
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

7-1-1987

Efficient Scheduling Algorithms for Robot Inverse
Dynamics Computation on a Multiprocessor
System
C. L. Chen
Purdue University

C. S. G. Lee
Purdue University

S. H. E. Hou
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Chen, C. L.; Lee, C. S. G.; and Hou, S. H. E., "Efficient Scheduling Algorithms for Robot Inverse Dynamics Computation on a
Multiprocessor System" (1987). Department of Electrical and Computer Engineering Technical Reports. Paper 571.
https://docs.lib.purdue.edu/ecetr/571

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages

C. L. Chen
C. S. G. Lee
S. H. E. Hou

TR-EE 87-27
July 1987

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Efficient Scheduling Algorithms for

Robot Inverse Dynamics Computation

on a Multiprocessor System

C. L. Chen, C. S. G. Lee, and S. H. E. IIou

Ransburg Robotics Laboratory

School of Electrical Engineering

Purdue University

West Lafayette, Indiana 47907

TR-EE 87-27

July 1987

Abstract

Robot manipulators are highly nonlinear systems and their motion control
requires the computation of generalized forces/torques to drive all the joint motors at
an adequate rate. This paper presents efficient scheduling algorithms for computing
the robot inverse dynamics ona multiprocessor system. The problem of scheduling
the inverse dynamics computation consisting of m computational modules to be exe
cuted on a multiprocessor system consisting of p identical homogeneous processors to
achieve a minimum-scheduled length is known to be NP-complete. In order to
achieve the minimum computation time, the Newton-Euler equations of motion are
expressed in the homogeneous linear recurrence form which results in achieving max
imum parallelism. To speed up the searching for a solution, a heuristic search algo
rithm called Dynamical Highest Level First/Most Immediate Successors First
(DHLF /MISF) is first proposed to find a fast but suboptimal schedule. For an
optimal schedule, the minimum-scheduled-length problem can be solved by a state-
space search method — the A* algorithm coupled with an efficient heuristic function
derived from the Fernandez and Bussell bound. The state-space search method is a
classical minimum cost graph search algorithm, which is guaranteed to find the
optimal solution if the evaluation function is properly defined. An objective function
is defined in terms of the task execution time and the optimization of the objective
function is based on the minimax of the execution time. The proposed optimization
algorithm solves the minimum-scheduled-length problem in pseudo-polynominal time
and can be used to solve various large-scale problems in a reasonable time. An illus
trative example of computing the inverse dynamics of an n-link manipulator based on
the Newton-Euler dynamic equations is performed to show the effectiveness of the A
algorithm and the heuristic algorithm DHLF /MISF.

This work was supported in part by the NSF-Purdue Engineering Research Center under Grant CDR--
8500022. ;

- 2

1. Introduction
Robot manipulators are highly nonlinear systems and their motion control involves

the computation of the required generalized forces/torques* from an appropriate mani
pulator dynamics model, using the measured data of displacements and velocities of all
the joints, and the accelerations computed from some justifiable formulae or approxima
tions, to drive all the joint motors. Obviously, the execution time for computing the
generalized forces partially determines the feasibility of implementing the control
scheme in real time. There are a number of ways to compute the applied generalized
forces/torques, among which the computation of joint torques from the Newton-Euler
(NE) equations of motion is the most efficient and has been shown to possess the time
lower bound of O(n) running in uniprocessor computers [1,2], where n is the number of
degrees of freedom of the manipulator. It is unlikely that further substantial improve
ments in computational efficiency can be achieved, since the recursive NE equations are
efficiently computing the minimum information needed to compute the generalized
forces/torques: angular velocity, linear and angular acceleration, and joint forces and
torques. Nevertheless, some improvements could be achieved by taking advantage of
particular computation structures [3], customized algorithms/architectures for specific
manipulators [4,5], parallel computations [6,7], and scheduling algorithms for multipro
cessor systems [8-10].

The approach of particular computation structures requires the reformulation or
manipulation of equations of motion to optimize the speed of the architectures, while
customized algorithms/architectures are designed to improve the computational
efficiency by taking advantage of particular kinematic and dynamic structures of the
manipulator. Parallel computations require the NE equations of motion to be expressed
in a homogeneous linear recurrence form and the processors are connected efficiently to
reduce the communication and buffering problems. This approach was found to be very
efficient for computing the NE equations of motion [7], but may not be very efficient for
computing other robotic computational tasks such as the inverse Jacobian computation.
On the other hand, efficient scheduling algorithms can be used to schedule a computa
tional task, expressed in a directed task graph, to be executed parallelly in a set of con
nected processors to achieve a minimum computation time. This approach does not
require the computational task to be expressed in any specific mathematical form.
Furthermore, the directed task graph preserves the precedence relations among the
computational modules of the task.

This paper presents efficient scheduling algorithms on a multiprocessor system
which determine an optimal and/or suboptimal schedule for computing the inverse
dynamics of an n-link manipulators (with prismatic/rotary joints) in minimum time.
The NE equations of motion are expressed in a homogeneous linear recurrence form and
decomposed into m computational modules which are scheduled to be executed on p
identical homogeneous processors to achieve a minimum computation time. In order to
achieve the minimum computation time, it is desirable to execute many independent

modules simultaneously to achieve maximum parallelism. It has been shown in the
. literatures [11,12] that if the number of processors is more than two, the processing time
of each module is of equal length, and the precedence relation of the modules is arbi
trary, then the complexity of finding the optimal schedule to achieve a minimum-
scheduled length is iVP-complete. Furthermore, if the execution time of all the modules
is arbitrary, then the optimal solution of the scheduling problem becomes a Strong NP-
complete. Thus, the problem of scheduling the inverse dynamics computation on a mul
tiprocessor system is extremely difficult to solve and generally intractable.

Several approaches to the general multiprocessor scheduling problem have been
proposed [13-17]. ■ 'They are basically graph theoretical, integer programming, and
heuristic methods. The graph theoretical approach uses a graph to represent applica
tion tasks. The integer programming method is based on the implicit enumeration algo
rithm subject to the task constraints. The heuristic methods are to provide fast and
efficient algorithms for a suboptimal solution. In computing the inverse dynamics for a
Stanford arm, Tuh and Lin [8] assigned one microprocessor to each manipulator link and
proposed a yariable branch-and-bound search algorithm to find a subtask-ordered
schedule for the microprocessors to compute the joint torques Using the NE equations of
motion. With this computational Structure, the authors reported a concurrency factor
of 2.64 on a. Stanford af rffi Kasahara and Narita [9,17] proposed a depth-first /implicit
heuristic search method; which combines the branch-and-bound method and the critical
path method, to compute the inverse dynamics of a Stanford arm. Barhen proposed a
ROSES algorithm [10], which uses heuristic techniques with special instance of abstract
data structures, to run on a hypercube machine to compute the inverse dynamics of the
same Stanford arm. All of the above scheduling algorithms focus on a specific robot
-arm, the Stanford arm, and are difficult to generalize to other robot manipulators.

In this paper, we first propose an efficient heuristic algorithm, called Dynamical
Highest Level First/Most Immediate Successors First (DHLF/MISF), to obtain a fast
but suboptiffiar solution for scheduling the p processors in a multiprocessor system to
compute the inverse dynamics of an u-link manipulator. Next, the well-known A
search algorithm [18] coupled with an efficient heuristic function derived from the Fer
nandez and BuSSell bound is proposed to obtain the optimal schedule for the robot
inverse dynamics Computation. The A search algorithm is a classical minimum cost
graph search algorithm. It is guaranteed to find an optimal solution if the evaluation
function which Utilizes the heuristic information about the problem for speeding up the
search is properly defined. Alternately, The A algorithm can be considered to be a
brahch-and-bound search using the dynamic programming principle with a cost esti
mate of remaining unassigned modules [18]. If the cost estimate of the remaining unas
signed modules is a lower bound estimate of the actual cost, then the A search algo
rithm will produce an optimal Solution. An objective function is defined in terms of the
task execution time and the optimization of the objective function is based on the
min iffiax of the execution time. The proposed optimization algorithm solves the

minimum-sched u led-lcngth problem in pseudo-polynorninal time, and based on our com
puter simulation, the algorithms can solve various large-scale problems in a reasonable
time. An illustrative example of computing the inverse dynamics of an n-link manipula
tor (with prismatic/rotary joints) is performed to show the effectiveness of the A algo
rithm and the heuristic algorithm DHLF/MISF.

