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ABSTRACT

Increasing cache hit-ratios has proved to be instrumental in improv-
ing performance of cache-based computeérs. This is particularly true for
computers which have a high cache-miss/cache-hit memory reference
delay ratio. Although software policies are often used for main vs. secon-
dary memory ‘‘caching”, the speed required for an implementation of a
- CPU vs. main memory cache policy has prompted only investigation of
policies which can be implemented directly in hardware. Based on
compile-time analysis, it is possible to predict program behavior, thereby
increasing the ‘hit-ratio beyond the capability of pure run-time
(hardware) techniques. In this report, compiler-driven techniques for this
kind of cache policy are described. The SCP Model (software cache pol-
ey model) provides an - optimal cache  prefetch and
placement /replacement policy when given an arbitrary memory reference

string. In addition to suggesting a simplified cache hardware model, the

SCP Model can be applied to various cache organizations such as direct

mapping, set associative, and full associative. Analytic results demon-

strate significant improvements in cache performance.

The current work discusses an optimal cache policy. which applies

where the string of references is known at compile time. However, this
constraint can be relaxed to encompass reference strings which are
known only statistically, i.e., reference strings in which data aliases make
the target of some references ambiguous. Companion reports, currently
in preparation, detail the extension of the SCP Model to incorporate
aliases, code incorporating loops, and conditional branches.
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1 lntroduction

- Introduction

‘ Cache memory is a h1gh speed buﬁ"er memory between the CPU (central processmg v
umt) or PE (multlprocessor processmg element) and the main memory Its purpose is to
obtain hlgh speed data/mstructlon access without the assoclated cost of building: pri-
mary memory entlrely using expens1ve high speed technology It i s w1dely accepted that -
cache memory is a cost effective way -to lmprove system performance Slgnlﬁcant
reductlons in the average data/mstruction access time have been achieved using. very -

s1mple cache placement /replacement policies implemented in hardware {Bel74).’

However, because of the limited area for the on-chrp cache in VLSI h1gh ratio of
'on-chlp/oﬁ'-chlp reference delay, and the -increasing demand for faster and larger ‘
memory, simple hardware cache placement/replacement pOllCleS are no-longer sufﬁcrent
to brldge the mcreasmg “memory reference delay gap’ betwveen the processor and the

- main memory

1. Conventlonal Cache Pohcy

Common cache replacement polrcies1 lrke LRU FIFO, LIFO random replacement
etc., make use of elther the history of memory references or probabilistic models to
determine what should be kept in cache In the former cases heavy time and/or space .
" localities of data/lnstructlon refererice are assumed ‘within a program, whereas in the
last case the assumptlon is that a policy of randomly chosmg cache entries to. replace
w111 achleve good average performance. | Each policy achieves good performance under
certain program behavior [CoD73]. However, in real programs, the referencmg behavior -

‘tends to change from one region of code to the next. Different localitles of time and

space result, and it is very difﬁcult for tradltlonal cache replacement pohcies to ad]ust o

‘to these changes. ‘ » 7

Dynamic switching of these (hardware) policies at run-time is physically and prac-
_ tically impossible [Bab82]. Due to cold start costs (incurred with each policy change)
and the increased hardware ‘complexity implicit'in implementing all ,these policies,
“hybrid hardware- implemented policies” are not feasible. - An ‘even more. severe
difficulty is that even if “hybrid hardware-lmplemented pohcles were feasrble, it is
extremely difficult to determine which policy the: system should employ at ‘which time.
Using only ‘the history of memory references or a _probabrhstic rnodel there is not

enough information available about the program’s futurxe'behavior.

1. " Conventional replacement policies are *dis’huSsed in detail in chapter'2. -
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1: Introduction

2. Prefetching

Typieally, one considers a cache as a buffer which is ﬁlled with nseful data upon
demand — an entry is made when a cell of memory is referenced and its value is not
currently in the cache. Alternatlvely, prefetchmg is a techmque in Whlch cache entr1es
are made before the program has demanded their values. This tends to beneﬁclally_"
decrease the cache- miss ratio, yet it increases the amount of cache space occupied, and
can actually “bump” useful entries from the cache if the cache is of fixed size, thereby
Increasing the cache-miss ratio. _

Most prefetch policies were initially deslgned for managing page tables in virtual:
memory systems However, the similarities between pag1ng and caching are very

strong, hence many ideas from pag1ng can be applled to cachlng

In 1970 Joseph presented an analy81s of program simulations runnlng in a paged
memory system [Jos70} He explored two methods of prefetchlng ~one page lookahead '
(OPLA) and simple prediction (SP) in a working set environment. In the OPLA, page R
and R+1 are fetched from the secondary memory to the main memory when there is a
demand of page R and it is not in main memory. Page R is fetched into the main
memory while the prefetched page R+1 is loaded into a ‘buffer (wh1ch 1s temporarily -
locked' against references until the transfer i is complete) In the SP, failed predlctlons '
are left in the buffer but are not overwritten. Under this s1tuat1on, there might be more
than one prefetched page in the buffer. His results showed that the number of__':page .
faults could be reduced by 50% to 70%. o ' -

Baer and Sager [BaS76] continued the work of Joseph and explored three methods
of prefetching under a least recently used (LRU) page replacement policy. They
classified locality into two types: temporal locality (locality of time) and spatial local-
ity (locality of space). Their ’objective_was to prefetch pages which share some type of
locality. The first algorithm they proposed was a variant of OPLA. The other two,

temporal lookahead, and spatial lookahead, were based on the non-sequential access of =

memory. What they tried to do was to have the prefetchmg algorlthm adapt to the ¥
changes in either type of locality. Of these three prefetching algorithms, spatial looka-

head performed best and about one half of the prefetched pages were referenced.

Smith studied prefetching in the context of data base systems [Sm178a] and for o

general-purpose paged virtual memory systems [Smi78b]. For data base systems with
sequential accessing characteristics, he reported that “run length” (the number of con-
secutive block references with intermediate re-references deleted) was likelyvt_o ‘be the
most useful predictor for optimizing a data prefetching strategy. For general 'purpose
paged virtual memory- systems, he reported that for small page sizes (from 32_to 256),
-prefetching using OPLA was effective and for large page sizes (from 1024 to 4096 bytes),
prefetching under the same conditions (LRU using OPLA) was likely to deerease
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‘ 1: Int'roduction

performance.. This de'creaSe is due to the fact that only a small fraction of the pre-
fetched pages are referenced. Thus, if the page size is large, the overhead associated
with prefetchmg useless pages may. be larger than the gain in cache—h1t rat1o v ‘
. These pioneering works on page prefetchmg in v1rtual memory systems prov1de
many insights into cache prefetchmg However, these page-oriented algorlthms cannot -
be dlrectly applied to cache management — mainly due to. circuit complexity con-
straints. In addition, since these. algorlthms do not embody knowledge of future refer-
ences, cache pollution is a serious problem information may be prefetched mto the
cache even though it never will be referenced. As a result, the cache-m1ss ratio mlght
- be 1ncreased to the point where prefetching actually decreases the cache performance. '
Unless cache pollution is ef fectwely solved prefetchlng is not of great use. This.: is why
most current systems with cache memory use a strlctly demand-drlven pohcy (1mple— :
‘mented in hardware) and requlre all data/lnstructlons to be accessed through the

cache.

