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PREFACE

The work described in this report is directed at understanding transport physics 
in sub-micron heterostructure devices, at developing computational techniques for 
modeling such devices, and at applying these techniques to investigate new device 
concepts. The focus of the past year’s work has been on extending our collisionless, 
quantum device models to treat elastic scattering processes and at applying 
previously-developed models to the design and study of AlGaAs/GaAs heterojunction 
bipolar transistors. This report describes the past year’s progress in these two areas. 
As a by-product of the research, several heterostructure device models have been 
developed, 1- and 2-D equilibrium models, 1- and 2-D drift-diffusion models, a 1-D 
Monte Carlo simulator and a 1-D, collisionless quantum device model. These simula
tion programs are being applied to advanced device analysis at a number of labora
tories and are available to SRC members on request.



Ill -

TABLE OF CONTENTS

1. PROJECT OVERVIEW....................................... ........... ............................ ............. 1

2. A SCATTER MATRIX APPROACH TO QUANTUM TRANSPORT ............ . 11

3. INFLUENCE OF IMPURITY SCATTERING ON THE
PERFORMANCE OF AHARONOV-BOHM DEVICES ................................. .........59

4. ELECTRON TRANSFER ACROSS A JUNCTION BETWEEN TWO
REGIONS WITH VERY DIFFERENT CONFINING POTENTIALS.....................85

5. NUMERICAL STUDY OF EMITTER-BASE JUNCTION DESIGN
FOR AlGaAs/GaAs HBT’s.................................................................................. ....100

APPENDIX: SEQUAL USER’S MANUAL............... .............................................128



1. PROJECT OVERVIEW

1.1 Introduction

As electronic devices shrink to submicron dimensions, hot carrier effects and 
quantum mechanical effects are becoming increasingly important. Both effects offer 
the potential for improving device performance. By exploiting hot carrier effects, the 
speed of small bipolar and field-effect transistors may be improved significantly; quan
tum mechanical effects on the other hand offer the potential to realize an entirely new 
class of “post-shrink" devices whose performance may be orders of magnitude better 
than present-day devices. The objective of our work is the exploration of new, high- 
performance device concepts based on hot carrier and quantum transport. The Work 
centers on the development and application of advanced device simulation programs, 
which will be needed to guide the design of future devices. Specific objectives of the 
research program are: 1) initiation of work directed at the development of a new gen
eration of physical device models which account for the wave nature of carriers (quan
tum effects), 2) the development of a computationally manageable yet physically accu
rate simulation strategy for treating hot carrier transport in bipolar transistors, and 
3) the application of these evolving simulation tools to the exploration of advanced, 
post-shrink, devices which exploit hot carrier and quantum effects to enhance device 
performance. The numerical device simulation programs being developed during the 
course of this work comprise a “tool box" that can be applied to the study and design 
of advanced devices.

1.2 Technical Approach

Device simulation programs are widely used in industry for the optimization of 
devices and for exploring new device concepts. Such programs will be even more 
important for the increasingly complex devices of the future. Semiconductor device 
dimensions are continually shrinking, and device structures are becoming increasingly 
sophisticated (with the use of heterostructures, for example). Present simulation tech
niques, however, date back to the 1960’s and will not be adequate for advanced dev
ices. ,

Conventional device modeling programs provide self-consistent solutions to the 
drift-diffusion equations and the Poisson equation subject to the appropriate boundary 
conditions on the carrier densities and the potential at the contacts. This approach 
has provided an adequate description of electronic devices for the last three decades. 
However, with the continuing advancement of technology devices have now shrunk to 
submicron dimensions and there is an increasing concern regarding the validity of this



approach. The familiar drift-diffusion theory is based on two assumptions:

1. Electrons are particles moving in an external electric field according to Newton’s
law, and are scattered occasionally by phonons and impurities.

2. The electric field changes slowly over the scale of a mean free path, so that an
electron is scattered many times before the field changes significantly.

In many present day devices assumption 2 is violated, leading to transient hot 
electron effects such as velocity overshoot which are described by the Boltzmann 
Transport Equation. These effects have been extensively modeled by ensemble Monte 
Carlo techniques, but little work on engineering these effects to increase the speed of 
devices has been reported. By contrast, very little work at all has been done in the 
area of quantum effects which arise when assumption 1 is violated. For devices with 
dimensions comparable to the DeBroglie wavelength of carriers (typically 100-1000 A), 
electrons do not behave as particles obeying Newton’s law; they must be regarded as 
waves propagating through the device according to the Schroedinger equation. This 
can be understood by noting that the relationship between Newton’s law and 
Schroedinger’s equation is analogous to that between geometrical and wave optics. A 
simple ray description is adequate only if the device dimensions are much larger than 
a wavelength; otherwise a wave description is necessary. It is believed that in future 
there will be an increasing number of devices that rely on quantum effects for their 
operation.

During 1983-1986, our SRC-supported work focussed on the simulation of hot- 
electron effects in bipolar transistors using the Monte Carlo technique. This work 
provided insight into the nature of transport in a bipolar context and clarified some 
of the limitations of the drift-diffusion approach. Although the physics of hot carrier 
transport is now clearly understood, there is much work yet to be done in the applica
tion of this knowledge to improve device speed and performance. The development of 
a suitable simulation technique for advanced bipolar devices is also a high priority. 
The Monte Carlo method is particularly ill-suited to bipolar simulation and the drift- 
diffusion approach, though versatile and powerful, does not provide an accurate 
description of transport in small devices. We are presently engaged in assessing the 
speed-limiting factors for bipolar transistors and in engineering hot-electron effects in 
order to improve speed. This work makes use of our existing simulation tools. Work 
to explore new simulation strategies which accurately describe transport and recombi
nation in a bipolar context is also underway.

Although the hot carrier work is important and continuing, the current emphasis 
of our work is on quantum mechanical effects. Compared to hot-electron effects, our 
understanding of quantum effects is primitive. Numerous approaches have been pro
posed by different workers in the field and it is not yet clear which of these



approaches will eventually provide an accurate but tractable description for quantum 
transport in submicron devices. Our objective is to develop device engineering 
models that can be used not only to describe quantum effects in sub-micron devices 
but also to guide us in the development of new concepts for post-shrink devices.

1.3 Overview of the Report

During the past year, we have completed work on SEQUAL, our first quantum 
mechanical device model. SEQUAL treats the collisionless propagation of electron 
waves, along with their self-consistent electrostatic potential, in one-dimensional dev
ices. Development of the program is now complete; it is available to SRC members 
and is described in the Appendix to this report. Application of this program to evalu
ate electron injection currents in heterojunction bipolar transistors is discussed in 
Chapter 5 of this report. We also successfully extended such calculations to simple 
two-dimensional structures during the past year. These calculations have been 
applied to the propagation of electrons from a reservoir to a well which ocdurs, for 
example, between the source and channel of a field-effect transistor. The technique 
and preliminary results are described in Chapter 4.

During the past year, the collisionless model has been extended to include elastic 
scattering mechanisms such as ionized impurity scattering. The technique is 
described in Chapter 2, and it is applied to simple, quantum size resistors and to a 
proposed quantum interference device in Chapter 3. Though much work remains to 
be done in extending and applying these techniques to realistic structures and devices, 
no major conceptual hurdles are foreseen as long as the scattering mechanisms are 
purely elastic. The major conceptual hurdle lies in the development of a quantum 
device model that includes inelastic scattering such as phonon scattering. Several for
malisms for treating the general problem of quantum transport have been proposed; 
however, at this stage it is impossible to foresee which approach will eventually lead 
to practical device models and lend new insight into the physics of these novel struc
tures. The accurate treatment of quantum transport, in the presence of elastic and 
inelastic scattering and with a self-consistent electric field is the central challenge of 
the research program.
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1.4 Status of Purdue Device Simulation Programs

While the development of device simulation software is not the central objective 
of the research, when such simulation programs are developed we attempt to make 
them machine-independent, user-friendly, and available to SRC members. Several 
such programs have been developed; they are largely machine-independent and are 
supplied with user’s manuals. Each program is based on a different simulation stra
tegy; each has its limitations, but when intelligently used the collection of programs 
encompasses many of the effects important in modern devices. The development of a 
comprehensive, global device simulation strategy is the key objective of the project. 
A brief description of the available device simulation programs follows.

FISHlD: solves Poisson’s equation in compositionally nonuniform semiconduc
tors (program supplied with materials parameters for AlGaAs). The 
equilibrium solution and the solution under bias (assuming zero 
current or constant quasi-Fermi levels) is computed. Allows for par
tial ionization of dopants, degenerate carrier statistics, and non
parabolic, multiple conduction bands. Plots the electrostatic poten
tial and field, carrier densities, energy band diagrams and other 
quantities of interest. Computes C-V characteristic and 

• differentiates it to plot apparent carrier density versus position. The
program is written in FORTRAN 77 runs and makes use of IMSL 
routines.

PUPHS(1D/2D):
solve Poisson’s equation simultaneously with the electron and hole 
continuity equations for compositionally nonuniform semiconductors 
in equilibrium or under bias. PUPHS is supplied with materials 
models for AlGaAs. The programs compute I-Y and C-Y characteris
tics of diodes and analyze solar cells and bipolar transistors. A 
separate program reads PUPHS-generated data and plots quantities 
of interest. Both one- and two-dimensional versions of this program 
are available; they are written in FORTRAN 77, and use IMSL and 
LINPACK routines.

DEMON: performs 1-D Monte Carlo simulation of electron transport in compo
sitionally nonuniform devices. DEMON is supplied with materials
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models for AlGaAs. User-defined field and doping profiles may be 
defined. A separate program plots the average carrier density, velo
city, and energy versus position within the device. Histograms of the 
distribution function within the device may also be requested.
DEMON is written in FORTRAN 77.

SEQUAL: A post-processor which, given the energy band diagram of a one
dimensional device, computes the electron current by assuming colli
sionless propagation of electron waves. If so directed, SEQUAL will 
iterate and solve Poisson’s equation self-consistently. SEQUAL is 
written in FORTRAN 77 and makes use of IMSL libraries.

Inquiries regarding these computer simulation programs should be directed to 
M.S. Lundstrom at Purdue.
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2. A SCATTER MATRIX APPROACH TO QUANTUM TRANSPORT

2.1 Introduction

The problem of Anderson localization in two-dimensional disorder systems has 
been extensively, studied in the past using the tight-binding Hamiltonian formalism. In 
this chapter, we study the problem of Anderson localization at zero temperature for a 
piece of dirty, material of finite length L and width W in which the transport of elec
trons is modeled as regions of free propagation with occasional elastic scattering by a 
random array of scatterers. Each impurity is characterized by a scatter matrix which 
can in principle be derived for any arbitrary scattering potential, the randomness 
being introduced through the impurity location. The overall transmission is calcu
lated by cascading the scatter matrices of individual scatterers and the conductance 
is evaluated using the Landauer formula for the case of multi-moded transport.

Numerical examples illustrating the onset of the weak and strong localization 
regimes as well as universal conductance fluctuations are obtained for the appropriate 
choice of the parameters of the model. Deviation from the universal behavior for sam
ple length bigger than the localization length and shorter than the electron elastic 
mean free path are also investigated. We also show that the universal conduction 
result is roughly independent of the number of propagating modes throughout the 
sample. The technique used for cascading scatter matrices facilitates the comparison 
between the classical and quantum-mechanical calculation of the conductance of a 
given sample because the classical conductance can be deduced by considering proba
bility scatter matrices rather than amplitude scatter matrices. Furthermore, we 
stress the applicability of our calculations to study the transport properties of ultra
small semiconductor devices in which the total number of propagating modes at the 
Fermi level can be around a few tens only. This is a complete different regime than 
the diffusion regime applicable to metals in which the number of propagating modes is 
increased by several order of magnitude.

Over the past few years, many experiments dealing with the study of electron 
transport in disordered submieron devices have been reported in favor of the theory of 
localization of Abrahams, Anderson, Licciardello and Ramakrishnan [lj. More 
recently, the presence of universal conductance fluctuations in disordered systems has 
also been established both experimentally [2-6] and theoretically [7-12]. Such fluctua
tions have a universal magnitude ~ e2/h, independent of the sample size dimen
sions, provided the system behaves as a good conductor, i.e, G > e2/h. Similar 
fluctuations with equal strength have been observed by varying the chemical potential 
in Si inversion layer nanostructures [5] and in ultra short channel Si MOSFET [3] and 
by varying the magnetic field in metallic samples [13], GaAs wires [2] various 
AlGaAs/GaAs systems [4,6]. Theoretically, it has also been proved that similar con
ductance fluctuations could be obtained in metals due to the motion of a single
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carrier [8]. These fluctuations are not a time-dependent noise since they have been 
shown to be reproducible features in all experimental works.

The basic physics of the conductance fluctuations is due to a quantum interfer
ence effect which requires phase coherence in the wave functions over large regions of 
the sample. A great amount of theoretical work concerned with the problem of locali
zation and with the size of the conductance fluctuations has been based on the usual 
Anderson tight-binding model [14] well appropriate to the numerical study of one and 
two-dimensional metals. Stone has used this model [15] to study the conductance 
fluctuations of metallic samples as a function of magnetic field. Extensive numerical 
studies of weakly disordered metals have also been performed by Giordano [16]. All 
simulations agree fairly well with the universal value predicted by the perturbative 
calculations. Another class of purely one-dimensional (single moded) disordered sys
tems in which the randomness is introduced through the average spacing between 
impurities (spatial disorder) or through the actual shape of the potential (potential 
shape disorder) has also been extensively investigated in the literature [17-20]. All 
numerical simulations for this other category of disordered systems have also sup
ported the scaling theory of localization.

In the present chapter, we are mainly concerned with the second class of disor
dered systems which we generalize to the case of two dimensions allowing for mul
timode propagation throughout the disordered materials. We model the transport of 
electrons in a two-dimensional resistor as regions of free propagation with occasional 
elastic scattering by a random array of scatterers. The conductance of the sample is 
calculated from the overall transmission probability itself deduced by a new technique 
for cascading scatter matrices across subsequent sections in the device. We also 
stress the usefulness of that approach since the classical conductance dan be deduced 
by considering probability scatter matrices rather than amplitude scatter matrices. 
We show that this is equivalent to neglecting the phases of all the Feynman paths (in 
real space) connecting the various modes on one side of the resistor to the other. Our 
model seems more appropriate to describe the transport properties of dirty semicon
ductors. In that respect, it may be very useful to analyze recent experimental data in 
narrow-Mosfet channels [3], GaAs [2] wires and Aharanov-Bohm structures grown by 
MBE [13,4,6]. In such materials, the number of propagating modes available at the 
Fermi level can be several order of magnitude smaller than in metallic Samples. This 
maximum number of propagating modes considered in all our numerical examples is 
always, less then forty.

The chapter is organized as follows. In section 2.2, we describe a technique to 
cascade scatter matrices across subsequent sections in the device [21]. Then, we dis
cuss two models of impurity scattering. The first one consists of a random array of 
scatterers all characterized by the same scatter matrix. The randomness is intro
duced in the spacing between scatterers which is chosen randomly and uniformly over 
some range [0.,1], The second model considers a two-dimensional piece of
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semiconductor of finite length and width in which the short range impurity potential 
is modeled as a 5-potential. The impurities are distributed uniformly in the sample 
for a given impurity concentration. In section 2.3, we perform an extensive numerical 
study of the weak and strong localization regimes in both models. The universality of 
the conductance fluctuations is also studied by varying the position of a single impur
ity. Deviations from the universality behavior are also analyzed for samples with 
length longer than the localization length and shorter than the elastic mean free path. 
We also investigate the universality of the conductance fluctuations as a function of 
the number of propagating modes throughout the sample. Section 2.4 contains our 
conclusions.

2.2 Theory
In this section, we stress the usefulness of a new approach consisting in cascading 

scatter matrices through adjacent sections in a device to calculate the conductance of 
disordered samples according to Landauer formula [22,23]. The advantage of this new 
technique resides in the fact that both the classical and quantum-mechanical conduc
tance of a specific sample can be calculated using the same technique of cascading 
either probability or amplitudes scatter matrices. The more difficult question on how 
to derive the scatter matrix for an arbitrary impurity potential is then considered. 
Two exactly tractable models of impurity scattering (i.e, for which the impurity 
scatter matrices can be written down explicitly) are then analyzed in some detail.

2.2.1 Conductance Formula

Consider a two-dimensional resistor with a confining potential in the y-direction; 
the current flows along x (Fig. 2.1 (a)). For a given confining potential we can find a 
set of transverse modes or subbands m=l,2,... with wavefunctions of the form

^(x,y,t) = <f>m(y)elK'xe~'Et/fl (2.1)

We assume a parabolic dispersion relation for each mode.

E = £m +

The conductance G is given by,



z
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(2.3)

where tm' m(E) is the amplitude for an electron injected from the left into subband m 
with energy E to be transmitted to subband m' on the right. The energy E is con
served across the resistor since we are neglecting inelastic scattering. At low tem
peratures we can replace-df/dE by a delta written as

n M M
g = V7T=2E E Tm.,m(E=Ef) V (2.4)

The probability T^ m is equal to the squared magnitude of the amplitude tm'm. M is 
the total number of modes that are occupied below the Fermi level Ef. The features 
of the conductance described hereafter are expected to be independent of the exact 
analytical form of the multichannel Landauer formula [24,25]. Indeed, most of our 
numerical simulations will be for sample length bigger than the electron mean free 
path ( we will however briefly comment on the use of different Landauer formulas 
when studying .the conductance in the ballistic regime).
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G - itfl JdE df
dE E |tm-m(B)|2

2.2.2 Cascading Scatter Matrices

We wish to calculate the scatter matrix [s] for the resistor connecting the incom
ing wave amplitudes {a+} and {b-} to the outgoing wave amplitudes {b+} and {a-}.

(2.5)
V' t / V'
a“ r t' a+k /

(a~}, {b~} are each (Mxl) column vectors so that [t], [r], [t'] and [rA] are each 
(MxM) matrices. The matrix [t] gives us the M2 quantities that are needed to evalu
ate the conductance from eq. (2.4). To calculate the scatter matrix [s] for the resistor 
we adopt the following model for electron propagation through it. The electrons pro
pagate freely over varying distances d!,d2, * * • between impurities (Fig. 2.1 (b)). 
The scatter matrices [pj_], [p2], ' • ’ for these regions are given by

A 0
0 0n (2.6)



0

(2.7)

The only non-zero elements are the appropriate phase-shifts along the diagonal. At 
the impurities the electrons are scattered from one mode to another. The overall 
scatter matrix js] is obtained by cascading the scatter matrices of successive sections

[s] = [pi] <8> [si] <8> [p2] 0 [si] ® ... (2.8)

Scatter matrices can be cascaded two at a time as described in appendix A. We can 
thus cascade [pi] and [sj] to get a composite matrix which we cascade with [p2] and 
so on to get the overall [s] matrix of the resistor from eq. (2.8).

2.2.3 Semiclassical Result

It will be noted that each of the transmission amplitudes tm'm is actually the 
sum of the complex amplitudes zn of numerous Feynman paths from subband m at 
the left to subband m' at the right

1u-

ikjd,,

0

0 ikfid.,

ikMd„

Tm',m = lE^nl2 (2.9)
J n

The summation index n runs over all Feynman paths originating in subband m at the 
left and ending in subband m' at the right. A typical path is shown in Fig. 2.2. The 
number of paths is denumerably infinite but cascading the scatter matrices as 
described earlier automatically performs the summation for us. Now, in the semiclas
sical approximation we neglect the interference between scatterers, that is, between 
the different Feynman paths.

(Tm’m)semi—<classical (2.10)

The semiclassical T can be calculated in exactly the same way as we calculated the 
quantum T except that we cascade probability scatter matrices rather than amplitude 
scatter matrices [26]. The probability scatter matrices [Sj ] are obtained from the 
amplitude scatter matrices [sx ] by replacing each element by its magnitude squared.



m

m*

Figure 2.2 A typical Feynman path from subband m at the left to subband m* at 
the right
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[Slim,. - lM„,nP (2-11)
Hence the semiclassical scatter matrix [Sc] for the device is given by,

[So]“|Pi]® N® [Pj]® N® ...

= |S,] ® [S,] ® |Sj] ® ... (2.12)

since it is apparent from eqs. (2.6-2.7) that the probability scatter matrices 
corresponding to free propagation are identity matrices. In order to apply either eq. 
(2.8) or (2.12) to cascade amplitudes or probability scatter matrices, we need to calcu
late the scatter matrix of each individual scatterer. This is done in the next section 
where, by analogy with the scattering theory of nuclear physics [27], we derive an uni
tary scatter matrix for any arbitrary potential with finite range and confined to a 
two-dimensional resistor. The exact analytical form of this general scatter matrix 
maybe quite difficult to evaluate for an arbitrary potential. However, for the case of 
a ^-impurity potential, we show that the scatter matrix can be derived exactly. This 
model of impurity scattering will be referred later as model A. We finally consider a 
much simpler case of scatter matrix (model B) for which there is an even probability 
to be reflected or transmitted into the different modes; only the probability to be 
transmitted into the same mode as the incident one is different and fixed by the uni- 
tarity requirement. Even though this last model of impurity scattering doesn’t 
correspond to any realistic physical system, it is quite interesting since the classical 
conductance can be derived analytically and can be shown to obey Ohm’s law exactly.

2.2.4 S Matrix for an Individual Scatterer

Let us assume that for t = -oo, an electron is in the state <j)n as given in eq. 
(2.1). If we wait a sufficiently long time after the scattering by the 2-D piece of sem
iconductor of finite width W and length L (see Fig. 2.1.(a)), the potential present in 
the resistor will be ineffective and the wavefunction describing the electron state for 
time t —► +oo can be expressed as a linear combination of the electronic states <pm. 
This description of the scattering event is very familiar in collision theory in nuclear 
physics [27], the only difference being that the eigenstates far away from the 
scattering region are described as free-electron plane waves. Taking into account this 
analogy, we therefore can write

V-4 = Mmn</>n (2.13)
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where

Mmn =<^M> . (2.14)

is the amplitude of the eigenstate </>m that is contained after the scattering has taken 
place, in the state that grew out of what was the electron eigenstage, before the 
scattering took place. By analogy with the treatment given in ref. [27], the matrix 
elements Mmn can be written explicitly as follows

Mmn = <m|n> - -J- J dx f dy J dt <j)

-jr! ••• J ^m(^)HV)G0+( ?,t'i dt dt'

(2.15)

where Go (p^t jp^t) is the retarded Green’s function describing the free-particle pro
pagation in the two-dimensional resistor; H (p) being the general scattering potential 
within the 2-D piece of semiconductor.
The scatter matrix relates the current amplitudes rather than the wave amplitudes. 
We therefore introduce the new matrix t whose matrix elements satisfy

vt V& = VkT <i>n (2.16)

Using eqs. (2.14) and (2.15), we easily deduce the relation between the matrix M and t

lmu (2.17)

where

Amm - Y ykVka J

•I J^^)HV)G0+(^,t';?,t)H'(?)^n(?)d?-d/dtdt' (2.18)

+ ...
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The matrix t defines the transmission part of the scatter matrix and related the ingo
ing (from left contact) to outgoing current amplitudes across the 2-D piece of semicon
ductor. The total scatter matrix S can then be written explicitly as follows

[S]
T R' I—A -A
R T' -A I—A (2.19)

A being the matrix whose matrix elements are given by (2.18). Taking into account 
the anti-hermiticity of A, we can easily show that the scatter matrix [s.] is indeed uni
tary. A direct calculation of the matrix elements Amn in eq. (2.18) for any arbitrary 
potential can be quite involved. However, as will be shown next, this calculation can 
be performed exactly when the scattering potential is modeled as a delta-impurity 
potential. This specific case, even though not realistic, will be used as an illustrative 
example to study the problem of localization in multimoded two-dimensional resistors.

2.2.4.1 S matrix for a 6-impurity

If we model the impurity scattering in a 2-D sample (x-y plane) by a 6-impurity 
interaction

H (x,y) = 7 6(x-xi)6(y-yi) (2.20)

(xj ,y;) being the position of the ith impurity and if we assume a particle in a book 
confinement along the y direction, i.e., H (x,y) — oo for y < 0 and y > w, the scatter 
matrix across the 6-impurity has the following form

[1+B]-1 —[1+B]-1B

—[1+B]_1B [1+B]-1
(2.21)

where B is a MxM matrix with matrix elements

R _ Faff
” 2 \/k.k (2.22)

where the coupling parameters Ta^ are given by

f 4m* 7
fi2

1
( > ma7ryi

/ \
mpTryi

— sin sinw v W ' ) w (2.23)



The derivation of eq. (2.21) from the more general expression (2.19) is pretty straight
forward if we use the expansion

[1+B]"1 = 1 — B + B2 ••• (2.24)

and the explicit expression of the retarded Green function Go (p^t'j/^t) (see expres
sion (2-25) in ref. [28]). An alternative derivation based on a direct solution of the 
time-independent Schrodinger equation is outlined in appendix B. As can be seen on 
eqs. (2.21-2.23), each individual scatter matrix is depending on the y location of the 
impurity in the sample introducing an additional randomization in the model different 
from the randomization due to the spacing between impurities along the x axis, the 
direction of propagation of the current. To make the distinction between these two 
degrees of randomization, we also studied a much simpler model of impurity scatter
ing in which all scatterers are characterized by the same scatter matrix and the only 
randomization comes from the arbitrary x location of the impurities.

- 21 -

2.2.4,2 A Simple Model for the Impurity Scatter Matrix

More explicitly, we will assume that each impurity has the same scatter matrix 
[sj] given by, -

■[sil-eW (2.25)

where [a] is a matrix with all its element equal.

[a]m,n ^ a f°r m>n (2.26)

since [a] is Hermitian, the scatter matrix [sj] is unitary as it must be. The exponen
tiation appearing in eq. (2.25) can be performed analytically. One obtains

. ' [si] = I + . (2.27)

where

e2iMa
2M (2.28)

Thus our choice of scatter matrix implies that at each impurity, the incident mode is 
reflected equally into each of M modes with probability |/3|2; it is also transmitted 
equally into each of the other M-l modes with probability |/?|2. For our special choice 
of [sj ] in which an incident mode is scattered equally into every other mode we can 
perform the cascading in eq. (2.12) analytically. One advantage of this simple model
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is that the semiclassical transmission probability after Nj impurities can be calculated 
exactly

ITcW
2N, N|/.M

A+Nl )^',m + A+Ni

where A is the dimensionless mean free path given by

(2.29)

■A = (1 — M|/?|2)/M|/?|2 (2.30)

The normalized semiclassical conductance gc obtained from eq. (2.4) can also be 
derived analytically

gc = 2MA/(A + Nj) (2.31)

The semiclassical conductance for this model thus depends only on the number of 
impurities Nj and is independent of the spacing dj, d2,-.. between impurities and the 
wavenumbers lq, k2,••• , of the different modes. A detailed proof of the Ohmic 
result, eq. (2.31), is given in appendix C.

The following section is devoted to an extensive study of both models A and B includ
ing the study of the weak and strong localization regimes as well as the universal con
ductance fluctuations characterizing disordered systems in the mesoscopic regime. 
For the case of model A, we will also study the influence of the additional randomiza
tion introduced through the arbitrary y location of the impurities.

2.3 Results and Discussion

2.3.1 Simple Impurity Scatter Matrix

In the case of model B, we showed in the previous section that

l%a|2 = M2 =W (2.32a)

and |tnn. |2 = |l+/?|2 if a = f3 (2.32b)

In other words, an electron incident in channel a has an equal probability to be 
transmitted or reflected into all modes /?. Only the probability to be transmitted into 
the same mode is different and is given by eq. (2.29). In this model, the disorder is 
introduced by letting the average spacing between impurities vary arbitrarily and uni
formly ovdr some range [0,1]. For this special case, we show in appendix C that the
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classical Ohm law can be derived analytically by cascading the probability scatter 
matrices following the prescription described at the end of section 2.2.3. The conduc
tance is inversely proportional to the number of impurities crossed and is independent 
of the spacing {dn} between scatterers. to calculate the quantum-mechanical conduc
tance of the sample versus the number of impurities crossed, we apply the law of com
position (2.8) to the series of identical scatter matrices (2.25) interposing an arbi
trarily set of propagating scatter matrices (2.6) between them.

