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PREFACE

The work described in this report is directed at understanding transport physics
in sub-micron heterostructure devices, at developing computational techniques for
modeling such devices, and at applying these techniques to investigate new device
concepts. The focus of the past year’s work has been on extending our collisionless,
quantum device models to treat elastic scattering processes and at applying
previously-developed models to the design and study of AlGaAs /GaAs heterojunction
bipolar transistors. This report describes the past year’s progress in these two areas.
As a by-product of the research, several heterostructure device models have been
developed, 1- and 2-D equilibrium models, 1- and 2-D drift-diffusion models, a 1-D
Monte Carlo simulator and a 1-D, collisionless quantum device model. These simula-
tion programs are being applied to advanced device analysis at a number of labora-
tories and are available to SRC members on request.
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1. PROJECT OVERVIEW

1.1 Introductlon

As electronlc devices shrink to submicron .dimensions, hot carrler effects and :
quantum mechamcal effects are becomlng 1ncreasmgly important. Both effects offer
the. potentlal for improving device performance. By exploiting hot carrier eﬁects, the .
speed of small bipolar and field-effect transistors may be improved significantly; quan-
tum mechamcal effects on the other hand offer the potentlal to realize an entlrely new
class of * post-shrmk devices whose performance may be orders of magnltude better
than present day devices. The objective of our work is the exploration of new, high-
performance device concepts based on hot carrier and quantum tran'sportl The work
centers on the :development and application of advanced device simulation programs,
which will be needed to guide the design of future devices. Spec1ﬁc objectives of the
research program are: 1) initiation of work directed at the development.of a neW gen-
eration of physmal device models which account for the wave nature of carriers. (quan—
tum eﬁects), 2) the development of a. computatlonally manageable yet physmally accu-
rate 31mulat10n strategy for treating hot carrier transport in bipolar transistors, and

3) the appllcatlon of these evolving simulation tools to the exploration of advanced,
post-shrink, dev1ces which exploit hot carrier and quantum effects to enhance device
performance The numerical device s1mulat1on programs being developed during the
course of this work comprise a “to0l box" that can be applied to the study and des1gn
of advanced dev1ces ' :

- 1.2 Technical Approach o . o
Device simulation programs are widely used in industry for the optimiZation of
devices'and'for‘exploring neW device concepts. Such programs Wlll be even more
important for the increasingly complex devices of the future. Semlconductor device:
dimensions are,continually shrinking, and device structures are becomlng 1ncreas1ngly“
sophisticated (with the use of heterostructures, for example) Present simulation tech-
niques, however, date back to the 1960’ and will not be adequate for advanced dev-
ices. o ' 7
Conventional device modeling programs provide self-consistent solutions to the
drift-diffusion equations and the Poisson equation sub_]ect to the approprlate boundary
conditions on the carrier densities and the potentlal at the contacts. - This approach
has prov1ded an adequate description of electronic devices for the last three decades.
However, with the continuing advancement of technology devices have now shrunk to
submicron dimensiens and there is an increasing concern regarding the validity of this



approach. The familiar drift-diffusion theory is based on two assumptions:

1. Electrons are particles moving in an external electric field accordlng to Newton s
law, and are scattered occasionally by phonons and impurities.

2. The electric field changes slowly over the scale of a mean free path, so that an
electron is scattered many times before the field changes significantly.

In many present day devices assumption 2 is violated, leading to transient hot
electron effects such as velocity overshoot which are described by the Boltzmann
Transport Equation. These effects have been extensively modeled by ensemble Monte
Carlo techniques; but little work on engineering these effects to increase the speed of
devices has been reported. By contrast, very little work at all has been done in the
area of quantum effects which arise when assumption 1 is violated. For devices with
- dimensions comparable to the DeBroglie wavelength of carriers (typically 100-1000 A),
electrons do not behave as particles obeying Newton’s law; they must be regarded as
waves propagating through the device according to the Schroedinger equation. This
can be understood by noting that the relationship between Newton’s law and
Schroedinger’s equation is analogous to that between geometrical and wave optics. A
~ simple ray description is adequate only if the device dimensions are much larger than
a wavelength; otherwise a wave description is necessary. It is believed that in future
there will be an increasing number of devices that rely on quantum eﬁects for their
operatron ' | S Do '

During 1983-1986, our SRC—supported work focussed on the simulation of hot-
electron effects in bipolar transistors using the Monte Carlo technique. This Work
provided ‘insight into the nature of transport in a bipolar context and clarified some
of the limitations of the drift-diffusion approach. Although the physics of hot carrier
transport is now clearly understood, there is much work yet to be done i in the apphca-
tion of this knowledge to improve device speed and performance. The development of
a suitable simulation technique for advanced bipolar devices is also a high prlorlty
The Monte Carlo method is partlcularly ill-suited to bipolar simulation and the drift-
diffusion ‘approach, though versatile and powerful, does not provide an accurate
descrlptlon of transport in small devices. We are presently engaged i in assessmg ‘the
speed-hmltlng factors for bipolar transistors and in engineering hot- electron effects in
order toimprove speed. This work makes use of our existing simulation tools. Work
to explore new simulation strategies which accurately describe transport and recombl-_ _
~ nation in‘a bipolar context is also underway '

Although ‘the hot carrier Work is important and continuing, the ciirrent empha51s
of our work' is on quantum mechanical e ffects. Compared to hot-electron eﬁects, our
understanding of quantum effects is primitive. Numerous approaches have been pro-
posed by different workers in the field and it is not yet clear which of “these



approaches will eventually provide an accurate but tractable description 'for quantum

- transport in submicron devices. Our objective is to develop device engineering

models that can be used not only to describe quantum effects in sub-micron devices
but also to gulde us in the development of new concepts for post- shrlnk devices.

1 3 Overv1ew of the Report

Durlng the past year, we have completed work on SEQUAL, our ﬁrst quantum
mechanlcal “device model. SEQUAL treats the collisionless propagation of electron
waves, ‘along Wlth their self-consistent electrostatic potential, in one- dlmensmnal dev-
ices. Development of the program is now complete; it is available to SRC members
and is described in the Appendix to this report. Application of this program to evalu-
ate electron ‘m_]ectlon currents in heterojunction bipolar transistors is dllscu‘ss.ed in
Chapter 5 of th1s report. We also successfully extended such calculations to simple
two-dimensional structures during the past year. These calculations hav,e;, been
applied to the propagation of electrons from a reservoir to a well which ‘o,cc‘urs, for
example, between the source and channel of a field-effect transistor.. The technique
and prehmlnary results are described in Chapter 4. ‘ R

Durlng the past year, the collisionless model has been extended to 1nclude elastic
scattering mechanisms such as ionized impurity scattering. The technique is
described in Chapter 2, and it is applied to simple, quantum size resistors and to a
proposed quantum interference device in Chapter 3. Though much work remains to
be done in extending and applying these techniques to realistic structures and devices,
no major conceptual hurdles are foreseen as long as the scattering mechanisms are
purely elastic. The major conceptual hurdle lies in the development of a quantum
device model that includes inelastic scattering such as phonon scattering. Several for-
malisms for treating the general problem of quantum transport have been proposed;
however, at this stage it is impossible to foresee which approach will eventually lead
to practical device models and lend‘new insight into the physics of these novel struc-
tures. The accurate treatment of quantum transport, in the presence of elastic and
inelastic scatterlng and with a self-consistent electric field is the central challenge of
the research program.

I~



‘1.4 Status of Purdue Dev1ce Simulation Progra.ms

Wh1le the. development of device simulation software i is s not the central obJectlve
of the research, when such simulation programs are developed we attempt to make
them machlne-lndependent user-friendly, -and available to SRC members Several
such programs have been developed; they. are largely machine-independent and are
supplled with user’s manuals. Each program is based on a different ‘simulation stra-
 tegy; ‘each has"its limitations, but when intelligently used the collection of programs
encompasses many of the effects important in modern dev1ces The development of a
: comprehenswe, global device simulation strategy is the key objective of the project.
A brief description of the available device simulation programs follows.

‘ -F-IS,HlDiE _solves Poisson’s equation in compositionally nonuniform semiconduc-
~ tors (program supplied with materials parameters for AlGaAs). The
equlhbrlum solution and the. solutlon under bias ‘(assuming zero
current or constant quasi-Fermi levels) is computed. Allows for par-
'tlal ionization of dopants, degenerate carrier statlstlcs, and non-
vparabohc, mult1ple conduction bands. Plots the electrostatlc poten-
tial and field, carrier densities, energy band dlagrams ‘and other
quantities of interest. Computes C-V charactenstlc " and
- differentiates it to plot apparent carrier density versus p031t10n The
‘program is wrltten in FORTRAN 77 runs and makes use of TMSL

" routines. :

PUPHS 1D /2D) ,
solve Poisson’s equatlon smlultaneously with the electron and hole
continuity equations for composmonally nonunlform semiconductors
in equlllbrlum or under bias. PUPHS is supplled with materials
models for AlGaAs. The programs compute -V and C—V characterls-
. tics of diodes and analyze solar cells and b1polar trans1stors A
separate program ‘reads PUPHS-generated data and plots quantltlesv
 of interest. Both one- and two-dimensional versions of this program
' are avallable, they are written in FORTRAN 77, and use: IMSL and -
LINPACK routlnes

- DEMON: 'performs 1-D Monte Carlo s1mulat10n of electron transport in compo-
) S vSltlonally nonunlform dev1ces DEMON 1s supphed Wlth ‘materials



. models for AlGaAs. User-defined field and doping profiles may be
defined. A separate program plots the average carrier deﬁs‘ity, velo-
city, and energy versus position within the device. ’H’istqgsfam's of the
distribution function within the device may also be requested.
DEMON is written in FORTRAN 77. ‘ '

SEQUAL: A post-processor which, given the energy band diagram of a one-
o dimensional device, computes the electron current by assuming colli-
sionless propagation of electron waves. If so directed, SEQUAL will
iterate and solve Poisson’s equation self-consistently. SEQUAL is

o Written in FORTRAN 77 and makes use of IMSL libraries. '

Inquiries regarding these computer simulation programs should be “directed to
M.S. Lundstrom at Purdue.
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2. A SCATTER MATRIX APPROACH TO QUANTUM TRANSPORT

2.1 Introductlon

The problem of Anderson localization in two—dunensronal dlsorder systems has
been extensrvely studied in the past using the tight-binding Hamiltonian formalism, In
this chapter, we study the problem of Anderson localization at zero: temperature for a
piece of dirty material of finite length L, and width W in which the transport of elec-
trons is modeled as regions of free propagation with occasional elastic scattering by a
random array of scatterers. Each impurity is characterized by a scatter matrix which
can in principle be derived for any arbitrary scattering potential, ‘the randomness
being intrndUced through the impurity location. The overall transmission is calcu-
late(l by cascading the scatter matrices of individual scatterers and the conductance
is evaluated usmg the Landauer formula for the case of multi-moded transport.

Numerical examples illustrating the onset of the weak and strong locallzatwn
regimes as well as universal conductance fluctuations are obtained for the appropriate
choice_qf the parameters of the model. Deviation from the universal behavior for sam-
ple len_gth bigger than the localization length and shorter than the electron elastic
mean free path are also investigated. We also show that the universal conduction
result is roughly independent of the number of propagating modes throughout the
sample. ‘The technique used for cascading scatter matrices facilitates the comparison
between the classical and quantum-mechanical calculation of the conductance of a
given sample because the classical conductance can be deduced by considering proba-
bility scatter matrices rather than amplitude scatter matrices. Furthermore, we
stress the applicability of our calculations to study the transport properties of ultra-
small semiconductor devices in which the total number of propagating modes at the
Fermi level can be around a few tens only. This is a complete different regime than
the diffusion regime applicable to metals in which the number of propagating modes is
increased by several order of magnitude.

Over the past few years, many experiments dealing with the study of electron
transport in disordered submicron devices have been reported in favor of the theory of
localization of ~Abrahams, Anderson, Licciardello and Ramakrishnan [1]. More
recently, the presence of universal conductance fluctuations in disordered systems has
also been established both experimentally [2-6] and theoretically [7- 12] Such fluctua-
tions have a universal magnitude ~ e? /h, 1ndependent of the sample'siie.dimen—
sions, provided the system behaves as a good conductor, i.e, G > e? /h. ‘Similar '
fluctuations with equal strength have been observed by varying the chemical potential -
in Si inversion layer nanostructures [5] and in ultra short channel Si MOSFET [3] and
by varying the magnetic field in. metallic samples [13], GaAs wires [2| various
AlGaAs/GaAs systems [4,6]. Theoretically, it has also been proved that similar con-
ductance fluctuations could be obtained in metals due to the Inotion of a single
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carrier [8]. These fluctuations are not a tlme-dependent noise since they have been
shown to be reproducible features in all experimental works.

The basic physics of the conductance fluctuations is due to a quantum interfer-
ence effect which requires phase coherence in the wave functions over large regions of
the sample. A great amount of theoretical work concerned with the problem of locali-
zation and with the size of the conductance fluctuations has been based on the usual
Anderson tight-binding model [14] well appropriate to the numerical study of one and
two-dimensional metals. Stone has used this model [15] to study the conductance
fluctuations of metallic samples as a function of magnetic field. Extensive numerical
studies of Weakly‘ disordered metals have also been performed by Giordano [16]. All
~ simulations agree fairly well with the universal value predicted by the perturbative
calculations. Another class of purely one-dimensional (single moded) disordered sys-
tems in which the randomness is introduced through the average spacing between
impurities (spatial disorder) or through the actual shape of the potential (potential
shape disorder) has also been .extensively investigated in the literature'""[17v2‘b] All
numerical simulations for this other category of dlsordered systems have also sup-
ported the scaling theory of localization. Co

In the present chapter, we are mainly concerned with the second’ class of disor-
dered systems which we generallze to the case of two dimensions allow1ng for mul-
tnnode propagatlon throughout the disordered materials. We model the transport of
electrons i in ‘a two-dimensional resistor as regions of free propagation with occasmnal
elastic: scatterlng by a random array of scatterers. The conductance of the sample is
calculated from the overall transmission probability itself deduced by a new technique
for cascading scatter matrices across subsequent sections in the de%ri.ce; We also
stress the usefulness of that approach since the classical conductance can be deduced
by cons1der1ng probability scatter matrices rather than amplitude scatter matrices.
We show that this is equivalent to neglecting the phases of all the Feynman paths (in
real space) connecting the various'modes on one side of the resistor to the other Our
model seems more appropriate to describe the transport propertles of dzrty semicon-
ductors.’ In that respect, it may be very useful to analyze recent experlmental data in
narrow-Mosfet channels [3], GaAs [2] wires and Aharanov-Bohm structures grown by
MBE [13,4,6]. In such materials, the number of propagating modes available at the
Fermi level can be several order of magnitude smaller than in metallic ‘samples This
maximum number of propagating modes considered in all our numerical examples is
always less then forty ' ' '

The chapter is organized as follows. In section 2.2, We describe a techni‘que' to
cascade scatter matrices across subsequent sections in the device: [21] Then, we dis-
cuss two models of impurity scattering. The first one consists of a random array of
scatterers all characterized by the same scatter matrix. The randomness is intro-
duced in the spacing between scatterers which is chosen randomly and uniformly over
some - range [0 l] The second model considers a two-dimensional piece ‘of
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semlconductor of finite length and width in which the short range 1mpur1ty potentlal :
is modeled as a &potentlal The impurities are distributed uniformly in the sample
for a given 1mpur1ty concentration. In section 2. 3, we perform an extensive numerical
study of the weak‘and strong localization regimes in both models. ' The umversallty of
the conductance fluctuations is also studied by varying the position of a smgle impur-
ity. Dev1at10ns from the universality behavior are also analyzed for samples with
length longer tha.n the localization length and shorter than the elastic mean free pa.th
We also mvestlgate the umversahty of the conductance fluctuations as a functlon of
the number of propagatmg modes throughout the sample. Sectlon 2.4 contalns our
conclusmns ' g '

2.2 Theory ‘

In this Seetion, we stress the usefulness of a new approach consisting in ’:c'aée\a‘ding
scatter matrices through adjacent sections in a device to calculate the cohdtic—ta,nce of
disordered samples according to Landauer formula [22,23]. The advantage of this new
technique resides in the fact that both the classical and quantum-mechanical conduc-
tance of a specific sample can be calculated using the same technique of cascading
either probability or amplitudes scatter matrices. The more difficult question on how
to derive the scatter matrix for an arbitrary impurity potentlal is then consndered
Two exactly tractable models of impurity scattering (i.e, for which the 1_mpun_t.y»
scatter matrices can be written down explicitly) are then analyzed in some detail. . '

2.2.1 Conductance Formula

Consider a two-dimensional resistor with a confining potential in the y—dlrectlon, .
the current flows along x (Fig. 2.1 (a)). For a given confining potential we can ﬁnd a
set of transverse modes or subbands m=1,2,... with wavefunctlons of the form

Wx,y,t) = da(y)e’r e B S o (21)
We assume a ,paraholic dispersion relation for each mode.
k%

2m°

CE=€p+ - (22)

The conductance G is given by,



> kg

(b)

Figure 2.1 a) A two-dimensional resistor
: b) . Dispersion relations for different transverse modes
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where tp (E) is the amplitude for an electron injected from the left into subband m
with energy E to be transmitted to subband m’ on the- right.. The energy E is con-
served. across the resistor since we are neglecting inelastic scatterlng At low tem-
peratures we can replace df/dE by a delta wrltten as

Gv | M
KA

The probability Ty r, is equal to the squared magnitude of the amplitude ty . M is
the total number of modes that are occupied below the Fermi level E;. The features -

T
1

)

|F.M§

m(E=Er) - = 0 (24)

Il

of the conductance described hereafter are expected to be independent of the exact
analytical form of the multichannel Landauer formula [24,25]. Indeed, most-of our
numerical simulations will be for sample length bigger than the electron mean free
path { we will however briefly comment on the use of different Landauer formulas
when studying the conductance in the ballistic regime). ' . '

2.2.2 Cascading Scatter Matrices

We wish to calculate the scatter matrix [s] for the resistor connecting the incom-
ing wave amplitudes {a*} and '{b_} to the outgoing wave amplitudes {b*} and {a7}.

[0 e

{a*F}, {b } are each (Mx1) column vectors so that [t], [r] [t’] and [r’] are each
(MxM) matrices. 'The matrix [t] gives us the M? quantities that are needed to evalu-
ate the conductance from eq. (2.4). To calculate the scatter matrix [s] for the resmtor
we adopt the following model for electron propagation through it. The electrons pro-
pagate freely over varying distances d;,d,, - - between impurities (Fig. 2.1 (b)).
- The scatter matri{ces.[pl], [pa], : - for these regions are given by '

| ¢ 0] |
[s];[o ¢n] | e
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By [(/,)n]___ 0 eikgd,,b | ‘ | : , )
BT  oikad, - ’ _ . .

| éik,\.,,dn_
The only ncn—zero elements are the appropriate phase-shifts along the diagonal. At
the impurities the electrons are scattered from one mode to another. The overall
scatter matrix [s] is obtained by cascading the scatter matrices of successive sections

HEl® b RI® WO . (9

AScatter matrlces can be cascaded two at a tune as descrlbed in appendlx A We can
thus cascade [pl] and [sq] to get a composite matrix which we cascade Wlth [p2] and
"'so on to get the overall [s] Inatrlx of the resistor from eq. (2.8).

2.2.3 Semlclassmal Result

LIt Wlll be noted that each of the transmission amplitudes ty, m I8 actually the
sum of the complex amplitudes z, of numerous Feynman paths from subband m at
the left: to subband m’ at the rlght '

lEznlz'l'; ‘, S _:‘ | (2.V9)

The summatlon 1ndex n runs over all Feynman paths orlglnatlng in 'subband m at the
- left and endlng in subband m’ at the right. A typlcal path is shown in Fig. 2.2. The
number of paths is denumerably infinite but cascading the scatter matrices as
described earher automatlcally performs the summation for us. Now, in the semiclas-
sical approx1mat10n we neglect the 1nterference between scatterers, that 1s, between
the different Feynman paths ' :

" (Tm’ m)semx—classncal lenl o P v : N o o (210)

The sem1class1cal T can be calculated in exactly the same Way as we calculated the

“quantum T except that we cascade probability scatter matrices rather than amplztude
scatter matrices" [26] The probability scatter matrices [S1] are obtalned from the
'arnphtude scatter matrlces [s1] by replaclng each element by its magmtude squared
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o

Figure 2.2 A typical Feynman path from subband m at the left to subband m' at
the right : v
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[Sl]m,n = I[Sl]m,nlz : B o _(2.11)
Hence the semiclassical scatter matrix [S¢] for the device is given by,

[Sc] = [Py] ® [S1] ® Py] ® [S1] ® ..

=[5]® [S]® [ ® .. (2.12)

since it is apparent from egs. (2.6-2.7) that the probability scatter matrices
corresponding to free propagation are identity matrices. In order to apply either eq.
(2.8) or (2.12) to cascade amplitudes or probability scatter matrices, we need to calcu-
late the scatter matrix of each individual scatterer. This is done in the next section
where, by analogy with the scattering theory of nuclear physics [27], we derive an uni-
tary scatter matrix for any arbitrary potential with finite range and confined to a
two-dimensional resistor. The exact analytical form of this general scatter matrix
maybe quite difficult to evaluate for an arbitrary potential. However, for the case of
a O-impurity potential, we show that the scatter matrix can be derived exactly. This
model of impurity scattering will be referred later as model A. We finally consider a
much simpler case of scatter matrix (model B) for which there is an even probability
to be reflected or transmitted:into the different modes; only the probability to be
transmitted into the same mode as the incident one is different and fixed by the uni-
tarity requirement. Even though this last model of impurity scattering doesn’t
correspond ‘to any realistic physical system, it is quite interesting since the classical
conductance can be derived analytically and can be shown to obey Ohm’s law exactly.

2.2.4 S Matrix for an Individual Scatterer

Let us assume that for t = -00, an electron is in the state ¢, as g'i_vén in eq.
(2.15. If we wait a sufficiently long time after the scattering by the 2-Dv"pie'ce of sem-
iconductor of finite width W and length L (see Fig. 2.1.(a)), the poteﬁtial present in
the resistor will be ineffective and the wavefunction describing the electron state for
time t — <00 can be expressed as a linéar combination of the electronic states Om- »
This description of the scattering event is very familiar in collision theory in nuclear
physics [27], the only difference being that the eigenstates ¢y far away from the
scattering region are described as free-electron plane waves. Taking into account this
" analogy, we therefore can write. : . o

¢$=an¢nr | : ” _ (2-13)
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where
Mu = <t o> N . : (219

is the amplitﬁd’é of the eigenstate ¢m: that is contained after the scattering has taken
place, in the state that grew out of what was the electron eigenstage, ¢, before the
scattering took place. By analogy with the treatment glven in ref. [27] the ‘matrix
e]ements My, €an be written exp11c1tly as follows

- My, -_——,:<m|n> -3 f dx | dy f dt ¢m(_')H m‘ﬁn(_)
S ¢;¢)H’@‘)Ga(7,t’;?,t)H'wnmd?«ﬁf dt at
L. : e

where Go ('[)‘ t Dht) is the retarded Green's function descrlbmg the free-particle pro-
pagation in the two-dimensional resistor; H (_') being the general scatterlng potentlal

within the 2-D piece of semiconductor.
The scatter matrix relates the current amphtudeb rathcr than the wave amplitudes.

~ We therefore introduce the new matrix t whose matrix elements satxsfy '

\Y km' "obm = tmn V kn ¢n » , ’ ‘ (2‘16)
Using eqs. (2.14) and (2.15), we eésily deduce the relation between the matrix M and t

an

b == \/l?ﬁ]‘cﬁ' = by = A (2.17)

Apm = ';;— _'E(.\/%T;— f @fdt¢;mH,@¢n@ ‘
o Tl [l BIGIE (B Dh P . (219)
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The matrix t defines the transmission part of the scatter matrix and related the ingo-
ing (from left contact) to outgoing current amplitudes across the 2-D piece of semicon-
ductor. The total scatter matrix S can then be written explicitly as follows

T R/
R T/| ™

I-A A}

A LA (2.19)

. ’. [S] —

A being the matrix whose matrix elements are given by (2.18). Taking into account
the anti-hermiticity of A, we can easily show that the scatter matrix [s] is indeed uni-
tary. A direct calculation of the matrix elements Ay, in eq. (2.18) for any arbitrary
potential can be quite involved. However, as will be shown next, this calculation can
be performed exactly when the scattering potential is modeled as a delta-impurity
potential. This specific case, even though not realistic, will be used as an illustrative
example to study the problem of localization in multimoded two-dimensional resistors.

2.2.4.1 S matrix for a j-impurity

If we model the impurity scattering in a 2-D sample (x-y plane) by a &-impurity
interaction - '

(k) = 7 8xx)iy-v) e (220

(x4,¥;) being the position of the ith impurity and if we assume a particle.ih a book
confinement along the y direction, i.e., H'(x,y) = oo for y < 0 and y > w, the scatter
. matrix across the é-impurity has the following form = , o S

/‘,[1+B]A‘1 | —[1+B]"1B | | S
s = | | ' ; (2.21)
—[1+B]™'B 14B]™! :

* where B is a MxM matrix with matrix elements

SRS YT | | o o - (2:22)
T2 Vikky | S '
where the c;)uplin:g parameters f‘ «f are given by - |

Cn o 4my 1 [ M7 ) | M7y | A
. I‘aﬂ_i:: 0T w sm[ — _{]sm[ - ] | | R (2.23)
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The derlvatlon of eq. (2 21) from the more general expressmn (2 19) is pretty stralght—
forward if we use the expansion

[1+B]-—1‘ =1-B+B -+ : a (2:24)

~ and the exphc1t expressmn of the retarded Green functlon G¢ 05‘ t ,,0, (see expres-
sion (2-25) in ref. [28]). An alternative derivation based on a direct solution of the
time—independent Schrodinger equation is outlined in appendixB. "As can be seen on
egs. {2.21-2.23), each individual scatter matrix is v‘depending on the y location of the
impurity in the sample introducing an additional randomization in the model different
fromthe randomization due to the spacing between impurities along the x axis, the
direction of propagation of the current. To make the distinction betwee‘nl these two
degrees of randomization, we also studied a much simpler model of impurity scatter-
ing in which all scatterers are characterized by the same scatter matrix and the only
randomlzatlon comes from the arbitrary x location of the impurities. o

| 2.2.4.2 A Simple Model for the Impurlty Scatter Matrlx

More explicitly, we will assume that each 1mpur1ty has the same scatter matrix
[s1] glven by,

[s1] = e‘[a_]v | | | . o . (2.25)
where [a] is a matrix with all its element equal.
- [a]m,n = « for all m,n | : N (226)

since [a] is Hefmitian, the scatter matrix [s;] is unitary as it must be. The exponen-
tiation appearing in eq. (2.25) can be performed analytically. One obtains

] = L4 fla] | R '} o :(2.27)
: Where ' |

o 2iMa_: o |

,3_;9__251_1 | | .v - (228)

- Thus our choice of scatter matrix implies that at each impurity, the incident mode is
reflected equally into each of M modes with probability |8; it is also transmitted -
equally into each of the other M-1 modes with probability 3. For our special choice °

of [s;] in which an incident mode is scattered equally into every other mode we can
perform the cascading in eq. (2.12) analytically. One advantage of this simple model
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is that the semiclassical transmission probability after Ny impurities can be calculated
exactly

Ni/M

T " '= 1 "— : (5 ’ o 2.29
where A is the dimensionless mean free path given by
A=( -MBRMIBE | (2.30)

The n‘o'rmalized semiclassical conductance g, obtained from eq. (2.4) éan also be
derived analytically ' ‘

¢ =-2MA/(A+N1) | | ‘ o (2.31)

 The semiclassical conductance for this model thus depends only on the number of
impurities Ny and is indepeﬁdent of the spacing d;, d,,... between impurities and the
wavenumbers k;, ko,... , kyr of the different modes. A detailed proof of the Ohmic
result, eq. (2.31), is given in appendix C. v

The following section is devoted to an extensive study of both models A and B includ-
ing the study: vofv the weak and strong localization regimes as well as the universal con-
ductance fluctuations characterizing disordered systems in the mesoscopic regime.
For the case of model A, we will also study the influence of the additional randomiza-
tion introduced through the arbitrary y location of the impurities.