' ■ v ■ • ■ ... ■ -4- ■ ■ . . ' . ■■ - >; , -

2. Maximum Parallelism of Newton-Euler Task Graph
The problem of computing manipulator joint torques based on a manipulator

dynamic model ■ is’often-referred to as the inverse dynamics problem and can be stated
as: Given the joint positions and velocities {qj(t), qj(t) } ”r!.i which describe the state of
an rc-link manipulator at time t, together with the joint accelerations which
are desired at that time, solve the dynamic equations of motion for the joint torques
{ry(0}y=i as follow:

Mi) - f (q(f), 4(f), ;q(*j) (!)

where ■■
7f0 = (rl» % ' • • iTn f", q(*) = (?1> • • • iQn)T >

- <i(0 = (iti'i 2> • • • An f r 'q(t).=-(^’i» " "

the superscript T denotes transpose operation on vectors and matrices, and Eq. (l) indi
cates the functional representation of the manipulator dynamic model- Since the NE
equations of motion have been known for their efficiency in computing the joint torques
whether they are formulated in the base coordinate system [2] or in the link coordinate
systems [l], our objective is to see how fast one can schedule the computationof the NE
equations of motion on a multiprocessor system with p identical processors to achieve a
minimum computation time.

In general, a computational task can be represented by a directed acyclic task
graph (DATG) G — (V ,E). consisting of a finite nonempty set of vertices V,
V = (T i, 2, ‘ ' Tm), and a set of finite edges E, JE = (e x, e 2, ' ’ ' connecting
them Each vertex represents a computational module (CM) and each edge represents a
precedence constraint between two CMs. An edge connecting module 1\ to module Ty
is denoted by e (i , j). The precedence constraint between CMs indicates which modules
have to be completed before some other modules can be started. Our optimal scheduling
problem is to assign these modules of a DATG to the p processors so thht the pre
cedence relation is not violated and that all the modules together are processed ip the
shortest possible time (i.e. in a minimum computation time). The time that the last
module in a schedule is completed is called the finishing time of the schedule. Thus, we
want to minimize the finishing time of a given DATG over all the permissible schedules.

In order to schedule the computation of the NE equations of motion over a set of p
processors, we need to represent or express the NE equations of motion as a DATG with

its vertices indicating the computational modules and its edges indicating the pre
cedence relation among the modules. An examination of the recursive NE equations of
motion shows a certain amount of parallelism with a large amount of sequentialisM ip
the flow of computation. This serial nature of the computational flow lends itself to a
pipelined inaplementation [4]. In order to achieve parallel processing with minimum
computation time, it is desirable to develop a directed task graph with maximum paral
lelism for the NE equations of motion. Unfortunately, there are no general procedures in
generating a maximum-parallelism task graph from the NE equations. Intuitively, one
can decompose the NE equations into elementary operations such as
multiplication/division, addition/subtractiony and trigonometric functions. A better
apprbach is to perform a functional decomposition of the NE equations; that is, the
equations are decomposed into computational modules, each of which calculates the
kinematic and dynamic variables such as angular velocities, angular and linear
accelerations, joint forces and moments, etc. This “macro-decomposition” results in a
maximum-parallelism task graph with its computational modules corresponding to the
terms used to generate the recursive forward and backward equations. This macro
decomposition also allows us to obtain a maximum-parallelism task graph for any n-link
manipulator with prismatic/rotary joints. Since the NE equations of motion can be for
mulated either in the base coordinate system or in the link coordinate systems, the task
graphs obtained by the macro-decomposition technique for these two formulations are
different. The clear advantage of referencing both the kinematic and dynamic variables
to the link coordinates is to obviate a great deal of coordinate transformations and to
allow the inertia tensor to be fixed in each link coordinate frame, which results in a

;much faster computation in a uniprocessor computer. However, the recursive structure
of this formulation is found to be in an inhomogeneous linear recurrence form (IHLR)
which is not efficient for parallel pfocessing [7]. On the other hand, when expressed in
the base coordinate system, the NE equations are in a homogeneous linear recurrence
form (HLR) which is more suitable for parallel processing [7]. In either form, the use of
the recursive doubling technique for the parallel computation of the NE equations
results in a time order of O (log2n). The linear recurrence structure of the NE equations
expressed as a DATG is shown in Fig. 1.

For a linear recurrence equation,

.y i • • • ,n (2)

if a, —1, then it is in a HLR form; if a,- # 1, then it is in an IHLR form. If and are
3X1 vectors and a* is a 3X3 matrix, and if we further assume that parallel computation
on vector and matrix operations are available, that is, parallel computation of two 3X1

''vector Addition .pikes' 1 add, a dot product requires 1 mult and 2 adds, a vector cross
product takes 1 mult and 1 add, and a matrix-vector multiplication takes 1 mult and 2
adds, then using the recursive doubling technique, it takes [log2n] adds to evaluate Eq.
(2) in the HLR form parallelly, while it takes [log2n] mults and 2 [log2n] adds to

evaluate Eq. (2) in the IHLR form parallel ly. Thus, the c ritical path of the task graph of
the NE equations expressed in the I1LR form (i.e. expressed in the base coordinate sys
tem) will be shorter than the one expressed in the IHLR form. Since a shorter critical
path results in a shorter computation time, it is advantageous to express the NE equa
tions with respect to the base coordinate system. The NE task graphs in the HLR form
and in the IHLR form are shown, respectively, in Figs. 2 and 3. The detailed decomposi
tion of the NE equations into task graphs in both the HLR and I1TLR forms are
described, respectively, in Appendices B and C, and the detailed description of the com
putation of each module is listed, respectively, in Tahles 1 and 2. From Table 1 and Fig.
2, by counting the processing time through all the paths from the initial vertex to the
terminal vertex, it is not difficult to see that the critical path of the NE task graph in
the HLR form passes through modules 1-3, modules 5-6, modules 9-11, modules 15-17,
module 19, and modules 27-30, with a dominant processing time of
{3 f log2(n+l)l + 4 [log2n. 1 + (10 — \)} adds and {[log2n] -f- (6 — 2\)} mults, where
\ is a joint indicator; \ — 0, if joint i is rotary, and \ 1, if joint i is prismatic. The
critical-path computation means that if the number of processors is unlimited, the
abpve minimum computation time of the NE equations can be achieved for any n-link
manipulator. Similarly, the critical path for the NE task graph in Fig. 3 passes through
modules 1-3, modules 5-7, modules 11-13, modules 17-19, and modules 27-30, with a
dominant processing time of {6 [log2(n + l)l + 4 [log2n] + 8} adds and
{3 [log2(n.+l)] + 2 [log2u] + (6 — 2 \)} mults, which has a longer computation time.
We shall use the NE task graph in Fig. 2 to schedule the computation of the NE equa
tions on a multiprocessor system with p identical processors. Note that each of these
modules in the task graph can be further decomposed into elementary operations.
Table 3 shows a comparison among various methods for the robot inverse dynamics

; computation.
Next, we need to define and formulate an objective function for our scheduling

problem. Consider the DATG as shown in Fig. 4a. We introduce the ordered pair
(Tj ,Ht)f for labeling the modules, which means that module i, T*, has a Dt- unit of exe
cution time. If there is an edge from module x to module y , then module x is said to be
an immediate predecessor of y, (or equivalently module y is an immediate successor of x
) and we denote it as IPRED(y) — x. If there is a directed path from module x to
module y, then module x is said to be a predecessor of y, (or equivalently module y is a
successor of a;) and we denote it as PRED(y) = x. Initial modules are those modules
with no predecessors, and terminal modules are those modules with no successors. The
level /,• of a module Tis the summation of the execution time associated with the
modules in a path from to a terminal module such that this sum is maximal. Such a
path is called the critical path if the module is the highest level in the DATG [l], and

f We will also alternately write 7\- to represent the module l.

D 4 max lt (3)
pT,ev v ’

where Dcp is the minim for the multiprocessors to process all
the modules in a given DAXGv The physical meaning of the critical path is, whatever
which scheduling method is employed, the finishing time over all permissible schedules
cannot be shorter thhn tlie Dcp. Based on the above discussion, we need to define an
objective function and the optimization criterion for determining an optimal schedule
which will achieve the minirnum processing tiihe for a given DATG>

For a giyen DATQ, let tk(S) be the total computation time spent in processor Jfc,
1 ^ ^ ^ P , for a schedule S, S 6 0, where IT is the set of all possible schedules for the
DATG. Let t(S)= max t-k(S) be the total completion time required to complete the

We define tfiecritical-path length as

Thxis, t (S)y froni the point of reducing the total compui

cates 4 better schedule 8. Thus, a minimum-
the schedule S which minimizes t (S), that is,

mm = mm max
S 6 , 0 1 < A; < p

time, may be used as an
A smaller t (S) indi-

Equation (4) is the optimization criterion for obtaining a minimum finishing time
schedule. This means that we want to minimize the maximum processor finishing time,
resulting in the so-called minimax optimization criterion. From the definition of D.„ fin
Eq. (3)), we know that t (S) must be greater than or equal to Dcp.

