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ABSTRACT

‘In this prdject we use the second method of Lyapunov to develop
several controllers to stabilize discrete-time dynamical systems with or
without parameter uncettaintieﬁ and /or external disturbances. We also use
the notion of a sliding mode on a preferred hyperplane, previously developed
for continuous-time variable structure control systems, to stabilize discrete-
time dynamical systems. | |

In particular, feedback controllers are proposéd that: (i) stabilize
discrete systems v;rith no uncertainties by forcing their state trajectories onto
prespecified hyperplanes; (ii) provide a needed level of stability robustness to
discrete systems with uncertainties which are modeled by éone bounded

functions; (iii) robustly stabilize discrete uncertain systems.



CHAPTER I
- INTRODUCTION

" 1.1. MOTIVATION

g Recent advances in di:gital signal p-rocessing technology ‘brought about
byv'"dlgital' computers have open the way to the implementation of broad
'classes-' of controllers conceived thus far Guided by th1s fact we try i in this
Work to solve the problem of control and stability of uncertain’ dynamlcal;

systems purely from the dlscrete-tlme systems p01nt of v1eW
We first bneﬂy review the results on the subJect Whlch have prov1ded
the motlvatlon behlnd the various developments in this prOJect |
In an attempt at drlvmg the state traJectory of a linear discrete-time
dynamical system toward a desired hyperplane, Milosavljevic’ [26] tries to -
dextend the results obtained by Utkin [12] and Itkis [11] for continuous-time

varlable structure systems, i.e., he tries to show that a slldlng mode can also

be achleved with dlscrete-tlrne dynamical systems; however, a closer look at -

th1s problems Wlll reveal that a sliding mode does not ex1st for such systems‘
' in the strict sense. - B

In order to gain more 1ns1ght into solv1ng the problem of forcmg the
state trajectory of a discrete-time dynam1ca1 system onto a de51red

' hyperplane, we found that the idea of a contlnuous-tlme system W1th hlgh |



feedback gain proposed by Utkin [31] and Marino [32] offered some
~ possibilities, since it has been shown that a high feedback gain continuous-

. time system behaves as a variable structure control System in the limit.

- So far we have made no mention of the system uncertalntles that the
- des1gner is faced with in real life When deS1gn1ng a controller Gorless and
Leltmann [7] propose  a determ1n1st1c treatment of uncertalntles for
.'contlnuous-tlme systems which are constralned to meet the so-called
' matching conditions [33]. Manela [20] and Corless and Manela [23] provide a

possible solution to the discrete-time problem with matched‘,u_ncertainties

" using the minimum-maximum approach.

‘vFinally, realizing that implementation is a very_impor-tfant :facet'of a
"control'system, we looked at Ways of how one could solve the above‘ prob-lem‘ ,
using output 1nformatlon only Walcott and Zak [27] and Stelnberg and
Corless [28] suggest pOSSlble solutlons to the problem of stablllzlng ‘
} contlnuous-tlme uncertain dynamical systems through output feedback'

Whenever certain algebralc constralnts are met.

12 OBJECTIVE OF THE PROJECT
'.rThe topic of this project is the control and stabilization of ’discrete-time
uncertain dynam1cal systems via the second method of Lyapunov

We shall ﬁrst show that by applymg Lyapunov’s second . method to‘

- lmear t1me-1nvar1ant discrete-time dynamlcal systems with no uncertalntles,

~ Wwecan drive the state tra.Jectory of such system onto a - des1red hnear

hyperplane, Where the system possesses certain des1rable characterlstlcs such

'a;vs stability and reduced d1mens1on. Next, we shall show that under‘ certain



' conditions, we can stabilize a class of discrete-time uncertain dynamical
systems where the "nomina.l" system is linea.r and the uncertainties do not
depend on the control input through the d1rect apphcatlon of Lyapunovs

second method

o .Finally, we shall show that a controller which steers the sta.te trajec-tory

of the class of discrete-time uncertain dynamical systems With linear

| nomlnal system toward the vicinity of a linear hyperplane

1.3. OVERVIEW OF THE REPORT
- The report is organized as follows:

' “:”C]‘i’apter 2 gives a fairly complete explication of the applicetionxof' the
second method of Lyapunov to determine the stability pronei'ties“ of
d1screte-t11ne dynamical systems modeled by ordinary dlﬂ'erence equatlons
' ThlS review is necessary in order to have a clear and‘ thorough:
»understa;nding of the method in order to use it eﬁ'ectivelyv to develop_,
'conti'ollers that stabilize the class of systems that we shall deail .:with,in the
foIloWing' chapters. The information presented in this chapter 1sorgan1zed
ién.the following fasliion. First, the most well known definitions that describe
discrete—time dynamicé,l systems are introduced. Second several well
accepted notions of stability are stated and discussed. Thlrd since the
“'second method of Lyapunov stablhty relies on the existence of a pos1t1ve
definite function, definitions of time-invariant and time .dependent positive
deﬁmte and positive semidefinite functions are presented a'long: Wlth specific
exsmples to clarify the concepts. Next, six main tneorems on"Lya=pun0v '
,s‘tability, which constitute the heart of the chapter, are stated and their

proofs included. Finally, the important notions of uniform boundedness and



uniform ultimate boundedness are introduced, as they are extensions of

Lyapunov stability.

-In Chapter 3 we develop several control strategies which steer the state
trajectory of a linear time-invariant discrete-time dynamical Systeﬁl without
uricertainties onto a hyperplane where the given system ﬁas certain desirable
characteristics such as stability and reduced dimension. The éontroller
design strategies are based on the idea of a sliding mode of continuous-time
variable structure control systems on a sWitching hyperplane. Additionally,
we present a recent and effective hyperplane design methodology in order to

facilitate the design of these types of controllers.

- In Chapter 4 we propose a solution to the problem of stabilization of a
class’ of »discrete—tir'ne uncertain dynamical systems where the'"nominal"
system is linear and the uncertainties do not depend on the‘cont-roll input.
The approach used to solve this problem is of a deterministic,llla'turé", ‘i.e., no
knowledge of the statistical behavior of the uncertain elements is ‘assumed,
except the bqunded sets that they belong to. The type of controller
propbsed in this development utilizes full state _feedback andh at least
gﬁa;antees uniform boundedness and uniform ultimate boundedness of the

solution of the closed loop system.

In Chapter 5 we extend the results obtained in Chapter 4 and propose |
an output feedback controller, which under some not very restrictive
assumptions solvés the same problem posed in the previous chapter. |

In Chapter 6 we make an attempt to unify the theori‘es'.,dével;;ped in

Chapters 3 and 4.



Finally, in Chapter 5, we present a summary along with the open

problems that still remain to be solved.



| CHAPTER II
DISCRETE-TIME CONTROL SYSTEMS STABILITY ANALYSIS
~ VIA THE “SECOND METHOD” OF LYAPUNOV

2.1. INTRODUCTION
" The purpose of the chapter is a review of the application of the second
,method‘ of Lyapunov to 'détermine the stability properties of dist_‘:rete—timé
dynamic systems déscribed ordinary difference equations. |
The essen.cé of Lyapunov’s seéond method lies on the fact that the
"stability. of a discreté—tim‘e dynamiéal system _governed‘ by a difference
e_rqu‘aition can be determined Without actually having to solve such an‘

equation (1,2,3,4,5,6].

2.2. © DESCRIPTION OF DISCRETE-TIME  DYNAMICAL
SYSTEMS o
7 Throughout ‘t:his chapter, we shall study systems that are governed by
the vector difference eqﬁation v
X(tiey1) = biox(b), a(t)) | ey
' W:heré »Vbtk is a discrete value of time, k€EZ; x(tk)Elf{n is the state vector;
| u(tk):E]I{m is the input (control) vector and feiRn is a vector-valued function,

and Z denotes the set of integers.



- We now introduce the following definitions

" Definition 2.2.1. The discrete-time dynamic system (2.1) is said to be free
(unfoi'ced), if u(ty) =0, Vi, , k€Z, that is,

i) = fs) e

Definition 2.2.2. The discrete-time dynamic system (2.1) is stationary if f

- does not explicitly depend on ty, i.e.,

M) = M), ulb)) (2:3)

Definition 2.2.8. If a discrete-time dynamic system is both free and

stationary, it is autonomous, namely,

o) =f6))  (@4)

"D(_a‘ﬁniti'on 2.2.4. The state x, is an equilibrium state of the free discrete-

time dynamic system (2.2) if
Xe = f(tk7xe)7 Yty , v (2.5)

in other words, the solution to (2.2) starting in state x, at time tq is (2.5) for

all t > t,, where the symbol V means “for all”’.



2.3. DISCRETE-TIME DYNAMICAL .SYSTEM‘S}‘ STABILITY |
DEFINITIONS |

"’*’Although many stability definitions ]aave been proposed for. contin-iious-
“time systems, only the ones, as applled to dlscrete~t1me systems, in thlsr

report shall be discussed in thls sectlon

*-Def:ih‘.ition 2.3.1. An equilibrilim state x, of a free discrete-time dynamic
- system .is“stable if, given any € >0, e€IR, there exists a 8(tg,e) >0 such that
L' —'xé” < (tg,€) implies ’”xv(tk) —xll < €,V ty > to, where x, = x(t,) and
x(ty) is'the solution é(tk;xo,to) to (2.2). In the above inequalities, {1l refers
to the standard Euclidean norm. This concept of stabi‘lity is illustrated in

Figure 2.1.

Figure 21 Definition of stability (second order case) -

As shown in the above Figure 2.1, this notion of stability (also known as

stability in the sense of Lyapunov or i.s.L.) is of the local type, namely, it



states that if the equilibrium state x, is stable, then every solution
X(ty) = P(ty;xg,ty) to (2.2), starting in the neighborhood of x, must stay

" arbitrarily close to x, for all t’s, t, > t,.

Definition 2.3.2. An equilibrium state x, of a free discrete-time dynamic
system is asymptotically stable if |
(i) it is stable (i.s.L.) and
(i) every trajectory x(ty) = d(ty;Xo,tg) starting sufficiently close to x,
converges to x, as t,—oc0. In other words, for a given u > 0, u€IR,
" there exist real numbers ’y(t;)) >0 and T(u,Xpty) such that |

by — x 1 < A(tg) implies that k(b)) —xdl <y W

b > to + T(k,xgst0)-

As seen in Figure 2.2, asympfotic stability is also a local qonéept,_ since
it is von‘ly known that there exists some region in the state space aroﬁnd the
equilibrium state such that all motions starting from within that region are
asymptotically stable, however, one does not know a priori how small §tg)

may have to be.

The definition of asymptotic stability also implies that all motions that
start at the same distance from x, shall remain at a distance no larger than

U from X, at arbitrarily large values of time.
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5 v’}»rFigure 2.2. Illus_tration of asymptotic stability (second oi“der ,c‘e.-se) ,'

Deﬁnltlon 2.3. 3. An equlhbrlum state X, of a free dlscrete-tlme dynan.nc‘

. system is a.symptotlcally stable in the large or globally asymptotlcally stable’ -
it

(1) : 1t1s s,taole and

(11) every motlon converges to x X, as k—00, namely, (tk);*xg, 'aé k—*oo :

‘Asymptotic stability in the large results if all the tra-jectories“of the
syster‘n‘converge to the equilibrium state x, as k—FOO, that is, the region of
attraction is the entire state space ]Rn, where the region of attraction is

deﬁned by By = {xEIRn Ihe(ty) — %} < o(to)}.
Note that if a discrete-time system is autonomous (free and:stationary),

then 6 and T in the above definitions do not depend on t,.
The concept of equiasymptotic stability of X, is now introduced It.is a

stronger concept than asymptotic stability, in fact, the former implies the

| latter.
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Definition 2.3.4. An equilibrium state x, of a free discrete-time dynamic
system is equiasymptotically stable if
(i) - it is stable

(11) J given u >0, u€lR, there exists a number T(,Lt,r,’to) such that
Me(bysxgrto)ll = k(b ) < p v%2%+Tmmm' whenever
Iy — Il < r(ty), with r(to) > 0 2 fixed constant that does not depend

"on U or Xy In other words, evéry motion starting sufficiently close to

X converges to x, as t,—00 uniformly in x,.

Definition 2.3.5. An equilibrium state Xe Qf a free discrete-time ayhamic‘
system is équiasymptotically stable in the large if |

(iv) | it is stable,

(11) a_ll motions are bounded, and

(1ii) ail motions P(ty;xg,t0) = X(tk), with x, and to afbitrary, conv‘evl"éei to Xe

as ty increases, i.e., lk{t,) — x,/l—0 as t,—c0.

Defisiition 2.3.6. An equilibrium state x, of a free discrete-time dynamic

sYsiéem is uniformly stable if given any ¢ >0, e€IR, there exists a 'n‘u.mber

5((:)> 0, 5(6)éﬂ1, such that if Ik, — x|l 315(6) then ll@(ty;xq,t0) = xe” g € fbr
all ty, > tq. | -

: T‘he difference between the concepts of stability and uniform s,tability is
that the real number § can be chosen independently of the initial time t; in
the case of uniform stability. Therefore, one should bear in mind that W’hile

" a system may be stable (i.s.L.), it may not be uniformly stable because §
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may always depend on tg. -

Deﬁnrition 2.3.7. An equilibrium state x, of a free di_screteétimé dvynamic' '

v‘s’ystiem_is uniformly asymptotically stable if | |

(i) it is uniformly stable and

(ii) g.iven‘ u >0, pER, there exists  a number: T(u) such that

. l:lqﬁ(tk;xo,té) —x<p  for . all ty >t + T(/L)‘ | whenever
| |B(0~ — xe” <v,v>0 beiﬁg a real number which does not, de-pvel‘l.db on i

or X,.

D‘eﬁnii;ioh 2.3.8. An equilibrium state X, of a free discrete-time dynatriié '

systerﬁ is uniformly asymptbtically stable in the large (uniformly globélly ‘

asymptotically stable) if | |

(i) it is uniformly stable, -

(ii) all motions are ﬁniformly boundgd,_tha_t is, give‘n any v >0, ¥€RR, ‘
there exists some B(7) such that lky; — x, Il < v implies that ||¢(tk;ko,tq)~
_ x Il <B fér éll by > tg, and | |

- (iii)  every motion P(tysxostp)y With xg and tg arbitrary, converges uﬁiformly

| in Il < v v > 0 is fixed but arbitrarily large, to x, with iﬁcreasing

ty (as k—00).
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'2.4. POSITIVE DEFINITE FUNCTIONS

~ This section reviews the concepts of positive definite and of positive
semidefinite functions, since they are central to the development of the

. .. Lyapunov .sta.bility theory. [5,6].

2.4.1. Time-inva.ria.nt Positive Definite Functions

Let V(x) be a real scalarbfunction of the vector x, i.e., V:IR"—IR, and

let S be a closed bouned region in the x space which conains the origin.

Déﬁnition 2.4.1.1. The function V(x) is locally positive semidefinite in S if,

for all x and S
() V(0)=0and

(i) Ve > o.

Déﬁhition 2.4.1.2. The function V(x) is locally positive definite in S, if for
all xin S |
() V(0) = 0and

(i) - V(x) > 0, for all x # 0, x€8

Definition 2.4.1.3. The function V(x) is positive definite if
(D V() =o,
(i) V(x) >0, for all x 0, x€R", and

(iii) V(x)—oo as llxll—o0, uniformly in x.
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~ Notice that the difference between the last two. definitions is that the

latter is a global type of concept.

Example 2.4.1.1. Let V,(x) =xi2, x! = [X; X,], then Vi(x) is a ‘prositive
semidefinite function because while Vi(x) =0, the vector x ‘may not be

identically zero.

Example 2.4.1.2. Let Vy(x) =x{ +x7, x* = [x; X,), then V,(x) is positive
* definite function since (i) and (i) in definition 2.4.1.3 are clearly satisfied.
Moreover, (iii) is satisfied because Vy(x) = lix!® where lkkll is the Euclidean

norm in IR%

2.4.2. Time Dependent Positive Definite Functions
‘Let ‘W(ty,x) be a real scalar function of time t) and of the ,vvecto.r x, that
is, W: IR, xIR"—IR, and let S be a closed bouned region in the x space

which contains the origin.

Definition 2.4.2.1. The function W(ty,x) is locally positive semideﬁhite in
S if, for all x in S and t,
(i)  W(ty,0) =0,V ty and -

(i) W(t,x) > 0, V t, and x€S.
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Definition 2.4.2.2. The function W(ty,x) is locally positive definite in S, if

forallxin S

(i) - there exists a continuous scalar functin o such that 0) = 0, ofy) > 0,

(i) W(t,0) =0, ¥ t,, and

) _(ii'i)v for all t; and ‘all x # 0, x€S, W(t,,x) > o lkll).

Definition 2.4.2.3. The function W(t,,x) is positive definite if (i)-(ii) same
as definition 3.22, and » |

(iii) for all ty and all x # 0 x€IR®, W(ty,x) > oflkll).

Definition 2.4.2.2 (2.4.2.3) shbws that a function of tkvan"d. x is locally
positive definite (positive definite) if and onmly if it dominaies;- at each instant
of time tk‘, kel vwhe'are W denotes the set of natural numbers and over some

‘ clo;ed~v,bouned region S in the space of x which includes the orgin (the entire
éﬁace IR"), a continuous real scalar function Oz(”ﬁc“). Condition (111) in the
' last‘two definitions is often replaced'with (iiia) the.re exists a positive definite
function V(x), V: RE—IR (time-invafiant), such ‘thbat W(tk‘:,x) ‘2 V(x), V |

t > 0, ¥ x€S (x€IRY).

