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ABSTRACT

‘A description of work-in-progress on PSEIKI is 'presented. PSEIKI is a computer vision sys-
tem designed to use multiple sources of knowledge to aid in the image understanding task. In
this report we describe the concepts used in PSEIKI and how the incorporation of world
knowledge is used to make PSEIKI expectation driven. The world knowledge in the system is
“represented as a line drawing of the expected scene. The system is implemented as a 2 panel /
- 6 level blackboard and uses the Dempster-Shafer formalism to accomphsh mexact reasomng in

a hierarchical space -



L INTRODUcTIO

= v, A fundamental igoal of computer v1s10n is the development of systems\, that would be:_ e
o capable of carrylng out scene 1nterpretatlons ‘with the a1d of all avarlable knowledge As an

B example, 1f a helicopter-based computer vision system is lookmg ata snow covered terrain, -

o .then that ]mowledge must be taken mto account exphcxtly in a target recognltlon procedure --_Ti"

= J hereabouts are;ﬂ, Ll
N ,known approxnnately from the posmon encoders mounted on the wheels == the precxsxon of - R

o this information be1ng hrmted by the extent of shppage in the’ wheels, etc. leen this: approx1-_ ‘ -'

o _mate’ 1nformatlon is it possrble to make a more precise fix on. the. locatlon of the vehrcle by '
integratmg the v1s10n data’ with the map knowledge, while the two-are: out of reglstratmn‘? This' e
i ,problem of. robot self-locatlon ‘was the: ongmal goal of PSEIKI ‘We felt that thls sxmple exer—'f'f, o L
e cise 1n knowledge—based processmg would glve us the expertlse to set up more complex rea- oo o .
: somng structures for mcorporatmg other k1nds of knowledge sources in an 1mage 1nterpretat10n - 3

'presented to the system as a lme drawmg of the expected scene.’w The system 1s unplemented' e - -
- _as a2 panel/6 level blackboard and uses the Dempster—Shafer formallsm to accomphsh 1nexactff St R
: reasomng 1n a hlerarchlcal space : : L L -

Although PSEIKI Was onglnally was developed for carrymg out knowledge-based expen-_,“' T o

. .ments in-robot self-locatlon the current 1mplementatlon is general enough to be used inany S

: .'not be in reglstratlon w1th the observed 1mage) For example for robot nav1gatlon apphca-ﬁ{"{l
. ‘,tlons, hne drawmgs can be eas11y be generated from road maps.. For venﬁcauon vision, a llne.f
.‘-drawmg of the obJect whose identity, locatlon and onentauon need to be venﬁed} can be gen- o

apphcauon where a good estimate of the expected scene is avallable to the VlSlOl’l system The N R
_ 'system can be used asa general v1s1on venﬁcatlon module e1ther m a robotlcs context or forf LT T
- aautomatlc target recognltlon ‘ T R ‘

. PSEIKI contarns two features that keep 1t domaln 1ndependent Flrst the knowledge used S
s ':by PSEIKI consxsts of a line: drawmg of the expected scene (which i 1n most apphcatlons would”; Ry

.- s erated from a 3D model of the ObJCCt In more 1ndustr1al 2D v1slon apphcauons computer

_ Note that for apphcatlons such as automatxc target recogmtlon the lme drawmg represen i
' ;v:the expected scene can mclude envuonmental effects ‘ v
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graphlcs or CAD systems can be used dlrectly to generate the lme drawmgs of the expected
: scenes The other feature that provides the system domain 1ndependence concerns how the

system presents 1ts results The ~output of PSEIKI cons1sts of a. mappmg from elements». T o
o detected in the mput 1mage to elements in the expect scene. ' v : o

The mapplng generated by PSEIKI is expressed by labehng the detected edges w1th the = '

names of the correspondmg lines i 1n the expected scene; a belief value is also attached to each
label 1nd1cat1ng the confidence of the mapping found. Furthermore a belief value is estrmated
g for the entire mappmg process If this overall belief value does not exceed a threshold the
entlre mapplng is rejected. : As a: s1mple illustration of what PSEIKI does, if F1g lai 1s a hne—l “

draw1ng rendition of an expected scene and Fig. 1b a depiction of the edges that mrght be "

. found in the vision. data collected for the scene then PSEIKI would produce an, output s1m11ar
o the one in F1g lc : . :

ST ;FIGUR'E’I.Typ‘ical images used by P_SElKI_ Sl
»Slnce PSEIKI only generates a -mapping from the edges in the 1nput 1mage to the expecte d'~ -

- scene, it 1s left toa h1gher level system to make global 1nterpretat1ons based on the mappmg 3
found : : . L SR e

PSEIKI is also a testbed for carrymg out experlments in how 1nexact reasomng can bejf” Sy

achieved on h1erarch1cal representatlons of scenes. Gordon and Shortliffe [2] discuss‘a tech-‘

" nique that allows the Dempster-Shafer formalism [3] to be used in a system that h1erarchrcallyi os

. " groups hypotheses That article deals with d1agnost1c reasoning (1n medicine) where “the

hypotheses can be grouped into strict hierarchies. ‘The methods of Gordon and Shortliffe can . by

not be used by us d1rectly because PSEIKI does not employ strict h1erarch1es (an edge can bea

member of two faces if it is a part of the border between them). In the current 1mp1ementatlon R

Cof PSEIKI the blackboard architecture is exp101ted to permit exact and inexact reasomng in, ai

tangled h1erarchy The Dempster-Shafer formahsm 1s used for poohng uncertaln ev1dence 1n o

‘ the h1erarchy

- 'We wﬂl be refernng to thls mappmg throughout the report
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PSEIKI is able to handle s1gn1ﬁcant perspect1ve effects Many prev1ous systems aga1n

' most notably aertal 1nterpretatlon systems, were able to assume that the i images were obtained

by an- orthograph1c 1mag1ng system Although perspecttve distortions make 1mage 1nterpreta-,_- ”

' tion difficult because metric properties, such as length and orientation, depend on the ob_]ect s'. .
pos1tlon m the 1mage, they also prov1de clues to the structure of ob]ects in the 1mage "

PSEIKI was. also developed to 1nvest1gate how d1fferent sources of knowledge can bej

1ntegrated into the image 1nterpretatlon task. Although knowledge of the expected scene- 1s thev’ E

main source. of 1nformatlon bemg 1nvest1gated the system is general enough to affect 1ntegra-._ :
- tion over multiple 1mages in structural stereo. Or optic. ﬂow 'Ihe 1nvest1gat10n of how system :

control ﬂow affects the 1mage understandmg task is also underway

1 1, RELATED IMAGE UNDERSTANDING SYSTEMS

ACRONYM (Brooks, et al.. [4]) is a model—based 1mage understandmg system The |
system s task cons1sts of ﬁndmg mstances of known ob]ects in the image.- To perform,

obJect 1dent1ﬁcat1on the system first bu1lds a Ptcture Graph of the 1mage and an Observa-" .
: blllty Graph that spec1ﬁes information about ob_]ects that could be in the image. “The sys=
tem 1dent1ﬁes mstances of ob_]ects in the image by matchmg nodes of the Observab111ty
Graph with sets of nodes in the Picture ‘Graph. The obJects in'the Observablhty Graphare . A
represented in slot - ﬁller structures where -any slot that can accept numerlc values can el
X also accept algebratc constraints: expresses as 1nequa11t1es The system can then mampu-r., L
late: these constraints ‘and determine- if propertles of objects detected in the image meet‘ S
C these constraints. The objects used to ‘generate the Observab1l1ty Graph are represented
C.as generallzed cones. Inexact reason1ng is not used and the system uses only backward.
: chalnmg to arnve at an mterpretatlon : f L P

| Dav1s and Hwang descnbe the SIGMA i 1mage understandmg system [5] for aertal 1mage

1nterpretatlon “The system uses both forward and backward cha1n1ng to arrtve at an_ .

