
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

6-1-1987

Compiler-Driven Cache Policy (Known Reference
String)
Chi Hung Chi
Purdue University

Henry G. Dietz
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Chi, Chi Hung and Dietz, Henry G., "Compiler-Driven Cache Policy (Known Reference String)" (1987). Department of Electrical and
Computer Engineering Technical Reports. Paper 565.
https://docs.lib.purdue.edu/ecetr/565

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages

f/MT GoP^/

(Known Reference String)

Chi-Hung Chi
Henry G. Dietz

TR-EE 87-21
June 1987

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Compiler-Driven
Cache Policy

Page 1

Compiler-Driven Cache Policy

(Known Reference String)

Chi-Hung Chi and Henry G. Dietz

Department of Electrical Engineering
Purdue University

June 12, 1987

ABSTRACT

Increasing cache hit-ratios has proved to be instrumental in improv­
ing performance of cache-based computers. This is particularly true for
computers which have a high cache-miss/cache-hit memory reference
delay ratio. Although software policies are often used for main vs. secon­
dary memory "caching", the speed required for an implementation of a
CPU vs. main memory cache policy has prompted only investigation of
policies which can be implemented directly in hardware. Based on
compile-time analysis, it is possible to predict program behavior, thereby
increasing the hit-ratio beyond the capability of pure run-time
(hardware) techniques. In this report, compiler-driven techniques for this
kind of cache policy are described. The SCP Model (software cache pol­
icy model) provides an optimal cache prefetch and
placement/replacement policy when given an arbitrary memory reference ■ ■ ■
string. In addition to suggesting a simplified cache hardware model, the
SCP Model can be applied to various cache organizations such as direct
mapping, set associative, and full associative. Analytic results demon­
strate significant improvements in cache performance.

The current work discusses an optimal cache policy which applies
where the string of references is known at compile time. However, this
constraint can be relaxed to encompass reference strings which are
known only statistically, i.e., reference strings in which data aliases make
the target of some references ambiguous. Companion reports, currently
in preparation, detail the extension of the SCP Model to incorporate
aliases, code incorporating loops, and conditional branches.

Abstract

Page 2

This page is intentionally blank.

1: Introduction

Introduction

Cache memory is a high speed buffer memory between the CPU (central processing
unit) or PE (multiprocessor processing element) and the main memory. Its purpose is to
obtain high speed data/instruction access without the associated cost of building pri­
mary memory entirely using expensive High speed technology. It is widely accepted that
cache memory is a cost effective way to improve system performance. Significant
reductions in the average data/instruction access time have been achieved using very
simple cache placement/replacement policies implemented in hardware [Bel74].

However, because of the limited area for the on-chip cache in VLSI, high ratio of
on-chip/off-chip reference delay, and the increasing demand for faster and larger
memory, simple hardware cache placement/replacement policies are no longer sufficient
to bridge the increasing “memory reference delay gap” between the processor and the
main memory.

1. Conventional Cache Policy

Common cache replacement policies1 like LRU, FIFO, LIFO, random replacement
etc., make use of either the history of memory references or probabilistic models to
determine what should be kept in cache. In the former cases, heavy time and/or space
localities of data/instruction reference are assumed within a program, whereas in the
last case the assumption is that a policy of randomly chosing cache entries to replace
will achieve good average performance. Each policy achieves good performance under
certain program behavior [CoD73]. However, in real programs, the referencing behavior
tends to change from one region of code to the next. Different localities of time and
space result, and it is very difficult for traditional cache replacement policies to adjust
to these changes.

Dynamic switching of these (hardware) policies at run-time is physically and prac­
tically impossible [Bab82]. Due to cold start costs (incurred with each policy change)
and the increased hardware complexity implicit in implementing all these policies,
“hybrid hardware-implemented policies” are not feasible. An even more severe
difficulty is that even if “hybrid hardware-implemented policies” were feasible, it is
extremely difficult to determine which policy the system should employ at which time.
Using only the history of memory references or a probabilistic model, there is not
enough information available about the program’s future behavior.

1. Conventional replacement policies are discussed in detail in chapter 2.

Page 3

1: Introduction

2. Prefetchiiig

Typically, one considers a cache as a buffer which is filled with useful data upon
demand —-an entry is made when a cell of memory is referenced and its value is not
currently in the cache. Alternatively, prefetching is a technique in which cache entries
are made before the program has demanded their values. This tends to beneficially
decrease the cache-miss ratio, yet it increases the amount of cache space occupied, and
can actually “bump” useful entries from the cache if the cache is of fixed size, thereby
increasing the cache-miss ratio.

Most prefetch policies were initially designed for managing page tables in virtual
memory systems. However, the similarities between paging and caching are very
strong, hence many ideas from paging can be applied to caching.

In 1970, Joseph presented an analysis of program simulations running in a paged
memory system [Jos70]. He explored two methods of prefetching: one page lookahead
(GPLA) and simple prediction (SP) in a working set environment. In the OPLA, page R
and jR+1 are fetched from the secondary memory to the main memory when there is a
demand of page R and it is not in main memory. Page R is fetched into the main
memory while the prefetched page i2+l is loaded into a buffer (which is temporarily
locked against references until the transfer is complete). In the SP, failed predictions
are left in the buffer but are not overwritten. Under this situation, there might be more
than one prefetched page in the buffer. His results showed that the number of page
faults could be reduced by 50% to 70%.

Baer and Sager [BaS76] continued the work of Joseph and explored three methods
of prefetching under a least recently used (LRU) page replacement policy. They
classified locality into two types: temporal locality (locality of time) and spatial local­
ity (locality of space). Their objective was to prefetch pages which share some type of
locality. The first algorithm they proposed was a variant of OPLA. The other two,
temporal lookahead, and spatial lookahead, were based on the non-sequential access of
memory. What they tried to do was to have the prefetching algorithm adapt to the
changes in either type of locality. Of these three prefetching algorithms, spatial looka­
head performed best and about one half of the prefetched pages were referenced.

Smith studied prefetching in the context of data base systems [Smi78a] and for
general-purpose paged virtual memory systems [Smi78b]. For data base systems with
sequential accessing characteristics, he reported that “run length” (the number of con­
secutive block references with intermediate re-references deleted) was likely to be the
most useful predictor for optimizing a data prefetching strategy. For general purpose
paged virtual memory systems, he reported that for small page sizes (from 32 to 256),
prefetching using OPLA was effective and for large page sizes (from 1024 to 4096 bytes),
prefetching under the same conditions (LRU using OPLA) was likely to decrease

Page 4

performance. This decrease is due to the fact that only a small fraction of the pre­
fetched pages are referenced. Thus, if the page size is large, the overhead associated
with prefetching useless pages may be larger than the gain in cache-hit ratio.

These pioneering works on page prefetching in virtual memory systems provide
many insights into cache prefetching. However, these page-oriented algorithms cannot
be directly applied to cache management — mainly due to circuit complexity con­
straints. In addition, since these algorithms do not embody knowledge of future refer­
ences, cache pollution is a serious problem: information may be prefetched into the
cache even though it never will be referenced. As a result, the cache-miss ratio might
be increased to the point where prefetching actually decreases the cache performance.
Unless cache pollution is effectively solved, prefetching is not of great use. This is why
most current systems with cache memory use a strictly demand-driven policy (imple­
mented in hardware) and require all data/instructions to be accessed through the
cache.

3. Conclusions

Recent advances in compiler flow-analysis techniques [A1B86] [BuC86] [Die87] make
global control/data flow analysis of programs practical. Hence, it is now possible to
improve cache performance using predictions of program behavior based on global
control/data flow of programs. This technology provides the ability to obtain high-
probability reference strings at compile time by simply looking ahead in the program’s
flow structure. Given a reference string at compile time, both demand-fetch and pre­
fetch cache policies can be “fine-tuned” to the actual references which the program will
make.

Compiler-driven prefetch policies can be implemented either by inserting explicit
cache prefetch instructions or by tagging references within each instruction. In the case
where the reference string is completely known, cache pollution will be reduced to
minimum — no pollution whatsoever. Hence, prefetching can only improve cache per­
formance. The implementation of compiler-driven prefetching is discussed in section
2.2.

