directional flow of
variables in the systolic array may be deduced from the A matrix. This can be done in ‘
a manner similar to that previously described.

The {GVT, UVT, IT} for the recursive vector cross-product operation is shown ‘
in Tables 4.10-4.12. The resulting systohc array for this type of operatlon is
delineated ‘in Fig. 4.7(a), and the architecture of an individual processmg cell is
1llustratcd in Fig. 4.7(c). The control signal, C(j), operates as an input select10n line
for the multlplexers Typically, it will allow y(i~1,j) and y(i-1,j+1) to pass through
the multiplexers for the first two rows of the systolic array in Fig. 4.7(a). .C(j) will,
however, permit y(i-1,0) and y(i-1,j) to propagate through the multlplexers due to the -
operational specification of a vector cross-product operation. ‘The partitioned
architecture for a Type 7 operation is delineated in Fig. 4. 7(b). The operational delay
for the proposed architecture is 3 time umts for i 1max =1 in the algonthm 1ndex set,
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: Table 4.10: - GVT of a Ty’pev7 Task

| ITERATION

IN CELL

GENERATING

BEGIN EXECUTION |FINISH EXECUTION
(i) AT TIME AT TIME (ij) | VARIABLE |
00 | 0 2 0,0 700
01 1 3 20,1 y(0,1)
0,2 -2 4 0,2 ¥(0,2)
1,0 4 8 1,0 ¥(1,0)
1,1 ] 7 L1 ¥(1,1)
1,2 8 8 1,2 7(1,2)
2,0 8 10 2,0 ¥(2,0)
2,1 ] 11 2,1 ¥(2:1)
2,2 . 10 12 2,2 ¥(2,2)
Table 4.11: UVT of a Type 7 Task
| ITERATION USING  FROM AT |
' (i,4) | VARIABLES CELLS TIMES
0,0 | ¥(-1,0), (-1,1) | (-1,0), (-L1) | -21
0,1 Y('lyl)r )'(-1,2) . ('171)’ ("1’2) '1’0 ’
0,2 Y(']-’o)’ Y('112) ('1’0)’ ('112) - -2,0
1,0 Y(0,0), Y(oyl) (0,0), (_011) . 2y3
1,1 ¥(0,1), ¥(0,2) (0,1), (0,2) - 3,4
1,2 ¥(0,0), ¥(0,2) | (0,0), (0,2) 2,4
2,0 ¥(1,0), y(1,1) (1,0), (1,1) 6,7
2,1 y(1,1), ¥(1,2) (1,1), (1,2) 7,8
2,2 y(1,0), Y(112) . (170)’ (1’2) 6,8
Table 4.12:  IT of a Type 7 Task
ITERATION USING FROM AT
, (i,4) INPUTS CELLS TIMES
0,0 x(0), x(1), C(0,0) | (-1,0), (-1,0), (0,-1) | -4,-4,-1
0,1 x(1), x(2), C(0,1) | (-1,1), (-1,1), (0,0) | -3,-3,0
. 0’2 X(O), X(2),‘C(0,2) ("112)1 ('1’2)’ (011) '2y"211
L0 x(0), x(1), C(1,0) | (0,0), (0,0), (1,-1) 0,0,3 -
1,1 x(1), x(2), C(1,1) (0,1), (0,1), (1,0) 1,1,4
1,2 x(O), x(2), C(1,2) (0,2), (0,2), (1,1) 2,2,5
2,0 x(0), x(1), C(2,0) | (1,0), (1,0), (2,-1) 4,4,7
2,-,1 x(1), x(2), C(2,1) (1,1), (1,1), (2,0) 5,5,8
2,2 x(0), x(2), C(2,2) (L,2), (1,2), (2,1) 6,6,9
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‘which is also the maximum outermost index limit s‘peciﬁcation for a recursive vector:
‘cross-product operauon in the inverse dynamics computatlonal problem. Note that an
unit latency for input data synchronization is also included in the operat1onal delay

4.6 Optimal Buffer Assignment for the Formulation of a Balanced Systolic |
Architecture to Evaluate the Inverse Dynamics Computational Problem

The computational flow of tasks in the forward iterations of 'algorithm
NEWTON_EULER (Section 4.4) as a directed task graph is shown in Fig. 4.8. Each
node in th1s diagram represents a systolic processor of Section 4.5. The nomenclature,
‘ ty i, next to each node denotes the type of systolic cell, where the variable i identifies
the type of cell. ‘Also, the variable x in the field T, inside each node spe01ﬁes the
actual task number.