^ ' Our multiprocessor scheduling problem is to schedule the p processors in a mul
tiprocessor system to complete computing all the modules in the NE task graph (Fig. 2)
in a imnimuln processing tiipe. Any module can be scheduled to be executed on any pro
cessor, but each processor can only execute one module at a time. In this paper, we are
only interested in the nonpreemptive scheduling, which means that a processor assigned
to compute a module is dedicated to that module until it is completed. Furthermore^ we
assume that the communication time among the processors for data transfer is negligi-
ble. Since the solution to the scheduling problem is known to be iVP-complete, we first
solve the problem by an efficient heuristic algorithm, called Dynamical Highest Level
First/Most Immediate Successors First [DHLF/MISF), for a fast but suboptimal
schedule. Next, we use the A * search algorithm coupled with an heuristic function
derived from the Fernandez and Bussell bound to determine an optimal schedule based
on the minimax optimization criterion in Eq. (4).

- 8 -

3. Heuristic Scheduling Algorithm
We first propose an efficient heuristic scheduling algorithm DHLF/MISF to obtain

a fast but suboptimal solution for our multiprocessor scheduling problem for computing
the NE equations. Based on the given NE task graph (in Fig. 2), the algorithm con
structs a dynamic priority list containing all the computational modules arranged in a
descending order according to the level of the modules. Similar priority lists were
developed by previous methods such as the Highest Level First with Estimated Times
(HLFET) [16] and the Critical-Path/Most Immediate Successors First (CP/MISF) [17]
methods. The HLFET method constructs a static priority list in the descending order of
the level of the modules, while the CP /MISF method arranges the priority list from the
number of the immediate successive modules if the levels of the modules are the same.
The suboptimal schedule obtained from these heuristic algorithms starts from zero ini
tially and gradually the modules are “inserted” into the schedule until all the modules
have been inserted. Due to the priority lists formed by the HLFET and the CP/MISP
methods are static, they sometime insert unnecessary null modules into the processors
(i.e. the processors are idle) when a module with a higher level is on the top of the list
and thus, the execution of that module must be delayed in order to maintain the pre
cedence constraints. Our proposed dynamic priority list will avoid inserting these
unnecessary null modules into the schedule.

Let us denote A(n) be a set of modules that have been assigned to the processors at
the nth stage (i.e. the modules that have been inserted into the schedule from the
dynamic priority list), and let A(n) be the compliment of A(n). Let Pmjt(n) be the
processor(s) with the minimum finishing time at this stage, and K(n) denote the set of
modules assigned to the remaining processors but have not finished processing yet. The
set K(n) can be explained by the Gantt chart (see Fig. 5). If we conceptually place a
vertical “cut-line” at the minimum finishing time, then the modules “cut” by this cut
line are the modules of the set iT(rz). Let FW(A(n)) be the function that returns the
set of modules, W(n), which are ready to be assigned to all the p processors, i.e., for all
T,- £A(n), if and only if PRED(Ti) ^A(n). Similarly, the function
FW(H(n) A(n)) — K(n) returns the set of modules, R(n), which are ready to be
assigned to the Pmft(n). From these notations, the proposed heuristic algorithm
DHLF/MISF is described below.

Algorithm DHLF/MISF (Dynamical Highest Level First/Most Immediate Succes
sors First Algorithm). Given a task graph, this algorithm constructs a dynamic priority
list of all the computational modules and inserts the modules one by one into the subop
timal schedule.

Dl. [Initialization.] Initially the schedule is empty (i.e. A(n) = 0).

D2. [Determine the levels of modules in R(n)] Determine the set of ready modules
R(n) and find the level /,• for each module in the set R(n).

D3. [Construct the priority list.] Construct the dynamic priority list in a descending
order of If the levels of the modules are tied, then the module having the largest
number of inmiediately successive rnodules is assigned tb a higher priority

D4. [Assign thejnodules.] Assign the modules to the Pm^f (n) on the basis of the prior
ity list. If A(n) - 0, then stop; otherwise, go to D2.

END DHLF/MISF.
To demonstrate the efficiency of the proposed heuristic algorithm, a total of 200

random task graphs, each with the number of modules ranging from 10 to 200, was gen
erated for scheduiing on a multiprocessor system. Comparison was made between the
DHLF/MISF solution and the-Optimal solution by varying the number of processors in
the multiprocessor system. Since the optimal solution (i.e. critical-path length) for all
the cases can be achieved by increasing the number of processors, the comparison was
made between the optimal solution and the solution obtained before the DHLF/MISF
algorithm reaches tfie optimal solution Approximate Solutions with a relative error e of
less than 5 percent \vere obtained for 81.5 percent of the cases, and less than 10 percent
error for 98v5 percent of the cases; The relative error e is defined as

finishing time of a schdule •— finishing time of the optimal scfadule .
finishing time of the optimal schdule '

From this Computer simulation, all the schedules obtained by this heuristic algorithm
for all cases approach to the near-optimal solution. Thus, it is reasonable to use the
finishing time obtained by the algorithm DHLF/A4ISF as the upper bound cost of the
A search algorithm for obtaining the optimal solution. Using the A * search algorithm
for obtaining the optimal solution will be discussed in the next section.

4. State-Space Formulation arid A* Search Algorithm
The optimal scheduling ofp-processors to compute the robot inverse dynamics to

minimize the maxixnum processor finishing time (Eq; (4)) can be formulated as a state-
space search problem. The state-space search paradigm is defined by a triple
[U , 0 , Z),where U is a set of initial states, O is a set of operators on states, and Z is a
set of goal states [19,20]. The state space is represented by a Search tree in which each
node is a state and the application of an pperator to a node results in transforming that
state to a successor state, a process commonly called node expansion. A solution to the
search problem is a path in the state space defined by a sequence of operators which
leads a Start state to a goal state [18]. In our case of optimal scheduling problem, a solu
tion is an optimal schedule of assigning all the m computational modules to the p pro
cessors while minimizing the maximum processor finishing time (in Eq. (4)).

Before wd introduce the formulation of the scheduling problem in the state-space
^presentation, vAneed to define ordered p-tuples and the MERGE operation on the
ordered p-tuples. Let Q be a set of ordered pairs whose elements indicate the distinct

- 10-

/
modules of the desired computational task with their corresponding module execution
time (i.e. Q = {(T{, D{) , 1 < i < m }, where Ti is a module and is the correspond
ing module execution time). We choose j members combinatorially, j <p, in the set Q
to form a set of ordered p-tuples written as C^{Q), where N is the size of the set Q.
The elements in each ordered p -tuple are distinctly chosen from the members in the set
Q such that the jth member is located at the kth position of the ordered p -tuple, where
k, 1 < k < p, is the processor number with minimum finishing time at a certain stage of
the search tree. Let pav be the number of processors with minimum finishing time. If
Pav < Pi then (p — pav) elements in the ordered p-tuples are modified to (0 ,x), where
0 denotes a null-module, and x means that the module execution time is unknown, i.e.

cf(Q) = {<(T1,D1y, ■■■ ••• .u\

(Tj’Dj) 6 Q ATi,Di)HT j,Dj) except (r,- ,Di) = (Ti ,Dj) = (0,x)} .

For example, given a set Q — {(5,4), (6,5), (7,2) , (8,2)} with p = 3 processors and
both processors 1 and 3 have the minimum finishing time, then the set C2 (Q) has six
3-tuples and its elements are {< (5,4) , (0, x) , (6,5) >, < (5,4) , (0 , x) , (7,2) >,
< (5,4), (0, x), (8,2) >, < (6,5), (0, x) , (7,2) >, < (6,5) , (0 , x), (8,2) >,
<(7,2),(0,z),(8,2)>}.

Next we need to define an operation on the ordered p-tuples. Let
T =<{T1}D1),{T2,D2)) ,(Tp,Dp) > be an ordered p-tuple as defined previously
and H = < (.H,, Jj/F,, (H2 , J2)/F2, • • • , (Hp , Jp)/Fp > be an ordered p-tuple with
finishing time:.and is the finishing time of the zth processor. Then, the MERGE
operation of these two ordered p-tuples, written as MERGE[T , H), results in another
ordered p-tuple with finishing time. This means that the module Hj is executed by the
processor i followed by the module , and their finishing time is updated and modified
to Fi +D{ 3l<i < p. Thus, the MERGE operation results in merging T and H to
form a new p-tuple with finishing time as in
MERGE{T ,H) = <{T1,D1)/(Fi+D1),{T2,D2)/{F2+D2), • • • ,{Tp,Dp)/{Fp +Dp)>

With this definition and operation on the ordered p-tuples, we are now ready to formu
late the state-space search method [19,21] for the minimum-finishing-time scheduling
problem as follow.

(l) State Representation: States are data structures giving “snapshots” of the condi
tion of the search problem at each stage of its solution. Let an ordered p-tuple with
finishing time
[7(n) = <(T1,L»1)/F1, ••• , {T j,Dj)/Fj , ••• ,{Tp,Dp)/Fp> denote a partial
schedule at node n in the search tree, which indicates that the module Tj with
module execution time Dj at the jth position of the ordered p-tuple is assigned to
the j th processor which has a finishing time of Fj.

-11-

(2) Initial State: The initial state is an empty ordered p-tuple (i.e. no computational
modules are assigned to any processors).