In the other sections of chapter 2, a few common cache placement/replacement
policies are surveyed. Performance of each of these policies is analyzed; some perfor­
mance limitations are discussed. Chapter 3 outlines the proposed SCP Model, which is
based on global control/data flow analysis of programs. Analysis of the SCP Model
shows that it provides outstanding cache performance, perhaps halving the cost of
cache-misses that would occur in processing a typical trace using a traditional
hardware-implemented cache policy. In fact, in the case where the reference string is
precisely known at compile time, the SCP Model always achieves the minimum cost

1: Introduction

Page 5

cache operation. Applications of the SCP Model as a supplement to different cache
hardware organizations is discussed in Chapter 4. In Chapter 5, conclusions and future
directions for software cache management are discussed.

Throughout the cache performance analysis in the next few chapters, the memory
reference string is assumed to be known precisely. Architectural cache parameters (e.g.
cache size) are also assumed to be fixed. The goal is to get the best performance from a
fixed-hardware cache.

1: Introduction

Page 6

2: Hardware Cache Policy

Hardware Cache Policy

In this section, a survey of some common hardware-implemented cache policies is
given. Placement/replacement policies such as least recently used (LRU) and random
replacement, prefetching or demand-fetching, and write policies are discussed in detail.
Limitations and upper bound performance of these policies are also analyzed —this
analysis is extremely important because it allows us to know the limitations of these
policies and provides hints as to where and how to improve the cache policies. Actu­
ally, as discussed in section 3, the circumstances which cause the poorest upper bound
performance are exactly the situations where software cache policies are most effective
in improving cache performance.

1. Hardware-Implemented Replacement Policies

Replacement policy is defined as the set of rule's by which the choice of cache line
to be replaced is made when the cache is full and a new line is to be fetched from the
main memory into the cache. Hardware-implemented replacement policies such as LRU
(least recently used), random replacement, FIFO (first-in first-out) etc. are commonly
used in current cache designs. These polices can be classified as implementing one of
two general models: a history-based replacement model or a probabilistic replacement
model. For the history-based model, LRU will be used as an example; random replace­
ment will be used as an example of the probabilistic replacement model.

1.1. Least Recently Used (LRU) Policy

The least recently-used (LRU) policy for cache replacement chooses for replace­
ment that line in cache which has not been referenced for the longest period of time
[Spi76]. The LRU stack, NtJ is a list of all cache lines referenced by a program in order
of recency of usage. Let

N(= [xl, *2> •••>*»]

where xu ..., xn are all the cache line references of a program. Under LRU caching with
A; lines of cache, the cache content at time t will be

St — {*1) x2l -) xk)

which is the first k lines of the LRU stack. This stack therefore implies the contents
under LRU of any cache size; it is a summary of the behavior of the program under any
LRU-based policy.

Page 7

2: Hardware Cache Policy

As execution progresses, the LRU stack is updated with each cache line reference.
Since the stack is simply a list of all cache lines, the update procedure is simple2. Sup­
pose reference rt+1 = x,-, .then.the complete LRU stack is:

^t+l •••> Xi—U Xi+U •••> xn\ '

Using the notation dt to represent the stack distance (how deeply buried the reference is
on the LRU stack) of the reference at time £, we have

if rt+l = x; then dt+1 == i

In the simplest distance string model for LRU [Spi76], each distance is assigned a
probability called the distance probability:

■■P.r.[dt = i\ — a;, for 1 < f < n

Locality of reference suggests that the distance probabilities should be generally
decreasing. The cache lines referenced most recently are those with small distances
(near the top of the stack) —the hope is that these cache lines will have the highest
probability of reference. To guarantee that the cache lines in the locality sets of every
size will be favored over non-locality cache lines, the distance probabilities must be
nonincreasing:

a\ ^ a2 ^ ••• ^ an

and it is found empirically [Spi77] that the following relationship is an adequate approx­
imation:

At = ax 4- a2 + ... + = 1 - for 1 < t n. .

for parameters c and k with 1 < < 3 where c is some constant.

Although it is practical for many purposes, this model does not accurately predict
all aspects of realistic program behavior. For example, suppose an LRU stack model
program executes under LRU caching in a cache of k cache lines — i.e., the first A; cache
lines in the stack will always be in cache. At each reference, a cache line miss will Occur
with probability:

fk,t = Prh 0 ^t-i] = -«*+i + ak+2 + ... H- ah = 1 - Ak

2. In this paper, we discuss pure LRU. In fact, it is far more common that an
approximation to LRU is implemented using a one-bit time stamp [PeS85].
It is unlikely that such an approximation to LRU would perform as well as
LRU, and Very unlikely that it vtould perform better.

Page 8

Under this analytic model, the cache miss probability is constant, and the time r
between any two successive misses is geometrically distributed:

Pr[r=g] = ArK^Ak), 4 = 1,2,...

Note in particular that no matter how many (or how few) cache misses have recently
occurred, the statistical properties of the time for the next cache miss are unaffected —
the distribution of cache misses is not history sensitive.

Even worse performance is found when the memory reference patterns of real pro­
grams. are analyzed, since the reference patterns tend to change from one region of code
to the next. Locality sets change in time. Frequently, this change is gradual, cache line
by cache line; occasionally, the locality set of a real program is completely disrupted as
the program begins a new phase of execution. For example, suppose a program makes a
pass through successive elements of a large, multi-cache line array. When the first
array element in a given cache line is referenced, the cache line enters the locality set
and remains there until the last element is referenced. This process continues for each
cache line of the array. In this way, the locality set changes slowly in time. However,
after the pass is completed, the prograin may begin an entirely new function, using a
new locality set which may overlap little, if at all, with the old. Such phase transac­
tions naturally induce clusters of cache misses, since an entirely new locality set must
be acquired on demand but the locality sets in LRU stack model change by only a single
page at a time. LRU thus models behavior only within a single phase of execution.

As an example, suppose there is a cache of size two and the memory reference
string is 123 123. With the cost of different types of memory references shown in
Table 1 (and the line-style used to represent each), the cache content after each refer­
ence with the LRU policy is shown in Figure 1.

2: Hardware Cache Policy

2: Hardware Cache Policy

Line Pattern Cost (Time) Type of Reference

___— ■

none

Tc Reference from
Cache

Tr Reference from
Main Memory

Tc + Tp Reference through
Cache (with Fetch
to Empty Cache
Line)

\\X\\

Tc+2(Tp) Reference through
Cache (with
Replacement of a
Cache Line)

Table 1: Cost for Each Type of Memory Reference

ref. 1 ref. 2 ref. 3 ref. 1 ref. 2 ref. 3

Figure 1: LRU Transactions for 123 123

Page 10

2: Hardware Cache Policy

— 1 1

_
L_ 1 1 -----—• 1 ----- 1 ---— — » 1

— — 2 2 2 2 2

ref. 1 ref. 2 ref. 3 ref. 1 ref. 2 ref. 3

Figure 2: Optimal Transactions for 123 123

Cost for referencing 1 2 3 1 2 3 with LRU policy:

CostLRu — -f 6TC
= 106TC if Tv = Tr = 10TC

Compared with the “optimal cache policy” shown in Figure 2:

j .■ CostOptimal = 2Tp + 2Tr -h 4TC
= 44Tc if Tp — Tr = 1QTC

We found that the ratio of CostLRU /Cost0pUnial is 2.409. This is quite a large ratio
and this is within a single locality set.

In the above discussion, we have shown that the main reason for the LRU’s
poorest upper bound performance is the lack of knowledge of what is going to happen
next and lack of the ability to rapidly adjust to a change of memory reference pattern.
This is because the history of execution cannot predict a sudden change of locality sets
— even increasing cache size does hot help. No matter how we improve the LRU,
optimal cache performance cannot be obtained under all situations.

1.2. Random Replacement

In the random replacement policy* the fundamental assumption is that references
occur at random, i.e., evenly distributed over the range of all program lines [Bel66].
Under this assumption, historical information is irrelevant, and the use of any specific
replacement rule does not ensure any relative advantage. Therefore, we might as well
choose a simple, random replacement scheme in building the probabilistic model. This
scheme chooses the cache line to be replaced at random over the range of all lines in
cache.