2.3 Results and Discussion

2.3.1 Simp‘l'e Impurity Scatter Matrix

In :’phevcase of model B, we showed in the previous section that
:';Itﬂal2='|rﬂa|2’=|ﬂlz axp 1 (23%)
and |as |2 _ |1+ﬂ|2 wa=p o (2aw)

~In other words, an electron 1nc1dent in channel o has an equal probablhty to be
| _transmltted or reflected. into all modes ,3 Only the probablhty to be transmitted into
the same mode is different and is given by eq. (2. 29) In this model, the disorder is
1ntroduced by lettlng the average spacing between impurities vary arbltrarlly and uni-
formly ove_r ‘some range [0,]]. For this special case, we show in appen_dlx_C that the
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classical Ohm law can be derived gnalytically by cascading the pi‘ob_ability scatter
matrices following the prescription described at the end of section 2.2.3. The conduc-
tance is 1nversely proportional to the number of impurities crossed and is mdependent _
of the spacing {d } between scatterers. to calculate the quantum—mechamcal conduc—‘
tance of the sample versus the number of impurities crossed, we apply the law of com-
position (2.8) to the series of identical scatter matrices (2.25) mterposmg an arbi-
trarily set of propagatmg scatter matrices (2.6) between them. '

2. 3 1. 1 Locallzatlon and Fluctuatlons

Figure 2.3 shows the resistance (g7!) of a sample with M=30, A=33.33 as a func—
tion of the number of impurities N; (all the device parameters are identical to those
in the previous éxample). The distances d, were distributed uniformly over some
range such that k;d, (i=1, M) vary between 507 and 2507. Also show for comparison
is the semlclassmal result ( g;' ) which obeys Ohm’s law. The weak and strong locali-
zation regions are evident. An estimate of the localization length is the length for
which the reduced quantum conductance is about unity and can be estlmated by the
following relation [29]

Aél,=V~A10c /M | : :('2.33)-‘

M being the number of propagating modes throughout the device. ( Ay, = 1000
implirities in our specific example). When Ay < L < Ay , the weak localization
predicts that, when averaged over many samples, the mean quantum—mechamcal con-
ductance should be below the classical result by an amount equal to

Bg —g = —2 - (2.34)

in reduced units 'e2_ / h. A simple derivation of this result for the multi-mode tran-
sport case is given in appendix D. This difference can be traced back to the fact that,
due to coherent back-scattering, the averaged quantum-mechanical reflection
coefficients obey the following relations : | '

<Rii> ~ 2 ) . ' o o (2.35)
for sample length such that L >> A,. This is illustrated on Fig. 2.4 for the previ-
ously discussed example. In this figure, <R;i> and <R;;> stand for the. aﬁrerage '
values of the diagonal and off-diagonal reflection coefficients respectively (the average
being taken over the indices i and j for a given sample). '
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According to the ergodic hypothesis of Lee and co-workers [9], in the metallic
regime, i.e, when A, <L < A}, the sample specific fluctuations of the conductance
over an ensemble of samples which differ only in their microscbpie impurity
configuration can be viewed as similar to the statistical fluctuations in conductance
obtained by moving a single impurity in a given sample For the 30 modes case, the
average quantum- mechanical conductance g, was calculated by moving one impurity
only. More precisely, the middle impurity of a sample with fixed number Ny of impur-
ities was moved by varying distances up to one um. For this case, as illustrated on
Fig. 2.5, we obtain gg—g, ~ —1.5 over the entire weak localization regime in quite
good agreement with (2.34). Fig. 2.6 illustrates the fluctuations in conductance while
moving the middle impurity of a sample with 600 impurities (as before,
Agq =33.33 and M = 30 ). - The horizontal axis in this picture represents the distance '
- by which the middle impurity was moved from its original position We notice the
large conductance fluctuations whose variance 0.52 e?/h is in close agreement with
the universal value 0.53 e /h [9]. This variance was calculated over. the entlre weak
localization length and extended into the strong localization region. As seen in Fig.
2.7, the size of the conductance fluctuations is approximately constant-over the weak
localization regime and gradually decreases below its universal value while extending
the length of the sample into the strong localization regime. This is in agreement
with the theoretical prediction and the numerical simulations [16 8] performed on an
Anderson tight- binding hamiltonian. :

In the ballistic regime, i.e, for L. << A.}, the conductance fluctuations ‘were also
calculated using the two probe Landauer formula (2.4). However, recent experiments
performed on metallic rings have employed a four probe measuring conﬁguratlon to
measure the size of the conductance fluctuations in the presence of an external mag-
netic field: It has been suggested that a more approprlate Landauer formula to
descrlbe those type of measurements is given by

a il o o ew
m=1 Ry E L - ' )

where T and R,Jl are the total transmission and reﬂectlon proba.blhtles for electron
th ' '

impinging from the contacts into the m mode, 1.e,
T =YTwm ‘ | \ o (2.37a)
~and o . _
Ry = Rpm=1-Tm B v (2.37b)

Since it 1s pre’cisely in the ballistic regime that eq. (2.4) and eq. (236) give eséentially
different results, we have calculated the size of the conductance fluctuations in this
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Figure 2.6  Universal conductance fluctuations of a sample containing 600 impurities

o * due to the motion of the middle impurity a distance d to the right from.
its original position. The classical conductance is also shown for
‘comparison. ‘ '
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regime using both egs. (2.4) and (2.36) (As seen on Fig. 2.8). The conductance
fluctuations obtained using eq. (2.4) decrease slightly below the universal result in the
ballistic regime (we expect Ag = 0. for samples containing a single impurity). This
agrees with the results obtained using a tight-binding Hamiltonian [16] for which the
universality of the conductance fluctuations was found to be quite robust and valid
even for very short samples. On the contrary, the value of AG using eq. (2.36) are
found to be several times e? /h. Therefore, while performing four-probe conductance
measurements, we should expect the size of the conductance fluctuations to be larger
then their universal value if the transport in the device is nearly ballistic ( The possi-
bility of ballistic transport in Aharanov-Bohm structures grown by MBE has been
analyzed in ref. [30] ) .

Finally, in Fig. 2.9 , we show that the size of the conductance fluctuations due to
the motion of a ‘single impurity stays approximately constant while increasing the
number of propagating modes through the sample. All the sample considered in this
simulation had a fixed number of impurities (N;=100) which puts all of them in ‘the
weak lccahzatlon regime. They were also all characterized by the same value of the
parameter « entering the impurity scatter matrix (2.25). (This means that, while
characterized by the same impurity configuration, those samples - have slightly
different elastlc mean free path. In Fig. 2.9, each curve is labelled by its elastic mean
free path A calculated using eq. (2.30)).- Following an argument due to Lee [12] this
tends to prove that the ratio AG/G doesn’t behave as 1/M as one would expect by
assuming ‘that all the transmission coefficients T;; for the dlsordered sample ‘are
uncorrelated complex random variables. ‘

The theoretlcal predictions concerning the universality of the conductance
fluctuations have been deduced from perturbation theory [8,9] to lowest order in
(keA) ™t , where k; is the Fermi wavevector and A is the elastic mean free path. This
condltlon was met in all our numerical calculations since the average spacing {dy}
between 1mpur1t1es was chosen such that k¢d, = 507 for the mode Wlth the highest
transverse energy. While considering model B for impurity scatterlng, the require-
ment kA= 1 needed to observe the weak, strong localization effects as well as the
universal .conductance fluctuations should: always be kept in mind. Indeed, failure to
meet, t}‘iis‘r'eqnifement can introduce spurious results in the conductance calculations.
In fact, if the average spacing between scatterers is so small (dp — 0: ) then each-
.scatter matrix for the free propagation between impurities reduces to .

i ~:”[s]"=.ri | vv | . o - | o | (2.38)

Physicaltly, ‘this means that all the phases of‘vthe different modes are small and not
~ fully ra’ndo‘mi'zed over 27 between scatterers. In that case, the propagating scatter
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~ Figure 2.9  Universal conductance fluctuations after displacement of the middle

- impurity of the sample while increasing the number of propagating
modes. The impurity is moved along the x direction by a distance d to
the right of its original position. The number of propagating modes is

. indicated as well as the value of the elastic mean free path:(-eq. (2.30) in

* the text) i T e |
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matrices can be neglected when cascading all the scatter matrices across the device.
We must then cascade the scatter matrix (2.25) with itself a number of times equal to
the number of impurities crossed. This can be done exactly analytically. In the limit
where the number of impurities in the sample goes to infinity, the conductance can
then be shown to converge to the following limit

g — M—1 (2:39)

a limit independent of the constant « in eq. (2.25). If the average spacing between
impurities is gradually increased, we then obtain a quantum-mechanical conductance
which doesn’t show the saturation just discussed.

2.3.2 6-impurity Scatterers

2 was calcu-

The resistance versus length of a 2-D resistor (GaAs) doped 10 em™
lated for samples of width 2000 A and characterized by different impurity
configurations ( Fig. 2.10 shows a typical sample 2000 A wide and 20000 A long in
which the positions of the dé-scatterers are chosen randomly with a uniform distribu-
tion in both x and y directions for a given impurity concentration). For comparlson,
the classical resistance was also calculated for the same samples using the technique
of cascading probability scatter matrices as described in Section 2.2.3). Several

remarks have to be made.

As can be seen on Fig. 2.11, we first notice that, even in the weak localization
regime ( i.e when R << h/2e2 ), a full quantum-mechanical gives a variation of resis-
tance versus length far less simple than the classical Ohm law. Deviation from this
result can even be noticed quite wide samples. Furthermore, different impurity loca-
tions give rise to drastically oscillations patterns in the variation of the resistance of
the sample versus its length. The classical resistances are also slightly different for
different samples and, even though close from being linear, the resistance variation
versus length doesn’t obey strictly Ohm law. In fact, due to the particle in a bozx
confinement potential in the y direction, the conductance of the two-dimensional resis-
tors is strongly depending on the y positions of the different impurities both classically
and quantum-mechanically. However, while considering wider and wider samples, the
classical variation from sample to sample (with a fixed length) is supposed to dissa-
pear: this corresponds to the thermodynamic limit which stays that the classical
resistance should only depend on macroscopic parameters such as the impurity con-
centration. Quantum-mechanically, however, the universal conductance result predicts
that the conductance fluctuations while considering different samples should be of the
order of ez/h no matter how wide the samples are, i.e, no matter how large is the
number of propagating modes throughout the sample. Obtaining the variance of the
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Figure 2.11 Resistance versus length for samples (A,B) such as the one shown in Fii.
2.10 differing by their impurity configuration. ( The samples are 2000A

. wide)
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conductance ﬁuctuations over a statistically meaningful number of completely
different samples is quite time consuming. However, since conductance fluctuations of
the same magnitude can be obtained by the motion of a single impurity [8], we calcu-
‘lated (both classically and quantum-mechanically) the variance of the conductance
fluctuations by changing the y-position of the middle impurity only from one side of
the resistor to the other by step of 10 A. Fig. 2.12 the classical and quantum-
mechanical conductance variation of a sample (2 x 1034 wide and 1054 long) while
moving the middle impurity as described above. The quantum-mechamcal fluctua-
tions are seen to be quite large ( AG = 0.2e? /h) whereas no sensible fluctuation is
perceptible in the classical case.

2 4 Conclusmns

In thls chapter, we have studied the problem of Anderson locahzatxon for. the :
case of multi-moded transport using a technique for cascading scatter matrlces associ-
ated to subsequent sections in a device. This study is complementary to ‘the numerical
s1mulat1ons performed on t1ght-b1nd1ng Hamiltonians [16,15] and generalizes to ‘the
- case of multi-moded transport earller numerical calculations performed on purely 1-D
random array of scatterers [17,20]. The technique can in principle be apphed for any
arbltrary impurity potentlal with finite range. The conductance of d1sordered samples ‘
was calculated usmg a scatter matrix approach which furnishes dlrectly the reflection
and ‘transmission coefficients in the different modes. One other advantage of cascad-
ing scatter matrices rather than transfer matrices is that the latter blow up exponen-
tially while increasing the length of the device. In our case, elastic scattering requires
all scatter matrices to be unitary, an easy check to perform numerically while cascad- ‘
ing the different scatter matrices across the device. Another advantage of cascading
scatter matrices is that the classical conductance can also be derived by replacing all
amphtude scatter matrix by the probability scatter matrices. All our nurmerical simu-
lations agree with the scaling theory of localization both in the weak and strong local-
ization- regimes. Furthermore, we investigated ‘the un1versal1ty of the conductance
fluctuations in the mesoscopic range ( i.e for sample length such that' A <L < Ap)
by varying the p031t10n of one impurity only All numerical 81mulat1ons agree well -
with the size of the fluctuations predicted. theoretlcally for quasi-one dlmensmnal sys-
tems, i.e., 0.53 & /h [8]. We also calculated the size of the ﬂuctuat1ons for sample
length bigger than the localization length as expected theoretlcally When varying
- the microscopic configuration of the sample, the size of the fluctuations.is predxcted to

o be below the universal result and is continuously decreasing as a function of length

(as expected theoretlcally) in the strong localization regime. We have also shown that
- the unlversal conductance result is 1ndependent of the number of propagatlng modes
throughout the deV1ce :
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Figure 2.12 Classical versus quantum-mechanical conductance of a sample such as
the one shown in Fig. 2.10 after moving the middle impurity from one
side of the resistor to the other 3(the x position of the impurity being
unchanged). The sample is 2 x 10 A wide and 10°A long ‘
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Recently, various groups have reported the observation of universal conductance
fluctuations in ultrasmall GaAs wires and in Aharanov-Bohm heterostructures. In
those ultrasmall structures, the spatial quantization reduces the number of propagat-
ing channels available at the Fermi level to be of the order of a few tens only. This
number is by several orders of magnitude smaller than the number 6f propagating
modes available at the Fermi energy in metallic samples and makes our model partic-
ularly useful to investigate the influence of impurity scattering in ultrasmall semicon-
“ductor heterostructures. Preliminary results concerning the size of the conductance
modulation in the recently proposed Electrostatic Aharanov- Bohm effect will be dis-
cussed in the next chapter [31].
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Appendix A: Ca.scading Scatter Matrices

In this appendix, we will derive the composite scatter matrix for a region consist-
ing of two subsequent sections of a device described by their individual scatter
matrices.

Let us consider a specific interval in a device. As discussed in section 2.2.2) ,
scatter matrix relates incoming wave amphtudes {a+} and {b } to the outgoing wave
amplitudes {b*} and {a”} as follows

I A o

The elements of the scatter matrix (r,t’,t,r’) represent the amplitudes for electrons to
be transmitted (t,t’) or reflected (r,r’) from that interval. It follows that, in a region
of two intervals, an electron could be multiply reflected between two interfaces. By
summing the amplitudes of electrons following an infinite number of multiply reflected
paths, the overall transmitted and reflected amplitudes can be determined. This
analysis is pictured in Figures Al and A2. In Fig. Al, electrons incident from the left
of the region could be transmitted straight through the structure, or could experience
an infinite number of multiple reflections before being transmitted. The total
transmitted amplitude is the sum of the contributions from each possible path:

t =t [1 + rirg + (rir)? + ... ]tl (A2)

where the subscripts indicate the interval in which transmission or reflection occurs.
The phase acquired by the wavefunction in the course of multiple reflections is con-
tained in the definition of the scatter matrix elements and need not be added in this
analysis. Since the infinite series of multiply reflected terms is a geometric series, the
composite transmitted amplitude can be simplified:

t=tol —ryrp [ty (A3)

Following a similar derivation (see Figs. A1 and A2), the remaining elements of the
composite scatter matrix can be determined, completing the analysis:

r=r1y +tire[l — ryre] g (A4)
t = t'1[1+r2 1~ r'lrz]—lrll]tlg (A5)
=1y + [l — ryrp]Tlryty | (A8)

Even if the product r'1r2 were to approach unity, making the inverse of [1 — rllrg]
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large, transmitted amplitudes t’1 and t, would approach zero, by particle conservation
laws. Since many computers allow small numbers to underflow benignly to zero, a
scatter matrix solution can be implemented with relatively little error checking.

An alternative way to deduce the set of relations (A3-A6) is the following. For
each section in the device, we make the transformation from the scatter matrix to the
associate transfer matrix. The latter relates the wave amplitudes on one side of the
‘section (a¥ ) to the wave amplitudes on the other side (b¥*), i.e,

bt a’t Wi Wyg|(a®t ‘
N

The different blocks Wj; (i,j==1,2) can be expressed in terms of the various matrices
(r,r',t,t’) composing the scatter matrix of the same section,

Wy =t — rt I | | o - (A8)
Wlé =rt! ' | o (A9)
Wy, =t"Ir |  (A10)
,w22' i | _ A1)

Reciprocally, the various blocks (r,t’ ,t,t') composing the scatter matrix can be
expressed in terms of the various block Wj; (i, i=1,2),

r =W Wy o | , (A12)
r o= W12W§21 : | . (A13)
b= Wi —WisWas Wy _ (A14)
g =W521 | | | B " (A15) |

Smce the law of composition for transfer matrlces is a sunple matrix multlphca—
~ tion, we can easily calculate the transfer matrix associated to two subsequent sections
in a device. Then, using the set of equations (A12) to (A15) in which the Wj; are the
blocks of the overall transfer matrix, we get equations (A3) to (A6), deﬁnlng the
blocks of the composite scatter matrix. -
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Appendlx B Scatter Matrix for a 5—1mpur1ty

.In this appendlx, we derive the exact analytlcal form of the scatter matrlx across
a 0-impurity. Our start point is the one- electron eﬁectlve mass Schrodmger equatlon

h’

-2m

+Exyuﬂj¢rt—m5lﬁﬂ, f?stwtt(my

ertten for an electron propagating through a device Wlth arbltrary conductlon band
energy proﬁle E (x) (x being the direction of propagatlon of the current). In eq. (B1), -
H (_) is the scattermg part of the Hamiltonian Whlch we assume to be tlme-
independent since our main concern is to study the 1nﬂuence of impurity scattemn_g on
the conﬂﬁcta’nce of dirty samples at absolute zero. For elastic scattering, the electron
- total 'ehergy is conserved while traversing the device and therefore the time-dependent
part of the wave function can be eliminated using the ansatz

Yoty =e - | (B2)
If H is identically equal to zero, the band energy profile (or external potential energy)
is assum’edto be simple enough so we can write the eigenstates of the Schriiding'er €q.
(B1) explicitly. For instance, for devices grown by MBE, the potential energy proﬁle‘
" varies only in the direction of the axis of growth of the structure (Which we choose as
the x-direction). The eigenstates of the Sc_])nriidinger £q. (B1) can ‘then be character- .
ized by the two good quantum numbers k; and E, k; being the component of the
wavevector in the (y,z) plane and E the electron total energy. Both these quantities

are conserved' if no scattering is present. The electron eigenstates descrlblng the =
transverse motlon of the electrons can then be ertten as

| i(k'_p') ‘ - -
BV ol | ey

for which we use hereafter the shorthand notation lo >; 7 is the radius vector in the
y-z plane. The normalizing factor VA is introduced because we use periodic boun-
dary conditions in y,z to determine the allowed values of kt and E. Those different
states are then orthogonal, s.e.,
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[ dy dz [o>"18> = 6, ~ (B4)

and form a complete set of eigenstates on which the general solution of eq. (Al) for a
fixed energy can be expanded when the scattering part of the Hamlltoman H (_' t) is
non-zero, .

dﬁ('F)=ECa(x)|a> | . (B5)

For different type of confining potential in the y-z directions such as a simple box of
width W and height H, the good quantum numbers would then be the total energy E
and a set of two integers n and m characterizing the particle in' a box confinement in
the transverse direction. The electron energy dlspersmn relation Would in this case be

given by

, ‘ o prk?

E—ey—i—e + - o (B6a)
where:

2ﬂ2ﬁ2

. =—— 2 W2 (B6b)
and

. m

o [

‘For this special case, the ‘transverse part of the electron elgenstates can be exphc1tly
written as follows

o> ='\/‘wl—sin(mwﬂy)‘\/§sin(?§?) | _. e

It is then stralghtforward to calculate the charge densﬂ:y p[T) and current den31ty J(x ) .

a.ssoc1a.ted to the Wavefunctlon (B5). We obtain respectlvely ' :
px) =€ tb =Y Calx) Calx) : - P (B8)
Ca S : R L :

vaﬁd‘f
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dv

v -\ —g (BQ)

vdx

Herg p(x) and J(x) are respectively the charge and current densities integrated over
¥,% and t so that the cross-terms do not appear. Using eq. (B2) and making use of the
orthogonality condition (B4), the Schrodinger eq. (B1) can be written :

'd'2 v
= 4+ kicC graﬁ(x) | .+ (B10)
E | e
where
om' 2k} PR
k2 = - — —E, - (Bl
Y }E -~ (%) (B11)
and :
T,plx) = 222 Jo>"H 8> | N 3

Equation (B10) is our main result. The problem of solving the scattering prdbl’eﬁi is
then reduced to the calculation of the coefficients I’y and to the solution of the sys-
tem of coupled differential equations (B10). Equation (B10) has indeed to be written
for all modes o’s considered in any particular problem. Not that the sum over £ in
the second member of eq. (B10) do include the term a=f. In practice, the number of
modes has to be reduced to some finite number M.

In the set of couple differential equations (BlO) both quantities k2 s and Fop’s
are function of the variable x and depend respectively on the exact shape of the con-
duction band energy profile and the interacting potential. A scatter matrix relates
the modes indicent on an obstacle from either direction to the modes leaving the obs-
tacle in either direction. In order to actually calculate the scatter matrix of each
individual section, we first introduce the following new set of variables \

v+ 1 ' a e 1 dC, | B
which can easily be inverted to give
C, = (Ct +c3) | D  (Bl4a)

2ﬂa
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ik,
2B

Gamoct-c) - (Bub)

where, by :deﬁnition,v

g =1 L (B15)
| 2 . | | . |

The C}'~ represent the a.mplitudé of the current density in mode « traveling along
the negative and positive x axis respectively. Indeed, one can easily show using eq.
(B13) and the definitions (B14a,b) that the current density can be written as follows

Jx) =% J3 —Jo | | (B16)

where
J¢ =(C¥)'Ctand J7 =(C7)'Cq - - (B1Y)

By definition, the scatter matrix across a finite section located between xp and xp+¢
is the matrix which satisfies

cg(xow )

C;(Xo)

CE(XO'W)

-

Ci(xo)

(’Bis)

’.v ‘ ] \- .

the index a and [ referring to the different modes on the left and right side of the sec-
tion [Xo,,XQ‘M ] respectively. This scatter matrix cannot be derived exactly analyti-
cally . for'afbitrary conduction band energy profile E.(x) and coupling pziram‘e'ters”

Lop(x)- However, the scatter matrix has a quite 31mp1e analytlcal form in a specific
case Whlch we now con51der in detail. '

"Scatter matriﬁi_ acrd’ss a & - impurity

If we model the lmpurlty scatterlng in'a 2-D sample (x— pla.ne) by a 5 - 1mpur1ty
_ 1nteractlon T - ' o :
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H (x,y) = ¥(x—x) §(y—vi) | -  (B19)
the set of differential equations (B10) can be written as follows

.dzv

+ KiC Z Lap 8(x XI)Cﬂ | ~ (B20)

dx*
~ where r ﬁ is gifen by eq. ,(2 23) in the text. Integrating both sides of eq. (Bl) from

X;—€ to x;+e (E being a small positive quantlty) and taking into account the assumed
continuity of the C,’s, we obtain

bt — G =S FuCits @
[ : . o

which we rewrite

Caliite) = Cali—e) + ¥ TapCplate) (B22)
2 |

Since all Cé:’_s are continuous, we have
Calxite) = Calxi—e) | (B23)

Dividing eq. (B22) by ik, and adding the obtained result to eq. (B23),‘we get

(x1 +6)+ . (x1 +€) = —Ea— CH(x+¢)
= -1—C+(x~ —€)— jQgﬁC (x; ) ' (B24)
v /805 o zﬁ) ika P

Now, using egs. (B14a-b), we have

Caliite) = 2 [CH(x +e)+c,e( 59l | (B25)
2»3,9 | |
Plugging this last result in eq. (B6), we ﬁnally derive
Ca (xi+e) = Ca(x—e)+ 21k zraﬂ ,6 C; X +€ +Cﬁ( X;—¢)) , V(B26)

or equivalently_
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1 = ‘ﬁa
C;(Xi‘{-f)—% 2lka Faﬂ(ﬁ;)(};(xl +E) =
Ci(xi—f)-k%] 2iki (%)CE(X#E) - - (B27)

valid for all modes . The equations for the different modes can be written in a
matrix form (which is done here for the case of two modes only for simplicity)

1— I'u -1 & ﬁl_ _
2ik1 21k1 12 ,82 cii-(Xi—{—E)
—1 = P 1 = ||es(xi+e€)

—>Ty— 1———T
%k, 2 f 2k,  *

T
ok,  2ik; B ||CF(x—e)
Tor B2 T Cr(
2iky By 2iky || Co(x+€)

4 L

(B28)

01

which we write more simply as follows

et
|Cf (xite)| €3 (xi—e)
B0 o )| = B o7 e

Cy (x;+¢)

(B29)

B

I being the unit matrix and the matrix B is given by

B I
2ik1 u 2ik1 12 ﬂz'_
P
b1 2iky

. - (B30)

— I
ok, T

Frdm eq. (B2:,9A),‘we then deduce



(B31)

(B32) |

Similarly, by subtracting egs. (B25) and (B26) and following a similar derivation, we
obtain

", :(B,33)

; 1
[Cte+9| ™ | (B —(+B)'B| (B34)
f (xi+e). |

where the square matrix in the seecond member is the required Scatter matrix by
definition.

For the general case of M modes, we ean evasil:y generalize the 2x12 matrix girven in
eq. (B30). The general expression of the off element of the matrix B can be written

(B35)
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| Appendlx C Ohm’s Law

In sectlon 2.2.2 of chapter 2 we argued that the seml—classwal conductance of a
random array»of ‘seatterers could be deduced by replacing the amplitude scatter
matrix [s] by “the probability scatter matrix [S} In this appendix, we prove on a
specific example that this will lead to. the semi-classical result for the conductance of
~ a random array of scatterers, i.e, Ohm’s law. ' ' '

Let us consider a random array of scatterers, all characterized by the same.
scatter matrix (see eq. (2.25) of chapter 2), and with independent spacing {d, }
between them. For each of those scatterers, the probablhty scatter matrix can be

ertten
- [8]=. R T (Cl)
,Where the matrices [R] and [T} have the explicit form
—(2M—1)6 ... 8]
R=| |and [T]=] . : R (%)
J
|
A 2iMa _y £
where 6= e—m——— (C3)

For the propagation between scatterers, the probability scatter matrix is glven by (see
egs. (2. 6) and (2.7) of chapter II)

)= [f, (1)]' | N )

Now we cascade the probability scatter matrices in the same way as the amplitude
scatter matrices. It is apparent egs. (A3) to (A6) of appendix A that [S(n)] cascaded
with any matrix [S] yields back [S]. In other words, the lengths {dn} will not appear
in the final expression of the conductance as it should be in a semiclassical treatment.
Therefore, the overall scatter matrix is obtained by cascading N identical sections
with scatter matrices [S]. Consider first the result of cascading two sections



Ry = [R] + [T][R](1—[R]*)™*[T]

We can write [R] and [T] as,

R] = 6]
| [T] = (1—2M)1 + 4[a]
where,
1 ... 1
[a] = [: :
1 .. 1

Equation (C5a) is simplified to yield,

1
1-2M?

