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ABSTRACT

A description of work-in-progress on PSEIKI is presented. PSEIKI is a computer vision sys
tem designed to use multiple sources of knowledge to aid in the image understanding task. In 
this report we describe the concepts used in PSEIKI and how the incorporation of world 
knowledge is used to make PSEIKI expectation driven. The world knowledge in the system is 
represented as a line drawing of the expected scene. The system is implemented as a 2 panel / 
6 level blackboard and uses the Dempster-Shafer formalism to accomplish inexact reasoning in 
a hierarchical space.

-4- andress/kak
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1. INTRODUCTION

A fundamental goal of computer vision is the development of systems that would be 
capable of carrying out scene interpretations with the aid of all available knowledge. As an 
example, if a helicopter-based computer vision system is looking at a snow covered terrain, 
then that knowledge must be taken into account explicitly in a target recognition procedure — 
clearly the processing required for a snow-covered background is different from that for, say; 
wooded areas in spring.

As a simpler example of knowledge-based processing, consider the problem of self- 
location for a vehicle-mounted vision system [1]. Let’s say the vehicle’s whereabouts are 
known approximately from the position encoders mounted on the wheels — the precision of 
this information being limited by the extent of slippage in the wheels, etc. Given this approxi
mate information, is it possible to make a more precise fix on the location of the vehicle by 
integrating the vision data with the map knowledge, while the two are out of registration? This 
problem of robot self-location was the original goal of PSEIKI. We felt that this simple exer
cise in knowledge-based processing would give us the expertise to set up more complex rea
soning structures for incorporating other kinds of knowledge sources in an image interpretation 
task. The acronym PSEIKI stands for a Production System Environment for Integrating 
Knowledge with Images.

As it stands now, PSEIKI, a production system in OPS83, is designed to use multiple 
sources of knowledge to aid in an image understanding task. The world knowledge is 
presented to the system as a line drawing of the expected scene. The system is implemented 
as a 2 panel/6 level blackboard and uses the Dempster-Shafer formalism to accomplish inexact 
reasoning in a hierarchical space.

Although PSEIKI was originally was developed for carrying out knowledge-based experi
ments in robot seif-location, the current implementation is general enough to be used in any 
application where a good estimate of the expected scene is available to the vision system. The 
system can be used as a general vision verification module either in a robotics context or for 
automatic target recognition.

PSEIKI contains two features that keep it domain independent. First, the knowledge used 
by PSEIKI consists of a line drawing of the expected scene (which in most applications would 
not be in registration with the observed image)r For example, for robot navigation applica
tions, line drawings can be easily be generated from road maps. For verification vision, a line 
drawing of the object whose identity, location and orientation need to be verified, can be gen
erated from a 3D model of the object In more industrial 2D vision applications, computer

Note that for applications such as automatic target recognition the line drawing representation of 
the expected scene can include environmental effects.
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graphics or CAD systems can be used directly to generate the line drawings of the expected 
scenes. The other feature that provides the system domain independence concerns how the 
System presents its results. The output of PSEIKI consists of a mapping from elements 
detected in the input image to elements in the expect scene.

The mapping generated by PSEIKI is expressed by labeling the detected edges with the 
names of the corresponding lines in the expected scene; a belief value is also attached to each 
label indicating the confidence of the mapping found. Furthermore, a belief value is estimated 
for the entire mapping process. If this overall belief value does not exceed a threshold, the 
entire mapping is rejected. As a simple illustration of what PSEIKI does, if Fig. la is a line
drawing rendition of an expected scene and Fig. lb a depiction of the edges that might be 
found in the vision data collected for the scene, then PSEIKI would produce an output similar 
to the one in Fig. lc.

FIGURE 1. Typical images used by PSEIKI

Since PSEIKI only generates a mapping from the edges in the input image to the expected 
scene, it is left to a higher level system to make global interpretations based on the mapping 
found.

PSEIKI is also a testbed for carrying out experiments in how inexact reasoning can be 
achieved on hierarchical representations of scenes. Gordon and Shortliffe [2] discuss a tech
nique that allows the Dempster-Shafer formalism | 3 | to be used in a system that hierarchically 
groups hypotheses. That article deals with diagnostic reasoning (in medicine) where the 
hypotheses can be grouped into strict hierarchies. The methods of Gordon and Shortliffe can 
not be used by us directly because PSEIKI does not employ strict hierarchies (an edge can be a 
member of two faces if it is a part of the border between them). In the current implementation 
of PSEIKI, the blackboard architecture is exploited to permit exact and inexact reasoning in a 
tangled hierarchy. The Dempster-Shafer formalism is used for pooling uncertain evidence in 
the hierarchy.
* ' . " - ■ ■ • ' ' .

We will be referring to this mapping throughout the report.



PSEIKI is able to handle significant perspective effects. Many previous systems, again 
most notably aerial intei^tafibn^rtiei^, were able to assume that the images were obtained 
by an orthographic imaging system. Although perspective distortions make image interpreta
tion difficult because metric properties, such as length and orientation, depend on the object’s 
position in the image, they also provide clues to the structure of objects in the image.

PSEIKI was also developed to investigate how different sources of knowledge can be 
integrated into the image interpretation task. Although knowledge of the expected scene is the 
main source of information being investigated, the system is general enough to affect integra
tion over multiple images in structural stereo or optic flow. The investigation of how system 
control flow affects the image understanding task is also underway.

1.1. RELATED IMAGE UNDERSTANDING SYSTEMS

• ACRONYM (Brooks, et al. [4]) is a model-based image understanding system. The 
system’s task consists of finding instances of known objects in the image. To perform 
object identification, the system first builds a Picture Graph of the image and an Observa
bility Graph that specifies information about objects that could be in the image. The sys
tem identifies instances of objects in the image by matching nodes of the Observability 
Graph with sets of nodes in the Picture Graph. The objects in the Observability Graph are 
represented in slot - filler structures where any slot that can accept numeric values can 
also accept algebraic constraints expresses as inequalities. The system can then manipu
late these constraints and determine if properties of objects detected in the image meet 
these constraints. The objects used to generate the Observability Graph are represented 
as generalized cones. Inexact reasoning is riot used and the system uses only backward 
chaining to arrive at an interpretation.