To determine the performance of this policy, it suffices to compute the probability
of a wrong decision being made under this policy. Let n be the number of cache lines in
the program. Then the probability of hitting a particular cache line at any memory

Page 11

reference time is 1 /n. Let k be the number of lines in cache. Then the probability of
referencing a line in cache is k/n, and the probability of a replacement is (n - k)/n. A
reference to a line already in cache can be considered a repetition because at least one
previous reference must have occurred (when the line was stored to main memory).
Prom the above expressions, we can deduce that the ratio of repetitions to replacements
is k/{n -k).

Reusing the previous example (referencing 123 1 2 3), the cache content after
each reference using the random replacement policy is shown in Figure 3*

2: Hardware Cache Policy

2: Hardware Cache Policy

ref. 1 ref. 2 ref. 3 ref. 1 ref. 2 ref. 3

Figure 3: Random Replacement Transactions for 12312 3

Cost associated with the memory reference string 123 123 using random replacement
policy:

Page 13

2: Hardware Cache Policy

CostRandom . ---- ?.75Tp + 6T,
= 83.5TC if Tp = Tr'-= 10TC

Compared with the “optimal cache policy” shown in Figure 2:

CostOptimal = +2rr +‘4 Tc
= 44Tc if Tp — Tr • == 10TC

We found that the ratio of CostRandom /Cosi0pt{mal is 1.898. Although this perfor­
mance is better than the LRU performance for this particular reference string, the per­
formance is still very poor compared to our optimal scheme.

Cache Policy Cost Cost with
Tp ~ Tr — iotc :

Costg^fo —p0nCy / dost Optimal

Optimal 2 Tp + 2Tr +4Tf 44T, : 1.000

Random 7.75TP +er, ' 83.5Tc 1.898

LRU 10Tp +6TC \ 106TC 2.409

Table 2: Comparsibn 6f Execution Timds for 1 S3 123

Although the random replacement policy is sometimes optimal, as demonstrated
above, it is very unlikely that it will be optimal for a given reference string. This is due
to the fact that no locality, nor prediction, of any kind is taken into consideration.
Just as random replacement is unlikely to provide very good performance, it is unlikely
to provide very bad performance (relative to LRU [SmG85]). Given this, it is surprizing
that random replacement is so much less commonly used than LRU-based schemes;
perhaps this is because “randomness” carries bad connotations Or because it is more
difficult to implement an approximation to random replacement than it is to implement
an approximation to LRU?

Table 2 shows the cost of referencing 123 1 23 for each cache replacement policy
relative to the optimal replacement policy. Although the randorii replacement policy
performs better than LRU, the ratio of CostRandam /Cost0ptimal is still very large. Some­
thing better is heeded. This is our motivation for a software cache policy based on
using complex compiler technology and, coincidentally, a greatly simplified hardware
design.

Page 14

2: Hardware Cache Policy

2. Demand-Fetching vs. Prefetching

Fetching policy is the mechanism which decides which data to move from main
memory to the cache. Fetching policies can be classified as either demand-fetching or
prefetching.

Demand-fetching is the policy in which cache lines are brought into the cache only
as they are demanded by the processor and found to be absent from the cache. There­
fore, the processor has to wait until requested data/instructions arrive from main
memory into the cache and from the cache into the processor. In high speed computer
systems, this may be a great performance bottleneck.

In prefetching, references may be brought into the cache before they are actually
needed. Memory cycles that would otherwise be idle are used to copy data into the
cache. There are two appoaches to prefetching: Static Pre f etching (which is done at
compiled time), and Dynamic Pre fetching (which is done at run time).

Prefetching has great potential to improve cache performance. The key difficulty
is deciding what to prefetch and when. For dynamic prefetching, the usual prefetching
policy is to prefetch cache line i+1 when cache line i is referenced and not in cache, i.e.
one line lookahead. However, this causes a serious problem (especially where cache
size is small) in that severe cache pollution often results. Information may be pre­
fetched into the cache, replacing some cache line.(s) that are referenced later with pre­
fetched information which is never referenced. As a result, cache-misses might actually
increase using prefetching.

For static prefetching, prefetching can be matde “smart” -—so that all information
prefetched eventually will be used. Cache pollution is minimized (but not eliminated)
with this type of prefetching. This improvement may be achieved without a significant
increase in complexity of the cache hardware. Further, since the prefetching operations
are scheduled into times when no memory-to-cache traffic is anticipated, there is not
likely to be any interference with normal fetching. However, a new compiler technology
is needed to implement this “smart” prefetching.

If optimum cache performance is desired, the best approach is to use static pre­
fetching driven by the compiler. Of course, the penalty is that the compiler will need to
perform more complex, hence more time consuming, analysis. 3

3. Write Policies

A write policy is the set of rules whereby it is determined whether a datum being
stored should be placed in cache or directly into memory and, if placed in cache, when
and how the main memory cell should be updated. Since conventional wisdom marks
instructions as read-only (typically, self modifying code is not written), the write policy
applies only to stores of data.

Page 15

2: Hardware Cache Policy

If stores do pass through the cache, there sire at least two basic strategies for
managing them: write through the cache to main memory or copy back data from the
cache to main memory only when the cache slot must be re-used. Write through
transmits modified data immediately to main memory; thus, all write instructions result
in data being transmitted to main memory. Copy back transmits the entire modified
line to main memory when a miss occurs and that line is selected for replacement.
Since it is only necessary to copy back a cache entry whose value has been changed (so
that it no longer matches the value in the location backing it in main memory), a
“dirty bit” is often used to mark such cache lines.

For write through, the cache and backing main memory are always consistent —r
corresponding locations always hold the same values. In a multiprocessing environment,
where the cache is used in shared memory systems, write through is a simple way of
insuring that the numerous caches are consistent with main meinory and hence with
each other. Also, its implementation is simple, merely forcing a write to main memory
for every store instruction. However, it also has several disadvantages. ;

For example, in a multiprocessor (multi-cache) system, if the Write through is
accomplished' without blocking the processor pending completion of the write into
memory, It is possible that the processor would signal another'processor to read the
value from memory, causing that read request to reach the memory before the write
has completed (since it may take a differeht path through the interconnection network).
The alternative, which is blocking the processdF-ifatil each Write his completed, greatly
impedes performance in general; In most implementations using write back, longer
delay is experienced when a cache miss occurs, since the value originally in the cache
must be written back to main memory before it can be replaced by the value just refer­
enced, Also, extra logic is needed to implement “dirty bits;” Write back, however, may
give a lower cache miss ratio than is achieved using write through [Sim82].

It has been shown that each of these two memory update policies can have better
performance than the other under certain conditions [Sim82], The preferred approach
depends on the application program, as well as on the architectural design of the cache.
Ideally, a system would incorporate both memory update policies (without excessive

. overhead) and would ^optimally chose the update policy to be used for each write in the
program. However, just as the replacement policies, it is not possible to implement
hardware which can make these choices. This is due to the lack of global knowledge of
what is going to be used next.

On the other hand, software, using global information about data/control flow
; obtained by compiler flow analysis, can make such choices. The SOP Model permits
reasonable write policy choices to be madei

Page 16

2: Hardware Cache Policy

4. Conclusions

In previous sections, we discussed a number of common hardware-implemented
cache policies founded on either the history of execution or a probabilistic model. Each
of these policies is tuned to a reference pattern obtained by a “guess’5 using no
knowledge of the program structure; hence, whenever the data/instruction reference
pattern of a real program being executed happens to approximate the reference pattern
from which the cache policy was derived, good performance is achieved. For example, if
a program is in the middle of a region of code and strong localities of time (temporal
locality) and/or space (spatial locality) are present, then cache policies based on a his­
torical model may have good performance. However, as the program passes from that
region of code to the next, the same cache policy may evidence the worst possible per­
formance. As is shown in Table 2, because the pattern is obtained independent of
knowledge of program structure, the performance of traditional hardware-implemented
cache policies is typically far from optimal. A similar situation occurs relevant to fetch
policy and write policy*

In the fetch policy, it appears that “smarter55 prefetching can can increase the
cache hit ratio a lot. The main complication is that the impact of cache pollution must
be taken into consideration and, even without prefetching, this problem may make it
profitable to reference directly from memory as though there were no cache (thereby
avoiding pollution of the cache). Since pollution is caused by single-event peturbations
in the referencing structure, no history-based model (e.g., OPLA) is effective: when the
event becomes history, it has already polluted the cache.

In write policy, the choice of write through or write back cannot generally be
decided in favor of one or the other: there are situations in which either is better than
the other. To obtain optimal performance, one needs a software-driven technique for
chosing the best write policy for each write operation in the program.