(3) Goal state: Any state U(n) with A(n) = 0 is a goal state.
(4) Operators: Operators are means for transforming the search problem from one

state to another. The application of an operator to a node is to “merge” a new
valid ordered p-huple to U(n). The new valid ordered p-tuples are obtained from a
combinatorial selection operation on the set of ready modules R(n) (i.e.

< j < pav , where Nr is the size of the set R(n)). While satisfying
the precedence constraint of the task graph, the MERGE operation updates the
ordered p-tuple U(n) by merging a valid ordered p-tuple in the set
G^R(R(n)^ il< j <pav, to U{n'}.

The optimal schedule is constructed from the initial state (an empty ordered p-
tuple) and gradually the modules of the task are “inserted” into the schedule until they
have all been processed. The insertion of ready modules into the schedule is performed
by the MERGE operation. The MERGE operation merges a new valid ordered p-tuple
in the set Cj “(Rfo)) ,1 < j <pa„, to U(n). Since our scheduling problem assumes
that the module execution time D;’s are different from one another, there exists the pos
sibility that the optimal schedule ckn not be obtained simply by assigning all the ready
modules to the processors at the same time [15]. To determine the optimal schedule
when all the D,-’s are different; it is not suffice to generate the number of successive
nodes Nn that equals to the number of combinations from the ready modules. Instead,
at each successive node generating procedure, assigning null modules to processors may
lead to a better schedule. This null-module assignment together with the ready-module
assignment must be considered in our scheduling problem to determine an optimal
schedule. Thus, the number of successive nodes iVn generated at each node n is given

/

Pav
s

i=l
Pav

E

Nr

i ■
/ : \

m
i

+ 1
if Pav < P

■ , y-'.; : (6)

and the modules in each combination form an ordered p-tuple. Hence,
Gj R(R (n)), 1 < j’ <C pot,,, is the set which contains all the possible ordered p-tuples for
all the combinations. Note that if Nr < pav , then NUs reduces to 1. A next state gen
eration algorithm (NSG) is developed to generate the successive nodes and the next
state in the search treei

- 12-

Algorithm NSG (Next State Generation). This algorithm generates the successive
nodes and the next state in the search tree.

Nl. [Initialization and determine j?(ra).] Find the set of ready modules R{n) and set
\ I'■>«: i

N2. [Level ordering and indexing.] Based on the descending order of the level and
the number of immediate successive modules in the set R(n), index the module
number in an ascending order. Set j = pav.

N3. [Select j elements from R{n) combinatorially.] According to the index number,
choose j elements in the set R{n) lexicographically to obtain the set Cj R(R(n)).

N4. [Looping.] If j > 1, then set j = j—1 and go to IN3; otherwise continue.
N5. [Obtain the new states.] Apply the MERGE operation to a valid.p-tuple in the set

N
Cj R(R(n)) generated from N3 and N4 to the elements in the ordered p-tuple
U(n), resulting in new states.

END NSG
The above formulation presents a state-space search formalism in which a schedul

ing solution can be obtained. The path from the start node to a goal node corresponds
to a scheduling solution. The cost defined on each node expansion is according to Eq.
(15). The minimum-finishing-time-scheduling solution is the path from a start node to a
goal node with the minimum cost path.

In general, in a state-space search, the number of nodes expanded before reaching a
solution is likely to be prohibitively large, usually combinatorially explosive. Further
more, in our case, the search tree could be enormous if the number of processors and the
number of modules are large. Certainly, the so-called “blind search” (i.e. the order of
potential solution paths considered is arbitrary, using no information to judge where the
solution is likely to be) should not be used in searching for a solution for our scheduling
problem. But rather an ordered search which utilizes heuristic information about the
search problem to reduce the number of nodes expanded should be used to expand the
“most promising” node to achieve the optimal path from the start node to the goal
node.

Among all the ordered search algorithms, the well-known A algorithm [18j will be
used to find a scheduling solution. The A algorithm is guaranteed to be optimal, if the
evaluation function / (n) for node expansion is properly defined. The use of an evalua
tion function is to speed up the search process by properly ordering most promising
nodes for expansion, that is, the node selected for expansion is the one with minimum
/ (n). An evaluation function / (ft) at any node n estimates the sum of the cost of the
minimal cost path from the start node to node n plus the cost of a minimal cost path
from node n to a goal node [18]. Thus, / (ft) is an estimate of the cost of a minimal cost
path constrained to go through node n and can be defined as

- 13-

f {n)-g{n) + h(n) (7)

where g(n) is the cost of the minimal cost path from the start node to node n in the
state space and h(n) is an estimate of the cost of the minimal cost path h (n) from
node n to a goal node. The A algorithm can be considered to be a branch-and-bound
search using the dynamic programming principle with a cost estimate of remaining
unassigned modules [20], For our scheduling problem, using the above formulation and
definitions, we can obtain g{n) by consecutively applying the MERGE operation from
an initial node to node n.

As to the heuristic function h(n), physical meaning about the scheduling problem
can be used to define and select an appropriate h(n). The objective is to design and
construct h(n) to be a close estimate to the true h (n) for all n without overestimating
h (n). If the heuristic function h(n) is overestimating h (n), the ordered search may
miss an optimal solution or all solutions. On the other extreme, if h{n) = 0 for all n, no
heuristic information about the search problem is used to order the node expansion and
the search reduces to a uniform-cost search. Thus, in order to speed up the search pro-*
cess and reduce the number of nodes expanded, nonzero lower bound estimate of A (n)
should be chosen.

In our A algorithm, a heuristic function based on the Fernandez and Bussell
(F&B) bound will be used [22]. The Fernandez and Bussell bound indicates the lower
bound of the minimum-finishing-time schedule for a fixed number of processors and is
given by the function

h =Acp + r^el > (8)
where

■ ■ ’ ' ' i tk
qe = max■■[—**’+ — j4>{ T i t) dt],

0,<<*.< Dc, . P o (®)

and ijj{T > t) is the load density function and is given by

= ®CP ~~ h (10a)

fl , for LG [t t +Dj]
A fj, t) [0, otherwise , . (10b)

m ,
j ,t) . (10c)

Since the F&B lower bound is only valid for the whole DATG, it needs to be
modified in order to be used for a sub-DATG in our scheduling problem. Consider the
Gantt chart of a schedule at node n of the search tree with p processors shown in Fig. 5.
Let A^n) be the set of assigned modules executed by processor(s) with the minimum

- 14 -

finishing time, Fmjn (n). Let K(n) be a set of modules Ty, Ty ^ Ak(n), assigned to be
executed by the remaining processors, in which the jth processor has a finishing time of
Fj (n) and Fy (n) > Fmin(n), 1 < j < p . Since the cut-line of the Gantt chart is
located at the Fmin (n), for any module whose finishing time Fy-(n) is greater than
Fmin («), the remaining execution time is (Fj (n) — Fmin (n)) time unit, and
(Dj — (Fj (n) — Fmin (n))) execution time has elapsed for the module Ty, 1 < j < p •
This results in changing the level of the modules in the set K(n). We denote the
pseudo-level of the module Ty, /y(n), as the level of the original level subtracts the
elapsed execution time units. In other words, lj_(n) =
lj(n)-(Dj-(Fj (n)-Fmin(n))), 1 < j < P , T) G K(n). Then K(n) y A (n) is
the set of modules needed to be scheduled if the cut-line is at the jFmjn (n). Note that
this set of modules includes ready modules, null modules, and unfinished modules at the
jPmin(r2')* The execution time of Ty, TJ ^:K(n)J is updated and modified to
Fj (n) — Fm[n (n) . This in effect is equivalent to splitting the assigned module
Tj , Tj G K(n), into two parts: the first part is executed by the jth processor, the
second part with execution time (Fj[n) — Fmm(n)) is combined with A{n) to calculate
the F&B bound as an estimate of h (n). Note that this splitting of the assigned
modules is only used to calculate the F&B bound and no physical splitting is taken
place. Thus, the heuristic function can be written as

h(n)= max _ (h , h) + \qec\ » l11)
T;C-/v»U4(n)

where

Qec max
0 < tk < max _ (lj , l j)

[~h + J^c (T > 0^]>

and ijjc (t , t) is given by

r-= max _ (lj f lj) ~~ Vj

(12)

(!3a)

/
A

if TjeK(n)

otherwise
(13b)

(Tj,t) =
i, fort e[rjtTj + Dj]
0, otherwise

(13c)

, \Fj --Pmin («). torT,eK(n)
) . —]
3 Da otherwise\ j >

(13d)

V>c (t, i)= s ^ wc(Tj,t). ; ’ (13 d)
T;GfT(»i)U^W

Note that the level of the modules in the set K(n) is updated to iy (n). Our heuristic
function in Eq. (11) is sharper than the Kasahara and Narita’s heuristic function. A ,
comparison of our heuristic function with the Kasahara and Narita’s heuristic function
is discussed in the Appendix A. We can further improve the performance of our heuris
tic function in Eq. £ll) by modifying the pseudo-level of the modules in the set K(n) to

max _ (/,• , /,). This is stated in the following proposition.
>'/:\- :v

Proposition 1: If L- (n) = max _ (L , /_•), T. £ A(n), in Eq. (13b), then the
-A ’A-

heuristic function is a better estimate than equation (ll).
Proof : Since the schedule is npn-preemptive, the modules in the set K{n) must be

executed immediately. From the definition of the latest completion time of the modules
and the latest vertex activity function [22] in Fig. 6c, the physical meaning of changing
A .A • ■■

'Pin) to max _ (L , L-) is to move the shaded areas from the interval

[Ty. ry + Py] to the interval [0 , Dj].After this movement, the area function
AREAC (0 , tj.)f remains unchanged, where tx = max (7y + Dj). However, the area

V'^W Tj 6 K(n)
function AREAC (0 , <„), 0 < < ts, has been increased by the moved area. Thus, the

-.A ^ . '.A . ■

heuristic function with (n) = max _ (L , L-) in Eq. (ll) has a better estimate.