• Davis and Hwang describe the SIGMA image understanding system [5] for aerial image 
interpretation. The system uses both forward and backward chaining to arrive at an 
interpretation, and it represents its object classes hierarchically using frames. Further
more, the system is able to integrate hypotheses about specific objects in the scene. The 
system does not use uncertain reasoning but instead is able to control its focus of atten
tion based on the strength of a situation.

• SPAM [6], a system designed by McKeown, Harvey and McDermott is also an aerial 
image interpretation system. The system originally was constructed to interpret airport 
scenes but has been expanded with a rule generator so it can now interpret scenes from 
other domains. SPAM uses confidence values to aid labeling and can manipulate these 
values based on the consistency of the various labelings.

• VISIONS (Hanson and Riseman [7]) is a blackboard expert system designed to analyze 
color images. The system uses a flexible control scheme, hierarchical scene
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representation, and a number of knowledge sources to accomplish the scene interpretation 
task. VISIONS is domain independent but uses schemas to tune the system for a particu
lar application.

• The image segmentation expert system developed by Nazif and Levine [8] contains two 
global memories. The global long term memory contains rules that are applied to the 
data stored in its short term memory. The system is rule based and uses modules to 
update lines, regions and areas in the image. The expert system also contains a set of 
metarules and can control its focus of attention.

• Barnard describes a system that deals with perspective images [9]. The system is able to 
use the Gaussian sphere to determine the vanishing points of the scene being analyzed. 
The backprojection of angles and curvatures also is used to aid the interpretation task.

• Barrow and Tenenbaum discuss the problem of interpreting line drawings in [10]. They 
are able to use junction libraries and knowledge of differential geometry to discriminate 
between extremal and discontinuity boundaries. This knowledge then is used to deter
mine how the surfaces should be constrained.

PSEIKI differs from the above system in.the following three main areas:

Firstly, PSEIKI’s task differs from those of previous systems. Most of the other systems 
were designed to find object instances in the image and, through such discoveries, to arrive at a 
global interpretation of the image. PSEIKI’s task is limited to integrating expected scene 
information with the observed image — the result is a set of consistent labels, with associated 
belief values, for the edge elements in the image.

PSEIKI differs from SPAM and SIGMA, and to a certain extent VISIONS, in not relying 
on domain-dependent information. For example, SPAM uses airport design knowledge when 
interpreting airport scenes. Context-cues have also been used extensively in past computer 
vision systems. For example, if SIGMA has detected a driveway in an image, it would then 
search for a house and for roads connected to the driveway. Because PSEIKI is provided with 
a good estimate of the expected scene, it does not have to perform inferences of this type. 
Although it might be said that context-cues are indispensable for scene interpretation because 
they make deductions more powerful, their use necessarily introduces some domain depen
dence. Therefore, it is our philosophy to separate the generation of the mapping from the for
mation of an overall interpretation of the scene. If the use of context-cues is desired by a sys
tem using PSEIKI, then it is up to the higher level system to provide PSEIKI with a line draw
ing incorporating the information contained in the cues.

PSEIKI also differs from previous systems in its method of performing inexact reasoning. 
Many systems, including ACRONYM, SIGMA and the system by Nazif and Levine use no 
uncertain reasoning in the image interpretation process. Because of the overwhelming amount

■ ; . -8-
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of data in an image, most of the inexact reasoning schemes used in the past have been fairly 
simple to avoid becoming bogged down in certainty value computations. On the other hand, 
inexact reasoning in PSEIKI is based on the Dempster-Shafer formalism in a tangled hierarchi
cal space. The use of a hierarchy curtails the number of uncertainty calculations and is made 
possible by the use of the blackboard architecture.

1.2. OVERVIEW OF PSEIKI

There are two main sections to PSEIKI, a low-level preprocessor which performs pixel- 
to-symbol conversion and a rule-based edge labeler. PSEIKI’s architecture is shown in Fig. 2. 
Because PSEIKI tries to establish a mapping from the input image to a line drawing of the 
expected scene, the preprocessor produces an edge-based segmentation. The final output of 
the preprocessor is a collection of edges detected in the image which are represented as 
piecewise-linear segments.

Model Panel

Expected
Scene

Preprocessor,
Pixel to Symbol

Generator Convertor

Data Panel

FIGURE 2: PSEIKI’s Architecture

The rule based portion pf PSEIKI is written in OPS83 and is implemented as a black
board system. The expected and detected scenes are hierarchically represented on a 2 panel / 6 
level blackboard. One panel of the blackboardis reserved for data defining the expected scene
and is called the model panel. The other panel, called thq data panel, contains data derived■ •. * '
from the input image. Gurrently, data on the model panel is static once the expected scene

Note that these two panels correspond with the Observability and Picture graphs in ACRONYM.



data is deposited on it. However, it is thought that the data in this panel will be dynamic in 
future versions of the system. The ability to change the model panel could be exploited in 
future versions of PSEIKI.

For example, if the expected and observed scenes are misregistered by a large amount, 
then PSEIKI will not be able to establish a complete mapping. However, if it is able to pro
vide the higher level system with a partial mapping, then the system may be able to generate 
an improved estimate of the expected scene. The improved estimate could then be deposited 
onto PSEIKI’s model panel producing a greater correspondence between the expected and 
observed scenes. This new information would hopefully aid in the generation of the mapping. 
Currently, it is not necessary to perform this change because a high degree of correspondence 
is required between the observed and the expected scenes.

The ability to change the data in the model panel also could be used if multiple images 
were being fused to provide stereo vision capabilities. In this case, data from a second camera 
could replace the model information; PSEIKI should be able to use many of the same tech
niques to perform structural stereo fusion on the data in the two panels.

Each blackboard panel contains the following levels to represent the images: scenes, 
objects, faces, edges, segments and vertices. Each element in a level is defined by a finite col
lection of elements on lower levels. For example, a scene is made of a union of objects and a 
face is defined by the group of edges which form its borders. Figure 3 shows the data on the 
model panel for a trivial expected scene, a simple block. It shows each element’s label and the 
sub-elements from which it is composed (note that the segment level is omitted).