" The bottleneck in achieving maximum throughput in the architecture of Fig. 4. 8

is due to the different arrival time of data into the multi-input systolic processing cells.
Since computatlons may not be initiated in cells until all input data are available
s1multaneously, the pipelined execution time is therefore naturally lengthened We
must therefore balance the task graph to achieve maximum pipelining. This problem
may be solved by assigning appropriate amounts of delay (using buffer stages) along
some paths of the graph. : v

The problem of balancing a directed graph by 1nsert1ng buffers along appropriate
paths has been solved by the cut-set theorem [21,22], local correctness criterion [22],
and the graph-theoretic approach [5,7]. However, we shall use a more systematic
approach by formulating it as an integer linear programming problem [47].

Before formally presenting the procedure which may be used to generate a set of
integer linear - constraint equations for the balancing problem, the following
notation/definitions must be introduced.

Definition 1: A Weighted Graph, WG, corresponds to a directed task graph using a
given set of processing units which provides a weight variable w;, ie Z", along the
output edges of every node n;. The weight, ®;, constitutes the computatxonal delay
within node n;.
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Deﬁmtlon 2 A weight, 3 (o(P(ni)), is defined as thé sum of weights, or total
: P(njePy(n) S
cost,. along thc kth path, py, from the 1nput node to multl-lnput node, nl; in the.

Welghted Graph WG.

:Deﬁ_mtlon 3: The critical path, p.(n;), denotes the path from the input node to multi-
.input' node, n; which constitutes the largest . weight variable, Cies
max Y @(p(ny), in the Weighted Graph, WG. ‘

p(n;)e p(ny) '

Definition 4: The Buffered Graph, BG, corresponds to a directed task graph which
provides a set of buffers {B;, ... »Bjin}, j€Z1, along the (n—j) output edges of multi-
output node n;, i€ Z", in WG that do not belong to output edges in the critical path
pc(no), where n, is the output node of WG. :

- Note that an input node, nj, that supplies operand data for nodes in the dlrected
task graph must be included in BG. '

Definition 5: The variable, Y | B(p(n)), is defined as-the sum of buffer
- 7 : p@;)e pe(ny) ‘ o B
variables, or total buffer cost, along the kth path, p,, from input node, nj, to multi-

input node, n;, in the Buffered Graph, BG. Now that the nomenclature to be used has
been discussed, we may proceed further by presenting a procedure which will -
generate an optimal buffer assignment for a given weighted graph. '

Procedure OBAP (Optimal‘Buffer Assignment Problem)
Input: = Weighted Graph, WG.

Output:  Optimal numerical buffer assignment of buffers B; jeZ", which
: minimizes the total number of buffers stages in Buffered Graph, BG.

STEP 1:  Find critical path, p.(n,), to output node n,, from the input node of WG.



STEP 2:

STEP 3:

° STEP 4:
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Obtain BG by assigning buffer stage variables to the output edges of

- multi-output nodes in WG, except for the output edges whlch belong to

the critical path pc(n ), of the output node n,,.

- For every multi-input node, n;, eXCept output node n,, acquire a set of

m-1 integer- linear constraint equatlons where m is the number of 1nputs
into node n;. These equations may be found by,

Y  [Be®) +0>(p(ni))]
P)E pln)/pe(mi)

S (1B o)) ey

pmepln)

Apply integer linear programmlng [47] to minimize total number of '

» buffer stages, B;,

anmze Z | Bil

i=1

sub_]ect to the conslralnts of STEP 3, where n is the number of buffers 5"‘?

. The above procedure may now be apphed to the welghted graph WG for the
- forward iterations of the Newton-Euler algonthm (in Fig. 4.8). The weights assigned -
to the output edges of each systolic node represents the computational delay within
" the node. These delays for the various types of systohc processors developed 1n
vSCCthIl 4.5 is summarized in Table 4.13. - |

sTEPL

'STEP 2:

The critical path Pc(n,) for the WG of F1g 48 is along the nodes T1 T2-

T3-T4-T5-T7- T8-T12-T13 -,

By applymg buffer ass1gnment rules to the WG of F1g 4 8, we obtam the

normahzed Buffered Graph BGasin F1g 4 9

STEP 3:

The mteger linear constraint equatlons on the buffermg vanables in BG
may be found by applymg Eq 4. 8) to each node: - L

'f‘node T1:| B =0
. node T2:| B4 ,-11_.