, 1nterpretat10n and it represents its object classes h1erarch1cally using frames Further- ‘
*‘more, the system is able to ‘integrate hypotheses about spe01ﬁc obJects in the scene The
o system does not use uncertain- reason1ng but mstead is able to control 1ts focus of atten-/
. _ftlon based on the strength of a 51tuat1on ’ P L "

J,ystem des1gned by McKeown Harvey and McDermott lS also an aertal i

T ‘:1mage 1nterpretat10n system The system ongmally was constructed to 1nterpret atrportg_'v :

o scenes ‘but has been expanded w1th arule generator so it can now interpret scenes from'

'JL".._.‘other domams SPAM uses: conﬁdence values to aid labelmg and can manlpulate these-?f
% "vaIues based on the con51stency of the vanous labelmgs S

".___;'VISIONS (Hanson and Rlseman [7]) 1s a blackboard expert system desrgned to analyze_ : By
o color 1mages The system uses a ﬂex1b1e control scheme, hlerarchlcal scene



representatron and a number of knowledge sources to accomplrsh the scene 1nterpretatlon" ‘
- task. VISIONS is domarn 1ndependent but uses schemas to tune the system for a partlcu-‘ L
S lar apphcatlon : SN : L : I AN I

N . ;“':'V"JThe 1mage segmentatlon expert system developed by Nazif and Lev1ne [8] contams two Yy,
Z“"“fjglobal memones The: global long: term memory. contalns ‘rules that are app11ed to the o »
. data_stored in'its short term memory. - The. system is rule based and uses modules o
:_update lines, reglons and areas in the image. The expert system_also contalns a: set of
o f‘metarules and can control 1ts focus of attentlon L : i

! o .'_"Bamard descrlbes a system that deals w1th perspect1ve 1mages [9] “The system is able to :: v L
s use.the- Gaussran sphere to determrne the vanlshmg points of . the scene be1ng analyzed LR
o :;The backprOJectlon of angles and curvatures also is used to ard the 1nterpretat1on task ;

v

o 10}:"=’}"”:Barrow and Tenenbaum d1scuss the problem of 1nterpret1ng line. drawrngs in [10] They", .
Care able to use junction libraries and knowledge of differential: ‘geometry o’ d1scnn11nate{ s
»between extremal and discontinuity boundarles ‘This knowledge then is: used to deters

;'rmne how the surfaces should be constramed P R S

“'PSEIKI dlffers from the above system in. the followmg three main areas B
7‘ Frrstly, PSEIKI’s task d1ffers from those of prev1ous systems Most of the other SO
were des1gned to ﬁnd obJect 1nstances in the 1mage and through such d1scover1es 10 amve at a':, B

i global 1nterpretatron of -the 1mage PSEIKI’s task is limited to 1ntegrat1ng expected scenej |

N behef values for the edge elements in the 1mage

- vision systems. - For example if SIGMA has detected a driveway in an image, it would then "~

" 'mformatlon with the observed i 1mage -- the result is a set of consrstent labels w1th assoc1ated} e

T PSEIKI dlffers from SPAM and SIGMA and to a certam extent VISIONS‘“ 1n not relymg". 5
ol ‘on doma1n dependent 1nformat10n For example SPAM uses a;lrport desrgn knowledge when L
: 1nterpretmg airport scenes. Context-cues have also. been used extensrvely in -past-computer . - s

R search for a house and for roads connected to the driveway. Because PSEIKI is prov1ded w1th1 A

a good estimate of the expected scene it: does not have .to perform mferences of th1s type ..
o :'Although it mlght be sa1d that context-cues are 1nd1spensable for scene 1nterpretat1on because'7
- vthey make deductlons ‘more powerful their use necessarily 1ntroduces some domaln depen--j_ p

. fmg mcorporatmg the mformatlon contamed in the cues

dence.. Therefore it is our phllosophy to separate the generatron of the mappmg from the: for-n_,__‘ S
- mation of an overall 1nterpretatlon of the scene. If the use of context—cues is desrred byia <
tem using PSEIKI then itisup'to the h1gher level system to prov1de PSEIKI w1th a line.draw-

PSEIKI also d1ffers from prevrous systems in 1ts method of performmg 1nexact reasomng =

'-_'.Many systems, mcludmg ACRONYM, SIGMA and the system by Nazif. and Levine- use. no i

o . vuncertam reason1ng 1n the 1mage 1nterpretat10n process Because of the overwhelmrng amount, o
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‘ of data in an. 1mage, most of the 1nexact reasonmg schemes used in the past have been farrly
srmple to avoid becommg bogged down in certainty value computations. On the other hand,
- inexact reasoning in PSEIKI is based on the Dempster-Shafer formalism in a tangled h1erarch1- o

- cal space. The: use of a h1erarchy curtails the number of uncertarnty calculatlons and is made o
E poss1b1e by the use of the blackboard archltecture v I : |

‘ ’1 2. OVERVIEW OF PSEIKI

There are. two: mam sectrons to PSEIKI a low-level preprocessor wh1ch performs prxel- 3

L to- symbol conversion and a rule-based edge labeler. PSEIKI’s archrtecture is shown in Fig. 2. o

Because PSEIKI tries to estabhsh a mappmg from the mput 1mage to'a line drawrng of the ‘

'expected scene, ‘the preprocessor produces an edge based segmentatron The final output of -

- the preprocessor is a- collectlon of edges detected in the 1mage whrch are represented as
precewrse lmear segments. -

o Expected T o l . “PreprocesS.Or, '
- - Pixel to Symbol

] Scene

. Generator oo e Convertor

| baaPana

i Data : i 'Grollpér » ) I.(.'abevl’erj:v 3 Sree
S Reductlon N O T E eduler| - -
coolxs PRS- XS | SRl s

FIGURE2 PSEIKI’s Architecture

B The rule based portron of PSEIKI is. wrltten in OP883 and-is 1mplemented as.a black-vv - -

*board system The expected and detected scenes are hrerarchrcally represented on a 2 panel / 6,,

- 5‘ level blackboard ‘One panel of the. blackboard i is reserved for data defining the expected scene .
~and is called the modil panel. The other panel called the data panel, contains: data derrved'_; e
from the 1nput 1mage Currently, data on the model panel is statlc once the expected sceneﬁ:' s

TRRRINPEN
: Note that these two panels correspond wrth the Observabrlrty and Picture graphs in ACRONYM