The following is a short description of the data stored at each level.

6) Scenes — The entire scene (expected or observed) is represented on this level. The scene 
is defined as the union of all objects in level 5 of the hierarchy. It provides a way of 
labeling multiple objects that otherwise would not be possible.

5) Objects — Each element on this level corresponds to a distinct physical object. The 
objects are defined as the union of all boundary faces from level 4.

4) Faces — The elements on this level represent the polygonal faces that form a boundary 
representation of the observable portion of the objects. A face is defined by the edges 
from level 3 which form its border.

3) Edges — These elements form the boundaries of the faces in level 4 of the hierarchy. 
This level is included to provide a way to compensate for segmentation deficiences. 
Highly collinear segments from level 2 are grouped to produce an edge in this level.

2) Segments — The piecewise linear segments produced by the low level vision system are 
represented on this level. It should be noted that this level and the Edge level are identi
cal in the model panel because the line drawing depicting the expected scene should not

-10- andress/kak
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Objects

Faces

Edges

Vertices
B C

o ° D o
■ E -

o
y G ■ ■

Oa={Fa,Fb,Fc}

Fa = {Ea,Eb,Ec,Ed} 

FB — {Eg,Ee,Ef, Eh} 

Fc ={Ed,Ef,Eg,Ej}

Ea = {Va,Vb}

Eb = {Va,Vc}

Ec = {Vb,Vd} 

Ed={Vc,Vd}

Ee = {Vb,Ve}

Ef = {Vd,Vg} 

Eg={Vc,Vf} 

E„={Ve,Vg}

E, = {Vf,Vg}

FIGURE 3: Example of Data on Levels of the Model Panel

need to be improved.

1) Vertices — The vertices are the endpoints of the segments and edges from the next two 
higher levels. Most of the vertices are also provided by the low level vision system.

Levels 1 - 4 are currently implemented; the rest will be implemented in the near future. 
We have found these four levels to be sufficient for the integration of map knowledge with 
vision data for a mobile robot with downward slanted cameras, the robot roving over a network 
of sidewalks and cameras being able to see only the sidewalk and the ground points in its 
immediate vicinity. However, we do believe that the levels 5 and 6 (and, perhaps, even some 
further intermediate levels) are important for complex scenes containing 3-D objects in arbi
trary orientations.

1.2.L Reasoning Scheme

PSEIKI has two main sub-processes that it uses to accomplish the goal of establishing a 
mapping from the observed to the expected scene; these processes are performed by the 
labeler and grouper knowledge sources (KS’s). These processes can be understood by
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considering the data on the different levels of the hierarchy. The grouper KS determines 
which data elements in the lower levels of the hierarchy should be grouped to form a data ele
ment on a higher level. Since this process is primarily data driven, it is accomplished via a for
ward chaining scheme. The second activity that must be accomplished is the labeling of data 
elements; the labeler KS is used to perform this function. Because this process can be 
expressed most readily as a goal to be achieved, backward'chaining is used.

’ ; I
These two subprocesses are heavily interdependent. For example, when some data ele

ments are grouped into a higher level construct, a goal requesting that this new element be 
labeled is generated. Conversely, the labeler can also request that the data elements from 
lower levels be regrouped if it hypothesizes that the regrouping will aid in labeling. Control 
flow is opportunistic and is currently under investigation. •



2. PREPROCESSING AND CONVERSION TO SYMBOLIC FORM,

The preprocessor accepts digitized images from the robot and outputs binary edges 
represented as piecewise linear segments. A block diagram representation of the preprocessor 
is shown in Fig. 4.

-13- andress/kak
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PSEIKI

FIGURE 4. Block Diagram of PSEIKI’s Preprocessor

To convert the image to a form usable by PSEIKI, the edges in the image are detected by 
applying a Sobel operator to the digitized gray scale image. These edges are then thinned via v 
Eberlein’s algorithm [11] and thresholded. The resulting binary images are thinned again to 
produce edges that are at most one pixel wide. Small edges are also deleted by the preproces
sor. At this point, the inrage is ready to be converted into symbolic form.

The conversion to symbolic form is accomplished via an algorithm based on the Duda- 
Hart iterative end-point fit algorithm [12]. In this process, the following steps are performed. 
First, some pixels are labeled as vertices. The pixels so labeled are edge endpoints and the 
points at which two or more edges intersect. The edges in the segmented image are then traced 
from the starting to ending vertices and are represented as broken line segments. The symbolic 
form of each edge contains the following information: edge number, start vertex, end vertex, 
length and strength (average gradient magnitude). Likewise, each vertex contains the follow- 
ing information: row coordinate, column coordinate, vertex number and degree. Currently, 
low level processing is one of the most time consuming activities performed by PSEIKI; it is 
hoped that the speed of low level system will be increased by replacing much of it with a 
ridge-following algorithm.

Input
Image
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3. EXPECTED SCENE GENERATION

As mentioned before, one way that PSEIKI achieves domain independence is by accept
ing expected scene information as a line drawing. An obvious method of generating line draw
ings of an expected scene is via a CAD or computer graphics system; because any type of 
graphics system could be used to provide this information, it is considered to be separate from 
PSEIKI proper. However, PSEIKI does require that the graphics system be capable of per
forming hidden line removal. The fact that PSEIKI can be interfaced with a CAD system can 
be useful for 2D vision sensing in an integrated manufacturing environment where the same 
information used to specify a part could also be used by the vision system during the manufac
turing process.

When the graphics program presents its data to PSEIKI, PSEIKI requires that the loca
tions of the model vertices be defined first. Higher level constructs (segments, edges, etc.) are 
then defined by listing the subelements of which they are composed. The vertices of the edges 
in the expected scene can be specified in two ways: First of all, the locations of the model ver
tices can be specified in terms of their world coordinates. PSEIKI also can accept input in 
which the vertices of the model are specified by their pixel locations. If the input is of this 
form, PSEIKI uses its camera calibration information and immediately projects the vertices 
onto a plane (usually the ground plane for mobile robot applications). This projection is done 
so that PSEIKI can work in the world coordinate frame.