2.3.1.1 Localization and Fluctuations

Figure 2.3 shows the resistance (g-1) of a sample with M—30, A=33.33 as a func
tion of the number of impurities Nj (all the device parameters are identical to those 
in the previous example). The distances dn were distributed uniformly over some 
range such that kjdn (i=l,M) vary between 507T and 2507T. Also show for comparison 
is the semiclassical result ( g^T1 ) which obeys Ohm’s law. The weak and strong locali
zation regions are evident. An estimate of the localization length is the length for 
which the reduced quantum conductance is about unity and can be estimated by the 
following relation [29]

Aei = Aioc / M (2.33)

M being the number of propagating modes throughout the device. ( A)oc = 1000 
impurities in bur specific example). When Aej < L < A[oc , the weak localization 
predicts that, when averaged over many samples, the mean quantum-mechanical con
ductance should be below the classical result by an amount equal to

gQ - gc - -2 (2.34)

in reduced units e2 / h. A simple derivation of this result for the multi-mode tran
sport case is given in appendix D. This difference can be traced back to the fact that, 
due to coherent back-scattering, the averaged quantum-mechanical reflection 
coefficients obey the following relations

<Rii> > (2.35)

for sample length such that L » Ael. This is illustrated on Fig. 2.4 foj- the previ
ously discussed example. In this figure, <R^ > and <R;j> stand for the average 
values of the diagonal and off-diagonal reflection coefficients respectively (the average 
being taken over the indices i and j for a given sample).



o 1000

Number of impurities crossed

Figure 2.3 Normalized resistance vs. number of impurities Nj for 
sample (M= 30, A=33.33) .
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Number of Impurities Crossed

Figure 2.4 Average diagonal and off diagonal reflection coefficients for example in 
Fig. 2.3
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According to the ergodic hypothesis of Lee and co-workers [9], in the metallic 
regime, i.e, when Aej < L < Aloe, the sample specific fluctuations of the conductance 
over an ensemble of samples which dilfer only in their microscopic impurity 
configuration can be viewed as similar to the statistical fluctuations in conductance 
obtained by moving a single impurity in a given sample. For the 30 modes case, the 
average quantum- mechanical conductance gq Was calculated by moving one impurity 
only. More precisely, the middle impurity of a sample with fixed number Nj of impur
ities was moved by varying distances up to one /xm. For this case, as illustrated on 
Fig. 2.5, we obtain gQ—gci —1.5 over the entire weak localization regime in quite
good agreement with (2.34). Fig. 2.6 illustrates the fluctuations in conductance while 
moving the middle impurity of a sample with 600 impurities (as before, 
Aei = 33,33 and M = 30 ). The horizontal axis in this picture represents the distance 
by which the middle impurity was moved from its original position. We notice the 
large conductance fluctuations whose variance 0.52 e2/h is in close agreement with 
the universal value 0.53 e2/h [9]. This variance was calculated over the entire weak 
localization length and extended into the strong localization region. As seen in Fig. 
2.7, the size of the conductance fluctuations is approximately constant over the weak 
localization regime and gradually decreases below its universal value while extending 
the length of the sample into the strong localization regime. This is in agreement 
with the theoretical prediction and the numerical simulations [16,8] performed on an 
Anderson tight-binding hamiltonian.

In the ballistic regime, i.e, for L < Aej, the conductance fluctuations Were also 
calculated using the two probe Landauer formula (2.4). However, recent experiments 
performed on metallic rings have employed a four probe measuring configuration to 
measure the size of the conductance fluctuations in the presence of an external mag
netic field. It has been suggested that a more appropriate Landauer formula to 
describe those type of measurements is given by

(2.36)

where Tm and Rm are the total transmission and reflection probabilities for electron 
impinging from the contacts into the m** mode, Le,

Tm f= STm'.m (2.37a)

and .

Rm = ERm'm = 1 “ Tm. (2.37b)
- m' ■ v ■ . _ ' ■

Since it is precisely in the ballistic regime that eq. (2.4) and eq. (2.36) give essentially 
different results, we have calculated the size of the conductance fluctuations in this

M T 
S = 2 S

m=l Rm
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Number of Impurities in Sample

Figure 2.5 Average quantum-mechanical conductance for increasing sa,mple length 
compared to the classical value (full curve). The average is taken after 
motion of the middle impurity of the sample.
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30 modes; shifting middle impurity of 600

N
Classical

G.+aG

G

G - AG

Displacement of Middle Impurity (Angst)

Figure 2.6 Universal conductance fluctuations of a sample containing 600 impurities 
due to the motion of the middle impurity a distance d to the right from 
its original position. The classical conductance is also shown for 
comparison.
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Figure 2.7 Variance of the universal conductance fluctuations (due to the motion of 
the middle impurity) while increasing the sample length from the weak 
to the strong localization region. The parameters of the sample are the 
same as in Fig. 2.3
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regime using both eqs. (2.4) and (2.36) (As seen on Fig. 2.8). The conductance 
fluctuations obtained using eq. (2.4) decrease slightly below the universal result in the 
ballistic regime (we expect Ag = 0. for samples containing a single impurity). This 
agrees with the results obtained using a tight-binding Hamiltonian [16] for which the 
universality of the conductance fluctuations was found to be quite robust and valid 
even for very short samples. On the contrary, the value of AG using eq. (2.36) are 
found to be several times e2/h. Therefore, while performing four-probe conductance 
measurements, we should expect the size of the conductance fluctuations to be larger 
then their universal value if the transport in the device is nearly ballistic ( The possi
bility of ballistic transport in Aharanov-Bohm structures grown by MBE has been 
analyzed in ref. [30] ) .

Finally, in Fig. 2.9 , we show that the size of the conductance fluctuations due to 
the motion of a single impurity stays approximately constant while increasing the 
number of propagating modes through the sample. All the sample considered in this 
simulation had a fixed number of impurities (Nf=100) which puts all of them in the 
weak localization regime. They were also all characterized by the same value of the 
parameter a entering the impurity scatter matrix (2.25). (This means that, while 
characterized by the same impurity configuration, those samples have slightly 
different elastic mean free path. In Fig. 2.9, each curve is labelled by its elastic mean 
free path A calculated using eq. (2.30)). Following an argument due to Lee [12], this 
tends to prove that the ratio AG/G doesn’t behave as l/M as one Would expect by 
assuming that all the transmission coefficients T;j for the disordered sample are 
uncorrelated complex random variables.

The theoretical predictions concerning the universality of the conductance 
fluctuations have been deduced from perturbation theory [8,9] to lowest order in 
(kfA)-1, where kf is the Fermi wavevector and A is the elastic mean free path. This 
condition was met in all our numerical calculations since the average spacing { dn } 
between impurities was chosen such that kfdn — 507T for the mode with the highest
transverse energy. While considering model B for impurity scattering, the require
ment kfA;§> 1 needed to observe the weak, strong localization effects as well as the 
universal conductance fluctuations should always be kept in mind. Indeed, failure to 
meet this requirement can introduce spurious results in the conductance calculations. 
In fact, if the average spacing between scatterers is so small ( dn —► 0 ) then each 
scatter matrix for the free propagation between impurities reduces to

T 0 

0 I
(2.38)

Physically, this means that all the phases of the different modes are small and not 
fully randomized over 2tt between scatterers. In that case, the propagating scatter
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Figure 2.8 Size of the universal conductance fluctuations (due to the motion of a 
single impurity) calculated using a two-probe (eq. (2.4) in the text) and 
four-probe (see eq. (2.36)) conductance formula respectively. The 
parameters characterizing the sample are the same as in Fig. 2.3
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AG= 0.52 e2/h M = 40 A =42.5

AG = 0.54 e2 /h M =30 A = 33.33

AG = 0.59 e2 / h M = 20 A = 25

0.00

AG = 0.52 e2/ h M = 10 A = 20
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Displacement of Middle Impurity (Angst)

Figure 2.9 Universal conductance fluctuations after displacement of the middle 
impurity of the sample while increasing the number of propagating 
modes. The impurity is moved along the x direction by a distance d to 

• ? the right of its original position. The number of propagating modes is 
indicated as well as the value of the elastic mean free path ( eq. (2.30) in 

- the text)
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matrices can be neglected when cascading all the scatter matrices across the device. 
We must then cascade the scatter matrix (2.25) with itself a number of times equal to 
the number of impurities crossed. This can be done exactly analytically. In the limit 
where the number of impurities in the sample goes to infinity, the conductance can 
then be shown to converge to the following limit

g —* M—1 (2.39)

a limit independent of the constant a in eq. (2.25). If the average spacing between 
impurities is gradually increased, we then obtain a quantum-mechanical conductance 
which doesn’t show the saturation just discussed.

2.3.2 5-impurity Scatterers

The resistance versus length of a 2-D resistor (GaAs) doped 1011cm-2 was calcu
lated for samples of width 2000 A and characterized by different impurity 
configurations ( Fig. 2.10 shows a typical sample 2000 A wide and 20000 A long in 
which the positions of the 5-scatterers are chosen randomly with a uniform distribu
tion in both x and y directions for a given impurity concentration). For comparison, 
the classical resistance was also calculated for the same samples using the technique 
of cascading probability scatter matrices as described in Section 2.2.3). Several 
remarks have to be made.

As can be seen on Fig. 2.11, we first notice that, even in the weak localization 
regime ( i.e when R « h/2e2 ), a full quantum-mechanical gives a variation of resis
tance versus length far less simple than the classical Ohm law. Deviation from this 
result can even be noticed quite wide samples. Furthermore, different impurity loca
tions give rise to drastically oscillations patterns in the variation of the resistance of 
the sample versus its length. The classical resistances are also slightly different for 
different samples and, even though close from being linear, the resistance variation 
versus length doesn’t obey strictly Ohm law. In fact, due to the particle in a box 
confinement potential in the y direction, the conductance of the two-dimensional resis
tors is strongly depending on the y positions of the different impurities both classically 
and quantum-mechanically. However, while considering wider and wider samples, the 
classical variation from sample to sample (with a fixed length) is supposed to dissa- 
pear: this corresponds to the thermodynamic limit which stays that the classical
resistance should only depend on macroscopic parameters such as the impurity con
centration. Quantum-mechanically, however, the universal conductance result predicts 
that the conductance fluctuations while considering different samples should be of the 
order of e2/h no matter how wide the samples are, i.e, no matter how large is the 
number of propagating modes throughout the sample. Obtaining the variance of the
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Figure 2.10 Model B: A specific sample 2 x 105A long and 2 x 103A Wide sample
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500 1000 1500
Number of Impurities in the Sample

Figure 2.11 Resistance versus length for samples (A,B) such as the one shown in Fig.
2.10 differing by their impurity configuration. ( The samples are 2000A 
wide)
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conductance fluctuations over a statistically meaningful number of completely 
different samples is quite time consuming. However, since conductance fluctuations of 
the same magnitude can be obtained by the motion of a single impurity [8], we calcu
lated (both classically and quantum-mechanically) the variance of the conductance 
fluctuations by changing the y-position of the middle impurity only from one side of 
the resistor to the other by step of 10 A. Fig. 2.12 the classical and quantum- 
mechanical conductance variation of a sample (2 x 103A wide and 105 A long) while 
moving the middle impurity as described above. The quantum-mechanical fluctua
tions are seen to be quite large ( AG — 0.2e2/h) whereas no sensible fluctuation is
perceptible in the classical case.

2.4 Conclusions
In this chapter, we have studied the problem of Anderson localization for the 

case of multi-moded transport using a technique for cascading scatter matrices associ
ated to subsequent sections in a device. This study is complementary to the numerical 
simulations performed on tight-binding Hamiltonians [16,15] and generalizes to the 
case of multi-moded transport earlier numerical calculations performed on purely 1-D 
random array of scatterers [17,20]. The technique can in principle be applied for any 
arbitrary impurity potential with finite range. The conductance of disordered samples 
was calculated using a scatter matrix approach which furnishes directly the reflection 
and transmission coefficients in the different modes. One other advantage of cascad
ing scatter matrices rather than transfer matrices is that the latter blow up exponen
tially while increasing the length of the device. In our case, elastic scattering requires 
all scatter matrices to be unitary, an easy check to perform numerically while cascad
ing the different scatter matrices across the device. Another advantage of cascading 
scatter matrices is that the classical conductance can also be derived by replacing all 
amplitude scatter matrix by the probability scatter matrices. All our numerical simu
lations agree with the scaling theory of localization both in the weak and strong local
ization regimes. Furthermore, we investigated the universality of the conductance 
fluctuations in the mesoscopic range ( i.e for sample length such that A < L < Aioc) 
by varying the position of one impurity only. All numerical simulations agree well 
with the size of the fluctuations predicted theoretically for quasi-one dimensional sys
tems, i.e., 0.53 e2/h [8]. We also calculated the size of the fluctuations for sample 
length bigger than the localization length as expected theoretically. When varying 
the microscopic configuration of the sample, the size of the fluctuations is predicted to 
be below the universal result and is continuously decreasing as a function of length 
(as expected theoretically) in the strong localization regime. We have also shown that 
the universal conductance result is independent of the number of propagating modes 
throughout the device.



o 4.75

500 1000 1500
Position of the Middle Impurity

Figure 2.12 Classical versus quantum-mechanical conductance of a sample such as 
the one shown in Fig. 2.10 after moving the middle impurity from one 
side of the resistor to the other (the x position of the impurity being 
unchanged). The sample is 2 x lO^A wide and 105A long
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Recently, various groups have reported the observation of universal conductance 
fluctuations in ultrasmall GaAs wires and in Aharanov-Bohm heterostructures. In 
those ultrasmall structures, the spatial quantization reduces the number of propagat
ing channels available at the Fermi level to be of the order of a few tens only. This 
number is by Several orders of magnitude smaller than the number df propagating 
modes available at the Fermi energy in metallic samples and makes our model partic
ularly useful to investigate the influence of impurity scattering in ultrasmall semicon
ductor heterostructures. Preliminary results concerning the size of the conductance 
modulation in the recently proposed Electrostatic Aharanov- Bohm effect will be dis
cussed in the next chapter [31].
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Appendix A: Cascading Scatter Matrices

In this appendix, we will derive the composite scatter matrix for a region consist
ing of two subsequent sections of a device described by their individual scatter 
matrices.

Let us consider a specific interval in a device. As discussed in section 2.2.2) , a 
scatter matrix relates incoming wave amplitudes {a+} and {b-} to the outgoing wave 
amplitudes {b+} and {a-} as follows

V' —v.

1______ v-
a~ — r t' a+< " j ) l /

(Al)

The elements of the scatter matrix (r,t/,t,r/) represent the amplitudes for electrons to 
be transmitted (t, t') or reflected (r,r') from that interval. It follows that, in a region 
of two intervals, an electron could be multiply reflected between two interfaces. By 
summing the amplitudes of electrons following an infinite number of multiply reflected 
paths, the overall transmitted and reflected amplitudes can be determined. This 
analysis is pictured in Figures Al and A2. In Fig. Al, electrons incident from the left 
of the region could be transmitted straight through the structure, or could experience 
an infinite number of multiple reflections before being transmitted. The total 
transmitted amplitude is the sum of the contributions from each possible path:

t 1 + rir2 + (rir2)2 + ... (A2)

where the subscripts indicate the interval in which transmission or reflection occurs. 
The phase acquired by the wavefunction in the course of multiple reflections is con
tained in the definition of the scatter matrix elements and need not be added in this 
analysis. Since the infinite series of multiply reflected terms is a geometric series, the 
composite transmitted amplitude can be simplified:

t = t2 |l — r'xr2 |—1t1 (A3)

Following a similar derivation (see Figs. Al and A2), the remaining elements of the 
composite scatter matrix can be determined, completing the analysis:

r = n + tir2[l - rir^Hi (A4)

= ti[l+r2[l - rir2] 1r'1]t2 (A5)

= r2 + t2[l - rir2]_1rit2 (A6)

Even if the product r^r2 were to approach unity, making the inverse of [1 — rir2]
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Figure A1 Derivation of t and r for a composite scatter matrix, by considering
multiple reflections of the wavefunction.
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Figure A2. Derivation of t and r for a composite scatter matrix, by considering
multiple reflections of the wavefunction.
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large, transmitted amplitudes t^ and t2 would approach zero, by particle conservation 
laws. Since many computers allow small numbers to underflow benignly to zero, a 
scatter matrix solution can be implemented with relatively little error checking.

An alternative way to deduce the set of relations (A3-A6) is the following. For 
each section in the device, we make the transformation from the scatter matrix to the 
associate transfer matrix. The latter relates the wave amplitudes on one side of the 
section (a"*1) to the wave amplitudes on the other side (b±), i.e,

\ /

wn w12- fa
W21 w22 a~J V /

(A7)

The different blocks Wjj (i,j = 1,2) can be expressed in terms of the various matrices
(r,r ,t,t ) composing the scatter matrix of the same section,

Wn = t — rY-1r (A8)

W12 = r't'-1 (A9)

W21 = tMr (A10)

W22 - t"1 . (All)

Reciprocally, the various blocks (r,t/,t,t ) composing the scatter matrix can be 
expressed in terms of the various block W;j (i,j=i,2),

r = —W22W21 (A12)

T = W12W22 (A13)

t = Wn-WijW^Wn (A14)

t' = W2i (A15)

Since the law of composition for transfer matrices is a simple matrix multiplica
tion, we can easily calculate the transfer matrix associated to two subsequent sections 
in a device. Then, using the set of equations (Al2) to (A15) in which the W,j are the 
blocks of the overall transfer matrix, we get equations (A3) to (A6), defining the 
blocks of the composite scatter matrix.
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Appendix B: Scatter Matrix for a 5-impurity
In this appendix, we derive the exact analytical form of the scatter matrix across 

a 5-impurity. Our start point is the one-electron effective mass Schrodinger equation

i0-A = -ih M&L : iBl:S'
2m

V2 +Ec(x) 4- H (r)

written for an electron propagating through a device with arbitrary conduction band 
energy profile Ec(x) (x being the direction of propagation of the current). In eq. (Bl), 
H'(?) is the scattering part of the Hamiltonian which we assume to be time- 
independent since our main concern is to study the influence of impurity scattering on 
the conductance of dirty samples at absolute zero. For elastic scattering, the electron 
total energy is conserved while traversing the device and therefore the time-dependent 
part of the wave function can be eliminated using the ansatz

_ iEt
Vtft) = «F)e“ * (B2)

If H is identically equal to zero, the band energy profile (or external potential energy) 
is assumed to be simple enough so we can write the eigenstates of the Schrodinger eq. 
(Bl) explicitly. For instance, for devices grown by MBE, the potential energy profile 
varies only in the direction of the axis of growth of the structure (which we choose as 
the x-direction). The eigenstates of the Schrodinger eq. (Bl) can then be character
ized by the two good quantum numbers kt and E, kt being the component of the 
wavevector in the (y,z) plane and E the electron total energy. Both these quantities 
are conserved if no scattering is present. The electron eigenstates describing the 
transverse motion of the electrons can then be written as

e1^
Va (B3)

for which we use hereafter the shorthand notation \a >; ~p is the radius vector in the 
y-z plane. The normalizing factor \/a is introduced because we use periodic boun
dary conditions in y,z to determine the allowed values of kt and E. Those different 
states are then orthogonal, i.e.,
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/ dy dz \a>* \/3> = 80:jj (B4)

and form a complete set of eigenstates on which the general solution of eq. (Al) for a 
fixed energy can be expanded when the scattering part of the Hamiltonian H (r^t) is 
non-zero,

#) = SC,(x)|o> (B5)
a

For different type of confining potential in the y-z directions such as a simple box of 
width W and height H, the good quantum numbers would then be the total energy E 
and a set of two integers n and m characterizing the particle in a box confinement in 
the transverse direction. The electron energy dispersion relation would in this case be 
given by

E = ej + +
V±l

2m2
(B6a)

where

cV — n
2m* W2

(B6b)

and

mVft2
2m* H2

(B6c)

For this special case, the transverse part of the electron eigenstates can be explicitly 
written as follows

a> = 2 . , m7iy N / 2 . , nzrz N
w s:"! w > V TT 8in(Tr) (B7)

It is then straightforward to calculate the charge density p(r) and current density J(x) 
associated to the wavefunction (B5). We obtain respectively

p(x) = e 'll?/ip = e £ C* (x) Ca (x) (B8)

and



„ \h e JV * d^*
(
d^

a 2m dxV ) dxk /
(B9)

Here p(x) and J(x) are respectively the charge and current densities integrated over 
y,z and t so that the cross-terms do not appear. Using eq. (B2) and making use of the 
orthogonality condition (B4), the Schrodinger eq. (Bl) can be written

d2Cc
dx2

+ k2 Ca = >] VaP{x) Cp

where

Yl = 2 m 
fi 2

E -
h2kl
^ * .■ 2m

- Ec (x) (mi)

and

raig(x) 2m
fi2

J dydz |a>*H \P> (B12)

Equation (BIO) is our main result. The problem of solving the scattering problem is 
then reduced to the calculation of the coefficients Tap and to the solution of the sys
tem of coupled differential equations (BIO). Equation (BIO) has indeed to be written 
for all modes a’s considered in any particular problem. Not that the sum over /? in 
the second member of eq. (BIO) do include the term cn—/3. In practice, the number of 
modes has to be reduced to some finite number M.

In the set of couple differential equations (BIO), both quantities k2,s and r^’s 
are function of the variable x and depend respectively on the exact shape of the con
duction band energy profile and the interacting potential. A scatter matrix relates 
the modes indicent on an obstacle from either direction to the modes leaving the obs
tacle in either direction. In order to actually calculate the scatter matrix of each 
individual section, we first introduce the following new set of variables

(B13)

which can easily be inverted to give

<•. „1, (C; • <V (B14a)

C cT (x) iVTFn
m

(ca ±
1 dC,

ik„ dx



- 46 -

(Bl4b)

where, by definition,

t. «■ ~\/~\' (bis)
^ V m

The C+'“ represent the amplitude of the current density in mode a traveling along 
the negative and positive x axis respectively. Indeed, one can easily show using eq. 
(B13) and the definitions (Bl4a,b) that the current density can be written as follows

J(x) V .1; .1., (B16)
Oi : .

where

J+ =(C+)*C+ and J- = (C-)*C- (B17)

By definition, the scatter matrix across a finite section located between x0 and Xq 
is the matrix which satisfies

(BIS)

the index a and (3 referring to the different modes on the left and right side of the sec
tion [xojXq-N7 ] respectively. This scatter matrix cannot be derived exactly analyti
cally for arbitrary conduction band energy profile Ec(x) and coupling parameters 
ra/?(x). However, the scatter matrix has a quite simple analytical form in a specific 
case which we now consider in detail.

^b(xo+^ )
• •

•

= S

CB(x0-H?)
•
•

C~(x0) C+(xo)
• •

• . •

ikft,
C" = W (Ci - c;)

Scatter matrix across a S - impurity

If we model the impurity scattering in a 2-D sample (x-y plane) by a 5 - impurity 
interaction
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H (x,y) = 7<S(x-Xi) £(y—yj) (B19)

the set of differential equations (BIO) can be written as follows

^2q
-jy" + k«Ca = \\g tyx-xfiCg (B20)

dxz : fl

where Tap is given by eq. (2.23) in the text. Integrating both sides of eq. (Bl) from 
Xj —6 to xj+e (e being a small positive quantity) and taking into account the assumed 
continuity of the Ca’s, we obtain

Ca(Xi+e) - Ca(Xi-e) = 2 TapCp(xi+e): (B21)
fi

which we rewrite

Ca(xi+e) = Ca(xi— e) + fa;gC^(xi+e) (B22)
fi

Since all Ca.’s are continuous, we have

Ca(xi+e) = Ca (xj —e) (B23)

Dividing eq. (B22) by ika and adding the obtained result to eq. (B23), we get

C'a(xi+e)+TT—Ca(xi4-e) =-r—Ca(xi+e)
IKqj Pa

r= -f-C^Xi-e)-^ Tf1^) (B24)
Pa ft

Now, using eqs. (B14a-b), we have

c/?(xi+e) = +e)+C^ (B25)

Plugging this last result in eq. (B6), we finally derive

Cj(xi+e) - C+fe—7-(C?(xi+e)+CJ{x|—«)) (B26)
p Pfj

or equivalently
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cJ(xi+e)—1 )C^(xi+e) —
ft a Pp

Gj(x,-e)+S2^ (^)C^(x,+£) (B27)

valid for all modes a. The equations for the different modes can be written in a 
matrix form (which is done here for the case of two modes only for simplicity)

r11

2iki
-1

2iki
01
02

1—1 ~ 02
i^-r21— l— r222ik2 Px 2ik2

cih(xi+e)

c2 (xi +e)

1 0

0 1

rii
2iki

^21 02

^12 01
2ikx /?2

^22
2ik2 0x 2ik2

which we write more simply as follows

C^(xi-e)

= [I-B]
Cl'(xi+e)

C^xj+e)
O2 (xi-e) 

Cr(xi+e) 
Ci'(xi-fe)

Cjf-(xi-e)
C2 (xi —e)

Cr(xi+e)
C^(xi+e)

(B28)

(B29)

I being the unit matrix and the matrix B is given by

-1 f, _ni_ f h.
2ikx 11 2ikj 12 02

—1 j, 02_ ~^22

2ik2 21 /?! 2ik2

From eq. (B29), we then deduce

(B30)



Ci^Xi+e) 
Cg (xi+e)

C^(xi-e) 
C2 (xj—e) 
Cr(x;+e) 
C2 (xj+e)

or equivalently

WCl (xs 

C2 (xj

Similarly, by subtracting eqs, (B25) 
obtain

Ci (xi-e)
C2 (xi-e) - [-(] C,

Cf(xi-e) 

C2 (xi~e)
Cr(xi+e)
C2 (xj+e)

and following a similar derivation, we

Ci’(xi-e)
C^(xj-e)

Cr(xi+e)

C2 (xi+e)

Grouping the results (B32) and (B33), we obtain the final relation

C,7(v- —f\Vi (Xj t) Ci (Xj—ej

C2 (xi~e) — (I+B)_1B (I+B)-1 ] C?(xi-e)

C^Xi+e) (I+B)-1 — (I+B)-1B Cr(xi+e)

C2f (xj+e) C2 (xj+e)

where the square matrix in the second member is the required Scatter matrix by 
definition.

For the general case of M modes, we can easily generalize the 2x2 matrix given in 
eq. (B30). The general expression of the a/3 element of the matrix B can be written

Otfi
2 Vk«k 8 '
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Appendix C: Ohm’s Law
In section 2.2.2 of chapter 2, we argued that the semi-classical conductance of a 

random array of scatterers could be deduced by replacing the amplitude scatter 
matrix [s] by the probability scatter matrix [Sj. In this appendix, we prove on a 
specific example that this will lead to the semi-classical result for the conductance of 
a random array of scatterers, i.e, Ohm’s law.