:;v. ^ m- - 15- / : -

Since the F&B bound underestimates the finishing time of the DATG and the
minimum time taken to process the DATG by using the preemptive schedule is the lower
bound of the non-preemptive schedule [22], the heuristic function in Eq. (ll) is admissi
ble. Hence, for pur scheduling problem, using previous formulation and Eq. (4), we have

g(n)= max tk{S)~ max D] = Fmin(n) (14)
1 <k <p Tj E K(n)

where Dy is as in Eq. (13d). Then the evaluation function for the A* algorithm becomes

/ (n)=ff(u) -fh(n) (15)
; •••_ A-.' A

where h(n) is stated as in Eq. (ll) and L- (n.) = max _ (L , L).
Tj € K(n) (rJAW ' 3

t AREAC (0 ,) A /V'c {? ■> t)dt.

- 16 -

With the above heuristic function, the MINJLENGTH algorithm has been
developed to find the minimum-finishing-time schedule within a specified relative error e
(Eq. (5)). In this algorithm, the finishing time obtained by the heuristic algorithm
DHLF jMISF will be used as the upper bound cost of the evaluation function of the A
search algorithm for obtaining the optimal solution. In the node expansion process,
whenever the evaluation function of a node in the search tree is greater than this upper
bound, then this node is pruned from the OPEN list. This is because the node contri
butes no better solution than the DHLF/MISF heuristic method. This pruning greatly
reduces the time and space complexity of the minimum-cost search in the OPEN list.

Algorithm MIN_XENGTH (Minimum-Length Schedule Algorithm). This algo
rithm determines the minimum-finishing-time schedule within the specified relative error
e.

A DATG of the desired computational task, the upper bound of finishing
time, UB, obtained from the DHLF/MISF heuristic algorithm, and the
desired relative error e of the solution schedule.
An optimal schedule with minimum finishing time.

Ml. [Initialization.] Create an empty OPEN 1 list. Put the initial node I on a list of
unexpanded nodes called OPEN. Calculate the evaluation function / (I) in Eq.
(15). Note that if the initial state I is an empty set, then the value / (I) is equal to
the Ft&B bound. If UB = f (/), then exit and an optimal solution has been found
by the DHLF/MISF heuristic algorithm; otherwise continue.

M2. [Find the “best node” from OPEN list with minimum cost.] Select from the OPEN
list a node n with minimum / (n). If several nodes qualify, choose a goal node if
there is one, otherwise choose the node on the top of the OPEN list.

M3. [Move node from unexpanded list to expanded list.] Remove node n from the
OPEN list and place it on a list of expanded nodes called CLOSED.

M4. [Check goal node.] If n is a goal node (i.e. A(n) = 0), exit with success and the
optimal Solution has been determined; otherwise continue. (If e A 0, then a sub-
optimal solution has been determined.)

M5. [Expand node n.] Use the MERGE operation on node n and create all its succes
sor nodes by using the algorithm NSG. Generate all its successor nodes ns and
place them on the top of the OPEN1 list.

M6. [Check evaluation function.] If OPEN 1 ^ an empty list, calculate / (ns) of the
node on the top of the OPEN 1 list according to Eq. (15).

a) If r/(»j/(i + oi < / (n), remove ns from the OPEN1 list and place it
on the CLOSED list. Set n — ns and go to M4.

b) If UB > r / ins) / u+e) i > / (n), place this node on the bottom of the
OPEN list.

Input:

Output:

V ,' , > 17- ,

c) If UB ■< f / (ns)/ (I + e)], prune this node.
M7. [Loop.] If OPENl — empty list, then go to M2; otherwise go to M6.

END MINJLENGTH
Note that besides the OPEN and CLOSED lists in the traditional A algorithm

[18], we: use another OJ^SiVl list which contains the nodes without calculating the
evaluation function. The next node expansion is chosen from the node with minimum
cost in the OPEN list. This greatly reduces the time and computational complexity in
calculating all the evaluation function of all the successive nodes and the minimum-cost
searchin the OPEN list.

As an example, consider the ffiinimUm-finishing-time schedule of a given DATG as
shown in Fig. 4a (m == 9). The computational modules are to be executed by 2 identical
processors (p = 2). The level number of each module is given beside each module in the
task graph. We used the above MINJLENGTH algorithm to determine an optimal
schedule. The optimal schedule is the path from the initial node to the goal node with
minimum cost path as shown in Fig. 4b and the minimum-scheduled length is found to
be 16 time units. In determining the optimal schedule, node expansion is based on the
minimum value of the evaluation function f {n) in Eq. (15). The U{n) , \qec], / (n.), and
R(n) associated with the node expansion are listed in Table 4. For comparison, we also
determined a suboptimal schedule using the proposed heuristic algorithm DHLF/AUSF.
The suboptimal schedule length is found to be 17 time units. The Gantt charts for both
schedules are shown in Fig. 7.

As shown in Fig. 4b, a total of 8 nodes are expanded in the search tree and 22 nodes
are generated before the goal node is found. If we use the critical path as the heuristic
function h(n) = Dcp (n) for all nodes to find an optimal schedule, a total of 10 nodes are
expanded and 30 nodes are generated before the optimal schedule is found. Since the
nodes generated in the scheduling problem is combihatorial explosive, the use of the
heuristic function h(n) greatly reduces the number of node expansions. For this specific
example, the number of node expansions and the number of nodes generated have been
reduced approximately by 25% and 36%, respectively.

Tk Computer Simulation . ;
The proposed A * algorithm and the heuristic algorithm DHLF /MISF were used to

schedule the inverse dynamics computation of a Stanford arm on a multiprocessor sys
tem [8,9]. The recursive Newton-Euler equations of motion were used to compute the
inverse dynamics and a task graph for this computational task can be found in [8,9].
Using this task graph, Luh and Lin, and Kasahara and Narita were able to shorten the
required computation time to 9.67 ms and 5.73 ms, respectively, with six processors.
Based on the same task graph, ouV proposed A algorithm shows further improvement
in the computational time and the number of processors used to achieve the critical-
path-length computation. Using p =6 processors, our A algorithm achieves the

- 18-

critical-path-length computation of 5.70 ms, which means that the use of more than 6
processors for parallel processing will never obtain a shorter processing time. Kasahara
and Narita’s scheduling algorithm requires p = 7 processors to achieve the same
critical-path-length computation of 5.70 ms, while Luh and Lin, although using 6 pro
cessors, were not able to achieve this minimum-time computation. The optimal alloca
tion of modules in each of the 6 processors is listed in Table 5. Table 6 details the com-
puter simulation results of our A scheduling algorithm as compared to Luh and Lin’s
[8] and Kasahara and Narita’s results [9].

To further validate the efficiency of our proposed A algorithm and the heuristic
algorithm DHLF/MISF, we would like to apply them to compute the inverse dynamics
of any n-link manipulator with rotary/prismatic joints. Since the recursive Newton-
Euler equations of motion are applicable to manipulators with rotary/prismatic joints,
they can be expressed in the HLR form (with respect to the base coordinate system).
This results in achieving an efficient task graph for computing the inverse dynamics of
any n-link manipulator with rotary/prismatic joints. This task graph is shown in Fig.
2. For a 6-link, PUMA-like manipulator, this task graph shows that the NE equations
can be decomposed into 606 computational modules. Based on the task graph in Fig. 2,
our A* algorithm and the heuristic algorithm DHLF /MISF are usedTo schedule the
computation of the modules in the task graph on a multiprocessor system whose primi
tive processing elements are constructed by a group of modular processors (MPs). Each
of these MPs has a microprocessor-like architecture. Each MP can evaluate the opera
tion of 3X1 vector addition or vector dot product simultaneously. In this computer
simulation, fwe used three Motorola MC68020 microprocessors running at a clock rate of
16.7 MHz to form a modular processor. The MC68020 microprocessor takes 3 clock
cycles (0.2 (is) and 30 clock cycles (2 jus), respectively, to compute one floating-point
addition and multiplication. The optimal schedules for any number of MPs determined
by our A algorithm are listed in Table 7. From Table 7, our A algorithm indicates
that, using 38 MPs (or 114 microprocessors), the critical-path-length computation can
be achieved for a 6-link, PUMA-link manipulator. This translates to 31 additions and 9
multiplications which lead to a processing time of 24.2/is. If six microprocessors are
used, then the optimal schedule requires a computation time of 400.4 jis. Note that the
above computation time does not include data acquisition, data scaling, and the inter
processor communication time. We also used the heuristic DHLF /MISF algorithm to
obtain fast but suboptimal schedules. In Table 7, the relative error 6 indicates the
power and efficiency of our heuristic algorithm.