3. Conclusions -

Recent advances in compller ﬂow-analysrs techmques [A1B86] [BuCSG] [D1e87] make
global control/data flow analys1s of programs practrcal Hence, it -is now pos31ble to
improve cache performance usmg predrctrons of program behav1or based on global
vcontrol/data flow ‘of programs. This technology provides the ablhty to obtaln high-
" probability - reference strings at compile time by s1mply looking ahead 1n the program ’s

flow structure. " Given a reference string at compile time, both- demand—fetch and pre- ‘

fetch cache pohc1es can be “fine-tuned” to the actual references whlch the program will :
- make. o s
‘ : Compller dr1ven prefetch pOllCleS can be 1mplemented e1ther by 1nsert1ng expllc1t
cache prefetch instructions or by tagging references within each instruction. In the case
where the reference string is completely known, cache pollution‘will' be reduced  to -
minimum- — no pollution whatsoever. Hence, prefetching can only improve cache per- v
formance. The 1mplementatlon of comp1ler—dr1ven prefetchlng is dlscussed in’ sectlon
2.2. ’ :

" policies are surveyed Performance of each of these pohcles is analyzed; some perfor-
. »mance hmltatlons are discussed. - Chapter 3 outlines the proposed SCP Model ‘which is
'~ based on global control/data flow-analysis of programs. Analysis of the. SCP Model B
shows ‘that it provides outstandlng cache performance, perhaps halving the cost of -
cache-misses that would occur in processing a typical trace using a tradltlonal»'_
hardware-lmplemented cache policy. In fact, in the case where the reference string is '

precisely known at complle time, the SCP Model always achleves the minimum cost
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1: Introduction

cache operation. Applications of the SCP Model as a supplement to different cache
hardware organizations is discussed in Chapter 4. In Chapter 5, conclusions and future
directions for software cache management are discussed.

Throughout the cache performance analysis in the next few chapters, the memory
reference string is assumed to be known precisely. Architectural cache parameters (e.g.

cache size) are also assumed to be fixed. The goal is to get the best performance from a

fixed-hardware cache.
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2: Hardware Cache Policy
Hardware Cache Policy

In thibvs section, a survey of some common har‘dware-imple’mented cache policies is
given. Plaeement/replacement policies such as least recently used (LRU) and random
replacement, prefetching or demand-fetching, and write policies are discussed in detail.
Limitations and upper bound performance of these policies are also analyzed — this
analysis is extremely important because it allows us to know the limitations of these
policies and provides hints as to where and how to improve the cache policies. Actu-
~ ally, as discussed in section 3, the circumstances which cause the poorest upper bound
performance are exactly the situations where software cache policies are most effective

in improving cache performance.

1. Hardware-Implemented Replacement Policies

Replacement policy is defined as the set of rules by which the ch01ce of cache line
to be replaced is made when the cache is full and a new line is to be fetched from the
~main memory into the cache. Hardware-implemented replacement policies such as LRU
(least recently used), random replacement, FIFO (first-in first-out) etc. are commonly
used in current cache designs; These polices can be classified as implementing one of
two general models: a history-based replacement model or a probabilistic replacement
model. For the history-based model, LRU will be used as an example; random replace-

ment will be used as an example of the probabilistic replacement model. -

1.1. Least Recently Used (LRU) Policy

The least recently-used (LRU) policy for cache replacement chooses for replace-
ment that line in cache which has not been referenced for the longest period of time
[Spi76]. The LRU stack, N,, is a list of all cache lines referenced by a program in order

of recency of usage. Let
N, = [11) Tgy «eey .'C,,}

where z,, ..., z, are all the cache line references of a program. Under LRU cachlng with

k hnes of cache, the cache content at time ¢ w1ll be
S = {:1:1, Ty eee xk}

which is the first & lines of the LRU stack. ThlS stack therefore 1mp11es the contents
under LRU of any cache size; it is a summary of the behavior of the program under any
LRU-based pohcy
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v' 2: Hardware Cache Policy

As execution progresses, the LRU stack is updated wlth each cache line reference'
Since the stack is simply a list of all cache lines, the update procedure is s1mple2 Sup—

pose reference T = % then the complete LRU stack is:
Ny = lIil Tyy wesy Ti—gy Tigly oony xnl

Usmg the notatlon d; to represent the stack ‘distance’ (how deeply buried the reference is
on the LRU stack) of the reference at time ¢, we have

if Tt+l = :C t/hen df-l"l == ‘i

In the simplest distance string model for LRU [Sp176] each distance is assigned a
’probablhty called the distance probablhty . '

Pr[dtzil:a-»» for1<1<n

Locahty of reference suggests that the d1stance probabrhtles should be generally -
decreasmg The cache lines referenced most recently are those with small distances |
(near the top of the stack) — the hope is that these cache lines will have the highest -
probability - of reference. To guarantee that the cache lines in the locahty sets of every.
size will be favored over non-locality cache hnes the distance probabilities must be

nonincreasing:
dl > ay, > > L2 4
and it is found empirically [Sp177] that the followmg relatlonshlp is an adequate approx-f
imation: '
A= ay 4 ay+ +_a,{.= 1-ck*,  for1<i<n
for parameters ¢ and k rvith 1 < k< 3 where ¢ is some constant

. Although it is practical for many purposes, this model does not accurately predlct

all aspects of realistic program behavior. For example, suppose an LRU stack model -

program executes under LRU caching in a cache of k cache lines — i.e., the first k-cache ‘,
lines in the stack will always be in cache. At ea.ch reference, a cache hne miss Wlll occur

with probability:

lfk,t = Pr[rt‘ g St—l] = Opq -+ d’k‘+2 -+ ... "l" a, = 1 - Ak »

2. In this paper, we discuss pure LRU. In fact, it is far more common that an

v approximation to LRU is implemented using a one-bit time stamp [PeS85].

1t is unlikely that such an approximation to LRU would perform as well as
LRU, and very unlxkely that it would perform better.
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2: Hardware Cache Policy

Under this analytic model, the cache miss probablhty is constant and the time 7

between any two successive misses is geometrlcally distributed:
Pr[r=q} = A¢{7'(1-4,;), q=12,..

Note in particular that no matter how many (or how few) cache misses have recently
occurred, the statistical properties of the time for the next cache miss are unaffected —

the distribution of cache misses is not history sensitive.

Even worse performance is found when the memory reference patterns of real pro-
grams,‘ are analyzed, since the reference patterns tend to change from one region of code
to the next. Locality sets change in time. Frequently, this change is gradual, cache line
by cache line; occasionally, the locality set of a real program is completely disrupted as
the program begms a new phase of execution. For example, suppose a program makes a
pass through successive elements of a large multi-cache line array. When the first N
array element in a given cache line is referenced, the cache line enters the locality set
and remains there until the last element is referenced. This process continues for each
cache line of the array. In this way, the locality set changes slowly. in time. However,
after the pass is completed, the program may begin an entirely new function, using a
new locality set which may overlap little, if at all, with the old. Such phase transac-
tions naturally induce clusters of cache misses, since an entirely new locality set must
be acqulred on demand but the locality sets in LRU stack model change by only a single

page at a time. LRU thus models behavior only within a single phase of execution.

~ As an example, suppose there is a cache of size two and the memory reference
string is 123 123. With the cost of different types of memory references shown in
Table 1 (and the line-style used to represent each), the cache content after each refer-

ence with the LRU policy is shown in Figure 1.
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2: Hardware Cache Policy

Line Pattern | Cost (Time) | Type of Reference
. none —
T, | Reference  from
_________ > | Cache
".'_-_.o.,——""";"-"'-
Tr Reference  from
e Main Memory
T + T Reference through
- P Cache (with Fetch
- - to Empty Cache
- ' Line)
T, + 2(T ) | Reference through
- - P | Cache (with
. : Replacement of a
—_— ' Cache Line)

Table 1: Cost for Each Type of Memory Reference

ref. 1 ref. 2 ref. 3 ref. 1 ref. 2 ref. 3

Figure 1: LRU Transactions for 123123
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| 2: Hardware Cachc Policy

ref 1 ref-2. ref. 3 ref- 1 ref. 2 ref. 3
Figure 2: Optimal Transactions for 123123

Cost for referencing 123123 with LRU pclicy:

10T, + 67,

COStLRU ‘ .
1067, T, =T, = 10T,

P
Compared w1th the ¢ optlmal cache pohcy shown in Figure 2:

N Costopt;ma, = 2T + 2T + 4T . o
o — 44T, if T, =T, = 10T,
We found that the ratlo of C’ostLRU /Costoptima IS 2.409. ThlS is quite a large ratio o

and this is within a smgle locahty set.