Let us consider a random array of scatterers, all characterized by the same 
scatter matrix (see eq. (2.25) of chapter 2), and with independent spacing {dn} 
between them. For each of those scatterers, the probability scatter matrix can be 
written

[S] =
T R 
R T (Cl)

Where the matrices [R] and [T] have the explicit form

[E] =

1—(2M—1)<5 6... 8
's... s' 8 •

and [T] = i •
1
0 . .. 1—(2M—1)<5>

where
2M

(C2)

(C3)

For the propagation between scatterers, the probability scatter matrix is given by (see 
eqs. (2.6) and (2.7) of chapter II)

[s(n)]
I o 
0 I (C4)

Now we cascade the probability scatter matrices in the same way as the amplitude 
scatter matrices. It is apparent eqs. (A3) to (A6) of appendix A that [S^] cascaded 
with any matrix [S] yields back [S]. In other words, the lengths {dn} will not appear 
in the final expression of the conductance as it should be in a semiclassical treatment- 
Therefore, the overall scatter matrix is obtained by cascading N identical sections 
with scatter matrices [S]. Consider first the result of cascading two sections
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R2 = [R] + [T][R](1—[R]2)-1 [T]

We can write [R] and [T] as,

[R]=£[a]

[T] = (l—2M5)l + 5[a]

where,

Equation (C5a) is simplified to yield,

R2 = |R| + (i^Mi")1T11R||T|

Here we have used the relation 

R2 = 5M[R]

Equation (C6) can be simplified further using eqs. (C5a-d) 

[T][R][T] = [T](1-M5)[R]

= (1-M5)2[R]

Hence,

Ro — |R]1+M«

Thus R2 can be written as,

R2 = ^2[a]

Where

5, = 26
1+5

Note that,

(C5a)

(C5b)

(C5c)

(C5d)

(C6)

(C7)

(C8)

(C9)

(CIO)

(OH)
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MSo

1-M& = 2(
M£

1-M£ )

Similarly, by cascading two sections each having two scatterers we can show that,

R4 = §4-[a] (C13)

where

MSM84 Mo 2
----- — = 2 ----- — — 4
1—M<54 1—M<52 1-MS

(C14)

we can continue this process indefinitely to get,

Rn = ^nN

where

1-M<Sn “ ^ 1-McV
J

so that, the conductance g^ of N sections is obtained from eq. (2.4) in the text

(ci5.)

(CIS)
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gN = 2M(1-M5n)

_ ^ tl 1—, 
M(1+(N-1)M^

2M ,T . . 1
T7F lf N » 777N S M<5

(C17)

Which is the classical result.
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Appendix D: A Simple Derivation of Weak Localization

For a device length L satisfying the condition,

A < L < ALoc (Dl)

where A and Aloc are the elastic mean free path and localization length respectively, 
the normalized conductance of the sample can be derived from the approximate for
mula (see eq. (2.4) of chapter II)

M
g = G/(e2/h)=2tr(t+t)-2X;Tji(EF) (D2)

i.j

Alternatively, we could write the normalized conductance in terms of the reflection 
amplitudes Rj,. Indeed, current conservation implies

M
vnvflij,} - I (D3)
i-1'

This allows us to rewrite the normalized conductance as follows 

M
g = 2[M-£%) (D4)

i.j

The weak localization phenomenon is due to the importance of the coherent back- 
scattering which states for every incident mode i, we have

_2_
M

whereas

if Mj

(D5)

(D6)_1_

M



- 55 -

Therefore, we expect the normalized quantum conductance gQ to be different from its 
classical counterpart gci by an amount given by

gQ-gcl - 2M(^). - -2 (D7)
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3. INFLUENCE OF IMPURITY SCATTERING ON THE 
PERFORMANCE OF AHARANOV-BOHM DEVICES

3.1 Introduction

Quite recently, a new class of interesting semiconductor devices based on quan
tum interference effects has been proposed involving electron transport parallel to the 
heterolayers. A typical example of those Aharanov-Bohm devices is shown in Fig. 3,1. 
The two wells, are only separated by a few hundred angstroms and are modulation 
doped to reduce the effects of scattering. The quantum interference occurs not 
between multiple reflected waves but between two alternative paths provided by the 
two contiguous GaAs layers separated by an AlGaAs barrier. The interference pat
tern between the two paths is then modified by placing the structure in an external 
magnetic field parallel to the interfaces of the heterostructure. This leads to a 
current modulation by an external magnetic field which is periodic in flux with a 
period equal to the quantum flux, i.e, 4>q — h/e. This is the semiconductor analog of 
the Aharanov-Bohm effect (hereafter referred as A-B) observed in vacuum over 
twenty-five years ago [l].

The possibility to observe those oscillations in semiconductor heterostructures 
was quite questionable since, contrary to the case in vacuum, the presence of impuri
ties and various kind of defects (resulting from the imperfection of the interfaces dur
ing growth) were supposed to destroy any interference effect and wash out the A-B 
oscillations. However, in 1984, the first observation of A-B oscillations in semiconduc
tor heterostructures (AlGaAs-GaAs) were reported (see Fig. 3.2) [2]. Back then, the 
size of the conductance fluctuations was about 5 e2/h corresponding to a relative con
ductance modulation AG/G of about .5 %. ( e2/h is the usual unit of conductance in 
all the experimental and theoretical work concerned with the A-B oscillations). More 
recently, experiments performed by the Purdue group with different materials have 
shown conductance modulation (peak to peak) as big as 70 e2/h [3] corresponding to 
AG/G of about 10%. The barrier layers are of InALAs while the wells are made of 
InAs-GaAs monolayer superlattices to eliminate alloy scattering. Oscillatory magne
toresistance due to the A-B effect has also observed in small metallic gold and silver 
rings [4] but the size of the relative conductance modulation was only about 0,001 % 
in those devices.

The origin of the h/e oscillations in both metals and semiconductor structures is 
now well understood following the extensive theoretical work of a number of research
ers [5-7]. They show that all that is required for the observation of the A-B effect is 
that the electrons retain phase memory while crossing the two channels. The length 
over which memory is maintained (the phase coherence length) can be much longer 
than the random walk step length Aej (the mean free path). In other words, elastic 
scattering doesn’t cause the electrons to loose phase memory; only inelastic processes
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Channel 1

Channel 2
IZZ3 Barrier 
E2 Contact

(a) Typical Aharanov-Bohm semiconductor heterostructure. The device 
is uniform along y with a width W„. .(b) Dispersion relations for 
different transverse modes in the channels and outside regions.
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Figure 3.2 (a) Experimental device used by Datta et al. [2]. In this GaAs double
quantum well structure, the length of the channels L ~ 2 pm and Wy
~ 2 fxm. (b) Measured conductance modulation of the structure shown 

. in Fig. 3.2.(a). The peak to peak conductance modulation
AG ~ 5 e2/h.
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lead to undeterministic phase randomization of the electron wavefunction. In all 
those experiments, it is therefore important to keep the length of the arms of the A-B 
devices shorter than the inelastic diffusion length. This can always be achieved by 
working at sufficiently low temperatures.

The difference in size of the conductance modulation observed in metals and sem
iconductors has been shown to be related to the difference in transport mechanism 
prevailing in the two type of materials. In a metal, the electron’s trajectory is a ran
dom walk with an average step length Aet (One may instead assume an average colli
sion rate l/r, and that the mean free path length is the product of the Fermi speed 
and the mean time between collision, Aei = vfr). Mean free paths in common metals 
depend strongly on the cleanliness of the material and on the quality of the crystal 
that forms the wire. In materials that have many lattice defects, for instance, chemi
cal impurities, vacancies or grains, the mean free path is usually of the order of the 
average distance between scattering sites. Typically in metal prepared by standard 
methods, this length is only a few nanometers or a few tens of nanometers. The 
motion of the electron in a metal is therefore interrupted by frequent scattering 
events since the size of device is large compared with the mean free path length, Aej
«L.

In semiconductor heterostructures, the situation is quite different [8]. Advances 
in semiconductor microtechnology have made it possible to fabricate extremly high- 
mobility conductive channels isolated from the surface by epitaxial insulators. In 
GaAs, an electron with a velocity 107cm/sec has an elastic (plus inelastic) mean free 
path as long as 4/zin, if the mobility is 106cm2/V—sec. Channel lengths of .25 fim or 
less can be fabricated by present-day technology so that an electron can travel from 
one contact to another ballistically with essentially no scattering - elastic or inelastic. 
In this ballistic regime, as we will review in this chapter, it may be possible to attain 
large (approaching 100%) conductance modulation in a magnetic field [8] even if the 
transverse dimension (y direction in Fig. 3.1.(a)) is large; i.e, when the structure is 
multi-moded. Furthermore, the number of propagating modes in semiconductor 
heterostuctures can be around a few tens only. This is another striking difference 
with the case of small metallic rings where the number of propagating channels can 
be as large as 10s.

Finally, a new device concept has also been suggested recently in which the quan
tum interference between the two arms of the A-B structure would be controled by an 
external gate voltage [9] rather than by an external magnetic field. Even though 
there has yet not been any experimental demonstration of this so called Electrostatic 
A-B effect, the fact that the phase difference between the two paths can be changed 
by 7T with a very small gate voltage (1 mV) suggests that the Quantum Interference 
Transistor (QUIT) based on this concept should have high transconductances and low 
power dissipation. Additional work to design better structures and demonstrating the 
potentiality of the QUIT, device is therefore necessary. This will be the subject of the
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last part of this chapter where we will also investigate the influence of impurity 
scattering on the conductance modulation of A-B devices by an external gate voltage.

This chapter is organized as follows. In sections 3.2 and 3.2.1, we describe the 
typical A-B heterostructures and show explicitely that, in realistic semiconductor dev
ices, the transport is due to a few ( < 100 ) propagating channels only. This is done 
by calculating the number of propagating modes available in each channel at the 
Fermi energy. This calculation takes into account the contact potentials existing 
between the different regions of the device due to the space charge effect resulting 
from the specified doping densities in the device.

In sections 3.2.2 and 3.2.3, we present a simple theory to calculate the conduc
tance of A-B devices based on the Landauer approach following the discussion given 
in ref. [8]. However, we extend the theory in order to include the multiple reflections 
at the ends of the two channels and the influence of impurity scattering on the perfor
mance of the A-B devices [the impurity potential is modeled as discussed in detail in 
sections 2.3.1 and 2.3.2 of chapter 2].

Section 3.3 is devoted to the analysis of the magnetic A-B effect and study the 
influence of impurity scattering on the size of the conductance modulation. We make 
the important distinction between the case where the impurity scattering into both 
arms is either correlated or not.

Section 3.4 consists in a theoretical treatment of the Electrostatic A-B effect 
which has not yet been observed experimentally. Our theoretical treatment is useful 
in designing better structures for experimental demonstration of this effect. Some 
numerical examples are used to show that the size of the conductance modulation by 
an external gate voltage can still be substantial even in the presence of impurity 
scattering into both arms. Finally, section 3.5 contains our discussion and conclu
sions.

3.2 Theory

3.2.1 Device Structure

Consider a structure (Fig. 3.1.(a)) in which a conductive channel splits into two 
isolated channels and then merges into one. The structure is assumed uniform in y 
having a width Wy. In each of the two end regions (x < 0 and x > L) and in the 
middle region (0 < x < L) we can calculate a set of transverse modes (or subbands) in 
the z-direction by solving the eigenvalue problem
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fl
2m dz2

+ Ec(z) |n> = en |n> (3.1)

The potential energy Ec(z) includes the conduction band discontinuities as well as any 
band bending due to an applied electric field Ez or due to space charge effects. Since 
the function Ec(z) is different in the three regions, the transverse modes obtained by 
solving eq. (3.1) are also different. Each subband has a parabolic dispersion given by

fl 2k2
E(kx,ky) = en + — — + 

2m

x . *2k*

2m
(3.2)

The dispersion curves are sketched in Fig. 3.1.(b). Hereafter, we will assume that the 
device (that is, Ec(z)) is perfectly symmetric about z = 0 as any interferometer 
should be and that only the lowest subband is occupied everywhere in the device (i.e, 
n = 1). The importance of this assumption will be discussed later.

It will be noted that there will be contact potentials between the different regions 
due to space charge that will cause a vertical displacement of the dispersion curves in 
one region relative to other regions. The relative positioning of the subband in the 
three regions at equilibrium is fixed by the requirement of a constant ’Fermi level for 
the specified doping densities and will be considered in detail shortly.

The criterion for single-modedness can be satisfied with lithographically defined 
structures but they are difficult to fabricate. Alternative schemes utilizing film 
growth techniques such as MBE to define the channels have been discussed in ref. [10]. 
On the other hand, it is quite difficult practically to reduce litographically the dimen
sion of the device in the y-direction to make it single-moded along this axis. There
fore, we allow multiple modes with different ky values to propagate throughout the 
structure. These allowed ky eigenstates strongly depend on the shape of the confining 
potential in the y direction. In all our numerical examples, the confinement in the y 
direction will be of the particle in a box type, the size of the box being the effective 
channel width along the y axis after etching the device in that direction (the theory is 
however valid for any arbitrary potential energy profile in that direction). Generally, 
we will be concerned with low temperature behavior of the device so that the sub
bands fill up to the Fermi level. The energy dispersion relation is then given by eq. 
(3.2) where

ei
T^fl2 

2m* W2
and ky m7r

H
(3.3)

if the potential confinement is of the particle in a box type in both the y and z direc
tions (we have set n—1 in eq. (3.2) since the structure is assumed to be single moded
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in the z direction). The A-B structure is then similar to a rectangular waveguide for 
electrons such as the one shown on Fig. 3.3 in which the current flows in the x direc
tion. ;

The density of states per unit length inside the rectangular waveguide can then 
be written

dn m 
dE 7rh2

M
E

0(E -EJ, -£,)
2m
h 2

(E-EJ,-£,)■■

where

Ey■L,.m
m2fl 27T2 
2m* H2

(3.5)

Equation (3.4) is seen to diverge at each new subband energy. At zero degree Kelvin, 
this density of: states, when integrated up to the Fermi level gives the total number of 
occupied states per unit length. Performing the integration analytically, we obtain

o M
“sH = - s k? (3.6)

' m=l(n=l) ■;

ng being the surface charge density in the portion of the electron waveguide with 
width W and height H; k“ is the longitudinal part of the wavevector for electron with 
total incident energy Ef. Finally, M is the total number of propagating modes neces
sary to include in the summation appearing in eq. (3.4) to make the two sides of the 
equation equal to each other.

In order to calculate the built-in potential in the channel region, we use eq. (3.6) 
with ng set equal to ng(W/W') in order to keep the carrier density the same every
where inside the device. In this region, the different longitudinal wavevectors k“ are 
deduced from eq. (3.2) after replacing Ef by Ef — Vq, V0 being the built-in potential 
in the channel region. The Fermi level and built-in potential were calculated for the 
device parameters listed in Table 3.1. The A-B devices were assumed modulation 
doped so that the surface charge density is 1012cm-2 everywhere inside the electron 
waveguide. This charge density is low enough to insure the single-modedness in the 
z-direction throughout the device. Notice that Y0 is actually negative, i.e , the con
duction band energy profile is actually bending downwards in the channels region. As 
can be seen from table 3.1, for device dimensions within the reach of present day 
technologies (such as MBE) and litography techniques, there is only a few propagating 
modes ( <100 ) throughout the structure, i.e, with positive longitudinal wavevectors 
kj1 available at the Fermi energy. This is a completely different regime than the
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y Contact

Contact

Figure 3.3 With a particle in a box confinement in the y and z directions, The A-B 
structure is similar to a rectangular waveguide for electrons. W, W' and 
H are the widths of the outside, channel regions and the height of the 

• electron waveguide respectively.



diffusion regime needed to describe the transport properties of metallic rings in which 
the number of propagating modes can be as high as 105 .

Having characterized the device parameters of the A-B semiconductor heteros- 
tructures, we will next discuss the Landauer approach to calculate the conductance 
modulation of those devices. Then, in sections 3.3 and 3.4, we will consider in detail 
the case of the magnetic and electrostatic A-B effects respectively.
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Table 3.1 - Device Parameters
Parameters Fermi level

"Hi
Built-in

potential
Number of prop, 

modes in contacts 
(channels)

W = 150 A 

W’ = 50 A
H = 0.5 (xm

0.061228 eV -0.17549 eV 40 (23)

W =. 150 A 

W’ = 50 A
H =1 jum

0.060956 eV -0.17561 eV 80 (46)

3.2.2 Conductance Formula

For the typical A-B device shown in Fig. 3.1, The current I for an applied drain 
voltage Vd is given by [8],

I V / ■»' [f(E)-f(E+eVD)] S
]c V 

• VI v

(Ttot )n'', k" ;n', ky C®) (3.7)

where (Ttat)n"1ky;n,1ky(E) is the transmission coefficient from wavevector ky in subband 
n at the left end region to wavevector ky in subband n at the right end region. 
Starting with eq. (3.7) and under extremely small drain bias, the conductance of the 
device is given by

G 2e* df/ ) Xj (Ttot)n",ky';n',ky(E)

k k

(3.8)

dfAt low temperatures, we can replace — by a delta function at the Fermi level so 

that the normalized conductance g becomes
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g =
G
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(-T-)

E
k kA-y, A.y

(TtOt)ky;,ky(E) (3.9)

in which we have dropped the indices n' and n" since the structure is assumed to be 
single moded in the z direction. This (Landauer) formula was used in chapter 2 to 
study the problem of localization in extremly small 2-D resistors. The evaluation of 
the total transmission matrix T^t in eq. (3.9) is more involved in the case of the A-B 
devices. Indeed, we must include the effect of multiple reflections occuring at both 
ends of the channels (points P and Q of Fig. 3.1). This will be explained in detail in 
the next section.

3.2.3 Derivation of the Overall Transmission Coefficient Through the 
Aharanov-Bohm Device

In order to calculate the total transmission coefficient appearing in eq. (3.9), we 
need to consider the multiple reflections which occur at the edges of the two channel 
regions (Points P and Q on Fig. 3.1). To that extent, we divide the A-B device into 
three sections, two of which are the junctions at the ends of the channels (Points P 
and Q on Fig. 3.1) and the channels region. By cascading the scatter matrices associ
ated to those individual sections as discussed in appendix A, we can then deduce the 
total transmission coefficient from one side of the device to the other. This calcula
tion is now outlined in detail.

First, we need to calculate the scatter matrix at each of the two junctions (x — 
0 and x = L). At those points, there is no coupling between modes since the poten
tial is supposed to be uniform along the y-direction at the two splitters. The only 
coupling between modes comes from the impurities located in the two channels of the 
device and will be considered later.

At the left junction (x=0.) in Fig, 3.1 we can write a scatter matrix connecting the 
wave amplitudes for a given E and ky at x = 0” (A) to those at x = 0+ (B)

/ ^
B t

(
'H rn

' ^ 
r12 A+

Bt == ^2 r21
>

r22 Br
AT\ ) r\ ti:

(3.10)

where the subscripts and denote the amplitude of waves travelling along posi
tive and negative x, respectively, while the subscripts T’ and ‘2’ refer to channels 1 
and 2, respectively. Furthermore, the primed (unprimed) quantities appearing in the 
square matrix characterize the various reflection and transmission coefficients while
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travelling from right to left (left to right) respectively. The amplitudes are defined as 
■\/k^" times the wavefunction so that the current are proportional to the squares of 
the amplitudes; with this definition the scatter matrix must be unitary since the 
current is conserved. We can write (3.10) more compactly as,

(3.11)

This relation can be easily extended to the case of n propagating modes (differing by 
their ky values). Since there is no coupling between modes at the splitters, the quan
tities (r,r ,t,t ) appearing in eq. (3.11) become then diagonal matrices whose different 
diagonal elements are the respective reflection and transmission coefficients of the 
various inodes at the splitters. In that case, A+,A" and B+,B~ are M® 1 and 
2M® 1 column vectors respectively, M being the total number of allowed ky values 
resulting from the confining potential in the y direction; r,r ,t,t are matrices with 
dimensions M® M, 2M® 2M, 2M® M and M® 2M respectively. For the case of a 
perfectly symmetrical structure, the various blocks of the scatter matrices at the right 
junction (x=L) can be obtained from the scatter matrix at the left junction (3.11) by 
making use of the following substitution

(r,t) => (r',t') (3.12)

B+ t r A+
A" r t B~

Therefore, at the right junction, we can write the scatter matrix connecting the wave 
amplitudes at x=L~ (C) to those at x=L+(D) as follows

D_ / / >t r fc+l
C+. r' t\ )

1Q__
:_ (3.13)

Since the two channels are isolated, the wave amplitudes at B an C are simply related 
as follows

'c-' T R,_ / . \ B+
B+\ J

R

: 
i

'h C"
s. >

ti 0 r[ 
0 t2 0 
ri o ti 
0 r2 0

0
/

*2
0

h

C~ (3.14)

where
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are the scatter matrices characterizing the propagation of the different modes in 
channel 1 and 2 respectively. Both r, and r; (i=l,2) are non-zero in the presence of 
impurity scattering in the channels. Furthermore we assumed the two channels to be 
independent. The two scatter matrices in eq. (3.45) can then be generated indepen
dently by taking into account the impurity configuration in each of the two arms as 
was described in the previous chapter. For the special case of ballistic transport in 
the two arms, eq. (3.14) must be replaced by

cr P o" b+n

B+
^ ) 0 p' C“

V

(3.16)

P is a diagonal matrix whose diagonal elements describe the phase-shifts in the two 
channels., i.e,

'Pi 0x
0 P2V

(3.17)

where

■(P-i)ma = exp[ik“1‘]fi,mn (3.18)

and

(Pj)nm = exp[ik““P, (3.19)

For a particular energy, k™1 and k^1" are the wavenumbers in the x-direction in chan
nels 1 and 2 respectively and are deduced from eq. (3.2). As long as there are no 
magnetic or electric field P = P. The presence of either one of them will change the 
wavevectors of the different propagating modes in the two channels. This leads to a 
phase-shift of the different modes between the two arms responsible for the A-B oscil
lations. This will be explained in detail in sections 3.3 and 3.4.

We now have scatter matrices (3.11,3.13,3.14) connecting A and B, B and C and 
C and D, respectively. What we need is the transmission matrix T from A+ to D+, so 
that we can calculate the conductance from eq. (3.9). The easiest way to calculate 
this transmission matrix is to get the overall scatter matrix of the structure according
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to the law for cascading scatter matrices described in appendix A. The total 
transmission matrix across the device after cascading the scatter matrices (3.11),(3.13) 
and (3.14) in that order is found to be

Ttot = t' I - (R' +T[I -r'R]"1 r T')r'] 1T [i - (3.20)

where we made use of eqs. (A3) to (A6) in appendix A of chapter II. In the case of 
ballistic transport, both R and R are identically zero and eq. (3.20) reduces to

- tot
/ / /I-TrTr

-l
Tt (3.21)

which was analyzed in detail in ref. [8]. Neglecting the multiple reflections at the 
junctions is equivalent to making the following substitution in eq. (3.20)

[i- • • • r1 —►i

In that case, the total transmission matrix can then be written

(3.22)

Ttot =t T t =t'
tx 0 
0 t2 (3.23)

ti, t2 being the transmission matrices for channel 1 and 2 respectively. For the spe
cial case where the junction scatter matrix is approximated by a Shapiro scatter 
matrix [ll]

S =
V7xl a xl bxl
VTxI bxl a x I

—(a+b) x I vT x I VT x I
(3.24)

where

and

— (Vi^27 -1)

b = | (VfS +1) ■

and I is the M0 M identity matrix. Equation (3.23) can then be written 

Ttot = e(ti + t2)

(3.25)

(3.26)

(3.27)
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A more rigorous approach for the junction scatter matrix could be deduced by requir
ing that the wavefunction and its derivative be continuous across the interfaces at 
x==0. and x=L following the technique described in ref. [12].

3.3 Magnetic Aharanov-Bohm Effect

We first consider the case where the structure shown in Fig. 3.5 is placed in a 
magnetic field directed along the positive y axis. Ideally, in order to observe pure A-B 
oscillations, we would like the magnetic field to be located in the shaded region of Fig.
3.5 only. This is obviously not realizable in practice since both the contacts and dev
ice feel the presence of the external magnetic field. Rigorously, one should derive the 
scatter matrix of the two arms taking into account the fact that the magnetic field is 
piercing both channels. The problem of a single channel in a magnetic field has been 
extensively studied in the literature in conjunction with the observation of the 
Quantum-Hall effect [13]. However, this problem has mainly been concerned with the 
high magnetic field limit. Here, on the other hand, we are mainly interested with the 
low field limit. Indeed, several A-B oscillations have been observed in semiconductor 
heterostructures for field intensity lower than one Tesla [2].

Furthermore, as pointed out by Stone [14], the A-B oscillations are likely to be 
seen when the aspect ratio of the structure is as small as possible. The aspect ratio is 
defined as the ratio between the area of each channel and the area of the region 
separating them. In case the aspect ratio is poor, the h/e oscillatiohs can still be 
present but are superimposed to aperiodic conductance oscillations fluctuations versus 
magnetic field similar to those discussed in chapter 2.

Since our main interest is to describe the influence of impurity scattering on the 
A-B oscillations with period h/e, we will assume an infinite aspect ratio and assimilate 
both channels to two two-dimensional resistors extending in the x and y directions 
only (see Fig. 3.1).

Let us thus consider two two-dimensional resistors located at z=0 and z—z0, with 
a magnetic field By. The vector potential Ax is equal to Byz. Thus, neglecting the 
extent of the resistors in the z-direction, we have Ax = 0 in resistor 1, and Ax = Byz0 
in resistor 2. Consequently, the dispersion relation is modified from eq. (3.2) to

E +
eB;y z 0)

2m
(3.28)

for resistor 2. In this equation, we have
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where H is the width of the resistors in the y direction and the confining potential has 
been assumed to be of the particle in a box type in that direction. The dispersion 
relations are thus shifted horizontally by Akm = eByz0/fl for resistor 2. Since Akm is 
the same for every mode m and also for forward and reverse wave, the amplitude for 
every Feynman path in resistor 2 is phase-shifted by exactly the same amount 9-q.

#B=eByz0L/ft (3.30)

The conductance g can be deduced from eqs. (3.9) and (3.27)

o f2 v-\ v~\ j j-W i j.(2) I 2S ^ € 2_j 2-j I ,m i ,xne I
m=l m'=l

(3.31)

where the superscripts 1 and 2 refer to resistors 1 and 2, respectively. Equation (3.31) 
neglects multiple reflections at the two ends, so that only the h/e oscillation is 
predicted. Detailed calculations taking into account the scatter matrices for the 
three-way splitters at the two ends show h/2e and higher order oscillations [15]. Here 
we use the simplified expression in eq. (3.31) which can be written as,

g — e2 (gi + g2) + gccos^B + gsS^B (3.32)

where gj and g2 are the individual conductances of resistors 1 and 2 respectively,
while gc and gs are given by

gc = 4 e2 £ E Re(tS,m tg,m ) (3.34)
111=1 m'=l

gs = 4 e2 £ E Mtm'.m tS,m ) (3.35)
m=l m'=l

The magnitude of the conductance modulation gg in a magnetic field is therefore 
given by

gB = Vgc + d (3.36)

gc and gs can be rewritten as follows 
M M

gc=4e2 £ E |t£'<ml |t$,m|cos
m=l m^l

(3.37)
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and

gs - 4 e2
M M
£ E
„_1 —

1X1 l!t (2)m'jin sin (</> (i)

m',m (3.38)

where m and </>^m are the phases of the various transmission coefficients t^m 
and tju^jjj.