R2 = [R] + ( )[TIR]([T]

Here we have used the relation

R? = 6M[R]

Equation (C6) can be simplified further using egs. (C5a-d). -

[T)RJ{T] = [TI(1-M)[R]

= (1-M%)*[R]
Hence, : |

2 a
14+M§

R, = —2— [g]

Thus R, can be written as,
Ry = by[a)

Where

26

27 1465

Note that,

-51-

(Cba)

(C5b)

(Csc¢)

(C5d)

(Ce)

‘(07)

(c10)

(C11)
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Moé, | Mé
= =2(7—5)
1—Mé, 1-Mé

(C12)

Similarly, by cascading two sections each having two scatterers we can show that,

Ry =0, [a]
where

N Md, MS

=9 =4
1-M3, 1—-M#é, 1-M3$

we can continue this process indefinitely to get,
Ry = éna
where

Mén Mé
— = N(——)
1—Moy 1—M§

4

so that, the conductance gy of N sections is obtained from eq. (2.4) in the text

(C13)

(C14)

(C15)

(C16)



gN = 2M(1 —M5N)

1—Md
= 2M( 1-+(N—1)M$ )

oM 1
o~ - 'f N =
Nne TN

Which is the classical result.

-53 -

(c17)
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Appendix D: A Simple Derivation of Weak Lbcaliza.tion

For a device length L satisfying the condition,
AL <Apee - | : (D1)

where A and Ay, are the elastic mean free path and localization length respectively,
the normalized conductance of the sample can be derived from the approximate for-
mula (see eq. (2.4) of chapter II) ’

g;'G/(eZ/h):ztr(t+t)='2§Tji(EF) | R - (D2)

Alternatively, we could write the normalized conductance in terms of the reflection
amplitudes R;;. Indeed, current conservation implies

MT+R;) =1 (D3)
j=1" .
This allows us to rewrite the normalized conductance aS follows

M
g = 2[M—}7 Ry ' | (D4)
° l:.l '

The weak localization phenomenon is due to the importance of the coherent back-
scattering which states for every incident mode i, we have

R.. ~ — . . D5
R~ 2 | (05)
whereas

. 1 g . e ’

Rji ~ "I\‘;I" if i# : ‘ » (Dﬁ)
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Theréfdi‘e, we expect the normalized quantum conductance gQ to be different from its
classical counterpart g, by an amount given by '

g8Q—8a =~ 2M(ﬁ). = -2 » - , (D7)
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3. INFLUENCE OF IMPURITY SCATTERING ON THE
PERFORMANCE OF AHARANOV-BOHM DEVICES . .

3. 1 Introductlon

Qulte recently, a new class of interesting semiconductor devices based on quan-
tum’ 1nterference effects has been proposed involving electron transport parallel to the
heterolayers A typlcal example of those Aharanov-Bohm devices is shown in Flg 3.1.
The two_wells are only separated by a few hundred angstroms and are modulatlon
doped to reduce the effects of scattering. The quantum interference - occurs not
between multlple reflected waves but between two alternative paths proVIded by the
two contlguous GaAs layers separated by an AlGaAs barrier. The 1nterference pat-
tern between the two paths is then modified by placing the structure in an external _
magnetic ﬁeld parallel to the interfaces of the heterostructure. This leads to a v
current modulatlon by an external magnetic field which is periodic in. ﬁux w1th a
period equal to the quantum flux, 7.e, ¢y = h/e. This is the semlconductor analog of
the Aharanov—Bohm effect (hereafter referred as A-B) observed in vacuum over
twenty-ﬁve years ago [1]. ' R

The possibility to observe those oscillations in semlconductor heterostructures
‘was quite questionable since, contrary to the case in vacuum, the presence of impuri-
ties and various kind of defects (resulting from the imperfection of the interfaces dur-
ing growth) were supposed to destroy any interference effect and wash out the A-B
oscillations. However, in 1984, the first observation of A-B oscillations in semiconduc-
tor heterostructures (AlGaAs-GaAs) were reported (see Fig. 3.2) [2]. Back then, the
size of the conductance fluctuations was about 5 ¢e? /h corresponding to a relative con-
“ductance’ modulatlon AG/G of about .5 %. e’ /h is the usual unit of ,conductance in
all the experlmental and theoretical work concerned with the A-B oscillations). More -
recently, experiments performed by the Purdue group with different materials have
shown conductance modulation (peak to peak) as big as 70 e2 /b [3] corresponding to
AG/G of about 10%. The barrier layers are of InAlAs while the wells are made of
InAs-GaAs monolayer superlattices to eliminate alloy scatterlng Oscillatory magne-
toresistance due to the A-B effect has also observed in small metallic gold and silver
. rings [4] but the size of the rela.tlve conductance modulation was only about 0.001 %
in those devices. o

The or1g1n of the h /e oscillations in both metals and semlconductor structures is
now well understood following the extensive theoretical work of a number of research-
ers [5-7]. They show that all that is required for the observation of the A-B effect is
‘that the electrons retain phase memory while crossing the two channels. The length
over which meIno-ry is maintained (the phase coherence length) can be much longer
than the random walk step length A, (the mean free path). In other words, elastic ‘
- scattering doesn’t cause the electrons to loose phase memory; only inelastic processes
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Figure 3.1 (a) Typic‘a'l‘ Aharanov-Bohm semiconductor heterostructure. The device.
is uniform along y with a width Wy. (b) Dispersion relations for.
_different transverse modes in the channels and outside regions.
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Figure 3.2  (a) Experimental device used by Datta et al. [2]. In this GaAs double
quantum well structure, the length of the channels L ~ 2 um and W,
~ 2 pm. (b) Measured conductance modulation of the structure shown
in Fig. 3.2.(a). The peak to peak conductance modulation

AG ~ 5¢é*/h.
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lead to undeterministic phase randomization of the electron wavefunction. In all
those experiments, it is therefore important to keep the length of the arms of the A-B
devices shorter than the inelastic diffusion length. This can always be achieved by
working at sufficiently low temperatures.

The difference in size of the conductance modulation observed in metals and sem-
iconductors has been shown to be related to the difference in transport mechanism
prevailing in the two type of materials. In a metal, the electron’s trajectory is a ran-
dom walk with an average step length A, (One may instead assume an average colli-
sion rate 1 /7, and that the mean free path length is the product of the Fermi speed
and the mean time between collision, A = v;7). Mean free paths in common metals
depend strongly on the cleanliness of the material and on the quality of the crystal
that forms the wire. In materials that have many lattice defects, for instance, chemi-
cal impurities, vacancies or grains, the mean free path is usually of the order of the
average distance between scattering sites. Typically in metal prepared by standard
methods, ‘this length is only a few nanometers or a few tens of nanometers. The
motion of the electron in a metal is therefore interrupted by frequent scattering
events since the size of device is large compared with the mean free path length, Ay

<< L.

’ In semiconductor heterostructures, the situation is quite different [8]. Advances
in semiconductor microtechnology have made it possible to fabricate 'extremly high-
mobility conductive channels isolated from the surface by epitaxial insulators. In
GaAs, an electron with a velocity 107cm/sec has an elastic (plus inelas‘tic)’mean free
path" as long as 4um, if the mobility is 10%cm? /V—sec. Channel lengths of .25 ym or
less can be fabricated by present-day technology so that an electron can travel from
one contact to another ballistically with essentially no scattering - elastic or inelastic.
In this ballistic regime, as we will review in this chapter, it may be possible to attain
large (approachlng 100%) conductance modulation in a magnetic field [8] even if the
transverse dimension (y direction in Fig. 3.1. (a)) is large, ¢.e, when the structure is
multl—moded. Furthermore, the number of propagating modes in semiconductor
heterostuctures can be around a few tens only. This is another striking difference
with the case of small metallic rings Where the number of propagatlng channels can
" be as large as 10°.

F‘lna‘lly, a new device concept has also been suggested recently in which the quan-
tum interference between the two arms of the A-B structure would be controled by an
external gate- voltage [9] rather than by an external magnetic field. Even though
there has yet not been any experlmental demonstration of this so called Electrostatzcv
A-B effect, the fact that the phase difference between the two paths can be changed
by Wlth a very small gate voltage (1 mV) suggests that the Quantum Interference
TranS1stor (QUIT) based on this concept should have high transconductances and low
’power vd1ss1patlon Additional work to des1gn better structures and demonstratmg the
~ potentiality of the QUIT device is therefore necessary. This will be the subject of the
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last part of this chapter where we will also investigate the influence of impurity
scattering on the conductance modulation of A-B devices by an external gate voltage.

This chapter is organized as follows. In sections 3.2 and 3.2.1, we describe the
typical A-B heterostructures and show explicitely that, in realistic semiconductor dev-
ices, the transport is due to a few ( < 100 ) propagating channels only. This is done
by calculating the number of propagating modes available in each channel at the
Fermi energy. This calculation takes into account the contact potentials existing
between the different regions of the device due ’t"o the space charge effect resulting
from the specified doping densities in the device.

In sections 3.2.2 and 3.2.3, we present a simple theory to calculate the conduc-
tance of A-B devices based on the Landauer approach following the discussion given
in ref. [8]. However, we extend the theory in order to include the multiple reflections
at the ends of the two channels and the influence of impurity scattering on the perfor-
mance of the A-B devices [the impurity potential is modeled as discussed in detail in
sections 2.3.1 and 2.3.2 of chapter 2].

Section 3.3 is devoted to the analysis of the magnetic A-B effect and study the
influence of impurity scattering on the size of the conductance modulation. We make
the important distinction between the case where the impurity scattering into both
arms is either correlated or not.

Section 3.4 consists in a theoretical treatment of the FElectrostatic A-B effect
which has not yet been observed experimentally. Our theoretical treatment is useful
in designing better structures for experimental demonstration of this effect. Some
numerical examples are used to show that the size of the conductance modulation by
an external gate voltage can still be substantial even in the presence of impurity
scattering into both arms. Finally, section 3.5 contains our discussion and conclu-
sions.

3.2 Theory

3.2.1 Device Structure

Consider a structure (Fig. 3.1.(a)) in which a conductive channel splits into two
isolated channels and then merges into one. The structure is assumed uniform in y
having a width W,. In each of the two end regions (x < 0 and x > L) and in the
middle region (0 < x <L) we can calculate a set of transverse modes (or subbands) in
the z-direction by solving the eigenvalue problem
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h? d*
T a4 + Ec(z)| h> = ¢, [n> (3.1)
m Z

The pctential ‘energy E.(z) includes the conduction band discontinuities as well as any
band bending due to an applied electric field E, or due to space charge effects. Since
the function E.(z) is different in the three regions, the transverse modes obtained by
solving eq. (3.1) are also different. Each subband has a parabolic dispeféion given by

v ’ h%k2  AZKE .
E(ky,ky) =€ + 2m*" + 2m3 | , (3.2)

The dispersion curves are sketched in Fig. 3.1.(b). Hereafter, we will assume that the
device (that is, E.(z)) is perfectly symmetric about z = 0 as any interferometer
should be and that only the lowest subband is occupied everywhere in the device (i.e,
n = 1). The importance of this assumption will be discussed later. |

It will be noted that there will be contact potentials between the different regions
due to space charge that will cause a vertical displacement of the dispersion curves in -
one region relative to other regions. The relative positioning of the subband in the
three regions at equilibrium is fixed by the requirement of a constant Fermi level for
the speclﬁed doping densities and will be considered in detail shortly. -

The ‘criterion for single- modedness can be satisfied with llthographlcally deﬁned
structures but they are difficult to fabricate. Alternative schemes utilizing film
growth techniques such as MBE to define the channels have been discussed in ref. [10].
On the other hand, it is quite difficult practically to reduce litographically the dimen-
sion of the device in the y-direction to make it single-moded along this axis. There-
fore, we é.llow multiple modes with different k, values to propagate throughout the
structure. These allowed k, eigenstates strongly depend on the shape of the confining
potential in the y direction. In all our numerical examples, the confinement in the y
direction will be of the particle in a box type, the size of the box being the effective
channel width along the y axis after etching the device in that direction (the theory is
however valid for, any arbitrary potential energy profile in that direction). " Generally,
‘we will be concerned with low temperature behavior of the device so tha.t the sub-
bands fill up to the Ferm1 level The energy dispersion relation is then given by eq.
- (3.2) Where S o ‘ I

| ,(3.3)

if the potent1a1 conﬁnement 1s of the partzcle na bo:r, type in both the y and Z d1rec—
tions (we have set n=1 in eq (3 2) since the structure is assumed to be s1ngle moded



in the z direction). The A-B structure is then similar to a rectang:ular _Waif_eguide for
electrons such as the one shown on Fig. 3.3 in which the current flows in the x 'd'i'xfgc-r_
tion. ‘ | N

The density of states 'peif unit length inside the rectangular waveguide can then
be written ' ' ’

dn m' ' M UE-EL-—q)

=y — | o (34)
dEt ) ™ thz (E—Ef —€) . S
where v
oy .
EY = P_l_h__f_ i (3.5)

om" H?

Equation (3.4) is:seen to diverge at each new subband energy. At zero degree Kelvin,
this density of states, when integrated up to the Fermi level gives the total number of
occupied states per unit length. Performing the integration analytically, we obtain

pgH=— "% k¢ (38

ng being the surface charge density in the portion of the electron Waveguidé_ with
width W and height H; k' is the longitudinal part of the wavevector for electron with
total incident energy E;. Finally, M is the total number of propagating modes ileces- ,
sary to include in the summation appearing in eq. (3.4) to make the two sides of the
equation equal to each other. ' ' v

In order to calculate the built-in potential in the channel region, we use eq. (3.6)
with ng set equal to ng(W/W’) in order to keep the carrier density the same every-
where inside the device. In this region, the different longitudinal wavevectors k2 are
deduced from eq. (3.2) after replacing E; by Ef — Vg, Vg being the built-in potential
in the channel region. The Fermi level and built-in potential were calculated for the
device parameters listed in Table 3.1. The A-B devices were assumed modulation
doped so that the surface charge density is 10'2¢m™? everywhere inside the electron
waveguide. This charge density is low enough to insure the single-modedness in the
z-direction throughout the device. Notice that V; is actually negative, z.e , the con-
duction band energy profile is actually bending downwards in the channels region. As
can be seen from table 3.1, for device dimensions within the reach of present day
technologies (such as MBE) and litography techniques, there is only a few propagating
modes ( < 100 ) throughout the structure, 7.e, with positive longitudinal wavevectors
kY available at the Fermi energy. This is a completely different regime than the

S
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| . Figure 3_.3‘ ‘» Wlth a partzcle in a boz conﬁnement in the y and / dlrectlons, The A-B
: " structure is similar to a rectangular wavegulde for electrons. W, W’ and
- H are the widths of the outside, ¢channel regions and the helght of the ..

' electron waveguide’ respectlvely
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diffusion regime needed to descrlbe the transport properties of metalhc rings in Whlch
the number of propagating modes can be as high as 105 '

Having characterized the device parameters of the A-B semiconductor heteros-
tructures, we will next dlSCllSS the Landauer approach to calculate the conductance
modulation of those devices. Then, in sections 3.3 and 3.4, we will consider in detail
the case of the magnetic and electrostatic A-B effects respectively.-

_‘Table 3.1 - Device Parameters
{ Parameters Fermi level "Built-in -+ | Number of prop. -
' (Ep) potential modes in contacts
- (channels)
W =150 & _' o
W =504 | 0061228 ¢V | -0.17549 eV | 40 (23)
H=05pm |
W=1504 | :
W =504 | 0.060956 eV | -0.17561 eV 80 (46)
H=1um : ‘

3.2.2 Conductance Formula

For the typlca,l A-B device shown in Fig. 3 1, The current I for an apphed drain
voltage VD is glven by (8],

%e. . | . 9 _ ;
I= ’f" J dE [f(E)—£(E +eVp)] 3 (Ttot)n“,k'y';n’,k'y(E) : (3.7)
. kv,k ‘
n’,n’’

where (Ttot)n",k;;n',k'y(E)’iS the transmission coefficient from wavevector k'y in subband
n at the left end region to wavevector k;, in subband n' at the right end region.
Starting with eq. (3.7) and under extremely small drain bias, the conductance of the
device is given by '

df 2 '
G = f dE dE) E (Ttot)n",k;;n’,k;(E) (38)
k. k,
Yy
’ n/’n//
' - | df R -
At low temperatures, we can replace — T by a delta function at the Fermi level so

- that the normalized conductance g becomes
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2

Py ‘(Ttot)ky,,k (E) - (3.9)
K,k -

in which we have dropped the indices n’ and n’’ since the structure is assumed to be
single moded in the z direction. This {Landauer) formula was used in chapter 2 to
study the problem of localization in extremly small 2-D resistors. The evaluation of
the total transmission matrix Ty, in eq. (3.‘9) is more involved in the case of the A-B
devices. Indeed, we must include the effect of multiple reflections occuring at both
ends of the channels (points P and Q of Fig. 3.1). This will be explalned in detail in
the next section.

3.2.3 Derivation of the Overall Transmlssmn Coefficient Through the.
Aha.ra.nov-Bohm Device

In order to calculate the total transmission coefficient appearing in eq. (3.9), we
need to consider the multiple reflections which occur at the edges of the two channel
regions (Points P and Q on Fig. 3.1). To that extent, we divide the A-B dev1ce into
three sections,vtwo of which are the junctions at the ends of the channels (Pomts P
and Q on Flg 3.1) and the channels region. By cascading the scatter matrlces associ-
ated to those individual sections as discussed in appendix A, we can then deduce the
- total transmission coefficient from one side of the dev1ce to the other Thls calcula-
tion is now outhned in detail. R

Flrst we need to calculate the scatter matrix at each of the two _]unctlons x =
0 and x = L). At those points, there is no coupling between modes since the poten-
tial is supposed to be uniform along the y-direction at the two sphtters The only
coupling between modes comes from the impurities located in the two channels of the
dev1ce a.nd will be considered later. '

At.the left junction (x=0.) in Fig. 3.1 we can write a scatter matrix ccnnecting',the
wave amplitudes for a given E and ky at x = 07 (A) to those at x = 0% (B)

BY| . [t i riof [A* | T
Bf|= |ty ry ro| |BT| B T (310)
Wi e a o)) | S

where the ‘;_subscripts ‘+’ and ‘-’ denote the amplitude of waves travelling along posi-
> and. ‘2’ refer to channels 1
‘and 2, respectively. Furthermore, the primed (unprimed) quantities appearing in the

square matrix characterize the various reflection and transmission coefficients while

tive. and negative x, respectively, while the subscripts. ‘1
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ftravelhng frorn rlght to left (left to rlght) respectlvely ‘The amphtudes are: deﬁned as
: ’\/— times the Wavefunctlon so that the current are proportional to the squares of’
the amphtudes, with this definition the scatter Inatnx must be. unltary s1nce the
_current is conserved “We can erte (3. 10) more compactly as, :

[ A+
B~

. "B+

" r. |
e )

(3a1)

This relation can be easily. extended to the case of n.propagating ‘modes’ (differing by
their k values) Since there is no coupling between ‘modes at the splitters, the quan-
tities (r r,tt ) appearing in eq. (3.11) become then diagonal matrices whose different
diagonal elements are the respective reflection and transmission coefficients of the
various modes at the splitters. In that case, A*,A” and B*,B™ are M® 1 and
9M® 1 column. vectors respectlvely, M being the total number of allowed k, values
resultlng from the conﬁnlng potential in the y direction; r, r , b, t are Inatrlces with -
dlmenswns M® M, 2M® 2M, 2M® M and MK 2M respectlvely For the case of a
perfectly symmetrlcal structure, the various blocks of the scatter matrices at the right
junction (X—L) can be obtained from the scatter matrix at the left Junctlon (3. 11) by -
maklng use of the following substitution -

-_(r‘—,‘t); 68 o | - '-(3.'12)

Therefore, at the right junction, we can write the scatter matrix connecting the wave
amplitudes at x=L" (C) to those at x=L"(D) as follows '

t T
—r’t

Slnce the two channels are 1solated the wave amphtudes at B an C are sunply related
as follows ‘

D™
C+

D-| | o _v (3..13)

‘tl O‘r'l‘O v - ‘
c)- [t R](BY) |0 ta 0 rpf (B+) -
(BT [R T|{c| T | 0 t) o [C—] B
| 0 r, 0 t |

where
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It | t2 ol
. = ’ d = 1 3.15
ST r; ty an %2 ry ty (8.15)

are the scatter matrices characterizing the “propagation of the different modes in
channel 1 and 2 respectively. Both r; and ri' (i=1,2) are non-zero in the presence of
impurity scattering in the channels. Furthermore we assumed the two channels to be
independent. The two scatter matrices in eq. (3.45) can then be generated indepen-
dently by taking into account the impurity configuration in each of the two arms as
was described in the previous cha‘pter For the special case of ballistic transport in
the two arms, eq. (3.14) must be replaced by

Polmey
= OP, C__ » S v. ‘: (3.16)

‘P is a dlagonal ‘matrix Whose diagonal elements descrlbe the phase—shlfts in the two

. C_
B*

channels . 1.€,

P=lor) | N - B
: Where'
o (P)m = ek o (s
Po)on = expk™ e . (319)
: o | |

For a pa.rticular energy, k;{ and ky " are the wavenumbers in the x—direction in chan-
nels 1 and 2 respectlvely and are deduced from eq. (3 2). As long as there are no
magnetic or electric:field- P'=P. The presence of either one of them will change the
.wavevectors of the different. propagating modes i in- the two" channels This leads to a
phase- shlft of the dlfferent modes between the two arms responsrble for the A-B oscll—

' Alatlons Thls will be explalned in detall in sections 3.3 and 3.4.

~ We now have scatter matrices (3. 11, 3.13,3.14) connecting A and B, B and C'and
C and D, respectlvely What we need is the transmission matrix T from At to D+, so
‘that we can calculate the conductance from eq. (3. 9) The. easiest way to calculate
,__thls transmlssmn matnx is to get the overall scatter matrlx of the structure accordlng
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to the law for c"ascadiri_g scatter matrices described in aprpend.ixi A. The .t(_)tai'

transmission matrix across the device after cascading the scatter matrices (3.11),(3.13)
and (3.14) in that order is found to be '

’ ; , ) , , 1 1 . ) - -
ant [ memen el o

where we made use of egs. (A3) to (A6) in appendix A of chapter II. In the case of
ballistic transport both R and R’ are identically zero and eq. (3.20) reduces to

” 1 : o . '
Tm=t[LJHT4*H . - L (3.21)

which was ahalyzed- in detail in ref. [8]. Neglecting the multiple reflections at the
junctions is equivalent to making the following substitution in eq. (3.20)

- --‘{]—1 -1 | | (3:22)

In that case, the total transmission matrix can then be written »

) , ‘tl 0 ) .‘ )
Ty =t Tt=t'| g , b | (3.23)

t1, to being.the transmission matrices for channel 1 and 2 respectively. For the spe-
cial case where the junction scatter matrix is approximated by a Shaplro scatter
matrix [11] ‘

_ Ve x1 axI  bxl :
S=| VexI bxI  axlI 7 o (3.24)
—(a-+b) x1 Ve xI VexI ' ‘

where o
a=%{VT§?—U | ' | t_ (3.25)
and | L
b=l " )
and I is.. the M® M identity matrix. Equation (3.23) can then bve written

,TtotA':'— E(tl -+ tz) » . . , (3.27)
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A more rigorous approach for the junction scatter matrix could be deduced by requir-
ing that the wavefunction and its derivative be continuous across the interfaces at
- x=0. and x=L following the technique described in ref. [12].

3.3 Magnetic Aharanov-Bohm Effect

We first consider the case where the structure shown in Fig. 3.5 is placed in a
magnetic field directed along the positive y axis. Ideally, in order to observe pure A-B
oscillations, we would like the magnetic field to be located in the’shaded region of Fig.
3.5 only. This is obviously not realizable in practice since both the contacts and dev-
ice feel the presence of the external magnetic field. Rigorously, one should derive the
scatter matrix of the two arms taking into account the fact that the magnetic field is
piercing both channels. ‘The problem of a single channel in a magnetic field has been
‘extensively studied in the literature in conjunction with the observation of the
Quantum-Hall effect [13]. However, this problem has mainly been concerned with the
high magnetic field limit. Here, on the other hand, we are mainly interested with the
low field limit. Indeed, several A-B oscillations have been observed i in semiconductor
heterostructures for field intensity lower than one Tesla [2].

Furthermoi'e, as pointed out by Stone [14], the A-B oscillations are likely to be
seen when the aspect ratio of the structure is as small as possible. The aspect ratio is
defined as the ratio between the area of each channel and the area of the region
separating them. In case the aspect ratio is poor, the h/e oscillations can still be
present but are superunposed to aperiodic conductance oscillations fluctuations versus
magnetlc ﬁeld 31m11ar to those discussed in chapter 2.- o '

Slnce our main 1nterest is to describe the 1nﬁuence of impurity scattermg on the

A-B osc1llat10ns with period h /e, we will assume an infinite aspect ratio and assimilate

both channels to two two-dimensional res1stors extending in the x and y directions
“only (see Flg 3.1).

- Let us thus consider two two-dimensional resistors located at z=0 and z=1¢, With
a magnetic field By. The vector potential Ay is equal to B z. Thus, neglectlng the
extent of the res1stors in the z-direction, we have Ay =0in re31stor 1, and A = By 1z
in res1stor 2 Consequently, the dlspersmn relation is modified from eq. (3 2) to

(h km = eByzo) -

‘["'Evh=fem+' : o |  (3.28)

for resistor 2. In this equation, we have
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_ m?n?h 2

* 3.29
2m H? ( )

where H is the width of the resistors in the y direction and the confining potential has
been assumed to be of the particle tn a box type in that direction. The dispersion
relations are thus shifted horizontally by Ak, = eByzg /% for resistor 2. Since Akpy:is
the same for every mode m and also for forward and reverse wave, the amplitude for
every Feynman path in resistor 2 is phase-shifted by exactly the same amount 0g.

g = eByzoL /71 | (3.30)

The conductance g can be deduced from egs. (3.9) and (3.27)

E E |t m + b e | 2 . (3.31)

m=1 m’'=1

where the superscripts 1 and 2 refer to resistors 1 and 2, respectively. Equation (3.31)
neglects multiple reflections at the two ends, so that only the h /e oscillation is
predicted. Detailed calculations taking into account the scatter matrices for the
three-way splitters at the two ends show h/2e and higher order oscillations [15]. Here
we use the simplified expression in eq. (3.31) which can be written as,

g = e (g1 + g2) + gccosly + gesinfy (3.32)

where g; and g, are the individual conductances of resistors 1 and 2 respectively,
while g. and g, are given by

M M ‘
g =4 € E E Re(t’(nll)’,m tgl)',m*) (3'34)

m=1 m’'=1

e X M W L@ |
gs =4 ¢ Z E IIn(tm',m tm’,m (3.35)
m=1 m’'=1 .