In the above discussion,. we have shown that the main reason for the LRUs
poorest upper bound performance is the lack of knowledge of what is gomg‘to ‘happen
next and lack of the ability to rapidly adjust to a change of memory reference pattern.
This is because the history of execution cannot predict a sudden change 'of‘locality sets-
— even increasing cache size does not help. No matter how we 1mprove the LRU,

optimal cache performance cannot be obtained under all situations.

1.2. Randoni Replacement

In the random replacément policy, the fundamental assumption is that references
occur at random, i.e., evenly distributed over the range of all program lines [Bel66].
Under this assumption, historical information is irrelevant, and the use of any specific
replacement rule does not ensure any relative advantage. Therefore, we might as well
choose a simple, random replacement scheme in building the probabilistic model. This
scheme chooses the cache line to be replaced at random over the range of all lines in

‘cache.

To determine the performance of this policy, it suffices to compute the probability
of a wrong decision being made under this policy. :Le't n be the number of cache lines in

the program. Then the probability of hitting a particular cache line at any memory
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"~ 2: Hardware Cache Policyv

reference time is 1/n. Let k be the number of lines in cache. Then the probability of
referencing a line in cache is k/n, and the probability of a replacement is (n - k)/n. A
reference to a line already in cache can be considered a repetition because at least one
previous reference must have occurred (when the line was stored to main memory).
From the above expressions, we can deduce that the ratio of repetitions to replacements
is k/(n - k).
Reusing the previous example (referencing 123123), the cache content after

each reference using the random replacement policy is shown in Figure 3.
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2: Hardware Cache Policy

N I 1 ] 3
Rl E o
2 \ |2 2 \ 2.}
)y EE e R

RE ke B o |

1 \ .1 \ :1v

N\ -\‘,2

\ ‘ 3

\3. 3

Figure 3: Random Replacement Transactions for 123 1‘,2‘3_ R

Cost associated with the memory reference string 123123 using random -replacémént

policy:
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2: HardWare Cache Policy -

CQStRu'"dom == 7‘75Tp + ﬁTc . o .
= 83.5T, ifT, = T, = 10T,

-

Ly
Compared with the “optimal cache policy” shown in Figure 2:

Costogima = 2T, + OT, -+ 4T,
~ = 44T : if T, = T, = 10T,
We found that the ratio of Costpunaom /C'os'tb'oi,'l,,,,a,' is 1.898. Althoug‘h this perfbr-:
mance is better than the LRU performance for thls particular reference string, the per-

formance is still very poor compared to our optlmal scheme.

Caclle Policy Cost |  Cost S_ﬁith . costc,,che;;o,,-;;/oostopti,,,,,,
o | |r,=T1,=v0r, |
Optlmal , | 2T, + ZT,‘:-:]-41TC; s . 44T¢ R | : I,QOO.
Random | 75T, 46T, | 85T, | 1898
|LRU 10T, + 6T, | N 10’6T¢ S 2.409 -

Table 2: Compai‘siojn of Execution Timés for 1231 2j3

Although the random replacement policy  is sometlmes opt1mal as demonstrated
above, it is very unhkely that it w111 be opt1mal for a given reference string. This is due.
to the fact that no locality, nor prediction, of any kind is taken into cons1deratlon '
Just as random replacement is unlikely to provide very good performance it is unlikely -
to prov1de very bad performance (relative to LRU [SrnG85]) Given this, it is surprizing
that random replacement is so much less commonly used than LRU-based schemes; -
- perhaps this is because “randomness” carries bad ‘connotations or ‘because it is more
~ difficult to 1mplement an approximation to random replacement than it is to 1mplement
‘an approximation to LRU? ; ’

~ Table 2 shows the cost of referencing 123123 for each ‘cache replacement policy
relative to the optimal replacement policy. Although the random replacement policy .
performs better than LRU, the ratio of Costp,ugom /C‘osto,m,,m, is still very large ‘Some-
-'thlng better is needed. This is our motivation for a software cache policy based on
| using complex compller technology and, comcldentally7 a greatly 51mp11ﬁed hardware

design.
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2: Hardware Cache Policy

2. Demand-Fetching vs. Prefetching

Fetching policy is the mechanism which decides which data to move from main
memory to the cache. Fetching policies can be classified as either demand-fetching. or

prefetching.

Demand-fetching is the policy in which cache lines are brought into the cache only
as they are demanded by the processor and found to be absent from the cache. There-
fore, the processor has to wait until requested data/instructions arrive from main
memory into the cache and from the cache into the processor. In high speed computer

-systems, this may be a great performance bottleneck.

In prefetching, references may be brought into the cache before they are actlially
needed. Memory cycles that would otherwise be idle are used to copy data into the
cache. There are two appoaches to prefetching: Static Prefetching (which is done at

compiled time), and Dynamic Pre fetching (which is done at run time).

Prefetching has great potential to improve cache performance. The key difficulty
is deciding what to prefetch and when. For dynamic prefetching, the usual prefetching
policy is to prefetch cache line ¢+1 when cache line 1 is referenced and not in cache, i.e.
one line lookahead. However, this causes a serious problem (especiéally where cache
size is small) in that severe cache pollution often results. Information may be pre-
fetched into the cache, replacing some cache line(s) that are referenced later with pre;
fetched information which is never referenced. As a result, cache-misses might actually

increase using prefetching.

For static prefetching, prefetching can be made “smart” — so that all information
prefetched eventually will be used. Cache pollution is minimized (but not eliminated)
with this type of prefetching. This improvement may be achieved without a signiﬁcant
increase in complexity of the cache hardware. Further, since the prefetching operations
are scheduled into times when no memory-to-cache traffic is anticipated, there is not
likely to be any interference with normal fetching. However, a new compiler technology
is needed to implement this “smart” prefetching.

If optimum cache performance is desired, the best approach is to use static pre-
fetching driven by the compiler. Of course, the penalty is that the compiler will need to

perform more complex, hence more time consuming, analysis. -

3. Write Policies

A write policy is the set of rules whereby it is determined whether a datum being
stored should be placed in cache or directly into memory and, if placed in cache, when
and how the main memory cell should be updated. Since conventional wisdom marks
instructions as read-only (typically, self modifying code is not written), the write policy

applies only to stores of data.
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| 2: Hardware Cache Policy

If stores do pass through the cache, there are at least two basic strategies for
managing them: write through the cache to main ImMemory or copy back data from the
cache to main memory only when the cache slot must be : re-used. Wr1te through
transmits modified data immediately to main memory; thus, all write 1nstruct10ns result
in data belng transmltted ‘to main memory. Copy back transmits the entire mod1ﬁed 3
line' to main memory when a ‘miss occurs and-that line is selected for replacement.
'Srnce it is only necessary to copy back a cache entry whose value has been changed (so
that 1t no longer matches the value in the locatlon backmg it in main memory) a

“d1rty bit” is often used to mark such cache lmes.

For wrrte through, the cache and backing main memory are always. consrstent -
corresponding: locations always hold the same values. In a multlprocessmg env1ronment
where the cache is used in shared memory systems, write through is a 'simple way of
lnsurmg that ‘the ‘numerous caches are consistent with maln memory and hence with
each other Also, its 1mplementatlon is s1mple merely forcmg a write to mam memory

’ for every store instruction. However, it also has several d1sadvantages

, For example in a multlprocessor (mult1 cache) system, if the Wrrte through is
accomplished’ without blockmg the processor pendlng complet1on of . ‘the write into
~ memory, it 1s possible that the processor would s1gr1al another’ processor to read the
" value from memory, caus1ng that read request ‘to reach’ the memory before the write
. has completed (since it may take & d1ffereht path through the interconnection network).