While considering many ring configurations, we follow an argument due to Lee 
[16] and assume that after averaging over many samples

< |t3,ml> ~ ^ (3'39)

Aei being the elastic mean free path (assumed to be the same in both arms); L is the 
length of both channels and M is the number of propagating modes in both channels 
(Here < > denotes averaging over impurity configurations). The conductance modu
lation is then given by

<SB> =
4e2 A,el

ML
< l(2)M M

( £ £ COs(</>S)m - C',m))2
m=l m'^l

+ (£ £ Sin(</>^)m -
m=l m'=l

1/2 > (3.40)

In the case where the two arms have exactly identical impurity configurations, we 
have

= 4n ,m

for all m and m'. From eq. (3.40), we therefore deduce

<g|> == 4e2M 4^ = 2e2gl (3.41)
Li

where gi is the conductance of one arm; the extra supscript c has been added since 
eq, (3.41) is valid in the case of correlated scattering only. This predicts that, for the 
case of correlated scattering, we should get 100 % conductance modulation even if the 
structure is multi moded (along the y direction). This is an important result since it 
predicts that any scattering potential that affects both channels equally has no effect 
on the interference even if it is inelastic or time-dependent. (For instance, long 
wavelength acoustic phonon should thus have no effect on the interference). Physi
cally, this is a consequence of the fact that the interference pattern is not affected if
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the entire interferometer is jiggled. It is thus important to have the two arms of the 
interferometer physically as close as possible (This is certainly of the semiconductor 
A-B devices where the separation between channels is a few hundred angstroms only 
and is another essential difference with the case of metallic rings with air gaps 
between the two conducting channels).

From.eq. (3.41), the conductance modulation gg is predicted to decrease as l/3Nj 
in the weak localization regime. Once the arm length is such that each resistor enters 
the strong localization regime, the conductance modulation should decrease exponen
tially with the length of the arm. As we will show below, our numerical simulations 
seem to be in agreement with those predictions.

Furthermore, as readily seen from eq. (3.41), the variance of the conductance 
modulation is predicted to be twice the variance of gj, the conductance of each indivi
dual arm. From the universal conductance result, var^) = 0.5 e2/h. We therefore 
predict that, in the case of correlated scattering, the variance of the A-B conductance 
modulation is approximately given by

var(gg) = 2e var(gx) ~ e2e2/h (3,42)

In the case of uncorrelated scattering ( i.e, when the two arms have completely 
different impurity configurations ), the conductance modulation must be evaluated 
from eq. (3.40). If we assume that the phase differences 4>$iia — are completely
random over 27T, we obtain after averaging over ring configurations

<gc> = '<

(3.43)

Substituting those results back into eq. (3.41), the (average) conductance modulation 
gg in the case of uncorrelated scattering into both arms is then given by

= <g!> =Ss> 2 1 ML

4e
MM

!E E COs(</>!
m=l m'=l

(i)
m',m b(2\ Iym,m; >

<g£> = 4e2 A
L (3.44)

where the extra supscript added as a reminder of the validity of this result for the 
case of uncorrelated scattering only. Taking the ratio of eqs. (3.41) and (3.44), we 
obtain the very simple result
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<gB>

<gB>
= M (3.45)

for the ratio of the conductance modulation in the presence of correlated or uncorre
lated scattering into both arms. We should emphasize that eqs. (3.41) through (3.45) 
were derived assuming the validity of eq. (3.39). Therefore, we expect eqs. (3.41-3.45) 
to be valid wherever eq. (3.39) holds, i.e, in the weak localization regime only.

We checked all our qualitative arguments on a specific numerical example. The 
two arms of the A-B devices were modeled as purely 2-D resistors such as those con
sidered in chapter 2. We considered the specific case where as many as 30 modes are 
allowed to propagate into each channel. The impurity potential was modeled using 
the impurity model discussed in section 2.2.4.2 of chapter 2. We calculated gg using 
eq. (3.36) in which the transmission coefficients were calculated as discussed in the 
numerical examples of chapter 2. The number of impurities Nj in both channels was 
progressively increased so that each resistor has a conductance behavior going from 
the quasi-ballistic to the strong localization regime. The parameters of the impurity 
model potential were chosen such that the elastic mean free path Aej in each resistor 
is equal to 33 impurities (see eq. (2.30) of chapter 2).

Figure 3.4.a) shows the conductance modulation gg obtained in the ballistic 
regime both in the case of correlated and uncorrelated scattering. Figure 3.4.b) shows 
gg in the region going from the weak to the strong localization regime. We notice in 
both figures a steadily decrease of gg versus the number of impurities crossed into 
both arms in agreement with our qualitative discussion above, gg is smaller in the 
case of uncorrelated scattering (see the triangles in Figs. 3.4.a) and 3.4.b) as one 
would expect by comparing eqs. (3.40) and (3.41). This also tells us that we no longer 
have 100 % conductance modulation in the case where the impurity configurations in 
the two arms are completely different.

Figure 3.5 compares the variance of the conductance modulation obtained in the 
case of correlated and uncorrelated scattering, for the former, var(gg) is in very good 
agreement with the prediction (3.42) over the entire weak localization range 
(33 <C Ni < 1000). for the latter, var(gg) is considerably below the universal value 
e2 /h. This can be understood by using eq. (3.40). Indeed, there should be less spread 
(smaller variance) while averaging over ring configurations with different arms. Since 
the phase differences <j>$im — 4>$im are presumably randomly distributed over 27T.

Finally, Fig. 3.6 shows a plot of the ratio defined in eq. (3.45). In the weak local
ization regime (33 < Ni < 1000), the ratio between < gg > and < gg > is indeed 
close to M, the number of propagating modes into both channels.
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Figure 3.4 (a) Conductance modulation gg versus number of impurities into both
arms in the quasi-ballistic regime (Aej =33 in this specific example). 
The circles (triangles) show the conductance modulation assuming 
identical (different) impurity configurations into both arms of the A-B 
device, (b) Same as Fig. 3.4.(a) for arm length extending from the weak 
to strong localization regime. In both cases, an average was taken over 
45 ring configurations.
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Figure 3.5 Variance of the conductance modulation shown in Fig. 3.4. The circles 
(triangles) correspond to the case of identical (different) impurity 
configurations into both arms. The variance was calculated by 

• considering 45 ring configurations.
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Figure 3.6 Ratio of the conductance modulation (see eq. (3.45)) obtained in the case 
of correlated (and uncorrelated) scattering versus number of impurities 
into both arms.
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3.4 Electrostatic Aharanov-Bohm Effect

Since conductance fluctuations in a single resistor can be observed either by 
changing the potential or the magnetic field, it is natural to ask whether an 
Aharonov-Bohm effect can be observed as well by changing the potential in resistor 2 
relative to resistor 1. Assuming that the scalar potential V = 0 in resistor 1 and 
V =5 V0 in resistor 2, we find that the dispersion relation for resistor 2 is changed from 
eq. (2) to

E.= em — eV0 -fi----- r- ■ (3.46)
2m

Thus there is a vertical shift in the dispersion relations by —eVo for resistor 2, leading 
to a change in the wave number km for a given E by approximately,

(3.47)

where vm = fl km/m* is the x-directed velocity of an electron in subband m with 
energy E. The difference with the magnetic field is that Akm is different for each 
mode. Ignoring the effect of multiple reflections, the conductance of the device can be 
derived as follows:

MM
g = 2e2 £ El t2',m + tS,m(V0) | 2 (3.48)

m=l m'=l

Akm —
eY0
fl'Vr,

Fig. 3.7 shows the conductance g calculated as a function of Vq for different numbers 
of impurities (Nj) in each resistor (M=30, Ae) = 33.3). There is a clear conductance 
modulation in the ballistic regime (Nj = 0) that quickly dies out as Vq is increased or 
as we enter the diffusive regime. This can be understood as follows. The phase-shift 
can be written as eVpr/A where r is the transit time. The minima in the conductance 
correspond to values of V0 such that eVprjh — (2n+l)7r. Even in the ballistic regime 
there is some spread in r because different modes have different velocities. Conduc
tance oscillations cannot be observed if the spread in the phase-shift eVp Arfh 
exceeds 7T. That is why the oscillations die out as V0 is increased. Moreover, Ar 
increases quickly in the diffusive regime due to multiple reflections. An electrostatic 
A-B effect can only be observed if the spread in transit times Ar is less than the mean 
value <r>. In the magnetic A-B effect, the phase shift depends only on the flux 
enclosed; Ar for the electrostatic effect thus plays a role analogous to the aspect ratio 
for the magnetic effect. The percentage conductance modulation can be increased by 
reducing the number of modes M, since it reduces Ar, however, the absolute value of 
the conductance decreases. We find that the electrostatic effect dies out much slower 
with increasing Nj if the two resistors are identical. This shows that this effect will
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Phase shift of lowest transverse mode

Figure 3.7 Conductance g vs. phase difference Ak}L of the lowest transverse mode 
due to a potential difference V0, for different values of Nj. The circles 
correspond to the case when both resistors have identical impurity 
configurations, with Nj = 50.
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be easier to observe if the two arms are in close physical contact so that their scatter
ing potentials are correlated. A typical device (quantum interference transistor) 
which could show strong conductance modulation under the application of an external 
gate voltage has been considered in reference [9].

3.5 Discussion and Conclusions

In this chapter, we have described a simple theory to calculate the conductance 
of Aharanov-Bohm semiconductor devices. The theory includes the effect of multiple 
reflections at the ends of the channels and also the influence of impurity scattering on 
the size of the conductance modulation.

An important distinction was made between the case of correlated and uncorre
lated impurity scattering. The latter prevails in the case of metallic rings in which 
there is an air gap between the two channels. The former is more likely to happen in 
semiconductor structures due to the proximity of the channels.

In the case of correlated scattering, the conductance modulation of the magnetic 
A-B effect is predicted to still be 100% even if the structure is multi-moded in the 
direction parallel to the interfaces of the structure (we stressed the importance for the 
structure to be single moded in the direction perpendicular to the interfaces).

For the Electrostatic A-B effect, we showed that non negligible conductance 
modulation could still be obtained even in the presence of impurity scattering. The 
size of the modulation is however drastically reduced in the case of uncorrelated 
scattering. This seems to rule out the possibility to observe such oscillations in metal
lic rings. However, the semiconductor heterostructures are certainly potential candi
dates to observe the Electrostatic A-B effect. Indeed, the screening length in semicon
ductors can be bigger than the separation between channels leading to some degree of 
correlation between the scattering potential into both arms of the device. This seems 
to be an imperative requirement to observe the conductance modulation in the 
recently proposed QUIT device.
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4. ELECTRON TRANSFER ACROSS A JUNCTION BETWEEN TWO 
REGIONS WITH VERY DIFFERENT CONFINING POTENTIALS

4.1 Introduction

An important problem in ultrasmall submicron devices is to understand electron 
transport across a junction between two regions with very different confining potential 
profiles in the transverse direction, so that the electron wave function in the 
transverse plane changes significantly from one region to the other. Consider, for 
example, a transition from a narrow channel of width W into a wide channel of width 
W' (Figure l). This structure can be viewed as an idealized model for the transition 
from a two-dimensional FET channel to a wide contact region. Classically the elec
trons would simply pour out of the channel with unity transmission probability; quan
tum mechanically there is a significant probability for the electron to be reflected at 
the junction and this affects the contact resistance. A more intriguing problem is the 
following; suppose there are two channels emptying into the same contact (Figure 3). 
Normally, we assume that the current flowing out of one channel is independent of 
the other channel. However, if the two channels are spaced very close compared to a 
De Broglie wavelength, then the current will be greater if the wave function in the 
two channels are in phase than if they are out of phase. This interference between 
adjacent channels is of interest in understanding the Aharonov-Bohm effect in double 
quantum well structures and can play a significant role in ultrasmall devices of the 
future.

The problem of transition between regions with different subband structure has 
not yet received much attention in the literature. The model presented here is 
intended to compliment the pioneering work of Kriman and Ruden.[l] This method 
makes the practical solution of a larger variety of problems possible by eliminating 
difficult analytical steps at the expense of additional computer time. Solving for the 
scatter matrix involves in principle working on an infinite set of linear equations. It is 
common to truncate this set to those involving only the lowest order modes (those 
which oscillate least in the transverse direction). When the electron transfer takes 
place between regions of widely different transverse dimension the mode structure on 
either side of the interface is very different as well. The amplitude of the modes in 
the wide region will be rather uniform over the entire interface, but the amplitude of 
the modes in the narrow region will be large where the channel(s) is(are) defined, and 
small elsewhere. This makes it impossible to reasonably meet boundary conditions 
making the wave function and its normal derivative at the interface continuous 
without using a very large number of modes.

Kriman and Ruden got around this problem by analytically projecting the opera
tor equations onto the basis set consisting of the modes on only one side of the inter
face. Essentially this employs all the modes (an infinite number) on the other side of
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V = 0 +

z2 --

Figure 1. The boundary conditions are applied to the average of the wave 
function and its normal derivative over each interval [zn,zn+1). In the
regions Q, <x I 'I/> = 0. In Q, <x I vl/> and —— <x I 'F> are continuous.

dx
the interface. In all but the most simple cases this involves computing a difficult 
infinite sum or integral. It does, however, have several advantages if the projection 
can be done, those being that the truncation approximation conserves current exactly, 
the number of linear equations to solve is roughly half that of the case when the pro
jection cannot be made and the solution is slightly more straight forward. In their 
paper Kriman and Ruden very cleverly picked as an application of their method the 
harmonic oscillator potential on one side of the interface and let the potential be zero 
on the other. This choice allowed them to make the projection very, easily. Unfor
tunately this is the only problem we know of that can be easily solved using their 
method.

This paper describes another way to solve the problem of the mismatched modes 
by satisfying the most appropriate set of boundary conditions on the average of the



wave function and the average of its normal derivative over a subdivision of the inter
face. In regions of large potential the magnitude of the wave function is small and as 
a result the physics of the device under scrutiny doesn’t depend strongly on knowing 
the exact wave function in these regions. It is convenient to define the wave function 
to be zero in these regions which is equivalent to allowing the potential to approach 
infinity. This saves the trouble of solving for information that is really unnecessary. 
In the other regions where the the potential is small and the magnitude of the wave 
function is large, the boundary conditions used make the wave function and its nor
mal derivative continuous. Another advantage is that in the model for multi-channel 
devices the solution for the modes in the transverse direction can be simplified by de
coupling the various conducting channels with infinite potential barriers.

In Section 2 the theory is discussed, including the model and the details of the 
solution. In Section 3 the model is applied to two important examples, a single chan
nel emptying into a reservoir and then two channels emptying into a reservoir with 
special attention paid to the effects of the wave nature of the electron in both cases. 
Section 4 is a summary of results and conclusions.
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4.2 Theory

We start with the single particle single band effective mass-Hamiltonian neglect
ing variations in effective mass. This model is most appropriate to electron transport 
in the conduction band rather than the valence band since the conduction band is 
more correctly approximated by a single band calculation than the valence bands 
which are more tightly coupled together. We focus on the interfacial region where the 
mode structure changes. To the left of the interface we assume there is some non
zero distance in the propagation direction (here after denoted as the x direction) that 
the confining potential varies only in the transverse directions. Denote this region by 
I. Likewise to the right of the interface we assume that there is some non-zero dis
tance in the x direction where the other confining potential is constant in x. Denote 
this region by II. In order to simplify the discussion we consider only one transverse 
dimension (z). The extension to both transverse dimensions is very simple. The inter
facial plane is given by x = 0. Our goal is to obtain the scatter matrix for the inter
face.

H I = EI

The Hamiltonian may be expressed

H = fi2 d2
2m* ch2

+ Hz,
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H, =

fi2 d2

2m dz2
+ Vi(z) for x G I

fi 2 d2

2m dz2
— + Vu(z) for x G II

The normalized eigenstates or eigenmodes of Hz in region I are labeled with a so
that

Hz I a> = E0. I a>

and similarly in region II the eigenmodes of Hz are labeled with af so that
Hz I ot> =Ea/ I c/>

The total Hamiltonian H is separable in each region so that we may take product 
state solutions of the form

<x I a, cr> -exp(ic7kax) s(x,I) I
'\/2Txka

where u = ±1 and s(x,I) is one if x G I and zero otherwise. Similarly for region II

<x I a',o>

The wave vectors are given by
V 27rka/ -exp(ioka'x) s(x,II) I a'>.

and

K =

k^/ =

V 2m
fi2

(E - Ea)

V 2m
fl2

(E-Ea,)

The factor 'i'/'\/kQ, and l/"\/ka' are included so that each mode carries the same 
amount of current. These solutions form a complete set and a superposition of them 
form a natural way to describe electron transport in the wave picture. The correct 
superposition is determined by the continuity relations

(<X | $>)x=0 = (<X I '0>)x=0v (1)

always, and

—<x| 
dx

x=0“
dx

<x I 'lp> (2)

x=0^
provided the potential V(z), is bounded on both sides of the interface.

For an incident wave in mode ! /?,+> (I ft, —>) from the left (right), the wave 
function can be expressed as the incident wave plus a sum of reflected waves into all
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modes I ot, —> (I a/,-|->) on the left (right) and a sura of transmitted waves into all 
the modes I c/,+> ( I a,— >) on the right (left).

I ip{)> = I +> + y, I a,— >Rai$ + I c/,+>T0/fi (3)
a a'

The Ra/y are reflection coefficients from incident mode I /?,+> into modes I a, — >.. 
Similarly the Tay are transmission coefficients from incident mode I /?,+> into 
transmitted mode I a', +>.

We do not wish to solve the Schrodinger equation in regions that are not of great 
interest to us such as in the barrier regions because this presents practical problems 
by increasing the solution time and memory requirements on the computer. The solu
tions in these regions contribute little to the physics. We, therefore, model the poten
tial in these regions as being infinite. Another advantage of this is the ease with 
which one may define separate channels in a device without having to resort to poten
tials that produce complicated eigenstates I a> or I o/>. At this point it is natural 
to divide the interface into two sets, Q and Q. Q is the set of all z values such that 
either Vj.(z) or Vn(z) but not both are infinite. Q is the set of all z such that neither 
Vj(z) nor Vn(z) is infinite. The wave function is zero over the compliment of Q U Q 
and so that part of the interface is uninteresting. Using this model, the continuity of 
the derivative does not hold where the wave is impinging on a barrier region (for 
z (E Q). Instead in Q we have

(<x | v|/>)x.0 = 0.

Partition Q U Q as is done in defining Riemann sums

[zi,z2), [22,23), [23,24), " " ’ > [Zji, 2n+l), ‘ * * , [Zfj, ).

(4)

where no interval [zn,zn+1) contains points from both Q and Q as in Figure 1. Define 
the ket I n> such that

I s(zj [zn, Zn+1))
<Z I n> =

Note

<n I m> = Snm
and operating with <n I takes a spatial average over the interval [znj zn+1) and multi
plies it by “X/zn+i — zn. Let A = max {zn— zn_i}. The basis I n> spans the space

_ ’■ n
Q U Q in the limit as A approaches zero. Inserting (3) into (i), (2), and (4) and 
operating with the bra <n I leads to
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1 <n I /?>+ £ ^4=<n I «>R0
Vk7 a Vk7 Ei Vko

-<n I o/>Ta^

Vk7<n I f3> - E Vk7<n I «>Ra/? = £ \/k^<n I a'>T0 for [zn,zn+1) 6

<Cn I /?> -f- E A /i— <'n 1 ^^Ra^ — 0
vv

for [za, zn_|.i) E

The above set of equations assumed an incident mode from the left I /?,+>. Similar 
equations can be written for incident modes from the right I If these equa
tions are collected they may be written in a single matrix equation AS = B.

An -A-12 R T' Bn Bi2

A2i A22 T R' B2i B22

Each of these matrix elements are themselves matrices whose elements are given by
1An — —Bri _ =11 „

Ai2 , — —Bio , =

A 91 — Boi

Vk7
-i

<n I a> 

=-<n I c/>
Vk 

= \/ka~ <n I

A-22nff, — B22na. ,= A/V <n I a'>

In writing the matrix form of these equations it was noted that <n I a/> = 0 and 
<n I a> = 0 for [zn,zn+i) E Q.

The scatter matrix for the junction S may then be solved for.
S = A-1B

In practice the parameter A is chosen small enough so that further reduction in its 
value has no effect on the elements of the scatter matrix out to a desired decimal 
place. Operating with the bra <n I has the effect of demanding that the boundary 
conditions be met on the average values of the wave function and its normal deriva
tive over each interval of the partition [zn,zn+1). This provides a convenient method 
of approximating the solution to the infinite number of equations for S by the solution 
to a finite number of equations. The properties of the solution that depend on the 
symmetry of the problem are not affected by this approximation, but current conser
vation is not preserved exactly. This, however, can be used to obtain an idea of how 
well converged the solutions are. As the reflection and transmission coefficients for 
the propagating modes converge to the correct solution (as A is decreased) the 
current is conserved exactly.
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4.3 Applications

This section applies the previously described method to two specific problems of 
electron transport in semiconductor devices. The first is the transition from a channel 
into a contact region which is common in many devices today. The second is the 
transition from two parallel channels into a contact. This transition occurs in parallel 
channel quantum interference transistors employing the Aharonov Bohm effect.

The model employed for both examples is three dimensional. On both sides of 
the interface the device is homogeneous in the large y dimension so that ky is con
served. The junction at the interface is considered to be abrupt, both in geometrical 
features and in the built in potential. The effect of potential grading may be quite 
significant and will be investigated in a later paper.[2,3] The built in potential is cal
culated from charge neutrality in the device. Far into either side of the device the 
states are filled up to an unknown energy level using the appropriate two dimensional 
density of states and doping densities. The built in potential is the difference between 
the energy levels on the left and right.

The first application is of interest because of the light it sheds on how the quan
tum mechanical reflections influence the contact resistance. This is the problem that 
Kriman and Ruden studied. Our results are very similar and indicate that the details 
of the confining potential used in the model make little difference.

The second application highlights a principle which is expected to play an impor
tant role in devices of the future, quantum mechanical wave interference between two 
parallel channels emptying into a single contact. This interference can be used to 
modulate the current through the device and has already been demonstrated a 
number of times experimentally. [4,5]

4.3.1 Coupling from a Single Channel to a Single Reservoir

Metal-oxide-semiconductor field-effect transistors, high electron mobility transis
tors, heterojunctions, and thin p—n—p doping layers are all examples where electrons 
are squeezed tightly in one dimension. At the channel contact interface this squeezing 
relaxes and the electron behavior becomes three dimensional. In this section the ejec
tion from the channel into the drain contact is studied. The complimentary injection 
from the source contact into the channel is similar.

The drain contact is modeled as a large channel region of width W' in the z 
direction and the channel as a small channel region of width W in the z direction. 
This is portrayed in Figure 1. Reflection symmetry about z = 0 guarantees conserva
tion of parity so that symmetric eigenmodes will not couple to antisymmetric eigen- 
modes and vice versa.
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The eigenmodes in the channel are given by

<z 1 “> = s(z,(-W/2,w/2j)

and those in the contact region are given by

•-> ! ' VT!'ir| W-Z! siV'-' w'/2-""A:!-

Current reflection coefficients I Rayg I 2, from incident modes in the channel I /?> into 
reflected modes in the channel I «> as a function of incident energy are seen in Fig
ure 2 for two different values of W7. As the energy is increased, the number of popu
lated sub-bands increases and reflection back into these sub-bands becomes possible.
The only material specific parameter in this theory is the effective mass. The energy

067scale given in Figure 2 is for GaAs, however this may be multiplied by '■ ■•■y to apply
m

the figures to another material. The temperature influences the incident energy 
through the Fermi Dirac factor. For a uniform doping of 2xl017cm-3 in both the 
channel and the contact with contact width W7 = llOOA and an incident energy of 
kjjT above the Fermi energy at room temperature, about ten percent of the current 
is reflected back into the channel. At low temperatures the incident energy is near the 
Fermi energy and about thirty percent of the current is reflected. It is very interest
ing that changing the value of W7 has little effect on the reflections back into the 
channel when it is much greater than W as can be seen by examining Figure 2, This 
means that the size of the contact has little effect on the device if it is much larger 
than the channel width. Although the model used here is very different from the para
bolic potential detailed by Kriman and Ruden, it gives very similar results. The 
major difference between the parabolic potential and the square well potential seems 
to be at what energy the subbands appear.

4.3.2 Parallel Channel Structure

Recently the feasibility of using quantum mechanical electron wave interference 
between two parallel semiconductor channels to modulate the current entering a con
tact reservoir has been demonstrated. [4,5] By By varying a magnetic flux through the 
region between the parallel channels the difference in phase accumulated by the elec
tron wave function in each channel can be changed. If the two parallel channels can 
be brought together into a single channel with a single propagating mode, the current 
may be modulated by 100 percent. Unfortunately it is difficult to construct a device 
where this happens. Some of the devices constructed had channel regions made of 
GaAs separated by barrier layers of AlGaAs defined by Molecular Beam Epitaxy 
(MBE).[4] The channel region was connected between two contact regions heavily 
doped n type by the Ge of a Au-Ge alloy implant. The contact regions where the
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Incident Energy E — EF (GaAs)

Figure 2. Current reflection coefficients as a function of incident energy. Dashed 
line denotes: W7 = 300A. Solid line denotes: W/ = 1500A. The doping 
density is held constant at 1017cm~3 and W is set to 100A.
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channels join were multimoded. This is an undesirable situation because the the 
current into one mode may be least when the current into another is greatest. The 
important question is how devastating is this effect?

The answer is summarized in Table 1. Table 1 shows that the doping is an 
important parameter. As the doping is increased the number of occupied states 
increases so that eventually a new subband is populated which means that another 
mode becomes propagating. This is generally not a problem in the channel where the 
spacing between subbands is large because the channels are narrow. However, in the 
contact the subbands are closely spaced because of its large width. In addition to 
this, contacts are generally heavily doped in order to make good electrical contact 
with the outside world. In the contacts, therefore, many modes are likely to be pro
pagating causing the modulation to be significantly lowered.

Doping
Contact Channel 

(cm"3)

Number of Propagating 
in the Contact

Modulation
Percentage

1016 1016 3 91
3xl016 3xl016 4 67

1017 1016 7 22
1017 1017 7 14
1018 1016 15 11
1018 1018 15 5

Table 1.

The geometry for the model is detailed in Figure 3. The dopings used for the 
channel region in the model allowed only one propagating mode in each channel, but 
many propagating modes in the contact. The ejection current is proportional to the 
sum over the propagating modes in the contact of the magnitude squared of the sum 
of the transmissions from the channels into these modes. [6]

4*, ~ 2 ! T..-; +e*Tyji2
a'

Here T^ is transmission from the first channel into the o/th mode in the contact and 
Tq/2 is transmission from the second channel into the cFth mode in the contact. The 
phase difference between the wave function in channel 1 and channel 2 is included 
explicitly as <^>. In the case studied with symmetry about z = 0 the transmission 
coefficients for the two channels are related by T^x = (—l)a +1T0/2 where o? even is 
for antisymmetric modes and ex? odd is for symmetric modes. Using this
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Channels

Contact

Figure 3. The model used for two channels entering a reservoir.
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so that the ejection current may be modulated by changing (f> as long as either the 
symmetric or the antisymmetric modes dominate.

The amount of modulation possible is determined by the unbalance in transmis
sion coefficients between the symmetric and antisymmetric propagating modes. The 
current transmission coefficients from one channel into each of the propagating modes 
is shown in Figure 4 for ky = 0 and several different doping densities. It was found 
that the relative transmissions into the different modes have a characteristic "foot
print" as seen in Figure 4. This footprint can be predicted by a simple calculation of 
the overlap of the different modes (Figure 5). The relative coupling is determined pri
marily by the overlap integrals. This is because the geometry becomes the common 
denominator when the doping density is changed.

For the geometry studied there are three different domains. The first is where 
the doping is light enough in the contact region so that "bumps" of the modes 
extended over the entire 300 angstrom channel region. In this case symmetric modes 
dominate. Second is the domain where approximately two bumps extend over the 
channel region. In this case the antisymmetric modes dominate. The last domain is 
where the modes oscillate many times over the channel region. In this case there is lit
tle transmission.