The ma.gmtude of the conductance modulation gg in a magnetic field is therefore
given by

g8 = Vee + e | (3.36)

g. and g5 can be rewritten as follows

M M
E 2 |t5111)’,ml Itgl)’,ml COS(¢(12’,H1 - ¢£n)’,m) (3'37)

m=1 m’=1
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and

M M ,
YD wl b n ] sin(énn — b m) i (3.38)

m=1 m’=1

where gbm m and qﬁm .m are the phases of the varlous transmission coefﬁclents tgn) m

and t( ) ,

| _ Whlle considering many ring configurations, we follow an argument due to Lee

[16] and assume that after averaging over many samples
’Ael'
ML

< bl I > ~ (339)
A being the elastic mean free path (assumed to be the same in both arnis); L is the
length of both .cha.miels and M is the number of propagating modes in both channels
(Here < > denotes averaging over impurity configurations). The conductance modu-
lation is then given by ' ‘

4€? Ag M M
<gB>= MLe < ( 2 E COS( gl)’,m — ng]).’,m))z
B ‘ . m=1 m’=1
M M ‘ ' . " o ,
+(2 2 sin($mm — Prm)| /2>  (3.40)
¢ m=1m'=1 . , o

" In the case ‘where the two arms have exactly identical impurity configurations, we
have

) = 9

for all m and m’. From eq. (3.40); we therefore (:ieducev
<gh>=4e'M —= =2 -  (3.41)

where g; is the conductance of one arm; the extra supseript ¢ has been added since
eq. (3.41) is valid in the case of correlated scattering only This predicts that, for the
case of correlated scattering, we should get 100 % conductance modulation even if the ‘
., structure is multl moded (along the y direction). This is an important result since it

. predicts that any scattering potential that affects both channels aqually has no effect
on the interference even if it is 1nelast1c or time-dependent. (For instance, long
wavelength‘a,é(ﬁ)ustic phonon should thus have no effect on the 1n_terference). Physi-
cally, this is a consequence of the fact that_the.ihterference pattern is not affected if
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 the entire inté‘rferometer is jiggled. ‘It is thus irnportant to have the two arms of ‘the
interferometer physically as close as possible (This is certainly of the semrconductor_
A-B deV1ces Where the separation . between channels is a few hundred angstroms only
‘and is another essentlal difference W1th the case of metalhc rlngs w1th alr gaps
between the- two conductlng channels) : '

From £q;. (3 41), the conductance modulation gB is predlcted to decrease as-1 /NI
in the weak localization regime. Once the arm length is such that each resistor, enters
the strong locahzatlon reglme, the conductance modulation should decrease exponen-
‘tlally with the length of the arm. ‘As we will show below, our nurnerlcal s1mulatlons_
seem to be in agreement with those predlctlons :

Furthermore, as readily seen fromeq. (3.41), the variance of the conductance
modulation is predicted to be twice the variance of g1, the conductance of each indivi-
dual arm. From the universal conductance result, var(g;) = 0.5 e? /h We therefore
predict that, in the case of correlated sca.tterlng, the variance of the A-B conductance
modulatlon is approx1mately glven by

: var(gB) = 2¢ var(g;) ~ €fe?/h o : : | . (3.42)

In th_e ’case of uncorrelated scattering {( 1.e, when the two da‘rms have. cornpletely
different impurity configurations ), the conductance modulation"rnust be evaluated

from eq. (3.40). 'If we assume that the phase differences S 4(2) ' m are ,completely
random over 27, we obtain after averaging over ring conﬁguratlons S

. . . 1 2 1 2 i

<gi> =<[4¢ 3} ¥ lbiml b nlcos(dn,m — ¢ m)| >
' ' © m=1m'=1 : o » »
M2 4Ag

_ _ M 3.43
m<e> = (g (3.43)

Substituting those results back into eq. (3.41), the (average) conductance modulation
gp in the case of uncorrelated scattering into both arms is then given by ‘

<gh> =4e %— (3.44)
‘where the extra supscript‘ added as a reminder of the validity of this result for the
case of uncorrelated scattering only. Taking the ratio of eqs (3.41) and (3.44), we

obtain the very simple result
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- <gg>
<gp>

=M | | - (3.45)

for the ratio of the conductance modulation in the presence of correlated or uncorre-
- lated scattering into both arms. We should emphasize that egs. (3.41) through (3.45)
were derived assuming the validity of eq. (3.39). Therefore, we expect egs. (3.41-3.45)
to be valid wherever eq. (3.39) holds, ¢.e, in the weak localization regime only.

We checked all our qualitative arguments on a specific numerical example. The
two arms of the A-B devices were modeled as purely 2-D resistors such as those con-
sidered in chapter 2. We considered the specific case where as many as 30 modes are
allowed to propagate into each channel. The impurity potential was modeled using
the impurity model discussed in section 2.2.4.2 of chapter 2. We calculated gg using
eq. (3.36) in which the transmission coefficients were calculated as discussed in the
numerical examples of chapter 2. The number of impurities N; in both channels was
progressively increased so that each resistor has a conductance behavior going from
the quasi-ballistic to the strong localization regime. The parameters of the impurity
model potential were chosen such that the elastic mean free path A in each res1stor
is equal to 33 impurities (see eq. (2.30) of chapter 2)." o

Flgure 34a) shows the conductance modulation gp obtained in the ballistic
regime both in the case of correlated and uncorrelated scattering. Fi igure 3.4.b) shows
gp in the region going from the weak to the strong localization regime. We notlce in
both ﬁgure‘sv“a steadily decrease of gg versus the number of impurities crossed into
both arms: in agreement with our qualitative discussion above. gg is smaller in the
case of uncorrelated scattering (see the triangles in Figs. 3.4. a) and 3.4.b) as one
would’ expect by comparing eqs. (3.40) and (3.41). This also tells us that we no longer
have 100 % conductance modulation in the case where the 1mpur1ty conﬁguratlons in
the two arms are completely different. \ '

~ Figure 3.5 ‘compares the variance of the COnductaDCe modulation (')btaihed' in the
case of correlated and uncorrelated scattering. for the former, var(gg) is in very good
agreement with the prediction (3.42) over the entire weak localization range ‘
(33 < N; < 1000). for the latter, var(gg) is considerably below the universal value
e? /h: This can Dbe understood by us1ng eq. (3 40). Indeed, there should be less spread
(smaller varlance) while averaging over ring configurations with different arms. Slnce
the phase differences d)m m — ¢£§) m are presumably randomly distributed over 2T.

Fmally, Fig. 3.6 shows a plot of the ratio defined in eq. (3.45).. In the weak local-
ization regime (33 < N < 1000), the ratio between < g§ > and < gB > is 1ndeed
close to M, the number of propagatlng modes into both channels.
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8.4 Electrostatic Aharanov-Bohm Effect

Since conductance fluctuations in a single resistor can be observed either by
changing the potential or the magnetic field, it is natural to ask whether an
Aharonov-Bohm effect can be observed as well by changing the potential in resistor 2
relative to resistor 1. Assuming that the scalar potential V =0 in resistor 1 and
V =V, in resistor 2, we find that the dispersion relation for resistor 2 is changed from
eq. (2) to '

h k2
E=¢, —eVyg + — (3.46)

2m

Thus there is a vertical shift in the dispersion relations by —eV, for resistor 2, leading
to a change in the wave number ky, for a given E by approximately,

eVO

vy

Ak = (3.47)

Wherew‘fn[1 =fhky /m* is the x-directed velocity of an electron in subband m with
energy E. The difference with the magnetic field is that Akp is different for each
mode. Ignoring the effect of multiple reflections, the conductance of the device can be
derived as follows: ' -

M M 2 .
&= 262 E E it(ril)’,m + tgn)’,rn(VO) l 2 (3'48)

m=1 m’=1 :

Fig. 3.7 shows the conductance g calculated as a function of Vj for different numbers
of impurities (Np) in each resistor (M=30, A, == 33.3). There is a clear conductance
modulation in the ballistic regime (N; = 0) that quickly dies out as Vj is increased or
as we enter the diffusive regime. This can be understood as follows. The phase-shift
can be written as €V7/# where 7 is the transit time. The minima in the conductance
correspond to values of Vj such that eVy7/h = (2n+1)7r. ‘Even in the ballistic regime
“there is some spread in 7 because different modes have different velocities. Conduc-
tance Loscillations cannot be observed if the spread in the phase-shift eVoA7/A
exceeds 7. . That is why the oscillations die out as Vj is increased. Moreover, A7
increases quickly in the diffusive regime due to multiple reflections. An electrostatic
A-B effect can only be observed if the spread in transit times A7 is less than the mean
value <7>. In the magnetic A-B effect, the phase shift depends only on the flux
enclosed; AT for the electrostatic effect thus plays a role analogous to the aspect ratio
for the magnetic effect. The percentage conductance modulation can be increased by
. reducing "fthe ‘numbe'r of modes M, since it reduces Ar; however, the absolute value of
the conductance decreases. We find that the electrostatic effect dies out. much slower
" with increasing Ny if the two resistors are identical. This shows that this effect will



Figure 3.7

Conductance (normalized to ¢2¢2 / h)

- 81 -

250

200 |

150

100

Phase shift of lowesl transverse mode

Conductance g vs. phase difference Ak;L of the lowest transverse mode

- due to a potential difference V), for different values of N;. The circles

correspond to the case when both resistors have identical impurity
configurations, with Ny = 50.
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be easier to observe if the two arms are in close physical contact so that their scatter-
ing potentials are correlated. A typical device (quantum interference transistor)
which could show strong conductance modulation under the application of an external
gate voltage has been considered in reference [9].

3.5 Discussion and Conclusions

In this chapter, we have described a simple theory to calculate the conductance
of Aharanov-Bohm semiconductor devices. The theory includes the effect of multiple
reflections at the ends of the channels and also the influence of impurity scattering on
the size of the conductance modulation.

An important distinction was made between the case of correlated and uncorre-
lated impurity scattering. The latter prevails in the case of meta'llig rings in which
there is an air gap between the two channels. ‘'The former is more likely to happen in
semiconductor structures due to the proximity of the channels. |

- In the case of correlated scattering, the conductance modulation of the magnetic
A-B effect is predicted to still be 100% even if the structure is multi-moded in the
direction parallel to the interfaces of the structure (we stressed the importance for the
structure to be single moded in the direction perpendicular to the interfaces).

For the Electrostatic A-B effect, we showed that non negligible conductance
modulation could still be obtained even in the presence of impurity scattering.. The
size  of the modulation is however drastically reduced in the case of uncorrelated
scattering.. This seems to rule out the possibility to observe such oscillations in metal-
lic rings. However, the semiconductor heterostructures are certainly potential candi-
dates to obServe the Electrostatic A-B effect. Indeed, the screening length in semicon-
ductors can be bigger than the separation between channels leading to some degree of
correlatlon between the scattering potential into both arms of the device. This seems
to be an imperative requirement to observe the conductance modulation in the
recently proposed QUIT device. N
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4. ELECTR’ON TRANSFER ACROSS A JUNCTION BETWEEN }TW‘O
- REGIONS WITH VERY DIFFERENT CONFINING POTENTIALS

4.1 -Intrednetion

An important problem in ultrasmall submicron devices is to understand electron
transport across a junction between two regions with very different conﬁnmg potential
profiles 'in the transverse direction, so that the electron wave function in the
transverse plane changes significantly from one region to the other. Consider, for
example, a transition from a narrow channel of width W into a wide channel of width
W’ (Figure 1). This structure can be viewed as an idealized model for the transition
from a two-dimensional FET channel to a wide contact region. Classically the elec-
trons would simply pour out of the channel with unity transmission probability; quan-
 tum mechanically there is a significant probability for the electron to be reflected at
the junction and this affects the contact resistance. A more intriguing problem is the
following; suppose there are two channels emptying into the same contact (Figure 3).
Normally, we assume that the current flowing out of one channel is independent of
the other channel. However, if the two channels are spaced very close compared to a
De Broglie wavelength then the current will be greater if the wave function in the
two channels are in phase than if they are out of phase. This interference between
adjacent channels is of interest in understanding the Aharonov-Bohm effect in double
quantum well structures and can play a significant role in ultrasmall dev1ces of the
future.

The ‘problem of transition between regions with different subband structure has
not yet recelved much attention in the literature. The model presented here is
intended to compllment the pioneering work of Kriman and Ruden. [1] This method
makes the practical solution of a larger variety of problems possible by ehmmatlng
difficult analytical steps at the expense of additional computer time. Solving for the
scattér matrix involves in principle working on an infinite set of linear equations. It is
common to truncate this set to those involving only the lowest order modes (those
which oscillate least in the transverse direction). When the electron transfer takes
place between regions of widely different transverse dimension the mode structure on
either side of the interface is very different as well. The amplitude of the modes in
the wide region will be rather uniform over the entire interface, but the amplitude of
the modes in the narrow region will be large where the channel(s) is(are) defined, and
small elsewhere. This makes it impossible to reasonably meet boundary conditions
making the wave function and its normal derivative at the interface continuous
without using a very large number of modes.

~ Kriman and Ruden got around this problem by analytically projecting the opefa—
tor equations onto the basis set consisting of the modes on only one side of the inter-
face. Hssentially this employs all the modes (an infinite number) on the other side of
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the interface. In all but the most simple cases this involves computing a difficult
infinite sum or integral. It does, however, have several advantages if the projection
can be done, those being that the truncation approximation conserves current exactly,
the number of linear equations to solve is roughly half that of the case when the pro-
jection cannot be made and the solution is slightly more straight forward. In their
paper Kriman and Ruden very cleverly picked as an application of their method the
harmonic oscillator potential on one side of the interface and let the potential be zero
on the other This choice allowed them to make the projection very.easily. Unfor-
tunately this is the only problem we know' of that can be easily solved usmg their
“method. L

‘This paper descrlbes another way to solve the problem of the mlsmatched modes
7 by satlsfylng the most approprlate set of boundary conditions on the - average of the
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wave function and the average of its normal derivative over a subdivision of the inter- -
face. In regions of large potential the magnitude of the wave function is small and as
a result the physics of the device under scrutiny doesn’t depend stron‘gly' on knowing
the exact wave function in these regions. It is convenient to define the wave function
to be zero in these regions which is equivalent to allowing the potential to approach
infinity. This saves the trouble of solving for information that is really unnecessary.
In the other regions where the the potential is small and the magnitude of the wave
function is large, the boundary conditions used make the wave function and its nor-
mal derivative continuous. Another advantage is that in the model for multi-éhannel
devices the solution for the modes in the transverse direction can be simplified by de-
coupling the various conducting channels with mﬁnlte potential barriers.

In Section 2 the theory is discussed, including the model and the detalls of the
solution. In Section 3 the model is applied to two 1mportant examples a smgle ‘chan-
nel emptymg into a reservoir and then two channels emptying into a reservoir with
special at‘tentlon paid to the effects of the wave nature of the electron in both cases.
Section 4.is a summary of results and conclusions. v v

4.2 Theory

We start with the single particle single band effective mass. Hamiltonian neglect-
ing variations in effective mass. This model is most appropriate to electron transport
in the conduction band rather than the valence band since the conduction band is
more correctly approximated by a single band calculation than the valence bands
which are more tightly coupled together. We focus on the interfacial region where the
mode structure changes. To the left of the interface we assume there is some non-
zero distance in the propagation direction (here after denoted as the x direction) that
the confining potential varies only in the transverse directions. Denote this region by
I. Likewise to the right of the interface we assume that there is some non-zero dis-
tance in the x direction where the other confining potential is constant in x. Denote
this region by II. In order to simplify the discussion we consider only one transverse
dimension (z). The extension to both transverse dimensions is very simple. The inter-
facial plane is given by x = 0. Our goal is to obtain the scatter matrix for the inter-
face.

H| ¢> =8| y>
The Hamiltonian may be expressed
o h 2P
" ox?
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h2 9 :
———— + Vi(z) for x €1
- 2m Oz® i(z)
=1 p? 52
N=———— 4+ Vy(z) for x €1l
P 1(z)

" The normalized elgenstates or eigenmodes of H, in region I are labeled with o so
that

| H,| a>=E,| a>
and similarly in reglon IT the elgenmodes of H, are labeled Wlth o so that.

H, |o/>—E

The total Hamiltonian H is separable in each region so t.hat we may take product'
state solutlons of the form '

<x| o, o> E,-\/—zlﬂ—k—exp(iqkax) s(x,I) | o>
where 0 = *1 and s(x,I) is one if x € I and zero chefwise. Similarly for region II
<x | o o> = —V—%—T—exp(ioka/x) s(x,II) | o>, .

The wave vectors are given by

2m
ky, = PP (E —E,)
and
2m
ky = 52 (E——Ea/) .

The factor 1/’\/1_<: and 1/\/k, are included so that each mode carries the same
amount of current. These solutions form a complete set and a supe_rpos.itioﬁ of them
form a natural way to describe electron transport in the wave picture. ‘The correct
supefposition is determined by the continuity relations ' ' v

(<x| $)mo = (<x] P>)r W

alﬁayé; and |
d d
™ <x| ¢>] = |4 <x| > | 2)
x=0" : x=0"

provided the potential V(z), is bounded on both sides of the interface.

For an incident wave in mode | §,+> (I B',—>) from the left (right), the wave
~function can be expressed as the incident wave plus a sum of reflected waves into all
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modes | o,—> ( | o ,+>>) on the left (right) and a sum of transmitted waves mto all
the modes | o +> (| @,—>) on the right (left).

> = 184>+ zl o, —>R,5 + zl o/,+>‘Ta/-,3 o (3)

The Ralg a.re reﬂectlon coefficients from incident mode | B, +> into modes l Oy —>
Similarly . the T o'p are transmission coefficients from incident mode | ,3,+> into
transmitted mode l o 4> ‘

We do not wish to solve the Schrodinger eqﬁatio‘n in regions that are not of great
interest to. us such as in the barrier regions because this presents practical problems
by increasing the solution time and memory requirements on the computer. The solu-
tions in these regions contribute little to the physics. We, therefore, model the poten-
tial in these regions as being infinite. Another advantage of this is the ease with
which one may define separate channels in a device without having to resort to poten-
tials that produce complicated eigenstates | &> or | &/>. At this point it is natural
to divide the interface into two sets, Q and 6 Q is the set of all z values such that
either Vi(z) or Vy(z) but not both are infinite. Q is the set of all z such that neither
Vi(z) nor Vy(z) is infinite. The wave function is zero over the compliment of Q U —Q_
and so that part of the interface is uninteresting. Using this model, the continuity of
the derivative does not hold where the wave is impinging on a barrier reglon (for
z € Q). Tnstead in Q we have

(<x | U)o = 0. | R )
Partition:Q U 6 as is done in defining Riemann sums

[21,22),[22,23), [23,24), * = , [Z0,Z042)s [ZN,ZN+1)
where no interval [z,,%,,,) contains points from both Q and Q as in Figure 1. Define

the ket l n> such that

8(2, (20, 2Z041))

<z|n>= .
' \/Zn+1 Iy

Note
<nl m> = Onm

and operating with <n | takes a spatial average over the interval [z, 2,.;) and multl-
plies it by \/zp41 — 2y - Let A= max {2,—7,_1}. The basis l»n> spans the space

QU Q in the limit as A approaches zero. Inserting (3) into (1), (2), and (4) and
operating with the bra <n | leads to
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The above set of equations assumed an incident mode from the left I B,+>. Similar
equations can be written for incident modes from the right I G ,—>. If these equa-
tions are collected they may be written in a single matrix equation AS = B.

Appn AR T/ By Big
Ay Agp||T R|™ By By

Each of these matrix elements are themselves matrices whose elements are given by

An,, =-Bu, = —\/%<n| a>
o

<ol o>

__—1
na' ka'
A21 = B21 \/ <Il l a>

,Azzml =By, = Vky <nl o>

In writing the matrix form of these equations it was noted that <n| &> =0 and
<nl &> =0 for [Zn,2n+1) € Q.

The scatter matrix for the junction S may then be solved for
S=A"'B

In practice the parameter A is chosen small enough so that further reduction in its
value has no effect on the elements of the scatter matrix out to a desired decimal
place. Operating with the bra <n| has the effect of demaﬁding that the boundary
conditions be met on the average values of the wave function and its normal deriva-
tive overeach’interval of the partition [Zn,%g41)- This provides a convenient method
of approximating the solution to the infinite number of equations for S by the solution
to a finite' number of equations. The properties of the solution that depend on the
symmetry of the problem are not affected by this approximation, but current conser-
vation is not preserved exactly. This, however, can be used to obtain an idea of how
well converged the solutions are. As the reflection and transmission: coefficients for
the propagating modes converge to the correct solution (as A is decreased) the
. _current is conserved exactly
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4.3 Appllca.tlons

This section applies the previously descrlbed method to two specific problems of
electron transport in sem1conductor devices. The first is the transition from a channel'
into a contact region which is common in many devices today. The second is the
transition from two parallel channels into a contact. This transition occurs in parallel
channel quantum interference transistors employing the Aharonov Bohm effect.

The model employed for both examples is three dimensional. On bOth sides of
the 1nterface the device is homogeneous in the large y dimension so that k is con-
served The JllIlCthIl at the interface is considered to be abrupt, both in geometrlcal
features ‘and in the built in potential. The effect of potential grading may be quite
signiﬁCant and will be investigated in a later paper.|2,3] The built in potential is cal-
culated from charge neutrality in the device. Far into either side of the device the
states are filled up to an unknown energy level using the appropl'iate two dimensional
density of states and doping densities. The built in potential is the difference between
the energy levels on the left and right. '

The first appllcatlon is of interest because of the light it sheds on how the quan-
tum mechamca.l reﬂectlons influence the contact resistance. This is the problem that
Kriman and Ruden studied. Our results are very similar and indicate that the details
of the conﬁnlng potential used in the model make little difference. '

The second application highlights a principle which is expected to play an 1mpor—
tant role in devices of the future, quantum mechanical wave interference between two
parallel channels emptying into a single contact. This interference can be used to
modulate the current through the device and has already been demonstrated a
number of t1mes experrmentally [4,5]

4.3.1 Coupling from a Single Channel to a Single Reservoir

Metal-oxide-semiconductor field-effect transistors, high electron mobility transis-
tors, heterojunctions, and thin p—n—p doping layers are all examples where electrons
are squeezed tightly in one dimension. At the channel contact interface th1s squeezing
‘relaxes and the electron behavior becomes three dimensional. In this section the ejec-
tion from the channel into the drain contact is studied. The comphmentary 1n_]ect1on
from the source contact into the channel is similar.

The drain contact is modeled as a large channel region of Wldth W 1'n the z
direction and the channel as a small channel region of width W in the z direction.
This is portrayed in Figure' 1. Reflection symmetry about z =0 'guarantees‘conserva-'
tion of parity so that symmetmc e1genmodes w1ll not couple to antlsymmetnc eigen-
modes and vice versa.
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The eigenmodes in the channel are given by

<2l a> =V'\/%sin( ‘i;,z) (2, |-W /2, W /2])

and those in the contact region are given by

. : 9 ol T : o
/> = "\ i —W’ /2, W’ [2}).
<zl o> \/W sin( W,)S(Z:[W/y /])

Current reflection coefficients | Rap l from incident modes in the channel | B> into

reflected modes in the channel | a> as a function of incident energy are seen in Fig-
ure 2 for two different values of W’. As the energy is increased, the number of popu-
lated sub- bands increases and reflection back into these sub-bands becomes possible.
" The only materlal specific parameter in this theory is the effective mass The energy

67 ‘to apply
IIl

the figures to;.another material. The temperature influences the incident energy
through the Fermi Dirac factor. For a uniform doping of 2x107cm™ in both the
channel and the contact with contact width W’ = 1100A and an incident energy of
kgT above the Fermi energy at room temperature, about ten percent of the current
is reflected back into the channel. At low temperatures the incident energy is near the
~ Fermi energy and about thirty percent of the current is reflected. It is very interest-
ing that changing the value of W’ has little effect on the reflections back into the
channel when it is much greater than W as can be seen by examining Figure 2. - This
means that the size of the contact has little effect on the device if it is much larger
than the channel width. Although the model used here is very different from the para-
bolic potential detailed by Kriman and Ruden, it gives very similar results. .The
- major difference between the parabolic potential and the square well potentral seems
to be at what energy the subbands appear.

scale g1ven in Flgure 2 is for GaAs, however this may be multiplied by

‘4, 3' 2" Parallel Channel Structure

Recently the feasibility of using quantum mechanical electron Wave 1nterference
between two parallel semiconductor channels to modulate the current enterlng a con-
- tact reservoir has been demonstrated.[4,5] By By varying a magnetic flux through the
region between the parallel channels the difference in phase accumulated by the elec-
tron wave function in each channel can be changed. If the two parallel channels can
~ be brought together into a srngle channel with a single propagating mode, the current
‘may be modulated by 100 percent. Unfortunately it is difficult to construct a device
where ‘this’ happens Some of the devices constructed had channel reglons ‘made of

- GaAs separated by barrier layers of AlGaAs defined by Molecular Beam Epitaxy

" (MBE). [4] The: channel region was connected between two contact regions heavily
‘ doped o type by the Ge of a Au—Ge alloy 1mplant The contact reglons where the
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channels join were multimoded. This is an undesirable situation because the the
current into one mode may be least when the current into another is greatest. The
important question is how devastating is this effect?

The answer is summarized in Table 1. Table 1 shows that the doping is an
important parameter. As the doping is increased the number of occupied states
increa_.sés so that eventually 2 new subband is populated which means that another
mode becomes propagating. This is generally not a problem in the channel where the
spacing between subbands is ilarge because the channels are narrow. However, in the
“contact the subbands are closely spaced because of its large width. In addition to
this, contacts are generally heavily doped in order to make good electrical contact
with the outside world. In the contacts, therefore, many modes are likely to be pro-
pagating causing the modulation to be significantly lowered.

Doping - Number of Propagating Modulation
Contact ~ Channel in the Contact Percentage | -
. (cm—3) . B
10'6 106 3 91
- 3x10'8 3x10%8 4 67
10%7 108 7 22
107 10%7 7 14
10'8 10'6 15 11
10’8 108 15 5
Table 1.

" The geometry for the model is detailed in Figure 3. The dopings used for the
channel region in the model allowed only one propagating mode in each channel, but
many propagating modes in the contact. The ejection current is proportional to the
sum over the propagating modes in the contact of the magnitude squared of the sum
of the transmissions from the channels into these modes. [6]

Ieject ~ Z l Ta’l + ei¢Ta’2 |v2
a’ .

Here T,/ is transmission from the first channel into the o/th mode in the contact and
T,’2 is transmission from the second channel into the o/th mode in the contact. The
phase difference between the wave function in channel 1 and channel 2 is included
explicitly as ¢. In the case studied with symmetry about z =0 the transmission
coefficients for the two channels are related by T, = (=) F1T where ¢/ even is
~for antisymmetric modes and o odd is for symmetric modes. Using this
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Figure 3. The model used for two channels entering a reservoir.
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: Ieject ~ 21 % I T, l (1 — cos¢) + Y | To1 | 2(1 + cosgb)]
© e’ even a’ odd

SO that the eJectlon current may be modulated by changing ¢ as long as either the

symmetrlc or the antlsymmetrlc modes dominate.

The amount of modulation possible is determined by the unbalance in transmis-
sion coefficients between the symmetric and antisymmetric propagating‘ modes. The
current transmission coefficients from one channel into each of the propagating modes
is shown in Figure 4 for ky = 0 and several different doping densities. It was found
that the relative transmlsswns into the different modes have a characteristic "foot-
print"” as seen in Figure 4. This footprint can be predicted by a simple calculation of
the overlap of the different modes (Figure 5). The relative coupling is determined pri-
marily by the overlap integrals. This is because the geometry becomes the common
denominator when the doping density is changed.

“For the geometry studied there are three different domains. The first is where
the doping is light enough in the contact region so that "bumps" of ‘the modes
»extended over the entire 300 angstrom channel region. In this case symmetric modes
dominate. Second is the domain where approximately two bumps extend over the
channel reglon In this case the antisymmetric modes dominate. The last domain is
- where the modes osclllate many times over the channel region. In th1s case there is lit-

tle transmlssron ‘

It is eV1dent that in order to maximize the modulation the doplng denS1ty must
be kept low i insuring the number of propagating modes in the contact remains reason-
able (preferably in the first domain). It is also evident that the dev1ce could be
1mproved by making the 300A channel reglon smaller. This is in fact observed experi-
mentally as well. [7]

4.4 Summa.ry and Conclusions

In ‘this paper we have discussed a method of modehng electron transfer from
conﬁned channel regions into much less confined contact regions which . eliminates
dlfﬁcult analytical steps, replacing them with more mundane procedures to be done on
the drgltal ‘computer. The solution gives the scatter matrix for an abrupt Junctlon
~These scatter matrices may be used as an integral part of the solution for a complete
device by connecting solutions of different. sections. The method is applied to two
different structures highlighting two different physical effects due to the wave nature
of the electron. The major assumption applied in each example is that the most
1mportant scatterlng is due to the large change in the potentlal cross sectlon from the
channel region to the contact
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The first application modeled the transfer from a channel region into a contact
as occurs in many types of field effect transistors as an abrupt junction. In this appli-
cation the quantum mechanical reflection at the junction between the channel and
the contact Was studied as a function of the incident energy of the electron. Even
though the junction model used was abrupt, the the contribution to the electrical
resistance due to quantum mechanical reflection was not found to be ‘very”importa.nt.