. The alternatlve, which is blockmg the processdr untrl each. wrlte has completed, greatly

1mpedes performance in general. In most 1mplementatlons usmg Wr1te back, longer

delay is experienced when a cache miss occurs, since the value ofiginally in the cache

. must be written back to ma1n memory bel'ore 1t can be replaced by the value just refer-:

enced Also, extra logic is. needed to implement “dlrty bits:” “Writé back, however, may

~give a lower cache miss ratio than is achieved using write through [Sim82].

It has been shown that each of these two memory update policies can have better
performance than the other under certaln conditions {Slm82} The preferred approachf
* depends on the application program, as well as on the archrtectural design of the cache.
Ideally, a system would incorporate both memory update po‘licles (without excessive
. overhead) and would optimally chose the update policy to be used for each write in the
" program. However, just as the replacement policies, it is not poss1ble to 1mplement
hardware which can make these choices. This is due to the lack of global knowledge of

what is going to be used- next

: On the other hand, software using global mformatron about data/control flow.
 obtained by compiler flow analysis, can make such ch01ces.v The SCP Model permits

; reasonable write policy choices to be mader‘:
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4. Conclusions ‘ _ _
In previous sections, we discussed a number of common hardWare-imp.lemen-ted v
cache policies founded on either the. history of execution or a probabilistic model. Each’
of these policies is tuned to a reference pattern obtalned by a gueSS using. no
knowledge of the program structure, hence, whenever the data/mstructlon reference :
pattern of a real program being executed happens to approxrmate the reference pattern
‘from which the cache policy was. derrved, good performance is achleved For example if
a program is in the middle of a region of code and strong localities of time (temporal
locality) and/or space (spatial locality) are present, then cache policies based on 2 his-
“torical model may have good performance. However, as the program passes from that
reglon of code to the next, the same cache pohcy may ev1dence the worst possrble per-
formance. As is shown in Table 2, because the pattern is obtained independent of
knowledge of program structure, the performance of traditional hardware-lmplemented
cache policies is typlcally far from optlmal A similar 31tuatlon occurs relevant to fetch

pohcy and write pohcy

In the fetch pohcy, it appears that * sma.rter prefetching can can increase the
cache hit ratio a lot. The main comphcatlon is that the impact of cache pollutlon must
be taken into cons1deratlon and even without prefetchlng, this problem may make it
profitable to reference directly from memory as though there were no. cache (thereby'
av01d1ng pollutlon of the cache) ‘Since pollutlon is caused by smgle—event peturbatlons
in the referencing structure, no hlstory-based model (e. 8- OPLA) is eﬁ‘ectwe when the

event becomes history, it has already polluted the cache

In write pohcy, the ch01ce of write through or write back cannot generally be
decided in favor of one or the other: there are situations in whlch either i is better than
the other.. To obtain optimal performance, one needs a software-driven techmque for

chosing the best write policy for each write operation in the program

‘The sources of major performance improvement are better handling of the facts
that: different regions of code have different locality sets which have little (if any) over-
" lap, branches and subroutine calls also skew localities in a certain way, and different

apphcatlons have different kinds of locality (spatlal versus temporal). These cannot be

- approached as hardware design problems, since, as dlscussed above, hardware tech-

niques are inordinately expensive per unit performance 1mprovement “hybrid hardware
~ cache policies (e.g., [Bab82]) are expensive to implement, but their performance in fun--
damentally limited by the total lack of knowledge about future program behavior. - Glo-

bal information about data/control flow should be incorporated into cache pohcles

A relatively minor additional point-is that the cost variations for dlﬁerent types of
memory references cannot easrly be incorporated into the hardware-lmplemented

schemes. For example, in parallel processing systems, referencing from different .
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'»memory locations may . 1mply dlﬂerent costs, since memory may be partly local and

VIpartly global (Wlthm a srngle address space). The difference between _referencmg a vari- _‘
jable stored in global memory and a varrable stored in local memory may be a factor 10
or more — any reasonable ca.che pohcy must incorporate’ understandmg ‘of these

welghts -
The ﬂex1b1hty and power of a software 1mplemented pohcy, as well as the abrhty'»

- to obtaln and use global 1nformatlon about- program behavror make a software pohcy

' 'far more promising. Hence, we. propose to mlgrate hardware-lmplemented cathe poli-
- cies into software and to use the compller to 1mprove and in some cases make optlmal
"’._..the runtlme performance of an archltecturally very smlple cache ' '
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Software Cache Policy-

~In Chapter 2, it was suggested that alI common hardware cache pohcres are based
on either historical or probablhstlc models. Hence, each hardware policy will perform
better than the others under certain memory. 1nstructlon/data reference patterns: no
purely hardware “fix” can be made to improve performance because it is not feasible to
put all these hardware policies together and to dynamlcally change policy as the

memory referencing pattern changes

A natural alternative is to i improve performance by médifyz'ﬁg the structure of pro-
grams, at compile time, to match the ideal reference patterns, for the hardware policy in
use. It is, however:, impossible to transform arbitrary code into a perfect match for a
singlehardware policy. For this reason, we propose to allow the compiler to explicitly
control the operation of the cache for each reference. ' ‘ ' :

Detailed global control/data flow analysis of programs enables us to.know more
about the order of instruction execution and about the data used or defined by each
instruction. In effect, this analysis can determine either the exact reference sequence or
a set of possihle reference sequences and their associated probabilities of occurrence at
runtime. This makes a software cache policy feasible — if this information were not
obtainable automatically (using compller analy51s) very few users would be w1lhng or

able to explicitly state cache control for each reference

The optimal control of a cache using complle-tlme information does not, however, '
require an increase in the complexity of the cache hardware. Rather, this control
~simplifies it, since the hardware no longer need make decisions, but merely 1mplement
them on command. If a-parti‘cular reference is “marked” (by the compiler) as "being
cached in a certain way, it is of no great concern to the hardware that the previous
- reference was “marked” to be treated differently — as far as the hardware is con-
cerned, the cache policy is consistently just to do what it is explicitly told. In effect,
ordinary general-purpose registers within a. processor have long been managed in

exactly this way: cache “registers” (entries) are not really so different.

As in performing good register allocation, the overhead imposed is that a ;complex .
compﬂer technology must be designed and implemented. But; aside from improving per-
formance in much the same way registers do, this overhead is justified by the
51mphﬁcat10n of the hardware relative to achieving a given cache hit ratio — the VLSI
area saved, particularly in an on-chip cache, is priceless. ‘

~ In the following sections, a software cache policy model, Called the SCP M‘odel, is
deéscribed as an alternative cache management policy. The basic idea of this model is
to analyze global control/data flow of the program and to have the compiler ezplicitly
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ma'nage ‘cache activity based on these information. Toward . this, the global
: control/data' ﬂoW graph obtained from the analysis of a program is expanded to include-
all possible cache contents at each caehe stage (defined bel'o.W) in the gtaph. Cost for
each transaction of cache content from one cache state (defined below) to the next is
then placed in the graph as the Welght of the edge linking the two cache states. An
algorlthm (based on shortest path) is executed to obtain an optimal cache policy for
»each cache ‘transaction. This information is used by the compller to'generate code-
which exp11c1tly controls the cache, either through ‘cache instructions” (treated much
" like coprocessor instructions to be executed by the cache engine) or as tags on each
1nstruct10n

L Throughout this analy51s, it is assumed that the reference pattern is preczse.’y
: Icno'um at complle time3. -

- Section 3.1 states the asumptlons made in the SCP Model Ih section 3.2, nota-
tlons and deﬁmtlons of terms used in the analysis are introduced. Section 3.3 describes
' the graph formulation of programs. In section 3.4, the algorlthm implementing the
. software cache policy is described. Implementatlon methodologies for this cache policy

are descrlbed in section 3. 5

‘1. Assumptions of the SCP Model
_ There are several assumptlons made in the Generahzed SCP Model and few more
“in the analysis of this SCP Model in this paper -