_data is' depos1ted on it. However it'is thought that the data in th1s panel 'w111 be dynarmc in
future versions of the system “The ab111ty 10" change the model panel could be exp101ted in

o future versrons of PSEIKI

. For example, if the expected and observed scenes are xmsreg1stered by a large amount L
then PSEIKI will not be able to establish a complete mapping. However, if it is able: to pro- |
vide the h1gher level system with a partial mapping, then the system may be able to generate ‘
an improved est1mate of the expected scene.” The 1mproved estimate could then:be depos1tedv

. onto" PSEIKI’ s model panel producmg a greater correspondence between the expected and .

observed scenes. - This new information would hopefully aid in the -generation of the mapping. =
Currently, itis not necessary to perform this change because a h1gh degree of correspondence»_‘
is requlred between the obsérved and the expected scenes <R S

The ab111ty to change the data in the model panel also could be used 1f multlple 1mages"

| were belng fused to prov1de stereo vision capabilities. In th1s case data from a second camera, o

| B could replace the model 1nformat10n PSEIKI should be able to use many of the same tech- =
: nrques to perform structural stereo fusion on the data in the two panels S

oy Each blackboard panel conta1ns the followmg levels to represent the 1mages scenes,’- Co
.obJects, faces, edges, segments and vert1ces “Each element in a'level'is deﬁned by a finite col-
lection of - elements on lower levels. For example, a scene is made of a union of obJects and a ‘

face is deﬁned by the group of edges ‘which form its borders. Figure 3 shows the data on the: o

:rmodel panel fora tr1v1al expected scene, a 31mple block. - It shows each element s label and the ' : |
sub- elements from wh1ch it 1s composed (note that the segment level is ormtted) ’

: The followmg is a short descnptlon of the data stored at each level

B 6) ‘ 'Scenes --'The entire scene (expected or observed) is represented on th1s level The scene; :
v “is defined as the union of all objects in level 5 of the h1erarchy It provrdes a way of o
labehng mult1ple ObJCCtS that otherwrse would not be poss1ble '

| 5) ,'Objects == Each element on. this level corresponds to a drstlnct phys1cal obJect Thei —_

e obJects are defined as the union of all boundary faces from level 4.

) ”»;'Faces - The elements on th1s level represent the polygonal faces that form a boundary‘l"""“‘“ el
: 'representatron of the observable portron of the Ob_]CCtS A face is deﬁned by the edges' L

R ffrom 1evel 3 which’ form 1ts border

3): TEdges - These elements form the boundaries of the faces in” level 4 of the hrerarchy 'i
" This level is included to provide a way to compensate for segmentat10n deﬁ01ences
o nghly colhnear segments from level 2 are grouped to produce an edge in thls level

2) Segments - The ‘piecewise lmear segments produced by the low level vision system are o
B vrepresented on this level. It should be noted that this level and the Edge level are identi- -~~~ .
cal 1n the model panel because the line drawrng dep1ct1ng the expected scene should not., CamagEy
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FIGURE 3: Example of Data on Levels of the Model Panel

- vneed to be 1mproved

1y ,‘-‘_"Vertlces -- The vertlces are the endpomts of the segments and edges from the next two
- highér: levels Most of the vertlces are also prov1ded by the low level v1s1on system ot

o Levels 1- ‘4 are currently 1mplemented the rest will be 1mplemented in the near future ‘

" We have found these four levels to be sufﬁment for the 1ntegratron of map knowledge with

vision data for a mobile robot with downward slanted cameras, the robot roving overa network o

S ~of sidewalks and cameras being able to see only the sidewalk and the ground points in its

- immediate vicinity. However we. do believe that the levels: 5 and 6 (and, perhaps even some',

B further mtermedrate levels) are 1mportant for complex scenes contammg 3 D ob]ects 1n arbl-v L R

. 1 2. 1 Reasomng Scheme

o PSEIKI has two maln sub-processes that 1t uses to accompllsh the goal of establlshmg a S
o mappmg from the observed to" the expected scene; these processes are- performed by the
i v_,}labeler and grouper knowledge sources (KS’s). These processes can be understood by Lt
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considering the data on the different levels of the hierarchy. The grouper KS determines
which data elements in the lower levels of the hierarchy should be grouped to form a data ele-
ment on a higher level. Since this process is primarily data driven, it is accomplished via a for-
ward chaining scheme. The second activity that must be accomplished is the labeling of data |
elements; the labeler KS is used to perform this function. Because this process can be
expressed most readily as a goal to be achieved, backward chaining is used.

These two subprocesses are heavily interdependent. E:‘or example, when some data ele-
ments are grouped into a higher level construct, a goal requesting that this new element be
. labeled is generated. Conversely, the labeler can also request that the data elements from
lower levels be regrouped if it hypothesizes that the regroupmg will a1d in labeling. Control‘
ﬂow is opportunistic and is currently under investigation. :



2. PREPROCESSING AND CONVERSION TO SYMBOLIC FORM.
‘The preprocessor -accepts digitized 1mages from the robot and: outputs blnary edges

represented as piecewise linear segments. A block dlagram representatlon of the preprocessor
1sshown1nF1g4 ' R > T ,

Input " Sobel -5 Grey —>Thresh (| Blnary {o| Delete . |

Image [T] Thin - [-5]FS0 LT Thm Convert [>

= EIGURE_4. Block Diagiramvof psmKrg Preproce_ssor - SRR

To convert the 1mage to a form usable by PSEIKI the edges in the 1mage are detected by _ |
, applylng a Sobel- operator to the d1g1tlzed gray scale image. These edges are then thmned v1a_

*Eberlein’s algorithm [11] and thresholded. The resulting binary images are thinned agam to

produce edges that are at most one pixel wide. Small edges are also deleted by the preproces-'f
sor. At this pomt the i 1mage is ready to be converted 1nto symbohc form o

~ The conversion to symbohc form is accomplished via an algonthm based on the Duda—_“ ok B

Hart iterative end-point fit algorithm [12]. In this process, the followmg steps are performed
First, some pixels are labeled as vertices. The pixels so labeled are edge endpomts and the‘ '

~points at which two or more edges 1ntersect The edges in the segmented image are then tracedf R _
from the starting to ending vertices and are represented as broken line segments. The symbohc B

form of each edge contains the following information: edge number, start vertex end vertex,
length and strength (average gradient magnltude) L1kew15e, each vertex contalns the follow-' :
ing information: row. coordinate, column coordlnate vertex number and degree. Currently,
s low level processmg is one of the most t1me consummg activities. performed by PSEIKI; it is
" hoped that the- speed of low level system will be 1ncreased by replacmg much of it thh a.
_ridge- followmg algonthm ‘ : : , :
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| .'_3 EXPECTED SCENE GENERATION o

- As mentloned before, one way that PSEIKI ach1eves domaln 1ndependence 1s by accept- L o
':. k_»mg expected scene 1nformat10n as a 11ne drawmg An obvrous method of generatmg‘hne draw- R

ings of an. expected scene 1s via‘a CAD or computer graphlcs system, because any type of

. graph1cs system could be used to prov1de th1s 1nformatlon it is considered to be separate fromv e

" PSEIKI proper. However PSEIKI does require that the graphlcs system be capable of per- - -
forming’ h1dden line removal. The fact that PSEIKI can be 1nterfaced w1th a CAD system can -
* be useful for 2D vision sens1ng in an integrated manufacturmg envrronment where the same -

- 1nfonnatlon used to specrfy a part could also be used by the v1s1on system durmg the manufac-f o e

turrng process

L When the graphlcs program presents 1ts data to PSEIKI PSEIKI requlres that the loca- ! |
' trons of the model vertices be defined first.” Higher level constructs (segments, edges etc, 5 are'_ .