In the second and most interesting application, the phenomena of interference
between two parallel single moded channels emptying into a single contact was exam-
ined. The current may be modulated by changing the phasc of the electron in each
channel. The results indicate the amount of modulation is determined by the number
of propagating modes in the contact and the separation and width of the channel
region. In order to maximize the modulation the number of propagating modes in the
contact, the separation between the channels and the channel width must all be
- minimized, the separation between the channels and the channel width must all be
minimized. ' ' - -

REFERENCES
1. Alfred M. Kriman and P. Paul 'Ruden‘,’ Phys. Rev. B 32,

2. Jaroslaw Uher, Fritz Arndt, MTT-35, #6, pp. 552
3. Jehs Bomemann énd'Fritz Arndt, MTT-35, 486, pp. 561




- 99 -

S. Datta, M. R. Melloch, S. Bandyopadhyay, R. Noren, M. Vaziri, M. Miller, and
R. Reifenberger, Phys. Rev. Lett. Vol. 55, No. 21, 2344 (1985)

G. Timp, A.M. Chang, J.E. Cunningham, T.Y. Chang, P. Mankiewich, R. Behr-
inger, R.E. Howard, Phys. Rev. Lett., Vol. 58, No. 26, 2814 (1987)

S. Datta, M. R. Melloch, S. Bandyopadhyay, and M. S. Lundstrom, Appl Phys.
Lett 48 (7), 17 February 1986

S. Bandyopadhyay, private communication.



- 100—

5. NUMERICAL STUDY OF EMITTER-BASE JUNCTION DESIGN
" FOR AlGaAs/GaAs HBT's.

5.1 Introductlon

Tn recent years, Heterojunction Bipolar Transistors (HBT’ s) have become a sub-
ject of extensive experimental and theoretical research. HBT’s have.a number of
advantages over conventional homojunction transistors. The most important one
. derives from the use of a wide gap emitter which permits increased base dopmg to
lower base resistance without sacrificing emitter injection efficiency. [1]

For an AlGaAs /GaAs N-p emitter base heterojunction, the band line ups result
in a conduction band spike and notch as illustrated in Fig 1a. Kroemer: [1] and subse-
quently ‘many researchers pointed out that this conduction band spike suppresses elec-
tron injection- which lowers emitter injection efficiency (), which subsequently reduces
common -emitter current gain (f);, so an appropriate grading of the heterojunction -
(HJ) to suppress the spike is suggested. The typical grading length ranges between
3004 to 5004, The band diagram of a graded heterojunction is shown in Fig. 2. with
a grading length of 3004 (In this chapter, graded HBT refers to fully graded HBT so
that conduction band spike is almost absent ). The conclusion that grading of the HJ
leads td a large increase in the emitter injection efficiency across the HJ is largely
based on the fact that the grading at the HJ removes the spike in the conduction
band Whlch otherwise suppresses electron injection in case of an abrupt HJ, but grad-
ing at the same time increases the recombination current in the emitter base deple-
tion region of the graded HBT by an order of magnitude compared to an abrupt HBT.
‘This particularly becomes a large percentage of E-B electron current at low bias.
Also, in case of abrupt HJ, electrons will tunnel through the tip of t_he cenduction'
band spike, thus the effective height of the conduction band spike will be much lower
than that calculated using classical formulations. In fact it was found that the tunnel-
ing current is fifty to sixty times higher than the thermionic emission current. So it is |
not obvious that grading of a HJ will always lead to much higher emitter lnjectlon
efﬁc1ency in a graded HBT as compared to an abrupt HBT.

Also, the common emitter current gain [ is controlled by both ~ and the base
transport factor (o4) [2], and when both v and o4 are close to unity, the smaller of the
two dictates the magnitude of . So from this point of view, if an abrupt or graded
heterojunction bipolar transistor has sufficiently high electron injection efficiency, then
its common emitter current gain will be limited by the relatively smaller base tran-
sport factor rather than electron injection efficiency across the HJ. To summarize the
above discussion, we can say that besides conduction band spike, R-G current in the
E-B depletion region and base transport factor, ; can greatly limit the performance
of the HBT. The results of the experiments so far have not been conclusive since
some experimental studies [3] have shown higher current gain in case of graded HBT,
and some [2| have shown higher current gain in case of an abrupt HBT. These rather
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Al FRACTION

1.0x10"7

. LAYER THICKNESS DOPING
Emitter | N AlGaAs 10004 5.0x10"7 03
»'BaSe ' p GaAs 10004 1.0x10'°
Collector | n GaAs 30004

* Graded HBT has a linear grading of 300A.

"Table 1. The details of the HBT structure used in the simulation.
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conflicting experimental results necessitates a model of HBT which can treat an
abrupt HBT properly using quantum mechanical approach and also which includes

the effect of grading on the recombination current at the E-B depletion region of an
HBT. ‘ ‘

In the past, quite a few models of HBT [4], [5] have been proposed for both the
graded and abrupt HBT. But most of the models of HBT have treated electron -
injection across the HJ of an HBT using either thermionic emission or drift diffusion
approach which are classical in nature. These models can treat a fully graded junc-
tion quite accurately, but it is severely limited when applied towards a study of an
abrupt HBT, since these models fail to take into account the quantum mechanical
tunneling current through the conduction band spike of an abrupt HJ which consti-
_ tute the major portion of electron current across the emitter base junction of an
abrupt HBT. Thus these models underestimate the magnitude of emitter injection
efficiency across an abrupt HJ. The study reported in [5] treated the transport pro-
cess_acrojssﬂ ‘an HJ, using both a thermionic emission model and a thermionic field
diffusion model 'Which takes into account the tunneling of electrons through the con-
‘duction band spike. But in their quantum mechanical treatment of electron tunneling
through the‘conductidn band spike, they used an approximate WKB type method [6]
which assumes the shape of the barrier to be parabolic. Further they neglected'the
variation of effective masses of electrons across the HJ and the reflection of carriers
above the potential barrier. Also their model doesn’t include the effect ofgrading on
the recombination current at the E-B depletion region of an HBT whlch ‘we found to
be very important.

To remove some of the shortcomings and approximations of the previously pro-
posed models of HBT’s, we propose in this chapter a model which treats the electron
injection in case of an abrupt HBT properly by using quantum mechanical'approach.
Our approach includes no assumption about the shape of the barrier and takes into
account the variation of effective masses across the HJ. The elctron current across
the E-B junction in case of graded HBT and hole current across the E-B junction in
case of both the abrupt and graded HBT’s are calculated using the conventional
drift-diffusion approach which are expected to be quite accurate in these cases. The
recombination current in the E-B depletion region is taken into account by using
Shockley—Hall—Read model of recombinations of carriers through trap levels in the
semiconductor. This model doesn’t take into account the effect of recomblnatlon due
to interface states and also the recombination along the perimeter of the emitter.

We then used quantum mechanically calculated electron current across the HJ of
an abrupt HBT and classically calculated hole current given by (1), to calculate the
emitter injection efficiency of an abrupt HJ (3). For the fully graded junctions, we



- 106 -

used the conventional drift dlﬁusxon approach to calculate both the electron (2) and
hole (1) current '

» qveb 8 B
qu niez kT ‘ o IR
: gV, c Lo
Dy ny’ - DI
Jy=tlb e gy
| n Wb Na (e )) ‘ R ( )'.

Where Dp,D are the dlffusmn coefficients of holes in the emltter and electrons in the
base ,. W,, W} are the lengths of the emitter and the base, nje, nj, are the intrinsic
carrier-concentrations in the emitter and base , V., is the emitter base bias, Ny, N,
are the emitter and base dopings, and J,, J, are the hole and electron current
flowing out of the base and emitter respectively. The emitter injection efficiency is

- o
| R R | W
where J, is the electron current across the heterojunction and Jrg is the

recombination-generation (RG) current in the emitter base depletion region.

Our results show that for an idealised case, when the recombination current in
~ the emitter base depletion region and in the quasi neutral base (i.e. ¢ = 1.0)-are
neglected, the ‘common emitter gain of graded HBT is two order of magnitude higher
than :thait'~in an abrupt HBT, but the magnitude of B for both the HBT’s are much
higher than experimentally observed values suggesting that recombination ‘current
" plays ‘an important role in limiting the value of experimentally observed 8. So to
~ account for the effect of ir‘ecombin‘ation current in E-B depletion region , we included -
SHR recombination current in the calculation of emitter injection' efficiency and to
account - for the recombination of minority carriers in the quasineutral base, we
modified the base transport factor by taking diffusion length of electrons in the p type
~ GaAs base as 1 um [3]. The base transport factor is calculated from
. W 2 ‘

= 1-‘;( L: (4)

where Wy, is the width of the base and L, is the electron diffusion length in the ‘base.
With the inclusion of recombination current, our results show that the common
emitter current gain of a graded HBT is lower than abrupt HBT at low bias where
- higher recomb;natlon current in the E-B depletion region of graded HBT dominates
over electron current. As the bias increases across the E-B junction , the § of the
graded HBT increases more rapidly than an abrupt HBT and at higher bias both

give about the same value of B. The rcason for this kind of behawour at higher
current is that the current gain at that level of emitter base bias is limited by the
base transport factor rather than emitter injection efficiency in both the graded and

abrupt HBT’s, otherwise the gain of the HBT’s would have béen much higher than |
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“the experlmentally observed values.

" The effect of an intrinsic set-back layer, generally used between base and HJ to
stop. d1ﬂus1on of dopants into the emitter region, is also studied using the same model.
Since the doplng profile in the set-back layer will be dependent on the diffusion rate
of the dopants from the base as well as on various parameters durmg growth of the
crystal, it would be incorrect to assume some particular doping profile of the set back
layer. For this we studied the extreme cases of a purely intrinsic set-back layer and
no set-back layer, so that the real experimental situation will represent something in
between these two extreme cases. The band diagram of an HJ with an intrinsic set-:
back layer is given in Fig. 1b. From our study, we found that the intrinsic set-back
layer increases the recombination current in both the graded and abrupt junction by
an order of magnitude. Also, in case of abrupt HBT, the intrinsic layer pulls down the
" conduction band spike which increased the electron current by .an order of magni-
’ tude, while in case of graded HBT eletron current is not very much increased by the
1ntr1n51c layer So as a result the inclusion of the intrinsic set-back layer deter1orated
- the. performance of graded HBT more than compared to an abrupt one. ‘

5. 2 Quantum Mechanlcal Treatment of Electron InJectlon

The electron current across the abrupt E-B junction is obtained by analyzmg the
colhs1on1ess propagation of electron waves across the conduction band profile [7] ‘The
energy band profile was obtained from a classical, numerical solution to Poisson’s
equation [8} The formulation allows for arbitrary spatial variation of AlAs mole frac--
tion and dopant densﬂ;y, includes Fermi-Dirac statistics for free carrlers and treats.
shallow dopant deionization. From the resulting conduction band proﬁle, wé then
compute the electron current by assuming that the contacts launch ‘electron waves
which propagate without collision through the structure. The numerical technique is
essentlally a quantum mechanical treatment of thermionic emission which 1ncludes the
effects ‘of carriers tunneling through the tip of the barrier, reflections of carriers
above the barrler, and is valid for arbltrary variation of the conductlon band edge.
The technrque is briefly described below ’

" Each of the two contacts of the one-dimensional _]unctlon is assumed to be in
local thermodynamlc equilibrium. The Fermi-levels of these contacts are separated
by the applled bias. The contacts launch electrons into the device Wlth a spectrum of

momenta., . The electron Wavefunctlon in the device,
—

q,(_;) =‘¢(z)exp(i'h—t"‘;:) pv o '(5)

is determined by solving



- 108 -

“d |1 diffz)| 2m (zc) [ N ] ST -
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for the envelope function ¥(z) [7]. In (6) 6(z) = m'(z)/m"(2¢) describes the spatlal
- variation of ‘the effective mass with respect to that in the contact m*(zc) Et is the
transverse energy, pi /2m (zc), and E, the longitudinal energy, /2m zC) The con- -
tact is located’ at z = Ig. |

7 The electrOn"currenf is obtained by summing the contributions due to the various
P for each of the two contacts. The net electron current is the dlﬁerence between the
currents m_]ected from the two contacts ' ‘

f47r3h3pz[ *EZL)fL@TLRG;)V (ZR)fR(_)TRL(P)] (7) |

where fL( 5) is the Fermi-Dirac factor with the Ferm1 level of the left contact, m*y(zL) ,

is the effective mass in the left contact, and TLR(p) is the magnltude of the current
transmlssmn coeﬂiclent

‘When m ( ) is position-independent, i(z) as determlned from (6) is independent |
-—* -
of p; and the integral over py and py in (7) can be performed analytically. The result
' , - , o

-—q f ;f;l Py [m*ZZL)UL(pz)TLR(pz) - m*(IZR) GR(pz)TRL(Pz)] - | (8),
rWhere O'L(pz) is given by | |
uler) = LI Ll e, ~ B - B )]s ()

E, =p,° /2m* (z¢) and Epy, is the Fermi level in the left contact. Equatiori (8) shows
that to evaluate the electron current, the wave ‘equation (6) must be solved to find
TrLr(p.) and Tgry(pz)- |

'An examination of (6) shows that (z) depends on the transverse energy when -
the effective mass varies with position. The result is that the integral over p, and Py
cannot be performed analytically and a rigorous evaluation of J, would require a cal-
culation of 9(z) over a grid of transverse energies. To avoid this complication, we fol-
low Vassell [9] and replace E in (6) by its thermal average, kpT. T B

The computatlonal procedure consists of incrementing the longltudlnal mormen-
‘tum from zero to some maximum value. For each p,, the wavefunction is computed ‘
and the contribution to J, for electrons between p, and p, + dp, is evaluated. The ‘
contributions for each p, are then summed to evaluate the integral (8) numerically.
This procedure is then repeated for the other contact. o
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In addition to evaluating the electron current, it is also straightforWard to evalu-
ate the electron density n(z) from the solution of the wave equation. T:his carrier den-
sity can then be inserted in'Poissons equation and a new conduction band profile
computed.  The process can be repeated to iteratively obtain the - self-con31stent
energy’ band profile. While such computations have been reported [7], they were not
necessary for the problem under study because the Junctlon region is depleted of car-
riers.

In the present version of our quantum mechanical model, we didn’t consider the
‘nonparabolicity of conduction bands and also neglected higher energy conduction
bands (X, X, ete. ). Since the doping level in the emitter of an HBT is not very high,
the error introduced by the first assumption should be small. The second approxima-
tion is not very good when aluminium fraction in AlGaAs is greater than 0.45 since
after that AlGaAs transforms to an indirect gap semlconductor from direct gap sem-
iconductor and we need to consider both the I' and X; valleys of AlGaAs. But gen-.
erally in the case of an HBT, the aluminium fraction in AlGaAs emitter is ‘beloWﬁO 45
which makes the emitter material a direct gap semiconductor and 1n that case our
assumptlon should introduce negligible error [10].

To verlfy the accuracy of the above numerical technique, it is applled to study
the transport of electrons across some simple potential barriers. The simple. potentlal
~ barrier used is a trlangular barrier for which an analytic expression of transmission
coefficient is obtained using Airy functions and tunneling current is calculated accu-
rately’ from the analytic expression of transmission coefficient. Then the numencal
technlque discussed above, is applied to the triangular barrier and a résult with less
than 1.0% error is obtained in the calculation of transrmssmn coefﬁclent and tunnel-
1ng current ' ' ;

5.3 Electron InJectlon Current across the HJ of the HBT

‘ The quantum mechamcal method discussed in the prev1ous sectlon was . applled to
study a typlcal abrupt HBT structure. First. we didn’t include any set back layer at
the E-B Junctlon of the HBT, and then we included a 100A purely intfinsic set -back
layer‘at'”the'E—B junction of both the graded and abrupt HBT’s studied first. The
details of the structures are given in Table. 1. Figures la and b show the band

“diagrams of the abrupt HBT without and with a 1004 intrinsic set- back layer respec-
tively. The band dlagram of the graded structure without a set-back layer is given in
Fig. 2_L Our subsequent discussion is mostly centred around an HBT with no set-back
layer unleSS the presence of an intrinsic set-back layer is specifically mentioned.
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First, we studied an abrupt HBT. In Fig. 3a, we plotted the transmission proba-
bility. versus incident energy of electrons across the HJ of the HBT under study, using
our numerical technique and the analytical technique described by Grinberg et. al.[5].
‘As can be seen from the plot, the transmission coefficient calculated by numerically
solving Schrddingerr’s equation (our method) is higher than calculated by:the analyti-
“cal technique of [5] at low energies and it also doesn’t approach to unity immediately
above the ~ba.rrierv'due to reflection of carriers above the barrier. The transmission
coefficient, calculated by the approximate method in [5] increases rapidly after certain
energy and approaches to unity at the tip of the barrier. The overall effect of this
type v,ariat'ioﬁ of approximate transmission coefficient from the actual one is that
when 1t is‘inte\gratbed over the full spectrum of tunneling energy states, we get a com- - |
pensating. effect and the approximate method gives a fairly accurate result in terms
of tunneling current. But the energy spectrum of the injected electrons given by this
method would be inaccurate and for this reason this approx1mate method of [5] can

not be used in cases where an energy spectra of the injected electrons is needed for
example in. order to study the transport of electrons across the quasi neutral base. For
comparison purpose, a plot of injected current density across the HJ vs incident
energy of the ,;e‘l‘ecl‘:rons calculated using two methods is given in Fig. 3b. The same
kind of behaviour of the approximate method in [5] is also observed in case of the sim-
ple triangular barrier discussed earlier. o

To estimate the effects of quantum mechanical tunneling across the abrupt HJ of
an HBT, the electron current across the HJ was calculated both by quantum mechan-
ical method and thermionic emission theory. The results are plotted in Fig. 4 along
with the experimentally observed characteristics reported in [11].-As can be seen from
the figure, the quantum mechanically  calculated current is an order of magnitude
higher than themionic emission current, which establishes the fact that thermionic
field emission is the dominant mechanism of carrier transport across the emitter base
junction of an abrupt HBT. It is also found that at higher biases as the potential bar-
rier becomes thicker, thermionic emission current starts to dominate the overall mag-
nitude of electron current. The same view is also shared by [5]. For comparison pur-
pose, we calculated the tunneling current across the HJ using the technique described
in [5],(6] and the results by the latter method, though an approximate one agrees rea-
sonably well with our rlgorous calculations (Our calculations show a 20-30% more
tunneling current.). The reasons for this good agreement of the approxunate method
with ours are already discussed. ‘As can be seen from Fig. 4, we also plotted the
experlmentally observed current voltage characteristics of a similar HBT reported in
[11). The thermionic emission current is found to be much lower than the experimen-
tally observed value of current. The quantum mechanically calculated current agrees
better with the experimental results compared to thermionic emission currvent but it is
still lower than the experimentally observed value. The possible reasons for this
discrepancy are discussed in the next section.
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Next we. 1ncluded the intrinsic set-back layer in the structure and calculated the
electron -current using the same quantum mechanical technique (Flg 4:)"and our
results show that an intrinsic set-back layer increases the electron current by an order
of magnitude and it is much closer to the experimentally observed' value. The increase
in the electron current comes from the lowering of the conduction band sp1ke at the
-HJ due to the intrinsic layer of GaAs (Fig. 1b). Of course in an experlmental situa-
' tlon, the set back layer won’t be purely intrinsic and the increase in the electron
current will depend on' the doplng profile of the intrinsic region. So our:calculation
with the intrinsic layer basically gives the upper limit of the electron current .So we
see. that ‘the. electron current calculated using our model is still lower than that
observed by Ito et.al. We believe the reason for this discrepancy mailnly arlses from
the fact that in reahst1c devices a junction can’t be perfectly abrupt in doplng (see
Fig. 1 of [11]) as modeled in our program. Also there will be recombination due to
1nterface states and parasitic recombinations along the perimeter of the emitter con-
tact whlch we. neglected in our calculation. Also it is noted that the experlmental
data for two very similar structures grown by two different methods and reported by
- two dlﬁerent researchers vary widely between themselves [3], [11]. For this reason no
attempt is made.in this chapter to precisely match the experimental data with our
calculated data, instead the nature of variation of different characteristics of HBT is
dlscussed W1th the aid of our model. ‘

In case of the graded HBT the electron current is calculated us1ng the conven—
tlonal drift and diffusion approach [12] and as expected the magnitude of the electron
current is found higher than in the similar abrupt structure at the same E-B bias
(Fig. 4) But the effect of set-back intrinsic layer on the magnitude of electron current
across the E-B junction in case of graded HBT is found very nominal as compared to
the case of an abrupt HBT. This is because in case of a graded HBT there is no con-
duction band spike at the HJ that is pulled down due to inclusion of the 1ntr1ns1c
layer, so the barrier to the electrons more or less remain the same. The effect of
intrinsic set-back layer is much more profound in the recombination current which is
dlscussed in the next section. '

5.4 Recombination-Generation current at Heterojunctions

The recombination-generation (RG) current in an HBT mostly comes from the
emitter base depletion region and from the recombination of minority carriers in the
quasi-neutral base. The recombination of minority carriers in the quasi-neutral base is
- taken into account by taking the diffusion length of minority carriers in the base to
be 1 um and then calculating the base transport factor as discussed before.

The RG current in the forward biased E-B depletion region of an HBT around
the operating bias comes mainly from the recombinations of carriers through the
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midgap states. The recombination rate is computed numerically using Schockley—
Hall-Read model (SHR) as given in the following equation

p(x)n(x)—n;’ (x)
7 (n(x)+n; (x)exp((Ey —E; ) /kT)+7, (p(x)4n; (x)exp(—( EV*E)/kT
where o and 7, are minority carrier life times and are assumed umform and equal to

1 nsec throughout the device. E; is the trap level, E;, the intrinsic ferml level k and
T are respectlvely Boltzmann constant and temperature. '

R(x) = - (10)

The position dependent recomblnatlon rates for both an abrupt and graded HJ
are presented in Fig. 5. From the plot, we can see that the rate of recombination is
higher in a graded junction as compared to an abrupt one. This is because most of
the recombinations occur in the larger bandgap emitter and in the case of graded
junctions the intrinsic carrier concentration is increased as compared to the abrupt
one in the emitter side of the depletion regron due to grading. Experimental observa-
tion of the base current in both the graded and abrupt HBT supports this view [3]: In
this calculation of recombination current, we neglected recombination due to interface
states present at HJ and also the recombination current that arises due to recombma-
tions along the perimeter of the emitter. ’

The inclusion of the intrinsic set-back layer in both the graded and abrupt HBT
increased:t‘he recombination current in the emitter base depletion region by an order
of Vmagrl‘itu’de. This increase in the recombination of minority carriers in the E-B
depletiOn region is mainly the result of an additional band bending on the base side of
the E-B Junctlons due to the inclusion of the set- back layer which traps electrons.

As can be seen from our studies, the effect of the intrinsic layer i is more profound
in case of a graded junction than an abrupt junction since in the former the electron
current remams about the same whereas recombination current increases, but in case
of abrupt HJ both the electron and recombination current increases with the 1nclusron
of the set-back layer. Thus the set-back layer reduces the magmtude of more in
- case of graded HBT than in an abrupt one, particularly at low bias. So the inclusion
of the set-back layer in one hand improves the performance of the HBT’ s by stoppmg
diffusion of dopants from the p type base into the N type emitter, on the other hand
it also ificreases the RG-current in the E-B depletion region. It should be made clear
that our study takes the case of two extreme situation, one with no $et-back layer
- and one with purely intrinsic set-back layer. The actual situation erl be some What |
in between thses two extremes.
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5.5 Common Emitter Current Gain of Abrupt and Graded HBT’s

In this section, first we present our calculation of common emitter current gain 3
for both the graded and abrupt HBT with no set-back layer (see Table 2).  In the
later part of this sectlon, the effect of mclusmn of the set-back layer on the magni-

‘ ~ tude of B is discussed.

The 3 of the abrupt HBT is calculated using the quantum mechanical method
discussed in Sec. II. The hole current and RG current are calculated using classical
formulations. In case of the graded HBT, the conventional drift diffusion approaéh is
used. The base transport factor in both the graded and abrupt HBT'’s are taken to be
0.995 (Calculated by taking the diffusion length of electron in the base to be 1 um).
The results of the caleulations are presented in Table. 2 and in Figs. 6a,6b.

As can be seen from the plot of 3 versus V,p, the common emitter éurr_ent gain 3
for the graded HBT is much higher than the abrupt HBT in case of an ideal situation
where there, is no recombination current in either quasi neutral base 6r emitter base
depletion region. The values of S for both the graded and abrupt HBT’s in this ideal
'~ case are much higher than the experimentally observed values. This confirms that the

recombmatlon current plays a major role in limiting the magnitude of fin both the
| graded and abrupt HBT. As can be seen from the other plot of 3 versus Vg, which
includes the effect of recombination current, the common emitter current gain, 3, of a
gradeyd HBT is lower than the abrupt HBT at lower bias. The reason»fb‘r this kind of
behaviour is that the recombination current in case of graded HBT is relatively large
compared to an abrupt one and at low value of electron current, this "hig,her"rec’ombi- _
nation?current in case of graded HBT reduces the emitter injection efﬁciénéy of a
- graded HBT more than that of an abrupt one. At higher bias, the ,3 of a graded
HBT increases more rapidly than abrupt HBT but both saturates around 170 to 200,
the current gain of the graded HBT being slightly higher than the abrupt one. These
comparable values of current gains of the graded and abrupt HBT suggestS' ‘that
abrupt HBT has sufficient electron injection efficiency to have a comparable current
gain of a graded one. '

To 1nvest1gate this further, the emitter injection efficiency is calc'u"latéd"for both
abrupt'and graded heterostructures. It is found that at higher values of injected elec-
tron current though -y for graded junctions is higher than that in an abrupt junction,
still both are much higher than the magnitude of ;. This means, the base transport
factor Whlch is lower than such a high value of ~, will primarily control the common
emitter current gain. In that case, the emitter 1n_1ect10n efficiency obtained in the case
of abrupt heterojunctions is adequate enough for a high current gain and it is the
- transport of electrons through the base which determines whether an abrupt HBT or
a graded HBT will give higher 8. It should also be mentioned that modell_lng of base
transport factor is not adequate at present, and an accurate modelling of trausport of
electrons across the base will result in a higher base transport factor for an abrupt
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Device

Bias

Em. Inj. Effy.

" Common Emitt. Curr. Gain -

Includes R-G

No R-G

Ott= 1 .0

Includes R-G

04,=0.995

Quant

Thermo

Quant Thermo

Quant

Thermo |

0.9

0.9654

0.29405

2x10* 309

25

1.0

0.99118

0.687

1.24x10* 249

72

1.1

Abrupt | AP R |
0.9976

0.9198

0.74x10% 203

135

11

1.2 .

0.999

0.9796

0.38x10* 179

165

30

Graded

0.9

0.898

1.0x10°

1.0

0.9766

8.8x10°

35

1.1

0.9956 |

3.5x10°

106

1.2

0.9992

3.4x10°

171

Table 2.

The results of simnulation.
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heterojunction, since electrons are injected at a higher energy into the base compared
to that in a graded heterojunction. These hot electrons spend much less time in the
base and consequently their probability of recombination is much less compared to
diffused clectrons as in the graded heterojunction. In our caleulations we have taken
the base transport factors for both the graded and abrupt HBT to be the same. A
higher base transport factor in case of abrupt HBT will eventually explain a hlgher
common emitter current gain in an abrupt HBT as observed in [2].

Another 1nterest1ng observation from Fig. 6 can be made about the use of ther-
mionic emission model for abrupt HBT’s. Since thermionic emission model underesti-
mates the electron current across an abrupt HBT to a great extent, the emitter injec-
tion efficiency obtained from the use of this model is less than the actual one. Because
of the lower emitter inje‘ction efficiency predicted by it, the thermionic emission model
predicts the common emitter current gain of an abrupt HBT to be much lower than '
‘graded HBT and thus this model fails to bring out the correct plcture of ‘the
‘ behav1our of an abrupt HBT.

Next we calculated A for the case Where an intrinsic set-back layer of 100 &
exists at the E-B junction of both the graded and abrupt HBT’s. The results are plot-
ted in Flgs Ta and 7b for both the abrupt and graded HBT’s. From the plot ‘we can
see that the effect of the intrinsic layer on the performance of the graded HBT‘ is to
reduce the magnitude of B whereas in case of the abrupt HBT, the magnitude of 8
remains about the same in both the cases. This kind behavior is observed due to a
relatively higher reduction of 7y in case of graded HBT as compared to an abrlrp.t'dne.
The reason for lower «y in case of graded HBT is discussed in the earlier section. It
should be mentioned that the presence of the set-back layer is neceséary to prevent
the diffusion  of dopants across the hetero_]unctlon which otherwise will shift the loca-
» tion of the N-p junction from the compositional HJ. This will also degrade the perfor—
mance of the HBT. Moreover as mentioned earlier our study treats the two extreme
cases of an intrinsic setback layer and no set-back layer. So the actual situation will
be somewhat in between these two extremes. So this study gives some qualitative
effects of inclusion of a set-back layer to help the experimentalists dec1de on the
design trade—oﬂs mvolved in this matter.