The sources of major performance improvement are better handling of the facts
that: different regions of code have different locality sets which have little (if any) over­
lap, branches and subroutine calls also skew localities in a certain way, and different
applications have different kinds of locality (spatial versus temporal). These cannot be
approached as hardware design problems, since, as discussed above, hardware tech­
niques are inordinately expensive per unit performance improvement: hybrid hardware
cache policies (e.g., [Bab82]) are expensive to implement, but their performance in fun­
damentally limited by the total lack of knowledge about future program behavior. Glo­
bal information about data/control flow should be incorporated into cache policies,

A relatively minor additional point is that the cost variations for different types of
memory references cannot easily be incorporated into the hardware-implemented
schemes. For example, in parallel processing systems, referencing from different

Page 17

memory locations may imply different costs, since memory may be partly local and
partly global (within a single address space). The difference between referencing a vari­
able stored in global memory arid a variable stored in local memory may be a factor 10
or more — any reasonable cache policy must incorporate understanding of these
weights.

The flexibility and power of a software-implemented policy, as well as the ability
to obtain and use global information about program behavior, make a software policy
far more promising. Hence, we propose to migrate hardware-implemented cache poli­
cies into software and to use the compiler to improve, and in some cases make optimal,
the runtime performance of an architecturally very simple cache.

2: Hardware Cache Policy

3: Software Cache Policy

Software Cache Policy

In Chapter 2, it was suggested that all common hardware cache policies are based
on either historical or probabilistic models. Hence, each hardware policy will perform
better than the others under certain memory instruction/data reference patterns: no
purely hardware “fix” can be made to improve performance because it is not feasible to
put all these hardware policies together and to dynamically change policy as the
memory referencing pattern changes.

A natural alternative is to improve performance by modifyingthe structure of pro­
grams, at compile time, to match the ideal reference patterns for the hardware policy in
use. It is, however, impossible to transform arbitrary code into a perfect match for a
single hardware policy. For this reason, we propose to allow the compiler to explicitly
control the operation of the cache for each reference.

Detailed global control/data flow analysis of programs enables us to know more
about the order of instruction execution and about the data used or defined by each
instruction. In effect, this analysis can determine either the exact reference sequence or
a set of possible reference sequences and their associated probabilities of occurrence at
runtime. This makes a software cache policy feasible — if this information were not
obtainable automatically (using compiler analysis), very few users would be willing or
able to explicitly state cache control for each reference.

The optimal control of a cache using compile-time information does not, however,
require an increase in the complexity of the cache hardware. Rather, this control
simplifies it, since the hardware no longer need make decisions, but merely implement
them on command. If a particular reference is “marked” (by the compiler) as being
cached in a certain way, it is of no great concern to the hardware that the previous
reference was “marked” to be treated differently -— as far as the hardware is con­
cerned, the cache policy is consistently just to do what it is explicitly told. In effect,
ordinary general-purpose registers within a processor have long been managed in
exactly this way: cache “registers” (entries) are not really so different.

As in performing good register allocation, the overhead imposed is that a complex
compiler technology must be designed and implemented. But, aside from improving per­
formance in much the same way registers do, this overhead is justified by the
simplification of the hardware relative to achieving a given cache hit ratio — the VLSI
area saved, particularly in an on-chip cache, is priceless.

In the following sections, a software cache policy model, called the SCP Model, is
described as an alternative cache management policy. The basic idea of this model is
to analyze global control/data flow of the program and to have the compiler explicitly

Page 19

3: Software Cache Policy

manage cache activity based on these information. Toward this, the global
control/data flow graph obtained from the analysis of a program is expanded to include
all possible cache contents at each detche stage (defined below) in the graph. Cost for
each transaction of Cache content from one cache state (defined below) to the next is
then placed in the graph as the weight of the edge linking the two cache states. An
algorithm (based on shortest path) is executed to obtain an optimal cache policy for
each cache transaction. This information is used by the compiler to generate code
which explicitly controls the cache* either through “cache instructions” (treated much
like coprocessor instructions to be executed by the cache engine) or as tags on each
instruction.

Throughout this analysis, it is assumed that the reference pattern is precisely
known compile time3.

Section 3.1 states the asumptions made in the SCP Model. In section 3.2, nota­
tions and definitions of terms used in the analysis are introduced. Section 3.3 describes
the graph formulation of programs. In section 3.4, the algorithm implementing the
software cache policy is described. Implementation methodologies for this cache policy
are described in section 3.5.

1. \ Assumptions of the SCP Model

There are several assumptions made in the Generalized SCP Model and few more
in the analysis of this SCP Model in this paper.

1.1. Generalized SCP Model Assumptions

The key assumptions of the Generalized SCP Model (there are additional assump­
tions made in the particular version used in this paper) are:

(1) Full associative cache organization is assumed. As will be discussed in Chapter 4,
other organizations, such as direct mapping and set associative, they can be
transformed into sets of subproblems with full associative cache organization and
smaller cache sizes.

(2) Architectural cache parameters such as set size, line size, and cache size are
assumed to be fixed. This research attempts to obtain the best cache performance
from a given cache hardware design, rather than to determine the 'hardware
design to achieve a fixed performance goal. (However, it is possible to derive this
information using the same basic techniques.)

3. In this report, we ignore the fact that some references will be ambiguous:
for example, a pointer might be known to refer to one of two different
memory cells, but the compiler may not know which. These complications,

: as well as code structures including branches (as opposed to the branchless
reference strings of this report), will be covered in separate documents.

Page 20

3: Software Cache Policy

(3) There will not be any restructuring of program control flow nor any rearrange­
ment of the data/instruction storage patterns. Of course, some kinds of program
restructuring and rearrangement of data/instructions storage patterns can
improve the localities of data/instructions. However, this will be discussed in a
later document.

(4) The reference string is known at compile time (i.e. branchless code, with com­
pletely unambiguous data references, is assumed).

1.2. Additional Assumptions

Additional assumptions made in the analysis of the SCP Model within this report
are discussed in the next few sections. These assumptions are not crucial to the model,
but rather serve to make analysis, and comparison with other alternatives, more
managable for this presentation.

(1) The central processing unit has the capability of directly accessing the main
memory without going through the cache (with access time Tr) as is shown in Fig­
ure 4.

Cache

Processing

Central

Memory

Main

Figure 4: Model of Processor/Cache/Memory Interface

Often, it is more economical to reference an entry directly from the main memory
than transferring the whole line into the cache before it is referenced. The large
overhead imposed in cache line transfer may not be justified by the infrequent use
of a very few entries in that cache line. In this case, direct reference from the
main memory is preferred.

(2) In case of direct access to the main memory, the central processing unit need not
place a copy of the accessed datum into the cache. This also provides a con­
venient treatment of different write policies within the SCP Model: write through
is modeled by using the direct-to-memory path, whereas write back requests travel
through the cache.

Page 21

3: Software Cache Policy

(3) Transferring n lines from main memory at one time will take much less time than
transferring 1 line from main memory n times. Of course, there is some architec­
tural limit of the number of lines which may be transferred in one request. How­
ever, the existence of a limit is ignored in the current work.

(4) The main memory is large enough to hold the whole program and no secondary
■ memory is visible. This is clearly false on virtual-memory machines running rela-
; tively large programs, but the assumption simplifies the analysis considerably,
Considering the secondary memory (or multi-level cache operation in general)
requires a model using more complex cache states.

(5) Let Tc units be the time to reference an entry in a line in cache, Tr units be the
time to directly reference an entry in a line in main memory, and Tp units be the
time to transfer a cache line between cache and main memory^ To simplify the
analysis, we assume that all these times are constant — although in some systems
the costs will be a function of physical distances to the memory modules contain-
ing the addresses referenced, or of other factors involving probabilistic contention
for interconnection links. Typically, Tc« Tr < Tp . i

2. Notations and Definitions

Before describing the graph formulation of program, some definitions of notations
and terms are needed:
(1) Let N {1, 2, ..., n} be the set of cache line& that may be referenced within a pro-
'■ ! gram. ’ ■ j ■
(2) Let Mbe the set of distinct cache lines in the referenced program. The size of M

will be represented as m, where 1 < n < rrL It is found that the ratio of (dynamic
cache lines used)/(static cache lines used) (i.e. n/ra) is very large; an factor of 100
or 1000 is not unusual.