6. Conclusion
The A* algorithm and the heuristic algorithm DHLF /MISF were proposed to

determine the minimum-length scheduling problem on a multiprocessor system for com
puting the inverse dynamics of an n-link manipulator with rotary/prismatic joints.
Minimizing the maximum processor finishing time is used as an objective function for

- 19-

the scheduling optimization. Although maximum parallelism task graphs can be
obtained for the NE equations of motion expressed either in the HLR or the IHLR form,
the NE task graph in the HLR form results in minimum arithmetic operations. For a 6-
link, PUMA-like manipulator, this task graph shows that the NE equations can be
decomposed into 606 computational modules. The problem of determining an optimal
schedule consisting of m modules and p processors is usually combinatorial explosive.
Our use of the heuristic function h(n), based on the Fernandez and Bussell bound, in
the evaluation function / (n) of the A algorithm greatly reduces the time complexity.
Computer simulation results indicate that the proposed A algorithm and the heuristic
algorithm DHLF/MISF are efficient and practical that they can provide suboptimal as ' *
well as optimal solutions. Our A algorithm indicates that, using 38 MPs or 114
microprocessors, the critical-path-length computation can be achieved for a 6-link,
PUMA-link rhanipulator. This translates to 31 additions and 9 multiplications which
lead to a processing time of 24.2/xs, if MC68020 microprocessors running at 16.7 MHz
clock rate are Used. If six MC68020 microprocessors are used, then the optimal schedule
requires a computation time of 400.4 /is .

- 20-

Appendix A
This appendix proves that our heuristic function in Eq. (ll) is shaper than the

Kasahara and Narita’s heuristic function [9]. The heuristic function of Kasahara and
Narita (K&N) can be written as

h-K&N {n)~ max L + \qeK&N~\
T, G A(»)

(16)

where

1 h
<hK&N = n , [~h + ~ /V>(T,t)dt]

0 < tt < max l, p n
Tj€A(n)

(17)

and %l){ r, t) is given by

r • = max L — L (18a)
J T. C A(n) \

1, for t £ [Tj + Dj }
0, otherwise

(18b)

= E niTj’t)- (18c)
Tj 6 A{n) ;

The K&N heuristic function is computed from the modules in the set A(n), while
our heuristic function is calculated from the modules in the set K(n) M A(n). Two/V ^
cases can be identified. First, if max L < max L , then max _ (/,• , lj) =

tT^Kin)3 Tj £ A (n) , T, e K(n) (J
max l ■ . From Eq. (ll), we know that the intergration includes (Fj (n) — Fmin (n)))

time units in the function ttc (Tj,t). Thus, \qec\ ^ [QcK&n] an(f h(n)
Second, if max /.• > max L- , then max _■ (/,-,/,•)> max lj. Since [<?e] is

T,eK{n)3 Tj 6 -A (ra) T, £ K{n) y A(n) T,eA{n)

a nonlinear function, it is difficult to judge whether [<7ec] or [qeK&N\ *s ^arSer* Thus, we
need to determine that max _ (L , L) + \qec\ max lj + \qeK&N\ Consider

Tj eK(n)\JA(n) T,eA{n)

the latest vertex activity function 7r(r, t) of a given interval [0 ,Dcp] as described in
Fig. 6a. At a certain stage of the search tree, Eqs.(16) and (ll) can be represented by
Figs. 6b and 6c, respectively. The shaded areas in Figs. 6b and 6c represent the modules
Tj ^A(n) and Tj (£K(n) (j A(n), respectively. Eq. (16) can be further written as

-21-

^K&N (n)

it — AREAKeN {0 ,tk)-tk > max / ,. P r^Mn)
max ,T.eA(n) 0 < tk < max

(19)

f max lj — //. + — AREAK9N (0 ,)], otherwise .
JjG.-M") P

Consider the activity function in Fig. 6, the value tk =0 in Fig. 6b corresponds to
A

the value it. = max (L , /,•) — max L in Fig. 6c. Thus, max L—tk,r/ej^njultn)3) T](EA(n)3 T,G A(n) '
. A

0 </j. < max L, is equal to max (/,•, /,•) — tk ,
" T^KMDMo) ’ 1

/\ A
max _ (L , L) — max L < tk < max _ (L , L). Since the area func-

T, eiC(a)(JA(a) Tj€A(n) T, G K(n) (JA(»)
tion AREAC (0 , tk), 0<k< max _ (L, lj), in Fig. 6c is greater than the area

T, € K(n) UA(»)

function AREAK&jj (0 , tk). 0 <tk< max L , we have max _ (/,•, L) +
T,€A(n)J T, €tf(ft)y.A(»)

[?ec]> max lj + \qeK&N\
T,eA[n)

Appendix B
The procedure of evaluating the Newton-Euler equations of motion expressed as a

HLR form is given below: t

1) Compute module T t, the 3X3 rotation matrices of link i coordinates with respect to
the base coordinates, °Rj,* =1,2, • • • ,n

0*o _ 0*o *“1tj— Kt--]L Kj

2) Compute modules T 2 and T 3,

bi =**•-li- (i-\)
and

ui — -w*-rl + Pi

3) Compute module T 4,

Zj = °Rt- z0 , zo = [0»Ovl]T
p? — °Rt- v

Si == °Ri 1 s £

- 22-

The evaluation of z2- only involves taking the third column of °R2.

4) Compute modules T 5 and T 6,

bi = K-i 4i + 1 X a,-1 9i) (1 - \)

and

ui=u}i_1+bi

5) Compute modules T7 to T n,

bi = v{ X p/ + X (wt- X p/) +

and

Pf = Pi-i +h

6) Compute modules T12 to T15,

r‘j = co{ X Sj + Wi X (wt- X s{) + pt

7) Compute module T16,

Ft- = rw,-rt-

8) Compute module T17,

= f»+i +

9) Compute modules T 20 to T 2&,

N,- = ^i + X (J,- Of).'

For the sake of saving the calculations of evaluating J, = °R,- 1 J, *R0, the above
equation is modified to

iw, = iR0^=(°Rjf «,•

'Nt- = 'Jj 'A + ’wiX(’J,- ’Wj)

N.. = °R. ‘N.-

10) Compute modules T18, T19; T 27 to T 2g,

bi = N,- + (Pi + s») X Ft- 4- Pi X fi+i

■ ; ;■ ■ - 23- ■ •

and ::

■niT*'ni+i + h '

11) Compute module X30j

_ ^ = 0
* (fif -i , if \ =

Previously undefined terms, expressed in the base coordinates, are given as follows:
■■■''mi/.,.isthe-massiQf;linki*,.'i---;-'-;';-.;:.'.:';:'.'-:;'"-'

a;,- is the angular velocity of link *,
Wj is the angular acceleration of link i,
Pj is the linear acceleration of link t,
r*j is the linear acceleration of the center of mass of link i,
F,- is the total force exerted on link * at the center of mass,
Nt- is the total moment exerted on link i at the center of mass,
f, is the force exerted on link i by link t —1,
n,- is the moment exerted on link i by link i—1,
7-' is the torque exerted by the actuator at joint i if rotational, force if translational,
qi is the joint variable of joint * if rotational and if translational).

Appendix C
The procedure of evaluating the Newton-Euler equations of motion expressed as a

IHLR form is given below:

1) Compute modules T1 and T 2,

='R^iZoi'(1

2) Compute modules T 3 to Xg,

v9i)
■ and ''■■•'V.'. ■ ’

-24-

"i = + bi

3) Compute modules T 7 to T13,

bi - X Pi + wt- X (wf X p/) +,

\ CR;-i zo 9, + 2uiX (SRi_i z0 &))

and

i>* =‘Rt-iPt-i+ 6t

4) Compute modules T14 to T17,

r,- = w,- X sf + Wj X (u), X st) + p£

5) Compute module T18,

6) Compute module T19,

Ft' = rniri

fi = lRi+ifi+i + Fi

7) Compute modules T 20 to T 23,

Nf = J(- wt- X(Jt- ■«,-)

8) Compute modules T24 to T29,

6j- = Nt- + (pt- + Sj) X Fj + pt- X fj+i

and

ni = *Ri + l ni + l + bi

9) Compute module T 30,

if \ = 0

if \ = 1

-25-

7. References

[1] J. Y. S. Luh, M. W. Walker, and R. P. Paul, “On-line Computational Scheme for
Mechanical Manipulator,” Trans. ASME, J. Dynam., Syst., Meas., Contr., Vol. 120,
pp. 69-76, June 1980.