.;:v- -14-;

For example, for sidewalk-navigation applications a simple 2D graphics program is used 
to generate the line drawings of expected scenes from the stored sidewalk maps. To generate 
the expected scene, the graphics system first accounts for the robot’s hypothesized current 
position and orientation by performing a coordinate transform on the global sidewalk map. 
Next, a clipping algorithm is applied to determine which edges of the sidewalk should be visi
ble to the robot. Each section of sidewalk is then considered to be a face of a single-object 
scene. When the graphics system presents the line-drawings to PSEIKI, it passes the vertex 
coordinates in the world coordinate frame.
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4. HIGH LEVEL VISION SYSTEM

Currently, there are three knowledge sources in the PSEIKI system. Besides the grouper 
and labeler which have been discussed briefly, there is also a data reduction knowledge source. 
Each of these knowledge sources will be discussed in more detail in this section of the report.

4.1. Data Reduction Knowledge Source

The goal of this knowledge source is to overcome segmentation deficiencies and reduce 
the amount of data seen by the sections that use inexact reasoning. This KS by itself does not 
employ an uncertain reasoning scheme. While the process performed by this KS is fairly con
servative, it does reduce the amount of data by a significant amount. The need for this KS is 
dictated by the following two deficiencies in the image segmentation process.

First the segmentation procedure produces artifacts that break lines into smaller line seg
ments. The data-reduetioh KS mes to compensate for this fact by rejoining these broken liiie 
segments. Also, if possible, this KS combines segments that are joined at a degree-two vertex 
into a single segment. The segmentation process also generates small edges that are caused by 
noise. Although many of these edges are eliminated during the preprocessing phase, others 
remain because they are connected to longer segments. These "dangling" edges (all segments 
which are shorter than a specified length and have a degree one vertex) are eliminated by the 
data-reduction KS. The actions performed by this KS are shown in Fig. 5.

these subprocesses is a cleaner image containing a substantially 
reduced number of line segments. Experimental results demonstrate that the amount of prun
ing is greater than 50%; this is obviously a large reduction in the amount of data.

-15-

4.2. Labeler Knowledge Source

The second subsystem performs element labeling and confidence estimation. This KS 
uses the Dempster-Shafer formalism to combine the certainty values used for uncertain reason
ing. The combinatorial explosion of uncertainty calculations usually associated with the 
Dempster-Shafer scheme is avoided by the use of a hierarchical reasoning space.

The hierarchical structure of the blackboard data provides a natural basis for a hierarchi- 
cal reasoning space. The levels of this space correspond naturally with the levels of the data 
elements on the blackboard. This can be demonstrated with the help of Fig. 3. For example, 
assume that Fa on the model panel is composed of edges {EA,EB, Ec, ED} . Also assume that

Note, in the following discussion the elements on the model panel have capital letters as 
subscripts while elements on the data panel have numeric subscripts.
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Delete

Delete

Join Segments Merge Segments Delete Segment

FIGURE 5. Actions performed by the Data Reduction KS

on the data panel edge Ej is part of the group that composes face Fj. If Fj is labeled as FA, 
then E[ can be labeled as one of {EA,ED} only. If the data were not arranged hierarchi
cally, it would be necessary to consider every element on the model panel when assigning 
labels and when performing consistency checks. To curtail the number of uncertainty calcula
tions, consistency checks are not made directly between two elements at the same level of the
hierarchy if their parents do not have the same label. In the previous example, edge Ej would 
only be checked for consistency with edges whose parents were also labeled as FA. Con
sistency checks between two non-siblings can be made indirectly by propagating an element’s 
confidence value up through the hierarchy until a common ancestor is reached and then back 
down to the second element. . ’

The frame of discernment (FOD) for any element is defined by the labels which could 
be given to the element; this is determined by the label of the element’s parent. In the example 
above, since Fj is labeled as FA, the frame of discerment for edge Ej would be

Some terminology used in the Dempstei-Shafer formalism will be defined here. The frame of 
discernment, 0, for an object is the set of all possible values that the object may assume. A basic 
probability number for a subset of 0 is the amount of belief assigned that subset and which 
cannot be further subdivided. The basic probability assignment that object over 0 is the
collection of the basic probability numbers for all possible subsets of 0. See Shafer [3] for 
further explanations.
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© = {Ea, Eb, Ec, Ed}

An element’s label is defined to be the label of the element from its frame of discernment 
which has the greatest belief value attached to it. If the belief value of an element on ah upper 
level of the hierarchy is changed, then all of its desCendents must change their FOD. Thus, it 
is advantageous to perform compatibility checks between elements On upper levels of the 
hierarchy first to avoid performing unnecessary calculations on lower levels when frames of 
discernment are changed. This necessity for checking global consistency before checking 
local consistency seems reasonable.

Two metrics are required when updating the label belief functions for elements on any 
level of the hierarchy. The two metrics must provide measures of the compatibility and the 
incompatibility between two elements. To facilitate the correspondence between them and 
certainty values, both metrics should range between 0.0 and 1.0. Obviously, the metrics need 
not be the same for all levels of the hierarchy.

The two metrics need only provide a measure of the (in)compatibility of two elements if 
they are believed to correspond to the same model element. For example, if Ej and E2 are 
edges in the data panel and are thought to correspond to the same model edge, then 
collinearity(E], E2) is the measure of compatibility between them. We have defined collinear-
ity as: ; — :';v,

-17-

collinearity(Ei,E2) - xcps(0) ;
•• ^max

Where 0 is the angle between the two segments; Dseg is the distance from the middle of E2 to 
E1 and Dmax is the maximum possible distance between the two segments (see Fig. 6).

> ■. * ■,< r l

FIGURE 6. Geometry used in definition of collinearity 

Likewise the measure of incompatibility for the segment and edge levels,
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noncollinearity(E,, E2), can be defined as:

noncollinearity(E,, E2) = scg x scale(E,) x sin(@) (3)
^max ",

. • ' . ’ ' " . ' : * .. ■ ;
where scalefE,) depends on the length ofE, . When establishing the initial belief function for
a data element, it is desirable to be able to find the compatibility between it and elements in the 
model panel; we shall discuss how this is done in a later section of the report.