(3) Let k represent the number of cache lines ih cache. It is assumed that k < m.
Here, the general case of program size larger than the cache Size is used. The case
where program size is smaller than the cache size is not considered because the
whole program can then be placed in the cache and any reasonable cache policy
will perform very well.

(4) The reference string will be denoted asw == r± ,r2,...,rn , where r{ e M.
(5) Let S{ represent the subset of M in cache after the reference has been com­

pleted. For all i, 0 < IS'J < k and S0 = 0.

3. Graph Formulation of Software Cache Policy

In this section, the SCP Model for controlling all cache prefetching and
placement/replacement activities is described. In this model, the global control/data
flow graph obtained is expanded to include all possible cache contents at each cache
stage. The graph is constructed in such a way that all possible complete sequences of
cache state transactions from the initial cache state to the final cache state are
included in the graph. Each of the paths from the initial cache state (defined below) to
the final cache state represents one possible complete sequence of cache state transac­
tions for executing the given memory reference string co.

Page 22

A simple algorithm is then used to find the path with lowest cache transaction
cost (i.e., the shortest path). After the optimal set of cache transactions has been
found, the cache control is embeded in the code generated by the compiler (either as
explicit cache prefetching instruction or as tagging reference to the end of each instruc­
tion).

When the memory reference string known at compile time, this technique results in
provably optimal cache performance. This optimality of use of the cache hardware is
insured for any cache hardware design (within the bounds given above) and for any
transaction cost function. This ability to use arbitrary cost functions makes the SCP
Model particularly attractive in control of multiprocessor caches, where hardware-
implemented cache policies are typically unable to use the fact that different costs are
associated with different memory locations (local or global). The optimality of the SCP
Model depends only on the reference string, and the cost function, being known at com­
pile time.

In the graph formulation of the SCP Model, there are four phases:

(1) cache state construction (he., vertex construction at a particular time instant in
the graph),

(2) cache stage construction (i.e., vertex construction for the whole graph),
(3) cache arc construction (i.e., arc construction in the graph), and
(4) cache arc cost association (i.e., weight assignment to each edge in the graph).

In the SCP Model, all reference string symbol addresses are converted to their
corresponding line numbers in the main memory before any analysis is made. This
simplifies the analysis in the SCP Model, with no ill effects.

i,
3.1. Cache State Construction

A cache state is defined as a possible configuration of cache lines in the cache. In
the SCP Model, cache state v{j in the graph represents the possible cache
configuration immediately after making the reference r{. For example, if there are
three distinct cache lines {l, 2, 3} in the refernce string and the cache size is two, then
the cache may have one of the following possible cache states:

3: Software Cache Policy

Page 23

3: Software Cache Policy

State Number Cache State Cache Entries Used

1 0 0/2 (empty)

2 ' 01} 1/2

3 {2}0 , ■ 1/2 :

4 {3} 1/2

5 {1,2} 2/2 (full)

6 {1,3} 2/2 (full)

7 \ {2,3} 2/2 (full)

Table 3: Cache Configurations for k = 2 and m = 3

Given a cache of size k and a program of size M, the maximum possible the
number of possible cache states is (M+l)!/(M+l-k)!. Obviously, this number is very
large for programs of reasonable size and caches of common sizes — but this bound is
assuming fully associative cache, which means that only the set size, and the fraction of
the program lines which fall into each set, are actually valid. For example, if a direct-
mapped cache of 4096 lines (set size 2) is used for a program containing 65536 lines, the
relevant numbers are simply k — 2 and M — 65536/4096, hence: there are
(16+l}!/(l6+l-2)!, or 272, possible cache states (for each of 4096 subproblems). Further,
as we have indicated, although the SCP Model can be used for such large caches, the
performance increase is most valuable in on-chip and other small caches — typically of
size 32 or less — where the analysis becomes very simple (essentially because the set of
program lines which need be considered simultaneously decreases as the cache size
decreases).

3.2, Cache Stage Construction

Cache stage i is the collection of all possible cache states after memory reference
ry is made. Let be the cache state j at stage i with the subset of cache lines, .
contained in cache at the time immediately after the reference r{. The cache states
that make up stage i, 1 < i < n represent all possible subsets of program lines con­
tained in the cache after memory reference rt-. These vertices can be found in the fol­
lowing manner.

The graph representing the reference string is partitioned into n+2 stages j
corresponding to the initial stage, r{, ..., rn reference stages and the final stage. (The
initial and final stages are defined to simplify the graph analysis.)

Page 24

At stage 0, there is only one cache state, since the initial cache contents are
presumably either known or the cache holds no pertinent entries (S0 = 0; the cache
contains no valid entries).

For stage z, 1 < z < n, the stage consists of all possible (reachable) cache states
defined by the cache size and the distinct lines of the memory reference string. Using
the example in the cache state construction, there are 7 cache states in each cache stage
z, 1 < z < n, for a cache with size two. The main reason for constructing these cache
stages is that by including all possible cache states in each cache stage, we can guaran­
tee that there must be one cache state in each cache stage i which shows the cache con­
tent after the memory reference r{. Sinbe all possible sequences of cache state transac­
tion are included, the optimal cache policy is one which traverses the shortest
(cheapest) path from the initial state to the final state. For each memory reference r{,
exactly one cache state j in cache stage i along this optimal path is used.

At stage n+1, there is a cache state indicating the final contents of the cache
(when the memory reference string has completed). The cache content Sn+1 at this final
stage is unimportant because after a given memory reference string has completed,
there is no reason to prefer one cache state to another — all cache states have the
same effect, hence they can be collapsed into a single cache state.

An example cache stage construction helps clarify this. Suppose the given memory
reference string, a;, is 123 1, the size of the cache, k, is two. The number of distinct
lines in the reference string, M, is 12 3. All cache stages in the graph are shown in
Figure 5. In Figure 5, each circle represents one possible cache state and inside the cir­
cle is the cache content £•. There are 8 cache stages (n = 6 in this case). Stage 0 has
one cache state, corresponding to the initial state of the cache (which we will assume to
be 0). For stage z, 1 < z < 6, there are 7 cache states within each stage (as given in
Table 3). Stage n+1 also has one stage, indicating the final state of the cache (whose
content is unimportant).

3: Software Cache Policy

Page 25

3: Software Cache Policy

o o o o O O
© o © © © ©
© © © © © ©

(0) (&) 0) 0) 0) (0) (0) (0)

© © © © © ©
(0) (0) (0) (0) © ©
(0) (0) (0) (0) © ©

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Ref. 1 Ref. 2 Ref. 3 Ref. 1 Ref. 2 Ref. 3

Figure 5: Stages for S CP Model

3.3. Cache Arc Construction

In the SCP Model, construction of an arc from cache state to..cache state
represents a possible cache-control operation in performing reference rt+1, The

Page 26

3: Software Cache Policy

arc leaves a cache state in stage i and points into the cache state in stage i+1 which
differs only in that reference ri+1 may have altered the cache contents. In this way,
arcs are only created between states in successive stages, and it is possible that some
states in each stage may not be reached; this is because most cache architectures sev-
erly constrain the action which can be taken in a single cache transaction. For exam­
ple, if only one cache line can be replaced at one time, cache states with more than one
line different are hot connected by an arc. (Indeed, it is this fact more than any other
which makes use of an optimal software cache management scheme feasible — without
this constraint, the compile times would explode.)

In this phase, arcs for all possible cache state transactions must be constructed.
From each cache state , there are three classes of arcs leaving v{ j-:

No Placement/Replacement:
From each cache state v{j, an arc is constructed to vl+1y. , where 5y = Sj? . This
kind of cache state transaction can occur under two situations. First, memory
reference rt+1 is in the cache. In this case, the memory reference is directly from
the cache. Second, memory reference rt>1 is not in the cache. In this case, the
memory reference is directly from the main memory. In both cases, there is no
placement/replacement in the cache.

Placement (without replacement):
If ISj\ < k, an arc is created to , where 5y. = 5y -f ri+l. This represents a
reference which is not available from the cache, but which may be placed in the
cache in any entry which was previously not valid (empty). Under typical cache
hardware constraints, the cache content will be changed by just one entry and
there is usually no reason to differentiate between multiple empty entries; hence,
only one arc of this type will be drawn from that cache state.