[2] D. E. Orin, R. B. MaChee, M. Vukobratovic, and G. Hartoch, “Kinematics and
Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods,” Math.
Biosci., Yol. 43, pp. 107-130, 1979.

[3] C. S. G. Lee, T. N. Mudge, and J. L. Turney, “Hierarchical Control Structure Using
Special Purpose Processor for the Control of Robot Arm,” Proc. 1982 Conf. Patt.
Recog. and Image Processing, pp. 634-640, June 1982.

[4] R. Nigam and C. S. G. Lee, “A Multiprocessor-Based Controller for Control of
Mechanical Manipulators,” IEEE J. of Robotics and Autom., Vol. RA-1, No. 4, pp.
173-182, Dec. 1985

[5] T. Kanade, P. K. Khosla, and N. Tanaka, “Real-Time Control of the CMU Direct
Arm II Using Customized Inverse Dynamics,” Proc. of IEEE Conf. on Decision and
Contr., pp. 1345-1352, Dec. 1984.

[6] L. H. Lathrop, “Parallelism in Manipulator Dynamics,” MIT Artificial Intelligence
Lab., Cambridge, MA, Tech. Rep. No. 754, Dec. 1983.

[7] C. S. G. Lee and P. R. Chang, “Efficient Parallel Algorithm for Robot Inverse
Dynamics Computation,” IEEE Trans. Syst. Man, and Cybern., Vol. SMC-16, No. 4,
pp. 532-542, July 1986.

[8] J. Y. S. Luh and C. S. Lin, “Scheduling of Parallel Computer for a Computer-
Controlled Mechanical Manipulator,” IEEE Trans. Syst. Man and Cybern., Vol. 12,
pp.214-234, 1982.

[9] H. Kasahara and S. Narita, “Parallel Processing of Robot-Arm Control Computa
tion on a Multiprocessor System,” IEEE J. of Robotics and Autom., Vol. RA-1, No.
2, pp. 104-113, June 1985.

[10] J. Barhen, “Robot Inverse Dynamics on a Concurrent Computation Ensemble,”
Proc. of 1985 ASME Int’l Conf. on Computers in Engineering, Vol. 3, pp. 415-429,
1985.

[11] E. G. Coffman, Computer and Job-Shop Scheduling Theory, Wiley, New York, 1976.

[12] J. K. Lenstra and A. H. G. R. Kan, “Complexity of Scheduling Under Precedence
Constraints,” Oper. Res., Vol. 26, pp. 25-35, Jan. 1978.

[13] M. J. Gonzalez, Jr., “Deterministic Processor Scheduling,” Computing Surveys, Vol.
9, No. 3, 1977.

[14] M. R. Garey, R. L. Graham, and D. J. Johnson, “Performance Guarantees for
Scheduling Algorithm,” Oper. Res., Vol. 26, pp. 3-21, Jan. 1978.

v;\"' \ - 26- ^ \ '

[15] C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez. “Optimal Scheduling
Strategies in a Multiprocessor System,” IEEE Trans. Computers, Vol. C-21, pp.
137-146, Feb. 1972.

[16] T. L. Adam, K. M. Chandy and J. R. Dickson, “A Comparison of List schedules for
Parallel Processing Systems,” Commun. Ass. Comput. Mach., Vol. 17, pp. 685-690,
Dec. 1974. V

[17] H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling Algorithms for
Efficient Parallel Processing,” IEEE Trans. Computers, Vol. C-33, pp. 1023-1029,
Nov. 1984.

[18] N. J. Nilsson, Principle of Artificial Intelligence, Tioga Publishing Company, Palo
' Alto, CA, 1980. " :

[19] A- Barr and E. A. Feigenbaum, The Handbook o f Artificial Intelligence, Vol. 1, Wil
liam Kaufman, Los Altos, CA, 1981.

[20] P. H. Winston, Artificial Intelligence, Addison-Wesley, 1984

[21] C. C. Shen and W. H. Tsai, “A Graph Matching Approach to Optimal Task Assign
ment in Distributed Computing System Using a Minimax Criterion,” IEEE Trans.
Computers, Vol. C-34, pp. 745-751, Mar. 1985.

[22] E. B. Fernandez and B. Bussell, “Bound on the Number of Processors and Time for
Multiprocessor Optimal Schedules,” IEEE Trans. Computers, Vol. C-22, pp. 745-
751, Aug. 1973.

-27-

Figure 1. Linear recurrence structure of the NE equations.

;■* 28 -

Modules description

Figure 2. The NE task graphs in the HLR form.

- 29-

Modules description

Tx = ‘R,_iz09t;(l - \)
T 2=u}i
T3 = 'Ri-jw.-i X <ii (l - \)
Ta = ‘R^Zo^l - \)
T5 = T3 + T4

r 6 = d>,
T1=C}i Xpt*
T 8 — : X (<*>,• Xp,)
T9 = 2w, X *R, z0 \
T10 = *Rt-izo9*\' + r9
Tu=T7 + T10
T12 = T6 + Tn
T13 = Pi
TlA= Ui XK X st)
^ 15 = ^t X Sj
r16 = r14 + r1B
3’17 = r13 + r16

r18 = Fi
ri9 = fV

^ 20 = J* * ui

T 21 = **>»' X T 20

T 22 =
T 2Z~T 2\ + T22
'2,24s=8* +J?/.,
r 25 = r 24 x r 18
r 26 = ^ 23 + ^25

^ 27 ^ Pt Xfj+i

T 2g = ^26 + ^*27

T 29 = n*

30 = Ti

Figure 3. The NE task graphs in the IHLR form.

processor
1
2

k
k+1

I 'i
I \ I B> (n)

Fj (n)

1
J

I Fmin (n)
Fk+1 ("):

Fp(n)

I
cut-line

K(n) = {(T1,D1),(T2.D2) ••• (T M. D ^), (T R+1, D k+1).

Figure 5. The Gantt chart for the set K(n).

Figure 6.

till 1
max ly

T,€ A(n)

Tjt K(n) U A(n) T; c A(n)

(a) The latest vertex activity function 7r(r, <) of a given interval [0 ,Dcp].
(b) and (c) represent Eqs. (16) and (11), respectively. The shaded areas in
(b) and (c) represent the modules Tj g A(n) and T}- &K(n)
respectively. The value = 0 in (b) correspbuds to the value tk

max _ m^ Lin(c).c
T,€Ji:(n)(JA(n) T^A^)3

Figure 7.

-33-

pV (3.5) (6,4) (8,4)

P 2 (2.3) 1(1,2)
■ t r-i f i

(4,2)1 (5,4) | (7,3) {(9,2)1
1 1—1—|—Tj—1---!—1-- 1

0 2 4 6 8 10 12 14 16

■- ’ (a)

P1

p2
0 2 4 6 8 10 12 14 16

(b)

(3,5) (6,4) (4,2) (8.4) (9,2)

(1.2)
' 1"H

(2.3)
hr "i

(5.4)
"i"'» "iH

% (7.3)
... B T"" 1

Schedule Result for p = 2

(a) Gantt chart for MIN_LENGTH algorithm
(b) Gantt chart for list scheduling method (where

shaded area represents processor is idle).

The Gantt charts for optimal and suboptimal schedules for the example in
Fig. 4. (a) The MlN_LENGTH algorithm, '(b) The list scheduling method
(where shaded area indicates the processor is idle).

- 34-

Table 1 Module Execution Time and Level for NE Equations Expressed in HLR Form

Module Nttmb<er Execution Time Level ^

(lm+2a) f log2n] 3a [log2(n+l)]+4a [log2n]+lm [log2n]+(6—2\,-)m +(10—X,)a
2 (1—\)m 3a [log2(n.+l)l4-2a flog2n]+(6—2\t)m+(10—Xt-)a
3 • la [log2 n] 3a flog2(n-Ll)]+2a [log2a]4-(5—\)m+(10—X,)a

lm d-2d ' 3a flog2(yi+l)l+6m+(ll+Xt)o
5 .. (1—\)(lm+2a) 3a [log2(a+l)]+la [log2 n]+(5—\)m +(10—)a
6 la[log2a] 3a flog2(a +l)]+la flog2 n.]+4m+(8+X,)a
7 2m + 2a 3q [log2(n.+l)]-H5m+(9H-\-)a

> ;-8-'-V \ (2m + 2a) 3a [log2(n +l)]+(3+2Xi)m+(7+3\-)a
9 lm + la 3a flog2(n+l)]+4m+(8+Xi)a