. 1.1. Generalized SCP Model Assumptions
~ The key assumptions of the Generalized SCP. Model (there are addltlonal assump-

I tions made in the particular version used in this paper) are:

~ (1) Full associative cache organization is assimed. As will be discussed in Chapter 4,

other organizations, such as direct mapping and set associative, they can be
transformed into sets of subproblems Wlth full assomatlve cache orgamzatlon and
“smaller cache sizes. : :

(2) Architectural cache parameters such as set size, line size, and cache size are
- assumned to be fixed. This research attempts to obtain the best cache performance
from a given cache hardware design, rather than to determine the hardware

design to achieve a fixed performance goal. (However, 1t is possible to derive this
information using the same basic techniques ) :

3. In this report we ignore the fact that some references will be ambiguous:
for -example, a pointer might be known to refer to ohe of two different
memory cells, but the compiler may not know which. These complications,

* as well as code structures including branches (as opposed to the branchless
reference strings of this report), will be covered in separate doeumeuts.,

'
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There will not be any restructuring of program control flow nor any rearrange-
ment of the data/instruction storage patterns. Of course, some kinds of program
restructuring and rearrangement of data/instructions storage patterns can

‘improve the localities of data/instructions. However, this will be discussed in a

later document.

The reference string is known at compile time (i.e. branchless code, with com-
pletely unambiguous data references, is assumed).

Additional Assumptions
Additional assumptions made in the analysis of the SCP Model within this report

are discussed in the next few sections. These assumptions are not crucial to the model,

but rather serve to make analysis, and comparison with other alternatives, more

mana‘gable for this presentation.

(1)

The central processing unit has the capability of directly accessing the main
memory without going through the cache (with access time T, ) as is shown in Fig-
ure 4. ' ’ '

v e 'Cache ‘ , ‘ - _
Central A ' , ' Main
Processing \ | o
Unit - Memory

Figure 4: Model of Processor/Cache/Memory Interface

Often, it is more economical to reference an entry directly from the main memory
than transferring the whole line into the cache before it is referenced. The large.
overhead imposed in cache line transfer may not be justified by the infrequent use
of a very few entries in that cache line. In this case, direct reference from the
main memory is preferred. 7 _
In case of direct access to the main memory, the central processing unit need not
place a copy of the accessed datum into the cache. This also provides a con-
venient treatment of different write policies within the SCP Model: write through
is modeled by using the direct-to-memory path, whereas write back requests travel
through the cache. '
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(3) Transferring n lines from main memory at one time will take much less time than
transferring 1 line from main memory #n times. Of course, there is some architec-
tural limit of the number of lines which may be transferred in one request How-
ever, the existence of a limit is ignored in the current work : :

(4) The main memory is large enough to hold the whole program and no secondary: i
- memory is visible. This is clearly false on v1rtual-memory machines running rela-
- tively large programs, but the assumption simplifies the analysis con51derably
,Con51der1ng the secondary memory (or multi-level cache operatlon in general)
requires a model using more complex cache states. :

(6) Let T, units be the time to reference an entry in a line in cache, T, unlts be the
time to directly reference an entry in a line.in main memory, and T, units be the
time to transfer a cache line between cache and main memory. To simplify the
analysis, we assume that all these times are constant — although in some systems
the costs will be a function of physical distances to the memory modules contain- v
ing the addresses referenced, or of other factors 1nvolv1ng probabilistic contention
for lnterconnectlon hnks Typlcally, T << 7T < T, ;

>2. Notations and Definitions ,
' Before descrlblng the graph formulation of program some deﬁnltlons of notatlons

and terms are needed:

(1) Let N == {1 2, ..., n} be the set of cache hnes that may be referenced w1th1n a pro-
gram. .

(2) Let M be the set. of dzstmct cache l1nes in the referenced program The size of M
will be represented as m, where 1 < n. < m: It is found that the ratio of (dynamic
cache lines used)/(static cache lines used) (1 e. n/m) is very large an factor of 100
or 1000 is not unusual.

(3) Let k represent the number of cache lines in. cache. It i assumed that k < m.
~ Here, the general case of program size larger than the cache size is used. The case
“where program size is smaller than the cache size is not considered because the
wholée program can then be placed in the cache and any reasonable cache policy
~will perform very well. : :

- (4) The reference string will be denoted a8 W == 1,9,y , Where r; € M.

(5) Let 5 represent the subset of M in cache after the reference r; has been com-
; pleted For all ,0< lS | < kand S, = 23 :

3. Graph Formulation of Software Cache Pohcy

In this section, the SCP Model for controlling - a.ll cache prefetchlng and
placement /replacement act1v1t1es is described. In this model, the global control/data
. flow graph obtained is expanded to include all possible cache contents at each cache
stage. The graph is constructed in such a way that all possible complete sequences of
cache state transactions from the initial cache state to the final cache state are
included in the graph. Each of the paths from the initial cache state (deﬁned below) to
the final cache state represents one possible complete sequence of cache state transac—.-'

L tions for executmg the given memory reference strmg w.
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A simple algorithm is then used to find the path with lowest cache transaction
cost (i.e., the shortest path). After the optimal set of cache transactions has been
found, the cache control is embeded in the code generated by the compiler (either as
explicit cache prefetching instruction or as tagging reference to the end of each instruc}-_v
tion).

When the memory reference string known at compile time, this technique results in
provably optimal cache performance. This optimality of use of the cache hardware is
insured for any cache hardware design (within the bounds given above) and for any
transaction cost function. This ability to use arbitrary cost functions makes the SCP
Model particularly attractive in control of multiprocessor caches, where hardware-
implemented cache policies are typically unable to use the fact that different costs are
associated with different memory locations (local or global). The optimality of the SCP
Model depends only on the reference string, and the cost function, being known at com-
pile time. |

In the graph formulation of the SCP Model, there are four phases:

(1) cache state construction (i.e., vertex construction at a particular time instant in
the graph),
cache stage construction (i.e., vertex construction for the whole graph),

cache arc construction (i.e., arc construction in the graph), and

A
w

cache arc cost association (i-e., weight assignment to each edge in the graph).

In the SCP Model, all reference string symbol addresses are converted to their
corresponding line numbers in the main memory before any analysis is made. This
simplifies the analysis in the SCP Model, with no ill effects.

3.1. Cache State Construction

A cache state is defined as a possible configuration of cache lines in the cache. In
the SCP Model, cache state v;; in the graph represents the _']th possible cache
configuration immediately after making the reference r;. For example, if there are
three distinct cache lines {1, 2, 3} in the refernce string and the cache size is two, then

the cache may have one of the following possible cache states:
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| State Number | Cache State Caehe Entries Used
1 @ | 0/2(empty)

2 A ] 12
3 ey | 12
K o | 1z
5 2y | 2/2 ()
6 13 | 2/ ()
7 {23} 2/2 (full)

‘Table 3: Cache Configurations for k = 2 and m = 3

Given a' cache of size & and a program of size M the. max1mum possible the
number of posslble cache states is (M—I—l )/ (M+1-E)L. Obvmusly, this number is very -
large for programs of reasonable size and caches of common sizes — but this bound is
assu'm.ing fully associative »vcacvvhe5 which means that only the set size, and the fraction of
the program lines which fall into each set, are actually valid. For example; ' if:a direct—
mapped cache of 4096 lines (set size 2) is used for a program contarnlng 65536 lines, the
relevant numbers are simply k = 2 and M = 65536/4096, hence: there are
(16+1)'/(16+1 2)!, or 272, possible cache states (for each of 4096 subproblems) Further,
as we have indicated, although the SCP Model can be used for such large caches, the
performance increase is most valuable in on- ch1p and other small caches — typically of
size 32 or less — where the analysis becomes very simple (essentlally because the set of
‘program lines which need be considered 51multaneously decreases as the cache size

decreases).