Replacement:
If | ,Sy I = k then for each x in 5,-, let 5y. = 5y - x -fri+l and arcs are constructed
to vt+i?yi . This represents the situation where the cache is full and the next refer­
ence is placed into the cache, thereby replacing an existing entry. Since each line
in the cache can be replaced, arcs corresponding to the replacement of each line in
the cache are drawn. Any line could be replaced, hence there will be one arc of
this type drawn to each cache state where the referenced line is in the cache and
the cache is full.

Continuing the example in the previous phase, the graph resulting from cache arc
construction is shown in Figure 5. Note that there are cache states which do not have
arcs coming in. These are unreachable, or “dead,” cache states and they can be
removed from the graph.

Page 27

3: Software Cache Policy

© \® End.}Start!

Stage 7Stage 5Stage 3 Stage 4Stage 0 Stage 1 Stage 2

Ref. 1 Ref. 2 Ref. 3 Ref. 1 Ref. 2 Ref. 3

Figure 6: Arcs for SCP Model

3.4. Cache Arc Cost Association

In the SCP Model, the cost associated with an arc represents the expected “rela­
tive” cost of going from one cache state to the next in the graph. This cost may be a

Page 28

3: Software Cache Policy

constant or a variable (as in the case of multiprocessing). Generally speaking, its value
depends on the change of the cache content and the delay in accessing the source
memory module for the reference rt . This second aspect is most important for read and
instruction-fetch references (under placement, replacement, and direct reference) and
for write references (under replacement and direct reference).

The cost of each arc (cache state transaction) in the graph is computed and
assigned by the following rules. For each arc, the cost of the arc connecting cache state
Vij and V,w. is: ^ -

5, Sr
If *+l 6 si-

si

the cost is Tc . This represents a memory reference which is satisfied
by an existing entry in the cache. If not, the cost is Tr, representing a reference
directly from main memory (bypassing the cache entirely).

C Sy.
The cost is (Tp + Tc) * (ISy. I - \ S3 \). The cost is the product of the cost of placing
one line in cache and the number of cache lines that need to be placed in cache.
This represents cache placement (without replacement). Note that the cost Tp for
each cache line placement may be different.

(Sy ^ S}-) and (IS}-I = |sy. I)
The cost is (2 * Tp -f Tc) * (number of different lines between 5; and Sy,). The
cost is the product of the number of replacement and the number of replacement
lines. This is the case where replacement occurs. Here again, note that the cost
Tp for^ each placement/replacementmay be different.

Each cache state in stage n has one exit arc which enters the final cache state at
stage n+1. The costs associated with these arcs are 0 (since they do not represent a
physical action).

Continuing the example from the previous phases, and given the graph in Figure 6,
the cost associated with each type of arc, and the line-style used to represent each, is
given in Table 1. Figure 7 gives the graph of Figure 6 after each arc has been given a
line-style indicating its cost.

Page 29

3: Software Cache Policy

0>-
\ ■

\ l

\'w /

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Ref. 1 Ref. 2 Ref. 3 Ref. 1 Ref. 2 Ref. 3

Figure 7: Arc Costs for SCP Model

4. Algorithms for Cache Placement/Replacement Policy

The directed graph obtained in section 3.4 and in Figure 7 includes all possible
paths corresponding to all''possible cache placement/replacement policies for the

Page 30

3: Software Cache Policy

memory reference string 1 23 123. Each of these paths represents a complete sequence
of cache state transactions as the given memory string is referenced.

In Figure 8, the graph actually generated by the SCP Model (with all dead cache
states removed) is shown.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Ref. 1 Ref. 2 Ref. 3 Ref. 1 Ref. 2 Ref. 3

Figure 8: Complete SCP Model (w/o Dead States)

Page 31

3: Software Cache Policy

The problem now is to select the shortest path from the initial cache state at
stage 0 to the final cache state at stage n-j-1 in the graph. Standard algorithms for the
shortest path problem [Wag76] [Joh77] can provide a solution to this problem4. Figure
9 shows the optimal path obtained by performing the shortest path algorithm on the
graph of Figure 8. This optimal path represents the exact cache state transactions
given the memory reference string 123 1 23.

4. A more computationally-desirable approach 'would be to use a pruned
search which truncated the search in such a way as to avoid generating
most states within the later stages.

Page 32

3: Software Cache Policy

@ @ ® ® @ ®

/ V

© © © © ©

/
/

' ®\
\

©
\

© @ © ©
/

|sta^

© \®
\

® © © (0) 0)

©
\

-©- -©-*-~(0)

@ © © © (0) (0)

(0) (0) (0) (0) (0}) (0)

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Ref. 1 Ref. 2 Ref. 3 Ref. 1 Ref. 2 Ref. 3

Figure 9: Optimal Cache Control for 123 123

The shortest path solution for each cache state transaction for referencing string
123 123 is given in Figure 9. Detailed information about the cache content, type of
placement/replacement, place of reference, line number to be feteched, and line number
to be replaced are collected and are shown in Table 4. This information, especially the

Page 33

cache operation for each reference, and the cache line to be operated on, can be
embeded into the code generated by the compiler. In this way, optimal cache perfor­
mance is assured, since the shortest path is, by definition, the optimal set of cache
operations.

3: Software Cache Policy

Cache
State

Reference
String

Cache Content
after Reference

Place of
Reference

Line No.
Fetched

Line No.
Replaced

Start — 0. — — — -

”1,2 i {1} Cache i —

, ^2,5 2 {1,2} Cache 2 —

^3,5 3 {1,2} Main Memory — : — .

*>4.5 1 .{1,2} Cache — —

^5.5 2 {1,2} Cache — —

v6.5 3 ■ {1,2} Main Memory — —

Table 4: Optimal Cache Control Sequence for 123123

The graph so constructed contains O[nmk) cache states and Q(knmk) edges.
Wagner’s shortest path algorithm for a directed acyclic graph from a single source has
an execution time of Q(max(v,e,d)), where v is the number of vertices, e is the number of
edges, and d is the maximum cost of any edge. For our graph, the computational com­
plexity of the SCP Model is 0(bimk) (i.e. O(e)) using Wagner’s algorithm.

Although this computational complexity is not promising, it is not actually a
severe limitation. Most computer systems employ very simple cache using direct map­
ping with a small set size and a small line size. For these simple cache organizations,
the compile times are expected to be quite acceptable. The key factor in the complex­
ity of the algorithm is the set size — which, for very practical hardware implementa­
tion reasons, cannot be very large and is usually one or two.

As is shown in Chapter 4, the complexity is O(nra) for direct mapping and 0(nm2)
for set associative with line size of two. The value of m is typically much smaller than
the value of n because the static code size of a program is always less than its dynamic
code size. Further, since caching is based on lines, each of which may contain a number
of memory locations, the number of distiguishable address references is reduced by this
factor.

Moreover, heuristic algorithms can always help us to reduce the graph analysis
time, thereby improving compile time. Alpha-beta pruning, and generating the graph

Page 34

only as the search requires portions of it, can dramatically improve the graph analysis
time without sacrificing optimality.

5. Implementation of Software Cache Policy

Finally, the SCP Model requires that information about each cache state transac­
tion (such as that given in Table 4) be inserted into the code generated by the compiler.
These inserted “cache directives” can be embedded in the generated code in two
different forms: new cache control instructions or tagging references at the end of each
instruction.

The first method is to define new cache control instructions (such as load a line to
cache, or store a line in cache to main memory) for fetching and storing memory lines
and to explicitly insert these new instructions into the code generated by the compiler.
The cost of this implementation is the extra execution times needed to execute these
explicit new cache control instructions. The main advantage is, however, that the
cache management can then be implemented as a coprocessor — permitting use o f exist­
ing, conventional, processors. In fact, even without any specialized hardware, some
benefit can be gained in multiprocessor environments by using a software-simulated
cache and block transfers between global and local memory spaces (feasible only
because global memory references may have extremely long access times).

The other alternative, which is more appropriate in custom-designed processors, is
to place the cache control directives (from the compiler) within each instruction, by use
of a cache-directive tag field. This trades the time to execute coprocessor-instruction
cache directives for the need to “borrow” instruction bits (in every instruction which
could cause a reference) for cache directives. Although the need for extra instruction
bits may increase the instruction length (and hence the cycle time), the fact that only a
couple of bits are typically needed leads us to predict that such extension of instruction
lengths will not be necessary.