10 1 a (la) 3aflog2(n+l)]+3m+(7+Xi)a
11 la(|log2(n+l)l) 3a [log2(n. +l)l+3m+6a
12 V 2m + 2a 2a [log2(a+l)l+4m+9a
13 lm + la 2a [log2(n-fl)]+4m+8a
14 la 2a flog2(n+l)l+3m+7a
15 la 2a flog2(rt+l)]4-3m+6a
16 lm 2a ilog2(a.+l)]-+-3m+5a
17 la [log2(n+l)l 2a [log2(nrM)l+2m+5a
18 lm + la la f)ogj(ni-ljl+2m+4a " :
19 lm -j- la la flog2(a-i-l)]+2m-4-5a
20 lm + 2a la [log2(n+l)]+5m+12a
21 lm + 2a la [log2(a+l)]+4m+10a
22 lm + 2a la ilog2(n+l)]+4m+lla
23 lm + la la flog2(n+l)l+3m+8a
24 lm- + 2a la [log2(a-f l)]+3mH-9a

■; 25 la [log2(a+l)1+2m+7a
26 lm + 2a la [log2(n+l)l+2m+6a
27 V la la [log2(n+l)l+lm+4a
28 ; la la [log2(a+l)]4-lm+3a
29 la [log2(n +l)l la [log2(a+l)]+lm+2a
30 lm + 2a lm + 2a

- 35-

Table 2 Module Execution Time and Level for NE Equations Expressed in IHLR Form

Module Number Execution Time Level

1 (l-\)m (3m+4a) [log2(n +l)]+(2m+4a) [log2 ri]-f-(6— 2\)m+8a
2 (lm+2a)[log2 n] (3m+4a)[log2(n+l)]+(2m+4a)[log2 n]+(5 — \-)m+8a
3 (l—X,)(lm+la) (3m +4a) [log2(n. +l)]+(lm +2a) [log2 «.]+(5—)m +8a
4 (1— \)m (3m -f4a) [log2(n +l)|+(lm+2a) f log2 n]+(5—)m +(7 +X^)a
5 (l-\)a (3m+4a) [log2(n +l)]+(lm +2a) [log2 n\+4m +(7+\-)a
6 (lm+2a)[log2n] (3m +4 a)[log2(n+l)]+(lm +2a) [log2 n]+4 m +(6+2 \) a
7 1 m + la (3 m +4 a) [log2(n +l)]+4m +(6+2Xj)a
8 2m + 2a (3m +4a) [log2(n +l)]+5m +(7+Xt-)a
9 X,(2m+la) (3m +4a) [log2(n +l)]+3m +(5+6)a

10 \a (3m+4a) [log2(n +l)]+3m +(5+3\)a
11 \a (3m+4a) [log2(n+l)]+3m+(5+2\)a
12 X,a (3m +4a) [log2(n +l)]+3m +(5+\-)a
13 (lm +2a) [log2(n +1)1 (3m+4a) [log2(n+l)]+3m+5a
14 2m + 2a (2m+4a) [(log2(n +l))]+5m+8a
15 lm + la (2m+4a) [(log2(n+l))]+4m+7a
16 la (2m+4a) [(log2(n+l))]+3m+6a
17 la (2m +4 a) [(log2(n +l))]+3m +5 a

.18 lm (2m+4a) [(log2(n+l))]+3m+4a
19 (lm+2a)[log2(n+l)] (2m+4a) [(log2(n+l))]+2m+4a
20 lm + 2a (lm+2a) [log2(n+l)]+3m+8a
21 lm + la (lm+2a) [log2(n+l)]+2m+6a
22 lm + 2a (lm+2a) [log2(n+l)]+2m+7a
23 la (lm+2a) [log2(n+l)]+lm+5a
24 la (lm+2a)[log2(n+l)l+2m+6a
25 lm + la (lm+2a)[log2(n+l)]+2m+5a
26 la (lm+2a)[log2(n+l)]+lm+4a
27 lm +la (lm+2a)[log2(n+l)]+2m+4a
28 la (lm+2a) [log2(u+l)]+lm+3a
29 (lm+2a)[log2(n+l)] (lm +2a) [log2(n +l)]+lm +2a
30 lm + 2a lm + 2a

- 36 -

Table 3 Comparison of Various Methods for Computing NE Equations of Motion

Method Multiplications Additions
Uicker/Kahn 32—n4 + 86—n3 +171—n22 12 4 25ra4 + 66—nz +129—n23 2

(original Lagrangian) + 53—n-1283

u Li

+ 42—n —963
(66,271) (51,548)

Luh, Walker, and Paul 150n —48 131n —48
(Newton-Euler) (852) (738)

Luh and Lin 57 n —18 50 n -18
(Scheduled Parallel N.E.) (323) (280)

Lee and Chang 27[log2n] + 116 24f]og2nl + 9flog2(»i +1)1 + 84
(Parallel Computation) (197) (183)

Lathrop 2n +3 6 n +7
(Linear Parallel) (15) (43)

Lathrop 2 [log2(»r +1)1 + 5 6 floE2(n +1)1 + 4 f log2n) + 8
(Logarithmic) (11) (28)

NE Task Graph 3 f log2(n +1)1 + 2 (log2nj+6 — 2Xt- 6 (Iog^n+1)1 + 4 (logjn] + 8
3HLR F ormulation (21) (38)

NE Task Graph [log2n|+6 —2\- 3 \ log2(n +1)]+4 f log2«l +10 - Xt-
HLR F ormulation (9) (31)

Numbers inside the parenthesis indicates the number of mathematical operations when n = 6.

- 37 -

Table 4. Cost Value of Each Node in the Search Tree in Figure 4b.

Node n U(n) \(lec 1 fin) R{n)

1 <(3,5)/5, (l,2)/2> i 16 {(2,3), (5,4)}
2 <(3,5)/5, (2,3)/3>
3 <(l,2)/2,(2,3)/3>
4 <(3,5)/5, (0,x)/5>
5 <(2,3)/3, (0,x)/3>
6 <(l,2)/2, {0,x)/2>
7 <(3,5)/5, (2,3)/5> i 16 {(6,4), (5,4), (4,2)}
8 <(3,5)/5, (0,z)/5>
9 <(6,4)/9, (5,4)/9> 0 17

10 <(6,4)/9, (4,2)/7> 0 16 {(5,4)}
11 <(5,4)/9, (4,2)/7>
12 <(6,4)/9, (0,®)/9>
13 <(5,4)/9, (0,x)/9>
14 <(4,2)/7, (0,x)/7>
15 <(6,4)/9, (5,4)/ll> 0 .16 {(8,4)} !
16 <(6,4)/9, (0,x)/9>
17 <(8>4)/l3, (5,4)/ll> 0 16 {P,3)}
18 .<(0,x)/ll, (5,4)/ll>
19 <(8,4)/l3, (7,3)/l4> 0 16 {(0,*)}
20 <(8,4)/l3, (0,x)/13>
21 <(0,x)/14, (7,3)/l4> 0 16 {(9,2)}
22 <(0,x)/16, (9,2)/l6> 0 16

Table 5. Optimal Modules Allocation in Each of the Six Processors for a Stanford Arm

Processor Number Modules Number ^

p:, < 1 1,^21,35,45,54,44,67,14,29
2 2,7,16,15,18,20,41,55,24,60,58,33,42,39,77,87

. '"; ■ 3 4,6,9,26,31,40,50,57,61,63,64,65,66,69,71
/;</■’cA y 5,10,27,36,53,47,28,52,22,38,82,75,76

17,11,37,46,48,56,68,72,73,80,81
V-.V ;< .A-;' 8,12,19,30,34,25,43,51,59,32,49,70,23,13,28,74

79,85,78,83,84,86,88

Table 6 Comparison of Processing Time (ms)

Number of
Processors

Luh&Lin Kasahara & Narita/
Relative Error

MIRJLENGTH Algorithm/
Relative Error

,;. i <24.8 24.83/e = 0 24.83/e = 0 (optimal)
2 ; 12.42/e — 0 12.42/e = 0

; ;3V ,
; 4

8.43/e = 0
6.59/e <0.01

^ 8.44/e=0
6.59/e <0.01

5.86/e < 0.03 5.72/e < 0.005
9.67 5.73/e < 0.01 5.70/e = Of

N/at - ;:;""':"5v70/e ==;'0:.v'; << << N/A

| indicates Not Applicable.

- 39-

Table 7. The Optimal Schedules for Any Number of MPs for an n-Link Manipulator

Number of
Modular Processors

Processing Time (/as)
MIN_LENGTH DHLF jMISF

Relative
Error e

1 800.8 800.8 0
2f 400.4 400.4 0

10 80.1 82.0 0.0237
20 41.5 43.6 0.0506
30 28.7 31.8 0.1080
38 24.2j 25.8 0.0662

f equivalent to using six MC68020 microprocessors.

| indicates the critical-path-length computation.

	Purdue University
	Purdue e-Pubs
	7-1-1987

	Efficient Scheduling Algorithms for Robot Inverse Dynamics Computation on a Multiprocessor System
	C. L. Chen
	C. S. G. Lee
	S. H. E. Hou

	tmp.1542052450.pdf.UCcwG