Definition 2.4.2.4. A function W : IR, xIR"—IR is said to be decrescent in
S if there exists a function §(*) such that W(t,,x) < A(Ikll), ¥-t, > 0 and v

X€ES.
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Example 2.4.2.1. Let Wy(t,x) = (xf +x2) e % xT = [x; X,], then W, is

positive semidefinite since W, (t;,x)—0 as ty—oo for all x # 0.

Example 2.4.2.2. Let Wy(t,,x) = (x? + x§) (t7 + 1), x¥ = [x; x|, then W,
is positive' definite because it dominates the positive definite, time—inva.x;i%a._ﬁt

function Wy(x) = x7 + x2.

Example 2.4.2.3. Let Wi(ty,x) = (x2 + x2) J(t + 1), xT = [x; x,], then W,

is positive definite and decrescent.

~ 2.5. LYAPUNOV STABILITY THEOREMS FOR DISCRETE-TIME
DYNAMICAL SYSTEMS

Consider the discrete-time free dyﬁamic systems

K(biey1) = fbx(ty)) 5 | - (26)
which has the origin as an equilibrium state, i.e., x, = 0. Furthermore, we

assume that
f(t0) =0, Vit . @)

Let the solution of (2.6) be denoted by

Htxxo,bo) = x(ty) o (2.8)
such that o
¢(to;xo,to) =%, ¥ %o, t S (29)
¢(§k+isx(tk)7tk)' = X(bey1) = {box(tr)), ¥ x(ty), by, ) (2.10)

| f_'oi_‘ any initial state xg, any initial time t,, and anyv time t.
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Theorem 2.1. The equilibrium point x, = & at time ty of (2.6) is stable if

there exists a positive definite function'W(tk,x) in some neighborhood S; of

the origin such that

AW(ty,x) = rate of increase of W along motion starting at x, t;

= [W(tes 1, (s 1% t) — Wt X)l/(bieyr — i) -

<0,V ty > ty, V€S, = {x : Ilxll < s} (2.11)

Proof: To show that 6 is a stable equilibriuni point at time tj, we have to
show that, given any € >0, we can find a (tg,e) >0 such that
Iholl < é(tg,€) implies Ix(t )l < €, 7 ¢, > to. Now, given € > 0, pick § >0

such that

Blto,0) = Sup {W(tox)} < ofe) (2.12)

hence, ofd) < H(tg,0).

Notice that such a 6 can always be found, since afe) > 0 for ¢ > 0 and
B(0,t5)—0 as 6—0. |

Suppose llxoll < §, then W(to,xo) < Alto,d) < a(e). But AW(t,x) < 0, V
tx > tp and V x€S, implies that
S W(t,x) < W(tg,xo) < of€), V ty > tg whenever Ikll <6, = (2.13)
n'.ovgf, sincé’W(tk,x(tk)) > of lkx(ty)ll), we have that
a(l(t)l) < W(tx(ti)) < Witgrxo) < ofe) 1)

which implies that Ik(t,)Il < ¢, since o is a scalar nondecreasing and positive

funection.
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~Theorem 2.2. The equilibrium point x, = § at time t, of (2 6) is uniformly
stable if in addition to the conditions of Theorem 2. 1, W(ty,x) is descrescent

1nS

AProof We Want to show that given € > 0, we can find a §(€) > 0 such that

”x || < 5(6) implies Ik(t )l < €, ¥t >t,. Because W(tk,x) is decrescent

there exists a nondecreasmg function ﬂ(’y), with 5(0) =0 and such that B
W(ty,x) < ,B(Hx”) VXES ={x: Ikll <1} and V t,. If we piek 6> O. sﬁch_

’that

A6 = sup {sup {W( tk,x }} < ofe), _ (215) |

”x“<6 t>to

then 5 only depends on €. Moreover, suppose that lix,ll < §, with arbltra.ry '
to Then | | |

Wltoixo) < A5) < ofe) e
Now, AW(ty,x) < 0,V tj > to and V x€S, implies that
W(tk,x) < Wltoxo), Vb >to, VxES,. (217
Therefore, noting that a(l&(tk)ll) < W(tg,x(ty)), we get |
| | aflle(t) 1) < W(tx(t) < Witoxo) < A < afe)  (2.18)

from which we conclude that Ix(t)) Il < e whenever lix,ll < §(¢), since aisa

scalar nondecreasing and positive function.
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A stronger stability concept of the eqiuilbrium point x, =0 is now

‘.pr‘esented, namely, -equiasymptotic stability since it ‘implies asymptotic

stability.

Theorem 2.3. The equilibrium point x, =8 at time t, of (26) is
equiasymptotically stable if o
| (i) - it is stable (in the sense of Theorem 2.1) and

(ii) there exists a continuous scalar function -y such that 4(0) = 0 and, for

all t, and x # 0, xES;

AW < — ki) <o.  (219)

Proof: Since the stability‘ of x, =6 hés already been proved in Theorem
2.1, it only has to be shown that llg(tyxg,te)ll = Ik(t)ll-0 as 00
uniformly in }xo. | S
From assumption (i), there exists a continuous scalar'nlondecrreasing
funcfion o such that ¢(0) =0 and Vx #0, xGSS; o Ikll) < W(tk’x){;. Now,

given i > 0, u€ER, pick r(ty) > 0 such that

ﬂ(to;r) = ”S.llllp {W(to,x)} < ofs) | o (2.20) B

x<r .

The choice of r(t) is illustlra_ted in Figure 2.3. Thus, if Ikl < r(t), then
Wltoxo) < Blter) < ofs),  (2.21)

pick rl > 0 such that
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i
L
|
s
e
[

Vrlieainthfia»inter'ul

. Figure 2.3. Selection of r.

Bltorrs) = min{a(u), Alter)} , C em
and define : R
G_el
T(toﬁ‘ta ) '7(1'1) | S (2 23)

_ Assume Ho(tnxosto) Il = Ik(t)Il > r; for some ty<t, <t,+ T. Assume
further that T =t —t; for some integer m > 0. Then for lk,ll < r(t,),
0 < ofry) < W(tg + T,d(tg + Tixo,to)), by hypothesis (i). But

- v m-1
'W(to_ + T,9(to + Tixg,b0)) = Wltg,xg) + 33 AW(tp,x) (tys1 —tn)

' n=0

< Wltorxe) = 3 A(1hel) (bgy —ta) , by (i)

n=0 )

< W(tO’XO) - mil W(rl) (tn+l '_tn)' ’

n=0

- s_inc_'e‘,-"' - Ihe(to)ll > 1y = A(lll) > A(r;) = — y(Ikll) < - Ary), thus
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Wito + T,0(t0 + Tixohto) < Bltor) — Ary) S (tass —ta), from (2.19)
‘ n=0

W(to + Tydlto + Tixorto)) < Bltor) — ) (bw—ta) = Altar) — A(ry)T

< Bltor) — ofs) < 0 , using (2._22') :

Clearly, 0 < ofr;) < B(r,tg)) — &(s) < 0 is a contradiction. Therefore
| (b xg,t0) I = Ik(t)ll <1 for some ty <t, <ty + T. We then conclude

that for t, > t,,
d(llqﬁ(tk;xo,to)ll) < Wty #lbisxosto)) < Wty d(taixoto)) < ﬁ(to’ril)‘"

using (2.21) we see that f(tg,r;) < ofu), hence olld(ty;xq,t0)11) S of ), which

implies rthat. Ild’(tk;xo;to)” < u for t, > ty + T, whenever llxll < r(to‘)v.} -

' Theorem 2.4. The equilibrium point x, = § at time t, of (2.6) is uniformly
asymptotically stable if -

(i) it is uniformly stable (in the sense of Theorem 2.2) and

(ii) ‘there exists a continuous scalar function ﬁsuch that 4(0) =0 and, for

all ty, and x # 0, xES,

AW(ty,x) < —~(Ikll) <0 . - ) (2.24)
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Proof:  Here again, we only need to show the uniform convergence of the
motions of (2.6) to the equilibrium point x, = 0, that is, we have to show
that llg(ty;xg,t0)/l—0 as t—co uniformly in t, whenever Iheoll < v (r is
indepeﬁdent of t5 and x,), since uniform stability has already been proved in

Theorem 2.2.

From the hypotheses of the theorem, there exists three scalar

continuous nondecreasing functions «, £, and -y such that

0) = f(0) =~(0) =0 and Vt, and Vx # 6, x€S,

of k) < W(ty,x) < B(Ikll)  (2.25)
ﬁ(lbcll)g — AW(t,x) . | | (2.26)
Pick r and r; such that
Alr) = sup {sup {W(tx)}} < ofs) (2-27)
B(r1) = min{o{y), B(r)} - (2.28)

Define

T=T(u)=ﬂﬂ((r%>o  (229)

As in the case of the proof of the previous theorem, we find that
||¢(tn;xo,t0)|| = Ix(ty)!l < v, for some t, < t, <ty + T. The difference here
is that r is independent of t, and T only depends on x. We therefore have

that for Ikyll < r and t, > t,
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a(llg(tisxorto))) < Wity d(tisXorto)) < Wity d(t,%eb0)) » by(2-24) and (2.25)
< Blry) , since Ih(t )l <ry

< ofp) < by (2.28)

“We conclude that [lg(ty;xg,t0)ll = Ix(t )l < i for t > tq + T(1), whenever
Ikg) <r, since « is a nondecreasing scalar function, and that

Hlé(ty5%050) 0 as t,—ro00 uniformly in t, when Ikgll < r.

Theorem  2.5. The equilibrium point x, =¢ at time to‘ o-i;‘:'(2.6) is
equiasymptotically stable in the large if there exists a scalar function
W(ty,x) which is positive definite for all x€IR", radially unBound‘e‘d, i.e.,
o Ihell) < W(ty,x) with alkl)—co as Ikkll—oco, and the rate of increase of W
along the motion starting at x, ty, AW(ty,x), is negative definite for all

x # 0, x€R", i.e., AW(ty,x) < —(Ikxll) <o.

Proof: Stability of x, =0 was already proved in Theorem 2.1. We
therefore proceed as follows. Because W(ty,x) is radially unbounded, for any |
constant B > 0, BEIR, there exists a B’ > 0, B'/CIR such that o(B') > [(ty,B).

Such a B’ can be picked as follows:

Let oB') = niﬂify {W(tox)} > B(t0sB),  (2:30)

this procedure is illustrated in Figure 2.4.

No‘W,bfor Iyl < B and t, > tg, we have
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ofB) 2 AltoB) > Witoxs) > Witdtumato) > a(ll¢(tk,xO,to)l ),

R since ” ‘a ~ negative  definite AW(tk,x) 1mphes that ‘fer tk > o,
| (tk,¢(tk,x0,t0)) < W(to,xo), and the positive definiteness of W implies that
W(tk,¢(tk,xo,t0)) > oz(||¢(tk,x0,t0)||) Therefore, llg(ty;xq,t0)ll < B’ for tk > to
I» " when every ”x Il < B, in other words, all motions of the system descrlbed by

. (2 6) are bounded
Blto, 1)
OW(to,X)‘

- ofiill)
AltoB) -

v lell
B B’ hes here
Figure 2. 4. The choice of B’
- For any given 1 > 0, u€lR, choose 5 such that ‘ _ ‘
Bltosd) <ofw),  (231)
* and define : o | : »
— 2B) -, o (232)

Y8)
Using an ergument similar to the one used in the last two theorems, We ﬁnd
that if we assume that 1lg(ty;xg,t0)ll > 6 for some ty < t, < t, +T, and

| Ioll < B, we get
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0 < a() < W(to + T,8(to + Tixoto)) < Witoxo) — )T < Blte,B) — a(B)) <0,

~a contradiction, which implies that l@(ty;x,t0)l = |l(t )l <& for

<t <t +T. Now, for Ikl < B and for t, > t,, we get
o500} < W(tyoHixoria)) < Wt bltnitote)) < Altord) < o)

or that lld(tysxe,te)ll = Ik(ty )l < u for t, >ty + T whenever llx,ll < B.

Theorem 2.6. The equilibrium point bxe = 0 at time t, of (2.6) is uniformly
asymptotiically stable in the large if in addition to the hypotheses of the

previous theorem, W(t,,x) is decrescent for all tx > to and x€S,.

Pr.oo'f: Since uniform stability of x, =60 hé,s already been proved in
Theorem 2.2, we can show that every motion of (2:6) converges to xe‘= 0
~ uniformly in ”xOIl < B and ty, with B fixed but arbitrarily large, 53 ty—00 in
the _éame ‘manner as in the preceding theorem once we choose B’ > 0 and
6> 0, givevn B >0 and 4 > 0, B, u€lR, that is, once we pick B’ and 6 such
that . '

oB) > A(B), “.-(2.33)
and .

A <o), e
since ' the assumpﬁons of the theorem imply the existenée of three ’sgalar,

continuous, nondecreasing functions o, # and 7y such that for x # g, x€IR"

and V t,
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of Il < Wity,x) < Bl - (2.35)
A(Ikll) < — AW(tyx) (2.36)
apd‘ |
oIkl —co as Ikll—oo . (2.37)
m

2.6. EXTENSIONS OF LYAPUNOV STABILITY THEORY OF
DISCRETE-TIME DYNAMICAL SYSTEMS

We now adapt to discrete-time dynamic systems the notions of uniform
boundedness and uniform ultimate boundedness of uncertain continuous-
time systems which were utilized by Corless and Leitmann [7] in the context

of continuous-time dynamical systems.

Definition 2.8.1. The solution of (2.6) are uniformly bounded if and only if
given any compact subset S of the state space IR®, there exists d(S)eRr.,
such that if x(*) : [ty,tx )—IR" is any solution of (2.6) with x, = x(ty )ES,

then “X(tk)“ S d(S) fOI' 3.11 tke[tkytkl)-

Definition 2.6.2. Given any subset B of the state space IR", the solutions
of (2.6) are uniformly ultimately bounded within B if and only if given any
compact subset S of IR", there exists T(S,B)ER, such that if

x(*) : [ty,00)=IR® is any solution of (2.6) with x, = x(t €S, x(t,)EB VY
ko) 0 ko/ ) k

b > ty, + T(S,B).
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2.7. CONCLUSIONS

‘The application of the second method of Lyapunov to the study of the
stability of discrete-time dynamic systems modeled by difference equati‘ons'
clearly shows that uniform asymptotic stability in the large implies
equiasymptotic stability in the large and uniform asymptotic stability;
uniform asymptotic stability implies equiasymptotic stability and uniform
stability. Finally, either ﬁniform stability or equiasymptotic stability implies

stability.

As made evident in the above development, Lyapunov’s second method
has been applied to systems described by the time-varying, generally
nonlinear difference equation (2.6). In so far as discrete-time linear time
invariant systems are concerned, other well-known tests exist which
determine their stability properties in a rather straight forward manner

8,9,10].
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v CHAPTER III
'STABILIZATION OF DISCRETE-TIME DYNAMICAL SYSTEMS
| VIA PROJECTION METHODS o

;{5’,1;.T,.I:1}T‘TRODUCTION

We shall look at the problem of stabilizing linear tirﬁeéinvariént discrete
‘_dynamical éystems and prévide a solution based on a nonclassical approach.
More*pfe'cisely, we shall solve the stability problem by steei'in_g the state
trajectory of the system towards a desired hyperplane and keep it on it until
" it reaches the origin. The idea behind constraining the system to a
particﬁlar hyperplane is to reduce the system’s dimension and to tailor its
stability properties.

The method wé shall utilize is based on ideas used ih continuous-time
va‘riable structure control systems [11,12,13,14,15]‘ and specially froni the
results on continuous-time dynamical systems with .high- feedback gain
6btained»by Utkin [31] and by Marino [32], since these types of -systems
, Behave like variable structure systems as the feedback gain becomes lé,rge;
We shall first find a sblution to the singie-input system case and then

= generalize it to the multiple-input case.
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3.2. CONTROLLER DESIGN 1

We first consider a single-input linear time-invariant discrete-time
dynamical system described by the following difference equationb
Xk+1 = AXk + Bllk y Xg = Xk 4 (31)

0

where x,€IR", w,E€R, A and B are constant matrices of appropriate

dimensions.

Assumption Al. The pair (A,B) is completely controllable, i.e., we can

transform (3.1) into the controllable canonical form

(0 1 o . o0 |
0 0 1 .
Xgpr = | @ : X+ o u - (3.2)
0 0
L_a'l —ag .. .. —a ]
Define
Gk é O(Xk) = SXk N (3.3)

where S is a 1xn matrix whose components are yet to be determined.

 Our goal is to drive system (3.1) to the hyperplane oy = 0 as fast as

possible and to have it slide on it towards the origin.

Theorem 3.1: If system (3.2) is constrained to the hyperplane o; = 0, then

the equivalent system has (n-1)-dimension.
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Proof: Without loss of generality, assume that the n*® component of S is
equal to one, ie., s, = 1. Then if ¢ = 0, that is, when the trajectory Xy of

. system (3.2) reaches the hyperplé,ne Sxy = 0 at the k' step,
sia(K) + spalk) + .+ 5,0) =0,
) ftom Which we get | |
Xp(k) = — syx;(k) — s,%5(k) 7 ' (39 |
‘Moreover, if system »(3.2)‘ remains on oy =0, then it is also true tha:t
O+1 = 0, namely,
Ok1 = SXkyy = SAxy + SBUI: = 0‘ )

or

u; = — (SB)‘_ISA)tk - znj (ai +5;_1) xi(k) , 8 =0. (3.5)

i=1

Substituting u, = u, into (3.2), we get

0 1 o 0
0 0 1
Xk+1 = 0 Xy
0 0 1
0 81 vee eee —S8p-1

“but the n'® component of the state vector Xy is given by (3.4), thus

(0 1 0 .. o0 |
0 1 : - =
X = 1 & 0 |x, o (3.6)
0 0 1
__31 89 see aee ~8n—1

- where -
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xp = Py(k) ... Xpa (W] -

Theféfore, the system (3.6), which we shall designate as the equivalent

system, is (n-1)-dimensional.