A combination of these two methods is also possible. Cache directives may be
implemented by tagging references within instructions. Although this document has not
been much concerned with prefetching, it is more difficult to embed prefetch cache
directives within each instruction than to make separate prefetch instructions, since the
prefetch offset may require a large number of bits for its representation. Hence, cache
control instructions would be used for prefetch. This minimizes the number of cache
control instructions in the execution stream and, at the same time, solves the problem
of large offsets in prefetch references.

This SCP Model can be implemented using demand fetch, prefetch, or a combina­
tion of the two; in many cases, the distinction between the two is quite vague. For
example, a delayed load instruction (as found in most RISC processors) can be

3: Software Cache Policy

Page 35

considered to be either demand fetch -— because it requests data on demand relative to
the memory system outside the processor) — or prefetch — because the request is
separated from the use within the processor. In either demand fetch or prefetch, the
same delays are encountered and the compiler must schedule the fetch/cache activities
to minimize idle time: only the positioning of the control “directives-” withinthe execu­
tion stream is different. For example, the use of NOP* instructions to fill-in the gap
between issuing and completing a delayed load in RISC processors is not fundamentally
different from the (much older) techniques which do not advertise a delayed load but
none-the-less allow loads to take several cycles and each instruction waits for a
hardware “valid” tag before it uses the content of a register.

3: Software Cache Policy

Page 36

4: SCP Model in Different Cache Organizations

SCP Model in Different Cache Organizations

In cache design, one of the main factors in obtaining high efficiency is the cache
organization. Basically, there are three common cache organizations: direct mapping,
set assocative and full associative. (Direct mapping and full associative are actually
special cases of set associative where set size is 1 and A;, respectively.) In this chapter,
applications of the SGP Model to these different cache organizations are discussed. As
will be seen in the next few sections, the SCP Model discussed in the last chapter can be
applied to these three cache organizations with only minor modifications.

In section 1 of this chapter, application of the SCP Model to direct mapping cache
organization is discussed. Section 2 investigates the application of SCP Model to set
associative cache organization. Finally, application of the SCP Model to full associa­
tive cache organization is discussed in section 3.

1. SCP Model in Direct Mapping Cache Organization

This is the simplest, and therefore most commonly implemented, of all possible
cache organizations. In this direct mapping, liiie i in the memory maps into the line %
modulo k of the cache, where k is the size of the cache [HwB84]. Every M/k (where Mis
the size of the main memory) will be mapped to the same cache line. The direct map­
ping cache organization is shown in Figure 10.

Page 37

4: SCP Model in Different Cache Organizations

Cache Merripry

Line 0

Line 1

Line 2

Line 0

Line k-1Line 1

Line k

Line k+1Line 2

Line k+2

Line 2k-1

Line 2k

Line 2k+l

Line 2k+2

Line 3k-l

Line k-1

Line M-k+l

Line M-k+2

Line M-l

Figure 10: Direct Mapping Cache Organization

In the SCP Model, direct mapping cache organization can be visualized as k
independent sub-organizations as shown in Figure 11. Each of these k sub-organizations

]Page 38

consists of a cache of size one and a main memory of size M/k. For the given memory
reference string, it also subdivides into k sub-strings. In each sub-string, all the line
numbers are mapped to the same line in cache — thus reducing the alternatives for per­
forming a reference to just two: either reference from main memory or reference using
the line in cache. Since each sub-organization and its corresponding sub-string is
independent of the others, it can be analyzed separately using the technique described
in Chapter 3.

4: SCP Model in Different Cache Organizations

Page 39

4: SCP Model in Different Cache Organizations

Memory-Cache

Line 0

Line k

Line 2k

Line 0

Line M-k

Line k-1

Line 2k-lLine k-1

Line 3k-l

Line M-l

Figure 11: SCP Model of Direct Mapping

Page 40

Using the example in the last chapter with line 1 and 3 in main memory mapped
to the same line in cache and line 2 in main memory to another line in cache, sub-string
13 1 3 and 2 2 are formed. The graph generated by the SCP Model in direct mapping
cache organization is shown in Figure 12. In this case, there are 2 subgraphs of Figure
12 (each of which is analyzed separately).

4: SCP Model in Different Cache Organizations

[Start]

(Start]

Stage 7Stage 6Stage 5Stage 4Stage 3Stage 2Stage 1Stage 0

Ref. 1 Ref. 2 Ref. 3 Ref. 1 Ref. 2 Ref. 3

Figure 12: SCP Model for Direct Mapping 123123

The resulting optimal cache use for referencing string 123 123 using direct map­
ping cache organization in the SCP Model is shown in Figure 13. Note that the two
independent optimal paths found by the SCP Model together provide all the informa­
tion needed to control the cache.

4: SCP Model in Different Cache Organizations

0) (0

0-- -•0—0-
{!})——(End

Figure 13: Optimal Cache Control fdl1 Direct Mapping 123123

If this optimal cache management (in FigUre 13) is used instead of simply always
using the cache (as in Figure 14), the performance, using the co6t functions given ear­
lier, improves by a factor of 2. By slectively disabling the cache; cache performance was
dramatically improved! This surprising result is the direct effect of avoiding cache pollu­
tion.

ref. 1 ref. 2 ref. 3 ref. 1 ref. 2 ref. 3

Figure 14: Direct Mapping Transactions for 1 2 31 2 3

Page 42

The worst-case complexity of the SCP Model in direct mapping cache organization
is O(nm), which makes the technique practical even for very large caches. On the aver­
age, however, there will be k sub-problems each of which concerns m/k distinct cache
lines and njk references. This results in a complexity of O(Af^ran), which reflects the

fact that the analysis becomes easier as the cache becomes larger.

2. SCP Model in Set Associative Cache Organization

The set-associative organization divides the cache into S sets with E = k/S lines
per set, where k is the total number of lines in the cache. For reasons of hardware com­
plexity, E is rarely greater than four [Smi78c], and is most often two. A line i in main
memory can be cached in any line belonging to the set i modulo S [HwB84]. Set Associ­
ative cache organization with set size of two is shown in Figure 15.

4: SCP Model in Different Cache Organizations

4: SCP Model in Different Cache Organizations

MemoryCache
Line 0

Line 1

Line 2

Line 0

Line k-1Line 1

Line k

Line k+1Line 2

Line k+2

Line 3

Line 2k-l
Line 2k

Line 2k+1
Line 2k+2

Line k-2

Line k-1

Line M-k

Line M-k-fl

Line M-k+2

Figure 15

In the SCP Model, set associative cache organization can be visualized as S
independent sub-organizations. Each of these S sub-organizations consists of a cache of

Page 44

size k/S and a main memory of size M/k. The memory reference string is also subdi­
vided into 5 sub-strings, each of which has all its symbols mapped to the same cache
set. Since each sub-organization and its corresponding sub-string is independent of the
others, it can be analyzed separately using the technique described in Chapter 3. An
example of set size of 2 is shown in Figure 16.

4: SCP Model in Different Cache Organizations

Page 45

4: SCP Model in Different Cache Organizations

MemoryCache
Line 0

Line k

Line 2k
Line 0

Line M-kLine 1

Line 1

Line k-f-1

Line 2k+lLine 2

Line 3
Line M-k+1

Line 2

Line k+2Line 4

Line 5

Line M-k+2

Line k-1

Line 2k-lLine k-2
Line 3k-l

Line k-1

Figure 16: SCP Model of Set Associative (Size Two)

Page 46

4: SCP Model in Different Cache Organizations

The worst-case complexity of the SCP Model in the direct mapping cache organization
is 0(SnmE). For small set sizes, which hardware complexity issues generally force, the
SCP Model is still practical For example, if E is 2, then the worst-case complexity is
just 0(5rem2). Again, it is useful to note that, on the average, increasing the cache size
but not increasing the set size will simplify the problem; the complexity is
0(nm(m/5)fc_1), where 5 increases as k.

3. SCP Model in Full Associative Cache Organization

Full associative cache organization permits any line in main memory to be mapped
into any line in cache. In other words, E is k — which hardware can implement only if
fc is very small. Full associative cache organization is shown in Figure 17.