If two elements correspond to different model elements, a rigid motion transform is 
applied to one of them before the metric is applied. This Has the effect of enforcing relational 
constraints between the two data elements. For example, if edges E, and E3 are thought to 
correspond to model edges EA and EB respectively, then the measure of compatibility between
E, and E3 would be defined as

compatibility^,, E3) = collinearity(E,, Te.^Ea(E3)) (4)

where Te.Ea is the rigid motion transformation that makes model edge EB collinear with 
model edge EA. In other words,

collinearity(EA, TEb^Ea(Eb)) = 1.0 (5)

For example, if we assume that E, is labeled as EA, then when using data element E2 to 
update the belief function for data element E, the new evidence is defined to be

mupdate({EA)) = SF x compatibility(E2, E,) ; (6)

mupdatc({-’EA)) = SF x incompatibility^, E,) (7)

Where SF is a scale factor (0.0 < SF < 1.0) that determines the maximum amount of evidence 
that can be obtained by checking data element compatibility. The symbol "—1" as used in this 
context denotes set negation (i.e. {—iEa} = @ - {EA}). Once mupdate is computed, Dempster’s 
rule is used to combine it and the original bpa to yield the new bpa for the element.

4.2.1. Computing Initial Belief Values for Elements in a Group

To more fully describe how belief values are computed for, say, the edge elements at 
level 3 for the data panel in Fig. 2, consider the following example. Let’s say that at this level, 
the information in the model panel and the data panel is as shown in Fig. 7.

The grouper KS (to be described later) will hypothesize that the edges {E,, ..., Eg} should 
be grouped together; let this grouping be designated by the face F,. In order to label the edges 
in the data, the labeler KS will now construct the following frame of discernment for each edge

The scale factor is provided to limit the amount disconfirmatory evidence provided by small ; 
edges which may be due to noise.
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Model Panel Data Panel

FIGURE 7. Example data on the edge level of the blackboard

in the group:

© = {Ea, Eb, Ec, Ed} (8)

Let’s now focus on the labeling process for edge Ej. The labeler KS will compute a bpa over 
@ by first applying the collinearity procedure to the pairs (EA, Ej), (EB, Ej), (Ec, Et) and 
(Ed, Ej). In other words, we check the collinearity of the data edge in question against all the 
elements in 0. To find the collinearity of, say, (EA, E^ we compute

collinearity(EA, Ej) = —^a^--—— x cos(0) (9)

where, as shown in Fig. 8, Dmax is the maximum allowable distance between the two segments, 
Dseg is the distance from the middle of EA to E1? and 0 is the angle between the segments. 
Note that although EA and Ej exist in different frames, it is possible to speak of distances and 
angles between them because, for the purposes of blackboard processing, they are both pro
jected into the same world coordinate system. For a mobile robot navigating on a flat ground 
plane, all the edges are transformed onto the ground plane.

Let’s assume, for the sake of discussion, the collinearity calculation produces the follow
ing results for Ej.

collinearity(EA, Ej) = 0.7 
collinearity(Eg,Ej)-0,1.'■■■■ ■.- 

collinearity(Ec, Ej) = 0.4 

cbllinearity(ED, Er) = 0.05
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Note that although Ei is
If the sum

of the collinearity measures exceeds unity, as is the case in our example, they are normalized 
by the summed value. Therefore, in our example

collinearity(EA, Ej) - 0.48 
collinearity (EB, Ej) = 0.08 
collinearity(EG, Ej) = 0.28 
collinearity(ED, Ej) = 0.04

These collinearity measures define a bpa over 0, for our example as given by 
: :' mEi({EA}) = 0.48 

mE,({EB}) = 0.08
.V (12)

mEi({ED}) = 0.04 .

mEi(-) = 0.0 for all other subsets of ©

A slightly different approach is taken when the sum of collinearity measures is less then 1. 
Assume for a moment that due to the distance cutoff, Dmax, the collinearity measure of 
(Ec, Ej), is zero. Now the collinearity measures are

collinearity(EA, Ei) = 0,7 
collinearity(EB, Ej) = 0.1
collinearity (Ec, E]) = 0.0 ■

cpllihearity(ED, Ej) = 0.05



-21- andress/kak

Since the measures now sum to less then unity, there is no reason to normalize. Instead, we 
now convert them directly into bpa’s in the following manner

mEl({EA}) = 0.7

mEl({EB}) = 0.1

mE,({Ec})= 00

mEl({ED}) = 0.05 (14)

mEl(0) = 0.15

mEl(0 = 0.0 for all other subsets of 0

Note that we have now assigned 0.15 belief to 0, 045 being what’s left after we subtract from 
1 the sum of collinearity measures. This seems intuitively plausible for the simple reason that 
collinearity is a good measure of "E1 is a part of EA." Clearly, if Ej does not match with any 
of Ea, Eb, Ec or Ed to a sufficiently high degree then we may leave some belief uncOrnmitted. 
In the above assignment, mEi(©) = 0.15 represents the uncommitted portion of our belief.

Let’s say that the procedure just described yields the following bpa’s for all the data 
edges:

mEl({EA}) = 0.7 mEi({EB}> = 0.1 mEi({Ec}) = 0.0 mEi({ED}) = 0.05 mEi(0) = 0.15 

mE2({EA}) = 0.8 mE2({EB}) = 0.1 mE2({Ec}) = 0.0 mE2({ED}) = 0.00 mE2(0) = O.l

(15)

mE9((EA}) = 0.2 mE9({EB}) = 0.1 mE9({Ec}) = 0.1 m&)({ED}) = 0.60 mE9(0) = O.O 

These then constitute the initial bpa’s for the data edges.

4.2.2. Revising Belief by Enforcing Mutual Collinearity Constraints

From the set of initial bpa’s, the labeler KS then seeks those observed edges that have 
maximum bpa for the same model edge. For illustration, in the example here, and E2 exhi
bit maximal beliefs for the same model edge, EA.