5.8 Conclusion 7 _

In this chapter, we described a quantum mechanical method to'ana'l&se transport
- of electrons across any arbitrary shape of potential barrier. The numerical technique
“discussed in' the earlier section is used to study the transport of electrons across the
emitter base junction of HBT. From our study we found that the WKB type method
discussed in [5] has reasonable accuracy to be used for the calculation of tunnehng
current in case of abrupt HBT, but the method is limited to a particular shape of the
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potential barrfer. The method discussed in this chapter is perfectly genérél and can be
used for any arbitrary shape of the potential barrier. '

The treatment of electron transport by the quantum mechanical method shows‘
that the thermlomc emission theory gives an underestimated value of 7y in case of the
abrupt HBT leading to an incorrect estimate of 1ts performance.

Our study shows that RG current plays an important role in hrnltmg the perfor-
mance of an HBT. It is also found that RG current in case of the graded HBT is an
order of magnitude higher than that in case of abrupt HBT. This reducés the the
magnitude of y, consequently the magnitude of § in case of the graded HBT ‘more
than in an abrupt HBT. The inclusion of the intrinsic set-back layer further
deteriorates the performance of the graded HBT. ‘ k

We also found that at low value of collector current, RG current plays an 1mpor—
tant role in dec1d1ng the magnitude of v and subsequently § in case of both the
graded and abrupt HBT’s. But the effect on the graded HBT is more pronounced due
to a higher RG current. At higher value of collector current, it is found that # will be
limited by o4 rather than -y, which leads to the conclusion that it is possible to
achieve higher current gain in case of abrupt HBT in contrary to the earlier studies.
The experimental observations in [2] supports this.

Our quantum transport model has some limitations. The most important one is
that it can’t treat collisions in the device at present. Also in this model we need to
consider higher energy bands other than I' valley, if we want to treat indirect gap-
AlGaAs, in other words the present model gives best results when aluminium concen-
traton in AlGaAs is low enough to make it indirect i.e. x<<0.45. In our study of HBT,
we neglected the recombination current due to interface states. Also the recombina-
tion current around the edge of the emitter is neglected in this study. To obtain a
quantitave agreement of the theoretical results with the experimental ones, these
effects have to be incorporated in this model.
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Preface

SEQUAL is a device simulation program which performs a quantum mechanical
analysis of electron transport. The user need not be an expert in quantum mechanics
to obtain useful results from this program, although an understanding of the subject
is an invaluable aid in the interpretation of output. For this reason, the theoretical
formulation of the analysis is presented in some detail, following a brief introduction.
The knowledgeable (or anxious) user may turn directly to the discussions of input and
output in Chapters 3 and 4. The reader is cautioned, however, not to skip Chaper 2
entirely. At the kheart of many a program "error" lies a misinterpretation of output.
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1

Intr’f_oudﬁ,c:tion

SEQUAL is a device simulation program, computing Semiconductor Elé{:trqstat—
ics by QUantum AnaLysis. Given the characteristics of a particular device, SEQUAL
will compute the electron density and the current density, using a quantum mechani-
cal description of electrons. To enhance the versatility of this program, it was
designed to be a post-processor for classical simulation programs; as such, it does not
calculate any material parameters, so it can be used with any material system.
Instead, SEQUAL relies upon the output from classical analysis programs such as
FISH1D, PUPHS, or SEDAN, to provide the description of a device. A dxrect com-
parison of classical and quantum mechanical results is then pos31ble ' '

Often (for devices which merit the use of this program) the difference between
classical and quantum mechanical results is significant. In such cases, the difference
in electron densﬂ;y places the classical description of the electrostatic potentlal in
doubt. The quantum mechanical distribution of space-charge demands a solution for
the electrostatic potential which is self-consistent. When a self-consistent solution is
desired, SEQUAL allows for iteration between calculations of the electron density and
the electrostatic potential. Hence, SEQUAL can provide a correct solutlon of quan-
tum mechanical electrostatics.

Figure 1.1 deplcts the input/output structure of SEQUAL. A numerical descrip-
tion of the device, .obtained from the output of a classical analysis program, is the pri-
mary source of input. In addition, SEQUAL accepts a list of commands called the
“input deck,”ﬂv'vhich allows for selection of program options. A summary of the
analysis is written to standard output, in a form well suited to printing. SEQUAL
does not produce any plotted output, since undoubtedly the user has a program
favored for this purpose. Instead, SEQUAL can generate output files in a variety of
formats, to interface with many plotting programs. Quantities available for writing
to output files include the input device description, the electron density, the transmis-
sion coefficient, and the squared magnitude of the electron wavefunction, output as a
surface in both position and energy spaces.

The following éhapters are intended not only to describe the operation of
SEQUAL, but also to provide some understanding of the calculations performed. In



Chapter’ 2, the theoretical formulation of the analysis is discussed. SJS‘ome of the
difficulties encountered in a numerical 1mplementat10n of the theory are noted and an
approach is outlined, which is used by SEQUAL to insure accurate results Chapter 3
details the input structure of SEQUAL, specifying both the syntax of the input deck
and the format of the device description. ‘Program output is discussed in Chapter 4,
~and an example calculation is presented in Chapter 5. Fmally, Chapter 6 examlnes '
some practlca.l con31deratlons, for the 1mplementatlon and use of SEQUAL '

| vInpu't, Deck

l ‘ ' (—>| Printed Out;pu_:t,:

* Device Data |—» SEQUAL 2.0

L Plot.Files. ,

K Figuré 1.1: Structure of input /output in SEQUAL
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2

Theo"retical Formulation

The computatlons performed in SEQUAL are based upon a number of srmphfymg
assumptions: -

. Electrons are assumed to be maJorlty carrlers, holes are completely ignored
in the analysis.

e  Profiles of doping density and material composition assumed to vary ih,onl’y
one dimension (hereafter referred to as the “longitudinal direction”).

o Effects of the crystal potential are parameterized by an effective mass, v“WhVich
~is’ constant in each material region, and. which changes abruptly at a
materlal interface.

0 ) Solutrons reflect steady-state conditions, and are independent of tlme
o The energy dispersion relation is assumed to be parabolic.
e  Electron-electron interactions are negleeted.

e  Transport is assumed to be ballistic; overall device dimensions are assumed
to be sufficiently short, so that scattering can be neglected. '

A pictorial representation of the analysis is presented in Figure 2.1(a). Contacts,
- assumed to be in local thermodynamic equilibrium, inject electrons into a device, with
a spectrum of wavevectors K. These electrons interact with the potential proﬁl'evEC;
some are transmitted across the structure, and the remainder are reflected back to
the injecting eontact Contacts are assumed to supply a continuum of electron ener-
gies, and these energies are referred to as *‘propagating states.” If inelastic scattering
were included in the model, some of the injected electrons could scatter into states of
lower energy. In particular, some electrons could scatter into states which could not
be populated by either contact. Such energies, which fall below the conduction-band

October 3, 1987 = SEQUAL User’s Manual S o -3




edge of _either contact, are referred to as ‘‘bound states.” ' Solutions of ‘the
Schrodinger equation for both propagating states and bound states are described
below. Because the primary importance of SEQUAL is its application to transport
problems, the solution for propagating states is considered in more detail.

2.1. Propagating Electronic States

2.1.1. Solutiontof the Schrodinger Equation
Quantum mechanically, an electron is represented by a wavefunction (),

which is obtained by solving the (time-independent) Schrodinger equation:

d m, : S
[m @) b e+ S [Berm 1 e ] - E"(’)t ) = 0 )
where . | | ‘
e
E = *
- 2m,

is the :energ"y of the injected electron in the direction of propagation, and

. . hz ) 9

Et = ¥ x + ky) :

is the energy in transverse directions. In the form presented above, the- ‘Schrodinger
equation accounts for spatial variations in the effective mass m (z), relative to the
effective mass of the 1n_]ect1ng contact (mc) The conductlon—band profile Eg(z) is
assumed to be known for a particular device. :

An arbitrary potential profile can be described by segmenting a dev1ce into a
number of tiny intervals, as shown in Figure 2.1(b). Each interval is dehneated by

- points in position space called ' ‘nodes.”

Within each interval, the potentnal is approx-
~imated by its average value. Of course, intervals should be sufficiently small to accu-
rately represent a _potent’ial profile. In an region of constant potential, the solution of
‘the Schrodinger equation is some linear combination of plane-waves; ‘hence, the
' Wavefunctlon for an entire -device is deduced by matchlng boundary conditions

between plane—wave solutlons in each 1nterval

~In thls respect the solutlon of the Schrodxnger equatlon is equlvalent to a
transmlssmn hne analys1s Each interval of constant potentlal acts: like a small
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Chapter 2 — Theoretical Formulation

electrons

~ electrons

electrons

electrons

(b)
(a) Electrons are injected from contacts into a device with an arbitrary

potential profile; and (b) any potential profile can be represented by a

F iglire 2.1:

: series of tiny intervals, in which the potential is approximately constant.
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section of transmission line with a constant impedance. At the junction between two
trnnsmiSSiOn lines, voltage and current must be continuous. Similarly, proper solu-
tions of the Schrodinger equation require continuity of: '

Yp(z) and tb-»( )

at the boundaries between each interval of constant potential. Just as a vo]tage
plane-wave would be reflected by a mismatch in 1mpedance, the electron wavefunction
is reflected by changes in the conduction-band profile. When interpreting the results
of an analyms, it is useful to keep this analogy at the back of one’s mind: Many
quantum mechanical effects (e.g., tunneling, resonance states, ete. ) can be understood
in the general context of wave phenomena. ‘

()az

2.1. 2 ‘Calculation of Electron Denmty a.nd Current Densxty

Because each contact injects electrons mto a device, the electron den31ty ca.n be
resolved ‘into two components

a(z) = 0= (z) + *(5) - - (2.2)
Electrons injected from the left contact (node 0) are labeled | —r; those injected from
the right contact (node N) are labeled r—{. Each component is obtained by integrat-

ing the squared—ma.gnltude of the wavefunction over the entire spectrum of wavevec—
tors - ' ' '

l—+ z l—» —+T . . e et
{ | B 17 6 () - ey
r—»l f 11;—'»l(z) | 2 or—-;«l(kz) | | . | (2'4)
wher‘esv,the: factors o(kz)» represent the ,integrat»ion’otrer transverse’}wﬁveyfectbrs k, and
ky: | | | o
oo m kyT : o i 2
) = =l 1+ expl(Br — B(0) - i / ksT]]
kT | - ok}
= LA +exp[(EF —EC(N) :

b""”_(k) _ v) / kpT]]
_. Here, EF is the Ferml-level in the 1nJect1ng contact; m is the effective mass in the
_1n3ect1ng contact E¢(0) and EC(N) are the conduction band energies at nodes 0 and N
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Ch‘apter 2 — Theoretical Formulation

(left - and- right- -contacts, respectively); T is the- temperature, and k, is the 1nc1dent
wavevector, in the direction of propagation.

Notice that, ‘in the Schrodinger equation (2:1), the wavefunction "M':i’s"'depen-
“dent on the transverse energy E;. It was assumed in the derivation of (2. 3) and (2.4)
that this dependence is ‘weak, so that the wavefunction is approxrrnately ‘constant
over all transverse wavevectors. The wavefunction is then evaluated at a single,
representative E,, and removed from the transverse integration. Hence, the integra-
tion over transverse wavevectors was performed ‘analytically, and the result is embo-
died in the factors o{k,). Normally, the representative transverse energy is assumed
to be 'the'therrna'l average energy, kgT. Although this assumption ‘is re“asone‘ble in
many cases, it is strictly an approximation. A rigorous calculation would ‘require an
evaluation of the wavefunction at all (longitudinal and transverse) wavevectors. Such
a cal'cu:lation would increase execution time tremendously, to the point ‘where compu-
tations are no longer tractable.

‘Current density for electrons can also be resolved into two components, due to
the two, oppositely flowing streams of electrons

J=J"’f‘J‘“" | | o | - (2:9)
where - o
Jor = = (ky) &7(k,) 29
’ v.r—v qﬁ = dk T+ — "
= fzﬂkT ‘()o”() (2.7)

The functions Tl—'r(kz) and T"!(k,) are the transmission coefficients from left to
right, and from right to left, respectively. Each represents the ‘fraction- of injected
“electrons which propagate across the entire device. Each is prop'ortional to the
squared-magnitude of the wavefunction,-at the proper end of the device:

Tl—»r ocl wk—rr N) |2 Tr—yl OC | ﬁ—rl | 2

In essence, therefore, both the electron density and the current densrty are deter—
mlned by 1ntegrat1ng the squared-magnltude of the wavefunction.
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2.1.3. Nvum‘e"ri»ca.l Integration Concerns

By using the formulas presented above, calculation of the electron density and
current density is straightforward: A grid of wavevectors k, is chosen for the lnjec-
tion of electrons, and the squared-magnitude of the wavefunction is mtegrated over
that grid. The remaining difficulty lies in determining a suitable grid of wavevectors.
Naively, one might assume that a uniform mesh (if sufficiently dense) would provide
adequate resolution; this is not the case. Consider, for example, electrons experienc- -
ing a transmission resonance. For certain device geometries, it is possible to achieve a
large transmission of electrons at particular (resonant) wavevectors. In this case, the
wavefunction peaks sharply at resonance, and is nearly zero at all other wavevectors.
If resonances are sufficiently sharp, they could be missed entirely by a uniform mesh.

~ Even if a series of successively finer meshes were used, there is no guarantee that the

wavefunction would be properly resolved. Aside from being an inefficient solutlon,
therefore, the use of a uniform mesh is a little like playing Russian Roulette.

 To i 1nsure ‘proper resolution of the wavefunction, the following approach is used
in SEQUAL For each direction of propagation, electrons are injected at unlform
intervals in k-space In each interval of k,-space, the squared-magnltude of the
wavefunction is examined for a local maximum. If a maximum is found to exist some-
where in the interval, then the exact wavevector corresponding to the maxxmum is
calculated. The process by which a maximum is detected and located in k, ;-Space is
somewhat‘,compllcaited, and is unimportant for this discussion. By 1solat1>ng_:wave‘func-
tion makima, it is assured that all features of the wavefunction will be resolved
clearly. '

The integrations required by equations (2.3-2.6) could be performed by a vanety
of numerical techniques.  In SEQUAL, Gauss-Legendre quadrature was chosen,
because it offers high accuracy with a comparatively small number. of wavefunction
evaluations. - The ‘“order” of the integration process refers to number of ‘mesh points
in an interval; mesh points are chosen by mapping zeroes of Legendre polynomials
into a givéii interval. An estimate of the error obtained for a particular ,iﬁterval is
calculated by comparlng the results from different orders of integration.

_ An overview of the entire process of injection and integration is as follows A
uniform. grld of wavevectors is used. to isolate maxima in the squared-magnitude of
the wavefunctlon ‘The wavevectors corresponding to maxima define a grid of integra-
tion mtervals, in whlch the wavefunction is smooth and well- behaved. Wlthln each
mtegratlon interval, successive orders of Gauss- Legendre quadrature are apphed untll
the accuracy of the result is acceptable In principle, the process of isolating maxima
- in k,-space could be performed at each node. Realistically, however, it need only be
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Chapter 2 — Theoretical Formulation

performed at those nodes for which the wavefunction varies most rapldly in- k ,-Space.
By default, SEQUAL performs isolation of maxima for the first and last nodes. (nodes .
0 and N) of a device. Because of * ‘standing-wave’’ patterns produced by reflection,
the wavefunction varies most rapidly at the contact nodes. Other nodes for which

rapid varlatlons are expected (e.g., resonance states) can be specified at the tlme of
executlon gt :

2. 2. Bound Electronlc States

In contrast to the propagating electronic states cons1dered in the precedlng sec-
tions, bound states cannot be populated by either contact. In a real device, electrons
injected from the contacts could inelastically scatter into states of lower energy; how-
ever, inelastic scattering has been neglected in SEQUAL, thereby removing the link
between propagating states and bound states. In many cases, the density of electrons
residing in bound states can be significant. This contribution is partlcularly impor-
tant if a self-consistent solution of the electrostatic potential is requlred For thxs'
reason, SEQUAL allows for the consideration of bound states. ' '

"Bound state energles are determined by solving for the eigenvalues of the
Schrodinger equation (2.1), written in finite-difference form. It is assumed that the
wavefunctlon vanishes at both ends of the device; hence, the spatial locatlon of bound
states should be sufficiently removed from the contacts. The actual solution of the
eigensystem is performed by an International Mathematical and Statistical Library
(IMSL) routine ezgr f. Given the eigenfunctions 1i(z) and the energy elgenvalues 6,, the
electron densnty for each state is determined by: ‘ DR

ny(z) = 2%‘.& | %) ?1n [1 + exp [( - e,)/kBT” (29
where Ep is the Fermi-level, which is assumed to be constant across the entire device.
This result was obtained by assuming that states are populated according to Fermi-
Dirac statistics, an assumption which is valid only in eduilibrium For each bound .
state, a two-dimensional electron density can be calculated by mtegratmg the electron
den51ty n; (z) over the length of the device:

| bnizv“D 7 k ! In [1 + exp [( » — € /kBT” zdez m’(z) |¢l(z) E | ’ (2.9)

k.

Of course, a finite-difference formulation with nodes 0 to N in posmon-space w111
have N+1 elgenvalues, of these, only the states which cannot be populated by either
contact are considered to be bound states. That is, states are “bound” if the-energy
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eigenvalue ¢ is below the conduction-band edge of either contact. The total (three-

- dimensional) density of bound-state electrons, therefore, is the sum of _contributions
from each bound state: S

m)=SnE - e

where the index 1 is restricted according to:

| {i I & < Ec(0), ¢ <E¢(N) }

2.3. Iteration for Self-Consistency

In the preceding sections, a method was described for the calculation of electron
density, assuming that the conduction-band profile was known. In general, the
conduction-band profile is determined by two components: a static component |
AE(z), descrlblng the offset of the band edge in different material layers, and the
electrostatic potential ®(z):

Eqlr) = AB(z) — q(s)
Of course, the electrostatic potential can be determined, given the electron density,
by solving the Poisson equation:

| ;Z[ rle) o - b(z)

- —a[N5(0) — (o) e

where ,(z) is the (position-dependent) relative dielectric constant, and Ng (z) is the
density of ionized donors.

For a proper é.nalysis of any device, the solutions for both the electron density
and the electrostatic potential should be self-consistent. In SEQUAL, a fully self-
con31stent ‘solution can be obtained by iterating between the solutions for each Qﬁan-
tity; an overview of the iteration process is presented in Figure 2.2. After an initial
guess of the electrostatic potential has been input, the electron density n (z) is calcu-
lated. If iteration is not allowed, the process terminates, yielding a solution of elec-
tron density for the given potential profile. If iteration is specified, however, a better
guess for the electrostatic potential is determined, by solving the Poisson eqnation.
The cerresponding electron density is then calculated, and the process is continued.
Iteration is termlnated when the calculations converge to a certain number of
s1gn1ﬁcant ﬁgures, or when the 1terat10n counter 7 reaches some maximum value.
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Figure 2.2: Flowchart for a self-consistent solution
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3

Program Input

SEQUAL accepts two kinds of input: the device description, and the mput deck
(see Flgure 1.1). Output from a classical analysis program constitutes the. device
description, a file containing columns of numbers which characterize the device in one
dimension. 'One column is a list of “nodes,” or positions in space; all other columns
list the value of,\a quantity (.e., the conduction band energy, the effective mass, etc.)
at each node. The second source of input, the input deck, is a list of commands
which control the operation of SEQUAL. These commands specify the format of
input and output files, modlfy the default values of input variables, and select a

variety of program options. Descriptions of both types of input are presented in
detail, belo‘w.’ ' R

3.1. Device Data |

The numerical representation of a device is obtained primarily from a file con-
taining several columns of floating-point data; each column represents a different
input quantity. Data can be stored in either ASCII or (Fortran 77) binarjr format.
Files contéining' the necessary information are typically generated as output from a
classical analysis program. To provide a flexible interface for many different pro-
grams, the quantity associated with each column can be specified in the input deck;
therefore, data columns can appear in any order. Moreover, the units of input quan-
tities can be specified, if they differ from the default units in SEQUAL. (For details of
the input deck, see section 3.2, below.)

Possible input quantities are listed in Table 3.1. Notice that it is not neéessary
to have all six quantities specified in the device description file. If it is more con-
venient, profiles of the donor doping density, the effective mass, and the dielectric
constant can be specified in the input deck. Because these quantities are usually con-
stant over large regions (e.g. ,I in a particular material layer), it is doubtful that all
classical analysis programs would prov1de their value at each node. If tabular output
of these quantities is unavailable, specifying the values in the lnput deck is a more
convenient approach than modifying output to include the extra columns. Notice also
that unless a self-consistent solution is required, profiles of the electrostatic potential
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Table"3.11: ' ‘Summary of prsible: input quantities for device data input file.

Input quantities represented by the columns below are in the default order:

Chapter 3 — Program Input

“Device Data” Input Quantities'

‘ Quantity Units Neceésary for
| Program Execution
position-space grid , cm ‘.
conduction-band profile eV .
electrostatic potential - vV i
ionized donor doping density cm® 1
eﬂgctive mass. . .- ( m, ) 1
_dielectric constg.nt { ) 1t

“electrostatic

1 May bé»speciﬁed_alternatively in the inpﬁt deck.
1 Necessary only for a self-consistent solution.

1.500000e-06

position -conduction ionized donor effective ~ dielectric
S band profile - potential - doping density mass constant
0.000000e+00° " 0.000000 -0.000000 © 2.000000e+18 0.0670 12.8464
1.000000e-07 0.000000 0.000000 2.000000e+18 - 0.0670 12.8464
2.000000e-07 - 0.000000 0.000000 2.000000e+18 0.0670 12.8464
'3.000000e-07 0.000000 - 0,000000 2.000000e+18 0.0670 12.8464 -
4.000000e-07 0.000000 0.000000 2.000000e+18 0.0670 12.8464
4.990000e-07" 0.000000 0.000000 2.000000e-+18 0.0670 12.8464
5.000000e-07 0.365000 0.000000 2.000000e-+18 0.08953 11.4705
6.000000e-07 0.365000 - 0.000000 2.000000e+18 0.08953 11.4705
7.000000e-07. 0.365000 0.000000 /2.000000e-+18 0.08953 11.4705
' 8.000000e-07 0.365000 0.000000 2.000000e+18 0.08953 11.4705
9.000000e-07 0.365000 0.000000 2.000000e-+18 0.08953 11.4705
9.990000e-07 0.365000 0.000000 2.000000e+18 0.08953 . 11.4705
1.000000¢-06 - 0.000000 0.000000 - 2.000000e+18 0.0670 - 12.8464
1.100000e-06 0.000000 0.000000 - ‘2.0000‘00e+18 0.0670 12.8464
1.200000e-06 0.000000 0.000000 2.000000e+18 0.0670 - 12.8464
1.300000e-06 0.000000 0.000000 - 2.000000e+18 -0.0670 T 12.8464
1.400000¢-06 0.000000 0.000000 2.000000e-+18 0.0670 12.8464
© +0.000000 0.000000 -2.000000e+18 . 0.0670

12.8464

Figure 31 .

Exém‘ple «.li.sting.of a dévice-description input file in ASCIl format - -
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and the dlelectrlc constant are not required. These two quantltles are used only in
the solution of P01ssons equation, and are therefore unnecessary if 1terat10n is not

-allowed. Commonly, the device description file will contain only the posmon-space '
grid and the: conductlon-band profile; all other quantltles w1ll be spec1ﬁed m the 1nput

‘ ~deck, or’ will be unnecessary. e

From the above discussion, it would seem that the conductlon-band proﬁle must -
always appear in the data description file. This is not exactly the case The
conductlon—band profile is composed of two parts: ’ ‘

.E"@(,z) “=5”VAEC(Z) ~ V()

where V(z) is the electrostatic potential, and AEq(z) specifies the offset of the conduc—
tion band in different material layers. For a device fabricated w1th a smgle matenal
AEq(z) is zero (or some arbitrary constant) everywhere. The alignment of energy
bands for differing materials, however, produces some offset in the 'conductxon-band
edge, described. by AEq(2). An alternative to specifying the conduction-band proﬁle,
therefore, is specifying both the electrostatic potential V(z) and. the conductlon-band
offset AEC(z) In fact, SEQUAL requires a knowledge of all three quantltles for a -
self-conSIStent solutlon, so at least two must be specified at the start of execution. In
a self—con31stent solution, the conduction-band profile is calculated at the beginning of
each iteration by adding contributions from the (constant) offset potentlal and the
‘(updated) electrostatic potential. '

An example of a simple device descrlptlon ﬁle in ASCII format appears Figure

- 3.1. The devlce which it represents is composed of three material layers-—-two layers_of o

GaAs sandwiched around a layer of AlGaAs. Each layer is 5.0x10~7 cm (50 &) thick,
so the overall device length is 1.5x107% ¢m (150 A). The GaAs layers have an electron
effective mass of m = 0.067my, and a dielectric constant of € = 12.8464¢,. The
AlGaAs layer has an electron effective mass of m' = 0.08953m,, and a dielectric con-
stant of € = 11. 4705¢y. An offset of 0.365 eV in the conduction-band edge of AlGaAs |
can be seenclearly in the conduction-band profile, since the electrostatlc potential
was assumed to be zero. Note that the nodes on either side of a material interface
are closely spaced, so that the change in the conduction-band edge at the interface is
abrupt. Finally, the entire device was assumed to have a ionized donor ‘density of
2><1o18 -3,
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Chapter 3 — Program Input

3.2. Input Deck

" In days of old, when “small” computers fit neatly in a warehouse, and their
operators spoke a language no one else understood, the preferred method of input was
the punched card. Each line of input was recorded on a card; each file was created
by stacking cards in order. Although card-punch machines have become obsolete,
their associated terminology has not. The following description of SEQUAL’s mput
“deck” is but one example of jargon refusing to die.

In SEQUAL, the user controls program operation via the input deck, a short file
of commands read from standard input. Essentially, the input deck is a list of assign-
ment statements, specifying particular values for SEQUAL’s input parameters. Each
input parameter is represented by a key word, and logically related ‘keys’ are
grouped together on a command line or “card.” Figure 3.2 illustrates the 1nput deck
syntax. Each card begins with the card name, and is followed by a list of assignments
to various keys. A single card can be continued on any number of lines by specifying
the continuation character "+" in place of the card name. Note that space is‘ not
allowed around the equal sign in an assignment to a key, although anywhere else the
use of white space (including spaces, tabs, and commas) is encouraged, to promote
leglblllty Blank lines and comment lines are also allowed. A comment line is defined
as any line beginning with a character which is neither alphabetic nor the "+" ‘con-
- tinuation character. Notice from Figure 3.2 that a single key can be assigned multi-

- ple values (as many as 10 values), by separating each value with a slash; white space
is not allowed between values and slashes. A multiple-value assignment can also be
contmued on any number of lines, as shown in Figure 3.2. 4 -

The ‘use of multiply-valued keys will become clear as the details of each input
card are explained. Consider, however, the following card, which specifies the. electron
effective mass in a number of material layers:

matter nodes=5/11/17 emass=0.067,/0.08953,/0.067

This is, the mput deck specification of effective mass, for the example conSIdered in
Flgure 3. 1.. The key nodes is assigned the ending nodes for three different material
layers. The first layer (GaAs) is defined by nodes 0-5; the middle layer (AlGaAs), by
Anode‘s 6- 11; and the final layer (GaAs), by nodes 12-17. The key emass is assigned the
electron effective. mass in each of the three material regions. The other use of
multlply-valued keys is 1llustrated by the following card, which specifies the tempera-
ture of a devxce :

device: temp=77.0/300.0 bias=0.0

Since two temperatures are specified for the key temp, two separate calculations will
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» Typ»ica.i Inp'urt Deck Card: ‘

cardname keyl=value key2=value

'Continuation of a Single Card:
o ((:‘ardname . keyl=value -
o+ key2=value -

e - key8=value

Ass"i‘gning ?Multiplé Values to a Single Key:
cardname keyl==valuel/value2/value$
C._oxitihua;tibn of Assignment of Multiple Values:
» cardname key1=value1 [value2/values

4+ keyl=valuefvalue5
4+ - keyl=value6/value7

Comment Line:

2 'nbi‘ a "+" the rest of the line is ignored.