V then deﬁned by hst1ng the subelements of which they are composed The vertices of the edges' ’

i in. the expected scene can be spec1ﬁed in two ways First of all, the locatlons of the model ver- o

- tices can be specified in terms of their world coordinates. PSEIKI also can accept inputin - -
which the vertices of the model are spec1ﬁed by their pixel locations. If. the 1nput is of thrsl f .
~ form, PSEIKI uses its camera calibration information and 1mmed1ately pl‘O_]eCtS the vertices - o ' o
. onto a plane (usually the ground plane for mobile robot appllcatlons) Th1s pl'O_]CCthn 1s done L

o so that PSEIKI can work in the world coordlnate frame

For example, for sidewalk- nav1gat10n apphcatrons a s1mp1e 2D graphlcs program is usedb'

to generate the line drawings of expected scenes from the stored s1dewa1k maps To generate S

- the expected scene, - the graphics system first accounts for the robot’s hypothesrzed current" :
fpos1tlon and orientation by performlng a coordinate- transform on the global sidewalk map

- Next, a chpplng algonthm is apphed to determine which edges of the s1dewa1k should be visi-- ' "
“ble to the robot. “Each section of srdewalk is then cons1dered to be a face of a s1ng1e ObJCCt : _
- scene ‘When the graphics system presents the 11ne-draw1ngs to PSEIKI it passes the vertex”_fx ,

.coordmates 1n the world coordmate frame TS
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4. HIGH LEVEL VISION SYSTEM

_ Currently, _there are ‘three knowledge sources. in the PSEIKI system Besrdes the grouper =
and labeler which have been discussed briefly, there is also a data reductlon knowledge source.
‘ Each of these knowledge sources w1ll be d1scussed in more detall in- thls sectlon of the report ‘

: 4 1 Data Reductlon Knowledge Source

The goal of this- knowledge source is to- overcome segmentatron deﬁcrenc1es and’ reduce'" '
the amount of data seen by the sections that use inexact reasomng "This KS- by 1tself does not .

employ an uncertain reasomng scheme.  While the process performed by this KS i is fairly con- -

" servative, it does reduce the amount of data by a srgmﬁcant amount. The need for th1s KS is
', dJCtated by the followrng two deﬁcrencres in the image segmentatlon process :

 First the segmentatron procedure produces artifacts that break lines into smaller line seg-
: ments ‘The data-reduction- KStries to compensate for this fact by rejormng these broken line

. segments “Also, if possrble th1s KS combmes segments that are joined ata degree-two vertex -
into a single segrnent “The segmentatron process also’ generates: small edges that are caused by;’ S ‘

noise. “Although many of these edges are eliminated during the" preprocessrng phase, others
remain because. they are connected to longer segments. These "danglmg edges (all segments’

‘which are shorter than a spe01ﬁed length and have a degree one vertex) are e11m1nated by the e

: data-reductron KS. The actrons performed by this KS are shown in F1g 5

~The ‘overall -result of these subprocesses is a cleaner image conta1n1ng a substantlally,-

reduced number of line segments Experimental results demonstrate that the amount of prun- -

ing 1s greater than 50%, th1s 1s obv1ously a large reductlon in the amount of data

- ,_4 2. Labeler Knowledge Source 5

The second subsystem performs element labellng and conﬁdence esumatlon Thrs KS, o
uses the Dempster-Shafer formalism to combine the certalnty values used for uncertam reason-_ h

" ing. ‘Thé combinatorial explosmn of uncértainty calculations usually assocrated w1th the"f'”” PR

& Dempster—Shafer scheme is avorded by the use of a hlerarchlcal reasomng space

The hlerarchlcal structure of the blackboard data provrdes a natural bas1s for a hierarchi- o

' cal reasomng space. The levels of this space: correspond naturally with the levels of the data *

, elements on the blackboard. Thrs can be demonstrated with the help of Flg 3. For example »
e ‘,assume that F, A on the model panel is composed of edges {E, 7e Eg, EC, ED} Also assume that e

Note, in the followmg dlscuss1on the elements on the model panel have caprtal letters as I
' subscnpts whrle elements on the data panel have numerrc subscnpts : ”



" discernment, ©, for an object.is the set of all possible values that the object may assume ‘A basic -

. Delete -

Join Segments“ e o Merge Segments - e Delete Segment

FIGURE 5 Actlons performed by the Data Reductlon KS

- on: the data panel edge E, is part of the group that Ccomposes - face F. If Fjis labeled as FA,' :

“then E; can be labeled as one of {E,, ..., Ep} only. If the data were not. arranged h1erarch1-'.’r L :
cally, it would be necessary to consider every element on the model panel when assigning - o
labels. and when perforrmng consistency checks “To curtail the number of . uncertalnty ca1cu1a-
tions, consistency checks are not made d1rectly between two elements at the same level of the - -
hierarchy if their parents do not have the same label. In the previous example, edge E1 would R

~.only-be checked for consistency with edges whose parents were -also labeled as Fy A Con-f'“-,_f
“sistency checks between two non-siblings can be made indirectly by propagaung an element S - L
‘confidence value up through the h1erarchy until a common ancestor is reached and then back

___down to the second element , ,_ ‘ L ‘ G o

The frame of d1scernment (FOD) for any element is. deﬁned by the labels wh1ch could Co
‘be given to the element; this is determined by the label of the- element’s parent In the example JSE
J above since Fl is labeled as F, the frame of discerment for edge E1 would be s A

*_*—_—— Lol
Some termmology used in the Dempster-Shafer formalrsm will be deﬁned here The frame of

- probability number for a subset of O is the amount of belief assigned that subset. and which
cannot be further subdivided. The basic probability assignment (bpa) for that object over @ isthe
collection of the basic probablhty numbers for all possible subsets of @ See Shafer 61 for
' further explanatlons : S :




_‘An element s label. is. deﬁned 1o be ‘the label of the element from 1ts frame - of d1scemment o
7 which has the greatest belief value attached to it. If the behef value of ‘an ‘element on an upper.

level of the hierarchy is changed, then all of its descendents must change their FOD Thus it
is: advantageous to perform compatibility checks between elements on upper levels of the
 hierarchy first to avoid performing unnecessary calculations on lower levels when frames of
. discernment ‘are - changed This necesslty for checkmg global cons1stency before checkmg .
' local consrstency seems reasonable ' -

5 Two metncs are requlred when updatmg the label bellef functrons for elements on any':
level of the h1erarchy The two metrics must prov1de measures of . the compatlbzlzty and the
mcompatzblllty between two elements. To facilitate the correspondence between them and
certainty values, both metrics should range between O 0 and 1.0. Obv1ous1y, the metncs need
not be the same for all levels of the hierarchy. B

The two metncs need only pr0v1de a measure of the (1n)compat1b111ty of two elements if
they are believed to correspond to the same model element For example, if E, and E, are

b -edges in the data panel and are thought to correspond to the same model edge, then

collmeanty(El, E2) is the measure of compatlbrhty between them. We have deﬁned colhnear- )
' 1ty as: : . ‘ ' ' o '
: 11colhnear1ty(E1, E2) = '.——— xcos(@) S @

, 'Dmax - LT S S

Where Ois the angle between the two segments, Dseg is the d1stance from the mlddle of E2 to
- Eyand D,.., is the maximum possible distance between the two segrnents (see Fig. 6).