The edge-labeler will now apply a local consistency enforcer to the belief values. Let’s 
say that since Ej and E2 both have maximal similarities with EA, we wish to use E2 to revise 
our beliefs regarding Ej. To do so, the labeler will measure the collinearity of Ej and E2, and 
then the noncollinearity of the same two edges. Let’s say we get



collinearity(E2,Ei) = 0.8 (16)

noncollinearity(E2,Ei) = 0.1 (17)

We now construct an "updating" bpa for Ej as follows. By multiplying mg2({EA}) with 
0.8, we obtain

mu]3date({EA}) = m2({EA})coUinearity(E2, Ex) x SF (18)

= 0.64 if SF = 1.0

mu£kte({-’EA}) = mE2(tEa})noncollinearity(E2, E^ x SF (19)

= 0.08 if SF = 1.0

v-22-: • . andress/kak

muldate(©) = 0.28 (20)

m,

Where once again, the bpa for the frame of discernment was set to the uncommitted portion of 
belief. To find the new bpa over 0 for El5 we now use Dempster’s rule to combine mEj with

update to obtain

mEl({EA}) = 0.87 

mEl({EB}) = 0.04 

mEl({Ec}) = 0.0 

mEl«ED}) = 0.02

'ea)) = 0.02

mEi(0) = 0.05

(21)

4,2,3. Revising Belief Values by Enforcing Relational Constraints

The labeler KS also contains procedures for enforcing relational constraints within each 
grouping; this is done in the following manner. Consider the bpa’s over 0 for the edges Ej 
and E9 as illustrated in Fig. 7. While the bpa for Ei takes its maximum value for the label EA, 
the bpa for E9 is a maximum at Let’s say we wish to compute, using relational constraints,
the bpa m which is the additional belief generated by E9 for Ej’s label. To find mu date,

t>-*i >-*1
we note that the geometrical relationship between EA and ED is already known, since their
positions in the world coordinate system are known. Let TEa—>ed be the transform that makes 
the model edges EA and ED coincident. To get a measure of the extent to which the geometri
cal relationship between Ej and E9 is the same one as the one that exists between EA and ED,
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the labeler carries out the following (in)compatibility computations:

compatibility(E9, Eg) = collinearity(E9, Tg^g^Eg)) (22)

incompatibility(E9, Eg) = noncolimearity(E9, TgA_^ED(E|)) (23)

Clearly, if compatibility^, Eg) = 1.0 (when that happens, we will also have 
incompatibility(E9, Eg) = 0.0), that would imply that the geometrical relationship between Eg 
and E9 in the data is exactly the same as between EA and Ep in the model. To explain how the 
relational information is used to update the bpa distribution for, say. Eg, we will go back to our 
example that started with Fig. 7. Let’s say that the compatibility calculations yielded the fol
lowing results for computing the contribution of Eg to the belief values for Eg:

collinearity(E9,Eg) = 0.7 (24)

noncollinearity(E9,E1) = 0.4

Since these measures sum to more then 1, they are normalized by their sum to yield the final 
(in)compatibility measures

collinearity (E9,Eg) = 0.64 (25)

noncollinearity(E9,Eg) = 0.36

We now construct another bpa for Eg as follows. The quantity mg9({EB)) is multiplied by 0.64 
to yield

6({Ea}) = mE9({EA} Compatibility (E9, Eg) x SF (26)

= 0.13 if SF = 1.0

m,'update v

mu£date({-lEA}) = mEs({Ea})incompatibility(E9, Eg) x SF 

= 0.07 if SF = 1.0

(27)

ite(0) = 0.2 (28)
'->1

By using Dempster’s rule to combine this update bpa with the one in (21), we obtain a further 
revision of the belief values over the frame of discernment for Eg.
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4.2.4. Combining Belief Revisions from Relational Constraints and Mutual Collinearity 
Constraints

Actually, a single procedure is used for enforcing both the local collinearity constraints 
and the relational constraints within a group. Note that the (in)compatibility calculations from 
relational constraints reduce to the computation of local collinearity measures, as described in 
the beginning of Section 4.2, if we use an identity transformation for TEx_>Ey.

Therefore, we are able to employ the following integrated algorithm for enforcing both 
the relational constraints and the local collinearity constraints. Suppose n edges, Els E2,..., Iv 
have been grouped together in the data panel and are hypothesized to belong to a single face. 
Also, suppose that the edges in one of the possible corresponding faces in the model panel are 
Ea, Eb, ..., Ez. Clearly, the frame of discernment, ©, for each edge is

0={Ea, ..., Ez} (29)

Let’s further say that, as described in Section 4.2.1, measuring local collinearities of the data 
edges against those of the model edges yields the following initial bpa distribution for each 
data edge:

mEi({Ea}) for a = A,..., Z (30)

with the assumption that initially '
mEi(0) = l- i>Ei({Ea}) (31)

and mE.(-)=0.0 for all other non-singleton subsets of 0

For each data edge Ej, let E„ ^ be the model edge for which the bpa takes a maximum value. 
That is, /

“Ei^Eot^}) ^ mE.({Ea}) for a = A,..., Z (32)

Since for each edge E; there exists a single model edge, E„^, with maximum bpa, for every
data edge Ej, we can denote the maximum model edge as E„_0. (in case there is a tie due to
two or more model edges yielding the same value for bpa, we arbitrarily select one of them).

When incorporating new evidence for an element’s label, we can ease the computational 
load by making use of a property of Dempster’s rule of combination. If we update an 
element’s bpa incrementally with every piece of new evidence from element’s siblings, then 
the new bpa will be computed as

^new (((n\)ld ® ^update) ® ^update) ® ® ^update) (33)
1—>i ’ 2—>i ‘ • ■ n—>i

Where © is denoting Dempster’s rule of combination and mupdi,le is the updating bpa for the

-24-
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new evidence that element j is providing for element i. Since Dempster’s rule of combination 
is invariant with respect to the order of combination, the new bpa can be expressed as

“new ” t®old ® “update (34)

where

“update = ((mupdate © mupdate) © © “update) (35)
1—>i ■.-■■■ 2->i n—>i '

Now we can take advantage of the fact that the updating bpa’s are binary frames of discern
ment (if element Ej is labeled as EA then the only nonzero elements correspond to the subsets 
{Ea}, {—iEa} and © itself). Barnett fl3) describes how binary frames of discernment can be 
used to allow the combination of bpa’ s with linear time complexity (with respect to the size of 
the FOD). Currently, we do not use Barnett’s formulas, but we do take advantage of the fact 
that there are now 4 elements in the power set of the updating frame of discernment instead of 
2101 elements.