2 Tf the first character on a line is neither alphabetic

Figu‘lr'e'ri”u.2‘: : T'Sy'ntax of cards in the input deck

% - SEQUAL User s Manual
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Chapter 3 — Program Input

be performed--one at 77° K, and the other at 300° K. Notice that although two
temperatures are specified, only one bias is given. Both calculations, therefore, are
performed at the stated bias. To perform one calculation at 77° K with zero bias,
and another at 300 ° K with a bias of 0.1 V, one would use: ’

device temp=77.0/300.0 bias=0.0/0.1

In general, every key is allowed to have multiple values. Certain keys (such as temp
and bias) direct SEQUAL to perform several different calculations; other keys (such as
nodes and emass considered above) specify information which remains the same for all
calculations. Given an input deck, SEQUAL first extracts all of the data from ‘‘glo-
bal information” keys. Remaining keys (“‘control” keys) are then examined to deter-
mine the number of calculations to be performed. The first value of each control key
is used in the first calculation; the second value, in the second calculation, and so on.
When a list of values for a particular key has been exhausted, the last value of that
key is used in any subsequent calculations. The following card,

device ' temp=77.0/200.0/300.0 bias=0.0
is equiva?lent to
~device temp=77.0/200.0/300.0 bias=0.0/0.0/0.0

although it demands less typing.

Hence, the use of multiply-value keys can greatly increase the power'of;vthe, inpﬁt :
deck in SEQUAL. Global information keys can be used to specify those device
parameters which are not available in tabular form. Control keys can be used to
direct SEQUAL to perform a number of similar calculations in a single program exe-
cution. The remainder of this chapter is devoted to a detailed explanation of each
program key. Further examples of program operation will be presented in. Chapter 5.

Octo’bef 3;-.,'1'..9‘87 - SEQUAL User’s Manual ' e 17



Input Deck: input

“input

specify format of device description file

file

format

1.8'_‘

De fault State:

input file=seq.in - format=—1zevdmk ascii=true

The name of the device description file is specified by the file key of the
input card. Since file is a control key, several different device desecrip-
tions can be processed in a single execution of SEQUAL, by assigning
file to each of the file names. Note that, in SEQUAL, a file name (or
the value assigned to any key, for that matter) is limited to 15 charac-
ters. ’

To enhance the flexibility of SEQUAL’s interface with the output of
other programs, data columns in the device description file can appear in
any order. The order is simply specified in the format key of the input
card. The quantity associated with each column of the data description
file is represented by a single character, as follows: o

Character Quantity

B Position-space grid

[

Conduction-band proﬁle

Electrostatic potential

JIonized donor doping density

Electron effective mass

Relative dielectric constant

~ =8 |a <

(column is ignored)

Notice that it is possible for a device description file to contain extrane-
ous columns, which do not correspond to any input quantities. These

- columns, referred to by a question mark in the format specification, are
-read and ignored. For example, suppose a classical analysis program

outputs data in tabular form, with the columns: position-space grid,

-electron density, hole density, ionized donor density, electric field, and

conduction-band profile. Of these quantities, only the position-space
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grid, the ionized donor density, and the conduction-band profile are
~.desired for mput The format specification for such an mput file would
be: -
mput format=3z??d%e

Note that space is not allowed between the different characters in a for—
mat specification.

ascii A device description ﬁle can be stored in either ASCII or (Fortran 77)
’ binary format. The storage type is specified with the ascit key of the
input card: ' R :

Value L Implication
true File is in ASCII format

false File is in (Fortran 77) binary format »

" Files in ASCII format contain ﬁoating-point data represented by ASCII
characters. This is the normal method of output, since data can be
listed eagily. Files in binary format contain floating-point “data
represented in the computer’s internal format. Acceptable binary-
format files must have been produced by a Fortran 77 program, and
quantities written must have been single-precision (real), floating-point.
numbers.! Files in binary format have the advantage of demanding less

o storage space than equivalent ﬁles in ASCII format.

1 Of course, if ‘the precision of floating-point variables is somehow doubled by the '
compiler, then mput quantltles w1ll be expected to be double precxsxon ‘
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scale change the units of input quantities in the device description file
Default State:
scale cm=1.0 ev=1.0 v=1.0 cm**-3=1.0
If quantities in the device description file are not in the units required by
SEQUAL, they can be scaled automatically by specifying an appropriate
scale factor. Only values in the device description file are converted.
Values in the input deck are assumed to have the appropriate units.
cm The length scale of the position-space grid is altered by the em key. For
example, if the position of each node is in units of microns (1 um = 1078
m), the appropriate scale factor would be:
scale cm=1.0e4
ev The’ energy scale of the conduction-band profile is altered by the ev key.
For example, if the conduction-band edge at each node is in units of
meV (1 meV = 1073 eV), the appropriate scale factor would be: v
‘scal.e ev=1.0e3 "
v The scale of the electrostatic potential is altered by the v key. For
example, if the potential at each node is in units of mV (1 mV = 1073
© V), the appropriate scale factor would be:
| scale v=1.0e3
cm**-3 The scale of the donor doping density is altered by the cm**-8 key. For
example, if the doping density at each node is in units of m >, the
appropriate scale factor would be: '
scale cm**-3—=1.0e6
20
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Input Deck: matter

matter specify material layers and properties

 De fault State:

matter

(In the default state, profiles of material parameters are specified in
the device description file.)

Normally, material properties are specified in the device description
file. When a tabular listing of material properties is difficult to obtain,
however, the matter card provides an alternative method of input. As

- many as ten different material layers can be defined, each with
differing material properties.

nodes In the data descﬁption file, a single line of input (in other words, a sin-

" Nodes are referred to by

gle position in space) constitutes a ‘‘node.
“number, starting from zero at the beginning of the file. Material
layers, therefore, are defined in the matter card by specifying the nodes
which are endpoints of material regions. For example, the device
description file presented in Figure 3.1 contains 18 lines; the range of
node numbers, then, is 0 to 17. To define a single material region with

an effective mass of 0.067, the matter card would read:
matter nodes—17 emass=0.067 .

To define three material layers (as in the example of Flgure 3.1) the
matter card would read: -

matter nodes=5/11/17 emass=0.067/0.08953/0.067

Note an equal number of values must be assigned to nodes, delec,
' emass, and krel. . |

delec . The conduction-band offset AE; can be specified for each material
layer defined by nodes. The offset is understood as the conduction-
band discontinuity at a material interface, and is specified in electron-
volts. Note that, for an abrupt interface, the nodes on elther side of
the mterface should be closely spaced. *
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emass The electron effective mass can also be specified for each material layer
defined by nodes. The value is input as a dimensionless quantity, in
terms of the free electron mass, m,.

krel The relative dielectric constant can also be specified for each material
layer defined by nodes. The value is input as a dimensionless quantity,
in terms of the dielectric constant of free space, ¢,,.
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Input Deck: doping

doping specify the ionized donor doping density

De fault State:
doping ni=1.79e6 .

(In the default state, the doping-density profile is spemﬁed in the data
description file.)

nodes  Just as the nodes key of the matter card defines dlﬁerent materlal
‘ regions, the nodes key of the doping card defines regions with a con-
stant density of ionized domors. Unless a self-consistent solution is
desired, the donor density is needed only at the contacts (first and last
nodes), to determine the Fermi-level of injected electrons. In thls case,

the speclﬁcatlon could be as simple as:

doping nodes—0/19/20 nd+=>5. 0e17/0/5 0el7

for a dev1ce with nodes 0 to 20, with an jonized donor density of
-5.0x10'7 ¢m™2 in each contact. Because the donor density at interior
nodes is irrelevant (unless a self-consistent solutlon is’ requlred), the
example above could be equally expressed as: :

doping nodes=20 nd-+=>5.0e17

" For specifying the contact doping, or for some crude approximations to
real doping profiles, the doping card provides a convenient method of
input.

nd+ - The density of ionized donors (in units of ¢cm™2) is assigned:to nd+ for
“each region defined by the nodes key. Notice that SEQUAL requires
the density of tonized donors. Partial ionization of donors, therefore,
. must be calculated by the classical analysis program contrlbutmg
mput '

ni If the ionized donor density in either device contact (i.e., the first and
‘ last nodes) is identically zero, then the intrinsic electron density
assigned to n: is 'assurhed, for the calculation of the Fermi-level.
SEQUAL assumes that charge neutrality exists in the contacts,
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24

bétween electrons and ionized donors; thefefore, the ionized donor den-
sity in the contacts, unless it is identically zero, is used to determine

 the Fermi-level for injection of electrons. Notice that if an extremely
~small (but non-zero) donor density is speciﬁed, a F érmiv-level-‘ will be
‘deduced to cbr‘respond to this concentration. This 'prov,vidésv a trick for
- specifying the electron concentration in the case of a p-n junction.
Holes are completely ignored in SEQUAL, and henc‘e, there is no way of

specifying a doping density for acceptors. In order to obtain the proper

~ electron concentration, the *‘ionized donor density” on the p-side of the

junction should be set equal to the minority carrier (electron) concen-
tration. If, instead, it were set to zero, the value assigned to n: wouldv

_ be assumed for the minority carrier (electron) concentration.
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device ~ specify macroscopié device parameters

Default State:

~ device temp=300.0 area=—1.0. bias=0.0

temp = The device temperature (in °K) for a calculation is assigned to the
temp key.
area - The cross-sectional area (in cm?®) of a device is assignéd to the area

key. It is used as a multiplicative constant in the calculation of total
current. The default area is 1 cm?, so that the total current (in A) is
the same as the current density (in A/cm?).

bias - An applied bias can be added to the device, in addition to any existing
bias in the output from a classical analysis program. The amount of
bias (in V), assigned to the bias key, is applied as a linear potential
drop across the lightly-doped (middle) region of the device. For a self-
consistent solution, several iterations should be allowed after the appli-
cation of bias, so that the electrostatic potential will return to the
self-consistent state. If the internal nodes of the device are no more
lightly doped than the contacts, the bias is applied as a linear drop
across the entire device. In this case, obtaining convergence for self-
consistent calculations might be difficult. Note that it is possible to
" have a device description file in which bias is built into the electros-
tatic potential and the conduction-band profile. In some cases, it may
be more convenient (or accurate) to apply bias in the classical analysis

~ program, and use SEQUAL to analyze the resulting potential profile.
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Input Deck: solve . -

solve

_ r'specify parameters controlling the analysis

prec

itmax

states

26

De fault State:

_ solve prec=3 itmax=9 states=prop inject::bothlb_ :

The number of significant figures desired for important quantities can
be assigned to the prec key of the solve card. “Important” quantities
include the electron density, the current density, and the Fermi-level in
each contact. Since SEQUAL will struggle admirably (at the expense

~of CPU time) to achieve whatever precision is specified, the value

should be kept within reasonable limits.

For a self-consistent analysis, SEQUAL solves iteratively for the elec-
trostatic potential and the electron density (see Figure 2.2). Conver-
gence is achieved when the number of significant figures in the current
density (between iterations) settles down to the number requested. To
avoid excessive use of CPU time in obtaining convergence, SEQUAL
terminates iteration when the number of iterations exceeds the value
assigned to itmaz. Therefore, iteration can be suppressed by specifying
zero as the maximum number of iterations. If results are written to

- output files (see description of the output card), iteration can be contin-

ued at any point, by using the output of a previous run as the input
device description file (see Figure 4.2).

Both propagating and bound electronic states can be considered in the
solution of the Schrodinger equation, according to the value assigned to
states: ’

Value . Implication

prop Consider propagating electronic states

bound Consider bound electronic states

all ~ Consider propagating and bound states

The default is to consider only the propagating states, since bound

states do not contribute to current density. Furthermore; the
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population of bound states is correct only for devices in equilibrium
(see section 2.2). For small deviations from equilibrium, however, the
bound-state result obtained is a reasonable approximation to the
correct solution. The consideration of bound states is particularly
important for a self-consistent solution. Because the electrostatic
potential is determined from the electron density, the bound-state con-
tribution (even if it is only approximate) can significantly alter the final
result. '

inject In the solution of Schrodinger’s equation for propagating states, elec-
trons can be injected into the device from two contacts (see section
~ 2.1.1). Each contact provides a separate contribution to both electron
density and current density. The value assigned to inject determines
which of the contributions will be calculated:

Value Implication

l-to-r Consider electrons propagating
from left to right
(inject from left contact)

r-to-1 Consider electrons propagating
from right to left
(inject from right contact)

both Inject from both contacts

Because the vast majority of devices require an analysis with,injeétiqn
from both contacts, the default value is “both.” In special cases, hbw-
ever, the contribution from one contact may be insignificant. COnsider_,
for example, the calculation of electron current for a p-n junction.
Injection from the p-type contact is unnecessary, since the current
component would be negligible. '
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maxima ':specify parameters for the isolation of wavefunction maxima

prec

kscale

98

: :Dé fault State:

.maxima prec=2 kscale=1.0

(In" the default state, the first and last nodes are ‘“watched” for
wavefunction maxima; interior nodes are ignored.)

In the process of stepping through k,-space, SEQUAL looks for maxima
in the squared-magnitude of the wavefunction (see section 2.1.3). This
insures both the proper integration of the wavefunction, and the proper
resolution of the transmission coefficient. The number of 31gn1ﬁcant
figures requested for the calculations related to maxima isolation is
assigned to the prec key of the mazima card. Normally, the default
value demands sufficient precision. Particulérly sharp t_ransmission
resonances, however, may require greater precision to be properly
resolved When a doubt arises, results from two d1ﬁ"erent requested
prec131ons should be compared.

SEQUAL steps through wavevector-space for the purpose of isolating
maxima in the electron wavefunction (see section 2.1.3). Intervals of
k,-space between successive maxima are then integrated, to determine
the electron density and the current density. Normally, the default
k,-step is adequate for isolation of wavefunction maxima. The k,-step
can be scaled to any size, however, according to the value assigned to
kscale. Notice that the size of the k,-step (if it is sufficiently small) has

" no effect on integration of the wavefunction. Integration intervals are
- defined by local maxima in the wavefunction. A smaller k,-step can

provide better resolution in the output of quantities, such as the
transmission coefficient and the wavefunction magnitude: A larger k,-
step should be used with extreme caution: If wavefunction maxima are
improperly resolved, the calculations for electron dens1ty and current

density will be in error.
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watch The isolation of k,-space maxima in the wavefunction could be accom-
plished at all position-space nodes. This would increase execution time
tremendously, however, without adding to the accuracy of the calcula-
tion. It is necessary to isolate k,-space maxima only at those nodes for
which the wavefunction varies rapidly. By default, the first and last
nodes of any device are “‘watched” for maxima in k,-space (see section
2.1.3). Additional nodes can be considered, if the node numbers are
assigned to the watch key.
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integ

specify parameters for the integration of the wavefunction

orders

kbt

et

30

De fault State: ‘
_integ orders=2/4/6/8/10/12/16/20/24 kbt=10.0 et=1.0
For the calculation of electron density and current density, the magni-

t_ude of the wavefunction must be integrated in k,-space (see section
2.1.2). Integration is performed using Gaussian quadrature with Legen-

~ dre polynomials (see section 2.1.3). To achieve the precision: requested

(via prec of the solve card), successive orders of integration are applied
to an integration interval, until the precision is obtained, or until the
list of integration orders is exhausted. Orders available for the integra-
tion process are assigned to the orders key. In the default state, all
available orders are assigned to orders. For cases in which the reduc-
tion of execution time is more important than the accuracy of results,
the list of integration orders may be abbreviated. Indeed, a single
integration order could be specified (e.g., the highest order available), if

~an estimation of the solution accuracy is unnecessary.

In theory, integration of the wavefunction should be performed over
the range of all wavevectors from zero to infinity (see section 2.1.2); in
practice, integration must be truncated at some large but finite
wavevector. The point of truncation is determined in SEQUAL by con-

’sidering the number of significant figures in integration results.

Integration is performed up to some minimum wavevector. Beyond
this, integration is continued (if necessary) to achieve the requested
precision, for both the electron density and the current density. ‘The
minimum wavevector for integration corresponds to an energy which is
some multiple of kgT higher than the maximum energy in the conduc-

tion band. The value assigned to kbt specifies the multiple of kgT.

In the derivation of formulas for both the electron density and the
current density, the wavefunction was assumed to be weakly dependent
on the transverse energy E, (see section 2.1.2). This allowed the
wavefunction, evaluated at a representative transverse energy, to be
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removed from the integration over transverse momenta. Hence, the
integration over transverse momentum could be performed analytically.
The particular transverse energy at which the wavefunction is

~ evaluated is determined by the value assigned to et (in units of kpT).
A reasonable assumption for the representative transverse energy is the
thermal average energy, kgT. '
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title specify a title for printed (standard) output

De fault State:
title

(In the default state, no title appears on output pages.)

The title card is unique for two reasons: It is the only card in the
input deck which does have any keys, and which cannot be continued
on multiple lines. Any text following the card name is taken as the
title of the execution. This title appears in the heading of each page of
printed output.
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print specify the form of printed (standard) output

De fault State:
print  tcoeff="* formatl=zevn format2=zdmk verbose=true
tcoeff  For propagating electrons, a listing of the (ransmission coeflicient

versus incident energy can be obtained in printed output, according to
the value assigned to tcoeff: ‘ '

Value , | Implication

I-to-r Print the transmission coefficient for electrons
propagating left-to-right ’

r-to-1 Print the transmission coefficient for electrons
propagating right-to-left '

both Print transmission coefficients for both
directions of propagation

Do not print transmission coefficients =~ -

For self-consistent solutions, a listing of the transmlsswn coeﬂic1ents is
prov1ded only for the final iteration.

formatl

format2 A tabular listing of both input parameters and calculated results can
be obtained in printed output. Two sections of output, each with a

maximum of four columns, can be defined with the output format keys,

formatl and format2. The quantity associated with a partlcular :

- column is represented by a single letter, as follows:
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‘verbose

34

Character | Quantity
Sz Position-space grid
e Conduction-band profile

Electrostatic potential

Electron density

Ionized donor doping density

Electron effective mass

Relative dielectric constant

*»|m B |ae |2 |< |

(No output in a section)"

The definitions shown above, except for the addition of n and * are
identical to those presented in conjunction with input format. Unlike

the input format specifier, formatl or format2 (or both) can be

* which causes an output section to be suppressed. For

example, to obtain a single output section listing position, conduction-

assigned to

 band energy, and electron dens1ty, the print card could be either of the

followmg
print i;orm‘a.tl'—-—-‘—,zen format2="*

print  formatl="* format2=zen

Because SEQUAL can 'prbvide so many sections of output in a single
run, the user is allowed the option of suppressing superﬁuous output,

W1th an assignment to verbose:

Value v : Implication
true All output sections are supplied
false Superfluous output sections are suppreséed

Although some of the “verbose” output may seem unhécessary, it is
included to aid the user in understanding the problem descrlptlon, and
in evaluatmg the performance of SEQUAL.
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Output v specify the form of (plotting) output files

De fault State:

output. file=seq data—* columns=3 ascii=true

For each calculation, data presented in printed output are also avail-
able for storage in files. Such files can be used as input to plotting pro-
~ grams, or as input (for further processing) to SEQUAL.

file The argument of the file key on the output card is used as a basis in
- forming all output file names. For each file created; an extension is
added to the root file name specified, to identify both the type and for-
mat of stored data. (For an understanding of different output files and
their respective extensions, see section 4.2.)

data Different types of data can be requested for output, according to a
o string of single-character keys assigned to data:

Character - Type of Data Stored
d | Device data (quantities vs. position) = -
b Bound-state data
ot " Transmission coefficient data
w Surface plot of the wavefunction magnitude
* (No data is stored) v

In an assignment to data, the characters above may appear in any
order. For example, the following two cards are equivalent:

, oﬁtput data=dtw
- output  data=wdt

~ Notice that space is not allowed BetW\een the characters.
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Input Deck: output

columns For compatibility with many different plotting programs, data can be
written to output files in single-column, paired-column, or multiple-
column formats, according to the value assigned to columns:

Value Implication

Single-column format

Paired-column format

>3 Multiple-column format |

ascii Output files can be stored in either ASCI format or (Fortran 77)
binary format, according to the value assigned to ascit on the output

card:

| Value

Implication

true

File is in ASCII format

false

Iile is in (Fortran 77) binary format
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Summary of Input/Output‘ Keys
Card Key Value Key Type T
file text (filename) control
input format (z, e, v, d, mk, ?) control
ascii logical control
cm real control
scale ev real ‘ control
v | real ' control
cm**-3 real » control
nodes integer | global information
matter | delec real (eV) global information
emass real (mo). | global information
krel real (eo) - global information
nodes integer ' | global information
‘doping | nd+ real (cm™) global information
ni | real (cm's) ‘ control
title | -- -
tcoeff (1-to-r, r-to-1, both, *) | control
print | formatl | (3, e, v, d, m, k, n, *) | control '
format2 | (z, e, v, d, m, k, n, *) | control
verbose logical _ control
] file text (filename) control
output | data (d, b, t, w, *) “control
columns | integer ' control
ascii logical : “control

t For a exp.lalnbat.ion ‘of “control” keys and “global information” keys, see section 3.2.

Table 3.2: ~ Summary of keys which control the input/output of SEQUAL |
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‘Summary of Execution Keys

Key

| -device

{ temp

‘area

1 bias

| Teal ("K)
| reali(em?)

_Key Type 1

| “control
| ‘control

‘control -

| 'solve

| prec
| itmax
| states

| inject

| integer
| integer
| (prop, bound, all)

" ‘control
‘control

| ‘control

control s

| maxima

| prec
kscale |

1 watch

7 -i:n-te‘ger B

| (to-r, r-to-l, both) |

| integer

real

control

| ‘control

| global information

| integ

| orders |
| kbt
{ et

'_ real (KBT)

integer

real (KpT)

| ‘global information '

1 cohtrol

"t For a explanation of “control” keys and “global information” keys, see section 3.2.

Table 3.3: ' Summary of keys which control the execution of SEQUAL |
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Program Output

SEQUAL provides two kinds of output: printed output, and output files.” For
each execution, a record of input data and output results is written to standard out-
put.  Because this record is formatted with Fortran line-printer codes {providing
page ejection, : etc.) it is intended to serve as a printed report of all calculations.
Pages are numbered, and headings are printed at the top of each page. Output
files, on ‘the other hand, are not well suited to examination; rather, they are pro-
vided to serve as input for plotting programs. Because both forms of output can
include a wide variety of different results, each form is presented in detail, in the fol-
lowing sections.

4.1. Prin.te'd‘Output

Figure 4.1 i‘depicts the general form of printed output in SEQUAL. For each
execution of the program, a number of different output sections could appear in the
printed record. Each section will only appear, however, if it is necessary. Moreover,
some of the output is verbose, and can be suppressed at the request of the user. In
Figure 4.1, the sections grouped together in-a dashed box present output for each
calculation. Since SEQUAL can perform several calculations in a single program
execution, these sections may appear several different times in the printed record.
b(-See discussion of ‘“‘control” keys in section 3.2.) Although the example output pages
presented in Chapter 5 are easily worth a thousand words, a brief description of
each section is given below:

Input Deck:

Printed output begins with an echo of the input deck. Syntax errors (if
any are found) are pointed out under each offending line.
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Iﬁput' Deck

" Summary of Input In_formation‘
(Global Information)

Summary of Input Information
~ (Each Calculation)

Y

' Transmission Coefficient Data

Y

.Iteration Data and Statistics
Bound-State Data

X

Comﬁxents on the Calculation

T

“Final Results

L---;-——-----‘---'-—-—-—-—----'—--J

Figure 4.1: Diagram of printed output. Items in the dashed box are presented for
each calculation (see discussion of ‘“‘control” keys in section 3.2).

40 . » SEQUAL User’s Manual October 3, 1987



Chapter 4 — Program Output

Summary of Input Information (Global Information):

Device data which has been specified on input cards matter or doping is
summarlzed in a pictorial fashion. Because this information is global to all
calculatlons, it appears only once, near the start of printed output.

Summary of Input Information (Each Calculation): e

For each calculation, SEQUAL presents a page summarizing all 1mportant
input parameters. Although this page is helpful in clarifying the details of -
a particular calculation, it is con51dered ‘‘verbose,” and it can .be
suppressed.

‘Transmission Coefficient Data: v

A table of the transmission coefficient versus energy can be requested for
each direction of propagation. For iterative calculations, a table is gen-
erated only for the results of the final iteration..

Iteration Data and Statistics:

For iterative calculations, the degree of convergence obtained for each
iteration is summarized in tabular form. In addition, statistics characteriz-
ing the propagating-state solution are presented. Because most of
SEQUAL’s execution time is spent in the analysis of propagating states,
these statistics can be used to evaluate the overall performance of the pro-
gram. Although propagating-state statistics are sometimes useful, they are
considered ‘‘verbose,” and can therefore be suppressed.

Bound-State Data:

For bound-state calculations, SEQUAL presents a table of bound-state .
energies and two-dimensional electron densities. If a propagating-state
solution was also requested, a breakdown of the electron density is printed,
showing the contributions due to propagating states and bound states.

Comments on the Calculation: ,
All warnings, cautions, and error messages encountered in a particular cal-
culation are collected onto a single page. A brief explanation is presented
for each problem encountered, along with suggestions for relieving the
- difficulty. | :
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Final Results: «

- A section of final results begins by llstlng the current obtained for the bias
across the device. Following this, device data is presented in two sectxons,
as Speclﬁed by format1 and format2 on the print card.

4.2, Output Files

In addition to the printed record, SEQUAL can create a number of data files for
the storage of results. Because these files contain raw data, they are well suited for
use with plotting programs. Of course, different plotting programs require different
formats for input data. Some programs demand x-axis data and y-axis data in
separate files; some require a paired listing of x and y values. To accommodate the
majority of programs, SEQUAL can output data in three formats, according to the
value assigned to columns on the output card. Data can be written in single-column,
paired-column, or multiple-column formats. Obviously, many data vﬁles' will be
created by the single-column or paired-column option; files are distinguished by an
extension added to the specified file name. Extensions were chosen to indicate at a
glance the contents of a particular data file. For instance, the files ending in ".3"
contain a single column, listing the position-space grid; files ending in ".zv" contain
two columns of data--the position-space grid and the electrostatic potential. A com-
plete listing of extensions is presented in Tables 4.1-4.4.

Table 4.4 shows that, for output files describing the wavefunction surface, the
format is:independent of the number of columns specified. Files ending in “.wlr-z’

r “.wrl-z"" contain a list of position-space nodes; similarly, files ending in ““.wlr-e” or
“wrl-e” ‘contain a list of energy-space nodes. The squared-magnitude of the

 wavefunction, weighted by o/2m, is listed in files ending with *.wlr-m” or *

.wrl-m”’
extensions. Data appear sequentially: For each energy, the quantity ‘is listed across
the entire device, from the first node to the .last. Plotting. programs-. reading the
data, therefore, will read a matrix of values. In the process of reading data, the
index for position-space entries will vary more rapidly. ' '

" Qutput: ﬁles in multiple-column format can also be used as mput to SEQUAL
Consider, for instance, the computation of a self-consistent current-voltage charac-
teristic. Usmg ‘a multiple- valued assignment to the bias key, the user can instruct
'SEQUAL to calculate current at a number of different biases. For a self-consistent
calculation, a bias is applied to an input potential, and solutions for the electron
density and electrostatic potential are performed iteratively. One would expect the
self—cons_istént.potential obtained for one bias to be quite close to the solution for the
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Chapter 4 ~ »P‘rog“ram Output

next bias. Rather than apply biases to the same input file, the clever user will feed
output results back in, as input. ‘

- In Figure 4.2, an example input deck is shown, to perform the feedback. The
file classical contains output from a classical analysis program, with data in the
default column-format zevdmk. A self-consistent calculation is performed at zero
bias, and the results are stored in the file outl.z...k. This file is then used as the
device description for the next calculation. Because the output from SEQUAL
includes three columns describing electron density (propagating, bound, and total),
the input format becomes zev???dmk for the three calculations with feedback. For
each ' calculation, an additional bias of 0.1 V is applied to the potential profile.
Hence, current is calculated for biases of 0 V, 0.1 V, 0.2V, and 0.3 V.