3.2. Cache Stage Constructlon

Cache stage i is  the collection of all p0551b1e cache states after memory reference -
r; is made. Let v,J be the cache state j at stage ¢ with the subset of cache lines, §; . -

contained in cache at the time 1mmed1ately after the reference r;. The cache states*
* that make up stage 7, 1 < i< n represent all possible subsets of program hnes con-
talned in the cache after memory reference r;. These vertices can be found in the fol-
~ lowing manner. ' v

" The :graph' representing .,the reference string . is part‘itioned into n+2“' stage‘s-, .
" corresponding to the initial stage, r,, .. ., v, reference stages and the final stage (The

initial and final stages are defined to s1mp11fy the graph analysm )
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At stage 0 there is only one cache state, since the 1n1t1al cache contents are‘
presumably either known or the cache holds no pertment entrles (SO = @, ‘the cache

contains no valid entrles)

For stage 7, 1 <1 < n, the stage con51sts of all poss1ble (reachable) cache states
deﬁned by the cache size and the d1st1nct lines of the memory reference string. Usmg
the example in the cache state constructzon, there are 7 cache states in each cache stage
4,1 <i<mnfora cache w1th size two. The main reason for constructmg these cache
stages is that by including all poss1ble cache states in each cache stage, we can guaran-
tee that there must be one cache state in each cache stage ¢ whlch shows the cache con-
tent after the : memory reference r;. Since all posslble sequences of cache state transac-
“tion are 1ncluded the optlmal cache policy is ome which traverses the shortest
'(cheapest) path from the initial state to the ﬁnal state. For each memory reference i

exactly one cache state 7in cache stage ) along this optlmal path i is used.

At stage n+1, there is a cache state indicating the final contents of the cache.
(when the memory reference string has completed) The cache content Snt1 ab this final
stage 1s ummportant because after a.given memory reference strmg has completed
" there is no reason to prefer one cache state to another — all cache states have the

same effect, hence they can be collapsed mto a single cache state

An example cache stage constructlon helps clarify this. Suppose the given memory

reference string, w, is 1231, the sme}_of the c‘ache, k, is two. The number of distinct

. lines in the reference string, M, is 123. All cache stages in the graph are shown in

Figure 5. In Figure 5, each circle represents one possible cache state and inside the cir-
cle is the cache content S;. There are 8 cache stages (n = 6 in this case). Stage 0 has
" one cache state, corresponding to the initial state of the cache (which we will assume to
be ). For stage 3, 1 <1< 6, there afe 7 cache sbtate‘s within each stage b(asv given in
Table 3).. Stage n+1 also has oneé stage, indicating the final state of the cache (whose

content is unimportant).
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-~ Figure 5: Stages for SCP Model
3.3. Cache Arc Construction

In the SCP Model, construction of an arc from cache state 'u,-;j to cache state

Vg represents a possible cache-control operation in performing reference r;,;. The
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arc leaves a cache state in stage 7 and pomts ‘into the cache state in stage i+1 whlch
differs only in that reference r;4; may have altered the cache contents. In this way,
arcs are only created between states in success1ve stages, and it is. p0331ble that some -
states in each stage may not be reached; this is because most cache architectures sev-
erly constrain the action whlch can be taken in a smgle cache transactlon For exam- -
ple, if only one cache line can be replaced at one time, cache states with more than one
line different are not- connected by an arc. (Indeed, it is this fact more than any other
which makes use of an optimal software cache management scheme feas1ble — W1thout

this constramt the complle times would explode. ) :

In this phase, arcs for all poss1ble cache state transactlons must be constructed

From each cache state Y iy there are three classes of arcs leavmg v

No Placement/Replacement » : :
From each cache state v;;, an arc is constructed to v,+1, ) where S; = S . Thi's
kind of cache state transaction can occur under two situations. Flrst ‘memory
- reference r;,, is in the cache. In this case, the memory reference is directly from
the cache. Second, memory reference r,,; is not in the cache. In this case, the
memory reference is directly from the main memory. In both cases, there i 1s no
placement /replacement in the cache. : :

~ Placement (without replacement) : L SO

I IS |'< k, an arc is created to u,JrlJ , where S, ='8; + Tit1s ThlS represents a
reference whrch is not available from the cache, but. whlch may be placed in the
“cache in any entry which was previously not valid (empty). Under typical cache
hardware constraints, the cache content will -be changed by just one entry and
there is usually no reason .to differentiate between multiple empty entrles, hence,
only one arc of thls type will be drawn from that cache state.

Replacement: ' :
If l.S' l = k then for each x in $;, let S, = 8, - x + r;yy and arcs are constructed :
to V41,5 . This represents the s1tuatlon where the cache is full and the next refer-
ence is placed into the cache, thereby replacing an existing entry. Since each line
in the cache can be replaced, arcs corresponding to the replacement of each line in. ~

" the cache are drawn. ‘Any line could be replaced, hence there will be one arc of
this type drawn to each cache state where the referenced line 1s in the cache and
the cache is full. 3 :

Contlnulng the example in the previous phase, the graph resultmg from cache arc..
“construction 1s shown in Figure 5. Note that there are cache states which do not have
arcs - coming in. These are unreachable, or “dead,” cache states and- they can be

remoifed from the graph.
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Stage0 - . " Stage 1 Stage 2 Stage3 .~ Stage 4 . Staged - Stage 6 - Stage 7

Ref. 1 Ref. 2 Ref. 3 Ref. 1 Ref. 2 Ref.3 .
Figure 6: Arcs for SCP Model

- 3.4. Cache Arc Cost Association

In the .SCP Model, the cost associated With an arc represents the .éi(p‘ected “‘,r‘el:‘a,— '

~ tive” cost of going from one cache state to the next in the_graph..'.[_‘hié cost may be a
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constant or a variable (as in the case of multiprocessing). Generally 'speaking, 1ts value
depends on the change of the cache content and the delay in accessing the source
memory module for the reference r;. This second aspect is most important for read and
instruction-fetch references (under placement, replacement, and direct reference) ‘and

for write references (under replacement and direct reference).

The cost of ‘each arc (cache state transaction) in the graph is computed and
assigned by the following rules. For each arc, the cost of the arc connecting .cache state

v, ; and vy ;0 s

7,7

S; = 5; , ; _ v
If r;y; €S, , the cost is T,. This represents a memory reference which is satisfied
by an existing entry in the cache. If not, the cost is T',, representlng a reference_
directly from main memory (bypassing the cache ent1rely) :

S, C S, |

The cost is (r, +1.)* (|S | - IS I) The cost is the product of the cost of placing
one line in cache and the number of cache lines that need to be placed in cache.
This represents cache placement (without replacement). Note that the cost T', for
each cache line placement may be different. '

(5; #5; ) and (5,1 =5;.1) | .

The cost is (12 *T, +T,)* (number of different lines between S; and S; ). The

cost is the product of the number of replacement and the number of replacement

lines. This is the case where replacement occurs. . Here agaln, note that the cost

T, for each placement /replacement may be different.

Each cache state in stage n has one exit arc wh1ch enters the final cache state at
stage n+1. The costs associated with these arcs are 0 (since they do not represent a
physical actlon) ' _ '

Continuing the example from the prevrous phases, and given the graph in Figure 6,
the cost associated with each type of arc, and the line-style used to represent each, is
given in Table 1. Figure 7 gives the graph of Figure 6 after each arc has been given a

line-style indicating its cost.
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Stage 0 Stage 1 Stage2 Stage 3 Stage 4 Stage 5  Stage 6 Stage 7

Ref. 1 CRef.2 - Ref.3 Ref. 1 Ref. 2 Ref. 3
TFigure 7: Arc Costs for SCP Model

4. -Algorithms for Caéht_a Placement /Replacement Po'li‘cy

The. directed graph obtained in section 3.4 and in Figure 7 include_s all possible
paths corresponding to all possible cache placement /replacement policies for the ‘
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memory reference stting 123 123. Each of these paths represents a complete sequence

of cache state transactions as the given memory string is referenced.