It is evident that in order to maximize the modulation the doping density must 
be kept low insuring the number of propagating modes in the contact remains reason
able (preferably in the first domain). It is also evident that the device could be 
improved by making the 300A channel region smaller. This is in fact observed experi
mentally as well. [7]

4.4 Summary and Conclusions

In this paper we have discussed a method of modeling electron transfer from 
confined channel regions into much less confined contact regions which eliminates 
difficult analytical steps, replacing them with more mundane procedures to be done on 
the digital computer. The solution gives the scatter matrix for an abrupt junction. 
These scatter matrices may be used as an integral part of the solution for a complete 
device by connecting solutions of different sections. The method is applied to two 
different structures highlighting two different physical effects due to the wave nature 
of the electron. The major assumption applied in each example is that the most 
important scattering is due to the large change in the potential cross section from the 
channel region to the contact.
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The first application modeled the transfer from a channel region into a contact 
as occurs in many types of field effect transistors as an abrupt junction. In this appli
cation the quantum mechanical reflection at the junction between the channel and 
the contact was studied as a function of the incident energy of the electron. Even 
though the junction model used was abrupt, the the contribution to the electrical 
resistance due to quantum mechanical reflection was not found to be very important.

In the second and most interesting application, the phenomena of interference 
between two parallel single moded channels emptying into a single contact was exam
ined. The current may be modulated by changing the phase of the electron in each 
channel. The results indicate the amount of modulation is determined by the number 
of propagating modes in the contact and the separation and width of the channel 
region. In order to maximize the modulation the number of propagating modes in the 
contact, the separation between the channels and the channel width must all be 
minimized, the separation between the channels and the channel width must all be 
minimized.
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5. NUMERICAL STUDY OF EMITTER-BASE JUNCTION DESIGN
FOR AlGaAs/GaAs HBT’s.

5.1 Introduction

In recent years, Heterojnnction Bipolar Transistors (HBT’s) have become a sub
ject of extensive experimental and theoretical research. HBT’s have a number of 
advantages oyer conventional homojunction transistors! The most important one 
derives from, the use of a wide gap emitter which permits increased base doping to 
lower base resistance without sacrificing emitter injection efficiency.[1]

For an AlGaAs/GaAs N-p emitter base heterojunction, the band line ups result 
in a conduction band spike and notch as illustrated in Fig la. Kroemer [1] and subse
quently many researchers pointed out that this conduction band spike suppresses elec
tron injection which lowers emitter injection efficiency (7), which subsequently reduces 
common emitter current gain. (/?), so an appropriate grading of the heterojnnction 
(HJ) to suppress the spike is suggested. The typical grading length ranges between 
300A to 500A. The band diagram of a graded heterojunction is shown in Fig. 2. with 
a grading length of 300A (In this chapter, graded HBT refers to fully graded HBT so 
that conduction band spike is almost absent ). The conclusion that grading of the HJ 
leads to a large increase in the emitter injection efficiency across the HJ is largely 
based on the fact that the grading at the HJ removes the spike in the conduction 
band which otherwise suppresses electron injection in case of an abrupt HJ, but grad
ing at the same time increases the recombination current in the emitter base deple
tion region of the graded HBT by an order of magnitude compared to an abrupt HBT. 
This particularly becomes a large percentage of E-B electron current at low bias. 
Also, in case of abrupt HJ, electrons will tunnel through the tip of the conduction 
band spike, thus the effective height of the conduction band spike will be much lower 
than that calculated using classical formulations. In fact it was found that the tunnel
ing current is fifty to sixty times higher than the thermionic emission current. So it is 
not obvious that grading of a HJ will always lead to much higher emitter injection 
efficiency in a graded HBT as compared to an abrupt HBT.

Also, the common emitter current gain /? is controlled by both 7 and the base 
transport factor (ort) [2], and when both 7 and at are close to unity, the smaller of the 
two dictates the magnitude of /?. So from this point of view, if an abrupt or graded 
heterojunction bipolar transistor has sufficiently high electron injection efficiency, then 
its common emitter current gain will be limited by the relatively smaller base tran
sport factor rather than electron injection efficiency across the HJ. To summarize the 
above discussion, we can say that besides conduction band spike, R-G current in the 
E-B depletion region and base transport factor, at can greatly limit the performance 
of the HBT. The results of the experiments so far have not been conclusive since 
some experimental studies [3] have shown higher current gain in case of graded HBT, 
and some [2] have shown higher current gain in case of an abrupt HBT. These rather



LAYER THICKNESS DOPING A1 FRACTION

Emitter N AlGaAs 1000A 5.0xl017 0.3

Base p GaAs 1000A l.OxlO19

Collector n GaAs 3000A l.OxlO17

* Graded HBT has a linear grading of 300A.

Table 1. The details of the HBT structure used in the simulation.
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Fig. la. Equilibrium energy band diagram for abrupt Np heterojunctions. The 
device parameters are given in Table 1.
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Fig. lb. Equilibrium energy band diagram for abrupt Np beterojunctions with 
100 A intrinsic set-back layer. The device parameters are given in Table 

. . 1.
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Fig. 2. Equilibrium energy band diagram for graded Np heterojunctions. The 
device parameters are given in Table 1. The grading is over a distance 
of 300 A.
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conflicting experimental results necessitates a model of HBT which can treat an 
abrupt HBT properly using quantum mechanical approach and also which includes 
the effect of grading on the recombination current at the E-B depletion region of an 
HBT.

In the past, quite a few models of HBT [4], [5] have been proposed for both the 
graded and abrupt HBT. But most of the models of HBT have treated electron 
injection across the HJ of an HBT using either thermionic emission or drift diffusion 
approach which are classical in nature. These models can treat a fully graded junc
tion quite accurately, but it is severely limited when applied towards a study of an 
abrupt HBT, since these models fail to take into account the quantum mechanical 
tunneling current through the conduction band spike of an abrupt HJ which consti
tute the major portion of electron current across the emitter base junction of an 
abrupt HBT. Thus these models underestimate the magnitude of emitter injection 
efficiency across an abrupt HJ. The study reported in [5] treated the transport pro
cess across an HJ, using both a thermionic emission model and a thermionic field 
diffusion model which takes into account the tunneling of electrons through the con
duction band spike. But in their quantum mechanical treatment of electron tunneling 
through the conduction band spike, they used an approximate WKB type method [6] 
which assumes the shape of the barrier to be parabolic. Further they neglected the 
variation of effective masses of electrons across the HJ and the reflection of carriers 
above the potential barrier. Also their model doesn’t include the effect of grading on 
the recombination current at the E-B depletion region of an HBT which we found to 
be very important.

To remove some of the shortcomings and approximations of the previously pro
posed models of HBT’s, we propose in this chapter a model which treats the electron 
injection in case of an abrupt HBT properly by using quantum mechanical approach. 
Our approach includes no assumption about the shape of the barrier and takes into 
account the variation of effective masses across the HJ. The elctron current across 
the E-B junction in case of graded HBT and hole current across the E-B junction in 
case of both the abrupt and graded HBT’s are calculated using the conventional 
drift-diffusion approach which are expected to be quite accurate in these cases. The 
recombination current in the E-B depletion region is taken into account by using 
Shockley-Hall-Read model of recombinations of carriers through trap levels in the 
semiconductor. This model doesn’t take into account the effect of recombination due 
to interface states and also the recombination along the perimeter of the emitter.

We then used quantum mechanically calculated electron current across the HJ of 
an abrupt HBT and classically calculated hole current given by (1), to calculate the 
emitter injection efficiency of an abrupt HJ (3). For the fully graded junctions, we
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used the conventional drift diffusion approach to calculate both the electron (2) and 
hole (1) current.

2 gVeb 
-(e kT -1),JP =

qPp Pie

w. Nj

qDn nib" 
wb Na

•(<

qVeb
kT -1),

(1)

(2)

where Pp,Pn are the diffusion coefficients of holes in the emitter and electrons in the 
base , We, Wb are the lengths of the emitter and the base, n,e, n,b are the intrinsic 
carrier concentrations in the emitter and base , Veb is the emitter base bias, N<j, Na 
are the emitter and base dopings, and Jp, Jn are the hole and electron current 
flowing out of the base and emitter respectively. The emitter injection efficiency is

1

where J,,
Jn T Jp + Jrg

is the electron current across the heterojunction and is

(3)

the
recombination-generation (RG) current in the emitter base depletion region.

Our results show that for an idealised case, when the recombination current in 
the emitter base depletion region and in the quasi neutral base (i.e. cq = 1.0) are 
neglected, the common emitter gain of graded HBT is two order of magnitude higher 
than that in an abrupt HBT, but the magnitude of ft for both the HBT’s are much 
higher than experimentally observed values suggesting that recombination current 
plays an important role in limiting the value of experimentally observed ft. So to 
account for the effect of recombination current in E-B depletion region , we included 
SHR recombination current in the calculation of emitter injection efficiency and to 
account for the recombination of minority carriers in the quasineutral base, we 
modified the base transport factor by taking diffusion length of electrons in the p type 
GaAs base as 1 fj,m [3]. The base transport factor is calculated from

1 Wb 2
2 V U 1 (4)

where Wb is the width of the base and Ln is the electron diffusion length in the base. 
With the inclusion of recombination current, our results show that the common 
emitter current gain of a graded HBT is lower than abrupt HBT at low bias where 
higher recombination current in the E-B depletion region of graded HBT dominates 
over electron current. As the bias increases across the E-B junction , the ft of the 
graded HBT increases more rapidly than an abrupt HBT and at higher bias both 
give about the same value of ft. The reason for this kind of behaviour at higher 
current is that the current gain at that level of emitter base bias is limited by the 
base transport factor rather than emitter injection efficiency in both the graded and 
abrupt HBT’s, otherwise the gain of the HBT’s would have been much higher than
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the experimentally observed values.
The effect of an intrinsic set-back layer, generally used between base and HJ to 

stop diffusion of dopants into the emitter region, is also studied using the same model. 
Since the doping profile in the set-back layer will be dependent on the diffusion rate 
of the dopants from the base as well as on various parameters during growth of the 
crystal, it would be incorrect to assume some particular doping profile of the set back 
layer. For this we studied the extreme cases of a purely intrinsic set-back layer and 
no set-back layer, so that the real experimental situation will represent something in 
between these two extreme cases. The band diagram of an HJ with an intrinsic set
back layer is given in Fig. lb. From our study, we found that the intrinsic set-back 
layer increases the recombination current in both the graded and abrupt junction by 
an order of magnitude. Also, in case of abrupt HBT, the intrinsic layer pulls down the 
conduction band spike which increased the electron current by an order of magni
tude, while in case of graded HBT eletron current is not very much increased by the 
intrinsic layer. So as a result the inclusion of the intrinsic set-back layer deteriorated 
the performance of graded HBT more than compared to an abrupt one.

5.2 Quantum Mechanical Treatment of Electron Injection

The electron current across the abrupt E-B junction is obtained by analyzing the 
collisionless propagation of electron waves across the conduction band profile [7]. The 
energy band profile was obtained from a classical, numerical solution to Poisson’s 
equation [8]. The formulation allows for arbitrary spatial variation of AlAs mole frac
tion and dopant density, includes Fermi-Dirac statistics for free carriers and treats 
shallow dopant deionization. From the resulting conduction band profile, we then 
compute the electron current by assuming that the contacts launch electron waves 
which propagate without collision through the structure. The numerical technique is 
essentially a quantum mechanical treatment of thermionic emission which includes the 
effects of carriers tunneling through the tip of the barrier, reflections of carriers 
above the barrier, and is valid for arbitrary variation of the conduction band edge. 
The technique is briefly described below.

Each of the two contacts of the one-dimensional junction is assumed to be in 
local thermodynamic equilibrium. The Fermi-levels of these contacts are separated 
by the applied bias. The contacts launch electrons into the device with a spectrum of
momenta, "pi The electron wavefunction in the device,

—► '

'K*) = \ (5)

is determined by solving
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d 1 d~0(z) 
dz 0{z) dz

for the envelope function ip(z) [7]. In (6) 0(z) = m (z)/m*(zc) describes the spatial 
variation of the effective mass with respect to that in the contact m (zc). Et is the 
transverse energy, pt/2m (z^), and Ep the longitudinal energy, pz/2m (zc). The con
tact is located at z — zq.

+
2m* (zc) f- [ep + Et(l—^(z)”1)—Eg(z)

fi
V<z)-0 (6)

The electron current is obtained by summing the contributions due to the various 
p for each of the two contacts. The net electron current is the difference between the 
currents injected from the two contacts

Jn
3-td*p

47Tpfl -Pz -fL(p)TLR(p) -fR(p)TRL(p) (7)m (zL) m"(zR)

where fB(p) is the Fermi-Dirac factor with the Fermi level of the left contact, m (zL) 
is the effective mass in the left contact, and TBR(p) is the magnitude of the current 
transmission coefficient.

jj;

When m (z) is position-independent, -0(z) as determined from (6) is independent 
of pt and the integral over px and py in (7) can be performed analytically. The result 
is

-ff/ dPz 
271-fl m !(*l)

<Ti(Pz)Tlr(Pz)
m (zr)

°r(Pz)Trl(pz) (8)

where ctl(pz) is given by
, , m*(zc)kBT

^l(Pz) = -----^7-----In 1 + exp((ERR — Ecl — Ep)/kBT) (9)

Ep = pz2/2m*(zc) and EpB is the Fermi level in the left contact. Equation (8) shows 
that to evaluate the electron current, the wave equation (6) must be solved to find 
Tlr(Pz) and TRL(pz).

An examination of (6) . shows that ip(z) depends on the transverse energy when 
the effective mass varies with position. The result is that the integral over px and py 
cannot be performed analytically and a rigorous evaluation of Jn would require a cal
culation of V;(z) over a grid of transverse energies. To avoid this complication, we fol
low Vassell [9] and replace E^ in (6) by its thermal average, kBT.

The computational procedure consists of incrementing the longitudinal momen
tum from zero to some maximum value. For each pz, the wavefunction is computed, 
and the contribution to Jn for electrons between pz and pz + dpz is evaluated. The 
contributions for each pz are then summed to evaluate the integral (8) numerically. 
This procedure is then repeated for the other contact.
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In addition to evaluating the electron current, it is also straightforward to evalu
ate the electron density n(z) from the solution of the wave equation. This carrier den
sity can then be inserted in Poisson’s .equation and a new conduction band profile 
computed. The process can be repeated to iteratively obtain the self-consistent 
energy band profile. While such computations have been reported [7], they were not 
necessary for the problem under study because the junction region is depleted of car
riers.

In the present version of our quantum mechanical model, we didn’t consider the 
nonparabolicity of conduction bands and also neglected higher energy conduction 
bands (X1} X2 etc.). Since the doping level in the emitter of an HBT is not very high, 
the error introduced by the first assumption should be small. The second approxima
tion is not very good when aluminium fraction in AlGaAs is greater than 0.45 since 
after that AlGaAs transforms to an indirect gap semiconductor from direct gap sem
iconductor and we need to consider both the T and Xi valleys of AlGaAs. But gen
erally in the case of an HBT, the aluminium fraction in AlGaAs emitter is below 0.45 
which makes the emitter material a direct gap semiconductor and in that case our 
assumption should introduce negligible error [10].

To verify the accuracy of the above numerical technique, it is applied to study 
the transport of electrons across some simple potential barriers. The simple potential 
barrier used is a triangular barrier for which an analytic expression of transmission 
coefficient is obtained using Airy functions and tunneling current is calculated accu
rately from the analytic expression of transmission coefficient. Then the numerical 
technique discussed above, is applied to the triangular barrier and a result with less 
than 1.0% error is obtained in the calculation of transmission coefficient and tunnel
ing current.

5.3 Electron Injection Current across the HJ of the HBT

The quantum mechanical method discussed in the previous section was applied to 
study a typical abrupt HBT structure. First we didn’t include any set-back layer at 
the E-B junction of the HBT, and then we included a 100A purely intrinsic set-back 
layer at the E-B junction of both the graded and abrupt HBT’s studied first. The 
details of the structures are given in Table. 1. Figures la and lb show the band 
diagrams of the abrupt HBT without and with a 100A intrinsic set-back layer respec
tively. The band diagram of the graded structure without a set-back layer is given in 
Fig. 2. Our subsequent discussion is mostly centred around an HBT with no set-back 
layer unless the presence of an intrinsic set-back layer is specifically mentioned.
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First, we studied an abrupt HBT. In Fig. 3a, we plotted the transmission proba
bility versus incident energy of electrons across the HJ of the HBT under study,; using 
our numerical technique and the analytical technique described by Grinberg et. al.[5]. 
As can be seen from the plot, the transmission coefficient calculated by numerically 
solving Schrodinger’s equation (our method) is higher than calculated by the analyti
cal technique of [5] at low energies and it also doesn’t approach to unify immediately 
above the barrier due to reflection of carriers above the barrier. The transmission 
coefficient, calculated by the approximate method in [5] increases rapidly after certain 
energy and approaches to unity at the tip of the barrier. The overall effect of this 
type variation of approximate transmission coefficient from the actual one is that 
when it is integrated over the full spectrum of tunneling energy states, we get a com
pensating effect and the approximate method gives a fairly accurate result in terms 
of tunneling current. But the energy spectrum of the injected electrons given by this 
method would be inaccurate and for this reason this approximate method of [5] can 
not be used in cases where an energy spectra of the injected electrons is needed for 
example in order to study the transport of electrons across the quasi neutral base. For 
comparison purpose, a plot of injected current density across the HJ vs incident 
energy of the1 electrons calculated using two methods is given in Fig. 3b. The same 
kind of behaviour of the approximate method in [5] is also observed in case of the sim
ple triangular barrier discussed earlier.

To estimate the effects of quantum mechanical tunneling across the abrupt HJ of 
an HBT, the electron current across the HJ was calculated both by quantum mechan
ical method and thermionic emission theory. The results are plotted in Fig. 4 along 
with the experimentally observed characteristics reported in [11]. As can be seen from 
the figure, the quantum mechanically calculated current is an order of magnitude 
higher than themionic emission current, which establishes the fact that thermionic 
field emission is the dominant mechanism of carrier transport across the emitter base 
junction of an abrupt HBT. It is also found that at higher biases as the potential bar
rier becomes thicker, thermionic emission current starts to dominate the overall mag
nitude of electron current. The same view is also shared by [5]. For comparison pur
pose, we calculated the tunneling current across the HJ using the technique described 
in [5],[6] and the results by the latter method, though an approximate one agrees rea
sonably well with our rigorous calculations (Our calculations show a 20-30% more 
tunneling current.). The reasons for this good agreement of the approximate method 
with ours are already discussed. As can be seen from Fig. 4, we also plotted the 
experimentally observed current voltage characteristics of a similar HBT reported in 
[11]. The thermionic emission current is found to be much lower than the experimen
tally observed value of current. The quantum mechanically calculated current agrees 
better with the experimental results compared to thermionic emission current but it is 
still lower than the experimentally observed value. The possible reasons for this 
discrepancy are discussed in the next section.
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Fig. 3a Transmission Coefficient vs. Incident Energy of electrons across the 
conduction band spike. Solid line and dashed line respectively indicate
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Fig. 3b. Injected Current Density (A/cm**2/eV) vs. Incident Energy (eV) across 
the conduction band spike. Solid line and dashed line respectively 

. indicate rigorous and analytical methods [5] used for calculation.
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Fig. 4. Electron Current vs. E-B voltage across an abrupt heterojunction in the
abrupt HBT, calculated using A) Quantum mechanical method B) 
Thermionic emission theory, C) Quantum mechanical method with a 
set-back layer, D) Experimentally observed in [llj.
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Next we included the intrinsic set-back layer in the structure and calculated the 
electron current using the same quantum mechanical technique (Fig 4.) and our 
results show that an intrinsic set-back layer increases the electron current by an order 
of magnitude and it is much closer to the experimentally observed value. The increase 
in the electron current comes from the lowering of the conduction band spike at the 
HJ due to the intrinsic layer of GaAs (Fig. lb). Of course in an experimental situa
tion, the set-back layer won’t be purely intrinsic and the increase in the electron 
current will depend on the doping profile of the intrinsic region. So our calculation 
with the intrinsic layer basically gives the upper limit of the electron current. So we 
see that the electron current calculated using our model is still lower than that 
observed by Ito et.al. We believe the reason for this discrepancy mailnly arises from 
the fact that in realistic devices a junction can’t be perfectly abrupt in doping (see 
Fig. 1 of [11]) as modeled in our program. Also there will be recombination due to 
interface states and parasitic recombinations along the perimeter of the emitter con
tact which we neglected in our calculation. Also it is noted that the experimental 
data for two very similar structures grown by two different methods and reported by 
two different researchers vary widely between themselves [3], [llj. For this reason no 
attempt is made in this chapter to precisely match the experimental data with our 
calculated data, instead the nature of variation of different characteristics of HBT is 
discussed with the aid of our model.

In case of the graded HBT, the electron current is calculated using the conven
tional drift and diffusion approach [12] and as expected the magnitude of the electron 
current is found higher than in the similar abrupt structure at the same E-B bias 
(Fig. 4). But the effect of set-back intrinsic layer on the magnitude of electron current 
across the E-B junction in case of graded HBT is found very nominal as compared to 
the case of an abrupt HBT. This is because in case of a graded HBT there is no con
duction band spike at the HJ that is pulled down due to inclusion of the intrinsic 
layer, so the barrier to the electrons more or less remain the same. The effect of 
intrinsic set-back layer is much more profound in the recombination current which is 
discussed in the next section.

5.4 Recombination-Generation current at Heterojunctions

The recombination-generation (RG) current in an HBT mostly comes from the 
emitter base depletion region and from the recombination of minority carriers in the 
quasi-neutral base. The recombination of minority carriers in the quasi-neutral base is 
taken into account by taking the diffusion length of minority carriers in the base to 
be 1 fim and then calculating the base transport factor as discussed before.

The RG current in the forward biased E-B depletion region of an HBT around 
the operating bias comes mainly from the recombinations of carriers through the
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midgap states. The recombination rate is computed numerically using Schockley- 
Hall-Read model (SHR) as given in the following equation

p(x)n(x)—n,2(x)
7’p(n(x)+ni(x)exp((Et—Ei)/kT)+rn(p(x)+ni(x)exp(—(Et—Ei)/kT))

where rp and rn are minority carrier life times and are assumed uniform and equal to 
1 nsec throughout the device. Et is the trap level, E;, the intrinsic fermi level; k and 
T are respectively Boltzmann constant and temperature.

The position dependent recombination rates for both an abrupt and graded HJ 
are presented in Fig. 5. From the plot, we can see that the rate of recombination is 
higher in a graded junction as compared to an abrupt one. This is because most of 
the recombinations occur in the larger bandgap emitter and in the case of graded 
junctions the intrinsic carrier concentration is increased as compared to the abrupt 
one in the emitter side of the depletion region due to grading. Experimental observa
tion of the base current in both the graded and abrupt HBT supports this view [3]. In 
this calculation of recombination current, we neglected recombination due to interface 
states present at HJ and also the recombination current that arises due to recombina
tions along the perimeter of the emitter.

The inclusion of the intrinsic set-back layer in both the graded and abrupt HBT 
increased the recombination current in the emitter base depletion region by an order 
of magnitude. This increase in the recombination of minority carriers in the E-B 
depletion region is mainly the result of an additional band bending on the base side of 
the E-B junctions due to the inclusion of the set-back layer which traps electrons.

As can be seen from our studies, the effect of the intrinsic layer is more profound 
in case of a graded junction than an abrupt junction since in the former the electron 
current remains about the same whereas recombination current increases, but in case 
of abrupt HJ both the electron and recombination current increases with the inclusion 
of the set-back layer. Thus the set-back layer reduces the magnitude of 7 more in 
case of graded HBT than in an abrupt one, particularly at low bias. So the inclusion 
of the set-back layer in one hand improves the performance of the HBT’s by stopping 
diffusion of dopants from the p type base into the N type emitter, on the other hand 
it also increases the RG current in the E-B depletion region. It should be made clear 
that our study takes the case of two extreme situation, one with no set-back layer 
and one with purely intrinsic set-back layer. The actual situation will be some what 
in between thses two extremes.
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Fig. 5a. Recombination rate in the E-B depletion region of an abrupt HBT.
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Fig. 5b. Recombination rate in the E-B depletion region of a graded HBT.
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5.5 Common Emitter Current Gain of Abrupt and Graded HBT’s

In this section, first we present our calculation of common emitter current gain /3 
for both the graded and abrupt HBT with no set-back layer (see Table 2). In the 
later part of this section, the effect of inclusion of the set-back layer on the magni
tude of j3 is discussed.

The f3 of the abrupt HBT is calculated using the quantum mechanical method 
discussed in Sec. II. The hole current and RG current are calculated using classical 
formulations. In case of the graded HBT, the conventional drift diffusion approach is 
used. The base transport factor in both the graded and abrupt HBT’s are taken to be 
0.995 (Calculated by taking the diffusion length of electron in the base to be 1 /mi). 
The results of the calculations are presented in Table. 2 and in Figs. 6a,6b.

As can be seen from the plot of (3 versus Vet, the common emitter current gain f3 
for the graded HBT is much higher than the abrupt HBT in case of an ideal situation 
where there is no recombination current in either quasi neutral base or emitter base 
depletion region. The values of (3 for both the graded and abrupt HBT’s in this ideal 
case are much higher than the experimentally observed values. This confirms that the 
recombination current plays a major role in limiting the magnitude of j3 in both the 
graded and abrupt HBT. As can be seen from the other plot of /3 versus Vet which 
includes the effect of recombination current, the common emitter current gain, (3, of a 
graded HBT is lower than the abrupt HBT at lower bias. The reason for this kind of 
behaviour is that the recombination current in case of graded HBT is relatively large 
compared to an abrupt one and at low value of electron current, this higher recombi
nation current in case of graded HBT reduces the emitter injection efficiency of a 
graded HBT more than that of an abrupt one. At higher bias, the j3 of a graded 
HBT increases more rapidly than abrupt HBT but both saturates arotind 170 to 200, 
the current gain of the graded HBT being slightly higher than the abrupt one. These 
comparable values of current gains of the graded and abrupt HBT suggests that 
abrupt HBT has sufficient electron injection efficiency to have a comparable current 
gain of a graded one.

To investigate this further, the emitter injection efficiency is calculated for both 
abrupt and graded heterostructures. It is found that at higher values of injected elec
tron current though 7 for graded junctions is higher than that in an abrupt junction, 
still both are much higher than the magnitude of a^. This means, the base transport 
factor which is lower than such a high value of 7, will primarily control the common 
emitter current gain. In that case, the emitter injection efficiency obtained in the case 
of abrupt heterojunctions is adequate enough for a high current gain and it is the 
transport of electrons through the base which determines whether an abrupt HBT or 
a graded HBT will give higher f3. It should also be mentioned that modelling of base 
transport factor is not adequate at present, and an accurate modelling of transport of 
electrons across the base will result in a higher base transport factor for an abrupt
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Device Bias

(V)

Em. Inj. Effy. Common Emitt. Gufr. Gain

Includes R-G No R-G Includes R-G

at=0.995

Quant Thermo Quant Thermo Quant Thermo

Abrupt

HBT

0.9 0.9654 0.29405 2xl04 309 25 1

1.0 0.99118 0.687 1.24xl04 249 72 . 3 '

1.1 0.9976 0.9198 0.74xl04 203 135 11

1.2 0.999 0.9796 0.38xl04 179 165 39

Graded

HBT

0.9 0.898 1.0x10® 9

1.0 0.9766 8.8xl05 35

1.1 0.9956 3.5x10s 106

1.2 0.9992 3.4x10s 171

Table 2. The results of simulation.
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Emitter Base Bias <U>

Fig. 6a. Common emitter current gain vs electron current across the HJ, 
calculated using A) Drift-diffusion model for graded HBT, B) Quantum 

mechanical model for abrupt HBT, C) Thermionic emission model for 
abrupt HBT. The RG current in the depletion region is neglected and 
at =1.0.
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Fig 6b. Common emitter current gain vs electron current across tile HJ, 
calculated using A) Drift-diffusion model for graded HBT, B) Quantum 
mechanical model for abrupt IIBT, C) Thermionic emission model for 
abrupt HBT. The RG current in the depletion region is included and o;t 
— 0.995.