 Let the function V() : R*>IR, be éiv_en by
V) A x) (3.7)
where
"R, =[0,00)

‘and o(x;) is given by (3.3).

Assumption A2. The matrix S is such that its components are chosen to

yield an asymptotically stable equivalent system.

.We now state the following theorem:

Theorem 3.2: If the matrix SEIRP® is chosen according to assumptibn

(A2), and if the controller

uy =3 (W5 — 55 — ) xi(k) , 50 =0, B (3.8)

DG

where ME(0,1), s; is the i*® component of the 1xn matrix S and a; is the it

element of the last row of the A matrix in (3.2); is applied to system (3.2),
then the cldsed—loop system is asymptotically stable for all x, €IR" and the
hyperplane o(x)) = 0 is approached a‘syinptotically for any initial condition

xo#Ker(S).
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P’roqfﬁ Let V(xk) as defined above be a generalized Lyapunov function
candida’ce. A sufficient condition for the closed-loop sjstem to. be
asymptotically stable is that the first forward difference of the generalized
: Ly’a-punov function candidate,” AV(x,), be negative for all x, €ER", Le., we

B rgquire,that (see Chapter 2)
| AV(x) A V(%) — V(x) <0, VxR,
Now,v
. V(xyy) = oz(xk+1) )
but
o(xg41) = SXypqy
= SAx;, + SBuy .
‘Su,vb/sti‘t;.uting the A and B matrices of (3.2) int;) the‘ai)ov’e eqﬁa.fion »yieldé‘.l |
olis1) = z i+ 3 + B € X}

. Utilizing the proposed controller (3.8) in (3.9) produces

Xper1) = At ,n six;(k)
+1) >
: i=1 ‘
= Netlgy,

= )\k""l‘a();k)‘. | (3.10)

' Hence,
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V(xesr) = N0 (%),
and
AV(x) = (EF2 — 1)o?(x,) - (311
For x,¢#Ker(S), namely, when the representative point x; lies outside the
‘ hyperpl_arie o(xy) = 0 or o(x,) # 0, then AV(x,) < 0 since A&(0,1).

For x.€Ker(S), i.e., when the representative point x, lies on the
hyperplane o{x;) = 0, we proceed as follows. We first note that (3.8) can be
rewritten as

s = N Hofo) = 53 (soa + (k). (3.12)
- .
Thus, if o(x;) =0, then u, is equal to the equivalent control u;, which is
given by (3.5).. Additionally, if the components of S are picked acéordiﬁg to
| assumption (A2), then the (n-1)-dimensional equivalent system is
aSymptbtically‘ stable, which " implies that the closed-loop system is
asymptotically stable for x,EKer(S).
We therefore conclude that if we apply (3.8) to (3.2), the resulting

closed-loop system is asymptotically stable for all x, €EIR".

To show that the trajectory of the closed-loop system approaches the

hyperplane o(x;) = 0 asymptotically for x,&Ker(S) we note that

olxpp1) = NTo(xy) ,

which impiies that
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o) = (IT N)ofxo)

i=1

i
= A" ofxo)

= NlH)/2 5. - (3.13)

Clearly, o(x))—0 as k—oo0 for all o{xy) # 0 since A\&(0,1).
O
To shed more light on the claim that the closed-loop system is
asymptotically stable for x EKer(S), we note that when u, = u]: isbapplied to

(3.2), the resulting system is given by

0 1 0
0 O 1 :
Xem = |1 0 |, (3.14)
0 O 1
0 —sp ... ... —8p-1

whose characteristics polynomial is
p(z) = 2(s" ! + 5y 12" " + L+ spr +5y) =20 (2) (3.15)
where p*(z) is the characteristic polynomial of the equivalent system (3.6).

Therefore, if the s;’s are such that the equivalent system is
asymptotically stable, then the closed-loop system (3.14) is asymptotically
stable for x, €K(S), since p(z) has one extra root at zero,b which is clearly

inside the unit circle.
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Example 3.1: Let system (3.1) be given by

01

x(k+1) = [_2 5 x(k) + u(k) , (3.16)

1

Wif_h open-loop eigenvalues 1+j and 1-j.

When constrained to the desired hyperplane, we would like the first

order equivalent system to have an eigenvalue at 0.5.

~ On the hyperplane s;x; + sox, = 0, we have that

Sy *

X (k+1) = — —x(k), | (3.17)
2
By assumption, s, = 1. Thus, if we choose s; = — 0.5, then the first order
equivalent system is given by
X (k+1) = 0.5 x, (k) , (3.18)

which has the desired eigenvalue at 0.5.

. We have thus designed the hyperplane to be
—05% +x=0. (3.19)
For simulation purposes, we let X\ = 0.5, the controller (3.8) is then
given by
u(k) = (2 — o.5(o.5)k+1)x1(k) + (—1.5 + (0.5)k+1)x2(k)k, C(3.20)
and the élosed—loop system by

0 1

x{le+1) = —0.5(0.5)<*1 0.5 + (0.5)*+! X

k) . (3.21)

Choose xo = [25 10]T. Clearly, xo#Ker ([—0.5 1]).
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VF_'igure 3.1 shows ‘that the hyperplane (3.19) is reached_astpﬁotically as
the time index k increases. Note that because of .computer word size
limitations, the hyperpl‘ane (3.19) appears td be reached in a ﬁﬁite number
of steps. Fig. 3.2 ,illustrétes the resulting phase plane plot of Xy zin,d Xg.
F iﬁally’,‘ Fig. 3.3 shows the time history of the co'nt}rol éffort given by eq.
(3.20).

We now ich.oos,e xé = [20° 10]7, XOEKe‘_r([—O.S 1)).
- ‘F'ig.ure 3.:4" Ihakes if_’evident that the 'representai-tive point x, slides on
“th_e ‘hfy"perplane —0.5%; + x5 =0 toward thé origiﬁ. Figure 3.5 shows that
the ‘":’tra;ject.ory of the closed-loop system stays on the Kernel of S, -

| S'=[-0.5 1] for all kEN. The control effort uy = uy is shown in Figure 3.6.

Example 3.2: Let system (3.1) now be given by

01 0 0 E =
X1 =] 00 1fx + |0]w - (3.22)
1—10 8 -3 1

with open-loop eigenvalues located at -5, 1 +j and 1 —j.
| ,Afgaiﬁ, W‘hen c_onstréihed to the desired hypefplane, we would like the

: : second o.rder equiffale.ﬁt system to have its two eigenvalues locate’d at 0.2 +

- j0.5 and 02 - jO.5. |

| On the desired hyperplane s;x; + soxy + x3 =0, we ;hé.ve, that the

equivalent second order system is given by



37

-~ 3134

T

) -2.19 4

-2.30

Fig. 3.1. Time history of 0, o(xy) = —2.5.
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Fig. 3.2. Phase-plane plot of x; and x,, xo&Ker(S).
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e T |y g, | ¥k S (323)
with t‘;hé ‘chara_ctﬁeri'.stic polynomial

p(z) = 3% + 502 + s e B ';(.3,;.24): -

vWe can easily show that if we choose s; = 0.29 and s2 = —0.4, then

* 0 1} * . o »
Xp41 = —0.29 0.4 Xy , R ,(3”2‘5)
has thve‘_desired eigénvalu_es at 0.2 + jO.5 and 0.2 - jO.5. Mo‘r‘eovei",__ bt‘he _
desired hyperplane is ﬁnalIy determined to be -
0.29%; — 0.4x, +%3 =0. o (3.26)
Agdiﬂ,'--fbr simulation purposeAs,v let X\ = 0.5, the controller (3.8) then becomes

=0+ 0.29(0.5) )x, (k) + (—8.20 — 0}'.4(0.5.)““);;2(1'('):. R

+ (3.4 + (0.5))x,(k) , : - (3.27)
and the closed-loop system is given by -
0 S 1 S 0 _
X = | 0 , o 1 x . (3.28)
| 0.29(0.95)1 —0.29 —0.4(0.95)%*1 0.4 +(0.95)%*!

With xp = [25 15 10]T, x,#Ker(S), § = [0.29 —0.4 1], Figuré 3.7 shows
that the system trajectory reaches the hyperplane (3.}26) asympt‘ot‘ically as

~ the time index k increases. Figures 3.8 ‘and 3.9 show the time history of

Xy, Xgy X3 20d u. -

3.2.1 Multi-input System Case
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moe 0 - xl" X = x2. +-~x3
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_ Fig. 3.8. Time history of Xy, Xg, Xg.
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Fig. 3.9. Control effort u,.

-We now consider the case When u €R™, 1e, when the discrete-time

dynamlcal system is described by
Xy = Axk + By, , xo = X, (3.29)
where xkEIR w€IR™, A and B are constant matrices, AE]R’1><rl and BER™™,

We will show in this subsection that the,results we obtained for single-
input systems can be extended to multi-input systems. Let the generalized

- Lyapunov function candidate V be given by

Vo) =oTdot),  (330)

where o(xk) is given by (3.3), except that SER™®,
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Theorem 3.3: If the pair (A,B) is completely controllable and the matrix
SEIR™® is chosen such that when the trajectory of the system is constrained
- to lie on Ker(S), the (n—m)* order equivalent system is asymptotically stable
" and det(SB) » 0 then the controller
u, = (SB) " AK*IS — SAlx , (3.31)
where A is an mxm real symmetric positive definite convergent matrix (see
| Appendix A for the definition of a convergent matrix), yields an
asymptotically stable closed-loop system whose ti'aj_ectory reaches the
hyperplane Ker(S) asymptotically whenever x,¢#Ker( )

Proof Using the same type of reasonlng as in the proof of Theorem 3. 2 we

can show tha.t

AV(x) = 0(x,) (A% — T)ofx,) (3:32)
 where I =1 is the nxn identity matrix. Clearly, if x; &Ker(S), i.e., o(xy) # O,
- then AV(x,) < 0 because At _Tis a negative definite symmetric matrix,
Vv keN If, “on the other hand, kaKer(S) then the (n—m)** order ec‘1u‘iivalent
system is asymptotlcally stable by assumption. B

| To show that the hyperplane o(xy) = 0 is reached asymptotlcally for all
x0¢Ker (S), we have that -

olisr) = Aoty ,
Whieh yields
alx) = ANEH26(x) O (333)

It is evident that if xo@Ker(S), then o{x,)—0 as k—co since o{xg) # 0
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Remark: It is evident that the controller given by equation (3.31) requires
the computation of the (k+1)ﬂvl power of the matrix A; however, if we

‘assume that A has distinct eigenvalues, it can be easily diagonalized, i.e.,r
A = NDN!, | (3.34)

where N is a nonsingular similarity transformatlon and D is a dlagona]

matrlx Whose nonzero entrles are the eigenvalues of A. Furthermore,
Af=ND*N', k=012.  (3.35)

where

DX — .  (3.36)

'Hence, it is not. difficult to compute the kR power of /\ in pr1nc1ple (see

| Appendix B).

-Example 3.3: Let us consider the discrete-time dynamical system given by

[0 1 00 [0 o
—56 1 1] 10

1= Lo 0 0 1]M T |o o (3:37)
0 010 9 01

»’Wi:th eigeﬁvalues, -1’, 1,5 a,nd>10.
- We would like the second order equlvalent system to have elgenvalues

atOland02
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When the trajectory of (3.37) is constrained to lie on Ker(S), we have

-
X
[311 S12 S13 S14| | X
_ ~ =0,
Sg1 Sg2 Sg3 S9q| |X3
Xy

therefore, we can determine any two variables in terms of the other two.

Expressing x, and x4 in terms of x; and x3, we get

{%] 1 [314521 T 511524 S14823 —513524} _[X'l} '
X4 S12894 — S14529 1511822 7512801 S13922 —S12823 | X3

and the second order equivalent system is given by

1. S14591 —S11524  S14523 —S13S94 ,
xp (k+1) | A A x; (k)
| = ' 3.38
x;(k+1) S1152 —S19891  S13522 —S12823 | |x;(k) (3-38)
A A ]

where A é 812524‘_514322. )

" If we are to place the eigenvalues of the second order equivalent system

at 0.1 and 0.2, the following choice of S will yieid such eigenvalues

1 1 1 0 :
5= |-132 0 —13 1" (3-39)
The equivalent system (3.38) becomes
*i » _1 —'1 * » .
X1 = f139 1.3 %k | - (340

- We note that with the above choice of S, SB = I, implies det(SB) = 1.
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Let
N O ‘
% PN AR WS
,then,vcontroller (3.31) is explicitly given by

| MA45 MN—7 NN -2 |
T 1390k 132 —1.3x§‘—10 Nk — 7.7 | X

substltutlng the above controller into (3. 37) ylelds the followmg closed-loop

' system
[ 0 1 0 0
M N —1 N
K= g g o 1
—1.320 132 —13\ M 413 j

Flgures 3. 10 3. 11 and 3.12 show the results of the dlscrete-tlme domaln

>31mulat10n when xo=[-121T, )\ = 0.5 and ), = 0.4.

AJthough controllers (3. 8) and (3.31) drive systems (3 1) and (3 29)
_toward the de31red hyperplanes asymptotlcally and in the d1rectlon of the
E or1g1n, they have the drawback that they are dependent on the tlme 1ndex k,
thus presentrng practlcal limitations when implemented on a »dlgvltal :
computer with finite Word size (which is the case in real life). This problem
is made evident by the fact that after a ﬁnlte number of 1teratlons >\k and
_ ‘the entrles of /\k can no longer be represented by a ﬁnlte word size computer

because they become very small numbers

We now introduce a controller which j is a Varlatlon of the one just

d1scussed but one . that can be easily 1mplemented on a finite word size
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’ . . 2 8 ® O ® o= =
=
Fig. 3.10. Time history of 0; and 0.

. o~ xi -2 Y-xa,‘.x-m

%1, %2, %3, x4

- v v v v v J
[ L s 1 ] s L » =

Fig. 3.11. Time history of states x,, x,, X3 and x,.
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ul,u2 x10l)

Fig. 3.12. Control efforts u, and U,.

digital computer.
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3.3. CONTROLLER leSIGN 1

We again consider a single-input liﬁear time invariant discrete-time
dynamical system described by (3.1), and assume that (A1) is true, ie., the
pair (A,B) in (3.1) is compléfely controllable.

Our goal here is to design an alternative controller that does not
depend explicitly on the time indefc k, and which yields a closed-loop system

whose c_haracteristics are similar to the one that resulted when controller

(3.8) was used.

- Theorem 4.4: If the matrix SEIR™® is chosen in accordance with

assumption (A2) and if the controller

u = Ao(xy) — é (sic1 +ajxi(k) , s =0, ' '(3°41’)

where AE(0,1), s; is the ith cofnponent of the 1xn matrix s and a; is the i*®
elemeﬁt of the last rdw of the A matrix in (3.2); is applied to system (3.2),
then the closed-loop system is asymptotically stable for all x,€IR® and the
hyperplane o(xy) = 0 is approached asymptotically for any initial condition
xo#Ker(S). | |

Proof: To prove the above theorem, we proceed in the same manner as in

the proof of Theorem 3.2.

;Letv the generalized Lyapunov function candidate be
V(xy) =} Oz(xk) ’

and
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AV(Xk) O (Xyeyy) — O (Xk)
o Now, 1t can be easily shown that v L
lek+1) = >\o-(‘xk) ;o : e = (3.42)
thus 7
CAV(x) = (M — 1) oz(xk) e (3 43)
: Agam, if xk¢Ker(S), i.e, o{x) # 0, then AV(xk) <0, because >\2 < 1. Thus
the closed-loop system is asymptotlcally stable for x, #Ker(S).

If on the other hand xEKer(S), that is, o(xy) =0, then the controller
glven by (3.41) becomes the equlvalent control uk, whlch when apphed to.
system (3. 2) results in- the closed-loop system given by (3. 14), which is
‘asymptotlcally stable, provided that S is chosen according to assumptlon
| '(Az) |
1 Flnally, lf the initial condition x, does not lie on the hyperplane'

- “o(xk) = 0 then the representative point of the closed-loop system approaches

such a hyperplane asymptotlcally as the time index k increases because |
| olx) = Neofx,) . e

~ We can see that o(x;)—0 as k—»oo, because A&(0,1), for all x0¢Ker(S)

If we now compare (3. 44) with (3.13) we notice that controller (3 8)

y1elds a closed-loop system ‘whose trajectory reaches the hyperplane

o(xk) =0 faster than When controller (3.41) is applied to the same system,'
-however, the latter does not depend on the tlme mdex k thus maklng it

: more amenable to 1mp1ement
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__ Example 3.4: Let us look at the same system we considered in Example

oor= [ - oo

- 3.1, i.e.,

R »7W1th open-loop elgenvalues located at 1 -I— j and 1 j-

Tt is straightforward to show that if we wish the first order equivalent
system constrained to the subspace Ker(S), S'=[s; 1], to have its eigenvalue
~ at 0.5, then s; = —5. |
~ Writing (3..41) in an explicit form, we get
(k) = (2 — 0.5N)x;(k) — (1.5 — Nxy(k), A€(0,1) . (3.45)
. The closed-loop system is

. 0 1
"(kﬂ) = =05\ A +0.5

(k). ‘. (3.46)

) F-igures 3.13, 3 14 and 3.15 show rhe results of the-_simiilation of system
vA (3 46) for >\ =0.5 and Xp = = [25 10]T Figure 3.13 illﬁstrates how - the
hyperplane —5x1 + x2 =0 is approached by the representatrve point.
Flgure 3.14 deplcts the progress of o(xy) towa.rds zero. Flnally, Flgure 3.15

shows the time history of the control effort.

i 3.3.1. Multi-input System Case

__‘.'Th,e'results obtained for the single-input case can now be extended to

the mulfiple-input‘ case.
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Fig.v3.13. Phase-plane plot of x; and xz.'
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Fig. 3.14. Time history of o(xy).
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3.04

2.94

uek> (xioly

Fig. 3.15. Control effort uy.