- nodeT3:|Bj =14
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|B7

B12

B18

T8

“(T12)

T13

no

Fig. 4.9: BG for Forward Iterations of N-E Algoriﬁhm :
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ty3

Fig. 4.10: WG for Backward Iterations of N-E Algorithm
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~ node T4:| B4 +|B12 =15
node T5:| B3 +|B15} =26
node T6:| B3| =| B11| +11
node T7:| B11| =11 y '
node T8:| B§ +|B12] +|B1§ =30
node T9:| B2 +| B14 =| B17 +26
node T10:| B2 =| B10| +| B11] +11
node T11:| B10| +|B11] =| B17 +11
node T12:| B17] =8
node T13:| B7| =39
node T14:| Bl| =| BY +| B10) +|1311| +11
node T15:| B§ =8 |
node T16:| B1| +| B13 =| B1¢ +|B17 +26
node T17:| B9 +|B1(| +|B11] =| B14 +|B17 +12

STEP 4: Apply integer linear programming to minimize Zl BJ subJect to the
: i=1
constraJnts of STEP 3. The -optlrmzatlon process generates:

| Bl| =31,| B2 =30,| B3 =22,| B4 =11,
| B§ =14,| B =0,| B7 =39,| B§ =8,

| B9 =1,| B10| =8,| B11| =11,| B12 =15,
| B13| =3,| B14 =4,| B15| =4,/ B14 =0,
|B17] =8,| B1§ =15

Procedure OBAP may now be applied to the WG (in Fig. ’4; 10) for the backward
iterations in program NEWTON-EULER. Intermediate results of steps in the
procedure are as follows: :

STEP 1: The critical path p.(n,) for the WG in Fig. 4.10 is along the nodes: T19-
T20-T21-T23-T24-n,,

STEP 2: Applying buffer assignment rules to the WG of Fig. 4.10, the normalized
buffered graph in Fig. 4.11 may be obtained. :
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Fxg 4.11f » BG for Backward Iteratioﬁs of N-E Algorithm -
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Téble 4.13: Compuﬁational Delays for Basic Set of Systolic

Processors :
Task| Systolic | Systolic |
| Type Operational |Execution
_ Delay _Time
1 . 3(n+1)
2 1 3(n+1)
3 3 4(n+1)
s 8| 8@ty
5 8 8n+10
- Ba. 11 11n+13
6b 8 8n+10
~8e 11 11n+13
7 | 3 4(n+1)
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STEP 3:° The 1nteger hnear constraint equatlon on buffenng vanables in F1g 4., 11
' are as follows::

node T18: |B22l O

node T19:| B20| _|le|

node T20:| B20| +1=B25

node T21:| B19 =| B20 +4

node T22:| B21] +| B24 =8

node T23:| B20| =6,| B22 +|B2§ =11
node T24:| B23| =22 -

. 2
STEP-4: Applying 1nteger hnear programming to minimize Y, B, subject to the
» E =19 o _

constraints of STEP 3, we get: ;

| B19 =10,| B20| =6,| B21| =6,| B22 =0,

| B23] =22,| B24) =2,|B25 =7, |B26] =11..
A balanced architecture for the computation of the inverse dynamics problem is thus
found by pipelining the weighted systolic architecture of Fig. 4.8 to that of Fig. 4.10
through an intermediate LIFO (Last-In-First-Out) intermediate register file structure.
“The total time to compute the given problem on the developed systolic machine is
(tert + torp)+2, where tys is the operational delay of the critical path of Fig. 4.8
(forward iterations), t b 18 the operational delay of the critical path in Fig. 4.10

- _(backward iterations), and n is the number of manipulator joints. By using the

- operational latency data (Table 4.13) for all types of systolic processors designed in
~ this chapter, the total execution time to evaluate the inverse dynamics problem of an
“n-link manipulator is 70n+2. Note that the coefficient d; (see Theorem 4.1) for our

particular systolic machine for the computation of the desired problem is thus 70. .