- 123 -

heterojunction, since electrons are injected at a higher energy into the base compared 
to that in a graded heterojunction. These hot electrons spend much less time in the 
base and consequently their probability of recombination is much less compared to 
diffused electrons as in the graded heterojunction. In our calculations we have taken 
the base transport factors for both the graded and abrupt HBT to be the same. A 
higher base transport factor in case of abrupt HBT will eventually explain a higher 
comriaon emitter current gain in an abrupt HBT as observed in [2].

Another interesting observation from Fig. 6 can be made about the use of ther
mionic emission model for abrupt HBT’s. Since thermionic emission model underesti
mates the electron current across an abrupt HBT to a great extent, the emitter injec
tion efficiency obtained from the use of this model is less than the actual one. Because 
of the lower emitter injection efficiency predicted by it, the thermionic emission model 
predicts the common emitter current gain of an abrupt HBT to be much lower than 
graded HBT and thus this model fails to bring out the correct picture of the 
behaviour of an abrupt HBT.

Next we calculated /? for the case where an intrinsic set-back layer of 100 A 
exists at the E-B junction of both the graded and abrupt HBT’s. The results are plot
ted in Figs 7a and 7b for both the abrupt and graded HBT’s. From the plot, we can 
see that the effect of the intrinsic layer on the performance of the graded HBT is to 
reduce the magnitude of /? whereas in case of the abrupt HBT, the magnitude of /? 
remains about the same in both the cases. This kind behavior is observed due to a 
relatively higher reduction of 7 in case of graded HBT as compared to an abrupt one. 
The reason for lower 7 in case of graded HBT is discussed in the earlier section. It 
should be mentioned that the presence of the set-back layer is necessary to prevent 
the diffusion of dopants across the heterojunction which otherwise will shift the loca
tion of the N-p junction from the compositional HJ. This will also degrade the perfor
mance of the HBT. Moreover as mentioned earlier our study treats the two extreme 
cases of an intrinsic setback layer and no set-back layer. So the actual situation will 
be somewhat in between these two extremes. So this study gives some qualitative 
effects of inclusion of a set-back layer to help the experimentalists decide on the 
design trade-offs involved in this matter.

5.6 Conclusion
In this chapter, we described a quantum mechanical method to analyse transport 

of electrons across any arbitrary shape of potential barrier. The numerical technique 
discussed in the earlier section is used to study the transport of electrons across the 
emitter base junction of HBT. From our study we found that the WKB type method 
discussed in [5] has reasonable accuracy to be used for the calculation of tunneling 
current in case of abrupt HBT, but the method is limited to a particular shape of the
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Emitter Base Bias (U)

Fig. 7a. The effect of set-back layer on the current gain of the abrupt HBT. A) 
The ideal case, B) When RG in the depletion region is included and at 
— 0.995 C) When the 100 A intrinsic set-back layer is included.
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Emitter Base Bias <U>

Fig. 7b. The effect of set-back layer on the current gain of the graded IIBT. A) 
The ideal case, B) When RG in the depletion region is included and at 
= 0.995 C) When the 100 A intrinsic set-back layer is included.
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potential barrier. The method discussed in this chapter is perfectly general and can be 
used for any arbitrary shape of the potential barrier.

The treatment of electron transport by the quantum mechanical method shows 
that the thermionic emission theory gives an underestimated value of 7 in case of the 
abrupt HBT leading to an incorrect estimate of its performance.

Our study shows that RG current plays an important role in limiting the perfor
mance of an HBT. It is also found that RG current in case of the graded HBT is an 
order of magnitude higher than that in case of abrupt HBT. This reduces the the 
magnitude of 7, consequently the magnitude of f3 in case of the graded HBT more 
than in an abrupt HBT. The inclusion of the intrinsic set-back layer further 
deteriorates the performance of the graded HBT.

We also found that at low value of collector current, RG current plays an impor
tant role in deciding the magnitude of 7 and subsequently j3 in case of both the 
graded and abrupt HBT’s. But the effect on the graded HBT is more pronounced due 
to a higher RG current. At higher value of collector current, it is found that /? will be 
limited by cq rather than 7, which leads to the conclusion that it is possible to 
achieve higher current gain in case of abrupt HBT in contrary to the earlier studies. 
The experimental observations in [2] supports this.

Our quantum transport model has some limitations. The most important one is 
that it can’t treat collisions in the device at present. Also in this model we need to 
consider higher energy bands other than F valley, if we want to treat indirect gap 
AlGaAs, in other words the present model gives best results when aluminium concen- 
traton in AlGaAs is low enough to make it indirect i.e. x<0.45. In our study of HBT, 
we neglected the recombination current due to interface states. Also the recombina
tion current around the edge of the emitter is neglected in this study. To obtain a 
quantitave agreement of the theoretical results with the experimental ones, these 
effects have to be incorporated in this model.
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SEQUAL is a device simulation program which performs a quantum mechanical 
analysis of electron transport. The user need not be an expert in quantum mechanics 
to obtain useful results from this program, although an understanding of the subject 
is an invaluable aid in the interpretation of output. For this reason, the theoretical 
formulation of the analysis is presented in some detail, following a brief introduction. 
The knowledgeable (or anxious) user may turn directly to the discussions of input and 
output in Chapters 3 and 4. The reader is cautioned, however, not to skip Chaper 2 
entirely. At the heart of many a program "error" lies a misinterpretation of output.
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Introduction

SEQUAJL is a device simulation program, computing Semiconductor Electrostat
ics by QUantum AnaLysis. Given the characteristics of a particular device, SEQUAL 
will compute the electron density and the current density, using a quantum mechani
cal description of electrons. To enhance the versatility of this program, it was 
designed to be a post-processor for classical simulation programs; as such, it does not 
calculate any material parameters, so it can be used with any material system. 
Instead, SEQUAL relies upon the output from classical analysis programs such as 
FISH1D, PUPHS, or SEDAN, to provide the description of a device. A direct com
parison of classical and quantum mechanical results is then possible.

Often (for devices which merit the use of this program) the difference between 
classical and quantum mechanical results is significant. In such cases, the difference 
in electron density places the classical description of the electrostatic potential in 
doubt. The quantum mechanical distribution of space-charge demands a solution for 
the electrostatic potential which is self-consistent. When a self-consistent solution is 
desired, SEQUAL allows for iteration between calculations of the electron density and 
the electrostatic potential. Hence, SEQUAL can provide a correct solution of quan
tum mechanical electrostatics.

Figure 1.1 depicts the input/output structure of SEQUAL. A numerical descrip
tion of the device, obtained from the output of a classical analysis program, is the pri
mary source of input. In addition, SEQUAL accepts a list of commands called the 
“input deck,” which allows for selection of program options. A summary of the 
analysis is written to standard output, in a form well suited to printing. SEQUAL 
does not produce any plotted output, since undoubtedly the user has a program 
favored for this purpose. Instead, SEQUAL can generate output files in a variety of 
formats, to interface with many plotting programs. Quantities available for writing 
to output files include the input device description, the electron density, the transmis
sion coefficient, and the squared magnitude of the electron wavefunction, output as a 
surface in both position and energy spaces.

The following chapters are intended not only to describe the operation of 
SEQUAL, but also to provide some understanding of the calculations performed. In



Chapter 2, the theoretical formulation of the analysis is discussed. Some of the 
difficulties encountered in a numerical implementation of the theory are noted, and an 
approach is outlined, which is used by SEQUAL to insure accurate results. Chapter 3 
details the input structure of SEQUAL, specifying both the syntax of the input deck 
and the format of the device description. Program output is discussed in Chapter 4, 
and an example calculation is presented in Chapter 5. Finally, Chapter 6 examines 
some practical considerations, for the implementation and use of SEQUAL.

Input Deck

Printed Output

Device Data

Plot Files

SEQUAL 2.0

Figure 1.1: Structure of input/output in SEQUAL
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2

Theoretical F or mutation

The computations performed in SEQUAL are based upon a number of simplifying 
assumptions:

• Electrons are assumed to be majority carriers; holes are completely ignored 
in the analysis.

• Profiles of doping density and material composition assumed to vary in only 
one dimension (hereafter referred to as the “longitudinal direction”).

• Effects of the crystal potential are parameterized by an effective mass, which 
is constant in each material region, and which changes abruptly at a 
material interface.

• Solutions reflect steady-state conditions, and are independent of time.

• The energy dispersion relation is assumed to be parabolic.

• Electron-electron interactions are neglected.

• Transport is assumed to be ballistic; overall device dimensions are assumed 
to be sufficiently short, so that scattering can be neglected.

A pictorial representation of the analysis is presented in Figure 2.1(a). Contacts, 
assumed to be in local thermodynamic equilibrium, inject electrons into a device, with 
a spectrum of wavevectors k. These electrons interact with the potential profile Eq; 
some are transmitted across the structure, and the remainder are reflected back to 
the injecting contact. Contacts are assumed to supply a continuum of electron ener
gies, and these energies are referred to as “propagating states.” If inelastic scattering 
were included in the model, some of the injected electrons could scatter into states of 
lower energy. In particular, some electrons could scatter into states which could not 
be populated by either contact. Such energies, which fall below the conduction-band
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edge of either contact, are referred to as “bound states.” Solutions of the 
Schrodinger equation for both propagating states and bound states are described 
below. Because the primary importance of SEQUAL is its application to transport 
problems, the solution for propagating states is considered in more detail.

2.1. Propagating Electronic States

2.1.1. Solution of the Schrodinger Equation
Quantum mechanically, an electron is represented by a wavefunction VfcOfy 

which is obtained by solving the (time-independent) Schrodinger equation:

JL
dz

me
m (z) dz Mz) +

2m„
Ez+Et 1 -

m*(z) , ~ Ec(s) Mz) = 0 (2-1)

where
2i -2

E =
rk
2111c

is the energy of the injected electron in the direction of propagation, and

h2E. =
2mc

r(kx + kJ)

is the energy in transverse directions. In the form presented above, the Schrodinger£
equation accounts for spatial variations in the effective mass m (z), relative to the 
effective mass of the injecting contact (mc). The conduction-band profile E^(z) is 
assumed to be known for a particular device.

An arbitrary potential profile can be described by segmenting a device into a 
number of tiny intervals, as shown in Figure 2.1(b). Each interval is delineated by 
points in position space called “nodes.” Within each interval, the potential is approx
imated by its average value. Of course, intervals should be sufficiently small to accu
rately represent a potential profile. In an region of constant potential, the solution of 
the Schrodinger equation is some linear combination of plane-waves; hence, the 
wavefunction for an entire device is deduced by matching boundary conditions 
between plane-wave solutions in each interval.

In this respect, the solution of the Schrodinger equation is equivalent to a 
transmission line analysis. Each interval of constant potential acts like a small
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Figure 2.1:

October 3,

Chapter 2 — Theoretical Formulation

electrons electrons

contact contact

electronselectrons

contactcontact
node: 0 1 2 3 4 5 6 7 8 9 N-1N

(b)

(a) Electrons are injected from contacts into a device with an arbitrary 
potential profile; and (b) any potential profile can be represented by a 
series of tiny intervals, in which the potential is approximately constant.
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section of transmission line with a constant impedance. At the junction between two 
transmission lines, voltage and current must be continuous. Similarly, proper solu
tions of the Schrodinger equation require continuity of:

>nd * A(*>

at the boundaries between each interval of constant potential. Just as a voltage 
plane-wave Would be reflected by a mismatch in impedance, the electron wavefunction 
is reflected by changes in the conduction-band profile. When interpreting the results 
of an analysis, it is useful to keep this analogy at the back of one’s mind: Many 
quantum mechanical effects (e.g., tunneling, resonance states, etc.) can be understood 
in the general context of wave phenomena.

2.1.2. Calculation of Electron Density and Current Density
Because each contact injects electrons into a device, the electron density can be 

resolved into two components:

n(z) = n1_*r(z) + nr_tl(z) (2.2)

Electrons injected from the left contact (node 0) are labeled!—*r; those injected from 
the right contact (node N) are labeled r—*-/. Each component is obtained by integrat
ing the squared-magnitude of the wavefunction over the entire spectrum of wavevec- 
tors: ':

o° dk ; :'
^ ^ I I 2 (2.3)

r.'-v';. >■:# o Z7r

00 dk
;; > (2'4) 

where the factors o[kz) represent the integration over transverse wavevectors kx and
lr • ■

. mc*kBT h2k2 ,
^'(k.) =1 + exp[(EF - Ec(0) - —4-) / kBT|]

. mfkgT h2k2
1,1 (k») = 1 + exPl(EF - Ec(N) - T^-) / ksT]]

. Tifi 2rac ■■

Here, Ep is the Fermi-level in the injecting contact; m^. is the effective mass in the 
injecting contact; Ec(0) and EC(N) are the conduction band energies at nodes 0 and N
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Chapter 2 — Theoretical Formulation

(left and right contacts, respectively); T is the temperature; and kz is the incident 
wavevector, in the direction of propagation.

Notice that, in the Schrodinger equation (2.1), the wavefunction ^(r) is depen
dent on the transverse energy Et. It was assumed in the derivation of (2.3) and (2.4) 
that this dependence is weak, so that the wavefunction is approximately constant 
over all transverse wavevectors. The wavefunction is then evaluated at a single, 
representative Et, and removed from the transverse integration. Hence, the integra
tion over transverse wavevectors was performed analytically, and the result is embo
died in the factors d(kz). Normally, the representative transverse energy is assunied 
to be the thermal average energy, kBT. Although this assumption is reasonable in 
many cases, it is strictly an approximation. A rigorous calculation would require an 
evaluation of the wavefunction at all (longitudinal and transverse) wavevectors. Such 
a calculation would increase execution time tremendously, to the point where compu
tations are no longer tractable.

Current density for electrons can also be resolved into two components, due to 
the two, oppositely flowing streams of electrons:

J = J1^ — „ (2.5)

where

jl-r = -f- f —k, T'--(k,) ^'(k.) (2.6)
nic o 2lr

J.-1 = 7 k, T'-'fk.) <f-‘(k,) (2.7)
nic o 27r

The functions T1_+r(kz) and Tr‘"*’1(kz) are the transmission coefficients from left to 
right, and from right to left, respectively. Each represents the fraction of injected 
electrons which propagate across the entire device. Each is proportional to the 
squared-magnitude of the wavefunction, at the proper end of the device:

T ,!(k.)! 4,"(N) I2 r "(U . I *'(0) I -

In essence, therefore, both the electron density and the current density are deter
mined by integrating the squared-magnitude of the wavefunction.
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2.1.3. Numerical Integration Concerns
By using the formulas presented above, calculation of the electron density and 

current density is straightforward: A grid of wavevectors kz is chosen for the injec
tion of electrons, and the squared-magnitude of the wavefunction is integrated over 
that grid. The remaining difficulty lies in determining a suitable grid of wavevectors. 
Naively, one might assume that a uniform mesh (if sufficiently dense) would provide 
adequate resolution; this is not the case. Consider, for example, electrons experienc
ing a transmission resonance. For certain device geometries, it is possible to achieve a 
large transmission of electrons at particular (resonant) wavevectors. In this case, the 
wavefunction peaks sharply at resonance, and is nearly zero at all other wavevectors. 
If resonances are sufficiently sharp, they could be missed entirely by a uniform mesh. 
Even if a series of successively finer meshes were used, there is no guarantee that the 
wavefunction would be properly resolved. Aside from being an inefficient solution, 
therefore, the use of a uniform mesh is a little like playing Russian Roulette.

To insure proper resolution of the wavefunction, the following approach is used 
in SEQUAL. For each direction of propagation, electrons are injected at uniform 
intervals in kz-space. In each interval of kz-space, the squared-magnitude of the 
wavefunction is examined for a local maximum. If a maximum is found to exist some
where in the interval, then the exact wave vector corresponding to the maximum is 
calculated. The process by which a maximum is detected and located in kz-space is 
somewhat complicated, and is unimportant for this discussion. By isolating wavefunc
tion maxima, it is assured that all features of the wavefunction will be resolved 
clearly.

The integrations required by equations (2.3-2.6) could be performed by a variety 
of numerical techniques. In SEQUAL, Gauss-Legendre quadrature was chosen, 
because it offers high accuracy with a comparatively small number of wavefunction 
evaluations. The “order” of the integration process refers to number of mesh points 
in an interval; mesh points are chosen by mapping zeroes of Legendre polynomials 
into a given interval. An estimate of the error obtained for a particular interval is 
calculated by comparing the results from different orders of integration.

An overview of the entire process of injection and integration is as follows. A 
uniform grid of wavevectors is used to isolate maxima in the squared-magnitude of 
the wavefunction. The wavevectors corresponding to maxima define a grid of integra
tion intervals, in which the wavefunction is smooth and well-behaved. Within each 
integration interval, successive orders of Gauss-Legendre quadrature are applied, until 
the accuracy of the result is acceptable. In principle, the process of isolating maxima 
in kz-space could be performed at each node. Realistically, however, it need only be
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Chapter 2 — Theoretical Formulation

performed at those nodes for which the wavefunction varies most rapidly in kz-space. 
By default, SEQUAL performs isolation of maxima for the first and last nodes (nodes 
0 and N) of a device. Because of “standing-wave” patterns produced by reflection, 
the wavefunction varies most rapidly at the contact nodes. Other nodes for which 
rapid variations are expected (e.g.} resonance states) can be specified at the time of 
execution.

2.2. Bound Electronic States
In contrast to the propagating electronic states considered in the preceding sec

tions, bound states cannot be populated by either contact. In a real device, electrons 
injected from the contacts could inelastically scatter into states of lower energy; how
ever, inelastic scattering has been neglected in SEQUAL, thereby removing the link 
between propagating states and bound states. In many cases, the density of electrons 
residing in bound states can be significant. This contribution is particularly impor
tant if a self-consistent solution of the electrostatic potential is required. For this 
reason, SEQUAL allows for the consideration of bound states.

Bound state energies are determined by solving for the eigenvalues of the 
Schrodinger equation (2.1), written in finite-difference form. It is assumed that the 
wavefunction vanishes at both ends of the device; hence, the spatial location of bound 
states should be sufficiently removed from the contacts. The actual solution of the 
eigensystem is performed by an International Mathematical and Statistical Library 
(IMSL) routine eigrf. Given the eigenfunctions -i/>,(z) and the energy eigenvalues et, the 
electron density for each state is determined by:

ni(z) = —^2""' I V>,(z) I 2 In [l + exp [(EF - €i)/kBT (2.8)

where EF is the Fermi-level, which is assumed to be constant across the entire device. 
This result was obtained by assuming that states are populated according to Fermi- 
Dirac statistics, an assumption which is valid only in equilibrium. For each bound 
state, a two-dimensional electron density can be calculated by integrating the electron 
density nj(z) over the length of the device:

n 2—D kBT
h27T

-In 1 + exp [(Ef - ei)/kBT ]] / dz m*(z) I $(e) (2.9)

Of course, a finite-difference formulation with nodes 0 to N in position-space will 
have N+l eigenvalues; of these, only the states which cannot be populated by either 
contact are considered to be bound states. That is, states are “bound” if the energy
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eigenvalue 6; is below the conduction-band edge of either contact. The total (three- 
dimensional) density of bound-state electrons, therefore, is the sum of contributions 
from each bound state:

nb(z) = E ni(z) (2.10)
.. i '

where the index i is restricted according to:
{ i I < Eo(0), e, < EC(N) }

2.3. Iteration for Self-Consistency

In the preceding sections, a method was described for the calculation of electron 
density, assuming that the conduction-band profile was known. In general, the 
conduction-band profile is determined by two components: a static component
AEc(z), describing the offset of the band edge in different material layers, and the 
electrostatic potential $(z):

Ec(z) = AEc(z) - q<f>(z)
Of course, the electrostatic potential can be determined, given the electron density, 
by solving the Poisson equation:

_d_
dz «r(z)' c° ~[^(z)

= -q [n^(z) - n(z)j
(2.10)

\ /
where /cr(z) is the (position-dependent) relative dielectric constant, and Nq (z) is the 
density of ionized donors.

For a proper analysis of any device, the solutions for both the electron density 
and the electrostatic potential should be self-consistent. In SEQUAL, a fully self- 
consistent solution can be obtained by iterating between the solutions for each quan
tity; an overview of the iteration process is presented in Figure 2.2. After an initial 
guess of the electrostatic potential has been input, the electron density n°(z) is calcu
lated. If iteration is not allowed, the process terminates, yielding a solution of elec
tron density for the given potential profile. If iteration is specified, however, a better 
guess for the electrostatic potential is determined, by solving the Poisson equation. 
The corresponding electron density is then calculated, and the process is continued. 
Iteration is terminated when the calculations converge to a certain number of 
significant figures, or when the iteration counter i reaches some maximum value.
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W END

Compute <F(z)

Read in 
device data

Compute n'(z)

Figure 2.2: Flowchart for a self-consistent solution
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3
Program Input

SEQUAL accepts two kinds of input: the device description, and the input deck 
(see Figure 1.1). Output from a classical analysis program constitutes the device 
description, a file containing columns of numbers which characterize the device in one 
dimension. One column is a list of “nodes,” or positions in space; all other columns 
list the value of a quantity (i.e., the conduction band energy, the effective mass, etc.) 
at each node. The second source of input, the input deck, is a list of commands 
which control the operation of SEQUAL. These commands specify the format of 
input and output files, modify the default values of input variables, and select a 
variety of program options. Descriptions of both types of input are presented in 
detail, below.

3,1. Device Data

The numerical representation of a device is obtained primarily from a file con
taining several columns of floating-point data; each column represents a different 
input quantity. Data can be stored in either ASCII or (Fortran 77) binary format. 
Files containing the necessary information are typically generated as output from a 
classical analysis program. To provide a flexible interface for many different pro
grams, the quantity associated with each column can be specified in the input deck; 
therefore, data columns can appear in any order. Moreover, the units of input quan
tities can be specified, if they differ from the default units in SEQUAL. (For details of 
the input deck, see section 3.2, below.)

Possible input quantities are listed in Table 3.1. Notice that it is not necessary 
to have all six quantities specified in the device description file. If it is more con
venient, profiles of the donor doping density, the effective mass, and the dielectric 
constant can be specified in the input deck. Because these quantities are usually con
stant over large regions (e.gin a particular material layer), it is doubtful that all 
classical analysis programs would provide their value at each node. If tabular output 
of these quantities is unavailable, specifying the values in the input deck is a more 
convenient approach than modifying output to include the extra columns. Notice also 
that unless a self-consistent solution is required, profiles of the electrostatic potential
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Chapter 3 — Program Input

“Device Data” Input Quantities

Quantity Units Necessary for
Program Execution

position-space grid cm
conduction-band profile eV • •
electrostatic potential Y *
ionized donor doping density cm"3 t
effective mass ( m0 ) t
dielectric constant <fo) t,t

t May be specified alternatively in the input deck. 
J Necessary only for a self-consistent solution.

Table 3.1 Summary of possible input quantities for device data input file.

Input quantities represented by the columns below are in the default order:
position conduction 

band profile
electrostatic
potential

ionized donor 
doping density

effective
mass

dielectric
constant

0.000000e+00 0.000000 0.000000 2.000000e+18 0.0670 12.8464
1.000000e-07 0.000000 0.000000 2.000000e+18 0.0670 12 8464
2.000000e-07 0.000000 0.000000 2.000000e+18 0.0670 12.8464
3.000000e-07 0.000000 0.000000 2.000000e+18 0.0670 12.8464
4.000000e-07 0.000000 0.000000 2.000000e+18 0.0670 12.8464
4.990000e-07 0.000000 0.000000 2.000000e+18 0.0670 12.8464
5.000000c-07 0.365000 0.000000 2.000000e+18 0.08953 11.4705
6.000000e-07 0.365000 0.000000 2.000000e+18 0.08953 11.4705
7.000000e-07 0.365000 0.000000 2.000000e+18 0.08953 11.4705
8.000000e-07 0.365000 0.000000 2.000000e+18 0.08953 11.4705
9.000000e-07 0.365000 0.000000 2.000000e-fl8 0.08953 11.4705
9.990000e-07 0.365000 0.000000 2.000000e+18 0.08953 11.4705
l.OQOOOOe-06 0.000000 0.000000 2.000000e+18 0.0670 12.8464
1.100000e-06 0.000000 0.000000 2.000000e+18 0.0670 12.8464
1.200000e-06 0.000000 0.000000 2.000000e+18 0:0670 12.8464
1.300000e-06 0.000000 0.000000 2.000000e+18 0.0670 12 8464
1.400000e-06 0.000000 0.000000 2.000000e+18 0.0670 12.8464
1.500000e-06 0.000000 0.000000 2.000000e+18 0.0670 12.8464

Figure 3.1: Example listing of a device-description input file in ASCII format
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and the dielectric constant are not required. These two quantities are used only in 
the solution of Poisson’s equation, and are therefore unnecessary if iteration is not 
allowed. Commonly, the device description file will contain only the position-space 
grid and the conduction-band profile; all other quantities will be specified in the input 
deck, or will be unnecessary.

From the above discussion, it would seem that the conduction-band profile must 
always appear in the data description file. This is not exactly the case. The 
conduction-band profile is composed of two parts:

Ec(z) = AEc(z) - qV(z)

where V(z) is the electrostatic potential, and AEc(z) specifies the offset of the conduc
tion band in different material layers. For a device fabricated with a single material, 
AEc(z) is zero (or some arbitrary constant) everywhere. The alignment of energy 
bands for differing materials, however, produces some offset in the conduction-band 
edge, described by AEc(z). An alternative to specifying the conduction-band profile, 
therefore, is specifying both the electrostatic potential V(z) and the conduction-band 
offset AEc(z). In fact, SEQUAL requires a knowledge of all three quantities for a 
self-consistent solution, so at least two must be specified at the start of execution. In 
a self-consistent solution, the conduction-band profile is calculated at the beginning of 
each iteration by adding contributions from the (constant) offset potential and the 
(updated) electrostatic potential.

An example of a simple device description file in ASCII format appears Figure
3.1. The device which it represents is composed of three material layers—two layers of 
GaAs sandwiched around a layer of AlGaAs. Each layer is 5.0xl0-7 cm (50 A) thick, 
so the overall device length is 1.5xl0-6 cm (150 A). The GaAs layers have an electron 
effective mass of m = 0.067m0, and a dielectric constant of e = 12.8464e0. The 
AlGaAs layer has an electron effective mass of m = 0.08953m0, and a dielectric con
stant of e = 11.4705€0. An offset of 0.365 eV in the conduction-band edge of AlGaAs 
can be seen clearly in the conduction-band profile, since the electrostatic potential 
was assumed to be zero. Note that the nodes on either side of a material interface 
are closely spaced, so that the change in the conduction-band edge at the interface is 
abrupt. Finally, the entire device was assumed to have a ionized donor density of 
2xl018 cm-3.
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3.2. Input Deck
In days of old, when “small” computers fit neatly in a warehouse, and their 

operators spoke a language no one else understood, the preferred method of input was 
the punched card. Each line of input was recorded on a card; each file Was created 
by stacking cards in order. Although card-punch machines have become obsolete, 
their associated terminology has not. The following description of SEQUAL’s input 
“deck” is but one example of jargon refusing to die.