Let u €IR™ and define the generalized Lyapunov function candidate V
by

Vi) 2 Mdote), (5.30)
where o(x )EIRR™, and
o(x;) A Sxy | ' (3.3)
SEIR™™ is a constant matrix such that d_etv(SB) # 0.

Agaih, using Lyapunov’s second method for stability of discrete-time

dynamical systems we prove the following theorem.
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Theorem 3.5: Assurhe there is a controller uy such that

ofxper1) = Aofxy) o : - (347)
‘Whei'e‘ AER™® is a real symmetric poéitive definite bccimv‘ergent matrix.
Then'éuch a controller when applied to the system |

Xy = Axg + Buy, | B (3.29)
Wheré ¥ €R", u,IR™ A and B are constant matrices ofb éﬁpropriate
dimensions, yield's an asymptotically stable closed-loop system on Rn\Ker(S). ‘

Moreover, this controller is given by
. = (SB)"Y(AS — SA)x;, - (3.48)

provided that det(SB) # 0 and S is picked according to“assumption A2.

Proof: To show that the application of a controller with the above
: pfbpefties to system (3.29) yields a closed-loop asympﬁot’ically stable, it is
sufficient to show that AV(xy), the first forward difference of the Lyapunov

function candidate be less than zero. Specifically,

AV(xy) = 7 (Xie41)0(e41) — 07 ()0 ()
= Mhot) = "rdolr)
= M) (A —Tof)  (349)
01e-afiy, AZ—1_ <0, ie, A2— I, is negative definite. Now, for x;(géKer(S)
o(xi) # 0 which implies that AV(x,) < 0, V x, #Ker(S). " |

From (3.47),
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(% 11) =S¥y = SAxy + SBuy = ASx,

éssuming that det(SB) 0, we have
u, = (SB)"}(AS — SA) x, .
_ Thus, controller (3.48) yieids an asymptotically stable closed-loop
| ‘system for x, €IR™ \Ker(S). | |

Theorem 3.8: Assume now that system (3.29) is constrained to the
subspace Ker(S), then the (11——111)th order equivalent system is asymptotically

stable and the controller (3.48) asymptotically stabilizes (3.29) on Ker(S).

Proof: For x,EKer(S),
u = — (SB)'SAx, = u; , o (3.50)
because (SB)*ASx, = 0.

Therefore,

X1 = (I — B(SB)7'SJAx, = A%y , (381
for all xi(EKe;(S). .
' 'Bu‘t"according to assumption A2, S is chosen such that the (n—m)th
order equivqlent syétem is asymptotically stable. Thus, (329) is
aéy‘mptoti’cally stable on Ker(S) when we apply controller (3.48) to it.
Wé conclude from Theorems. 5 and 6 that conti'oliefr‘if ‘(3.48) ,

asymptotically stabilizes (3.29) on IR".
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Example 3.6: Let us again consider the discreté-time‘dyllamical system

010 0 o o
—5 6 1 1| |10 ,
X1 = 0 0 0 ll'xk+'0.0 ukb:fl R ‘(3f3«7) »
| 0.0 10 9 .'_0 1]

with open-loop _eigen\?alues located at -1, 1; 5 and '10.;
- "‘I.f,::a's in the case of Example 3.3, we are to place the eig_envalues of the
| second order equivalent system at 0.1 and 0.2, the followiﬁg ch'oiée of S will

yield such eigenvalues
1 1.1 0
S=1l 1320 13 1]
The sé'condl order eqﬁivalent system is again given by
‘ -1 1|,
Tkt1= 1132 1.3 [ %k
. For simplicity, let
We then have

~1.32\, 132 —13%\ —10 N\ —7.7[%k"

e = -

= Applic’atiOnb of vthe 'a.bove‘ controller to syétem (3.37) _yields -
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0 1 0 0
xl(-l-_l = 0 0 0 1 Xk o

One, can ﬁnd’that the eigenvalues ‘of above closed-loop system are
A -located at 01 0.2, N and \;. Hence it is asymptotically stable sincev
O ME(O,1) o | )
| For the pnrposes of slmula_tion,'let =[5 —1 2 1]T and Xl' = 0.5 and
Ao —_‘-"0.4‘. Fig. 3.16 shows that the surfaces 03(x) =0 and az(xk)'=0 ar'e‘
reached asymptotically. Figures 3.17 and 3.18 show the time hiStories_ of the

states and the _control effort, respectiVely.

3.4. CONTROLLER DESIGN 11§

: We now introduce a controller that enables the traJectory of the system'
. glven by equat1on (3.29) to reach the hyperplane o(xk) =0in a s1ngle stepv

and keeps 1t on it until the origin is reached

Theo'rvem 3. 7: If det(SB) # and S is chosen accordmg to assumptlon A2
"then the controller Fal 4
W = — (SB)7'SAx, , - (3.52)

yields an asyrnptotically stable closed—loop System When‘ applied. to system
) (3 29) and the hyperplanée o(xk) =0 is reached in one step for all x0¢Ker

and the traJectory X, shdes toward the orlgm thereafter
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’ s . 2 8 ® ® ®» =

Fig. 3.16. Time history of o;(x;) and oy(xy)-

- Soxl &=x@ Y -x3 x4

whox2, %3, 2

-
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-

" A v v Nl - 4
8 " - »n = L

Fig. 3.17. Time history of states X;, X5, X3 and x,.
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o-ul ¥-ut

ut.u2 (10l

Fig. 3.18. Time history of controls u; and u,.

Proof: Direct substitution of the controller (3.52) into system (3.29) yields a

closed-loop system with characteristic polynomial given by

p(z) = 22" ™ + cppm12” ™ .+ ez + )
= zmp*(z)', - (3.53)
where p(z) is the characteristic polynomial of the equivalent (n—m)St order
system, which by the hypothesis of the theorem, is asymptotically stable.
Therefore, p(z) contains m roots at zero and n-m roots located strictly inside

the unit circle. Hence, the closed-loop is asymptotically stable.

o ‘Now, for any initial condition x, outside the hyperplane o(xk) =0, i.e.,

xg€IR*\Ker(S), we have that when we apply the control uy = — (SB)'SAx,
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to system (3.29), we get
x; = [l — B(SB)'S]Ax, ,

v *butA

ofx;) = 8x; = S[I - B(SB)QIS]AXO

- =0.

Hence, 'xlEKer(S) means {;hat the hyperplane o(x) =0 is reached in "one step
when xdéﬁKer(S) and controller (3.52) is applied to (3.29). o

It is now easy to see that once the t'r'ajecto“ry xj of (3.29) reaches 't‘h'e
hyperplane o(x,) = .0, that controller (3.52) maintains it on it as it moves

toward the origin since the closed-loop system is asymptotically stable.

Example 3.6: Suppose now that system (3.29) is the same -‘aé‘ that
considered in Examples 3.3 and 3.5, ie., the system is given by equation
(3.37). The simulation i'belo“‘_r assumes that x = [5 —1 2 0]T. Figure 3.19
~ clearly shows that a(xk) =0 is reached in one step and that cOntroi (3.52)
keeps the trajectory of (3.37) on Ker(S) where S is given by eq. (3.39).
Figures 3.20 and 3.21 display the time histories of the étates and the control

effqrt,' respectively. |
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v v ™~ ¥ v — Y J
e . | 16 . i -» =

Fig. 3.19. Time history of 0;(x;) and op(xy).

as- o-xl G- Y-x3 x-x4

N v v v v Y 2 Q -
[ ‘ N iz s - » - =

Fig. 3.20. Time history of x,, X,, x; and x,.
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O =ul 8 =yp:

fdo 1

¢ ¢ s 2 % ® N =W =
e . :

Fig. 3.21. Control efforts u; and u,.

- 3.6. HYPERPLANE DESIGN

A natural question which arises when using controller (3.1) is: Howi
does one choose the components of S? In other words, how do we design the

hyperplane o{x) = 0?

3.5.1. Projections
The theory of projections offers an attractive way to design such a
hyperplane [17]. We first introduce the definition of a projection and

~ describe its properties [16].
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Definition: Given a decomposition of space Dinto subspaces P, and D,
such that for any x€D

X =X%; +X5; x;€D, x,€D, (3.54)
- the linear operator L that Iﬁaps x into x; is called a projectioh on D, along

2.5.1.1. Properties of projections
(i) " A linear operator L is a projection if and only if it is idempotent, i.e., if

L=L - (3.56)

(i) If Lis a projection on D, along D,, then IL is a projection on D,
" along D;. | -

.(iii) "If L is a projection on Range (L) along Ker(L), then I-L is a projection

on Ker(Li) aléng Range (L), where I is an identity matrix. |

We therefore have that if x€ Range (L), then

Lx =x | : o (357)
I—L)x=x—-Lx=x —x=0 | (3.58)

‘Moreover, |
rank(L) = trace(L) o | (3.59)

rank(l —L1) = n—rank(L) (3.60)
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Range(L) = Ker(I — L) _ (3.61)

Ker(L) = Range(I — L) (3.62)

- Claim [17]: B(SB)™'S and I — B(SB)~!S are projections.

Prp'o-f:
We have
[B(SB)~'S]* = B(SB) 'S B(SB)~!S = B(SB)"'S,
hence ‘B(SB)_1 is idempotent an(i therefore a projection. Moreover, B’(SB)fIS
projects IR on Range(B) along Ker(S), since |
| range[B(SB)™'S] = range(B) , (3.63)

assuming that B and (SB) are of full rank. Likewise,

Ker[B(SB)'S] = Ker(s) , (3.64)
assuming that B(SB)™ and S are of rull rank.
Now,
[I —B(SB)™!s]> =1 — B(SB)™!s,

thus, I — B(SB)™'S is a projection. Furthermore, I — B(SB)™'S projects IR®

on Ker(S) along Range(B).
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3.5.2. Application of Projections to Systems Constrained to Ker(S)

When the system
x(k+1) = Ax(k) + Bu(k), (3.65)

: x(k)E]Rn, u€IR™, A and B are constant matrices of appropriate dimenstions,

" is constrained to the subspace Ker(S), SER™, then

u(k) = — (SB)'SAx(k) , (3.66)
and the dynamics of (3.65) on Ker(S) are governed by
x(k-+1) = [I — B(SB)'S]Ax(k) ~(3.67)

Usin:g,‘t‘he results of the previous subsection, we note that I — B(SB)—IS maLps '
the c‘olumns of A on Ker(S). The order of system (3.65) has therefore been
reduced because x(k)EKei'(S), which is an (n—m)™ dimensional subspace,
since rank(I — B(SB)™!S) = n—rank(B(SB)!S) = n—m, which is spanned by
the éige‘nvectors Vlv, VoreesVnom: ‘

Before we proceed with the computation of the compénents of S, We will
‘study the relationship between the eigenvector matrix V = [v; v, .. vp_ ] of
[l — B(SB)"IS]A the input matrix B"an'd the projection L = B(SB)“}S along .

with the geﬁeralized inverses of V and B.

Theorem 3.8 [17]: The eigenvector matrix V of [[ —B(SB) !SJA is

independent of the columns of B, that is, range(V)Nrange(B) =:{0}, where 0

is the zero vector.
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Proof: The existence of (SB)™! implies that the columns of B are
independent of Ker(S). But, the columns of V are in Ker(S), as Ker(S) is

spanned by vy, vy, ..., vy, hence, ra.nge(V)ﬂrang{e(B) = 0.

O

Theorem 3.9 [17]: On the subspace Ker(8), the generalized inverses of the
input matrix B and the eigenvector matrix V of I — B(SB‘)“IS 'should satisfy

" the following relations

BgV =0 o S (3.68)
and

VEB =0 \ ) (3.69)
where B and V® are left generalized inverses of B and V, respectively, ‘i '

Proo’f: As shown before, range(B(SB)™'S) = range(B) and the columns of V

lie in Ker(B(SB)™'S) = Ker(S), thus with L = B(SB)™'S
LB:V]=B:0], . (3.70)

since the columns of B lie in the rangé space of L and the columns of V lie in

the null space of L.. Because of the fact that range(V)Mrange(B) = 0, the

inverse of ; B : V] ‘always exists, thus |
L=[Bi0][BIV]" ey

| S.in‘ce‘ B V] is ﬁn nxn -nonsingrllar ma,trix‘(assurrling.B‘ is Qf 'f1‘1‘lll rankL thén
{var1m5v1=1, . '.J.H@a@

Furthermore, it can be shown that
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B&
BV =11, o (313)
Ve | R
namely,
BE| B°B: B¢V I 0
[B:V] = : 0 I ’
. m—m
Ve VEB: VEV

as B® and V, are the left generalized inverses of B and V,‘ respectively.

Therefore, conditions (3.68)' and (3.69) are satisfied.

- We infer from (3.70) in the last theorem that
L =BBE¢, | (3.74)

subject to B8V =0, or we could opt to compute the inverse of B V] as in

(3.71).

 3.5.3. Computatibn of the Eigenvector Matrix V

. Although the knowledge of the eigenvector matrix V is presupposed in

the previous discussion, nothing has been said as to how to compute it.

When dealing with a linear-time invariant system like (3.65) it is well

known that if
u(k) = Gx(k) : R (3.75)

f'}len.
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(A + BG-)V. }.= VI | o (3.78)

.wherev G is an. mxn matrix chosen sueh. at tha\t.A + G .h-ta]s the dee_iape.de
eigenvalues specified by J [18].
- Rewriting '(3:'.76) we have

| -AV.’——VJ='BGVF | Y ¢

‘Whlch implies that the columns of AV VI are in the range of B proWded

: that the rank of G is m. As a consequence of thls we have tha.t [19]
o | AV-VI=BT L @as)
WhereT is an arbitrary mx.(n-f—m) matrix that prgvides iinea@: comb;ihet-iqns
}o‘f | the 'co'l:us of B in such a Way asvbto influenee f;he so.lut,ien V -end pm?i.de
A éartiaf control over the .n-m .eigenvecters of V Iﬁ addition, the 'colums of

V have to satisfy

Range(V)NRange(B) = {0} | | o ‘ (379)

354 Co?mp-:uAtat'ion oif the Matrix S.
We have now come to the point Where the prev1ous lengthy
deirelopment of projections is more than justified, name»ly,_ the ..comput,a;tiqn
of S using the theory of prOJectlons In what follows, two methods ‘1wilvl be

- discuissed [17].
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Method 1:

Let the matrix S satisfy

\\\'

—

SB =F ' : (3.80)
where F is an arbitrary mxm nonsingular matrix and
SV = 0 (3.81)

Clearly, requirement (3.81) is a direct consequence of the fact that we want

the columns of V to be in the null space of S.
| ‘Rercallivng that

L =B(SB)"'s =BB® (3.74)

then )
BF~!S = BBf G
Premultiplying (3.82) by B8, we get |
F's=B¢

thus, | |

S=FB¢ . (3.83)

3.5.5. Examples

Example 3.7: Suppose we want the system

01 O 0
x(k+1) = 00 1|x(k)+ [0}uk), (3.84)

—10 8 —3 1

with open-loop poles at -5, 1 4 j, to have closed-loop poles at 0.2 4 j0.5
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when constrained to the subspace Ker(S),
S=1[s, 55 4 - - (3:85)
In- other words, we want to find § such that it will assign. tﬁe_~
eigenvalues specified by J to [I — B(SB)"!S]A. according to (3.76).

~ The matrix J is given by

N O |
where A = 0.2 + j0.5 and X, = 0.2 — j0.5. | |
Let |
T=[1 —1], o (3.87)
then Wrifi‘ng, (378) in an éxplicit form we gét |

Va1 — NVi1 Vag — NgVig.
_ Va1 — ,>\1V21‘ Vag = NgVay .
—10vy; + 8vyy — (3 + N)vay —10vy, + 8vyy — (3 + Ap)vs, |

0 0
=10 0 (3.88)
1 -1
Let
dy =N + 3\ — 8\ +10, | (3.89)
dy =N + 302 — 8\, + 10, | (3.90)

then
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—1/d; 1/d, =
V= |=-XN\/d X/d, o (3.91).
- >‘12/d1 >‘22/(12

A systematic way of ﬁnding B& which always satisfies the constraint BV =0
is by forming the matrix B : V] and computing its inverse, sincé B is equal

to the first m rows of B V]™. Proceding in this manner, we find that

o —1/d,  1/d
B VI=|0 —X\/d Dy/d (3:92)
.