4. 7 Conclusnons _
A novel systolic architecture to compute the inverse dynarmcs computational
prob]em w1th1n the systolic execution tlme lower bound of o} din{, where d; is a -

_ spemﬁed constant is discussed. A modlﬁed form of the systohc design methodology
of Moldovan and Fortes [40] is used as the primary design tool for the archlteeture. .
~ Modifications were required to provide allowances for unequal execution times of

- processing cells, and to eliminate broadcasting of any input or generated variable
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within the Systolic array. The inverse dynamics problem is decompo'sed into a set of .
unidirectional and linear recurrence tasks amenable for direct mapping onto a fixed -
systolic system. A set of seven basic types of systolic processor architectures are
developed to represent nodes in an acyclic systblic directed task graph to compute the
‘Newton-Euler dynamics aigbrithm. The balancing of this acyclic task graph is
reduced.to an integer linear optimization problem for the assignment of delay buffers -

along alternate data routes. The final systolic architecture achieves maximal

pipelining with a mmlmal number of delay buffers assigned along its various
cornputatlonal paths. '
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v CHAPTER 5§
SUMMARY OF CONCLUSIONS

" In chapter 2, the ideal lower bounds on the number of parallel processbr_s-and
exe¢ution time to evaluate the inverse dynamics problem of an n-link manipulator in a
parallel 'processing‘architecture‘using an optimal scheduling algorithm was proven to
be n and o(| ajn| ) ‘re'spectively,- where a, is a specified constant.  Next, a novel SIMD

schedliling algorithm to perform parallel processing on a SIMD multiprocessor-based.

architectural model with a crossbar interprocessor network which performs close to
the ideal lower bound is presented.. The performance of the N-E dynamics algonthm
on the proposed architecture using the specified SIMD scheduling technique is next
evaluated. Speedup factor of greater than 3.4 over previous related work [19] for the
computation of the defined problem on a parallel processing system is achieved. The
SIMD architectural model is then not used again to simulate the performance of
PUMA forward and inverse kinematics algorithms because of the non-recursive and
non-linear nature of these algorithms.‘ A multiprocessor model with a shared memory
interprocessor communication strategy is instead investigated for this purpose using
the DFTHS scheduling algorithm. Simulation results show speedup of approximately
2 over the uniprocessor solution when the number of parallel processors is greater
than eight and five for the cases of forward and inverse kinematics respectively.
Simulation results showed very large speedups is not achieved in this latter
multiprocessor architectural model due to high interprocessor communication latency
costs. The important results of this chapter may be summarized as in Table 5.1. Note
that the hardware overhead due to the crossbar interprocessor network must be
included when evaluating the overall system cost for the computation of the inverse
dynamics problem.

In chapter 3, we described a cost-efficient parallel and pipelined bit-serial system
for the inverse dynamics computational problem to achieve the bit-serial execution

time lower bound of o(lclk + czknJ ). A high performance multi-functional bit-serial
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Table 5.1 Execution T_imes and Hardware Overhead for Computation of Robot
' ' Control Algorithms in a MC 68020-Based Multiprocessor System .

Robot Minimum Number
Control Execution of
Algorithm Time (in us) | MC 68020’s
 Inverse 513.84 8
Dynamics
PUMA Forward | 49, 60 8
Kinematics
PUMA ‘Imfcrse- 150.45 5
Kinematics -

Table 5.2 Execution Times and Hardware Overhead for Computation of Inverse
Dynamics Problem '

Computational | Minimum | Hardware
: Execution '
Approach Time Overhead
Parallel 8 PEs,
. 119n Crossbar
Processing » ~ | Interprocessor
Network
Bit-Serial | 19kt6kn | -2 DiSerial
: » N 1 Cells
| S 4 lic -
Systolic | 70n+2 - 24 Systolic.
I B Processors -
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. cell archltecture is described as a building block for the array conﬁguratlons of the
system. leper CMOS circuit design strategy is proposed for the cell’s
1mplementa;10n to minimize propagation delays and maximize operating frequ_en01es ‘
For the case of a 16-bit system word length and 20MHz operating frequency, the total
~time to compute the inverse dynamics problem of a 6- hnk manipulator on thc .
proposed b1t-ser1a1 architecture is only 44y1s. ‘

o Flnally, in chapter 4, a novel systolic archltecture to compute the inverse
dIv"namws computational problem within the systolic execution time lower bound of

o dlﬁ] ; w'here d, is a specified constant, is discussed. A modified form of the systolic

design methodology of Moldovan and Fortes [40] is used as the primary des'ign_.t'ool
for the architecture. Modifications were required to provide allowances for unequal
execution times of processing cells, and to eliminate broadcasting of any input or
generated variable within the systolic array. The inverse dynamics problem is -
decomposed into a set of unidirectional and linear recurrence tasks amenable. for

direct mapping onto a fixed systolic ‘system. A set of seven basic types of systolic
processor architectures are developed to represent nodes in an acyclic systolic

directed task graph to compute the Newton-Euler dynamics algorithm. The balancing