Page 47

4: SCP Model in Different Cache Organizations

MemoryCache

Line 0

Line 1

Line 0

Line 1

Line i

Line k-1

Line M-2

Line M-l

Figure 17: Full Associative Cache Organization

The techniques described in Chapter 3 can be used to analyze the full associative
cache organization. Full associative cache organization in the SCP Model is shown in
Figure 18.

Page 48

4: SCP Model in Different Cache Organizations

MemoryCache

Line 0

Line 1

Line 0

Line 1

Line k-1

Line M-2

Line M-l

Figure 18: SCP Model of Full Associative

The worst-case complexity of the SCP Model in a full associative cache organiza­
tion is O(knmk), which is only practical for very small caches. However, as discussed
earlier, the hardware implementation complexity also restricts full associative caches to

Page 49

4: SCP Model in Different Cache Organizations

very small k.

Page 50

5: Conclusions

Conclusions

This research offers a new methodology for the management of cache activities.
Although still in the initial stages, it has demonstrated the potential for a major
“breakthrough” in cache performance. ,

With the graph formulation of a program and shortest-path based analysis, the
algorithm guarantees optimal cache performance; both demand-fetching/prefetching and
placement/replacement policy are optimally managed given a reference string which is
known at compile time. Although this precise knowledge of the reference string is
unlikely to be available at compile time, the techniques presented here do not actually
require such perfect knowledge — compile-time-ambiguous alias problems merely block
our claim of optimality, not the general applicability of the techniques. Further, the
exact reference string is known in performing register allocation — the technique
presented here is also an optimal register allocation algorithm.

Another innovation in this work is that arbitrary cost functions for
placement/replacement are permitted. The cost functions can be re-defined to fit any
computer system, including parallel processing systems with complex memory Organiza­
tions, yet the SCP Model insures optimal performance. These cost functions can even
be statistical (e.g., they may represent estimates of expected traffic over interconnec­
tion links, etc.), although optimality cannot be insured is such a case. This flexibility is
a key step forward in cache performance optimization relative to all previous research
concerning optimal page algorithms like MIN [Bel66], VMIN [PrF76], GOPT [DeS78],
and DMlN [BuD8l], where cost functions are not considered and optimal performance,
even assuming uniform cost, is not guaranteed. (We feel that this is a fair comparison,
since the reference string is also asssumed to be known in these algorithms.)

There is, of course, some concern over the admittedly high complexity of software
to implement a compiler-driven cache policy. However, as discussed above, the
hardware to implement a cache structure becomes intolerably complex under the same cir­
cumstances which make the SCP Model unwieldy, most cache structures that are easy to
build are also practical to control using the SCP Model. It also seems likely that the
complexity of the SCP technique can be greatly reduced using simple search heuristics,
such as alpha-beta pruning.

In addition to this new methodology, we have proposed a hardware structure
which can cheaply and efficiently implement the new cache policy. The SCP Model can
be implemented by explicitly inserting “cache control instructions” into the code at
compiled time or by adding a prefetching offset to the end of each instruction generated
by the compiler. In fact, using this new model, it is possible to implement a processor
which will use a small software-managed on-chip cache as/instead of registers: this new

Page 51

architecture is discussed in a paper currently in preparation.

In summary, we have shown that a software cache policy can greatly improve
cache performance in .ways that traditional hardware-implemented cache policies, as
such, cannot* The analytic results given in this paper are currently being confirmed by
simulations of the software cache policy, and will be published in a later document.

5: Conclusions

Page 52

[A1B86]

[Bab82]

[BaS76]

[Bel66]

[Bel74]

[BuC86]

[BuD81]

[CoD73]

[DeS78]

[Dle87]

[HwB84]

[Joh77]

[Jos70]

[PeS85]

[PrF76]

[SmG85]

6: References

References

Allen, R., Baumgartner, D., Kennedy, K., Porterfield, A., “PTOOL: A
Semi-Automatic Parallel Programming Assistant,” 1986 International
Conference on Parallel Processing, August 1986, pp. 164-170.
Babaoglu, O., “Hierarchical Replacement Decisions in Hierarchical
Stores,” Proceeding of the 1988 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, 1982, pp. 11-19.
Baer, J.L., Sager, G.R., “Dynamic Improvement of locality in virtual
memory systems,” IEEE Transactions on Software Engineering, Vol. SE-2,
No. 1, 1976, pp. 54-62.
Belady, L.A., “A Study of Replacement Algorithms for a Virtual-Storage
Computer,” IBMSys. Journal, Vol. 5, 1966, pp. 78-101.
Belady, L.A., Palermo, F.P., “On-line Measurement of Paging Behavior
by the Multi-valued MIN Algorithm,” IBM Research and Development,
18, 1, January, 1974, pp. 2-19.
Burke, M., Cytron, R., “Interprocedural Dependence Analysis and Paral­
lelization,” SIGPLAN Symposium on Compiler Construction, 1986, pp.

. 613-641.-
Budzinski, R.L., Davidson, E.S., Mayeda, W., Stone, H.S., “DMIN : An
Algorithm for Computing the Optimal Dynamic Allocation in a Virtual
Memory Computer,” IEEE Transactions on Software Engineering, Vol.
SE-7, No. 1, January 1981, pp. 113-121.
Coffmdn, E.G., Denning, P.J., Operating System Theory, Prentice-Hall,
Englewood Cliffs, N.J., 1973.
Denning, P.J., Slutz, D.R., “Generalized Working Sets for Segment Refer­
ence Strings,” Communications of the ACM, Vol. 21, No. 9, September,
1978, pp. 750-759.
Dietz, H. G., The Refined-Language Approach To Compiling For Parallel
Supercomputers, Ph.D. Dissertation, Polytechnic University, June 1987.
Hwang, K., Briggs, F.A., Computer Architecture and Parallel Processing,
McGraw Hill Book Company, 1984.
Johnson, D.B., “Efficient Algorithms for Shortest Paths in Sparse Net­
works,” Journal o f the ACM, Vol, 24, No. 1, January 1977, pp. 1-13.
Joseph, M., “An Analysis of paging and program behavior,” Computer
Journal, 13, 1, 1970, pp. 48-54.
Peterson, J. L., Silberschatz, A., Operating Systems Concepts, Addison-
Wesley Publishing Company, 1985, pp. 222-226.
Prieve, B.G., Fabry, R.S., “VMIN - An Optimal Variable-Space Page
Replacement Algorithm,” Communications of the ACM, Vol. 19, No. 5,
May 1976, pp. 295-297.
Smith, J.E., Goodman, J.R., “Instruction Cache Replacement Policies and
Organizations," TFEF, Transactions on Computers, Vol. c-34, No. 3,
March 1985.

Page 53

6: References

[Smi78a] Smith, A.J., “Sequentiality and Prefetching in data base systems,” ACM
Transactions on Data Base Systems, Voh 3, No. 3, 1978, pp, 223-247.

[Smi78b] Smith, A.J., “Sequential Program Prefetching in Memory Hierarchies,”
IEEE Computer, Vol. 11, No. 12, 1978, pp. 7-21.

[Smi78c] Smith, A.J., “A Comparative Study of Set Associative Memory Mapping
Algorithms and Their Use for Cache and Main Memory,” IEEE Transac­
tions on Software Engineering, Voh 4, No. 2, Mar. 1978, pp. 121-130.

[Smi82] Smith, A.J., “Cache Memories,” Computing Surveys, Voh 14, No. 3, Sep­
tember, 1982, pp. 473-530.

[Spa74] Spaniol, 0., “Demand prepaging algorithms basing on a model of locality
of programs,” in Gelenbe, E. and Mahl, R. eds., Computer Architectures
and Networks, North-Holland, Amsterdam, 1974, pp. 515-527.

[Spi76] Spirn, J., “Distance String Models for Program Behavior,” IEEE Com­
puter, November, 1976, pp. 14-20.

[Spi77l Spirn, J., Program Behavior: Models and Measurements, Elsevier-North
Holland, N.Y., 1977.

[Wag76] Wagner, R.A., “A Shortest Path Algorithm for Edge-Sparse Graphs,”
Journal of the ACM, Voh 23, No. 1, January 1976, pp. 50-57.

Page 54

	Purdue University
	Purdue e-Pubs
	6-1-1987

	Compiler-Driven Cache Policy (Known Reference String)
	Chi Hung Chi
	Henry G. Dietz

	tmp.1542052450.pdf.7Nitr