FIGURE 6 Geometry used in deﬁmtlon of colhneanty

' Likewise the measure of 1ncompat1b1hty for the:f segrnent and edge levels |
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; noncollinearity(El-, E,), can be defined as:

: noncollinearity(El, E2)= D i xscale(E)xsm(@) R LR 3

where scale(E ) depends on the length of El . When estabhshmg the initial belief functiOn for

a data element, it is desirablé to be able to find the compatibility between it and- elements in the
model panel we shall discuss how this is'done in a later section of the- report '

If two- elements correspond to- different model elements, a rigid motion transform is SREE

apphed to one of them before the metric is applied. This has the effect of enforcmg relat1onal-; :

constraints between the two data elements. For example, if edges E; and E; are thought o Lo
'correspond to model edges E, and Eg respectlvely, then the measure of compat1b111ty between '_ S

El and E3 would be deﬁned as

 compatibility(E;, Ey) = collinearity By Tryon,E) S ) I

where TEB_sE is the rigid- motton transformation that makes model edge EB coll1near w1th'
“model edge EA In other words ' ' R s _

For example if we assume that El is labeled as E,, then when usmg data element Ez to e

‘ 'update the behef function for data- element E; the new evidence is deﬁned to be SRR
updm({El,‘}) SFxcompat1b111ty(E2, E) oo EEERR (6)

update({ﬁEA}) SFx1ncompat1b111ty(E2 El) RS (7)

Where SF isa scale factor (0.0<SF<1 ()) that determines the maximurn amount of ev1dence
that can be obtained by checking data element compatibility. The symbol "—" as used in this -
context denotes set negation (ie. (—Ea} =@~ (Ep}). Once my;qy is computed, Dempster s
rule is used to comblne it'and the ongmal bpa to y1e1d the new bpa for the: element '

4, 2 1. Computmg Imtlal Behef Values for Elements in a Group

To more fully descrrbe how be11ef values are computed for say, the edge elements at.
) level 3 for the data panel in F1g 2, consider the following example. Let’s say that at this level o
the 1nformatlon in the model panel and the data panel is as shown in Flg 1. o

- The grouper KS (to be descnbed later) will hypothe51ze that the edges {El, s Eg} should_ ,
. _be grouped together, let this grouping be designated by the face Fl In order to’ Iabel the edges T

:1n the data the labeler KS will now construct the following frame of d1scemment for each edge )

B
- The scale’ factor is provrded to hmrt the amount dlsconﬁrmatory ewdence prov1ded by small
‘-";edges whlch may be due to noise. .



Data Panel

Model Panel SURTEE N
FIGURE 7. Example data on the edge level of the blackboard

”m the group : _ » ,

Let’ s now focus on the labehng process for edge El The labeler KS w111 compute a bpa overj

@ by first applymg the colhnearlty procedure to the pairs (EA, Ey), (EB, E), (EC, El) and =

~(Ep, Ey). In other words, we check the collinearity of the data edge in questron agamst all the :
~elements i 1n @ To find the collmeanty of say, (Ex, El) we- compute kA

‘ ,collinearity(EA, E1')= = B xcos(® 9y
, - Vseg : : L R
where as shown in F1g 8, Dppax i is the maxlmum allowable d1stance between the two segments

| D, 1s the d1stance from the middle of E, to E, and 0 is the angle between the segments. - :

_ _Note that although E, and El exist in different frames, it is poss1b1e to speak of d1stances and_” ! -
- angles between them because for the purposes of blackboard processmg, they are both pro—_f

- jected into the same world coordlnate system. For a mobile robot nav1gat1ng on a ﬂat ground N
o ,'plane, all the edges are transformed onto the ground plane e e

Let s assume, for the sake of dlscussmn the colhneanty calculatlon produces the follow-

o ing results for E..

. ‘_'colhneanty(EA, El) 07
B colhneanty(EB, Ep=0. 1
; :colhneanty(EC, El) 04

R "lf...colhneanty(ED, El) 005
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: FIGURE 8. fCOll-ineaIity gcometly for the computations fof ini'tial, bpafs_ R

Note that although El is approx1mate1y parallel to both E, 4 and. EC, the coll1near1ty calculatlonv:l B

- y1e1ds a larger result for EA because of the distance dependence of the calculation, If the sum -

o A shghtly dlfferent approach is taken when the sum of colhnearlty 'measures 1s less the

- of the colhnearlty measures exceeds un1ty, as is the case in our example they are normahzed] o
; by the summed value Therefore in our example R e

B t’ 'colllneanty(EA, El) 0 48' T
N colhneanty(EB, El) 008_:‘,;‘, L
o colhneanty(EC, E;)=0. 28

: collmeanty(ED, E)=0.04.

_ These colhnearrty measures deﬁne abpa over @ for our example as glven by
S 'mEl({EA}) 0481{,:-..-.‘;. I R -
-.msl({ED}) 004‘ B e s i R AR
o .“me() OOfor all other subsets of E-)

:,_‘Assume for a moment that due to the distance cutoff, Dmax, the colhneanty measure_ 6f";::‘
’ (Ec, El) is zero. Now the: colhneanty measures are va SR SRR e
-‘colhneanty(EA, E)=07"

'_ 5_colhnear1ty(EB,‘ ) 0.1

::"‘j‘,colhnearrty(EC, El) 0.0
, ';colllnearlty(ED, Ep= 0.05.



= our, behefs regardmg El
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Slnce the measures now sum to less then umty, there is no reason to normahze Instead we
now convert them d1rectly into bpa sin the followmg manner . BRI S :

- mgEgH=07
_,-_.;'ffmal({EB}) o1
 mp((Bch=00

| 'mEl({ED}) 005

- mp@)=015

me () 0 0 for all other subsets of @

Note that we have now asmgned 0. 15 belief to @ 0 15 bemg what S left after we. subtract from' L |

1-the sum of collinearity 1 measures This seems. 1ntu1t1ve1y plausxble for the s1mp1e reason that -

colhneanty is a good measure of "E;isa part of E A " Clearly, if E; does not. match with any - o

of E,, EB, EcorEpt to a sufﬁclently high degree then we: may leave. some belief uncommitted. : |
‘In the above ass1gnment mE (@) 0 15 represents the uncommltted pomon of our behef

Let s say that the: procedure Just descnbed y1e1ds the followmg bpa s for all the data =
edges i L : o

= mEl({EA}) 08 m&({EB}) 01 mEz({EC}) 00 mEZ({ED}) 000 mEz(('D) 01
mEg({EA}) 0.2 mgg({EB}) 01 mE,({Ec}) 0.1 mg, ({ED}) 060 mEg(@) 00
‘ _These then constltute the 1n1t1a1 bpa s for the data edges B R

: 4 2.2, Revnsmg Behef by Enforcmg Mutual Collmearlty Constramts

From the set of initial bpa S, the labeler KS then seeks those observed edges that havev 1

' 5""max1mum bpa for the same model edge For illustration, in the examPIe here E1 and E2 thl- R

' _'b1t max1ma1 behefs for the same model edge, E,.