In Figure 8, the graph actually generated by the SCP Model (with all dead cache

states removed) is shown.

/1 vy \
' VL)
v |
CoO @@
Vo <
vy D
S W W
O

v

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Ref. 1 Ref.2  Ref. 3 Ref. 1 Ref. 2 Ref. 3

Figure 8: Complete SCP Model (w/o Dead States)
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The problem now is to select the shortest path from the initial cache state at
stage O to the final cache state at stage n+1 in the graph. Standard algorithms for the
shortest path problem [Wag76] [Joh77] can provide a solution to this problem?
9 shows the optimal path obtained by performing the shortest path algorithm on the

graph of Figure 8. This optimal path represents the exact cache state transactions

. Figure

given the memory reference string 123123,

4. A more computationally-desirable approach would be to use a pruned
search which truncated the search in such a way as to avoid generating
most states within the later stages.
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Figure 9: Optimal Cache Control for 123123

The shortest path solution for each cache state transaction for referencing string
123123 is given in Figure 9. Detailed information about the cache content, type of
placement /replacement, place of reference, line number to be feteched, and line number

to be replaced are collected and are shown in Table 4. This information, especially the
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cache operation for each reference, and the cache line to be operated on, can be
embeded into the code generated by the compiler. In this way, optimal cache perfor-

~mance is assured, since the shortest path is, by definition, the optimal set of cache

operations.

Cache | Reference | Cache Content Place of Line No. | Line No.
State String after Reference | = Reference Fetched | Replaced
Start — %] — - —
Vg 1 {1} Cache 1 —

oy 2 {12y | Cach_e 2 —

v3s | 3 {1,2} Main Memory | — —
Vis 1 : {1,2} , Cache — —
V5.5 : 2 {1,2} Cache _._' _—
Vs 3 {1,2} Main Memory — —

Table 4: Optimal Cache Control Seéuence for 123123

The graph so constructed contains O(nm*) cache states and O(knm*) edges.
Wagner’s shortest path algorithm for a directed acyclic graph from a single source has
an execution time of O(max(v,e,d)), where v is the number of vertices, e is the number of
edges, and d is the maximum cost of any edge. For our graph, the computational com-
plexity of the SCP Model is O(knm*) (i.e. O(e)) using Wagner’s algorithm. k

Although this computational complexity is not promising, it is not actually a
severe limitation. Most computer systems employ very simple cache using direct map-
ping with a small set size and a small line size. For these simple cache organizations,
the compile times are expected to be quite acceptable. The key factor in the complex-
ity of the algorithm is the set size — which, for very practical hardware implementa-
tion reasons, cannot be very large and is usually one or two. :

As is shown in Chapter 4, the complexity is O{nm) for direct mapping and O(th)
for set associative with line size of two. The value of m is typically much smaller than
the value of n because the static code size of a program is always less than its dynamic
code size. Further, since caching is based on lines, each of which may contain a number
of memory locations, the number . of distiguishable address references is reduced by this

factor.

Moreover, heuristic algorithms can always help us to reduce the graph analysis
time, thereby improving compile time. Alpha-beta pruning, and generating the graph
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3: _S,oftWare Cache Policy ;

only as the search requires portxons of 1t can dramatlcally improve the graph analysxs

tlme without sacr1ﬁc1ng optimality.

5. Irnplementatlon of Software Cache Pollcy

Finally, the SCP Model requires that information about each cache state transac-
tion (such as that given in Table 4) be inserted into the code generated by the compller
These inserted “cache directives” can be embedded in the generated code in two:
different forms. new cache control instructions or tagglng references at the end of each

1nstructlon

~ The first method is to deﬁne new cache control instructions (such as-  load 2 line to
cache, or ‘store a line in cache to main memory) for fetching and storing memory lines
and to explicitly insert these new instructions into the code generated by the compiler.
The cost of this implementation is the extra execution times needed to execute these
explicit new cache control instructions. The main advantage is, however, that the
cache management can then be 1mplemented as a coprocessor — permzttmg use of exwist-
ing, comnwentional, processors. In fact, even without any specialized hardware, some
benefit can be. galned in multlprocessor environments by using a software-simulated
cache and block transfers between global and local memory spaces (feasible only

because global memory references may have extremely long access tlmes)

The other alternatlve, which is more appropriate in custom- de51gned processors, is
to place the cache control directives (from the compiler) within each instruction, by use
of a cache-directive tag field. This trades the time to execute‘coprocessorQinstruction
cache directives for the need to “borrow” instruction bits (in every instruction which
could cause a reference) for cache directives. Although the need for extra instruction

bits may increase the instruction length (and hence the cycle time), the fact that only a

couple of bits are typically needed leads us to predict that such extension of instruction- =

lengths will not be necessary.

A combination of these two methods is also possible. Cache directives may be

implemented by tagging references within 1nstructxons. Although this document has not . '

been much concerned with prefetching, it is more difficult to embed prefetch caehe
directives within each instruction than to make separate prefetch instructions, since the
prefetch offset may require a large number of bits for its representation. Hence, cache
control 1nstruct1ons would be ‘used for prefetch. This minimizes the number of cache
‘control instructions in the execution stream and, at the same time, solves the problem

of large offsets in prefetch references.

This SCP Model can be implemented using demand fetch, prefetch or a combma- _
tion of the two; in many cases, the distinction between the two is quite vague. For
‘example, a delayed load instruction (as found in most RISC processors) can be
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considered to be either demand fetch — because it requests data on demand relative to
the memory system outside the pr_ocessoi) — or prefetch — because the request is
separated from the use within the processor. In either demand fetch or prefetch, the
same delays are encountered and the compiler must schedule the fetch/cache activities
to minimize idle time: only the positioning of the control “directives” within the execu-
tion stream is different. For example, the use of NOP: instructions to fill-in the gap
between issuing and completing a delayed load in RISC processors is not fundamentally
different from the (much older) techniques which do not advertise a delayed load but
none-the-less allow loads to take several cycles and each instruction waits for a

hardware “valid” tag before it uses the content of a register.
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SCP Model in Different Cache Organizations

In cache design, one of the main factors in obtaining high efﬁciéhcy'is the cache
orgavnizatio‘n. Basically, there are three common cache ,‘organ‘izatiohs: direct mapping,
“set assocative and full associative. (Direct mapping and full ass_oéiati_vé are 'aétually.'
-special cases of set associative where set size is 1 and k, respectively.)  In this chapter,
applications of the SCP Model to these different cache organizations are discussed. As
- will be seen in the next few sections, the SCP Model discussed in the last chapter can be

applied to these three cache organizations with only minor modifications.

" In section 1 of this chapter, application of the SCP Model to _direct mapping cache
organization is discussed. Section 2 investigates the application of SCP Model to set
associative cache organization. Finally, application of the SCP Model to full associa-

tive cache organization is discussed in section 3.

1. SCP Model in Direct Mapping Cache Organization

This is the simplest, and therefore most commonly implemented, of all possible
cache organizations. In this direct mapping, line ¢ in the memory maps into the line i
modulo k of the cache, where k is the size of the cache [HwB84|. Every M/k (where Mis
the size of the main memory) will be mapped to the same cache line. The direct map-

ping cache organization is shown in Figure.10.
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Figure 10: Direct Mapping Cache Organization

In the SCP Model, direct mapping cache organization can be visualized as k

independent sub-organizations as shown in Figure 11. Each of these k sub-organizations
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consists of a cache of size one and a main memory of size M/k. ‘For the given memory
reference string, it also subdivides into k sub-strings. In each sub-string, all the line
numbers are mapped to the same line in cache — thus reducing the alternatives for per-
forming a reference to just two: either reference from main memory or reference using
the line in cache. Since each sub-organization and its corresponding sub-string is
independent of the others, it can be analyzed separately using the technique described

in Chapter 3.
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Figure 11: SCP Model of Direct Mapp‘ihg- .
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Using the example in the last chapter with line 1 and 3 in main memory mapped
to the same line in cache and line 2 in main memory to another line in cache, sub-string
1313 and 22 are formed. The graph generated by the SCP Model in direct mapping.

cache organization is shown in Figure 12. In this case, there are 2 subgraphs of Figure

12 (each of which is analyzed separately).