—>\12/d1; '>‘22/d2
In this particular case, m = 1, which means that we only need the first row
of [B V]™l. Using the method of cofactors we get

d1d2 d1d2 '

det[B : V] =

andthe first row of the adjoint of [B : V] is found to be

Ay — AN A= A2 N —
| d1d2 d1d2 . dle |

The generalized left inverse of B is then givén by

e 1 [xfo—xgxl A2 — 22 xl_xz.] el

- j/dydy d,d, d,d, - dyd,
= [= i\ - MA) =i =) =i =) -

Substituting the values of A and ), into the above equation, we obtain
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| B® = [0.29 —.-0.4 1] - (3.93)
Tet o
F=v#0 ' | (3.94)
then |
S =[0.29 0.4 1] o (3.95)

Method 2: Noting that the columns of V are in the null space of S it

.follows that
s=TIvl o (3.96)

where V‘L is the annihilator of V, namely, Vv = o, and T'is a nonsmgular

matrlx chosen such that |

SB=F=IVB (3.97)
N , ,

I =F(vB)™ | (3.98)
Aga.ln, det(VlB) # 0 since Range(V)Range(B) = {0}. Substltutlng (3.98)
- into (3.96) we get

S = F(vB) V! - (3.99)

It is easy to show that (VlB) ylis a generalized left inverse of B and

that

(VJB)"IViV =BV =0. | (3.100)
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Example 3.8: Using method 2 to design S for the system used in the

previous example without changing the requirements, and letting I' = 1, we

get
SV =0 | ~(3.101)
explicitly
—’Ls ——>-\l-s ——{\is =0
d 4 7 4
1 Ap >\22
d—281+d—282+d—283=0
or ... . .
—s; —Nsp—Ns; =0  (3.102a)
s Ny F Ms; =0 (3.102b)

let s; = 1, then solving the system of linear equations (3.102) yields |

M= N\ h |
Sz=m=—(xl+>2)
81 = MAg

but A\ = Xy = % +j -%,'thus

Sy =0.29, FS2=‘.'"0.4, _
therefore,

S=[0.29 —0.4 1] - ‘ (3.»103)
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'3.6. CONCLUSIONS

, Bbrrowin'g ideas from the variable structure control -of c§nti"nuous-t»i’me.
d’ynaxhié‘al systems we were able to design several controllers which drove
the trajectory of a linear time-invariant discrete-time d&namical system to a
linear hyperplane Ker(S), where S was chosen such that when the trajectb;y
of the system in question Was constrainted to lie on it, ’i‘t‘ possessed certain
desirable properties, e.g., asymptotic stability. Any of the controllers that
‘we rdiscussed enabled the system to reach thé hyperplane Ker(S) at least
l_ a;symp-totric‘a.lly, though the level of complexity decreased as new alternatives
were introduced.

To solve the problem of efficiently d’esigning‘ the hyperplane Ker(S), a
projection theoretic approach [17] was introduced and illustrated through
examples.

'It‘w‘as‘ appérent from the outset that the models Whi‘chv described the
kind of systems that -We dealt with in this chapter did not possess any
uncertainties. "Hence,‘ the question of how to drive onto a hyperplaﬁé a
~ discrete-time dynamical system which haé uncertain elements still remains to

‘be answered.
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Sl CHAPTER IV
ROBUST STATE FEEDBACK STABILIZATION OF DISCRETE-
TIME UNCERTAIN DYNAMICAL SYSTEMS

4.1. INTRODUCTION AND PROBLEM STATEMENT

~The problem of controlhng discrete-time dynamical systems has a long
h1story and has been the subject of research activity for many years (see e.g.
' 3], [24] ‘and {10]). For an account on the history and progress of sampled-

data systems see Jury [25]

In the last few years, a considerable amount of work has been done in
the ﬁeld of controlling continuous-time uncertain dynamlcal systems

The approach used by many researchers has been of d‘eterministic
natuce [21,7,23,34], i.e., rather than defining the uncertainties in
probablhstlc terms, they are defined by known compact sets in which the

values of the uncertainties lie.
Recently, Manela [20], and Corless and, Manela [23] have proposed

| possible solutions to this problem as it applies to discrete-time dynamic

systems described by difference equations.

In this chapter we consider the problem of robustly stabilizing a elass of
discrete-time uncertain dynamical systems where the nomlnal system is

linear and the uncertainty does not depend on the control 1nput
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The approach used in the following considerations is of deterministic"
nature, that is, no knowledge of the statistical behavior of the uncertainty is

assumed, except its maximum size. -
We shall consider linear discrete-time dynamical systems described by
the following equation

Xes1 = (A + DA())x +Buy +Evi, %o =x(ko) (4.1

’Whe_ré x€R?, v, €IR™, IA and B are constant matrices Qf ,avppropriate
dimeﬁéions, and AA() R! —IR™® is a known and continuous function,
E€IR™1 is a known constaﬁt disturbance distribution matrix.

The uncertainties are determined by the variables r(*) and v(-), whose
béhéﬁor we 'do‘ not know at any given time in-dex kez ‘(Z is the set of
integéfs). It is assumed, however, that they are Lebesgue measurable and
_rthat they‘ are const;ained to known compact uncer{;ainty bounding sets,
samely; - "

r,€PCR! and v EVCIRY.

Furthermore, we assume the following ‘

Assumption 1: There exists a matrix function G(*): IR!—IR™® which is

continuous on IR/, and a constant matrix HER™Y such that

AA(ry) = BG(ry) V r €F - - (4.2)

"E=BH O (43)

that is, AA(") and E satisfy the matching conditions [21].



77

Assumption 2: The nominal system
X1 = Axy + By - (4.4)
. 1s stabilizable.
Assumption 3: The matrix B has rank m.
Making use of Assumption 1, we obtain
e(k,x;) = G(ry)xy + Hvy - (4.5.)
therefore (4.1) can be rewritten in the form
X1 = Axy + Bluy + e(k,xy)) . (4.6)
‘Without loss of generality we assume that the ma.trix A in (4.6) is
stable, i.e., its spectral radius p(A) is strictly less than ome, where

p(A) = max{[\l: X is an eigenvalue of A} (otherwise, by Assumption 2 there

exists a constant feedback matrix KEIR™® such that A + BK is stable).

From (4.5) we have

lle(k,xy )1l = 1IG(r)x. + Hvi Il < max {IIG(r) )11} 1 + mag/’c{”Hv#”} .
v =

nefl
Let
£(kx) = :I;a;{nc(rk)u}-lbgkn + max{lHv 1}, (4.7)
then
He(k,x )l < &(k,x) - (4.8)

Define |
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Elkxy) & & + &l
- where’

AN HE v, [
&o 3123/‘{ Yk},

[T max{”G rk)“}
rkEg

and'“'” refers to the Euclidean norm of abvector.

If M 1s a matrlx, then IIMII denotes the correspondmg (induced) norm. _

Ml = ()\max(MTM))/z, where Ap,.(*) denotes the largest exgenvalues of a
matrix. |
The uncertainty e(k,x;) as defined above is known in the literature as

cone bounded [23].

4.2. DERIVATION OF A SATURATION TYPE OF CONTROLLER

- Since the free nominal system is asymptotically stable, given a real,
symmetrlc, positive definite (r s.p.d.) matrix Q, there exists a r.s. P d matrix

P whlch umquely solves the discrete Lyapunov matrlx equa.tlon
ATPA—P%f'Q, N | o (4.9)
and
V(Xk) _ X Px, = <xp,Px> 2 lix |l | (4.10)
‘isia‘Lyapu.nov function for xy = Axy. :

© ' Clearly, V(*): R*>IR,.
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Theorem 4.1: Given a discrete-time dynamical system modeled by (4.6)-
(4.8). Assume that the nommal system is asymptotlcally stab]e CQ;lSlder
the control law |
R“IBTPAxk
 IBTPAxy g T
0, if x€Ker(BTPA)  (4.11b)

’)’(k,xk) ) if % #Ker(BTPA) oo (4112)
ue=vy = | s
| v where

R =B"PB, IB™PAxllp = (x] fAPBR™'BTPAx O

| fy(k’xk) = >‘1:lﬁa.-x(R)g(k’xk) i
” Then the first forward difference of the Lyapunov functlon (4. 10) satisfies the -

mequahtles

e |- >‘min(Q)I'ka”2 +_4,)‘max(R)'§2(k’xk) ', A lf Xk¢_Ke‘r(BTPA)‘.-
BV S @l P 40 (R (%), i xEKer(BTPA) .

Proof The first ferward difference of the 'Lyapuﬁov_ fun'ctien,is‘giveni by
AV(xe) = V{xes1) — Vixy)-
| Usmg equa.tlons (4.6), (4. 9) and (4. 10), and notmg that Xpi1 depends
explicitly on uy and e(k,xk), we have ‘ '
| AV(xk,uk,e'(k,xk)) = —x7 Qx, + 2uBTPAx, + 2eT(k,xi()BTPAxk :
+ 2uTBTPBe(k,x;) + uTBTPBu,

+eT(kx)B™PBe(kx) . (4.12)

thice ‘that the first, second and fifth terms in- the -above. expression
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»cor‘respond_ to the first forﬁard difference of the Lyapunov funétion of the
' ﬁomii}al 'systém (4.4);”we therefore let B
AVN(}tk,uk) Ayt Qx]; + 20 BTPAx, + v BTPBuy, | (4.13)
" ﬁﬁoﬁ subétiﬁutiqn of eﬁuatié.n (4.11a) into'eqﬁatioﬁ (4.12) we g’et‘: ,. -
AV (speioxy)) 2 AV(xgupe(lxy)

xp ATPBR™'BTPAx,
IBTPAx ;-

= — %7 Qxy — (k%)
x, ATPBR"'Re,

“alcn)
”:BT AXk”R-—l ’

| +.2eT(k,xk)BTPAxk — 2

ATPBR IRR™ 1BTPAXk
IBTP Ax, [12-,

Flix)
+eT(k)Xk)Re(k,’xk‘) _ . | (4’,14). |

Héncé )
| AV-*(xk, (k ,xk)) — xTQx, — 2||BTPAxk||R-ry( ,xk) +2¢™(k ,xk)RR;lBTPAxk

| ATPBR IRe(k,xy) .
—2 v Xy )+ ,x
- IBTPAx I .( fd ”2 “)

+ eT(kx )Re(kxy) . - ‘(4.15)

- We now observe that
eT(k,xk)RR_lBTPAxk < ||eT(k,xk)RR',‘1BTPAxk|'| .

Mo‘r,eb,ver, ‘we can represent the ma.t‘rix R=RT>0as R= W_TW, where
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| WE]R”D(_m is nonsingular, because R is r.s.p.d. Thus
RR—-I — WT(wT)—l ,
and
eT(k;x)RRBTPAx, < lleT(k,x)WT(WT)BTPAx, |l ,
< IWe(k,x )l IIWT)"1BTPAX I,

< le(kxy)llg 1IBTPAX M. (4.16)
Using the above observation we find that AV(x,e(k,x,)) becomes

AV*(xk,e(k,xk)) < —x7 ng — zIIBTPvAkaﬁ-n(k,xk)’ + 2|IBTPAxkIIR_II;Ie(k,xk):I'-IR
} v2 e (k%) g v(k,x) + Y(k,xy) + | l Ie(k,xk’).llﬁ (4.17)
If‘V‘We’ observe further that
le(lexy) ly < AYZ(R)le(loll,  (4a18)
then
AV*(xk,é(k,xk)) < — %7 Qxy — 2|lBTPAxk”R—r7(k,xk)
+ 21IBTPAx, Il .xl}/ai( R)lle(le,xi) 1l + 2NHE (R)le(k,x3) (ke x)
+ P + Aman(R) le(x ) I | (4.19)
vFrom»equation (48) we see that the norm of .e»(k,xk) is bounded from above

by €&(k,x). In addition- by assumptlon 7( ,xk) AL/2 Y(R)E(k,xy), therefofe

‘ equation (4.19) simplifies to the following one

AV (pelloxy) < — xEQx, + D (R)(xy) | if IBTPAx s 0. (4.20)
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‘Lastly, it is well known (see [41], pp. 129) that when Q is symmetric
positive definite, then xQxy > Mpin(Q)/ill?, Npin(Q) > 0. Hence if x is

not in the null space of BTPA, we find that

Av*(xk’e(k’xm)) S - >‘mm(Q)”xk“2 + 4 >‘ma.x(R)é.z(k’xk). . (4°31) .

‘To complete the ‘proof, we mnote that if ||BTPAxk||§-1 =0 or
equiﬁalenﬂy, XkEK‘er(BTPYA) then u, =0 and |
AV (. uy,e(k,x,)) = — xl}‘Qxl; +‘ eT(k,xk)]'BTPBé(k,xk). | (4.22)'
Again, uSiné the definition R =BTPB and the fact that
* Apin(M) Iy [P le;erk < MMt [ for a r.s.p.d. matrix' M, [41] we
obtain | !
| AV*(xk,e(k,xk)) < - Xmin(Q)”kuP + Apax(R) lle(le,x, ) 1P . | (4.23)
Substituting (4.8) into equation (4.23) we get |
AV reeln) € @bl 4 (R, (420)
whenever ‘”.‘BTPA.‘)(k“R.—l =0, HencevTheoremv 4.1 is proved.

n

~The following Proposition is concerned with some minimization

properties of the controller (4.11).

Proposition 4.1: The controller given by (4.11a) minimizes (4.13) subjectv

to the constraint
uZBTPBu, = Y(kxy) ,  (4.25)

whenever IIBTPAxk”R-1 # 0.
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Proof: We first form the Lagrangian

Q(uk,u;xk) = AVN(Xk,llk) -+ I/(UEBTPBllk — Wz(k,Xk)) y VER .

The first-order necessary conditions for an extremum are [22]
' Vqu (u,V5xy) = 0
and -
VA (u,t5x) =0,
in other words, |
Vukﬂv(uk,ugx'k) = 2BTPAx, 4 2BTPBu, + 2I/BTPBuk =0,

which implies that

) (BTPB)'BTPAx,
Uy = — .
1+4v

Likewise,
VA (u,v5%) = ufBTPBy, — ¥ (k%) =0 ,
which results in equation (4.25).

Thus, the following relation holds

(4.26)

(4.27)

(4.28)

(4.29)

xd ATPB(BTPB) 'B"PAx,  IIB"PA% g

u "BTPBuy = (k) =

We therefore have

- If we use the negative of the square root of (1+ )% in (4.29), ie., ’

(1+v) (1 +v)?
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. (BTPB)"'BTPAx,
1, =
k I IBTPAXk I I(B’IPB)—I

YWkxy) 5 if BTPAxllgmpgs # 0 (4.30)

then we find that, although the constraint equation (4.25) is satisfied,
AVN(xk'u];) does not achieve a minimum. On the other hand, utilizing the
positive of the square root of (1 + 2)? in equation (4.29), yields

. — (BTPB)'BTPAx,
u =
* IBTPAx llgrpp

YWkxi) 5 if IBTPAxllgrpgy+ # 0  (4.31)

and does indeed result in an extremum for AVy(xy,u,) while (4.25) is
satisfied at the same time. Hence, u, given by equation (4.31) satisfies the

first order necessary conditions for a minimum.

We néw show that'(4.31) also satisfies the second order sufficient
cbnditions ([22], pp. 306), namely, that the matrix L(uI:) = F(u;)-—i— UFH(u;)
is positive definite on M = {v: Vh(u, )y = 0}, where F(u;) and H(u;) are
the Heséians of AVy(ugxy,) and ﬁEBTPBuk —Wz(k,xk), respecfively, with
respect to u, and evéluated at u]:, and Vh(u;) is the gradient of
ulBTPBuy, — Y*(k,x,) evaluated at u,.

Specifically,

BTPAx,
T T
IBTP sy grrpgy+

Vo, (0 BTPBuy, — 72(kx); = 2w . (4.32)

In other WOI‘dS,'
- M = Ker(xTATPB). o - (4.33)

Now 5
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(uk) = BTPB + uBTPB (1 + V)BTPB o (a38)
Clearly, (uk) is posﬂnve definite everywhere if 1 4+ v >0, since BTPB is
'p'osfitive definite on IR™. Moreover, B PB is positive deﬁnlte on. M because
MCIRm But 1+ v >0 implies that we must choose the posﬂnve of the
o square root of ( + V) | Therefore, u, given by equation (4 31) is a strict

Iocal mlmmum of AVN(uk,xk) subject to uy BTPBuk = ’yz(k,xk) Notlcmg

further that R = BTPB then equation (4. 31) becomes

o R B PAN  it IBTPARL o
0, = — X: i 1B Xy o — ,
T B PAllp R T R

which 1s the same-asvequetion (4.11a). -

4 3 DETERMINATION OF STABILITY REGION

: We again consider the class of dlscrete-tlme dynamlcal systems
descnbed by (4.6) with uncertamty e(k,x,) which is cone bounded by €(k xk)
" defined by

Elkx,) & £o+slnxkll o um

where 60' and £ are given by

Eo max{”Hvk”} | - o o  (4.36)
,'.§1=ﬁ1a><{”G(rk)”}-' | | o (a3T)
- onel ‘ S '

We first analyze the case when x#Ker(BTPA).
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Substltutmg equa.tlon (4. 35) into equatlon (4 31), we get

AV’ (xk,e( %)) < — xm(Q)kall2 + 4 xmax(R)[ﬁo + 26,6, Ik I+ Efllxk 2.
Rearranging the terms in the above equation yields | |
AV (xelkon) < (4 xma,x(R)sl Danl @ +8 xmax(R)soelnxkn

+ 4 BV | (4;38)
Let | | |

Nain(@)

A
75 Dl®)

(4.39)
then . | : |
| *Av*(.xk,e(k,xk» < OanRE — mnkuP + 26efalbll + 65 (440 |

- In order for the right hand side of equatlon (4 40) to be negatlve on .

some reglon of R", it is necessary that &< \/_
1

~Proposition 4.2: If ¢ < \/B, then AV*(xk',e(k,xk)) is Iie'gative definite on
 the region | v |
€o.