The edge labeler w111 now apply a local cons1stency enforcer o the beh f \ alues: Let s’v e

S 5 say that s1nce Ep and E2 both have maxrmal smmlarmes w1th E A, we wxsh to'u E2 to revxse, P
| ~To do s0, the labeler will measure the collmearlty f El and Ez, and I
S _-then the noncolhneanty of the same two edges Let s say we get o o R




Cwley@e)sos

: noncoll1near1ty(E2, 1) Ol

We now construct an. updat1ng bpa for El as follows By mult1ply1ng mEZ( {E A}) w1t : G

0 8 we obta1n

- ,;,_:—064 1st,_1.o |

"‘%da“"({—'EA}) mEz({EA})noncolhneanty(Ez,, 1)><SF p R T
=008 ifSF=10 ' g
ugdm(g) 028 e (20)'

- Where once aga1n the bpa for the frame of d1scemment was set to the uncomm1tted pomon of S
bel1ef To find the new bpa over @ for El, we now use Dempster s rule to combme mE1 vith

gdm to. obtam

i val({EA}) 0. 87' » B

E kmEl({EB}) 004 3 L
Sk ;,mEl({ED}) 002’, LT
g (B =002
o _,-mEl(_@) (_).»05

4, 2 3 Revnsmg Bellef Values by Enforcmg Relatlonal Constramts i ; R

The labeler KS also contams procedures for enforcmg relat1onal constramts w1thln each
groupmg, th1s is: done in the follow1ng manner. Consider the bpa s over © for the edges El R

“%‘_’:"e({EA}) mZ({EA})ColhﬂeamY(Ez, 1)><SF i ‘_ (18)

‘and E9 as 1llustrated in F1g 7 ‘While the bpa for B, takes its maximum value for the label By GE

.' the bpa for Eg 1s a max1mum at ED Let’ s say we w1sh to compute, using relatlonal constramts,

"“"'lfthe bpa mugdm, wh1ch 1s the addmonal behef generated by Eq for E’s label To ﬁnd m, gdate’ il

3 fl‘TWC notc tha,t the geometrlcal relat1onsh1p between E A and Epy is already known ‘since their ’

| ..posluons in the: world coordmate system are known. Let TEA _E,, be the transform that makes e C

B j'l-the model edges E, A “and ED commdent To get a measure of the extent to Wthh the geometn-vv S

- ‘3‘ cal relatlonsh1p between El and E9 is the- same one as the one that ex1sts between Ea and ED, s e
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: the labeler carries out the followmg (1n)compat1b111ty computatlons

) compatlb1l1ty(E9, 1) coll1neanty(E9, Tg, —->ED(E1))

o 1ncompat1b1hty(E9, El) noncolhneanty(E9, TE,, SE,(E)

Clearly, if compatlblllty(E9 El) =1 0. (when that - happens we - w1ll also have,_:-' et e
lncompaubﬂlty(Eg, E;) = 0.0), that would nnply that the geometncal relatlonshlp between E1 SO

and Eg in the data is exactly the same as between E, and Ep in the model To explaln how the A ] '
“relational information i is used to: update the bpa distribution for, say, E;, we will go back to: our; ‘,",_. o
example that started w1th F1g 7. Let’s say that the compaublhty calculauons y1e1ded the fol-_ f__; SR

low1ng results for computmg the contnbut10n of E9 to the belief values for El - _ o
colhnearlty(Eg,El) 07 ey e ey " (24)

Anoncolhneanty(Eg,El) 0 4 »

Smce these measures sum to more then 1 they are normahzed by the1r sum to y1eld the ﬁnal S L

R (1n)compat1b111ty measures

colhneanty(Eg,El) O 64

0 noncolhneanty(Eg,El) O 36

N We now construct another bpa for El as follows The quanuty mE9({EB }) 1s mult1p11ed by ‘0 64'3 '

. to y1e1d

'—013 1fSF 10

’u w({EA}) mE,({EA})Compat1b111ty(E9, El) x SF s (26)

m, w<{ﬁEA}> mE.,.<{EA})mcompanbﬂny(Eg, El)xSF ey

"=0.07 1fSF—10

ugdate((-)) 0 2

L .By us1ng Dempster S rule to combme th1s update bpa with the one m (21) we obtam a further L :

- jrev151on of the behef values over the frame of d1scernment for El

j'\.



4, 2 4. Combmmg Bellef Revnsnons from Relatlonal Constramts and Mutual Collmearlty;‘

'Constramts

, Actually, a s1ng1e procedure is. used for enforc1ng both the local collmeanty constramts o -
~and the relational constraints within a group. Note that the (1n)compat1b1l1ty calculations from o

relational constraints reduce to the computation of local collinearity- measures, as descnbed in .

the beg1nn1ng of Sectlon 4.2, if we use an 1dent1ty transformation for TEx QEY

Therefore, we are able 10 employ the followmg mtegrated algonthm for enforcmg both'

the relational constramts and the local collinearity constraints, Suppose n edges, E;, Ez, En,

. have been grouped together 1n the data panel and are hypothesized to belong to a s1ng1e face.
. Also, suppose that the edges in one of the possible correspondmg faces i 1n the model panel are‘

E, 2% EB, e EZ Clearly, the frame of d1scemment (-) for each edge 1s e

Let’s further say that as. descnbed in. Secuon 4 2. 1 measunng local coll1neant1es of the data:,‘

edges aga1nst those of the model edges y1elds the followmg 1n1t1a1 bpa d1stnbut1on foreach N

- data edge i
e B 1—1 S e R R e B e TR R
mE({Ea}) for o _a. VZo e e B0)
‘ w1ththeassumpt10nthat1n1t1ally RRERI ; : ,
mg(@)-l— ZmE({Ea}) o igials iy

and mE( )= 0 0- forall other non- smgleton subsets of CR

"For each data edge E let E be the model edge for whlch the bpa takes a max1mum value : o

That 1s, o

S mE({E%}) > mE({Ea}) for o= AnZo L : | ik (32) :
- S1nce for each edge E; there ex1sts a s1ngle model edge, E,__ w1th max1mum bpa for every_, , :
data edge. El, we can denote the maximum model edge as Ea,,,, Gy (in-case: there is-a tie due QO

.' two or more model edges y1e1d1ng the same value for bpa we arb1trar11y select one of them)

When 1ncorporat1ng new ev1dence for an element s label 'we can ease the computatlonalr S

| viload by mak1ng use of a property of Dempster S rule of combmatlon If we update an S

'element S bpa incrementally w1th every plece of new. ev1dence from element s 51b11ngs, then’g_; L

’ .}'the new bpa will be computed as

mﬂ = (((mold @ mupdate) @ mupdate) @ @ mupdate) : : (33) ’v

noi -

B Where @ is denotlng Dempster s rule of comb1nat1on and mupdate is the updatmg bpa for the SR

) ]—’l



= mom@ mupdate :

1 @mupdate) @ @ mupdata | | :: (35)
‘Now we. can take advantage of the fact that the updatlng bpa s are b1nary frames of dxscem- e