In SEQUAL, the user controls program operation via the input deck, a short file 
of commands read from standard input. Essentially, the input deck is a list of assign
ment statements, specifying particular values for SEQUAL’s input parameters. Each 
input parameter is represented by a key word, and logically related “keys” are 
grouped together on a command line or “card.” Figure 3.2 illustrates the input deck 
syntax. Each card begins with the card name, and is followed by a list of assignments 
to various keys. A single card can be continued on any number of lines by specifying 
the continuation character in place of the card name. Note that space is-not 
allowed around the equal sign in an assignment to a key, although anywhere else the 
use of white space (including spaces, tabs, and commas) is encouraged, to promote 
legibility. Blank lines and comment lines are also allowed. A comment line is defined 
as any line beginning with a character which is neither alphabetic nor the con
tinuation character. Notice from Figure 3.2 that a single key can be assigned multi
ple values (as many as 10 values), by separating each value with a slash; white space 
is not allowed between values and slashes. A multiple-value assignment can also be 
continued on any number of lines, as shown in Figure 3.2.

The use of multiply-valued keys will become clear as the details of each input 
card are explained. Consider, however, the following card, which specifies the electron 
effective mass in a number of material layers:

matter nodes=5/ll/17 emass==0.067/0.08953/0.067

This is the input deck specification of effective mass, for the example considered in 
Figure 3.1. The key nodes is assigned the ending nodes for three different material 
layers. The first layer (GaAs) is defined by nodes 0-5; the middle layer (AlGaAs), by 
nodes 6-11; and the final layer (GaAs), by nodes 12-17. The key emass is assigned the 
electron effective mass in each of the three material regions. The other use of 
multiply-valued keys is illustrated by the following card, which specifies the tempera
ture of a device:

device temp==77.0/300.0 bias=0.0

Since two temperatures are specified for the key temp, two separate calculations will

October 3, 1987 SEQUAL User's Manual 15



Typical Input Deck Card:

cardname keyl—value key2= value

Continuation of a Single Card:

cardname keyl—value
+ key 2= value
+ key 3= value

Assigning Multiple Values to a Single Key:

cardname keyl— valuel / value2j value 3

Continuation of Assignment of Multiple Values

cardname keyi= valuel/value 2/values
+ keyl— valued/value 5
+ keyl— value 6/value 7

Comment Line:

? If the first character on a line is neither alphabetic 
? nor a the rest of the line is ignored.

Figure 3.2: Syntax of cards in the input deck
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be performed—one at 77° K, and the other at 300° K. Notice that although two 
temperatures are specified, only one bias is given. Both calculations, therefore, are 
performed at the stated bias. To perform one calculation at 77 ° K with zero bias, 
and another at 3000 K with a bias of 0.1 V, one would use:

device temp=77.0/300.0 bias=0.0/0.1

In general, every key is allowed to have multiple values. Certain keys (such as temp 
and bias) direct SEQUAL to perform several different calculations; other keys (such as 
nodes and emass considered above) specify information which remains the same for all 
calculations. Given an input deck, SEQUAL first extracts all of the data from “gh> 
bal information” keys. Remaining keys (“control” keys) are then examined to deter
mine the number of calculations to be performed. The first value of each control key 
is used in the first calculation; the second value, in the second calculation, and so on. 
When a list of values for a particular key has been exhausted, the last value of.that 
key is used in any subsequent calculations. The following card,

device temp=77.0/200.0/300.0 bias=0.0 

is equivalent to

device temp=77.0/200.0/300.0 bias=0.0/0.0/0.0 

although it demands less typing.
Hence, the use of multiply-value keys can greatly increase the power of the input 

deck in SEQUAL. Global information keys can be used to specify those device 
parameters which are not available in tabular form. Control keys can be used to 
direct SEQUAL to perform a number of similar calculations in a single program exe
cution. The remainder of this chapter is devoted to a detailed explanation of each 
program key. Further examples of program operation will be presented in Chapter 5.
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input specify format of device description file

Default State:

input file=seq.in format= zevdmk ascii=true

file The name of the device description file is specified by the file key of the
input card. Since file is a control key, several different device descrip
tions can be processed in a single execution of SEQUAL, by assigning 
file to each of the file names. Note that, in SEQUAL, a file name (or 
the value assigned to any key, for that matter) is limited to 15 charac
ters.

format To enhance the flexibility of SEQUAL’s interface with the output of 
other programs, data columns in the device description file can appear in 
any order. The order is simply specified in the format key of the input 
card. The quantity associated with each column of the data description 
file is represented by a single character, as follows:

Character Quantity
z Position-space grid
e Conduction-band profile
V Electrostatic potential
d Ionized donor doping density
m Electron effective mass
k Relative dielectric constant
? (column is ignored)

Notice that it is possible for a device description file to contain extrane
ous columns, which do not correspond to any input quantities. These 
columns, referred to by a question mark in the format specification, are 
read and ignored. For example, suppose a classical analysis program 
outputs data in tabular form, with the columns: position-space grid, 
electron density, hole density, ionized donor density, electric field, and 
conduction-band profile. Of these quantities, only the position-space
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grid, the ionized donor density, and the conduction-band profile are 
desired for input. The format specification for such an input file would 
be:

input format=z??d?e

Note that space is not allowed between the different characters in a for
mat specification.

ascii A device description file can be stored in either ASCII or (Fortran 77)
binary format. The storage type is specified with the ascii key of the 
input card:

Value Implication
true File is in ASCII format
false File is in (Fortran 77) binary format

Files in ASCII format contain floating-point data represented by ASCII 
characters. This is the normal method of output, since data can be 
listed easily. Files in binary format contain floating-point data 
represented in the computer’s internal format. Acceptable binary- 
format files must have been produced by a Fortran 77 program, and 
quantities written must have been single-precision (real), floating-point 
numbers.* Files in binary format have the advantage of demanding less 
storage space than equivalent files in ASCII format.

t Of course, if the precision of floating-point variables is somehow doubled by the
compiler, then input quantities will be expected to be double precision.
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scale change the units of input quantities in the device description file

Default State:

scale cm=l.Q ev=1.0 v=1.0 cm**-3=1.0

If quantities in the device description file are not in the units required by 
SEQUAL, they can be scaled automatically by specifying an appropriate 
scale factor. Only values in the device description file are converted. 
Values in the input deck are assumed to have the appropriate units.

cm The length scale of the position-space grid is altered by the cm key. For
example, if the position of each node is in units of microns (1 (Xm = 10~6 
m), the appropriate scale factor would be:

scale cm - 1.0e4

ev The energy scale of the conduction-band profile is altered by the ev key.
For example, if the conduction-band edge at each node is in units of 
meV (1 meV = 10-3 eV), the appropriate scale factor would be:

scale ev=1.0e3

v The scale of the electrostatic potential is altered by the v key. For
example, if the potential at each node is in units of mV (1 mV = 10~ 
V), the appropriate scale factor would be:

scale v=1.0e3

cm**-3 The scale of the donor doping density is altered by the cm**-3 key. For 
example, if the doping density at each node is in units of m , the
appropriate scale factor would be:

scale cm**-3=1.0e6
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matter specify material layers and properties

Default State: 

matter

(In the default state, profiles of material parameters are specified in 
the device description file.)

Normally, material properties are specified in the device description 
file. When a tabular listing of material properties is difficult to obtain, 
however, the matter card provides an alternative method of input. As 
many as ten different material layers can be defined, each with 
differing material properties.

nodes In the data description file, a single line of input (in other words, a sin
gle position in space) constitutes a “node.” Nodes are referred to by 
number, starting from zero at the beginning of the file. Material 
layers, therefore, are defined in the matter card by specifying the nodes 
which are endpoints of material regions. For example, the device 
description file presented in Figure 3.1 contains 18 lines; the range of 
node numbers, then, is 0 to 17. To define a single material region with 
an effective mass of 0.067, the matter card would read:

matter nodes=17 emass=0.067

To define three material layers (as in the example of Figure 3.1) the 
matter card would read:

matter nodes=5/ll/17 emass=0.067/0.08953/0.067

Note an equal number of values must be assigned to nodes, delec, 
emass, and Axe/.

delec The conduction-band offset AEC can be specified for each material
layer defined by nodes. The offset is understood as the conduction- 
band discontinuity at a material interface, and is specified in electron- 
volts. Note that, for an abrupt interface, the nodes on either side of 
the interface should be closely spaced.
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emass

krel

The electron effective mass can also be specified for each material layer 
defined by nodes. The value is input as a dimensionless quantity, in 
terms of the free electron mass, roQ.

The relative dielectric constant can also be specified for each material 
layer defined by nodes. The value is input as a dimensionless quantity, 
in terms of the dielectric constant of free space, e0.
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doping specify the ionized donor doping density

Default State:

doping ni=1.79e6 ,

(In the default state, the doping-density profile is specified in the data 
description file.)

nodes Just as the nodes key of the matter card defines different material
regions, the nodes key of the doping card defines regions with a con
stant density of ionized donors. Unless a self-consistent solution is 
desired, the donor density is needed only at the contacts (first and last 
nodes), to determine the Fermi-level of injected electrons. In this Case, 
the specification could be as simple as:

doping nodes=0/19/20 nd+=5.0el7/0/5.0el7

for a device with nodes 0 to 20, with an ionized donor density of 
5.0xl017 cm-3 in each contact. Because the donor density at interior 
nodes is irrelevant (unless a self-consistent solution is required), the 
example above could be equally expressed as:

doping nodes=20 nd+=5.0el7

For specifying the contact doping, or for some crude approximations to 
real doping profiles, the doping card provides a convenient method of 
input.

nd-H The density of ionized donors (in units of cm-3) is assigned to nd+ for
each region defined by the nodes key. Notice that SEQUAL requires 
the density of ionized donors. Partial ionization of donors, therefore, 
must be calculated by the classical analysis program contributing 
input.

ni If the ionized donor density in either device contact (i.e., the first and
last nodes) is identically zero, then the intrinsic electron density 
assigned to ni is assumed, for the calculation of the Fermi-level. 
SEQUAL assumes that charge neutrality exists in the contacts,
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between electrons and ionized donors; therefore, the ionized donor den
sity in the contacts, unless it is identically zero, is used to determine 
the Fermi-level for injection of electrons. Notice that if an extremely 
small (but non-zero) donor density is specified, a Fermi-level will be 
deduced to correspond to this concentration. This provides a trick for 
specifying the electron concentration in the case of a p-n junction. 
Holes are completely ignored in SEQUAL, and hence, there is no way of 
specifying a doping density for acceptors. In order to obtain the proper 
electron concentration, the “ionized donor density” on the p-side of the 
junction should be set equal to the minority carrier (electron) concen
tration. If, instead, it were set to zero, the value assigned to ni would 
be assumed for the minority carrier (electron) concentration.
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temp

area

bias

October 3,

Input Deck: device

specify macroscopic device parameters

Default State:

device temp=300.0 area=1.0 bias=0.0

The device temperature (in ° K) for a calculation is assigned to the 
temp key.

The cross-sectional area (in cm2) of a device is assigned to the area 
key. It is used as a multiplicative constant in the calculation of total 
current. The default area is 1 cm2, so that the total current (in A) is 
the same as the current density (in A/cm2).

An applied bias can be added to the device, in addition to any existing 
bias in the output from a classical analysis program. The amount of 
bias (in V), assigned to the bias key, is applied as a linear potential 
drop across the lightly-doped (middle) region of the device. For a self- 
consistent solution, several iterations should be allowed after the appli
cation of bias, so that the electrostatic potential will return to the 
self-consistent state. If the internal nodes of the device are no more 
lightly doped than the contacts, the bias is applied as a linear drop 
across the entire device. In this case, obtaining convergence for self- 
consistent calculations might be difficult. Note that it is possible to 
have a device description file in which bias is built into the electros
tatic potential and the conduction-band profile. In some cases, it may 
be more convenient (or accurate) to apply bias in the classical analysis 
program, and use SEQUAL to analyze the resulting potential profile.
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Solve Specify parameters controlling the analysis

Default State:

solve prec=3 itmax= 9 states=prop inject=both

prec The number of significant figures desired for important quantities can
be assigned to the prec key of the solve card. “Important” quantities 
include the electron density, the current density, and the Fermi-level in 
each contact. Since SEQUAL ■will struggle admirably (at the expense 
of CPU time) to achieve whatever precision is specified, the value 
should be kept within reasonable limits.

itmax For a self-consistent analysis, SEQUAL solves iteratively for the elec
trostatic potential and the electron density (see Figure 2.2). Conver
gence is achieved when the number of significant figures in the current 
density (between iterations) settles down to the number requested. To 
avoid excessive use of CPU time in obtaining convergence, SEQUAL 
terminates iteration when the number of iterations exceeds the value 
assigned to Umax. Therefore, iteration can be suppressed by specifying 
zero as the maximum number of iterations. If results are written to 
output files (see description of the output card), iteration can be contin
ued at any point, by using the output of a previous run as the input 
device description file (see Figure 4.2).

states Both propagating and bound electronic states can be considered in the
solution of the Schrodinger equation, according to the value assigned to 
states:

Value Implication
prop Consider propagating electronic states
bound Consider bound electronic states
all Consider propagating and bound states

The default is to consider only the propagating states, since bound 
states do not contribute to current density. Furthermore, the
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Input Deck: solve

population of bound states is correct only for devices in equilibrium 
(see section 2.2). For small deviations from equilibrium, however, the 
bound-state result obtained is a reasonable approximation to the 
correct solution. The consideration of bound states is particularly 
important for a self-consistent solution. Because the electrostatic 
potential is determined from the electron density, the bound-state con
tribution (even if it is only approximate) can significantly alter the final 
result.

In the solution of Schrodinger’s equation for propagating states, elec
trons can be injected into the device from two contacts (see section 
2.1.1). Each contact provides a separate contribution to both electron 
density and current density. The value assigned to inject determines 
which of the contributions will be calculated:

Value Implication
1-to-r Consider electrons propagating 

from left to right 
(inject from left contact)

r-to-1 Consider electrons propagating 
from right to left 
(inject from right contact)

both Inject from both contacts

Because the vast majority of devices require an analysis with injection 
from both contacts, the default value is “both.” In special cases, how
ever, the contribution from one contact may be insignificant. Consider, 
for example, the calculation of electron current for a p-n junction. 
Injection from the p-type contact is unnecessary, since the current 
component would be negligible.
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Input Deck: maxima

maxima specify parameters for the isolation of wavefunction maxima

Default State:

maxima prec=2 kscale=1.0

(In the default state, the first and last nodes are “watched” for 
wavefunction maxima; interior nodes are ignored.)

prec In the process of stepping through kz-space, SEQUAL looks for maxima
in the squared-magnitude of the wavefunction (see section 2.1.3). This 
insures both the proper integration of the wavefunction, and the proper 
resolution of the transmission coefficient. The number of significant 
figures requested for the calculations related to maxima isolation is 
assigned to the prec key of the maxima card. Normally, the default 
value demands sufficient precision. Particularly sharp transmission 
resonances, however, may require greater precision to be properly 
resolved. When a doubt arises, results from two different requested 
precisions should be compared.

kscale SEQUAL steps through wavevector-space for the purpose of isolating
maxima in the electron wavefunction (see section 2.1.3). Intervals of 
kz-space between successive maxima are then integrated, to determine 
the electron density and the current density. Normally, the default 
kz-step is adequate for isolation of wavefunction maxima. The kz-step 
can be scaled to any size, however, according to the value assigned to 
kscale. Notice that the size of the kz-step (if it is sufficiently small) has 
no effect on integration of the wavefunction. Integration intervals are 
defined by local maxima in the wavefunction. A smaller kz-step can 
provide better resolution in the output of quantities, such as the 
transmission coefficient and the wavefunction magnitude. A larger kz- 
step should be used with extreme caution: If wavefunction maxima, are 
improperly resolved, the calculations for electron density and current 
density will be in error.
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Input Deck: maxima

The isolation of kz-space maxima in the wavefunction could be accom
plished at all position-space nodes. This would increase execution time 
tremendously, however, without adding to the accuracy of the calcula
tion. It is necessary to isolate kz-space maxima only at those nodes for 
which the wavefunction varies rapidly. By default, the first and last 
nodes of any device are “watched” for maxima in kz-space (see section 
2.1.3). Additional nodes can be considered, if the node numbers are 
assigned to the watch key.
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Input Deck: integ

integ specify parameters for the integration of the wavefunction

Default State:

integ orders=2/4/6/8/l0/l2/l6/20/24 kbt=10.0 et=1.0

orders For the calculation of electron density and current density* the magni
tude of the wavefunction must be integrated in kz-space (see section 
2.1.2). Integration is performed using Gaussian quadrature with Legen
dre polynomials (see section 2.1.3). To achieve the precision requested 
(via prec of the solve card), successive orders of integration are applied 
to an integration interval, until the precision is obtained, or until the 
list of integration orders is exhausted. Orders available for the integra
tion process are assigned to the orders key. In the default state, all 
available orders are assigned to orders. For cases in which the reduc
tion of execution time is more important than the accuracy of results, 
the list of integration orders may be abbreviated. Indeed, a single 
integration order could be specified (e.g., the highest order available), if 
an estimation of the solution accuracy is unnecessary.

kbt In theory, integration of the wavefunction should be performed over
the range of all wavevectors from zero to infinity (see section 2.1.2); in 
practice, integration must be truncated at some large but finite 
wavevector. The point of truncation is determined in SEQUAL by con
sidering the number of significant figures in integration results. 
Integration is performed up to some minimum wavevector. Beyond 
this, integration is continued (if necessary) to achieve the requested 
precision, for both the electron density and the current density. The 
minimum wavevector for integration corresponds to an energy which is 
some multiple of kBT higher than the maximum energy in the conduc
tion band. The value assigned to kbt specifies the multiple of kBT,

et In the derivation of formulas for both the electron density and the
current density, the wavefunction was assumed to be weakly dependent 
on the transverse energy Et (see section 2.1.2). This allowed the 
wavefunction, evaluated at a representative transverse energy, to be
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removed from the integration over transverse momenta. Hence, the 
integration over transverse momentum could be performed analytically. 
The particular transverse energy at which the wavefunction is 
evaluated is determined by the value assigned to et (in units of kBT). 
A reasonable assumption for the representative transverse energy is the 
thermal average energy, kBT.
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Input Deck: title

title specify a title for printed (standard) output

Default State: 

title

(In the default state, no title appears on output pages.)

The title card is unique for two reasons: It is the only card in the
input deck which does have any keys, and which cannot be continued 
on multiple lines. Any text following the card name is taken as the 
title of the execution. This title appears in the heading of each page of 
printed output.
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print specify the form of printed (standard) output

Default State:

print tcoeff==* formatl=zevn format2= zdmk verbose=true

tcoeff For propagating electrons, a listing of the transmission coefficient
versus incident energy can be obtained in printed output, according to 
the value assigned to tcoeff:

Value Implication
1-to-r Print the transmission coefficient for electrons 

propagating left-to-right
r-to-1 Print the transmission coefficient for electrons 

propagating .right-to-left
both Print transmission coefficients for both 

directions of propagation
* Do not print transmission coefficients

For self-consistent solutions, a listing of the transmission coefficients is 
provided only for the final iteration.

formatl

format2 A tabular listing of both input parameters and calculated results can 
be obtained in printed output. Two sections of output, each with a 
maximum of four columns, can be defined with the output format keys, 
formatl and formats. The quantity associated with a particular 
column is represented by a single letter, as follows:
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Character Quantity
z Position-space grid
e Conduction-band profile
v Electrostatic potential
n Electron density
d Ionized donor doping density
m Electron effective mass
k Relative dielectric constant

. * (No output in a section)

The definitions shown above, except for the addition of n and * are 
identical to those presented in conjunction with input format. Unlike 
the input format specifier, formatl or formats (or both) can be 
assigned to *, which causes an output section to be suppressed. For 
example, to obtain a single output section listing position, conduction- 
band energy, and electron density, the print card could be either of the 
following:

print formatl==zen format2=*

print formatl=* format2=zen

Verbose Because SEQUAL can provide so many sections of output in a single 
run, the user is allowed the option of suppressing superfluous output, 
with an assignment to verbose:

Value Implication
true All output sections are supplied
false Superfluous output sections are suppressed

Although some of the “verbose” output may seem unnecessary, it is 
included to aid the user in understanding the problem description, and 
in evaluating the performance of SEQUAL.
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Output specify the form of (plotting) output files

Default State:

output file=seq data=* columns=3 ascii=true

For each calculation, data presented in printed output are also avail
able for storage in files. Such files can be used as input to plotting pro
grams, or as input (for further processing) to SEQUAL.

file The argument of the file key on the output card is used as a basis in
forming all output file names. For each file created, an extension is 
added to the root file name specified, to identify both the type and for
mat of stored data. (For an understanding of different output files and 
their respective extensions, see section 4.2.)

data Different types of data can be requested for output, according to a
string of single-character keys assigned to data:

Character Type of Data Stored
d Device data (quantities vs. position)
b Bound-state data
t Transmission coefficient data
w Surface plot of the wavefunction magnitude
* (No data is stored)

In an assignment to data, the characters above may appear in any 
order. For example, the following two cards are equivalent:

output data=dtw

output data=wdt

Notice that space is not allowed between the characters.
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columns

ascii

For compatibility with many different plotting programs, data can be 
written to output files in single-column, paired-column, or multiple- 
column formats, according to the value assigned to columns:

Value Implication
i Single-column format
2 Paired-column format

> 3 Multiple-column format

Output files can be stored in either ASCII format or (Fortran 77) 
binary format, according to the value assigned to ascii on the output 
card:

Value Implication
true File is in ASCII format
false File is in (Fortran 77) binary format
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Summary of Input/Output Keys

Card Key Value Key Type f

file text (filename) control
input format (z, e, v, d, m, k, ?) control

ascii logical control

cm real control
scale ev real control

V real control
cm**-3 real control

nodes integer global information
matter delec real (eV) global information

emass real (mQ) global information
krel real(e0) global information

nodes integer global information
doping nd+ real (cm 3) global information

ni real (cm’3) control

title ~ — —

tcoeff (1-to-r, r-to-1, both, *) control
print format 1 (z, e, v, d, m, k, n, *) control

format2 (z, e, v, d, m, k, n, *) control
verbose logical control

file text (filename) control
output data (d, b, t, w, *) control

columns integer control
ascii logical control

t For a explanation of “control” keys and “global information” keys, see section 3.2. 

Table 3.2: Summary of keys which control the input/output of SEQUAL
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Summary of Execution Keys

Card Key Value Key Type f

device
temp
area
bias

real (0 K) !
real (cm2) 
real (V)

control
control
control

solve
prec
itmax .
states 1 
inject

integer
integer
(prop, bound, all) j 
(1-to-r, r-to-1, both)

control
control
control
control

maxima I
prec
kscale
watch

integer
real :
integer

control
control
global information

integ
orders
kbt
et

integer 
(KbT) 

real (Kr,T)

global information j
control
control

] For a explanation of “control” keys and “global information” keys, see section 3.2. 

Table 3.3: Summary of keys which control the execution of SEQUAL
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4
Program Output

SEQUAL provides two kinds of output: printed output, and output files. For 
each execution, a record of input data and output results is written to standard out
put. Because this record is formatted with Fortran line-printer codes (providing 
page ejection, etc.) it is intended to serve as a printed report of all calculations. 
Pages are numbered, and headings are printed at the top of each page. Output 
files, on the other hand, are not well suited to examination; rather, they are pro
vided to serve as input for plotting programs. Because both forms of output can 
include a wide variety of different results, each form is presented in detail, in the fol
lowing sections.

4.1. Printed Output

Figure 4.1 depicts the general form of printed output in SEQUAL. For each 
execution of the program, a number of different output sections could appear in the 
printed record. Each section will only appear, however, if it is necessary. Moreover, 
some of the output is verbose, and can be suppressed at the request of the user. In 
Figure 4.1, the sections grouped together in a dashed box present output for each 
calculation. Since SEQUAL can perform several calculations in a single program 
execution, these sections may appear several different times in the printed record. 
(See discussion of “control” keys in section 3.2.) Although the example output pages 
presented in Chapter 5 are easily worth a thousand words, a brief description of 
each section is given below:

Input Decks
Printed output begins with an echo of the input deck. Syntax errors (if 
any are found) are pointed out under each offending line.
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Final Results

Comments on the Calculation

Summary of Input Information 
(Each Calculation)

Summary of Input Information 
(Global Information)

Input Deck

Bound-State Data

Transmission Coefficient Data

Iteration Data and Statistics

Figure 4.1: Diagram of printed output. Items in the dashed box are presented for
each calculation (see discussion of “control” keys in section 3.2).
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Summary of Input Information (Global Information):
Device data which has been specified on input cards matter or doping is 
summarized in a pictorial fashion. Because this information is global to all 
calculations, it appears only once, near the start of printed output.

Summary of Input Information (Each Calculation):
For each calculation, SEQUAL presents a page summarizing all important 
input parameters. Although this page is helpful in clarifying the details of 
a particular calculation, it is considered “verbose,” and it can be 
suppressed.

Transmission Coefficient Data:
A table of the transmission coefficient versus energy can be requested for 
each direction of propagation. For iterative calculations, a table is gen
erated only for the results of the final iteration.

Iteration Data and Statistics:
For iterative calculations, the degree of convergence obtained for each 
iteration is summarized in tabular form. In addition, statistics characteriz
ing the propagating-state solution are presented. Because most of 
SEQUAL’s execution time is spent in the analysis of propagating states, 
these statistics can be used to evaluate the overall performance of the pro
gram. Although propagating-state statistics are sometimes useful, they are 
considered “verbose,” and can therefore be suppressed.

Bound-State Data:
For bound-state calculations, SEQUAL presents a table of bound-state 
energies and two-dimensional electron densities. If a propagating-state 
solution was also requested, a breakdown of the electron density is printed, 
showing the contributions due to propagating states and bound states.

Comments on the Calculation:
All warnings, cautions, and error messages encountered in a particular cal
culation are collected onto a single page. A brief explanation is presented 
for each problem encountered, along with suggestions for relieving the 
difficulty.
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Final Results:
A section of final results begins by listing the current obtained for the bias 
across the device. Following this, device data is presented in two sections* 
as specified by format! and formats on the print card.

4.2. Output Files

In addition to the printed record, SEQUAL can create a number of data files for 
the storage of results. Because these files contain raw data, they are well suited for 
use with plotting programs. Of course, different plotting programs require different 
formats for input data. Some programs demand x-axis data and y-axis data in 
separate files; some require a paired listing of x and y values. To accommodate the 
majority of programs, SEQUAL can output data in three formats, according to the 
value assigned to columns on the output card. Data can be written in single-column, 
paired-column, or multiple-column formats. Obviously, many data files will be 
created by the single-column or paired-column option; files are distinguished by an 
extension added to the specified file name. Extensions were chosen to indicate at a 
glance the contents of a particular data file. For instance, the files ending in ".z" 
contain a single column, listing the position-space grid; files ending in ".zv" contain 
two columns of data—the position-space grid and the electrostatic potential. A com
plete listing of extensions is presented in Tables 4.1-4.4.

Table 4.4 shows that, for output files describing the wavefunction surface, the 
format is independent of the number of columns specified. Files ending in “.wlr-z” 
or “.wrl-z” contain a list of position-space nodes; similarly, files ending in “.wlr-e” or 
“.AVrl-e” contain a list of energy-space nodes. The squared-magnitude of the 
wavefunction, weighted by <j/27T, is listed in files ending with “.wlr-m” or “.wrl-m” 
extensions. Data appear sequentially: For each energy, the quantity is listed across 
the entire device, from the first node to the last. Plotting programs reading the 
data, therefore, will read a matrix of values. In the process of reading data, the 
index for position-space entries will vary more rapidly.

Output files in multiple-column format can also be used as input to SEQUAL. 
Consider, for instance, the computation of a self-consistent current-voltage charac
teristic. Using a multiple-valued assignment to the bias key, the user can instruct 
SEQUAL to calculate current at a number of different biases. For a self-consistent 
calculation, a bias is applied to an input potential, and solutions for the electron 
density and electrostatic potential are performed iteratively. One would expect the 
self-consistent potential obtained for one bias to be quite close to the solution for the

42 SEQUAL User's Manual October 3, 1987



Chapter 4 — Program Output

next bias. Rather than apply biases to the same input file, the clever user will feed 
output results back in, as input.