ﬂl T (4.41)

||xk|| >0

Proof:- From equatlon (4.40) we have that AV (xse(k ,xk)) is negatlve, R
deﬁmte on some region if &§ < \/B To find the region, we proceed as
'follows (assummg that &, < \/,E)

o If the rlght side of equation (4.40) is to be negatlve, then
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(62 — Bl P + 26,6, I 1l 4 €2 < 0
or equivalently,
— Bl I + (€, + &k 1) <0 .
. Thus
BlixIP — (& + &1k )2 >0,

‘which implies that

Bl 1P > (& + &Ik, 1),
or

VB gl > & + & lx, Il .

Therefore, llx Il > ——go———.

VB -

If we define

€o

L —— 4.41
Mo \/E —¢, ( )

then AV*(xk,e(k,xk)) is not negative definite for x,€B(0,7,), where
B(0,m9) = {xy : Il ll <17y} denotes the 7y-ball about x = 0.
We now consider the case when x,EKer(BTPA). Proceeding in a similar

manner as in the case when x; & Ker(BTPA), we have

AV*(Xk’e(k’xk)) <= >‘min(Q)“Xk“2 + >\max(R)(€0 + ‘i:lllxk“)2 ’ xkEKer(BTPA) .

Deﬁne
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>\min(Q)

oS ®

then

AV*(Xk’e(k,xk)) S >\max(R)[_IBIIIXk”z + (50 + El”xk”)Z] -

Clearly, the region of IR® where AV*(xk,e(k‘,xk)) is negative is

2 <
e Ml > ————, if & < V@ .
R

Let 7, be defined by

VB - &

(4.42)

 (4.43)

(4.44)

| (4.45)

\ then noting that /' = 43 enables us to conclude that 7y > 7](',, which implies

that w.henever xkEKer(BTPA), the region where AV*(xk,e(k,xk-)) is ne'ga,tive‘ is

largefi than that when xk¢Ker(BTPA). ‘This illustrated in Figure 4.1, where

¢ < VB.



e

- AV® > 0, x, € ker (BTPA)

» v F igure 4.1. Illustrétion of Prdpoéitioﬁ 4.2,

_ »Figureb 4.2 further illus'prates the behavior of AV*(Xk,e(k,xk)) (61 < \/E)

~AV (rellny) >

x; € ker (BTPA)

)\  | R)EZ = Xy ¢ kér (BTPA) .
- Do (BR) &

-

x| |

Figure 4.2. Estimates of - AV
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Theorem 4.2. Consider ‘the linear discrete-time uncertain dynamical

, éystem |

Xp+1 = Axy + B(uk =+ e(k’xk)) y X(ko) =Xo, - (4'46)
With‘» ébntrol
RBTPAx, o o
— ' kx) , if x #Ker(BTPA
%= o, _‘ if x,EKer(BTPA) (4.47)

 where kyx) = N/2(R)E(k,x,), satisfying Assumptions ('1)-(3)’, with A a
‘convergent matrix and &.< VB. It x(*) : [kgkq]—IR", x(ko) =%y is a

solution .of equation (4.46), then

ol < s = I Il < d(s), ¥ k€lkok,y]

>‘max(P) ' .f > : : |
aalP) 0T |

d(s) = | o (448)

v >‘max(P) f < o |
. ~ v Mo » U 85179 . - o )
: >‘m,in(P) e T ° b

where

‘Whenever % #Ker(BTPA), and

A

'\/ S B) s , if s> 1
T .

v >\m1n(P) v770 3 lf S S 770

d'(s) = 1 (4.49)

‘whenever x; EKer(BTPA).



91

Proof: Since the "free” nominal system x,,; = Ax, is asymptotically stable,
then given a r.s.p.d. matrix Q, there exists a r.s.p.d. matrix P which u,niqu-ely

- solves the discrete Lyapunov equation

ATPA —P=—-Q |  (4.50)
v&%i’th \Y% (xk) = ngxk a Lyapunov function for Xy 1 = Axp. i
| - Using the above Lyapunov function candidate in equation (4.46) aldng
with the cone bounded uncertainty assumption, we obtained equations (4.31)
and (4.34). |
Once again, utilizing the - well-known fact that

Amin(P) eI < x TPy < Mo (P [, define

on(lbel) & 0 (PY b lP | : (‘4.51)'

oyl Il & x_max(é)uxkll? : - (4.52)
We now consider the cé.sé where x, #Ker(BTPA). Suppose lx,l! S-s and
s> No- | | |
Let
d(s) & (o o0y) (s) , (4.53)

then from equations (4.51) and (4.52) we have

IIPW A |
= \/ kmin((P)) o o (45
Clearly, ci(s) > s. | : |

Now,
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o (46) = o) 2 570 |
* But for the time index kE[kO, 1] and 1n1tlal condltlon xOEIRn\B (0,74),
_AV (xk, (k,xi)) is negative definite, therefore

| an(d(s)) > xo Pxg > %, Pxye > al(”Xk”)-v’ | e (4.55)
| thus, | | |

I ll <d(s) v i{E[ko,kl] ,

With'd(s) given by equationi (4.54), where B_(Om refers to the closed 74-ball
about x = 0. -

Slmllarly, for xkEKer(BTPA) we replace 7, by 770 and proceed in the

‘same fashlon as above.
- N_ote that b ll remains‘bounded from above by d(s) a-nd from below by |
Mo or 77(;- | | v
, Suppose ﬁow that Ikkyll < s but s 'S No- .A'ssuming xkgéKer(BTPAj; let
(d(s) £ an(no) - (4.56)
then»frqm‘ equations (4.51) and (4.52) we -obtain

Amax(P)

d(s) = ‘ ‘——‘—_}\min(P) 7o

(57)
Again, it is easy to see.that d(s) > n,.

From equation (4.56) and the fact that the representativevpv‘oint cannot

leave the ball B(0,7,) whenever x,€B(0,7,), we conclude the following

oq(d(s)) = aa(no) > X];I‘ka Z%(“Xk”) "

or



93

Xmin(P)dz(s) Z >‘mii'ii(]-:))”xl.(”2 .
TherefOre,
b I < d(s) V k€lkg,ky]
with d(s) given by equation (4.57).
For the éase when xkEKer(BTPA), we replace 7, by 77(", and follow the
same reasoning as above. | |
0
Theorem 4.3: Consider the system given by (4.46) with state feedback
control (4.47 ) satisfying Assumptions (1)-(3), with A a converg‘enf, matrix and
€1< \/B If x(*): [kg,00)—IR", x(ko) =%q, is a solution of (4.46) with .
theoll <'s, then for given d> (a7 loay) (1g), ke ll < dVk > ko + K(E,s)
where | '
o, it s <7 |
K(d,s) = - (4.58)

1 az(s) — (7o)
0s(7o)

3. if S>_7-7-0

where ” IR—Nis the ceiling function, i.e., ifbg(:s) = 3.2, then [32] =4,
\'Iand Nis the set of natural numbers. If xk¢Ker(BTPA), then

Iyl = 4 X (R — E0)IbiIP — 4 M) (65 + 2606l ) (459)
and

7o = (05™00y) (d) . )
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Where o5(llx;|l) is the negative of the upper bound of AV*(xk,e(k,xk)).

Proof:  Consider al(a) > dy(no)- By (60), a(ng) =al(a), thus
ay(ng) > ap(mg). Since (') is continuous and strictly increasing, then

Mo > M- This is illustrated in figure 4.3.

Iy ' a, O O3

4@ |- A
(o) |

]
[}
38
[)
1 ]
Y 4
-+ ¥

i
+ ——
-+

o ;io\ 5 o kau
ay 10 oy (7o) _

Figure 4.3. Functions used in the proof of Theorem 4.3.

Now, if.s < 7, then llkyll < 7y; therefore, from the results of the previous

Theorem, we conclude that
Il < d, ¥ k€[kg,00) = K(d,s) =0 .

We next look at the case when s > n,. Suppoée that

Ik Il > 79,V k€[kg ko + K(d,s)] | (4.61)
_ a(s) — ay(7,
If K(d,s) = 2(5) — 1(7o) , then because of equations (4.51), (4.52) we
_ o org(Mo)

have
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where -

kn=ko+K(ds). - (462
But,
ka) VXO) + 2 AV(Xx) ’
i= ko

thus

(lek ||)<V(x0)+ 2 AV( )
_ko

<012(ux u)_ 5 oIl
l"ko
since  oglhll) >0 and  AV(x,) s—az(g&in)_ for bl >, Also,

a;,,(l-bqu)>oz3(ﬁo—) >0,  and ol <s therefore

kn—1

oy (It 1) < onfs) — 5}_2 0‘3(770) Hence

ol 1) < 0ufs) = 04 (g — o) = uls) — K(@s)ag(io)

o oals) = ()

< az(s) 3(00) (770) .

: (S) - al(flo)
0‘3(770)‘

IfWQ observe -that >0, af3(170) > 0 for s > 170 and [f] Z,f, for -

>0, then



96

oy I < anfs) — o) | 2Ll |
ST  '_ L 0‘3(710) ' o

whrch 1mphes ”xk ” < 7y, which contradlcts suphosﬂnon (4 61) Therefore,v
‘there is a k;€[kq,ko + K(d,s)] such that Iy, < 7. From equat:on (4. 60) we
mfer' that d > 7o- Hence, ”?‘k;” < d.‘ As a consequence of f(.he‘ prev1ous
fheerem, we have | | | | | S |

Ik ll<dVk >k,
'and_.cohseduently, | | |

lixJl < AV k > kg + K(d.s) '

Notice that if xkEKer(B PA) then we replace 770 by 770, No. by 770, d by d K : :

- by K and proceed exactly in the same fashlon
. o
| Theorem 4.4: Consider system given by (4.46) With state feedback control
(4. 47) satlsfylng Assumptlons (1) (3), with A a convergent matrlx, & < VB

and {0 = 0. If x( ): [ko,o<>)—>]R’1 (ko) =X is a solutlon of (4. 46) then the

: orlgln of (46) is unlformly asymptotlcally stable in the large
.',iPrOOf: SuppOse xkéKer(BTP'A)v, then usingv the ' LYapu’rioV function
candidate | |

V() =,kaka', o - (4.63)

Where P is the unique solution of equation (4 9) for a- given r.s. s.p- d matrlx Q, _

we. found that
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AV Gtellxg) < — han(@lbglP 4 4 Mmax Rk x,)
o < Mainl @b I 4 N (R)EH B,

SR (- ED)lglP (484)
where R = BTPB. |
Let 7 |

(Il A 4 rax®)O— DI, (ass)
then for ‘,61‘<_\/_ , a, is a strictly increasing function, and

AV (relicn)) < — oyl | |

It xkEKer(B'TPA), then from equation (4.34)
AV (xye(kxy) < — >\min(Q')“Xk”z + >‘max(R)§2(k;xk)
< = in( @)l 1P + o (R)E? ey 2
<~ adR)F — €2)llx P (4.66)
Let
ol l) 2 0n®) (F — DI P . (a7)

Again, if & < \/E, then as in the case when xk¢Ker(BTPA), we conclude
that the origin of the system given by (4.46) is uniformly ésymptotically

stable in the large.
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4.4. EXAMPLE

We will now illustrate the level of robustness that we can achieve with

._the controller derived in this Chapter. Consider the discrete-time dynamical

system
Xee1 = [A + AA(r)Jx(k) + Buy,
‘where |
0 1
A= 104 05]
0
B=1,|

00
Aa() = |, 1] e s
with Irk>| S' 0.1.
. We nofe that the‘ uncertainty matrix AA(r,) is matched, i.e.,
MG =BG(),
‘where | |
Glr) =t 1]

Since A is an asymptotically stable matrix with poles located at 0.93
~ and -0.43, we can always find a r.s.p.d. matrix P which uniquely solves
equation (4.9) for a given r;s.‘p.d. matrix Q. Let Q =I,, then
2.247 2.597
= |2.597 7.792|"

The uncertainty e(k,x;) is given by
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L (k) = r[l 1fx
Clearly
”e(k,xk)” < e M1 10 I Il = | \/_”xk” < 0. 1\/_||xk|| =0. 1414”ka
,Which 1mphes that & = 0 and &, = 0. 1414. Now

R =BTPB =7.792,

gz =L . 2minlQ) 1 L o179,
| 2 Amae(R) 2 7.792 |

The condition for ultimate boundedness is satisfied since

ﬁl/z >¢& = (ﬂl)l/2 > §1 Moreover, £, =0 1mp11es that the system is
uniformly asymptotically stable.
For simulation purposes we Ilet ry =0.1. Under this condition,

0

0.5 0 6} is unstable with poles located at 1.07 and -0.45.. :

A +,AA(fk)n= [

The initial conditions are x;(0) = 2 and x,(0) = 1 and the controller is

given by

~0.14145gn [3.117x, (k) + 6.494x,(K)] b Il , for x,¢Ker[3.117 6.494]

T o, for xEKer[3.117 , 6.494]

Figures 4.4 and 4.5 show the time histories of the state ir'a;riables x;(k) -
and Xz(k) of the unforced (free) and controlled uncertam systems.  Fi lgure 4.6
displays the time history of the control action applied to the uncertain

system.
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It is clear from Figure 4.4 and 4.5 that {the free uncertain Systein is
.unstab‘l_e and that the above controller yields an asymptotically stable
syétem when the uncertainty is constant. However, we point out that the
nominal sjrstem could have been asymptotically stabilized using linear state
feedback and that the above controller would have then served to robustly

maintain the desired level of stability.

4.5. CONCLUSIONS

: We considered a class of uncertain discrete-time dynémic systems__given
by equafion (4.1) for which assumptions (1)—(3).Were valid. It w:;s'ﬁbted.that
the 'dﬁly information requirgd about these uncertainties way their possible
| size. Synthesis of the controller to sfabili_ze system (4.6) was based'oﬁ the
prem:iSé that the overall uncertainty e(k,x,) belonged to a class of coﬁe
b,oun.de(‘i‘ functions (4.8) over IR". It was deduced that & < VB, was a
sufficient condition for wuniform boundedness and uniform ultimafe-
boundedness of bthe solution x;. Finally, We'shov.ved that uniform asymptotic
stability could be achieved if &o =O and_ & < \/;, ‘i.e., if the uncertainty .
due to the external disturbance Hvy were  zero. The proposgd:contr_oller
' (411) suffers from the drawback that it is discontinuous in nature, which
meé.ns that chattering problems would occur if the solution x entersv and
eXits fhe subspace Ker(BTPA). Moreover, controller (4.11)' also depeﬁds,on
the choice of the matrix Q, which means that one would have to devise an
algorithm to choose a Q such that Ay (Q) is indeed thé largest over all

possible choices of Q. .
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_Fig'ure_4.5. Time history of x,, X5(0) =1 |
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ueKy

Figure 4.6. Time history of control effort.

Another possible approach to the control problem of discrete uncertain
system is via discrete variable structure systems (DVSS) techniques [26]
which 'a‘re also based on the second method of Lyapunov. Preliminary

investigations indicate that there is a link between the DVSS approach and

our method.
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| CHAPTER V -
ROBUST OUTPUT FEEDBACK STABILIZATION. OF
-~ DISCRETE-TIME UNCERTAIN DYNAMICAL SYSTEMS

5.1. INTRODUCTION

-Recently, there has been a lot of activity in the area of state-feedback
stabilization of discrete-time control systems ([10], [20], [30]).

~ If not all.state variables are avaivlable; as is usuaily the case in‘-"practic‘e,
bed#uSe either some of them are not accessible or the cost makes it
irxhpra,cti-cal for the designer to utilize measuring devices for‘ every state
ifa'ria't’)lre,‘ then a pred-iction estimator, or a current estimator [10] is used to
: reconétruct the state vector to implement a feedback control law. Such
estimators, however, are dynamic in nature andbusually of h-igh order, thus
their use is not practical when the designer deé;ls with a high dimensional
system. | |

' Ih this Chapter we shall use the available outputs to stabilize a class of
ungertain, discrete-time dynamic systems. The approach we shall use to -
" :solvéb thi‘s‘stabilization problem will require no i)rior statistical inforﬁlaﬁion
about éuch uncertainties, except the bound>ing compact sets Wh@!‘@. they

| belong to.
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5.2. PROBLEM STATEMENT

Consider a class of discrete-time dynamical systems mbdeled By the
following difference equation

Xk41 = Axk + B(uk + e(kyxk)) y Xky = XO}

(5.1
¥y = Cxy ‘(_ )

:"where x€R", wE€R™, y1ERP; p > m, A, B and C are constant.vm:itric'es.of
’a,pp_rop'riat‘et diménsions. Morgover, matrices B and C are assumed to h:;ve
fuli rank. The m—valuedv vector function e(k,x,) represents the lumped
uncettainties of the plant [20]. |

Let the nominal system, namely, the system without unc_értainity be

des\cribed by

X1 = Axg + Buy , %, =% o (52)

We now consider the following assumptioné:

Al The nominal system is stable. If A is not stable then .Wé‘h'ass‘lilm“e that
(5.2) is output feedback stabiliz#ble, i.e., there exists a c“ons"ta_nt matrix
GEIR™® such that the spectrum of A; = A — BGC, o(Ay), is contained

. in the unit circle, in other words, p(Ay) < 1, where p(Aﬂ) is the spectral
radius of A,,. "

- A.2. There exists a r.s.p.d.b matrix QER”X“, and a matrix FERmXp such

that
B'PA, =FC,

'w}\_lere P is the unique r.s.p.d. matrix which solves the discrete

“Lyapunov equa.tion
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AfPA,—P=—Q.
A.3. The uncertainity e(*) : BIR®—IR™ is not known but é.(k,xk) belongs to
a known compact set E(k,xy), V(kx )ERIR®. To be exact, the
- uncertainty e(*) is a cone bounded function over IR, ie.,
le(k,xy )l < & + &I ]I, ¥ k€N and %, €IR®, where Ndenotes the set of
natural numbers.
Let tvh_e Lyapunov function candidate be given by
V(Xk) é X]'(I‘ka y : (53)
‘where for a given Q = QT > 0, P solves the discrete Lyapunov equation
AJPA, — P =—Q. o  (5.4)
The “existence of the Lyapunov function given by equation (5.3) is
guaranteed by assumption A.1.