~ ment (1f element E; is. labeled‘ as E A then the only nonzero elements correspond to the subsets’ S
: _{EA} {—-EA} and @ itself). Barnett [13] describes how blnal'y frames of dxscemment canbe ..

used to allow the comb1nat1on of bpa s w1th linear: time complexxty (w1th respect to the s size'of

R v'the FOD) Currently, we do not use Barnett s formulas; but ‘we do ‘take: advantage of the fact’ S e

- -intuitive argument that says any ev1dence conﬁrrnmg an element 'S label also should prov1de L
. }_s‘ev1dence that its parent’s label is correct (for. example it'is very un11ke1y that an edge be
. Tlabeled correctly, yet be grouped into a face that is. 1ncorrectly labeled) Conversely, it is-also.
i ":‘mtu1t1vely pleasmg that d1$conﬁrmlng ev1dence be passed to: lower levels of the hlerarchy (e. g e

| v_ f 1ng ev1dence up.| the h1erarchy "To do thlS, we comblne mupdate not only w1th the bpa for the,
}';i",element in questlon but also w1th that element s parent Comblmng the: updatm g bpa w1th a

‘that there are now 4 elements in’ the power set of the updatrng frame of dlscernment 1nstead of'? o e
'2'9'e1ements AR RRE e :

A functlon update-bellef used to prov1de an updatmg bpa for-
e usmg compatrblhty and 1ncompat1b1hty measures is shown \in Fig. |

. belng updated asa parameter and it retums the. updatlng bpa for that '
o E could be updated w1th the followmg funcnon call -

mE mE @ update-behef(El),_ e

- 4 2 5 Ewdence Propagatlon Between Levels m the Hlerarchy

- "passmg behef values between dlfferent levels of the h1erarchy Th1s is done 10 satlsfy the - "‘

N if we. thmk that a face is m1slabeled then all of 1ts constltuent edges are also most hkely m1sla-‘ o
’beled) A CL ' '

We use the updatlng bpa mupdate, as computed by the update-belle fur 3 ) pass-;‘

‘f‘element S parent makes 1ntu1t1ve sense because all new: ev1dence generated ona level comes RS

ks _»_"-_‘,have cons1stent (compatlble) labels, then these child elements should prov1de ev1dence that the .

-~ from the the (1n)compat1b111ty between elements on that level If the children-of an element N

’"_label g1ven to that element 1s correct leewxse chxldren w1th 1ncon31stent labels prov1def¥ ',
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funct1on update-behef (El)
-+ 3; initialize updatlng bpa asa vacuous bellef functron
M@ =10 L
Mypdare(") = 0.0 ;-all other subsets :
-5; use all n elements in the data panel with the same parent group
:; when updating E; : :
~Foreachj=1,2,.
‘ :begin S o
N cJ = compat1b111ty(El, J)
S di= 1ncompat1b111ty(El, J) o :
- . normahze (1n)compat1b111ty measures if needed
',‘1f(c+d>10) '

~begin- -
AR C:
. G
C: = —
T qs
' ‘?jgdj
dy=—31~
end

3 create updatmg bpa created by element E
update( { Eotm(r) } ) C X Mg, ( { E(X.m"(l) } )

’ update({ﬁEa (1)}) d; XmE({'“'Eam(l)})

R update(g) __1() mupdate({E(x.,m(r)}) mupdate({_‘Eanm(x)})"'.i": gL e

jot

o 'f,, accumulate 1nto updatmg bpa v ; L
update - update@ rrlupdate R

R TR ol
o end' . (forloop) -

ﬁ':a, retum the accumulated sum of new ev1dence e
SRR '..return ( Mypare ) ' ' :
- End. update belief

- FIGURE 9: algorlthm used to generate updatmg bpa

evidence that an element S label is incorrect. Thus by passmg the updatmg bpa S to each
- parent ‘element on a higher level of the h1erarchy, we are prov1d1ng new ev1dence for those ele-« -
vvments based on the cons1stency or the 1ncons1stency of its descendents < : :

o Ev1dence from-an. element cannot be appl1ed dlrectly to its parent because the FOD s of
- an element and 1ts parent are composed of d1fferent types of objects However ‘we w1ll show

.‘ w1th the: help of an example that it is poss1ble to build a'FOD that can be used to update the :
L "-_.bel1ef functlons of elements on a hlgher level of the h1erarchy Assume for our example that



,blllty numbers O

| B “ the model panel 1s shown in: F1g 3 and that edge El on: the data panel 1s a ch11d of face Fl U

" 7.51bhng s labels, 1t may be con51dered as a (werghted) vote of no conﬁdence in face Fl s label o
3 'Thus, mupdm(G) can be cons1dered to be the amount of lgnorance about F1 s label Us1ng th1s_ '

ratlonal we may deﬁne an updatlng bpa for face Fl w1th the followrng non zero basrc proba-*";; S

?daw({FA}) mu,m({EA})

1""’1

mul?date( { f"FA } ) mupdate( [ _‘EA } )

’ bellef values are ass1gned to: the FOD for an element s updatmg bpa 1s really blnary in nature " o
’ Thus the only non zero elements of the updatmg bpa for El are mupdate({EA}), updm({—.EA}) S T

8 [‘and mupdate(@)) Because these are the only non Zero basrc probabllrty numbers from El s bpa,j.‘i.
: l

' -_they ‘sum. to. 1 leen th1s fact 1t 1s tnvral to. show that Myndare is also a bpa We can now_\ LT o

E » E express the total accumulated new behef for face Fl from 1ts chlldren El, EZ,,En as ; 4' : v

| e downward propagatron of rnformatlon takes the form of the reassrgnment of frames of d1s¢ern-i

mupdate - «mu te @ mltpt_l,ate) @ éx_lfll, »

Informauon s p assed down the hlel'afChY only lf it is dlsconﬁrmatory Currently,""t":

( shown 1n F1g 3) we note that the FOD for El would be reass1gned t
'%%%w | R Fa
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4.3, Grouper Knowledge Source e

' The grouper knowledge source ‘builds the data elements on the upper levels of the hlerar— -

chy from the segments and vertlces ‘deposited by the low level vision system It does this i ina Pt

data-drlven manner by first grouplng segments into edges and then grouping ‘the edges into
"~ faces, etc. The KS is trrggered by a request to find the parent of a seed element. After the KS,‘
s trlggered it must find elements that could be members of the same group and then form the

parent. element on the next h1gher level of the: h1erarchy ‘To create the parent element, -the s »
grouper. must first find all of its chrldren After the ch11dren are 1dent1ﬁed they are grouped o

into the parent element

“In general two elements on the same level must satrsfy WO requlrements 1f they are to be L \': -

" 'grouped together. First, the elements ‘must satisfy .a level- -specific adJacency constraint, These

, constralnts usually force the KS to consider only elements that are physwally close when it L

| forms groups The other requrrement is obtained from the compat1b111ty metric used by the
labeler KS Le., the elements must be. highly consistent in order to be grouped For example

, two segments must. be hrghly coll1near and two edges must 11e on a common plane to be'