: of this. acyclic task graph is reduced to an integer linear optimization problem for the

assignment of delay buffers along alternate data routes. The final systolic architecture

achieves maximal pipelining with a minimal number of delay buffers assigned along

its various computational paths.

The performance and hardware complexity of alternate computational structures
for the evaluation of the inverse dynamics problem is compared in table 5.1 The
variables "n" and "k" in this table specify the manipulator link count and bit-serial
system word length respectively. Clearly, the systolic approach achieves superior
performance (assuming the word length for the bit-serial system is greater than 16).
The hardware complexity for this approach is however highest due to the overhead
associated with the control of the systolic arrays and the number of cells in the arrays
themselves. The parallel processing approach achieves the next best execution time,
where the crossbar network is the primary hardware overhead. Finally, the specified
bit-serial architecture provides acceptable performance at the cost of moderate
hardware. Lowest amount of hardware complexity is required for this case because of
minimum circuitry needed for the implementation of bit-serial cells.
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Appen_dixA: N-E Equatibns of Motion for a Manipulator 'With_ Rotary joints

ForW‘ard Iterations: -

FORi=0TO (n-1) DO

BEGIN |
Ho, = HR(w; +07;)
Hay,y = R+ 07, + ‘o x 62 S
= PRV + (Mo, x Pigy+ gy x (Mo x Pyyy)
i+l‘°,cm — (i+lcbi+1 x i+1Pcm) + i+1(°i+1 % (i+1(°i+1 % iHPcm) + i-+1‘.’i+1
i+1F_ — i+l . . ‘

‘1+ 1= i+1 vcm

i+l _ i+l i+l i+1 Ll i+,
Nigg = Ty 70+ 0 x T 04)
END :

Backward Iterations:
" FORi=nTO1DO

'BEGIN |
= F+ LR™

my= N;+ (Pyyy + P, ) x Fi+ LR(F Iy + Py x M)
T, = L R*'n;
END
where,

my mass of link i
.111 zth component of the joint velocity of link i+1
“izﬂ . zth component of the joint acceleration of link i+1
#lg.,,  angular velocity of link i+1 with respect to the i+1th coordinate frame
i“c;)iﬂ - angular acceleration of link i+1 with repect to the i+1th coordinate frame
i“\'/iﬂ linear acceleration of link i+1 with respect to the i+1th coordinate frame
ity

..,  linear acceleration of the center of mass of link i+1 with respect to the i+1th fra
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rotation matrix which maps position vectors from i+1th frame to frame i
origin of link i+1 with respect to the ith coordinate frame

location of the center of mass of link i+1 with respect the i+1th coordinate fram
total inertial force exerted on link i+1 at the center of mass ”

total moment exerted on link i+1 at the center of mass

force exerted on link i by link i—1 ‘

moment exerted on link i by link i-1

torque exerted by the actuator on link i
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Appendlx B: 3-D Matrix/Vector Arithmetic Operatlons Used In The N-E '
L g Dynamlcs Computatlonal Problem :

(1)  Vector-Add (VA) |
- The vector sum Y; of vectors a; and b; is defined as,
-'—(a +bl) fori=1.23.