Rk I/O Feedback:

*  Results of one calculation are stored in output
* files, and read back as input.
*okokk :

input ~  file=classical /out0.z...k foutl.z...k fout2.z..k

- - format=zevdmk /zev???dmk

device bias=0.00,/0.10/0.10/0.10
solve’ " itmax=15
output.. . | ﬁle=out0/out1/out2/out3 data=d columns=3

Figure 4.2: Input deck for feedback of output files
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Table 4.1:

44

Summary of Output Files (data=d)
columns= | File Extension Quantity
.z position
e conduction-band energy
R electrostatic potential
.p propagating electron density
1 b bound-state electron density
.n total electron density
d jonized donor density
.m effective mass
k relative dielectric constant
.ze position
conduction-band energy
v position
_ electrostatic potential
©.p position
propagating electron density
2 .zb position
bound-state electron density
.Zn position
total electron density
.zd position
ionized donor density
.z position
effective mass
zk position
relative dielectric constant
position
conduction-band energy
electrostatic potential
propagating electron density
>3 2.k bound-state electron density
total electron density
ionized donor density
effective mass
relative dielectric constant

Summary of output files created for storage of device data

SEQUAL User’s Manual
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Chapter 4 — Program Output

' Summary of Output Files (data=t)
columns= | File Extension Quantity
1 tlr-e energy
(propagation left-to-right)
tlr-c transmission coefficient
(propagation left-to-right)
trl-e energy
(propagation right-to-left)
trle ‘ transmission coefficient
(propagation right-to-left)
energy v
tlr-ec transmission coefficient
2, >3 (propagation left-to-right)
energy ‘
trl-ec transmission coefficient
(propagation right-to-left)

Table 4.2: ~ Summary of output files created for storage of transmission coefficient

data
'Summary of Output Files (data=b)
teolumns= | File Extension Quantity
1 - .bs-e : . bound-state energy
.bs-n two-dimension electron density
2, >3 .bs-en bound-state energy
two-dimensional electron density

Table 4.3:  Summary of output files created for storage of bound-state data :

October 3, 1987
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Summary of Output Files (data=w)
columns= | File Extension - Quantity
wir-z ' position (propagation left-to-right)
’ - wlr-e | energy (propagation left-to-right)

1,2,>3 | .wlr-m | tp=r2ot=r / 2x ' '
wrl-z ' position (propagation right-to-left)
swrl-e energy (propagation right-to-left)
wrl-m |1/1’—'l|2 o1 /2n

Table 4.4: Summary of output files created for storage of wavefunction surface
plots ' '
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Example | Calculations

To - lllustrate some of the. abllltles of SEQUAL, example calculatlons are
presented in this chapter, for a resonant tunneling device: fabrlcated by Ray, et. al. 1
The device, .pictured in Figure 5.1, is composed of two Alo 45Gag s5As ‘barriers
sandw1ched around a GaAs potential well.! Classically, electrons injected from the
contacts at energies below the top of the barrier are completely reflected; quantum
mechanlcally, however, it is possible for electrons to be transmitted. Electrons, after
tunneling through one potential barrier, can experience multiple reflections inside the'
quantum well;, before tunneling through the other barrier. Because of the wave-
nature of electrons, these multiple reflections can constructively interfere, producing
a large transmission across the entire device. In summary, electrons injected at par-
ticula'r “resonant” energies will experience unity transmission; those injected at ener-
gies off-resonance will be strongly reflected. Resonant energies are often referred to.
as qua31~bound states,’ since in the process of multiple reﬂectlon, electrons are_
eﬁ"ectlvely bound to the well. '

SEQUAL can be used to graphlcally illustrate the resonance condltlon descrlbed
above. Flgure,5 2 presents a surface plot of the wavefunctlon versus position and -

" incident electron energy. The quantity log;e( IQ/J'_'](Z)|2 0! (k,) / 27) plotted can be
interpreted loosely as the probability of finding an electron at a particular position,
~or at a partlcular energy. It is plotted on a logarithmic scale, so that important
features can be seen clearly. Electrons, ln_]ected from the right- hand contact, are’
propagating from right to left. At low energies, electrons are strongly reflected, and
the wavefunction exhibits a pattern of standing waves, near the right-hand contact.
At the resonant energy, however, the wavefunction peaks sharply w1th1n the GaAs-
well, and a ridge of transmitted electrons can be seen. extending to the left contact.
Note that the wavefunction peak is localized to the GaAs well in pomtron—space, and :
1t is extremely narrow in energy—space

ts. Ray, P. Rn_den,'V._ Sokolov, R.:Kolbas, T. Boonstra, and J. Williams, “Resonant
Tunneling Transport at 300 K in GaAs-AlGaAs Quantum Wells Grown by Metalorganic
- Chemical Vapor Deposition,” Applied Physics Letters, 48(24), pp. 1666-1668, 1986. -
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The wavefunction surface plot presented in Figure 5.2 was generated from the
outputvof-SEQUAL.’ A position-space grid, for the structure shown in Figure 5.1,
was created and stored in the file rtd. Positions were written in angstrom units (1 A
= 1078 cm), and the electrostatic potential was taken as zero everywhere. The
input deck, along with the rest of printed output, is shown in Figure 5.3. To insure
proper resolution of the wavefunction, an additional node in the middle of the quan-
tum well was specified for “watching.” Injection of electrons was specified as right-
‘to-left. Data files used for the wavefunction surface plot were obtained by specifying
"data=w" on the output card. Notice that the electron density, shown in the section
of final results, is smaller at the left-hand contact (near z=0). This is expected,
because the electron density listed is not the total electron density; rather, it is the
; component due to electrons injected only from the right-hand contact.

SEQUAL can also be used to determine the current-voltage characterlstlc for
this device, by assigning a number of voltages to the bias key. In Figure 5.4, an
input deck is shown, which has been modified for this purpose. Notice that separate
output-file names are specified for each bias, so that files are not overwritten. For
the purposes of this example, a self-consistent solution was not necessary; hence, the
maximum number of iterations was set to zero. As an initial guess, biases were
specified in increments of 0.05 V; the input deck was then modified again, to include
a few additional biases.” Values of current, taken from the listings in the sections of
final results, were stored in a separate file, and plotted. The resultmg current-
voltage characteristic appears in Figure 5.5.

Negatlve dlﬁerentlal resistance, apparent in Figure 5.5, is a charactenstlc
feature of resonant tunneling devices. For small biases, the dominant current com-
ponent is ‘suppli"ed by electrons tunneling through the first quasi-bound state, from
the right-hand contact. As larger biases are applied across the device, the quasi-
bound: sfélte is lowered in energy, with réspect to the conduction-band- edge in the
right-hand. contact. More electrons are available for tunneling at energies near the
conduction-band- edge in the contact. Therefore, current increases to a maximum

“value,. When the quasi-bound state is pulled below the range of injectionenérgies of
the contact, however, current is abruptly reduced. This effect is depicted graphi-
cally in Figure 5.6, which shows the conduction-band profile of the resonant tunnel- .
ing device, at the bias of maximum current. Notice that the quasi-bound state
energy is quite close to the conduction-band edge in the right-hand contact. -Any
additional bias lowers the quasi-bound state below the range of (rxght -hand)-injec-
tion energles, and current is abruptly cut-off.

48 . e | SEQUAL User’s Manual ‘ v O,ctob’er 3, 1987



Chapter 5 — Example Caleulations

0.365 eV

Ec

- : . . . . -t >:

5008 (50A:50A:50A:50A:504: 50024

1 n-type GaAs (doped 2x10'® em™2)

| GaAs (undoped)

1.1 Alg 45Gag 55As (undoped)

Figure 5.1: Structure of the resonant tunneling device examined in subsequent cal-
culations
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loglo(l ’E—'l(zﬂ 2ol [ 2n)

19 -

14| | 0.2156

Figure 5.2: The wavefunction magnitude, weighted by the transverse integration
or"'l( o), for electrons injected from the right contact of the resonant

tunneling device in Figure 5.1
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Chapter 5 —Example Calculations

L

~“= XXXX XXXXX CXXXX XX XX XXXX XX~ : ;
‘XX XX XX XX XX XX XX XX SEQUAL' 2.0

————— XXX XXXX XX XX XK KX XKXXKK KK <=--—-===~<--- Purdue. University
XX XX XX X XX XX XX XX XX August 1987

= XXXX CXXXXX . XXXCOX O XXXXX XX XX CXXXKKX -

SEQUAL: input deck

‘*f*fﬁ«*«***ttttffﬁfﬁﬁ«ﬁ}f**fﬁ*ttﬁf***ti**ttttfﬁ*f*i*t*ifﬁtif«
“** a resondnt tunneling device fabricated by ray et. al. ¥
* (applied: physics letters, 48(24), p. 1666, 1986) is **

. *x simulated. ‘a plot of the wavefunction surface in Rl
7 R position-space and energy space is obtained, for %
**  ““electron injection froim the right contact. *x

Rt R i e e Y e 22 22222222 ]

title ‘resonant tunneling device (appl. phys. lett., 48(24), P. 1666, 1986)

! ~- dnput file "rtd" contains positions in angstroms --

input file=rtd format=zv
scale cm=1.0e8

matter nodes=21/32/43/54/76
+ delec=0.0/0.365/0.0/0.365/0.0 .
+ -emass=0.067/0.08953/0.067/0.08953/0.067
doping ‘nodes=10/65/76 nd+=2.e18/0./2.e18
device ‘temp=300.0 ‘area=9.e-6
solve itmax=0 'prec=3 inject=r-to-1’

~- ‘to insure proper resolution of the wavefunction,
== watch a node in the well-region (node 38)

maxima watch=38

N print tcoeff=* formatl=zen format2=* verbose=true
4 . output file=rtd data=w

Executing a total of 1 calculation(s).

Figure 5.3: Example of printed output
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SEQUAL 2.0

preliminary informat

ion

Summary of Input Information

resonant tunneling device (appl. phys. lett., 48(24), p. 1666, 1986)

page 2

g bm———— + node

! ! + node
oo +'+ node

! ! + node
o +’+ node

! ! + node

node
node

node

p+=====~=+ node

! { + node
node

. node
node

node

node

0

21
22

32
33

43
44

54
S5

16

10
11

65
66

76

from input file(s).

conduction-band offset
effective mass

conduction-band offset
effective mass

conduction-band offset
effective mass

conduction-band offset
effective mass

conduction-band offset
effective mass

donox doping density
donor -doping density

donoxr doping density

_ For all calculations, the following assumptions apply,
regardless of data read

[}
oo

0.
.670000E-01

.365000
.895300E-01

0.
.670000E~01

.365000
.895300E-01

_ 0.
.670000E-01

.200000E+19
.000000E+00

.200000E+19

ev
m0

eV
m0

eV
m0

ev
mo

eV
m0

/om**3
/cm**3

/cmk*3

Figure 5.3: E_xample of printed output (continued)
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Chapter 5 — Example Calculations

INPUT (ASCII )~
rtd

format:
v

SEQUAL 2.0 page 3
calculation 1 of 1 Summary of Input Information
resonant tunneling device (appl. phys. lett., 48(24), p. 1666, 1986)
left contact —-—-—-w-smm e e
! doping density: 0.20000000E+19 /cm**3 1
! effective mass: 0.67000002E-01 m0 1
! Ef - Ec: 0.7905578B6E-01 eV i
Nodes b S it e ettt
watched: +-----—- +7 1
V11N 4 < 0.0 Angstroms
0> 4—c-m—m +0!
! [} temperature: 300.0000 K
1 1t cross—-sectional area: 0.90000003E-05 cm**2
1 ot bias applied to structure: 0. v
! 't propagating electron Et: 1.0000000 Kb T
! ot intrinsic carrier conc.: 0.17900000E+07 /cm**3
> 1 1
f r=>1 ! ¢ electronic states are: propagating
. ! !
! AAAA ! !
trert 4+ <- 1250.0 Angstroms
76 > +—————- +71
1//////% + <-- right contact -——--—-———ccrmmm o
Fomm———— +’ ! doping density: 0.20000000E+19 /cm**3

XX
XXXXXX
XXXXXX
XXXXXX

XX

! effective mass: 0.67000002E-01 m0 !
! Ef - Ec: 0.79055786E-G1 eV !
Hommm e + XX OUTPUT (ASCII )~www--
XX ! ! XXXXXXXX rtd.wrl-z
XXXX ! SEQUAL 2.0 ! XXXXXXXXXX rtd.wrl-e
XX ! ! XXXXXXXX rtd.wrl-m
o —— + XX

Figure 5.3: Example of printed output (continued)
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WAVEFUNCTION FOR PROPAGATING ELECTRONS:

SEQUAL 2.0

page 4
calculation 1 of -1 Statistics and Iteration Data

resonant tunneling device (appl. phys. lett., 48(24), p. 1666, 1986)

Use of kz-space nodes

Iteration: # 0

kz-space nodes

used in isolating maxima: 161
used in integration: 670
miscellaneous: 195

TOTAL: 1026

WAVEFUNCTION FOR PROPAGATING ELECTRONS: Integration concerns

Iteration: # 0

kz-space maxima found: 28
Average maxima separation
/ kz-step

... right-to-left: 5.8957

Number of kz-space

intervals integrated: 33
Gauss~Legendre integration

highest order: 12

lowest order: 4

average order: 7

Figure 5.3: Example of printed output (continued)

54

SEQUAL User ‘s Manual October 3, 1987




Chapter 5 — EXample- Caleulations -

SEQUAL 2.0 . : v page 5
" calculation 1 of 1 Final Results

resonant tunneling device (appl. phys. lett., 48(24), p. 1666, 1986) -

Current:
LEFT-to-RIGHT: 0.000000E+00 A
RIGHT-to-LEFT: =-0.137929E-01 A

Voltage:
In Input File: 0.000000E+00 V'
Applied Bias: 0.000000E+00 V

Total Current: 0.137929E-01 A Total Voltage:

P_os,i.tio’n

.62499998E-065

Conduction Band Electron Dens.
{em)” - (ev) - (/cm**3)

. 0. - 0. © 0.13938995E+15
0.50000000E-06 0. 0.13938993E+15
0.10000000E-05 0. 0.13938994E+15

- 0.15000002E-05 0. 0.13938995E+15
0.20000000E-05 0. 0.13938994E+15
0.24999999E-05 . 0. 0.13938995E+15
0.30000003E-05 0. 0.13938995E+15
0.35000000E-05 0. 0.13938994E+15
0.40000000E-05 0. 0.13938995E+15
0.45000002E-05 0. 0.13938994E+15
0.49900000E-05 0. 0.13938994E+15
0.49999999E~05 0.. 0.13938994E+15
0.50499998E-05 0. 0.13938994E+15

. 0.51000002E-05 0. 0.13938994E+15
0.51500002E-05 0. 0.13938995E+15
0.52000000E-05 0. 0.13938994E+15
0.52500000E-05 0. 0.13938994E+15
0.52999999E-05 0. 0.13938994E+15
0.53499998E-05 0. 0.13938994E+15
0.54000002E-05 0. 0.13938994E+15
0.54500001E-05 0. 0.13938994E+15
0.54900001E-05 0. 0.13938995E+15
0.55000000E-05 0.36500001 0.13994561E+15
0.55500000E-05 . 0.36500001 0.18066795E+15
0.55999999E-05 . 0.36500001 0.31577197E+15
0.56499998E-05 0.36500001 0.63506427E+15

- 0.57000002E-05 0.36500001 0.13511151E+16
0.57500001E-05 0.36500001 0.29412975E+16
0.58000002E-05 0.36500001 0.646678B9E+16
0.58500000E-05 " 0.36500001 0.14281898E+17
0.58999999E-05 0.36500001 0.31607775E+17
0.59499998E-05 0.36500001 0.70023107E+17
0.59899994E-05 0.36500001 0.13236001E+18
0.60000007E-05 0. 0.15169191E+18
0.60500001E-05 0. 0.24259597E+18
0.61000001E-05 0. 0.33233649E+18
0.61500004E-05 0. 0.40712321E+18
0.61999999E-05 -0. 0.45546977E+18
0 0. 0

.46995659E+18 -

0.000000E+00 V

- Figure 5.3:

Example of printed output (continued)
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SEQUAL 2.0

calculation 1 of

1

page 6
Final Results

resonant tunneling device {(appl. phys. lett., 48(24), p. 1666, 1986)

Position
(cm)

0.63000002E-05
0.63500001E~05

0.63999996E-05
0.64500000E-05

0.64900000E~05
0.65000004E-05
0.65499999E~-05
0.65999998E-05

0.66500002E-05
0.67000001E-05
" 0.67499996E-05

0.67999999E~05
0.68499999E~05
0.68999993E-05
0.69500006E-05
0.69900002E-05
0.70000001E~05
0.70500000E-05
0.71000004E~05
0.71499999E-05
0.71999998E~05
0.72500002E-05
0.73000001E-05
0.73499996E-05
0.74000000E-05
0.74499999E~05
0.74899999E-05
0.74999994E-05
0.80000000E-05
0.85000001E-05
0.90000003E-05
0.94999996E-05
0.99999997E-05
0.10500000E-04
0.11000000E-04

0.11500000E-04

0.12000001E-04
0.12500000E-04

Conduction Band

(eV)

[~ R~R~Rag o)

.36500001
.36500001
.36500001
.36500001
.36500001
.36500001
.36500001
.36500001
.36500001
.36500001
.36500001

0.

COOQDOO0OOOOO

D000 COOOO0OOCOOO

Electron Dens.
(/cm**3)

.44836270E+18
.39400858E+18
.31524703E+18
.22417760E+18
.15185733E+18
.13253833E+18
.60011229E+17
.27507440E+17
.13311273E+17
.79630943E+16
.79649460E+16
.13514750E+17
.28819871E+17
.65357604E+17
.15065666E+18
.29519630E+18
.34111472E+18
.56871785E+18
.82325686E+18
.10842372E+19
.13329382E+19
.15543195E+19
.17382395E+19
.18798473E+19
.19792246E+19
.20404274E+19
.20663852E+19
.20702057E+19
.19887109E+19
.20006154E+19
.19999505E+19
.19998500E+19
.19998793E+19
.19998764E+19
.19998765E+19
.19998763E+19
.1999876SE+19
.19998761E+19

Figure 5.3: Example of printed output (continued)
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Chapter 5 — Example Calculations

3 ok ok o 3k 3k ok ok ok 3% ok ok %k sk sk ok ok ok ok 3k o ok 3 ok ok ok 3k sk 3k ok %k ok K % ok 3k ok ok ok ok ok o ok ok ok ok sk ok 3k ok ok ok ok ok % %k ok ok %ok ok

A resonant tunneling device fabricated by Ray et. al.
(applied physics letters, 48(24), p. 1666, 1986) is
simulated. Current is computed for several biases.

Results are not self-consistent.
ok ok ok ok ok ok o ok ok ok ok ko ook ok ok oo o ok ok ok o ok ook ok o ok o o ok o o ok ok Kok ok K R

title resonant tunneling device (appl. phys. lett., 48(24), p. 1666, 1986)

-- input file "rtd" contains positions in angstroms

" input file==rtd format=sv
scale cm=1.0e8
matter nodes=21/32/43/54/76
+ delec=0.0/0.365/0.0/0.365/0.0
+ emass=0.067/0.08953/0.067/0.08953/0.067
doping nodes=10/65/76 nd+==2.e18/0./2.¢18

‘- compute current for biases:
-- 0V,0.05V,010V,0.15V,0.20V,0.25V, 030V

device temp=300.0 area=9.e-6

+ bias==0.00/0.05/0.10/0.15/0.20,/0.25/0.30

solve - itmax=0 prec=3 inject=r-to-l

maxima watch=—238

print tcoeffl=* formatl=—gzen format2=* verbose==true
output file=rtd00/rtd05/rtd10/rtd15/rtd20/rtd25/rtd30

+ data==dt

Figure 5.4: Input deck for the application of several different biases
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Chapter 5 — Example Calculations

o0
' 0.00 0.05 0.10 0.15 020 0.25 0.30
' Voltage (V) R

Figure 5.5: Current-voltage characteristic for the resonant tunneling device
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R —— Conduction Band
034 Quasi—bound /]
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~——Fermi Level

o
»

Energy (eV)
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<

I 7% E 4
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—0.2 . - " . r
0 250 500 750 1000 1250

- Position (Angstroms)

Figure 5.6: Cohduction—band profile of the resonant tunneling device for the bias of
peak current
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6

Special Considerations

8.1. Installation Notes

SEQUAL is written in standard Fortran 77, and has been implemented at Pur-
due University on Sun™ workstations and the Dual VAX 11/780 machines. To
ensure reasonable accuracy, floating-point representations should use at least 48 bits
to describe the mantissa (fractional part). Therefore, typical installations must use
double-precision complex variables. Although this is not allowed in standard For-
tran 77, the f77 compiler for the Dual VAX machines will automatically double the
precision of all floating-point variables, when the argument ‘‘-r8'’ is specified. Furth-
ermore, many compilers now recognize “double complex” as a data type. To
account for these variations in Fortran 77 compilers, three versions of SEQUAL
exist. One version, for machines with a large word-length, uses ordinary, single-
precision -complex ‘variables. Another, for machines which recognize the ‘‘double .
complex” data; type, uses double-precision complex variables. Finally, a third ver-
sion ‘exist's'fo:r machines with insufficient precision and a strict compiler; this final
version simulates the double-precision complex type by using pairs of double-

. precision variables. ‘

For the analysis of bound states, SEQUAL relies upon ezgrf in the International
Mathematical and Statistical Library (IMSL). If this subroutine is not available to
the user, it ‘can be removed from the program code, and the bound-state analysis
can be disabled. To accomplish these tasks, the user must comment-out the subrou-
tine call, which appears in the subroutine bstate: '

iiz z23 332 MACHINE DEPENDENT CODE - 212 313 133

If IMSL routines are unavailable, comment out the
following line, so that SEQUAL can be compiled:

call 'eigrf(matrix,nodgs,ia,ijob,val,vec,ia,wk,ier)

G 06 0 0 0. 0 00
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In addition, the constant tmsl in the main program should be properly set, to dlsable
the bound-state analysis:

222 2% 332 MACHINE DEPENDENT CODE 22z 237 222

ims] ... if IMSL routines are unavailable for a host
system, the parameter ’imsl’ below should
be assigned the value ’.false.’

[ I B B « SR « S S £

integer zimax, mxque, maxiter, maxii, errmax

integer mxcard, mxkeys, mxarry, mxoind, mxord, nexts
real maxreal

logical imsl

parameter ( zimax=251,

+ maxiter=30,

"+ . imsl=.false. )

Notice that both of these corrections are clearly marked in the program code by the
comment

C 733 3T TI3 MACHINE DEPENDENT CODE 231 233 133

In SEQUAL, all machine-dependent constants are marked in this manner. For a
proper installation, the user should search the program code for all appearances of
this comment, and follow the instructions immediately following it. Since the vast
majority of machine-dependent constants are used to check for overfiow or underflow,
the corrections should be obvious. '

6.2. Pitfalls to Avoid

Among the most f:ilstrating problems that a user might encounter are those
which arise from the physics of a particular analysis. Suppose a (weary) user has
created a device description and an input deck, has run SEQUAL, and has obtained
results which appear to be in error. Resisting his impulse to burn this manual, the
user would receive his reward in thls section; it is devoted to relieving both confusion
and misery. '

At the heart of the propagatmg-state analysis lies the: assumptlon that contacts
are in local, thermodynamic equilibrium. Unless the potential profile is sufficiently flat
~ near ea_c‘h_.,co_ntact, this assumption will be violated. To guarantee a pr‘bper analysis,
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Chapter 6 — Special Considerations

it is prudent to include ‘‘buffer” regions between the ideal contacts (nodes 0 and N)-
and the actual region of interest in the device. For example, in Chapter 5, the
analysis of a resonant tunneling device included 500 A buffer layers of GaAs, separat-
ing nodes 0 and N from the interior of the device.. These buffer layers are merely
extensions of the contacts, with the same material properties and the same density of
ionized donors. They should be long enough to allow equilibrium to be restored: Elec-
tron density should return to the density of ionized donors, and the electrostatic
potential should flatten out (i.e.; electric fields should decay to zero), within these
regions. Becausﬁe‘ of the recursive dependence of both the electron density and the
electrostatic potential, the use ‘of buffer layers is especially important in self-
consistent calculations. Unless equilibrium is restored near the contacts, errors in
either the electron density or the electrostatic potential will feed back into the solu—
tion, making convergence an impossible goal.

Another source of feedback can further aggravate problems in convergence: If
the contacts (or buffer layers) are lightly-doped with respect to the internal device
structure; a self-consistent solution may be difficult to obtain. In this case, most of
the band-bending (and most of the applied bias) will appear in buffer layers. Restor-
ing equilibrium conditions near the contacts will be difficult. To some degree, the
length of buffer layers can be increased; the analysis of long devices, however, is itself

a difficult ta_sk, which will be described below.

In the same manner, non-equilibrium solutions may be difficult to obtﬁin for
conduction-band profiles which do not obstruct the flow of electrons. For instance, if
the user attempts to apply a bias to a uniform block of semiconductor (for which the
equilibrium conduction-band profile is completely flat), the results obtained will be
nonsense. For a reasonable bias, the electron density will be higher at one contact,
and lower at the other. In a real device, the flow of electrons is somewhat impeded
by interactions with scattering mechanisms; in the limit of ballistic transport, how-
ever, there is nothing to impede the flow of electrons, aside from interactions with the
potential. ' A conduction-band profile without reflective features might be thought of
as representin‘g a device with infinite conductance; because it is unable to support a
bias, the user should not consider applying a bias.

~ In the analysis of bound states, the use of buffer layers is also 1mportant As'
boundary conditions to the finite-difference solution of the Schrodinger equatlon, it
was assumcd that the wavefunction is zero at each end of the device (nodes 0 and N).
If the wavefunction decays sufficiently within the buﬁer regions, this assumptxon is
valid; otherw1se, the solutlon of eigensystem may be in error. ' ‘
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From the preceding discussion, one might be tempted to include buffer layers of
classical difnensions (say, ~ 1 pm) in every calculation. Unfortunately, this solution
would create an even larger problem. As the overall device length increases,. ‘the
wavefunction magnitude becomes a rapidly varying function of k,. To insure an accu-
rate 1ntegratlon of the wavefunction, SEQUAL integrates the k, intervals between
peaks ‘in the wavefunction magnitude (see section 2.1.3). Therefore, the number‘of
points in k, space (and hence, the number of wavefunction solutions) increases
dramatically with increasing device length. For devices with classical dimensions
(~ 1 pm), the execution time of SEQUAL may be prohibitive. Typically, buffer
regions 500 A to 1000 A long are sufficient to guarantee proper results. Asa rule; it is
more efficient to start with buffer layers that are too short, rather than too long.

Given the density of ionized donors, SEQUAL will compute the Fermi-level Ey for
each contact (nodes 0 and N). Because the electron density calculated for the
propagating-state solution is extremely sensitive to the Fermi-level, the proper Ey
must be calculated within SEQUAL. A problem can arise, however, when using -the
output .of classical analysis programs, which allow for non-parabolicity‘of:’ the energy
dispersion relation. For a device with contacts of differing materials, the Fermi-levels
calculated by SEQUAL may not correspond to those found in the (non-parabolic) clas-
sical analysis. ‘In this case, the device will appear to have a different bias in SEQUAL
(i.e., a different separation in the contact Fermi-levels) than it did in:the classical
analysis. This bias would be noted in the printed-output section of final results.
When listing the bias across device, SEQUAL provides both the actual bias (e.g.,
separation in contact Fermi- levels) and the applied bias.  To remedy this situation,
the user could apply a bias across the device which will counteract ‘the erroneous
Fermi-level separation. '

Although (hopefully) the discussion above might be helpful, it is not intended to
cover every conceivable problem. One final word of advice, from an author who has
inves»tedico,,untleés hours in the examination of program output: If SEQUAL says so,
it is probably correct. More often than not, I have found a problem to stem from my
own misconceptions and mistakes, rather than from the reglmented computa.tlons of
the program.
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