' grouped ‘ : It A B

Although the KS should be able to group elements based solely on: thelr geometry, it must'f .
be able to use any label 1nformat10n that the labeler KS has provrded PSEIKI’s: grouper KS
currently does thrs by refusmg to group data elements with‘an 1ncompat1ble labels s el

e Although eventually the grouper and labeler KS s work 1n concert on an opportunlstlc .
basis, some initial groupmgs must be formed for the labeler KS to act at all. TIn other words '
the grouper KS must be able to generate some initial grouplngs To 111ustrate how this is done
cons1der the example in'which the low level preprocessor has deposrted the data shown on the -
- right of F1g 10 on the segment level of the data panel. Informatmn about the expected scene

~on the model panel is shown on the left ‘

Agam remember that the 1nformat10n in. both the model and the data panels is 1n the-"
'same world coordinate frame. For a mobile robot with cameras slanted downwards this -
corresponds to the flat ground plane For generating initial groupings, every segment in the

- data panel is compared with all the model edges that are in the vrclmty ‘of 'the segment “the

B basis of comparlson is- colhneanty For each data segment, we retain. that model edge label L
':,that yields the highest value for collinearity. In Fig. 11, the left ‘hand side shows the data- seg- ‘
‘ments and the nght hand side a possible label for each segment All the adJommg segments, e

- that have the same initial labels are now joined together (in.a manner similar to what is accom+ =~

F phshed by the data-reductron KS). Joining by replacing segments by edges the result for our.

example is shown i 1n Fig. 12. Now it is a simple matter to generate initial groupmgs for the -
data. Using the labehng shown in the right hand side of Fig. 11, we' deduce that the data edges g
‘as shown in F1g 12. must be grouped in the followmg manner. '



B ‘This grouplng is: then used by the labeler The labeler by enforcmg mutual colhnearxty an

t '29‘ | = andress/kak e

o Ty 2; 24

ModelPanel U e DataPanel

FIGURE 10 Example data presented to the grouper KS on the segment level L

Data Segments‘ | SR ‘v Imual Labels EE Rl
o | FIGURE 11 In1t1a1 labels for data segments .
R F1 = {E5, E(,, E-,}
':"_j;f:;Fz_ (B}, Ep, By E3} i
o ‘F3 - [Eg, Ell’ E16’ E17, E9, EIO}
Fy= {Ep Bp3, E14, Eis)

relatlonal constramts will drop E2 or E3 from Fz, and Eg or EIO from F3
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DataEdges o > Labels b

FIGURE 12 Edges wrth 1n1t1al labels derrved from data segments

| 4 3.1 Mechamsms That Imtlate Relabelmg and Regroupmg , e T
The labeler KS used in PSEIKI uses backward cha1n1ng to estabhsh 1n1t1al labels and_ :

belref values of data elements Although this procedure works. satlsfactonly dunng 1n1t1ali:.v;r
label1ng, the processrng needs to become more opportunlstlc when labels must be reassrgned o L
or when elements must be regrouped Two of the mechamsms that tngger relabehng and re- oo

: grouprng will be discussed here Theses tnggers are generated by ‘the enforcement of rela—v‘ '
~ tlonal cons1stencres at the level of ed ges and above in the data panel of the blackboard ‘

The ﬁrst mechanrsm enforces the constraint that elements that are non- mtersectmg in the
- model should also be non-intersecting after they have been processed by the labeler KS. To
- illustrate, suppose the labeler has produced the followrng two groupmgs of edges 1nto faces.

F3—{Es, E11,E16, E17, E9, Em} A R e FR 30N

F4—{E12,E13,E14,E15} N T i 2N

Srnce theses two groupings are intersecting, while their correspondrng model faces are not the ’
} labehng KS is setto work again on the 1n1t1al set - ' L i : ‘

{Elo,Eg,Eg,Eu,El—/,Em} DA e el "‘“(4'3)”

o generate an alternatlve grouping. For generating alternatrve grouprngs we take a set differ- 'y i
- ence of groupmgs in (42) and (43) we thus find the competmg edge elements that did not get o :

- included in (43). In our example the edge element Eg competes with Eqp s1nce the former did -

not get included in (42) and is parallel and proximal to the latter We therefore now delete Ew R,

o from (43) and send the result back to the labeler



Another mechamsm for 1n1t1at1ng relabelmg and regroupmg uses the notlon of mlmmum’

'boundmg rectangles (MBRs) After a set of edges is grouped together the area of - the;; L £ _
 minimum bounding rectangle of the group is COmpared with the area of the MBR- of the facein ' "
o - the model panel If the area of the ‘minimum boundmg rectangle 1n the data is the larger of the - - S

" two, one of the edges is released from the _grouping with other faces espemally those that areff .

x ‘,ad_]ommg and whose data MBR area is less then what 1t should be

- As can be seen from the dlscussmn here, . a part of the grouper KS s respon51b1hty is to_ ;f e
. exchange edges between nelghbormg faces in the data panel 1If face attnbutes, as exemphﬁed S

. by MBR, and face relatlonal constramts cannot be sansﬁed by 1 regroupmg and relabelmg, then. R

- the offendmg edges are dlscarded and new edges are formed from the segment data S Ao




- result, Fig. 13e shows the edges and labels. prov1ded by PSEIKI Even though the expected

| 5 EXPﬁﬁtMENTALf fliﬁsiUL'rsp RRAENEEE

PSEIKI was run on data from a, ber of digitized Pic of‘__ ,_ose gathered by a;l e
moblle robot the images in Flg 13 show partlal results for a typlcal scene' ‘The example dep-'?' R
e icts.a scene typlcal of what the robot would see when approachmg an 1ntersectlon Frgure 13a e '

, shows the edges represenung the expected scene; each edge’s label is- 1nd1cated also. Thes-;.‘ :
‘observed scene is shown in Fig. 13b; note that it differs from the expected by a s1gn1ﬁcant PR
~ amount.’ Because the robot was sl1ghtly to the nght of its expected pos1t1on and 1ts onentat1on_ S

' _also was slightly off, two ‘edges that'are in the expected scene are missing ennrely Shadows e
‘ on the sidewalk are also a problem that the robot encounters frequently, the example also, con-
e ‘tains th1s type ofdegradatlon : ' SRR R TSR S EET

o The other 1mages in F1g 13 show partlal results produced by PSEIKI The output of the,.ff
- preprocessor is shown in Fig. 13c. Flgure 13d shows the output of the. data reductlon module
it was able to reduce the number of segments to 59 from 183in the or1g1na1 1mage The ﬁnal =

~and observed scenes dlffCI'Cd by a srgnrﬁcant amount, PSEIKI was _able to’ label all but one‘f‘ ‘
edge As F1g 13 demonstrates the results that’ PSEIKI produces are,;sufﬁ01ent to prov1de a .
- higher level nav1gatlon system the feedback need. to successfully nav1gate a known 51dewalk-’ o




- “FIGURE 13: Example images from PSEIKI R ST
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6. CONCLUSIONS

Th1s report descnbes work in progress on PSEIKI a domam 1ndependent vision. system
It demonstrates how a line drawmg of the expected scene can be used to a1d in the image- o
- understanding task. It describes the architecture and reasoning schemes used. by PSEIKI to
~ accomplish its task. It details how the Dempster-Shafer theory of evidence can be apphed to
labehng and groupmg processes ina h1erarchlca1 scene representatlon S :
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