A function, update-belief, used to provide an updating bpa for an arbitrary element, Ej, 
using compatibility and incompatibility measures is shown in Fig. 9. It takes the element 
being updated as a parameter and it returns the updating bpa for that element. Thus the bpa for 
Ej could be updated with the following function call

mjj. = mE. © update-belief(Ej) (36)

4.2.5. Evidence Propagation Between Levels in the Hierarchy

Mutual consistency constraints and geometric constraint relations are not the only sources 
of knowledge used to update an element’s belief function. A mechanism is also provided for 
passing belief values between different levels of the hierarchy. This is done to satisfy the 
intuitive argument that says any evidence Confirming an element’s label also should provide 
evidence that its parent’s label is correct (for example, it is very unlikely that an edge be 
labeled correctly, yet be grouped into a face that is incorrectly labeled). Conversely, it is also 
intuitively pleasing that discontinuing evidence be passed to lower levels of the hierarchy (e.g. 
if we think that a face is mislabeled, then all of its constituent edges are also most likely misla
beled).

We use the updating bpa, mupdate, as computed by the update-belief function when pass
ing evidence up the hierarchy. To do this, we combine miirHatA not only with the bpa for the 
element in question, but also with that element’s parent. Combining the updating bpa with an 
element’s parent makes intuitive sense because all new evidence generated on a level comes 
from the the (in)cbmpatibility between elements on that level. If the children of an element 
have cohsistent (compatible) labels, then these child elements should provide evidence that the 
label given to that element is correct. Likewise children with inconsistent labels provide

-25-
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function update-belief (Ej)
" initialize updating bpa as a vacuous belief function
mupdate(®) = 10
mupdate(*)= 0.0 ; all other subsets
;; use all n elements in the data panel with the same parent group
;; when updating E;
For each j = 1,2,n 

begin ■ :
Cj = compatibility(Ej, Ej) 
dj = incompatibility(Ej, Ej) :
;; normalize (in)compatibility measures if needed 
if (cj + dj > 1.0) .

End.

Cj

dj ~ cj+dj

;; create updating bpa created by element Ej .
^upiJateCf Ep^^)}) = Cj X niE.QEo^i)})

■ ■ ' j-»i

^updated-= dj W1Ei({‘^1^anml(i)})
■ j-**

^updaie^®) — Id) — rnyp^^fEjj^^jj}) — mupdate({ ■EtXmM(i>})
■■■ !.■■■■■■ j >■ j->i j.->i ■ '

;; accumulate into updating bpa
rnUpdate — ^update ® ^update ;

'■ 1 •--■■■ '"o■ : ■ .■ ■. ! ' ■ ■ j-»i

end ; (for loop)
;; return the accumulated sum of new evidence 

■ return :Cmupdate)
; update-belief

FIGURE 9: algorithm used to generate updating bpa

evidence that an element’s label is incorrect. Thus, by passing the updating bpa’s to each 
parent element on a higher level of the hierarchy, we are providing new evidence for those ele
ments based on the consistency or the inconsistency of its descendents.

Evidence from an element cannot be applied directly to its parent because the FOD’s of 
an element and its parent are composed of different types of objects. However, we will show 
with the help of an example that it is possible to build a FOD that can be used to update the 
belief functions of elements on a higher level of the hierarchy. Assume for our example that
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the model panel is shown in Fig. 3 and that edge Ej on the data panel is a child of face Fj. 
Furthermore, assume that is labeled as EA and Fj has label FA. Because the basic probabil
ity number for edge Ei given by mupdate({EA}) arises from the consistency of Ej’s label with

Ei
its sibling’s labels, it may be considered as a weighted vote of confidence that face Fj’s label is 
correct. Likewise, because mu_date({-iEA}) arises from the inconsistency of E^ ’s label with its

Ei
sibling’s labels, it may be considered as a (weighted) vote of no confidence in face F^s label. 
Thus, in^ate(@) can be considered to be the amount of ignorance about F^s label. Using this

=1
rational, we may define an updating bpa for face Fj with the following non-zero basic proba
bility numbers

tlljjpjjjteC { Fa } )-■' ®update( { ^A ) )

— Wupdate^^EA}) (37)
Ei

mupdate(®> = mupdate(0)
%_>Fi Ei

Now we will show that mupdate is a bpa for F^ As described in the last section, after initial

belief values are assigned to the FOD for an element’s updating bpa is really binary in nature. 
Thus the only non-zero elements of the updating bpa for Ej are mupdate({EA}), mupdate({-iEA)),

. . Ei Ei
and m.,^©). Because these are the only non-zero basic probability numbers from Ej’s bpa,

Ex
they sum to 1. Given this fact, it is trivial to show that mupdate is also a bpa. We can now 

express the total accumulated new belief for face Fj from its children Ej, E2,..., E„ as

mupdate = ((mUpdate © mupdate) © * * * © mupdate) (38)

Information is passed down the hierarchy only if it is disconfirmatory. Currently, this 
downward propagation of information takes the form of the reassignment of frames of discern
ment caused by the ancestor of an element having its label changed. In the previous example, 
this could happen if the label for face Fx is changed to FB. Using information from the model 
panel (as shown in Fig. 3) we note that the FOD for E! would be reassigned to

® = (Ee> Eg, Ef, Eh} (39)
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4.3. Grouper Knowledge Source

The grouper knowledge source builds the data elements on the upper levels of the hierar
chy from the segments and vertices deposited by the low level vision system. It does this in a 
data-driven manner by first grouping segments into edges and then grouping the edges into 
faces, etc. The KS is triggered by a request to find the parent of a seed element. After the KS 
is triggered, it must find elements that could be members of the same group and then form the 
parent element on the next higher level of the hierarchy. To create the parent element, the 
grouper must first find all of its children. After the children are identified, they are grouped 
into the parent element.

In general, two elements oh the same level must satisfy two requirements if they are to be 
grouped together. First, the elements must satisfy a level-specific adjacency constraint. These 
constraints usually force the KS to consider only elements that are physically close when it 
forms groups. The other requirement is obtained from the compatibility metric used by the 
labeler KS; i.e., the elements must be highly consistent in order to be grouped. For example, 
two segments must be highly collinear and two edges must lie on a common plane to be 
grouped.