We now state the problem: Given system ‘(5.1) subject to the
assﬁmption that the matrices B and C have full rank and the assumptions
Al-A3 hold, and given the Lyapunov function (5.3), we want to find a
function p(+) : IR"—IR™ such that if we choose

*
uy = uy = p(xy), (5.5)
‘we obtain a minimum bound for max AV (xy,uy, se(k,xy)),
ec )
where

AV (xiu0e(5,) & Vixger) — Vixg) - (5:6)
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5.3. DERIVATION OF OUTPUT FEEDBACK CONTROLLER

To find the controller u, which minimizes max AV(xy,uy,e(k,x,)) we
eC

proceed in the following manner.

Theorem b5.1: Given -a discrete-time dynamical system modeled by
equation (5.1) and the Lyapunov function (5.3), then if the constant matrices

B and C have full rank and if assumptions A1l and A3 hold, the controller
u, = u, = — GCx, — (BTPB)'BTPAyx, (5.7)

yields to a minimum bound for maﬁx AV, which is given by
. ec

o max AV(Xk,u;,e(k,xk)) < — 37 Qxy, — xFASPB(BTPB)'BTP A jx, |
ec

+ >\max(B’I‘PB)Ez(kﬁxk) ’ | | (5'8)

where )xmax(BTPB) is the maximum eigenvalue of the symmetric, positive

definite matrix BTPB and

Ek,x) & & + &kl | (5.9)

Proof: The proof is basically the same as the one in Manela [20]. The only
difference is that the first term in equation (5.7) is used to ensure that the
spectral radius of Ay is strictly less than 1 and that A, is used in the second

term instead of A for obvious reasons.
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Remark: The controller given by (5.7) does not guarantee the negative
definiteness of the first forward difference of the Lyapunov function (56) for.
~all x # 0. However, when certain conditions (which we shall discuss later)-

are met by the uncertainty e(k,x), maﬁx AV  can be ‘négative. for all
. ec

X, # 0. -

Theorem 6.2: Given a dlscrete time dynamlcal system modeled by

equatlon (5.1) and the Lyapunov functlon defined by equation (5.3). If

assumptlon A2 along with the assumptions of Theorem 5.1 bold, and if
w =1y = — GCx; — (BTPB)'FCx, - (5.10)
then

max AV(xy,uy,e(k,x,)) < — x2Qx, — xe CTFT(BTPB) F Cx,
. e€ . . :

+ Naax(BTPB)E (k) (5.11)

Proof: Without loss of generality, assume that p(A) < 1, in which case
G =0,Ag = A and u, = u, = — (BTPB)'FCx,.

Explicitly, the first forward difference of the Lyapunov function

(equation (5.3)) becomes
AV (s uyese(k;xi)) = Vi{xpr1) — Vixg)
= — xp Qx, + 2uf BTPAgx, + 2eT(k, %, )BTPAx,
+ 2uBTPBe(k,x,) + u/BTPBu,

+ eT(k,x, ) BTPBe(k,x, ) . v . (5.12)
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R AB'PB. . (5.13)

Substituting vy, = _ul: = — R7IFCx, into equation (5.12), we get -

AV(xupse(k,xy)) = — x7 Qxy — 2xF CTFTRTIBTP Ay, + 26 (k3 )BTPAx,

— 2% CTFTe(k,x;) + xT CTFTRIFCxy + 7 (kixiJRe(kxy) -

Using Assumption A2, i.e., BTPAQ = FC, we get
AV(xk,u]: e(kx)) = — %y Qx — X  CTFTRFCx, + e (k,x, )Re(k,x;) -

Maximizing AV over all values of e, e€E, yields |
max AV(xk,u; e(kxy)) = — %0 Qxy — x  CTFTRIF Cxy |
ec : .

+ max{e" (kx,)Re(k,x;)}
ecE

< — X7 Qx;, — X CTFTRTIFOx;, + M (R)EX (i)

where R is given by equation (5.13).
| O
~ Manela [20] has already shown that if e() is a cone bounded function,

i.e.

IIIEBEX ”e(kyxk)” < é(k’xk) = 50 + 61”XkII ’

and if the matrix A in the nominal system is asymptotically stable, that one

can achieve uniform boundedness and uniform ultimate boundedness using

o Amia(Q) R
full state feedback if &, %0 and —nil—li?‘l > €2, and that asymptotic
' ’ » >‘max(R) ' '
..‘. » . . >‘min(Q) p) | .
stability can be attained if {5 = 0 and ——— = > £[. Therefore, it is clear

Amax(R)
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that if assumptions (A1) and (A2) hold, then we can obtain the same results
using output feedback, i.e., |

u = — Gy, — (BPB) Fy, . o (519)

5.4: CONTROLLER DESIGN
So far nothing has been said about the conditions under which the
matrices Q and F ex1st such that assumptlon A2 holds We shall address

thls issue later in the report.
Fo‘r the time being, héwever, we shall pr'esént one possible algorithm

[27] that the designer can use to obtain the matrices F and Q such that

BTPA, = FC, o (5.15)
where P is the unique, r.s.p.d. matrix which solves the discrete Lyapunov
eqﬁ‘étiOn

AJPAG—-P=—-Q. (5.16)
ALGORITHM .

Step 1. Pick a constant matrix G such that ‘the spéctr_al radius of
| Ag = A — BGC is strictly less than one.

Note that in Step 1 we assume that the system modeled by equatlon (5.1) is

output feedback stablhzable
_ Step 2. Solve the matnx equation
BTPA =FC,

such that the matrix P can be bbexpressed in terms of the
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components of F and P is symmetric. -
Step 3. Express the matrix Q in terms of P, i.e., Q(P) =P — AOTPAO

Step 4. Choose the components of Q such that its leading principa.l minors

are greater than zero.

: -‘EXecutio‘n of Step 4 results in the determination of the nuﬁiéfiéai "Vélﬁés
of thé components of the matrix F and therefore of .the matrix P. |

We vshowed in Theorem 5.2 that uniform boundedness and uniform
ultimate boundedﬁess (see Appendix) can be achieved if the coﬁdition

>\min(Q) 2 ' ' |

P E— (b7
. >\max(R) ~ gl ' : ( )
holds, where R is given by (5.13). This suggests thé,t Step 4 ‘co'u_ld be

modified in such a way that N\p;,(Q) is as large as possible to accommodate

- for larger uncertainties.

5.6.. AN EXAMPLE

Consider the following second order linear discrete-time uncertain

dy‘namiéal system.

Xt f | (e +e(koxy)

| {0 1

%1 T 104 0.5

o= [ 0x - (518)
Whél;é

e(k,x) = r[l 1] % - o (5.19)

H_e:_:r‘e, the uncertainty satisfies the matching condition [21].
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Now,

le(ox)ll < VE Il bl = €, Ibell, — (5.20)

thus, €, =0 and & = V2 |r,].

We now compute matrices F and P.

Step 1.

Step 2.

St’ep 3.

- Step 4.

Since A is already a conx?ergent matrix with eigenvalues located at

0.93 and -0.43, we can choose G equal to zero. Therefore, A, = A.

Equating BTPA to FC and solving P in terms of F we get

BTPA = [0.4 p, p, + 0.5 ] =[f 0] =FC,

thus,

: Dy —1.25f
P=] . l.
—1.25f  2.5f

Form the matrix Q(P).

p; —0.4f —1.25f
Q(P)»= —1.25f  3.125f—p, |’

‘Choosing the components of Q(P) such that the leading principal

minors are positive yields the following conditions.

() pp > 04

and
(i) (p; — 1.22)(2.3f — p) >0, or p; € (1.22f, 2.3f).  Clearly,
condition (ii) implies condition (i), hence, we have to choose p;
, sﬁch that p; € (1.22f, 2.3f). Letting f =1, we have that "

p; € (1.22, 2.3), p, = —1.25 and p; = 2.5.
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From equation (5.13) we find that R =p; =25 aﬁd therefore
Apax(R) = 2.5. To get >\min(Q) to be as large as possible, one can show that
p‘l =‘1.’7'625 yields such maximum. Hence, the matrices P and Q are finally
givep_By | | |

117625 —1.25
~|-125 25 |’

and

1.3625 —1.25
| -1.25 1.3625}"
- For simulation purposes, we let r, = 0.1, which implies that the state

equation (5.18) can be rewritten as
Xg+1 = Agxg + By,
where

0

0 1
A1=[ ]andB=1

0.5 0.6

The eigenvalues of A, are 1.07 ahd -0.45, therefore, A, is unstable.

WA O) B 0.1125
'\/xm'x(R) TV T T

R | Xmin(Q)
= 0.1414 < 0.212 = —

which implies that the controller

Now,

thus
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u, = —R7'Fy, = —R7'FCx, = — 0.4x,(k) , (5.21)
will yield a closed-loop asymptotically stable system, (see ‘Figures 5.1 and 5.2
for initial condition x, = [2 1]T). Figure 5.3 shows the time history of the

‘eout‘r'ol effort (5.21) necessary to drive the system (5.18) to the origin. =

5.6. COMMENTS ON ASSUMPTION A2
Stemberg and Corless [25] showed. that the output stab1llzat10n of a

class of continuous-time uncertain dynamical systems problem can be solved

'if there exist real matrices F.ER™® and Q.ER™®, Q. = QL >0 suchthat

B/P, =F.C., o (b22)

P.A. + AcTPc =—Qc, ' o >(5'23)
Where the subindex ¢ stands for continuous-time and A, is asymptot1cally.

stable

They showed that the sufficient condition for the existence of such

Iuatrlces is that the transfer function matrix
G(s) = F,C(sl — A) "B, » (5.24)
be strictly pos1t1ve real [29].

In the hght of the results obtained by Steinberg and Corless for the
continuous-time case, one would be tempted to extend their results to the
dlscrete-tlme case. However, as Hitz and Anderson [30] show, the cond1t1ons
under which the transfer function matrix Gp(z) of a . discrete-time dynamical
system i 1s positive real, do not lead to the couclus1on of the ex1stence.of the

real matrices F and Q that satisfy assumption A2.
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Consequently, other avenues have to be searched to determine the
~ conditions under which the real matrices F and Q that satisfy’_asvlsumption

A2 exist.

5.7, CONCLUSIONS

We showed that the problem of robustly stabiblizing the class of
discrete-time uncertain dynamical systems described by equation (5.1), where
the uncertainty was of the cone bounded type, could be solved by using

output feedback provided that the algebraic constraint described in

>\min(Q)
>‘max(R‘)

Assu"mlp'tion 2 were satisfied and that >512 HoWevef'," as‘ was

pointed out in the last Section, the question of a system theoretic _
interpretation of the existence of the real matrices F and Q that satisfy

L -assumption A2 has not yet been ljesolVed and remains an open problem.
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0 - uncontrolled s - controlled

Fig. 5.1. Time history of x;, X;(0) = 2.

"0 - uncontroiled ¥ - controllea

Fig. 5.2. Time history of x,, x,(0) = 1.
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Fig. 5.3. Time history of the control effort u(k).
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CHAPTER VI
ROBUST STABILITY OF DISCRETE-TI'ME DYNAMICAL
SYSTEMS PROJECTED ONTO A DESIRED HYPERPLANE

6.1. INTRODUCTION
... Up to now we were concerned with the problem of steering nthe} state
traj_e.ctory of linear time-invariaﬁt discrete ‘dynamical systems .(v)-n:to desired
h‘yperpianes where the’y possess certain 'stability ‘properties -and reduced
‘dlmensmnahty We also analyzed the problem of robust stablhzatlon of a
,class of dlscrete-tlme uncertam dynamlcal systems Whose nomlnal” system
13’,_,111_11.9??’ s_tabl»e and the uncertainties do not depend on the input.
» ,Inv this Chapter‘ we make an attempt at putting. togethef the theoriesr
proposed in Chapters 3 and 4.
Before we go on any further; we should vre.lizvetha't t}hle feedback control
lé,ws d‘er_'.lved in Chapter 3 can only be applied to the ‘_‘nominal’; system since
thejr Were not ,designed to‘ handle parameter | uncertainties or external

disturbances. To resolve the uncertainties problem, we shall utﬂiz’e the

“controller derived in Chapter.4.
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8.2, COMPOSITE CONTROLLER

Let a linear time invariant discrete dynamical system be governed by

the following equation

Xpy1 = Axy + Bluy + e(k,xy)] , - (8.1)

wﬁeré x€IR", u €ER™ ere the state and control vectors, respectively,
e(k,xk)EIl??,I.]n represents the uncertainties and A and B are constant matrices
of appropriate dimensions.

As in Cha.pter 4, we vsha.ll assume that e(k,x,) is a cone bounded

uncertainty, i.e., v
(o)l < €)= & + Gl (6.2
Define the “nominal’ system by

Xpy1 = Ax;c + Buy . ' (6.3)

B We would like to drive the state traJectory of system (6 1) onto the
hyperplane Ker(S) as fast as poss1ble and in such a way that once it reaches
it, it .slides on it towards the origin. However, we now have to resolve the
additional problem of the presence of the uncertainty e(k,x;). If we were to
try to solve this problem by merely applying'any of the controllers proposed
in Chapter 3 to system (6.1) we would soon find out that Ker(S) would not

be reached because of the uncertainties.

A possible solution to the above problem is to apply a controller which

is a hybrid combination of those developed in Chapters 3 and 4.

" To use the controller proposed in Chapter 4, it was assumed that the
free ‘“‘nominal” system was asymptotically stable, therefore, we shall first

stabilize the “nominal” system by applying the feedback control strategies
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derived- in Chapter 3. Because of practical reasons, hoWever, we will exclude '
the time depending controller in order to avoid the ‘problem of havmg to

compute the solutlon to the Lyapunov equation at every time step.

- 8.2.1. {'»Cornloos’ite' Controller I ,
“Let |
2 = (SB)"YAS — SAlx, , o : (6.4)
be the linear feedback controller that drives the state trajectory of the
“‘nomin‘a.l” system onto the hyperplane
o = Sxy , S (8.5)

where SER™® is a constant metrix whose components e,re picked" such’ tnat

theinverse of the matrix product SB exists and the “nominal’’ system, when

vconstralned to the hyperplane (6.5), possesses certain predetermlned stablhty

characterlstlcs Moreover, the matrix A € R®*™ ‘1s a convergent matrlx

tw,ho‘se_v components are chosen according to how fast we want the state -

traje’ctory of (8.3) to reach the hyperplane (6.5). | |
| Let |

R7IBTP Agx, ‘ g
— k,xy), if x, ¢Ker(BTP '

0, ' if xkEKer(BTPAd) | (6 6)

ug =

: be the feedback controller that stabilizes the system (6.1) assumlng that the
nomlnal” system has been asymptotlcally stabilized by applying uﬁ* to (6.3),
‘ . where PER™® is the unique r.s.p.d. solution to the discrete Lyapunov

equation
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AJPA, P =—Q, e

for a given Q = QT >0, R = B'PB, B has rank m, Y(k,x,) = )x,fm,;( ) (k,xy),

1IBT PonkIIR_l = (xTATPBR™ IBTPAOX )% and Ag = A + B( (SB)~ '[AS — SAl.

Theorem 8.1: Consider the system (6.1) and the state feedback ’c'd‘ﬁif_él '
u =uf + uf . - (6.8)

mm(Q)'
max(R)

applied to the system (6.1), then the resulting closed-lbep system is

It €1 < VB, and €o =0 where § & —————, then if the controller (6.8) i is

asymptotically stable. Furthermore, the origin may be reached via a SIiding

mode.

- Proof: See the proofs of Theoreml3.5 and Theorem 4.4.

Corolla.ry 6. 1 If £ >0 and & < \/B, then the application . of the
controller (6.8) to the system (6.1) results in a closed loop system which is at
- least umformly ult1mately bounded.

Proof: See the proofs of Theorems 3.5, 4.2 and 4.3.

Example 6.1: Let us con51der the discrete-time dynamical system modeled. |

by the equation
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01 0

o 00
-56 1 1 10 )
X1 = 0 0 0 1 Xy + 00 Uy - . (6°9)
0 0 104r, 9 01
Rewriting the above system equations we get
, i 1 i 1
0 100 00
-5 5 1 1 10
X+1= [0 0 o 1}]%k + 00 [y + e(k7xk)] ’ (6.10)
0 010 9 01
‘ 0 0 00
where e(k,x)) = 00 r 0 | ¥ which implies that le(k,x )l < [r ] T !l

The free nominal system has its eigenvalues located at -1, 1, 5 and 10.
We want the equivalent second order nominal system to have its eigenvalues

at 0.1 and 0.2. The following choice of S will yield such eigenvalues

1 1 1 o0
S=1_1320 -13 1|

Let
M0
A=1, A | Ay N€(0,1)
then
o [as v N —2
Ue = U = | _1.32), 1.32 —1.3\ —10 N\, —7.7{ k" (6.11)

Application of the above controller to (6.10), yields
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0 1 -0 0 00
>\1 Xl -1 ‘ )\1 ) ‘ —1 10
Xy = 0 0 0 1 X+ |g o elkxy) - (6.12)
B —1.32%, 1.32 —1.3%, A\ + 1.3 01|

The eigenvalues of the compensated free nominal system are located at

A = 0.1, \; = 0.2. Hence the nominal system is asymptotically stable since

Letting N\ =05, X\=04, r,=1011 (f#>¢& =|)) and
Xg=1[5 —1 2 1]T, we can see in Figures 6.1 through 6.4 that the
application of the controller (6.6) to the system (6.9), after the controller
(6.4) has been appl‘ied,, does indeed yield a closed-loop system that is

asymptotically stable.