@) Scalar-Vector (SV) product »
. The scalar-vcctor product Y; of vector al by scalar Kis dcﬁned as,

Y Ka1 fori=1,2,3.
3) : Inner product (IP)
o The inner product Y of vectors a; and b; is defined as, -

Y=,
. i=1

4) | Matrlx-vector (MYV) product
~ The matnx-vcctor product Y,, of matrix aj; and vector b; is dcﬁned as,

Y,= Zamb forn=1,23.
i=l

5)  Vector cross (VC) product

‘The vector cross product, Y of vectors a; and b;, is defined as,

:1 ik : v
Y=Y +Y+Y, =detla; a; a3|

I !
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Appendix C: PUMA Forward Kinematics Solution

The position and orientation of the end-effector of the PUMA arm with respect to a
fixed reference coordinate system, given the joint angles and and geometric link
‘parameters, may be found as follows:

The arm matrix for the PUMA robot arm is

T=T,T; =", 'A%, A A, A =

‘ .
———

‘where, .
ne = C[Cry(CiCsCys = S4Ss) = S35Cs] = S1(5:C5C, + CaSs)

ny, = S [Cr(CiCsCs = SaSg) = SuSsCs] + C1(5:1CCa = CiSy)
e = =S533(CaCsCs = SaSs | = Ci3SeCs
g = Ci[=Cia(CaCsSs + SiCs) + 51355551 = 51 ( =S:CsS5 + CuC)
"5, =85 [ =Ci(CaCsSs + S4Cs) + Su3SsSs | + Ci( =$5.CeSs + CuCy)
5. = Sy (CaCsSs + SaCa) + CySs5s
3; = Ci(CnyCySs + S13Cs) — Sy SaSs
g, = 5)(Cp3CaSs + S Cs) + CSuSs
4, = =51 CuSs + Cn Cs
| pr = Ci(ds(CyCiSs + S33Cs) + Sp3de +a3C3 + a2 Cr ] = 511deSeSs + dy)
‘Py = S1[ds(Ca CaSs "“"TS’JQ) + Spyda + ayCay + axCr ] + Cy(dgSaSs + dz)
Pe = de(CyCs = S CuSs) + Cyde - a35x -
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Appendix D:© PUMA Inverse Kinematics Solution
The inverse kinematics problem can be stated as: Given the position /orientation of
the manipulator hand and the link/joint parameters, determine the Jomt angles so that
the manipulator can be positioned as desired. That is, given

—

By 0p 8; D3y
T_”’: % %4 pr‘_[noap
" Imy 0, e, p{ (0001
o 0 0 1)

the joint angle equations are [2]:
r=(p] + oY

[11p = 0:C1 + 9,5,

fue = 0.Cy + 0,5,

[13p =-0:5, T 9,C

[130 ==0;5; + 0,C

[116 = 6,C1 + 4,5,

[13¢ = =a:5; + 4,0y
d=fh, v h - I"‘“':?"“zg

L ]
¢ = 4ajaf + dada]
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S S
i_‘er-.'d2

W [11, ~ W P:
wif 11, T WP,

9y = tan‘ll_.l.] - tan™!
-d,

foy = tan™!

where w, = 4,C; + a3, ws = dy + 8453, C; = cos §;, and §; = sin ;.

92 ’ =b 023"'93

—1' =S8, + Cla,.
8y = tan =
| Ol Ch8, + 514;) = Soza;
| . fl3c
. = tan‘l .
| Coaf 114 — Sna;
_ | CiCamlC8, + Sia,) = Sea.| + 5,(=58, + Cia,] |
f#s = tan : — - - : v
o 1 : Sag(Chay Sl‘_’y) + Case,
- CCasf11s = S238.) + Sif 134
= tan™!|- = :
0‘33/[14 - C‘.‘S‘z:
P “‘ta.n'l —CvS{C&(C%IIIo - 5‘230:) + S4f 1303 - VSS(Sﬁzfilo - C‘.‘SO:)
3 = > - _
7 =3 Casf11s = 50:) T Cuf13s
Ay Ay g e ; o
where . - (-—), (T) , g-a—). are constants, Ciy = cos (0; T 9;),

and
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Appendix E: DFIHS (Depth-First-Implicit-Heuristic-Search) Algorithm _
The DF/IHS is a kind of depth first/heuristic search. The main feature of
DF/IHS lies in the fact that, unlike the conventional DF/H method, it does not
require the computation of the values of heuristic function for all active nodes with
the largeét depth in order to find, as the next branching node, the node having the
smallest value. Prior to the search procedure, priorities are assigned to those nodes
that may be generated during search by using the priority list of the CP/MISF
method. In this manner, the memory requirements and the average computing time
required for search can be reduced markedly, since the choice of the proper next
~ branching node can be made without computing the heuristic values. The DF/IHS
method is broken down into two parts, the preprocessing part to assign priorities
heuristically to the nodes generated during search, and the depth-first search part.