Although the KS should be able to group elements based solely on their geometry, it must 
be able to use any label information that the labeler KS has provided. PSEIKI’s grouper KS 
currently does this by refusing to group data elements with an incompatible labels.

Although eventually the grouper and labeler KS’s work in concert on an opportunistic 
basis, some initial groupings must be formed for the labeler KS to act at all. In other words, 
the grouper KS must be able to generate some initial groupings. To illustrate how this is done, 
consider the example in which the low-level preprocessor has deposited the data shown on the 
right of Fig. 10 on the segment level of the data panel. Information about the expected scene 
on the model panel is shown on the left.

Again, remember that the information in both the model and the data panels is in the 
same world coordinate frame. For a mobile robot with cameras slanted downwards, this 
corresponds to the flat ground plane. For generating initial groupings, every segment in the 
data panel is compared with all the model edges that are in the vicinity of the segment; the 
basis of comparison is collinearity. For each data segment, we retain that model edge label 
that yields the highest value for collinearity. In Fig. 11, the left hand side shows the data seg
ments and the right hand side a possible label for each segment. All the adjoining segments 
that have the same initial labels are now joined together (in a manner similar to what is accom
plishedbythe data-reduction KS). Joining by replacing segments by edges, the result for our 
example is shown in Fig. 12. Now it is a simple matter to generate initial groupings for the 
data. Using the labeling shown in the right hand side of Fig. 11, we deduce that the data edges 
as shown in Fig. 12. must be grouped in the following manner.

-28-
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F_

A Vv

Model Panel Data Panel

FIGURE 10. Example data presented to the grouper KS on the segment level

19

2422 23

Data Segments Initial Labels

FIGURE 11. Initial labels for data segments

^1 ~ {E5, Eg, E7}
F2= {E1,E2,E4,E3}
F3={E8,Ell,Elt;,E17,E9,E10} (40)

E4 = {Ei2rEi3, E14, E15}

This grouping is then used by the labeler. The labeler, by enforcing mutual collinearity and 
relational constraints will drop E2 Or E3 from F2; and E8 or Ej0 from F3.
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Data Edges Labels

FIGURE 12. Edges with initial labels derived from data segments

4.3.1. Mechanisms That Initiate Relabeling and Regrouping

The labeler KS used in PSEIKI uses backward chaining to establish initial labels and 
belief values of data elements. Although this procedure works satisfactorily during initial
labeling, the processing needs to become more opportunistic when labels must be reassigned 
or when elements must be regrouped. Two of the mechanisms that trigger relabeling and re
grouping will be discussed here. Theses triggers are generated by the enforcement of rela
tional consistencies at the level of edges and above in the data panel of the blackboard.

The first mechanism enforces the constraint that elements that are non-intersecting in the 
model should also be non-intersecting after they have been processed by the labeler KS. To 
illustrate, suppose the labeler has produced the following two groupings of edges into faces.

F3 = (Eg. En, E16, E17, E9, E10} (41)

F4 = (Ei2> Ej3, E14, E15} (42)

Since theses two groupings are intersecting, while their corresponding model faces are not, the 
labeling KS is set to work again on the initial set

{Ejo, E9, Eg, Ejj, El7, Ejg) (43)

to generate an alternative grouping. For generating alternative groupings, we take a set differ
ence of groupings in (42) and (43); we thus find the competing edge elements that did not get 
included in (43). In our example, the edge element E8 competes with E10 since the former did 
not get included in (42) and is parallel and proximal to the latter. We therefore now delete Ejo 
from (43) and send the result back to the labeler.
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Another mechanism for initiating relabeling and regrouping uses the notion of minimum 
bounding rectangles (MBRs). After a set of edges is grouped together, the area of the 
minimum bounding rectangle of the group is compared with the area of the MBR of the face in 
the model panel. If the area of the minimum bounding rectangle in the data is the larger of the 
two, one of the edges is released from the grouping with other faces, especially those that are 
adjoining and whose data MBR area is less then what it should be.

As can be seen from the discussion here, a part of the grouper KS’ s responsibility is to 
exchange edges between neighboring f^aces in the data panel. If face attributes, as exemplified 
by MBR, and face relational constraints cannot be satisfied by regrouping and relabeling, then 
the offending edges are discarded and new edges are formed from the segment data.

'''■ -31-
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5. EXPERIMENTAL RESULTS

PSEIKI was ran on data from a number of digitized images , typical of those gathered by a 
mobile robpt; the images in Fig, 13 show partial results for a typical scene. The example dep- 
icts a scene typical of what the robot would see when approaching an intersection. Figure 13a 
shows the edges representing the expected scene; each edge’s label is indicated also. The 
observed scene is shown in Fig. 13b; note that it differs from the expected by a significant 
amount. Because the robot was slightly to the right of its expected position and its orientation 
also was slightly off, two edges that are in the expected scene are missing entirely. Shadows 
on the sidewalk are also a problem that the robot encounters frequently; the example also con
tains this type of degradation.

The other images in Fig. 13 show partial results produced by PSEIKI. The output of the 
preprocessor is shown in Fig. 13c. Figure 13d shows the output of the data reduction module; 
it was able to reduce the number of segments to 59 from 183 in the original image. The final 
result, Fig. 13e, shows the edges and labels provided by PSEIKI. Even though the expected 
and observed scenes differed by a significant amount, PSEIKI was able to label all but one 
edge. As Fig. 13 demonstrates, the results that PSEIKI produces are sufficient to provide a 
higher level navigation system the feedback need to successfully navigate a known sidewalk 
map.
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FIGURE 13: Example images from PSEIKI
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6. CONCLUSIONS

This report describes work in progress on PSEIKI, a domain independent vision system. 
It demonstrates how a line drawing of the expected scene can be used to aid in the image 
understanding task. It describes the architecture and reasoning schemes used by PSEIKI to 
accomplish its task. It details how the Dempster-Shafer theory of evidence can be applied to 
labeling and grouping processes in a hierarchical scene representation.
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