Stage 0. ) Stage 1 Stage 2 . Stage 3 -Stage 4 Stage 5. ,S‘tage,‘ﬁ ‘ Stage 7

Ref. 1 Ref. 2 Ref. 3 Ref. 1 Ref. 2 Ref. 3

Figure 12: SCP Model for Direct Mappingi 123123

The resulting optimal cache use for referencing string 123123 using direct map-
ping cache organization in the SCP Model is shown in Figure 13. Note that the two
ind_epend.'ent' optimal paths found by‘the SCP Model together provide all the informa-

tion needed to control the cache.
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vStag_e 0 ‘:Stage 1 Stageé Stage3 '  Stage4 - Stage5 Stage 6 Stage 7

Ref. 1. Ref.2 Ref. 3 - Refil Ref. 2 Ref.3-
: Figure 13: Optirnai Cache Control for Direct Mapping 123123

If this optimal cache managemént (in Figure 13)"is used instead of simply always

‘using the cache (as in Figure 14), the performance, using the cost functions given ear-

lier, improves by a factor of 2. - By slectively disabling the cache, cache per formance was

dramatically vmproved! This surprising result is the direct effect of avoiding cache pollu-

tion.

“ref. 1 ‘ - ref. 2 ‘ ref. 3 ref. 1 ref. 2 ref. 3

Figﬁre 14: Direct Mapping Transactions for 123123
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The ’Wo;st-case complexity of the SCP Model in direct mapping cache organization
_is O(nm), which makes the technique practical even for very large caches. On the aver-
age, however, there will be k sub-problems each of which concernsv m/k distinct cache
lines and n/k references. This results in a éomplexity of O(k’lmn), thich reflects the

fact that the analysis becomes easier as the cache becomes larger.

2. SCP Model in Set Associative Cache Organization .

The set-associative organization divides the cache into S sets with E = k/S lines

- per set, where kis the total number of lihes in the cache. For reasons of hardware com-

plexity, E is rarely greater than four [Smi78c|, and is most often two. A line 7 in main
memory can be cached in any line belonging to the set ¢ modulo S [HwB84]. Set Associ-

ative cache organization with set size of two is shown in Figure 15. - -
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bFigure 15: Sét A,ssocie.tivé 'C-a“.che'Orga}niz,ationb :

y In the SCp Model set hssoclatlve cache orgamZatlon can be- v15uahzed as S
mdependent sub—orgamzatlons Each of these S sub-orgamzatlons conS1sts of a cache of
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4: SCP Model in Different Cache Organizations 7

size k/S and a main memory of size M/k. The memory reference string is also subdi-
vided into S sub-strings, each of which has all its symbols mapped to the same cache
set. Since each sub-organization and its corresponding sub-string is independent of the
others, it can be analyzed separately using the technique described in Chapter 3. An

example of set size of 2 is shown in Figure 16.
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FiS‘ure 16: SCP Model of Set Associative (Size Two) =
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The worst-case complexity of the SCP Model in the direct mapping cache organization _
is O(Snm® ). For small set sizes, which hardware complexity issues generally fofce,_the ,
SCP Model is still practical. For example, if E is 2, then the worst-case complexity is
just O(Snm?). Again, it is useful to note that, on the average, increasing the cache size
but not increasing the set size will simplify the problem; the complexity is

O(nm(m/S)*~'), where Sincreases as k.

3. SCp Model in Full Associative Cache Organlzatlon

Full associative cache organization permlts any line in main memory to.be mapped
into-any line in ‘cache. In other words, E is k — which hardware can implement only if

kis very small. Full associative cache organization is shown in Figure 17.
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. . Cache | o o ) . ) o ) R Memor.y"

Line k-1

Line M-2

Line M-1

Figure 17_': Full Associative Cache Organization ‘
The techniques described in Chapter 3 can be used to analyze the full assdciatiife' ’

cache organization. Full associative cache organization in‘th‘e_ SCP Model is shown in

Figure 18.
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. Cache \ ) . o . _ : IR - Mémc;ry
" Line0.
“Line 1 .
. Line 0 ‘
Ligel . .
Linei -
Line k-1 -
Line M:2 -
' Line M-1

Fi‘gure;‘lS: SCP Model of Full-Assoc.iat:ive:
The worst-case complexity of the SCP Model in a full associative cache organiza-

tion is O(knm* ), which is only practical for very small caches. How‘ever,'v as discussed

~ earlier, the hardware implementation complexity also restric'ts‘full associative caches to
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very small k.
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. 5: Conclusions
Conclusions

This research ‘oﬁ’ers a new methodology for the management of cache a_c_tiv‘itiesi.
Although still in . the initial stages, it ha_s»demonstrated the potential for a rnajor :
“breakthrough” in ca.che performance. | ‘ : '1 L

With the graph formulation of a program and shortest—path based analysis, the'
' algorithm guarantees optimal cache per for'mance both demand- fetchrng/prefetchrng and
placement/replacement policy are optimally managed given a reference string which is.
known at compile time. Although this precise knowledge of the reference string is
" unlikely to be available at comprle time, the techniques presented here do not actually
require such perfect knowledge — compile-time-ambiguous alias problems merely block
our clatim of optimality, not the general applzcabzlzty ) f the techmques Further, the - .
" exact reference string is known in performing regrster allocatlon — the technlque

presented here is also an optzmal register allocation algorzthm

Another innovation in this work is that arbitrary cost functions- for
plecement/replacement are permitted. The cost functions can be re-defined to fit any
computer system, including parallel processing systerne with complex memo,ry'organiz_a-_ '
tions, yet the SCP Model insures optimal performance. These cost functions can even
be statistical (e g., they may represent estimates of expected trafﬁc over. mterconnec-
tion links, etc.), although optimality cannot be insured is such 2 case. This ﬂexrbxhty is
a key step forward in cache performance optrmrzatron relative to all previous research
concerning optimal page algorithms like MIN [Bel66], VMIN [PrF76], GOPT [DeS78]
and DMIN [BuD81], where cost functions are not considered and optrmal performa.nce,

: even assuming umform cost, is not guaranteed. (We feel that this is a falr comparison,
since the reference strlng is also asssumed to be known in these algorrthms ) '

" There i is, of course, some concern over the admittedly high complexity of softw'are' '
to implement a compiler-driven cache policy. However, as discussed above, the
hardware to zmpleme'nt a cache structure becomes intolerably complea: under the same cir- |
cumstances which make the SCP Model unwieldy: most cache structures that are easy to

build are also practical to control using the SCP Model. It also seems likely that the

complexity of the SCP technique can be great]y reduced using srmple search heur1st1cs '

such as alpha -beta pruning.

“In addition to this new methodology, we have proposed a hardware structure,;
which can cheaply and efficiently 1mplement the new cache policy. The SCP Model can
be implemented by explicitly inserting cache control instructions” into the code at
“compiled time or by adding a prefetching offset to the end of each instruction generated
by the comprler In fact, using this new model, it is possrble to implement a processor

which will use a small software-managed on-chip cache as/mstead of regrsters this new
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5: Conclusions -

architecture is discussed in a paper currently in preparatlon

In summary, we have shown that a software cache pohcy can greatly nnprove
cache performance in ways that traditional hardware- 1mplemented cache policies, as
such, cannot. The analytic results glven in this paper are currently being conﬁrmed by -

31mulat10ns of the software ¢cache policy, and will be published in a later document
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