1)  Preprocessing (Task Renumbering): All tasks are renumbered in the same
order as in the priority list of the CP/MISF method. This can be performed by
the use of an O(n?) algorithm involving the solution of a longest-path problem
and sorting.

2)  Depth-First Search: In order to describe the features of DF/IHS, use is made

_of Kohler’s general representation of the branch-and-bound method, BB(Bp,
S; E,F,D, L, U €, RB). (The dominant relation D and the characteristic
function F are not used in DF/IHS).

"~ a)  Branching Rule Bp:

- 1)  The original problem is decomposed along the time axis (an
example of decomposition to subproblems).
2)  Since optimal solutions may not be obtained by simply assigning
the ready task(s) to the available processor(s), a fictitious task
that forces a processor to be idle is introduced.

- 3)  Atotal of

Dypranch = (nready + nidle) C Myy

nodes are generated from each node in the search tree, where
Ny.,qy iS the number of ready tasks at time ¢ nyy is the number
of idle tasks to be considered at time ¢ (if m,, = m then n;q, =
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c)
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S my, - 1;if 1 <my = av) m,, is the number of processors
available at time ¢; C means combination.

Selection is made in the form of DF/FIFQO.
1)  Selection is made in the form of DF/FIFO.

2) A special table R (Ready task table) and pointer SP (next
branching node selection pointer) for the memory of active nodes
and selection of a next branching node are used to facilitate node
selection by the computation of the order O(m). At the same
time, the storage requirement, which often becomes the
bottleneck in using the branch-and-bound method, can be
retained in the order O(mn). » R

3) - As the initial search solution, the CP/MISF solution obtained has
an’ error bound, relative to the optimal solution, that is

- guaranteed. Thus any intermediate solution which has been
obtained when the search procedure is terminated is superior to
the CP/MISF solution in its accuracy.

Lower Bound Function L:

1)  Fernadez’ extension of Hu’s lower bound

thu(na) = cr(na) + [Q(Tta)]

ty

(r)= max —t + (/m) | F(z, o) dt
T = ity | X i’;

where the load density function F(;j,’ t)is givenby .
’ ;E:i=tcr(na) -tj_t{)

L =1, forte.(jt_,%+tj')
f(t;, t)

=0, otherwise

F)= ¥ f(t,1),
je(my) v o
is used in the light of the accuracy and the computing load
involved. Here =, is the partial problem decomposed by
brariching operations; t; is the allocation time represented by the
current branching node; and [x] is the minimum integer greater
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‘than x.

- 2) ' Since the calculation of the lower-bound function in> 1 reqnires

the use of a pseudo-polynomial time algorithm, two much
simpler lower bounds with the complexity of at most O(n) are
used jointly so that the computing load for the bounding
operation is minimized. Specifically, the computing load is much
reduced by applying the bounding operations by the lower bound
of 1) only to those nodes for which bounding by using the 51mple
bounds has failed. : :

-Upper Bound Cost U: Since a very accurate intermediate solution ie.,

U, can be obtained as the initial solution, the total search t1me can be

‘reduced remarkably.
 Elimination Rule E: E = U/DBAS (upper bound tested for dominance

of descendants of branching node and members of currently actlve set).

Acceptable Approximation Error € :

‘1) While Kohler could only evaluate the relative error of the

intermediate solution U from the lower bound as ‘‘Bracket,”” BR
(U - LYUSBR). DF/IHS can obtain an approximate solution
whose relative error from the optimal solutiOn does not exceed €.

’ opt)/ topt =

2)  Useless search computation can be avoided since the search
process is terminated as soon- as optimality is attained or a
predetermined approximation error limit is reached by comparing
the lower bound with the intermediate solution U or the
approximate intermediate solution U, U, = U/ + €).

Resource Bound RB: In the conventional scheduling algorithms on the
basis of the branch-and-bound method, the number of active nodes
increases exponentially with the number of tasks n, and because of the
limit of memory capacity, only small problems of about 40 tasks could
be scheduled. By the use of special lists and pointers, however,
DF/IHS can successfully reduce the number of active nodes for each of
which it is required to memorize the state. The search process only
requires the memory area of the order O(m'n). Thus the resource
bound, i.e., storage limit, it rarely violated. '
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