In Figure 4.2, an example input deck is shown, to perform the feedback. The 
file classical contains output from a classical analysis program, with data in the 
default column-format zevdmk. A self-consistent calculation is performed at zero 
bias, and the results are stored in the file outl.z...k. This file is then used as the 
device description for the next calculation. Because the output from SEQUAL 
includes three columns describing electron density (propagating, bound, and total), 
the input format becomes zev???dmk for the three Calculations with feedback. For 
each calculation, an additional bias of 0.1 V is applied to the potential profile. 
Hence, current is calculated for biases of 0 V, 0.1 V, 0.2 V, and 0.3 V.

**** I/O Feedback:
* Results of one calculation are stored in output
* files, and read back as input.
****

input file=classical/out0.z...k/outl.z...k/out2.z.i.k
-1 format=zevdmk/zev???dmk

device bias=0.00/0.10/0.10/0.10
solve itmax=15

output file=out0/outl/out2/out3 data=d columns=3

Figure 4.2: Input deck for feedback of output files
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Summary of Output Files (data=d)

column6= File Extension Quantity

.z position

.e conduction-band energy

.v electrostatic potential

•P propagating electron density
1 .b bound-state electron density

.n total electron density

.a ionized donor density
.m effective mass
.k relative dielectric constant

.ze position
conduction-band energy

.ZY position
electrostatic potential

.zp position
propagating electron density

2 zb position
bound-state electron density

.zn position
total electron density

.zd position
ionized donor density

.zm position
effective mass

.zk position
relative dielectric constant

position
conduction-band energy 
electrostatic potential 
propagating electron density

>3 .z...k bound-state electron density 
total electron density 
ionized donor density 
effective mass
relative dielectric constant

Table 4.1: Summary of output files created for storage of device data
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Summary of Output Files (data= t)

columns= File Extension Quantity

1 .tlr-e energy
(propagation left-to-right)

.tlr-c transmission coefficient 
(propagation left-to-right)

.trl-e energy
(propagation right-to-left)

.trl-c transmission coefficient 
(propagation right-to-left)

2, >3
.tlr-ec

energy
transmission coefficient 
(propagation left-to-right)

.trl-ec
energy

transmission coefficient 
(propagation right-to-left)

Table 4.2: Summary of output files created for storage of transmission coefficient
data

Summary of Output Files (data=h)

columns— File Extension Quantity

1 .bs-e bound-state energy
.bs-n two-dimension electron density

2, >3 .bs-en bound-state energy 
two-dimensional electron density

Table 4.3: Summary of output files created for storage of bound-state data
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Summary of Output Files (data=vf)

columns= File Extension Quantity

.wlr-z position (propagation left-to-right)

.wlr-e energy (propagation left-tonight)
1, 2, >3 .wlr-m |^H2^r/2^r

.wrl-z position (propagation right-to-left)

.wrl-e energy (propagation right-to-left)

.wrl-m I ^H2^1 / 2tt

Table 4.4: Summary of output files created for storage of wavefunction surface
plots
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Example Calculations

To illustrate some of the abilities of SEQUAL, example calculations are 
presented in this chapter, for a resonant tunneling device fabricated by Ray, et. al. f 
The device, pictured in Figure 5.1, is composed of two Al045Ga055As barriers 
sandwiched around a GaAs potential well.^ Classically, electrons injected from the 
contacts at energies below the top of the barrier are completely reflected; quantum 
mechanically, however, it is possible for electrons to be transmitted. Electrons, after 
tunneling through one potential barrier, can experience multiple reflections inside the 
quantum welly before tunneling through the other barrier. Because of the wave- 
nature of electrons, these multiple reflections can constructively interfere, producing 
a large transmission across the entire device. In summary, electrons injected at par
ticular “resonant” energies will experience unity transmission; those injected at ener
gies off-resonance will be strongly reflected. Resonant energies are often referred to 
as “quasi-bound states,” since in the process of multiple reflection, electrons are 
effectively bound to the well.

SEQUAL can be used to graphically illustrate the resonance condition described 
above. Figure 5.2 presents a surface plot of the wavefunction versus position and 
incident electron energy. The quantity log10( |'i/f_+1(z)l2 or_+l(kz) / 27r) plotted can be 
interpreted loosely as the probability of finding an electron at a particular position, 
or at a particular energy. It is plotted on a logarithmic scale, so that important 
features can be seen clearly. Electrons, injected from the right-hand contact, are 
propagating from right to left. At low energies, electrons are strongly reflected, and 
the wavefunction exhibits a pattern of standing waves, near the right-hand contact. 
At the resonant energy, however, the wavefunction peaks sharply within the GaAs- 
well, and a ridge of transmitted electrons can be seen extending to the left contact. 
Note that the wavefunction peak is localized to the GaAs well in position-space, and 
it is extremely narrow in energy-space.

^ S. Ray, P. Ruden, V. Sokolov, R. Kolbas, T. Boonstra, and J. Williams, “Resonant 
Tunneling Transport at 300 K in GaAs-AlGaAs Quantum Wells Grown by Metalorganic 
Chemical Vapor Deposition,” Applied Physics Letters, 48(24), pp. 1666-1668, 1986.
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The wavefunction surface plot presented in Figure 5.2 was generated from the 
output of SEQUAL. A position-space grid, for the structure shown in Figure 5.1, 
was created and stored in the file rtd. Positions were written in angstrom units (1 A 
= 10-8 cm), and the electrostatic potential was taken as zero everywhere. The 
input deck, along with the rest of printed output, is shown in Figure 5.3. To insure 
proper resolution of the wavefunction, an additional node in the middle of the quan
tum well was specified for “watching.” Injection of electrons was specified as right- 
to-left. Data files used for the wavefunction surface plot were obtained by specifying 
"data—yf” on the output card. Notice that the electron density, shown in the section 
of final results, is smaller at the left-hand contact (near z=0). This is expected, 
because the electron density listed is not the total electron density; rather, it is the 
component due to electrons injected only from the right-hand contact.

SEQUAL can also be used to determine the current-voltage characteristic for 
this device, by assigning a number of voltages to the bias key. In Figure 5.4, an 
input deck is shown, which has been modified for this purpose. Notice that separate 
output-file names are specified for each bias, so that files are not overwritten. For 
the purposes of this example, a self-consistent solution was not necessary; hence, the 
maximum number of iterations was set to zero. As an initial guess, biases were 
specified in increments of 0.05 V; the input deck was then modified again, to include 
a few additional biases. Values of current, taken from the listings in the sections of 
final results, were stored in a separate file, and plotted. The resulting current- 
voltage characteristic appears in Figure 5.5.

Negative differential resistance, apparent in Figure 5.5, is a characteristic 
feature of resonant tunneling devices. For small biases, the dominant current com
ponent is supplied by electrons tunneling through the first quasi-bound state, from 
the right-hand contact. As larger biases are applied across the device, the quasi
bound state is lowered in energy, with respect to the conduction-band edge in the 
right-hand contact. More electrons are available for tunneling at energies near the 
conduction-band edge in the contact. Therefore, current increases to a maximum 
value. When the quasi-bound state is pulled below the range of injection energies of 
the contact, however, current is abruptly reduced. This effect is depicted graphi
cally in Figure 5.6, which shows the conduction-band profile of the resonant tunnel
ing device, at the bias of maximum current. Notice that the quasi-bound state 
energy is quite close to the conduction-band edge in the right-hand contact. Any 
additional bias lowers the quasi-bound state below the range of (right-hand) injec
tion energies, and current is abruptly cut-off.
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•.V

£

0.365 eV

Ec

500 A ; so A 50 A 50 A 50 A 50 A 500 A

feijij:} n-type GaAs (doped 2xl018 cm 3)

□ ; GaAs (undoped)

:::: Al0.45Ga0 55As (undoped)

Figure 5.1: Structure of the resonant tunneling device examined in subsequent cal
culations
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logio( I I 2 o1-*1 / 27r)

Figure 5.2: The wavefunction magnitude, weighted by the transverse integration
or-,'1(kz), for electrons injected from the right contact of the resonant 
tunneling device in Figure 5.1
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Figure 5.3

October 3,

Chapter 5 — Example Calculations

XXXX XXXXX XXXX XX XX XXXX XX --------------------—
XX XX XX XX XX XX XX XX XX SEQUAL 2.0
XXX XXXX XX XX XX XX XXXXXX XX ————————————— Purdue University

XX XX XX X XX XX XX XX XX August 1987
--/XXXX XXXXX XXX X XXXXX XX XX XXXXXX------ ------------------ ------- ---------- ■----------

SEQUAL: input deck

* * 
** 

**

** * * ******** ******' * * ****** * * * * ******* * * * * * * * * *-*•* * * * * ***** * * * * 
a resonant tunneling device fabricated by ray et. al. **

(applied physics letters, 48(24), p. 1666, 1986) is ** 
simulated. a plot of the wavefunction surface in ** 
position-space and energy space is obtained, for **

** electron injection from the right contact. * *
'******************* ************* * * * * ****************** * ******

title resonant tunneling device (appl. phys. lett., 48(24), p. 1666, 1986)

-- input file "rtd" contains positions in angstroms —

input file-itd fOrmat-zv 
scale cm-1.0e8

matter node s-21/3 2/4 3/54/7 6
+ delec-0.0/0.365/0.0/0.365/0.0 
+ entass-0.067/0.08953/0.067/0.08953/0.067

doping, nodes-10/65/76 nd+-2 .el8/0./2 .el8

device temp-300.0 area-9.e-6 
solve ltmax-0 prec-3 inject-r-to-1

-- to insure proper resolution of the wavefunction,
-- Watch a node in the well-region (node 38)

maxima watch-38

print tcoeff-* format1-zen format2-* verbose-true 
output file-rtd data-w

Executing a total of 1 calculation(s).

Example of printed output
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SEQUAL 2.0
preliminary information

page 2
Summary of Input Information

resonant tunneling device (appl. phys. lett., 48(24),, p. 1666, 1986)

For all calculations. the following assumptions apply,
regardless of data read from input file(s).

r+* 0
+— -------+' i conduction-band offset - 0. eV
! ! ! effective mass - 0.670000E-01 mO
! ! + node 21
+—‘ -------+'+ node 22
+— -------+' ! conduction-band offset - 0.365000 eV
j { I effective mass - 0.895300E-01 mO
i ! + node 32
+— 33

" +— -------+' j conduction-band offset - 0. eV
! ! ! effective mass - 0.670000E-01 mO
! ! + node 43
+— 44
+— ------+' ! conduction-band offset - 0.365000 eV
l ! i effective mass - 0.895300E-01 mO
! ! + node 54
+— 55
+— ! conduction-band offset - 0. eV
i ii effective mass - 0.670000E-01 mO
! ! + node 76
+—----

> +——+ node 0
-------+' ! donor doping density - 0.200000E+19 /cm**3

! S + node 10
+;— 11
+—-------+' ! donor doping density - 0.000000E+00 /cm**3

. , 1 ■ ! +. node 65
+— 66
+—-------+' ! donor doping density - 0.200000E+19 /cm**3
! ! + node 76
+—------ +'

Figure 5.3: Example of printed output (continued)
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Chapter 5 — Example Calculations

SEQUAL 2.0 page 3
calculation 1 of 1 Summary of Input Information

resonant tunneling device (appl. phys. lett., 48 (24), p. 1666 1986)

left contact------------ ----------------------------------------- —
! doping density: 0.20000000E+19 /cm**3
! effective mass: 0.67000002E-01 mO
! Ef - Ec: 0.79055786E-01 eV

Nodes ,+-*--------- + <— ---------------------------------------------------------------------------------
watched: +.-----------+' !

!//////! + <- 0.0 Angstroms
0 > +------------ •

! 
j 
!
!

> i
! r->l 
! j
! ! ! ! !

76 >
!//////! + <— right contact --------------------------------------------------------
+--•-------+' ! doping density: 0.20000000E f 19 /cm**3

! effective mass: 0.67000002E-01 mO 
! Ef - Ec: 0.79055786E-01 eV

INPUT (ASCII )- XX +------------------—+ XX OUTPUT (ASCII
rtd XXXXXXXX ! ! XXXXXXXX rtd.wrl-z

XXXXXXXXXX ! SEQUAL 2..0 ! XXXXXXXXXX rtd.wrl-e
format: XXXXXXXX ! ! XXXXXXXX rtd.wrl-m
zv XX +------------------—+ XX

! !

temperature: 
cross-sectional area: 

bias applied to structure: 
propagating electron Et: 
intrinsic carrier cone.:

300.0000 K
0.90000003E-05 cm**2 

0. V
1.0000000 ' Kb T

0.17900000E+07 /cm**3

electronic states are: propagating

+ <- 1250.0 Angstroms

Figure 5.3: Example of printed output (continued)
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SEQUAL 2.0
calculation 1 of • 1

page 4
Statistics and Iteration Data

resonant tunneling device (appl. phys. lett., 48(24), p. 1666, 1986)

WAVEFUNCTION FOR PROPAGATING ELECTRONS: Use of kz-space nodes

Iteration: # 0

kz-space nodes ...
used in isolating maxima: 161

used in integration: 670
miscellaneous: 195

TOTAL: 1026

WAVEFUNCTION FOR PROPAGATING ELECTRONS: Integration concerns

Iteration: # 0

kz-space maxima found: 28

Average maxima separation
/ kz-step

... right-to-left: 5.8957

Number of kz-space
intervals integrated: 33

Gauss-Legendre integration
highest order: 12

lowest order: 4
average order: 7

Figure 5.3: Example of printed output (continued)
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Chapter 5 — Example Calculations

SEQUAL 2.0 
calculation 1 of 1

page 5
Final Results

resonant tunneling device (appl. phys . lett., 48 (24), p. 1666, 1986)

Current: Voltage:

LEFT-to-RIGHT: 0.000000E+00 A In Input File: 0.000000E+00 V
RIGHT-to-LEFT: -0.137929E-01 A Applied Bias: 0.000000E+00 V

Total Current: 0.137929E-01 A Total Voltage: 0.000000E+00 V

Position Conduction Band Electron Dens.
(era) (eV) (/cm**3)

0. 0. 0.13938995E+15
0.50000000E-06 0. 0.13938993E+15
0.10000000E-05 0. 0.13938994E+15
0.15000002E-05 0. 0.13938995E+15
0.20000000E-05 0. 0.13938994E+15
0.24999999E-05 0. 0.13938995E+15
0.30000003E-05 0. 0.13938995E+15
0.35000000E-05 0. 0.13938994E+15
0.40000000E-05 0. 0.13938995E+15
0.45Q00002E-05 0. 0.13938994E+15
0.4 9900000E-05 0. 0.13938994E+15
0.49999999E-05 0. 0.13938994E+15
0.50499998E-05 0. 0.13938994E+15
0.51000002E-05 0. 0.13938994E+15
0. 51500001E-05 0. 0.13938995E+15
0.52000000E-05 0. 0.13938994E+15
0.52500000E-05 0. 0.13938994E+15
0.52999999E-05 0. 0.13938994E415
0.53499998E-05 0. 0.13938994E+15
0.54000002E-05 0. 0.13938994E+15
0.54500001E-05 0. 0.13938994E+15
0.54900001E-05 0. 0.13938995E+15
0. 55000000E-05 0.36500001 0.13994561E+15
0.55500000E-05 0.36500001 0.18066795E+15
0.55999999E-05 0.36500001 0.31577197E+15
0.56499998E-05 0.36500001 0.63506427E+15
0.57000002E-05 0.36500001 0.13511151E+16
0.57500001E-05 0.36500001 0.29412975E+16
0.58000001E-05 0.36500001 0.64667889E+16
0.58500000E-05 0.36500001 0.14281898E+17
0.58999999E-05 0.36500001 0.31607775E+17
0.59499998E-05 0.36500001 0.70023107E+17
0.59899994E-05 0.36500001 0.13236001E+18
0.60000007E-05 0. 0.15169191E+18
0.60500001E-05 0. 0.24259597E+18
0.61000001E-05 0. 0.33233649E+18
0..61500004E-05 0. 0.40712321E+18
O.61999999E-05 0. 0.45546977E+18
0.62499998E-05 0. 0.4 6995659E+18

Figure 5.3: Example of printed output (continued)
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Figure 5.3

SEQUftL 2.0 page (5
calculation 1 of 1 Final Results

resonant tunneling device (appl. phys. lett., 48(24), p. 1666, 1986)

Position
(cm)

0.63000002E-05 
0.63500001E-05 
0.63999996E-05 
0.64500000E-05 
0.64900000E-05 
0.65000004E-05 
0.65499999E-05 
0.65999998E-05 
0.66500002E-05 
0.67000001E-05 
0.67499996E-05 
0. 67999999E-05 
0.68499999E-05 
0.68999993E-05 
0.69500006E-05 
0.69900002E-05 
0.70000001E-05 
0.70500000E-05 
0.71000004E-05 
0.71499999E-05 
0.71999998E-05 
0.72500002E-05 
0.73000001E-05 
0.73499996E-05 
0. 74000000E-05 
0.74499999E-05 
0.74899999E-05 
0.74999994E-05 
0.80000000E-05 
0.85000001E-05 
0.90000003E-05 
0.94999996E-05 
0.99999997E-05 
0.10500000E-04 
0.11000000E-04 
0.11500000E-04 
0.12000001E-04 
0.12500000E-04

Conduction Band 
(eV)

0.
0.
0.
0.
0.

0.36500001
0.36500001
0.36500001
0.36500001
0.36500001
0.36500001
0.36500001
0.36500001
0.36500001
0.36500001
0.36500001

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

Electron Den9. 
(/cm**3)

0.44836270E+18 
0.39400858E+18 
0.31524703E+18 
0.22417760E+18 
0.15185733E+18 
0.13253833E+18 
0.60011229E+17 
0.27507440E + 17 
0.13311273E+17 
0.79630943E + 16 
0.79649460E+16 
0.13514750E+17 
0.28819871E+17 
0.65357 604E+17 
0.15065666E+18 
0.29519630E+18 
0.34111472E+18 
0.56871785E+18 
0.82325686E+18 
0..10842372E + 19 
0.13329382E+19 
0.15543195E+19 
0.17382395E+19 
0.18798473E+19 
0.19792246E+19 
0.20404274E+19 
0.20663852E+19 
0.20702057E+19 
0.19887109E+19 
0.20006154E+19 
0.19999505E+19 
0.19998500E+19 
0.19998793E+19 
0.19998764E+19 
0.19998765E+19 
0.19998763E +19 
0.19998765E+19 
0.19998761E+19

Example of printed output (continued)
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Chapter 5 — Example Calculations

*************************************************************

. A resonant tunneling device fabricated by Ray et. al.

. (applied physics letters, 48(24), p. 1666, 1986) is
simulated. Current is computed for several biases.

. Results are not self-consistent.
*************************************************************

title resonant tunneling device (appl. phys. lett., 48(24), p. 1666, 1986)

-- input file "rtd" contains positions in angstroms

input
scale

file—rtd format =zv
cm=1.0e8

matter
+
+

nodes=21/32/43/54/76 
delec=0.0/0.365/0.0/0.365/0.0 
emass=0.067/0.08953/0.067/0.08953/0.067

doping nodes= 10/65/76 nd+=2.el8/0./2iel8

— compute current for biases:
- 0 V, 0.05 V, 0.10 V, 0.15 V, 0.20 V, 0.25 V, 0.30 V

device
+

temp=300.0 area=9.e-6 
bias=0.00/0.05/0.10/0.15/0.20/0.25/0.30

solve
maxima

itmax—0 prec=3 inject—r-to-1 
watch=38

print
output

+

tcoeff=* formatl = zen forma12=* verbose=true
file=rtd00/rtd05/rtdl0/rtdl5/rtd20/rtd25/rtd30
data=dt

Figure 5.4: Input deck for the application of several different biases
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Chapter 5 — Example Calculations

0.02 -

Voltage (V)

Figure 5.5: Current-voltage characteristic for the resonant tunneling device
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Figure 5.6: Conduction-band profile of the resonant tunneling device for the bias of
peak current
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6
Special Considerations

6.1. Installation Notes

SEQUAL is written in standard Fortran 77, and has been implemented at Pur
due University on Sun® workstations and the Dual VAX 11/780 machines. To 
ensure reasonable accuracy, floating-point representations should use at least 48 bits 
to describe the mantissa (fractional part). Therefore, typical installations must use 
double-precision complex variables. Although this is not allowed in standard For
tran 77, the f77 compiler for the Dual VAX machines will automatically double the 
precision of all floating-point variables, when the argument “-r8” is specified. Furth
ermore, many compilers now recognize “double complex” as a data type. To 
account for these variations in Fortran 77 compilers, three versions of SEQUAL 
exist. One version, for machines with a large word-length, uses ordinary, single
precision complex variables. Another, for machines which recognize the “double 
complex” data type, uses double-precision complex variables. Finally, a third ver
sion exists for machines with insufficient precision and a strict compiler; this final 
Version simulates the double-precision complex type by using pairs of double
precision variables.

For the analysis of bound states, SEQUAL relies upon eigrf in the International 
Mathematical and Statistical Library (IMSL). If this subroutine is not available to 
the user, it can be removed from the program code, and the bound-state analysis 
can be disabled. To accomplish these tasks, the user must comment-out the subrou
tine call, which appears in the subroutine bstate:

c
■ c ..
c zzz zzz zzz MACHINE DEPENDENT CODE zzz zzz zzz 
c
c If IMSL routines are unavailable, comment out the 
c following line, so that SEQUAL can be compiled: 
c
c call eigrf(matrix,nodes,ia,ijob,val,vec,ia,wk,ier)
c
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In addition, the constant irnsl in the main program should be properly set, to disable 
the bound-state analysis:

c
c zzz zzz zzz MACHINE DEPENDENT CODE zzz zzz zzz 
c .
c imsl if IMSL routines are unavailable for a host 
c system, the parameter ’imsl’ below should
c be assigned the value \false.1
c

integer zimax, mxque, maxiter, maxii, errmax 
integer mxcard, mxkeys, mxarry, mxoind, mxord, nexts 
real maxreal 
logical imsl
parameter ( zimax=251,

-f maxiter=30,

-f- imsl=.false. )
c -V.' <./

Notice that both of these corrections are clearly marked in the program code by the 
comment:

c zzz zzz zzz MACHINE DEPENDENT CODE zzz zzz zzz

In SEQUAL, all machine-dependent constants are marked in this manner. For a 
proper installation, the user should search the program code for all appearances of 
this comment, and follow the instructions immediately following it. Since the vast 
majority of machine-dependent constants are used to check for overflow or underflow, 
the corrections should be obvious.

6.2. Pitfalls to Avoid

Among the most frustrating problems that a user might encounter are those 
which arise from the physics of a particular analysis. Suppose a (weary) user has 
created a device description and an input deck, has run SEQUAL, and has obtained 
results which appear to be in error. Resisting his impulse to burn this manual, the 
user would receive his reward in this section; it is devoted to relieving both confusion 
and misery.

At the heart of the propagating-state analysis lies the assumption that contacts 
are in local, thermodynamic equilibrium. Unless the potential profile is sufficiently flat 
near each contact, this assumption will be violated. To guarantee a proper analysis,
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Chapter 6 — Special Considerations

it is prudent to include “buffer” regions between the ideal contacts (nodes 0 and N) 
and the actual region of interest in the device. For example, in Chapter 5, the 
analysis of a resonant tunneling device included 500 A buffer layers of GaAs, separat
ing nodes 0 and N from the interior of the device. These buffer layers are merely 
extensions of the contacts, with the same material properties and the same density of 
ionized donors. They should be long enough to allow equilibrium to be restored: Elec
tron density should return to the density of ionized donors, and the electrostatic 
potential should flatten out (t.e., electric fields should decay to zero), within these 
regions. Because of the recursive dependence of both the electron density and the 
electrostatic potential, the use of buffer layers is especially important in self- 
consistent calculations. Unless equilibrium is restored near the contacts, errors in 
either the electron density or the electrostatic potential will feed back into the solu
tion, making convergence an impossible goal.

Another source of feedback can further aggravate problems in convergence: If 
the contacts (or buffer layers) are lightly-doped with respect to the internal device 
structure, a self-consistent solution may be difficult to obtain. In this case, most of 
the band-bending (and most of the applied bias) will appear in buffer layers. Restor
ing equilibrium conditions near the contacts will be difficult. To some degree, the 
length of buffer layers can be increased; the analysis of long devices, however, is itself 
a difficult task, which will be described below.

In the same manner, non-equilibrium solutions may be difficult to obtain for 
conduction-band profiles which do not obstruct the flow of electrons. For instance, if 
the user attempts to apply a bias to a uniform block of semiconductor (for which the 
equilibrium conduction-band profile is completely flat), the results obtained will be 
nonsense. For a reasonable bias, the electron density will be higher at one contact, 
and lower at the other. In a real device, the flow of electrons is somewhat impeded 
by interactions with scattering mechanisms; in the limit of ballistic transport, how
ever, there is nothing to impede the flow of electrons, aside from interactions with the 
potential. A conduction-band profile without reflective features might be thought of 
as representing a device with infinite conductance; because it is unable to support a 
bias, the user should not consider applying a bias.

In the analysis of bound states, the use of buffer layers is also important. As 
boundary conditions to the finite-difference solution of the Schrodinger equation, it 
was assumed that the wavefunctioii is zero at each end of the device (nodes 0 and N). 
If the wavefunction decays sufficiently within the buffer regions, this assumption is 
valid; otherwise, the solution of eigensystem may be in error.
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From the preceding discussion, one might be tempted to include buffer layers of 
classical difnensions (say, ~ 1 fJ.m) in every calculation. Unfortunately, this solution 
would create an even larger problem. As the overall device length increases,, the 
wavefunction magnitude becomes a rapidly varying function of kz. To insure an accu
rate integration of the wavefunction, SEQUAL integrates the kz intervals between 
peaks in the wavefunction magnitude (see section 2.1.3). Therefore, the number of 
points in kz space (and hence, the number of wavefunction solutions) increases 
dramatically with increasing device length. For devices with classical dimensions 
(~ 1/mi), the execution time of SEQUAL may be prohibitive. Typically, buffer 
regions 500 A to 1000 A long are sufficient to guarantee proper results. As a rule, it is 
more efficient to start with buffer layers that are too short, rather than too long.

Given the density of ionized donors, SEQUAL will compute the Fermi-level EF for 
each contact (nodes 0 and N). Because the electron density calculated for the 
propagating-state solution is extremely sensitive to the Fermi-level, the proper EF 
must be calculated within SEQUAL. A problem can arise, however, when using the 
output of classical analysis programs, which allow for non-parabolicity of the energy 
dispersion relation. For a device with contacts of differing materials, the Fermi-levels 
calculated by SEQUAL may not correspond to those found in the (non-parabolic) clas
sical analysis. In this case, the device will appear to have a different bias in SEQUAL 
(t.e., a different separation in the contact Fermi-levels) than it did inthe classical 
analysis. This bias would be noted in the printed-output section of final results. 
When listing the bias across device, SEQUAL provides both the actual bias (e.g., 
separation in contact Fermi-levels) and the applied bias. To remedy this situation, 
the user could apply a bias across the device which will counteract the erroneous 
Fermi-level separation.

Although (hopefully) the discussion above might be helpful, it is not intended to 
cover every conceivable problem. One final word of advice, from an author who has 
invested countless hours in the examination of program output: If SEQUAL says so, 
it is probably correct. More often than not, I have found a problem to stem from my 
own misconceptions and mistakes, rather than from the regimented computations of 
the program.
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