We note that for this particular example ~(k,x,) is given by

Aksx) = 0.11 N2, (R) e [}

s

- Furthermore, for Q =1, the ratio Amin(Q)/Mmax(R) is maximum and the

matrices P and R are found to be

[ 5.065 . 1.421 —4.885 —1.461
1.421 4.085 —4.284 —4.885
1—4.885 —4.284 1.036 6.741 |’
|—1.461 —4.885 6.741  9.366 |

| 4.065 —4.885
— |—4.885 9.366 |°
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Example 6.2: Let us now consider the discrete-time dynamical system

given' by
(010 0] -6'0.3 |
Xje1 = -;)'5 g (1) i X + f(l) g [uy + e(k,xy)] , B  (6.13)
[0 01009 0 1) o
Where:'_ |
e(kxy) = ‘[0.5 sin(zo.lwk)]” | - '-v'_(‘6'14:)‘

and ell(k,x, )l < 0.5. |
If we first apply the controller (6.11) to the system (6.13) we find by
;looking at Figures 6.5 through 6.8 that the external disturbance -goes
| through the system without being attenuated. However, after applymg
controller (6.11) along with controller (6. 6) to system (6.13) we see that the

dlsturbance is attenuated.

In this example,
W(k’xk) =0.5 >‘rlfm.x(R) .

Also, matrices P and R are the same as those used in the previous

“example.

Observation: Whenever an external disturbance is applied to the system
(61), the controller proposed here decreases the ctects of such a
disturbance. However the controller is still unable to drive the state

“trajectory onto the desired hyperplane.
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6.2.2. ‘Composite Controller IT
We now let

uf=—(SB)SAx,. . (6.15)

| Theorem 8.2: If we apply the controller

uk=ul?:+u]lc.a

where uf is now given by equation (6.15) and uf by equation (6.6), to the

system (6..1), then the closed-loop system is asymptotically stable whenever

§0=0 and 61 <\/B.
Proof: See the proofs of Theorems 3.7 and 4.4.

Corolla,ry 6.2: If &, # 0, then the application of the above controller to the

S&Stem (6.1) yields a closed-loop system that is at least uniformly ultimately

bounded.
Proof: See the proofs of Theorems 3.7, 4.2 and 4.3

Exa.mple 68.3: We aga‘ih consider the system as in Example 6.’1, except that
ry = 1 0.18 since the application of controller (6.15) to the "nominal" system
in (6.9) produces a maximum parameter § such that'\/B > 0.18 when our

éhqi_ce of the hyperplane o(x,) = 0 is.
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B T T TR}
o) = [_139 0 —1.3 1| =0

 Figures 6.9 through 6.12 show that the origin is reached faster when

controller u, = u]](l"+ uf is applied to:the system in question.

6.3. CONCLUSIONS

The controllers: we proposed in this Chapter enable: the class of linear
time-invariant discrete dynamical system modeléd by (6.1) to be robustly
stabilized. However, the size of the uncertainty is limited: by the constraint
| \/E > &;. Furthermore, the hyperplane o{x;). = 0 can not be reached: by the .
system when an: external disturbance is applied eireg- though its effect is

greatly reduced.
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CHAPTER VII
SUMMARY AND CONCLUSIONS

7.1. SUMMARY

Motivated‘by the vfa.ct that the goal of this research was to design
s‘_t'ab»ili"zing< controllers for a class of discrete-time uncertain dynamical
. SYSteiﬁS' via the second method of Lyapunov, we presented a review of
'Lyaip'uﬂbv stability theory of discrete-time dynafnical systems in Ch'apt.e'"r 2.
In this chapter, we selected and presented thé definitions and “theorems
whlch we considered to be the most useful to our purposes. Néxt_; we
iﬁtrodﬁced' the notions of uniform boundedness and wuniform ultimate
boiindedness since they were at the heart of the dev‘éllopments in Chaptefs 4
and 5. |

Our quest to try to extend the idea of a sliding mode of continuoﬁs-time
varia.bbles structure systems led us to de'velop; in Chapter 3, severa.bl control
strategies‘ which stabilized linear time invariant discrete dyna.mical systems
by ‘project,ing their state trajectories onto hyperpianes Where they were
guaranteed to possess reduced dimensions along with prescribed degrees of
stability. T6 be specific, we proposed three controllers that steer the state
trajectory of these systems onto hyperplanes and keep them there until t_he

origin is reached.
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“ o In Chapters 4 and 5 we concentrated our efforts on the development of
full state feedback and output feedback controllers, respectively, to stabilize
a class of linear time invariant d1screte uncertaln dynamlcal systems where
'the 'nominal” system was asymptotlcally stable and the uncertalntles did
not depend on the control input and belonged to known compact boundlng '
sets. We found in these chapters that if the uncertainties were of the cone
bounded type, i.e., the uncertainty vector e(k,xk) was bounded by E(k,xy),
where | |

E(k,xy) & & + &l
and & < /B, where

>‘min(Q)

& Duasl)

then un1form boundedness and uniform ultlmate boundedness could be
' guaranteed Addltlonally, we found that if & =0 and & < \/_, then we
could achleve asymptotic stability. We also found that the size of the
uncertalnty was hmlted_by the constraint that ¢, must be strrctly less than
V.

Flnally, in Chapter 6 we attempted to unify the theorles developed in
Chapters 3 and 4 in order to robustly stablhze the class of systems discussed

in Chapter 4.
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7.2. CONCLUSIONS AND OPEN PROBLEMS

'7..2_.1.i Conclusions

We have devised in this work a new solutlon ‘to the problem of‘

stablhzmg “discrete-time dynamlcal systems by pro_]ectmg their. state."

tra_]ectones onto prespecified hyperplanes where such systems possess des1red

levels of stability as well as reduced dimensions.

We. have elso proposed a method to stabilize a class ef discrete-time
" dynamical systems with uncertainties that can be characterized by cone
b'ounded functions. The main feature of this approach is that it does not
' requi‘reiknowledge of the statistics of the uneertainties, it only assumes that

such uncertainties lie in known closed and bounded sets.

“We also put the two vtheories together and succeeded in driving the
state trajectories of vdiscrete-time dynamical systems With uncertsinties in
the:system matrix onto prespecified hyperplanes. However, we were. not
sﬁccessfﬁl in steering such trajectories to the hyperplanes Wheﬁ external
disturbances were applied‘, even though their effects' were substantially

~ reduced.

- 7.2.2. dpen Problems

During the course of investigation we encountered many interesting
problems. Many of them remain to be solved. A_mong more interes-ting open
problems, in our opinion, are |
(i)  Justification of assumption A2 in Chapter‘5 from the system theoreti-c

point of view, specifically the problem of the existence of real matrice's_'
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F and Q = QT > 0 such that |

BTPA =FC,
where P = PT > 0 solves the discrete Lyapunov equation
. ATPA —P=-— Q ,
Where A is assumed to be a convergent méﬁrix, remains vo.péna.

We need to design a controller such that the trajectories of the
systems we have studied can be driven onto prespecified hyperplanes
when the systems are subjected to external disturbances. The results

in [40] should be of help in this endeavor.

Investigation of the Lie algebraic approach to the control and synthesis
of nonlinear discrete-time systems seems to be another fertile area of
study. Methods developed in [37], [38], [39], and [42] constitute a nice
starting point in this direction. Prelimiilary results.j are quite
encouraging. Our vapproach can Be sunimarized’és folléws; For a
given ﬁonlinear discrete-time system we first find a transformation
br"mging tine system into'.a canonical fofm. Then we design a. controller
for the system in the ne'W coordinates. ‘v From the above co'nSidefations
it follows that the problem of the existence of a ‘‘nice” traﬁsforrnation
is central in the design process. To be more speciﬁc let us consider a

dynamical system modeled by the following equations

x(k+1) = a(x(k)) —I— b(x(k))u(k) o o (71) |

where a and b are C* vector fields on IR® with a(0) =0.

‘The problem is to find sufficient conditions on a and b so that

there exists a C® transformation
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*

x (k) = T(x(k)) : v]R“—»]Rn-

such that the system (7.1) can be transformed into the controller

canonical form

x() | o
x (k+1) = X;:(k) + |~ lu(k) . (7.2)
') | L

In further considerations the following notation and definitions are used.
Let £: R®*—IR® and g : IR*—>IR" be C* vector fields on IR®. For f and g
the Lie bracket is

_of = Jg
[f,g]—axg o

where of and %-i— are the Jacobian matrices of f and g, respectively. Using

Ox

an Vaillternative notation, one can represent the Lie bracket as follows
[f,g] = (ad'f,g) -
We define
(ad'T,g) = [f,(ad“£,8)] ,
where
(ad%%,g) =g .

. Next, consider a C* function h : IR"—IR. Let dh = VTh be the derivative
of h with respect to x, where Vh is the gradient of h with respect to x.

Then the Lie derivative of h with respect to f is defined by
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Lih & Ly(h) = <dh,f> = VThf,
and

L’h =h,
L¥h = LyL{#h) .

: The Lie derivative of dh with respect to the vector field f is defined by

T
T
Ly(dh) & [Q(gx—hL £

of
dh) — .
+ () 5
One may easily verify that these Lie derivatives obey the following so—ca.Hed
Leibnitz formula |
L[f’g}h = <dh, [f,g]> = Lg.th - Lngh .
Furthermore, the following relation is valid
dLsh = Ly(dh) .

Duly armed with the Lie derivativeds we may proceed further. Taking the
differential of (7.1) yields .=

dx" = %%(l d;c . B : . | (73)

If we now use the following approximations

dx’ = Ax =x (k+1) —x'(k),
dx = Ax = x(k+1) — x(k) ,

then (‘7.3) can be represented as

X' (k1) —x'(k) = %xTé

(c(etl) —=x(k)) . (7.4)

: ’Spbéi;itﬁting x(k+1) = a(x(k)) +b(x(k))u(k) into (7.4) gives
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oT

X (k) = 2= fa(x(0) + bx()ul) —x(9) +x'()  (7.5)

Comparing (7.5) and (7.2) yields

(w0 | [ T, ]

o7 X;(k) T,
o 209 = x()] + x' () R el R PR
) Xn(k) ; Tn

fx'(k)] [ (k)]

and
.
: 0
= bixfi) + [ &
. 0
.1 .

Hence from (7.6) we get

OT; .
o [ale(K) = x{)] + % (k) = iy

i=1,2,.,n-1. (7.8)
Let

a(x) 2a(x) —x, , (7.9)
then (7.8) can be represented as

aTi _ . ) ’
e 2T Ty — Ty, i=12,.,0-1, . (7.10)

or equivalently
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<dTya> =Ty — Ty, i=1L,2,.0—1. - (711)
Equation (7.11) can be rewritten as follows
Tl == Tl ’ » )
T2 = <dTl,§> + Tl = LaTl + T]. 3
T3 + <dT2,§> + T2 = LELET]- + LETI + T2 s

Thereforé, the transformation matrix T can be represented as
T
|L3Ty + 2127 + 3L, T, + Ty |

LY

where T, is called the starting function. Thus, finding the transformation T 7
is reduced to ﬁﬁding T;. In order to find T; we first analyze equation (7.7)

which can alternatively be represented as

<dTyb> =0, i=12,. n-1
(7.12)

<dT,;b>=1
- Thus, in particular <dT;,b> = 0. : We n‘owvl‘ook at the following eéuation
<dTy,b>=0. | | (7.13)
From (711) we have | o
Ty =<dT,a>+T,. SN (AT

| Substituting (7.14) into (7.13) gives
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” <dT»2,b> = <d(<dT1,§> + T;),:b>
| - <d<dT1,§>,'b? + <dT,b> N
= <d<dTpa>Db> = LyL;T, ; : j. S (7.15)
“‘Or.lthe other han_dk o . |
| <‘dT‘1“,[;§,b]> =LbL;T1, —LL,T, % L-QL;TL _ (716)
From (7.15) and (7.16) we ?oﬁcl‘ude that | o

8T, -

Ox

<dTyb> = <dTy,[a,b]> = (ad'&b)=0.  (7.17)

‘Similar‘ly we can show that
| <dTybg> = <dTy[5,b]>

3T,
%

= <dT,(ad%5b)> = —* (ad®z)b) .  (@a8)
Pr‘o‘t_:eveding' as a-béve we arrive at a set of éqﬁatibns which ‘can be
’ ‘represeni;'fed in 'tih:er following form

8T,

o b,(ad'z,b), (ad’a,b),...,(2d"'a,b)] ggl» c,

U= [000,.,1]. o @9y
Irfc; l“exist's then
oT,

% = [070707...;1]0;1 : ; (7,20)

aT,

Ox

Which f'implie's.that “is the last row of C{1." Let q(x) be’aVVectdt‘such

that
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q) = — S (7.21)

A xrector q(x) for which there exists  a' real-valued function Tl(x) s‘uchthat

B "evguavtioﬁ (721) holds is called a conse_rvative vector field Aor_a gravdi‘eritﬁ'eld.
| The function T, is referred to as the field potential of q(x). | |

- ‘In 'summary‘, a éufﬁcient condition for the ex1stence of | the

transformatwn x = T(x) brlngmg the system x(k+1) — a(x(k)) + b(x( )u(k)

into the controller canonical form (7.2) is

(i) invertibility of the matrix Cy

v"and, | -

‘_ (11) - solvability of equation (7 21) Conditiorls-»"for satlsfactwn -of

:‘_ilv?lreQuirements (i) and (11) can be deduced from the complete

‘".mtegrablhty theorem of Frobenius concerning 1ntegral manifolds.

Exarrlple

Con81der ‘a. dynamical system modeled by the followmg dlﬁerence

| equatlon :
‘ ‘ . Xg »7”0
K3X2 + K4X3 . K5 L

s Where K; (1 =1, 5) are ‘constants.

Our goal is to transform (7. 22) into the controller canomcal form F:rst

- we form -
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X — X

a= |K;sinx; + Kyxz —x, | .

Kaxy _KiX3 — %3
Next,we com'pute the matrix C;. Note that

(adlEh) = Zp - 5o

ox b

w3

a1 0 |lo]| |

i ] 2

. = KICOSXI _1 K2 0 =
| 0 . K; K1 |Ks|.

. , Ne)it '

ad%5) = b = 2 Eb

o K,K5

= | KKy + Ky(K,—1)Ks | -
| KKK + (K—1)K;
‘He,nc'e |

0 ‘ 0 ' . K2K5

Cy= [0 KK; —KK;+KyK~1)K;
N Ks (K4—1Ks5 KKK + (K4—1)°K;

|  .' ‘T'h'er'liast row of Cl'—l‘ié“

o Th_eréfofe

(7.23) |

S (r24)

('7.25)

(7.26) |

. (7927) .
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1

KK
2 = TZ <dT1,a> + Tl : K:[{s
xg =Ty = <dT2,a> + T2 K21K5

From (7.28) we can also conip‘ute the inverse of T(x)

'Observe that

8T

9’ f

= K2K5X1*
K2K5X2
K2K5X3 —_— KISln(Kszxl)

(Klsmxl + K2x3)

X3 =
' K
2

. X9 ;Xl
1

- Ox

L

T KK

Ki(x, — X1>)°°S-(K2K5X1) -

(K4—1)

2435

- Kysinx; — Xy + Koxs

)

(7.29)

1. (7.30)
K (xy — xp)eosx; + Ky(K—1)x; + K,Ksx, |

K sin(K,Ksx; ) + K4X3* + KyKx,
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xp(k)

*

= | x3(k) |, - (7.31)
f(x (k) |

and
0 .
9 b= 0. ' ‘ . ’ - (7.32)
1] ' '

In a similar fashion we can proceed to transform the system equations into
the observer canonical form. This form then can be utilized in ‘t'he.OlVlt:p-llt

feedback control design.
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APPENDIX A

A.1. DEFINITION OF A CONVERGENT MATRIX

Consider an mxm constant matrix A.

- Definition: Matrix A is convergent if klirn Ak = 0.
b deel

Theorem A.l: Let A € R™®, Then lim A¥ =0 if and only if p(A) <'1,

k—oo

where p(A) = max{[\|: X is an eigenvalue of A} is the spectral radius of A.

Proof: See [35] p. 298.



150

- APPENDIX B

B.1. COMPUTATION OF AF

Suppose that A € R™™ is diagonaiizable, i.e.,, A=NDN"! where D is

diagonal.
Define.
| .
N4 ey { Co e } Cm)s
ry
Iy
NTE | —o,
rm

where c¢y,¢y,...,¢,, are the columns of N and ry,ro,...,r, are the rows of N1,

and

Bi _é_ C:T;

1°1°

The representation A = NDN™! can be written as (see [36], pp. 367-
368) |

/\ = >\1B1 + >\2B2 +N.+ >\mBm.

Moreover,
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/\k = >\;(B1 + X;‘:]32 +...+ >\1]3§Bm7

where ), i=1,2,...,m are the eigenvalues of A.
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